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ABSTRACT

NONEQUILIBRIUM THERMODYNAMIC THEORY OF

TRANSPORT IN MEMBRANES

BY

Jing-Shyong Chen

The steady-state transport theory that accounts

for the osmotic flow of fluids through biological mem-

branes is obtained, subject to certain simplifying

assumptions which may be removed in subsequent work.

The principles of hydrodynamics and nonequilibrium thermo-

dynamics are used to describe the simultaneous transport

of mass and electric current and the osmotic flow rate

in a fluid system undergoing osmosis. In order to under-

stand better the osmotic flow phenomena in biological

systems, the following particular subjects are thoroughly

investigated: (1) the distribution of ions in charged

membranes, including the effect of molar volumes of ions,

(2) the solution of Poisson's equation modified by in-

clusion of the dependence of the dielectric constant of

the salt solution on the salt concentration and the

electric field, and (3) the distribution of pressure



Jing-Shyong Chen

including the effects of ionic concentrations and electric

field. Their contributions to biological systems are dis-

cussed. Moreover, the range of applicability of such

classical monuments as the Boltzmann equation and the

linearized Debye-Hfickel theory is examined.

After these fundamental problems are dealt with,

the transport theory is obtained subject to membrane

-3 C/mz
surface charge density of o z 10 (C = Coulomb;

m = meter), which is apparently reasonable biologically.

A capillary model is used for the membrane separating

two aqueous salt solutions of different concentration at

the same temperature. The theory is valid for total

ionic concentrations between about 0.004 molar and 2

molar, a range which includes systems of biological in-

terest and more concentrated systems. We assume that

there is no hydrostatic pressure difference across the

membrane. The steady-state solutions of the differential

equations derived are obtained for the case of a symmet—

rical, binary electrolyte, yielding the average osmotic

flow rate as a function of initial concentrations. The

result of the theoretical section is then used to explain,

at least qualitatively, the osmotic flow phenomena ob-

served experimentally. In particular, the theoretical

equations predict both the shape of the experimental

curves of flow rate versus concentration and the direction

of flow through charged membranes.
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CHAPTER I

INTRODUCTION

A. Membranes and

Membrane Phenomena

 

 

Transport phenomena across membranes, charged or

uncharged, are encountered in many areas of life and

physical sciences. For instance, chemists and chemical

engineers would like to understand the mechanisms of

membrane transport so that they would be able to fabricate

membranes of any desired property or properties. Biolo-

gists, on the other hand, are interested in understanding

the behavior of complex cell membranes in terms of estab-

lished physicochemical principles.

A membrane, in simple terms, is a phase, inter-

nally heterogeneous or homogeneous, which acts as a bar-

rier to flow of some of the molecules and ions present

in the liquid and/or gases in contact with it. Most

membranes, except the obvious ones such as oil membranes,

are to be considered heterogeneous. Membranes may also

be classified natural or artificial. All biological mem-

branes are natural membranes.



Functionally, a membrane must be more or less

active in the selective transport of some ions when used

as a barrier to separate two solutions or phases, unless

it is too fragile or too porous. Most artificial and

natural membranes have been found to carry ionogenic

groups either fixed to the three dimensional membrane

matrix, as seen in a well-characterized ion exchange

membrane, or adsorbed, as found in some colloidal systems

(Kobatake, 1959). Ionogenic groups and pores (space

occupied by water) in a membrane attribute certain func-

tionality to the membrane. Thus a membrane may be con—

sidered permselective and/or semipermeable depending on

its functionality. The phenomenological transport prop-

erty that controls the former is the transport number or

transference number, whereas the latter is determined by

the so—called reflection coefficient (ratio of the actual

hydrostatic pressure required to give zero net volume flow

to that which is required if the membrane were truly semi—

permeable) introduced by Staverman (1951; 1952).

In the absence of external strains and external

nmgnetic and gravitational forces, the driving forces that

may produce a flow or flux of molecular or ionic species

through a membrane separating two solutions are (l) gra—

dient of concentration, (2) gradient of pressure, (3)

gradient of temperature, (4) gradient of electric





potential, and (5) chemical reactions. These forces may

Operate in various combinations and may generate a number

of transport phenomena. To understand membrane phenomena,

it is necessary to prOpose or design various transport

systems or model systems consisting of membranes with par—

ticular and predetermined specific properties.

B. Motivation
 

The transport of solutes and water through living

systems has been the subject of rather extensive study

since the 19th century. In spite of many experiments,

the fundamental mechanisms involved in the transport

phenomena exhibited by various living systems have re-

mained relatively obscure. There are many reasons for

our failure to advance more rapidly, but a number of the

problems encountered in the study of living systems arise

from the complex nature of living cells when considered

from the point of View of a membrane system. Thus, trans-

port phenomena in various cell membranes are vital to

nmny biological systems.

Among many theoretically-oriented investigators,

Kobatake et a1. (1964) were the first to initiate a study

based on the principles of nonequilibrium, continuum

thermodynamics. They were quite successful in attempting

to explain the experimental findings (Grim, 1957) with





regard to the osmotic flow of fluids through biological

membranes. Since then, various other continuum theories

(sf. Toyoshima, 1967; Fujita and Kobatake, 1968; Gross and

Osterle, 1968) have been develOped. Moreover, nonequilib-

rium thermodynamics is often used to study the discontinu—

ous fluid-membrane systems. The difference in the ap-

proaches between the continuous and the discontinuous

fluid-membrane systems will be discussed in more detail

in the next chapter.

Most of the previous theories, although adequate

in many cases, are, in general, limited in the following

respects:

1. Use of transport equations that are restricted

only to dilute aqueous salt solutions (for detailed analy-

sis, see, for example, Chapman, 1967).

2. Certain transport parameters are treated as

constants.

3. The effect of pressure-induced current on the

overall transport phenomena is neglected, implying that

the pressure is considered independent of salt concentra-

tions and electric field.

4. The dielectric constant of pure water is used

in Poisson's equation, implying that the salt solution is

very dilute and the electric field at the membrane sur-

face is negligibly small.



S. The Debye-Hackel theory is used arbitrarily

and inconsistently; in particular, it is usually assumed

(Kobatake and Fujita, 1964) simultaneously that the Debye

length K-1 is very small and that the ionic strength is

very small.

6. The classical Boltzmann distribution of ions

is used with no attempt at justification.

The main purpose of this work is to obtain a

phenomenological transport theory for osmotic flow in

biological systems that is not subject to the above re—

strictions and that, hopefully, will resolve some of the

discrepancies appearing in the literature (cf. Kobatake

and Fujita, 1964). In addition, we hope to use the theory

to explain experimental observations of osmotic flow

phenomena. In general, it is hOped that our theory can

be used to describe better and to understand further the

membrane systems and the mechanisms of transport processes

encountered in living cells.

C. The Thesis
 

In the following chapters, the steady-state trans-

port theory that accounts for the osmotic flow of fluids

through biological membranes is obtained. We make use of

the principles of hydrodynamics and nonequilibrium thermo-

dynamics in describing the simultaneous transport of mass



and electric current and the osmotic flow rate in a fluid

system undergoing osmosis. In order to understand better

the osmotic flow phenomena in biological systems, we in—

vestigate (1) the distribution of ions in charged mem-

branes including the effect of molar volumes of ions, (2)

the solution of Poisson's equation modified by inclusion

of the dependence of the dielectric constant of the salt

solution on the salt concentration and the electric field,

and (3) the distribution of pressure including the effects

of ionic concentrations and electric field. Their con—

tributions to biological systems are discussed. Moreover,

the range of applicability of such classical monuments

as the Boltzmann equation and the linearized Debye-Hfickel

theory is examined.

The theory is obtained subject to membrane surface

charge density of o z 10-3C/m2 (C = Coulomb; m = meter)

which has been reported (Fair and Osterle, 1971) to be

sensible biologically. A capillary model is used for the

nembrane separating two aqueous salt solutions of differ-

ent concentration at the same temperature. The theory is

valid for total ionic concentrations between about 0.004

molar and 2 molar, a range which includes systems of

biological interest (Woodbury gt_al., 1970) and more con-

centrated systems. We assume that there is no hydro—

static pressure difference across the membrane.



The steady-state solutions of the differential equations

derived are obtained for the case of a symmetrical electro-

lyte, yielding the average osmotic flow rate as a function

of initial concentrations. The result of the theoretical

section is then used to explain the osmotic flow phenomena

observed experimentally.



CHAPTER II

THE TRANSPORT EQUATIONS

A. Introduction

In this chapter the differential equations which

describe macroscopic transport phenomena are presented.

Specialized equations used in the study of osmotic flow

of fluids through charged membranes are deduced, together

with appropriate boundary conditions. We consider only

continuous, isotropic fluids in which no chemical re-

actions occur and which are subject to certain driving

forces but not to a magnetic field. For more detailed analy-

sis of the equations used in the study of various transport

phenomena, refer, for example, to works by Horne (1966),

Kirkwood and Crawford (1952), de Groot and Mazur (1962),

Fitts (1962), Katchalsky and Curran (1967), and Haase

(1969). The more fundamental, rational-mechanical ap-

proach of Truesdell (1969), Bartelt and Horne (1970), and

others is not required here.

Katchalsky and Curran, and Haase, have also con—

sidered membranes. A general description of transport

phenomena in membranes and an extensive list of



references may be found in the recent book by Lakshminar—

ayanaiah (1969). However, nonequilibrium thermodynamics

is frequently applied to the discontinuous fluid-membrane

system which is particularly convenient for experimental

analysis but is not readily subjected to a theoretical

treatment. The system is not regarded as a continuum,

and the state variables are not continuous functions of

space and time. Here the phenomenological or transport

coefficients are functions of the fluid and of the mem-

brane. This approach is a "black box" approach in that

no questions are asked about the interior of the membrane.

Alternatively, if we are able to describe the de-

tails of the inside of the membrane, the fluid-membrane

system could be regarded as a continuum and the state

variables as continuous functions of space and time. In

this approach events in a small volume element are examined

and the macroscopic properties derived by averaging over

the entire volume of the system being studied. Conse-

quently, it will be necessary to construct a dynamic model

and then correlate the model with the macroscopic phenome-

nological description obtained experimentally. The aver-

aging process will require the choice of a proper refer-

ence frame for the flows. Kobatake and coworkers (1964)

and Osterle and coworkers (1968,1970) and Manning (1968)

have also used the continuous approach.
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B. Chemical Potential
 

The driving forces needed to produce a flux or

flow of molecular and/or ionic species are the gradients

of the chemical potential of all species in the system

(e.g., Haase, 1969). In the absence of a magnetic field,

the total chemical potential “a of Component a may be

written (Horne, 1966)

_ O

“a — “a (T,p) + RT Quad + Ma? + zaFw (2.1)

where am is the activity of Component d,

a = X f p (2.2)

T is absolute temperature, p is pressure, R is the gas

constant, Ma is molecular weight of d, F is the gravita-

tional potential, za is the ionic charge per mole of a,

F is Faraday's constant, and w is the electrostatic poten-

tial, and where u: and the activity coefficient fa are

defined relative to an appropriate standard state in which

there are no effective external fields. Note that fa is

a function of temperature, pressure, and composition.

Since we treat only aqueous solutions here, the appro-

priate standard state is the pure solvent (denoted by the

running index 0),

o _ . _ _ _
“a - 11m [pa RT in Xa Mar zaFw] (2.3)

x *1

o



ll

whence

lim f = 1. (2.4)
a

We are primarily concerned with the gradient of

the chemical potential. Using the chain rule for dif-

ferentiation of “a (T,p,xB,F,¢) we have, in general nota-

tion,

v-2

Vua = uaTVT + papr + 8:0 uaBVxB + uaFVF + pawvw (2.5)

where

= = _’ ' tuaT (Bud/8T)p,xa,F,w sa (partial molar en ropy)

“up = (Bud/BP)T,XG,F,w = Va (partial molar volume)

“GB = (Bud/3X8)T,p,P,w = RT (Bin xa fa/BXB)T,p.F,w

“a? = (Bud/3F)T,p,xa,w = Md

“aw = (and/aw)T,p,xa,P = zaF (2.6)

Thus,

v-2

= -_ _ + + . 2.7vua sa VT + van + 830 “a8 VxB MaVF zaFvw ( )



12

The Gibbs-Duhem equation including the external

forces is (Horne, 1966)

v-1

2 xa vua = -E VT + V vp + Mvr + EFvw , (2.8)

d=0

where

_ v-l _ v-l _

s = Z x s , v = Z x v ,

a=0 d d d=0 d d

_ v-l _ v-l v-l

M = Z x M , z = X x z ,0 = Z x u . (2.9)

d=0 a a d=0 d d d=0 a QB

For the case we shall treat, wherein the gravitational

potential is negligible and the temperature is uniform,

(2.8) becomes, upon division by V,

v-1

2 c Vu = Vp + EFVW (2.10)

d=0 a a

where the molarity is defined by

ca = na/V = xa/v (2.11)

and where

2 = z c z = (p/fi)? . (2.12)

Note that E and E vanish for electroneutrality.
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For most of our purposes, (2.7) is not the most

useful form for the chemical potential gradient. Instead,

taking the gradient of (2.1) directly, we have

_ o
Vua — Vua (T,p) + RV T in aa + MaVF + zaFvw , (2.13)

which becomes, for the case of negligible gravitational

potential and uniform temperature,

_ —o
Vua - Va Vp + RTVQn ad + zaFvw ,

where

o _ _ . _

(Bud/8p)T’P’w — v — 11m v ,

and where

V xRTVRn a = Z
d = 8

Note that

---0

Va + RT (Sin fa/Bp)V
d T,p,xa

C. Hydrodynamic Equations
 

Equation of Continuity of Mass

+ RT (sen fd/ap)T,p,x

(2.14)

(2.15)

Vp (2.16)

a

(2.17)

In the absence of chemical reactions, for a fluid

containing v components the v independent equations of

continuity of mass are
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(dp/dt) + pv-E = o , (2.18)

p (dwa/dt) + V-ja = 0 , (2.19)

where p is density, t is time, 6 is the center of mass, or

barycentric velocity, and Wu and 3a are mass fraction and

diffusion flux of Component a, respectively. The barycen—

tric velocity 3 is defined by

v 1
+ _ +

u = Z w u , (2.20)
d d

d=0

where Ed is the velocity of Component a relative to a

laboratory frame of reference. The diffusion flux 3a is

defined by

Era = pa (Ea—E),a= 0,....,\)"l o (2021)

Note that pa = wap. The diffusion fluxes, however, are

not all independent,

v-1

2

a=0

3a = o . (2.22)

Substantial time derivatives d/dt are relative to local

time derivative B/at by

(d/dt) = (a/et) + E-v . (2.23)

The operator "V" is defined by
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v = I (e/ax) + j (a/ay) + E (e/az) , (2.24)

+

where i, j, and k are the unit vectors of a three dimen-

sional Cartesian coordinate system. For more detailed

analysis in the use of various coordinate systems, see,

for example, Irving and Mullineux (1959).

Navier-Stokes Equation

The Navier-Stokes equation which relates the

velocity of barycentric frame of reference of fluids to

the external forces is (Horne, 1966)

p (dE/dt) + V[(% n-n')(v-E)] 2v-nsymvfi

+

OX " VP I (2.25)

where symVE is the symmetrical part of the tensor V5, and

where n is the coefficient of shear viscosity and n' is

the coefficient of bulk viscosity, both taken as noncon-

stant. In writing (2.25) we have used the equation of

motion,

7* ->

p (dE/dt) — v-E = pX (2.26)

+

+ I

where G is the stress tensor, given approxrmately by the

Newtonian linear phenomenological relation

Q
+
+

2 + 3 +

= - [p + (-3- n-n') (V°u)] I + ZHSYmVu . (2-27)
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+

and where pX, the net external force, is

pi = - pVF - zpvw (2.28)

Introducing (2.23) into (2.25) and rearranging, we obtain

0 (BE/at) = pi - vp + nvzfi + (% n+n')(7(v.fi)

—> —>

- puV.u , (2.29)

where we take n and n' to be constants.

If the system considered is at steady state, (2.29)

becomes, by setting B/Bt = 0 and rearranging,

+ 2+ 1 + + +

Vp - ox = nV u + (3 n+n') V (V.u) - puV.u . (2.30)

However, most fluids except very dense ones are essentially

incompressible. For an incompressible fluid, the density

p is constant in time and position. Thus according to

(2.18).

v-E = o . (2.31)

The Navier-Stokes equation for an incompressible fluid in

a system at steady state is, then, for constant n,

vp - pi = nvzfi . (2.32)
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Energy Transport Equation

The general equation of continuity of total energy

is

(apEi/at) + v-EE = o , (2.33)

T

where 3E is the total energy and where ET is the total

T

specific energy,

E = E + % u . (2.34)

where E is the specific internal energy and u2/2 is the

local kinetic energy of the center of mass. Note also

that

++

u = u°u (2.35)

Although it may be preferable (see Bartelt and Horne,

1970; Gyarmati, 1970; and Ingle, 1971) to obtain the

kinetic energy by summing over the kinetic energies of

the components, the difference between the two definitions

is negligible for the present purpose (see Horne, 1966).

The energy transport equation can be expressed as

.+

p (dE/dt) + v-jE = E:VE - pE-§ (2.36)

where 3E is the internal energy flux not due to bulk flow
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¢ +_ + I + +

3E - ouE + u'0 - (I + puzF) w (2.37)

T

where the electric current I is the sum of the partial

+

currents 1

a

v-l v-1

1 = 2 Id = z pafia (za/MG)F , (2.38)

d=0 d=0

and where

v—l _

pz==paio (Wu/Ma)zd = Z (2.39)

D. Principles of Nonequilibrium

Thermodynamics

 

 

The above treatment of nonequilibrium system is

as far as we can proceed from hydrodynamics alone. In

order to proceed in the discussion of the general theory

of irreversible processes, we could describe the elegant,

rational, fundamental approach of Truesdell (1969),

Mfiller (1968), Bartelt (1968), Bartelt and Horne (1970),

Gyarmati (1970), and Ingle (1971). Alternatively, we

could present the conventional, heuristic approach as

exemplified by de Groot and Mazur (1962), Fitts (1962),

and Haase (1969). For simplicity, we choose the latter

course, and we emphasize that the more fundamental ap-

proach apparently gives the same results for the simple

systems investigated here (Bartelt and Horne, 1970).
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We need to introduce two fundamental assumptions

regarding the system under consideration. The first

assumption is:

Postulate I: The principle of local state

For a system in which irreversible processes are

taking place, all thermodynamic functions of state exist

for each element of the system. These thermodynamic

quantities for the nonequilibrium system are the same

functions of the local state variables as the correspon-

ding equilibrium thermodynamic quantities.

The second assumption is:

Postulate II: The assumption of locally linear

fluxes

+
.

I

The fluxes 3a are linear, homogeneous functions

of the forces Ya. That is,

= 2 L V. (2.40)

The forces are "driving forces" for the fluxes. The

phenomenological coefficients de' are independent of the

forces. The diagonal coefficients Lad relate conjugate

fluxes and forces, while the off-diagonal elements La
a!

(aia') give rise to cross phenomena which are produced

due to interference when twotransport processes take

place simultaneously. As in the case of postulate I,

postulate II is apparently valid when the system is close

to equilibrium. Thus, both postulates apply to systems
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with small space and time gradients of the local thermo-

dynamic variables. Based on both postulates, we now treat

the linear phenomenological theory for nonequilibrium

systems.

The Gibbsian equation for dE is

dE = Td§ - pdV + z “a dwa+-dF + dew , (2.41)

Applying the chain rule for differentiation of E (T,p,wa,F,w),

we obtain by the principle of local state and various thermo-

dynamic formulas,

dE/dt = ('C'p-pVB) (dT/dt) - (TVB-pVB') (dp/dt)

v-2 — — dr d4
4 ago (Ea-Ev_l)(dwa/dt) + E? + ZF 33 (2.42)

where C? is specific heat capacity at constant pressure

(and external fields),B is thermal expansivity,

_-—-1 -
= V 3V 3T 2.43

B ( / )p.wa,F.w ( )

8' is isothermal compressibility,

B' s - V—l'(8V/3p) (2.44)
T,wa.P.w

and Ea is partial specific internal energy,

Ea==(3E/3ma) (2.45)

T.p.mB,F,w ‘
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Note also that

W
I

II M 3 t1
3|

a d (2.46)

Application of the chain rule for differentiation to the

equation of state p = p (T,p,wa) gives a similar relation,

do/dt = - pB(dT/dt) + 08' (dp/dt)

2 v-2 _ _

- 0 ago (Va—Vv_l)(dwa/dt) (2.47)

Substitution of (2.18), (2.19), (2.23), (2.42), and (2.47)

into (2.36) yields, after rearrangement,

+ v-2 _ _,

p6 (dT/dt) - T8(dp/dt) = ¢ -V°q - z j . (H'-H
p l a=0 d

where o1 is the entropy source term for bulk flow,

I Z +
¢l - (o + pI):Vu , (2.49)

3 is the heat flux

-)- f V_l _.

q = 3E - 20 1a Ha . (2.50)

a:

Ha is partial specific enthalpy, and

_' _ _

Ha — Ha-+I‘+-M Fm ,

——1—)F4 . (2.51)
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It has been shown (Fitts, 1962; Kirkwood and Craw-

ford, 1952; de Groot and Mazur, 1962; Haase, 1969) that

the driving forces conjugate to q and jg are Vin T and

By postulate II, the linear phenomenological fluxes are

v-l
-> .—

-q = QTT Vin T + QEOQGTVTUG

+ V-l _

-ja = QGT Vin T + Z 9&8 VTUB’ d=0,...,v-l (2.53)

B=0

where Q's are the phenomenological, or Onsager coefficients.

These coefficients are not all independent since, by (2.22),

v—1

2 Q = 0, B = 0,...,v-l (2.54)

d=0 dB

Further, due to the requirement of positive definite entropy

production, it has been shown (Bartelt and Horne, 1969) that

2 Q = 0, a = 0,...,v-l (2.55)
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Thus, for the v independent fluxes 3T = a, 30' 31"°"3v-2’

the linear phenomenological equations are

‘36 = QdT Vin T + 820 ”as VT(“8‘“v-1) '

a = T, o, l,...,v-2 . (2.56)

For most purposes, it is more convenient to use (2.53),

which is permissible because of (2.55). If the fluxes and

forces of (2.56) satisfy Onsager's (1931) condition, which

seems very likely but cannot be shown theoretically (Cole—

man and Truesdell, 1960; Andrews, 1967), then the matrix

of Onsager coefficients is symmetric; i.e., QdB = QBG for

8,8 = T, 0, l,...,v-2. However, since one of the goals

of experimental studies of transport phenomena is the

verification of Onsager's Reciprocal Relations (Miller,

1960), we do not use them.

Substitution of (2.7), and (2.52) into (2.53)

yields

+ v—l _

-Ja = QdT VinT + 320 908 (VB/MB) Vp

v-l v-2

+ Z 0 2 (u /M ) VX

8:0 as y=0 BY 8 Y

v-l

+ Z (ZS/MB) FVw, d=T, 0, l,...,v-l (2.57)

B=0 “as
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General discussion about the physical implication of various

phenomenological coefficients can be found elsewhere (Fitts,

1962; de Groot and Mazur, 1962; Haase, 1969; Horne, 1966).

E. The Differential Equations

Describing the Osmotic Flow

9f Fluids Through a

Charged Membrane

 

 

The System and the Simplifying Assumptions

We are mainly concerned with the derivation of

the steady-state phenomenological theory for the trans-

port of fluids undergoing osmosis through biological mem-

branes. As has been mentioned in Chapter I, the trans-

port system for the study is composed of a charged,

continuous membrane separating two electrolyte solutions

of different concentration at the same temperature.

Before we can start to write the equations for

our transport system, we must take full account of the

fundamental problems which are pertinent to our present

investigation. As has been recognized for years, a

normally grown living thing is, from thermodynamic point

of view, an Open system in a stationary state (the flows

of all the species are constant in time), inside of which

irreversible processes occur continuously and slowly

(Haase, 1969). If, moreover, the fluxes and the gradients

are small, we may use the principles of nonequilibrium
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thermodynamics such as those which enable us to use equilib-

rium properties (postulate I) and linear phenomenological

relations for the fluxes (postulate II).

Moreover, for the system in question we consider

(a) an isothermal, incompressible fluid; (b) a capillary

model for the membrane in which uniform cylindrical

capillaries penetrate across the membrane with flows of

all components in the direction of the capillary or

axial axis; (c) absence of chemical reactions; (d)

absence of external magnetic, gravitational, and cen-

trifugal fields; (e) constant viscosities; and (f) slow

motion, i.e., a quasi-steady—state in which local time

derivatives are zero. These requirements can be realized

experimentally, and do not, in principle, introduce error.

It is advantageous to introduce them into the phenome-

nological theory, the net effect being a simplification

of the differential equations.

We do not, however, make use of the previous as-

sumptions such as (i) constant diffusion coefficients and

ionic mobility in the flow equations; (ii) constant

dielectric constant of water in Poisson's equation; (iii)

radial-independent pressure; (iv) the classical Boltzmann

distribution of ions; and (v) the linearized Debye-Hfickel

theory for "all" cases. Moreover, (vi), the assumption

that Ka>>l, where K is the reciprocal of the effective
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thickness of electric double layer (Debye length) and a

is the radius of the capillary, is found here to be not

always necessary. In the next several chapters we shall

discuss these assumptions in more detail. Our main pur-

pose is to derive, subject only to a minimum number of

assumptions, the steady-state phenomenological theory

that describes for the transport of fluids across bio-

logical membranes.

The Differential Equations and the

Appropriate Boundary Conditions

We now can set up the differential equations

necessary for describing the transport system in question.

Making use of the principles of hydrodynamics and non-

equilibrium thermodynamics and subject to the conditions

considered above, the relevant transport equations, rela-

tive to the local center of mass are

+ v-l _ v-l v-2

-3 — 2 a (v /M ) vp + x Q 2 (u /M ) VX
d B=0 B B B B=O d8 Y=0 BY 8 Y

v-l

+ = —8:0 0&8 (zB/MB)FVw, a T, 0, l,...,v l (2.58)

+ + _

pu Vwa + V 3a —0 (2.59)

v-2
+ _ _ .+ _ 1 . _'_—l

-TBu-Vp — ¢l V q ago 3a V (Ho Hv-l) . (2.60)

Vp + erw = nvzfi . (2.61)
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Only (2.58) and (2.61) are considered in what follows; the

other equations deal with effects too small to be observed

in membrane transport in ordinary electrolyte solutions.

The partial electric current relative to the local

center of mass is

e _ e
la — (Zn/Md) ja , (2.62)

and the total current is given by (2.38).

Poisson's equation, which relates the electro-

static potential w to the excess charge sz is

V°DVw = -4nsz = ~4WEF , (2.63)

where D is the dielectric tensor of the electrolyte solu-

tion, taken as nonconstant, and z and 7 are given by (2.41)

and (2.12). The units of w are volts throughout this work.

At this point our description of the system under considera—

tion is, in principle, complete.

In problems of electric conduction, however, it is

useful to relate the diffusion fluxes and electric currents

of all the species to the velocity of the solvent and thus

to adopt.the Hittorf reference system (Haase, 1969). The

solvent-fixed (SF) frame (i.e., (jo)o E 0) is extremely

convenient and transference numbers are usually referred

to it (Miller, 1966). The reference velocity is now

+

denoted by the velocity of solvent molecules, uo.
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Moreover, since the solutions are relatively dilute, it

is useful to use molarity ca instead of mole fraction xa

to describe composition.

Before we can write explicitly the transport equa-

tions for the SF reference frame, it is essential to re-

quire considerable knowledge about conversion from a

reference velocity Ea to a second velocity 5b. For

simplicity, we follow the treatment of Haase (1969).

We consider, in the general case, the transition

from one diffusion current density

+ —>

ana = ca (um-ma) . (2.64)

to a second diffusion current density

-> +

bja = ca (ua-wb) . (2.65)

ZFor fluid systems, the reference velocity Ea and 3b are

so chosen that the relations

+ V—l —>

ma = :o(wa)aua (2.66)

v-1

2 (w ) = l (2.67)
d a

a:

v-l
+ +

wb = Z (wa)bua (2.68)
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Z (w )b = l (2.69)

d=0

hold. The (wa)a and (wa)b are the normalized weights,

i.e., "weight factors" for averaging the velocities sub-

ject to the normalization (2.67) and (2.69). For the

barycentric velocity, defined in (2.20), the "weight

factors" are the mass fractions. It can easily be shown

from (2.66), (2.67), and (2.64) that

v-1

2 [(wa)a/Cal

d=0

T

J = 0 . (2.70)
30.

and from (2.68), (2.69), and (2.65) that

v-l

—? —

Z [(wa)b/ca] bja — 0 . (2.71)

d=0

Combination of (2.64) - (2.71) yields the conversion re-

lation between two frames of reference:

v 1

-c 2

a =

B [(wB)b/cB] aje . (2.72)

0

We are, however, primarily concerned with the con-

VeIflSion from the barycentric system to Hittorf's reference

System. Let

= 3 /Ma. baa = (3') (2.73)
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Note that in Hittorf's frame of reference,

(we)o = l, (Wm)O = 0, or = 1,2,...,v-l , (2.74)

v-l

so that (2.69) is immediately satisfied, i.e., Z (wa)O = 1,

d=0

and

+ _

(30)O — 0 (2.75)

Hence we obtain from (2.74) and (2.72)

(3 ) = 3 /M - c I /c M , (2.76)

yielding the conversion from the barycentric system to

Hittorf's reference system. By definition of jo, the two

reference velocities are related by

+_—>- 7

u — uo (l/Oo)jo . (2.77)

Consequently, if SF reference frame is chosen for

the system, the diffusion flux and electric current of

species a can now be eXpressed, relative to SF reference

frame, as

-r V_l o —o \)-1 o
-(3 ) = 2 9 v Vp + Z 9 RTVin a

d o B=l d8 8 B=l d8 8

v-1 0

+ E 9 z Fvw,cx= 1,2,...,v-l (2.78)

B=l d8 8
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) (2.79)

where 038 are the phenomenological coefficients in SF

reference frame. The Navier-Stokes equation in SF refer-

ence frame then becomes, according to (2.77),

Vp + EFVw = nVZ E - nV2 ELI;

o

o (2.80)
0

We assume, for the Navier-Stokes equation only, that the

difference between E and Go is negligible and, therefore,

that

_ 2+

Vp + ZFVw = nV uO (2.81)

The appropriate boundary conditions for the problem

are

c := c (0) at x = 0, and c = c (i) at x = i
do do do do

PO(X=i)-po(x=0)=0

0 = 0 (0) at x = 0, and 0 = 0 (i) at x = i , (2.82)

where Coo (0) and Cdo (i) are initial molar concentrations

of Component d at the boundaries, pO (x = i) and p0 (x = 0)

are initial hydrostatic pressures at the boundaries, 0 is

partial electric potential along the axial axis, and 0

(0) and 0 (i) are initial values of 4 at the boundaires.

The appropriate boundary conditions to w and 110 are

dw/dr Sue/8r = 0

dw/dr 4no/Da, and u = 0 at r = a , (2.83)

O
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where c is the surface charge density fixed on the mem-

brane, Da is the dielectric constant of the solution at

the wall, and uo is the velocity of solvent molecules or

the SF reference velocity along the axial axis.

The experimental transport parameters, for some

binary electrolyte solutions, which are necessary for the

study have been obtained based on the SF frame of refer-

ence and can be found elsewhere (Miller, 1966).



CHAPTER III

EQUILIBRIUM DISTRIBUTION OF IONS

IN AN ELECTRIC FIELD

A. Introduction
 

Before we can obtain the solution of the steady-

state phenomenological theory which describes osmotic flow

phenomena in biological systems, it is necessary to acquire

considerably more knowledge of the local distribution of

ions, charge density, electrostatic potential, and pres-

sure in nonequilibrium system. This information is essen—

tial in describing transport phenomena in membranes and

thus must be resolved and discussed beforehand. In the

present chapter we derive an equation for the local dis-

tribution of ions in an electric field and then obtain

the excess charge density in the system considered. The

principal enabling step is the assumption that the system

is in chemical equilibrium radially, i.e., that the

chemical potential of each species is uniform radially.

The fundamental problem in a study of a membrane

system or any electrochemical system in which the charges

are unequally distributed (i.e., 2 ¢ 0) in the volume or

33
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on the surface is the knowledge of the macroscopic dis-

tribution of ions at each point of the system since the

presence of a net charge produces a macroscopic electric

field which tends to displace charged species. From

knowledge of this distribution it will be possible to

calculate several electrochemical properties and thus to

describe accurately the behavior of electrolyte solutions

in electric fields.

However, as has been known for years, there are

great difficulties in calculating the distribution of ions

in the field, due partially to the lack of a coherent

theoretical formulation, and partially to the mathematical

difficulty in solving the problem. For these reasons one

often uses the classical Boltzmann distribution equation

without adequate justification (Sf. Kobatake and Fujita,

1964; Fujita and Kobatake, 1968; Gross and Osterle, 1968).

Thus, it is assumed for each species a that

_— __ _ B

xa — Xa eXp ( zaFw/RT) — xa , (3.1)

where Ea is the mole fraction of d in the absence of an

electric field and where, for subsequent use, we denote

the Boltzmann equation mole fraction by x2.

Many assumptions have been made in conjunction

with (3.1); the usual ones are: (a) existence of point

charges, which implies that molar volumes of ions are
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zero; (b) absence of polarizable components; (c) absence

of activity coefficients; (d) uniformity of pressure,

which implies among other things that the pressure-

induced gradient of the electrochemical potential of

a charged species is negligibly small. Despite the fact

that various authors have attempted to correct the Boltz-

mann equation, often empirically, some by introducing a

finite volume (Sparnaay, 1958), some by introducing

polarization, and others by introducing pressure, none

of the theories is complete. Moreover, many of these

authors treat the parts of the double layer very close

to the interface as special media, very different from

the parts remote from the interface. Further, the micro-

sc0pic nature of these parts of the layer give rise to

difficulties in their description in terms of macroscopic

quantities such as polarization or pressure. The most

complete theory for the distribution of ions in an electric

field so far has been that of Sanfeld (1968) derived by

means of the local thermodynamic method (Prigogine, 1953;

Mazur, 1953; Defay, 1954). Unfortunately, the theory is

limited only to equilibrium systems and is valid only

for very dilute solutions and gas mixtures.

Our purpose now is to calculate this distribution

in the general case and to apply our result for calcula—

tion of the excess charge density in the system.



36

We consider continuous, anisotrOpic fluids in which no

chemical reactions occur and which are subject only to

the external electric field. Unlike many other investiga—

tors, we make full use of the equations of chemical thermo-

dynamics, including particularly all pressure terms. At

present, we only treat systems (particularly, biological

systems) in which the surface charge density fixed on the

surface or on the membrane phase is such that the effects

of polarization are small enough to be neglected. This

requirement can always be realized experimentally without

introducing error, but it could be modified in subsequent

extensions of our theory.

B. Derivation of Modified

Boltzmann Equation

 

Consider a charged, continuous phase (i.e., a

membrane, a barrier, or a cylinder) which is static or

through which there are steady-state flows of matter.

We assume an isothermal electrolyte solution containing

solutes which are dissociated in a neutral solvent,

absence of chemical reactions and external fields except

electric field, and a capillary model for the phase con-

sidered in which uniform cylindrical capillaries penetrate

across the phase. Our results also apply to any single,

non-capillary cylinder.
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When the only external force is electrical, the

gradient of the molar electrochemical potential “a of

Component a in the absence of polarization may be described,

according to (2.14) by

—O

Vua = Va Vp + RTVin ded + zaFVw, d = 0,1,...,v-l (3.2)

where V: is defined by (2.15). The gradient of “a in the

radial direction is, by (3.2),

_ —o
Spa/8r — Va (Sp/3r) + RT (Bin xafa/ar)

+ zaF (aw/3r) . (3.3)

‘We assume that the chemical potential of each species is

uniform radially,

Qua/3r = 0, d = 0,1,...,v-l . (3.4)

'That is to say, all the radial fluxes are zero everywhere

in the system; chemical equilibrium obtains radially.

lqote, however, that the gradient of “a along the capillary

<Dr cylindrical axis does not necessarily vanish,

Bud/3x ¢ 0 . (3.5)

Tfllus (3.4) by no means requires that the system is in a

5State of total thermodynamic chemical equilibrium (i.e.,

VWJG E 0). Combination of (3.3) and (3.4) yields
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v: (ap/er) + RT (Bin xafa/ar) + zaF (aw/er) = 0 . (3.6)

The Gibbs-Duhem equation (2.8) yields, for the

radial direction and subject to (3.4),

ap/ar = - 7F (aw/8r) . (3.7)

Substitution of (3.7) into (3.6) yields, for each species,

(1/53) (Bin xa f/Gr)+—(za/V:) (EV/8r) = 2 (aw/er) , (3.8)

where

)1! = Ftp/RT . (3.9)

In all other treatments of electrolyte solutions

in electric fields, electroneutrality is assumed and the

right hand side of (3.8) is set equal to zero. The solu—

tion of (3.8) for electroneutrality is, clearly, (3.1),

the classical Boltzmann equation, as long as fa is con—

stant. We choose to retain the right hand side of (3.8),

and thus to allow, consistently, for non-electroneutrality,

at least near the walls.. Although we could formally take

account of nonconstancy of fa and V: by, say, the perturba-

‘tion scheme of Horne and Anderson (1970), we choose, for

‘the first attempt, to regard fa and V: as constants. The

latter assumption is certainly reasonable since V: varies

<3nly with pressure and since the isothermal compressibility



A
n
»

a
d

.
-

 

A
!

a
-

bond

u

*

.
‘
U

I
.



39

as defined in (2.44), is of order 10"5 atm_1 for water

and aqueous solutions. Constancy of fa is a stronger

assumption a priori, since it is valid only to the extent

that the composition distribution is not great. We shall

find that this is indeed the case and that, therefore, the

assumption of constant fa is warranted.

With these assumptions, (3.8) becomes, in detail,

(1/63) (Bin xO/ar) = (1/3?) (Bin xl/ar) + (21/38) (EV/8r)

(1/63) (Bin x2/3r) + (22/53) (EV/8r)

(1/58-1) (Bin xv_l/8r) + (20—1/58-1’ (EV/8r)

= E (EV/8r) , (3.10)

or,

—o _ —o —o
(l/Vo) (Bin xO/Br) — (l/va) (Bin xa/ar) + (Zn/Va) (EV/8r)

= 7‘(39/ar) . d = l,...,v-l (3.11)

The first v—l of (3.11) are solved immediately,

x = I (x /i )gOLO exp (—z V)
d d o o d

B

a , 0.: Orl’ooo,\)_l (3012)

— goo
= (xo/xo) x
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where id is the value of xa for no electric field, where

x: is defined by (3.1), and where

gao = 53/5: . (3.13)

. — gdo
The next task 18 to evaluate (xo/xo) . Note that the

ordinary Boltzmann equation, (3.1), is valid only for

X0 = x0 (or, tr1v1a11y, for gmO = 0).

In order to evaluate x0, we use the facts that

v—l _ __ v-l B B v-1

2 x = l - x , Z x = l - x , Z x = l - x , (3.14)

a=l a 0 6:1 9 0 8:1 9 0

whence, from (3.12),

v-1 9

1 - x = z (x /i ) “0 xB . (3.15)
o d=l o o a

Let

x0 = x0 (1-5) , (3.16)

and then

v-l g

1 - E + x a = 2 (1—6) “0 xB . (3.17)
o o d=l a

By the binomial theorem,
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._ _ V'1 1 2

l - Xo + on‘;= oil X [l - gdog + 2 goo (goo-l):

l 3

- 6 goo (goo-l) (goo-2)5 + '

v-l v—l

_ _ _ B l2 _

- l X g E Xd gdo + 2 E E Xa gdo (gdo l)
d-l d—l

13)”l
_ E g :1 xa gdo (goo-l) (goo—2) + .. , (3.18)

or,

v-l v-l
_ _ _ _ B 12 B _

xog _ (X x ) E Z Xd goo + 2 E Z Xd gdo (goo l)
d=l d=1

-l
13" B_ g g :1 xa gao (gaO-l) (gaO-Z) + ... (3.19)

Rather than use the ordinary reversion of series

formula (Abrahamowitz and Stegun, 1964) to solve (3.19)

for g, we observe that the difference (§o-x2) is pre-

sumably very small and so is the value of any particular

x: . This means that the second term on the right hand

side of (3.19) is of second order in smallness since it is

B
a goo (g is of order

a. —_B
the product of 5 ~ (x0 x0) and Z x a0

unity or greater, in general). In order to keep consistent

account of the order of smallness, we multiply both (Vb-x2)

and x: by the bookkeeping parameter A, and we write 5 as a

perturbation-type power series in 1 (see HOrne and Anderson,

1970).
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“ _ 2 3

E — 151 + A $2 + A 63 + .... (3.20)

where E = 5 when A = l. (3.19) becomes, then,

— 2 3 _ — _ B

xo (A51 + 1 £2 + A 63 + ......) — 1 (x0 x0)

v-1‘

2 B

- K (15 + A E ) Z x g
l 2 d=1 a do

-1
1 2 2 V B

+ 7 A (A g1 ) ail xa goo (gaO-l) + ... (3.21)

Equating powers of l, we find

_ B _

£1 = (xo-xO)/xO (3.22)

v-l B _

£2 = - £1 ail (Xoc/Xo) gao (3.23)

v-l B _

E3 _ — E2 ail (Xe/x0) gdo

v-1

1 2 B —

+ 6 E1 ail (Xe/X0) gdo (goo-l) (3'24)

v-l B _ v-l B _

E4 = - £3 E (Xe/x0) gao + £1 £2 E (Xe/X0) gao (gaO-l)

d—l d—l

v-1

1 3 B —

- 6 51 oil (Xd/Xo) gdo (goo-l) (goo—z)’ (3'25)

and so forth.
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The modified Boltzmann equation is, then,

_ 9

xa = xa[exp (-zaV)](l-g) do , (3.26)

with gdo = VZ/V: and

e=al+£2+€3+€4+..., (3.27)

the 5i being given by (3.22)—(3.25)

It would be most awkward, however, to have to deal

with all the terms of (3.27) in all cases. As we shall

see in Chapter IV, indeed only the first and the second

terms in (3.27) are important. Then it is quite sufficient

totflm

_ B _ v-l B _

E = [(xo-XO)/XO] [l- ail (Xe/X0) gaO] . (3.28)

xa = xa[exp (-zo“i’)]{1-gOLO [(xo-x:)/§O]

N
I
H —B—2

- 90LO (gaO-l) [(xO-XO)/Xo]

_ B _ v—l B _

+ gao [(xO-xo)/xol B:lth/xo) 980} .

a = 0, 1, 2,...,V-l . (3.29)
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C. Molar Volume and Charge
 

v-l

Since 3 = Z xa za , we have, from (3.29) and

d=l

(3.1),

v-l v-1

'2 = z xB z - z xB z g [(§ -xB)/§ 1
d d d a do 0 o o

a=l d=l

v-1

1 B — B — 2

— 2 oil xd zd gdo (goo-l) [(Xo-xo)/Xo]

v-l v-l

B — B— B—
+ Z x z 9 [(x —x )/x ] Z (x /x ) g

d=l d a do 0 o o B=l B 0 80

+ .... (3.30)

Further,

v-l v-l

v = Z x v = x V0 + Z x V0

a d o o a 0
=0 d=l

- —o v-l B —o
= xovo (1-6) + Z Xa Va (l-gdo E) + .

d=l

v-l

_-—o _ —_B-— B—
.xovo {1 [(x0 xO)/xo] + 6:1 (Xe/X0) gao

v—1

2 (xi/£6) gao (gao-l) + ...} (3.31)
_ B _

- [(xo-xO)/x01 6:1
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Finally,

v-l

— _ _._ _ — —o -l B

Z — (x/v) - (xovo) { Z xa za

d=1

v—l
_ B B _

- (Xo-xo) I (Xe/x0) za(gdo-l)

d=1

v-l B v-l B _

- ( Z xa za) [ Z (Xe/X0) goo] + ... (3.32)

d=l 8:1

-1 2

where we have used (1 + x) = l — x + — x + ..

D. Uni-univalent Case
 

If all cationic species have charge za = +1 and

all anionic species have charge 2a = -1 (the typical case

of biological interest), then the general formulas found

in the last two sections take on simpler forms. By

electroneutrality of the starting materials,

2 I = z 32 (3.33)
. d . a

cations anions

and by (3.14),

z §=-l-(1-§)= z 32 (3 34)
d 2 o d °

cations
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Then,

1 - x = Z x exp (-2 V)
d

d=1

= Z xa e-w-+ X x ew

cations anions a

_ l _— -V V
— 7 (1 x0) (e + e )

= (1-ib) coshV , (3.35)

and

i - xB = (1-i ) (c hV-l) (3 36)o o o 08 .

Further, for the uni-univalent case,

v-1

2 xB z E V e-w - Z ‘V ew
a d

a=1 acations

= % (l-SEO) (e‘w -e‘y)

- (1—i6) sinhV . (3.37)

From (3.36), (3.37), and (3.32) we finally obtain

2 = - {(1-V6)/§6Vg}{sinhw + [(1—§0)/§O] sinhV (coshV-l)

+ (1 "‘°) [( hV-l) ( e'w - ew)/xovo cos v+ v_

- sinhV (v+ e”? + v_ ew)]} , (3.38)
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where we have used

... -O

v+ = Z x Va

cations

v = 23 V ‘V0
- I a a

anions

E. Discussion
 

For the first time we have a thermodynamic theory

for the distribution of ions in an electric field, which

takes account of the effect of pressure resulting from the

gradient of electrical potential or nonzero local dis-

tribution of charge density, and which simultaneously

takes account of the effect of molar volumes of ions.

The results can be used either to justify the applica-

bility of classical Boltzmann equation or as they stand

when the Boltzmann equation is not applicable. The equa-

tions can be used further to predict the effect of molar

volumes of ions on various electrochemical prOperties and

thus are better in describing the system. Alternatively,

further theoretical and experimental development can now

be improved and interpreted more accurately on the basis

of the equations. In general, use of the equations re-

quires knowledge of molar volumes of ions and the surface

potential or the fixed surface charge density, which we

shall determine in Chapter IV. Further improvement may
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be made in the equations by taking account of the effects

of variable activity coefficients, polarization, and, in

extreme cases, pressure dependence of partial molar volume.



CHAPTER IV

RADIAL DISTRIBUTION OF ELECTROSTATIC POTENTIAL

IN A MODERATELY CHARGED CYLINDER

A. Introduction
 

As has been shown in Chapter III, knowledge of

the distribution of electrostatic potential in an electro-

chemical system is essential to the understanding of

physical and chemical properties of the electrolytic or

polyelectrolytic solution in question. Poisson's equation

relates the electrostatic potential to the fixed surface

charge dnesity. In the past few years, solutions of

Poisson's equation have been obtained numerically (Kotin,

1962; Gross and Osterle, 1968; Fair and Osterle, 1971)

and analytically (Alexandrowicz, 1963; Philip, 1970)

based on certain geometrical and mathematical models.

Although the results are satisfactory in many respects,

all previous investigators have used the classical Boltz-

mann equation, (3.1), without justifying its use, and all

but one have used the dielectric constant of pure water

rather than the actual dielectric "constant" of the mix-

ture .

49
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It has been reported (Hasted, 1948; Booth, 1951)

earlier that the dielectric constant of a salt solution

in an electric field decreases monotonically with increas-

ing salt concentration and/or the electric field strength.

Recently, Devillez et_al. (1967) have reported a numerical

method of integration of Poisson's equation in which the

concentration dependence of the dielectric constant is

included. However, no report has yet been made with re-

gard to the solution of such a modified equation by analyti—

cal techniques.

In this chapter our purpose is to specify the in-

fluence of the nature of the electrochemical systems (par-

ticularly, biological systems) and the salt concentrations

of aqueous strong uni-univalent electrolytes on potential.

We combine the macroscopic ion distribution equation de—

rived in Chapter III with Poisson's equation and solve the

resulting equation subject to the requirement that IV] =

(FIwI/RT) : 0.245. The range of salt concentrations used

is 0.004 to 2 mole/i. We solve the differential equation

in cylindrical coordinates since we have employed a capil—

lary model for the problem, and we consider the concentra-

tion dependence of the dielectric constant in Poisson's

equation.
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B. Poisson's Equation

Poisson's equation is, in the general case,

Vobvw = - 4n28 , (4.1)

where D is the dielectric tensor of the salt solution in

question, 0 is the electrostatic potential in volts, F is

Faraday's constant, and 7 is charge per unit volume as

defined in (2.12). We consider in this chapter only the

radial direction and thus solve Poisson's equation for a

circle. Assuming azimuthal symmetry, Poisson's equation

is, in radial coordinates,

D 93 = - 4n2F (4.2)£1 r
dr dr ‘H

I
H

The boundary conditions are

(dw/dr)r=0 = 0, (dw/dr)r=a = 4no/Da = o/ca , (4.3)

there a is the radius, 0 is the charge on the walls, in

C3 nfg (C = coulomb; m = meter), Da is the dielectric con-

stant at the wall, and ea is the electric permittivity at

time wall.

In Chapter III, we obtained an explicit formula

(33.32) for 7 as a function of composition. Composition

is I in turn, related to electrostatic potential (I) by (3.29) .

SiUQDStitution of (3.32) and (3.1) into (4.2) yields a
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right-hand-side in which the only variable is w. The

result is formidably complicated, however, and, being an

infinite series of various terms of the type exp (—zaV),

could no doubt not be solved. Instead, we use previous

results (e.g., Fair and Osterle, 1971) to estimate various

terms with the goal of restricting the conditions suffi-

ciently that a tractable equation results.

These estimates will also be used in dealing with

the composition and field strength dependence of the

dielectric constant. According to Sanfeld (1968), who

has summarized the results of all previous workers, the

concentration and field strength dependence of the

dielectric constant is quite well represented for binary

uni-univalent mixtures by

D=D+5c+6c+hE, (4.4)

for concentrations c+ and c_ less than about 3 molar and

for field strengths less than about 0.5 x 108 volts per

meter in magnitude. Some values of 6+ and 6_ are tabulated

in Table 4.1. According to Sanfeld, h is found empirically

to be about —3 x 10"16 mZV-Z. D is plotted versus [E] in

Fig. 4.1. For large concentrations the dielectric "constant"

decreases inversely with concentrations (Pottel, 1964), and

(4.4) cannot be used. We assume that (4.4) can be extended

to accommodate any number of ionic species, and we define
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Table 4.l--Values of gland V8 of some uni—univalent

electrolytes at 25°C (Sanfeld, 1968).

 

 

 

ions V8, cm3/mole 10-3 5“, cm3/mole

Li+ -0.9 -11

Na+ -1.4 -8

K+ 8.8 -8

H+ 0 -17

OH- -5.4 -13

F- -2.2 -5

C1 18 -3

I“ 36.5 -7

6 c = Z 6 c

+ + cations a a

6 c = Z 0 c . (4.5)

C. Simplifying Approximations

The principal goal of this section is to render

(4.2) tractable. In particular, we examine: (i) the

formula, (3.32), for 7, in order to simplify it for use

in (4.2); (ii) the formula, (3.29), for ca, in order to

simplify it for use in (4.4), and thence in (4.2); (iii)

the wall boundary condition for (dw/dr), (4.3), in order
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  0 A l I 1 I

0 1.0 2.0

IE 107, V/cm +

Fig. 4.l--The dielectric constant I) of water as a

function of field strength IEI (in Volts

per cm). See, for example, Booth (1951).
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to estimate IE] and its effect on D as in (4.4); (iv)

(Fw/RT) = V itself, in order to determine under what

circumstances it is permissible to replace sinh? by V.

To these ends, we utilize the classical Chapman-

Gouy relation (see its derivation in Appendix A), valid

only for special circumstances,

2 (2csRT)l/2 sinh (lwal/z) , (4.6)|9|

only for purposes of estimation. Subsequently we find an

improved version of (4.6), but our estimates here are not

importantly changed. In (4.6), a uni-univalent solution

of large concentration c is assumed. Note that we fully

expect [V] at the wall to be larger than IV] in the solu-

tion, as found numerically by Fair and Osterle (1971),

and we shall therefore estimate the maximum value of IVal

from (4.6).

Let us begin by investigating item (iv) in the

above list; i.e., we require

sinh? = V . (4.7)

Since of course

sinh x = x + gL x3 + E? x5 + ..., (4.8)

we require, in (4.7), that

_1. 2 41 >> 3, w + 3% V + ... (4.9)
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For better than 1% accuracy, we therefore require

0.01 >> 3% 92 + §%-w4 + ..., (4.10)

which yields

IVI < 0.245 (4.11)

So, for Ital < 0.245 (in fact, for [Val < 0.49),

the Chapman Gouy equation becomes

1/2
Iol == (2CERT) IT | , (4.12)

a

and (4.11) yields the following restriction on lol//E ,

2

(|o|//E) < 0.245 (28RT)1/ (4.13)

For T = 298°K, R = 8.314 J mole-l K'l, and e = 7 x 10‘10

C V-1 m-l,

(28RT)l/2 = 1.86 x 10"3 c mole‘l/2 m'l/2 (4.14)

Therefore, for sinh [Val to equal IVaI to better than 1%

accuracy, it is necessary for

3 1/2 m‘l/2 (4.15)(|o|//E) < 0.45 x 10‘ c mole-

Concentrations of important metal ions in biological

systems (Woodbury et al.. 1970) lie in the range of 0.004 <

c < 0.4, in units of moles per liter, while ion concentra-

tions are often outside this range in other systems of
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interest. We take c i 2 mole liter"l = 2 X 10-3 mole cm-3 =

2 x 103 mole m-3 since the validity of the simple linear

correction to the dielectric constant, (4.4), would be

questionable for higher concentrations. Then in order for

both (4.15) and (4.16) to hold, Iol may be as large as

3 C m-Z. On the other hand, for c = 0.004 mole

6 mole cm-3 = 4 mole m-3

be larger than 0.9 x 10"3 C m_2. Typically, charge den-

3

20 x 10-

1
liter- = 4 X 10- , Iol must not

sities are of the order of 10— C m_2 (Fair and Osterle,

1971). However, for I0] 2 10-3 C m-Z, we require c 2

4 x 10.3 M. Otherwise, for fixed lo] 2 10.3 C m-Z,

smaller concentrations lead to values of IV] too large

for (4.7) to hold. For such small concentrations (which

do not appear to be of biological interest in any case),

there exists no analytical solution of Poisson's equation.

Fair and Osterle (1971) have obtained numerical solutions

5 -3 2
for c z 10- M and Icl : 10 C m- . We hereafter restrict

consideration to

0.004 M 5 c 5 2 M (4.16)

3 2
and Iol z 10- C m- , the actual upper bound on Io] being

that given by (4.15) for the actual composition in question.

Working backwards, we now accomplish item (iii) by

using (4.3),

IEI z(dV/dr)a = IoI/ea (4.17)
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For lo] 5 20 x 10'3 c m“2 and e z 7 x 10"10
a

7

c v"1 m‘l,

v m‘l, so that IhlEl2| 5 3 x 10‘16 x 9 x 1014[El 5 3 x 10

= 0.27, which is less than 1% of the dielectric constant

D0 of water. Since this is the maximum correction to D,

we confidently neglect the contribution of IE]2 to the

dielectric constant and write

D=Do+0c+6c (4.18)

By Table 4.1, the maximum contribution of the concentration

terms to the dielectric constant would be for c+ = c_ =

2 M = 2 X 10-3 mole cm-3; for, say, 2 M LiI, D = 78.3 -

22 - 14 = 42.3, a 46% reduction. The concentration correc-

tion term contributes less than 1% for total salt concen-

trations less than about 0.05 M, depending on the particu-

lar ions involved.

The next task is estimation of xa and ca. For

total salt molarity 5 2 M, Ea is at most 2 M and

— — —0 ~ - —o 3 -l —

x = c v ~ c v = 18 cm mole c ,

O. 0!. 0. C1 0 O.

E 5 0.002 mole cm‘3, Pa 5 0.036, i0 3 0.928 (4.19)
d

For uni-univalent salts, by (3.35),

B _

x0 = l - (1-xo) coshV , (4.20)

and for (1—ib) 3 0.072, [9| 5 0.245,
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x: 1 1 - 0.072 x 1.03 = 0.926,

F — x3 = (1-I ) (coshW-l) 5 0.00216
0 O O

(4.21)

Thus, correction terms proportional to (xO-xg) in (3.22) -

(3.25) are entirely negligible compared to unity.

Correction terms due to volume terms, however, are

not always negligible. For, say, 2 M KCl, by Table 4.1,

W

(0.036/0.928) e"

0.063 .R

Thus,for better than 1% accuracy, our equations from

Chapter III become, with

v—l
__ — — _ -o —o

W's—8:1 (xB/xo) [eXp ( zB‘FHWB/Vo) .

the following:

xa = xa exp (-zaV)

(1/6) = (1—V*)/§5 VS

_ B — -o _-* = — _
ca — (Xa/XOVO) (1 v ) ca exp ( zaV)

(8.8/l8) + (0.036/0.928)ew(18/18)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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0—1
—_ ——O _ - -—

Z — (l/xovo) ( 2 xa za exp ( zaV)) (l v*)

d=l

v-l _

= ail ca za exp (-zaV) (4.27)

In obtaining (4.25) — (4.27), we neglect the difference

between v* and V* compared with unity since

v-l
_ - — —o —o

v-l _ _ —o —o

= v* + 8:1 (xB/xo) (l-exp (-zBV))(vB/VO) (4.28)

and, for small IV] and a uni-univalent mixture,

—* _ * ~ ‘ — “0 ’0
v v ~ ( 8 (XS/X0) (VB/V0)

cations

- z (E /i) (V°/V°)) (4.29)

anions B O B O

For 2 M KC1, e.g., with IT] = 0.245,

7* - v* 2 0.02 X 0.245 = 0.005 (4.30)

Thus, for the prescribed conditions the equations of

Chapter III reduce to the simple Boltzmann equations.

If we further specialize to the uni-univalent case,

we have
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7 = 2 E e—w - Z '5 ew

cations a anions

= - 2c sinh? = - ZCV , (4.31)

where we have used (4.7) and where

c = z E = 2: E (4.32)
C a O

cations anions

Moreover, the equation for the dielectric constant is

D + 2 6 E e + z 6 E e (4.33)
0 a a! I

cations anions

D

and Poisson's equation is

l. d D dV _ 2 _ 2

EEE r (5;) a? - (8TTCF /DORT) W — K W , (4.34)

where

K = F (8nc/DORT)l/2 (4.35)

is usually called the reciprocal of the Debye length. The

boundary conditions on (4.34) are

(d‘Y/dr)r=0 = 0, (dV/dr)r=a = (4noF/RTDa) , (4.36)

where

—V V
— a — a

Da = D + 2 6a ca e + Z 6 ca e (4.37)

cations anions
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D. Perturbation Scheme
 

The concentration dependence of the dielectric

constant must be taken into account since it strongly

affects the dielectric constant. However, it complicates

the Poisson equation, (4.34), so much that it still cannot

be solved directly. In order to take account of this last

complication, we solve (4.34) by a perturbation scheme

defined by

6 = DO + a (5+ c+ + 5_ c_) (4.38)

and

@ = W + E? + 62? + O (63) , (4.39)
o l 2

When a = l, D = D and. Q = W. The parameter a is simply

a bookkeeping device which allows us to keep track of

the inclusion of the concentration dependence of D. In

order to obtain an explicit perturbation expression for

c+ and c_, we note that

2

e — l i W0 i 6W1 + O (a )

l 2
+ 7 W0 + ewowl + ... (4.40)

and (4.33), (4.38), (4.40) yield



A _ l 2
D = D + e{ Z 6 c [l—W + — W —'€W (l-W ) + ...]

O cations a O 2 O l O

+ Z 65[1+wo+%wg+ewl(l+4’)+
]}

anions a a O

= D0 + e{ ( z a E + 2: 5 Ea) (l + % 42)

cations a anions a O

— < 2 5a Ea - 2: 5 E ) we}

cations anions a

+ o (52)

= D + eD + O (82) (4 41)
o 1 ’ °

where

D1 = ( 2 6 E + X 6 E ) cosh?
. a a . d a o

cations anions

- ( Z 6 E' - Z 6 E ) sinh?
. a . a o

cations anions

+ - .

= D cosh? - D SinhW (4.42)
o o

Substitution of (4.41) and (4.39) into (4.34)

yields

(l/r) d/dr {r (1 + eDl/DO + o (52)) (dwO/dr

+ edwl/dr + O (52))}

= K2 (40 + 54 + o (32)) , (4.43)
l
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with boundary conditions, from (4.36), (4.39), and (4.41),

2
(d‘Po/dr)r=0 + (d‘l’l/dr)r=0 + O (8 ) — O , (4.44)

2
(dwO/dr)r=a + e (dwl/dr)r=a + o (e )

l
= (4noF/RT) (00 + eDl (a) + o (52))" (4.45)

The zeroth order differential equation is, from

(4.43),

(l/r) (dr (dWO/dr)/dr) = K2 we (4.46)

with boundary conditions

(d‘PO/dr)r=0 = 0, (d‘PO/dr)r=a = 4woF/DORT (4.47)

The first order differential equation is, from

(4.43),

(l/r) (dr (dWl/dr)/dr) =

- (l/r)(dr(D1/DO)(dwo/dr)/dr) + K2 41 , (4.48)

and the boundary conditions are

(d‘l’l/dr)r___0 = O, (d‘Pl/dr)r=a = - 4noFDl(a)/D: RT (4.49)

Clearly, higher order equations could be obtained if de-

sired.
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E. Solutions of the
 

Differential Equations
 

Then

and

Substitution of Variables

First, make the substitution

-1

g = Kr

r = EK

ga = Ka

, d/dr = K (d/dg) r

The zeroth order equations are then

or

(1/5) (d5 (dwO/da)/dg) = w
O

dsz/de2 + (1/5) (dwO/dg) - w = o ,
O

(Mo/dag:O = 0, (dWO/d§)€= = 4woF/KDORT

E
a

The first order equations are

2
d Wl/dg

q1 (E)

2

— (1/5) (da<Dl/DO) (dwO/da)/da)

2 2

- (Di/Do) [d wo/dg + (i/g) (dWO/d€)]

(4.

(4.

(4.

(4

(4.

(4.

(4.

50)

51)

52)

.53)

54)

55)

56)
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- (dWO/dé) (d(Dl/DO)/d€) ,

- (Di/Do) we - (dwO/da) (d(D1/DO)/d€) , (4.57)

with

_ - 2

(dWl/d€)€=0 — O, (d‘Pl/dg)€=€a — - 4noFDl(a)/DOKRT (4.58)

Zeroth Order Solution

Multiplication of (4.54) by 62 yields

2 n , 2 _
a we + 5W0 - g (0 _ o , (4.59)

which is easily recognized as the modified Bessel Equation

of order zero, whose general solution is (Irving and

Mullineux, 1959)

we = A IO (g) + B KO (5) , (4.60)

where Io and K0 are the modified Bessel functions of order

zero of, respectively, the first and second kinds.

In order to utilize the boundary conditions, we

differentiate (4.60) with respect to E,

I _ _

where we have used the recurrence relations

I") = I , Kg) = K (4.62)
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As 5+0, Il (€)+O but Kl+w (Abramowitz and Stegun, 1964).

Consequently, since W5 (0) = 0, we must have B = 0 and

therefore

I _

To — A I1 (5) (4.63)

By the second of (4.55),

A = 41TOF/KDORT I1

and the zeroth order solution is

We = A IO (6) = (4noF/KDORT Il (Ka)) IO (Kr)

= (o/VZeocRT) [IO (Kr)/Il (Ka)] , (4.65)

where so = Do/4w . The values of We at two locations are

of particular interest:

W0 (r=0) = To (0) = o/VZeocRT Il (Ka) , (4.66)

To (r=a) = We (a) = o/VZeOcRT) [Io (Ka)/Il (Ka)]

= IO (Ka) W0 (0) (4.67)

Two things are especially noteworthy: (i) We (0) ¢ 0;

(ii) the Chapman—Gouy equation, (4.12), is valid only

for [IC (Ka)/Il (Ka)]+l, which never occurs, but is a

fairly good approximation for Ka >> 1. Recalling that

the motivation for the requirement (4.15) was that we

(Ka) , (4.64)
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wished to use (4.7), we may easily modify (4.15) in light

of our results here. Formally, all we need is

(|o|//E i 0.45><1o‘3/[10(Ka)/Il(na)] c m"1/2 mole-l/Z (4.68)

where the denominator is tabulated in Table 4.2. For

example, for Ka = 0.5, it is necessary that (Iol//E) :

0.11 X 10"3 C ml/2 mole-l/z; for c = 2 M, the requirement

becomes Iol < 5 C m ; and so forth.
~

First Order Solution

By (4.42) and (4.7), as supported by (4.68),

D1 = D - D WC (4.69)

Then by (4.57),

<31 (6) = — D31 {[D+ we - D- W2] - 0' W52}

+

= - (AD DO) IO (g)

2 "’ 2 2 4

+ (A D /Do){[IO(€)] + [11(6)] } ( .70)

Now the left-hand-side of (4.56) is the same as

the left-hand—side of (4.54), and we therefore know that

<mne solution of (4.56), if (4.56) were homogeneous, is

“1 = Io (g) (4.71)
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Table 4.2--Some calculated values of IO/Il and l/Il°

 

 

Ka IO (Ka)/Il (Ka) l/Il (Ka)

0.1 20.02 19.970

0.2 10.05 9.950

0.5 4.12 3.880

0.8 2.70 2.310

1.0 2.24 1.770

1.5 1.68 1.020

1.8 1.51 0.759

2.0 1.43 0.629

3.0 1.23 0.253

4.0 1.16 0.102

5.0 1.12 0.041

10.0 1.05 3.3x 10'4

 

Moreover, KO (6) cannot be a solution because both KO (0)

and K5 (0) are infinite. To obtain the general solution

of (4.56), we write

91 = v (E) ul (6) (4.72)

The boundary conditions are on the derivative,

Vi = V'ul + vui , (4.73)
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Since 15 (g) = I1 (6) and since I
1

(4.73), (4.71), (4.64), and (4.58) yield

(0) = 0 and 10(0) = 1,

v' (0) = 0 (4.74)

V' (Ka) IO (Ka) + v (Ka) Il (Ka)

2
- 4noFDl (a)/DO KRT

- [D1 (a)/DO] A Il (Ka) (4.75)

Now introduce (4.72) into (4.56). There follows

v'ul + 2v'ui + g-lv'ul + v (ui + 5-1 u' - ul) = q1 (4.76)

But since ul is the homogeneous solution of (4.56), the

expression in parentheses vanishes and the differential

equation determining v becomes

ul + 2v'ui + g-1 v'u = q1 (4.77)V" l

or

(v')' + (zu'l/ul + 6‘1) v' = ql/ul (4.78)

This equation is of first order in v', with an

integrating factor of the form

exp {1(2ui/ul+ g-l) d5} = guz1 . (4.79)
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The solution of (4.78) is therefore

2 . _
gul v — Igulqldg + 81

By (4.74),

and hence,

V'

where

Integration of (4.82) yields, formally,

v = 65(Eui)- uzdg + B

By (4.75) p

32

The only remaining task, in this section, is

evaluation of u2 and its integral, (4.84), in order to

complete the derivation of WI.

the constant is simply

= - (Igu1q1d€)€=0 I

2 -l E

(aul) 3 ulqlda

2 -l

(Eul) 1.12 I

Iggu

O
lqldg

1

2

(4.71), (4.82), and (4.84),

= - Dl (a) A/Do (a) - (1(Eui)-

- u2 (Ka)/Ka Io (Ka) I

(4.71) into (4.83), there follows

uzdg)Ka

Substituting (4.70) and

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)
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_ + 5 2
u2 - - (AD /Do) 6 £10 d5

5 3 g 2
SIC d: + I $1011 85] (4.86)+ (AzD-/DO)[I

0 0

It can easily be shown (Appendix B), by integration by

parts, that

g 2 _ 2 _ g 3

0 61011 dg — IO 11/2 0 £10 dg/z (4.87)

g 2 __ 2 2 _ 2

0 EIO dE—E (IO Il)/2 . (4.88)

Then

_ + 2 2 _ 2 - g 3 2

u2 - (A/200){D 6 (11 IO) + D [0 610 dg+-glo IlJL (4.89)

I2

v' = (gui)'l u2 = (A/ZDO) {0+6 (;%) - 1)

E O

- 2 -l 3
+ D [Il + (510) 6 £10 dg] (4.90)

and

v = (A/2DO) [D+ (sl - 52/2)

+ D (ID + 82)] + B2 (4.91)

with

_ 2

S1 (E) - I €(I1/IO) d6 (4.92)

_ 2 -l g 3

s2 (5) - I (610) ( 0 EIO d6) d: (4.93)

Moreover, by (4.85),



w

I2 _
A

‘ (55—) {2D

0

+

+

+

+__t

KaIO(Ka)Il(Ka)

D-

+

D-

1

[Io (Ka) + S

I1

[Io (Ka)

A
(.....—

2

2

-1- (Ka)2

O

Ka 3

(I) EIOdE

(a) + 0* [s

73

1 (Ka) - %- (Ka)2]

2 (Ka)]

(Ka) I (Ka)

+

E‘a‘iouanluca) 0

O

D (Ka) [TS—TEEY ' TI_TEET]

K3.

1 I El: dil} 

I (Ka) I (Ka)
+ 1 O

D){D [KaW-Kam+sl

+ 2] + D- [2 IO (Ka) + 82 (Ka)

 — 2 A 10(Ka)]}

where we have used, by (4.42), (4.7), and (4.65),

where

and

D1 (a) = D+ - A IO (Ka) D-

Finally, put

'
9
'

II

+

(l/ZDO) {D (s

+
B

2
(ZDO/A)}

1

2 _

- g /2) + D (32+Io)

(Ka)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)
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Introducing (4.96) into (4.39) and setting 8 = l, we have

V = W (E) [l + 4O 1 (6) + ...] (4 99)

Here we include only the first-order perturbation. If

necessary, extra terms may be calculated and added to

(4.99) depending on nature of the system.

F. Discussion
 

It is evident that (4.98) involves the evaluation

of integrals of the form

(5 6f (6) In (6) d6 (4.100)

The evaluation of such integrals in closed form is possible

for only a few functions f (5). Consequently, recourse to

numerical computation is usually necessary (cf. Irving and

Mullineux, 1959). Hence, in evaluating (4.100) we make

use of the following equations (Abramowitz and Stegun, pp.

 

375-377).

(’2 (€/2)2k+n/kz (k+n)!, o i g < 2 (4.101)

k=0

eg 2 2 2 2

I (6) =44 {1 - (4n -l)/8g + (4n -1) (4n -9)/2((8g)

n 1 “205

— (4n2-l) (4n2-9) (4n2-25)/3z(8g)3 + ... , (4.102;

 
a 3 2
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In general, however, if the actual physico-chemical prOp-

erties of the system are specified, the evaluation of such

integrals can be made tractable without introducing sig-

nificant error.

To clarify this, we consider, as an example, a

charged membrane for which the fixed surface charge den—

sity I0] is 10.3 C/m2 and the radius of the capillary a

is at 4.2%. Consequently, for the case 5a < 2, we can

evaluate the integrals by representing the products of

various modified Bessel functions as a power series in E

with the aid of numerical computation of the various co-

efficients necessary for the validity of such representa-

tion (Watson, 1968).

It can easily be calculated from (4.35) that at

the salt concentration of 1.5 mole/1, the value of 5a = Ka

is 1.69235 at 25°C and hence S1 (6) and 82 (g) can be

represented in practice by

5 2k+4
S = Z a E /(2k+4) + s (g) (4.103)

1 _ k 1k

k—O

and

5 2k+2
S = 2 b E /(2k+2) + e (g) , (4.104)

2 k=0 k 2k

in which it can be shown numerically that the contributions

of elk to S1 and 52k to 82 are immaterial. Note that extra
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terms, if necessary, can be calculated and added to (4.103)

and (4.104) depending on the nature of the system. The

values of the coefficients ak and bk (k=0,...,5) are

listed in Table 4.3.

Table 4.3--Values of a and b (k=0,...5).

 

 

k k

k ak X 10 bk X 10

0 2500.0 5000.0

1 ~625.00 -625.00

2 143.23 234.38

3 -30.925 -55.882

4 6.4155 9.5554

5 -1.2942 -2.6589

 

Returning to (4.99), the surface potential Iwal

at the wall can be calculated, yielding the following

result

lwal = (RT/F) (0 (6a) [1 + 41 (6a) + ...] (4.105)

where 4 (Ea) is the value of 0 (E) at the wall. From

1 l

the results obtained above, we notice that the solution

represented by (4.99) is valid for the entire domain of

integration, 0 i r i a, since,in particular, no singu-

larity exists at the center of the capillary (r=0).
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In order to clarify the analytical approximation

obtained above, in this section we carry out a numerical

analysis on 9. As an example, we calculate the values

of W and WC for [cl = 10.3 C/m2 and a = 4.2 X for the

case of 63 = Ka < 2. The salt concentration used in the

calculation is 1.5 mole/R and the temperature is 25°C.

Some values of W, 90 and W - We calculated are listed in

Table 4.4. A comparison of the results of W and WC is

shown in Fig. 4.2.

 

 

Table 4.4--Some calculated values of W, W , and g - yo.

T = 298°K, [0| = 10-3 c m-2 a°= 4.2 A, and

Ka = 1.692.

E W (6) yo (5) V - WC

0.000 0.00855 0.0117 -0.00317

0.051 0.00856 0.0117 -0.00317

0.355 0.00890 0.0121 -0.00320

0.592 0.00954 0.0128 -0.00323

0.728 0.01007 0.0133 -0.00326

0.998 0.01151 0.0148 -0.00332

1.472 0.01558 0.0190 -0.00341

1.675 0.01811 0.0215 -0.00340
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According to our analysis, we notice that W - To

is nonpositive. This indicates that the inclusion of the

concentration dependence of the dielectric constant in

Poisson's equation actually results in the decrease of the

overall potential function at any point in the system.

However, the decrement W — WC is very small. As a result,

we can anticipate that the solution represented by 90 + 91,

where W is the first-order solution, should give an
1

excellent approximation to V. For larger values of Ka,

more complicated numerical analysis is required, but there

is no conceptual difficulty. For smaller values of c, the

contribution of the concentration dependence of D will of

course be less, and 41 will be less important.

G. Conclusion
 

Including the radial dependence of the dielectric

constant in Poisson's equation, we have obtained analytically,

in the general case, an improved potential distribution equa—

tion for an uni-univalent electrolyte system, subject to

3 to 2 mole/2.(4.68) and for salt concentrations of ~ 10-

The equation can be used to study various biological sys-

tems. A practical potential distribution equation is also

derived for the case of Ka < 2 where a = 4.2 g. Conse-

quently, the physico-chemical properties of aqueous uni-

univalent electrolyte solutions in biological systems and

other charged systems can now be interpreted more accurately.
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In the derivation of the equation, we have required

sinh W = W. Recently, MacGillivray gt_§l. (1966) have

demonstrated that the solution of the Poisson-Boltzmann

equation for a charged cylinder can be approximated by the

solution of the Debye—Hfickel equation even when the molarity

of the electrolyte is low, i.e., when T >> 1, provided the

cylinder is "moderately charged," that is, when ZnIOIF

a/DORT < 1. For the example mentioned in the preceding

section, it can be shown that 2NIO|F a/DORT = 0.0118 at

25°C. We have here obtained explicit conditions (4.68)

on the ratio of IOI to /E and have thereby eliminated the

need for restriction on K itself. In fact, we have not

used Debye-Hfickel theory as such at all.



CHAPTER V

THE STEADY-STATE DISTRIBUTION OF PRESSURE

IN MODERATELY CHARGED SYSTEMS

A. Introduction
 

In the study of electrochemical systems, knowledge

of the pressure distribution has been realized to be essen-

tial in the understanding of interfacial diffuse double

layers and thin liquid films (Verwey, 1948; Derjaguin,

1966; Herwitz, 1964; Defay, 1963; Sanfeld, 1966). The

difficulty in obtaining a simple equation for the pressure

distribution is primarily due to the lack of a theoretical

formulation for the problem. As a result, many authors

have either neglected its existence or considered the

pressure to be independent of electric field (9:. Kobatake

and Fujita, 1964) without justification. As we shall see

in the next chapter, the effect of the pressure is impor-

tant and vital to the understanding of osmotic flow

phenomena of fluids across a charged, continuous phase;

i.e., a membrane. Previously, no explicit, practical

pressure distribution equation has been obtained, and

its various important applications have not been dis-

cussed.

81
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In this chapter, our primary purpose is to make

use of the potential distribution equation derived in

Chapter IV and to derive, in the general case, an explicit

formula for the pressure distribution at any point in a

moderately charged system where the conditions of Chapter

IV are satisfied. We consider a nonequilibrium system at.

steady state, an isotropic fluid, and absence of electric

polarization. A capillary model is adOpted for the mem—

brane. We are primarily concerned with the uni-univalent

case.

One of the fundamental approaches in the study of

flow phenomena in membranes, charged or uncharged, is the

knowledge of macroscopic osmotic pressure in the system.

The differential equation that governs the pressure of

fluid at any point in the system is, in the general case,

by (3.3) r

dp = - (RT/6:) d in X0 , (5.1)

where p is the pressure at any point in the system, x0 is

the mole fraction of water at any point in the system,

w . I

V0 is the molar volume of pure water, R is gas constant,

T is the uniform, absolute temperature, and 9n fO is

assumed constant. From (5.1) we immediately obtain

p = - (RT/52) in X0 + B , (5.2)
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where B is the constant of integration. This equation can

be used in a variety of ways. For example, the difference

in pressure between any two points a and b in a system is

the osmotic pressure "ha:

“ha = p (b) - p (a) = - (RT/7:) 2n [xo(b)/xo(a)1 (5.3)

By using this equation and the results of Chapters III and

IV, we could calculate n a between any two points in the
b

membrane.

We are, however, primarily concerned with osmotic

flow through the charged membrane. We hereby define “mo

as the steady-state value of the macroscopic osmotic

pressure between the membrane phase m and the aqueous

phase in compartment 0 (the other compartment will be

called compartment L),

“mo = p (m) - pO (0) . (5.4)

where p (m) is the average pressure in the capillary and

po (0) is the average pressure in compartment 0. More-

over, define 020 as the steady-state value of the osmotic

pressure across the charged membrane.

0&0 = p (1) - p (O) , (5.5)

where p (2) and p (0) are the average pressures over the

cross section of the capillary at, respectively, 2 and 0,
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the positions of the interfaces of the membrane with,

respectively, compartments L and 0. From (5.2), (5.4),

and (5.5), there follows

(rmo = - (RT/R73) 2n [Seem/Xe (0)] (5.6)

020 = — (RT/(7'2) SLn (502/3300) , (5.7)

where xom is the steady-state value of the average water

concentration in the capillary, x0 (0) is the average

value of water concentration in compartment 0, and £02 and

i are the steady—state values of the average water con-
00

centrations over the cross section of the capillary at,

respectively, 2 and O.

In order to obtain the relative distribution of

water, i.e., [Eom/Xo(0)] or (Egg/£00) at steady state, we

could use directly the results of Chapters III and IV to

obtain the desired averages. It is more illuminating,

however, and somewhat simpler to focus attention on the

pressure itself. Hence, our second goal in this chapter

is to make use of the pressure distribution equation and

to derive the practical equations for "mo and n as
lo

functions of the salt concentrations and the electric

field for use in the study of transport phenomena of

water in charged systems.

Consider a charged, continuous phase separating

two aqueous electrolyte solutions of different concentration
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at the same temperature. We wish to derive, in the

general case, the pressure distribution equation for the

system.

By (3.7) I

8p/8r = - EF (aw/er) . (5.8)

By (4.27) (the conditions which make it valid are there—

fore required here),

v-l _

(Bp/ar) = - (RT) 2 c 2 [exp (—z 9)](89/8r) (5.9)
a a a

0:1

This is easily integrated to yield

v-l _

P = P + RT 2 C [eXp (-z W) - l] , (5.10)
a a

0:1

where po is the value of p for zero electric field.

For a uni-univalent system, (5.10) becomes

p = pO + 2cRT (cosh? - l) , (5.11)

where we have used (4.32). We have now obtained explicitly

the pressure distribution equations which take account of

the concentration dependence of the pressure. Since

osmotic flow is our concern here, we are interested in

the longitudinal, or axial, dependence of the pressure.

Differentiation of (5.11) yields
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(Sp/8x) = (ape/3x) + 2RT (cosh? - l) (ac/8x)

- RTE (aw/8x) , (5.12)

where we have also used (4.31). If we now assume that the

last term on the right-hand-side is negligible, we have

(Sp/3x) = (apo/ax) + 2RT (coshW - l) (ac/3x) (5.13)

This assumption is reasonable on two counts: (i) we do

not expect the potential difference across the membrane

to be significant, and (ii) the average net charge in the

solution inside the membrane must be small. In any case,

we are interested here in illuminating the contribution

of the concentration gradient to the pressure gradient,

and we therefore use (5.13), wherein W is taken to be

the value of Fw/RT for E, the average salt concentration

in the membrane.

B. The Macroscopic Osmotic

Pressure Between the Mem-

brane Phase and the Aqueous

Phase in a Moderately

Charged System

Making use of the pressure distribution equation

derived above, in the following treatment we derive an

explicit formula to represent the macroscopic osmotic

pressure "mo between the membrane phase m and the aqueous

phase 0 for a moderately charged membrane, separating two

uni-univalent electrolyte solutions.
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We introduce (5.11) into the following equation

5 (r) = g pdx/(z-O) , (5.14)I

0

where E (r) is the average axial pressure, and where 2 is

the length of the capillary or the thickness of the mem—

brane. Then, there results

2

'5 (r) = p0 dx/(l—O) + 2RT {cosh‘l’ - l} (:cdx/(i—O) (5.15)I

0

where we again, and for the same reasons, take W to be

its average in the membrane.

Clearly, the evaluation of integrals in (5.15) re-

quires knowledge of the explicit expressions of p0 and c

as functions of x. We assume, as a first approximation,

that po (x) and c (x) are linear functions of x. That is,

we may write

p0 = (APO/2) X + pO (0) (5.16)

c = (Ac/2) X + c (0) , (5.17)

where ApO and Ac are defined as

Apo = po (2) - po (0) (5.18)

Ac = c (12,) - c (0) (5.19)

Combination of (5.16), (5.17) and (5.15) yields the ex-

plicit expression for the radial pressure in the system,
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E (r) = {pO (2) + pO (0)}/2 + RT (coshw-1}{c(2)+c(o)} (5.20)

We rewrite (5.26) as

O

'5 (r) - p (0) = Ape/2 + RT {cosh‘P-l}{c()2.)+c(0)} (5.21)

The macroscopic osmotic pressure “mo between the

membrane phase m and the aqueous phase 0 can be deduced

from (5.21), yielding the following equation

"mo = ApO/Z + RT{c (2)

a a

+ c(O)}[I 28r{coshW-l}dr/ I 20rdr] , (5.22)

0 0

where Wmo is defined by (5.4) in which p (m) is given as

a _ a

I anp (r) dr/ 6 andr . (5.23)p (m) 0

In the absence of initial hydrostatic pressure difference,

i.e., when ApO = 0, then,(5.23) becomes

"mo = RT {c(£)+c(0)} 6a an {coshy—l} dr/Tra2 . (5.24)

For experimental convenience, in general, the salt con-

centration at one side of the membrane is fixed while that

at the other side of the membrane is varied. Thus, in

practice we may rewrite (5.24) as

"mo = c(£)RT(l+q) 6a 2r (cosh‘i’-l)dr/a2 (5.25)

where q is given as

q = c(0)/c(2) . (5.26)
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The value of q can then be varied during the experiment.

To evaluate the integral in (5.26), we make use

of the conditions of Chapter IV. There follows, then,

a a 2

I 2r (coshW-l) dr 5 0 r? dr (5.27)

0

where we have used

coshw = 1 + 92/2 + 5% 44 + ... ~ 1 + % 92 (5.28)

Introducing (4.50) and (4.52) into (5.27), we write

5a

6a :92 dr = (1/K2) I £72 66 , (5.29)

0

where K is the reciprocal of Debye length defined by (4.35),

and hence (5.25) becomes

5

«an s {c (0) RT (1 + q)/€:} (1)3 642 as; . (5.30)

Making use of the substitution: W = To + 91,

where WC and 91 are defined by (4.65) and (4.96) respec-

tively, we have

Ea 2 ga 2 5a

I 69 6: = I 59 as + 2 I 69 w 66
O O o 5 0 l

Ea 2 5 31)+ 6 5W1 d6 . ( .

For simplicity, denote

Ea 2

L1 = I SW 66 (5.32)
0 O
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ga

L2 = a 5W0 W1 d5 (5.33)

Ea 2

L3 = a £91 dE (5.34)

The evaluation of (5.32) can easily be carried out. We

introduce (4.65) into (5.32) and make use of (4.88).

There follows

2 2

O (Ea) - Il (Ea)}/2 . (5.35)

However, from (4.96) and (4.98) we notice that there is

great difficulty in evaluating (5.33) and (5.34) in closed

forms, and hence the evaluation of such integrals requires

knowledge of the physical situation. Hence, (5.30) be-

comeS

“mo 5 {c (0) RT (1 + q)/€:} [A2 a: (I: (6a)

2
- 11 (6a)}/2 + 2L2 + L3] . (5.36)

The equation can, moreover, be used to determine

the relative distribution of water between the membrane

phase m and the aqueous phase 0, since by (5.6),

i /x0 (0) = exp (- 8 62/81) (5.37)
om mo
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C. The Macroscopic Osmotic

Pressure Across a Moder-

ately Charged Membrane

 

 

 

In this section, we derive a formula to represent

the macroscopic osmotic pressure 0 across a moderately
20

charged membrane. Returning to (5.13), we integrate the

equation over the length of the capillary, i.e., 0 i x i 8.

There results

Ap (r) = ApO + 2RT {cosh W-l} Ac (5.38)

where Apo and Ac are defined by (5.18) and (5.19), re-

spectively.

The macroscopic osmotic pressure across a charged

membrane can, then, be deduced from (5.38), yielding

_ a 2
020 — Apo + 2RTAc 6 2r {coshW l} dr/a (5.39)

In the absence of initial hydrostatic pressure difference,

i.e., when Apo = 0, (5.39) becomes

a

6,0 = 2RTAc I 2r (coshW—l) dr/a2 (5.40)

0

From (5.27), (5.29), (5.31), (5.35), and (5.26), there

follows

«,0 = 2 {c(4) RT (l-q)/€:} (A2 6: {IO (€)2

— I (ga)2}/2 + 2L1 + L3] . (5.41)
2
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This equation can be also used to determine the relative

distribution of water at the interfaces with the two

aqueous phases, by (5.7):

xoi/xoo = exp (- n

—O

lovo/RT) (5.42)

D. Osmotic Flow of Water in

a Charged Membrane

 

 

As has been known for years, knowledge of the

macrosc0pic osmotic pressure is useful in the understand-

ing of the mechanism of transport process of solutes and

water across a charged membrane. In the following treat-

ment we make use of (5.41) to study the osmotic flow

phenomena of water across a charged membrane. As an

example, we consider a charged membrane for which the

fixed surface charge density is 10"3 C/m2 and the radius

of the capillary is 17.6 X, The temperature is 25°C.

The concentration of one solution is fixed at 2.0 M

whereas the concentration of the salt solution varied is

in the range of 0.02 to 2.0 M, where 5a > 5. Hence, the

conditions of Chapter IV are valid throughout.

Subject to the external conditions considered

above, we now compute the macroscopic osmotic pressure

n across the charged membrane against the concentration

20

varied. It is apparent that at very large 5a the effect

of the concentration dependence of the dielectric



93

constant on potential becomes negligibly small and, hence,

in computing 0 , in general, we may neglect the contribu-
£0

tions due to L2 and L3 in the equation. To clarify this,

we perform numerical computation on ”(o and Rio, where

fig and n' are defined as
o 80

~ 2 2 2 2
4,0 = 2 {c (0) RT (l-q)/€a} [A Ea {IO (Ea)

- I (a )21/2 + 2L 1 (5 43)
l a 2 '

and

4' = c (2) RT (1 - q) A2 {I (a )2 - I (a )2} (5 44)
lo 0 a l a ‘

Note also that 0i

0

zero—order solution in W and that in writing (5.43) the

is the contribution due only to the

contribution due to L3 is excluded since it is easily

realizable to be immaterial. Some calculated results of

n and Rio are listed in Table 5.1. It can be shown
£0

.. | I

from the results that the effect of “£0 020 020

in general, about 1% at very large Ea. Hence, at very

on is,

large 5a, equations (5.36) and (5.41) tend to be

c (2) RT (1 + q) A2 {Io (Ea)
2 2
-11 (6a) }/2 (5.45):

1 ll

mo

2c (2) RT (1 - q) A2 {10 (5a)2
2

1r - Il (Ea) I (5.46)
20

without introducing significant error. These equations

are useful in studying and interpreting osmotic flow of
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Table 5.l-—Some calculated values of Rio and ”'0 at

 

 

vargous salt concentratigns. c (£) = 2.0

10‘ mole/m3. a = 17.6 A. I0] = 10’3 C/mz.

t = 25°C.

° ‘3212763-3' .. “(cg/:03 3837'

0.02 5.819 0.291 0.2928

0 05 5.862 0.280 0.2818

0.80 6.851 0.105 0.1059

0.95 7.032 0.085 0.0854

1.55 7.714 0.027 0.0274

1.97 8.158 0.002 0.0015

 

water across various loose or porous charged membranes,

when there is no initial hydrostatic pressure difference

across the membrane. Making use of (5.46), 010 is plotted

against the logarithm of the salt concentration varied in

Fig. 5.1.

On the basis of our calculation, it is found that

0 required decreases monot0nically with increasing con—
£0

centration varied, and that7&0 is positive when 0 (0)/c (£)

< 1. Hence, our results are in good agreement with the

experimentally observed phenomena that the flow of water

Inoves toward the more dilute solution. This is contrary

'to the flow of solutes which tends to move toward the more
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concentrated solution in charged membranes. The latter

phenomena is referred to as "anomalous osmosis," which

we shall disucss in more detail in the next chapter.

E. Conclusion and Discussion
 

Considering the field dependence of the pressure,

i.e., Bp/Bw # 0, for the first time we have obtained, for

a v-component system, and an uni-univalent electrolyte

system, the macrosc0pic pressure distribution equations

which simultaneously take account of the concentration

dependence of the pressure. As a result, the macroscopic

formula for the osmotic pressure w across a moderately
£0

charged membrane has been obtained for an uni-univalent

electrolyte system and, accordingly, the relative distri—

bution of water in two aqueous phases has been calculated.

We have also deriVed, for an uni-univalent electrolyte

system, the macroscopic formula for the osmotic pressure

”mo between the membrane phase m and the aqueous phase 0

and hence calculated the relative distribution of water

between the phases. These equations are useful in the

treatment of osmotic flow phenomena of water in a porous,

moderately charged membrane at steady state, subject to

various salt concentrations and geometrical conditions of

the membrane in question. Consequently, the fluid-

membrane system dealing with an uni-univalent electrolyte
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solution can now be described more adequately, and experi-

ments in the study of transport phenomena of water across

a porous, moderately charged membrane can now be inter-

preted more accurately.



CHAPTER VI

THE STEADY-STATE PHENOMENOLOGICAL THEORY

OF OSMOSIS IN CHARGED SYSTEMS

A. Introduction
 

Osmotic flow phenomena of fluids across a charged

continuous phase separating two aqueous solutions of dif-

ferent concentrations have been known for years to be

important and vital in the understanding of various

mechanisms of transport process encountered in many

areas of physical and life sciences. It has been

realized experimentally (Grim, 1957) that the flow in

a charged continuous phase, in contrast to the normal

experience obtained with uncharged phases or with non-

electrolyte solutions, occurs toward the more concentrated

solution (anomalous positive osmosis), and its rate is

roughly proportional to the concentration difference.

Moreover, when the concentration of one solution is fixed

and that of the other is varied, plots of the flow rate

against the logarithm of the varied concentration often

give an N-shaped curve.

Since the early findings of Dutrochet (1835),

various transport theories have been developed (gf.

98
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Kobatake and Fujita, 1964; Gross and Osterle, 1967;

Toyoshima, 1967; Fujita and Kobatake, 1968), in order

to interpret the mechanism of osmotic flow in a charged

membrane. Although most of the theories are satisfactory

in many respects, they are all inadequate in one way or

another—-e.g., the theory of Kobatake and coworkers con-

tains many contradictory assumptions, while the theory

of Osterle and coworkers is restricted to extremely dilute

 solutions. Moreover, the conditions of numerous experi-

V
'
.
H

.
..
_

ments so far reported have usually not been well-defined.

As has been known for years, membranes--artificial

or natural--vary so widely in structure and function that

it is impossible to say that anything approaching a general

membrane transport theory has been established. In this

chapter, we make use of the principles of nonequilibrium

thermodynamics and the equations of hydrodynamics without

recourse to most of the restrictive simplifications re-

quired by previous workers, and we derive a steady-state

phenomenological theory that accounts for the osmotic

flow of fluids across a charged continuous phase. It is

hoped that the theory can be used better to describe and

understand transport phenomena in charged membrane systems.

In the following treatment, we consider the system

which is composed of a moderately charged membrane for

3 2
which the fixed surface charge density is about 10- C/m
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and which separates two aqueous uni—univalent electrolyte

solutions of different concentrations at the same tempera-

ture without the presence of initial hydrostatic pressure

difference. A capillary model is used for the membrane.

We make use of the macroscopic distribution equations of

ions, pressure, and electrostatic potential in the trans-

port equations derived in the previous chapters. The re—

sulting steady-state differential equations are then solved

to yield the average osmotic flow rate as a function of

initial salt concentrations. Finally, the theory is com-

pared with experimental observations.

B. Transport Eguations
 

As mentioned in Chapter II, the transport equations

dealing with electrochemical systems are conveniently

written with respect to the solvent-fixed (SF) frame of

reference. In the following treatment we consider the

fluid-membrane system in which the conditions of Chapter

IV are all satisfied. Moreover, we hereafter confine the

discussion to the system which separates two aqueous

solutions containing the solvent molecules and a single

uni-univalent electrolyte of the same kind. Positive

ions and negative ions are denoted by l and 2, respec-

tively. It is of course quite important for biological

and other purposes to consider also solutions of many
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components. In that context, our purpose in this chapter,

and in this thesis, is to lay the foundation upon which a

general theory can be built. Transport equations for

multi-component systems are similar in form to those for

a binary system, but they are so long and complicated

that they could obscure our simple, central purpose.

The diffusional fluxes of species 1 and 2 in the

direction of the capillary axis relative to the SF refer-

ence frame are, according to (2.78),

(jl)O = - (02152 + QEZV§)(3p/8x) - 031 RT (alncl/ax)

- QEZRT (alncz/ax) - (011218 + 01222F)(80/ax)

(j2)o = - (021Vl + 022V2)(Bp/ax) - Q; lRT(81ncl/8x)

- 032RT(81nc2/8x) - (021218 + 02222F)(80/8x) , (6.1)

where we also make the important assumption that the total

electrostatic potential 0 is separable into a part 9 which

depends only on x and a part E which depends only on r:

I) (x,r) = 9 (x) + E (r) . (6.2)

The second term, W (r), on the right-hand-side of (6.2)

is what we have considered exclusively in Chapters II--V.

A deeper analysis may reveal that the separation of (6.2)

is not adequate [e.g., it may well be that w (xr) = 0 (x)

+ W (x,r)] to satisfy all the governing equations.

w
a
m
u
t
r
.
m
r
m
i

.
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It should certainly be an excellent approximation physi-

cally, however, since it is clearly experimentally pos-

sible to vary independently the trans-membrane potential

difference A¢ = ¢ (£) - ¢ (0) and the charge.

Also in (6.1), we have taken in fa to be constant,

and Cd is the concentration of species a in mole m-3, za

(a = 1,2) is the charge valency of species a per mole,

R is the gas constant, T is the uniform temperature, F is

the Faraday constant, and the 9:8 (d,8 = 1,2) are the

phenomenological coefficients in the SF reference frame.

We see that for the problem at hand the solute ions are

subject to three kinds of forces, namely, osmotic forces

corresponding to concentration gradients, mechanical

forces corresponding to pressure gradients and electrical

forces corresponding to potential gradients. The solvent

molecules, however, are subject to only osmotic forces

and mechanical forces according to (5.13) in Chapter V.

These "forces" are of course not independent--there are

only two independent "forces," the chemical potential

gradients of l and 2.

The partial electric current and the diffusion

flux of the salt along the capillary axis relative to the

SF reference frame are, by (2.78) and (2.79),

2

(i ) = Z 2a F (jd)o (6.3)

d=l
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(6.4)

By (2.65), the electric current and the diffusion flux of

the salt along the capillary axis both relative to the

capillary wall are, then,

c u (6.5)

2

Z zd'F(ja)o + 2 F c u (6.6)

d=l a=1
a a

d=l a

where 110 is the axial component of the reference velocity

in SF frame of reference which, under the assumptions

which give (2.81), satisfies the axial component of the

Navier-Stokes equation in the form

(ap/ax) + ‘z'F (dCD/dx) = nr-l[(d/dr)r(duO/dr)] , (6.7)

where we have used (6.2) and where we assume that uO is

independent of x. In (6.7), n is the isothermal shear

viscosity of the fluid, taken as a constant, and E is de-

fined by (2.12).

Poisson's equation which relates the electrostatic

potential to the excess surface charge density is, by

(4.1) and (6.2),

{1 [(d/dr) (rD(d$/dr))] = — “2p , (6-8)
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where D is the dielectric tensor of the electrolyte solu-

tion, taken as nonconstant. This equation was solved in

Chapter IV, under the conditions listed there. For uni-

univalent electrolytes, we have, by (4.99),

I = (RT/F) A10 (5) [1 + ¢l (£)] , (6.9)

where E Kr, A = 4noF/KDORTI (Ka), K = (817F2 E/DORT)l/2,
l

and $1, defined by (4.98), results from inclusion of the

concentration dependence of the dielectric constant. We

‘
v
‘
m
n
m
a

have also, by (5.13),

(Sp/8x) = (dpo/dx) + 2RT(coshW—l)(dc/dx) , (6.10)

where W = FW/RT, where po (assumed a function of x only)

is the pressure when $ = 0, and where c is assumed a

function of x only-~thus, c is effectively, the average

over any cross section of the capillary. Finally, for

any uni-univalent electrolyte, by (4.31),

‘z' = - 2c sinh‘i’ , (6.11)

C. General Formula for 110

 

In the following treatment, we combine all the

differential equations, solve the resulting equations sub-

ject to the appropriate boundary conditions and derive a

steady-state phenomenological theory of osmosis in a



105

charged continuous phase for an uni-univalent electrolyte

system. It has been realized experimentally (Sollner,

1945) that anomalous osmosis of fluid occur only if the

continuous phase is in a charged state and is porous to

some degree. It is evident that anomalous osmosis does

not occur for semipermeable phases. Thus, we take a and

Ka very large compared to unity.

We have demonstrated in Chapter V through numerical

computation that at very large Ea = Ka, (6.9) can, in prac-

tice, be represented by the zeroth-order solution of the

form

E = (RT/F) AIO (£) (6.12)

since, for large Ka, A is very small.

Making use of (6.10) and (6.11), we rewrite (6.7)

as

nr‘l [(d/dr) (rduO/dr)] = F (x,r) (6.13)

where

F (x,r) = de/dx + 2RT (coshW-l) (dc/dx)

- 2chinhW (d¢/dx) . (6.14)

we solve (6.13) subject to (2.83), yielding the expression,

a _ r

nuo = I r l I F (x,r) rdrdr (6.15)

r O

 

.
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Introduction of (6.14) into (6.15)

u0 = + {(aZ-r2)/4n}(dpo/dx)

+ (RT/n) Ia r-1 Irwzrdrdr(dc/dx)

. r
0

a -l r'
— (2cF/n) I r 0 Wrdrdr (d¢/dx)

r

where we have used

cosh? = 1 + wZ/z , sinh) = w

Substitution of (6.12) into (6.1) yields

u0 = + {(E: - 52)/4K2n}(dpo/dx)

C

+ (AZRT/2K2n) 1 ag (Ii-Ii) d§(dc/dx)

E

2
- (2AcF/K n) {10(Ea)-IO(€)} (d¢/dx)

where we have made use of the substitutions

and where we have used the recurrence formulas

d (aIl)/da= 5:0 . d IO/da = II .

a
I 51: d6 = £2 (Ii—Ii)/2
0

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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D. Special Formula for 1.10

 

and its Consequences
 

Although the general formula (6.18) could be used

for any experimental situation which fulfills the require-

ments previously listed in Chapter IV and in this chapter,

the occurrence of the integral term on the right-hand-side

would require numerical integration. In order to obtain

formulas to which we may easily attach physical signifi-

cance, we now specialize to the case in which the second

term on the right-hand-side of (6.18) is negligible com-

pared to the third term. The requirement we find, (6.22),

is so easily met that we may claim with confidence that

our "special" formulas are in fact those which apply to

the great majority of experimental situations.

Rather than deal directly with (6.18), we find a

stronger condition by requiring, in (6.14),

|2RT (coshW-l) (dc/dx)l : 0.01 |2chinhW(d¢/dx)| (6.21)

By (6.17) and the definition of W (E FE/RT), (6.21) becomes

|(d 2n c/dx)/(d¢/dx)| 3 0.02|'()7|‘l (6.22)

In Chapter IV, we required [WI 3 0.245. For 298°K,

F/RT = 38.93 V"1 and we therefore have

[El < 0.0063 v ,

IEW—l 3_158.9 v‘1 (6.23)

-
l
l
l

I'
ll
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So for the largest allowed value of |$|, we get

|(d 2n c/dx)/(d®/dx)| 1.3-2 (6.24)

Ordinarily, I$l is much smaller than 0.0063 V because it

decreases strongly with the square root of average com-

position and with increasing pore size. Noting that it

is fin c which appears in the denominator of (6.22) and

(6.24), it is clear that (6.22) will ordinarily be easily

satisfied. Typical values of the trans-membrane potential

A¢ are 60 to 100 mV (Woodbury, et_al., 1970) and therefore

(6.24) would be satisfied for IA£n<3Ii 0.3. For smaller,

more typical value of (0|, IAln cl may be even larger but

still negligible.

We therefore reduce (6.18) to

2 2

no = {(5a - a )/4K20} (dpo/dX)

2

- (ZACF/K 0) {IO (Ea)-Io(€)} (d¢/dx) (6.25)

Equation (6.25) is generally valid for loose membranes

with very large pores. Moreover, it is mathematically

more tractable.

The average values of the reference velocity,

electric current density, and the diffusional flux of the

electrolyte component over the cross-section of the

capillary are

[
M
n

f
a
‘
a
‘
a
u
i
l
H
w
'
F
‘
E
'
J
T
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U - 1a 2 ( ) d a 2 do - 0 nr uo r/(I) TTI‘ r

_ a a

I = I an (I) dr/I 20rdr

0 0

_ a a

J = 0 an (J) dr/I 20rdr

0

Introducing (6.25) into (6.26), there follows

U0 = A01 (de/dx) + A02 (d¢/dx)

where the coefficients A and A are

01 02

2 2

A01 _ ga/8K n

A02 - (4AcF/€:Kzn) {6: 10(Ea)/2-€aIl(€a)}

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

where we have used (6.20). It is interesting to note that

in the coefficient A02 of (d0/dx), usually referred to as

the electroosmotic coefficient, is a function of the salt

concentration. Previous existing theories for the

anomalous osmosis (Schlogl, 1955; Kedom, 1961; Kobatake,

1958) have not taken this fact into account. As we shall

see later, this effect is essential for the observed

phenomenological behavior of the osmotic flow in charged

membranes.

We substitute (6.1) into (6.5) and (6.6) and hence

have, for the general case,

W
m
~
m
.
m
z
n
:
n
:
r
3
m
m
)
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2 o —o o —o 2 o o
J = - E (levl + Qa2v2)(8p/3x) - E (901 + 0&2)

d—l a—l

2

o 0
RT (dincaO/dx) ail (90121 + 9&222)F(d¢/dx)

2

+ ail Cao exp (-zaW) uO (6.31)

2 o —o o *0
=.. FI 6:1 (Qalvl + QaZVZ) 2a (Sp/BX)

2 o o
— ail (gal + Qaz) z£7RT (dincaO/dx)

2 o o 2

- ail (Qalzl + 0&222) zaF (d¢/dx)

2

+ ail Cao exp (-zaW) zaFuO (6.32)

where we have made use of the substitution,

dflnca/dx = dincaO/dx , (6.33)

since (6.33) is assumed independent of radical coordinate.

For an uni-univalent electrolyte system, there result

2

J = — 2 (0:16? + 03263) (ap/ax)

a=l

2 o o 2 o o
- 2 (gal + QGZ)RT(d£nc/dx) - Z (Gal—0a2)F(d¢/dx)

d-l a=1

+ 2c cosh? 110 (6.34)

‘
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2
_ _ o —o o -o _ 0+1

I — ail (Qalvl + Qazvz) ( 1) E’(3p/3x)

2 o 0 +1
- Z (0 1 + 0 2) (-l)a F RT (anC/dx)

d=l a

2 o o d+1 2

- 2c F sinh? 110 (6.35)

The practical equation for the axial pressure gradient

(Sp/3x) can be deduced from (6.10), yielding

ap/ax g de/dx + RT )2 (dc/dx) (6.36)

where we have

come

used (6.17). Hence, (6.34) and (6.35) be-

2

: (0: 6° + 0° 6°) (de/dx)
a l 1 1 a2 2

2 o —o o —o 2
:1(Qalvl + Qazvz) RT W (dc/dx)

2 o o 2 o o
ail (gal + Qa2)RT(d2nc/dx) - a:l(Qal-Qa2)(d¢/dX)

26 (1 + 22/2) uO (6.37)
W
¥
-
fi
fl
m
v
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m
s
r
r
m
r
z
-
m
l
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1 — - i (0° 6° + 0° ’°) (-1)°‘+l F (d /d )
‘ = 61 1 62V2 po X

2

- z (0: 6° + 03263) (-1)""'1 F RT (2 (dc/dx)

2

- 2 (031 + 032) (-1)°+1 F RT (dlnc/dx)

d=l

- (0:1 0:2) (-1)O‘+1 F2 (d¢/dx)
=1

+ 2cFWub , (6.38)

where we have used (6.17).

Introduction of (6.37) and (6.38) into (6.27) and

(6.28) and use of (6.12) and (6.19) yield

+

o —o + Q0 —0 a l

61V1 a2v2) (’1’ F (dpo/dX)

o —o 0+1 2 2

01 1 + Qa2v2)(-1) {(ZA FRT/ga)

a 2

I 51 d5} (dc/dx)
0 o

2

- 2 (0° + no 0+1a1 02) F RT (dinc/dx){-1)

d+1 2

° ° -1) F (d6/dx)

2

- g (9.1 - 9.2) <

2 5a
+ (4AcF/ga) I gIOuOdg (6.39)

0

W
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“
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2

— _ _ o —o —o
J - ail (levl + QaZVZ) (de/dx)

2 o —o —o 2 2 5a 2
— ail (levl + 002v2)(2A RT/Ea) 0 EIO d5 (dc/dx)

2 o o 2 o o
_ 0:1 (901 + QaZ)RT(d9.nc/dx) - a:1(Q°1-Q°2)F(d¢/dX) E

F; E‘

+ 2 a 2 2 h
(4c/ga) I 5(1 + A 10/2) uO dg . (6.40) E

O .

E

The integrals in (6.39) are readily evaluated, yielding E

4 5
a _ 2 2 _ 2

0 SI d5 — 5a {IO(€a) Il (5a) }/2 (6.41)

and

E

where we have used (6.

2

(l/ZKzn) 4a I2 (Ea)(dpo/dX)

(2AcF/K20) [gale (Ea)Il (ea)

52

a

2

(a ) - 11 (5a)2}/21 (d4/dx) (6.42){10 a

20) and the recurrence formula

3

a

2

d: 4 Il (Ea) - 26a 12 (Ea) (6.43)

Nevertheless, it is apparent that at very large Ea, the

integral in (6.40)

E
a

I

0

2
g{1 + A IO (6)2/2} no 65 (6.44)



114

tends to be

5

1a gu dg (6.45)
0 0

because A + O as Ka + w. This can be evaluated easily in

closed form, yielding the following result,

(aa)/2+ (Si/IGKZU) (de/dx) - (2AcF/Kzn){§: IO

,
7
1
‘
1
e
r

g
a
i
n
.

I

- Ea I1 (53)} (d0/dx) (6.46)

-
.
.
l
‘
l
‘

Introduction of (6.41), (6.42) and (6.46) into (6.39) and  

(
6
"

‘
1

(6.40) finally yields, in the general case,

I = BOl (de/dx) + B02 (d¢/dx) + BO3 (dc/dx)

+ BO4 (dlnc/dx) (6.47)

and

J = ROl (de/dx) + R02 (d¢/dx) + Ro3 (dc/dx)

+ RO4 (anC/dx) , (6.48)

where the coeff1c1ents BOi and Roi (1 = l,....4) are

B — - g (0° -0 + 0° ‘0)(-1)OL+1 F + (2AcF/K20) I (E )
Ol ‘ 6:1 61V1 azvz 2 a

B _ _ g (0° _ Qo )(_l)d+1 F2

02 0:1 dl 02

2 2 2 2 2
- F(8A 0 /€aK n) [Ea Io (Ea) 11 (Ea)

2 2 2

- 4a {10 (a ) - 11 (Ea) 1/21
a
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2 o —o o —0 0+1 2 2 2

B03 = - 0:1 (Qalvl + Qazvz) (-l) (A FRT){IO(§a) -Il(€a) }

2 o 0 0+1
B04 = - 0,21 (901 + {202) (-1) FRT

2 o -o o —o 2 2
R01 = - 0:1 (Qalvl + Q02v2) + Ea C/4K n

2 o o 2 2 2 2

R02 = - 0:1 (901 - 9&2) - (8Ac F/K 05a){€a10(€a)/2-§a11(§a)}

2 o —o o —o 2 2 2

R03 = ' 6:1 (Qalvl + Q62V2) (A RT) {Io (ga) —Il(€a) }

2 o 0
R04 = - 0:1 (901 + 0&2) RT (6.49)

Although the (dc/dx) term and the (d in c/dx) term could

obviously be combined in (6.47) and (6.48), and elsewhere,

no useful simplification is thereby obtained. Formally,

the coefficient of(d.£n c/dx)ixx(6.47) would be (5 B03 +

304) and the coefficient of(d.£n C/dX)le(6.48) would be

(5 R034-Ro4), where E is some average value of c.

E. The Working Equation for

Anomalous Osmosis

We have so far obtained explicitly, making use of

some eXplicit, justifiable simplifying assumptions, the

equations for the averages of reference velocity, electric

current density and diffusional flux of the electrolyte

W
H
I
P
-
i
m
m
a
n
m
m
r
m
a

,
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component over the cross section of the capillary. From

these equations we now derive a working equation which can

be used to interpret the characteristic behavior of osmotic

flow through a charged membrane. As mentioned before, we

consider that initially there is no hydrostatic pressure

difference between the two sides of the membrane, and

assume that the system has attained a steady state. The

steady-state assumption is justifiable since it is real-

izable in most biological systems and physicalchemical

W
m
m
1
n
n
m
r
1
‘
m
‘
fi
’
)

systems.

Returning to (6.29), (6.47) and (6.48), at steady

state, from the conservations of mass and electric current

density and from the incompressibility of the fluid there

follow

d UO/dx = 0, df/dx = 0, dE/dx = 0 . (6.50)

Furthermore, in the present system there is no applied

(electric field across the membrane and, hence, from (6.60)

we have

Uo = constant, T = 0, 3 = constant. (6.51)

11ccording to the assumptions made above the apprOpriate

boundary conditions for the problem are, then,

c = c (0) at x = 0 and c = c (£) at x = 2
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<I>=<I>(O)atx=0and4>=<l>(£)atx=IL (6.52)

Making use of the conditions given by (6.51) we

now integrate (6.29), (6.47), and (6.48) over the length

of the capillary, i.e., 0 i x i 2, subject to (6.52).

However, by examination of (6.30) and (6.49) we imme-

diately notice that the coeff1c1ents A02, B01, B02, R01

and R02 are concentration-dependent. Hence, we may write

.
‘_
‘
T
g
'
i
-
m
fl
fi
f
p
v

 _ R _ a;

U0 — AOl (Ape/1) + 6 A02 (d¢/dx) dx/Q — constant (6.53)

I = I2 E (dp /dx) dx/E + I2 B (d¢/dx)dx/£

0 ol 0 o 02

+ BO3 (Ac/2) + Bo4 (Ainc/E) = 0 (6.54)

3 — )2 R (dp /dx)dx/£ + 1" R (dCI>/dx)dx/IL
01 o o 02

+ RO3 (Ac/R) + RO4 (Alnc/l) = constant (6.55)

\nhere Apo, Ac, and Alnc are defined as

ApO = po (x = i) - po (x = 0)

Ac=C(£)-C(0)

A£nc = inc (2) - inc (0) in {c (2)/c (0)} (6.56)

FHthhermore, we have required in Chapter V that



118

P0 = (APO/R) X + pO (x = 0)

0

II

(Ac/IL) x + C (0)

0 II

(04/2) x + 4 (0) , (6.57)

whence

dpo/dx = ApO/£

dc/dx Ac/l

‘
f
’
m
e
r
w
w
‘
m

1
.
1
:
)
.

d0/dx A0/2 (6.58)

With the aid of the above equations, the evaluation of

the integrals in equations (6.53)-(6.55) then can easily

be performed. The resulting expressions are

2 _ 2 2 2
3 A02 (d¢/dx)dX/£ — - (ZAF/EaK n) c (£)(l+q){€aIO(€a)/2

- Ea Il (5a)} (04/2) (6.59)

It B (d /d )d /2 " (A /2) [- g (00 VG + 52° VON-DOW]?
0 01 p0 X X _ po 0:1 01 l 02 2

- (AF/K20) 12 (6a)c(4)(1+q)1 (6.60)

1% B (66/6 )d /2 — (44/2) [- 2 (0° -0° )(-1)°‘+1F2
0 02 X X ‘ “=1 01 02

-(8A2F2/E:K2n){{c (9.)2 (1 + q + q2)/3}

2 2 2

[Ea IO (6a) 11 (Ea) - 6a {10(Ea) -Il(€a) }/2]}](6.61)
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2

2 o -o o —o
0 R01 (dpo/dx)dx/£ = (Ape/2) [- 0:1 (0alvl + 0a2v2)

- (ii/BKZU) c (2) (1 + q)] (6.62)

1% R (d¢/dx)dx/£ = (0¢/£) [- g (00 - 0O ) F

0 02
OF]. a]- 012

- (8AF/K2€:n){{c (IL)2 (1+q+q2)/3}

2

{Ea IO (Ea)/2 - 5a I1 (Ea)}}] (6.63)

“
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We introduce equations (6.59)-(6.63) into equations

(6.53)-(6.55). From (6.52), there follow

“
F

Uo = A02 (0¢/£) = constant (6.64)

0 (6.65)I (Afinc/fi)B (00/0) + BO02 (Ac/2) + BO
3 4

J = R02 (00/2) + RO (Ac/2) + Ro4 (Alnc/i) constant (6.66)
3

where A02, 302’ and R02 are given by

__ 22 2 _
A02 - - (ZAP/EaK n){c (£)(l+q)}[€a 10(Ea)/2 Ea11(Ea)] (6.67)

2

— o 0 0+1 2

B02 = - E (901 - Q02) (-1) F

0—1

- (SAZFz/EiKZn){{C (1)2 (1+q+q2)/3}

[ I ( ) I ( )- 2(1 ( )2-1 ( )2}/2]}(6 68)
5a o E;a l E(a ga o 8‘:a 1 ga '

— 2 o o 2 2 2 2

R02 = - ail (0&1 - 0&2)F- (8AF/gaK n)HC(£) (1+q+q )/3}

[5: 10 (ga)/2 - 5a I1 (ga)]} (6.69)
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Our chief goal, however, is to obtain explicitly

the expressions for U0 and 3 as functions of salt concen-

trations. Hence, we combine (6.64) through (6.66) appro-

priately and rearrange the resulting equations. There

follow, then,

UO 2 = (AOZBo3/B02) Ac - (AozBo4/B02)A2nc (6.70) g

6
a“

J 2 = {R03 - (R02303/Boz)} Ac f

+ {Ro4 — (ROZBO4/B02)} A2nc (6.71)

which give (a) 2 and 3 2 as functions of salt concentra—

tions. As we shall see later, these equations can be used

to study and interpret osmotic flow phenomena of fluids in

loose, moderately charged membranes.

F. The Onsager Trans—

port Coefficients

 

 

Before we can proceed further to investigate our

results numerically, it is essential to acquire consider-

ably more knowledge of the physical and chemical proper-

'ties of the linear phenomenological coefficients, or

Onsager Coefficients, 9:8. For simplicity, we follow

the treatment of Miller (1966) since it is probably the

best reference which deals with the determination of
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I I 0 I O O

ionic transport coeff1c1ents QaB’ for isothermal vector

transport process in binary electrolyte systems based on

the SF reference frame.

Consider an isothermal system consisting of a

neutral solvent, e.g., water, and a binary electrolyte

j
I

which ionizes completely into the solution giving two

ions. The independent flows for the system are those of

the two ions since (30)o E 0 for the SF reference frame.

Hence, the transport equations are

I
M
m
e
w
-
P
m
‘
w
m
n
r

+

i + (2° :2 (6.73)

where the 2a (a = 1,2) are the conjugate forces, as given

explicitly in Chapter II. These equations completely

describe the isothermal vector transport properties in a

binary electrolyte solution provided the 9:8 are known as

functions of the temperature T, the pressure p, and com-

position.

The 9°

a8

because they arise from a fundamental thermodynamic theory

are the fundamental transport coefficients

as outlined in Chapter II. Any isothermal transport

process in a binary system is completely characterized

by equations (6.72) and (6.73) together with a knowledge

of the Q: as functions of c, T, p. Moreover, the same

8
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9:8, apply when the phenomena is two or three dimensional,

e.g., where an electric field is perpendicular to the

diffusion direction. Consequently, even though the con-

centration dependence of the 9:8, is determined experi-

mentally from the one-dimensional special cases, the re-

sulting numbers can be applied to any process no matter

how complex. The experimental Onsager transport co-

m
:
w
m
‘
r
'
“
?
!

(

efficients for some uni-univalent electrolytes are

listed in Table 6.1.

“
_
l
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n
‘
fl
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G. Results and Discussion
 

In the following treatment we make use of equation

(6.70) to study anomalous osmosis. We consider a porous,

moderately charged membrane for which the fixed surface

charge density '0' is 10.3 C/m2 and capillary radius 150 g,

whence Ka >> 1 in the range of the salt concentrations used

for this study. In particular, we assume a negatively

charged membrane with 0 = - 10-3 C/mz, and choose the

following experimental conditions: the salt used is

NaCl, the temperature is 25°C, the isothermal shear

viscosity of water, n at 25°C is 8.903 X 10-10 J sec

cm-B, the electric permittivity of water, i.e., Do/4W,

10 1 -l
at 25°C is 6.94 x 10. C V- m , and the partial molar

volumes of Na+ and Cl- ions at infinite dilution are -l.4

and 18 cm3 mole-l, respectively (see also Table 4.1,
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Table 6.1a--The Onsager transport coefficients for

H O-NaCl at 25°C.

 

 

2

'6', 1012 x (221/6, 1012 x (232/5, 1012 x (232/6,

mole/2 mole cm2/J sec mole cmz/J sec mole cm2/J sec

0.0000 5.381 0.000 8.201

0.0010 5.363 0.026 8.177

0.0005 5.341 0.058 8.146

0.0010 5.325 0.081 8.123

0.0050 5.263 0.170 8.036

0.0100 5.219 0.233 7.974

0.0500 5.065 0.440 7.742

0.1000 4.971 0.554 7.601

0.2000 4.851 0.682 7.435

0.5000 4.613 0.840 7.121

0.7000 4.484 0.882 6.950

1.0000 4.311 0.911 6.772

1.5000 4.053 0.923 6.370

2.0000 3.812 0.911 6.035

2.5000 3.581 0.884 5.708

3.0000 3.366 0.858 5.393

~
.
.
f
1
;
_
m
1
" 'r

l

.
b

 .
|
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Table 6.1b--The Onsager transport coefficients for

 

 

E, 1012 x 021/5, 1012 x 0:2/5, 1012 x 052/6,

mole/2 mole cmz/J sec mole cmZ/J sec mole cmZ/J sec -

0.0000 7.892 0.000 8.198 E

0.0001 7.872 0.026 8.176 §

0.0005 7.844 0.059 8.148 E

0.0010 7.826 0.086 8.129 1

0.0050 7.746 0.187 8.045

0.0100 7.694 0.256 7.991

0.0500 7.520 0.503 7.810

0.1000 7.430 0.647 7.715

0.2000 7.331 0.809 7.613

0.5000 7.193 1.038 7.478

0.7000 7.140 1.124 7.425

1.0000 7.077 1.214 7.365

1.5000 6.972 1.304 7.265

2.0000 6.866 1.362 7.160

2.5000 6.754 1.404 7.050

3.0000 6.634 1.440 6.929
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Table 6.1c—-The Onsager transport coefficients for

H20-LiCl at 25°C.

 

 

1

 

E, 1012 x 0‘1’1/‘5, 1012 x 0‘132/6, 1012 x (232/6,

mole/2 mole cmz/J sec mole cmZ/J sec mole cmz/J sec

0.0000 4.153 0.000 8.197

0.0001 4.137 0.021 8.166

0.0005 4.115 0.051 8.136

0.0010 4.103 0.073 8.112

0.0050 4.046 0.162 8.020

0.0100 4.011 0.223 7.956

0.0500 3.870 0.417 7.718

0.1000 3.774 0.513 7.547

0.2000 3.624 0.614 7.290

0.5000 3.316 0.700 6.827

0.7000 3.159 0.714 6.593

1.0000 2.942 0.699 6.286

1.5000 2.662 0.677 5.877

2.0000 2.406 0.622 5.475

2.5000 2.156 0.548 5.073

3.0000 1.954 0.500 4.718
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Chapter IV). The experimental Onsager transport co-

efficients for the NaCl-HZO system at 25°C are taken from

Table 6.1. The ratio of the concentrations of two solu-

tions is fixed. Plots of U0 (2) calculated from (6.80)

at q = 0.5 and 0.25 against the logarithm of the salt

concentration varied are shown in Fig. 6.1. It can be

seen from Fig. 6.1 that bell-shaped curves are obtained

..
W
W
fi
‘
r
r
—
m
r
'

for both cases, and the maximum flow rate at q = 0.5

occurs approximately at the salt concentration of 0.06667

 

mole 2-1 while that at q = 0.25 occurs approximately at

the salt concentration of 0.08 mole 2-1.

Moreover, to see that our equation is also useful

for positively charged membranes, we plot Uo 2 calculated

3 C/m2 againstfrom (6.70) at q = 0.5, taking 0 = + 10‘

the logarithm of the salt concentration varied. The re-

sult is shown in Fig. 6.2. It is found that the values

of U0 2 are all negative. This indicates that the

direction of the osmotic flow of fluid is changed and

the flow moves toward the more dilute solution (anomalous

negative osmosis) as can be seen from Fig. 6.2.

As a result, it is apparent that the direction of

the osmostic flow of fluid in charged membranes changes

as the sign of 0 changes. This fact has not been ex-

plained by previous theories (sf. Kobatake, 1964). The

failure of previous theories to account for this fact
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II

1 1 1 1

—ll -10 -9 -8 -7 -6

2n c (0) +

Fig. 6.1-—Plot of U0 2 (in cm2 per sec) as a function of the

logarithm of the salt concentration, c (0). Curve I,

q = 0.25. ‘Curve II, q = 0.5. The glectrolyte used

is NaCl. 0 = -10-3 C/mz. a = 150 A. t = 25°C.  
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Fig. 6.2-—Plot of U 2 (in cm2 per sec) as a function of the

logarithmoof

0.5. 0 = 10

a = 150 X.
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C/mz. The electrolyte used is NaCl.

t = 25°C.

q:

V
M
H
“
n
a
.
w
r
:
—
m
:
m



129

apparently arises from the use of restrictive simplifica-

tions in their treatment of the theories, which we have

discussed before. These restrictions have been excluded

in our theoretical development. Hence, we are confident

that our equation is much more complete and better in

describing various membrane systems. Consequently, the

experiments in study of osmotic flow phenomena in charged

membranes can now be interpreted more accurately, in

principle. Unfortunately, so little experimental infor-

m
w
g
w
n
r
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t
m
'
m
fl
m
w
’

mation is available regarding the actual values of mem-

brane charge and pore size that we cannot make a full

comparison with eXperiment. Perhaps our equation can

be used to determine charge and pore size in conjunction

with fully—characterized experiment. The shapes of our

curves are qualitatively the same as those found experi-

mentally (Kobatake and Fujita, 1964; Tasaka, Kondo and

Nagasawa, 1969) and we certainly predict the proper

direction of flow.

In the theoretical development of this chapter,

we have made use of the assumptions that Ka >> 1, and

that the gradient of 2n c is small enough compared to

the trans-membrane potential that (6.22) is satisfied,

and have adopted only the zeroth order solution for the

potential. Although we have clearly made only a start

at obtaining a complete theory of transport through
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membranes, it is at last, a well-formulated, self—

consistent start. Hopefully, we have laid the founda—

tion sufficiently firmly that future investigators,

including ourselves, will not need to reexamine the

foundation, but may instead build upon it.
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APPENDIX A

A DERIVATION OF THE CHAPMAN-GOUY EQUATION

FOR A CHARGED CYLINDER

Consider a charged cylinder containing an aqueous,

binary, uni—univalent electrolyte solution. The Chapman-

Gouy equation can be derived from the usual Poisson—

Boltzmann equation in the form

B B

(Do/r) (dr (dw/dr)/dr) = - 40F (c+ - c_) (A.l)

where r is the radial coordinate, D0 is the isothermal

dielectric constant of water, 0 is the electrostatic

potential, F is the Faraday constant, and where c: (a = +,-)

is the Boltzmann equation molar concentration of species a,

B _

Ca = c exp (-zaF0/RT) , (A.2)

where E is the average salt concentration, 2a is the

valency of a, R is gas constant, and T is the absolute

temperature. The boundary conditions are

dw/dr = O at r = 0, and dw/dr = 4no/DO at r = a , (A.3)

where o is the surface charge density fixed on the cylinder

wall, and a is the radius of the cylinder.
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We introduce (A.2) into (A.1) and make use of the

following substitutions:

Fw/RT = w

r = E/K

where K—1 is the Debye length

 

K = /80F26/DORT

There results, then,

(l/E) (d€(dY/d€)/d€) = sinh? .

where we have made use of the transformation

We rewrite (A.7) as

d2 Y/dgz + (1/5) (dY/dg) = sinh?

Equation (A.9) reduces to

d2 W/dgz = sinh? ,

for (1/5) (dY/dg) << d2 Y/dgz, in particular, for Ka >>

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

1

and (dW/dg)o = 0. It is also assumed in this derivation

that W vanishes at E = 0. The boundary conditions on W

then become,

W
W
I
”
W
W

.1



dW/dg 0 and W = 0 at E = 0 (A.11)

dW/dg 4noF/DORTK at S = E , (A.12)
a

where Ea is the value of g at the wall, i.e., Ea = Ka, and

where we have used (A.3) and (A.4).

We now solve (A.10) subject to (A.11) and (A.12).

Making use of the transformation

dW/dg = p , (A.13)

whence

(129/dz:2 = p (dp/dY) , (A.14)

there follows, from (A.10),

p (dp/dW) = sinh? . (A.15)

The solution to (A.15) is immediately obtained, yielding

2
p /2 = cosh? + b , (A.16)

where b is the constant of integration which is readily

evaluated, subject to (A.11), to give

b = -1 . (A.17)

Hence, (A.16) becomes

p2/2 = coshY - 1 (A.18)
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The Chapman-Gouy equation relates the surface

potential to the surface charge density fixed on the wall.

Hence, we have, from (A.12), (A.13), and (A.18),

l 2 _ _
f (4noF/DORTK) — cosh‘i’a 1 , (A.19)

where Ya is the value of W at the wall. By rearrangement,

(A.19) becomes

0 4 (zeRTE) (coshYa - 1)/2 (A.20)

 

where e is the electric permittivity

e = Do/40 . (A.21)

From (A.20), there follows, then,

0 = 2 (268TE)1/2 sinh (Ya/2) , (A.22)

where we have used

 

sinh (Ya/2) = /(cosh‘i’a - 1)/2 . (A.23)

Equation (A.22) is the Chapman-Gouy equation.
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APPENDIX B

DERIVATION OF EQUATIONS (4.87) AND (4.88)

In the following we derive equations (4.87) and

(4.88). From the recurrence formula,

d EIl/dg = 510 , (B.l)

we have, in (4.87),

E
I 3 = 5 2 = E 2
o 610 dg 0 IO (:10) d6 3 Io dg Il . (8.2)

By integration by parts, there results

3 _ 2 _ g

0 d6 — 51110 2 g gIlIOdIo (8.3)15 61

0

Note, however, that

dIO/dg = Il , (8.4)

whence

:5 61 I d1 = 15 61 1 (dI /dg)dg = I5 6121 dg (B 5)
0 1 o o 0 1 o o 0 1 o '

Substitution of (B.5) into (B.3) yields, by rearrangement,

equation (4.87),

E 2 _ 2 _ g 3
0 gIOIldg — 61011/2 0 gIodg/z (8.6)
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To obtain equation (4.88), we write

)5 Elida = 15 I:d(€2/2) (B.7)
0 0

By integration by parts, there results

a 2 _22 _62
3 gIodg - a 10/2 I g IodIO (8.8)

From (3.4), we have

{
'
1
'
}
.
I
.
,
!
“

=
.

E
l

.
I
'
”
l
l
l
l
l
i
m
.

E 2 _ E 2 _ E
a a 10910 - 3 6 IO (dIO/da) d6 — 5 (EIO)(€Il)d€

_ E _ 2 2

0

where we have used (B.l). Substitution of (B.9) into (B.8)

yields equation (4.88),

2

o
(g 41 d: = 62 (I: _ Ii)” (8.10)

0
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