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ABSTRACT

SIMILARITY STRUCTURE OF AN AXISYMMETRIC VISCOUS VORTEX

WITH VARIABLE CIRCULATION

BY

Hsin-Chih Chen

Vortex flows occur in many engineering operations. Recent interest

in oil-water separation by using hydrocyclones has increased the need

for a better understanding of the flow structure of a viscous swirling

core flow. Experimental observations in confined vortex chambers show

that a locus of zero axial velocity divides an inner region from an

outer region of the flow field and that the swirl component of the

velocity field in the outer region can be represented by the empirical

expression “0 - KrN, -l S N < 0 . The total viscous dissipation of

the vortex is unbounded for —l s N s ~2/3 and bounded for -2/3 < N < O.

The core region of the vortex is studied theoretically by constructing a

class of similarity solutions which satisfy the boundary layer equations

and the free—vortex-like swirl condition in the outer region. The flow

model is used to analyze the behavior of a dispersed phase in the core

by using the equilibrium orbit theory for particle - fluid separation.

The model predicts three types of flow behavior in the vortex core

reverse flow, undulated flow, and jet-like flow. The flow regime is

uniquely determined by specifying the empirical index N, and a local

spin parameter related to the distribution of vorticity on the axis.

Most significantly, the theory predicts the existence and location of a

'mantle' (surface of zero radial velocity) within the core region of the



vortex. The theory is qualitatively and quatitatively consistent with

recent experimental studies of the viscous core using laser doppler

anemometry. The particle - fluid separation study explains the

difficulty of capturing very fine particles near the axis of a viscous

vortex .
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CHAPTER 1

INTRODUCTION

11W

Vortex flows occur in many engineering operations such as swirl

atomization, cyclone separation, and flame stabilization (see Gupta et

a1. , 1984). They also appear frequently as natural phenomena in the

form of tornadoes and vortical flows in large scale hydraulic systems

(Lugt, 1983; Swift et al., 1980). The shedding of concentrated vortex

structures from aircraft wings is another important example which has

been studied extensively. A common feature of all these flows is that

the angular momentum of the fluid changes significantly over relatively'

small radial distances. This produces some unique features such as

large spanwise pressure gradients and flow reversals.

This research is motivated by recent experimental studies of Dabir

[1983], Escudier and Zehnder [1982], and Escudier et a1. [1980, 1982] on

confined vortex flows, and the theoretical results of Long [1961],

Burggraf and Foster [L977], and Bloor and Ingham [1975, 1984].

Applications of swirling flows to oil - water separations by Colman and

Thew [1980] as well as by Listewnik [1984] have provided additional

interest in the class of swirling flows analyzed in this dissertation.

Experimental measurements of axial and tangential velocity

components in a flooded 3" - hydrocyclone using laser doppler anemometry

show the following general features (Dabir, 1983).

(a). The vortex flow near the axis is approximately axisymmetric,

1



u - ur(r.2)22;r + u9(r.2)_e.9 + uz(r.2)sz (1.1)

(b). The axial velocity near the axis may be either positive

(forward flow) or negative (reverse flow) depending on the total

volumetric flow rate of the feed (see Figure 1.1).

(c). For forward flow conditions, two types of axial profiles are

possible : at very high flow rates, a jet-like (or parabolic) profile

occurs; and, at lower flow rates, an undulated profile occurs.

(d). A surface of zero axial velocity divides an inner region from

an outer region of the flow field. This occurs even if the underflow

rate (see Figure 1.1) is zero.

(e). The size of the inner region, defined by the surface r - 6*(2)

for which uz(r,z) - 0, increases in.the direction of decreasing

magnitude of the centerline axial velocity. The growth of this region

is not linear in the coordinate z :

5*(2) « 2A , O < A < 1. (1.2)

(f). For most flow situations, the decay of the centerline velocity

was algebraic in 2 with a weaker dependence than 2'1 :

qu(0,z)| « 23, -1 < B < o. (1.3)

*

(g). The swirl velocity in the outer region (i”<3., r 2 6 (2)) is

essentially independent of 2 and consistently shows the following

behavior with r :
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u a r , -1 < N < 0. (1.4)

Thus, the usual free-vortex structure (i.e., u 0: 1/r) associated with

6

many theoretical studies is not observed experimentally.

(h). The swirl velocity near the axis has a forced-vortex character

(i.e., u a r).

6

Some important preliminary conclusions about the flow structure in.

the inner region follow from the above experimental observations.

* * .

Because 5 (2), qu(0,2)l, and u9(5 (z),z) all have an algebraic

dependence on the independent variable 2, a similarity theory based on

an appropriate scaling hypothesis may describe a portion of the flow

field. Obviously, such a theory would have severe limitations and could

not explain the complex flow phenomenon which occurs deep in the apex

region of hydrocyclones (see Figure 1.1), near the end wall of a

cylindrical vortex chamber, or near the ground of a tornado (Long,

1961).. IHowever, other physical effects related to swirling flows could

be studied using this theoretical approach.

Experimental observations (a) and (g) are especially noteworthy and

dictate the direction of the theoretical development. For axisymmetric

flows, the circulation F on the closed circuits 2wr is

F - 2nru0(r,z). (1.5)

P/2x also represents the axial component of the angular momentum of the

fluid about the axis. If the flow field has a similarity structure,

then an instrinsic length and velocity scale must exist for which



ruo(r.2) - 6(2)uc(2)F(n) (1.6)

where

n - r/6(z). (1.7)

Therefore, Eq. (1.5) becomes

F - 2n6(z)uc(2)F(n) (1.8)

Thus, experimental observations (e) and (f) imply that the circulation

on surfaces of constant a (i.e., similarity surfaces) has the following

dependence on the axial coordinate,

P « zA+B (1.9)

Therefore, if A + B vi 0, the vortex has the feature of variable

u a e .

In his study of a viscous vortex, Long [1961] developed a class of

similarity solutions to a boundary layer approximation of the Navier -

Stokes equations. Long's vortex, which is defined on an infinite domain

(i.e., 0 s r s c), has an asymptotic velocity field given by

r >> 0

u -------s -
 

g2 (1.10)

m

+

a]

H
I

t

l
o .
4
.

fi
l
i
fi 7
3

2 r

where u is the kinematic viscosity Of the fluid (or a constant 'eddy'

viscosity if the vortex is turbulent) and K is a constant defined by

lim uo - K/r, K > 0. (1.11)

r46



The solutions developed.by Long are consistent with experimental

observations (a), (b), (c), and (h); however, as indicated by Eq.

(1.10), the axial velocity surrounding the vortex is always positive and

decreases to zero very slowly (uz a l/r). For confined vortex chambers,

a reverse annular flow (i.e. , observation (d)) surrounding the vortex

generally occurs. Long noted that this also occurs for unbounded flows

such as tornadoes and that the asymptotic result given by Eq. (1.10),

although an.gx§g£ solution to the Navier - Stokes equations, was

probably too restrictive.

Although Long's vortex shows the qualitative properties expressed

by observations (e), (f), and (g), it requires N - -1 (see Eq. (1.11)),

B - -l, and.AI-'l. Unfortunately, these exponents are not observed

experimentally. However, Long's vortex has the interesting feature that

the circulation is constant on similarity surfaces (see Eq. (1.9))

Similarity scaling also implies that the viscous dissipation per

unit volume on surfaces of constant n will depend on the axial

coordinate as follows

u
c

<I> - r : Vu o: (— )2 on (zB’A)2. (1.12)
v - 6

Thus, Long's vortex has the property that <I>V or 2-4. However, the data

of Dabir [1983] suggest that

B - A > -2,

so experimental flows do not appear as dissipative as Long's vortex. If

 

@v is integrated.Iover the entire flow domain, then the total viscous

dissipation is infinite for Long's vortex, but is bounded for similarity



flows having the property that -1/2 < B < O. This intriguing

theoretical possibility partly motivates this study.

In the past decade, Thew and his colleagues at Southampton

University (U.K.) have made some progress on removing Oil from water

more efficiently by using a cyclone separator. They (see Colman et al.,

1980) were able to obtain 99% separation for a drop size of 55 microns.

However, the efficiency apparently drops off sharply when particle sizes

become less than 40 microns. What causes the efficiency to drop at

smaller particle sizes? Is this phenomenon a result of the specific

design of the cyclone or is it an intrinsic property of all vortex

flows? This research intends to examine this question by studying the

behavior of a dispersed phase in a viscous vortex. Hopefully, this

theory will provide new insights on how to improve the separation

efficiency for hydrocyclone separators.

1,2 ijggtivgg

The primary objective of this research is to apply tine techniques

of boundary layer theory to investigate the similarity structure of a

special class of swirling flows related to the experimental observations

(a) - (h). Two models will be studied. Model I, which has the feature

of constant circulation on similarity surfaces, is used to understand

the flow structure induced by a free vortex defined by Eq. (1.10). This

model was previously studied by Long [1961] and by Burggraf and Foster

[1977]. Model II, which has the feature of variable circulation<n1

similarity surfaces, is used to understand the flow structure induced by

a more general vortex in the outer region with the conditions that

uz(r,2) - 0 for r - 6*(2), and (1.13)



u - KrN, for r z 6*(2). (1.14)
0

Eqs. (1.13) and (1.14) are primarily motivated by experimental

observations (d) and (g) discussed in Section 1.1.

A second objective of this study relates to the experimental

results. It is intended to demonstrate how the model can be used to

characterize selected experimental flows. The major goal here is to

compare the qualitative flow behavior between theoretical predictions

and experimental results. It is also intended to compare the similarity

scaling of the centerline velocity and angular momentum as well as

entrainment rates.

The study also examines the application of the flow model to oil -

water separation in hydrocyclones. The goal here is to investigate the

major effects of particle properties and fluid properties on the

separation of very fine light particles in vortex flows. Hopefully, an

explanation for the anomalous low separation efficiency associated with

very fine particles can be identified. If successful, this research

should provide a new basis for the design of cyclone separators.

112_Metb2921221

Chapter 2 contains a review of relevant experimental and

theoretical studies of swirling flows related to this research.

Particular attention is focused on the flow behavior in a confined

vortex chamber. Long's vortex and related geophysical flows are also

examined. Experimental observations for different flow behavior provide

useful information to explore the efficacy of the theoretical results.

Chapter 3 uses a boundary layer approximation of the Navier -

Stokes equations with constant physical properties to develop an



axisymmetric similarity model for a vortex flow. Two models are studied

in this chapter. Model I, which considers a vortex flow with constant

circulation, reexamines Long's vortex (see Long, 1961) in more detail

than originally presented by Long and later by Burggraf and Foster

[1977] . Model II considers a vortex flow with variable circulation.

This feature reflects more realistically the actual behavior of vortex

flows and, thereby, provides a basis for understanding experimental

observations .

Chapter 4 presents some a-pri9ri theoretical predictions about the

flow behavior near the axis. It also provides, for the first time,

criteria for transition between different flow regimes. A physical

interpretation of these results follows directly from the mechanical

energy balance.

In Chapter 5, a numerical algorithm is developed which solves the

nonlinear two-point boundary value problems representing the two vortex

models. Standard library subroutines are used to integrate the

differential equations and to search for a consistent set of boundary

conditions.

Chapters 6 and 7 present the solutions for Model I and Model II for

a wide range of conditions. Both chapters focus on quantitative

predictions for the velocity and pressure fields. The macroscopic

properties of the flow are also calculated and summarized in these

chapters. The mechanical energy balance and force balance on the axis

are used to develop a physical understanding of the complex helical

flows calculated.

Comparisons between theoretical and experimental results show that

Model II is consistent with some experimental data. Chapter 8 examines



10

the similarity scaling of both the centerline axial velocity and the

angular momentum. The chapter also includes estimates of some important

properties for specific experimental flows.

The potential application of this research to oil - water

separation in hydrocyclones is discussed in Chapter 9. An equilibrium

orbit hypothesis is used to study the effect of the flow structure on

the motion of oil droplets in water. The effect of particle size,

specific gravity, and other physical parameters on equilibrium orbits

will be discussed.

Finally, the conclusions of this study and the recommendations for

further research are presented in Chapter 10.



CHAPTER 2

LITERATURE REVIEW

W

The major objective of this study, as discussed in Chapter 1, is to

investigate the structure of vortex flows with variable circulation. In

this'case, the tangential velocity in the outer region is commonly

expressed by

u -I(r , r>>0 (2.1)

where -1 s N < 0. For a free vortex, N - -l. N can be determined from

the swirl velocity profile in the outer region. Fortein and Dijksman

[1953], Escudier et a1. [1980,1982], and Dabir [1983] have all shown

that N has the value near -0.75 and appears to be insensitive to the

flow rate and the contraction ratio of the vortex chamber. However,

Knowles et a1. [1973] reported a much flatter tangential velocity in the

outer region (N - -0.3). Near the axis, the tangential velocity profile

has the same form as a forced vortex, whereas in the outer region, the

tangential velocity always has a free-vortex-like behavior (i.e.,

Eq.(2.l)).

Many experimental studies about swirling vortex flows have been

conducted in the last 30 years. One of the most important findings is

the existence of flow reversal phenomenon. In an earlier study of

11
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swirling flow in a circular pipe, Nuttal [1953] found that three types

of flow patterns occur for Reynolds number in the range 10,000 to

30,000. In his study, the Reynolds number is defined as

”F“?

ReF - —v

where DF is the inlet diameter of the pipe, uF is the inlet velocity,

and v is the molecular kinematic viscosity. As the swirl component of

the velocity increases, the flow changes from a one-celled to a two-

celled and, finally, to a three-celled vortex structure. Reverse flows

are characteristic of these flows. Although this finding is important,

Nuttal gave neither a physical nor a theoretical explanation for this

phenomenon.

In a study of flow through a conical nozzle, Binnie and Tear [1956]

showed that reverse flows also exist in a cone, but they only observed a

two-celled vortex structure. Binnie [1957] also investigated the

different flow patterns in the low Reynolds number range by injecting

swirling water into a circular pipe, he found that the transition from a

single-celled vortex structure to a three-celled structure depends not

only on the Reynolds number but on the ratio of swirl to axial flow.

One very important conclusion, which Binnie did not emphasize, is that

the reverse flow was induced by increasing the swirl component for a

fixed Reynolds number.

In his measurements of velocity profiles using an optical technique

based on flow visualization, Kelsall [1952] observed a surface of zero

axial velocity which increases with axial position. Bradley and Pulling
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[1959] also observed this phenomenon. Moreover, they reported that this

surface was insensitive to operating variables and had a diameter of

0.43 times the cyclone diameter. For a flooded hydrocyclone (or more

generally, a confined vortex chamber), Dabir [1983] , Knowles [1973],

Escudier et a1. [1980,1982] , have noted that the surface of zero axial

velocity increases in diameter in the direction of decreasing magnitude

of the centerline axial velocity. The growth of the vortex core is a

nonlinear function of the axial coordinate. Dabir, also observed that

this surface (zero axial velocity) divides the inner region Of upward

flow from an outer region of downward flow, even when the underflow rate

(see Figure 1.1) is zero.

The magnitude of the radial velocity in the core flow was also

measured by Kelsall (with an air core) and Knowles (without an air

core). It is not surprising to find that this number is very small

compared with the axial and tangential components of the velocity. In

the study of a hydrocyclone with an air core, Bradley and Pulling (see

p.15, Bradley, 1965) found that a locus of zero radial velocity, or

”mantle", exist in the cylindrical section and terminates at a level in

the conical section of the cyclone. For the study of a flooded

hydrocyclone, an outward radial flow in the inner region and inward

radial flow in the outer region was noted by Knowles (see Figure 8,

Knowles et al., 1973). This phenomenon was also observed by Ohasi and

Maeda (see p.38, Svarvosky, 1984) and by Dabir (see Figure 5.11, Dabir,

1983). It is interesting that the outward radial flow in the inner

region has only been observed in flooded hydrocyclones.

The most recent velocity measurements have been done by using Laser

Doppler Anemometry (LDA) (see Durst et al., 1976; Escudier et al., 1980,

1982; Dabir, 1983; and Thew et al., 1980). More recently, Escudier et
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a1. [1980,1982] , in their study of confined turbulent vortex flows by

using a laser doppler anemometry and a flow visualization technique,

showed that different flow patterns occur depending on the contraction

ratio of the vortex chamber (Do/D) and the Reynolds number. Transition

from jet-like core behavior to wake-like behavior (including undulated

and flow reversal) occurs either as the Reynolds number or the ratio

Do/D increases. Another interesting result is that the maximum swirl

velocity (“0 max) increases significantly as Do/D decreases. These two

results imply that jet-like flow behavior corresponds to larger values

of u than wake-like flow.

0,max

In the measurement of velocity profiles in a 3" flooded

hydrocyclone by using laser doppler anemometry, Dabir and Petty

[1984a,l984b] have revealed that multiple reverse flows occur in the

vortex core if using a 2:1 contraction vortex finder. The occurance of

jet-like and reverse flows strongly depends on the size and shape of the

geometry. The radial velocity calculated from their data showed that an

outward flow (positive radial velocity) occurs near the axis for flooded

hydrocyclones. A large number of relative experimental observations

were also found. These include the approximate axisymmetric structure,

a reversal annular flow surrounding the surface of zero axial velocity,

a non-linear growth of the viscous core (r - 6*(2)) in the direction of

decreasing centerline axial velocity, and a free-vortex-like swirl

velocity in the outer region.

Long [1956], in his earlier experiments on withdrawing water

through a hole at the centre of a bottom plate, observed that : (1) An

intense narrow vortex formed when water was extracted from a sink of a
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slowly rotating cylinder; (2) When the steady draining vortex is

achieved from an initial slow rotation, the circulation was almost

independent of radius outside the core; (3) The core seemed to spread

almost linearly with increasing axial distance. These observations,

which imply that N - -1, motivated Long's theoretical study.

The features of vortex flows, in many aspects, are similar to those

reported in a swirling jet. Chigier and Chervinsky [1967] indicated

that the distribution of the axial and swirl velocities were similar at

least for moderate swirl numbers. The swirl number, as represented by

S, is usually defined as

T2

3...—

Fz<d°/2)

where

l 2

T2 - 2x opuouzr dr

F - 2x (pu 2 + p - p )rdr

2 O 2 o

are, resp., the global axial torque and the global axial force. do/2 is

the nozzle radius. For a swirling jet, T2 and F2 are independent of 2.

Consequently, S is independent of 2. Experimentally, many researchers

including Kerr and Fraser [1965] , Chigier and Beer [1964], Raj aratnam

[1976], Vu and Gouldin [1982], Rhode and Lilley [1983], Gouldin et a1.

[1985], Ramas and Somer [1985] , have proved that swirl has a large scale

effect on the flow fields in many aspects : entrainment, jet growth,
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flow recirculation, and flame stabilization. In general, the effects of

introducing swirl on jets are to cause an increase in jet width, rate of

axial velocity decay, and rate of entrainment. The mean - flow terms

show a very simple and direct relationship between swirl magnitude and

radial pressure gradient. Since the radial pressure gradient is mainly

balanced by the centrifugal force, the stronger swirling flow generates

a large radial pressure gradient. In the case of low S, the axial

velocity distribution remains almost Gaussian, with the maximum velocity

on the axis of the jet. As the swirl number reaches a critical number

(approximately 0.6, see p.167, Gupta et al., 1984), the axial adverse

pressure gradient becomes strong enough to produce flow separation and

reversal. The axial velocity profile changes from the initial near plug

flow at the nozzle exit to Gaussian profile at the downstream.

Meanwhile, the swirl velocity profile changes from a solid body rotation

to a Rankine free - forced vortex type.

e e s

The flow structures within the vortex core have been investigated

for some time. Early studies were reported by Burgers [1948] and Rott

[1958]. The Burgers' vortex has the velocity field :

Fm -a1r2/2u

u--a1rgr+(——)[l-e ]e

an -g + 2alzgz (2-2)

where a1 and I“ are constants. This vortex has been widely used in the

study of theoretical vortex models. However, the vortex has the

disadvantage of having an artificially assumed axial velocity uz 0: z
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which approaches infinity as 2 -> an and leads to a stagnation point at

the origin without physical justification.

Sullivan [1959] , Donaldson [1956] , Donaldson and Sullivan [1960] ,

and Donaldson and Snedeker [1962] improved Burgers’ vortex by

considering the velocity field as the form of :

ur - ur(r), uo - u9(r), uz - zf(r) (2.3)

Their solutions represents a rather large class of three - dimensional,

viscous vortex motions. They found ,in addition to Burgers’ one-celled

vortex, three - dimensional one-celled and two-celled vortices.

However, in their work, the interaction between the vortex and the

ground boundary layer flow is neglected. The Sullivan vortex is,

however, of considerably interest to meterologists because two-celled

structures have been found in tornadoes. An extensive review of

confined vortex flows was reported by Lewellen [1971] .

Long [1958,1961] , motivated by his early experimental observations

(see Section 2.1), studied an intense vortex in an unbounded viscous

fluid. Unlike Burgers' and Sullivan's vortices, Long's vortex has the

velocity field at the outer region as :

K

 +g+
9 J? r

I
3
3 I a

“
I

t

H
I

7
:

e g , r >> O (2.4)

'1: Z

All three components of the velocity are independent of z in the outer

region. Furthermore, the tangential velocity is a free vortex. Long's

vortex is one of the first models proposed to describe tornadoes. It
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shows that the various flow structures can be determined by a single

parameter. Long's vortex also shows the characteristics of constant

circulation on similarity surfaces (i.e., constant :7). An interesting

feature is that the macroscopic axial force in Long's vortex does not

uniquely determine the flow behavior. It is noteworthy that the quasi -

cylindrical approximation, in which variations in the axial direction

are taken to be small compared with variations in the radial direction,

was adopted by Long as well as by Bloor and Ingham [1975, 1984] , and

Qing [1983].

Long's theoretical work initialed many studies about geophysical

vortices. A review these concentrated vortex flows was reported by Hall

[1966]. Another type of sink vortex was studied by Pedley [1969] . In

his study of a so called bath-tub vortex, Pedley considered a point sink

with strength 4a'Q situated on the axis and a uniform circulation at

large radius. The flow is irrotational (i.e. , vorticity equals zero) at

large radius and must be rotational at some region around the sink, so

that steady vortices will ultimately be set-up. Although the

theoretical study of geophysical vortices is far from satisfactory due

to few experimental observations, some progress has been achieved in the

last 25 years. An excellent review of geophysical vortices was reported

by Morton [1966,1969]. Geophysical vortices, such as tornadoes,

waterspouts and dust devils, which have narrow vortex cores, terminate

at a lower boundary, and are maintained dynamically aloft by some

convective system which prevents the lower pressure core from filling

with upper air. More theoretical treatments have dealt with the lower

part of tornadoes, which have been regarded as steady vortices (see

Morton, 1966). Long’s vortex, as he recognized, cannot be applied to

tornado as close to the ground. Therefore, to improve Long's vortex,
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many researchers have tried to treat the effect of the ground boundary.

Serrin [1972], adopted the same equations as Long, but assumed the

no-slip condition at the surface and allowed a singularity at the

origin. He proved that there can exist only three types of motion. In

the first type, the radial velocity is directed inward along the

boundary and upward along the axis. In the second type, the radial

velocity moves inward along the boundary and downward on the axis, with

a compensating outward flow at an intermediate angle. In the third type

of motion, the radial velocity is outward near the plane and downward on

the central axis. In the study of conical vortices, Yih et a1. [1982]

found a class of exact solutions of the Navier - Stokes equations.

Their solutions include different angles of cones which extend the right

rectangular angle of Serrin. Wu [1986], in his recent study, has

considered a conical turbulent swirling vortex with variable eddy

viscosity. He argued that if the eddy viscosity varies only in the

boundary layer near the core or surface, the solution outside the layer

will approach to one of the laminar solutions of Yih et a1. or that of

Serrin. He also found that for a class of deliberately chosen "eddy"

viscosity functions, a steady turbulent vortex can satisfy both the

regularity condition at the core and the adherence condition at the

surface, except at the singular point.

In a further study of vortex breakdown of Long's vortex, Burggraf

and Foster [1977] showed that breakdown (reverse flow) occured when the

global axial force, F2, was less than a critical number. They also

found that Long’s FZ is about 3 % lower than their calculations. Foster

and Duck [1982], in the study of stability analysis of Long's vortex,

pointed out the most dangerous mode in Long's vortex are those with
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positive azimuthal wave number n, and that the growth rates increase

with n at least for the values of 0 s n s 6 computed.

In a cyclone chamber, where vortex core flow are characteristized

by a reverse annular flow , Bloor and Ingham [1975,1984] have made a

systematic analysis. To investigate the core flow structure, they first

solved for the basic flow in the outer region by using an inviscid,

rotational flow (i.e., vorticity is not equal to zero). From this

information, they were able to solve for the velocity profile in the

core flow. In order to have solutions which satisfy the momentum

equation, Bloor and Ingham assumed that the "eddy" viscosity could be

expressed as p a z-

Qing [1983], in his study of velocity and turbulence distributions

within a cyclone, concluded that different radial distributions of ur

and we have only a slight influence on the radial distribution of no ,

but strongly affect the shear - stress distribution (Tr0)' However, in

his model uo is only a function of r, which he recognized as too

restrictive. It is noteworthy that Qing adopted, for the first time, a

continuous "eddy“ viscosity profile which consists of different models

of we for different regions of the vortex.

Another interesting and important theory about the outer region of

a confined chamber has been developed. by Petty [1985] . The flow in the

outer region could be Beltrami for which the velocity and vorticity

vectors are colinear. Mathematically, Beltrami flow can be expressed as

I
E R

I
f
:
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where ggrepresents the vorticity vector and 9 represents the velocity

vector. For axisymmetric and inviscid flows, if the velocities in the

outer region are also Beltrami, then the tangential velocity profile is

approximately

u a r-3/4.
0

The result is very interesting and important because the value of N (- -

0.75) is consistent with most of the experimental data (see Chapter 8).



CHAPTER 3

MATHEMATICAL FORMULATION

zil_ysr£sx_ugdels

The balance of linear momentum and the continuity equation for a

constant property Newtonian fluid govern the behaviour of the vortex

flows studied in this research. For steady, axisymmetric, swirling

flows, the velocity and pressure fields depend only on the cylindrical

coordinates r and z :

a - ur(r.2)er + u0(r.2)so + uz(r.z)s.z (3 1)

P - p(r.2). (3.2)

If the axial transport of momentum by viscous forces is neglected, then

the boundary layer equations governing g and p over the spatial domain

0 s r 5 3(2), 0 < z < on are (see Long, 1961)

‘2

u 0 6p

P T ‘ "a? ‘3'”

a a a l a

pur - (rug) + puz - (rue) - #r - ( -- --(ru9)) (3.4)

Br 82 ar r 6r

auz auz 6p [1 a auz

put—+puz—--—+pgz+--——(r-—) (3.5)

Sr 82 62 r 8r 8r

1 a 8

‘E'a—r (rur) +5-—zuz - 0. (3.6)

22



23

Eq. (3.3) assumes that the radial component of the velocity is

small and that the large centrifugal force per unit volume, puoz/r,

causes the radial pressure drop. The axial pressure gradient in Eq.

(3.5) is an important and unique aspect of vortex models examined. It

is also noteworthy that Eq. (3.4), which is the tangential component of

the equation of motion, can also be interpreted as a transport equation

for the axial component of angular momentum.

Eqs. (3.3) - (3.6) govern the behaviour of the three components Of

g and the pressure. Because of the viscous nature of the fluid and the

axisymmetric assumption, the boundary conditions on the axis (i.e. , r -

0 and z > 0) are

ur(0,z) - O (3.7)

u0(0,z) - O (3.8)

auz

5;_ _ o (3.9)

r - 0

Far from the axis, the tangential component of the velocity equals the

experimental expression discussed in Chapter 2 :

u - KrN, 3(2) 5 r s m. (3.10)
0

The surface defined by (r,z) - (3(2),z) is not known a_priori, but

must be calculated for each vortex model studied. If Eqs. (3.4) - (3.6)

are each integrated over the cross sectional area «62(2), then the

following macroscopic balance equations result for the axial component

of the angular momentum, the axial thrust, and the volumetric flow rate
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de ~2 d3

r-6

sz d3 d6

Ez" - -2«3’ (Ur - Efz' uz)puz - rrz + d—z p (3.12)

r-6

dQ a?

a; - -2«3‘ ur - E uz (3.13)

r-6

In the above equations,

P a po - pgz - p(r,2), (3.14)

3'

Tz a 21rI [pru0]uzrdr , (3.15)

0

3

F2 . 2x] [,mz2 - P]rdr , (3.16)

0

3'

Q s 211} uzrdr . (3.17)

0

T2 represents the axial component of the macroscopic torque on the cross

section «3'2 induced by the swirling flow; Fz is the axial component of

the average force acting on «6'2; and, Q is the volumetric flow rate

across this area. The above equations show what properties of the flow

acting on the surface (F(z),z) determine the variation of T2, F2, and Q

in the axial direction.
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Two models of a viscous vortex are studied. Model I, previously

analyzed by Long [1961] and Foster (see esp., Burggraf and Foster

[1977]). is defined by Eqs. (3.3) - (3.6), Eqs. (3.7) - (3.9), Eq.

(3.10) with N - -1, and the following two auxiliary conditions

lim F < a, finite macroscopic force; (3.18)

3 4 o 2

lim P - 0, hydrostatics at infinity. (3.19)

r-vao

A sufficient condition for Eq. (3.18) is

puzz - P, for 6a(z) s r s a, z 2 O. (3.20)

Figure 3.1 shows the definition of the coordinate system and the

boundary conditions for vortex Model I.

As previously discussed in Chapter 1 and 2, many vortex flows are

characterized by a reverse (or downward) annular flow far from the axis.

In Chapter 7, a vortex is studied which approximates this behavior by

assuming that a surface of zero axial velocity surrounds the axis. Mgle

11 accomodates this physical possibility by imposing specific boundary

conditions on a finite surface of similarity rather than the asymptotic

conditions defined by Eqs. (3.18) - (3.20).

Therefore, on,a surface defined by (r,z) - (5*(2),z), which is not

known a_priori, Model I; assumes that

1. the axial component of the velocity is zero; and

2. the tangential velocity is given by Eq. (3.10) for

-1 s N < 0 and 6*(2) s r s w.
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F - 2x I (pU -P)rdr < m

2 z
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/

r - 0 /

/ 6(2)
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9 /
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6U /ar - O / lim P - O, hydrostatic

Z / r-om

/ z 2 0

/

/

/

/ 6 (z) < r < m , 2 2 0

/ a

/

/ U - K/r

/ 0

/

z /

/

r

Figure 3.1 Coordinate system and physical boundary

condition for the vortex Model I



27

Although the velocity and pressure fields for r > 6*(2) are not

specified explicitly, we still assume continuity of viscous stresses,

*

velocity, and pressure across the surface (6 Ufl,z). Ihus,the

auxiliary conditions which define Model ll are

no - KrN, -1 s N < O, 5*(2) s r s a (3.21)

uz(6*<z>.z) - o (3.22)

rr9<6*<z).z> - pK<N-1)[6*<z>1N'1 (3.23)

102(6*(2),z) - O (3.24)

The other components of the viscous stress are related to the radial and

axial components of the velocity (see Appendix D). The behaviour of

*

outer flow (i.e. , r > 6 (2)) must be consistent with the predicted

behaviour of the core flow (0 s r s 6*(2), z > 0). Figure 3.2 shows

definition of the coordinate system and the boundary conditions

vortex M2dsl.ll.

Wm

Because the three-dimensional flow studied is axisymmetric (see

(3.1)), the radial and axial components are closely coupled through

continuity equation. A convenient way to satisfy Eq. (3

automatically is to use a stream function to represent ur and uz,

l a¢

ur _ _ f 52 (3.25)

1 6w

“2 _ + f 52 (3.26)

the

the

for

Eq.

the

.6)



r - 0, z > 0

an /8r - 0

Z
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-1 s N < 0

*

U (6 (z),z) - 0

2

* * N-l

r (6 (2).2) - #K(N-l)[5 (2)]

r9

*

r (6 (z),2) - O

62

Figure 3.2 Coordinate system and physical boundary

condition for the vortex Model II
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Boundary conditions on p(r,z) stem from the previous conditions on

ur and uz and will be explicitly noted momentarily. Firstcfimerve,

however, that the boundary surface at (r,z) - (r,0) and at (r,z) - (m,z)

have similar conditions on u9(r,z). This observation suggests the

following representations for the three dependent variables

2

P(r.2) - puc (2)M(n) (3.27)

ru9(r.2) - 6(2)uc(2)F(n) (3.28)

2

¢(r.2) - 6 (Z)uc(2)h(n) (3 29)

where

n - r/6(z) (3.30)

In the above expressions, 6(2) and uc(z) represent, resp. , intrinsic

length and velocity scales. These are determined as part of the

solution to a specific vortex model.

Inserting Eqs. (3.27) - (3.29) together with Eqs. (3.26) and (3.27)

into Eqs. (3.3) - (3.5) yields

F .. -,,3Mv (3.31)

ath' + azh’F - nF" - F' (3.32)

I I 2 I I! l

-a1hG + a3h G - 2a3nM - can M + nG + G (3.33)

where

uz(r,z) 1

G - - -— 3.34

uc(z> n dn ( )

and
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35..)

a4udz

The coefficients a1, a2, a3, and a4 must be constants.

a's are not independent inasmuch as

and

Therefore, a necessary condition for similarity is that

2

d uc6

d; ( y ) - constant, and
 

uc6 d6

T 32- - constant.

It follows directly from (3.35) and (3.36) that

1

uc a 6N and 6 a (z)N+2

However, all the

(3.35)

(3.36)

The physical constants K and u can be used to scale uc(z) and 6(2).

Thus,
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uc - K6 , (3.37)

and

V2 l/(N+2)

6 - ( K ) . (3.38)

With these results, the a - coeffients become

a1 - 1

N+l

“2"N'T-2

N

“3'311—2

1

“a'NTz'

Eqs. (3.31) - (3.33) can now be written as

2

F

M' - - 3 (3.39)

q

N+1

97F -F+Fh-fi:§Fh (3.40)

d 1 2 2(N+1) 2

E[flG-mflM+hG]-—m—[G-M]n (3.41)

h'- nG . (3.42)

When N - -1, the set of equations given above reduce to a model

previously studied by Long [1961] and reexamined in Chapter 6. The

boundary conditions for the sixth order system will be presented in

Section (3.4) after the asymptotic behaviour of the solution has been

developed. Meanwhile, Figure 3.3 illustrates the shape of the surfaces

of constant r; in the r,z - plane. The dependent variables M(n), F07),

and h(n) are constants on these surfaces. Note that for the special
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N - -1
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n < n

1 2

r

N - -0.5

3/2

zocr

n < n

1 2

>r

2+N

in general : 2 a r

Figure 3.3 Surfaces of Similarity ( constant value of

n - r/6(2) )
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case N - -1, the similarity surfaces form a family of cones. For -1 < N

< 0, the surfaces have a parabolic-like shape.

It follows from Eqs. (3.37) and (3.38) that for a fixed value of n,

the dependent variables (see Eqs. (3.27) - (3.29)), depend on the axial

coordinate as follows

P(r,z) a (2)2N/(N+2)

ruo(r Z) a (z)(N+l)/(N+2)

¢(r.2) « 2

As illustrated in Figure 3.4, the stream function is proportional to 2

for -l S N < 0. This result implies that the entrainment rate, defined.

by Eq. (3.13), is constant on surfaces of constant n inasmuch as

6

a.

Q a 2x I uzrdr

0

68.

1 6¢

- 2x I E 5? rdr

0

2«¢(6a(2).2)

22u2h(n)

This results by letting ¢(0,2) - 0 which implies that h(0) - 0.

Figure 3.4 also shows that the axial component of the angular

momentum, ru is constant on surfaces of similarity for N - -1 only.
0’

However, for -l S N < 0, the pressure field is unbounded for 2 -' O on

surfaces of constant a.

By inserting Eq. (3.29) into Eqs.(3.25) and (3.27), it follows that
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N - -l, n - constant

P ru W

0

4} A

constant

0 2 0

Negative pressure

N - -0.75, n - constant

P ru W

0

0 1/5 0

a 2

0 2 0 z 0

Figure 3.4 Qualitative behavior of the dependent

variables on the similarity surfaces
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N d6 h

ur - K6 E [h - (N+2);7-] (3.44)

h!

u - K6N — (3.45)
z n

Thus, for constant values of n, Eqs. (3.44) and (3.45) show that

u « z'l/(N+2) and

r z

a zN/(N+2)

As 2 -> 0 for constant 97, both the radial and axial components of the

velocity become unbounded; however, as 2 e on, these components decay to

zero.

Both vortex models studied in Chapters 6 and 7 are subject to the

same conditions on the axis. The physical boundary conditions given by

Eqs. (3.7) - (3.9) imply that the similarity functions defined by Eqs.

(3.27) - (3.29) must satisfy the following conditions '

h

lim [ h' - (N+2) - ] - o (3.46)

«4 O ’7
n

F

lim [ - ] - 0 (3.47)

n -' 0 "

hi! hi

lim [— - — ] - o (3.48)
2

n -* 0 '7 0

These results, and h(0) - 0, will restrict the behaviour of the swirling

flow near the centerline of the vortex and will be explored further in

Chapter 4.

3 3 t c e av our
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The asymptotic condition on the tangential velocity expressed by

Eq. (3.10) implies that F(n), defined by Eq. (3.28), has the following

behaviour for large values of n

6a(2)

N+1 n < n < m . (3.49)
“Fa"? '37)" a" -

Thus, for N - -1, Fa - 1 and the axial component of the angular momentum

is bounded; however, for -1 < N s 0, Fa becomes unbounded for n 4 m.

Because P(w,2) - 0, M(m) - 0 also (see Eqs. (3.51) and (3.27)).

Therefore, by integrating Eq. (3.31) with F - Fa, it follows that

2N

V

M 4 Ma - (TEN) , "a S n S m. (3.50)

If Eq. (3.20) holds, then

2

 

 

Ga - Ma , "a S n S w . (3.51)

Thus,

h ' N

a n
G -—- ’ S S 3.52a n j'Tifi na 0 m ( )

Eq. (3.52) can be integrated to give

flN+2

h + h - + 1 , n s n S m . (3.53)

a (N+2) J -2N a

With Ga2 - Ma’ Eq. (3.41) reduces to
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' 1 2 2

"Ga - N+2 0 Ga

+ h C - constant. (3.54)

aa

Inserting Eqs. (3.52) and (3.53) into Eq. (3.54) yields

N

n

(1 + N ) -— - constant . (3.55)

./ ~2N

This equation is satisfied by setting the arbitrary constant of

integration to zero and 1 - -N. Thus, Eq. (3.53) becomes

N+2

H

h
 a - ‘ N , n S r, S m 0 (3°56)

(N+2) J -2N a

For N - -1, Eq. (3.40) is balanced. This is not suprising because

the free vortex (i.e., u - K/r) is an exact solution to Eq. (3.4).
0

However, because the empirical swirl velocity employed in this study

(see Eq. (3.10)) is not a solution to Eq. (3.4), the asymptotic

functions given by Eqs. (3.49), (3.50), and (3.56) only satisfy the

radial and axial components of the boundary layer equations and the

continuity equation. If F3 and ha are introduced into Eq. (3.40), then

N .

N+l

F h - "Fa + Fa - Fa ha] - (N+l) r; (3.57)
[17:2 aa

This result shows that the tangential balance of linear momentum is

satisfied for N - -1 only. Thus, similarity solutions on the unbounded

M213. which simultaneously satisfy all three component equations of

the momentum balance and Eq. (3.10) with -l < N < 0, do not exist.

3 4 ou d V lue P o em tudied
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The physical boundary conditions given by Eqs. (3.7) - (3.9)

require the following restrictions on the similarity functions at n - 0

(also see Eqs. (3.46) - (3.48))

h'(0) - 0 (3.58)

F'(0) - 0 (3.59)

h"'(0) - 0 (3.60)

Moreover, Eqs. (3.28) and (3.43) also require

F(0) - 0 (3.61)

h(0) - 0 (3.62)

These conditions are satisfied by both vortex Models studied.

Eqs. ((3.49), (3.50), and (3.56) with N - -1 define the asymptotic

behaviour of a vortex with bounded circulation (Model I). Eqs. (3.39) -

(3u42) with.N - -l govern the behaviour of Model I for 0 s n s "a' The

constant "a is calculated as part of the solution.

Model II also satisfies Eqs. (3.58) - (3.62) and the differential

equations (3.39) - (3.42) for 0 S r) s 17*: However, as previously

mentioned, similarity solutions on the unbounded domain for -1 < N < 0

do not exist (see Eq. (3.57)). Eqs. (3.21) - (3.24), which completes

the mathematical definition of Model II, require the following

restrictions on the similarity functions at n - 0* - 6*(2)/6(z)

N+1
11' *

F<n ) - (n ) (3.63)

h'(q*) - O (3.64)

dF * N

d? ,, - (N+1)(n ) <3-65>

fl
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Eq. (3.65) stems from either Eqs. (3.23) or (3.24). This can be

seen by first writing the stress components in terms of the similarity

function F(n) as follows

u

a 9 N-l 1 dF

fro - pr 5; ( E_ ) - ”K6 -;§ [0 a; - 2F]

3 N-l d6 1 dF

702 - fl 5; (U0) - - 4K5 3; —;— [n a; - (N+1)F]

:1-

The above two expressions apply for 0 .<_ r .<. 6 (2). Eq. (3.65) follows

directly by setting I: - 6*(2) and using the continuity conditions given

by Eqs. (3.23) and (3.24).

Table 3.1 summarizes the basic elements of the two vortex models

studied and Table 3.2 lists the properties calculated for each model.

The two models are qualitatively different inasmuch as the macroscopic

axial thrust induced by the flow for Model I is constant (i.e. , 6uc - K

for N - -1) whereas this property varies with axial position for Model

II (see Chapter 6 and 7).



40

Table 3.1 Mathematical models

 

 

 

 

Differential Domain Conditions Edge

Equations at n - 0 Conditions

Model I Eqs. n s n s w

Eqs. a

Vortex Flows ( 3.40 ) Infinite

( 3.59 ) F - l

with I

O S n S m I

Constant ( 3.43 ) M - l/(2n)

( 3.63 )

Circulation with N - —l

h - n/J—E + l

*

Model 11 Eqs. 0 - n

Eqs.

Vortex Flows ( 3.40 ) Finite * N+1

(3.59) F-(n)

with I

0 S n S n I

Variable ( 3.43 ) h' - 0

( 3.63 )

Circulation -1 S N < 0 * N+1    F'-(N+1)(fl )
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Table 3.2 Physical properties calculated for the two vortex models

Property Equations Comment

Similarity

scales:

1

v2 -—- N - -1

Length 6 - ( T< )N+2 Model I

N -1 S N < 0,Velocity Uc - K6 Model II

Angular on - 6U F
c

momentum

Radial 2
n ' r/6(z)

pressure P - pUc M

difference

Stream 2

function W - 6 Uch O S n S "a’

Tangential U _ U P Model I

velocity 0 c n

h!

Axial *

velocity U2 - Uc n 0 S n S n ’

Model-II
d6 h

Radial , _

velocity Ur - Ucdz (h ' (N+2)n )

Fz n 2 ~

Axial thrust - I (G - M)ndn n - n ,

2«p(6U )2
a

c 0 Model I

T2 0 N+2 ~ ~N+1

Axial torque 2 - I FGndn - 2NI3 [h(n) + (N-l)]n

22p6(6U )

c 0

Q ’7 ,_ ,_ ,.
Flow rate 2 - I Gndn - h(n) n - n ,

226 U
Model II

c O

a 5 2

p(6,z) - p(o,2) F ~

Pressure 2 - I -§ndn - M(O) - M(n)

drop [)0c 0 n  
  



CHAPTER 4

SOLUTION BEHAVIOR NEAR THE AXIS

4 e a utio

The solution to Eqs. (3.39) - (3.42) for small values of r) can be

developed using Taylor series representations for M, F, and h. In

general,

1 2
M(n) - M(O) + M'(0)n + 2? M"(O)n + ---- (4.1)

1 2
Mn) - 1121 + may: + g F"(0)n + (4.2)

1 2
hm - m + 11121» + 2—, h"(0)n + (4.3)

The coefficients underlined in Eqs. (4.2) and (4.3) are zero because Cd?

boundary conditions (3.58), (3.59), (3.61), and (3.62). All of due

coefficients multiplying odd powers of the independent variable are zero

because of local symmetry about n - 0. Because Eqs. (3.39) - (3.42) are

invariant if n -* -n. M(n) - M(-n); F07) - F(-n); and, Mn) - h(-n).

Thus, the power series representations through fourth order can be

expressed as

2 4
MO - c + cln + czn + ---- (4.4)

b
2 4

F0 - 2 n + bln + ---- (4.5)

42
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a
2 4

ho - 2 n + aln + ---- (4.6)

The coefficients a1, b1, c1, c2, --- can be related to a, b, and c

by inserting Eqs. (4.4) - (4.6) into Eqs. (3.39) - (3.42) and equating

like forms of the independent variable. This gives

2
N a

a1 - E?N:§) ( 5— - c ) (4.7)

ab

b1 " ' m (“-8)

b2

°1 ' ' T (“'9)

ab2

c2 - 64(Nli) (4.10)

The general solution near the axis depends on the empirical index N

and the coefficient a, b, and c. The asymptotic behavior for 2) >> 0

(see Model 1, Chapter 3) will determine three of the four coefficients

(a, b, c, na); the remaining coefficient can be used to parameterize the

behaviour of the vortex (see Chapter 6, 7). Figure 4.1 portrays the

mathematical meaning of these coefficients and provides the interesting

a_priori observation that as 'b' increases the angular momentum changes

from zero to its asymptotic value over smaller spatial domains. Thus,

the vortex becomes more 'concentrated' about the axis. In Chapters 6 -

7, the limiting behavior of the solution for small values of n will be

connected to the asymptotic behavior for the two vortex models defined

previously (see Table 3.1).
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4 ow e imes

The local behavior of the axial and radial velocity near the 'axis'

(i.e., small values of n) is determined by the coefficient 'a'. Because

(see Eq. (4.6))

N a2

2 4
Ito-“2'17 +W(—2—-C)n +---- (4.11)

it follows that (see Table (3.2))

N

2

V2 §:§ N a 2

uz(r,2) - K ( fi— ) [a + §?§;§)( 2_ - C)n + "" ] (4.12)

and

l 2

V2 - N12 N (2-N)N a 3

ur(r’Z)-V(K_) [-m)an+—-—2-(2—-c)n+---]

8(N+2)

(4.13)

Eq. (4.12) shows that the transition from forward flow (i.e., uz(0,z) >

0) to backward, or reverse, flow (i.e., uz(0,2) < 0) within the vortex

is determined by the sign of the coefficient 'a'. Therefore,

transition from forward to reverse flow on

the axis of a vortex corresponds to a - 0.

Likewise, Eq. (4.13) shows that for -l S N < 0

forward flow around the axis is accompanied by

an outward radial flow (i.e., ur > 0); and
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reverse flow around the axis is accompanied by

an inward radial flow (i.e., ur < 0)

Whereas - ¢>< a < + m, the coefficient b on the other hand is

always positive. This follows from Eq. (4.5) and Eq. (3.28) which shows

that

N

v2 -—— b

u,(r.z> - K < K— >N+2 [ 5 n + ---1 (4.14)

Positive values of 'b’ correspond to counter clockwise rotation about

the axis; negative values of 'b' correspond to clockwise rotations.

.Because Eqs. (3.3) and (3.4) are invariant to a sign change in u only0.

counter clockwise rotations are considered. The empirical parameter K

in Eq. (1.1) is positive.

As noted earlier, large values of 'b' will give a 'concentrated'

vortex motion about the axis. Because of the physical interpretation of

'b' as a measure of the frequency of the forced vortex motion about the

axis and because of its clear qualitative effect on the flow (see Figure

4.1), the global solution will be parameterized by this dimensionless

group. Note that

 

 

due

2( 6r ) r-0

b ' uz (N-1)/(N+2) ' (4'15)

K(K)
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which is a relatively easy property to measure experimentally (see

Chapter 9). This alone justifies its use in the theoretical development

as an independent parameter.

The parameter 'c', which represents the dimensionless 'excess'

pressure on the axis (see Table 3.2), is always positive for Model I

because (see Eq. (3.39))

c - M(O) - M(fi) + an > o (4.16)

O
V
—
x
é
l

é
|

'
1
1

u
N

For Model II, computer experiment for the range of b studied in this

research (see Chapter 7) shows c is positive for any value of N. For

small values of n,

2N

 

2 ”2 N12 b2 2 abz 4
P(r,z) - PK ( K. ) [ C ' g" n + ng§137 n + ---' 1 (4.17)

Note that

32?

< 0 ,

ar2

r - 0

so for a fixed cross section (constant 2), the pressure on the axis

always corresponds to a local minimum (maximum for P). Because c > 0,

P(0,z) is positive and always decreases with increasing 2. Therefore,

N-2

a (~2N) VZ N—+2’

5; (p + pgz) - CKp _N:§_ ( K_ ) > 0 . (4.18)

r - 0
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Eq. (4.18) shows that forward flow on the axis is always against an

O O o

adverse pressure gradient. There will always be a region, 0 < 2 < 2 ,

near the singularity point for which the pressure is less than zero. 20

can be calculated from Eq. (3.27) by replacing uc with Eq. (3.37) and

letting p(0,2°) - 0. Thus, negative values of p(0,2) occur on the axis

0
for 2 < z , where

(4.19)

Because -1 s N < 0, it follows from Eq. (4.19) that 2° increases as c

increases inasmuch as p0 >> pgzo. For N - -l, 20 a co'5 whereas for N -

-0.75, z0 a c5/6. For N - -1, Eq. (4.19) reduces to

P 0.5 K 0.5
z° - K ( o_'_6) ; (c) (4.20)

P ' P82

For jet-like, forward flow with c z 0.1, z° is about 0.08 m for a gas

vortex with a backpressure (i.e., po - pgzo z p0) of 14.7 psi (1.01x106

g—cmz/secz), K z 3050 cmZ/sec(306 Boysan at 81..1982 and Table 8.5), p z

0.0013 g/cm3, and K/u z 231. However, for a liquid vortex with N -

-0.75 (see Dabir, 1983 and Table 8.5), c - 0.1, p° = 14.7 psi, K z 270

-(1+N)

cm1-N/s (see Table 8.2), p - 1.0 g/cm3, and K/u 342 cm theR

onset of negative pressures occurs at 2° z 0.056 m.
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The behaviour of the axial velocity near the axis depends on the

relative values of 'a’ and 'c'. Figure 4.2 illustrates four flow

patterns consistent with Eq. (4.12). With the exception of Flow IV, all

of these features have been observed experimentally (see Chapter 2) and

calculated theoretically (see Chapter 6, 7). Table 4.1 gives the

conditions for transition between these flow regimes. The qualitative

behaviour for the radial flow follows directly from Eq. (4.13) and is

also noted for each transition.

The sign of the 'excess' mechanical energy, E, of the fluid on the

axis relates directly to the flow structure illustrated in Figure 4.2.

The value of E at r - 0 can be calculated as follows

1

E - 5 ptuz(0.z)12 + [p(0.2) - <p° - pgz>1 (4.21)

By using the results listed in Table 3.2, the above expression can be

written as

2
2 a

E-puc(2—--c). (4.22)

Thus, forward, jet-like flows (Type I) as well as reverse, undulating

flows (Type IV) correspond tom value of the 'excess' mechanical

energy on the axis; negatlve values of E give a wake-like behaviour

which includes both undulated (Type II) and reverse, jet-like flows

(Type III). Transition between Type I and II flows correspond to E - 0.

4 a nce 0 e is

A mechanical energy balance consistent with the approximate

boundary layer equations, defined by Eqs. (3.3) - (3.6), has the
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Table 4.1 Criteria for transition between flow regimes

 

 

 

Transition 1 Criteria Comment

Forward,

2

a

I ta II a > 0, c - —§- Outward Flow

II - III a - 0, c 2 O Inward Flow

 

 

 

Backward,

2
a

III t» IV a < 0, c - -§- Inward Flow

Impossible for

IV +» I a - 0, c - 0 Nonzero angular

momentum ;

see Eq. (4.16).  
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interesting feature that the viscous dissipation is zero on the axis.

Thus, the change in E (see Eq. (4.21)) along the axis is governed by the

following equation

DE 6E(0,2) 1 6

DE - uz(0,z) -——-— - lim - -— r(rr6u6 + r

62 r 6r u ) (4'23)

r-O

r g 0 r2 2

The term on the right-handmside of Eq. (4n23) represents the rateIof

work done on the fluid per unit volume by viscous force. By using the

definitions of Tre and Trz (see Appendix D) as well as the boundary

conditions on the axis, the above expression simplifies to

DE

Dt

 

 
- A ( 2 u ) (4.24)

r-O

Eq. (4.24) and the results listed in Table 3.2 yield

3

—2N put a

<m>—za<2—‘C> (“'25)

DE

E  
r-O

where uc is defined by Eq. (3.37). For N - -1, Eq. (4.25) reduces to an

earlier result reported by Long [1961]

6

DE pK a2

IT: ‘234a(2—'°)
r-0 [’2

Eqs. (4.22) and (4.25) can be combined with the conclusion that on the

axis



53

DE -2N uc

E In - N—+2- ) ‘Z—' aE(O,z) . (4-26)

r-O

Figure 4.3 illustrates the relationship between the direction of flow on

the axis (a < 0, backward; a > 0, forward), the mechanical energy of the

fluid on the axis, and the rate of change of mechanical energy due to

convection. Thus, the four types of structures shown in Figure 4.2 can

also be classified by using energy considerations.

Figure 4.3 shows that for Type I and Type III vortices the fluid on

the axis moves faster than the surrounding fluid. In this case, energy

is transfered.to the slower moving fluid by viscous work. On the other

hand, Type II and Type IV vortices have the feature that the fluid on

the axis moves slower than the sourrounding fluid so, hatflds case,

energy is transfered to the axis by viscous work. Transition between

the various flow regimes is characterized by

DE

FE - O . (4.26)

r-O



+
.

,
/
_
_
_
_
:
_
_
_

1}

+

X

 

   
v
,

 

 

l

a /2 - c I : a /2 - c

' I

‘ l

I l
l 0 DE/Dt I

l I

l I

+ l l

I I

' >

Type IV Type I

U A A A

 

   j
) :
2
;

T
?

Figure 4.3 Classification of vortex flows based on the

mechanical energy balance



CHAPTER 5

SOLUTION METHODOLOGY

5 a mat o o e 0 First rder E uations

Eqs. (3.39) - (3.42) can be rewritten as a system of first order

ordinary differential equations by introducing the following dependent

variables : Y1 - M; Y2 - h; Y - G; Y - F'. The'- G'; Y - F; and, Y

3 4 5 6

resulting equations are listed in Table 5.1 along with the power series

representations of Yi(") for small values of n (Eqs. (5.1) - (5.12)).

The equations can be expressed more concisely using vector

notations:

Y' - £(Xn7). (5.13)

Solutions to Eq. (5.13) depend on the three parameters a,1>,and c

discussed in Chapter 4. These coefficients determine the trajectory of

1(a) near n - O inasmuch as

1(0) - cgl + ag3 , and (5.14a)

d! N a2

"limo d_'l - m (2— - c)_e_4 + bg6 (5.14b)

gi denotes the igh unit base vector in a 6 - dimensional Euclidean

space. Eq. (5.14a) follows directly from Eqs. (4mQ)-(4u6) and the
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definition of C(n) (see Eq. (3.34)). The parameter 'a' and 'c' must be

calculated as part of the solution; however, 'b’ can be specified and,

as indicated by Eq. (5.14b), determines the initial trajectory of Y6(n).

The asymptotic behavior of XM) for large values of r; follows

directly from the analysis developed in Section 3.3 and the definition

of 1(a). These specific results are listed in Table 5.2 and apply to

the vortex on an unbounded domain (Model I). The bounded vortex,

*

defined by Table 3.2, satisfies the conditions at n shown in Table 5.2

(Model II). The set of first order equations were used to calculate the

components of 1(a) and the integral properties for each model over their

*

respective domains once 'a', 'c', and "a (n for Model II) were found

(see Section 5.2). Eq. (5.13) was integrated numerically using the

computer program listed in Appendix B.

For Model I, the stream function far from the axis is given by

7!

h»h -—-+1, 97
a JF2 a

I
A

:
3 I
A 8

The numerical solution approaches this theoretical result, but

eventually runs "parallel" to it depending on the precision in

determining the parameters 'a' and ’c'. This offset error, which occurs

for n z "a’ is more apparent with h than the other similarity variables.

This can be understood from a perturbation analysis.

If Xd represents a small perturbation from the asymptotic solution,

then
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Table 5.2 Boundary conditions on the vortex models

 

 

 

 

 

Variable Condition Model I Model II

1

Y -M c ---

1 2"2

1;

Y2 - h 0 + l ---

2

1

Y - G a O

3 2 n

1

Y - G' O - ---

4 2 n2

*N+l

YS-F 0 l (n)

* N

Y - F' O 0 (N+l)(n)     
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X - X + Y . (5.15)

Inserting this decomposition into Eq. (5.13) and neglecting nonlinear

terms yields a linear equation for id :

g
‘2 ) , Y (5.16)

dn - ( 6

The six first - order, linear differential equations represented by Eq.

 

(5.16) are

led 2

an“ ' ' ‘3st
(5.17a)

n

dY2d

dn ' ”st
(5.17b)

dY3d

an ' Y4d
(5.17c)

dY4d 1 2 J‘E 1 2

———--(—+-)Y -—Y + Y +2Y -—-Y
d 4d 3d 3 2d d0 2 n n j’? n l "2 5d

(5.17d)

dYSd

‘53“ ' Y6d (5.17e)

dst 1

—d—'l—- - EY6d (5.17f)

The above six equations are not fully coupled. For instance, it

follows directly from Eq. (5.17f) that
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-n//5

Y6d °‘ 9 '

so Y6 approaches itsasymptotbcbehavior exponentially. This is also the

case for Y5d and Yld' However, Eqs. (5.1flx>-(5.l7d) have a different

behavior. Because Y1d and Y5d decay exponentially, the general solution

for Y2d - Y4d can be expressed as

q

Y2c1"""

q-2
Y3d « qn , and

-3

Yhd « Q(Q'2)nq -

Substituing Y2 - Yd. into Eq. (5.17d) and neglecting the term which
4d

decays exponentially, implies that

q - l.

Therefore,timeperturbation variables Y2d - Y4d approach their

asymptotic behavior algebraically :

Y2c1°"7

3d

4d

Q
I
H

a
l
t
-
a

a
)
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and Y on the otherremains proportional to n. Y 4d’As n v w, Y2 3d

d

hand, decay to zero.

Because Y2d a n, the offset error between Y2 and Y2a for large

values of n is determined by the accuracy of the solution defined by

Ei < e, i - 3,5,6 (see Eq. (5.29)).

For instance, if e - 0.0001, numerical calculations show that Y2d is

less than O‘OOSYZa; however, if e - 0.001, Y is about 0.04 Y The
2d 2a'

difference between these results illustrates that the control of e is

very important. In order to have an accuracy of Y2 within O.99Y2a for n

2 "a’ 6 must be 0.0001.

e ts Th ot n et od

Although the two vortex models studied have different conditions

surrounding their cores, the mathematical structure of each problem and

the solution strategy have a common methodology. Both models are

represented.as a.system of differential equations on a finite domian E.

*

The actual values of 'a', 'c', andr)a (n for Model II) for a given

value of ’b' and N were found by rescaling the two - point boundary

value problem and using a shooting method. The rescaled problem is

d; A

gg-£(§.€;N.5).0<€Sl

where
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{a ,ModelI

n- aa:
n , Model II

m

I

.
.
|
.

Table 5.3 defines the component equations and boundary conditions. Only

three of the six conditions listed under Model I for 5 - l are

independent. The conditions at 6 - 0 are the same for both vortex

models.

The solution of both vortex models involves a three dimensional

search for vectors with components (a,c,'fi). The above two - point

boundary value problem was solved by using a "shooting" method. Figure

5.1 illustrates the four elements of the algorithm and a brief

discussion of each component follows. The Fortran program which

implements the algorithm is listed in Appendix B.

A. Initial Guess

The program designed here has been used successfully for a wide

range of initial guesses : a0, co, and 3°. These parameters satisfy -m

<a°<co, 0<c°<oo, and0<fi°<cofor -lSN<0and0<b<co. If

one solution is known, then the next solution for a value of (b,N) near

the original one can be found by using the previous solution as an

initial guess. In Chapters 3 and 4, the behavior of F for small and

large values of n has been discussed. Because F approaches its

asymptotic behavior exponentially (see Figure 6.3 and the previous

section), it seems reasonable to consider the intersection point of

these two curves as an initial guess for 5. In Figure 4.1, this value

of 3 equals to J2/b. With 5° - JZ/b, an a_priori relationship between
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Specify -1, Model I

N, b N -

-1 s N < 0, Model II

. ~ ~ "a’ Model I

A. Guess a, c, n n - *

n , Model II

New B. Calculate 2(0)

2 _______. dz

a.C.n and(ag)o

     

J.
 

 

      

 

B. Integrate

d; A ~

D. Three 5? - £(Z.€;N,fl)

dimensional

search 0 < f s 1

No

C. Check boundary conditions

at 5 - l. Satisfied ?

1 Yes

 

  

 

   

Figure 5.1 Solution strategy based on a shooting method
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a0, b, and c0 for N - -1 follows by assuming Mo( JZ/b) z Ma(J2/b). The

result is

c° - b/2 - ao/16. (5.24)

Eq. (5.24) is consistent with the general behavior of (a,b,c) for large

values of b. Numerical studies indicate that c is roughly proportional

to b. Therefore, with

c° - b/3, (5.25)

Eq. (5.24) gives

a° - 8b/3. (5.26)

Unfortunately, 5° z JZ/b is not a good initial guess for 5 and is

replaced by the empirical result

5° - [8./2/b1'N (5.27)

Eqs. (5.25) - (5.27) provide good initial guesses for Models I and II at

large values of b (say b > 0.10) for any N.

Figure 5.2 illustrates how the initial guess of (a,c,3) affects the

convergence of the algorithm. The initial guess, denoted by point 1 in

Figure 5.2, is obtained from Eqs. (5.25) - (5.27). The solid line shows



66

how the algorithm searches for the solution. After six iterations, the

value of (a,c,n*) is very close to the solution. It took another 6

iterations to satisfy the criteria (6 5 0.0001) and reach the solution

(point 12). The initial points denoted by (*) will not converge to the

solution. These points give a rough idea of the size of the domain of

convergence for b - 0.3. Although the projected values of points 4 and

5 on Figure 5.2 appear close to a nonconvergent point, the corresponding

value of c for the two points, as indicated, are different.

2;-?¥5129§9§2-£9§-;£§2

For small values of 6, the Taylor series expansion defines the

solution in the vicinity of f - 0. The differential equations are

integrated numerically from 6 - 0.001 to l by using the DGEAR subroutine

(IMSL,1984). The required input conditions for the algorithm are listed

in Appendix B. The DGEAR subroutine solves the set of differential

equations by the ADAMS predictor - corrector method. (see Gear, 1971;

Lapidus, 1971). The integration only reguires values of 210.001) and

i(0.001) to start. The algirithm continues until the end point 5 - 1 is

reached. DGEAR subroutine is also designed to solve "stiff"

differential equations. In this purpose, it is more powerful than other

algorithm.

The effect of step size M on the behavior of M, F, and h is

important. It was found that these three functions do not change much

(three significant figures) between using 1000 steps (A5 - 0.001) and

100 steps (A5 - 0.01) over the domain 0 .<. 5 s 1 for (a,b,cfli) -
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A, Solution (a,c,q) =- (0.893,0.0881,21.3)

46, No convergence
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Figure 5.2 Domain of convergence for the three

dimensional search with b = 0.3

( Model :1, N =- —1.0)
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(0.893,0.3,0.0881,21.3). A6 - 0.001 gave satisfactory results for all

values of the parameters studied.

9.-Qsésesée-59!-999Y9559999

Let ZA(£) represent an approximate numerical solution to the

boundary value problem. The accuracy of the solution is determined by

how close the boundary conditions at 6 - l are satisfied. If 3, denotes

a three dimensional vector whose components represent the difference

between the desired boundary conditions at 6 - 1 and the approximate

results based on a given value of (a,c,;7'), then a solution to the two

point boundary value problem occurs when

151(3) < e for i - 1,2,3 (5.28)

where e is an accuracy parameter.

The components of 5 are defined by

E |23A(1> - z3<1>|

5 4 [ a; ] - IzSA(1) - 25(1)| (5.29)

Ea |26A(1) - 26(1)|

3 depends on a three dimensional vector x_, where

(5.30)I
x l x

c
a
n

I

a
t
o
m
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In this research, the three boundary conditions 23(1), 25(1) and 26(1)

are used for both Models I and II. The results showed that once these

three boundary conditions are satisfied for Model I, the other

asymptotic conditions are automatically satisfied.

For Model I, three boundary conditions will uniquely determine all

six dependent variables (see Table 5.3). But these three boundary

conditions cannot be arbitrarily chosen from the six asymptotic

functions. Three groups are separated directly by Eqs. (5.18) - (5.23).

The first group contains only 21 and 25 (Eq. (5.18)). The second group

contains 22, 23, and z“ only (Eqs. (5.19) - (5.21)) since 21 and 25 in

Eq. (5.21) will automatically drop out at 5 - 1 and N - -1. The last

group includes 26, 25, Z3, and 22 (Eqs. (5.22) and (5.23)). Therefore,

three different boundary conditions must be chosen from these three

groups. One is chosen from either 21(1) or 25(1), the other is chosen

among 22(1), 23(1), and 24(1), and the last one is 26(1) since 26 only

appears in the last group. In this research, 23(1), 25(1), and 26(1)

are chosen for Model I in correspondence with Model II. For Model I, 25

and 26 become asymptotic much sooner (i.e., small values of n) than 23.

Figure 5.3 illustrates how the accuracy parameter, c, affects the

soluthnn (a,c,m*), for Model II. For large values of e (e z 0.1 -

0.002), La,c,n*) changes significantly. When 6 is small enough ( 5

0.001), the values of (a,c,n*) become stable. In order to have three

significant figure accuracy for a, c, and "a’ 6 must be less than

0.0001.



1
.
.

O J
L
J
L
A
L
I

L
I
I
L
l

1.00

L
L

L
L

L
L

L
]
.

 

70

 

lnitial guess : (0° ,c° A") = (0.8.0.1207)

Eq. (5.19)

     

Solution : (a,c,‘7) = (0.893,0.0881,20.7)

 

 

 

 

 

0.90—4 a

n a J.
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0.80 T TTTTITT T TfiT—TII T j TTIII

10.0 100.0 1000.0 1.0E+04

1/6

Figure 5.3 The effect of accuracy parameter 6

on the behavior of the solution

for b = 0.3 (Model ll, N = —‘l.0)
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P;-4955??-§9§-9992§595-$5.9.52

If the criteria in step C are not satisfied, the program will call

ZSCNT subroutine in IMSL (see IMSL, 1984). This subroutine uses a

secant method to solve a system of non-linear equations (Phillip, 1959),

E(x) - Q. When an initial guess is specified, the ZSCNT subroutine uses

a point nearby to search for a better solution. Figure 5.4 shows how

the next solution "vector" is obtained for a one dimensional problem.

If the initial guess of xk.1 is given, the subroutine calculates E(xk'l)

and uses an arbitrary point nearby xk to find E(xk) . A new guess for x

(i.e., xk+1) is determined from (see Figure 5.4)

xkE(xk- l) _ xk- 1E(xk)

5(xk‘1) - sock)

 

k+l
x

The process is repeated until E(xn) < e. For a system of non-linear

algebraic equations, the algorithm is similar but more complex (see

Phillip, 19.59). The search for (a,c,;7') continues until the desired

accuracy (see Eq. (5.28)) is obtained.
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Initial guess

k- -

(x 1.E<xk 1))

   
\\New guess

\ xk+l

 

 
Figure 5.4 ZSCNT search for a one dimensional problem



CHAPTER 6

MODEL I : VORTEX FLOW WITH CONSTANT CIRCULATION

In Chapter 4, qualitative criteria were developed for different

flow behavior near the axis. In this chapter, quantitative results for

swirling flows governed by Model I (see Section 3.1) are developed. The

major goal is to investigate the general behavior of the velocity and

pressure fields. A comparison with Long's vortex is presented in

Section 6.3. The behavior of macroscopic properties and their

significance on the flow behavior will also be discussed (Section 6.4).

Finally, an interpretation of the various flow structures is presented

in Section 6.5 using the mechanical energy balance and the axial force

balance on the axis.

6. Ge e av o 0 e Solution

Figure 6.1 shows the relationship between b and the parameters a,

c, and "a‘ When b increases, a and c increase but "a decreases. A

smaller viscous core (i.e. , small 77a) occurs at larger values of b.

Therefore, when the rotation around the axis increases, the core size

decreases and the vortex becomes more concentrated.

Three flow regimes have been identified quantitatively, depending

on the value of b. The transition values of b between flow reversal and

undulated and between undulated and jet-like behavior are 0.042 and

0.136, respectively. The flow structure is determined uniquely by K, v,

73
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Figure 6.1 The behaviour of the solution for

Model!
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N and one of the four parameters (a,b,c,na) (see Table A.1 in Appendix

A). The general behavior of the three dependent variables M, F, and h

are plotted on Figures 6.2 - 6.4. The derivatives of M, F, and h at the

axis are zero and all of these functions follow their asymptotic

behavior for large values of :7. These two features stem directly from

the boundary conditions (see Table 5.2).

The effect of b on M is significant (see Figure 6.2). For constant

n, M increases as b increases. Because Ma, which represents the

asymptotic values of M for n > "a’ is independent of b, the "pressure"

drop across the vortex (i.e., M(O) - M(na)) increases with b. Thus,

coherent vortex.structures require relatively large radial pressure

drops. Note also that M z M3 for n z 10, which is significantly smaller

than "a' This result was anticipated by the analysis of Section 3.3.

Figure 6.3 shows that F obtains its asymptotic value for n z 15,

provided b 2 0.03. For large values of b, F z Fa for n << "a also.

Thus, if M and F alone were used to control the numerical search (see

Section 5.2), then a significant error in "a would occur (see Section

6.3).

For the same value of n within the core region, larger values of b

yield larger values of F. In other words, the circulation for fixed '1

increases as the rotation around the axis increases (strong vortex)

I‘ a é g.§_9rd0 - 21rKF(n;b)
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The behavior of the dimensionless stream function h, which relates

directly to the axial and radial components of the velocity, deserves

special attention. Figure 6.4 shows that for reverse flow (b - 0.03), h

is negative for small values of n. This was expected based on the

analysis of Section 4.1 (see Figure 4.1). For b - 0.03, note that h - 0

when n z 4. Because h(n) also represents the ma; entrainment rate

(see Table 3.2), h(4) - 0 means that the local volumetric flow rate

across a surface of fixed 2 and 0 S. r s 46(2) is zero. This also

implies that uz(r,z) must be zero for some values of r between 0 and

46(2), if b - 0.03.

For the other two values of b (b - 0.1, 0.3), h is always positive.

For very large values of b (see Figure 6.8), h can overshoot ha for n <

"a' For n > "a’ h parallels ha with a very small, and controllable

offset. As discussed in Chapter 5, the offset always exists because the

allowable error in the numerical search for a, c, and "a is always

larger than zero (see Eq. (5.28)). This constant offset error does not

affect the velocity components (see Section 5.2).

Another result is that h increases as b increases for fixed 7).

Thus, a "strong" (i.e., large b) vortex has a larger M volumetric

flow rate (fixed a) than a relatively "weak" vortex. However, because a

"weak" vortex has a larger value of "a (see Figure 6.1), the global or

macroscopic flow rate through a "weak" (i.e., small b) vortex is large

compared to the flow rate through a "strong" vortex.

6 Behavior Vel cit Field
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The tangential velocity profiles for different values of b, shown

in Figure 6.5, have a Rankine-type structure with a forced vortex

behavior near the axis and a free vortex behavior in the outer region of

the care. For r; > "a’ uo- K/r. For large values of b, the region of

solid body rotation (i.e. , forced vortex) shrinks. The peak tangential

velocity shifts to smaller values of 17 and becomes larger as b

increases. If the size of a vortex is defined as the radial position

where u is a maximum (see, esp., Donaldson and Sullivan, 1960), then as

0

b increases from 0.03 to 0.3, the size of the vortex decreases by a

factor of 2.5, whereas "a only decreases by a factor of 1.4 over this

range of b. An interesting observation in Figure 6.5 for b - 0.03 is

that the zero Log], entrainment rate (h(4) - 0 in Figure 6.4) occurs

within the forced vortex region (see Figure 6.5).

Figure 6.6 shows three different axial flow profiles for different

values of b. This result is consistent with many experimental

observations (Escudier, 1980, 1982; Dabir, 1983). When b increases, the

flow changes from a reverse flow on the axis to an undulated flow and,

finally, to a jet-like flow. In the flow reversal region, it is

observed that uz - O at n z 2.5 for b - 0.03. Thus, the fluid moves

downward toward the singular point for n < 2.5 and moves upward for 17 >

2.5. This observations also follows directly from Figure 6.4 inasmuch

as h'(2.5) - 0. Note also that for b - 0.3, the magnitude of uz near

the axis is larger but falls below the axial velocity of the weaker

vortices in the outer region. However, all the axial profiles approach

K/(f2 r) for n > "a' It follows from Figures 6.5 and 6.6 that the local
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peak of uz for b - 0.1 and 0.03 occurs at slightly smaller values of 77

than the peak of uo.

The radial velocity profiles in Figure 6.7 exhibit many important

features. As predicted in Chapter 4, an outward radial flow (ur > 0)

occurs around the axis for forward flow and an inward radial flow (ur <

0) occurs around the axis for reverse flow. For all values of b, a zero

radial component of the velocity always exists for a nonzero value of n.

As previously discussed in Chapter 2, a surface characterized by ur - O

is often called a "mantle". Because the flow at infinity must move

radially inward toward the core (ur - - u/r for n > ”3), two internal

mantles exist in the reverse flow regime due to the inward radial flow

near the axis. For the forward flow regime (either undulated or jet-

like), however, there is only one mantle. The inner mantle in the

reverse flow case appears at very small values of n (n - 2.0 for b -

0.03) , and causes the flow within r; < 2.0 to move downward toward the

singular point.

In forward flow, the size of the mantle decreases as b increases,

which implies that the stronger rotation around the axis will force the

fluid to move into a much smaller core area. This phenomena is very

important for the application developed in Chapter 9.

W ' V t

As discussed in Chapter 5, the computer algorithm employed in this

study used a three dimensional search for a, c, and "a until the

asymptotic conditions were satisfied. This was accomplished by

controlling the allowable error on 23(1), 25(1) and 26(1) (see Section
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5.2). In contrast, the solution methodology used by Long [1961]

determined the values of a and c by only controlling the asymptotic

error of Y1 and Y5 (equivalently, 21(1) and 25(1)). The value of "a was

determined by the asymptotic behavior of h, but, as illustrated in

Figures 6.2 - 6.4, Y1 and Y5 (M and F) obtain their asymptotic behavior

for smaller values of 7) than h. Thus, Long's procedure effectively

determines "a inaccurately. Basically, his solution does not satisfy

the asymptotic condition on h.

Using the tabular values of a, b, and c found by Long (two decimal

accuracy), the differential equation for 2(a), defined by Table 5.1, was

integrated using the computer algorithm listed in Appendix B. For b -

3.82, Figure 6.8 compares the stream functions calculated using Long's

solution and the solution developed in this study. The results are the

same for small values of I), but differ significantly for large 7).

Although the difference between (a,c) is small (only 1% difference), the

behavior of h at large values of n is much different. Because h is very

sensitive to the values of a and c, controlling the numerical error of

ha is very important.

A.similar comparison between the radial velocity profiles

calculated using Long's parameter and the set developed here is given in

Figure 6.9. The radial velocity for large values of n is very sensitive

to h. For small values of n (q < 3.0), both solutions are the same, but

differ significantly when n become larger. However, both solutions show

the existence of an internal mantle near the axis.

6 4 as o ' o ties
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The macroscopic properties discussed in Chapter 3, including axial

thrust, axial torque, flow rate, and pressure drop, can also be used to

quantify vortex flows. The values for the macroscopic axial thrust

computed in this research (see Figure 6.10) agree with the study by

Burggraf and Foster [1977] and are a little larger than reported by Long

A

(see Figure 6.10). A minimum value of F2 occurs at b = 0.04; Fz

increases significantly for very large and small values of b.

The large values of the axial thrust at small and large values of b

are due to different mechanisms. For small values of b, the vortex core

becomes large and the axial momentum decreases. Thus, the large values

A

of F2 mainly come from the area integration (see Eq. (3.16)). On the

other hand, for large values of b, the vortex core becomes small and the

axial momentum increases significantly (jet-like flow). In this case,

the large value of F2 stems directly from the large convective transport

of axial momentum (see Eq. (3.16)).

The macroscopic axial thrust does not uniquely determine the flow

behavior (see Figure 6.10) . For N - -1.0, reverse flows exist for b<

0.043 and jet-like flows exist for b> 0.136. Between these two values

of b, the axial velocity has an undulated flow behavior. For Fz larger

than 0.75, either flow reversal or jet-like flow will occur (see Figure

6.10). For Fz less than 0.75 but larger than 0.60, either reverse or

undulated flow occurs. If F2 is between 0.6 and 0.58, only undulated

flows exist. Below 0.58, however, no steady state similarity solutions

exist.
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The macroscopic axial torque and volumetric flow rate decrease

monotonically as b increases in the range of 0 < b s 0.30 (see Figures

6.11 and 6.12). For b - 10.0, the axial torque is about 10 and the

volumetric flow rate (dimensionless) is about 12. Unlike the axial

thrust, the large velocity associated with jet—like flows does not make

the axial torque or volumetric flow rate unbounded for large values of

b. Instead, it appears (numerically) that these two properties may

approach a nonzero lower bound. However, for small values of b, the

large cross sectional area associated with the flow reversal makes both

T2 and Q, like Fz, unbounded (see Figures 6.11 and 6.12).

For the study range of 0 < b S 10, if the axial torque has a value

larger than 10, then only one value of b and, therefore, only one type

of flow is possible; however, if the axial torque is less than 10, a

steady state similarity solution may not exist (see Figure 6.11).

Similarly, if the dimensionless macroscopic volumetric flow rate is

larger than 12, then this parameter uniquely determines the flow

behavior (see Figure 6.12). Transition from flow reversal to undulated

flow corresponds to '1‘2 - 19.0 and Q - 21.0. Transition between

A

undulated and jet-like behavior occurs for T2 - 15.5 and Q - 17.5.

Figure 6.13 shows that the macroscopic pressure drop Ap uniquely

A

determines the flow structure. Note that Ap increases monotonically as

A

b increases with an almost constant slope. Moreover, for Ap less than

A

0.017, reverse flow exist and for Ap between 0.017 and 0.045, undulated

flow behavior occurs. Finally, for Ap > 0.045, the axial velocity on
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the centerline has a jet-like behavior. Thus, once y, K, and N (--l)

have been specified, the vortex flow with bounded circulation is

uniquely determined by either assigning a numerical value to the local

A

spin parameter 'b' or to the global dimensionless pressure drop Ap (O <

Ap < co) . This conclusion was not developed by Long [1961] or by

Burggraf and Foster [1977]. They only noted the "unexpected" result

A

that Fz did not uniquely determine the flow, as it does for other

A

nonrotating flow problem. Here an explanation for the behavior of F2

has been given and more significantly, a macroscopic parameter has been

identified which controls the flow behavior.

W22

In Chapter 4, the "excess" mechanical energy of a fluid particle on

the axis was examined qualitatively. This property (see Eq. (4.21)) and

its substantial time derivative are related to the dimensionless

parameters 'a' and 'c' as follows

A E a2

P C

and

A 2
DE 6 /V DE A

—7r - — — - -2aE
Dt puc2 Dt

A A A

Figure 4.3 illustrates the relationship between E and DE/Dt for four

different flow regimes. Although an undulated, reverse flow regime was
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identified theoretically in Chapter 4 (Type IV pattern, see Figure 4.3),

this flow behavior was not observed numerically, for 0.002 s b s 10.

Additional physical understanding of the three flow structures for

a vortex with bounded circulation (N - -1) results by examining the

axial component of the force balance. The force acting on a fluid

element situated on the axis includmscontributions from inertial,

pressure, and viscous effects. Thus, by setting r - 0 in Eq. (3.5), it

follows that

 

 
 

 

FI + FP + Fv - 0

where

- [puz(8uz/62)]

A r-0

2

PI - 2 - a

puc 6(d6/dz)

6?

A a—z r-O

F - - ~2c

P puc26(d6/dz)

p a

[E 5;;(1‘8112/31') ]

A r-0 2

F - - -a + 2c

puc26(d6/dz)

A

The dimensionless "excess" mechanical energy, E, can also be expressed

in terms of these dimensionless forces as
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A A

It is noteworthy that PI and PP do not change sign for 0 < b < co

inasmuch as a2 z 0 and c is always positive (see Figure 6.1) . Thus, a

fluid particle on the axis moving in the positive 2 direction (forward

A

flow) must overcome an adverse pressure gradient (F < 0).
P

Figure 6.14 shows how the individual terms in the force balance and

the energy balance evaluted on the axis change with b. These results

show that the three flow structures (jet-like, undulated, flow reversal)

have the following features

?299-I-£199:lé¥9:-§9§¥€§9-f19¥2

A DE

FI>O,FP<O,FV50,E20,—xso

Dt

?¥P?-¥¥-$9§§9}§E99;-§9§Y§§9-§19Y2

A DE

I120, FP<O, ”20,350,sz

Dt

TYP?-¥¥I-$193:1§¥9:-¥9Y§¥§9-§19Y2

A DE

F120, FP<O, FV>O,E<O,;:50

For the flow reversal regime (Type III), the "excess" potential

A

energy is much larger than the kinetic energy of the fluid (E < 0) and

as the fluid particle moves toward the singularity the energy deficit of

the particle increases due to the transfer of energy from the axis to

A

the surrounding fluid by viscous work (DE/Dt S O). The pressure force
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acting on the fluid element is small and is balanced by a positive

inertial and viscous forces. Transition from Type III to Type II

behavior occurs when FI goes to zero and the viscous and pressure forces

balance. At this point, (a,b,c,na) - (0,0.042,0.0l74,28.6) with E < O

A A

and DE/Dt - O.

A

E is less than zero for a Type II flow pattern, but as the fluid

A

moves away from the singular point B increases due to energy transfer

A A

from the surrounding fluid to the axis by viscous work (DE/Dt > O). In

this regime, F is balanced by positive viscous and inertial forces (F
P V

>»0,1FI > 0). 'Transition from Type II to Type I behavior occurs where

Fv goes to zero and the pressure and inertial forces balance. At this

A A

point, (a,b,c,na) - (0.301,0.136,0.0449,24.2) with E - 0 and DE/Dt - 0.

When b > 0.136, a jet-like flow behavior occurs (Type I). The

A

kinetic energy term now dominates the "excess" potential energy (i.e., E

> 0); however, as the fluid particle moves toward the hydrostatic

A A

condition at z - w, its "excess" energy decreases (DE/Dt < 0) because

the high speed fluid on the axis transfers energy to the surrounding

fluid by viscous work. The viscous force acting on the particle in this

regime is negative so the large inertial force is countered by the

adverse pressure and the viscous drag.

The relatively large adverse pressure force acting on the axis for

large values of b is due directly to the centrifugal force and the

hydrostatic boundary condition for z + w.



CHAPTER 7

MODEL II : VORTEX FLOW WITH VARIABLE CIRCULATION

In Chapter 6, quantitative results for swirling flows with constant

circulation (Model I) were presented. In this chapter, Model II (see

Section 3.1), which includes the effect of N, will be discussed. An

interesting aspect of these flows is that the dissipation integral (see

Section 7.5) is bounded for -2/3 < N < 0. A comparison between Model I

and Model II for N - -l is given in Section 7.1 and, in Section 7.2, the

effect of N on the three different flow regimes is developed. The

behavior of the velocity and pressure fields for -l < N < 0 is presented

in Section 6.3 and 6.4; and, the effect of N on the macroscopic

properties will be discussed in Section 7.5. These theoretical results

will be compared with experimental data from several different

laboratories in Chapter 8.

7 cm e e de An or N - -

Model II for N - -l is similar to Model I. Model II, however,

includes the effect of N. Because N is generally not equal to -1 (see

Figure 8.2), Model II was developed in order to understand certain

experimental results for confined vortex flows. As discussed in Chapter

3, the major difference between Model I and Model II is that the axial

velocity for Model II is zero for (r,z) - (6*(2), 2). Also, for N >

99
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-2/3, the growth of the viscous core near the singular point keeps the

dissipation integral bounded. Figure 7.1 shows that a jet-like flow

around the axis occurs for both models when N - -l and b - 0.30. The

small difference in the axial velocity at n - 0 is due to differences in

the values of 'a’ determined for each model (a - 0.886 for Model I and

0.893 for Model II). The computed values of 5 for the two models differ

*

only slightly : "a - 21.7 whereas r] - 21.3. It is also apparent that

the axial velocity has an asymptotic behavior (uz a l/r) at n - "a for

Model I, but is zero at n - "*for Model II. The differences in the

macroscopic properties between the two models are important and will be

discussed in Section 7.5.

The criteria for transition between the different flow regimes

(see Figure 4.2) for the two models (N - -l) are very similar. For

instance, reverse flow passes to an undulated flow for (a,b,cfi) -

(0,0.042,0.0149,28.6) for Model I; and (0,0.038,0.0151, 29.0) for Model

II. The transition between undulated and jet-like flow occurs for

(a,b,cji) - (0.301,0.136, 0.0449, 24.2) and, (0.321,0.14,0.0447,24.1)

for Models I and II, respectively.

7 f e t F ow e e

Three different flow regimes have also been found for Model II. As

b increases, the axial velocity changes from flow reversal to undulated

and,finally,obtains a jet-like structure. As N increases, the region of

flow reversal and undulated behavior broadens (see Figure 7.2). For

example, flow reversal occurs for b < 0.038 and N - -l.0. However, for

N - -0.75, flow reversal occurs for 0 < b < 0.055. Similarly, undulated
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axial velocities occur between 0.038 < b < 0.14 for N - -l.0, but

between 0.055 < b < 0.23 for N - -0.75. As N increases from -1 to -.75,

the lower limit on b for jet-like behavior increases from 0.14 to 0.23.

'Thus, in order to have a jet-like axial flow, a strong rotation around

the axis is necessary for larger values of N. This kind of effect

becomes more apparent as N increases.

7 vo eouton

Tables A.2 - A.4 in Appendix A list the values of (a,c,n*) for

different values of N and b. Figure 7.3 shows the effect of N on the

*

parameter set (a,b,c,n ). The general behavior is the same as Model I

*

where 'a' and 'c' increase, but :7 decreases, as 'b' increases. 'c' is

*

less sensitive to 'b' than 'a'. Because 17 represents the size of the

viscous care, it follows from Figure 7.3 that larger values of 'b' give

a more coherent vortex.

As N increases, c increases and 0* decreases. The size of the core

is reduced almost 50 % when N changes from -1 to -0.75. This means that

a more concentrated (or coherent) core will occur at larger'walues of N

for fixed values of b. Because this effect is so large, it is important

for Model II to be fully developed and analyzed. Once again, for fixed

*

N, the parameters 'a' , 'c' , and 97 change monotonically with b.

Therefore, the flow structure is uniquely determined by any one of the

*

four dimensionless number (a,b,c,n ) together with K, v, and N.

Figures 7.4 - 7.6 show the general behavior of M, F, and h. The

*-

similarity functions are defined on the finite domain 0 s n S n , so the



104

1.00— ___" N = ‘1-0

~ ——-—— N = ~o.75

 

 
  “0.20 rrIlrIt—ITIIIrIrIIIfiIrIrIIrrIr]

010 0.1 0.2

b

Figure 7.3 The behaviour of the solution for

Model ll

0.3



105

curves terminate at n*. The derivatives of M, F, and h are all zero for

n - 0 because of the boundary conditions (see Eqs. (3.58) - (3.59)).

Figure 7.4 shows how b affects M for N - -0.75. Comparing Figure

7.4 and 6.2 (N - -l.0, Model I), M decreases as b increases but, for

*

Model II, goes to negative values at n - n for any value of b. M in

Model I becomes asymptotic to l/(2n2) at r) - "a' A negative value of M

in Model II implies that the pressure at n - n* is higher than

hydrostatic. The parameter 'c', which represents M(0), is always

positive (see Figure 7.3).

The effect of b on M is significant (see Figure 7.4). For constant

17, when b increases, M becomes larger at small values of 0, but becomes

*

smaller at large values of 0. Because M at n - n becomes smaller as b

*

increases, the pressure drop across the vortex (i.e. , M(O) - M(n ))

increases with b. Thus, coherent (concentrated) vortex structures

require relatively large radial pressure drops.

The behavior of F, shown in Figure 7.5, monotonically increases to

a maximum value at n - 71*. For constant a, F increases as b increases.

For fixed b and q, comparing Figure 7.5 and 6.3, F increases as N

increases. Therefore, larger values of N give larger values for the

circulation, or the angular momentum, at constant b and n.

The stream function h for Model II (see Figure 7.6) in the outer

region is different from h for Model I (see Figure 6.4) due to the

boundary conditions imposed at 97*. However, the behavior of h near the

axis is similar for both models. For forward flow, h increases

monotonically. For reverse flow, h is negative for small values of r;
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and positive for larger values of n. The point where h - 0 occurs at n

z 5 for N - -0.75 and b - 0.03. Because h(n) represents the local

dimensionless entrainment rate (see Eq. (3.43)), h(5) - 0 means that the

local volumetric flow rate across a surface of fixed 2 and 0 s r 5 55(2)

is zero. Therefore, the axial velocity must be zero at some value of r

between 0 and 56(2). It can be seen from Figure 7.6 that zero axial

velocity occurs at n z 3.5 (also see Figure 7.8) where the slope of h is

zero.

One important difference between Model I and Model II is the stream

function at the outer edge of the vortex care. In Model I, h is

asymptotic to ha’ defined by Eq. (3.53). However, for Model II, the

* *

slope of h at n - n equals zero because uz(6 ,z) - 0.

For fixed N and 17 < 11*, the effect of b on h is to increase the

local volumetric flow rate as b increases. However, the global

entrainment rate, defined by Eq. (3.43), increases as b decreases.

Thus, as the vortex core diameter increases, the volumetric flow rate

becomes larger. For example, it follows directly from Figure 7.6 that

*

h(n ) z 9.5 for b - 0.03 and h(n*) z 6.0 for b - 0.3. So as b increases

by an order of magnitude, the core size decreases by a factor of two and

the volumetric flow rate through the vortex decreases by about 30%.

4 v’ 0 e V t e1

Figure 7.7 shows that the common features of the tangential

velocity profiles for different values of b and N - -0.75 include : a

Rankine-type structure with a forced vortex near the axis and a free-

vortex-like flow in the outer region; the maximum tangential velocity
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shifts to smaller values of 17 and becomes larger as b increases; and,

the core size decreases as the rotation frequency around the axis

increases (i.e., b increases). It is also noteworthy that as b

increases, the fraction of the cross sectional area of the vortex in

solid body rotation decreases.

The axial velocity behavior for Model II for general N has some

features which are similar to Model I (see Figure 7.8). Note that

reverse flow on the axis appears at smaller values of b and jet-like

flow on the axis appears at larger values of b. At intermediate values

of b, undulated flow exists (see Figure 7.2 for other values of N).

In the flow reversal region (Figure 7.8), zero axial velocity

occurs at 17 z 3.5 for b - 0.03 which corresponds to the zero slope of

the stream function (see Figure 7.6). The flow moves downward within 17

< 3.5 and moves upward for 3.5 < 17 < 15.1. For forward flow on the

axis, the flow moves upward everywhere (i.e. , 0 5 r7 < 17*). Note that

strong rotation around the axis (large b) gives a higher axial velocity

near the axis and lower axial velocity near the outer boundary. The

O * * O

axial velocity goes to zero at n - n because uz(6 ,z) - 0. Again, the

comparison between Figure 7.7 and 7.8 shows that the values of 17 at

maximum axial velocity is smaller than the values of 17 at maximum

tangential velocity for any value of b. Thus, the position of maximum

axial velocity occurs within the solid body region. Characterization of

different flow regimes using the mechanical energy balance on the axis

is the same for Models I and II and has already been discussed in

Section 6.4.

The radial velocity behavior in Model II is very important to the

understanding of light particle separation (see Chapter 9). The common
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features of radial velocity in Model II (see Figure 7.9) are the same as

in Model I.

(a).

(b).

(c).

(d).

(e).

(f).

(g).

7

Figu

propertie

Figure 7.

In brief, these are :

Positive radial velocity near the axis for forward flow, but

negative radial velocity near the axis for reverse flow.

Only one mantle (ur - 0) exists in undulated or jet-like flow

region, but two mantles exist in reverse flow region.

The inner mantle for reverse flow is about n z 3.0 for b - .03

and N - -0.75. Therefore, all the flow within this mantle

will move downward toward the singular point.

The peak of maximum radial velocity shifts to smaller values

of n as b increases.

The effect of b on the radial velocity is to reduce the mantle

size in the forward flow region; therefore, a strong rotation

about the axis causes a small mantle to form with a very

strong jet-like flow behavior over a very small vortex core.

For fixed values of n, the radial velocity near the axis

becomes larger when b increases. However, the radial velocity

near the edge of the vortex becomes smaller when b increases.

A surface of zero radial velocity (i.e., mantle) always

*

exists within the vortex core (n < n ).

O t

res 7.10 - 7.13 show the effect of b on the macroscopic

s for the vortex (see Table 3.2). An important feature of

10 is that the axial thrust does not determine the flow'

behavior uniquely. The minimum value of F2 is about 0.5 for N - -l.0;

and, 0.45 for N - -0.75. For Model I, the minimum thrust is 0.58 (see
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Figure 6.10) . For a fixed value of the axial thrust above the minimum

value, two values of b are possible. For example, with N - -l and F2 >

0.5, three different cases are possible : (1) For 0.50 5 F25 0.52

(which corresponds to the transition point between flow reversal and

undulated flow), two different undulated profiles are possible; (2) For

0.52 5 F2 5 0.70 (which corresponds to the transition point between

undulated and jet-like flows), either a flow reversal or an undulated

flow behavior on the axis occurs; and, (3) When the axial thrust is

larger than 0.70, either flow reversal or jet-like behavior obtains.

For N - -0.75, the corresponding values for Fz are 0.45, 0.47, and 1.4,

respectively .

The axial torque and the volumetric flow rate decrease

monotonically as b increases (see Figure 7.11 and 7.12). The slope of

these curves are steeper in the small b region. For large values of b,

small changes in the axial torque and flow rate will cause large changes

in b.

Although the qualitative behavior of Tz and Q for Models I and II

are similar, the specific velues of these parameters are much smaller

for Model II. For example, at b - 0.3 and N - -1, T2 is 14.5 for Model

I but only 9.6 for Model II. If N increases to -0.75, then Tz - 5.8.

The macroscopic flow rate Q decreases from 16.5 (Model I) to 11.6 (Model

II, N - -l). For N - -0.75, Q - 5.9.
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A A

The axial torque T2 and the volumetric flow rate Q are both

* 11-

proportional to h(n ) (see Table 3.2). As b decreases, 0 increases

A A

11-

(see Figure 7.3). Because h(n*) increases with n , T2 and Q become very

A

large for b 4 0. On the other hand, both T2 and Q appear to approach a

positive lower bound for very large values of b. For example, with b -

10 and N - -l.0, Tz - 5 and Q - 7. If N - -0.75 and b - 10, then Tz -

2.8 and Q - 4.

An important parameter for both Models I and II is the macroscopic

A A

pressure drop, Ap. Figure 7.13 shows that for N - -l and -0.75, Ap

increases monotonically with an almost constant slope. For fixed b, Ap

increases as N increases. It is noteworthy that for b > 0.05, the

macroscopic pressure drop for N - -0.75 is almost 1.5 time the

macroscopic pressure drop for N - -l.0. Unlike the other global

A

properties, a one-to-one correspondance between Ap and b exist. Thus,

as previously discussed in Chapter 6, the flow behavior is uniquely

A

determined by specifying K, v, N and either Ap or one of the local

*

properties : a, b, c, n .

The dissipation of kinetic energy over the cross section of the

vortex can be calculated as follows

3(2)

<11 - ZIIJ (1;: Vu)rdr (7.1)

where
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6 us 2 auz 2

L=V9-#{[IE(T’] +[5r_]} (7'2)

represents the irreversible conversion of kinetic energy into internal

energy per unit volume by viscous dissipation (see p. 82 of Bird et al.,

1960).

Eq. (7.1) can be written in terms of the similarity functions

defined in Chapter 3. Thus, by substituting Eqs. (3.28), (3.34),

(3.37), and (3.38) into Eqs. (7.1) and (7.2), it follows that

 

A e " F' 2F 2 2

4’ - '1 (— - —) + (G') fld’i- (7.3)

Zapuc

The dimensionless dissipation Q depends only on b and N. Figure 7.14

shows how b affects Q for N - -l.0 and N - -0.75. The behavior of Q is

similar to the behavior of the macroscopic axial thrust. The values of

A A

0 become large for small and large values of b. The minimum value of 0

is about 0.062 for N - -l.0 and 0.102 for N - -0.75. Although the

:macroscopic.dissipation does not uniquely determine the flow structure,

it nevertheless provides a useful characteristic of the flow.

For a fixed value of N and b, it follows directly from Eq. (7.3)

that

0 - Zapuc2¢(b,N) (7.4)

where

N

uz -—-

N N+2

uc - K6 - K( K) .

Thus,
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2N

¢ « zN+2. (7.5)

Eq. (7.5) implies that ¢ * m as 2 ~ 0 for -1 s N < 0; and, é » 0 for z 4

w. The total dissipation follows by integrating Eq. (7.4) from zD‘> 0

to z - L :

3N+2

N+2 N+2

L
.. D

2
D - I <bdz - 21rpLuc (L)<I>(b,N)§N—+§ [1 - (f)

2

 

1

D

For zD - 0, D is unbounded for -1 S N 5 -2/3; however, if ~2/3 < N < 0,

then 0 < D < m. For 2D > O and -1 s N < 0, D is positive and bounded.



CHAPTER 8

AN ANALYSIS OF EXPERIMENTAL RESULTS IN THE LITERATURE

e u t

The major assumptions of this study are constant density and

viscosity, axisymmetric flow, and similarity structure. Although the

similarity theory necessarily neglects the effect of wall boundary

layers in confined vortex flows, the results of several experimental

(and computational) studies are used to explore the possibility that the

analysis can be used to quantify the core region of flooded

hydrocyclones or, more generally, of confined vortex chambers containing

a single fluid phase (either gas or liquid, but not both).

Several major studies of confined vortex chambers are used for the

purpose of comparing theoretical and experimental (including

computational) results. Figure 8.1 shows the various coordinate systems

and geometries of these studies. Table 8.1 summarizes the important

operating conditions for the experiments. The location of the reference

coordinate 5, shown in figure 8.1, defines the orientation of the

viscous core and will be discussed further in Section 8.3.

Among the six papers listed in Table 8.1, Escudier et a1. [1980,

1982] and Dabir [1983] are the most important because they have very

complete information. Moreover, the flows in these studies were

axisymmetric, although under some conditions nonaxisymmetric behavior

was observed. The tangential and axial components of the velocity were
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u - (Volumetric flow rate)/(area)
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Table 8.1 Flow conditions of the experimental studies
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Flow Conditions

 

 

 

 

 

 

 

Flow

Reference Index u Q D D L

F o o Regime

3

cm/s cm /s mm mm cm

la 24 400 55 40 42.5 Reverse

Escudier et a1.

1980 lb 24 400 55 25 42.5 Undulated

(experimental)

1c 24 400 55 10 42.5 Jet-like

1d 6 100 55 18 42.5 Jet-like

Escudier et a1. 1e 12 200 55 18 42.5 Undulated

1982

(experimental) 1f 24.6 411 55 18 42.5 Undulated

1g 51 850 SS 18 42.5 Reverse

2a 140 500 76 25.8 35.0 Undulated

Dabir

1983 2b 140 500 76 12.9 35.0 Jet-like

(experimental)

2c 140 500 76 12.2 35.0 Jet-like

Kimber and Thew

1974 3 40 51 50 12.7 300 Undulated

(experimental)

Boysan et a1.

1982 4 1370 42000 203 64 33.0 Jet-like

(computational)

Pericleous et a1.

1984 5 56.7 1250 200 80 45.2 ------

(computational)          
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obtained by using laser doppler anemometry. The velocity data are

tabulated in Appendix C.

Both computational papers assume axisymmetric behavior and a model

for the Reynolds stress. Boysan et a1. [1982] used an algebraic

Reynolds stress model and Pericleous, et a1. [1984] used a modified

Prandtl mixing length model. These results, which are sensitive to the

inlet and boundary conditions, will also be examined for similarity in

this chapter.

Because the similarity theory assumes that the viscous core is

driven by a tangential velocity having the form

u -I(r, r26*(z).

the experimental (and computational) data should also show this

behavior. The important idea is that K and N are independent of the

axial coordinate. Specific values of N and K are developed for each

data set.

Figure 8.2 shows the behavior of the tangential velocity in the

outer region for the data sets in Appendix C. The results of Dabir

(Indices 2a,b,c) and of Escudier (Indices 1a,b,c) show that N is

approximately -0.75. This is interesting because a Beltrami vortex (see

Section 2.2) also shows this type of behavior. However, the vortex

device studied by Kimber and Thew (Index 3) shows that N z -O.6; and, N

is about -l.0 for the two computational studies (Indices 4 and 5).

It is noteworthy that N and K do not change significantly with

axial position. For example, 1a represents data at E - 19.35 cm and

19.85 cm,whereas 2a represents three axial positions: 2 - 8, 20, and 32
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cm. For the data evaluated, N appears to be independent of the flow

rate and insensitive to the contraction ratio of the vortex chamber

(i.e., Do/D). The coefficient K, however, is a strong function of Q0,

but not the contraction ratio Do/D (see experiments 1a - 1c).

8 ow Re e

Following Eqs. (4.12) and (4.15), the values of 'a' and 'b' are

defined by

luz<0.z>l Iu,|
IaI-———-—

u0(6,z) KSN

and

 

6(2) can be eliminated between the above two expressions to give

N-

|a|<N'1)/N “Incl/10‘ 1”“

¢(b'N) ‘ 2b ' (an, /ar)l

r-O

  

(8.1)

The right-hand-side of Eq. (8.1) can be estimated directly from

experimental (or computational) data. The left-hand-side can be

calculated theoretically. .

Figure 8.3 shows the behavior of ¢(b,N) for 0 < b s 0.3 and three

values of N. Table 8.2 gives representative numerical values for



¢
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b
,
N
)
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Table 8.2 Theoretical evaluation of d (N,b)

 

 

 

 

 

 

 

 

 

 

 

 

     

¢ (N,b)

N — -1 -0.75 -0.5

.03 0.00778 0.0219 0.0309

.04 0.000186 0.0708 0.0181

.05 0.0102 0.00124 0.0103

.06 0.0227 0.0 0.00555

.08 0.0915 0.00407 0.00119

.10 0.177 0.0176 0.0

.15 0.422 ------------

.20 0.705 0.195 0.00881

.25 ----- 0.333 0.0305

.30 1.33 0.498 0.0702

.50 ---- 1.39 0.481
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¢(b,N). Figure 8.3 or Table 8.2 can be used to determine the value of

'b’ associated with a specific experimental flow. For the family of

curves shown in Figure 8.3, the zero of ¢(b,N) moves to larger values of

b for larger values of N. For negative values of uo (flow reversal),

the value of b will be located to the left of the zero of ¢(b,N);

positive values of uo (forward flow) correspond to values of b to the

right of d - 0.

Figure 8.3 can be used to predict the flow behavior for each of the

data sets in Appendix C. For example, the data set 1e has the following

characteristics :

(aua /ar)Ir_0 z 100 s-1 , uo z 27 cm/s ,

K z 26 (cm/s)/cmN , N z -o.75 .

Eq. (8.1) implies that d - 0.28 and, according to Figure 8.3, this

corresponds to b z 0.23 for N - -0.75. Thus, according to Figure 8.4, a

vortex flow with b - 0.23 has an undulated axial velocity profile. This

type of profile was also observed experimentally. The values of b

corresponding to the various experiments are listed in Table 8.3.

Figure 8.4 shows values of b vs. N for the experimental studies.

The two solid curves represent theoretical boundaries between the three

flow regimes : flow reversal, undulated, and jet-like. The symbols in

Figure 8.4 correspond to the flow behavior observed in the experiments.

When more than one axial position was used to determine b, an average

value of b was used to develop Figure 8.3. An error range for b is

given in Table 8.3. With the exception of Index 4 for which b -
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Table 8.3 Predicted values of b and flow behavior

 

Experimental Conditions

N,K see Figure 8.2

Theory

 

 

Index

2 (EU /ar) u Flow Flow

0 r-0 0 Structure Structure

cm l/s cm/s

1a 19.35 160 -24 Reverse 0.025 t 0.002 Reverse

19.85 -23

lb 19.35 360 3 Undulated 0.06 i 0.003 Undulated

19.85 10

1c 19.35 800 144 Jet-like 0.29 i 0.02 Jet-like

19.85 450

1d 25.0 55

28.35 100 51 Jet-like 0.57 i 0.03 Jet-like

29.45 50

1e 25.05 27.4

28.35 100 25.6 Undulated 0.22 i 0.01 Undulated

29.45 23.8

If 28.35 200 18 Undulated 0.10 i 0.01 Undulated

31.65 140 15

1g 21.65 300 -65 Reverse 0.015 t 0.001 Reverse

31.65 210 -52

2a 20 600 40 Undulated 0.09 i 0.01 Undulated

32 400 30

2b 20 1000 335 Jet-like 0.32 i 0.01 Jet—like

32 375

2c 20 1000 400 Jet-like 0.31 i 0.01 Jet-like

32 340

3 295 2100 0 Undulated 0.12 Undulated

4 19.8 730

26.4 850 410 Jet-like 0.08 i 0.02 Undulated

33.0 290        
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0.08:0.02, Figure 8.4 shows that the observed flow behavior is

qualitatively consistent with the similarity theory. Because almost all

of the calculated values of b are located in the same flow regime as

predicted by the similarity theory, this research may be very useful in

determining the actual flow behavior of the vortex core.

8 S m a it Scalin 0 e Ce e ine Veloc

The centerline axial velocity, uz(0,z), follows from Eq. (4.12) by

letting n - 0 :

N/(N+2) _ u

uz(0,z) - aK(vz/K) o . (8 2)

In Eq. (8.2), 2 is the distance from the singular point. Measurements

of uo in the laboratory are relative to an arbitrary reference point,

rather than the intrinsic singular point of the theory. Because the

similarity theory predicts that the magnitude of the centerline axial

velocity decreases as z increases, it is necessary to orient the

reference coordinate E in the same direction as the intrinsic coordinate

2. Thus, in Figure 8.1, 2 must be chosen in the direction of decreasing

qu(o,z)l, and this is determined experimentally.

If 20 represents the origin (i.e., singular point) of the

similarity theory relative to the laboratory reference point, then 20

may be either positive or negative. Thus, with
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Eq. (8.2) can be rewritten as

“o _ aK(V/K)N/(N+2)[(E - 20)]N/(N+2)

or, equivalently, as

luo|(N*2’/N - <|a|K>‘N+2)/N(u/K>(E - 20) (8.3)

A plot of |u0|(N+2)/N vs. 2 will provide

N+2)/N
slope - (IaIK)( (v/K)

and

E - 20 at Iuol(N+2)/N - 0 (extrapolated). (8.4)

Figure 8.5 shows how the above expression can be used to estimate

20 from experimental values of no. The table in Figure 8.5 lists the

values of zo determined in this manner. Because the data follow the

predicted behavior defined by Eq. (8.3), Figure 8.5 provides additional

evidence that the similarity theory can be used to describe the viscous

core of confined vortex flows.

8 4 S m t ca in 0 The u ome tum Prof es

The similarity theory requires the local circulathnn or axial

component of angular momentum, to follow the scaling law

ruo(r,z) r

6(z)uc(z) ' F(5(2))
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Figure 8.5 Similarity scaling of the centerline

velocity
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Because (see Eqs. (3.37) - (3.38)) 6uc a 6N+1 and 6 « sz/(N+2? a plot

of (ru0)/(z(N+1)/(N+2)) vs. r/(zl/(N+2)) for different values of r and 2

should fall on the same curve. Figure 8.6 and 8.7 show that the data

for Index 1d and Index 2a (see Table 8.1) fall approximately on the same

curve, which indicates that a similarity structure obtains.

All of the experimental velocity profiles used in this chapter fall

outside the region about the singular point where the pressure is

negative. With 2° defined by p(0,z°) - 0, Eq. (4.19) in Chapter 4 can

be used to determine 20 for a specific data set. For example, for the

data presented in Figure 8.6, the parameter 'b' was estimated to be

about 0.57 (see Table 8.3, Index 1d). From Figure 8.2, N - -O.75 and K

- ll (cm/s)/cmN. A theoretical estimate for 'c' follows directly from

Figure 7.3 : for b - 0.57, c - 0.13. Therefore, if p0 z 1 atm (1.01

bars) and if K/u - 340 cm'(N+1) (see Table 8.4), then 2° = 0.034 cm (see

Eq. (4.19)). The smallest value of 2 used in Figure 8.6 is 10 cm >> 20.

Similarly, z0 z 3.1 cm for the data analyzed in Figure 8.7, which is

much smaller than 2 - 20 cm.

8 V Es ima e

Eq. (4.15) relates b to the viscosity coefficient u. Thus, once b,

K, N, 2°, and the angular velocity at the axis have been determined, the

viscosity coefficient can be calculated from
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Index 1d (see Table C.1)
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Figure 8.6 Similarity scaling of the angular

momentum (data from Escudier

et al., 1982)
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Figure 8.7 Similarity scaling of the angular
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Table 8.4 gives the values of u for each experimental data set in

Appendix C.

For data sets 1a - c, the viscosity coeffient was found to be about

0.11 cmz/s. Obviously, :2 cannot be interpreted as a fluid parameter

inasmuch as the molecular kinematic viscosity for liquid water is about

an order of magnitude smaller. Thus, the similarity theory applied to

laboratory scale vortex flows should be interpreted as a mathematical

model for the mean field with a Boussinesq approximation for the shear

components of the Reynolds stress (see Chapter 1, Hinze, 1975).

The boundary layer approximations used in Chapter 3 only retained

the r0 - and rz - components of the viscous stress. Thus, a consistent

extension to the mean field equations for turbulent flows requires

<' ' a uo>

< >-- —

ur U0 yer 8r r

 

) (8.5)

and

6<u > 6<u >

z r

  

<ur 112 > - - Ve( 81' + 62 ) (8.6)

I

where <u0> and ua represent, resp., the mean and fluctuating components

of the tangential velocity. The turbulent coefficient of viscosity (or

"eddy" viscosity) appearing in Eqs. (8.5) and (8.6) depends on the flow
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Table 8.4 Viscosity estimates based on the similarity theory

 

Flow Conditions

K, N see Table 8.2

b see Table 8.3

 

 

 

 

 

20 see Figure 8.5 Viscosity

Index Coefficient K/v ,

Flow rate Contraction Flow

Ratio Regime

2 -

Qo , cm3/s Do / D V, cm /s cm (N+1)

1a 0.73 Reverse

lb 400 0.45 Undulated 0.11 i 0.01 620 i 60

1c 0.18 Jet-like

1d 100 Jet-like 0.034 i 0.003 324 i 30

1e 200 Undulated 0.075 t 0.07 346 i 35

0.33

1f 411 Undulated 0.11 i 0.01 427 i 50

1g 850 Reverse 0.062 i 0.004 1500 i 100

23 0.34 Undulated

2b 140 0.17 Jet-like 1.1 i 0.3 246 i 70

2a 0.16 Jet-like

3 40 0.25 Undulated 0.049 1300

4 1370 0.40 Jet-like 50 t 18 60 i 18     
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and may change significantly with either r or z (see, for example, Bloor

and Ingham [1984]). Here, however, ye must be considered constant.

Table 8.4 indicates that the contraction ratio Do/D, which

determines the type of flow regime in the vortex core, does not affect

the "eddy" viscosity ye (- v). However, as the flow rate decreases (see

indices 1x1 - 1g). the estimated value of u changes from 0.062 cm2/s at

3 2 3
Q0 - 850 cm /s to 0.034 cm /s at Qo - 100 cm /s. The experiments of

Dabir (Indices 2a - 2c) yield values of we about an order of magnitude

larger than observed by Escudier at lower flow rates. It is noteworthy

that both Dabir's and Escudier's data show that we may not be affected

by the contraction ratio Do/D° The experiments of Kimber and Thew

(Index 3) are also consistent with the above results and give ye - 0.049

cmZ/s for Q0 - 40 cm3/s and Do/D - 0.25. The computational results of

Boysan (Index 4) suggest that "e z 50 (:18) cmZ/s for Q0 - 1370 cm3/s.

8.6 Entrainment Rates

A dimensionless entrainment rate into the vortex can be calculated

from Eq. (3.43),

1 dQ

'27:; a; ' “'75- (8'7)

For fixed values of N and b, h(n*) is uniquely determined by the

similarity theory (see Chapter 7, Figure 7.6). The local volumetric
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flow rate Q(z) at various values of z (or 2, see Figure 8.1) can be

calculated from

6*<z>

Q(z) - 2x I uz(r,z)rdr

O

31'

where 6 (2) corresponds to u2 = 0. The actual graphs for uz(r,z) at

different axial positions presented by Escudier et a1. [1980, 1982] were

very small and difficult to read. Estimates for uz obtained from these

figures, which have been tabulated in Appendix C, are subject to error.

A rough judgment is that Q can only be determined to within 30 8 using

this information.

Figure 8.8 illustrates how dQ/dz was determined from the

experimental data, a process which introduces.significant errorn

Nevertheless, a dimensionless entrainment rate was estimated by using

the values of u listed in Table 8.4; the results are shown in Figure

*

8.9. Figure 8.9 compares the theoretical values of h(n ) corresponding

to (b,N) with the experimental estimate of h(n*) using Q(z) and u (see

Eq. (8.7)). Although the correlation between these two methods for

*

determining h(n ) is less than desirable, Figure 8.6 provides a critical

test of the similarity theory.
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CHAPTER 9

PARTICLE EQUILIBRIUM ORBITS WITHIN THE CORE

REGION OF VORTEX FLOWS

9 a 0

An important application of swirling flows is the separation and

classification of very fine particles. Oil - water separation and coal

beneficiation are significant examples. Hydrocarbon contamination of

the oceans by oil tankers and offshore platforms is obviously

undesirable, and an efficient process for removing small amounts of

crude oil from a continuous phase could lessen the enviromental impact

of these energy sources. Equipment already exist for cleaning oily

water but, unfortunately, these filter-coalescer systems require long

residence time and are typically large in size and mass, a feature which

is especially bothersome on offshore platforms where space is limited.

An oily water clean-up system with a large throughput and a short mean

residence time is clearly desirable and Colman et a1. [1980] have

suggested that hydrocyclones be used for this application.

Thew and his coelleagues (see, Colman and Thew, 1980; Colman et

al., 1980; Smyth et al., 1980; Colman and Thew, 1983; Smyth et al.,

1984; Thew et al. , 1980; Kimber and Thew, 1974) over the past decade

have been studying the possibility of using hydrocyclones for oil/water

separations. To stabilize the central vortex region within the

hydrocyclone, they have developed the concept of a co-axial withdrawal

of fluid through the vortex finder (Colman and Thew, 1980). With this

147
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modification, they were able to increase the ratio of the overflow

concentration of dispersed component (by volume) to the feed

concentration from 20 : l to 160 : 1 in a 30 mm cylindrical

hydrocyclone. The experiments were developed for Kuwait crude with

density equal to 0.86 g/cm3; mean particle diameter, 41 microns; and,

feed concentration, 1000 ppm by volume. Earlier, Kimber and Thew [1974]

studied the separation of Roxstone oil from water with drop sizes in the

range 40 - 50 microns. They were able to separate 90 % of the oil. For

the hydrocyclone design shown in Figure 8.1 (design c) , Colman et a1.

[1980] obtained 99% separation for a drop size of 55 microns, but only

75% separation for 23 microns. They used Forties crude with the

following physical properties : pp - 0.84 g/cm; feed concentration -

1000 ppm. Similar effects were observed for Kuwait crude. Obviously,

the particle size plays a critical role in the performance of

hydrocyclones. More recent design modification have been developed at

Southampton University, U.K. (see Colman et al., 1980) with some

additional improvements in separation performance, but the ubiquitous

drop in efficiency for particle sizes between 20-40 microns remains. Is

this phenomenon a result of the specific design or an intrinsic property

of the flow structure of a viscous vortex ?

The above results of Thew partly motivated the investigation of

this chapter, which explores the behavior of very fine particles in a

vortex flow. The model developed in Chapter 7 is used to calculate the

equilibrium orbits of spherical particles and to develop some

understanding of how the complex flow patterns within a viscous vortex

could possibly account for the apparent low efficiency of separation of

very fine particles.
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Within a cyclone separator, particles with densities larger than

the continuous phase migrate to the outer region and are removed by a

helical flow directed toward the underflow. Likewise, particles with

densities less than the continuous phase migrate toward the core of the

vortex and are removed by an upward helical flow. The viscous drag on

very fine particles (<< 500 microns) resist the relative migration due

to differences in density and may, in some situations, balance the net

centrifugal force acting on the particles. Thus, if the particle

residence time within the vortex is sufficiently long, then equilibrium

orbits may occur. Many investigators (see p.44 Svarovsky, 1984) have

used this idea to study the effect of hydrodynamic parameters on the

separation performance of hea (i.e., p > p ) particles inasmuch as in

W p f ,

the outer region of the vortex field an inwardly directed radial flow

drags the particles away from the conical wall. An analogous phenomenon

may also occur for light particles (i.e. , pp < pf) in the central core

region of a hydrocyclone operating without an air core (see Dabir and

Petty, 1984b; Listewnik, 1984; and, Chen and Petty, 1986).

2.2m

Criner and Driesser (see p.44 Svarovsky,l984) first proposed the

concept of the equilibrium orbit. According to this concept, a particle

in a hydrocyclone flow achieves an equilibrium orbit at a radial

position where its terminal settling velocity equals the radial velocity

of the continuous phase. If the equilibrium orbit lies inside the locus

of zero axial velocity, the particle leaves the cyclone through the

vortex finder (see Figure 8.1) due to the upward motion of the fluid.
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Otherwise, it moves toward the underflow due to the downward motion of

the fluid. In this study, several assumptions are made :

l. The axial and tangential components of the particle velocity

are the same as the continuous phase;

2. The discrete particles are spherical and pp < pf;

3. Particle acceleration times are small, so the viscous drag on

the particle balances the net centrifugal force on the particle

everywhere in the flow field; and,

4. Stoke's law applies (see, p.59 Bird et al., 1960).

Because pp < pf, the net centrifugal force acting on the particles

is directed toward the axis and has a magnitude given by

«d 3 u2

p 0

Fc - T (pf - pp)? 2 0. (9.1)

In Eq. (9.1), dp represents the diameter of the particle with density

p ; pf denotes the density of the continuous fluid phase. u is the
p 9

tangential velocity of the fluid.

The viscous drag on the particle is directed away from the axis if

u > u , and toward the axis if u < u . The magnitude of this force,

r pr r pr

according to Stoke's law, is

Fv - 31rpdp(ur - upr) (9.2)
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where upr represents the radial component of the particle velocity and p

is the mglecula; viscosity of the fluid. The difference between the

fluid and particle velocities is often called the "terminal" velocity.

Svarovsky [p7, 1984] argues that the time needed for a particle to

achieve its terminal settling velocity is very small (2 milliseconds).

Therefore,

F -F (9.3)

is a good practical approximation in the entire flow field.

Eqs (9.1) - (9.3) imply that

u -u -r-—— (9.4)

where the characteristic time fp for the particle is given by

(1 - —) (9.5)

The sign of upr obviously depends on the relative magnitudes of ur and

rpuoz/r. Obviously, if ur<rpu02/r, the particle migrates toward the

axis. If on the other hand ur > rpuOZ/r, then the particle moves away

from the axis. The gggilibgium_21b1§ is defined by

upr(rE,zE) - 0. (9.6)
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From Eq (9.4), this implies that

[uo(rE.zE)]2

ur(rE,zE) - 7? r3 (9.7)
 

Eq. (9.7) defines the locus of points (rE,zE) in the flow domain for

which Eq. (9.6) holds. The radial and tangential components of the

fluid velocity can be related to the previously developed similarity

theory (see Table 3.2 and Chapter 7)

d6 h .

ur - uch(h - (N+2);) (9.8a)

F

u - KSN (9.8c>
c

l

v z

e Nii
5 - ( T) (9.8d)

The viscosity coefficient which affects the relaxation time fp is the

Wkinematic viscosity of the fluid. The viscosity coefficient

vein the similarity parameter 6(2) should be interpreted as an "eddy”

viscosity (see Section 8.5).

By inserting Eqs. (9.8a) and (9.8b) into Eq. (9.7) and rearranging

the result, it follows that
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. h .

fpuc ”(h' - (N+2); )

——EE - F 2 (9.9)

8 _—

dz 2-2 ( 3 ) n-n
E ' ‘ E

  

The left-hand-side can be interpreted as a intrinsic Stokes' number (cf.

Svarovsky, p8). ILt depends explicitly on the properties of the

particles (dF' pp/pf), the intrinsic properties of the continuous phase

(p, pi), and the parameters used to characterize the vortex flow (N, K,

we) . The right-hand-side depends explicitly on N and the dimensionless

spin parameter b (see Eq. (4.15)). Thus, for a given similarity surface

"E’ Eq. (9.9) gives an expression for 2E. Because n - r/6(z), the

corresponding value of r can easily be calculated as
E

1
V2

r - 6(2 ) - ( E E) N+2 (9 10)
EnEEnEK '

 

Thus, with the Stokes number for an arbitrary similarity surface defined

by

. h -

"(h' (N+2); )

2 v (9.11)Sk(n;b.N) -
 

_ ) -

. ’7 ,flflE  

it follows from Eq. (9.9) that
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r K(N+2)z [6(2 )1N'2 - Sk(n 'b N)
p E E E’ ’

which easily rearranges to

Sk(nE;b.N)

 

Zn: " < rpve(N+2) > (:7) (942)

Thus, for a given similarity surface "E’ Eqs. (9.10) and (9.12)

determine the position of the equilibrium orbit, defined by Eq. (9.6),

for a given set of physical parameters : N, b, K/ue, rpye' The set of

*

points (rE,2E) calculated for 0 s "E < n (b,N) defines the equilibrium

orbit surface for a specific flow structure.

9 3 ab t The u Su ac

An equilibrium surface consists of all points (rE,zE) in the flow

domain for which the terminal velocity of the dispersed phase equals the

local velocity of the fluid phase. The equilibrium surface is logally

stable if a particle in the neighborhood of the surface tends to move

toward the surface. It is locally unstable if the particle moves away

from the surface. For a given flow situation, the equilibrium surface

can be very complex. It may have regions which are locally unstable and

regions which are stable. Figure 9.1 illustrates the above stability

definition and Figure 9.2 shows the type of behavior which occurs for

forward flow and reverse flow vortices.

Figure 9.1 shows a portion of an equilibrium surface. Above the

surface, the radial velocity of the dispersed phase is outward; and,
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below the surface, the radial velocity of the dispersed phase is inward

(see Eq. (9.4)). Thus, points 'A' and 'B' are unstable because they

tend to leave the local neighborhood of the equilibrium surface and, as

indicated, points '0' and 'D' are stable.

Figure 9.2 illustrates in more qualitative detail the geometry of

the equilibrium surface for a forward flow vortex (a > O) and a reverse

flow vortex (a < 0). It follows directly from Eq. (9.4) that on the

axis upr -10, because both ur and uo are zero. Because ur < 0 near the

axis for reverse flows (see Section 4.2), the set of points rE - 0, O <:

2 < m represents stable orbits provided a < 0 (reverse flow).
E

For forward flow, ur > 0 near the axis and eventually exceeds

A

rpuoz/r for large values of 2. This value, defined as 2E, follows

directly from Eqs. (9.11) and (9.12) by setting "E - 0 :

a

Sk(0;b,N) - -2N-—-§ (9.13)

b

2 N+2 N—2

A 'ZNB/b _ K —

2N 2N

zE " ( er(N+2) ) (7:) ' (9'14)

A

Numerical calculations show that for z > 2E, ur > rpuoz/r near the axis;

A

2
and, for z < 2E, ur < fpua /r near the axis.

Figure 9.2 shows multiple equilibrium orbits for a fixed axial

position. Below zE min’ the orbit is unique for both situations and

occurs on the axis. For 2 > 2E min and a < 0, three orbits exist.
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Stable solutions occur on the axis and on the branch near the outer

surface of zero radial velocity. An unstable solution occurs near

A

the inner surface of zero radial velocity. For a > 0 and 2 > 2E, an

unstable orbit occurs on the axis (as previously mentioned) and a stable

solution exist near the 'mantle' , defined by ur - 0. For 2 < 2 <

E,min E

A

2E and a > 0, three solutions exist (see Figure 9.2a). For larger

values of b, this region disappears and the branch leaving the axis at

A

2E is stable. The surface zE(rE) in this case has a parabolic

structure .

W

The dimensional equilibrium surface (rE,zE) can be constructed for

a specific set of parameters b, N, K/ve, and rpve. TheW

parameters b and N uniquely determine the similarity structure of the

vortex: jet-like flow, undulated flow, or reverse flow (see Figure 7.2).

Because the experimental studies of Dabir [1983] and Escudier et a1.

[1980, 1982] correspond to N - -0.75 (see Figure 8.2), this value of N

is used in the parameter calculations presented here. The effect of the

flow structure on the quantitative behavior of the equilibrium surface

is examined for b - 0.03 (flow reversal), b - 0.10 (undulated flow), and

b - 0.30 (jet-like flow). Although the empirical dimensional parameter

K/ue may depend implicitly on b (see Table 8.4), a nominal value of 500

cm-(N+1) is used for the equilibrium orbit calculations.
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The numerical value of Tpue depends on several physical properties

and, most importantly, the particle diameter dp' Eq. (9.5) implies that

d 2 v

p e

Tpve .- T8— (1 - pp/pf) T. (9.15)

Figures 9.3 - 9.5 show the equilibrium surfaces calculated using Eqs.

(9.10) and (9.12). Three different values of rpue are presented for

each flow situation; Table 9.1 relates these values to a specific

particle size, density ratio, and ue/u. The dimensionless Stokes

number, defined by Eq. (9.11), parameterizes each equilibrium surface

for a fixed value of ’pye' The magnitude of Sk(nE;b,N) at

representative points are indicated on each curve.

W

Figure 9.3 shows an equilibrium surface for jet-like flow (b - 0.3,

see Figures 7.7 - 7.9). As previously discussed, stable orbits only

A

exist on the axis for z < 2E and on the branch near the outer surface of

the zero radial velocity (see Figure 9.2a). Therefore, a particle with

diameter 32 microns (see Figure 9.3 for other parameters) will obtain

its stable orbit through two possible ways. If the particle reaches the

stable axis first, it will follow the axis and move upwards until it

A

reaches 2E. Above that point, the particle will move away from the

axis; if the residence time is long enough, the particle will reach the

outer equilibrium surface and continue to move upwards and away from the
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0, SK as noted

Figure 9.5 Equilibrium surfaces for reverse flow
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Table 9.1 Parameter used to calculate the equilibrium surfaces

 

 

 

 

 

 

 

 

 

 
 

 

N - -0.75 , K/ue - 500 cm-1/4

pp/pf - 0.9 , Ve/V - 10

8 2

b r v x 10 , cm d , microns

P e P

(nominal)

2.21 6.3 (6)

0.3

jet-like flow 13.87 15.8 (16)

Figure 9.3

55.56 31.6 (32)

2.21 6.3 (6)

0.1

undulated flow 55.56 31.6 (32)

Figure 9.4

221.90 63.2 (63)

55.56 31.6 (32)

0.03

reverse flow 221.90 63.2 (63)

Figure 9.5

889.01 126.5 (127)  
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axis. The particle may, however, move directly to the outer stable

surface, depending on how it enters the vortex flow.

Figure 9.3 shows that the equilibrium surfaces for large particles

are positioned at large values of 2 and that all the equilibrium

surfaces become asymptotic to the surface of zero radial velocity.

Therefore, for constant 2E, smaller particles have larger stable

equilibrium orbits and are closer to the outer surface of zero radial

A

velocity. The value of zE (see Figure 9.2a) increases as dp increases.

A

For 32p, 16p, and 6;: size particles the corresponding values of 2E are,

resp., 17.2 cm, 5.4 cm, 1.2 cm (see Figure 9.3 and Eq. (9.14)).

Likewise, the values of 2E min decreases from 15.5 cm to 0.9 cm as dp

changes from 32 p to 16 p.

The intrinsic Stokes' number, defined by Eq. (9.11), can also be

calculated by rearranging Eq. (9.12):

4 2N

Bil—2' m
2E (9.16)Sk - rpue(N+2)(K/ve)

Thus, for a fixed equilibrium surface, the value of 2 (see Figure

E,min

9.2) will produce the maximum value of Sk. This occurs because N < 0.

For the case shown in Figure 9.3, Skmax equals 11.6 for <1p - 32p and

8.9ford -6.P 1‘

For undulated, forward flows, the behavior of the equilibrium

surface (Figure 9.4) is very similar to the equilibrium surface for jet-

1ike, forward flows. A positive radial velocity always occurs near the
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axis (see Figure 7.9), which makes the existence of equilibrium orbits

A

possible. The values of 2E, compared with Figure 9.3, are only reduced

slightly: 13.4 cm for 32 p particles (17.2 cm in Figure 9.3) and 1.0 cm

for 6 p particles (1.2 cm in Figure 9.3). However, the minimum value of

2 decreases significantly from 15.5 cm to 3.2 cm for 32 p particles
E

when b decreases from 0.3 to 0.1.

The equilibrium surfaces for reverse flow are topologically

different from jet-like and undulated flow (Figure 9.5). Because a

negative radial velocity always exists near the axis (see Figure 7.9),

particles in the vicinity of the axis will always move inward toward the

axis. Two mantles of zero radial velocity exist for reverse flow, and

equilibrium surfaces can only exist between these two surfaces.

Although at zE > zE,min (see Figure 9.2) three equilibrium orbits exist,

only two are stable: one on the axis and the other on the branch near

the outer surface of zero radial velocity. Therefore, if the

equilibrium orbit concept ultimately determines the location of a

particle in the flow field, then it may move either upward following the

outer surface or downward following the axis. The two possibilities

depend on how the particle is introduced into the vortex flow. The

position of z is about 8.0 cm for 127;: and becomes smaller as the
E,min

particle size decreases. For dp - 32p, is about 0.8 cm, a twenty
zE,min

fold decrease as the flow field changes from jet-like behavior (b - 0.3)

to a reverse flow behavior (b - 0.03).

The effect of N on the equilibrium surfaces is also significant.

By comparing Figures 9.6 and 9.3, the local minimum orbit occurs at z -

A

2E for N - -1.0, but is off the axis for N - -0.75. The size of the
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mantle reduces by almost half when N decreases from -O.75 to -1.0; and,

A

the values of 2B for 6;: particles increase from 1.2 cm to 8.4 cm.

Because rp a dpz, it follows from Eq. (9.14) that

N+2

20rd

Thus, for large values of N, the flow field has a much sharper

classification effect on the particles. For example, if N - ~1/2, then

zE 0: dp? which shows that the axial position of the equilibrium

surfaces is relatively insensitive to particle size for small particles,

but change significantly for large values of dp.

As discussed in Chapter 7, b uniquely determines the similarity

structure of the flow for a given value of N. The effect of b on the

structure of the particle equilibrium surfaces is clearly seen by

comparing Figures 9.3 - 9.5. For large values of b, the size of the

outer mantle becomes smaller, and the particles move closer to the axis.

At 2E - 30 cm and d1) - 32p, the equilibrium radius decreases from 1.2 cm

to 0.4 cm as b increases from 0.03 to 0.3. Also note that for dp - 32p,

the local minimum equilibrium orbit (ZE’rE)min changes in units of cm

from (15.4, 0.15) to (0.8, 0.025) as b decreases from 0.3 to 0.03.

The equilibrium orbit theory studied in this chapter provides

useful insights provided the major assumptions are satisfied. There

are, however, some limitations which should be discussed. For instance,

the model assumes that Stoke's law is valid, which implies that the
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particle Reynolds Number is less than unity (see p.68 Bradley, 1965).

The particle Reynolds number, defined as

dplur - upr'

Re - , (9.17)
p u

 

can be roughly estimated on the equilibrium surfaces where the terminal

velocity equals the radial velocity of the fluid. For dp - 32;: (0.0032

cm), b - 0.3, N - -0.75, K/ve - 500 cm'o°25, pp/pf - 0.9, and ue/u - 10,

the maximum value of ur, 2 cm/s, occurs on the similarity surface "E z 2

(see Figure 7.9). This corresponds to 2 - 15.6 cm on the equilibrium
E

surface (see Eq. 9.12 and Figure 9.3). Therefore, the maximum value of

Rep is about 0.64 (v - 0.01 cmz/s), which shows that Stoke's law is a

reasonable approximation in the neighborhood of the particle equilibrium

surface.

The model also assumes a balance between the centrifugal and

viscous forces. Other forces, such as gravity, acting on the particle

are neglected. For dp - 32p, the maximum tangential velocity occurs for

"E - 3.5 and 2E - 20 cm (see Figures 7.7 and 9.3) and is about 1200

cm/s. Therefore, the centrifugal force acting on the particle at ZE -

20 cm, r - 0.3 cm is 0.0093 g.cm/sz. The mass of the 32p size particle
E

(pf - 0.9 g/cm3) is 1.7x10 -8g, so its centrifugal acceleration (Fe/mp)

is 5.42x10S cm/s2 or about 550 times larger than the acceleration due to

gravity.
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9 6 one u o

The following conclusions result from the calculations presented in

this chapter:

A. For a fixed cyclone geometry, large particles are probably not

limited by their equilibrium surfaces because they occur at relatively

large values of 2. However, small particles are more likely to follow

their equilibrium surfaces, which approach the outer surface of zero

radial velocity, or 'mantle'.

B. This model predicts the existence of equilibrium orbits for the

entire range of b studied.

C. Different flow behavior will have different types of equilibrium

surfaces; the location of these surfaces change significantly with b and

N.

I). For forward.flow on the axis, the axis is stable only when 2 s

23; however, it is always stable for reverse flow because ur < 0 near

the axis.

E. The effect of N on the classification of particles is very

significant. From Eqs. (9.14) and (9.5),

2 a d for N - -1

E P

A 5/3

zE « dp for N -3/4

2 a dp3 for N - -1/2

Thus , for larger values of N, the flow field has a much sharper

Classification effect on the particles. The axial position of the
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equilibrium surface for larger values of N is relatively insensitive to

small particles but changes significantly for large particles.

F. Because 'a' is almost proportional to 'b' at large values of 'b'

(see Figure 7.3) and because

N+2

A a 75'“

2E or ( —2- ) , it follows that

b

N+2

2E (b) 2N

A

Thus as 'b' increases, 2 increases because -1 S N < 0. Therefore, a

E

A

stronger rotation around the axis provides a large 2 provided b does
El

not affect K/ue.

As previously discussed (see Section 9.1), the efficiency of a 3"-

hydrocyclone drops sharply when the particle size approaches 20 - 40

microns. The model developed here may provide a theoretical explanation

for this phenomenon because small particles are more likely to be

limited by their equilibrium surfaces. Thus, in the apparatus of Colman

et al. [1980] , the jet-like behavior shows a very high efficiency for

capturing the large particles because their trajectories in the vortex

are not limited by equilibrium surfaces. However, as (11) decreases and

the geometry and flow parameters remain the same, the efficiency is

expected to drop as the particle size decreases because the equilibrium

surface will cause the particle to miss the vortex finder.



171

This theory provides new information which can be used for light

particle separation in vortex flows. The equilibrium surfaces can be

located by knowing the properties of the particles (dp’pp/‘OB’ the

intrinsic properties of the continuous phase (p,pf), and the parameters

used to characterize the vortex flow (b,N,K,ue). The stability of the

equilibrium surface (see Section 9.3) yields important information about

the ultimate location of the particles. The results show that the

stable surfaces always approach a surface of zero radial velocity for

large values of 2. Thus, once the above parameters have been estimated,

the relationship between the separation efficiency and the hydrodynamics

can be quantified. The efficiency can be improved by either adjusting

the size of the outlet vortex finder or by adjusting the strength of

rotation around the axis, which may be controlled by the inlet velocity.

A relationship between the separation efficiency, the size of the vortex

finder, and the inlet velocity could be developed experimentally and the

results used to study certain aspects of this theory. It is clear from

the quantitative calculations presented that a single design and set of

operating conditions cannot give the same separation efficiency for all

particle sizes. However, a more explicit connection between the design,

the hydrodynamics, and the performance of hydrocyclones should be

beneficial.



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

0 a ’0

Some experimental observations, as discussed in Section 1.1,

suggest that a similarity theory could be used to describe the flow

structure in the core region of swirling flows. Among these

observations are the algebraic decay of the centerline velocity, the

free-vortex-like swirl velocity in the outer region, and the nonlinear

growth of the viscous boundary layer.

Model II, motivated by these experimental observations (see Section

4.1), has the feature of variable circulation on similarity surfaces by

using a more general vortex in the outer region (see Eq. (3.21)). The

boundary conditions require that a zero axial velocity and free-vortex-

like swirl .velocity occur at the same core surface. Although these

assumptions may not be true for some vortex flows, the theoretical

results are consistent with many experiments (see Dabir, 1983; Escudier

et al., 1982, 1984).

The results have revealed the existence of various flow structures

in the vortex core. Three types of flow behavior (reverse, undulated,

and jet-like flow) were identified experimentally and theoretically (see

Figure 7.8). A study of the solution behavior near the axis provides

a_prigri criteria for different flow regimes (see Figure 4.2 and Table

4.1), which can be determined uniquely by one of the four parameters

172
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local spin parameter ('b'), "excess" pressure on the axis ('a'),

centerline axial velocity ('a'), and size of vortex core (n*) as well as

K, v, and N.

The analysis of the "excess" mechanical energy and the axial forces

acting on a fluid particle on the axis has revealed that transition from

reverse flow to undulated flow occurs when the inertia force (F1) is

zero and the excess mechanical energy (E) is negative. However, the

transition from undulated flow to jet-like flow occurs when the viscous

force (Fv) and excess mechanical energy are both zero.

The parameters K and we affect the behavior of the flow. As K/we

increases, the length scale (5) decreases (see Eq. (3.38)) and the

velocity scale (uc) increases (see Eq. (3.37)). For K/we - 500 cm-o'25,

we - 0.1 cmz/sec, b - 0.3, N - -0.75, 2 z 15.6 cm, and n z 2 (see

Section 9.5), the axial, tangential, and radial velocities are estimated

as 200 cm/sec, 96 cm/sec, and 0.4 cm/sec, resp.. In general, the

magnitude of the radial velocity is much smaller than the magnitude of

the axial and tangential velocities. For the data evaluated (see

Chapter 8), N appears to be independent of the flow rate and insensitive

to the contraction ratio of the vortex chamber. The coefficient K,

however, is a strong function of the flow rate (00), inxt not the

contraction ratio (Do/D).

For N - -1, the macroscopic axial thrust (F2) is independent of the

axial coordinate. However, for N i -l, the macroscopic axial thrust is

zero at the singular point and increases as 2 increases.



174

Circulation is another feature which is quite different for N - -l

and N i -1. A constant circulation on similarity surfaces always occurs

for N - -1 (see Section 6.1). However, for N I‘ -l, the circulation on

similarity surface (constant q) increases as 2 increases.

The distribution of axial component of vorticity on the axis

wz(0,z) in this study varies along the axis and is uniquely fixed by

'b'. For N - -l, wz(0,2) is proportional to 2-2. However, in the

theoretical study of Ingham and Bloor, 1984, the certerline vorticity is

independent of z.

The tangential velocity profiles in this study always show a

Rankine - type structure with a forced vortex near the axis and a free-

vortex-like flow in the outer region. It is found that as b increases,

the fraction of the cross sectional area of the vertex in solid body

rotation decreases. the radial velocity, however, is quite different

for various flow structures. This study revealed that positive radial

velocities near the axis always occur for forward flow, whereas

negative radial velocities result for reverse flows (see Figure 7.9).

The forward flow on the axis in this study is always against an

adverse pressure gradient (see Section 4.2). There will always be a

region near the singularity point for which the pressure is less than

zero. This region (2°), from previous specific calculations (see

Section 4.2), is estimated to be about 8 cm for a gas vortex and 5.6 cm

for a liquid vortex. In general, they are much smaller than the length

of the vortex chambers for most of the experiments studied. Therefore,

data for z > 2° are used to compare with theoretical calculations (see

Chapter 8).
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Similarity scaling (see Section 1.1) implies that the total

dissipation for N - -1 is always unbounded. However, for N 9‘ -1, this

study revealed that the total dissipation is unbounded for -l < N 5 -2/3

and is bounded for -2/3 < N < 0. As 'b' increases, the macroscopic flow

rate decreases. This is also true for the macroscopic axial torque;

however, the macroscopic pressure drop increases as 'b’ increases.

Although the macroscopic axial thrust does not uniquely determine the

flow behavior, the macroscopic pressure drop determines uniquely the

flow structure .

10.2mm

The major conclusions of this study can be summarized as follows :

(1). This study predicted quantitatively the various flow

structures for a viscous vortex (see Figure 7.1 and 7.2). The range of

b for reverse and undulated flow behavior broadens as N increases.

Transition values of b for three types of flow structures become larger

when N is larger (see Figure 7.2).

(2) . The viscous boundary layer increases linearly with the axial

coordinate for Model I (6 at z) and is parabolic-like for Model II (6 or

21/(N+1) ). Model II reduces to Model I, with only some minor

differences (see Figure 7.1), when N - -l.

(3). The study of macroscopic properties revealed that the

macroscopic axial force, Fz’ did not uniquely determine the flow

structure (see Figure 7.10). The macroscopic pressure drop, however,

uniquely determines the flow behavior because its one-to-one

relationship with the local spin parameter, b (see Figure 7.13). For
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fixed b, a larger value of N causes a larger macroscopic pressure drop,

Ap (see Figure 7.13).

(4). N appears to be insensitive to the flow rate and the

contraction ratio of the vortex chamber (see Figure 8.2 and Table 8.1).

An interesting result is that N has a value near -0.75 for most of the

experimental data analyzed and is, thereby, consistent with a

theoretical analysis for Beltrami flows in the outer region.

(5) . Model II, which considered flow structures induced by a more

general flow (-1 S N < 0), has the feature of variable circulation on

similarity'suxfaces. For the same similarity surface (constant 0), the

circulation increases as 'b' increases (see Figure 9.5). For fixed 7;

and b, large values of N cause an increase in the circulation (see

Figure 9.5).

(6). This study revealed that the macroscopic dissipation for Model

I is unbounded. However, the total dissipation for Model II is

unbounded for -l s N S -2/3, but bounded for -2/3 < N < 0.

(7). The pressure on the axis always increases in the direction of

increasing axial position for any type of flow behavior. A negative

pressure, which exists near the singularity point, is estimated to be

the same order of magnitude for gas and liquid vortices (see Section

4.2). However, it is an order of magnitude smaller than the length of

many experimental vortex chambers (see Dabir, 1983; Boysan et al.,

1982; and Escudier et al., 1980, 1982).

(8). The effect of N on the size of the viscous core is

significant. When N increases, the size of the core decreases (see 0*

in Table A.2 to A.4) for fixed b. Therefore, a more coherent core will

occur at larger values of N for fixed b.
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(9) . When N increases, the lower limit on b for undulated and jet-

like flows becomes much larger (see Figure 7.2). Therefore, in order to

keep jet-like behavior, a stronger rotation on the axis (large b) is

necessary for larger values of N.

(10). This study, for the first time, provides a way to understand

various flow structures through the excess mechanical energy and force

balances on a fluid particle on the axis (see Section 6.5). The viscous

force and the substantial time derivative of excess mechanical energy

A

(DE/Dt) have to change sign when the flow transfers from jet-like to

undulated behavior. However, the flow transfers from undulated to

A A

reverse behavior only if DE/Dt changes sign.

(11). The estimates of viscosity coefficient of various experiments

based on this study have revealed that the viscosity coefficient cannot

be interpreted as a molecular kinematic viscosity, instead it should be

considered as a constant eddy viscosity (see Chapter 8).

(12). This study, for the first time, provides a possible

explanation why the separation efficiency of hydrocyclones drops sharply

as the particle size of a light disperse phase decreases. Because the

very fine particles are more easily controlled by the equilibrium

surfaces, which move far away from axis for smaller particles, they are

probably missing the vortex finder, if the vortex finder is too small.

0 c e

Based on the results developed in this research, the following

recommendations for additional study are suggested.

(1) . Although Model II produces many useful results, it treats the

problem with some restrictions (see Chapter 3). The model has assumed
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that the similarity functions at the surface (i.e. , locus of zero axial

velocity) require the free-vortex-like swirl velocity (ug - KrN, r z 6*)

and continuity of viscous stress. The behavior of the outer flow (i.e. ,

r > 6*(z)) is still unknown and has to satisfy these boundary conditions

at the surface. These restrictions are too ag;hgg and may not exist for

some flows. A study of an outer flow which can match the core behavior

in Model II is recommended for development. Another recommendation is

to remove the free-vortex-like swirl velocity condition at the surface

of zero axial velocity. This may provide a way to match the core flow

with an inviscid flow or Beltrami flow in the outer region. The

relationship between the core flow and the outer flaw could provide a

connection with the geometry and operating conditions.

(2). This study has predicted some specific features which are

important for the comparison.between theoretical and experimental data.

These features include : the decay of central axia1.velocity, free-

vortex-like swirl velocity at the outer region, and the decay of the

axial component of angular momentum. Therefore, it is recommended to

measure the following velocities very carefully and accurately.

(a). Tangential velocity profile, which can be used to determine K

and N;

(b). Central axial velocity, which is used to determine the

direction of the vortex core;

(c). Angular velocity around the axis (duo/ar|r_o), which combined

with (a) and (b) can be used to determine the value of b;

(d). Axial velocity profiles, which provide an estimate of

entrainment rate.
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The above accurate measurements will provide a basis for the

comparison between theoretical predictions and experimental results.

(3) . In this study, radial velocity profiles play a very important

role, esp., in the oil-water separation. Unfortunately, experimental

data for radial velocity are very scarce. Because this study predicts a

mantle (locus of zero radial velocity) always exists, it is very

important to validate this finding. Therefore, it is strongly

recommended that the experimental test, either direct measurement or

visualization of radial velocity, should be carefully executed for a

flooded hydrocyclone, esp., near the central core region.

(4) . Although the equilibrium surfaces of light particles can be

predicted from this study, the detail trajectory of particles are still

unknown. Because the velocity field can be determined from this study

directly, it provides a way to calculate the trajectory of dispersed

particles. Based on the major assumptions in Chapter 9 and Eq. (9.4),

the two differential equations for the spatial coordinates of individual

spherical particles can be expressed as

 

Because ur, uz and 7p can be calculated for any initial particle

position, the particle trajectory at any time can be calculated by

integrating these two non-linear differential equations. Once the
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trajectory of specific particles have been determined, an estimate of

how long it will take for particles to reach their stable equilibrium

surfaces can be made.

(5). In the study of oil-water separation, this model predicted

large particles are probably not limited by the equilibrium surfaces

while the small particles have more chance to be controlled by the

equilibrium surfaces. Therefore, for collecting different particle

sizes of oil droplets, a different design of the vortex finder is

necessary. This theory also showed that the quantitative behavior of

the ultimate particle location is determined by the local spin

parameter, b, for fixed other parameters. Because b could be controlled

by the inlet velocity for fixed geometry, it is recommended to study the

relationship between inlet velocity (or flow rate) and b. The

information could provide a way to improve the efficiency of oil-water

separation for various particle sizes through the control of inlet

velocity for fixed geometry.



APPENDIX A

SOLUTIONS (a,b,c,;) FOR MODEL I AND MODEL II
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Table A.1 Solution (a,b,c,na) for Model I

 

 

    

b a c "a

.03 -0.0313 .0136 30.0

.04 -0.0540 .0168 28.9

.042 0.0 .0174 28.6

.05 0.0226 .0199 27.7

.06 0.0521 .0230 27.3

.08 0.114 .0289 26.6

.10 0.179 .0347 26.0

.136 0.301 .0449 24.2

.15 0.348 .0489 23.5

.20 0.524 .0627 22.5

.30 0.886 .0898 21.7
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Table A.2 Solution (a,b,c,n*) for Model II (N - -1.0)

 

 

 

b a c n*

0.03 -0.0251 0.0127 30.1

0.038 0.0 0.0151 29.0

0.04 0.00083 0.0158 28.7

0.05 0.0285 0.0190 28.4

0.06 0.0582 0.0219 27.5

0.08 0.120 0.0279 27.1

0.10 0.184 0.0337 26.8

0.14 0.321 0.0447 24.1

0.15 0.355 0.0475 23.4

0.20 0.531 0.0611 21.9

0.30 0.893 0.0881 21.3     
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Table A.3 Solution (a,b,c,n*) for Model II (N - -0 75)

 

 

b a C 0

0.03 -0.0582 .0186 15.1

0.04 -0.0406 .0232 14.2

0.05 -0.0212 .0276 13.5

0.055 0.0 .0297 13.2

0.06 0.00061 .0318 12.9

0.08 0.0431 .0397 11.9

0.10 0.0889 .0471 11.1

0.20 0.335 .0786 8.79

0.23 0.412 .0860 8.33

0.25 0.464 .0910 8.03

0.30 0.596 .101 7.43

0.50 1.150 .121 5.86   
 

 



Table A.4 Solution
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at

(a.b.C.n ) for Model II (N - -0.5)

 

 

 

b a c n

0.03 -0.123 0.0385 13.7

0.04 -0.113 0.0475 12.9

0.05 -0.101 0.0558 12.3

0.06 -0.0873 0.0636 11.8

0.08 -0.0575 0.0780 11.0

0.10 -0.0254 0.0909 10.4

0.115 0.0 0.0963 10.2

0.20 0.152 0.138 8.28

0.25 0.248 0.151 7.55

0.30 0.348 0.157 6.94

0.43 0.634 0.203 5.96

0.50 0.784 0.222 5.31   
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Table B.l Objective of computer program and FORTRAN

 

 

 

symbol list

Program Objective

ABCI.FOR This program determines (a,c,5) for Models I and II at

given b and N

YI.FOR This program gives Y1 to Y6 with respect to n for Model

I and Model 11

DATA1.FOR This program sets up individual data files for non-

dimensional momemtum transfer, stream function,

angular momentum, pressure field, axial, tangential,

and radial velocity profiles for Model I

DATA2.FOR This program sets up individual data files for non-

dimensional momemtum transfer, stream function,

angular momentum, pressure field, axial, tangential,

and radial velocity profiles for Model II

ORBIT.FOR This program sets up individual data files for particle

equilibrium orbits for various particle sizes
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Subroutine Description

 

ZSCNT This is a subroutine in IMSL library available at

Michigan State University. It solves a system of

nonlinear equations by secant methods.

DGEAR This is a subroutine in IMSL library available at

Michigan State University. It solves simultaneous first-

order differential equations by implicit ADAMS methods.

 

 

FORTRAN symbol list

 

A a

B b

C c

eta 5

D . Particle rsdius.

F A vector of length N. F is given non-linear equations.

FCN The name of a user-supplied subroutine which evaluates

the system of equations to be solved.

FCNl, FCN2 Name of subroutine for evaluating functions.



FCNJ

GAMMA

H, H1

IER, IERl

INDEX, INDEXl

ITMAX

KV

METH, METHl

MITER, MITERl

N1

N2

NSIG

PAR

187

Name of the subroutine for computing the N2 by N2

Jacobian matrix of partial derivatives.

F(n,N,b)

On input, H contains the next step size in X1. On output

H contains the step size used last, whether successful

or not.

Error parameter

Input and output parameter used to indicate the type of

call to the subroutine.

The maximum allowable number of iterations

Defined by K/w

Input basic method indicator. METH - 1, implies that

the ADAMS method is used. METH - 2, implies that the

stiff method of Gear is used.

Input iteration method indicator. MITER - 1, implies

that the chord method is used with an analytic Jacobian.

The number of unknowns

Power index where U0 - KrN.

Input number of first-order differential equations.

The number of digits of accuracy desired in the computed

root

Par contains a parameter set which is passed to the user

supplied function FCN.

Equilibrium orbit radius.



SPE

TOL

X1, X2

XEND, XENDl
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pp/pf

Input relative error bound.

A vector of length N. On input, X is the initial approx-

imation to the root. On output, X is the best approxi-

mation to the root found by ZSCNT.

Independent variables. On input, X1 and X2 supply the

initial value and are used only on the first call. On

output, X1 nd X2 are replaced with the current value of

the independent variable at which integration has been

completed.

Input value of X1 at which solution is desired next.

A vector of length N2. On input, Y is an initial

solutions vector, On output, Y is the best approximation

which satisfies a set of simultaneous first-order

differential equations.

Length of confined vortex chamber.
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APPENDIX C

TABULAR EXPERIMENTAL DATA USED



Table C.1 Experimental data set 1a

207

 

Reference :

Experimental conditions

QF - 400 cm3/sec, u

Escudier, et al., [1980]

(see Figure 8.1)

- 24 cm/sec

 

 

 

 

   

 

 

  

F

Do 40 Qo

B—n-S-g’ q-Q

E - 19.35 cm (from Figures 9 and 10 of Escudier)

r,cm O .2 .4 1.0 1.2 1.4 1.6 1.8 2.0 2.6

N - -0.75

uo,cm/s o 32 64 67 58 so 44 39 37 33 x - 68 cml'N/s

One

\1 ,cm/s -24 -12 O 29 - - 9 - 4 O -- - 160

2 8r

r-0

2 - 19.85 cm (from Figures 9 and 10 of Escudier)

r,cm O .2 .4 1.0 1.2 1.4 1.6 1.8 2.0

N - -O.75

u0,cm/s o 32 64 67 58 so 44 39 37 K - 68 cml'N/s

auo

uz,cm/s -23 -11 O 25 — - 8 ‘ - 4 5?_ - 160

  r-O

  



Table C.2
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Experimental data set 1b

 

Reference

Experimental conditions

QF - 400 cm3/sec, u

: Escudier, et al., [1980]

(see Figure 8.1)

- 24 cm/sec

 

 

 

 

  
 

 

 

 

 

F

Do 25 Q0

D 55 ’ Qu

E - 19.35 cm (from Figures 9 and 10 of Escudier)

r,cm O .1 .2 1.0 1.2 1.4 1.6 1.8 2.0 2.6

N - -O.75

uo,cm/s o 36 72 67 53 46 39 36 3a 33 K - 68 cml'N/s

auo

u ,cm/s 3 45 35 28 25 20 15 10 2 -—— - 360

2 6r

r-0

2 - 19.85 cm (from Figures 9 and 10 of Escudier)

r,cm 0 .1 .2 1.0 1.2 1.4 1.6 1.8 2.0

N - -O.75

u0,6m/s o 36 72 67 53 46 39 36 34 K - 68 cml’N/s

auo

uz,cm/s 10 8O 35 28 20 15 6 O 5;-' - 360

r-O   
 

 



Table c.3 Experimental data set lc
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Reference :

Experimental conditions

QF - 40

Do 10

D_'5'§

Escudier,

O cm3/sec, uF

et al., [1980]

- 24 cm/sec

(see Figure 8.1)

 

 

 

 

   
 

 

 

 

   

E - 19.35 cm (from Figures 9 and 10 of Escudier)

r,cm 0 .1 .2 1.0 1.2 1.4 1.6 1.8 2.0 2.6

N - -0.75

uo,cm/s o 80 160 67 55 48 42 38 35 33 x - 68 cml'N/s

auo

uz,cm/s 144 72 33 28 25 22 19 15 0 5;— - 800

r-0

2 - 19.85 cm (from Figures 9 and 10 of Escudier)

r,cm O .1 .2 1.0 1.2 1.4 1.6 1.8 2.0

N - -0.75

uo,cm/s o 80 160 67 55 48 42 38 35 K - 68 cml'N/s

Bug

uz,cm/s 450 72 4o 32 24 16 8 0 5E’ - 800

r-O
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Table C.4 Experimental data set 1d

 

Reference : Escudier, et al., [1982]

Experimental conditions : (see Figure 8.1)

QF - 100 cm3/sec, u - 6 cm/sec

 

 

 

 

 

   
 

 

 

 

F

Do 18 Q0

_-_, ——a)

D 55 Qu

E - 1 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0

N - -O.75

l-N

u0,cm/s O 19 15 10 8.5 6 9 K - 11 cm /s

auo

uz,cm/s - - - - - - 5E. - -

r-0

2 - 10 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0 2.8

N - -O.75

1-N

u0,cm/s O 19 18 10 8.6 6.9 6.0 K - 11 cm /s

aua

uz,cm/s - 14 8 6 3 2 0 BE— - -

r-O      
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E - 19.85 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

u0,cm/s o 29 17 10 7.9 6.9 K - 11 cml‘N/s

auo

u ,cm/s - 22 11 8 6 0 'EE- -

r-0

2 - 20.55 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

u9,cm/s o 27 17 10 7.9 6.9 K - 11 cml’N/s

aua

uz,Cm/S 62 ' ' ' ' - 5r— - -

r-0

2 - 29.45 cm (from Figures 5 of Escudier)

r,cm O 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -0.75

u9,cm/s o 10 20 21 14 10 7.9 7.7 6.9 K - 11 cml'N/s

Bug

u ,cm/s 50 - - 4O 36 20 2 O 5;- - 100

r-0

2 - 31.65 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -0.75

u9,cm/s o 10 20 14 18 12 9.6 9.4 8.0 K - 11 cml’N/s

aua

u ,cm/s 48 - - 48 45 25 4 0 BE— - 100

  r-O
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Table 0.5 Experimental data set 1e

 

Reference :

Experimental conditions

QF - 200 cm3/sec, u

Escudier, et al., [1982]

(see Figure 8.1)

- 12 cm/sec

 

 

 

 

  
 

 

 

 

 

F

Do 18 Q0

___, —-co

D 55 Qu

E - 1 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

l—N

u9,cm/s O 65 34 21 15 13 K - 26 cm /s

auo

uz,cm/s - - - - - - 5;_ - -

r-0

2 - 10 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0 2.8

N - -O.75

l-N

u0,cm/s O 69 34 21 15 13 12 K - 26 cm /s

auo

uz,cm/s - 25 10 6 4 1 O 8;_ - -

r-O   
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E - 19.85 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0

N - -O.75

uo,cm/s o 75 62 22 19 14 K - 26 cml'N/s

auo

u ,cm/s — 4O 3O 20 10 0 5;— - -

r-0

2 - 20.55 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -O.75

uo,cm/s O 82 41 24 21 17 K - 26 cml-N/s

auo

u ,cm/s - - - - - - ‘8? - -

r-0

5 - 29.45 cm (from Figures 5 of Escudier)

r,cm O 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -0.75

u0,cm/s o 10 20 48 34 24 19 18 17 K - 26 cml'N/s

auo

u ,cm/s 23.8 30 50 6O 75 3O 10 O 5;— - 100

r-0

5 - 31.65 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -O.75

uo,cm/s o 12 24 17 27 22 21 21 19 K - 26 cml'N/s

Bug

uz,cm/s - - - 4O 55 15 0 EE— - 120

  r-O
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Table C.6 Experimental data set 1f

 

Reference : Escudier, et al., [1982]

Experimental conditions : (see Figure 8.1)

QF - 411 cm3/sec, u - 24.6 cm/sec

 

 

 

 

   
 

 

 

 

F

Do 18 Q0

D 55 ’ Qu

E - 1 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0

N - -0.75

l-N

uo,cm/s O 162 91 49 32 28 K - 47 cm /s

aua

uz,cm/s - - - - - - ‘a'-r— - -

r-0

2 - 10 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0 2.8

N - -O.75

l-N

u9,cm/s O 162 84 46 32 28 27 K - 47 cm /s

8u(9

uz,cm/s - 6O 10 5 5 2 0 ‘5E— - -

r-O     
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E - 19.85 cm (from Figures 5 of Escudier)

 

 

 

   
 

 

 

   
 

 

 

   
 

 

 

r,cm O 0.25 0.50 1.0 1.5 2.0 2.8

N - -0.7S

uo,cm/s 0 162 77 46 35 28 26 K - 47 cml‘N/s

auo

u ,cm/s - 120 60 4O 3O 20 O 5;-' -

r-0

2 - 20.55 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -O.75

u0,cm/s o 169 91 56 42 28 K - 42 cml'N/s

auo

u ,cm/s - - - - - - 8;. - -

r-0

2 - 29.45 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 2.0

N - -0.75

u9,cm/s 0 - - 84 7O 42 35 28 K - 47 cm1-N/s

auo

u ,cm/s l7 - - 3O 80 140 O -—- - 200

2 8r

r-0

2 - 31.65 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 2.0

N - -O.75

u0,cm/s O - - 84 71 42 35 28 K - 47 cml-N/s

auo

u ,cm/s 15 - - 25 80 150 20 O 5;. - 140

  r-O   
v
.
.
x
1
'
r



Table C.7
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Experimental data set lg

 

Reference :

Experimental conditions

QF - 850 cm3/sec, u

Escudier, et al., [1982]

(see Figure 8.1)

- 51 cm/sec

 

 

 

 

   
 

 

 

 

F

Do 18 Q0

D 55 ’ Qu

E - 1 cm (from Figures 5 of Escudier)

r,cm 0 0.25 0.50 1.0 1.5 2.0

N - -O.75

uo,cm/s o 290 200 100 82 61 K - 95 cml'N/s

auo

uz,cm/s - - - - - - '5;- - -

r-0

2 - 10 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

l-N
u0,cm/s 0 320 175 87 58 44 K - 95 cm /s

auo

uz,cm/s - - - - - - 5;— - -

r-O   
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E - 19.85 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

u0,cm/s o 335 175 93 64 58 K - 95 cml'N/s

auo

uz,cm/s - 175 80 4O 20 O 8;. - -

r-0

2 - 20.55 cm (from Figures 5 of Escudier)

r,cm O 0.25 0.50 1.0 1.5 2.0

N - -0.75

u9,cm/s o 320 204 117 87 64 K - 95 cml‘N/s

auo

u ,cm/s -62 - - - - - 5;— - -

r-0

2 - 29.45 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -0.75

uo,cm/s o 25 50 131 131 96 73 7o 58 K - 95 cml‘N/s

aua

uz,cm/s - - - 80 180 20 O 5;. - 250

r-0

2 - 31.65 cm (from Figures 5 of Escudier)

r,cm 0 0.1 0.2 0.25 0.50 1.0 1.5 1.6 2.0

N - -0.75

u6,cm/s o 21 42 52 93 87 67 65 58 K - 95 cml'N/s

aue

u ,cm/s -52 -3O -5 O 100 190 40 0 BE— - 210

  r-O

 
 



Table C.8

218

Experimental data set 2a

 

Reference : Dabir, [1983]

Experimental conditions

QF - 500 cm3/sec, u

 

(see Figure 8.1)

- 140 cm/sec

 

 

 

 

  
 

 

 

 

 

F

Do 25.8 Qo

_- ’ —-<n

D 76 Qu

E - 8 cm (from Figures 5.9 and 5.10 of Dabir)

r,cm o 1 .2 4 8 .9 1.0 1.2 1.4 1.6

N - -o 75

u0,cm/s o 40 80 160 245 230 220 195 172 150 K -270 cml‘N/s

auo

u ,cm/s 6O 65 7o 80 10 o ——— - 400
2 ar

r-0

2 - 20 cm (from Figures 5.9 and 5.10 of Dabir)

r,cm o .1 .2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

N - -0.75

u0,cm/s 0 4o 80 235 218 200 185 172 163 150 140 130 K -270 cml’N/s

Bug

u ,cm/s 4o 48 56 50 3o 15 o ——- - 600
2 6r

r-O   
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N
1

- 32 cm (from Figures 5.9 and 5.10 of Dabir)

 

.1 .2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

 

40 80 235 215 200 190 175 165 153 147 140

 

 
30 35 4O 6O 4O 2O 15 10 6 3 O

 

N - -0.75

K -270 cml'N

dug

“a? - 400

r-O

/s
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Table 0.9 Experimental data set 2b

 

Reference : Dabir, [1983]

Experimental conditions : (see Figure 8.1)

QF - 500 cm3/sec, u

D
O

‘13—-

F - 140 cm/sec

12.9 Q6

76 ' Q

 

E - 20 cm (from Figures 4.1 and 4.2 Of Dabir)

 

0 .l .2 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

N - -O.75
 

O 100 200 340 300 260 230 200 190 180 175 160 K -270 cm1-N/s

 

uz,cm/s

au

0

375 340 320 60 50 35 20 5 BE— - 1000

r-O   
 

E - 32 cm (from Figures 4.1 and 4.2 of Dabir)

 

0 .l .2 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

N - -O.75
 

O 100 200 340 300 280 250 220 200 190 175 160 K -270 cml-N/s

 

uz,cm/s 
Bu

0

335 320 280 50 4O 25 15 10 - O 0 BE— - 1000

r-O    
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Table C.10 Experimental data set 2c

 

Reference :

Experimental conditions

QF - 500 cm3/sec, u

Dabir, [1983]

(see Figure 8.1)

- 140 cm/sec

 

 

 

 

   
 

 

 

 

F

Do 12.2 Q6
___, —-cn

D 76 Qu

E - 20 cm (from Figures 5.14 and 5.15 of Dabir)

r,cm 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8

- N - -O.75

u0,cm/s O - - - - - - - - - K -270 cml-N/s

auo

uz,cm/s 400 340 220 120 50 ~ 30 20 15 O 5;— - 1200

r-0

2’- 32 cm (from Figures 5.14 and 5.15 of Dabir)

r,cm O .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

N - -O.75

u0,cm/s 0 200 470 370 295 250 220 195 176 165 155 148 K -270 cml'N/s

auo

uz,cm/s 340 320 210 100 40 - 25 - 20 15 10 - 8?- - 1000

r-O  
   



Table C.ll

222

Experimental data set 3

 

Reference :

Experimental conditions :

QF - 51 cm3/sec, u

Kimber and Thew [1974]

(see Figure 8.1)

- 4O cm/sec

 

 

 

 

   
 

 

 

 

F

Do 12.7 Q6

___. _ — , — — co

D 50 Qu

E - 295 cm (from Figures 6 of Kimber and Thew)

r,cm 0 .05 .10 .5 1.0 1.5 2.0

N - -0.6

uo,cm/s o 50 100 84 64 48 38 K - 64 cml'N/s

auo

uz,cm/s O - - - - - 31?— - 1000

r-0

2 - 50 cm (from Figures 6 of Kimber and Thew)

r,cm O

N - -O.6

uo,cm/s 0 K - -- cml‘N/s

auo

uz,cm/s -100 5?— - ---

r-O   
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Table 0.12 Experimental data set 4

 

Reference : Boysan et a1. [1982]

Experimental conditions

 

 

 

 

 

   
 

 

 

 

QF - 42000 cm3/sec, uF - 1370 cm/sec

Do 64 Q0

___, —--G)

D 203 Qu

E - 6.6 cm (from Figures 3 of Boysan)

r,cm 0 .5 1.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N - -1.0

uo,cm/s 0 420 850 1600 1200 970 810 690 610 540 K-3050 cm1-N/s

auo

uz,cm/s 283 150 0 -200 -100 -30 0 BE— - 850

r-0

2 - 13.2 cm (from Figures 3 of Boysan)

r,cm 0 .5 1.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N - -1.0

uo,cm/s 0 420 850 1600 1200 970 810 690 610 540 K-3050 cml-N/s

auo

uz,cm/s 250 140 O -l90 -95 ~30 O 8;_ - 850

r-O   
 

 
 

11
1
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E - 19.8 cm (from Figures 3 of Boysan)

 

 

 

  
 

 
 

 

 

r,cm 0 .5 1.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N - -l.0

u0,cm/s 0 420 850 1600 1200 970 810 690 610 540 K-3050 cml-N/s

Bug

uz,cm/s 165 120 O -180 -90 -25 0 5;. - 850

r-0

2 - 26.4 cm (from Figures 3 of Boysan)

r,cm 0 .5 1.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N - -l.0

u0,cm/s 0 420 850 1600 1200 970 810 690 610 540 K-3050 cml-N/s

 

au

   
 

 

 

 

0

u ,cm/s 90 60 O -l7O -80 -25 O -—— - 850

z 6r

r-0

2 - 33.0 cm (from Figures 3 of Boysan)

r,cm 0 .5 1.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N - -1.0

u€,cm/s 0 420 850 1600 1200 970 810 690 610 540 K-3050 cm1-N/s

auo

u ,cm/s 65 4O 0 -l7O -7O -20 0 '——- - 850

2 6r

r-O  
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Table 0.13 Experimental data set 5

 

Reference : Pericleous et a1. [1984]

Experimental conditions

QF - 1250 cm3/sec, u - 56.7 cm/sec
F

Do 80 Q0

6"76—6" g
-m

 

 

E - 25 cm (from Figure 4 of Pericleous)

 

r,cm 0 3.0 3.5 4.0 4.5 5.0 5.0 6.0 6.5 7.0 7.5 8.0

 

 

N — -1.0

u9,cm/s 0 540 460 400 360 325 300 275 250 240 230 220 Kp1050 cml-N/s

auo

uz,cm/s - - - - - - - - - - - - BE— - ---

r-O    
 

 



APPENDIX D

COMPONENTS OF THE STRESS TENSOR FOR AXISYMMETRIC, INCOMPRESSIBLE

FLOWS OF A NEWTONIAN FLUID
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Table D. Components of the stress tensor for axisymmetric,

incompressible flows of a Newtonian fluid

(cylindrical coordinates)

 

rr

22

a 9

Tra-Tar-pr5;(-r—)

92

zr rz'P[5‘r—+'az—]
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