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ABSTRACT 

LANDSCAPE CARBON MEASUREMENT IN SYSTEMS OF TREES OUTSIDE OF 

FORESTS: THE CASE OF AGROFORESTRY SYSTEMS IN RURAL SAVANNAS OF 

SENEGAL 

By 

Moussa Dieng 

 Monitoring forest cover changes and carbon content at regional and global level by using 

remote sensing has advanced significantly for closed humid tropical forests, and several methods 

have been developed. On the other hand monitoring of cover and carbon for semi-arid savannas 

and woodlands has been under-studied, and more methods are needed. Further, for systems of 

Trees Outside of Forests in semi-arid regions, monitoring of cover and carbon has not advanced 

at all, and new methods are needed.  

 In this dissertation, I developed methods for remote sensing-assisted carbon measurement 

and monitoring in semi-arid landscapes of Trees Outside of Forests (TOF) which include: 

- Plantation and Agroforestry systems 

- Other trees on farms: planted trees 

- Other trees on farms: remnant savanna trees 

 In this study, remote sensing satellite techniques were used to estimate carbon at a 

landscape level in savanna systems. Remote sensing tree crown projection area (CPA) was used 

as a proxy to predict tree diameter at breast height (DBH).  

 A relationship was established between remote sensing based crown projection area 

(CPA) and the field-based DBH. Both simple linear and non-linear regression analysis were 

applied to the Sokone and Karang sites in Senegal. 



 The linear function presents a higher coefficient of determination (R
2
) in both sites with 

respectively R
2
= 0.71 and R

2
= 0.79 for Sokone and Karang sites. The non-linear model shows R-

squared values ranged between 0.61 and 0.77 for Sokone and Karang sites respectively. 

 The regression equations derived from the relationship between remote sensing-based 

crown projection area (CPA) and the field-based DBH are used to predict the DBH of all trees 

within the study area knowing their crown projection area from remote sensing. 

 A general allometric equation that uses DBH as a parameter to calculate biomass and 

carbon per tree was used in this study. My findings show that: 

(1) A model that uses remote-sensing assisted landscape-scale carbon stock measurement 

has promise; 

(2) The relationship between CPA detected from remote sensing and allometric scaling is 

something that can be refined but seems to be a workable approach and these refinements 

would include an improved relationship model using non-linear relationships, developing 

a local allometric equation using destructive sampling, and specific parameters for the 

savanna or tree type/species and explore the use of automated detection. 

 This study's findings will be useful for the Senegalese government and others with 

savanna systems. With 1,043,000 ha of savanna systems and trees outside of forests (TOF), my 

findings could be an important step for integrating TOF into the natural resource management 

scheme for carbon stock estimation and the reduction of greenhouse gas emissions in the forestry 

sector. The use of remote sensing will lower the costs of field sampling based methods in highly 

patchy woodland and TOF landscapes and increase the opportunity for small holders and 

communities of small holders to be engaged in carbon mitigation projects. My findings show 

that, with a minimum training, they will be able to do the tree measurements in their own farms. 
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CHAPTER 1 . GENERAL INTRODUCTION 

1.1. BACKGROUND AND RESEARCH CONTEXT 

 Climate change has been an emerging global environmental problem and policy 

concern, and is now a key economic development challenge in developing countries in Sub-

Saharan Africa (Mbow et al. 2012; Collier et al., 2008) whose consequences include the 

adverse effects on livelihoods of farmers. Climate change is the result of increased levels of 

greenhouse gases in the atmosphere caused in part by fossil fuel combustion and land 

conversion, the latter is due primarily to tropical deforestation.  The trend to-date has been 

toward significant greenhouse gas emissions with few land based sinks. Trends in land use 

change have been predominantly conversion of high biomass ecosystems to low biomass 

agricultural systems that have significantly lower carbon stocks. The emissions contribution 

of land-use conversion is estimated to be 10 to 30% of the current total anthropogenic 

emissions of CO2 (IPCC, 2001 Houghton et al., 1985). In Senegal, the current terrestrial 

carbon stock of the landscape is affected by both land use change and land degradation. 

There has been a loss of 292 MtC from 1965 to 2000 (Woomer et al., 2004). One estimate 

for southern Senegal indicates that from 1900 to 2000 there has been a landscape-wide 

decline of carbon stocks in vegetation and soils of 37% (Liu et al., 2004).  

 One interesting characteristic of the land use component of the carbon cycle is that 

land management can reduce emissions and remove carbon from the atmosphere. This dual 

source-sink characteristic of land use change makes it an important focal point for land 

management interventions in ways that are not available with energy strategies. Thus, there 

has been a growing interest in developing modalities for creating carbon sinks in both forest 

and non forest landscapes, which include, among other forms of intervention: reforestation, 
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afforestation, assisted natural regeneration, plantation management, and agro-forestry and 

other uses of trees outside of forests. 

 As one of these forms of intervention, agro-forestry combines a multitude of 

environmental, social and economic benefits to rural land owners in addition to carbon 

sequestration. The use of woody perennials on farms in rural Africa can provide high-value 

products and increased incomes over traditional annual crop production systems. However, 

it is not widely adopted because the delayed benefits obstacle of agro-forestry may be too 

significant for farmers to adopt these systems by replacing existing annual cropping 

systems
1
. For example, the long period (5-8 years) to full tree maturity and production may 

be too long for farmers to feel secure in removing from production cropland that is already 

producing annual revenues, even if their existing yields and economic returns are meager. 

As carbon markets have been growing, there has been an increasing emphasis on activities 

that enable carbon sequestration in tree systems, mostly with large-scale commercial 

plantation systems. Smallholder agro-forestry presents another option for carbon 

                                                           
1
 The specific role for carbon payments may not lie in its direct sale value, but as a trigger or 

catalyst that removes the barriers to adoption. Key among these barriers is the so-called 

“delayed benefits” barrier. Farmers engaged in annual production systems usually have no 

“excess” land capacity to install agro-forestry. Since an agro-forestry system takes years 

before it begins to produce, farmers are often reluctant to make this long term investment in 

tree establishment on annual cropland. For example, it might take three to six years for an 

agro-forestry system before fully realizing benefits compared to the only few months needed 

to harvest annual crops (Franzel and Scherr, 2002). Studies in the GOES lab at MSU suggest 

that while carbon income might only be 15-20% of total farm product income, that is enough 

to push some farmers into adoption, if the carbon credits can be accrued from the initial 

planting year. Similarly, those farmers that do engage in adoption of agro-forestry often 

finance their investment with loans, which immediately places an economic exposure or 

financial risk on the household. Conceivably carbon finance can be used in the place of 

capital finance with considerably less (albeit different) risk. Dewees (1995) also suggests 

that “investments in tree planting are most favorable when they involve low costs and low 

risks”. Also, some studies have shown that the time delay between the planting and the 

harvesting of trees put farmers in rural areas in a position where they are less likely to adopt 

agroforestry (Scherr, 1995). 
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sequestration that can also provide environmental co-benefits (increased soil fertility and 

lower erosion rates) and at the same time a potential source of income for poor smallholders 

through carbon sequestration credits.  

 The model developed under the Michigan State University program, 

Carbon2Markets, provides a mechanism that creates “year-one” value chains from carbon 

sequestration for smallholders who adopt agro-forestry, and can alleviate the delayed 

benefits problem by providing early value-chain income from carbon sequestration. Thus, 

carbon sequestration in agro-forestry and other Trees Outside of Forests (TOF) has the 

potential to provide increased incomes and provide environmental and agronomic co-

benefits such as climate change mitigation. 

 The challenge, however, is that before agro-forestry carbon value chains can be 

established there must be rigorous and accurate protocols for measuring, reporting and 

verifying carbon sequestration in agro-forestry systems and other TOF. These protocols and 

methods must be acceptable to the international climate change mitigation community and at 

the same time be acceptable “technologies” for community level implementation and 

participation. International standards for carbon measurement are being developed and 

promoted through international conventions, carbon financial markets, and both regulatory 

and voluntary regimes and institutions.  

 As such, scientific and technical rigor for international carbon measurement is 

extremely high, and involves exact reporting and verification standards and best practices.  

This is particularly true for new modalities of carbon measurement. Currently the common 

practice for carbon measurement in tree-based sequestration systems is based in large-scale 

plantations or reforestation in large tracts of closed canopy forests. There is less credibility 
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and “trust” placed in small-scale systems involving agroforestry or small-scale reforestation 

systems that are managed by local land owners, particularly in savanna and woodland 

landscapes.  

1.2. RATIONALE AND RESEARCH OBJECTIVE 

 

 Regional and global monitoring of forest cover changes and carbon content using 

remote sensing has advanced significantly for closed humid tropical forests, and several 

methods have been developed. At the meantime, for semi-arid savannas and woodlands, 

monitoring of cover and carbon has been under-studied, and more methods are needed. 

Further, monitoring of cover and carbon for systems of Trees Outside of Forests in semi-arid 

regions has not advanced at all, and new methods are needed.  Also, most remote sensing 

methods for monitoring cover and carbon stocks have used moderate resolution optical 

sensors such as Landsat. Most of these methods have been either statistical classification or 

end-member analyses based on spectral characteristics. Consequently, these approaches are 

inaccurate or inappropriate in landscapes with sparse tree cover; most of the land looks bare 

to optical spectral signature models. Therefore, we need a new methodology to monitor 

Woodlands and TOF.    

 Monitoring is needed on two “fronts” of the problem of carbon accounting of 

emissions and removals: 

– Measurements of changes in forest or tree cover over time, deforestation, 

reforestation, degradation (also known as Activity Data in IPCC) 

– Measurements of stocks and stock changes in carbon content of live biomass 

(also known as Emission Factors) 
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Where convention in IPCC is stated as:  

    ER = AD * EF 

 These measurements lay the foundation for nearly all carbon accounting of emissions 

and removals associated projects, interventions, investments, and policy actions. They are 

also fundamental for both sequestration activities and REDD activities, in baselines and 

reference emission levels, whether project based or national in scope.   

 There are opportunities on better investigating this area of research because new 

technologies are emerging that allow very high spatial resolution earth observations: for 

example, 10 years ago, remote sensors had a 1-2 meters resolution compared to the .46 cm 

resolution today. This may create opportunities for monitoring landscapes in which tree 

cover is sparse or widely spaced and where individual trees, as objects, can be detected. If 

methods exist, remote sensing allows for large area monitoring – at the landscape scale. This 

could reduce costs of field sampling based methods in highly patchy woodland and TOF 

landscapes and increase in opportunity for small holders and communities of small holders 

to be engaged in carbon mitigation projects. 
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Figure 1.1 Comparison between Landsat 5 and Worldview Image taken the same day 

(April 16, 2010) in the Sokone study area 

 

 In this research, I aim at addressing these problems of small-scale TOF systems as 

potentially important sequestration systems, and the necessary measurement requirements 

for enabling these systems in the international system of carbon management and regulation.  

The major question posed to frame such research is: 

- Can protocols be developed that allow for landscape scale measurements of trees 

outside of forests with the accuracy and rigor that is acceptable to the international 

community?  

 This research examines this question through an analysis of potential landscape level 

carbon measurement, reporting and verification (MRV) methods in rural Senegal. And if we 

want to sustain these methods, local communities have a role to play. Therefore, I will  

assess the ability of those communities to accomplish tree carbon measurements on their 
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own farms, which is different from community participation in its richest and fullest extent, 

a full treatise beyond the rather narrow measurement scope of this study. 

 The focus of this study specifically is to develop methods for remote sensing-assisted 

carbon measurement and monitoring in semi-arid landscapes of Trees Outside of Forests 

(TOF) which include: 

– Plantation and Agroforestry systems 

– Other trees on farms: planted trees 

– Other trees on farms: remnant savanna trees 

 The method uses a combination of advanced remote sensing and basic allometry in 

systems of “trees outside of forests” in the semi-arid savanna ecosystems of West Africa, 

especially in Senegalese semi arid woodland and agricultural landscapes. While doing so, I 

will assess the local communities' skills on making accurate ground measurements of critical 

tree parameters, such as tree stem diameter, tree height, and tree canopy projected area to be 

used to compute carbon stock and stock changes, and thereby be active participants in, and 

co-owners of, the MRV process. 

1.3. FOCAL POINTS FOR THIS STUDY 

1.3.1. Climate Change Mitigation Potentials for Agro-Forestry 

 To mitigate climate change, massive forest protection and reforestation have been 

promoted as one way to stabilize the concentration of carbon dioxide in the atmosphere 

through Afforestation/Reforestation (A/R) activities in the Clean Development Mechanism 

(CDM) or REDD+ activities. However, while these efforts to reduce large scale 

deforestation or create large-scale reforestation projects provide new land uses for 
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significant climate mitigation (FAO, 2010), they also can conflict with the growing need for 

expansion of the agricultural land base (Mbow, 2012). Smallholder forest agroforestry on 

the other hand could be a compromise solution to the apparent land use conflict between 

forest conservation, reforestation and agricultural land use, because it increases the storage 

of carbon and at the same time provide opportunities for agriculture. Moreover, the 

agroforestry option may in fact enhance agricultural production (Unruh, 1993).  

 Currently, there is a growing interest in investing in agroforestry systems for this 

dual benefits of climate mitigation and livelihoods enhancements (ICRAF, 2008) and also as 

a set of innovative practices that strengthen the farming system’s ability to cope with, or 

adapt to, adverse impacts of changing climate conditions (Verchot, 2007). In this context it 

is possible to view agroforestry as both a mitigation and an adaptation option for 

smallholders. Agroforestry practices can be implemented in a variety of forms and range of 

intensities depending on local conditions to provide a locally relevant approach to 

sustainable agriculture production and soil fertility management. Agroforestry might become 

a key component of the African farmers’ household portfolio of farming practices, and 

provide an important role in meeting farmers’ food and non-food subsistence needs through 

the ecosystem services it provides (Jonsson, 1999). There is also some evidence suggesting 

that the high production levels and economic values of agroforestry value chains may 

actually facilitate the production of financial capital beyond subsistence levels alone, thereby 

aiding in capital accumulation and re-investment at the farm level (Jonsson, 1999).    

1.3.2. Advantages of Agro-forestry Carbon Sequestration beyond Climate Change 

Mitigation 

 In Africa a critical characteristic of the rural landscape is the preponderance of many 

smallholder farming systems that are operating on the environmental and economic margins, 
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where any newly introduced practice will be adopted only if it improves food security as 

well as generates income on a sustainable basis. Under such conditions, climate mitigation 

interventions, such as increased carbon stocking with trees on farms will need to not only 

contribute to improve food production but also generate income (Smith, 2012). In this 

context, climate mitigation becomes a co-benefit of a primarily food-focused enterprise. 

Hence, there are practices that are keys to sustaining agricultural productivity and they 

include those that minimize the rate of soil degradation, improve soil fertility, increase crop 

yields and raise farm income by using the “right tree at the right place”. In turn, this will 

provide better conditions for  climate adaptation in many of the  poor rural communities that 

might be most adversely affected by climate change and variability (Neupane, 2001), and 

then also provide added benefits for climate mitigation through increased greenhouse gas 

removals from the atmosphere. Agroforestry  – as a system of “trees outside of forests” – 

readily bundles  both mitigation and adaptation strategies and provides several pathways to a 

range of environmental and social co-benefits and outcomes, including food security, 

increased farm income, restoration  and maintenance of above-ground and below-ground 

biomass and biodiversity, reestablishment of biological corridors between protected forests, 

maintenance of  watershed hydrology, improved soil conservation, availability of timber and 

fuel wood, and ultimately a  reduction of  pressure on natural forests outside the farming 

domain (Pandey, 2002).   

1.3.3. Carbon Sequestration as Part of a Value Chain or Production Strategy 

 Agroforestry is a promising option to sustain agricultural productivity and 

livelihoods of farmers (Syampungani et al., 2010), and a low-cost method to sequester 

carbon. In the context of emerging carbon markets and ecosystem payment schemes, and 
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where extreme poverty is a crucial problem in many parts of tropical countries, especially in 

rural areas, carbon benefits of specific farming systems may be a means to encourage and 

incentivize sustainable agriculture and natural resource management systems. Some studies 

have shown the value of increasing tree cover through tree planting by households as a 

solution to the problem of deforestation (Carle et al., 2002; Medugu, et al., 2010). In a 

country like Senegal, where farmers represent more than 70% of the population and depend 

on land to develop their activities, agro-forestry presents a real opportunity with potential 

pay offs for livelihoods, land productivity and environmental integrity. It has also the added 

benefit of creating options at the household and community level for climate change 

mitigation and adaptation.  

 Farmers ordinarily don't include, nor often even comprehend, the carbon dimension 

of their farming system when considering or engaging new land management practices such 

as agro-forestry. For example, evidence from the Nhambita Project in Mozambique has 

shown a “lack of deeper understanding of the concept and its mechanisms” (Campesina 

Africa, 2012). And “even though farmers know that their income from planting trees comes 

from carbon, they do not understand what carbon is (Campesina Africa, 2012). 

 Rather, farmers focus more on the direct economic return of the new alternative and 

the benefit of improving the land management system; altogether contributing to increase 

annual crop productivity, sustainability and cost effectiveness. One challenge is to determine 

how and if, carbon can be another commodity value chain that provides economic returns to 

land managers and can be integrated into farmers’ own strategies. 

 One way of assessing the value of carbon sequestration is to measure carbon using 

more accurate techniques so that it can be sold and benefit those people whose activities 
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contribute to the sequestration. Also, engaging the communities in carbon measurement 

activities could lower the cost of carbon sequestration and increase the benefits. It is also 

important to investigate the role of carbon in agroforestry adoption.  

1.3.4. The Need for a New “Bundle of Methods” for Carbon Measurement and Reporting  

 A logic model has been developed and briefly laid out below:  

1. In land-scarce areas, agroforestry can provide an alternative to dedicating land solely to 

reforestation to reduce pressure on forests; 

2. Agroforestry as a carbon sequestration system and a production system might provide a 

means for both climate change mitigation and an enhanced agricultural production; 

3. One major obstacle is that delayed benefits prevent widespread adoption of agroforestry; 

4. Carbon value chains may offer a way to overcome these barriers to AF adoption. 

 However, before agroforestry as a carbon sequestration strategy and value chain will 

be necessary, it requires that its carbon be quantified and measured accurately, be reportable, 

and verifiable. 

 Many accepted methods for carbon measurement in programs or projects that are 

based on sequestration (as opposed to avoiding emissions from deforestation) have been 

defined at a project scale with specified boundaries of the project, often on land parcels with 

a single owner. When trying to develop methods for rural poor farmers, experience suggests 

that a landscape approach is needed (Estrada-Carmona et al., 2014), whereby many farmers 

can be bundled into a single project, even if the parcels are not contiguous.  

 The landscape approach offers new opportunities for a greater participation of the 

rural poor in carbon markets. However, the means for landscape-scale measurement need to 

be developed. Remote sensing offers a means to do landscape scale measurement and 
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monitoring, but most advanced methods in recent years have focused on closed forests, 

rather than open woodlands and savannas or, to be sure, systems of trees outside of forests. 

 Thus, the current study focuses on the need to develop rural community-focused, 

landscape-wide measurement methods for systems of trees outside of forests (cf. agro-

forestry and related systems) in the savannas of Africa. This measurement and monitoring 

approach provides a bundle of methods (landscape wide, trees outside of forests, 

community-scale). 

1.3.5. Remote Sensing 

 In recent years there has been substantial progress by the research community in 

developing ways to detect land cover change in tropical forests with remote sensing analysis. 

Initially the focus was on measuring the conversion of tropical forests to non-forest land 

(Skole and Tucker 1993). However, recent advances have made it possible to increase the 

variety of disturbances that can be detected for closed tropical forests to include 

deforestation, degradation, logging, fragmentation, reforestation, and fire (Matricardi et al. 

2013, Matricardi et al. 2010; Matricardi et al. 2007; Wang and Cochrane 2005). Thus, there 

are now methods available to remotely detect a full range of disturbance intensities, from 

outright clearing to low levels of degradation, over large areas.  

 But these approaches have been applied only in very dense closed tropical forests, 

and in particular in key regions of the Amazon Basin, Central Africa, and South East Asia. 

There has been very little advancement of detection methods for two important other forms 

of land cover change: 1) deforestation and degradation of open woodlands such as the 

cerrado and the chaco ecosystems in South America, woodlands of East Africa, Savannas of 

West Africa, and other open forest ecosystems in the tropics and sub tropics,  and 2) 
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regeneration systems on managed landscapes where  biomass recovery occurs as plantations, 

orchards, agroforestry, and widely-spaced tree complexes associated with agriculture.  

 Some studies have suggested that disturbance in open forest systems is quantitatively 

as important as in closed forests systems (Erickson et al. 2002; Murphy and Lugo 1995; 

Serca et al. 1998), especially because disturbances in these systems may have longer term 

degradation effects with lower probabilities of recovery than in closed forest systems. 

Observations of reforestation and biomass accumulation in trees on agricultural land is 

important because these data are needed to understand the global magnitude and capacity for 

carbon sequestration, and to inform decision makers and policy makers on options for 

carbon management practices  that can remove carbon from the global atmosphere. There is 

also considerable uncertainty on the current land area in woody perennials on farms in 

developing countries and the global potential for managing carbon sequestration in tree-

based agriculture. Some estimates from international organizations suggest a large amount 

of carbon sequestration already occurring in these managed landscapes (Verchot and Singh 

2009). 

 Although frequently treated as a secondary priority to monitoring of the much higher 

biomass forests of the humid tropics, the dry and open forests of the world are more 

abundant than closed forests and usually are more prone to occupation and disturbance by 

humans. Although these low density forests contain as little as 25% of the total carbon stock 

of humid tropical closed forests, the global area is more than 30%  greater and rates of 

disturbance are suspected to be equal to or greater than the closed forests, and less likely to 

recover lost carbon. Thus, it is vitally important to begin to assess the global magnitude of 

open forest disturbances. 
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 What is often unrecognized is that while forested area is declining in developing 

countries, tree cover on farms is increasing, as farmers substitute annual cropland for the tree 

products which were formerly available in local forests. Farmers are also increasingly 

seizing specific market opportunities to sell higher-value tree products (e.g. natural rubber, 

bio-fuels, bio-chemicals, timber). For example, remote sensing in 64 rural locations in 

Uganda revealed that between 1960 and 1995, forested area declined 50%, agricultural area 

increased 23%, and the proportion of agricultural land under tree cover increased 22% 

(Place 2001). Agricultural land now accounts for over double the area of forested land in 

Africa (FAO 2006), giving justification to the slogan that, “the future of trees is on farms.” 

 Increasing woody biomass on farms in developing countries is seen as a possible 

global climate and carbon mitigation option that deserves serious attention. Montagnini and 

Nair (2004) have estimated that a vigorous program to introduce agro-forestry on farms in 

tropical Africa and Asia has the potential to sequester 3.5 Mg C ha
-1

 yr
-1

.  However, for this 

to be a successful strategy it will be necessary to have sound detection and monitoring 

systems in place. 

1.3.6. Linking Remote Sensing to Ground Measurement  

 A significant challenge for efficient, timely and cost-effective automated monitoring 

of A/R/AF is the accurate measurement of woody biomass in the landscape.  Detecting and 

measuring individual tree objects that are sparsely planted on farms, along roadways, or in 

backyards cannot be done accurately with low or moderate resolution satellite imagery 

where a single tree may represent only a small proportion of a single pixel. Although pixel 

unmixing techniques (Keshava 2003) can provide an estimate of the proportion of different 

land cover types represented in a single pixel, in general, these techniques are not amenable 
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for accurate estimation of tree size, number of trees or other measurements required for 

accurate assessment forest cover change in sparsely planted landscapes. Also they do not 

work well for savanna and TOF landscapes. However, recent technological advancements in 

satellite image acquisition provide access to hyper-resolution imagery of the Earth and its 

land uses. For instance, the Worldview 2/3 satellite acquires 4 bands of multispectral data at 

2.4m resolution and a panchromatic band at 60 centimeters or finer.  Other sensors now can 

detect resolutions of objects at 0.5 m in size. Very high-resolution imagery enables the 

detection of objects in the landscape using remote sensing. Subsequent processing can be 

used to associate attributes, such as size or texture, with detected objects. Therefore, it may 

be possible to count trees, estimate size and evaluate change remotely, which is a focal point 

for this study.  

 If one can detect individual trees and tree crowns, there is a potential to develop a 

crown-based allometry for individual trees. This would require the development of methods 

for ground measurements that could support the remote sensing analysis. Most reforestation 

projects use small sample plots in a sampling frame for forest inventory. This ground 

measurement protocol must be re-defined for systems of individually planted or growing 

trees, and then also extended to the woodland or savanna landscape. The landscape approach 

allows one to inventory both land in forests (in this case savanna) and land with trees outside 

of forests (in this case agroforestry on farms). 

1.3.7. Community Outreach and Engagement for Joint Measurements  

 Although there is considerable concern and interest in involving local communities 

in the various international carbon programs, there is also some uncertainty over whether 

they can participate in the basic measurement process (Evans and Guariguata, 2008). This 
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has made it difficult to include smallholder systems in the international agenda, and thus 

forgoes the potential of systems like agroforestry from being a low-cost and local system for 

carbon and climate mitigation.  

 However, work in Southeast Asia by Samek et al. (2014) shows that the 

measurement process could readily engage local communities, at least as partners who are 

trained to implement the standard forest inventory measurements on the ground. Ground 

measurements are expensive and time consuming, especially when done by external project 

developers or verifiers, and it is not likely that local community members can readily 

participate in, and share the benefits of a project that relies on outsiders doing the 

measurements of their own lands.  The first step in the process of claiming ownership of the 

benefits of carbon sequestration begins with measurements and reporting. So it is important 

that community-based abilities must contribute to measurements. Yet, community level 

understanding of carbon as a service or commodity, and their willingness to participate can 

be difficult. Obstacles, such as land and labor availability may hinder willing participants, 

according to Tschakert (2004). However at the most fundamental and basic level, there is a 

need to know how well collaborative measurements with the project specialists and the local 

people could produce accurate measures - a simple but important issue is whether or not 

traditional and local communities can make accurate measurements, that can withstand the 

scrutiny of international protocols, and thereby enable the deployment of the 

Carbon2Markets model.  

 The Global Observatory for Ecosystem Services (GOES) laboratory at Michigan 

State University has been working with communities in Africa, South Asia and Southeast 

Asia on joint measurement campaigns for assessing carbon stocks in smallholder plantation 
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and community forest systems for more than five years, mostly in small locally-owned 

stands of teak (Tectona grandis), but also with native species in community forests (Samek 

et al. (2011), Samek et al. (2013). In early work in Thai communities of the Inpang 

Network, a sufficiency economy organization in Northeast Thailand (Krongkaew 2003; 

Chalapati 2008), this project produced a new protocol that engaged collaborative teams of 

local people and university specialists from both Thai and American universities. This 

protocol was accepted by the Chicago Climate Exchange (CCX, 2009).  

 There are a number of other existing C mitigation projects that include smallholders 

and agroforestry in developing countries, e.g., the Plan Vivo C mitigation projects in 

Tanzania, Mexico, Mozambique, and Uganda (Plan 2010). These projects, however, include 

other forest C mitigation components than agro-forestry, such as afforestation/reforestation, 

forest conservation, and avoided deforestation – the typical complement of REDD+ 

activities. Moreover, Plan Vivo is a “standard” rather than a protocol. The Plan Vivo 

standard is a set of best practices to ensure that a forest C mitigation project provides 

equitable distribution of benefits, ensures livelihood needs are met, includes local people in 

the development and management of the project, and supports biodiversity and 

environmental services (Ruiz-De-Oña-Plaza et al. 2011). Plan Vivo projects emphasize 

capacity-building, long term C benefits, diversifying livelihoods, and protecting biodiversity 

(Plan Vivo, 2010). The Inpang Carbon Bank activities also follow the same principles. Two 

main differences between the GOES approach to agroforestry C offsets and the Plan Vivo 

standard are the use of an Internet-enabled content management application, which uses GIS 

and remote sensing data analysis, and a focus on developing a new Chicago Climate 

Exchange (CCX) market approved agroforestry C offset protocol. 
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 In order for agroforestry C to be developed as a commodity it must, however, be 

economically viable; thus most forestry projects have been large-scale enterprises. For 

smallholders there are market, institutional, and social barriers that all yield costs. The 

GOES Lab's work has focused on addressing the social barriers through capacity building 

and training local people in the Inpang Network, the institutional barriers through partnering 

with provincial and national organizations representing the national commitments to the 

UNFCCC, and the market barriers through technological innovations in managing C offset 

projects. One piece of this dissertation, centered in Senegal, focuses only on a narrow slice 

of the first, social barrier in terms of accuracy assessment. 

 The Carbon2Markets internet-based C offset management system is truly in a 

software R&D phase. The proposed advantage of the Carbon2Markets system for 

smallholder C offsets is in lowering the transaction costs associated with field-level 

measurements and verification. The fully developed on-line C management system will 

allow a farmer’s agroforestry C offset field to be enrolled through on-line tools that will 

register the field boundaries, calculate the baseline C, estimate leakage from on-farm 

management practices and report future amounts of C sequestration (ex ante projections). 

 The on-line tools require input data uploaded to the database. Field boundaries are 

either delineated using a hand held GPS receiver, uploaded via the Internet, entered as 

coordinates on-line, or drawn on-screen using hyper-resolution satellite imagery (1 m or 

less) and Internet-GIS tools. 

 An important question related to this approach is "Can smallholder agroforestry C 

offset projects be scaled up?" With an on-line Internet-GIS management application, such as 

Carbon2Markets, and the potential to use satellite remote sensing data to directly measure 
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and monitor C sequestration in biomass, the proposition is that it is feasible. Aggregating 

individual farm parcels is a key function of the Carbon2Markets software application that 

allows scaling and lowers scale-up costs. The smallholder teak plantation studies in Thailand 

demonstrate how farms spread across five provinces can be managed as a single project and 

scaled up to national levels. Ground-based measurements are essential components of this 

method and will be a requirement for project validation and verification against rigorous 

international standards for all projects in the foreseeable future. The coupling of satellite 

remote sensing measurements with ground measurements of C in biomass means larger 

areas can be assessed with fewer field data requirements.  

 While progress has been made with the Inpang Carbon Bank project the GOES Lab 

is cautiously optimistic about realizing agroforestry C offset transactions and the potential 

economic benefits to rural farmers in the near term. Follow-on studies have been developed 

in other smallholder plantation systems and community forests in Thailand, Laos and 

Vietnam. This work has expanded the experience of the GOES Lab in the context of 

REDD+ forests as well. One could imagine that these new projects in Asia have been 

developed against a backdrop of views, perceptions and arguments over the pros and cons of 

REDD+ at the community level. Indeed there is a resonating view among those skeptical 

about REDD+ implementation that identifies the risk that REDD+ may marginalize local 

people, hinder their access and rights to forest and forest resources, and negatively impact 

local livelihoods. These are legitimate concerns, even in light of discussions about 

safeguards working to ensure “the full and effective participation of relevant stakeholders, in 

particular indigenous peoples and local communities” (UNFCCC CP 16 2010). Ribot and 

Larson have reviewed some of these concerns (Ribot and Larson, 2012). These Asian 
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projects and the proposed Senegal site are not focused on analyzing the various forest 

policies and implementation of these policies in the three countries, which can indeed impact 

how local people benefit or are marginalized in such activities as REDD+.  Rather, our 

research is targeting the practical implementation of engaging communities in the tasks of 

measuring biomass in forested areas and the collection of field data that could be integrated 

with satellite remote and GIS analysis in a Carbon2Markets MRV system.   

 From preliminary results of Asian projects, the GOES Lab has identified several 

important elements that affect community-based field measurements with GIS and remote 

sensing for a REDD+ MRV (Samek et al. 2013). Forest biometric data collection can be 

done using simple or hi-tech tools. The diameter at breast height of a tree can be measured 

with a DBH tape or a simple tailor’s tape and the measurement converted to diameter.  GPS 

devises are now common in University labs and with local agencies in the field.  The 

management of data measurements, however, must be systematic and uniform across 

biomass plots within a project location. Common print outs of spreadsheets, or data field 

forms in data loggers are important. Tools to manage all project data are also very important.  

Ideally, with web-based service becoming more and more common, data management can 

be developed as a set of tools for REDD+ implementation that include basic description and 

management, document and file management, plot level data management and carbon stock 

calculations, geo-spatial data management and even emissions reporting.  

 Measurement and monitoring for REDD+ can effectively combine local, community 

data collection with expert analysis using remote sensing and GIS. National-level forest 

measurements often are conducted under National Forest Inventory (NFI) programs in which 

permanent sample plots are established and repeated measurements are taken every few 
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years. Unfortunately, not all countries have adequate NFI programs in place. Forest 

monitoring, to assess areas and rates of change, is most often conducted using satellite 

remote sensing. The combination of ground based plot biomass measurements and satellite 

remote sensing analyses is powerful for measuring and monitoring REDD+ carbon stock and 

carbon stock changes. This is because, measurement and monitoring of REDD+ carbon is 

not dependent on ground only or remote sensing only techniques, but a combination of the 

two.  Integrating community level plot measurement data with geo-spatial analysis (GIS and 

remote sensing) supports REDD+ measurement and monitoring requirements for an MRV 

system.  The combination captures or utilizes the opportunity to integrate community level 

abilities with professional, expert analysis. 

 The limitation of the aforementioned work of the GOES Lab is that all these projects 

deal with forests or forest stands – smallholder plantations, community forests, or REDD 

forests – and do not address the application of the Carbon2Markets MRV in systems of trees 

outside of forests nor agroforestry systems in predominantly agricultural landscapes. There 

is a need to explore the effectiveness, accuracy and precision of joint measurement 

campaigns in savanna landscapes and agroforestry systems outside forests. 

1.4. DEFINITION OF CONCEPTS 

 The following terms are used throughout this study, and the definitions given here 

are used to clarify those terms.  

1.4.1. Biomass  

 Biomass is a vegetation attribute that refers to the dry weight of a plant material 

within a given area. It includes living and dead above and below ground biomass (Figure 
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1.2) as well as soil organic matter (IPCC, 2007). However, only above and below ground 

biomass is considered in this study.  

Figure 1.2 Above and below ground biomass of a tree 

 

1.4.2. Cropland 

 There are many components of cropland as classified by the USDA based on the 

major uses. Cropland includes land planted for crops, crop failure, cropland used only for 

pasture and idle cropland (USDA/NASS, 2011). However, in this study, the concept is used 

to refer to only land on which agricultural crops are grown.  

1.4.3. Crown Projection Area 

 The crown projection area of a tree is the area of the vertical projection of the 

outermost perimeter of the crown on the horizontal plane (Gschwantner et. al, 2009). We 

determined the CPA by using the formula for the area of an ellipse which is  
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  CPA = ᴨ * 1/2 of the maximum diameter * 1/2 of the diameter at 90
o
 

Figure 1.3 Crown perimeter and crown projection area of a tree (adapted from 

Gschwantner et. al, 2009) 
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1.4.4. Forest 

 The FAO define forest as a land with a minimum area of 0.5 ha occupied by trees 

with more than 5 m height and more than 10 % tree cover and agricultural lands are 

excluded in this definition (FAO, 2010). According to the definition, the potential of trees 

outside of forests, especially in agricultural lands and more importantly, in the case of 

agroforestry based systems and crop lands might be neglected in terms of providing benefits 

within the framework of the carbon market. In this study, forest is defined as "a land with a 

minimum area of 0.5 ha and occupied by trees with at least 30% tree cover and can reach a 

minimum height of 2 meters" as stated by the national definition adopted by Senegal.  

1.4.5. Savanna 

 It is defined as grassland with scattered trees or shrubs. The tropical savannas occur 

between the tropical dry forests and the deserts. These savannas are warm and have low 

precipitation that is highly seasonal (Chapin et al., 2002).  

1.4.6. Trees Outside of Forest (TOF) 

 According to the FAO (2002), these categories of trees are growing in areas not 

belonging to the category of forest, forest land, or other wooded land. In this study, the 

concept of trees outside of forest includes all trees in agricultural land, agroforestry systems, 

trees growing inside the settlements and along the roads. Regarding the size, only trees that 

attained a diameter at breast height (DBH) of 10 cm or more are included in this definition.  

1.4.7. Rural Community 

 A Rural Community is the smallest unit of local government in Senegal composed of 

several villages. However, since 2013, all of the rural communities are now Communes after 
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the new law No. 2013-10 of December 28, 2013, which established the General Code of 

Local Government.  

1.4.8. Arrondissement 

 It is the next highest level after the Rural Community and is composed by 2 or more 

Rural Communities. 

1.4.9. Sous Préfet 

 The Sous-Préfet is the State Representative at the Arrondissement level. 

1.5. GEOGRAPHY OF THE STUDY AREA 

 The research is located in Senegal, in a semi-arid environment that is dominated by 

savanna ecosystems, and marginal arable lands. The study is carried out in the Fatick 

Region, located 190 km from the capital of Dakar.  
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Figure 1.4 Location of the study area 

 

 The region is in the southern part of the so-called peanut basin, part of the Sudanian 

zone characterized by savanna landscapes. This region is poorly developed economically, 

and suffers from low vegetation and crop productivity. Agriculture in Senegal and in this 

region of Senegal is dominated by peanut production and is now undergoing severe 

productivity and production declines. Peanut production has been steadily declining over the 

past decades for historical, political, economic and environmental reasons. After playing a 

prominent part in the economic and social history of Senegal (Bonnefond and Couty, 1991) 

in the 1970s and 1980s, overall peanut production and commodity prices are now declining, 

leading to a reduction of peanut exports and loss of farmer incomes. Several factors have 

caused peanut yield to fall and consequently reduce farmers’ income, including soil fertility 
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decline (Tappan et al. 2004) due to the reduction of fertilizer use, reduction of fallow periods  

(Kelly et al., 1996), and the concomitant shortening of  the soil regeneration period 

(Reinwald, 1997). To this, must be added the rapid population growth of the country and the 

intensive use of land which has also contributed to agricultural land degradation and soil 

fertility depletion.  

Figure 1.5 Selected photos of the study area 

      

 

  

 

Photo 1: Cashew plantation intercropped 

with groundnuts in Kouatine Village 

 

Photo 2: TOF (Prosopis africana) with 

cashew plantation on the background Keur 

Samba Gueye Village 

 

Photo 4: Big TOF (Acacia albida) in Senghor 

village 
Photo 3: Scattered individual trees in Senghor 

village's landscape 
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 With increased population densities and associated reduction in fallow periods, soil 

fertility decline is becoming acute, not only in Senegal but throughout the tropics (FAO, 

2005). This has been leading to a situation where soil and land degradation  are an emerging 

threat to food security in developing countries (Scherr, 1999), which will at the same time 

increase the vulnerability of these places to climate change and reduce the range of options 

that farmers have for adaptation. Land degradation leads to lower water holding capacity, 

loss of soil organic matter, and increased loss of soil nutrients which leave farmers 

vulnerable to drought and increased temperatures. With little access to remediation resources 

such as irrigation, fertilizers, and new drought tolerant varieties of crops, farmers in the 

tropics and Senegal are likely to be disproportionately and adversely affected by climate 

change. These aforementioned factors have social and economic consequences for farmers 

and seriously affect their livelihood systems beyond income loss alone – e.g. food security, 

health, nutrition, and sanitation.  

 As land use intensification is reducing or eliminating fallow rotation periods, trees 

that are used in the agricultural landscape are being removed to expand the land under 

cultivation or as a source of fuel wood. Wood and charcoal are the main source of primary 

cooking energy and fuel for at least half of the country’s 13-million people (Media Club 

South Africa, 2009). Firewood and charcoal are used by 55.5 % and 11% of Senegalese 

households respectively (Senegal, 2010).  

 The combined influence of shortened fallow period and the reduction of woody 

perennials are contributing to increased land degradation. With the additional land 
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degradation and land scarcity, forest land is increasingly being brought under cultivation 

(Figure 1.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Like many developing countries, Senegal is facing major problems in the forestry 

sector and on forest lands generally from deforestation and forest degradation. Forest cover 

has been declining over the past twenty years from 9, 348,153 ha in 1990 to 8,473,153 ha in 

2010 (FAO, 2010). The rate of forest loss, estimated to be 45,000 ha per year in 2005, has 

been reduced to 40 000 ha per year due to national reforestation initiatives but this loss rate 

- Shortened fallow rotation period 

- Reduction of woody perennials 

Land intensification and land 

degradation 

Reduction of NPP 

Reduction of 

soil fertility 

Crop yield 

decrease 

Reduction of 

carbon stock 

Forest cover 

decline 

Greenhouse 

gas increase 

Farmers' 

incomes 

decrease 

Figure 1.6 Changes in land use and their environmental and economic consequences 
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remains high and requires government intervention. The main causes of forest loss are 

clearing for agriculture (38 %), illegal production of charcoal (25%), fire (25%), other 

causes such as mining accounting for 12% (FAO, 2010). While the factors that we 

mentioned are still causing negative consequences for both the environment and the social 

and economic conditions of communities, mitigation strategies exist that may contribute to 

reduce the effects. Carbon sequestration is among these strategies and agro-forestry is also 

among the mitigation activities that can benefit both the environment and the communities 

that practice these activities. As a sustainable practice, it "helps to achieve both mitigation 

and adaptation objectives while remaining relevant to the livelihoods of the poor smallholder 

farmers in Africa" (Mbow et al., 2014). However, measuring the carbon sequestered by 

these practices is a big challenge, especially in savanna systems. 

1.6. ORGANIZATION OF THE DISSERTATION 

 This dissertation is organized in five chapters including the introduction (Chapter 1). 

In Chapter 2 a model is developed to predict tree DBH from crown projection area using 

remote sensing high resolution satellite imagery. High resolution data and ground data are 

combined to develop this model for trees outside forests. Chapter 3 focuses on the role of 

Remote Sensing in measuring biomass and carbon at landscape level in savanna systems. A 

regression analysis between field measured DBH as dependent variable and remote sensing 

crown projection area as independent variable is developed. The regression equation is used 

to predict tree DBH and an allometric equation used to calculate the biomass and carbon for 

all trees. Chapter 4 is dedicated to apply the model at the landscape level and to produce 

carbon map of the study area. Finally, chapter 5 presents a summary of the results and 

discusses their implications, limits and recommendations for further research.   
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CHAPTER 2 . MODEL DEVELOPMENT TO PREDICT TREE DBH FROM CROWN 

PROJECTION AREA USING REMOTE SENSING 

2.1. INTRODUCTION  

 Carbon sequestration in agro-forestry has the potential of providing increased income 

and livelihood support, several environmental and agronomic co-benefits, and potential for 

climate change mitigation. At the same time, it can reduce the barriers to widespread 

adoption of these high carbon stock agro-forestry systems. For example, in the Nhambita 

Project in Mozambique, results have shown that systems that combine sequestration and 

cash crop production have higher benefits compared with sequestration only, although they 

have less-carbon sequestration potential (Palmer and Silber, 2011). In addition to direct 

ecosystem uses carbon appears to be a top-up benefit for farmers as it can provide additional 

incomes. Accounting for the market value of carbon in these systems cannot be achieved 

without a proper assessment of their performance for sequestering carbon (i.e. carbon 

sequestration rates), hence the need for cost effective methods suited to estimate carbon 

stocking potential of trees in farming landscapes.  

 The international climate change mitigation community recognizes the need for 

rigorous and accurate protocols for measuring, reporting and verifying carbon sequestration 

in agro-forestry systems. Such protocols must have acceptable “technologies” for 

community level implementation and participation. International standards for carbon 

measurement are being developed and promoted through the international conventions, 

carbon financial markets, and both regulatory and voluntary regimes and institutions. As 

such, scientific and technical requirements for international carbon measurements are 

extremely high, and involves high reporting and verification standards. Currently the 

common use of carbon measurement in tree-based sequestration systems is in large-scale 
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plantations, or reforestation in large tracts of closed canopy forests.  Less certainty and 

“trust” are accorded to small-scale systems involving agroforestry or small-scale 

reforestation systems that are managed by local land owners, particularly in savanna 

landscapes. 

 There are numerous landscape-wide deforestation and carbon measurement protocols 

for forests, particularly closed forests (Matricardi et al., 2012). The Voluntary Carbon 

Standard (VCS) is also used in forest carbon accounting to lead a greenhouse gas reduction 

program across the world (VCS, 2014) and has developed several methods for forests.  

However, few methods are available for sparsely wooded systems, such as savannas. The 

Voluntary Carbon Standard (VCS) protocol for the Kasigau Corridor REDD Project in 

Kenya (VCS, 2011) is among those methods although it uses plot-level measures and not 

remote sensing.  There has not been much progress on developing a method for assessing 

tree biomass over large areas in these non-forested landscapes.  The current methods for 

landscape-level carbon measurement are particularly challenging and are unlikely to meet 

scientific and rigorous standards (for example the requirements of the CDM Executive 

Board) and potential carbon project investors. Therefore, there is a lack of confidence in 

existing measurement systems with implications that go beyond the measurement of carbon 

credits, and create doubts about the project viability. New advances in remote sensing of 

canopies and individual tree crown detection offer great promise.  

 It is also important to note that most of the forestry methods used to estimate biomass 

are based on diameter at breast height or 1.3 m from tree-stem base (DBH). In this study, we 

explore the role of crown projection area(CPA) as an allometric measure that can be 

obtained from high resolution remote sensing images, and investigate the possibility of using 
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remote sensing CPA to predict DBH. Thus, the research goal of this study is to determine 

whether or not protocols can be developed to allow landscape scale measurements of trees 

outside of forests with the accuracy and precision that is acceptable to the international 

standards.  To respond to this question I suggest basic measurement tools for monitoring 

carbon stocks in systems of trees outside of forests using remote sensing, ground 

measurements and GIS because there is a need for a new “bundle of methods” for carbon 

measurement and reporting that requires linking remote sensing to ground measurement. 

 A significant challenge for efficient, timely and cost-effective automated monitoring 

of A/R/AF is the accurate measurement of woody aboveground biomass in the landscape.  

Detecting and measuring individual tree objects that are natural trees or sparsely planted on 

farms, along roadways, or in backyards cannot be done accurately with low or moderate 

resolution satellite imagery where a single tree may represent only a small proportion of a 

single pixel. While pixel unmixing techniques (Keshava 2003) can provide an estimate of 

the proportion of different land cover types represented by a single pixel, in general, these 

techniques are not amenable for accurate estimation of tree size, number or other 

measurements required for accurate assessment of forest cover change in sparsely planted 

landscapes. However, recent technological advancements in satellite image acquisition 

provide access to hyper-resolution imagery of the Earth and its land-uses.  Very high-

resolution imagery enables the detection of objects in the landscape using remote sensing. 

The Worldview 2 satellite acquires 4 bands of multispectral data at 2.4 m spatial resolution 

and a panchromatic band at 46 centimeters. Subsequent processing can be used to associate 

attributes, such as size or texture, with detected objects. Therefore, it is possible to count 

trees, estimate size, and evaluate change remotely.  
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 Mbow et al. (2013) used the close relationship between DBH and tree height to build 

a biomass estimation model, but they did not include the crown diameter in their research 

because "it was not exploited further at this stage". Additionally, the relatively low density 

of trees outside forests makes the assessment by conventional methods costly and time-

consuming (Singh and Chand, 2012).  

 If one can detect individual trees and tree crowns, there may be a potential to develop 

a crown-based allometry for individual trees. This requires the development of methods for 

ground measurements. Most reforestation projects use small sample plots in a sampling 

frame for forest inventory. This ground measurement protocol must be re-defined for 

systems of individually planted trees, and then also extended to the woodland or savanna 

landscape. The landscape approach allows one to inventory both land in forests (in this case 

savannas) and land on trees outside of forests (in this case agroforestry landscapes). 

 Another reason for combining remote sensing and ground data is that biomass is 

mostly determined by classical allometries from measurements of either diameter at breast 

height or height, and currently none of these measurements can be obtained from remote 

sensing. However, it may be possible to use high resolution satellite imagery to measure tree 

crown projection area and use it as an independent variable to predict tree DBH.  

 In this study, I developed a regression model to predict tree diameter at breast height 

(DBH) from tree crown projection area (CPA) for trees outside forests in savanna 

agroforestry systems. This relationship could then be used with remote sensing if it were 

possible to accurately measure CPA using remote sensing. In my model, field measures of 

crown projection areas of individual trees, are used to determine the relationship between 

diameter at breast height (DBH) and CPA. After establishing the relationship, the DBH of 
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trees can be predicted from satellite observations of tree crowns and then used as the 

independent variable in standard allometric equations to estimate biomass and carbon based 

on DBH.   

2.2. MATERIALS AND METHODS  

2.2.1. The Study Sites 

 The study area for this work is in the Southern part of the so-called peanut basin of 

Senegal, and is part of the Sudanian zone characterized by savanna landscapes. The ground 

measurements and model development focused on villages in three Rural Communities of 

southern Senegal: Toubacouta, Keur Samba Gueye, and Nioro Alassane Tall. A Rural 

Community is the smallest unit of local government in Senegal composed of several 

villages
2
. These communities—dominated by a largely rural population—are some of the 

most important production zones for Anacardium agro-forestry in Senegal and are also parts 

of the former Senegalese-German Anacardium Project (PASA). As shown in Figure 2.1, 

Fatick, Ziguinchor and Kolda are the three major cashew production zones in the country. 

 

                                                           
2
  Following the recent local elections that passed law No. 2013-10 of December 28, 2013, which established the 

General Code of Local Government,  all of the Rural Communities became Communes.   
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Figure 2.1 Area of cashew production in Senegal and the study area 

 

 The climate is semi-arid and the annual rainfall ranges from 400 to 1000 mm.  The 

rainy season usually lasts 3 months from July to September (Toubacouta), but can last 5 

months (from June to October) in the Rural Community of Keur Samba Gueye.  The annual 

rainfall here can reach up to 1845 mm, as was the case in 2003 (LDP, 2009). Rainfall can 

vary significantly from year-to-year in quantity, timing, and duration. 
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 The most common tree species that dominate the vegetation in the rural community 

of Toubacouta are Cordyla pinata, Cola cordifolia, Mangifera indica, and block plantations 

of planted trees, including eucalyptus and the large areas of Anacardium occidentale. In the 

southern where is located the Rural Community of Keur Samba Gueye, the vegetation is 

dominated by Combretum glutinosum, Cordila pinata, Pterocarpus erinaceus, Adansonia 

digitata,  Zizyphus mauritiana, Diospyros mespiliformis,  Prosopis africana and Parkia 

biglobosa.  

 Regarding the Rural Community of Nioro Alassane Tall, the vegetation is very sparse 

due to overexploitation and the forest cover is deteriorating gradually. It is dominated by 

species such as Cordyla pinata and Adonsonia digitata in its tree layer, Combretum 

glutinosum and Guiera senegalensis in the shrub layer and some popular grass for fodder at 

the herbaceous layer (LDP, 2009). 

 The main types of soil are locally called Dior and Deck.  Dior soils, containing > 

95% sand and few nutrients (< 2% organic carbon), are usually associated with former dune 

slopes.  Deck soils are hydromorphic, occasionally flooded, contain 85-90% sand, and have 

0.2% organic carbon (Badiane et al., 2000).   

2.2.2. Field and remote sensing data collected 

 Most of the data collected in this study are extensive field data that were collected 

during two field campaigns on May and June 2013. I also used remote sensing data from 

high resolution satellite imagery. In the next section I will discuss the acquisition and use of 

these data. 

 For the ground data, a field inventory was conducted throughout the non-forest land 

cover area of the study sites, which included measurements in plantations of Anacardium 
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occidentale and other trees on agricultural lands. The primary focus of the field work was to 

collect individual tree allometric tree data to estimate biomass and carbon stocks. All ground 

data were collected during a field campaign in May and June 2013 using the following field 

parameters and associated equipment (Table 2.1.) 

Table 2.1 Variables measured in the field and equipment used 

Variables Description Instrument 

Plot dimensions Plot area and determination of trees 

"in" plot 

Tape measure 

Coordinates and 

altitude 

 X and Y location of the centre of 

plot and each sampled tree 

Trimble GPS 

Tree Diameter at breast 

height (DBH) 

Diameter at breast height  Diameter tape and data 

collection sheet 

Tree Diameter above 

the root collar 

Diameter measured at 20 cm above 

the root collar for dwarf Anacardium 

Diameter tape and data 

collection sheet 

Tree crown diameter Two perpendicular crown diameters Diameter tape 

Tree characteristics Genus and species of each individual 

tree 

Trimble GPS and data 

collection sheet 

Pictures Taking pictures of trees and field 

activities 

Nikon Photo Camera 

 

 The measurement of tree DBH is used to estimate tree biomass using standard 

allometric equations. The DBH (cm) was measured for all sampled trees at 1.30 m above the 

ground with a standard DBH tape. For dwarf Anacardium trees, the diameter at 20 cm above 

the root collar (DAC) was measured as an alternative measure for DBH because of the 

tendency of Anacardium trees to subdivide into several small trunks below the level of 

breast height.  

To measure the tree crown projection area (CPA), a method that consists of 

measuring at least two crown diameters (m) was used for each tree. The first crown diameter 

measured is the longest crown diameter as determined by visual inspection of the tree. The 

second crown diameter is measured at the right angle (90°) to the longest crown diameter.  
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 Regarding the remote sensing data, it should be mentioned that high resolution satellite 

remote sensing techniques are very useful in detecting individual tree crowns but "the accurate 

monitoring of forest carbon has not been fully demonstrated” (Gonzalez et al., 2010). The 

method used by Gonzalez et al. (2010) to validate Quickbird crown diameters against field 

measurements in forest areas showed a significant correlation between Quickbird-estimated and 

field measured crown diameters. However, the use of high resolution remote sensing techniques 

in tropical trees outside of forests areas continues to need more study. 
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Figure 2.2 Selected blocks in the Sokone (a) and Karang (b) sites from the Worldview 2 

satellite image in 432 band combination 

 
a)                                                                 
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Figure 2.2. (cont'd) 

b) 

  To estimate carbon in trees outside forests, I apply a method that combines remote 

sensing and field data. This method requires fine resolution remote sensing data, in particular 

using Worldview 2 data (Table 2.2.).  

  



47 

 

Table 2.2 Spectral, spatial and temporal characteristics of Worldview 2 

Spectral, spatial and temporal characteristics Quantities 

Number of bands 8 bands 

Resolution 0.5 m (Pan) and 2 m (MSS) 

Period  100 minutes 

Orbital velocity 200 km/ 10 seconds 

Swath width 16.4 km at nadir 

Collection capacity Up to 1 million km
2
/ day  

Average revisit 1.1 days at 1 m GSD 

Date collected April 16, 2010 

  

 The Worldview 2 Satellite sensor is capable of acquiring image data at 0.5 meter 

panchromatic (B&W) and 2 meters multispectral resolution. It also features a revisit time of 

less than three days, as well as the ability to precisely locate an object within just three 

meters of its true geographic location. Two Worldview 2 satellite images were acquired for 

the two zones in overall study area (around cities of Sokone and Karang) as they cover all 

villages in the three rural communities of the study: Toubacouta, Keur Samba Gueye and 

Nioro Alassane Tall. All imagery were acquired during the dry season (April 16, 2010) 

which helps reduce the problem of cloud cover. The image projection is UTM Zone 28 N, 

WGS 84 datum. To work at the higher spatial resolution, the panchromatic and multispectral 

images were merged through a pan-sharpening process using the Hyperspherical Color 

Space (HCS) resolution merge tool in ERDAS Imagine. The single high resolution color 

image created through that process is used and displayed in Arc Map to perform the 

digitizing and the other remote sensing processing and analysis.   

2.2.3. Method 

 The method deployed in this part of the study supports a technical investigation of 

carbon stock measurement in agroforestry systems and trees outside forests (TOF) over large 

landscapes and for multiple farms/households in multiple communities. With satellite 

http://www.satimagingcorp.com/characterization-of-satellite-remote-sensing-systems.html
http://www.satimagingcorp.com/characterization-of-satellite-remote-sensing-systems.html
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imagery of 1 meter spatial resolution or finer it is possible to remotely detect and measure 

individual tree crowns and crown projected area (CPA). With a relationship developed in 

this study between remote sensing-based crown area and ground-measured DBH, I could 

develop individual tree allometry based on CPA and DBH. This method involves several 

steps described in the following flow diagram (Figure 2.3) and text that follows:  
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Manual 

delineation of 

tree CPA 

Figure 2.3 Flow diagram of biomass estimation and carbon mapping method 
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 The method is divided into two components:  

 The first component focuses on ground data measurements, where tree CPA and 

DBH are measured in the field and a correlation is established. With a strong correlation 

between CPA and DBH, it is then possible to use crown measurements in a schema from a 

DBH-based allometric equation to estimate aboveground live biomass in individual trees. 

Such DBH allometric equations are usually available as standard equations, and are also 

published in the IPCC guidance documents. Thus the aim of the model developed here is to 

represent a relationship between CPA, which could be defined using remote sensing as well 

as field measures, and DBH. If such a model is specified, then it is highly likely possible to 

use remote sensing as a surrogate for ground measures, which are usually made by foresters 

and other specialists working in the field but only in a few limited locations in the landscape 

due to the work effort that is required. The premise is that by substituting remote sensing for 

field data collection, a much larger area of the landscape can be captured and measured for 

carbon stocks. If an entire landscape can be measured, then discontinuous households can be 

bundled into a single project. The transaction costs could be lowered enough to allow their 

inclusion in carbon credit schemes. 

 The second component involves the use of remote sensing to detect and digitize tree 

crown projected area (CPA) using hyperspectral imagery of 1 meter spatial resolution or 

finer and then predict tree DBH using a  model that relates CPA to DBH. In this way, I use a 

remotely sensed CPA to predict tree DBH in order to then apply a standard allometric 

equation to compute aboveground live biomass from the imagery observations, on a tree-by-

tree basis. The CPA is estimated from field measurements by using the formula for the area 
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of an ellipse which is as follows and requires two field or remote sensing measures of 

diameter:  

  CPA = ᴨ * 1/2 of the maximum diameter * 1/2 of the diameter at 90
o 

 Two points regarding this approach are warranted.  First, remote sensing data could be 

used to define the actual circle of the crown, rather than the cross diameters. Just as I use “heads 

up” manual digitizing of tree crowns using polygon construction tool in ArcGIS 2010, it is also 

possible to outline the best polygon. This is a subject for a future study. Second, we attempted to 

use automating the digitizing of crown polygons in the GOES Lab but there has been some 

limited success (Appendix). This too could be the next step in this work, and would lead to an 

ability to process massive amounts of data and cover very large areas at very low costs. 

2.2.4. Stratification of the study area 

 It is important to have precise and accurate plot dimensions and locations as they 

determine which tree is in or out of the sampled plot and can be cross-mapped from field to 

imagery using detailed GPS coordinates. The strata map (Figure 2.4) is produced to indicate 

the spatial variation of tree density. The field sample protocol I used requires the 

determination of the number of plots, their size and shape, their location, and the type of 

parameters to be measured within each plot. It also requires a stratification scheme so plots 

can be used as samples and scaled up to a larger area. Stratification also narrows the 

variation in the regression model. 
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Figure 2.4 Block SOK 7 and the different strata 

 

The stratification uses of satellite imagery to establish the sample frame. The field 

data collection sites are selected within the former Senegalese/German Cashew 

Development project area (Figure 1.4). The work was done in two specific sites in the 

villages around the cities of Sokone and Karang within an area measuring 6 km x 6 km (36 

km
2
) which corresponds to two Worldview 2 satellite images (Figure 2.2). For each 36 km

2
 

area, ERDAS Imagine software is used to generate a sample grid of 9 blocks (2 km x 2 km).  

 The different strata are determined and the area of each stratum digitized for both 

Sokone and Karang zone (Tables 2.3. and 2.4.) 
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Table 2.3 Stratification for Sokone zone 

SOKONE 

Strata 

SOK 1 SOK 4 SOK 7 Total 

Area 

(ha) % 

Area 

(ha) % 

Area 

(ha) % 

Area 

(ha) % 

Cashew 96 24 116 29 44 11 256 21 

Agricultural land 208 52 245 61 350 88 803 67 

Villages 29 7 8 2 6 1 43 4 

Permanent pastures 67 17 31 8 0 0 98 8 

TOTAL 400 100 400 100 400 100 1200 100 

 

 Three blocks (SOK 1, SOK 4, and SOK 7) are selected for Sokone zone and the 

different strata identified are: cashew plantation, the agricultural lands, the dwellings 

(villages) and the permanent pastures. 

 The same number of blocks is selected in Karang (KAR 1, KAR 8 and KAR 9) as 

showed in the following Table 2.4: 

Table 2.4 Stratification for Karang zone 

KARANG 

Area (ha) and % of 

strata 

KAR 1 KAR 8 KAR  9 Total 

Area 

(ha) % 

Area 

(ha) % 

Area 

(ha) % 

Area 

(ha) % 

Cashew 30 8 67 17 23 6 120 10 

Agricultural land 171 43 221 55 333 83 725 60 

Permanent pastures 199 50 112 28 44 11 355 30 

TOTAL 400 100 400 100 400 100 1200 100 

2.2.5. Selection of sampled plots 

The boundary of each stratum is digitized and the area determined using the calculate 

geometry tool in Arc GIS. The number of plots to be sampled is determined based on the 

land cover type and proportionately to the area covered. Three options were possible for the 

sampling design: a) locate plots randomly, b) locate plots systematically, or c) proceed by 

stratified sampling of the landscape.   
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As mentioned by Ravindranath and Ostwald (2008), determination of the appropriate 

number of sample plots is a critical step but "the complexity of sampling methods and 

procedures may force researchers to adopt a standard number of plots based on the visible 

heterogeneity of vegetation, soil and other conditions" (Ravindranath and Ostwald, 2008). I 

also acknowledge that there is a trade-off between the level of precision in carbon stock 

assessment and the cost of getting that level of precision. For the purposes of this study, I 

was only able to collect a limited number of sample plots. I evaluated the number of sample 

plots to reach 10% accuracy using the Winrock sample tool (Winrock, 2008) and in some 

cases the number of plots exceeded 500. My sample is thus under-represented. Having noted 

this, it should be pointed out that the Winrock sample guide is meant to provide guidance for 

field sampling in a measurement framework that uses the samples to extrapolate to the entire 

landscape. On the other hand, my methods is focused precisely on developing an alternative 

to sample-based estimation and moves directly to whole landscape estimation by direct 

measurement from remote sensing. Thus, the critical issue for my model was not the number 

of plots, but the relationship between allometric measurement variables. In this instance 

more samples or heavily stratified samples could provide low variance in regression model. 
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Figure 2.5 Ground sample frame 

 

Also it should be noted that sample plots that I have established were not aimed at 

providing samples for extrapolation but a geographically distributed means to collect a lot of 

individual tree data. At the same time, these samples could be used for validation. 

In the Sokone site, because of the high density of cashew plantations, a minimum of 

ten (10) plots of 1024 m
2
 (32*32) were randomly selected for this stratum for each of the 

three selected blocks except for block SOK 7 where only 7 plots were sampled because of 

the low density in cashew plantation. For the other scattered TOF in agricultural land, a 

minimum of six (6) plots for each selected block was randomly sampled. A total of 50 plots 

were finally sampled in the Sokone site (Table 2.5.). 
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Table 2.5 Number of sampled plots for each stratum in the Sokone site 

 

SOKONE 

Number of plots in 

cashew plantation 

Number of plots in 

agricultural lands Total 

SOK 1 10 6 16 

SOK 4 11 6 17 

SOK 7 7 10 17 

Total 28 22 50 

For the Karang site, the agricultural lands are dominant and because of the low area 

covered by cashew plantation, a minimum of five (5) plots were sampled for this stratum 

except for block KAR 9 because it has only 6 % of its area covered by cashew. Overall, a 

total of 54 plots were sampled in the Karang site (Table 2.6.). 

Table 2.6 Number of plots for each stratum in the Karang site 

 

KARANG 

Number of plots in 

cashew plantation 

Number of plots in 

agricultural lands Total 

KAR 1 5 14 19 

KAR 8 9 14 23 

KAR 9 3 9 12 

Total 17 37 54 

 

The geographic locations of all measured trees were recorded  with a global 

positioning system device (GPS), as this allows for data entry into a geographic information 

system analysis (GIS) and possible return to the site.  
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Figure 2.6 Example of the layout of sampled plots and measured trees in the Sokone site 

 

 Because of the dominance of cashew agroforestry in the study area, I sampled more 

plots on these plantations and each sample plot having sides of 32 x 32 m for a plot area of 

1024 m
2
 (0.1 ha). Most protocols recommend a plot size large enough to include at least 

eight to ten trees within the plot boundaries (Winrock, 2005). With the 1024 m
2
 plot area, 

and the most common 10 x 20 m cashew tree spacing used in the 2 sites of the study area, 

60% of the plots have at least 8 trees per plot (Table 2.7.).  
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Table 2.7 Number of plots and their density for cashew plantations 

# of trees/ plot # of Plots % 

3 to 5 8 17.78 

6 to 7 10 22.22 

8 to 10 12 26.67 

11 to 12 6 13.33 

13 to 14 3 6.67 

15 to 17 3 6.67 

18 to 23 3 6.67 

Total 45 100 

 Although rectangular-shaped plots can be more representative than square or circular 

plots of the same area (Hairiah et al., 2010), a method used in India (Singh and Chand, 

2012) was chosen. It is a square-shaped plot which also helps comply with the linear tree 

planting systems used by farmers. The plot sizes are determined depending on the type of 

strata. A 32 x 32 m (1024 m
2
) plot is dedicated to block cashew plantation, and a 100 x 100 

m (1 ha) for scattered trees within the agricultural lands. I first measured the length or the 

breadth and use the diagonal to ensure a true right angle at each of the four corners 

(Ravindranath Ostwald, 2008).  

2.2.6. Data analysis 

 Data collected during the field work included the diameter at breast height (DBH), 

and two crown diameters, the largest and the one perpendicular to it that are used to 

calculate the tree crown area. These data were processed using EXCEL and SPSS. Data 

collected from all trees were used for this analysis as they have been all identified in the 

satellite image and digitized using ArcMap.  The digitized crown area was to be later used to 

correlate with the field measured tree DBH and then compared with the tree crown 

projection area measured from the field to validate the regression model. 
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2.2.6.1. Manual delineation of trees 

 To build the regression model, the crowns of all measured trees were manually 

digitized. A pan-sharpened image is used to improve the view of the tree crowns and display 

the image in RGB using combination bands 132 and 432 in ArcGIS 10. At a 1:1000 scale, 

we were able to clearly identify trees and delineate crown diameters. In some cases where 

the edge of the tree crown is not easy to determine, we compared the different band 

combinations 132 and 432 before performing the manual digitizing of crown diameters 

using the Editor Construction Tool in ArcGIS 10.  

 The following rules were set before starting the manual digitizing: 

 Use the same scale (1:1000) for the delineation 

 Use the tree points shapefile overlaid in the image as a reference for delineation.  

 Digitize all the sampled trees whose field measurements are available 

2.2.6.2. Correlation Analysis 

 I used the Pearson product-moment correlation coefficient (r) to determine the 

direction of the correlation while the coefficient of determination R
2
 helps measure the 

strength of the correlation between the field-based crown projection area and tree DBH. The 

correlation is used to measure the strength, direction and the linear relationship between tree 

DBH and tree CPA. The coefficient of determination (R
2
) is used to interpret the percentage 

of the variation in the DBH that is associated with the CPA. 

2.2.6.3. Regression Analysis and validation of the models 

 The regression analysis is used to predict one variable, given the other by 

determining the relationship between these two variables. It is used to describe how, given 
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the value of one variable or attribute (x) often called the independent variable, one may find 

the corresponding value for the other variable or attribute (y), called the dependent variable. 

In the case of this study, the tree DBH is the dependent variable and the crown projection 

area (CPA) the independent variable. The purpose of the regression analysis is to estimate 

the change in the DBH from a given change in the CPA by finding a formula that represents 

the relationship between these two variables. The eventual aim is to be able to predict DBH 

from remote sensing measured CPA by finding an approximate value of the tree DBH from 

the value of the remote sensing CPA. 

 To develop regression models for the relationship of CPA with DBH, biomass, and 

carbon a simple linear (y= a+b.x) function was used. Throughout this process, the method of 

ordinary least squares (OLS) is used to determine the values of the constants a and b and 

determine the best fit of the straight line which is the position that makes the sum of the 

squared deviations of the observed Y values from the regression line a minimum (Husch et 

al., 2003). For this case, the method is used to determine the regression coefficient that 

describes the strength and the sign of the relationship between the remote sensing crown 

projection area as the explanatory variable and the field measured DBH as the dependent 

variable. 

2.3. RESULTS 

 The results of the correlation analysis are interpreted using a classification of the size of a 

correlation coefficient made by Hinkle et al., (2003) and presented in the following table.  
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Table 2.8 Rule of Thumb for interpreting the size of a correlation coefficient 

Size of Correlation Interpretation 

.90 to 1.00 (-.90 to -1.00) Very high positive (negative) correlation 

.70 to .90 (-.70 to -.90) High positive (negative) correlation 

.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation 

.30 to .50 (-.30 to -.50) Low positive (negative) correlation 

.00 to .30 (.00 to -.30) Little if any correlation 

2.3.1. Relationship between field measured DBH and field measured CPA  

2.3.1.1. Model development 

The relationship between field measured tree DBH and crown projection area (CPA) 

calculated from field data is established to estimate an initial model. To describe this 

relationship, data from the Sokone site (377 sampled trees) are used for model development 

and data (317 trees) from the Karang site for validation. 

The relationship between field DBH and CPA is established to observe the prediction 

of tree DBH from observations of crown projection area (CPA). 

 In Figure 2.7 the graph shows the relationship between the field measured Crown 

Projection Area (CPA) and the field measured DBH for sampled trees of all types in Sokone 

site. This includes all cashew and all other TOF trees combined. There is a linear trend 

within the range of the 377 plotted trees that have been used. The pattern of the scatter plot 

shows a moderate correlation between the two variables with a coefficient of determination 

R
2
 = 0.56 for the fit of these data. That means that 56% of the variation in the tree DBH can 

be explained by variations in the value of the CPA based on the model.  
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Figure 2.7 Correlation between field measured DBH and field measured CPA for sampled 

trees of all types (N= 377) in the Sokone site 

 

 

 After classifying trees based on the number of stems, the model was applied for 

single stemmed as well as for multi-stemmed trees. Results of this relationship between 

DBH and CPA from field data presented a better coefficient of determination, which is 

0.594 for the 314 single stemmed trees and 0.664 for the 63 multiple multi-stemmed trees. 

This is consistent with findings from Samek et al. (2011) working on a GOES project in 

multi-stem-lychee plantations in Southeast Asia, where a crown-based allometric model 

worked better for multi-stem trees. Also, my results present a better correlation compared to 

those from plantation data collected in the Rukinga Ranch in Eastern Kenya by the Wildlife 

Works Kasigau Corridor REDD project. The correlation between DBH and crown diameter 

in Rukinga shows a lower R
2
 (0.514) for multi-stemmed trees (CBP, 2012) However, it is 

important to mention that the sample for the Rukinga data is dominated by small trees as 

98.5 % (843 out of 855 trees) have less than 50 cm DBH. 
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 When applied to 297 sampled trees of only cashew (Anacardium occidentale) in the 

Sokone site the relationship between the field measured crown projection area (CPA) as the  

independent variable and field measured tree DBH shows a moderate correlation between 

the two variables with a coefficient of determination R
2
 = 0.57. That means that 57% of the 

variation in the tree DBH can be explained by variations in the value of the CPA based on 

the model. 

 The same procedure was applied to the non-cashew sampled trees. A total of 80 trees 

were used in the Sokone site, and a moderate positive correlation between the two variables 

was found with a coefficient of determination R
2
 = 0.62. That means that 62% of the 

variation in the tree DBH can be explained by variations in the value of the CPA based on 

the model.  

 2.3.1.2. Model validation 

 To validate the model, the following Equation 1 is used: 

Field measured DBH = 0.2705 * Field measured CPA + 21.148                           Equation 1 

 The equation is applied to the 315 trees in the Karang site to calculate the predicted 

values of their DBH from the model sample in the Sokone site. This validation is done by 

comparing the DBH predicted by the model and the field measured DBH of the same trees. 

The predicted DBH were plotted against the field measured DBH (Figure 2.8) which gives a 

R
2
 of 0.58, meaning that 58% of the field measured DBH was explained by the predicted 

DBH from the linear regression model. 
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Figure 2.8 Scatter plot of model validation measured vs. predicted DBH 

 

2.3.2. Relationship between field measured CPA and remote sensing measured CPA  

 To measure the closeness of both data sets, the relationship between field measured 

and remote sensing CPA is established by comparing these two CPA data sets. A simple 

linear regression is applied and the regression was done for all trees in Sokone (Figure 2.9) 

and Karang (Figure 2.10) and a combination of both sites (Figure 2.11). 

 For the Sokone site, a total of 377 sampled trees were used to explain the relationship 

between the remote sensing and the field measured crown projection area (CPA) in the 

scatter plot shown in Figure 2.9. The pattern of the scatter plot shows a moderate correlation 

between the two variables with a coefficient of determination R
2
 = 0.688. That means that 

we have 68% correlation between field measured and remote sensing   
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Figure 2.9 Relationship between Remote sensing and field measured CPA of all sampled 

trees (N=377) in the Sokone site 

 

 For the 297 Anacardium trees in the Sokone site, the relationship between the remote 

sensing and the field measured crown projection area (CPA) shows a moderate correlation 

between the two variables with a coefficient of determination R
2
 = 0.629. That means 62% 

accuracy between field measured and remote sensing CPA based on the model.   

 The other 80 trees have more promising results with a strong correlation.  The 

coefficient of determination is 0.766 suggesting 76% accuracy between field measured and 

remote sensing CPA and showing a better fit of the model for natural trees. 

 For the Karang site, a total of 315 sampled trees were used to explain the relationship 

between the remote sensing and the field measured crown projection area (CPA) in the 

scatter plot shown in Figure 2.10. The pattern of the scatter plot shows a moderate 

correlation between the two variables with a coefficient of determination R
2
 = 0.687. That 

implies a 68% accuracy between field measured CPA and remote sensing CPA based on the 

model.   
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Figure 2.10 Relationship between Remote sensing and field measured CPA for all sampled 

trees (N=315) in Karang 

 

 

 When applied to only Anacardium, a total of 182 trees were used and the relationship 

between the remote sensing and the field measured crown projection area (CPA) revealed a 

low positive correlation between the two variables.  A coefficient of determination R
2
 = 

0.368 suggested only 36% accuracy. 

 When the Anacardium were excluded and the model was applied to the other 133 

non cashew tree species alone, the relationship between the remote sensing and the field 

measured crown projection area (CPA) represents a 0.736 coefficient of determination 

suggesting that 73% accuracy between field measured CPA and the remote sensing CPA 

based on the model. 

 When data from both sites are combined, the relationship between the remote sensing 

and the field measured crown projection area (CPA) was also tested for all 692 trees. The 

scatter plot presented in Figure 2.11 shows a moderate correlation between the two variables 
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with a coefficient of determination R
2
 = 0.671, and therefore 67% accuracy between field 

measured CPA and remote sensing CPA based on the model. 

Figure 2.11 Relationship between Remote sensing and field measured CPA in both sites 

(N=692) 

 

 The application of the model based on tree species also shows significant results in 

both cashew (Anacardium occidentale) and non-cashew trees. Using the simple linear 

regression, an R-squared of 0.597 was obtained for cashew trees and 0.729 for the non-

cashew natural trees.  

2.3.3.  A Model to predict DBH from remote sensing CPA 

 2.3.3.1. Model development  

 This model is built on the correlation between the remotely sensed crown projection area 

and the field-measured tree DBH. After describing the relationship between field based DBH and 

field based crown projection area, the field measured CPA is replaced by the remote sensing-

based measurements to predict DBH to build the model which is applied for all trees in both the 

Sokone and Karang sites. 
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 The simple linear function is used to estimate a model between remote sensing CPA 

and DBH, using the field data for DBH. The resulting linear model is:  

DBH = 0.5912 (RS CPA) + 13.408                                                                       Equation 2 

  The model data shows a linear relationship of the two variables for the 377 sampled 

trees in the Sokone site. As shown in Figure 2.12, the pattern of the scatter plot shows a 

strong correlation between the two variables with a coefficient of determination R
2
 = 0.760, 

which means that 76% of the variation in the tree field measured DBH can be explained by 

variations in the value of the remote sensing CPA based on the model. 

Figure 2.12 Model-based DBH using Remote sensing CPA in Sokone (Linear model) 

 

 When applied to the 297 sampled Anacardium trees in the Sokone site, a linear 

model from remote sensing CPA shows a positive linear relationship. The coefficient of 

determination R
2
 is 0.711, which means that 71% of the variation in the tree field measured 

DBH can be explained by variations in the value of the remote sensing CPA based on the 

model. 
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 Better results were found when only applying the model to the other 80 TOF tree 

species, with a coefficient of determination R
2
 = 0.84 suggesting that 84% of the variation in 

the tree field measured DBH can be explained by variations in the value of the remote 

sensing CPA based on the model. 

 A non linear model shows a lower coefficient of determination R- squared of 0.61 

(Figure 2.13) compared to the linear model which suggests that the linear function is the best 

fit of the model. However more work could be done to refine the specific non-linear model 

and alter its coefficients.  

Figure 2.13 Model-based DBH from Remote sensing CPA for all sampled trees in the 

Sokone site (Non- linear model) 

 

 In the Karang site, the results for all 315 trees show a positive linear model based on 

the remote sensing CPA.  As shown in Figure 2.14, the model  shows a strong prediction 

with a coefficient of determination R
2
 = 0.791, which means that 79% of the variation in the 

tree field measured DBH can be explained by variations in the value of the remote sensing 

CPA based on the model. The resulting linear model is:  
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DBH = 0.3514 (RS CPA) + 24.613                                                               Equation 3 

 The model coefficient of determination is 0.71 when applied to only the Anacardium 

trees, suggesting that 71% of the variation in the 182 field measured DBH can be predicted 

by variations in the value of the remote sensing CPA based on the model. 

 When applied to the other 133 non-cashew trees, the coefficient of determination is 

0.664. 

Figure 2.14 Model-based DBH from Remote sensing CPA for all sampled trees in the 

Karang site (linear model) 

 

 This linear model shows a better result (R-squared = 0.79) compared to the non linear 

model for which the coefficient of determination is 0.77 (Figure 2.15) 
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Figure 2.15 Model-based  DBH from Remote sensing CPA for all sampled trees in the 

Karang site (Non-linear model) 

 

 The model was also estimated from all the species in both Sokone and Karang sites 

combined. The results for all 692 trees show a positive linear model between the remote 

sensing CPA and DBH (Figure 2.16). However, the coefficient of determination R
2
 = 0.723 

is slightly lower than those obtained when the correlation is established by site. This 

suggests a probable impact of site condition and characterization. 
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Figure 2.16 Relationship between field based DBH and Remote sensing based CPA of all 

sampled trees in both Sokone and Karang sites (linear model) 

 

Compared to the linear, the non linear function presents also a lower coefficient of 

determination (R-squared= 0.66); suggesting a better results for the linear (Figure 2.17). 

Figure 2.17 Relationship between field based DBH and Remote sensing based CPA of all 

sampled trees in both Sokone and Karang sites (Non-linear model) 
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2.3.3.2. Results comparison with CBP study in Western Kenya 

 Through the Carbon Benefit Project (CBP), MSU and ICRAF researchers collected 

data in western Kenya along the Yala River Basin in three established blocks: lower Yala, 

middle Yala and upper Yala. The objective of that study was to develop a generic allometric 

equation to establish a valid basis for scaling up above and below ground biomass carbon at 

landscape scale.  

 Unlike our data where the DBH ranged between 10 and 167.1 cm, the CBP  data are 

for trees whose diameter at breast height (DBH) > 2.5cm. 834 out of the 855 trees, 

representing 97.5 % of all sampled trees are less than 40 cm DBH. 

 An examination of these Kenya results regarding the relationship between DBH and 

crown has shown a good linear relationship with a R-squared of 0.80 (Figure 2.18).  

It is interesting to note that the Senegal model and the Kenya model are similar. The slope of 

the prediction is closely the same, but varies in the Y-offset. Given the logic that no tree with 

zero crown would have any DBH (except perhaps a dead tree) we could do a little more 

work to refine the y-intercept of these models so that they were closely similar and then we 

would have a general model for dry systems. 
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Figure 2.18 Relationship between DBH and Crown area in Western Kenya for 855 trees 

(ICRAF, 2010) 

 

2.3.4. Regression model for Remote sensing CPA and field measured DBH   

 The results obtained by correlating field measured DBH and field measured CPA 

confirmed the difficulties of measuring tree crown size with very high accuracy in the field 

as compared to remote sensing. Consequently, results of correlation between remote sensing 

CPA and field DBH are more significant with an R-squared of 0.760 and 0.791 for Sokone 

and Karang sites respectively than those between field measured CPA and field measured 

DBH (R-squared of 0.564 and 0.589 respectively). For this reason, the remote sensing CPA 

can be used for correlation with the field measured DBH to measure the closeness of the 

linear relationship between these two variables. A simple linear regression analysis was 

developed and applied for each of the two sites of Sokone and Karang. 

 For the Sokone site, the results of the regression analysis appear as follows:  
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Table 2.9 Regression model and validation statistics for the relationship between Remote 

sensing CPA and field measured DBH for all sampled trees in Sokone site 

Regression model Constants Multiple R R Square Adjusted R Square 

a b 

DBH = a+b*RS CPA 13.408 0.5912 0.8720 0.7605 0.7598 

 

 The regression equation is given in the form of y= 13.408 + 0.5912 (x). The adjusted 

R squared is = 0.7605, which means that 76% of the DBH is determined by the CPA. Also 

we notice that R square and adjusted R square have almost the same values, 0.7605 and 

0.7598 respectively, showing a minimal shrinkage based on this indicator and indicating that 

the equation can be generalized. 

 For all sampled trees in the Sokone site only, the regression equation is given in the 

form of: 

DBH = 0.5912 (RS CPA) + 13.408                                                                                        Equation 2 

 For the Karang site, the results of the regression analysis for all sampled trees appear 

as follows:  

 

Table 2.10 Regression model and validation statistics for the relationship of Remote sensing 

CPA and field measured DBH for all sampled trees in Karang site 

Regression model Constants Multiple R R Square Adjusted R 

Square 
a b 

DBH = a+b*CPA 24.613 0.351 0.8895 0.7912 0.7906 

 

 The regression equation is given in the form of y= 24.613 + 0.351 (x).  The adjusted 

R squared is = 0.7906, which means that 79% of the DBH is determined by the CPA. Also, 
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both R squared and adjusted R squared have the same values (0.79), showing no shrinkage 

based on this indicator and suggesting that the equation can be generalized. 

 For all sampled trees in the Karang site only, the regression equation is given in the 

form of: 

 DBH = 0.351 (RS  CPA) + 24.613                                                             (Equation 3 

 Results of the DBH estimation model accuracy show a good correlation between the 

measured and the predicted DBH. For all cases, the coefficient of determination (R
2
) is more 

than 0.7.  

 Using a general linear model that includes tree height, effective crown area, soil type, 

and age factors, Prieditis et al. (2012) found a strong relationship between predicted and 

measured DBH with an R-squared of 0.87. The highest coefficient compared to our results 

can be explained by the various parameters integrated in the model. These authors suggested 

that "models that use field or remotely-sensed measurements of a tree height as a predictor 

variable can be expected to produce a reasonably accurate estimate of DBH (R
2
= 0.792)" 

which is close to the R
2
 of 0.757 and 0.791 that we found for Sokone and Karang 

respectively, although their model is applied in forest area. However, when the model uses 

crown dimension measurements and information about age and soil type, the accuracy of 

DBH increases with an R
2
 = 0.872 (Prieditis et al., 2012).   

2.4. DISCUSSIONS AND CONCLUSION  

 In this chapter a model was developed that combined remote sensing and ground data 

that can be used to estimate biomass in trees outside of forests (TOF). The role of CPA 

(crown projection area) from high resolution satellite images to predict tree DBH was 



77 

 

explored, and the relationship between tree crown projection area (CPA) obtained from 

Remote sensing techniques and the field measured tree DBH investigated.  

 The crown projection area was measured through remote sensing and used as the 

independent variable to predict the tree DBH. Also, tree crowns measured by remote sensing 

were compared with the crowns of trees measured on the ground. 

 For the relationship between Remote sensing CPA and field measured CPA, the 

results have shown a good relationship between remote sensing tree crowns and the field 

measured CPA in the Sokone site. The R
2
 values are ranging from 0.62 (only cashew trees) 

to 0.76 (natural trees) and 0.68 when the model is applied for all trees combined (377).  

 For the Karang site, the R
2
 values are 0.68 for all trees combined (315), 0.36 for only 

cashew (182) and 0.73 for natural trees (133). These results suggest that the model works 

better for natural trees.  

 However, there were some limitations to the methods used that might affect these 

results. The first important weakness is the period between the image acquisition and the 

field campaign. The satellite images were acquired in 2010 while the field data used was 

collected in 2013. This might explain for most trees why the values of the field measured 

CPA were bigger than those of the remote sensing.  

 For example, by correlating field measured CPA as the dependant variable with the 

remote sensing CPA as the independent variable the following equation is produced for all 

trees in Sokone:  y = 0.4424 x + 14.251 meaning that  

 RS CPA = 0.4424* FM CPA + 14.251                                                     Equation 4  

 For the Karang site the results are similar and the equation obtained for all sampled 

trees is: y = 1.1789 x + 12.59 meaning that  
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 RS CPA = 1.1789*FM CPA + 12.59                                                       Equation 5 

 It is also important to mention cases where the remote sensing values are bigger due 

especially to disturbances including pruning and fire.  The following pictures (Figure 2.19) 

are an illustration of the effects of these two forms of disturbances on trees. 

Figure 2.19 The effects of tree disturbances on tree crown shape 

   

a) Pruning reduces CPA    b) Fire reduces CPA 

 To determine the relationship between the remote sensing CPA and the field 

measured DBH, both simple linear and non linear regression analysis are used and applied 

for the three different cases (in the Sokone site, in the Karang site and for both sites 

combined). For the linear function, the coefficients of determination are very high for all 

cases with an R
2
 > 0.70. The non linear function has R-squared values ranged between 0.61 

for the Sokone site to 0.77 for the Karang site. Applied to the combined data of both site, the 

R
2
 is 0.72.  Compared to the non linear, results suggest that the linear model is the best.  

 Among the limitations of the methods, I acknowledge that the spatial pattern of the 

Anacardium plantations and their visibility in the satellite image are not as obvious as those 

of individual and scattered trees. As a result, the identification and delineation of tree crowns 

using remote sensing is less accurate than for the individual trees.  This is confirmed by the 



79 

 

coefficient of determination of field measured CPA vs. remote sensing CPA for 

Anacardium, which is low specially for the Karang site where it falls to 0.36 compared to 

the other species where it reaches 0.76. 

 Secondly, some individual scattered trees have experienced disturbances that affect 

the shape and the size of their crown. As mentioned earlier, pruning and fire are the major 

causes of these disturbances: trees lost some branches and/or even part of their bark, which 

in turn reduces the size of the crown. 

 Also, the Anacardium pattern and the distance between them usually create a 

situation of intermingling, i.e. the growth of some trees may be affected by the proximity of 

another tree, which in turn reduces the crown size and modifies the shape of the tree. 

Consequently, the relationship between DBH and crown area can be affected because of its 

sensitivity to crown competition factor (Anderson et al., 2000).  

 There is also a significant correlation between field measured DBH and remote 

sensing crown projection area with coefficients of determination of 0.76 and 0.79 for the 

Sokone and Karang sites respectively (Figures 2.12 & 2.14). These values can be compared 

and are close to those found by Kuyah et al. (2012) in Western Kenya. Using destructive 

sampling, they found that the relationship between crown area and DBH has shown a 

coefficient of determination R
2
= 0.85 for harvested trees.  

 The model is also applied to anacardium species alone in both Sokone and Karang 

sites and the results show a high R-squared of 0.71 in regards to the correlation between 

remote sensing CPA and field measured DBH, and 0.63 and 0.36 respectively for Sokone 

and Karang site in regards to the relationship between the remote sensing CPA and the field 

measured CPA.  
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 When applied to natural trees, the coefficient of determination is higher (0.84) in 

Sokone than in Karang (0.66) for the correlation between remote sensing CPA and field 

measured DBH, and 0.76 and 0.73 regarding the relationship between the remote sensing 

CPA and the field measured CPA. 

 In all cases, the strength of the relationship of field measured DBH with remote 

sensing CPA is high with R-squared > 0.70. Also the y-intercepts in all cases have positive 

values suggesting that the equations are suitable for predicting DBH of trees with a 

delineated CPA outside the range of sampled trees (Anderson et al., 2000). Overall, results 

of this study show that this developed model can be used to predict tree DBH using high 

resolution satellite image—especially individual trees outside forests where the detection is 

easier than for clustered trees, and natural trees better than managed trees. 
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Appendix A: PRELIMINARY RESULTS WITH AUTOMATED DETECTION OF TREE 

CROWM PROJECTION AREA (CPA) 

Figure A.1. Automated detection in the Sokone landscape 

 

  Some testing with automated individual tree detection and automated CPA 

delineation has promise, but some error of omission remain. 
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Figure A.2. View of automated detection in cluster vegetation 

 

 

 

 

 

 

 

 

 

 

 

In some region, the detection result of cluster vegetation area is not good 
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Figure A.3. View of automated detection in individual big trees 

 

 

  

... some big trees have lower NDVI, and that cause some loss of detection  
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CHAPTER 3 . THE ROLE OF REMOTE SENSING IN MEASURING BIOMASS AND 

CARBON AT THE LANDSCAPE LEVEL IN SAVANNA SYSTEMS 

3.1. INTRODUCTION 

 In many tropical countries, especially in rural areas, there is a reduction of forest 

areas due to many factors including forest clearing for agricultural and ranching purposes, 

shifting cultivation, removal of dry savanna vegetation and firewood, and agricultural waste 

burning (Crutzen and Andreae, 1990).  Some studies have suggested that disturbance in open 

forest systems is quantitatively as important as in closed forests (Erickson et al. 2002; 

Murphy and Lugo 1995; Serca et al. 1998), especially because disturbances in these systems 

may have longer term degradation effects with lower probabilities of recovery than in closed 

forest systems. Observations of reforestation and biomass accumulation in trees on 

agricultural land is important because these data are needed to understand the global 

magnitude and capacity for carbon sequestration, and to inform decision and policy makers 

on options for carbon management practices that can remove carbon from the global 

atmosphere. There is considerable uncertainty on the current land area in woody perennials 

on farms in developing countries and the global potential for managing carbon sequestration 

in tree-based agriculture. Some estimates from international organizations suggest a large 

amount of carbon sequestration is already occurring in these managed landscapes (Verchot 

and Singh 2009).  

 Although frequently treated as a secondary priority to monitoring of the much higher 

biomass forests of the humid tropics, the dry and open forests of the world are more 

abundant than closed forests and usually are more prone to occupation and disturbance by 

humans. While these low density forests contain as little as 25% of the total carbon stock of 

humid tropical closed forests, the global area of low density forests is more than 30% 
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greater. Rates of disturbance are suspected to be equal to or greater than the closed forests, 

and less likely to recover lost carbon. Thus it is vitally important to begin to assess the 

global magnitude of open forest disturbances. 

 Additionally, what is often unrecognized is that while forested area is declining in 

developing countries, tree cover on farms is increasing, as farmers substitute annual 

cropland for the tree products which have formerly been available in local forests. Also 

farmers are increasingly seizing specific market opportunities to sell higher-value tree 

products (e.g. natural rubber, bio-fuels, bio-chemicals, timber). For example, remote sensing 

in 64 rural locations in Uganda revealed that between 1960 and 1995, forested area declined 

50%, agricultural area increased 23%, and the proportion of agricultural land under tree 

cover increased 22% (Place 2001). Agricultural land now accounts for over double the area 

of forested land in Africa (FAO 2006), giving justification to the slogan that, “the future of 

trees is on farms.” 

 To pursue efforts on climate mitigation, global attention is shifting not only to 

tropical forests but also to trees outside of forests—especially trees on farms. Increasing 

woody biomass on farms in developing countries is seen as a possible global climate and 

carbon mitigation option that deserves serious attention. Montagnini and Nair (2004) have 

estimated that a vigorous program to introduce agro-forestry on farms in tropical Africa and 

Asia has the potential to sequester 3.5 Mg C ha-1 yr-1.  However, for this to be a successful 

strategy it will be necessary to have sound detection and monitoring systems in place. 

 In the Africa context, and unlike in the developed countries, the farm sizes are small 

and are declining overtime (Jayne et al., 2003). Although land use based smallholder carbon 

systems can provide multiple benefits, they are facing important constraints associated with 
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small-scale measurement. Consequently, small-scale carbon sink projects occupy a limited 

place in global programs, and investors also have shown little interest in financing such 

projects (Boyd et al. 2007). It is necessary to explore the possibility of shifting the premise 

for measurement and monitoring carbon from individual farm plots to a whole landscape and 

from individual farmers to communities. However, for the time being, accurate measurement 

of woody biomass in landscapes is facing a significant challenge for efficient, timely and 

cost-effective automated monitoring of A/R/AF. Detecting and measuring individual tree 

objects that are sparsely planted or growing on farms, along roadways, or in backyards 

cannot be done accurately with low or moderate resolution satellite imagery where a single 

tree may represent only a small proportion of a single pixel. Although pixel unmixing 

techniques (Keshava 2003) can provide an estimate of the proportion of different land cover 

types represented by a single pixel, in general, these techniques are not amenable for 

accurate estimation of tree size, number or other measurements required for accurate 

assessment of forest cover change in sparsely planted landscapes. However, recent 

technological advancements in satellite image acquisition provide access to hyper-resolution 

imagery of the Earth and its land uses.  The Worldview 2 satellite acquires 4 bands of 

multispectral data at 2 m resolution and a panchromatic band at 50 centimeters.  Very high-

resolution imagery enables the detection of objects in the landscape using remote sensing. 

Subsequent processing can be used to associate attributes, such as size or texture, with 

detected objects. Therefore, my work is beginning to demonstrate that it is possible to count 

trees, estimate size and evaluate change remotely.  

 For example, if one can detect individual trees and tree crowns, there may be a 

possibility to develop a crown-based allometry for individual trees (see previous chapters). 
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This requires the development of methods for ground measurements. Most reforestation 

projects use small sample plots in a sampling frame for forest inventory. This ground 

measurement protocol must be re-defined for systems of individually planted trees, and then 

also extended to the woodland or savanna landscape. The landscape approach allows one to 

inventory both land in forests (in this case savanna) and land on trees outside of forests (in 

this case agroforestry).  

 In recent years there has been substantial progress by the research community 

developing ways to detect land cover change in tropical forests with remote sensing. Remote 

sensing initially was focusing on measuring the conversion of tropical forests to non-forest 

land (Skole and Tucker 1993), but recent advances have made it possible to increase the 

variety of disturbances that can be detected for closed tropical forests to include 

deforestation, degradation, logging, fragmentation, reforestation, and fire (Matricardi et al. 

2013, Matricardi et al. 2010; Matricardi et al. 2007; Wang and Cochrane 2005). Thus, there 

are now methods available to remotely detect a full range of disturbance intensities, from 

outright clearing to low levels of degradation, over large areas but these approaches have 

been successful only in very dense closed tropical forests, and in particular in key regions of 

the Amazon Basin, Central Africa, and South East Asia. There has been very little 

advancement of detection methods for two important other forms of land cover change: 1) 

deforestation and degradation of open woodlands such as the cerrado and the chaco 

ecosystems in South America, woodlands of East Africa, Savannas of West Africa, and 

other open forest ecosystems in the tropics and sub tropics,  2) regeneration systems on 

managed landscapes where  biomass recovery occurs as plantations, orchards, agroforestry, 



92 

 

and widely-spaced tree complexes associated with agriculture. This chapter is focusing on 

exploring the opportunities of using high resolution satellite images to: 

- detect individual trees in landscapes in which tree cover is sparse or widely spaced and use 

remote sensing based crown projection area to predict DBH; 

- select and apply an allometric model that estimates biomass or carbon stocks in Above  

ground live biomass (AGLB) based on accepted standards (ie. IPCC default allometric 

equations using DBH as inputs); 

- estimate the model developed in chapter 2 which uses remote-sensing derived allometric 

parameters to estimate carbon stocks per tree; 

- apply the model to inventory carbon stocks across an entire savanna landscape dominated 

by TOF. 

3.2. MATERIALS AND METHODS  

3.2.1. Study Area  

 The study area is located in two different sites: Sokone and Karang within an area 

measuring 6 km x 6 km (36 km
2
) of two Worldview 2 satellite images. For each 36 km

2
 

area, a sample grid of 9 blocks (2 km x 2 km) is generated using the ERDAS Imagine 

software package. Three blocks of 2 km x 2 km representing an area of 400 hectares have 

been selected for sampling and data collection in each of the two sites of Sokone and 

Karang. Therefore, all of the previous calculations to develop the model of predicting DBH 

from remote sensing crown projected area have been done using data on this area. Also, for 

the carbon calculation, data for the six blocks (three in each site) are used at the sample level 

to apply the model to remote sensing and expand it at the landscape level. It covers an area 

of 2400 hectares, representing 1200 hectares for each of the two sites. For a large area 
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application, we extend the area to eighteen blocks (nine in each site), covering an area of 

7200 hectares (3600 hectares for each site) (Figure 2.2.). 

3.2.2. Data used 

 Remote sensing data are from high resolution satellite image from Worldview 2 

sensor which provides data in eight multispectral bands including; 

 - the coastal blue (400-450 nm) which supports vegetation identification and 

analysis; 

 - the blue (450- 510 nm) 

 - the green (510- 580 nm) 

 - the yellow (585- 625 nm) which assists in the development of "true color" hue 

correction for human vision representation; 

 - the red (630- 690 nm) 

 - the red-edge (705- 745 nm) which aids in the analysis of vegetation condition, 

directly related to plant health revealed through chlorophyll production; 

 - the NIR (770- 895 nm) 

 - the NIR 2 (860- 1040 nm) which supports vegetation analysis and biomass studies 

(Digital Globe, 2009). Four (red, blue, green, near infra red) of these bands are standard 

colors while the other four (red edge, coastal, yellow, near infra red 2) are new colors. This 

sensor has a resolution of 0.5 meter panchromatic (B&W) and 2 meters multispectral.  

 The data were acquired for the month of April 16, 2010 and were geo-registered in 

the Universal Transverse Mercator (UTM) coordinate system (WGS 84, zone 28). April is a 

period during which deciduous trees, which constitute the large part of trees outside forest in 

the study area, bear adequate foliage suitable to provide good remote sensing information as 

http://www.satimagingcorp.com/characterization-of-satellite-remote-sensing-systems.html
http://www.satimagingcorp.com/characterization-of-satellite-remote-sensing-systems.html
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it makes the identification and the distinction of vegetation from other land cover features 

easier. 

 I digitized the crowns of  all trees within the eighteen blocks and calculated their area 

and used it to predict their DBH for carbon estimation. I used the Arc Map Editor tool and 

created circular polygons around the area of the tree crowns. 

3.2.3. Data Analysis 

 This sub-section addresses the question of how to measure carbon for trees outside of 

forests (TOF). Most techniques that use allometric equations to estimate total above ground 

biomass are using some combination of DBH, total height, and wood density as independent 

variables. For this study, crown projection area measured through remote sensing is used as 

the independent variable. Data from the remote sensing analysis of individual trees are 

calibrated with ground data. The regression equations developed in chapter 2 established a 

predictive relationship between crown and tree DBH. Those equations were used to predict 

DBH and estimate AGB using standard allometric equations that use DBH as the 

independent variable.  To accomplish this task, remote sensing, correlation and regression 

analyses are combined. 

3.2.3.1. Remote Sensing Analysis and manual delineation of trees 

 The complexity of smallholder agricultural systems in tropical areas compared to 

industrial agricultural systems requires fine resolution satellite data to allow tree 

measurements in agricultural landscape. This is possible with the availability of high 

resolution multispectral satellite imagery where single pixels (0.5 m) can be smaller than 

individual tree crowns, and even for trees as small as 10 cm in diameter at 1.3 m who often 

can have crown projection areas > 10 m
2
 (Milne et al., 2013). High resolution images from 
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Worldview 2 were acquired for the study area. The selected images were taken during the 

dry season (April 16, 2010) to reduce the effect of cloud cover. The image projection is 

UTM Zone 28 N, WGS 84 datum.  

 To increase both the spatial, temporal and spectral resolution of the image, the 

Worldview Panchromatic image (0.5 m) was pan-sharpened with Worldview Multispectral 

bands MSS (2m). Individual tree crowns were manually digitized and the area of each tree 

crown is measured in the satellite imagery. The digitizing is performed using the polygon 

construction tool in ArcGIS 2010 and the area of each crown calculated and used to 

determine the relationship with the tree diameter at breast height (DBH) measured in the 

field. ERDAS and ArcMap software packages are used to perform these tasks.  

 ERDAS Imagine 9.2 software was used for pre-processing the satellite data while 

ArcGIS 10 helped create and merge the spatial database. The pan-sharpened images were 

displayed in ArcGIS 10 to perform the manual digitizing and tree crown delineation.  

3.2.3.2. Regression Analysis 

 A regression analysis is used to estimate the change in the DBH from a given change 

in the CPA by finding a formula that represents the relationship between these two variables. 

This information is used to predict DBH from the given CPA by finding an approximate 

value of the tree DBH from the value of the CPA using a simple linear function. The 

regression established between these two parameters is used to estimate tree biomass and 

carbon on a tree-by-tree basis. With this relationship between CPA and DBH developed 

from ground measurements, the remote sensing delineated CPA is substituted with the 

ground measurements to cover the larger landscape. 
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3.3. RESULTS  

In chapter 2, allometric models between tree crown projection area using a manual 

digitizing of Worldview 2 data and tree DBH measured during field surveys are developed. 

The model validation through a comparison between predicted and field measured DBH has 

shown satisfactory results with coefficients of determination of 0.760 and 0.791 respectively 

for Sokone and Karang sites. Equations 1 and 2 are used to predict DBH knowing the crown 

projection area from satellite data and estimated biomass and carbon. To measure the carbon 

on a tree basis, the IPCC general allometric equation (IPCC, 2006) is used. The carbon 

density and carbon stock in sampled plots is calculated for both Sokone and Karang sites.   

3.3.1. Tree density at landscape level 

To determine the stand densities for each block, remote sensing techniques have also 

been used, especially for the digitizing of the area of each stratum. After determining the 

area of strata for each site, the stand densities for each block were calculated from the 

number of standing trees per ha. Each block has an area of 400 ha but I excluded the area of 

pasture in some blocks which explains the difference. In the Sokone site:, block SOK 1 with 

an area of 333 ha, counts 4814 trees, which gives a stand density of 14.4 trees/ha. It is the 

second block with the highest stand density after block SOK 4 which has a stand density of 

17.5 trees/ ha with an area of 369 ha and counting 6470 trees. The third block with the 

highest stand density is SOK 5 with 10.9 trees/ ha. All other six blocks in the Sokone site 

have less than 10 trees/ha (Table 3.1) 

For the Karang site, the two blocks with the highest stand density are KAR 8 and 

KAR 5 with respectively 13.1 and 11.3 trees/ha. Al other blocks have less than 10 trees/ha 

(Table 3.1.). 
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Globally, the Sokone site has the highest stand density compared to the Karang site 

(Table 3.1.). 

 

Table 3.1 Tree density by block in the study area 

  

BLOCKS 

Block 

Area (ha) 

Number of trees Stand density (trees/ha) 

SOKONE 

SOK 1 333 4814 14.4 

SOK 2 391 3868 9.8 

SOK 3 356 2947 8.2 

SOK 4 369 6470 17.5 

SOK 5 294 3211 10.9 

SOK 6 341 3211 9.4 

SOK 7 400 2440 6.1 

SOK 8 400 1847 4.6 

SOK 9 400 1283 3.2 

KARANG 

KAR 1 201 1839 9.1 

KAR 2 203 446 2.1 

KAR 3 292 1218 4.1 

KAR 4 400 1813 4.5 

KAR 5 179 2031 11.3 

KAR 6 387 1714 4.4 

KAR 7 387 2193 5.6 

KAR 8 288 3798 13.1 

KAR 9 356 1394 3.9 

 

3.3.2. Carbon stock and carbon density at landscape level 

The following equations developed in chapter 2 are used to predict tree DBH 

knowing the crown area based on remote sensing; 

Equation 3 is used for the Sokone site and Equation 2 for the Karang site. 

DBH = 0.5912 (RS CPA) + 13.408                                                            Equation 2 

DBH = 0.3514 (RS CPA) + 24.613                                                              Equation 3 

To calculate aboveground biomass, the following Equation 6 is used: 

 ABG = exp (-1.996+2.32*ln(DBH))                                                          Equation 6 
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Where: 

 ABG = aboveground biomass in kg 

DBH = diameter at breast height in cm 

The below ground biomass is calculated by multiplying the above ground biomass by 

0.24 which is the root-shoot (R/S) ratio. All values of above and below ground biomass are 

summed up to count for the total biomass converted into carbon by multiplying the biomass 

by 0.47.  

Carbon stock and carbon densities in both Sokone and Karang are reported in the 

following Table 3.2. For the Sokone site, the carbon densities vary between 3.9 (block SOK 

9) to 17 tC/ha for block SOK which has the highest density. It is followed by block 5 (SOK 

5), block 6 (SOK 6), block 2 (SOK 2), block 4 (SOK 4) and block 3 (SOK 3) with 

respectively 16.4, 12.7, 12.5, 12.4 and 11.3 tC/ha. In addition to the presence of pasture 

which reduces the area, these high densities are explained by the high density of cashew 

plantation in these blocks. 

 

Table 3.2 Carbon stock and Carbon density by block in the study area 

BLOCKS Area of 

Block(ha) 

Carbon stock  

(t C) 

Carbon density 

(t C/ha) 

SOKONE 

SOK 1 333 5672.4 17.0 

SOK 2 391 4889.8 12.5 

SOK 3 356 4019.9 11.3 

SOK 4 369 4588.4 12.4 

SOK 5 294 4822.7 16.4 

SOK 6 341 4315.1 12.7 

SOK 7 400 1885.6 4.7 

SOK 8 400 2374.0 5.9 

SOK 9 400 1568.6 3.9 

KARANG 

KAR 1 201 1543.2 7.7 

KAR 2 203 415.9 2.0 

KAR 3 292 773.4 2.6 
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Table 3.2 (cont'd) 

KAR 4 400 2535.9 6.3 

KAR 5 179 1446.0 8.1 

KAR 6 387 1732.6 4.5 

KAR 7 387 1318.8 3.4 

KAR 8 288 1997.1 6.9 

KAR 9 356 1446.8 4.1 

3.3.3. Relative contribution of trees by DBH size to the total carbon 

 The classification of trees based of DBH size is helpful in determining the contribution of 

tree size to the total biomass and carbon. For the Sokone site, Table 3.3. and Figure 3.2. show the 

contribution of each DBH class to the total carbon for all nine blocks.    

Table 3.3 Relative contribution of trees (tons of C) by DBH size to the total carbon in the 

Sokone site. 

DBH 

Classes 

(cm) 

BLOCKS 

SOK 1 SOK 2 SOK 3 SOK 4 SOK 5 SOK 6 SOK 7 SOK 8 SOK 9 TOTAL 

10- 19.9 0.5 0.1 0.0 2.8 0.1 0.0 0.4 0.0 0.6 4.4 

20- 29.9 102.3 15.8 7.5 199.5 17.2 18.6 55.0 4.8 28.4 449.0 

30-39.9 351.3 178.8 83.6 453.7 123.4 194.1 174.3 71.7 103.8 1734.7 

40-49.9 581.4 602.3 423.6 843.2 439.6 458.6 313.1 297.5 123.9 4083.2 

50-59.9 497.1 648.0 522.9 786.6 639.2 606.3 387.2 325.8 116.9 4530.0 

60-69.9 651.5 661.1 558.8 551.1 511.0 552.9 164.7 284.5 166.9 4102.3 

70- 79.9 400.6 567.8 527.9 508.2 507.3 344.3 252.4 309.5 126.6 3544.4 

80- 89.9 266.9 346.5 413.3 328.4 351.5 155.9 107.4 219.0 135.5 2324.4 

90- 99.9 673.5 211.4 227.6 254.5 197.6 148.6 88.3 115.2 130.5 2047.3 

100- 109.9 318.7 109.9 119.2 77.0 127.5 115.1 43.5 82.4 60.8 1054.1 

110- 119.9 83.7 132.5 147.5 115.8 148.6 57.6 55.7 51.3 65.5 858.2 

120- 129.9 281.6 43.6 96.8 107.9 29.6 34.7 36.1 36.9 18.6 685.9 

130- 139.9 196.4 39.7 59.9 87.6 108.7 68.6 35.0 40.8 62.4 699.1 

140 and < 1266.8 1332.4 831.2 272.0 1621.5 1559.9 172.66 534.56 428.27 8019.5 

TOTAL 5672.4 4889.8 4019.9 4588.4 4822.7 4315.1 1885.6 2374.0 1568.6 34136.7 

Percentage 16.6 14.3 11.8 13.4 14.1 12.6 5.5 7.0 4.6  

 

Except for block 7, 8 and 9 (SOK 7, SOK 8, and SOK 9) which have the lowest 

amount of carbon, all other blocks hold at least 10 %. with the highest percentage for SOK 1 

(16.6 %) followed by SOK 2, SOK 5, SOK 4, SOK 6 and SOK 3 with respectively 14.3, 

14.1, 13.4, 12.6 and 11.8 %. 
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Figure 3.1 shows more details about the percentage of each DBH class to the total 

carbon for the whole nine blocks. 54 % of carbon is hold by trees with 80 cm DBH or less 

and 66.8 % of the carbon is hold by trees with less than 100 cm DBH. Although they 

represent only 1.14 % of the total tree density, big trees (140 cm DBH or more) hold almost 

a quarter (23.5 %) of all carbon. This is explaining by the very large DBH of some trees. In 

the Sokone site, many trees have more than 200 cm DBH. 

  

Figure 3.1 Percentage contribution to total carbon by DBH classes in the Sokone site 

 

 Results from the Karang site also confirm this tendency of trees with less than 80 cm 

DBH to contain most of the biomass (Table 3.4. and Figure 3.2). The quantity of biomass 

contained in this range of trees is 70.6  % for the whole nine blocks in the Karang site. 87.4 % of 

the carbon is hold by trees with less than 100 cm DBH.    
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Table 3.4 Relative contribution of trees (tons of C) by DBH size to the total carbon in the 

Karang site. 

DBH 

Classes 

(cm) 

BLOCKS 

KAR 

1 

KAR 

2 

KAR 

3 

KAR 

4 

KAR 

5 

KAR 

6 

KAR 

7 

KAR 

8 

KAR 

9 TOTAL 

20- 29.9 0.8 0.0 1.0 0.4 2.6 1.0 8.3 12.9 1.9 28.9 

30-39.9 131.7 31.4 135.0 69.2 185.9 85.2 289.1 619.2 145.1 1692.0 

40-49.9 493.5 116.7 291.3 332.9 477.7 360.8 403.0 712.5 207.5 3395.9 

50-59.9 239.6 53.8 110.2 346.9 255.4 336.7 208.3 138.2 154.0 1843.2 

60-69.9 115.4 30.3 66.0 292.8 128.2 212.8 127.9 58.0 72.7 1104.1 

70- 79.9 66.5 25.2 40.3 255.6 101.8 171.0 72.1 65.5 218.8 1016.9 

80- 89.9 34.3 14.1 26.9 136.3 34.5 75.7 11.8 16.7 78.7 429.0 

90- 99.9 71.9 17.6 28.7 156.2 60.9 78.4 44.3 23.4 174.0 655.3 

100- 109.9 40.3 11.9 7.6 130.9 55.5 84.6 36.4 11.9 86.1 465.2 

110- 119.9 8.9 4.5 4.5 32.2 14.3 56.6 4.9 11.9 94.7 232.5 

120- 129.9 39.1 22.2 11.0 97.0 22.4 34.3 21.8 5.4 49.8 303.0 

130- 139.9 22.0 22.0 0.0 78.4 0.0 43.8 13.1 0.0 19.9 199.2 

140 and < 279.0 66.2 50.9 607.1 106.8 191.7 77.7 321.5 143.6 1844.3 

TOTAL 1543.2 415.9 773.4 2535.9 1446.0 1732.6 1318.8 1997.1 1446.8 13209.6 

Percentage 16.9 13.6 12.2 16.5 12.3 10.5 6.6 7.0 4.4  

 

Like in the Sokone site, only three blocks (KAR 7, KAR 8, and KAR 9) have less 

than 10% of the total carbon for the whole site. KAR 1, KAR 4, KAR 2, KAR 5 and KAR 3 

hold the highest percentage of carbon with respectively 16.9, 16.5, 13.6, 12.3 and 12.2 % of 

the total carbon. 

More details about the percentage of each DBH class to the total carbon for the 

whole nine blocks are shown is Figure 3.2. Big trees with more than 140 cm DBH contribute 

to 14% to the total carbon. Like in the Sokone site, this is due to the very large DBH of some 

trees. 
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Figure 3.2 Percentage contribution to total carbon by DBH classes in the Karang site 

 

 In both Sokone and Karang, there is a variability of trees based on their DBH within the 9 

blocks which reveals that the most densely populated of the blocks are those dominated by the 

cashew (Anacardium occidentale) species. 

3.3.4. Comparison of remote sensing-based biomass and carbon estimation with field data 

In this section, data from sampled plots within the 6 blocks (3 for each site) is used to 

do a comparison with the remote sensing model-based data for the same blocks. Biomass 

and carbon for each tree are calculated using the field measured DBH for both Sokone and 

Karang sites. To determine the carbon stock and carbon density for each of the six selected 

blocks (3 for each site) of the two sites, these different steps are followed:  

A- Determine the total area of all sampled  plots for each stratum 

B- Determine the percentage of each stratum for each block 

C- Calculate the quantity of carbon per tree in each plot 

D- Calculate the total carbon per plot by summing up all carbon/tree within the plot   
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E- Calculate the carbon stock in all sampled plots for each stratum by summing up the 

amount of carbon per plot for all plots of the same stratum  

F- Calculate the carbon density by stratum of each block by multiplying (E) by the area 

of that stratum within the block 

G- Calculate the carbon stock within each block by summing up all carbon stock in all 

strata within each block  

H- Calculate the carbon density for each stratum by dividing (F) by the area of each 

stratum 

I- Calculate the carbon density of each block by dividing its carbon stock by the 

corresponding area 

 The calculation of the carbon stock and density estimates for a larger area is done by 

first extrapolating to the full hectare. An expansion factor determined by calculating the 

proportion of a hectare that is occupied by a given plot in the study area (Pearson et al., 

2007) is used.  In both sites, the area of pastures is excluded for the biomass and carbon 

estimation as this land cover type is not part of this study. The area of dwellings (villages) is 

included with area of TOF in agricultural lands because individual trees within the villages 

are easily detectable and digitized to allow an application of the model.  

 Comparison between field based and remote sensing based carbon estimates shows 

that values of the field based carbon are higher than the model-based carbon for all blocks 

(Table 3.5.). The difference in carbon density estimation varies between blocks. For KAR 1, 

KAR 8 and KAR 9 blocks in the Karang site, the difference represents respectively 27.3, 

30.6 and 35.1 %.  
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 This difference is reflected in the carbon density with lower values for the remote 

sensing based data.   

Table 3.5 Comparison between remote sensing based and field based carbon stock and 

carbon densities 

BLOCKS Area of 

Block (ha) 

Remote sensing based Field-based 

  Carbon 

stock (tC) 

Carbon density 

(tC/ha)  

Carbon 

stock (tC) 

Carbon 

density (tC/ha)  

KARANG 

KAR 1 201 1543.2 7.7 2124.0 10.6 

KAR 8 288 1997.1 6.9 2876.2 10.0 

KAR 9 356 1446.8 4.1 2229.2 6.3 

 

 Analysis of field data allows a comparison of carbon density by land cover. After 

estimating carbon stock and carbon density at the plot level and knowing the area of each 

stratum within the block, the carbon density for each stratum is multiplied by the area to 

estimate the carbon stock for the whole block.  

 For the Sokone site, the values of carbon stocks are higher for block SOK 1 with 

9286.1 tons of carbon and decrease towards the south for block SOK 4 (6207.7 tons of 

carbon) and block SOK 7 (2950.2 tons of carbon) (Table 3.6.). This decrease is more 

pronounced for the cashew plantation where the densities vary between 78.6 t C/ha in SOK 

1 in the northern part to 34.6 tC/ha for SOK 7 in the southern. The highest carbon densities 

are within the area of cashew plantation and can reach 78.6 t C/ha for SOK 1. This can be 

explained by the long tradition of cashew plantation in this area with the Senegalo-German 

Cashew Project (PASA) back to the 1980s.  
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Table 3.6 Carbon stock and carbon densities in the six blocks of the Sokone and Karang 

sites where sampled plots were located 

BLOCKS 

Cashew plantation 

TOF in agricultural 

land  

TOTAL 

Area 

(ha) 

Carbon 

stock 

 (t C) 

Carbon 

density 

 (t C/ha) 

Area 

(ha) 

Carbon 

stock 

 (t C) 

Carbon 

density 

 (t 

C/ha) 

Area 

(ha) 

Carbon 

stock 

 (t C) 

Carbon 

density 

 (t C/ha) 

SOKONE 

SOK 1 96 7548 78.6 237 1738.1 7.3 333 9286.1 27.9 

SOK 4 116 5031.2 43.4 253 1176.5 4.7 369 6207.7 16.8 

SOK 7 44 1523.1 34.6 356 1427.1 4.0 400 2950.2 7.4 

KARANG 

KAR 1 30 1158 38.6 171 966 5.6 201 2124 10.6 

KAR 8 67 1559.6 23.3 221 1316.6 6.0 288 2876.2 10.0 

KAR 9 23 707.7 30.8 333 1521.5 4.6 356 2229.2 6.3 

 

For the Karang site, results of the carbon stock at the plot level scaled up at the block 

level are similar to those for the Sokone site regarding the predominance of cashew 

plantations which explains the higher values of carbon stock for that stratum. Block KAR 8 

that has the largest area of cashew holds 1559.6 t of carbon which represents 54% more than 

Block KAR 9 with only 707.7 t C. In the meantime, with the larger area of other TOF in 

agricultural land (333 ha), Block KAR 9 holds the highest carbon stock for this stratum with 

1521.5 t C while Block KAR 1 with an area of 210 ha holds only 966 t C (Table 3.6.). 

3.4. DISCUSSIONS AND CONCLUSION:  

 Measuring carbon in trees outside of forests is very challenging especially in 

savannas systems due to the high spatial variability caused by natural but mostly human 

disturbances events (Lyster et al., 2013). Using remote sensing predicted crown projection 

area (CPA), we estimate biomass and carbon per tree for the whole eighteen (18) blocks of 

the study area in both Sokone and Karang sites.  
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 Direct measurements using field inventories have been used to estimate biomass and 

carbon but present some challenges: it is time consuming, expensive labor intensive and 

difficult to implement in remote areas (Kuya et al., 2012). Our results have shown that these 

challenges can be overcome by using remote sensing techniques.  

 With these techniques, I was able for example, to determine the number of trees for 

each of the blocks and calculate the stand densities (trees/ha). Using a remote sensing-based 

model, tree DBH is predicted knowing the crown projection area and run an allometric 

equation to calculate the carbon on a tree basis. 

 In each of the blocks of the study area, we estimated the carbon stock and the carbon 

density. The carbon densities vary between 17 t C/ha which is the highest (SOK 1) to 2 t 

C/ha the lowest (KAR 2). The classification by DBH of all trees in each block is used to 

determine the contribution of trees by DBH class to the total carbon. Unlike a common 

assumption that big trees hold the most amount of carbon, the classification by DBH class 

shows that most of the carbon is on trees with small and medium size DBH:  66.8 % of the 

carbon for the Sokone site and 87.4 % for the Karang site is concentrated on trees with less 

than 100 cm DBH. 
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CHAPTER 4 . LANDSCAPE BIOMASS ESTIMATION AND CARBON MAPPING 

4.1. INTRODUCTION 

 In many developing countries, especially in rural areas, forest areas are decreasing 

while in the agricultural landscape trees are still present and in some part in large amounts. 

This is very common in some countries where forest are converted to other land uses with 

increasing density of human population (De Foresta et al., 2013)  

 There are numerous landscape-wide deforestation and carbon measurement protocols 

for forests, particularly closed forests (Matricardi et al. 2010). However, there are few 

methods available for sparsely wooded systems, such as savannas, and virtually none for 

systems of trees outside of forests that can be used across whole landscapes. The current 

methods for landscape level carbon measurement are particularly problematic and are 

unlikely to meet scientific and rigorous standards (for example the requirements of the CDM 

Executive Board) and potential carbon project investors. Therefore, there is a lack of 

confidence in existing measurement systems with implications that go beyond the 

measurement of carbon credits and create doubts about the project viability. New advances 

in remote sensing of canopies and individual tree crown detection offer great promise 

 Currently, there is a growing interest in investing in agroforestry systems for this 

dual benefits of climate mitigation and livelihoods enhancements (ICRAF, 2008), and also 

as a set of innovative practices that strengthen the farming system’s ability to cope with, or 

adapt to, adverse impacts of changing climate conditions (Verchot, 2007). In this context it 

is possible to view agroforestry as both a mitigation and adaptation option for small holders. 

Agroforestry practices can be applied across a variety of forms and range of intensities 

depending on local conditions to provide a locally relevant approach to sustainable 
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agriculture production and soil fertility management. Agroforestry might become a key 

component of the African farmers’ household portfolio of farming practices, and provide an 

important role in meeting farmers’ food and non-food subsistence needs through its 

ecosystem services provided (Jonsson et al., 1999). There is also some evidence to suggest 

that the high production levels and economic values of agroforestry value chains may 

actually facilitate the production of financial capital beyond subsistence levels alone, thereby 

aiding in capital accumulation and re-investment at the farm level. 

 In Africa one of the more critical characteristics of the rural landscape is the 

preponderance of many small holder farming systems that are operating on the 

environmental and economic margins, where any newly introduced practice will be adopted 

only if it improves food security (and incomes) on a sustainable basis. Under such  

conditions, climate mitigation interventions, such as a increased carbon stocking with trees 

on farms, will need to demonstrate support for improved food production (and income) as 

well (Smith, 2012). In this context, climate mitigation becomes a co-benefit of a primarily 

food-focused enterprise. Hence, practices that minimize the rate of soil degradation, improve 

soil fertility, increase crop yields and raise farm income by using the “right tree at the right 

farming place” are keys to sustaining agricultural productivity which in turn provide better 

conditions for  climate adaptation in many of the  poor rural communities that might be most 

adversely affected by climate change and variability (Neupane, 2001), and then also provide 

added benefits for climate mitigation through increased greenhouse gas removals from the 

atmosphere. Agroforestry  – as a system of “trees outside of forests” – readily bundles  both 

mitigation and adaptation strategies and provides several pathways to a range of 

environmental and social co-benefits and outcomes, including   food security, increased farm 
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income, restoration  and maintenance of  above-ground and below-ground biomass and 

biodiversity, reestablishment of  biological corridors between protected forests, maintenance 

of  watershed hydrology, improved soil conservation, availability of timber and fuel wood, 

and ultimately a  reduction of  pressure on natural forests outside the farming domain 

(Pandey, 2002) 

 Many accepted methods for carbon measurement in programs or projects that are 

based on sequestration (cf. as opposed to avoiding emissions from deforestation) have been 

defined at a project scale with specified boundaries of the project, often on land parcels with 

a single owner. When trying to develop methods for rural poor farmers, experience suggests 

that a landscape approach is needed, whereby many farmers can be bundled into a single 

project, even if the parcels are not contiguous.  

 The landscape approach offers new opportunities for the participation of many more 

of the rural poor in carbon markets, but the means for landscape-scale measurement needs to 

be developed. Remote sensing offers a means to do landscape scale measurement and 

monitoring, but most advances methods in recent years have focused on closed forests, 

rather than open woodlands and savannas or, to be sure, systems of trees outside of forests. 

 This chapter is dedicated to estimate biomass and carbon at a landscape level using 

remote sensing techniques and producing carbon maps of the study area. The model applied 

combines advanced remote sensing and basic allometry in systems of “trees outside of 

forests” to a whole landscape. As developed in chapter 2, a moderate to high correlation 

between remote sensing crown projection area (CPA) and tree DBH enables us to predict 

DBH knowing the CPA through remote sensing. The equation from that correlation is used 
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to scale up the calculation across a larger area in the semi-arid savanna ecosystems in 

Senegal (West Africa). 

4.2. MATERIALS AND METHODS  

4.2.1. Study Area 

 The study area is presented in chapter 3: nine blocks are selected for each of Sokone 

and Karang sites. Those eighteen blocks are shown in Figure 2.2. 

4.2.2. Data used 

 The different data used include: 

 - land use and land cover data. I classified and digitized the area based on the 

different strata and determine the area of cashew plantation, the area of pasture and the area 

occupied by agricultural lands which hold the other TOF. These data is used to calculate the 

carbon stock and the carbon density. These land use and land cover data are from 

Worldview 2 high resolution satellite image; 

 - the biomass and carbon data are obtained using allometric equation and predicted 

DBH from remote sensing Crown Projection Area (Chapter 3).  

4.3. RESULTS 

4.3.1. Landscape application of the model 

The stratification of the study area reveals a large area of pasture in both sites; which 

reduces the total area where the model is applied. For the nine blocks of the Sokone site, 

8.76 %, representing 315 ha are permanent pasture and 16.03 % are occupied by cashew 

plantations. The area occupied by agricultural lands and where TOF are implanted, 

represents 75.22 % of the study area with 2708 ha (Table 4.1.).  
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For the Karang site, the 833 ha of permanent pasture represent 23.14 % within the 

nine blocks. At the same time, the area of cashew represents only 5.71 %. The agricultural 

lands occupied a large area of 2561 ha, representing 71.13 % study area in this site.   

Table 4.1 Remote sensing stratification of the eighteen blocks in Sokone and Karang sites 

BLOCKS 

Area Cashew 

plantation(ha) 

Area Other TOF 

(ha) 

Area of 

pasture 

Total 

Area 

(ha) 

SOKONE 

SOK 1 96 237 67 400 

SOK 2 92 299 9 400 

SOK 3 58 298 44 400 

SOK 4 116 253 31 400 

SOK 5 56 238 106 400 

SOK 6 43 298 59 400 

SOK 7 44 356 0 400 

SOK 8 59 341 0 400 

SOK 9 26 374 0 400 

TOTAL 577 2708 315 3600 

KARANG 

KAR 1 30 171 199 400 

KAR 2 4 199 197 400 

KAR 3 15 277 108 400 

KAR  4 11 389 0 400 

KAR  5 15 164 221 400 

KAR  6 18 369 13 400 

KAR  7 30 357 13 400 

KAR  8 67 221 112 400 

KAR  9 23 333 44 400 

TOTAL 206 2561 833 3600 

 

Although the study area is dominated by the scattered individual TOF in terms of 

area, the area occupied by cashew plantations is denser in terms of population and crown 

cover. This situation is confirmed by the results in the nine blocks (SOK 1, SOK 4 and SOK 
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7 for Sokone and KAR 1, KAR 8 and KAR 9 for Karang) where the sampling is done. These 

blocks are highlighted in Table 4.1. 

4.3.2. Carbon density per block in the study area 

 The carbon density for each of these blocks is calculated and results are presented in 

Figure 4.1. Block SOK 1 in the Sokone site has the highest carbon density with 17 t C/ha 

followed by blocks SOK 5 (16.4 t C/ha), SOK 6 (12.7 t C/ha), SOK 2 (12.5 t C/ha) and SOK 

4 (12.4 t C/ha).  

Figure 4.1 Carbon density (t C/ha) per block in the Sokone site 

 
 

 Except for blocks SOK 7 (4.7 t C/ha), SOK 8 (5.9 t C/ha) and SOK 9 (3.9), the 

lowest carbon densities are found in the Karang site with block KAR 5 having the highest 

carbon density (8.1 t C/ha) for this site. 
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Figure 4.2 Carbon density (t C/ha) per block in the Karang site 

 

 

4.3.3. Landscape carbon mapping of TOF 

To develop a carbon map, the carbon stock is calculated on a tree basis. The DBH of 

each tree identified and digitized on the image is predicted using Equation 1 for the Sokone 

site and Equation 2 for the Karang site. After predicting the DBH based on the remote 

sensing based Crown Projection Area, the IPCC general allometric equation for tropical dry 

forest is used to calculate biomass and carbon for each tree. The frequency of the different 

types of trees and their size are determined all across the landscape. The following carbon 

maps were computed and show high and low biomass based on the type and size of trees.  
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Figure 4.3 Carbon in the Sokone site 

 
 

 A carbon map of all nine blocks in the Sokone site are shown in Figure 4.3. Most of the 

carbon is concentrated in the cashew plantation. Block 7 (SOK 7) presented in Figure 4.4. is a 

good example.  
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Figure 4.4 Carbon map for block 1 (SOK 1) in the Sokone site 

 

 This block is 2x2 km which is an area of 400 ha but the model was applied for only 333 

ha as there are 67 ha of pasture. These 333 ha have 5672.4 t of carbon stock which represent a 

carbon density of 17 t/ha. Most of this carbon is hold by cashew plantation which occupied 96 ha  

although this represents only 28.8 % of the area studied. Trees with low carbon content 

represented in green and yellow are dominant. They have between 0.049 and 5.33 t C/tree. These 

values are lower in block SOK 7 where there is few cashew plantations. Trees with the lowest 
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carbon content have between 0.09 to 2.94 t C/tree (Figure 4.5). Only 11 % (44 ha) of this block 

area is occupied by cashew plantation. 

Figure 4.5 Carbon  map for Block 7 (SOK 7) in the Sokone site 

 

 

 Although there is no pasture in this block and the model is applied to the whole 400 ha, 

the carbon density is very low compared to block 1 (SOK 1). The carbon stock is reported to be 

1885.6 t C representing a carbon density of 4.7 t C/ha. This is explained by the dominance of 

trees with low carbon content, especially small cashew plantation and other scattered TOF in 

agricultural land. They mostly have between 0.09 to 2.94 t C per tree (Figure 4.5.).  
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Figure 4.6 Carbon stock in the Karang site 

 

 

 The carbon densities are lower in the Karang site compared to the Sokone site As shown 

in Figure 4.6, the highest values are for cashew plantation. Like in the Sokone site, the whole 

landscape is dominated by trees with less than 3 t C/per tree (Figure 4.7).  The rare trees that 

have more than 3 t C are located in the agricultural land. (Figure 4.8, Figure 4.9 and Figure 4.10).  
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Figure 4.7 A portion of a cashew plantation carbon map in the Karang site 
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Figure 4.8 Carbon map of individual TOF in agricultural land in block 9 (KAR 9) in the 

Karang site 
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Figure 4.9 Carbon map in a low density block (KAR 2) in the Karang site 
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Figure 4.10 Carbon map in a low density block (KAR 9) in the Karang site 

 

 

4.3.4. Comparison with other studies 

Our results show that carbon densities vary depending on whether or not there are 

cashew plantations, their density and their age; which explains why values in the Sokone site 

are higher than those in the Karang site. Carbon densities ranged from 3.9 t C/ha in block 9 

(SOK 9) to 17 t C/ha for block 1 (SOK 1) while the highest carbon density in the Karang site 

is 8.1 t C/ha for block 5 (KAR 5) and the lowest is block 2 (KAR 2) with only 2 t C/ha. 

These estimates are compared with results from other studies: 
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- the first one is from Western Kenya where Kuyah et al. (2012) provided results 

with close agreement with our own. Using a destructive sampling method, they estimate the 

carbon density to be 20.8 t / ha. It is important to acknowledge at this point that field data are 

more accurate than model-based estimation, which can be a factor that explains the 

difference between the two results. Another factor is that the two studies are from different 

sites, although they are all carried out in the tropical zone with some similarities. 

- the second study is by Baccini et al. (2012). Using the exact same area in Senegal, I 

compare their carbon density to my own results. The two maps of the comparison are 

presented in Figure 4.11 and Figure 4.12. Baccini et al. (2012) found that the values of 

aboveground live biomass are between 10 and 22 megagrams per ha. Converting the 

biomass into carbon (as 0.47 units C per unit biomass), I obtained values ranged between 4.7 

and 10.3 t C/ ha which are very close to my results in some places of the study area. 

However, it should be noted that Baccini et al. used a "single average AGB value for each 

land cover class" which "introduces pseudo- replication, as multiple pixels containing the 

same land cover class will be given identical ABG values" (Mitchard et al., 2011) no matter 

the number of trees and the variation in size. Each of the different pixels represents the sum 

of the above-ground carbon for all trees in the pixel. That does not help to make a good 

comparison with our study because our data are individual tree based. Also, the pixel size 

(463.3 x 463.3) of the MODIS image used by Baccini et al. covered a large area with high 

heterogeneity. For example, block 1 (SOK 1) where we found the highest carbon density (17 

t C/ha) is the block where Baccini et al. reported more pixels with lower values although it is 

an area of dense cashew plantation. Even in some places in my study area, they found no 

carbon while my results show a high potential of carbon. 
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Figure 4.11 Carbon map in the Sokone site based on Baccini et al. (2012) 
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Figure 4.12 Carbon map in the Sokone site based on our model 

 
 

4.4. DISCUSSIONS AND CONCLUSION 

The model developed in chapter 2 is used to estimate biomass and carbon at 

landscape level. The carbon calculated using allometric equation on a tree basis is 

extrapolated on a plot and block level to cover large area. Combining remote sensing 

techniques and basic allometry in systems of "trees outside of forest" the carbon density in 

the study area is estimated and carbon maps produced.  

Despite the limitations of the study, our results are close to those from other studies 

(Baccini et al. 2012; Kuyah et al.; 2012). As averages, it should be noted for our results that, 
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the carbon densities are higher in some area such as in block 1 (SOK 1) in the Sokone site 

where the density is 17 t C/ha. These values are consistent with those of Kuyah et al. (2012) 

and Baccini et al. (2012) and this consistency provides more confidence about our remote 

sensing model but the values are still low and various factors can be used to explain this 

situation. Those factors include: 

- Most of the study area is permanent pasture and this stratum was not surveyed as it was not 

included by the protocol. As this study is focusing on trees outside of forest, most of the 

pasture area meets the requirements of the country’s forest definition and I classified them as 

forest; 

- This study did not also take into account the other carbon pools including understory 

vegetation, shrubs and grasslands as well as trees with less than 10 cm DBH. 

- Error of estimation: omission of trees during the digitizing process especially for cashew 

plantations trees are intermingled; which make difficult the delimitation of tree crown 

boundaries. 
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Appendix B: TECHNICAL CONTRIBUTIONS THAT CAN BE MADE BY 

COMMUNITY PARTICIPATION: TOWARD COMMUNITY BASED CARBON 

MEASUREMENTS 

 

B.1. INTRODUCTION 

There is a rich body of literature on participatory or community-based monitoring of 

natural resources (e.g. Evans and Guariguata 2008). Although this literature, and the field 

that it embraces, are important, this chapter does not involve an analysis of participatory 

monitoring.  The aim of this chapter is to assess communities' ability to accomplish carbon 

measurement of trees on their own farms. By asking the basic question as to whether local 

people can work closely with technical and professional experts to deliver accurate 

measurements, that in turn, support accepted rigorous international standards, is not 

participatory monitoring in its richest, or its fullest extent. As such, we recognize the 

limitations of this study to draw any broad conclusions about modalities or potentialities for 

long term sustained engagement of local communities, which is a full treatise beyond the 

rather narrow measurement scope of this study.  

Having noted these limitations, this chapter is cognizant of the fact that there is a 

subject of current disagreement in the use of advanced technology by local communities, 

(Fry, 2011) points this out in his review of community forest monitoring potentials for 

REDD. Herold and Skutsch  (2009), Skutsch et al. (2009), Abrell et al. (2009) and others 

have advocated the use of technologies by communities, such as GPS and GIS mapping 

while others (Danielson, 2005) remain less convinced. Similarly, there is some question as 

to whether local people can make measurements that are accurate and precise enough to be 

acceptable for scientific application (Evans and Guariguata 2008). Fry (2011) provides an 

organization structure to evaluate community measurement that includes accuracy as one of 
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three elements, along with cost and sustainability and cultural relevance. There may be 

problems of accuracy and precision when non-professionals engage in scientific activities 

(Danielsen et al. 2005). Other studies have focused on the capacity of local communities to 

assess forest biodiversity and forest disturbance. For example Holck (2008) mentioned the 

increased focus of international forest policies in involving local communities in forest 

monitoring and management; this involvement  being considered as a strategy to improve 

biodiversity conservation efforts and local livelihoods especially in developing countries. 

Also, the high level of commitment of village managers in monitoring resource extraction 

and disturbance has been studied by Topp- Jorgensen et al. (2005).  

Case studies confirm that locally based, participatory monitoring must be simple to 

be successful: but how simple can the monitoring systems be and still maintain scientific 

validity? Danielsen et al. (2005) conclude that there is a major gap in understanding the 

comparability of data between scientifically and locally-collected data. Based on the few 

comparisons of scientific and local monitoring that have been conducted, the minimum 

amount of data to be collected by local monitoring programs to generate the same results as 

scientific methods appears to be high (Evans and Guariguata 2008). As an example, 

Larrazàbal et al. (2012) have demonstrated from the Kyoto Think Global Act Local 

(KTGAL) project's example that communities are capable of generating data that can meet 

the standards of the IPCC methodology. They found the data accurate and reliable as "there 

were no significant differences in the estimate of mean stock or in the confidence level 

between the experts’ measurements and the communities" (Larrazàbal et al., 2012).  

Also, for the time being, the importance of National Forest Inventory data to measure 

and monitor forest carbon is well documented. Getting local communities being familiar 
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with tree data collection methods and techniques could help achieve the goals of National 

Forest Inventory in lowering cost and the data collected could reasonably be used for forest 

carbon assessment.  

In the Global Observatory for Ecosystem Services laboratory at Michigan State 

University and through the Carbon2Markets model, the approach to measurement, reporting 

and verification systems used requires the participation of local communities in conducting 

the protocols and becoming collaborators in the team and the operation of the system. There 

has been on-going work with communities in Thailand, Vietnam, and Laos PDR which 

suggests that communities can be engaged as co-measurers using the full suite of rigorous 

international protocols and standards for measurement, particularly for the ground segments 

(Samek et al. 2014) but these have been experienced in closed forest, plantation systems, 

small-holder wood lots and agro-forestry in Asia but not yet in savanna environments of 

Africa. This project aims to gather more information and experience in a different 

measurement setting on how accurate and precise local communities can measure simple 

ground parameters and play a partnership role in data collection. This project recognizes that 

just because local land owners could (or not) make accurate contributory measurements does 

not mean they would or should, nor will it provide complete understanding of what 

conditions are necessary for full participatory engagement, as these issues are beyond the 

scope of this measurement study. Some of the limitations of the aforementioned work of the 

GOES Lab are that these projects all deal with forests or forest stands – small holder 

plantations, community forests, or REDD forests – and do not address the application of the 

Carbon2Markets MRV in systems of trees outside of forests nor agroforestry systems in 

predominantly agricultural landscapes. There is a need to explore the effectiveness, accuracy 
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and precision of joint measurement campaigns in savanna landscapes and agroforestry 

systems outside forests. That is the aim of this chapter. 

B.2. MATERIALS AND METHODS  

B.2.1. The Study Sites 

The study is carried out in thirteen Senegalese villages located within 190 km from 

the capital (Dakar) in the Fatick Region. The study area covered mainly the three rural 

communities of Toubacouta, Nioro Alassane Tall and Keur Samba Gueye. The thirteen 

villages are selected purposively using 3 criteria in order to capture a maximum of social, 

cultural, agricultural and ecological variation that exists in this area. The first criterion is 

related to the social and cultural side and includes ethnic groups (Wolof, Serer, Bambara, 

Mandinka, Diola). The second criterion based on the agricultural and ecological variation 

includes the soil and vegetation types and the presence of cashew plantation in the village. 

The third criterion is related to the village size and the distance from the nearest road. For 

accessibility purpose by the researchers, the village must be located at less than 5 km of the 

main road. 

In the rural community of Toubacouta, the majority of the population is dominated 

by the Mandinka (50%), Serers (35%), Wolofs (5%) ethnic groups and other minority ethnic 

groups including Bambara and Poular (Table B.1.). In the rural community of Keur Samba 

Gueye, the population is dominated by Wolofs (60%), Mandinka (20%), and 20% 

represented by the Serers, Diolas and Poular ethnic groups. 
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Table B.1. Demographic characteristics of selected villages 

No. 

Villages  

Rural 

Community 

Dominant 

Ethnic 

Group 

Total 

Population 

Total 

Households 

1 Boutilimith Toubacouta Mandinka 192 17 

2 Dassilamé Socé Toubacouta Mandinka 1 061 100 

3 Diaglé  Toubacouta Serer 1 163 166 

4 Ndoffane Toubacouta Mandinka 252 31 

5 Senghor  Nioro A Tall Bambara 391 42 

6 Kouatine Nioro A Tall Serer 213 23 

7 Niokholokho Nioro A Tall Serer 289 34 

8 Ngouye Mary Nioro A Tall Wolof 253 27 

9 Keur Bakary  Camara Keur S Gueye Bambara 235 24 

10 Keur Samba Guèye Keur S Gueye Wolof 1 378 186 

11 Keur Samba Nosso Keur S Gueye Wolof 1 079 92 

12 Keur Sett Keur S Gueye Poular 435 52 

13 Sirmang Keur S Gueye Serer 1 091 98 

 TOTAL    2260 892 

 

The main types of soil are locally called Dior and Deck. The Dior soil, containing > 

95% sand and few nutrients (< 2% organic carbon), are usually occupied by former dune 

slopes while the Deck soil are hydromorphic, occasionally flooded and contain 85 to 90 % 

sand and have 0.2% organic carbon (Badiane et al., 2000). 

The climate is semi-arid and the annual rainfall ranges from 400 to 1000 mm with a 

rainy season usually lasting 3 months from July to September (Toubacouta) but can last 5 

months (from June to October) in the Rural Community of Keur Samba Gueye where the 
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annual rainfall can reach 1845 mm as it was the case in 2003 (LDP, 2009). This rainfall can 

vary significantly from year-to-year in quantity, spacing, and duration.  

The main economic activity is the rainfed agriculture dominated by peanuts (Arachis 

hypogaea), millet (Pennisetum typhoides) and cashew (Anacardium occidentale) production. 

The most common tree species that dominate the vegetation are Cordyla pinata, Cola 

cordifolia, Mangifera indica, and block plantations including eucalyptus and the large areas 

of Anacardium occidentale. In the south (Rural Community of Keur Samba Gueye), the 

vegetation is dominated by Combretum glutinosum, Cordyla pinnata, Pterocarpus 

erinaceus, Adansonia digitata,  Zizyphus mauritiana, Diospyros mespiliformis,  Prosopis 

africana and Parkia biglobosa.  

B.2.2. Research activities 

 To assess the potential technical contribution of local communities to carbon 

measurements, different activities were held during the field campaign and are presented in 

the following Figure B.1: 
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Figure B.1. Research activities and their objectives 

 

  

B.2.2.1.Village meetings  

 A village meeting was organized in each of the 13 villages of the study area to inform 

villagers about the objectives of the study through an introduction of the research theme. They 

were also given information about the necessity of selecting participants to the training workshop 

and the modalities of the workshop.  
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Figure B.2. Village meetings 

 
Diaglé Village                                                                   Keur Samba Nosso village 

 

At least two people were selected for each village for the training workshop. Efforts 

were made to ensure a minimum of two women were included in the focus group 

discussions and at least one woman for the training workshop. 

The selection was based on the following criteria: 

- Educational level: I suggested that trainees must have a minimum level of 

education to be selected as some of the tasks that they will perform required a minimum 

level of education which is to be able to read and write in French, in local language or in 

Ajami; 

- Gender: I recommended that the gender dimension must be taken into account to 

encourage a high participation of women; 

- Age range: I also suggested that the different group- aged people must be 

represented in the training. 
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B.2.2.2. Community training workshop  

The training workshop was organized in Toubacouta, headquarters of the 

Arrondissement which includes all the rural communities of the study. We provided a budget 

to ensure their transportation. It was chaired by the Sous Prefet (Figure B.3) with the 

presence of one of the three presidents of the rural communities.   

Figure B.3. Training workshop chaired by the State Representative (Sous-Préfet) 

  

Before the start of the workshop, all the participants were interviewed using a 

questionnaire survey to understand whether or not they can measure trees and if so, what are 

the means and methods they use. This information was later compared with a post 

assessment after the workshop.  

This workshop had four main components:  

1. a presentation/ discussion on climate change, carbon and the role of trees on 

mitigating climate change;  

2. laying out the different steps of a carbon monitoring process which include:  

o Landscape Mapping and Stratification (determine the boundary) 

o Establishing a system of biomass plots 

o Accurately locate permanent sample plots using GPS 
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o Doing tree biometric parameters used to calculate carbon stocks  

o Recording all these data collected and time 

o Upload data on an online geographic information system 

o Calculation of carbon stock per plot 

3. a presentation to introduce the GOES's MRV system to the participants; 

4. an evaluation of the participants and what they had learned from the training was 

the fourth component of the workshop. After explaining during the training how 

to do all these tasks, each participant had been asked to give a ranking of how 

much they do think they can do each task. This step was followed by a field trip 

with all participants to put into practice what they learned during the theoretical 

training.  After field work, each participant was re- evaluated based on how well 

he/she did the tasks and this evaluation is compared with the ‘before’ evaluation.  

It is important to mention that selected participants from the villages of Keur Sett and 

Keur Bakary Camara did not participate the training workshop because of social ceremonies. 

Therefore, they did not participate in the field campaign as well. 

B.2.2.3. Farmer's field experience in biomass data collection 

Following the training workshop, a field campaign was planned for each group of 

participants in each village. All the participants were taken to the field to practice what they 

had learned from the training. This was followed by an evaluation of the performance of 

each participant. Each of the tasks was monitored to determine whether all the activities 

were carried out easily by participants or they were observed to be beyond their ability. This 

evaluation was based on how they manipulate the equipment (GPS), how much time they 
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spend to accomplish each task and how accurate are their measurements compared to our 

own measurements for the same trees. 

Figure B.4. Field crew in the field measuring trees and recording data 

   

 

 

      

 

 

B.2.3. Data Analysis 

B.2.3.1. Training workshop 

Prior to the training workshop, an a-priori assessment of communities' ability to 

measure trees had been issued. Descriptive statistics is used to analyze the data collected 

during this assessment. These data are compared with the post assessment data to determine 

Participant manipulating GPS device to 

collect geographic coordinates                    

 

Participants measuring tree DBH                    

 

Participants measuring tree crown 

diameters 

 

Participants recording data on the data 

collection sheet 
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the extent to which the workshop had contributed to increase their understanding of climate 

change, carbon, the role of trees in mitigating climate change, their interest in planting more 

trees in their farms, their understanding of the importance of measuring trees. The 

participants also provided information about whether or not they would participate in tree 

measurements. They also have been asked the conditions under which they will be willing to 

participate. 

B.2.3.2. Communities' field experience in carbon measurement and reporting 

Data on tree biometric parameters collected by local participants were analyzed 

statistically and compared with the data collected previously by the researcher for the same 

sampled trees. Also, an evaluation of how they perform each of the tasks is issued using 

descriptive statistics. 

It is very common that what people say they know or can do is often contradicted by 

the reality in the field. In this phase of this study, participant observation were used to check 

against what the participants reported regarding their ability to measure trees during the 

assessment prior to the workshop.  

B.3. RESULTS  

B.3.1. Evaluation of participants to the training work 

B.3.1.1. Characteristics of the participants to the training workshop 

Of the 30 participants to the training workshop, 83.3 % were male and 16.6 % were 

female. The ethnic groups are composed of a majority (40%) of Serer, followed by the 

Wolof (30%), the Bambara (20%) and 10% of Mandinka (Figure B.5). 
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Figure B.5. Characteristics of the participants based on their ethnic groups 

 

The majority (58%) are between 41 and 60 years old with 29% in the 21 to 40 year 

range and 6% for the ranges of 19-20 and 61 and above (Figure B.6). The average age of 

participants is 47 years, with the youngest reported as 19 years old and the oldest as 63 years 

old. 

Figure B.6. Age strata of participants to the training workshop 
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Despite a strong recommendation during the selection for a high representation of 

women, the percentage of females is very low (16.6 %) compared to the male which is 83.3 

% (Figure B.7). 

   

Figure B.7 Percentage of participants based on gender 

 

About 2/3 of the participants (63%) can read and write either in French or in Ajami (a 

practice of writing other language (in this case Wolof) using a modified Arabic script):  27 

% have a primary uncompleted level and 13 % a secondary level while 37 % who declared 

to never have been at school, can neither read nor write (Figure B.8). 
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Figure B.8. Level of Education 

 

B.3.2. Results of a-priori assessment of communities' ability to perform tree measurements: 

Through a priori survey before starting the training, we asked participants questions 

about whether or not they can measure tree diameter, tree height, tree crown diameter and if 

so how they do it. From this prior-assessment of farmers ability to measure tree parameters 

(DBH, height, crown), we knew many acknowledged  knowing how to measure tree trunk 

diameter, tree height or tree crown diameter, although they have always used local 

techniques. 
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Figure B.9. Self-reported knowledge of farmers on their ability to perform tree 

measurements 
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Figure B.10. Participants rating on how much they do think they can locate a plot 

 

Participants are more confident in their ability to identify trees in their farms and even 

across the whole landscape. 70 % said they know so very well how to identify tree species, 27 % 

know it very well and 3 % said they can do it well (Figure B.11) 

Figure B.11. Participants rating on how much they do think they can identify trees 
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 Regarding their confidence in their ability to measure tree DBH, participants were 

classified into four groups: 10 % think they can just do it, 20 % said they can do it well, 37 % 

can do it very well and 33 % can do it so very well (Figure B.12) 

Figure B.12. Participants rating on how much they do think they can measure tree DBH 
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The results of this prior assessment is compared with the post assessment not only to 

assess what they really can do but also evaluate the impact of the training workshop and how 

it contributes to increase their knowledge on how to do tree measurement.  

B.3.3. Communities' performance in carbon measurement and reporting 

During the communities' field measurements, participants were rated and results of 

this rating in presented in Figure B.13.  

Regarding how much they were able to accomplish tasks they were rated from 1 to 4 

to determine their performance: we rated 1 when one participant was not at all able to 

accomplish the task, 2 when he or she did it with strong guidance, 3 when the task is 

accomplished with just little guidance and 4 when accomplished without any guidance. 

Participants have a good familiarity with their environment and they did not have any 

difficulty locating plots. The assessment shows that all (100%) the participants were able to 

locate easily the plots without any guidance.  

Tree identification is also a task that communities can accomplish: 93 % were able to 

identify all trees without any difficulty or guidance while 7 % were able to identify trees but 

they needed some guidance from other crews for some species. 

Regarding their ability to measure tree DBH, of the 30 participants, 87% did the 

measurement correctly without any guidance, 13 % with few guidance.   

Regarding the measurement of tree crown diameter, all participants were able to 

accomplish this task without any guidance contrasting with their ability to use GPS to record 

data where only one participant was able to accomplish this task with just few guidance, 83 

% were not able to use the device. 
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Their ability to record data on the data collection sheet is also low as more than half 

(57%) were not able to accomplish this task. This can be explained by the low level of 

education of participants suggesting the need of recruiting educated people.    

Figure B.13. Assessment of communities' experience in tree measurement 

 

To measure tree attributes (DBH, crown diameters) and record all data including the 
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% accomplished all the tasks in 7 minutes or less while 40 % needed all 10 minutes to finish 

and 17 % went beyond the 10 minutes (Figure B.14). 

Figure B.14. Percentage of participants finishing task in a timely manner 
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Table B.2. Comparison between communities' biomass estimates and researcher's 

estimates 

Biomass (sum of all Biomass/tree  in Kg in 

each village) 

Mean estimates by 

local communities 

Mean estimates 

by researcher 

% difference 

of mean 

Keur Samba Gueye 10164.39 9987.59 1.74 % 

Keur Samba Nosso 7499.53 7005.87 6.58 % 

Sirmang 18319.30 17264.53 5.76 % 

Senghor 4167.35 4285.06 -2.82 % 

Niokholokho 9759.02 9817.80 -0.60 % 

Ngouye-Kouatine 14497.08 14317.38 1.24 % 

Diaglé- Ndoffan 26000.93 26285.04 -1.09 % 

TOTAL 90407.6 88963.28 1.59 % 

B.3.5. Conditions for communities to participate in carbon measurement  

To identify the conditions for communities to participate in carbon measurements, 

we asked three major questions to the participants to the workshop and the field campaign. 

Based on the criteria on which they were selected, what they represent for their respective 

villages, and their potential ability of influencing the rest of the villagers, we assume that 

their responses to our questions are valid enough to represent the perceptions of a large 

community. The three questions that we asked are: 

1- Will you be willing to participate in carbon measurement? 

2- Under what conditions will you be willing to participate? 

3- If you need compensation, what type of compensation would you looking for? 

The responses to these questions are summarized in the following table B.3: 
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Table B.3.Willingness and conditions for communities to participate in carbon 

measurement 

 QUESTIONS  RESPONSES  Number % 

Will you be willing to participate in carbon measurement? YES 30 100 

  NO 0 0 

  

Under what conditions will you be willing to participate? Volunteer 2 6.6 

  With compensation 28 93.3 

  

If you need compensation, what type of compensation would you 

looking for? 

Monetary 

compensation 29 96.6 

  

Community 

infrastructure 1 3.3 

All participants are willing to participate in carbon measurement if they are solicited. 

However, their participation must be motivated by compensation. On the 30 participants 

only 2 accept to participate without monetary compensation. These two participants 

considered that the knowledge they gain from participating and the capacity they will have 

to accomplish the tasks by themselves are sufficient enough. The remaining 28 participants 

accept to participate in return for a payment of their participation. Additionally to the 

monetary compensation, most of the respondents would ask for field equipment including 

tape, GPS and camera. It is important to mention that a deeper investigation of the cost of 

community participation is needed because knowing the cost will determine the extent to 

which the participation of local communities on carbon measurement can constitute a 

strategy. 
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B.4. DISCUSSIONS AND CONCLUSION 

The objectives in this chapter was to explore the effectiveness, accuracy and 

precision of joint measurement campaigns in savanna landscapes and agroforestry systems 

outside forests and test the ability of local communities to measure tree parameters for 

carbon estimation.  

The findings show that local communities are able to perform some tasks in the 

process of measuring tree parameters to estimate carbon, although the majority of 

participants was illiterate in the sense that they did not attend formal education (defined as 

French school) and can neither read nor write. Our results show that even people with no 

formal education level can do some tasks including measuring tree crown dimension 

(holding the tape does not require a certain level of education). Some older people, with their 

higher level of experience, use the shadow of the plant at certain times to estimate the height 

of a tree. They also suggested that this technique can be used to determine the tree crown 

area but I did not test those techniques to assess their reliability and validity. 

Regarding the data recording, people that have an arabic (Ajami) level can perform 

the task.  

As shown in Table B.2, there is not a big statistical difference between our own 

measurements during the same period of the field work and for the same trees and the 

communities' measurements. This is a confirmation that, with a minimum training and 

although they might not receive a formal education, local communities can actively 

participate in forest inventories and tree measurement to estimate biomass and carbon. 
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Regarding the conditions under which local communities can participate to carbon 

measurements, most of the respondents considered monetary compensation as a condition of 

their participation.  
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Appendix C: 

EVALUATION OF FARMERS 'TRAINING WORKSHOP AND FIELD WORK 

EXPERIENCE 

 

C.I- TRAINEE IDENTIFICATION 

Name Village Gender Age Contact (phone/email) 

     

C.II- A- PRIORI SURVEY 

1.  Do you know how to locate plot?  |__|  1. Yes   

|__|  2. No 

 

 

2.  Do you know how to identify tree species?  |__|  1. Yes   

|__|  2. No 

 

3.  Do you know how to measure tree trunk diameter?  |__|  1. Yes   

|__|  2. No 

 

4.  If Yes, how do you do it? ...............................................................

...............................................................

............................................. 

 

5.  Do you know how to measure tree height?  |__|  1. Yes   

|__|  2. No 

 

 

6.  If Yes, how do you do it?  ...............................................................

...............................................................

............................................ 

 

7.  Do you know how to measure tree crown diameter?  |__|  1. Yes   

|__|  2. No 

 

 

8.  If Yes, how do you do it? ...............................................................

...............................................................

............................................. 

 

 

C.III- WORKSHOP EVALUATION  

C.III.1. From 1 to 4, rate how much has the training workshop increased your 

understanding of Climate Change.     

4     3     2     1    
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C.III.2.- From 1 to 4 rate how much has the training workshop increased your 

understanding of Carbon.     

4     3     2     1    

C.III.3.- From 1 to 4, rate how much has the training workshop increased your 

understanding of the role of trees in mitigating Climate Change.    

 4     3     2     1    

C.III.4.- From 1 to 4, rate how much has the training workshop increased your interest in 

planting more trees in your farms. 

4     3     2     1    

C.III.5.- From 1 to 4, rate how much has the training workshop increased your 

understanding of the importance of measuring trees. 

4     3     2     1    

C.III.6.- From 1 to 4, rate how much do you think you can do each task. 

Locate plot        1     2     3     4        

Tree identification       1     2     3     4        

Measuring tree DBH       1     2     3     4        

Measuring tree height       1     2     3     4         

Measuring tree crown diameter       1     2     3     4         

Recording data using GPS       1     2     3     4         

Recording data on the data collection sheet       1     2     3     4         

Finish tasks in a timely manner       1     2     3     4         

  

  1: I  can do it 

2: I can do it well 

3: I can do it very well 

4: I can do it so very well 
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C.IV- EVALUATION OF FIELD EXERCISE 

Locate plot        1     2     3     4      

Tree identification       1     2     3     4         

Measuring tree DBH       1     2     3     4         

Measuring tree height       1     2     3     4         

Measuring tree crown diameter       1     2     3     4         

Recording data using GPS       1     2     3     4         

Recording data on the data collection sheet       1     2     3     4         

Finish tasks in a timely manner       1     2     3     4         

 

1: The participant were not able to accomplish the task 

2: The participant performs the task with strong guidance 

3: The participant performs the task with few guidance 

4: The participant performs the task without guidance 
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CHAPTER 5 . GENERAL CONCLUSION 

 The objective of this research was to explore the possibilities of developing a 

protocol that allows landscape scale measurements of trees outside of forests combining 

high resolution satellite imagery and ground data; which protocol having the accuracy and 

the rigor scientifically acceptable and usable by the international community.  

 The findings and limits of the research along with the recommendations for further 

research are summarized as follows: 

5.1. SUMMARIES AND RESEARCH QUESTION REVISED 

The major research question of this study was: 

- Can protocols be developed that allow for landscape scale measurements of trees 

outside of forests with the accuracy and rigor that is acceptable to the international 

community?  

The developed model is applied to measure the carbon stocks in rural farming 

systems under agro-forestry systems including cashew as well as other individual trees in the 

agricultural landscape. Our results show that carbon in smallholder farms, especially for 

individual trees outside forest can be measured with accuracy comparable to what obtained 

from other studies.  

A correlation between field measured DBH and remote sensing CPA has shown a 

strong correlation between the two variables for the linear model with coefficients of 

determination R
2
 > 0.70 except when applied to the case of individual TOF (133 trees) in the 

Karang site where it is 0.66. By comparing the linear and the non-linear our results suggest 

that the linear model is the best one. These results suggest that this developed model can be 
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used to predict tree DBH using high resolution satellite images—especially for individual 

trees outside forests where the detection is easier than for clustered trees. The model is 

slightly better for natural, unmanaged compared to managed trees. 

The application of the model to estimate biomass and carbon at the landscape level 

has shown satisfactory results compared to other studies:   

- the first one from Western Kenya where Kuyah et al. (2012) results are very close 

to  our own carbon estimates. Using a destructive sampling method, they estimate the carbon 

density to be 20.8 t / ha where our results are between 3.9 to 17 t C/ha depending on the 

blocks.  

- the second comparison is made with  Baccini et al. (2012) using the exact same 

area. The two maps of the comparison presented in Figure 4.11 and Figure 4.12. show some 

closeness in some areas but in others, there are differences. 

Based on these different results, the answer to the research question can be 

summarized as follows: it is difficult to directly validate the model against field 

measurement methods because allometry based on DBH has its own error and the sample 

size for this landscape needs to be several hundred plots. However, our results show that the 

model and field based methods closely concur. We concluded that a model that uses remote-

sensing assisted landscape-scale carbon stock measurement has promise. The relationship 

between CPA detected from remote sensing and allometric scaling is something that can be 

refined but seems to be a workable approach. Refinements would include: 

- Improved relationship model using non-linear relationships 

- Developing a local allometric equation using destructive sampling, and specific 

parameters for the savanna or tree type/species 
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- Pursue and improve the automated detection to extract the crown features to replace 

the hand digitizing.  

Regarding the potential of local communities to make accurate contributions to the 

carbon measurement process, our results have shown that they have skills and an ability to 

perform some tasks in the process of measuring tree parameters and estimate carbon. 

Despite the low percentage of literacy, most of the participants have shown a good 

performance in measuring tree crown dimensions, tree DBH, recording data and finishing 

tasks in a timely manner. Their measurements have also shown a high accuracy when 

compared to our own measurements made during the same period of the field work and for 

the same trees. Consequently, local communities have an important role to play on carbon 

measurement and our results confirmed that they can play that role.  

5.2. LIMITS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

This research has some limitations presented as follow:  

5.2.1. Regarding the tree object detection, we faced some difficulties related to the irregular 

pattern of the crown shape. It was not easy to manually digitize tree crown with minimal 

error. Also, when trees are intermingled as in the case of cashews, it was very difficult to 

determine the boundary between tree crowns. 

5.2.2. Also the irregularity of the tree crown's outline does not facilitate the field 

measurements of CPA, which could affect the accuracy of the measurement. 

5.2.3. The satellite image was acquired on April 2010 and the field data collected on May- 

June 2013. The time lag between image acquisition and field data collection may affect the 

size of tree crown which can be slightly bigger than in the World view image because of the 

growth season in between (Song et al., 2010). Also, it was not easy to identify pruned trees 
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in the image. Building an algorithm to detect individual tree to replace the manual digitizing 

could produce more accurate results. 

5.2.4. The carbon estimation derived from the use of a general allometric equation has also 

some shortcomings in terms of accuracy. Building a specific allometric equation, especially 

for Anacardium occidentale (cashew) would increase the accuracy of carbon estimates. 

5.2.5. In this study, the formula for the area of an ellipse is used to calculate the field 

measured CPA of sampled trees. However, the definition of an ellipse in that way may 

include area not actually occupied by the crown (Anderson et al., 2000), especially if the 

crown is not circular or has indentations. An overestimation or underestimation of the crown 

area might occur and influences the relationship between CPA and DBH. 

5.3. IMPLICATIONS AND THE PLACE OF THIS STUDY IN THE GLOBAL CLIMATE 

CHANGE AND SUSTAINABLE DEVELOPMENT AGENDAS  

Using a landscape based model to estimate carbon for trees outside of forest can be a 

useful tool to value the carbon stock in agroforestry and savanna systems. Such model has 

an important role to play in monitoring and managing carbon within these systems. Knowing 

the importance of carbon sequestration in mitigating climate change and the possibility of 

estimating carbon stored on TOF and valuing this carbon for the benefits of local 

communities may contribute to increase biomass carbon stock in trees outside of forest. 

Also, a landscape approach has an important role to play for development as it offers rural 

poor good opportunities to participate in carbon markets especially African countries.  

This also provides significant carbon storage opportunities for the agricultural sector 

through land use and cultivation practices that promote more trees in farms. This perspective 

is even more beneficial that “for agricultural systems to achieve climate-smart objectives, 



166 

 

including improved food security and rural livelihoods as well as climate change adaptation 

and mitigation, they often need to take a landscape approach” (Scherr et al., 2012).  

I addressed the ability of local communities to measure trees on their own farms. The 

results presented in Appendix A show that engaging local communities in measuring carbon 

in their farms requires a minimum training. When they can make the tree measurements to 

estimate the carbon on their own farms, they can be more motivated to participate in the 

carbon markets, reducing the barriers such as the measurement and monitoring costs that 

prevent developing countries from taking full advantage of the growing carbon markets. The 

model we developed will contribute to address the carbon measurement problem, especially 

in large areas for systems of trees outside of forests (cf. agro-forestry and related systems) in 

the savannas of Africa with 9 million km
2
  of woodland of which 1.4 million for West Africa 

(Chidumayo et al., 2010) and 1,043,000 ha for Senegal (Mayaux et al., 2004). This carbon 

measurement problem is a serious obstacle in implementing initiatives such as REDD+ and 

other forestry activities that aim at combining tackling climate change and development. 


