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ABSTRACT

SIMILARITY STRUCTURE OF AN AXISYMMETRIC VISCOUS VORTEX
WITH VARIABLE CIRCULATION

By
Hsin-Chih Chen
Vortex flows occur in many engineering operations. Recent interest
in oil-water separation by using hydrocyclones has increased the need
for a better understanding of the flow structure of a viscous swirling
core flow. Experimental observations in confined vortex chambers show
that a locus of zero axial velocity divides an inner region from an
outer region of the flow field and that the swirl component of the

velocity field in the outer region can be represented by the empirical
expression u, = KrN, -ls N<O. The total viscous dissipation of

the vortex is unbounded for -1 < N < -2/3 and bounded for -2/3 < N < 0.
The core region of the vortex is studied theoretically by constructing a
class of similarity solutions which satisfy the boundary layer equations
and the free-vortex-like swirl condition in the outer region. The flow
model is used to analyze the behavior of a dispersed phase in the core
by using the equilibrium orbit theory for particle - fluid separation.
The model predicts three types of flow behavior in the vortex core
: reverse flow, undulated flow, and jet-like flow. The flow regime is
uniquely determined by specifying the empirical index N, and a local
spin parameter related to the distribution of vorticity on the axis.
Most significantly, the theory predicts the existence and location of a

‘'mantle’ (surface of zero radial velocity) within the core region of the



vortex. The theory is qualitatively and quatitatively consistent with
recent experimental studies of the viscous core using laser doppler
anemometry. The particle - fluid separation study explains the

difficulty of capturing very fine particles near the axis of a viscous

vortex.
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CHAPTER 1

INTRODUCTION

1.1 Motivation For This Study

Vortex flows occur in many engineering operations such as swirl
atomization, cyclone separation, and flame stabilization (see Gupta et
al., 1984). They also appear frequently as natural phenomena in the
form of tornadoes and vortical flows in large scale hydraulic systems
(Lugt, 1983; Swift et al., 1980). The shedding of concentrated vortex
structures from aircraft wings is another important example which has
been studied extensively. A common feature of all these flows is that
the angular momentum of the fluid changes significantly over relatively
small radial distances. This produces some unique features such as
large spanwise pressure gradients and flow reversals.

This research is motivated by recent experimental studies of Dabir
[1983], Escudier and Zehnder [1982], and Escudier et al. [1980, 1982] on
confined vortex flows, and the theoretical results of Long [1961],
Burggraf and Foster [1977], and Bloor and Ingham [1975, 1984].
Applications of swirling flows to oil - water separations by Colman and
Thew [1980] as well as by Listewnik [1984] have provided additional
interest in the class of swirling flows analyzed in this dissertation.

Experimental measurements of axial and tangential velocity
components in a flooded 3" - hydrocyclone using laser doppler anemometry
show the following general features (Dabir, 1983).

(a). The vortex flow near the axis is approximately axisymmetric,

1



u = ur(r,:’-)gr + uo(r,Z)go + uz(r.Z)gz (1.1)

(b). The axial velocity near the axis may be either positive
(forward flow) or negative (reverse flow) depending on the total
volumetric flow rate of the feed (see Figure 1.1).

(c). For forward flow conditions, two types of axial profiles are
possible : at very high flow rates, a jet-like (or parabolic) profile
occurs; and, at lower flow rates, an undulated profile occurs.

(d). A surface of zero axial velocity divides an inner region from
an outer region of the flow field. This occurs even if the underflow

rate (see Figure 1.1) is zero.

(e). The size of the inner region, defined by the surface r = 6*(2)

for which uz(r,z) = 0, increases in the direction of decreasing

magnitude of the centerline axial velocity. The growth of this region

is not linear in the coordinate z :

§%(z) « 2%, 0<aA<1. (1.2)

(f). For most flow situations, the decay of the centerline velocity

was algebraic in z with a weaker dependence than z'1 :

lu,(0,2)] = z°, -1 <B<o0. (1.3)

(g). The swirl velocity in the outer region (i.e., r 2 C*kz)) is
essentially independent of z and consistently shows the following

behavior with r :
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u, «xr, -1 <N<O. (1.4)

Thus, the usual free-vortex structure (i.e., u, 1l/r) associated with

many theoretical studies is not observed experimentally.
(h). The swirl velocity near the axis has a forced-vortex character

(i.e., u, « r).

6
Some important preliminary conclusions about the flow structure in

the inner region follow from the above experimental observations.
Because 8*(2), |uz(0,z)|, and ug(s*(z),z) all have an algebraic

dependence on the independent variable z, a similarity theory based on
an appropriate scaling hypothesis may describe a portion of the flow
field. Obviously, such a theory would have severe limitations and could
not explain the complex flow phenomenon which occurs deep in the apex
region of hydrocyclones (see Figure 1.1), near the end wall of a
cylindrical vortex chamber, or near the ground of a tornado (Long,
1961). However, other physical effects related to swirling flows could
be studied using this theoretical approach.

Experimental observations (a) and (g) are especially noteworthy and
dictate the direction of the theoretical development. For axisymmetric

flows, the circulation I' on the closed circuits 2#r is

F'= 2wru0(r,z). (1.5)

I'/2n also represents the axial component of the angular momentum of the
fluid about the axis. If the flow field has a similarity structure,

then an instrinsic length and velocity scale must exist for which



ruo(r.z) - 6(2)uc(Z)F(n) (1.6)

where
n =xr/6§(z). (1.7)
Therefore, Eq. (1.5) becomes

[ - 2x6(z)uc(z)F(n) (1.8)

Thus, experimental observations (e) and (f) imply that the circulation
on surfaces of constant n (i.e., similarity surfaces) has the following

dependence on the axial coordinate,

I « ZA*E (1.9)

Therefore, if A + B » 0, the vortex has the feature of varjable
circulation on similarity surfaces.

In his study of a viscous vortex, Long [1961] developed a class of
similarity solutions to a boundary layer approximation of the Navier -
Stokes equations. Long’s vortex, which is defined on an infinite domain
(i.e., 0 s r < »), has an asymptotic velocity field given by

r>0

y —mm» - +

e, +

9 e (1.10)

4

"l R
~

’\l

K| X

4
2 r

where v is the kinematic viscosity of the fluid (or a constant 'eddy’

viscosity if the vortex is turbulent) and K is a constant defined by

lim u, = K/r, K > 0. (1.11)
r - o



The solutions developed by Long are consistent with experimental
observations (a), (b), (c¢), and (h); however, as indicated by Egq.
(1.10), the axial velocity surrounding the vortex is always positive and

decreases to zero very slowly (uz « 1/r). For confined vortex chambers,

a reverse annular flow (i.e., observation (d)) surrounding the vortex
generally occurs. Long noted that this also occurs for unbounded flows
such as tornadoes and that the asymptotic result given by Eq. (1.10),
although an exact solution to the Navier - Stokes equations, was
probably too restrictive.

Although Long’s vortex shows the qualitative properties expressed
by observations (e), (f), and (g), it requires N = -1 (see Eq. (1.11)),
Be= -1, and A = 1. Unfortunately, these exponents are not observed
experimentally. However, Long’s vortex has the interesting feature that
the circulation is constant on similarity surfaces (see Eq. (1.9))

Similarity scaling also implies that the viscous dissipation per
unit volume on surfaces of constant n will depend on the axial

coordinate as follows

é-::Vgo:(—) x (z Y©. (1.12)

Thus, Long’s vortex has the property that d’v x 2-4. However, the data
of Dabir [1983] suggest that

B-A>-2,

so experimental flows do not appear as dissipative as Long’'s vortex. If

@v is integrated over the entire flow domain, then the total viscous

dissipation is infinite for Long’s vortex, but is bounded for similarity



flows having the property that -1/2 < B < 0. This intriguing
theoretical possibility partly motivates this study.

In the past decade, Thew and his colleagues at Southampton
University (U.K.) have made some progress on removing oil from water
more efficiently by using a cyclone separator. They (see Colman et al.,
1980) were able to obtain 99% separation for a drop size of 55 microns.
However, the efficiency apparently drops off sharply when particle sizes
become less than 40 microns. What causes the efficiency to drop at
smaller particle sizes? 1Is this phenomenon a result of the specific
design of the cyclone or is it an intrinsic property of all vortex
flows? This research intends to examine this question by studying the
behavior of a dispersed phase in a viscous vortex. Hopefully, this
theory will provide new insights on how to improve the separation

efficiency for hydrocyclone separators.

1.2 Objectives

The primary objective of this research is to apply the techniques
of boundary layer theory to investigate the similarity structure of a
special class of swirling flows related to the experimental observations
(a) - (h). Two models will be studied. Model I, which has the feature
of constant circulation on similarity surfaces, is used to understand
the flow structure induced by a free vortex defined by Eq. (1.10). This
model was previously studied by Long [1961] and by Burggraf and Foster
[1977]. Model 1I, which has the feature of variable circulation on
similarity surfaces, is used to understand the flow structure induced by

a more general vortex in the outer region with the conditions that

u (r,z) = 0 for r = §%(z), and (1.13)



u, = KrN, for r = 8*(2). (1.14)

[

Eqs. (1.13) and (1.14) are primarily motivated by experimental
observations (d) and (g) discussed in Section 1.1.

A second objective of this study relates to the experimental
results. It is intended to demonstrate how the model can be used to
characterize selected experimental flows. The major goal here is to
compare the qualitative flow behavior between theoretical predictions
and experimental results. It is also intended to compare the similarity
scaling of the centerline velocity and angular momentum as well as
entrainment rates.

The study also examines the application of the flow model to oil -
water separation in hydrocyclones. The goal here is to investigate the
major effects of particle properties and fluid properties on the
separation of very fine light particles in vortex flows. Hopefully, an
explanation for the anomalous low separation efficiency associated with
very fine particles can be identified. If successful, this research

should provide a new basis for the design of cyclone separators.

1.3 Methodology

Chapter 2 contains a review of relevant experimental and
theoretical studies of swirling flows related to this research.
Particular attention is focused on the flow behavior in a confined
vortex chamber. Long’s vortex and related geophysical flows are also
examined. Experimental observations for different flow behavior provide
useful information to explore the efficacy of the theoretical results.

Chapter 3 uses a boundary layer approximation of the Navier -

Stokes equations with constant physical properties to develop an



axisymmetric similarity model for a vortex flow. Two models are studied
in this chapter. Model I, which considers a vortex flow with constant
circulation, reexamines Long’'s vortex (see Long, 1961) in more detail
than originally presented by Long and later by Burggraf and Foster
[1977]. Model II considers a vortex flow with variable circulation.
This feature reflects more realistically the actual behavior of vortex
flows and, thereby, provides a basis for understanding experimental

observations.

flow behavior near the axis. It also provides, for the first time,
criteria for transition between different flow regimes. A physical
interpretation of these results follows directly from the mechanical
energy balance.

In Chapter 5, a numerical algorithm is developed which solves the
nonlinear two-point boundary value problems representing the two vortex
models. Standard library subroutines are used to integrate the
differential equations and to search for a consistent set of boundary
conditions.

Chapters 6 and 7 present the solutions for Model I and Model II for
a wide range of conditions. Both chapters focus on quantitative
predictions for the velocity and pressure fields. The macroscopic
properties of the flow are also calculated and summarized in these
chapters. The mechanic.al energy balance and force balance on the axis
are used to develop a physical understanding of the complex helical
flows calculated.

Comparisons between theoretical and experimental results show that

Model II is consistent with some experimental data. Chapter 8 examines



10

the similarity scaling of both the centerline axial velocity and the
angular momentum. The chapter also includes estimates of some important
properties for specific experimental flows.

The potential application of this research to oil - water
separation in hydrocyclones is discussed in Chapter 9. An equilibrium
orbit hypothesis is used to study the effect of the flow structure on
the motion of o0il droplets in water. The effect of particle size,
specific gravity, and other physical parameters on equilibrium orbits
will be discussed.

Finally, the conclusions of this study and the recommendations for

further research are presented in Chapter 10.



CHAPTER 2

LITERATURE REVIEW

2.1 Experimental Studies

The major objective of this study, as discussed in Chapter 1, is to
investigate the structure of vortex flows with variable circulation. 1In
this case, the tangential velocity in the outer region is commonly

expressed by

u, = Kr, r>>0 (2.1)

where -1 S N < 0. For a free vortex, N = -1. N can be determined from
the swirl velocity profile in the outer region. Fortein and Dijksman
[1953]), Escudier et al. [1980,1982], and Dabir [1983] have all shown
that N has the value near -0.75 and appears to be insensitive to the
flow rate and the contraction ratio of the vortex chamber. However,
Knowles et al. [1973] reported a much flatter tangential velocity in the
outer region (N = -0.3). Near the axis, the tangential velocity profile
has the same form as a forced vortex, whereas in the outer region, the
tangential velocity always has a free-vortex-like behavior (i.e.,
Eq.(2.1)).

Many experimental studies about swirling vortex flows have been
conducted in the last 30 years. One of the most important findings is

the existence of flow reversal phenomenon. 1In an earlier study of

11
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swirling flow in a circular pipe, Nuttal [1953] found that three types
of flow patterns occur for Reynolds number in the range 10,000 to

30,000. In his study, the Reynolds number is defined as

Dpup

ReF -

where DF is the inlet diameter of the pipe, up is the inlet velocity,

and v is the molecular kinematic viscosity. As the swirl component of
the velocity increases, the flow changes from a one-celled to a two-
celled and, finally, to a three-celled vortex structure. Reverse flows
are characteristic of these flows. Although this finding is important,
Nuttal gave neither a physical nor a theoretical explanation for this
phenomenon.

In a study of flow through a conical nozzle, Binnie and Tear [1956]
showed that reverse flows also exist in a cone, but they only observed a
two-celled vortex structure. Binnie [1957] also investigated the
diffetent flow patterns in the low Reynolds number range by injecting
swirling water into a circular pipe, he found that the transition from a
single-celled vortex structure to a three-celled structure depends not
only on the Reynolds number but on the ratio of swirl to axial flow.
One very important conclusion, which Binnie did not emphasize, is that
the reverse flow was induced by increasing the swirl component for a
fixed Reynolds number.

In his measurements of velocity profiles using an optical technique
based on flow visualization, Kelsall [1952] observed a surface of zero

axial velocity which increases with axial position. Bradley and Pulling
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[1959] also observed this phenomenon. Moreover, they reported that this
surface was insensitive to operating variables and had a diameter of
0.43 times the cyclone diameter. For a flooded hydrocyclone (or more
generally, a confined vortex chamber), Dabir [1983], Knowles [1973],
Escudier et al. [1980,1982], have noted that the surface of zero axial
velocity increases in diameter in the direction of decreasing magnitude
of the centerline axial velocity. The growth of the vortex core is a
nonlinear function of the axial coordinate. Dabir, also observed that
this surface (zero axial velocity) divides the inner region of upward
flow from an outer region of downward flow, even when the underflow rate
(see Figure 1.1) is zero.

The magnitude of the radial velocity in the core flow was also
measured by Kelsall (with an air core) and Knowles (without an air
core). It is not surprising to find that this number is very small
compared with the axial and tangential components of the velocity. 1In
the study of a hydrocyclone with an air core, Bradley and Pulling (see
p.15, Bradley, 1965) found that a locus of zero radial velocity, or
"mantle”, exist in the cylindrical section and terminates at a level in
the conical section of the cyclone. For the study of a flooded
hydrocyclone, an outward radial flow in the inner region and inward
radial flow in the outer region was noted by Knowles (see Figure 8,
Knowles et al., 1973). This phenomenon was also observed by Ohasi and
Maeda (see p.38, Svarvosky, 1984) and by Dabir (see Figure 5.11, Dabir,
1983). It is interesting that the outward radial flow in the inner
region has only been observed in flooded hydrocyclones.

The most recent velocity measurements have been done by using Laser
Doppler Anemometry (LDA) (see Durst et al., 1976; Escudier et al., 1980,

1982; Dabir, 1983; and Thew et al., 1980). More recently, Escudier et



14

al. [1980,1982], in their study of confined turbulent vortex flows by
using a laser doppler anemometry and a flow visualization technique,
showed that different flow patterns occur depending on the contraction

ratio of the vortex chamber (DO/D) and the Reynolds number. Transition

from jet-like core behavior to wake-like behavior (including undulated
and flow reversal) occurs either as the Reynolds number or the ratio

Do/D increases. Another interesting result is that the maximum swirl
velocity (uo max) increases significantly as DO/D decreases. These two

results imply that jet-like flow behavior corresponds to larger values

of u than wake-like flow.
0 ,max

In the measurement of velocity profiles in a 3" flooded
hydrocyclone by using laser doppler anemometry, Dabir and Petty
[1984a,1984b] have revealed that multiple reverse flows occur in the
vortex core if using a 2:1 contraction vortex finder. The occurance of
jet-1like and reverse flows strongly depends on the size and shape of the
geometry. The radial velocity calculated from their data showed that an
outward flow (positive radial velocity) occurs near the axis for flooded
hydrocyclones. A large number of relative experimental observations
were also found. These include the approximate axisymmetric structure,

a reversal annular flow surrounding the surface of zero axial velocity,

a non-linear growth of the viscous core (r = 6*(2)) in the direction of
decreasing centerline axial velocity, and a free-vortex-like swirl
velocity in the outer region.

Long [1956], in his earlier experiments on withdrawing water
through a hole at the centre of a bottom plate, observed that : (1) An

intense narrow vortex formed when water was extracted from a sink of a
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slowly rotating cylinder; (2) When the steady draining vortex is
achieved from an initial slow rotation, the circulation was almost
independent of radius outside the core; (3) The core seemed to spread
almost linearly with increasing axial distance. These observations,
which imply that N = -1, motivated Long’s theoretical study.

The features of vortex flows, in many aspects, are similar to those
reported in a swirling jet. Chigier and Chervinsky [1967] indicated
that the distribution of the axial and swirl velocities were similar at
least for moderate swirl numbers. The swirl number, as represented by

S, is usually defined as

T
z

S - ——
F, (d,/2)

where

' 2

Tz - 2x opuauzr dr

F = 2x| (pu 2 +p - )rdr
z 0 z Pe

are, resp., the global axial torque and the global axial force. d°/2 is
the nozzle radius. For a swirling jet, Tz and Fz are independent of z.

Consequently, S is independent of z. Experimentally, many researchers
including Kerr and Fraser [1965], Chigier and Beer [1964], Rajaratnam
[1976], Vu and Gouldin [1982], Rhode and Lilley [1983], Gouldin et al.
(1985], Ramas and Somer [1985], have proved that swirl has a large scale

effect on the flow fields in many aspects : entrainment, jet growth,
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flow recirculation, and flame stabilization. In general, the effects of
introducing swirl on jets are to cause an increase in jet width, rate of
axial velocity decay, and rate of entrainment. The mean - flow terms
show a very simple and direct relationship between swirl magnitude and
radial pressure gradient. Since the radial pressure gradient is mainly
balanced by the centrifugal force, the stronger swirling flow generates
a large radial pressure gradient. In the case of low S, the axial
velocity distribution remains almost Gaussian, with the maximum velocity
on the axis of the jet. As the swirl number reaches a critical number
(approximately 0.6, see p.1l67, Gupta et al., 1984), the axial adverse
pressure gradient becomes strong enough to produce flow separation and
reversal. The axial velocity profile changes from the initial near plug
flow at the nozzle exit to Gaussian profile at the downstreanm.
Meanwhile, the swirl velocity profile changes from a solid body rotation

to a Rankine free - forced vortex type.

2.2 Theoxetical Studies
The flow structures within the vortex core have been investigated
for some time. Early studies were reported by Burgers [1948] and Rott

(1958]. The Burgers’ vortex has the velocity field :

r

@©

-a1r2/2v

4= - are + ( ImE Y[1 - e ]go + 2alzgz (2.2)

where a, and I are constants. This vortex has been widely used in the

study of theoretical vortex models. However, the vortex has the

disadvantage of having an artificially assumed axial velocity u, xz
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which approaches infinity as z -+ » and leads to a stagnation point at
the origin without physical justification.

Sullivan (1959], Donaldson [1956], Donaldson and Sullivan [1960],
and Donaldson and Snedeker [1962] improved Burgers’ vortex by

considering the velocity field as the form of :

u, - ur(r), u, = ua(r). u, = zf(r) (2.3)

Their solutions represents a rather large class of three - dimensional,
viscous vortex motions. They found ,in addition to Burgers’ one-celled
vortex, three - dimensional one-celled and two-celled vortices.
However, in their work, the interaction between the vortex and the
ground boundary layer flow is neglected. The Sullivan vortex is,
however, of considerably interest to meterologists because two-celled
structures have been found in tornadoes. An extensive review of
confined vortex flows was reported by Lewellen [1971].

Long [1958,1961], motivated by his early experimental observations
(see Section 2.1), studied an intense vortex in an unbounded viscous
fluid. Unlike Burgers’ and Sullivan’s vortices, Long’s vortex has the

velocity field at the outer region as :

o
N

, £>>0 (2.4)

All three components of the velocity are independent of z in the outer
region. Furthermore, the tangential velocity is a free vortex. Long's

vortex is one of the first models proposed to describe tornadoes. It
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shows that the various flow structures can be determined by a single
parameter. Long’s vortex also shows the characteristics of constant
circulation on similarity surfaces (i.e., constant ). An interesting
feature is that the macroscopic axial force in Long'’s vortex does not
uniquely determine the flow behavior. It is noteworthy that the quasi -
cylindrical approximation, in which variations in the axial direction
are taken to be small compared with variations in the radial direction,
was adopted by Long as well as by Bloor and Ingham [1975, 1984], and
Qing [1983].

Long’s theoretical work initialed many studies about geophysical
vortices. A review these concentrated vortex flows was reported by Hall
[1966]. Another type of sink vortex was studied by Pedley [1969]. 1In
his study of a so called bath-tub vortex, Pedley considered a point sink
with strength 4xQ situated on the axis and a uniform circulation at
large radius. The flow is irrotational (i.e., vorticity equals zero) at
large radius and must be rotational at some region around the sink, so
that steady vortices will ultimately be set-up. Although the
theoretical study of geophysical vortices is far from satisfactory due
to few experimental observations, some progress has been achieved in the
last 25 years. An excellent review of geophysical vortices was reported
by Morton (1966,1969]. Geophysical vortices, such as tornadoes,
waterspouts and dust devils, which have narrow vortex cores, terminate
at a lower boundary, and are maintained dynamically aloft by some
convective system which prevents the lower pressure core from filling
with upper air. More theoretical treatments have dealt with the lower
part of tornadoes, which have been regarded as steady vortices (see
Morton, 1966). Long’'s vortex, as he recognized, cannot be applied to

tornado as close to the ground. Therefore, to improve Long’'s vortex,
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many researchers have tried to treat the effect of the ground boundary.

Serrin [1972), adopted the same equations as Long, but assumed the
no-slip condition at the surface and allowed a singularity at the
origin. He proved that there can exist only three types of motion. 1In
the first type, the radial velocity is directed inward along the
boundary and upward along the axis. 1In the second type, the radial
velocity moves inward along the boundary and downward on the axis, with
a compensating outward flow at an intermediate angle. In the third type
of motion, the radial velocity is outward near the plane and downward on
the central axis. In the study of conical vortices, Yih et al. [1982]
found a class of exact solutions of the Navier - Stokes equationms.
Their solutions include different angles of cones which extend the right
rectangular angle of Serrin. Wu [1986], in his recent study, has
considered a conical turbulent swirling vortex with variable eddy
viscosity. He argued that if the eddy viscosity varies only in the
boundary layer near the core or surface, the solution outside the layer
will approach to one of the laminar solutions of Yih et al. or that of
Serrin. He also found that for a class of deliberately chosen "eddy"
viscosity functions, a steady turbulent vortex can satisfy both the
regularity condition at the core and the adherence condition at the
surface, except at the singular point.

In a further study of vortex breakdown of Long’s vortex, Burggraf
and Foster [1977] showed that breakdown (reverse flow) occured when the

global axial force, Fz, was less than a critical number. They also
found that Long’s Fz is about 3 % lower than their calculations. Foster

and Duck [1982], in the study of stability analysis of Long’'s vortex,

pointed out the most dangerous mode in Long’s vortex are those with
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positive azimuthal wave number n, and that the growth rates increase
with n at least for the values of 0 < n < 6 computed.

In a cyclone chamber, where vortex core flow are characteristized
by a reverse annular flow , Bloor and Ingham [1975,1984] have made a
systematic analysis. To investigate the core flow structure, they first
solved for the basic flow in the outer region by using an inviscid,
rotational flow (i.e., vorticity is not equal to zero). From this
information, they were able to solve for the velocity profile in the
core flow. 1In order to have solutions which satisfy the momentum

equation, Bloor and Ingham assumed that the "eddy" viscosity could be

expressed as u x 2z~
Qing [1983], in his study of velocity and turbulence distributions

within a cyclone, concluded that different radial distributions of u,

and Ve have only a slight influence on the radial distribution of U,

but strongly affect the shear - stress distribution (rra). However, in
his model u, is only a function of r, which he recognized as too

restrictive. It is noteworthy that Qing adopted, for the first time, a
continuous "eddy" viscosity profile which consists of different models

of Ve for different regions of the vortex.

Another interesting and important theory about the outer region of
a confined chamber has been developed by Petty [1985]. The flow in the
outer region could be Beltrami for which the velocity and vorticity

vectors are colinear. Mathematically, Beltrami flow can be expressed as

1€
R
Ie
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where w represents the vorticity vector and u represents the velocity
vector. For axisymmetric and inviscid flows, if the velocities in the

outer region are also Beltrami, then the tangential velocity profile is

approximately

-3/4

u, « r

]

The result is very interesting and important because the value of N (= -

0.75) is consistent with most of the experimental data (see Chapter 8).



CHAPTER 3

MATHEMATICAL FORMULATION

3.1 Vortex Modelg

The balance of linear momentum and the continuity equation for a
constant property Newtonian fluid govern the behaviour of the vortex
flows studied in this research. For steady, axisymmetric, swirling
flows, the velocity and pressure fields depend only on the cylindrical

coordinates r and z :

u=-ul(r,z)e +uyr,z)e, +u/l(r,z)e, (3.1)

P = p(r,z). (3.2)
If the axial transport of momentum by viscous forces is neglected, then
the boundary layer equations governing u and p over the spatial domain

0srsid(z), 0<z< = are (see Long, 1961)

u, ap
T -
d d ] 1 d
pu_ — (ru,) + pu_— (ru,) = pr — ( — —(ru,)) (3.4)
T ar o Z a3z g ar r 4dr b
8uz auz ap p a auz
pur—+puz—--—+pgz+-—(r—) (3.5)
ar dz daz r dr ar
1 4 a
T 3r (rur) +nuz-0. (3.6)

22
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Eq. (3.3) assumes that the radial component of the velocity is
small and that the large centrifugal force per unit volume, puoz/r,

causes the radial pressure drop. The axial pressure gradient in Eq.
(3.5) is an important and unique aspect of vortex models examined. It
is also noteworthy that Eq. (3.4), which is the tangential component of
the equation of motion, can also be interpreted as a transport equation
for the axial component of angular momentum.

Eqs. (3.3) - (3.6) govern the behaviour of the three components of
u and the pressure. Because of the viscous nature of the fluid and the
axisymmetric assumption, the boundary conditions on the axis (i.e., r =

0 and z > 0) are

ur(O,z) =0 (3.7)
: uo(O,z) -0 (3.8)
auz
Ic -0 (3.9)
r=-20

Far from the axis, the tangential component of the velocity equals the

experimental expression discussed in Chapter 2 :

u, = KrN, 3(z) ST S o, (3.10)

[

must be calculated for each vortex model studied. If Egs. (3.4) - (3.6)

are each integrated over the cross sectional area n§2(z), then the
following macroscopic balance equations result for the axial component

of the angular momentum, the axial thrust, and the volumetric flow rate
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de -2 ds
= - -2né (ur " iz uz)pug " Ted (3.
r=5
dF, ds d§
= - -2x8 (u, - gz u)eu, -7+ 5 P (3.
r=5
dQ d§
= - -2x3 u -G Y, (3.
r=3
In the above equations,

P=p’ - pgz - p(r,2), (3.
g

'rz = 2n [pruo]uzrdr , (3.
0
]

2

Fz = 21rI [puz - Plrdr , (3.
0
g

Q= 2xj uzrdr . (3.
0

Tz represents the axial component of the macroscopic torque on the cross

section «32 induced by the swirling flow; Fz is the axial component of

11)

12)

13)

14)

15)

16)

17)

the average force acting on n32; and, Q is the volumetric flow rate

across this area. The above equations show what properties of the flow

acting on the surface (8(z),z) determine the variation of Tz, Fz, and Q

in the axial direction.
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Two models of a viscous vortex are studied. Model I, previously
analyzed by Long [1961] and Foster (see esp., Burggraf and Foster
[1977]), is defined by Eqs. (3.3) - (3.6), Egqs. (3.7) - (3.9), Eq.

(3.10) with N = -1, and the following two auxiliary conditions :

lim Fz < o, finite macroscopic force; (3.18)

-+

lim P = 0, hydrostatics at infinity. (3.19)
r - o

A sufficient condition for Eq. (3.18) is

puz2 = P, for Sa(z) <r=<wo, z20. (3.20)

Figure 3.1 shows the definition of the coordinate system and the
boundary conditions for vortex Model 1I.

As previously discussed in Chapter 1 and 2, many vortex flows are
characterized by a reverse (or downward) annular flow far from the axis.
In Chapter 7, a vortex is studied which approximates this behavior by
assuming that a surface of zero axial velocity surrounds the axis. Model
1]l accomodates this physical possibility by imposing specific boundary
conditions on a finite surface of similarity rather than the asymptotic

conditions defined by Eqs. (3.18) - (3.20).

Therefore, on a surface defined by (r,z) = (6*(2),2), which is not

1. the axial component of the velocity is zero; and

2. the tangential velocity is given by Eq. (3.10) for

-1 <= N< O and 8*(2) < r < o,
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2
F = 2n (pU -P)rdr < =
z z
/
/
r =20 /
/8§ (2)
U =0 / a
r /
/
U =0 /
9 /
/
au /3r = 0 / lim P = 0, hydrostatic
z / r - ©
/ z2>20
/
/
/
/ § (2) Kr<wo , [  z20
/ a
/
/ U = K/r
/ 6
/
z |/
/

Figure 3.1 Coordinate system and physical boundary

condition for the vortex Model I
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Although the velocity and pressure fields for r > S*Gﬂ are not

specified explicitly, we still assume continuity of viscous stresses,

velocity, and pressure across the surface (S*Qﬂ,z). Thus, the

auxiliary conditions which define Model II are
N *

u, = Kr', -1 N<O, § (z2) Sr=<wo (3.21)
*

uz(S (z),z) =0 (3.22)
* * -

r g (67(2),2) = lRE-1)[67(z) )" (3.23)
§* 0 3.24

T4,(8 (2),2) = (3.24)

The other components of the viscous stress are related to the radial and

axial components of the velocity (see Appendix D). The behaviour of the
*
outer flow (i.e., r > § (z)) must be consistent with the predicted

behaviour of the core flow (0 < r =< 8*(z), z > 0). Figure 3.2 shows the

definition of the coordinate system and the boundary conditions for

vortex Model II.

3.2 Similarity Conditions

Because the three-dimensional flow studied is axisymmetric (see Eq.
(3.1)), the radial and axial components are closely coupled through the
continuity equation. A convenient way to satisfy Eq. (3.6)

automatically is to use a stream function to represent u. and u_,

1 3y
u = -5 (3.25)
1 9y
W =+ (3.26)
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§ (z)
// *
/ § (z2) S rSw, z2
/ N
r=0,z>0 U = Kr
/ 6
U =0 /
r / -1=N<O
U =0
6 /
/
du /dr = 0 /
z
/ *
/ Uz(s (z),z) = O
/ * *
/ T (6 (2),2) = pK(N-1)[§ (2)]
// ré .
// r (§ (z),z) = O
/ z
) SV 4
z | /

Figure 3.2 Coordinate system and physical boundary

condition for the vortex Model II

N-1
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Boundary conditions on ¥(r,z) stem from the previous conditions on
u. and u, and will be explicitly noted momentarily. First observe,

however, that the boundary surface at (r,z) = (r,0) and at (r,z) = («,z)

have similar conditions on ua(r,z). This observation suggests the

following representations for the three dependent variables

2
P(r,z) = pu, (2)M(n) (3.27)
ru,(r,z) = §(z)u_(2)F(n) (3.28)
2

¥(r,z) = § (z)u (z)h(n) (3.29)
where

n =1r/§(z) (3.30)
In the above expressions, §(z) and uc(z) represent, resp., intrinsic
length and velocity scales. These are determined as part of the

solution to a specific vortex model.
Inserting Eqs. (3.27) - (3.29) together with Egs. (3.26) and (3.27)

into Egs. (3.3) - (3.5) yields

F = -nM (3.31)

ath' + a2h'F = npF'' - F' (3.32)
’ 2 ’ r ’

-ath + a3h'G - 2a3nM - a,n M’ + nG + G (3.33)

where

c - - (3.34)

and



30

z ()

c dé
%4 v dz

The coefficients a;, ay, aq, and @, must be constants. However, all the

a’s are not independent inasmuch as

and

Therefore, a necessary condition for similarity is that

2
d uCS
iz ( " ) = constant, and (3.35)
Ut as
—— gz — constant. (3.36)

It follows directly from (3.35) and (3.36) that

1

N

u o § and § « (z)N+2 .

c

The physical constants K and v can be used to scale uc(z) and 6§(z).

Thus,



31

u, - Ks" , (3.37)
and
vz 1/(N+2)
§ = ( K ) . (3.38)
With these results, the a - coeffients become
a - 1
N+1
%2 T N2
N
%3 = N+2
1
%% = N+2 -
Eqs. (3.31) - (3.33) can now be written as
2
F
M' = - 3 (3.39)
n
N+1
nF - F +Fh-th (3.40)
d 1 ., 2(N+1) 2
a[ﬂG -m']M-&-hG]-—N-;E——[G -M]n (3.41)
h'= nG . (3.42)

When N = -1, the set of equations given above reduce to a model
previously studied by Long [1961] and reexamined in Chapter 6. The
boundary conditions for the sixth order system will be presented in
Section (3.4) after the asymptotic behaviour of the solution has been
developed. Meanwhile, Figure 3.3 illustrates the shape of the surfaces
of constant 7 in the r,z - plane. The dependent variables M(n), F(n),

and h(n) are constants on these surfaces. Note that for the special
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z
A
N=-1
Z X r
n <n
1 2
r
N = -0.5
3/2
Z X r
n <n
1 2
>I.‘

0
24N
in general : z =« r

Figure 3.3 Surfaces of Similarity ( constant value of

n=1x/6(z) )
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case N = -1, the similarity surfaces form a family of cones. For -1 < N
< 0, the surfaces have a parabolic-like shape.

It follows from Eqs. (3.37) and (3.38) that for a fixed value of n,
the dependent variables (see Eqs. (3.27) - (3.29)), depend on the axial

coordinate as follows

P(r,z) « (z)ZN/(N+2)

ruo(r,z) « (z)(N+1)/(N+2)
¥(r,z) « z

As illustrated in Figure 3.4, the stream function is proportional to z
for -1 < N < 0. This result implies that the entrainment rate, defined

by Eq. (3.13), is constant on surfaces of constant n inasmuch as

21¢(63(2),2)

2nvzh(n)

This results by letting ¥(0,z) = 0 which implies that h(0) = O.
Figure 3.4 also shows that the axial component of the angular

momentum, ru,, is constant on surfaces of similarity for N = -1 only.

However, for -1 < N < 0, the pressure field is unbounded for z - 0 on
surfaces of constant 7.

By inserting Eq. (3.29) into Eqs.(3.25) and (3.27), it follows that
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N=-1, n = constant

P ru ¥

é///éj

constant

0 \\ z 0 z 0

Negative pressure

N=-0.75, n = constant
P ru ¥
6
1 t 1/5 t
x z
0 z 0 z 0

Figure 3.4 Qualitative behavior of the dependent

variables on the similarity surfaces
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y 46 h
u, - Ké = [ h* - (N+2);” ] (3.44)
hl
u = KN — | (3.45)
z n

Thus, for constant values of n, Egqs. (3.44) and (3.45) show that

u « z'l/(N+2) and

N/ (N+2)
r zo:z

As z - 0 for constant n, both the radial and axial components of the
velocity become unbounded; however, as z - =, these components decay to
zero.

Both vortex models studied in Chapters 6 and 7 are subject to the
same conditions on the axis. The physical boundary conditions given by
Egqs. (3.7) - (3.9) imply that the similarity functions defined by Egs.

(3.27) - (3.29) must satisfy the following conditions :

h
lim [ h' - (N+2) = ] = 0 (3.46)
n-+0 "
F
lim [ -] =0 (3.47)
n-0 "
hll h'
lim [ — - — ] =0 (3.48)
n-0 T

These results, and h(0) = 0, will restrict the behaviour of the swirling
flow near the centerline of the vortex and will be explored further in

Chapter 4.

3 tic Behaviour
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The asymptotic condition on the tangential velocity expressed by
Eq. (3.10) implies that F(n), defined by Eq. (3.28), has the following

behaviour for large values of n

§,(2)
N+1
F-’Fa-ﬂ ,W-r]aSnSO. (3.49)

Thus, for N = -1, Fa = 1 and the axial component of the angular momentum
is bounded; however, for -1 < N < 0, Fa becomes unbounded for n =+ «.

Because P(w,z) = 0, M(») = 0 also (see Egs. (3.51) and (3.27)).

Therefore, by integrating Eq. (3.31) with F = Fa, it follows that

ﬂ2N
M-’Ma--(TN),r)aSr]SO. (3.50)

If Eq. (3.20) holds, then

2
Ga - Ma » g <£n <o, (3.51)
Thus,
h ' N
a n
G = - , <9 < . 3.52
a 7 — n,sSn=<= ( )

Eq. (3.52) can be integrated to give

42
h-+h = ty, S0, (3.53)

&  (N+2) S 2N

With Ga2 - Ma’ Eq. (3.41) reduces to
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)

"G, - w2 " %,

+ h G = constant. (3.54)
a a

Inserting Eqs. (3.52) and (3.53) into Eq. (3.54) yields

N
n

(y+N) = constant . (3.55)

J-2N

This equation is satisfied by setting the arbitrary constant of

integration to zero and y = -N. Thus, Eq. (3.53) becomes

N+2
n
h

L - SN, Sspsw. (3.56)
(N+2) J -2N a
For N = -1, Eq. (3.40) is balanced. This is not suprising because

the free vortex (i.e., u, = K/r) is an exact solution to Eq. (3.4).

6
However, because the empirical swirl velocity employed in this study
(see Eq. (3.10)) is not a solution to Eq. (3.4), the asymptotic
functions given by Eqs. (3.49), (3.50), and (3.56) only satisfy the
radial and axial components of the boundary layer equations and the
continuity equation. If Fa and ha are introduced into Eq. (3.40), then

N .

N+1
h ' - nF '* +F_ ' - F'h]=(N1) n

[ §+2 FaPla (3.57)

This result shows that the tangential balance of linear momentum is
satisfied for N = -1 only. Thus, similarity solutions on the unbounded
domain, which simultaneously satisfy all three component equations of

the momentum balance and Eq. (3.10) with -1 < N < 0, do not exist.

3.4 Bo Value o tudied
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The physical boundary conditions given by Eqgqs. (3.7) - (3.9)
require the following restrictions on the similarity functions at n = 0

(also see Eqs. (3.46) - (3.48))

h'(0) = 0 (3.58)
F'(0) =0 (3.59)
h'''(0) =0 (3.60)

Moreover, Eqs. (3.28) and (3.43) also require

F(0) - 0 (3.61)

h(0) = 0 (3.62)

These conditions are satisfied by both vortex Models studied.
Eqs. (3.49), (3.50), and (3.56) with N = -1 define the asymptotic
behaviour of a vortex with bounded circulation (Model I). Eqs. (3.39) -

(3.42) with N = -1 govern the behaviour of Model I for 0 < n < n,- The

constant n_ is calculated as part of the solution.

Model II also satisfies Egqs. (3.58) - (3.62) and the differential

equations (3.39) - (3.42) for 0 <pn < 1n . However, as previously
mentioned, similarity solutions on the unbounded domain for -1 < N < O
do not exist (see Eq. (3.57)). Egs. (3.21) - (3.24), which completes

the mathematical definition of Model II, require the following

restrictions on the similarity functions at n = n* - 5*(2)/6(2)

N+1

* *
F(n ) = (n) (3.63)
h'(n") = 0 (3.64)
dF L N
& | o« D) (3.65)

n
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Eq. (3.65) stems from either Eqs. (3.23) or (3.24). This can be
seen by first writing the stress components in terms of the similarity

function F(n) as follows

u
3 ] No1 L dF

Teg = B 37 () = uKé 7[nd—n'2F]

a ds 1 dF

N-1
Taz = B 37 (4p) = - pKé = T [n rri (N+1)F]

The above two expressions apply for 0 < r < 8*(2). Eq. (3.65) follows

directly by setting r = 6*(2) and using the continuity conditions given
by Egqs. (3.23) and (3.24).

Table 3.1 summarizes the basic elements of the two vortex models
studied and Table 3.2 lists the properties calculated for each model.
The two models are qualitatively different inasmuch as the macroscopic

axial thrust induced by the flow for Model I is constant (i.e., 6uc =- K

for N = -1) whereas this property varies with axial position for Model

I1 (see Chapter 6 and 7).



Table 3.1 Mathematical models

Differential Conditions Edge
Equations atn =0 Conditions
Model I : Egs. n <= n<wo
Egs. a
Vortex Flows ( 3.40)
( 3.59) F=1
with |
<n=< |
Constant ( 3.43) M=1/(2n)
( 3.63)
Circulation with N = -1
h=n//2+1
*
Model II : Egs. n =1
Egs.
Vortex Flows ( 3.40) * N+1
( 3.59) F=(n)
with |
<9< |
Variable ( 3.43) h’ =0
( 3.63)
Circulation -1 N<O * N+1

F'=(N+1)(n )




41

Table 3.2 Physical properties calculated for the two vortex models
Property Equations Comment
Similarity
scales:

1
vz —— N = -1
Length 5= (5?2 Model I
N -l<N<O,
Velocity Uc - K§ Model II
Angular on = §U F
c
momentum
Radial 2 n =1r/6§(2)
pressure P - pUc M
difference
Stream 2
function ¥ = 8Uh O=ns= Ma
Tangential U. = U _E_ Model I
velocity 6 c n
hl
Axial *
velocity Uz - Uc n O=n=n,
Radial U -u a5 o - (N+2)E) Model. II
velocity r cdz n
F n
z 2 _
Axial thrust — - I (G™ - M)ndn n=n_
2% (6U,) 0 Model I
Tz " N+2 _ N+1
Axial torque — - I FGndn = N3 [(h(n) + (N-1)]n
27p6(8U )
c 0
Q 7 N - x
Flow rate 3 - I Gndn = h(n) n =1,
276U Model II
c O
= 2
p(a,Z) = P(O,z) F

Pressure
drop

—3ndn = M(0) - M(7)
n

2

pUc

O\ 3}




CHAPTER 4

SOLUTION BEHAVIOR NEAR THE AXIS

4 era utio

The solution to Egs. (3.39) - (3.42) for small values of n can be

developed using Taylor series representations for M, F, and h. In

general,
L 2
M(n) = M(0) + M'(0O)n + 3T M'""(0)n" + ---- (4.1)
L 2
F(n) = E(Q) + E“(Q)n + 57 F'' (00" + ---- (4.2)
1 2
h(n) = h(0) + h'(0)n + 57 h'"(0)n° + ---- (4.3)

The coefficients underlined in Eqs. (4.2) and (4.3) are zero because of
boundary conditions (3.58), (3.59), (3.61), and (3.62). All of the
coefficients multiplying odd powers of the independent variable are zero
because of local symmetry about n = 0. Because Egs. (3.39) - (3.42) are
invariant if n - -n, M(n) = M(-n); F(n) = F(-n); and, h(n) = h(-n).

Thus, the power series representations through fourth order can be

expressed as

2 4
M) =c+cqn” +con + ---- (4.4)
b
2 4
Fo - 71+ bln + ---- (4.95)

42
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a

2 4
ho - 70+ an + ---- (4.6)

The coefficients a b

1’ P1» cl. Cos =" can be related to a, b, and c¢

by inserting Egqs. (4.4) - (4.6) into Eqs. (3.39) - (3.42) and equating

like forms of the independent variable. This gives

N 2
a
278w (77 ) 47
ab
b, = - Te(wD) (4.8)
b2
¢, = -3 (4.9)
ab2
c (4.10)

2 T 64(N+2)

The general solution near the axis depends on the empirical index N
and the coefficient a, b, and ¢. The asymptotic behavior for n >> 0
(see Model I, Chapter 3) will determine three of the four coefficients

(a, b, ¢, na); the remaining coefficient can be used to parameterize the

behaviour of the vortex (see Chapter 6, 7). Figure 4.1 portrays the

mathematical meaning of these coefficients and provides the interesting

from zero to its asymptotic value over smaller spatial domains. Thus,
the vortex becomes more ‘concentrated’ about the axis. In Chapters 6 -
7, the limiting behavior of the solution for small values of n will be
connected to the asymptotic behavior for the two vortex models defined

previously (see Table 3.1).
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4 ow Regimes
The local behavior of the axial and radial velocity near the 'axis’
(i.e., small values of n) is determined by the coefficient 'a’. Because

(see Eq. (4.6))

a N a2

4
o" 3" tamey (TZomen * oo (4.11)

h

it follows that (see Table (3.2))

N
2
vz N2 N a 2
uz(r,z) =K (g ) [a + m)( 57 - Cn + ---- ] (4.12)
and
1 2
vz - o2 N (2-N)N a 3
u (r,z) =v (5= ) [ - 5w5an + ——5 (57— - ¢c)n” + --- ]
r K 2(N+2) 8(N+2)2 2

(4.13)

Eq. (4.12) shows that the transition from forward flow (i.e., uz(O,z) >
0) to backward, or reverse, flow (i.e., uz(O,z) < 0) within the vortex

is determined by the sign of the coefficient ’'a’. Therefore,

transition from forward to reverse flow on

the axis of a vortex corresponds to a = O.

Likewise, Eq. (4.13) shows that for -1 = N< O

forward flow around the axis is accompanied by

an outward radial flow (i.e., u. > 0); and
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reverse flow around the axis is accompanied by

an inward radial flow (i.e., u, < 0)

Whereas - © < a < + «, the coefficient b on the other hand is
always positive. This follows from Eq. (4.5) and Eq. (3.28) which shows
that

N

vz s b

up(r,z) =K (=2 (5 -men ] (4.14)

Positive values of 'b’ correspond to counter clockwise rotation about
the axis; negative values of ’'b’' correspond to clockwise rotations.

Because Eqs. (3.3) and (3.4) are invariant to a sign change in u only

g’
counter clockwise rotations are considered. The empirical parameter K
in Eq. (1.1) is positive.

As noted earlier, large values of 'b’ will give a ’'concentrated’
vortex motion about the axis. Because of the physical interpretation of
‘b’ as a measure of the frequency of the forced vortex motion about the
axis and because of its clear qualitative effect on the flow (see Figure

4.1), the global solution will be parameterized by this dimensionless

group. Note that

du

9
2( ar ) r=0

b= vz (N-D/(N+2) (4.15)
K( )
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which is a relatively easy property to measure experimentally (see
Chapter 9). This alone justifies its use in the theoretical development
as an independent parameter.

The parameter ‘c’, which represents the dimensionless 'excess’
pressure on the axis (see Table 3.2), is always positive for Model 1

because (see Eq. (3.39))

FZ

c = M(0) = M(n) + — dn > 0 (4.16)
n

O 3!

For Model II, computer experiment for the range of b studied in this
research (see Chapter 7) shows c is positive for any value of N. For

small values of n,

2N
2 2
—_— b ab
2, Y2 W2 2 4
P(r,z) = pK"( &) [e-g * e " + ----] (4.17)
Note that
82P
<0,
ar2
r=20

so for a fixed cross section (constant z), the pressure on the axis
always corresponds to a local minimum (maximum for P). Because ¢ > 0,

P(0,z) is positive and always decreases with increasing z. Therefore,

a (-2N) vz —
32 (p + pgz) = cKu N7 ( . ) >0 . (4.18)
r=20
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Eq. (4.18) shows that forward flow on the axis is always against an

adverse pressure gradient. There will always be a region, 0 < z < z°,

near the singularity point for which the pressure is less than zero. z°

can be calculated from Eq. (3.27) by replacing u, with Eq. (3.37) and

letting p(O,zo) = 0. Thus, negative valuesof p(0,z) occur on the axis

o
for z < z~, where

N+2
o [o]
P - r8Z N

2 (4.19)

R | =

cpK

Because -1 s N < 0, it follows from Eq. (4.19) that z° increases as c
o o o 0.5
increases inasmuch as p >> pgz . For N = -1, z~ « ¢ whereas for N =

-0.75, 2° « c5/6. For N = -1, Eq. (4.19) reduces to

P K
2° = K ( _— )0.5 = (C)O.S (4.20)

o
P - rBZ

For jet-like, forward flow with ¢ = 0.1, z® is about 0.08 m for a gas
vortex with a backpressure (i.e., p° - pgzo = p°) of 14.7 psi (1.01x106
g-cmz/secz), K = 3050 cmz/sec(see Boysan et al.,1982 and Table 8.5), p =
0.0013 g/cm3, and K/v = 231. However, for a liquid vortex with N =

-0.75 (see Dabir, 1983 and Table 8.5), ¢ = 0.1, p° = 14.7 psi, K = 270

R

cml-N/s (see Table 8.2), p = 1.0 g/cm3, and K/v = 342 cm'(l+N), the

onset of negative pressures occurs at z° = 0.056 m.
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The behaviour of the axial velocity near the axis depends on the
relative values of 'a’ and 'c’. Figure 4.2 illustrates four flow
patterns consistent with Eq. (4.12). With the exception of Flow IV, all
of these features have been observed experimentally (see Chapter 2) and
calculated theoretically (see Chapter 6, 7). Table 4.1 gives the
conditions for transition between these flow regimes. The qualitative
behaviour for the radial flow follows directly from Eq. (4.13) and is
also noted for each transition.

The sign of the ’'excess’ mechanical energy, E, of the fluid on the
axis relates directly to the flow structure illustrated in Figure 4.2.

The value of E at r = 0 can be calculated as follows

1
E =3 plu,(0,2))% + [p(0,2) - (3° - pg2)] (4.21)

By using the results listed in Table 3.2, the above expression can be

written as

2
a

2
E-puc(z—-c). (4.22)

Thus, forward, jet-like flows (Type I) as well as reverse, undulating
flows (Type IV) correspond to positive value of the ’'excess’ mechanical
energy on the axis; pegative values of E give a wake-like behaviour
which includes both undulated (Type II1) and reverse, jet-like flows

(Type III). Transition between Type I and II flows correspond to E = O.

4 c e is
A mechanical energy balance consistent with the approximate

boundary layer equations, defined by Eqs. (3.3) - (3.6), has the
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Table 4.1 Criteria for transition between flow regimes

Transition Criteria Comment
Forward,
2
a
I — 11 0, c = 5 Outward Flow
IT1 ~— III 0, ¢c=20 Inward Flow
Backward,
2
a
III «— IV 0, c= 5 Inward Flow
Impossible for
IV — I 0, ¢c=0 Nonzero angular

momentum ;
see Eq. (4.16).
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interesting feature that the viscous dissipation is zero on the axis.
Thus, the change in E (see Eq. (4.21)) along the axis is governed by the
following equation

DE 3dE(0,z) 14

De - uz(O,z) 3z = lim 7 37 r(‘rraug + rrzuz) (4.23)
r=0

r=-0

The term on the right-hand-side of Eq. (4.23) represents the rate of
work done on the fluid per unit volume by viscous force. By using the

definitions of Ted and Tz (see Appendix D) as well as the boundary

conditions on the axis, the above expression simplifies to

62u

-p ( 5~ 4, ) (4.24)
dr

DE

Dt

r=0 =0

Eq. (4.24) and the results listed in Table 3.2 yield

3
-2N PU a2
(F2) —7 a7 -¢) (4.23)

DE
Dt

r=0

where u, is defined by Eq. (3.37). For N = -1, Eq. (4.25) reduces to an

earlier result reported by Long [1961]

6

DE PR a®
Dt 23z alz7 -¢c)
r=0 v 2

Eqs. (4.22) and (4.25) can be combined with the conclusion that on the

axis
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DE 2N Ye
Dt - - ( N2 ) - aE(0,z) . (4.26)

r=0

Figure 4.3 illustrates the relationship between the direction of flow on
the axis (a < 0, backward; a > 0, forward), the mechanical energy of the
fluid on the axis, and the rate of change of mechanical energy due to
convection. Thus, the four types of structures shown in Figure 4.2 can
also be classified by using energy considerations.

Figure 4.3 shows that for Type I and Type III vortices the fluid on
the axis moves faster than the surrounding fluid. 1In this case, energy
is transfered to the slower moving fluid by viscous work. On the other
hand, Type II and Type IV vortices have the feature that the fluid on
the axis moves slower than the sourrounding fluid so, in this case,
energy is transfered to the axis by viscous work. Transition between

the various flow regimes is characterized by

DE

= -o. (4.26)

r=0



54

a/2=c

I
l
|
|
| _ DE/Dt
|
I
I
|

S — —— Sttt it ) it Sttt e —manemy  mm——

v

Type IV Type 1
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CHAPTER 5

SOLUTION METHODOLOGY

a matio o) em Of First Order Equations

Eqs. (3.39) - (3.42) can be rewritten as a system of first order
ordinary differential equations by introducing the following dependent
variables : Y1 - M; Y2 = h; Y3 =-G; Y = F’'. The

‘= G'; Yo = F; and, Y

4 5 6
resulting equations are listed in Table 5.1 along with the power series

representations of Yi(") for small values of n (Egqs. (5.1) - (5.12)).

The equations can be expressed more concisely using vector

notations:
Y - £(X,n). (5.13)
Solutions to Eq. (5.13) depend on the three parameters a, b, and ¢

discussed in Chapter 4. These coefficients determine the trajectory of

Y(n) near n = 0 inasmuch as

¥(0) = ce; + ag; , and (5.14a)
dy N al
nl_i;mo d—ﬂ - N2 (2—' - c)ga + bg6 (5.14b)

e denotes the ith unit base vector in a 6 - dimensional Euclidean

space. Eq. (5.14a) follows directly from Eqs. (4.4) - (4.6) and the

55
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definition of G(n) (see Eq. (3.34)). The parameter 'a’ and 'c’ must be
calculated as part of the solution; however, ’'b’ can be specified and,

as indicated by Eq. (5.14b), determines the initial trajectory of Y6(q).

The asymptotic behavior of Y(n) for large values of n follows
directly from the analysis developed in Section 3.3 and the definition
of Y(n). These specific results are listed in Table 5.2 and apply to

the vortex on an unbounded domain (Model I). The bounded vortex,

*
defined by Table 3.2, satisfies the conditions at n shown in Table 5.2
(Model II). The set of first order equations were used to calculate the

components of Y(n) and the integral properties for each model over their
*
respective domains once 'a’, ’'c’, and . (n for Model II) were found

(see Section 5.2). Eq. (5.13) was integrated numerically using the
computer program listed in Appendix B.

For Model I, the stream function far from the axis is given by

n
h-h =—4+1, n < n < o,

a /—2‘ a

The numerical solution approaches this theoretical result, but
eventually runs "parallel" to it depending on the precision in
determining the parameters ’'a’ and ’‘c’. This offset error, which occurs

for n 2 Mg is more apparent with h than the other similarity variables.

This can be understood from a perturbation analysis.

If Xd represents a small perturbation from the asymptotic solution,

then
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Table 5.2 Boundary conditions on the vortex models

Variable Condition Model I Model 1I1I
at n =0 n, <f£n<w n = n*
1
Y, = M c ---
1 2"2
h 0 i 1
Y - + - -
2 2
1
Y, =G a 0
3 7 1
1
Y, =G’ 0 - ---
4 3 ﬂ2
* N+1
Y; = F 0 1 (n)
*N
Y = F' 0 0 (N+1)(n )
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(5.15)

Inserting this decomposition into Eq. (5.13) and neglecting nonlinear

terms yields a linear equation for Xd :

Xy 3f
— - (=) .Y (5.16)
dn Y X‘Xa d

The six first - order, linear differential equations represented by Eq.

(5.16) are
d¥y 4 2
—a-"—----—3Y5d (5.17a)

n
av, ,
an " Mg (5.17b)
Yy,
T - Yll»d (5.17¢)
¥4 1 2 /2 1 2
—— = (= +=-)Y,. - — Y, + Y,, +2Y Y
dn 7 "m0 T T3a T =73 C2d 1d - 2 Ysd
(5.17d)

avg,
G " Yea (5.17e)
Yoy 1
dn ~ /_—2 Yod (5.17F)

The above six equations are not fully coupled. For instance, it

follows directly from Eq. (5.17f) that
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-n/J2
Yea = © ’

so Y6 approaches its asymptotic behavior exponentially. This is also the

case for YSd and Yld' However, Egs. (5.17b) - (5.17d) have a different
behavior. Because Y1d and YSd decay exponentially, the general solution
for Y2d - Yad can be expressed as
q
Yog ® 17
q-2
Y3d « qn , and

-3
Y‘td « Q(Q'Z)flq .

Substituing Y2d - Y&d into Eq. (5.17d) and neglecting the term which

decays exponentially, implies that
q=1.

Therefore, the perturbation variables de - Y4d approach their

asymptotic behavior algebraically :
Ya ="

3d

4d

Qlf—-‘ 3| -
N
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As n - o, Y2 remains proportional to 7. Y3d and Y on the other

d 4d’
hand, decay to zero.

Because de a n, the offset error between Y2 and Y2a for large

values of n is determined by the accuracy of the solution defined by

Ei < e, 1=23,56 (see Eq. (5.29)).

For instance, if ¢ = 0.0001, numerical calculations show that Y2d is

less than 0.005Y however, if ¢ = 0.001, Y is about 0.04 Y The

2a’ 2d 2a°
difference between these results illustrates that the control of ¢ is

very important. In order to have an accuracy of Y2 within O.99Y2a for n

2 n_, € must be 0.0001.
a

ts Th o etho
Although the two vortex models studied have different conditions
surrounding their cores, the mathematical structure of each problem and
the solution strategy have a common methodology. Both models are

represented as a system of differential equations on a finite domian £.
*
The actual values of ’'a’, 'c’, and N, (n for Model II) for a given

value of ‘b’ and N were found by rescaling the two - point boundary

value problem and using a shooting method. The rescaled problem is

dz A

- i@ &N, ), 0<é=s1

where
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) { n, » Model I

*
n , Model II

Table 5.3 defines the component equations and boundary conditions. Only
three of the six conditions listed under Model I for § = 1 are
independent. The conditions at £ = 0 are the same for both vortex
models.

The solution of both vortex models involves a three dimensional

search for vectors with components (a,c,n). The above two - point

boundary value problem was solved by using a "shooting" method. Figure
5.1 illustrates the four elements of the algorithm and a brief
discussion of each component follows. The Fortran program which

implements the algorithm is listed in Appendix B.

A. Initial Guess

The program designed here has been used successfully for a wide
range of initial guesses : a°, c®, and ﬁo. These parameters satisfy -«

<a®<w 0<c®<w, and 0<n® <wfor -1 <N<Oand O<b<w, If
one solution is known, then the next solution for a value of (b,N) near
the original one can be found by using the previous solution as an
initial guess. In Chapters 3 and 4, the behavior of F for small and
large values of n has been discussed. Because F approaches its
asymptotic behavior exponentially (see Figure 6.3 and the previous

section), it seems reasonable to consider the intersection point of

these two curves as an initial guess for . In Figure 4.1, this value

of n equals to J/2/b. With ;o = J2/b, an a priori relationship between
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Figure 5.1 Solution strategy based on a shooting method
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a®, b, and c® for N = -1 follows by assuming M_( /2/b) = M_(/2/b). The

result is

c® = bs2 - a°/16. (5.24)
Eq. (5.24) is consistent with the general behavior of (a,b,c) for large

values of b. Numerical studies indicate that c¢ is roughly proportional

to b. Therefore, with

c® = b/3, (5.25)

Eq. (5.24) gives

a® = 8b/3. (5.26)

Unfortunately, ;o =~ J2/b is not a good initial guess for 5 and is

replaced by the empirical result

n° - (8/2/6)° " (5.27)

Egqs. (5.25) - (5.27) provide good initial guesses for Models I and II at

large values of b (say b > 0.10) for any N.

Figure 5.2 illustrates how the initial guess of (a,c,n) affects the
convergence of the algorithm. The initial guess, denoted by point 1 in

Figure 5.2, is obtained from Eqs. (5.25) - (5.27). The solid line shows
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how the algorithm searches for the solution. After six iterations, the

value of (a,c,n*) is very close to the solution. It took another 6
iterations to satisfy the criteria (¢ < 0.0001) and reach the solution
(point 12). The initial points denoted by (*) will not converge to the
solution. These points give a rough idea of the size of the domain of
convergence for b = 0.3. Although the projected values of points 4 and
5 on Figure 5.2 appear close to a nonconvergent point, the corresponding

value of ¢ for the two points, as indicated, are different.

For small values of £, the Taylor series expansion defines the
solution in the vicinity of £ = 0. The differential equations are
integrated numerically from £ = 0.001 to 1 by using the DGEAR subroutine
(IMSL,1984). The required input conditions for the algorithm are listed
in Appendix B. The DGEAR subroutine solves the set of differential
equations by the ADAMS predictor - corrector method. (see Gear, 1971;

Lapidus, 1971). The integration only reguires values of Z(0.001) and

2(0.001) to start. The algirithm continues until the end point ¢ = 1 is
reached. DGEAR subroutine is also designed to solve "stiff"
differential equations. In this purpose, it is more powerful than other
algorithm.

The effect of step size A¢ on the behavior of M, F, and h is
important. It was found that these three functions do not change much

(three significant figures) between using 1000 steps (Aé = 0.001) and

100 steps (A¢ = 0.01) over the domain 0 < £ < 1 for (a,b,c,n) =
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Figure 5.2 Domain of convergence for the three
dimensional search with b = 0.3
( Model I, N = —1.0)
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(0.893,0.3,0.0881,21.3). A& = 0.001 gave satisfactory results for all

values of the parameters studied.

P e e R L R R T EE T 2

Let ZA(E) represent an approximate numerical solution to the
boundary value problem. The accuracy of the solution is determined by
how close the boundary conditions at § = 1 are satisfied. If E denotes
a three dimensional vector whose components represent the difference

between the desired boundary conditions at & = 1 and the approximate

results based on a given value of (a,c,n), then a solution to the two

point boundary value problem occurs when

Ei(x) <e for i - 1,2,3 (5.28)

where ¢ is an accuracy parameter.

The components of E are defined by

E 1z,%1) -z, (D]
E - [z%] - | 122 - 2] (5.29)
Es 1z, - z D]

E depends on a three dimensional vector x, where

X x2
3

(5.30)

S op
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In this research, the three boundary conditions z3(1), zs(l) and z6(1)

are used for both Models I and II. The results showed that once these
three boundary conditions are satisfied for Model I, the other
asymptotic conditions are automatically satisfied.

For Model I, three boundary conditions will uniquely determine all
six dependent variables (see Table 5.3). But these three boundary
conditions connot be arbitrarily chosen from the six asymptotic
functions. Three groups are separated directly by Egqs. (5.18) - (5.23).

The first group contains only z4 and zg (Eq. (5.18)). The second group
contains zy, 24, and z, only (Egs. (5.19) - (5.21)) since zq and zg in
Eq. (5.21) will automatically drop out at ¢ = 1 and N = -1. The last

group includes Zg, Zgy 24, and z, (Eqs. (5.22) and (5.23)). Therefore,

three different boundary conditions must be chosen from these three

groups. One is chosen from either zl(l) or zs(l), the other is chosen
among zz(l), 23(1), and 24(1), and the last one is z6(1) since zg only
appears in the last group. In this research, z3(1), zs(l), and z6(1)
are chosen for Model I in correspondence with Model II. For Model I, z5
and zg become asymptotic much sooner (i.e., small values of n) than z,.
Figure 5.3 illustrates how the accuracy parameter, ¢, affects the
solution, (a,c,n*), for Model II. For large values of ¢ (e = 0.1 -

0.002), (a,c,n*) changes significantly. When ¢ is small enough ( <

0.001), the values of (a,c,q*) become stable. 1In order to have three

significant figure accuracy for a, c, and n, € must be less than

0.0001.
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Nax 0.05

Initial quess : (a® ,c®,1°) = (0.8,0.1,20.7)
Eq. (5.19)

Solution : (a,c,7) = (0.893,0.0881,20.7)

a
ol Q L
A A A
Cx10
0-80 1 1§ T 1T Torev R T U 1T 1T 71T°1/7V R A { TTI‘IFI
10.0 100.0 1000.0 1.0E+04
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Figure 5.3 The effect of accuracy parameter &
on the behavior of the solution
for b = 0.3 (Model Il, N = —1.0)
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............................

If the criteria in step C are not satisfied, the program will call
ZSCNT subroutine in IMSL (see IMSL, 1984). This subroutine uses a
secant method to solve a system of non-linear equations (Phillip, 1959),
E(xX) = Q. When an initial guess is specified, the ZSCNT subroutine uses
a point nearby to search for a better solution. Figure 5.4 shows how
the next solution "vector" is obtained for a one dimensional problem.

If the initial guess of xk'1 is given, the subroutine calculates E(xk'l)

and uses an arbitrary point nearby xk to find E(xk). A new guess for x

(i.e., xk+1) is determined from (see Figure 5.4)

k-lE(xk)

xSy - B

k k-1
xk+1 x E(x ) - x

The process is repeated until E(xn) < €. For a system of non-linear

algebraic equations, the algorithm is similar but more complex (see

Phillip, 1959). The search for (a,c,n) continues until the desired

accuracy (see Eq. (5.28)) is obtained.
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Initial guess
xk'l,E(xk'l))

(

Figure 5.4 ZSCNT search for a one dimensional problem



CHAPTER 6

MODEL I : VORTEX FLOW WITH CONSTANT CIRCULATION

In Chapter 4, qualitative criteria were developed for different
flow behavior near the axis. In this chapter, quantitative results for
swirling flows governed by Model I (see Section 3.1) are developed. The
major goal is to investigate the general behavior of the velocity and
pressure fields. A comparison with Long’s vortex is presented in
Section 6.3. The behavior of macroscopic properties and their
significance on the flow behavior will also be discussed (Section 6.4).
Finally, an interpretation of the various flow structures is presented
in Section 6.5 using the mechanical energy balance and the axial force

balance on the axis.

6.1 Ge ehavior 0O e Solutio
Figure 6.1 shows the relationship between b and the parameters a,

c, and N, When b increases, a and ¢ increase but N4 decreases. A
smaller viscous core (i.e., small na) occurs at larger values of b.

Therefore, when the rotation around the axis increases, the core size
decreases and the vortex becomes more concentrated.

Three flow regimes have been identified quantitatively, depending
on the value of b. The transition values of b between flow reversal and
undulated and between undulated and jet-like behavior are 0.042 and

0.136, respectively. The flow structure is determined uniquely by K, v,

73



74

1.00 N=-1.0

Reversei Undulated

0.80{Flow

Jet—like

Nax 0.02

|

0.004--=3~---=-——=-

— am e - am ae - e - - ot s - - - — e

—0020 lferTf‘TTTIrFI IIIII[IITTTTTYY_I

0.0 0.1 0.2 0.3
b

Figure 6.1 The behaviour of the solution for
Model |
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N and one of the four parameters (a,b,c,na) (see Table A.1l in Appendix

A). The general behavior of the three dependent variables M, F, and h
are plotted on Figures 6.2 - 6.4. The derivatives of M, F, and h at the
axis are zero and all of these functions follow their asymptotic
behavior for large values of n. These two features stem directly from
the boundary conditions (see Table 5.2).

The effect of b on M is significant (see Figure 6.2). For constant

n, M increases as b increases. Because Ma, which represents the
asymptotic values of M for n > Mg is independent of b, the "pressure"
drop across the vortex (i.e., M(0) - M(na)) increases with b. Thus,

coherent vortex structures require relatively large radial pressure

drops. Note also that M = M, for n = 10, which is significantly smaller
than Ng- This result was anticipated by the analysis of Section 3.3.

Figure 6.3 shows that F obtains its asymptotic value for n = 15,

provided b = 0.03. For large values of b, F = Fa for n << n, also.

Thus, if M and F alone were used to control the numerical search (see

Section 5.2), then a significant error in . would occur (see Section

6.3).
For the same value of n within the core region, larger values of b
yield larger values of F. In other words, the circulation for fixed 7§

increases as the rotation around the axis increases (strong vortex)

= 4; g.gordﬁ = 2xKF(n;b)
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The behavior of the dimensionless stream function h, which relates
directly to the axial and radial components of the velocity, deserves
special attention. Figure 6.4 shows that for reverse flow (b = 0.03), h
is negative for small values of n. This was expected based on the
analysis of Section 4.1 (see Figure 4.1). For b = 0.03, note that h = 0
when n = 4. Because h(n) also represents the local entrainment rate
(see Table 3.2), h(4) = 0 means that the local volumetric flow rate
across a surface of fixed z and 0 < r < 46(z) is zero. This also

implies that uz(r,z) must be zero for some values of r between 0 and

46(z), 1if b = 0.03.
For the other two values of b (b = 0.1, 0.3), h is always positive.

For very large values of b (see Figure 6.8), h can overshoot ha for n <

ng- For n > g0 h parallels ha with a very small, and controllable

offset. As discussed in Chapter 5, the offset always exists because the

allowable error in the numerical search for a, ¢, and ", is always

larger than zero (see Eq. (5.28)). This constant offset error does not
affect the velocity components (see Section 5.2).

Another result is that h increases as b increases for fixed 5.
Thus, a "strong" (i.e., large b) vortex has a larger local volumetric
flow rate (fixed n) than a relatively "weak" vortex. However, because a

"weak" vortex has a larger value of n, (see Figure 6.1), the global or

macroscopic flow rate through a "weak" (i.e., small b) vortex is large

compared to the flow rate through a "strong" vortex.

6 Behavio Velocity Field
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The tangential velocity profiles for different values of b, shown
in Figure 6.5, have a Rankine-type structure with a forced vortex
behavior near the axis and a free vortex behavior in the outer region of

the core. For n > g @ Y4~ K/r. For large values of b, the region of

solid body rotation (i.e., forced vortex) shrinks. The peak tangential
velocity shifts to smaller values of n and becomes larger as b
increases. If the size of a vortex is defined as the radial position

where u, is a maximum (see, esp., Donaldson and Sullivan, 1960), then as

b increases from 0.03 to 0.3, the size of the vortex decreases by a

factor of 2.5, whereas ", only decreases by a factor of 1.4 over this

range of b. An interesting observation in Figure 6.5 for b = 0.03 is
that the zero local entrainment rate (h(4) = 0 in Figure 6.4) occurs
within the forced vortex region (see Figure 6.5).

Figure 6.6 shows three different axial flow profiles for different
values of b. This result is consistent with many experimental
observations (Escudier, 1980, 1982; Dabir, 1983). When b increases, the
flow changes from a reverse flow on the axis to an undulated flow and,
finally, to a jet-like flow. In the flow reversal region, it is

observed that u, = 0O at n = 2.5 for b = 0.03. Thus, the fluid moves

downward toward the singular point for n < 2.5 and moves upward for n >
2.5. This observations also follows directly from Figure 6.4 inasmuch

as h'(2.5) = 0. Note also that for b = 0.3, the magnitude of u, near

the axis is larger but falls below the axial velocity of the weaker

vortices in the outer region. However, all the axial profiles approach

K/(/i r) for n > n,- It follows from Figures 6.5 and 6.6 that the local
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peak of u, for b = 0.1 and 0.03 occurs at slightly smaller values of 7

than the peak of Ug-
The radial velocity profiles in Figure 6.7 exhibit many important

features. As predicted in Chapter 4, an outward radial flow (ur > 0)
occurs around the axis for forward flow and an inward radial flow (ur <

0) occurs around the axis for reverse flow. For all values of b, a zero
radial component of the velocity always exists for a nonzero value of 7.

As previously discussed in Chapter 2, a surface characterized by u, - 0

is often called a "mantle". Because the flow at infinity must move

radially inward toward the core (ur = - y/r for n > na), two intermal

mantles exist in the reverse flow regime due to the inward radial flow
near the axis. For the forward flow regime (either undulated or jet-
like), however, there is only one mantle. The inner mantle in the
reverse flow case appears at very small values of n (n = 2.0 for b =
0.03), and causes the flow within n < 2.0 to move downward toward the
singular point.

In forward flow, the size of the mantle decreases as b increases,
which implies that the stronger rotation around the axis will force the
fluid to move into a much smaller core area. This phenomena is very

important for the application developed in Chapter 9.

w 's Vort
As discussed in Chapter 5, the computer algorithm employed in this

study used a three dimensional search for a, ¢, and ", until the

asymptotic conditions were satisfied. This was accomplished by

controlling the allowable error on 23(1), 25(1) and 26(1) (see Section
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5.2). In contrast, the solution methodology used by Long [1961]
determined the values of a and c by only controlling the asymptotic

error of Y1 and Y5 (equivalently, Zl(l) and 25(1)). The value of n, was

determined by the asymptotic behavior of h, but, as illustrated in

Figures 6.2 - 6.4, Yl and Y5 (M and F) obtain their asymptotic behavior

for smaller values of n than h. Thus, Long’s procedure effectively

determines n, inaccurately. Basically, his solution does not satisfy

the asymptotic condition on h.

Using the tabular values of a, b, and ¢ found by Long (two decimal
accuracy), the differential equation for Y(n), defined by Table 5.1, was
integrated using the computer algorithm listed in Appendix B. For b =
3.82, Figure 6.8 compares the stream functions calculated using Long's
solution and the solution developed in this study. The results are the
same for small values of n, but differ significantly for large n.
Although the difference between (a,c) is small (only 1% difference), the
behavior of h at large values of n is much different. Because h is very
sensitive to the values of a and c, controlling the numerical error of

ha is very important.

A similar comparison between the radial velocity profiles
calculated using Long’'s parameter and the set developed here is given in
Figure 6.9. The radial velocity for large values of n is very sensitive
to h. For small values of n (n < 3.0), both solutions are the same, but
differ significantly when n become larger. However, both solutions show

the existence of an internal mantle near the axis.

6.4 o i o tie
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The macroscopic properties discussed in Chapter 3, including axial
thrust, axial torque, flow rate, and pressure drop, can also be used to
quantify vortex flows. The values for the macroscopic axial thrust
computed in this research (see Figure 6.10) agree with the study by

Burggraf and Foster [1977] and are a little larger than reported by Long

A

(see Figure 6.10). A minimum value of Fz occurs at b = 0.04; Fz

increases significantly for very large and small values of b.
The large values of the axial thrust at small and large values of b
are due to different mechanisms. For small values of b, the vortex core

becomes large and the axial momentum decreases. Thus, the large values

A

of Fz mainly come from the area integration (see Eq. (3.16)). On the

other hand, for large values of b, the vortex core becomes small and the

axial momentum increases significantly (jet-like flow). 1In this case,
the large value of Fz stems directly from the large convective transport

of axial momentum (see Eq. (3.16)).
The macroscopic axial thrust does not uniquely determine the flow
behavior (see Figure 6.10). For N = -1.0, reverse flows exist for b<

0.043 and jet-like flows exist for b> 0.136. Between these two values
of b, the axial velocity has an undulated flow behavior. For Fz larger

than 0.75, either flow reversal or jet-like flow will occur (see Figure

6.10). For Fz less than 0.75 but larger than 0.60, either reverse or

undulated flow occurs. If Fz is between 0.6 and 0.58, only undulated

flows exist. Below 0.58, however, no steady state similarity solutions

exist.
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The macroscopic axial torque and volumetric flow rate decrease
monotonically as b increases in the range of 0 < b < 0.30 (see Figures
6.11 and 6.12). For b = 10.0, the axial torque is about 10 and the
volumetric flow rate (dimensionless) is about 12. Unlike the axial
thrust, the large velocity associated with jet-like flows does not make
the axial torque or volumetric flow rate unbounded for large values of
b. Instead, it appears (numerically) that these two properties may
approach a nonzero lower bound. However, for small values of b, the
large cross sectional area associated with the flow reversal makes both

Tz and Q, like Fz' unbounded (see Figures 6.11 and 6.12).

For the study range of 0 < b < 10, if the axial torque has a value
larger than 10, then only one value of b and, therefore, only one type
of flow is possible; however, if the axial torque is less than 10, a
steady state similarity solution may not exist (see Figure 6.11).
Similarly, if the dimensionless macroscopic volumetric flow rate is
larger than 12, then this parameter uniquely determines the flow

behavior (see Figure 6.12). Transition from flow reversal to undulated

A

flow corresponds to Tz = 19.0 and Q = 21.0. Transition between
undulated and jet-like behavior occurs for Tz = 15.5 and Q = 17.5.

Figure 6.13 shows that the macroscopic pressure drop Ap uniquely

A

determines the flow structure. Note that Ap increases monotonically as

A

b increases with an almost constant slope. Moreover, for Ap less than

A

0.017, reverse flow exist and for Ap between 0.017 and 0.045, undulated

flow behavior occurs. Finally, for Ap > 0.045, the axial velocity on
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the centerline has a jet-like behavior. Thus, once v, K, and N (=-1)
have been specified, the vortex flow with bounded circulation is

uniquely determined by either assigning a numerical value to the local

A

spin parameter 'b’ or to the global dimensionless pressure drop Ap (0 <

Ap < »). This conclusion was not developed by Long [1961] or by

Burggraf and Foster [1977]. They only noted the "unexpected" result

A

that Fz did not uniquely determine the flow, as it does for other

A

nonrotating flow problem. Here an explanation for the behavior of Fz

has been given and more significantly, a macroscopic parameter has been

identified which controls the flow behavior.

6.5 Discussion

In Chapter 4, the "excess" mechanical energy of a fluid particle on
the axis was examined qualitatively. This property (see Eq. (4.21)) and
its substantial time derivative are related to the dimensionless

parameters ‘'a’ and ’'c’ as follows

A~ E a.2
pc
and
- 2
DE §°/v DE A
— = —— — = -2aE
Dt puCZ Dt

A A A

Figure 4.3 illustrates the relationship between E and DE/Dt for four

different flow regimes. Although an undulated, reverse flow regime was
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identified theoretically in Chapter 4 (Type IV pattern, see Figure 4.3),
this flow behavior was not observed numerically, for 0.002 < b =< 10.
Additional physical understanding of the three flow structures for
a vortex with bounded circulation (N = -1) results by examining the
axial component of the force balance. The force acting on a fluid
element situated on the axis includes contributions from inertial,
pressure, and viscous effects. Thus, by setting r = 0 in Eq. (3.5), it

follows that

>
>
>

where
- 1pu,(3u,/32)]
A r-O
2
FI - 5 = a
pu §(dé/dz)
ap
A E r-O
F, = = -2c
P puc26(d8/dz)
T}
[; E?(rauz/ar)]
A r-O 2
FV - = -a“ + 2¢

puc26(d8/dz)

A

The dimensionless "excess" mechanical energy, E, can also be expressed

in terms of these dimensionless forces as

>
>
>
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It is noteworthy that FI and FP do not change sign for 0 < b < =

inasmuch as az 2 0 and ¢ is always positive (see Figure 6.1). Thus, a

fluid particle on the axis moving in the positive z direction (forward

A

flow) must overcome an adverse pressure gradient (FP < 0).

Figure 6.14 shows how the individual terms in the force balance and
the energy balance evaluted on the axis change with b. These results
show that the three flow structures (jet-like, undulated, flow reversal)

have the following features :

N DE
FI>0, FP<0, Fvso, E=>20, =<0
Dt
Type I1_(undulated, forward flow)
N DE
l-Izo, FP<0, rvzo, E<O0, =20
Dt
Type III_(jet:like, reverse flow)
A DE
FIzo, FP<0, FV>0, E<O,;:so

For the flow reversal regime (Type III), the "excess" potential

energy is much larger than the kinetic energy of the fluid (E < 0) and
as the fluid particle moves toward the singularity the energy deficit of

the particle increases due to the transfer of energy from the axis to

the surrounding fluid by viscous work (DE/Dt < 0). The pressure force
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acting on the fluid element is small and is balanced by a positive
inertial and viscous forces. Transition from Type III to Type II

behavior occurs when FI goes to zero and the viscous and pressure forces

balance. At this point, (a,b,c,na) = (0,0.042,0.0174,28.6) with E < 0

A A

and DE/Dt = 0.

A

E is less than zero for a Type II flow pattern, but as the fluid

A

moves away from the singular point E increases due to energy transfer

A

from the surrounding fluid to the axis by viscous work (DE/Dt > 0). In

this regime, FP is balanced by positive viscous and inertial forces (Fv
> 0, FI > 0). Transition from Type II to Type I behavior occurs where

FV goes to zero and the pressure and inertial forces balance. At this

A A

point, (a,b,c,na) - (0.301,0.136,0.0449,24.2) with E = 0 and DE/Dt = 0.

When b > 0.136, a jet-like flow behavior occurs (Type I). The

A

kinetic energy term now dominates the "excess" potential energy (i.e., E

> 0); however, as the fluid particle moves toward the hydrostatic

A A

condition at z = o, its "excess" energy decreases (DE/Dt < 0) because
the high speed fluid on the axis transfers energy to the surrounding
fluid by viscous work. The viscous force acting on the particle in this
regime is negative so the large inertial force is countered by the
adverse pressure and the viscous drag.

The relatively large adverse pressure force acting on the axis for
large values of b is due directly to the centrifugal force and the

hydrostatic boundary condition for z -+ «.



CHAPTER 7
MODEL II : VORTEX FLOW WITH VARIABLE CIRCULATION

In Chapter 6, quantitative results for swirling flows with constant
circulation (Model I) were presented. In this chapter, Model II (see
Section 3.1), which includes the effect of N, will be discussed. An
interesting aspect of these flows is that the dissipation integral (see
Section 7.5) is bounded for -2/3 < N < 0. A comparison between Model I
and Model II for N = -1 is given in Section 7.1 and, in Section 7.2, the
effect of N on the three different flow regimes is developed. The
behavior of the velocity and pressure fields for -1 < N < 0 is presented
in Section 6.3 and 6.4; and, the effect of N on the macroscopic
properties will be discussed in Section 7.5. These theoretical results
will be compared with experimental data from several different

laboratories in Chapter 8.

o de or N = -

Model II for N = -1 is similar to Model I. Model II, however,
includes the effect of N. Because N is generally not equal to -1 (see
Figure 8.2), Model II was developed in order to understand certain
experimental results for confined vortex flows. As discussed in Chapter

3, the major difference between Model I and Model II is that the axial

velocity for Model II is zero for (r,z) = (6*(2), z). Also, for N >

99
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-2/3, the growth of the viscous core near the singular point keeps the
dissipation integral bounded. Figure 7.1 shows that a jet-like flow
around the axis occurs for both models when N = -1 and b = 0.30. The
small difference in the axial velocity at n = 0 is due to differences in

the values of 'a’ determined for each model (a = 0.886 for Model I and

0.893 for Model II). The computed values of 1 for the two models differ
*

only slightly : n, = 21.7 whereas n = 21.3. It is also apparent that

the axial velocity has an asymptotic behavior (uz x 1l/r) at n = ", for

Model I, but is zero at n = q’kfor Model II. The differences in the
macroscopic properties between the two models are important and will be
discussed in Section 7.5.

The criteria for transition between the different flow regimes

(see Figure 4.2) for the two models (N = -1) are very similar. For

instance, reverse flow passes to an undulated flow for (a,b,c,n) =
(0,0.042,0.0149,28.6) for Model I; and (0,0.038,0.0151, 29.0) for Model

II. The transition between undulated and jet-like flow occurs for

(a,b,c,n) = (0.301,0.136, 0.0449, 24.2) and, (0.321,0.14,0.0447,24.1)

for Models I and II, respectively.

Z £ Flow Re e

Three different flow regimes have also been found for Model II. As
b increases, the axial velocity changes from flow reversal to undulated
and, finally obtains a jet-like structure. As N increases, the region of
flow reversal and undulated behavior broadens (see Figure 7.2). For
example, flow reversal occurs for b < 0.038 and N = -1.0. However, for

N = -0.75, flow reversal occurs for 0 < b < 0.055. Similarly, undulated
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axial velocities occur between 0.038 < b < 0.14 for N = -1.0, but
between 0.055 < b < 0.23 for N = -0.75. As N increases from -1 to -.75,
the lower limit on b for jet-like behavior increases from 0.14 to 0.23.
Thus, in order to have a jet-like axial flow, a strong rotation around
the axis is necessary for larger values of N. This kind of effect

becomes more apparent as N increases.

V1o e Solution

Tables A.2 - A.4 in Appendix A 1list the values of (a,c,n*) for

different values of N and b. Figure 7.3 shows the effect of N on the
*
parameter set (a,b,c,n ). The general behavior is the same as Model I
*
where ‘a’ and ’‘c’ increase, but n decreases, as ’'b’ increases. 'c!' 1is

less sensitive to ’'b’ than 'a’. Because n* represents the size of the
viscous core, it follows from Figure 7.3 that larger values of ’'b’' give

a more coherent vortex.

As N increases, ¢ increases and n* decreases. The size of the core
is reduced almost 50 % when N changes from -1 to -0.75. This means that
a more concentrated (or coherent) core will occur at larger values of N
for fixed values of b. Because this effect is so large, it is important

for Model II to be fully developed and analyzed. Once again, for fixed

*
N, the parameters 'a’, ‘c’', and n change monotonically with b.

Therefore, the flow structure is uniquely determined by any one of the

*
four dimensionless number (a,b,c,n ) together with K, v, and N.

Figures 7.4 - 7.6 show the general behavior of M, F, and h. The

*
similarity functions are defined on the finite domain 0 < n < n , so the
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curves terminate at n*. The derivatives of M, F, and h are all zero for
n = 0 because of the boundary conditions (see Egs. (3.58) - (3.59)).
Figure 7.4 shows how b affects M for N = -0.75. Comparing Figure

7.4 and 6.2 (N = -1.0, Model I), M decreases as b increases but, for
Model II, goes to negative values at n = q* for any value of b. M in

Model I becomes asymptotic to 1/(2n2) at n = n,- A negative value of M

in Model II implies that the pressure at n = n* is higher than
hydrostatic. The parameter ‘c’, which represents M(0), is always
positive (see Figure 7.3).

The effect of b on M is significant (see Figure 7.4). For constant

n, when b increases, M becomes larger at small values of n, but becomes
*
smaller at large values of n. Because M at n = n becomes smaller as b

*
increases, the pressure drop across the vortex (i.e., M(0) - M(n))
increases with b. Thus, coherent (concentrated) vortex structures
require relatively large radial pressure drops.

The behavior of F, shown in Figure 7.5, monotonically increases to

a maximum value at n = n*. For constant 5, F increases as b increases.
For fixed b and 7, comparing Figure 7.5 and 6.3, F increases as N
increases. Therefore, larger values of N give larger values for the
circulation, or the angular momentum, at constant b and 7.

The stream function h for Model II (see Figure 7.6) in the outer

region is different from h for Model I (see Figure 6.4) due to the

boundary conditions imposed at q*. However, the behavior of h near the
axis is similar for both models. For forward flow, h increases

monotonically. For reverse flow, h is negative for small values of g
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Figure 7.6 The effect of b on the behaviour of h
for Model I
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and positive for larger values of n. The point where h = 0 occurs at 7§
=5 for N = -0.75 and b = 0.03. Because h(n) represents the local
dimensionless entrainment rate (see Eq. (3.43)), h(5) = 0 means that the
local volumetric flow rate across a surface of fixed z and 0 < r < 5§(2)
is zero. Therefore, the axial velocity must be zero at some value of r
between 0 and 56(z). It can be seen from Figure 7.6 that zero axial
velocity occurs at n = 3.5 (also see Figure 7.8) where the slope of h is
zero.

One important difference between Model I and Model II is the stream
function at the outer edge of the vortex core. In Model I, h is

asymptotic to ha’ defined by Eq. (3.53). However, for Model II, the
* *
slope of h at n = n equals zero because uz(6 ,2) = 0.

For fixed N and n < q't the effect of b on h is to increase the
local volumetric flow rate as b increases. However, the global
entrainment rate, defined by Eq. (3.43), increases as b decreases.
Thus, as the vortex core diameter increases, the volumetric flow rate

becomes larger. For example, it follows directly from Figure 7.6 that

*
h(n ) = 9.5 for b = 0.03 and h(n*) = 6.0 for b = 0.3. So as b increases
by an order of magnitude, the core size decreases by a factor of two and

the volumetric flow rate through the vortex decreases by about 30%.

4 v '/ el
Figure 7.7 shows that the common features of the tangential
velocity profiles for different values of b and N = -0.75 include : a
Rankine-type structure with a forced vortex near the axis and a free-

vortex-like flow in the outer region; the maximum tangential velocity
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shifts to smaller values of n and becomes larger as b increases; and,
the core size decreases as the rotation frequency around the axis
increases (i.e., b increases). It is also noteworthy that as b
increases, the fraction of the cross sectional area of the vortex in
solid body rotation decreases.

The axial velocity behavior for Model II for general N has some
features which are similar to Model I (see Figure 7.8). Note that
reverse flow on the axis appears at smaller values of b and jet-like
flow on the axis appears at larger values of b. At intermediate values
of b, undulated flow exists (see Figure 7.2 for other values of N).

In the flow reversal region (Figure 7.8), zero axial velocity
occurs at n = 3.5 for b = 0.03 which corresponds to the zero slope of
the stream function (see Figure 7.6). The flow moves downward within g

< 3.5 and moves upward for 3.5 < n < 15.1. For forward flow on the

axis, the flow moves upward everywhere (i.e., 0 s n < q*). Note that
strong rotation around the axis (large b) gives a higher axial velocity

near the axis and lower axial velocity near the outer boundary. The
* *
axial velocity goes to zero at n = n because uZ(S ,2) = 0. Again, the

comparison between Figure 7.7 and 7.8 shows that the values of n at
maximum axial velocity is smaller than the values of n at maximum
tangential velocity for any value of b. Thus, the position of maximum
axial velocity occurs within the solid body region. Characterization of
different flow regimes using the mechanical energy balance on the axis
is the same for Models I and II and has already been discussed in
Section 6.4.

The radial velocity behavior in Model II is very important to the

understanding of light particle separation (see Chapter 9). The common
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of radial velocity in Model II (see Figure 7.9) are the same as

in Model I. 1In brief, these are :

(a). Positive radial velocity near the axis for forward flow, but
negative radial velocity near the axis for reverse flow.

(b). Only one mantle (ur = 0) exists in undulated or jet-like flow
region, but two mantles exist in reverse flow region.

(c). The inner mantle for reverse flow is about n = 3.0 for b = .03
and N = -0.75. Therefore, all the flow within this mantle
will move downward toward the singular point.

(d). The peak of maximum radial velocity shifts to smaller values
of n as b increases.

(e). The effect of b on the radial velocity is to reduce the mantle
size in the forward flow region; therefore, a strong rotation
about the axis causes a small mantle to form with a very
strong jet-like flow behavior over a very small vortex core.

(£). For fixed values of 5, the radial velocity near the axis
becomes larger when b increases. However, the radial velocity
near the edge of the vortex becomes smaller when b increases.

(g). A surface of zero radial velocity (i.e., mantle) always
exists within the vortex core (n < n*).

1.5 Macroscopic Properties

Figures 7.10 - 7.13 show the effect of b on the macroscopic

properties for the vortex (see Table 3.2). An important feature of

Figure 7.10 is that the axial thrust does not determine the flow

behavior uniquely. The minimum value of Fz is about 0.5 for N = -1.0;

and, 0.45 for N = -0.75. For Model I, the minimum thrust is 0.58 (see
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Figure 6.10). For a fixed value of the axial thrust above the minimum

value, two values of b are possible. For example, with N = -1 and Fz >

0.5, three different cases are possible : (1) For 0.50 < Fzs 0.52

(which corresponds to the transition point between flow reversal and

undulated flow), two different undulated profiles are possible; (2) For
0.52 < Fz < 0.70 (which corresponds to the transition point between

undulated and jet-like flows), either a flow reversal or an undulated
flow behavior on the axis occurs; and, (3) When the axial thrust is

larger than 0.70, either flow reversal or jet-like behavior obtains.
For N = -0.75, the corresponding values for Fz are 0.45, 0.47, and 1.4,

respectively.

The axial torque and the volumetric flow rate decrease
monotonically as b increases (see Figure 7.11 and 7.12). The slope of
these curves are steeper in the small b region. For large values of b,
small changes in the axial torque and flow rate will cause large changes

in b.
Although the qualitative behavior of Tz and Q for Models I and II
are similar, the specific velues of these parameters are much smaller

for Model II. For example, at b = 0.3 and N = -1, Tz is 14.5 for Model
I but only 9.6 for Model II. If N increases to -0.75, then Tz - 5.8.

The macroscopic flow rate Q decreases from 16.5 (Model I) to 11.6 (Model

II, N= -1). For N= -0.75, Q = 5.9.
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The axial torque Tz and the volumetric flow rate Q are both

* *
proportional to h(n ) (see Table 3.2). As b decreases, n increases

A A

(see Figure 7.3). Because h(q*) increases with n*, Tz and Q become very

A

large for b -+ 0. On the other hand, both Tz and Q appear to approach a
positive lower bound for very large values of b. For example, with b =

10 and N = -1.0, Tz =5and Q=7. IfN=-0.75 and b = 10, then Tz -

2.8 and Q = 4.

An important parameter for both Models I and II is the macroscopic

A A

pressure drop, Ap. Figure 7.13 shows that for N = -1 and -0.75, Ap

A

increases monotonically with an almost constant slope. For fixed b, Ap
increases as N increases. It is noteworthy that for b > 0.05, the
macroscopic pressure drop for N = -0.75 is almost 1.5 time the

macroscopic pressure drop for N = -1.0. Unlike the other global

A

properties, a one-to-one correspondance between Ap and b exist. Thus,

as previously discussed in Chapter 6, the flow behavior is uniquely
determined by specifying K, v, N and either Ap or one of the local

properties : a, b, c, n*.
The dissipation of kinetic energy over the cross section of the

vortex can be calculated as follows

§(z)
® = 2x I (z : Vu)rdr (7.1)

where
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s Y 2 auz 2
I:V‘:"“{[ra—r(—r_)] +[5r—] } 7.2

represents the irreversible conversion of kinetic energy into internal
energy per unit volume by viscous dissipation (see p. 82 of Bird et al.,
1960).

Eq. (7.1) can be written in terms of the similarity functions
defined in Chapter 3. Thus, by substituting Eqs. (3.28), (3.34),

(3.37), and (3.38) into Egs. (7.1) and (7.2), it follows that

*

R o "rF 2F ) )
d = - (— - —=)° + (G'")"|ndn. (7.3)
2 2 n 2
wpu n

The dimensionless dissipation ¢ depends only on b and N. Figure 7.14

shows how b affects ® for N = -1.0 and N = -0.75. The behavior of & is

similar to the behavior of the macroscopic axial thrust. The values of

A A

® become large for small and large values of b. The minimum value of ¢
is about 0.062 for N = -1.0 and 0.102 for N = -0.75. Although the
macroscopic dissipation does not uniquely determine the flow structure,
it nevertheless provides a useful characteristic of the flow.

For a fixed value of N and b, it follows directly from Eq. (7.3)

that

d = pruc20(b,N) (7.4)

where

N

VZ  N+2

N
u, - K§" = K(—K')

Thus,
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2N

d «x zN+2. (7.5)

Eq. (7.5) implies that ® -+ » as z -+ 0 for -1 S N< O; and, ® - 0 for z -

«. The total dissipation follows by integrating Eq. (7.4) from zy > 0

toz =1L :

3N+2

L
N+2 a2

N D
D = J ddz = 21rpLuc2(L)<b(b,N)w—+§ (1 - () ]

Zp
For zp - 0, D is unbounded for -1 < N < -2/3; however, if -2/3 < N < 0,

then 0 < D < », For z >0 and -1 < N < 0, D is positive and bounded.



CHAPTER 8

AN ANALYSIS OF EXPERIMENTAL RESULTS IN THE LITERATURE

8.1 Experimental Results

The major assumptions of this study are constant density and
viscosity, axisymmetric flow, and similarity structure. Although the
similarity theory necessarily neglects the effect of wall boundary
layers in confined vortex flows, the results of several experimental
(and computational) studies are used to explore the possibility that the
analysis can be used to quantify the core region of flooded
hydrocyclones or, more generally, of confined vortex chambers containing
a single fluid phase (either gas or liquid, but not both).

Several major studies of confined vortex chambers are used for the
purpose of comparing theoretical and experimental (including
computational) results. Figure 8.1 shows the various coordinate systems
and geometries of these studies. Table 8.1 summarizes the important

operating conditions for the experiments. The location of the reference

coordinate z, shown in figure 8.1, defines the orientation of the
viscous core and will be discussed further in Section 8.3.

Among the six papers listed in Table 8.1, Escudier et al. [1980,
1982] and Dabir [1983] are the most important because they have very
complete information. Moreover, the flows in these studies were
axisymmetric, although under some conditions nonaxisymmetric behavior

was observed. The tangential and axial components of the velocity were
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u = (Volumetric flow rate)/(area)
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Figure 8.1 Coordinate system for various vortex chambers
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Table 8.1 Flow conditions of the experimental studies

Flow Conditions
Flow
Reference Index| u Q D D L
F o o Regime
3
cm/s cm /s | mm mm cm
la 24 400 55 40 42.5 Reverse
Escudier et al.
1980 1b 24 400 55 25 42.5 Undulated
(experimental)
lc 24 400 55 10 42.5 Jet-like
14 6 100 55 18 42.5 Jet-1like
Escudier et al. le 12 200 55 18 42.5 Undulated
1982
(experimental) 1f 24.6 411 55 18 42.5 Undulated
lg 51 850 55 18 42.5 Reverse
2a 140 500 76 25.8 35.0 Undulated
Dabir
1983 2b 140 500 76 12.9 35.0 Jet-like
(experimental)
2¢c 140 500 76 12.2 35.0 Jet-like
Kimber and Thew
1974 3 40 51 50 12.7 300 Undulated
(experimental)
Boysan et al.
1982 4 1370 42000 203 64 33.0 Jet-like
(computational)
Pericleous et al.
1984 5 56.7 1250 200 80 45.2 |  ------
(computational)
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obtained by using laser doppler anemometry. The velocity data are
tabulated in Appendix C.

Both computational papers assume axisymmetric behavior and a model
for the Reynolds stress. Boysan et al. [1982] used an algebraic
Reynolds stress model and Pericleous, et al. [1984] used a modified
Prandtl mixing length model. These results, which are sensitive to the
inlet and boundary conditions, will also be examined for similarity in
this chapter.

Because the similarity theory assumes that the viscous core is

driven by a tangential velocity having the form

= Kr ', r = 6*(2).

the experimental (and computational) data should also show this
behavior. The important idea is that K and N are independent of the
axial coordinate. Specific values of N and K are developed for each
data set.

Figure 8.2 shows the behavior of the tangential velocity in the
outer region for the data sets in Appendix C. The results of Dabir
(Indices 2a,b,c) and of Escudier (Indices la,b,c) show that N is
approximately -0.75. This is interesting because a Beltrami vortex (see
Section 2.2) also shows this type of behavior. However, the vortex
device studied by Kimber and Thew (Index 3) shows that N = -0.6; and, N
is about -1.0 for the two computational studies (Indices 4 and 5).

It is noteworthy that N and K do not change significantly with
axial position. For example, la represents data at z = 19.35 cm and

19.85 cm, whereas 2a represents three axial positions: z = 8, 20, and 32
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cm. For the data evaluated, N appears to be independent of the flow
rate and insensitive to the contraction ratio of the vortex chamber

(i.e., Do/D)‘ The coefficient K, however, is a strong function of Qo’

but not the contraction ratio Do/D (see experiments la - 1lc).

8 ow Re e
Following Eqs. (4.12) and (4.15), the values of ’'a’ and 'b’ are

defined by

qu(O,z)l |u°|

Ial - -
ua(S,z) KSN

and

L

N-1

Nl Rl @
o

§(z) can be eliminated between the above two expressions to give

o] B-DA (a0 T DA

¢(b,N) = 25 T @, 760)]
r=0

(8.1)

The right-hand-side of Eq. (8.1) can be estimated directly from
experimental (or computational) data. The left-hand-side can be
calculated theoretically.

Figure 8.3 shows the behavior of ¢(b,N) for 0 < b < 0.3 and three

values of N. Table 8.2 gives representative numerical values for
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Table 8.2 Theoretical evaluation of ¢ (N,b)

¢ (N,b)

N = -1 -0.75 -0.5
.03 0.00778 0.0219 0.0309
.04 0.000186 0.0708 0.0181
.05 0.0102 0.00124 0.0103
.06 0.0227 0.0 0.00555
.08 0.0915 0.00407 0.00119
.10 0.177 0.0176 0.0
.15 0.422 | eeeeee | aee---
.20 0.705 0.195 0.00881
25 | ae-- 0.333 0.0305
.30 1.33 0.498 0.0702
.50 —e-- 1.39 0.481
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¢(b,N). Figure 8.3 or Table 8.2 can be used to determine the value of
'b’ associated with a specific experimental flow. For the family of
curves shown in Figure 8.3, the zero of ¢(b,N) moves to larger values of

b for larger values of N. For negative values of u, (flow reversal),

the value of b will be located to the left of the zero of ¢(b,N);

positive values of u (forward flow) correspond to values of b to the

right of ¢ = 0.
Figure 8.3 can be used to predict the flow behavior for each of the
data sets in Appendix C. For example, the data set le has the following

characteristics :

(3u, /3r)|__y = 100 sl u = 27 em/s ,

K = 26 (cm/s)/cm® , N = -0.75 .

Eq. (8.1) implies that ¢ = 0.28 and, according to Figure 8.3, this
corresponds to b = 0.23 for N = -0.75. Thus, according to Figure 8.4, a
vortex flow with b = 0.23 has an undulated axial velocity profile. This
type of profile was also observed experimentally. The values of b
corresponding to the various experiments are listed in Table 8.3.

Figure 8.4 shows values of b vs. N for the experimental studies.
The two solid curves represent theoretical boundaries between the three
flow regimes : flow reversal, undulated, and jet-like. The symbols in
Figure 8.4 correspond to the flow behavior observed in the experiments.
When more than one axial position was used to determine b, an average
value of b was used to develop Figure 8.3. An error range for b is

given in Table 8.3. With the exception of Index 4 for which b =
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Table 8.3 Predicted values of b and flow behavior

Experimental Conditions Theory
N,K see Figure 8.2
Index
z (du /3r) u Flow Flow
0 r=0 o Structure b Structure
cm 1/s cm/s
la 19.35 160 -24 Reverse 0.025 £ 0.002 Reverse
19.85 -23
1b 19.35 360 3 Undulated 0.06 + 0.003 Undulated
19.85 10
lc 19.35 800 144 Jet-like 0.29 + 0.02 Jet-like
19.85 450
14 25.0 55
28.35 100 51 Jet-like 0.57 £+ 0.03 Jet-like
29.45 50
le 25.05 27 .4
28.35 100 25.6 Undulated 0.22 £+ 0.01 Undulated
29.45 23.8
1f 28.35 200 18 Undulated 0.10 £ 0.01 Undulated
31.65 140 15
1lg 21.65 300 -65 Reverse 0.015 + 0.001 Reverse
31.65 210 -52
2a 20 600 40 Undulated 0.09 + 0.01 Undulated
32 400 30
2b 20 1000 335 Jet-like 0.32 + 0.01 Jet-like
32 375
2c 20 1000 400 Jet-like 0.31 + 0.01 Jet-like
32 340
3 295 2100 0 Undulated 0.12 Undulated
4 19.8 730
26.4 850 410 Jet-like 0.08 + 0.02 Undulated
33.0 290




135

0.08+0.02, Figure 8.4 shows that the observed flow behavior is

qualitatively consistent with the similarity theory. Because almost all
of the calculated values of b are located in the same flow regime as
predicted by the similarity theory, this research may be very useful in

determining the actual flow behavior of the vortex core.

S caling O e Ce e Velo

The centerline axial velocity, uz(O,z), follows from Eq. (4.12) by
letting n = 0 :

u_(0,2) = ak(vz/K)V/ (N2 _ u, (8.2)

In Eq. (8.2), z is the distance from the singular point. Measurements
of u, in the laboratory are relative to an arbitrary reference point,

rather than the intrinsic singular point of the theory. Because the
similarity theory predicts that the magnitude of the centerline axial

velocity decreases as z increases, it is necessary to orient the
reference coordinate z in the same direction as the intrinsic coordinate

z. Thus, in Figure 8.1, Z must be chosen in the direction of decreasing

|uz(o,z)|, and this is determined experimentally.
If z represents the origin (i.e., singular point) of the
similarity theory relative to the laboratory reference point, then z,

may be either positive or negative. Thus, with
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Eq. (8.2) can be rewritten as

u = aK(u/K)N/(N+2)[(E ) zo)]N/(N+2)
or, equivalently, as
lu | DN o (|aly DN my iz - 2 (8.3)

I(N+2)/N
o

A plot of |u vs. z will provide

)(N+2)/N

slope = (IaIK (v/K)

and

z =z at |u |F2DN
(o] o

= 0 (extrapolated). (8.4)
Figure 8.5 shows how the above expression can be used to estimate

z, from experimental values of u - The table in Figure 8.5 lists the
values of z, determined in this manner. Because the data follow the

predicted behavior defined by Eq. (8.3), Figure 8.5 provides additional
evidence that the similarity theory can be used to describe the viscous

core of confined vortex flows.

8.4 t ng Of The u omentum Profile
The similarity theory requires the local circulation, or axial

component of angular momentum, to follow the scaling law

ruo(r,z) r

5(zyu_(2) - FG@))
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1 1/(N+2)

Because (see Eqs. (3.37) - (3.38)) Suc « 6N+ and § < z ; a plot

of (ruo)/(z(N+1)/(N+2)) vs. r/(zl/(N+2)) for different values of r and z

should fall on the same curve. Figure 8.6 and 8.7 show that the data
for Index 1ld and Index 2a (see Table 8.1) fall approximately on the same
curve, which indicates that a similarity structure obtains.

All of the experimental velocity profiles used in this chapter fall

outside the region about the singular point where the pressure is
negative. With z° defined by p(0,z°) = 0, Eq. (4.19) in Chapter &4 can

be used to determine z° for a specific data set. For example, for the
data presented in Figure 8.6, the parameter ’'b’ was estimated to be

about 0.57 (see Table 8.3, Index 1d). From Figure 8.2, N = -0.75 and K
= 11 (cm/s)/cmN. A theoretical estimate for ’'c’ follows directly from
Figure 7.3 : for b = 0.57, ¢ = 0.13. Therefore, if p° = 1 atm (1.01

bars) and if K/v = 340 cm” 1) (see Table 8.4), then z° = 0.034 cm (see

u

Eq. (4.19)). The smallest value of z used in Figure 8.6 is 10 cm >> 2°.
Similarly, z° = 3.1 cm for the data analyzed in Figure 8.7, which is

much smaller than z = 20 cm.

v mate
Eq. (4.15) relates b to the viscosity coefficient v. Thus, once b,

K, N, L and the angular velocity at the axis have been determined, the

viscosity coefficient can be calculated from
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N+2

2(8u, /3r)|__
K [ r=0 N-1

vV o= ( )
~ bK
(z - zo)

Table 8.4 gives the values of v for each experimental data set in
Appendix C.

For data sets la - c, the viscosity coeffient was found to be about

0.11 cmz/s. Obviously, v cannot be interpreted as a fluid parameter
inasmuch as the molecular kinematic viscosity for liquid water is about
an order of magnitude smaller. Thus, the similarity theory applied to
laboratory scale vortex flows should be interpreted as a mathematical
model for the mean field with a Boussinesq approximation for the shear
components of the Reynolds stress (see Chapter 1, Hinze, 1975).

The boundary layer approximations used in Chapter 3 only retained
the rf§ - and rz - components of the viscous stress. Thus, a consistent

extension to the mean field equations for turbulent flows requires

' , 3 <u0>
<ur u, > = - v T s T ) | (8.5)

and

a<u > a<u >
, z r

’
<u.r u, > = - ve( 7T + 32 ) (8.6)

’

where <uo> and u, represent, resp., the mean and fluctuating components

of the tangential velocity. The turbulent coefficient of viscosity (or

"eddy" viscosity) appearing in Eqs. (8.5) and (8.6) depends on the flow
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Table 8.4 Viscosity estimates based on the similarity theory

Flow Conditions
K, N see Table 8.2

b see Table 8.3
z  see Figure 8.5 Viscosity
Index Coefficient K/v ,
Flow rate Contraction Flow
Ratio Regime
Q, - cm3/s D,/ D v, cmz/s em” (N+D)
la 0.73 Reverse
1b 400 0.45 Undulated 0.11 + 0.01 620 £ 60
le 0.18 Jet-like
1d 100 Jet-1like | 0.034 £ 0.003] 324 * 30
le 200 Undulated | 0.075 * 0.07 346 * 35
1f 411 033 Undulated 0.11 + 0.01 427 * 50
lg 850 Reverse 0.062 * 0.004| 1500 * 100
2a 0.34 Undulated
2b 140 0.17 Jet-like 1.1 0.3 246 £ 70
2c 0.16 Jet-like
3 40 0.25 Undulated 0.049 1300
4 1370 0.40 Jet-like 50 + 18 60 * 18
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and may change significantly with either r or z (see, for example, Bloor
and Ingham [1984]). Here, however, v, must be considered constant.

Table 8.4 indicates that the contraction ratio Do/D' which
determines the type of flow regime in the vortex core, does not affect
the "eddy" viscosity Vg (= v). However, as the flow rate decreases (see
indices 1d - 1g), the estimated value of v changes from 0.062 cm2/s at
Qo = 850 cm3/s to 0.034 cm2/s at Qo = 100 cm3/s. The experiments of
Dabir (Indices 2a - 2c¢) yield values of Ve about an order of magnitude

larger than observed by Escudier at lower flow rates. It is noteworthy

that both Dabir’s and Escudier’s data show that v, may not be affected
by the contraction ratio DO/D. The experiments of Kimber and Thew

(Index 3) are also consistent with the above results and give Ve = 0.049
cmz/s for Qo = 40 cm3/s and Do/D = 0.25. The computational results of

Boysan (Index 4) suggest that Ve = 50 (#18) cm2/s for Qo = 1370 cm3/s.

8.6 Entrainment Rates

A dimensionless entrainment rate into the vortex can be calculated

from Eq. (3.43),

1 dq

70 dz - h(n*). (8.7)

For fixed values of N and b, h(n*) is uniquely determined by the

similarity theory (see Chapter 7, Figure 7.6). The local volumetric
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flow rate Q(z) at various values of z (or z, see Figure 8.1) can be

calculated from

5% (z)

Q(z) = 2x uz(r,z)rdr

*
where § (z) corresponds to u, = 0. The actual graphs for uz(r,z) at

different axial positions presented by Escudier et al. [1980, 1982] were

very small and difficult to read. Estimates for u, obtained from these

figures, which have been tabulated in Appendix C, are subject to error.
A rough judgment is that Q can only be determined to within 30 % using
this information.

Figure 8.8 illustrates how dQ/dz was determined from the
experimental data, a process which introduces significant error.
Nevertheless, a dimensionless entrainment rate was estimated by using

the values of v listed in Table 8.4; the results are shown in Figure
8.9. Figure 8.9 compares the theoretical values of h(n*) corresponding

to (b,N) with the experimental estimate of h(n*) using Q(z) and v (see

Eq. (8.7)). Although the correlation between these two methods for

*
determining h(n ) is less than desirable, Figure 8.6 provides a critical

test of the similarity theory.
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CHAPTER 9

PARTICLE EQUILIBRIUM ORBITS WITHIN THE CORE

REGION OF VORTEX FLOWS

9.1 Background

An important application of swirling flows is the separation and
classification of very fine particles. O0il - water separation and coal
beneficiation are significant examples. Hydrocarbon contamination of
the oceans by oil tankers and offshore platforms is obviously
undesirable, and an efficient process for removing small amounts of
crude oil from a continuous phase could lessen the enviromental impact
of these energy sources. Equipment already exist for cleaning oily
water but, unfortunately, these filter-coalescer systems require long
residence time and are typically large in size and mass, a feature which
is especially bothersome on offshore platforms where space is limited.
An oily water clean-up system with a large throughput and a short mean
residence time is clearly desirable and Colman et al. [1980] have
suggested that hydrocyclones be used for this application.

Thew and his coelleagues (see, Colman and Thew, 1980; Colman et
al., 1980; Smyth et al., 1980; Colman and Thew, 1983; Smyth et al.,
1984; Thew et al., 1980; Kimber and Thew, 1974) over the past decade
have been studying the possibility of using hydrocyclones for oil/water
separations. To stabilize the central vortex region within the
hydrocyclone, they have developed the concept of a co-axial withdrawal

of fluid through the vortex finder (Colman and Thew, 1980). With this

147
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modification, they were able to increase the ratio of the overflow
concentration of dispersed component (by volume) to the feed
concentration from 20 : 1 to 160 : 1 in a 30 mm cylindrical

hydrocyclone. The experiments were developed for Kuwait crude with

density equal to 0.86 g/cm3; mean particle diameter, 41 microns; and,
feed concentration, 1000 ppm by volume. Earlier, Kimber and Thew [1974]
studied the separation of Roxstone oil from water with drop sizes in the
range 40 - 50 microns. They were able to separate 90 % of the oil. For
the hydrocyclone design shown in Figure 8.1 (design c), Colman et al.
[1980] obtained 99% separation for a drop size of 55 microns, but only
75% separation for 23 microns. They used Forties crude with the

following physical properties : pp = 0.84 g/cm; feed concentration =

1000 ppm. Similar effects were observed for Kuwait crude. Obviously,
the particle size plays a critical role in the performance of
hydrocyclones. More recent design modification have been developed at
Southampton University, U.K. (see Colman et al., 1980) with some
additional improvements in separation performance, but the ubiquitous
drop in efficiency for particle sizes between 20-40 microns remains. 1Is
this phenomenon a result of the specific design or an intrinsic property
of the flow structure of a viscous vortex ?

The above results of Thew partly motivated the investigation of
this chapter, which explores the behavior of very fine particles in a
vortex flow. The model developed in Chapter 7 is used to calculate the
equilibrium orbits of spherical particles and to develop some
understanding of how the complex flow patterns within a viscous vortex
could possibly account for the apparent low efficiency of separation of

very fine particles.
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Within a cyclone separator, particles with densities larger than
the continuous phase migrate to the outer region and are removed by a
helical flow directed toward the underflow. Likewise, particles with
densities less than the continuous phase migrate toward the core of the
vortex and are removed by an upward helical flow. The viscous drag on
very fine particles (<< 500 microns) resist the relative migration due
to differences in density and may, in some situations, balance the net
centrifugal force acting on the particles. Thus, if the particle
residence time within the vortex is sufficiently 1long, then equilibrium
orbits may occur. Many investigators (see p.44 Svarovsky, 1984) have
used this idea to study the effect of hydrodynamic parameters on the

separation performance of heavy (i.e., p_ > pf) particles inasmuch as in

P

the outer region of the vortex field an inwardly directed radial flow
drags the particles away from the conical wall. An analogous phenomenon

may also occur for light particles (i.e., pp < pf) in the central core

region of a hydrocyclone operating without an air core (see Dabir and

Petty, 1984b; Listewnik, 1984; and, Chen and Petty, 1986).

9.2 Theory

Criner and Driesser (see p.44 Svarovsky, 1984) first proposed the
concept of the equilibrium orbit. According to this concept, a particle
in a hydrocyclone flow achieves an equilibrium orbit at a radial
position where its terminal settling velocity equals the radial velocity
of the continuous phase. If the equilibrium orbit lies inside the locus
of zero axial velocity, the particle leaves the cyclone through the

vortex finder (see Figure 8.1) due to the upward motion of the fluid.
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Otherwise, it moves toward the underflow due to the downward motion of

the fluid. In this study, several assumptions are made :

1. The axial and tangential components of the particle velocity
are the same as the continuous phase;

2. The discrete particles are spherical and pp < Pes

3. Particle acceleration times are small, so the viscous drag on
the particle balances the net centrifugal force on the particle
everywhere in the flow field; and,

4. Stoke’'s law applies (see, p.59 Bird et al., 1960).

Because pp < Pgs the net centrifugal force acting on the particles

is directed toward the axis and has a magnitude given by

3 2

)
Fe =76 (P

)T > 0. (9.1)

In Eq. (9.1), dp represents the diameter of the particle with density

Poyi Pg denotes the density of the continuous fluid phase. u, is the

P

tangential velocity of the fluid.
The viscous drag on the particle is directed away from the axis if

u_ > u__, and toward the axis if u_ < u__. The magnitude of this force,
r 134 r pr

according to Stoke’'s law, is

FV - 31rpdp(ur - upr) (9.2)
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where upr represents the radial component of the particle velocity and p

is the molecular viscosity of the fluid. The difference between the

fluid and particle velocities is often called the "terminal" velocity.
Svarovsky [p7, 1984] argues that the time needed for a particle to

achieve its terminal settling velocity is very small (= milliseconds).

Therefore,

F =F (9.3)

is a good practical approximation in the entire flow field.

Egs (9.1) - (9.3) imply that

u_=u_ -1 — (9.4)

where the characteristic time fp for the particle is given by

1- =) (9.5)

The sign of upr obviously depends on the relative magnitudes of u. and
rpuoz/r. Obviously, if ur<rpu0%/r,the particle migrates toward the

axis. 1If on the other hand u. > rpuoz/r, then the particle moves away

from the axis. The equjilibrjum orbjit is defined by

upr(rE,zE) = 0. (9.6)
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From Eq (9.4), this implies that

ur(rE.zE) - Tp T (9.7)

Eq. (9.7) defines the locus of points (rE,zE) in the flow domain for

which Eq. (9.6) holds. The radial and tangential components of the
fluid velocity can be related to the previously developed similarity

theory (see Table 3.2 and Chapter 7)

dé h .
u, = uca;(h - (N+2);) (9.8a)
F
ug = u, ; (9.8b)
N
u, = Ké (9.8c)
1
v z
¢ N2
§ = ( X ) (9.84d)

The viscosity coefficient which affects the relaxation time fp is the

molecular kinematic viscosity of the fluid. The viscosity coefficient

vein the similarity parameter §(z) should be interpreted as an "eddy"”

viscosity (see Section 8.5).
By inserting Eqs. (9.8a) and (9.8b) into Eq. (9.7) and rearranging

the result, it follows that
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h
rpuc n(h’ - (N+2);)
ds - F 2 (9.9)
6 —
4z J,mz €3) n=n
E E

The left-hand-side can be interpreted as a intrinsic Stokes’ number (cf.
Svarovsky, p8). It depends explicitly on the properties of the

particles (dp’ pp/pf), the intrinsic properties of the continuous phase
(p, pf). and the parameters used to characterize the vortex flow (N, K,
ve) . The right-hand-side depends explicitly on N and the dimensionless

spin parameter b (see Eq. (4.15)). Thus, for a given similarity surface

ngs Eq. (9.9) gives an expression for z Because n = r/6§(z), the

E'

corresponding value of rp can easily be calculated as

V.2 1
E"E N 2
rE - qu(zE) - ﬂE(—T(—) (9-10)

Thus, with the Stokes number for an arbitrary similarity surface defined

by

h

n(h’ (N+2); )

Sk(n;b,N) = (9.11)

2 ’

o]

(37 n=ng

it follows from Eq. (9.9) that
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r RO+2)z_[6(z) 1V 2 = Sk(n_;b,N)
P E E E’?
which easily rearranges to

Sk(ng;b,N)

z (9.12)

g~ ¢ TV e (2) )

Thus, for a given similarity surface ng Eqs. (9.10) and (9.12)

determine the position of the equilibrium orbit, defined by Eq. (9.6),

for a given set of physical parameters : N, b, K/ue, 'pue. The set of

*
points (rE,zE) calculated for 0 < ng < n (b,N) defines the equilibrium

orbit surface for a specific flow structure.

9.3 a t The u urfa

An equilibrium surface consists of all points (r E) in the flow

g2
domain for which the terminal velocity of the dispersed phase equals the
local velocity of the fluid phase. The equilibrium surface is locally
stable if a particle in the neighborhood of the surface tends to move
toward the surface. It is locally unstable if the particle moves away
from the surface. For a given flow situation, the equilibrium surface
can be very complex. It may have regions which are locally unstable and
regions which are stable. Figure 9.1 illustrates the above stability
definition and Figure 9.2 shows the type of behavior which occurs for
forward flow and reverse flow vortices.

Figure 9.1 shows a portion of an equilibrium surface. Above the

surface, the radial velocity of the dispersed phase is outward; and,
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below the surface, the radial velocity of the dispersed phase is inward
(see Eq. (9.4)). Thus, points 'A’ and ’'B’' are unstable because they
tend to leave the local neighborhood of the equilibrium surface and, as
indicated, points 'C’ and ’'D’ are stable.

Figure 9.2 illustrates in more qualitative detail the geometry of
the equilibrium surface for a forward flow vortex (a > 0) and a reverse
flow vortex (a < 0). It follows directly from Eq. (9.4) that on the

axis upr = (0, because both u. and u, are zero. Because u. < 0 near the

axis for reverse flows (see Section 4.2), the set of points rp = 0, 0 <
zp < o represents stable orbits provided a < 0 (reverse flow).
For forward flow, u. > 0 near the axis and eventually exceeds

rpuaz/r for large values of z. This value, defined as g, follows

directly from Eqs. (9.11) and (9.12) by setting ng = 0 :

a
Sk(O;b,N) = -2N——§ (9.13)
b
2 N+2 N-2
. -2Na/b® =— K =—
2N 2N
zp = ( 7;E?ﬁ157 ) (—;;) . (9.14)

A

Numerical calculations show that for z > Zp, U, > rpuaz/r near the axis;

A

2
and, for z < Zg, U, < fpua /r near the axis.

Figure 9.2 shows multiple equilibrium orbits for a fixed axial

position. Below z the orbit is unique for both situations and

E,min’

occurs on the axis. For z > zE min and a < 0, three orbits exist.
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Stable solutions occur on the axis and on the branch near the outer

surface of zero radial velocity. An wunstable solution occurs near

A

the inner surface of zero radial velocity. For a > 0 and z > zg, an

unstable orbit occurs on the axis (as previously mentioned) and a stable
solution exist near the ’'mantle’, defined by u_ = 0. For z <z, <
T E,min E

A

zg and a > 0, three solutions exist (see Figure 9.2a). For larger

values of b, this region disappears and the branch leaving the axis at

A

zp is stable. The surface zE(rE) in this case has a parabolic

structure.

2.4 Results

The dimensional equilibrium surface (r E) can be constructed for

E'?

The dimensjonless

a specific set of parameters b, N, K/ve, and rpve.

parameters b and N uniquely determine the similarity structure of the
vortex: jet-like flow, undulated flow, or reverse flow (see Figure 7.2).
Because the experimental studies of Dabir [1983] and Escudier et al.
[1980, 1982)] correspond to N = -0.75 (see Figure 8.2), this value of N
is used in the parameter calculations presented here. The effect of the
flow structure on the quantitative behavior of the equilibrium surface
is examined for b = 0.03 (flow reversal), b = 0.10 (undulated flow), and
b = 0.30 (jet-like flow). Although the empirical dimensional parameter

K/ve may depend implicitly on b (see Table 8.4), a nominal value of 500

cm” (N+1) is used for the equilibrium orbit calculationms.
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The numerical value of "pue depends on several physical properties

and, most importantly, the particle diameter dp. Eq. (9.5) implies that
d 2 v
P e

rpve - 18 (1 - pp/pf) o (9.15)

Figures 9.3 - 9.5 show the equilibrium surfaces calculated using Egs.

(9.10) and (9.12). Three different values of fpve are presented for

each flow situation; Table 9.1 relates these values to a specific

particle size, density ratio, and ue/u. The dimensionless Stokes

number, defined by Eq. (9.11), parameterizes each equilibrium surface

for a fixed value of fpVe. The magnitude of Sk(ryE;b,N) at

representative points are indicated on each curve.

9.5 Discussion
Figure 9.3 shows an equilibrium surface for jet-like flow (b = 0.3,

see Figures 7.7 - 7.9). As previously discussed, stable orbits only

A

exist on the axis for z < Zg and on the branch near the outer surface of

the zero radial velocity (see Figure 9.2a). Therefore, a particle with
diameter 32 microns (see Figure 9.3 for other parameters) will obtain
its stable orbit through two possible ways. If the particle reaches the

stable axis first, it will follow the axis and move upwards until it

A

reaches zg. Above that point, the particle will move away from the

axis; if the residence time is long enough, the particle will reach the

outer equilibrium surface and continue to move upwards and away from the
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Table 9.1 Parameter used to calculate the equilibrium surfaces

N =--0.75 , K/v, = 500 em” 1/4
pp/pf = 0.9 , ve/u = 10
8 2
b rv x 10, cm d_ , microns
p e P
(nominal)
2.21 6.3 (6)
0.3
jet-like flow 13.87 15.8 (16)
Figure 9.3
55.56 31.6 (32)
2.21 6.3 (6)
0.1
undulated flow 55.56 31.6 (32)
Figure 9.4
221.90 63.2 (63)
55.56 31.6 (32)
0.03
reverse flow 221.90 63.2 (63)
Figure 9.5
889.01 126.5 (127)
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axis. The particle may, however, move directly to the outer stable
surface, depending on how it enters the vortex flow.

Figure 9.3 shows that the equilibrium surfaces for large particles
are positioned at large values of z and that all the equilibrium
surfaces become asymptotic to the surface of zero radial velocity.
Therefore, for constant Zp» smaller particles have larger stable

equilibrium orbits and are closer to the outer surface of zero radial

A

velocity. The value of zg (see Figure 9.2a) increases as clp increases.

A

For 32u, 16u, and 6u size particles the corresponding values of z p are,

resp., 17.2 cm, 5.4 cm, 1.2 cm (see Figure 9.3 and Eq. (9.14)).

Likewise, the values of Zg nin decreases from 15.5 cm to 0.9 cm as dp

changes from 32 u to 16 u.
The intrinsic Stokes’ number, defined by Eq. (9.11), can also be

calculated by rearranging Eq. (9.12):

4 2N

N+2_ N+2
z

E (9.16)

Sk = 7oy, (142) (K/v,)

Thus, for a fixed equilibrium surface, the value of z (see Figure

E,min
9.2) will produce the maximum value of Sk. This occurs because N < 0.

For the case shown in Figure 9.3, Sk

nax equals 11.6 for dp = 324 and

8.9 for d_ = 6u.
(e} P b

For undulated, forward flows, the behavior of the equilibrium
surface (Figure 9.4) is very similar to the equilibrium surface for jet-

like, forward flows. A positive radial velocity always occurs near the
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axis (see Figure 7.9), which makes the existence of equilibrium orbits

A

possible. The values of Zg, compared with Figure 9.3, are only reduced

slightly: 13.4 cm for 32 u particles (17.2 cm in Figure 9.3) and 1.0 cm
for 6 u particles (1.2 cm in Figure 9.3). However, the minimum value of

z,, decreases significantly from 15.5 cm to 3.2 cm for 32 u particles

E
when b decreases from 0.3 to 0.1.

The equilibrium surfaces for reverse flow are topologically
different from jet-like and undulated flow (Figure 9.5). Because a
negative radial velocity always exists near the axis (see Figure 7.9),
particles in the vicinity of the axis will always move inward toward the
axis. Two mantles of zero radial velocity exist for reverse flow, and
equilibrium surfaces can only exist between these two surfaces.

Although at z (see Figure 9.2) three equilibrium orbits exist,

E ~ %E,min
only two are stable: one on the axis and the other on the branch near
the outer surface of zero radial velocity. Therefore, if the
equilibrium orbit concept ultimately determines the location of a
particle in the flow field, then it may move either upward following the
outer surface or downward following the axis. The two possibilities
depend on how the particle is introduced into the vortex flow. The

position of Zg min is about 8.0 cm for 127y and becomes smaller as the

’

particle size decreases. For dp = 324, is about 0.8 cm, a twenty

zE,min
fold decrease as the flow field changes from jet-like behavior (b = 0.3)
to a reverse flow behavior (b = 0.03).

The effect of N on the equilibrium surfaces is also significant.

By comparing Figures 9.6 and 9.3, the local minimum orbit occurs at z =

A

zg for N = -1.0, but is off the axis for N = -0.75. The size of the
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mantle reduces by almost half when N decreases from -0.75 to -1.0; and,

A

the valuesof z_ for 6u particles increase from 1.2 cm to 8.4 cm.

E

Because rp « dpz. it follows from Eq. (9.14) that

Thus, for large values of N, the flow field has a much sharper
classification effect on the particles. For example, if N = -1/2, then

zp « dp% which shows that the axial position of the equiiibrium

surfaces is relatively insensitive to particle size for small particles,

but change significantly for large values of dp'

As discussed in Chapter 7, b uniquely determines the similarity
structure of the flow for a given value of N. The effect of b on the
structure of the particle equilibrium surfaces is clearly seen by
comparing Figures 9.3 - 9.5. For large values of b, the size of the
outer mantle becomes smaller, and the particles move closer to the axis.

At z_, = 30 cm and dp = 324, the equilibrium radius decreases from 1.2 cm

E

to 0.4 cm as b increases from 0.03 to 0.3. Also note that for dp = 32u,
the local minimum equilibrium orbit (zE,rE)min changes in units of cm

from (15.4, 0.15) to (0.8, 0.025) as b decreases from 0.3 to 0.03.

The equilibrium orbit theory studied in this chapter provides
useful insights provided the major assumptions are satisfied. There
are, however, some limitations which should be discussed. For instance,

the model assumes that Stoke'’s law is valid, which implies that the
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particle Reynolds Number is less than unity (see p.68 Bradley, 1965).

The particle Reynolds number, defined as

dp|ur - uprl
Re = , (9.17)
P v

can be roughly estimated on the equilibrium surfaces where the terminal

velocity equals the radial velocity of the fluid. For dp = 32y (0.0032

em), b = 0.3, N = -0.75, K/v,_ = 500 em0-23

, pp/pf = 0.9, and ue/u = 10,
the maximum value of u., 2 cm/s, occurs on the similarity surface ng = 2
(see Figure 7.9). This corresponds to zp = 15.6 cm on the equilibrium
surface (see Eq. 9.12 and Figure 9.3). Therefore, the maximum value of

Rep is about 0.64 (v = 0.01 cmz/s), which shows that Stoke’s law is a

reasonable approximation in the neighborhood of the particle equilibrium
surface.

The model also assumes a balance between the centrifugal and
viscous forces. Other forces, such as gravity, acting on the particle

are neglected. For dp = 324, the maximum tangential velocity occurs for

ng = 3.5 and zZp = 20 cm (see Figures 7.7 and 9.3) and is about 1200

cm/s. Therefore, the centrifugal force acting on the particle at zp =
20 cm, rg = 0.3 cm is 0.0093 g.cm/sz. The mass of the 32y size particle
(pf - 0.9 g/cms) is 1.7x10 'ag, so its centrifugal acceleration (Fc/mp)

is 5.42x105 cm/52 or about 550 times larger than the acceleration due to

gravity.
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9.6 Conclusions

The following conclusions result from the calculations presented in
this chapter:

A. For a fixed cyclone geometry, large particles are probably not
limited by their equilibrium surfaces because they occur at relatively
large values of z. However, small particles are more likely to follow
their equilibrium surfaces, which approach the outer surface of zero
radial velocity, or ’'mantle’.

B. This model predicts the existence of equilibrium orbits for the
entire range of b studied.

C. Different flow behavior will have different types of equilibrium

surfaces; the location of these surfaces change significantly with b and

N.

D. For forward flow on the axis, the axis is stable only when z <
zg; however, it is always stable for reverse flow because u. < 0 near
the axis.

E. The effect of N on the classification of particles is very

significant. From Egqs. (9.14) and (9.5),

z,xd for N = -1

E P

~ 5/3

zp « dp for N 3/4

z, « dp3 for N = -1/2

Thus, for larger values of N, the flow field has a much sharper

classification effect on the particles. The axial position of the
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equilibrium surface for larger values of N is relatively insensitive to
small particles but changes significantly for large particles.
F. Because 'a’ is almost proportional to 'b’ at large values of ‘b’

(see Figure 7.3) and because

N+2
A a _2N‘
zp « ( 3 ) , it follows that
b
N+2
zg (b) 2N

A

Thus as 'b’ increases, z, increases because -1 < N < 0. Therefore, a

E

A

stronger rotation around the axis provides a large Zps provided b does
not affect K/ve.

As previously discussed (see Section 9.1), the efficiency of a 3"-
hydrocyclone drops sharply when the particle size approaches 20 - 40
microns. The model developed here may provide a theoretical explanation
for this phenomenon because small particles are more likely to be
limited by their equilibrium surfaces. Thus, in the apparatus of Colman
et al. [1980], the jet-like behavior shows a very high efficiency for
capturing the large particles because their trajectories in the vortex

are not limited by equilibrium surfaces. However, as dp decreases and

the geometry and flow parameters remain the same, the efficiency is
expected to drop as the particle size decreases because the equilibrium

surface will cause the particle to miss the vortex finder.
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This theory provides new information which can be used for light
particle separation in vortex flows. The equilibrium surfaces can be

located by knowing the properties of the particles (dp,pp/pg, the
intrinsic properties of the continuous phase (p,pf), and the parameters
used to characterize the vortex flow (b,N,K,ue). The stability of the

equilibrium surface (see Section 9.3) yields important information about
the ultimate location of the particles. The results show that the
stable surfaces always approach a surface of zero radial velocity for
large values of z. Thus, once the above parameters have been estimated,
the relationship between the separation efficiency and the hydrodynamics
can be quantified. The efficiency can be improved by either adjusting
the size of the outlet vortex finder or by adjusting the strength of
rotation around the axis, which may be controlled by the inlet velocity.
A relationship between the separation efficiency, the size of the vortex
finder, and the inlet velocity could be developed experimentally and the
results used to study certain aspects of this theory. It is clear from
the quantitative calculations presented that a single design and set of
operating conditions cannot give the same separation efficiency for all
particle sizes. However, a more explicit connection between the design,
the hydrodynamics, and the performance of hydrocyclones should be

beneficial.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary Discussion

Some experimental observations, as discussed in Section 1.1,
suggest that a similarity theory could be used to describe the flow
structure in the core region of swirling flows. Among these
observations are the algebraic decay of the centerline velocity, the
free-vortex-like swirl velocity in the outer region, and the nonlinear
growth of the viscous boundary layer.

Model II, motivated by these experimental observations (see Section
4.1), has the feature of variable circulation on similarity surfaces by
using a more general vortex in the outer region (see Eq. (3.21)). The
boundary conditions require that a zero axial velocity and free-vortex-
like swirl velocity occur at the same core surface. Although these
assumptions may not be true for some vortex flows, the theoretical
results are consistent with many experiments (see Dabir, 1983; Escudier
et al., 1982, 1984).

The results have revealed the existence of various flow structures
in the vortex core. Three types of flow behavior (reverse, undulated,
and jet-like flow) were identified experimentally and theoretically (see

Figure 7.8). A study of the solution behavior near the axis provides

-----

4.1), which can be determined uniquely by one of the four parameters

172
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local spin parameter (’'b’), "excess" pressure on the axis (’'c’),

centerline axial velocity ('a’), and size of vortex core (n*) as well as
K, v, and N.

The analysis of the "excess" mechanical energy and the axial forces
acting on a fluid particle on the axis has revealed that transition from

reverse flow to undulated flow occurs when the inertia force (FI) is

zero and the excess mechanical energy (E) is negative. However, the
transition from undulated flow to jet-like flow occurs when the viscous

force (FV) and excess mechanical energy are both zero.
The parameters K and Ve affect the behavior of the flow. As K/ve

increases, the length scale (§) decreases (see Eq. (3.38)) and the

velocity scale (u ) increases (see Eq. (3.37)). For K/v_ = 500 cm'o‘zs,

Ve = 0.1 cmz/sec, b=0.3, N=-0.75, z = 15.6 cm, and n = 2 (see

Section 9.5), the axial, tangential, and radial velocities are estimated
as 200 cm/sec, 96 cm/sec, and 0.4 cm/sec, resp.. In general, the
magnitude of the radial velocity is much smaller than the magnitude of
the axial and tangential velocities. For the data evaluated (see
Chapter 8), N appears to be independent of the flow rate and insensitive
to the contraction ratio of the vortex chamber. The coefficient K,

however, is a strong function of the flow rate (Qo), but not the
contraction ratio (Do/D)'
For N = -1, the macroscopic axial thrust (Fz) is independent of the

axial coordinate. However, for N » -1, the macroscopic axial thrust is

zero at the singular point and increases as z increases.
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Circulation is another feature which is quite different for N = -1
and N » -1. A constant circulation on similarity surfaces always occurs
for N = -1 (see Section 6.1). However, for N » -1, the circulation on
similarity surface (constant n) increases as z increases.

The distribution of axial component of vorticity on the axis

wz(O,z) in this study varies along the axis and is uniquely fixed by

'b’. For N = -1, wz(O,z) is proportional to z'z. However, in the

theoretical study of Ingham and Bloor, 1984, the certerline vorticity is
independent of z.

The tangential velocity profiles in this study always show a
Rankine - type structure with a forced vortex near the axis and a free-
vortex-like flow in the outer region. It is found that as b increases,
the fraction of the cross sectional area of the vortex in solid body
rotation decreases. the radial velocity, however, is quite different
for various flow structures. This study revealed that positive radial
velocities near the axis always occur for forward flow, whereas
negative radial velocities result for reverse flows (see Figure 7.9).

The forward flow on the axis in this study is always against an
adverse pressure gradient (see Section 4.2). There will always be a

region near the singularity point for which the pressure is less than

zero. This region (z°), from previous specific calculations (see
Section 4.2), is estimated to be about 8 cm for a gas vortex and 5.6 cm
for a liquid vortex. In general, they are much smaller than the length

of the vortex chambers for most of the experiments studied. Therefore,

data for z > z° are used to compare with theoretical calculations (see

Chapter 8).
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Similarity scaling (see Section 1.1) implies that the total
dissipation for N = -1 is always unbounded. However, for N » -1, this
study revealed that the total dissipation is unbounded for -1 < N s -2/3
and is bounded for -2/3 < N < 0. As 'b’ increases, the macroscopic flow
rate decreases. This is also true for the macroscopic axial torque;
however, the macroscopic pressure drop increases as 'b’ increases.
Although the macroscopic axial thrust does not uniquely determine the
flow behavior, the macroscopic pressure drop determines uniquely the

flow structure.

10,2 Conclusions

The major conclusions of this study can be summarized as follows :

(1). This study predicted quantitatively the various flow
structures for a viscous vortex (see Figure 7.1 and 7.2). The range of
b for reverse and undulated flow behavior broadens as N increases.
Transition values of b for three types of flow structures become larger
when N is larger (see Figure 7.2).

(2). The viscous boundary layer increases linearly with the axial
coordinate for Model I (§ « z) and is parabolic-like for Model II (§ «

zl/(N+1) ). Model II reduces to Model I, with only some minor

differences (see Figure 7.1), when N = -1,
(3). The study of macroscopic properties revealed that the

macroscopic axial force, Fz’ did not uniquely determine the flow

structure (see Figure 7.10). The macroscopic pressure drop, however,
uniquely determines the flow behavior because its one-to-one

relationship with the local spin parameter, b (see Figure 7.13). For
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fixed b, a larger value of N causes a larger macroscopic pressure drop,

A; (see Figure 7.13).

(4). N appears to be insensitive to the flow rate and the
contraction ratio of the vortex chamber (see Figure 8.2 and Table 8.1).
An interesting result is that N has a value near -0.75 for most of the
experimental data analyzed and is, thereby, consistent with a
theoretical analysis for Beltrami flows in the outer region.

(5). Model II, which considered flow structures induced by a more
general flow (-1 s N < 0), has the feature of variable circulation on
similarity surfaces. For the same similarity surface (constant n), the
circulation increases as ’'b’ increases (see Figure 9.5). For fixed 9
and b, large values of N cause an increase in the circulation (see
Figure 9.5).

(6). This study revealed that the macroscopic dissipation for Model
I is unbounded. However, the total dissipation for Model II is
unbounded for -1 < N < -2/3, but bounded for -2/3 < N < 0.

(7). The pressure on the axis always increases in the direction of
increasing axial position for any type of flow behavior. A negative
pressure, which exists near the singularity point, is estimated to be
the same order of magnitude for gas and liquid vortices (see Section
4.2). However, it is an order of magnitude smaller than the length of
many experimental vortex chambers (see Dabir, 1983; Boysan et al.,
1982; and Escudier et al., 1980, 1982).

(8). The effect of N on the size of the viscous core is

significant. When N increases, the size of the core decreases (see n*
in Table A.2 to A.4) for fixed b. Therefore, a more coherent core will

occur at larger values of N for fixed b.
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(9). When N increases, the lower limit on b for undulated and jet-
like flows becomes much larger (see Figure 7.2). Therefore, in order to
keep jet-like behavior, a stronger rotation on the axis (large b) is
necessary for larger values of N.

(10). This study, for the first time, provides a way to understand
various flow structures through the excess mechanical energy and force
balances on a fluid particle on the axis (see Section 6.5). The viscous

force and the substantial time derivative of excess mechanical energy

A

(DE/Dt) have to change sign when the flow transfers from jet-like to

undulated behavior. However, the flow transfers from undulated to

A A

reverse behavior only if DE/Dt changes sign.

(11). The estimates of viscosity coefficient of various experiments
based on this study have revealed that the viscosity coefficient cannot
be interpreted as a molecular kinematic viscosity, instead it should be
considered as a constant eddy viscosity (see Chapter 8).

(12). This study, for the first time, provides a possible
explanation why the separation efficiency of hydrocyclones drops sharply
as the particle size of a light disperse phase decreases. Because the
very fine particles are more easily controlled by the equilibrium
surfaces, which move far away from axis for smaller particles, they are

probably missing the vortex finder, if the vortex finder is too small.

10,3 Recommendatjons

Based on the results developed in this research, the following
recommendations for additional study are suggested.

(1). Although Model II produces many useful results, it treats the

problem with some restrictions (see Chapter 3). The model has assumed
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that the similarity functions at the surface (i.e., locus of zero axial

velocity) require the free-vortex-like swirl velocity (uo - KrN, r = 6*)

and continuity of viscous stress. The behavior of the outer flow (i.e.,

r> 8*(2)) is still unknown and has to satisfy these boundary conditions
at the surface. These restrictions are too ad-hoc and may not exist for
some flows. A study of an outer flow which can match the core behavior
in Model II is recommended for development. Another recommendation is
to remove the free-vortex-like swirl velocity condition at the surface
of zero axial velocity. This may provide a way to match the core flow
with an inviscid flow or Beltrami flow in the outer region. The
relationship between the core flow and the outer flow could provide a
connection with the geometry and operating conditions.

(2). This study has predicted some specific features which are
important for the comparison between theoretical and experimental data.
These features include : the decay of central axial velocity, free-
vortex-like swirl velocity at the outer region, and the decay of the
axial component of angular momentum. Therefore, it is recommended to
measure the following velocities very carefully and accurately.

(a). Tangential velocity profile, which can be used to determine K
and N;

(b). Central axial velocity, which is used to determine the
direction of the vortex core;

(c). Angular velocity around the axis (aua/arlr_o), which combined

with (a) and (b) can be used to determine the value of b;
(d). Axial velocity profiles, which provide an estimate of

entrainment rate.
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The above accurate measurements will provide a basis for the
comparison between theoretical predictions and experimental results.

(3). In this study, radial velocity profiles play a very important
role, esp., in the oil-water separation. Unfortunately, experimental
data for radial velocity are very scarce. Because this study predicts a
mantle (locus of zero radial velocity) always exists, it is very
important to validate this finding. Therefore, it is strongly
recommended that the experimental test, either direct measurement or
visualization of radial velocity, should be carefully executed for a
flooded hydrocyclone, esp., near the central core region.

(4). Although the equilibrium surfaces of light particles can be
predicted from this study, the detail trajectory of particles are still
unknown. Because the velocity field can be determined from this study
directly, it provides a way to calculate the trajectory of dispersed
particles. Based on the major assumptions in Chapter 9 and Eq. (9.4),
the two differential equations for the spatial coordinates of individual

spherical particles can be expressed as

2
dr r ,
p ug (rpe2p)
dc - upr - ur(rp,zp) "1 rp
dz

Because u_, u, and fp can be calculated for any initial particle

position, the particle trajectory at any time can be calculated by

integrating these two non-linear differential equations. Once the
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trajectory of specific particles have been determined, an estimate of
how long it will take for particles to reach their stable equilibrium
surfaces can be made.

(5). In the study of oil-water separation, this model predicted
large particles are probably not limited by the equilibrium surfaces
while the small particles have more chance to be controlled by the
equilibrium surfaces. Therefore, for collecting different particle
sizes of oil droplets, a different design of the vortex finder is
necessary. This theory also showed that the quantitative behavior of
the ultimate particle location is determined by the local spin
parameter, b, for fixed other parameters. Because b could be controlled
by the inlet velocity for fixed geometry, it is recommended to study the
relationship between inlet velocity (or flow rate) and b. The
information could provide a way to improve the efficiency of oil-water
separation for various particle sizes through the control of inlet

velocity for fixed geometry.
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SOLUTIONS (a,b,c,n) FOR MODEL I AND MODEL II



Table A.1 Solution (a,b,c,na) for Model I
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a c n
0.03 -0.0313 0.0136 30.
0.04 -0.0540 0.0168 28.
0.042 0.0 0.0174 28.
0.05 0.0226 0.0199 27.
0.06 0.0521 0.0230 27.
0.08 0.114 0.0289 26.
0.10 0.179 0.0347 26.
0.136 0.301 0.0449 24.
0.15 0.348 0.0489 23.
0.20 0.524 0.0627 22.
0.30 0.886 0.0898 21.
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Table A.2 Solution (a,b,c,n’) for Model II (N = -1.0)

b a c n*
0.03 -0.0251 0.0127 30.1
0.038 0.0 0.0151 29.0
0.04 0.00083 0.0158 28.7
0.05 0.0285 0.0190 28.4
0.06 0.0582 0.0219 27.5
0.08 0.120 0.0279 27.1
0.10 0.184 0.0337 26.8
0.14 0.321 0.0447 24.1
0.15 0.355 0.0475 23.4
0.20 0.531 0.0611 21.9
0.30 0.893 0.0881 21.3
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Table A.3 Solution (a,b,c,n’) for Model II (N = -0.75)

b a c n*
0.03 -0.0582 0.0186 15.1
0.04 -0.0406 0.0232 14.2
0.05 -0.0212 0.0276 13.5
0.055 0.0 0.0297 13.2
0.06 0.00061 0.0318 12.9
0.08 0.0431 0.0397 11.9
0.10 0.0889 0.0471 11.1
0.20 0.335 0.0786 8.79
0.23 0.412 0.0860 8.33
0.25 0.464 0.0910 8.03
0.30 0.596 0.101 7.43
0.50 1.150 0.121 5.86




Table
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A.4 Solution (a,b,c,n*) for

Model II (N = -0.5)

b a c n
0.03 -0.123 0.0385 13.7
0.04 -0.113 0.0475 12.9
0.05 -0.101 0.0558 12.3
0.06 -0.0873 0.0636 11.8
0.08 -0.0575 0.0780 11.0
0.10 -0.0254 0.0909 10.4
0.115 0.0 0.0963 10.2
0.20 0.152 0.138 8.28
0.25 0.248 0.151 7.55
0.30 0.348 0.157 6.94
0.43 0.634 0.203 5.96
0.50 0.784 0.222 5.31
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Table B.1 Objective of computer program and FORTRAN

symbol list
Program Objective
ABCI.FOR This program determines (a,c,ﬁ) for Models I and II at

given b and N

YI.FOR This program gives Y1 to Y6 with respect to n for Model

I and Model II

DATAL1.FOR This program sets up individual data files for non-
dimensional momemtum transfer, stream function,
angular momentum, pressure field, axial, tangential,
and radial velocity profiles for Model I

DATA2.FOR This program sets up individual data files for non-
dimensional momemtum transfer, stream function,
angular momentum, pressure field, axial, tangential,
and radial velocity profiles for Model II

ORBIT.FOR This program sets up individual data files for particle

equilibrium orbits for various particle sizes
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Subroutine Description

ZSCNT This is a subroutine in IMSL library available at
Michigan State University. It solves a system of
nonlinear equations by secant methods.

DGEAR This is a subroutine in IMSL library available at
Michigan State University. It solves simultaneous first-

order differential equations by implicit ADAMS methods.

FORTRAN symbol list

A a

B b

c c

eta n

D " Particle rsdius.

F A vector of length N. F is given non-linear equations.
FCN The name of a user-supplied subroutine which evaluates

the system of equations to be solved.

FCN1, FCN2 Name of subroutine for evaluating functions.



FCNJ

GAMMA

H, Hl

IER, IER1

INDEX, INDEX1

ITMAX

KV

METH, METH1

MITER, MITER1l

N1l

N2

NSIG

PAR

187

Name of the subroutine for computing the N2 by N2
Jacobian matrix of partial derivatives.

r(n,N,b)

On input, H contains the next step size in X1. On output
H contains the step size used last, whether successful
or not.

Exrror parameter

Input and output parameter used to indicate the type of
call to the subroutine.

The maximum allowable number of iterations

Defined by K/v

Input basic method indicator. METH = 1, implies that
the ADAMS method is used. METH = 2, implies that the
stiff method of Gear is used.

Input iteration method indicator. MITER = 1, implies
that the chord method is used with an analytic Jacobian.
The number of unknowns

Power index where Ua - KrN.

Input number of first-order differential equations.

The number of digits of accuracy desired in the computed
root

Par contains a parameter set which is passed to the user
supplied function FCN.

Equilibrium orbit radius.



SPE

TOL

X1, X2

XEND, XEND1
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pp/;of

Input relative error bound.

A vector of length N. On input, X is the initial approx-
imation to the root. On output, X is the best approxi-
mation to the root found by ZSCNT.

Independent variables. On input, X1 and X2 supply the
initial value and are used only on the first call. Om
output, X1 nd X2 are replaced with the current value of
the independent variable at which integration has been
completed.

Input value of X1 at which solution is desired next.

A vector of length N2. On input, Y is an initial
solutions vector, On output, Y is the best approximation
which satisfies a set of simultaneous first-order

differential equations.

Length of confined vortex chamber.
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TABULAR EXPERIMENTAL DATA USED



Table C.1 Experimental data set la
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Reference :

Experimental conditions

QF = 400 cm3/sec, u

Escudier, et al.,

[1980]

(see Figure 8.1)

= 24 cm/sec

F
Dy 40
D—-—s—s, q-m
Z = 19.35 cm (from Figures 9 and 10 of Escudier)
r,cm 0 .2 .41.01.21.41.61.82.02.6
N=-0.75
u,,em/s| 03264 67 58 S0 44 39 37 33 K =68 cmt V/s
aue
u_,cm/s|-24 -12 0 29 - - 9 - 4 0 — | = 160
z dr
r=0
Z = 19.85 cm (from Figures 9 and 10 of Escudier)
r,cm 0 .2 .41.01.21.41.61.82.0
N = -0.75
uo,cm/s 0 32 64 67 58 50 44 39 37 K = 68 cml-N/s
6uo
uz,cm/s -23 -11 0 25 - - 8 - 4 T |- 160
r=0




Table €.2 Experimental data set 1b
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Reference

Experimental conditions :

QF = 400 cm3/sec, u

: Escudier, et al.,

[1980]

= 24 cm/sec

(see Figure 8.1)

F
Do 25 Qo
—-—-’ — =m O
D 55 Qu
Z = 19.35 cm (from Figures 9 and 10 of Escudier)
r,cm 0.1 .21.01.21.41.61.82.02.6
N =-0.75
ug.em/s| 03672 67 53 46 39 36 34 33 K =68 cml Vs
8uo
uz,cm/s 3 45 35 28 25 20 15 10 2 I = 360
r=0
Z = 19.85 cm (from Figures 9 and 10 of Escudier)
r,cm 0.1.21.01.21.41.61.82.0
N =-0.75
ug.em/s| 03672 67 53 46 39 36 34 K = 68 et Vs
auo
uz,cm/s 10 80 35 28 20 15 6 0 T = 360
r=0




Table C.3 Experimental data set lc
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Reference :

Escudier,

et al.,

Experimental conditions :

QF = 400 cm3/sec, u

(1980]

(see Figure 8.1)

= 24 cm/sec

F
Do 10 Qo
D 55 Qu
Z = 19.35 cm (from Figures 9 and 10 of Escudier)
r,cm 0.1 .21.01.21.41.61.82.02.6
N = -0.75
u,.cm/s| 0 80 160 67 55 48 42 38 35 33 K =68 cn’ Vs
Bua
uz,cm/s 144 72 33 28 25 22 19 15 0 I = 800
r=0
Z = 19.85 cm (from Figures 9 and 10 of Escudier)
r,cm 0.1.21.01.21.41.61.82.0
N = -0.75
1-N
ua,cm/s 0 80 160 67 55 48 42 38 35 K = 68 cm /s
aua
u ,em/s|450 72 40 32 2 16 8 O s— | - 800
r=0




Table C.4 Experimental data set 1ld
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Reference :

Experimental conditions

QF = 100 cm3/sec, u

Escudier, et al.,

[1982)

(see Figure 8.1)

= 6 cm/sec

F
Do 18 Qo
—, = ©
D 55 Qu
Z=1cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
1-N
uo,cm/s 0 19 15 10 8.5 6.9 K=11 cm™ /s
aua
uz,cm/s - - - - - - = | =
r=0
Z = 10 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0 2.8
N = -0.75
ugem/sf 0 19 18 10 8.6 6.9 6.0 K =11 en Vs
6u0
uz,cm/s - 14 8 6 3 2 0 el Bl
r=0

J;-i




211

zZ = 19.85 em (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
u,.en/s| 0 29 17 10 7.9 6.9 K =11 cmt Vs
auo
uz,cm/s - 22 11 8 6 0] T | -
r=0
Z = 20.55 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
uo,cm/s 0 27 17 10 7.9 6.9 K=11 cml'N/s
aua
uz.cm/s 62 - - - - - T - -
r=0
Z = 29.45 cm (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N =-0.75
ua,cm/s 0 10 20 21 14 10 7.9 7.7 6.9 |[K=11 cml'N/s
aua
u_,cm/s|{ 50 - - 40 36 20 2 0 T |- 100
r=0
Z = 31.65 cm (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N = -0.75
ugem/s| 0 10 20 16 18 12 9.6 9.4 8.0 |[K =11 enl Nys
auo
u_,cm/s| 48 - - 48 45 25 4 0 = |- 100
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Table C¢.5 Experimental data set le

Reference :

Experimental conditions :

QF = 200 cm3/sec, u

Escudier, et al., [1982]

(see Figure 8.1)

= 12 cm/sec

F
Do 18 Qo
T = T, K- = ®
D 55 Qu
z =1 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
1-N
uo,cm/s 0 65 34 21 15 13 K=26 cm” /s
aua
uz,cm/s - - - - - - = |-
r=0
zZ = 10 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0 2.8
N = -0.75
1-N
uo,cm/s 0] 69 34 21 15 13 12 K =26 cm” /s
aua
uz,cm/s - 25 10 6 4 1 0 e - -
r=0
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Z = 19.85 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N =-0.75
u.em/s| 0 75 62 22 19 14 K = 26 en! N/s
auo
u_,cm/s - 40 30 20 10 0 x| -
r=0
Z = 20.55 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
ugem/s| 0 82 4l 2 21 17 K = 26 e V/s
auo
u_,cm/s - - - - - - T |-
r=0
Z = 29.45 cm (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N = -0.75
ugem/sf 0 10 20 48 3% 26 19 18 17 |[K =26 em /s
auo
u_,cm/s|23.8 30 50 60 75 30 10 0 I = 100
r=0
Z = 31.65 cm (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N =-0.75
ujem/s| 0 12 26 17 27 22 21 21 19 [K =26 emlV/s
6u0
uz,cm/s - - - 40 55 15 0 s | - 120

r=0




Table C.6
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Experimental data set 1f

Reference :

Escudier,

et al.,

Experimental conditions :

[1982]

(see Figure 8.1)

QF - 411 cm3/sec, up = 24.6 cm/sec

Do 18 Qo
—_— - —_— -
D 55 Qu
zZ=1cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
up.em/s| 0 162 91 49 32 28 K =47 cnt Vs
auo
uz,cm/s - - - - - - Er— - -
=0
Z = 10 cm (from Figures 5 of Escudier)
r,cm 0O 0.25 0.50 1.0 1.5 2.0 2.8
N = -0.75
1-N
uo,cm/s 0 162 84 46 32 28 27 K =47 cm™ /s
8u0
uz,cm/s - 60 10 5 5 2 0 T - -
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Z = 19.85 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0 2.8
N = -0.75
u.em/s| O 162 77 46 35 28 26 K =47 et Vs
auo
u_,cm/s - 120 60 40 30 20 0 Il -
r=0
Z = 20.55 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N =-0.75
ugem/s| 0 169 91 56 42 28 K = 42 cot"N/s
aua
u_,cm/s - - - - - - = | -
r=0
Z = 29.45 em (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 2.0
N = -0.75
ugem/s| O - - 84 70 42 35 28 K =47 ecmt Vs
aua
uz,cm/s 17 - - 30 80 140 0 I = 200
r=0
z = 31.65 cm (from Figures 5 of Escudier)
r,cm 0O 0.1 0.2 0.25 0.50 1.0 1.5 2.0
N = -0.75
uem/s| O - - 8s 71 42 35 28 K =47 cmt Vs
aua
u_,cm/s| 15 - - 25 80 150 20 0 o = 140

r=0

X%’ 44
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Table C.7 Experimental data set lg

Reference :

Experimental conditions :

QF = 850 cm3/sec, u

Escudier, et al., [1982]

(see Figure 8.1)

= 51 cm/sec

F
Do 18 Qo
D_ - 5—5- . q =
Z = 1 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N =-0.75
uj.em/s| O 290 200 100 82 61 K = 95 cmr Vs
aua
uz,cm/s - - - - - - = | -
r=0
Z = 10 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N =-0.75
ug.em/s| 0 320 175 87 58 4 K =95 cmt Vs
aug
uz,cm/s - - - - - - ac | =
r=0
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Z = 19.85 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
uem/s| 0 335 175 93 64 58 K =95 cmt Vs
6u0
uz,cm/s - 175 80 40 20 0 T -
r=0
Z = 20.55 cm (from Figures 5 of Escudier)
r,cm 0 0.25 0.50 1.0 1.5 2.0
N = -0.75
up.em/s| 0 320 204 117 87  6b K =95 cmt Vs
auo
uz,cm/s -62 - - - - - |-
r=0
Z = 29.45 em (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N = -0.75
uo,cm/s 0 25 50 131 131 96 73 70 58 |K = 95 cml-N/s
aua
uz,cm/s - - - 80 180 20 0 T |- 250
r=0
Z = 31.65 cm (from Figures 5 of Escudier)
r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0
N = -0.75
ua,cm/s 0 21 42 52 93 87 67 65 58 |K = 95 cml'N/s
auo
u_,cm/s|-52 -30 -5 0 100 190 40 0 — | = 210
z dr

r=0
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Table C.8 Experimental data set 2a

Reference :

Experimental conditions :

QF = 500 cm3/sec, u

Dabir, [1983]

(see Figure 8.1)

= 140 cm/sec

F

Dy 258 L

— , — = O

D 76 Qu

Z = 8 cm (from Figures 5.9 and 5.10 of Dabir)

r,cm 0.1.2 .4 .8 .9 1.0 1.2 1.4 1.6
N=-0.75

uo,cm/s 0 40 80 160 245 230 220 195 172 150 K =270 cml'N/s
auo

u_,cm/s|60 65 70 80 10 0 -— = 400

z dr
r=0
Z = 20 cm (from Figures 5.9 and 5.10 of Dabir)

r,cm 0.1 .21.01.21.41.61.82.02.22.42.6
N = -0.75

ua,cm/s 0 40 80 235 218 200 185 172 163 150 140 130 |K =270 cml'N/s
auo

u_,cm/s|40 48 56 50 30 15 O — | = 600

z ar
r=0
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Z = 32 cm (from Figures 5.9 and 5.10 of Dabir)

0.1.21.01.21.41.61.82.02.22.42.6

0 40 80 235 215 200 190 175 165 153 147 140

30 35 40 60 40 20 15 10 6 3 0

N = -0.75
K =270 cm™ /s

a

]

u

§
r

1-N

= 400
r=0
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Table Cc.9 Experimental data set 2b

Reference : Dabir, [1983]

Experimental conditions : (see Figure 8.1)

QF = 500 cm3/sec, u

D
o
D—-

F = 140 cm/sec

129 %
76

Z = 20 cm (from Figures 4.1 and 4.2 of Dabir)

0.1 .2 .6 .81.01.21.41.61.82.02.2

0 100 200 340 300 260 230 200 190 180 175 160

uz,cm/s

375 340 320 60 50 35 20 5

N = -0.75

1-N

K =270 cm™ /s

3

Y
r

= | = 1000

a

r=0

Z = 32 cm (from Figures 4.1 and 4.2 of Dabir)

0.1 .2 .6 .81.01.21.41.61.82.02.2

0 100 200 340 300 280 250 220 200 190 175 160

uz,cm/s

335 320 280 50 40 25 15 10 - 0 O

N = -0.75

K

a

a

=270 em* Vs

Yy
— | = 1000
r

r=0
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Table C.10 Experimental data set 2c

Reference : Dabir, [1983]

Experimental conditions : (see Figure 8.1)

QF = 500 cm3/sec, u, = 140 cm/sec

F
Dy 122
_-_’ -~ == @
D 76 Qu
zZ = 20 cm (from Figures 5.14 and 5.15 of Dabir)
r,cm 0 .2 .4 .6 .81.01.21.41.61.8
N =-0.75
uo,cm/s 0] - - - - - - - - - K =270 cmlcN/s
auo
uz,cm/s 400 340 220 120 50 - 30 20 15 O T = 1200
r=0
Z = 32 cm (from Figures 5.14 and 5.15 of Dabir)
r,cm 0.2 4 .6 .81.01.21.41.61.82.02.2
N = -0.75
ua,cm/s 0 200 470 370 295 250 220 195 176 165 155 148|K =270 cml'N/s
aua
uz,cm/s 340 320 210 100 40 - 25 - 20 15 10 dFrs = 1000
r=0
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Table C.11 Experimental data set 3

Reference : Kimber and Thew [1974]

Experimental conditions : (see Figure 8.1)

1 cm3/sec, u

QF =5 F - 40 cm/sec
b 127 %
— - —_— — = ®
D 50 Q
Z = 295 cm (from Figures 6 of Kimber and Thew)
r,cm 0 .05 .10 .5 1.0 1.5 2.0
N = -0.6
ujem/s| 0 50 100 84 64 48 38 K = 646 cm Vs
aua
uz,cm/s 0 - - - - - - I = 1000
r=0
Z = 50 cm (from Figures 6 of Kimber and Thew)
r,cm 0
N =-0.6
ua,cm/s 0 K= -- cml'N/s
auo
uz,cm/s -100 = |- -
r=0
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Table C.12 Experimental data set &4

Reference : Boysan et al. [1982]

Experimental conditions :

QF = 42000 cm3/sec, u, = 1370 cm/sec

F
Do 64 Qo
_._—,—-m
D 203 Q, -
Z = 6.6 cm (from Figures 3 of Boysan)
r,cm 0 .51.0 3.0 4.05.06.07.08.089.0
N=-1.0
uo,cm/s 0 420 850 1600 1200 970 810 690 610 540 K=3050 cml'N/s
auo
uz,cm/s 283 150 0 -200 -100 -30 0 T | - 850
r=0
Z = 13.2 cm (from Figures 3 of Boysan)
r,cm 0 .51.0 3.0 4.05.06.07.08.09.0
N=-1.0
ua,cm/s 0 420 850 1600 1200 970 810 690 610 540 K=3050 cml-N/s
aue
uz,cm/s 250 140 0 -190 -95 -30 O 7 |- 850
r=0
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Z = 19.8 cm (from Figures 3 of Boysan)

r,cm 0 .51.0 3.0 4.05.06.07.08.09.0
N=-1.0

ua,cm/s 0 420 850 1600 1200 970 810 690 610 540 K=3050 cml'N/s
auo

uz,cm/s 165 120 0 -180 -90 -25 O w |- 850

r=-0
Z = 26.4 cm (from Figures 3 of Boysan)

r,cm 0 51.0 3.0 4.05.06.07.08.029.0
N=-1.0

ua,cm/s 0 420 850 1600 1200 970 810 690 610 540 K=3050 cml'N/s
8u0

u_,cm/s{90 60 0 -170 -80 -25 O — | = 850

z ar
r=0
Z = 33.0 cm (from Figures 3 of Boysan)

r,cm 0 51.0 3.0 4.05.06.07.08.09.0
N=--1.0

ua,cm/s 0 420 850 1600 1200 970 810 690 610 540 K=3050 cml-N/s
6uo

u_,cm/s|65 40 0 -170 -70 -20 O — | = 850

z ar

r=0
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Table €.13 Experimental data set 5

Reference : Pericleous et al. [1984]

Experimental conditions :

QF = 1250 cm3/sec, u. = 56.7 cm/sec

F

Dy 80

5 " 200 ° qQ

- @

Z = 25 cm (from Figure 4 of Pericleous)

r,cm 03.03.54.04.55.05.06.06.57.07.538.0
N =-1.0

cm/s|0 540 460 400 360 325 300 275 250 240 230 220|K=1050 cm!V/s

du

é
uz,cm/s - - - - - - - - - - - = =

r=0




APPENDIX D

COMPONENTS OF THE STRESS TENSOR FOR AXISYMMETRIC, INCOMPRESSIBLE

FLOWS OF A NEWIONIAN FLUID
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Table D. Components of the stress tensor for axisymmetric,
incompressible flows of a Newtonian fluid

(cylindrical coordinates)

du
r
rrr = 2“ or
Yy
du
z
'zz - 2“ dz
a Y
"rg =Tor =B gz ()
aua
T4z =Tz5 = B 33
auz aur
"zr = Trz =4 | 3r Y a3z
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