

OVERDUE FINES: 25¢ per day per item

RETURNING LIBRARY MATERIALS: Place in book return to remove charge from circulation records

INTERSPECIFIC HYBRIDIZATION IN THE GENUS VIGNA

Ву

Nung Che Chen

A DISSERTATION

Submitted to

Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Horticulture

1980

ABSTRACT

INTERSPECIFIC HYBRIDIZATION IN THE GENUS VIGNA

Ву

Nung Che Chen

Interspecific hybridization among four species of Asian food legumes, namely, \underline{Vigna} radiata (L.) Wilzcek (mungbean), \underline{V} . mungo (L.) Hepper (black gram), \underline{V} . umbellata (Thunb.) Ohwi and Ohashi (rice bean) and \underline{V} . angularis (Wild.) Ohwi and Ohashi (adzuki bean) was investigated. Pod-set and percentage of pods harvested varied with interspecific cross combinations and cultivars used. An increase in the number of F_1 seeds was possible in the cross, \underline{V} . radiata x \underline{V} . umbellata, through the use of intraspecific hybrids as parents. An interspecific hybrid of \underline{V} . mungo x \underline{V} . angularis was also accomplished by the use of intraspecific hybrids as parents. Except for the cross between \underline{V} . umbellata and \underline{V} . angularis, all other reciprocal interspecific crosses were unsuccessful.

Hybrid seeds were obtained from the following crosses:

- V. radiata x V. mungo, V. radiata x V. umbellata and
- \underline{V} . \underline{mungo} x \underline{V} . $\underline{angularis}$. Hybrid plants were obtained using embryo culture from the following crosses: \underline{V} . $\underline{radiata}$
- x V. angularis, V. umbellata x V. angularis and V. angularis
- x V. umbellata. A reciprocal hybrid of the interspecific

cross between \underline{V} . $\underline{umbellata}$ and \underline{V} . $\underline{angularis}$ was successfully made.

Growth and lethality of interspecific hybrid seedlings were influenced by the genotypes of the parental species.

Parnetal genotypes also affected the fertility of interspecific hybrids which ranged from partially fertile to completely sterile depending upon the interspecific cross combinations.

Three chemicals, E-amino-n-caproic acid (EACA), gentisic acid and L-lysine, were used to increase the success of making interspecific crosses in the genus \underline{Vigna} . The EACA as a foliar spray was the most effective chemical in producing of interspecific hybrids between \underline{V} . $\underline{radiata}$ and \underline{V} . $\underline{umbellata}$. Daily foliar applications of EACA to the plants of the maternal parent, \underline{V} . $\underline{radiata}$, for 14 days prior to hybridization with \underline{V} . $\underline{umbellata}$ significantly increased the frequency of hybrid embryos (22%) and the numbers of F_1 seeds (from 2 to 9 times). Concentrations of 100 to 1000 mg EACA/1 were the most effective.

Other techniques were also used to facilitate the success of the interspecific cross, \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$. Number of F_1 seeds was increased when pods were allowed to mature with part of the pedicels were severed 10-14 days after pollination and when they were

cultured \underline{in} \underline{vitro} . The number of F_1 seeds increased by 9 and 5 times for partial detached and detached pods, respectively. Partial and complete removal of leaves from the maternal plant 4 days after pollination also increased the number of F_1 seeds from 7- to 10-fold as compared to the control. "Side-grafting" between two species and the use of V. radiata var. sublobata as a species bridge were effective in reducing embryo abortion and increasing the numbers of F_1 seeds by 11 and 45 times, respectively. Hybrid sterility was circumvented by doubling the chromosome number. Triploid plants (amphidiploid x V. radiata) were successfully obtained by using embryo culture. Variation in morphological characteristics and fertility was observed in the progenies by selfing the backcross progenies. Similar observations were made in the progenies resulting from the second backcrossing.

a a v

)) (

t(

M.

ACKNOWLEDGMENTS

The author wishes to express his deep gratitude to his former major professor, Dr. Larry R. Baker, for his guidance and encouragement that made this study possible, and for his valuable suggestions and critical review in the preparation of this manuscript.

The author extends his sincere appreciation to his major advisor, Dr. S. Honma, and also to the other members of his committee, Drs. J.F. Fobes, J.F. Kelly, M.W. Adams and P.S. Carlson, for their guidance, suggestions and review of this manuscript.

Sincere appreciation is also expressed to Dr. W. Tai for the use of his research facilities, and to Drs. J.C. Moomaw and J.J. Riley, former Director and Associate Director, respectively, The Asian Vegetable Research and Development Center (Taiwan) for their support and encouragement. A special thanks is extended to his colleague, James Parrot, for his assistance with embryo culture techniques.

Heartfelt gratitude is extended to his wife, Suman for the many sacrifices she had to make while giving him her unqualified support and also to his sons, Wayne and Mike, for their belief in their father.

Guidance Committee:

Section I, II and III are segments of related thesis research information condensed into formats suited and intended for publication in Euphytica (Section I and III) and in the Journal of the American Society for Horticultural Science (Section II).

A L L L S S S S S

1.00 00/

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	vii
SECTION I	
INFLUENCE OF PARENTAL CULTIVAR AND PARENTAL	
HETEROZYGOSITY ON INTERSPECIFIC CROSSABILITY AMONG FOUR SPECIES OF VIGNA	1
Summary	1 3
Materials and Methods	3 6
Results and Discussion	10
General Discussion and Conclusion	47 50
	30
SECTION II	
EFFECT OF E-AMINO-N-CAPROIC ACID ON INTER-SPECIFIC HYBRIDIZATION IN THE GENUS <u>VIGNA</u>	53
Abstract	53
Introduction	5 5
Materials and Methods	57
Results and Discussion	60 79
SECTION III	, 5
SECTION III	
TECHNIQUES IN CIRCUMVENTING CROSSABILITY BARRIERS IN THE INTERSPECIFIC CROSS, VIGNA	
RADIATA x V. UMBELLATA	81
Summary	81
Summary	82
Materials and Methods	84 88
References	105

LIST OF TABLES

Tab1	e	Page
	SECTION I	
1.	Description of four Vigna species used as parents for interspecific hybridization	7
2.	Crossability for the interspecific cross of \underline{V} . radiata (M) and \underline{V} . mungo (B)	11
3.	Effects of parental cultivar on the growth and fertility of interspecific hybrids of \underline{V} . radiata \underline{x} \underline{V} . mungo	14
4.	Comparison of the morphological characteristics of \underline{V} . radiata (M865), \underline{V} . mungo (T-9) and their interspecific hybrid	18
5.	Crossability for the interspecific hybridization of \underline{V} . radiata (M) and \underline{V} . umbellata (R)	20
6.	Comparison of the morphological characteristics of \underline{V} . radiata (Tainan #1), \underline{V} . umbellata (HK) and their interspecific hybrid	22
7.	Effects of parental cultivar cross on growth and fertility of the interspecific hybrid of \underline{V} . radiata x \underline{V} . umbellata	2 4
8.	Crossability for the interspecific hybridization of \underline{V} . radiata (M) and \underline{V} . angularis (A)	26
9.	Comparison of the morphological characteristics of \underline{V} . radiata (Tainan #1), \underline{V} . angularis (KS#210) and their interspecific hybrid	29
10.	Crossability for the interspecific hybridization of \underline{V} . $\underline{\text{mungo}}$ (B) and \underline{V} . $\underline{\text{umbellata}}$ (R)	33
11.	Crossability for the interspecific hybridization of \underline{V} . $\underline{\text{mungo}}$ (B) and \underline{V} . $\underline{\text{angularis}}$ (A)	36
12.	Comparison of morphological characteristics of V. mungo (NI208 x T-9), V. angularis (KS#210) and their interspecific hybrid	39
13.	Crossability for the interspecific hybridization of \underline{V} . $\underline{umbellata}$ (R) and \underline{V} . $\underline{angularis}$ (A)	40

Table			Page
14.	Comparison of the morphological characteristics of V . umbellata (HK), V . angularis (Chien Shien) and their interspecific hybrid	•	44
	SECTION II		
1.	Effect of EACA treatments on the success of the interspecific cross of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	•	61
2.	Effect of EACA applied as post-pollination treatments on the success of the interspecific cross of \underline{V} . radiata x \underline{V} . umbellata	•	64
3.	Effect of duration of treatment with 1000 mg/l EACA on viable seed set of the interspecific cross of \underline{V} . radiata x \underline{V} . umbellata	•	66
4.	Response of two varieties of \underline{V} . radiata to EACA treatments by interspecific hybridization with \underline{V} . umbellata	•	67
5.	Relative effect of EACA and gentisic acid on the success of the interspecific cross of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	•	70
6.	Relative effect of EACA and L-lysine on the success of the interspecific cross of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	•	72
7.	Effects of EACA and L-lysine on development of 14-day-old pods, seeds and embryos produced from the cross of \underline{V} . radiata \underline{x} \underline{V} . umbellata	•	7 4
8.	Effects of EACA, gentisic acid and L-lysine on development of 12-day-old \underline{V} . radiata \underline{x} \underline{V} . umbellata embryos	•	76
	SECTION III		
1.	Effect of the partial detached and detached pods on the success of the interspecific cross, \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	•	90
2.	Effect of post-pollination time for partial detached and detached pods on the success of the interspecific cross. V. radiata x V. umbellata.		9 2

Tab1	e ,	Page
3.	Effect of defoliation on the success of the interspecific cross, \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	93
4.	Effect of time and degree of defoliation on the success of the interspecific cross, \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$	9 4
5.	Effect of mixed pollen on facilitating interspecific hybridization of \underline{V} . $\underline{radiata}$ and \underline{V} . $\underline{umbellata}$	97
6.	Influence of interspecies grafting on overcoming crossability barriers for the interspecific cross of \underline{V} . radiata x \underline{V} . umbellata	98
7.	Effect of <u>V</u> . radiata var. sublobata as a bridge species to improve the crossability of <u>V</u> . radiata and <u>V</u> . umbellata	100

LIST OF FIGURES

Figu	ıre	Page
	SECTION I	
1.	Interspecific hybrids of V. $\underline{radiata} \times \underline{V}$. \underline{mungo} and \underline{V} . $\underline{radiata} \times \underline{V}$. $\underline{umbellata}$	15
2.	Interspecific hybrids of \underline{V} . $\underline{\text{radiata}} \times \underline{V}$. $\underline{\text{angularis}}$ and \underline{V} . $\underline{\text{mungo}} \times \underline{V}$. $\underline{\text{angularis}}$	30
3.	Interspecific hybrids of \underline{V} . $\underline{umbellata} \times \underline{V}$. $\underline{angularis}$ and the reciprocal hybrid	4 2
	SECTION III	
1.	Comparative growth of pod, seed and embryo of natural self of \underline{V} . $\underline{radiata}$ and the interspecific hybrid, \underline{V} . $\underline{radiata}$ \underline{x} \underline{V} . $\underline{umbellata}$.89
2.	Plants of interspecific hybrid V. radiata x V. umbellata, amphidiploid, triploid and progenies of the triploid	102
	or one cribioids s s s s s s s s s s s s s s s s s s	102

SECTION I INFLUENCE OF PARENTAL CULTIVAR AND PARENTAL HETEROZYGOSITY ON INTERSPECIFIC CROSSABILITY

AMONG FOUR SPECIES OF VIGNA

SUMMARY

Interspecific crossability among four species of Vigna, namely, V. radiata (mungbean), V. mungo (black gram), V. umbellata (rice bean) and V. angularis (adzuki bean), was investigated. Pod-set and percentages of pods harvested varied with the combinations of two parental cultivars of each species for most of the interspecific hybrid crosses. The use of intraspecific hybrids as parents was slightly superior to the use of cultivars. A remarkable increase in viable seed production was found for the interspecific cross, V. radiata x V. umbellata, by using intraspecific hybrid as parents. Furthermore, a successful interspecific hybrid of V. mungo x V. angularis was accomplished through the use of intraspecific hybrid parents. Reciprocal cross differences were common in all the interspecific combinations. Except for the cross between V. umbellata and V. angularis, all other reciprocal interspecific crosses were unsuccessful.

Viable seeds were obtained from the interspecific crosses of <u>V</u>. radiata x <u>V</u>. mungo, <u>V</u>. radiata x <u>V</u>. umbellata and <u>V</u>. mungo x <u>V</u>. angularis. Hybrid plants were obtained from cultured embryos for the interspecific crosses of <u>V</u>. radiata x <u>V</u>. angularis, <u>V</u>. umbellata x <u>V</u>. angularis and <u>V</u>. angularis x <u>V</u>. umbellata. A successful reciprocal hybrid of the interspecific cross

between V. umbellata and V. angularis is reported.

Growth and lethality of the interspecific hybrid seedlings were influenced by the genotypes of both parental species. Parental genotypes also affected the fertility of interspecific hybrids. Complete hybrid sterility was found in the interspecific crosses of V. radiata x V. umbellata, V. radiata x V. angularis and V. mungo x V. angularis, while reduced fertility was observed for the interspecific hybrids of V. radiata x V. mungo, V. umbellata x V. angularis and V. angularis x V. umbellata.

INTRODUCTION

Interspecific hybridization is a useful tool in plant breeding to create new genetic variation. Interest in interspecific hybridization has gained impetus as improved hybridization techniques increased the possibilities of successful crosses (Sanchez-Monge & Garcia-Olmedo, 1977).

The four oriental species of food legumes, <u>Vigna</u>

<u>radiata</u> (L.) Wilzcek (mungbean), <u>V. mungo</u> (L.) Hepper

(black gram), <u>V. umbellata</u> (Thunb.) Ohwi and Ohashi

(rice bean) and <u>V. angularis</u> (Wild.) Ohwi and Ohashi

(adzuki bean), are important pulse crops in parts of

Asia and Africa (Rachie & Roberts, 1974). These species

are distinguished from other food legumes by their Asian

origin and their yellow flowers and were recently

separated from Phaseolus by Verdicourt (1970).

Varying degrees of success in interspecific hybridization of Vigna have been reported (Dana, 1966, 1967; De & Krishnan, 1966; Al-Yasiri & Coyne, 1966; Sawa, 1973; Biswas & Dana, 1975; Chen et al., 1977; Chowdhury & Chowdhury, 1977; Ahn & Hartmann, 1977, 1978a, 1978b).

The degree of success was influenced by the parental cultivars used and the parental heterozygosity. Honma and Heeckt (1958, 1959), using different cultivars and intraspecific hybrids, were successful in obtaining the

interspecific hybrids of P. vulgaris and P. lunatus and P. coccineus x P. lunatus. Mok et al., (1978) reported that the genotypes of the parents appear to be essential in generating interspecific hybrids. By using different parental genotypes, they were able to obtain the hybrids of P. vulgaris x P. lunatus, P. vulgaris x P. acutifolius and P. acutifolius x P. vulgaris through the aid of embryo culture. The rate of growth and final size of these hybrid embryos seemed to be influenced by the genotypes of both parents. In other studies, Taira et al., (1978) reported that the Triticum turgidum (wheat) and Secale cereale (rye) parental genotypes exerted a definite effect on the frequency of normal embryo formation and seed-set of wheat-rye crosses. Parental genotypes do play an important role in the success of interspecific hybridization.

The causes of failures of interspecific crosses in food legumes are not fully understood. In some cases, the pollen tubes are unable to penetrate the stigma and style (Chowdhury & Chowdhury, 1977). In other cases, fertilization occurs, but embryo abortion takes place during embryogenesis (Honma, 1956; Al-Yasiri & Coyne, 1966; Ahn & Hartmann, 1977, 1978a, 1978b). The failure of interspecific hybridization due to embryo degeneration is common in interspecific crosses of food legumes (Ahn

§ Hartmann, 1977; Chen et al., 1977). Moreover, interspecific hybrids obtained are often completely sterile or only partially fertile, while relatively few are fertile. This investigation reports the effects of parental cultivars on interspecific crossability, describes the interspecific hybrid plants derived from four <u>Vigna</u> species, and compares the use of homozygous with heterozygous parents for interspecific crossability.

MATERIALS AND METHODS

Plant materials. Two parental cultivars each of <u>V. radiata</u> (Tainan #1, M865), <u>V. mungo</u> (T-9, NI208), <u>V. umbellata</u> (HK, S-91) and <u>V. angularis</u> (Chien Shien, KS#210) were used for hybridization (Table 1). In general, the two selected parents of each species were diverse in their origins and phenotypes. All possible combinations, including reciprocals, were made between four species. Intraspecific hybrids were produced by crossing the two cultivars of each species to obtain heterozygous parents for the interspecific crosses.

Cultural conditions. Plants were grown under glasshouse conditions. During winter, temperatures were adjusted to 26° C (day) and 18° C (night) with a photoperiod of 14 hr light supplied by high intensity metal-halide lamps (10-12 klx). Two plants were grown in a 20 cm pot containing "Peat Lite Mix". A total of eight plants of each parental cultivar were used for the female. All parental cultivars including intraspecific F_1 were planted at the same time. Several plantings were made of the male parents to assure adequate pollen. Plants were fertilized with 3 g/pot of Peter's fertilizer (20N-20P-20K) biweekly. A short-day photoperiod was used for V. umbellata to induce flowering.

Description of four Vigna species used as parents for interspecific hybridization. Table 1.

Species	Common name	Cultivar name	AVRDC ¹ Accession No.	Origin
<u>V</u> . <u>radiata</u>	Mungbean	Tainan #1 M865	2013 1837	Taiwan India
V. mungo	Black gram	T-9 NI 208	3115	India Zaire
V. umbellata	Rice bean	HK S-91	4006 Hc 4065 P	Hong Kong Philippines
V. angularis	Adzuki bean	Chien Shien KS#210	5124 5122	Japan Taiwan

Shanhua, Taiwan. $^{
m l}$ Asian Vegetable Research and Development Center (AVRDC).

4

.

14.

Crossing methods. Flowers used as female parents were emasculated the day before anthesis and pollinated immediately. The hybridization technique used was similar to that described by Boling et al., (1961). For the same interspecific cross, pollinations were made on both parental cultivars over the same period of time so that comparisons could be made between parental cultivars for crossability. A minimum of 100 pollinations were attempted in all possible 60 cross-combinations. Self-pollinated pods were removed daily from the plants to eliminate competition.

<u>Data collection and analysis</u>. Data were taken on the number of flowers pollinated, number of pods set and number of mature pods harvested. Flowers which abscised within 24 hr were excluded on the basis of mechanical damage. Therefore, the number hybridization included those flowers which opened normally the day after pollination. Pod-setting was recorded on the fourth day after pollination.

Mature pods were harvested individually and the number of pods and seeds recorded. The 'hybrid' seeds were germinated in petri dishes to determine their viability. Germinating seedlings were transplanted to Jiffy-7 pots. The lethality of seedlings was recorded. Morphological characteristics of the 'hybrid' plants were

•

::

: ::

÷;

::.

;÷

:..

.

::

::

•••

-

1:

:::

10

• : :

:::

:::

1:

observed and compared with the parental species. Evidence of hybridity was determined from their morphological features. Genetic markers for germination habit, epicotyl color, petiole length of the primary leaves and lobing of leaflets were used as indicators of hybridity. Pollen viability was estimated from the percentage of plump pollen grains that stained darkly and uniformly from an I₂-KI solution (Johansen, 1940). A minimum of 400 pollen grains were counted from each of five flowers per 'hybrid' plant.

Embryo culture was attempted on interspecific crosses which did not produce viable seeds from crosspollinations. Immature embryos from 14 to 18 day old pods were excised and cultured on an artificial medium described by Linsmaier and Skoog (1965). The resulting seedlings were transplanted to Jiffy-7 pots and gradually acclimatized to glasshouse conditions.

The effects of parental cultivar on crossability was tested by chi-square for percent pod-set, percent pods harvested, number of viable hybrid seeds, reciprocal cross difference, and homozygous versus heterozygous parents.

RESULTS AND DISCUSSION

Crossability of V. radiata and V. mungo. Interspecific hybridization was successful only when V. radiata was used as the female parent. The overall percentage for pods harvested was 85 and 75% for V. radiata x V. mungo and V. mungo x V. radiata, respectively (Table 2). Percent pods harvested was generally high which suggested fertilization was successful in order to obtain pod-set between these two species. The chi-square test for reciprocal cross difference in percent pods harvested was not significant (Table 2).

In the <u>V</u>. <u>radiata</u> x <u>V</u>. <u>mungo</u> crosses, differences in percent pods harvested were highly significant among the crosses and between the two cultivars of <u>V</u>. <u>radiata</u>. The best combination was Tainan #1 x T-9 which produced the highest percentage of pods harvested (92%). The percentage of pods harvested was higher on cultivar Tainan #1 than on M865; i.e., 91 and 62%, respectively (Table 2). There was no significant difference between the cultivars of the pollen parent for the number of pods harvested as well as between the use of cultivars and an intraspecific hybrid as parents for the species cross. The set-pods developed normally to maturity.

Table 2. Crossability for the interspecific cross of \underline{V} . $\underline{radiata}$ (M) and \underline{V} . \underline{mungo} (B).

				vested Total seed			
Female	Male	crossed	(%)	obtained	(%)	No./ attempt	
M1	B1	125	92.0	949	87.7	6.7	
M1	B2	140	90.7	617	79.1	3.5	
Mean		133	91.0	783	84.3	5.1	
M2	B1	136	55.9	793	88.0	5.1	
M2	B2	145	67.6	968	73.6	4.9	
Mean		141	61.7	881	80.0	5.0	
(MlxM2)	(B2xB1)	146	91.1	1132	80.7	6.9	
B1	M1	243	60.1	431	0	0	
B1	M2	203	52.1	228	0	0	
Mean		223	56.5	330	0	0	
B2	M1	148	82.4	546	0	0	
B2	M2	156	85.9	568	0	0	
Mean		152	84.2	557	0	0	
(B2xB1)	(MLxM2)	203	82.3	664	0	0	
Compari	son	% pods	harvested	Comparison	% pods h	arvested	
Within M x B			**2	Within $B \times M$		**	
between M			*	between B		*	
between B			ns	between M		ns	
cultivars vs F ₁ s		ns	cultivars vs F _l	S	ns		
MxBv	s B x M						
cultiv	ar x cui	ltivar	ns				
F ₁ x F	1		ns				

 I_{M1} = Tainan #1, M2 = M865, B1 = T-9, B2 = NI 208.

Significant at 5% (*) or 1% (**); ns = not significant by chi-square
test.

shrivelled and ruptured seeds. The partially shrivelled seeds were found to be viable by germination; while the ruptured seeds were inviable. There were no significant differences in number of viable seeds per attempt among the different combinations of parental cultivars.

Number of pods harvested varied significantly according to the parental cultivars when \underline{V} . \underline{mungo} was used as the female parent. The cultivar NI208 was superior to T-9 for crossability as indicated by the higher percentages of pods harvested and numbers of seeds produced (Table 2). Early pod development appeared normal, but later aborted. Two types of seeds, shrivelled and empty, were obtained in the crosses of \underline{V} . $\underline{mungo} \times \underline{V}$. $\underline{radiata}$ which were all inviable.

The relatively high number of pods harvested would suggest that apparently there are no barriers in crossing of these two species for the parental cultivars used. However, there were barriers to seed development which produced inviable and viable seeds for the cross of <u>V. radiata x V. mungo</u>, but completely inviable seeds in the reciprocal cross, <u>V. mungo</u> x <u>V. radiata</u>. Attempts to culture immature hybrid embryos of <u>V. mungo</u> x <u>V. radiata</u> failed to produce any seedlings.

The 15-day-old hybrid embryos were of adequate size (3.4 mm), but 10 of 21 cultured embryos formed only callus, and all others failed to grow. The reciprocal difference in crossability of \underline{V} . radiata and \underline{V} . mungo suggests interaction between genic and cytoplasmic factors (Stebbins, 1958). This interaction may be the cause of hybrid embryo degeneration when \underline{V} . mungo is used as the female parent (Ahn & Hartmann, 1977).

Growth and morphology of V. radiata x V. mungo hybrids. The hybrid plants differed according to the parental cultivars used. Hybrid lethality was high when the cross combinations involved NI208 of V. mungo. F_1 plants of Tainan #1 x NI208 and M865 x NI208 grew slowly and poorly with small crinkled leaves (Table 3, Fig. 1-a,b,c). Hybrid plants of Tainan #1 x NI208 died at various stages of growth development and never reached the flowering stage. The hybrids from the cross of Tainan #1 x T-9 grew normally at early stages but suddenly lost their vigor before or upon flowering and eventually died. The root systems of Tainan #1 x T-9 plants were observed to grow slowly and eventually succumb to root rot (Fig. 1-d). The hybrid of M865 x T-9 was the superior among the five cross combinations. The plants displayed hybrid vigor in the seedling stage which extended throughout their life cycle. Hybrid plants

Table 3. Effects of parental cultivar on the growth and fertility of interspecific hybrids of \underline{V} . radiata x \underline{V} . mungo.

Pollen	stain- ability (%)	17.3	1	46.7	31.3	23.3
Leaf size (LxW, cm)		11.5 x 7.6	4.2×2.9	14.9×10.5	5.6×3.9	16.6 x 11.4
Leaf siz	Terminal leaflet	12.0 x 8.2	5.0 x 3.5	15.6 x 11.6	6.6×4.3	17.0 x 12.4
Plant Height ¹	(CM)	38.0	34.2	41.9	25.1	53.5
Germination	(%)	82	100	100	92	× 88
Interspecific 6	hybrid cross	Tainan #1 x T-9	Tainan #1 x NI208	M865 x T-9	$M865 \times NI208$	(Tainan # 1 x M865) x (NI 208 : T-9)

 $^{
m l}$ Planted on June 5; plant height was measured 30 days after planting.

Figure 1. Interspecific hybrids of <u>V</u>. <u>radiata</u> x <u>V</u>. <u>mungo</u> and <u>V</u>. <u>radiata</u> x V. <u>umbellata</u>. 1-a: Hybrid plants of Tainan #1 x T-9 (left), Tainan #1 x NI208 (middle) and (Tainan #1 x M865) x (NI208 x T-9). 1-b: Hybrid plants of Tainan #1 x T-9 (left), M865 x NI208 (middle) and M865 x T-9. 1-c: Hybrid plants of M865 x T-9 (left) and M865 x NI208. 1-d: Root systems, top: Tainan #1 (left), Tainan #1 x T-9 (middle) and T-9; bottom: M865 (left), M865 x T-9 (middle) and T-9. 1-e: Seedlings of <u>V</u>. <u>radiata</u> (Tainan #1, left), <u>V</u>. <u>umbellata</u> (HK, right) and their interspecific hybrid (middle) showing the germination habits. 1-f: Plants of <u>V</u>. <u>radiata</u> (Tainan #1, left), <u>V</u>. <u>umbellata</u> (HK, right) and their interspecific hybrid (middle).

W: 73 · · · · · Taiman plants certai else w torpho intern impor: in the ovoid Ekei Weigh Profu The i flowe seeds tuptu 473 3 (Tab:

highe

37.673

Speci

ie:i.e.

-

derived from two heterozygous intraspecific hybrids of two parental species; e.g., (Tainan #1 x M865) x (NI208 x T-9), had a range of vigor from weak like the plants of Tainan #1 x NI208 and M865 x NI208 to vigorous like the plants of M865 x T-9.

The hybrid plants resembled the female parent for certain characters; the male for other characters; or else was intermediate in expression (Table 4). The morphological characteristics similar to male parent or intermediate between two parental species were the most important traits to use as markers to verify hybridity. In the cross of <u>V. radiata x V. mungo</u>, the characters of ovoid seeds, seed L/W ratio and concave hilum cushion liked the male parent; whereas the seed color and seed weight were intermediate.

The F₁ plants were partially fertile and flowered profusely and continuously, and had a low pod-set. The infrequent mature pods harvested from self-pollinated flowers usually contained one or two fully developed seeds. Many pods aborted prematurely with only empty or ruptured seeds. Pollen stainability ranged from 17 to 47% depending upon the combination of parental cultivars (Table 3). The hybrid plants of M865 x T-9 had the highest percentage of stainable pollen grains with an average of 47% compared to over 90% for the two parental species (Table 4). The stained pollen grains were

Comparison of the morphological characteristics of \underline{V} , radiata (M865), \underline{V} . mungo (T-9) and their interspecific hybrid. Table 4.

Character	V. radiata (female)	Hybrid	V. mungo (måle)
Margin of leaflet	lobed	1obed	entire
	16.1/11.7 (1.38)	15.6/11.6 (1.34)	13.2/7.6 (1.74)
Lateral leaflet (cm)			
L/W (ratio)	15.6/10.9 (1.43)	14.9/10.5 (1.42)	11.5/6.7 (1.72)
Days to first flowering			
(dap)	52	47	37
Pollen stainability (%)	93.4	46.7	6.96
Pod pubescence	long	long	short
Pod at maturity	radiated or drooping	radiated	upright
Pod length (cm)	8.6	3.2	4.1
No. seeds per pod	10.8	1.7	5.5
Shape of seed	globose	ovoid	ovoid
Color of seed	green	brown	black mottle
Hilum cushion	not concave	concave	concave
Seed size (mm)			
L/W (ratio)	4.8/3.8 (1.26)	5.8/3.7 (1.57)	5.6/3.6 (1.56)
Seed weight (mg)	49.7	51.7	59.3

¹Planted on February 12; dap = days after planting.

relatively plump and uniform, whereas the unstained pollen grains were smaller and variable in size.

Crossability of V. radiata and V. umbellata. The cross between V. radiata and V. umbellata was only successful when V. radiata was used as the seed parent. The pod-set was high (85% average) and few viable hybrid seeds were obtained (Table 5). When V. umbellata was used as the female, pod-set was only 21% and no viable seed was produced. The reciprocal cross differences for both pod-set and number of viable seeds were highly significant.

No differences in pod-set between the parental cultivars was found when <u>V</u>. <u>radiata</u> was used as the female parent. However, there were significant differences in numbers of viable seeds obtained for this interspecific cross (Table 5). Pods developed normally to maturity. The mature pods contained seeds which appeared from very shrivelled to partially filled. Upon germination only 1 to 11% of the total seeds harvested were viable. The percentages of viable seeds depended upon the hybrid combinations. The combination of M865 x HK produced the most viable seeds per 100 attempts, 48, while Tainan #1 x S-91 produced only 8 viable seeds. Though no differences in viable seed numbers were found between the interspecific crosses

Table 5. Crossability for the interspecific hybridization of \underline{V} . radiata (M) and \underline{V} . umbellata (R).

Parent: Female		No. flow		Pod-s		tal seeds tained	Viable (%)	seeds No./100 ttempts
M1	R1	154		89.6		878	6.7	38.3
M1	R2	160		90.0		996	1.3	8.1
Mean		157		89.8		937	3.8	22.9
M2	R1	142		74.5		699	9.7	47.9
M2	R2	155		85.2		538	7.8	27.1
Mean		149		79.9		619	8.9	37.5
(M1xM2)	(R2xR1	1) 210		92.9		1483	11.1	78.6
Compari	son		% pod	set	Viable per 100	seeds attempts	Comparison	% pod-set
Within !	M x R		ns ²		**		Within R x	M **
between	n M		ns		ns		between R	**
between	n R		ns		**		between M	ns
cultiv	ars vs	F ₁ s	ns		**		cultivars F ₁ s	vs ns
M x R v	s R x M	1						
cultiv	ar x cu	ıltivar	**		**			
$F_1 \times F$	1		**		**			

 $^{^{1}}$ M1 = Tainan #1, M2 = M865, R1 = HK, R2 = S-91.

 $^{^{2}(**)}$ significant at 1%; ns = not significant by chi-square test.

for the two \underline{V} . radiata cultivars, the difference between the two \underline{V} . umbellata cultivars as the pollen parents was highly significant. The combination of intraspecific hybrids of the two species significantly increased the number of viable seeds, 79 per 100 attempts as compared to 30 for the parental cultivars.

In the cross of \underline{V} . $\underline{umbellata}$ x \underline{V} . $\underline{radiata}$, pod-set differences were highly significant among the four combinations of parental cultivars. No effect of two \underline{V} . $\underline{radiata}$ pollinators on pod-set was observed, but the differences in pod-set were highly significant between two \underline{V} . $\underline{umbellata}$ cultivars. The pod-set on HK (32%) was higher than that on S-91 (11%). Pods on \underline{V} . $\underline{umbellata}$ usually abscised within a week of pollination. The use of heterozygous parents did not improve the low pod-set and embryo abortion.

The reciprocal cross differences in crossability suggest that cytoplasmic factors play an important role in the unidirectional success of this interspecific cross.

Growth and morphology of V. radiata x V. umbellata hybrids. The germination habit of hybrid seedlings was intermediate between the parental species which were epigeal and hypogeal for \underline{V} . radiata and \underline{V} . umbellata, respectively (Table 6, Fig. 1-e). The cotyledon

Comparison of the morphological characteristics of \underline{V} . radiata (Tainan #1), V. umbellata (HK) and their interspecific hybrid. Table 6.

Character	V. radiata (female)	Hybrid	V. umbellata (male)
Germination	epigeal	intermediate	hypogeal
Color of upper epicotyl	green	light purple	purple
Hypocotyl length (mm) ¹	.64.7 + 3.5	24 + 4.5	0
Petiole of primary leaves	sessile	short	long
Primary leaf (mm)			
L/W (ratio)	61.5/18.5 (3.32)	31.6/11.1 (2.85)	31.6/11.1 (2.85) 60.4/19.3 (3.13)
Growth habit	determinate	indeterminate	indeterminate
Terminal leaflet (cm)			
L/W (ratio)	15.4/11.9 (1.29)	21.9/15.8 (1.39) 16.6/9.6 (1.73)	16.6/9.6 (1.73)
Lateral leaflet (cm)			
L/W (ratio)	16.5/11.3 (1.46)	20.6/13.8 (1.49) 14.6/8.5 (1.72)	14.6/8.5 (1.72)
Days to first flowering			
(dap) ²	45	54	50
Top of keel color	greyish	light greyish	bright yellow
Raceme	often compound	simple	simple
Pollen stainability (%)	97.8	1.8	94.5
Pubescence of young pods	hairy	hairy	glabrous

¹Mean and standard deviation of 40 seedlings.

²Planted on February 12; dap = days after planting.

positions of the hybrid seedlings were at the soil surface, and the average length of hypocotyl was 24 mm compared to 65 mm for the V. radiata parent.

The hybrid seedlings showed poor vigor and the initial growth was slow. Abnormal seedlings with three or four primary leaves were noted. Growth of the hybrid plants was vigorous once the seedling stage was past (Fig. 1-f). Hybrid plant growth usually exceeded the parental species and was characterized by a thicker stem, larger leaves and more branches (Table 6).

The hybrid plants were also intermediate for expression of petiole length of the primary leaves and flower color (Table 6). The \underline{V} . $\underline{umbellata}$ characters of indeterminate growth and simple raceme were dominant in the F_1 plants. The indeterminate growth habit of the hybrid plants produced continuously juvenile shoots and behaved as a perennial with no signs of senescence.

The F_1 plants flowered profusely and continuously within the same racemes for a prolonged period and set few pods during cool temperature period, but abscised shortly thereafter. Stainable pollen grains were from 1.2 to 2.0% depending upon the hybrid combination of parental cultivars (Table 7). The unstained pollen grains were variable in size, while the stained pollen

Table 7. Effects of parental cultivar cross on growth and fertility of the interspecific hybrid of \underline{V} . radiata \underline{x} \underline{V} . umbellata.

Interspecific hybrid pedigree	Seedling late height (cm)	Leaf size Terminal leaflet	(LxW, cm) Lateral leaflet	Pollen stain- ability (%)
Tainan #1 x HK	9.3	21.9 x 15.8	20.6 x 13.8	1.8
Tainan #1 x S-91	10.8	22.4 x 15.9	20.8 x 14.4	2.0
M865 x HK	10.4	18.0 x 12.2	16.2 x 11.3	1.5
M865 x S-91	7.9	19.1 x 14.5	18.2 x 13.4	1.2
(Tainan #1 x M86 x (S-91 x HK)	5) 10.2	17.7 x 13.5	16.8 x 12.0	1.3

¹Planted on June 10; seedling height was measured at 3 weeks after planting.

grains were somewhat larger than the parental pollen. This was also observed by other workers (Ahn & Hartmann, 1977; Machado et al., unpublished). The sterility of the hybrid plants might be caused by the lack of chromosomal homology and resultant meiotic irregularities (Dana, 1967; Ahn & Hartmann, 1977; Machado et al., unpublished).

Crossability of V. radiata and V. angularis. Neither the parental cultivars of V. radiata nor V. angularis affected pod-set when V. radiata was used as the female parent (Table 8). The percentages of pod-set noted on the fourth day after pollination were high; viz., 77% for the four combinations of parental cultivars and 85% for the interspecific cross between the two intraspecific hybrids. However, the pods only grew to about 3-5 cm in length and finally abscised some 1 to 3 weeks after cross-pollination. A few pods were retained longer on the plants but embryo abortion eventually occurred. empty pods contained very small, shrivelled, nonviable seeds. No differences in pod-set and seed development were observed between the use of parental cultivar and intraspecific hybrid as the parents. The 15-day-old hybrid embryos appeared small, averaging 1.2 mm in length.

There were significant differences for pod-set between the parental cultivars of seed parent in the crosses of \underline{V} . angularis \underline{x} \underline{V} . radiata. However, pod-set

Table 8. Crossability for the interspecific hybridization of \underline{V} . radiata (M) and \underline{V} . angularis (A).

Par Female		o. flowers crossed	Pod-set (%)	Pod abscisi (days)	on ²
M1	A1	130	80.8	8.6	•
M1	A2	206	79.1	13.4	
Mean		168	79.8	11.0	
M2	Al	133	72.2	5.2	
M2	A2	115	76.5	8.2	
Mean		124	74.2	6.7	
(M1xM2)	(A2xA1)	214	84.6	9.8	
Al	M1	106	62.3	11.8	
A1	M2	118	68.6	15.6	
Mean		112	66.1	13.7	
A2	MI.	125	24.0	11.0	
A2	M2	131	35.1	10.2	
Mean		128	29.7	10.7	
(A2xA1)	(MlxM2)	147	57.8	10.8	
Compari	son	% pod-set	Comparison		% pod-set
Within	МхА	ns ³	Within A x	M	**
betwee	n M	ns	between A		**
between	n A	ns	between M		ns
cultiv	ars vs F ₁ s	ns	cultivars	vs F ₁ s	ns
MxAv	s A x M		M x A vs A	x M	
cultiv	ar x cultivar	**	$F_1 \times F_1$		*

 $^{{}^{1}}M1$ = Tainan #1, M2 = M865, A1 = Chien Shien, A2 = KS#210.

Mean of days to pod abscision after pollination.

Significant at 5% (*) or 1% (**); ns = not significant by chi-square test.

was equally affected by the two pollen parent

V. radiata cultivars. Pod-set on the two parental cultivars was not significantly different from the intraspecific hybrids. The pods stopped growing about 10-15 days after cross-pollination, then either abscised or the embryos aborted leaving empty pods on the plants.

Significant reciprocal differences in pod-set were found within parental cultivars and intraspecific hybrids used as parents in this interspecific cross. These results were not similar to findings of Ahn and Hartmann (1978a), perhaps due to cultivar differences. In this study, pod-set on <u>V</u>. radiata was higher than that on <u>V</u>. angularis. Pod-set on <u>V</u>. radiata and <u>V</u>. angularis averaged 77 and 47% respectively, where cultivars were used as parents, whereas, the use of intraspecific hybrids as parents increased pod-set to 85 and 58%, respectively (Table 8).

Growth and morphology of V. radiata x V. angularis

hybrids. As mentioned previously, the reciprocal crosses

of V. radiata x V. angularis did not produce viable seed.

The hybrid embryos of V. radiata x V. angularis were very

small, but appeared normal. Embryo culture of 20

embryos from 14-18 day old pods produced 15 seedlings

of which only 3 plants reached flowering. The other 12

plants died during early seedling stages. Two of the hybrid plants were cultured from the cross of Tainan #1 x KS#210, the other one from the cross of (Tainan #1 x M865) x (KS#210 x Chien Shien).

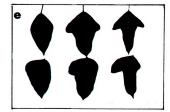
The plants derived by embryo culture were definitely hybrid (Table 9, Fig. 2-a,b,c). They were intermediate between their two parents for petiole length and shape of primary leaves. However, the hybrids resembled the <u>V. angularis</u> pollen parent for color of epicotyl, lobing of leaflet margins, and simple compact racemes.

The Tainan #1 x KS#210 hybrid plants grew vigorously with thicker stems, larger leaves and many branches, compared to the parental cultivars. However, abnormal growth occurred after the plants reached the 8 to 10 trifoliate leaf stage. The plants formed crinkled leaves and gradually ceased vegetative growth. The hybrids rarely flowered as flower buds aborted prior to anthesis. Slightly distorted plant growth and development was noted for the hybrid plant derived from the cross of (Tainan #1 x M865) x (KS#210 x Chien Shien). This difference might be accounted for by the parental heterozygosity of this interspecific hybrid pedigree.

No pod-set was observed on any of these hybrid plants. The flowers contained small numbers of pollen grains with 0.6 - 9.8% of stainable pollen grains as

Table 9. Comparison of the morphological characteristics of \underline{V} . radiata (Tainan #1),

Character	V. radiata (female)	Hybrid	V. angularis (male)
Epicotyl color	purple	green	green
Petiole of primary leaves	sessile	short	long
Shape of primary leaves	lanceolate	ovate	cordate
Margin of leaflets	entire	lobed	lobed (often)
Terminal leaflet (cm) L/W (ratio)	17.8/15.4 (1.16)	25.3/20.3 (1.25)	25.3/20.3 (1.25) 16.9/11.3 (1.50)
L/W (ratio)	19.0/14.2 (1.34)	22.6/16.9 (1.34)	22.6/16.9 (1.34) 13.9/11.1 (1.25)
Top of keel color	greyish	light greyish	light yellow
Pollen stainability (%)	97.8	8.6 - 9.8	92.0
Raceme	elongated	compact	compact
	(often compound)	(simple)	(simple)


Figure 2. Interspecific hybrids of V. radiata x V. angularis and V. mungo x V. angularis. 2-a: Hybrid plants of V. radiata (Tainan #1) x V. angularis (KS#210). 2-b: Terminal leaflets of V. radiata (Tainan #1, 1eft), V. angularis (KS#210, right) and their interspecific hybrid (middle). 2-c: Interspecific hybrid plants of V. radiata x V. angularis: Tainan #1 x KS#210 (left) and (Tainan #1 x M865) x (KS#210 x Chien Shien). 2-d: Plants of V. mungo (NI208 x T-9, left), V. angularis (KS#210 x Chien Shien, right) and their interspecific hybrid (middle). 2-e: Terminal and lateral leaflets of V. mungo (NI208 x T-9, left), V. angularis (KS#210 x Chien Shien, right) and their interspecific hybrid (middle). 2-f: Mature plants of \underline{V} . mungo (NI208 x T-9, left), \underline{V} . angularis (KS#210 x Chien Shien, right) and their interspecific hybrid (middle).

compared to over 90% for the parental species (Table 9). The sizes of unstained pollen grains were highly variable. Chromosomal irregularity and a low frequency of pairing for this species cross have been reported (Ahn & Hartmann, 1978a).

Crossability of V. mungo and V. umbellata. V. mungo was used as the female, significant differences in pod-set among the different combinations of parental cultivars were determined (Table 10). Regardless of the pollen parent cultivar, T-9 set significantly more pods than NI208. The averages for pod-set on T-9 and NI208 were 82% and 53%, respectively. There were no differences between the V. umbellata cultivars when used as the pollen parent. Pod-set was not affected by the use of F_1 parental species for the cross. hybrid pods developed normally and reached maturity. About 43 to 71% of the pods were harvested depending upon the combinations of parental species used for the cross. The mature pods contained two kinds of seeds; viz., small, undeveloped and normal full-sized seeds which were slightly shrivelled. The slightly shrivelled seeds appeared normal when imbibed with water, but failed to germinate with highly distorted cotyledons and poorly developed embryo axes.

In reciprocal crosses where V. umbellata was used

Table 10. Crossability for the interspecific hybridization of \underline{V} . mungo (B) and \underline{V} . umbellata (R).

Paren Female	ts ¹ Male	No. flowers crossed	Pod-set	Pod abscision ² (days)	
B1	R1	202	79.7	8.0	
B1	R2	165	83.6	8.4	
Mean		184	81.5	8.2	
B2	R1	166	49.4	7.2	
B2	R2	181	56.4	6.6	
Mean		174	52.9	6.9	
(B2xB1)	(R2xR1)	231	87.9	6.3	
R1	B1	152	48.7	5.5	
R1	B2	132	36.4	4.3	
Mean		142	43.0	4.9	
R2	B1	118	33.1	4.0	
R2	B2	124	58.9	4.4	
Mean		121	46.3	4.2	
(R2xR1)	(B2xB1)	177	45.8	4.9	
Compari	son	<pre>% Pod-set</pre>	Comparis	on	<pre>% Pod-set</pre>
Within 1	B x R	**3	Within R	. х В	*
between	n B	*	between	R	ns
between	n R	ns	between	В	ns
cultiv	ars vs F ₁ s	ns	cultiva	rs vs F ₁ s	ns
B x R v	-		B x R vs	RxB	
cultiv	ar x culti	var *	$F_1 \times F_1$		**

 $[\]frac{1}{B1}$ = T-9, B2 = NI208, R1 = HK, R2 = S-91.

 $^{^{2}\!\!}$ Mean of days to pod abscision after pollination.

Significant at 5% (*) or 1% (**); ns = not significant by chi-square test.

as the seed parent, the pod-set was significantly affected by the hybrid combination of parental cultivars (Table 10). However, there were no significant differences for pod-set between <u>V</u>. <u>umbellata</u> cultivars, <u>V</u>. <u>mungo</u> cultivars and intraspecific hybrids as the parents. Reduced pod growth was followed by abscision within one week of pollination. Reciprocal differences for both pod-set and subsequent pod growth was observed as pod-set was higher and pod retention longer when <u>V</u>. <u>mungo</u> was used as the seed parent than <u>V</u>. <u>umbellata</u>.

Embryo culture of hybrid embryos from the cross of <u>V. mungo</u> x <u>V. umbellata</u> was attempted. Thirty-eight embryos taken from 15 to 19 day-old pods of (NI208 x T-9) x (S-91 x HK) were cultured. Normal seedlings were obtained from 6 embryos, 22 formed callus and/or etiolated shoots with deformed leaves, and 10 did not grow. The hybrid embryos appeared normal in shape and size (4 mm in length). However, all 6 plantlets died during early seedling stages. Hybrids obtained through embryo culture have been reported (Ahn & Hartmann, 1977; Biswas & Dana, 1975). In one case, the plants flowered but were completely sterile (Biswas & Dana, 1975).

Other attempts to make this interspecific cross have been reported (Chowdhury & Chowdhury, 1977). When V. umbellata was used as the female, the pollen tubes

did not penetrate the stigma, while in the reciprocal cross the embryos aborted due to early degeneration of the endosperm.

Crossability of V. mungo and V. angularis. was a significant difference in pod-set for the cross of V. mungo x V. angularis depending on the cultivar used as the pollen parent. Regardless of the V. mungo cultivar, pod-set on Chien Shien and KS#210 was 49 and 73%, respectively (Table 11). The difference in pod-set between the two V. mungo cultivars used as seed parent was not significant. The use of intraspecific hybrids as parents significantly increased the number of pods that reached maturity without a significant increase in pod-set. The mature pods were generally empty as only 28 partially filled and shrivelled seeds were obtained. Of these seeds, 7 germinated but 6 seedlings died soon after germination. They were observed to have distorted cotyledons and poor root development. Only one seedling survived and flowered. This was the first successful interspecific hybrid plant obtained from seed. The use of heterozygous parental species did successfully enhance the crossability of this species cross. On the other hand, cultures of 8 embryos (2.5 mm in length) from 14-18 day-old pods produced 3 seedlings which died at the early seedling stages. The root systems were poorly

Table 11. Crossability for the interspecific hybridization of \underline{V} . mungo (B) and \underline{V} . angularis (A).

Paren Female	ts ¹ Male	No. flower crossed	rs Pod-set	Pods harvested (%)	Pod abscision ² (days)
B1	Al	118	52.5	35.6	8.8
B1	A2	186	78.5	53.8	9.1
Mean		152	64.4	46.7	9.0
B2	Al	135	45.9	33.3	7.9
B2	A2	123	64.4	42.3	8.2
Mean		129	54.3	37.6	8.1
(B2xB1)	(A2xA1)	164	84.2	63.4	9.3
A1	B1	112	36.6	0	7.7
A1	B2	108	21.3	0	6.8
Mean		110	29.1	0	7.3
A2	B1	124	12.9	0	4.8
A2	B2	120	8.3	0	5.0
Mean		122	10.7	0	4.9
(A2xA1)	(B2xB1)	138	36.2	0	5.8
Compari	son	% Poc		Comparison	% Pod-set
Within 1	ВхА	*3	harvested ns	Within A x B	**
betwee	n B	ns	ns	between A	**
between	n A	*	ns	between B	ns
cultiv	ars vs F	s ns	*	cultivars vs F	s *
вхАу		L		_	L
cultiv	ar x cul	tivar **	**		
$F_1 \times F$	1	**	**		

 $^{{}^{1}}B1 = T-9$, B2 = NI208, A1 = Chien Shien, A2 = KS#210.

²Mean of days to pod abscision after pollination.

Significant at 5% (*) or 1% (**); ns = not significant by chi-square test.

developed as was previously reported to be a primary cause of seedling mortality (Ahn & Hartmann, 1977). Successful hybrid plants might possibly be attained by either modifying the culture medium, particularly the sucrose content, as reported by Honma (1955) to encourage better growth of the root system or by grafting onto parental rootstocks as described by McLean (1946).

When <u>V</u>. <u>angularis</u> was used as the female, there was a highly significant difference in pod-set between the two cultivars of <u>V</u>. <u>angularis</u>. Pod-set on Chien Shien and KS#210 were 29 and 11%, respectively (Table 11). The differences in pod-set between the two <u>V</u>. <u>mungo</u> cultivars used as male parents was not significant. Moreover, a significant increase in pod-set was obtained by using intraspecific hybrids as parents; viz., 36% compared to 19% for parental cultivars. Unfortunately, all pods abscised within 10 days after pollination.

Reciprocal differences in crossability were clearly shown in crosses between these two species. When cultivars were used as parents for hybridization, pod-set on \underline{V} . $\underline{\text{mungo}}$ and \underline{V} . $\underline{\text{angularis}}$ were 62 and 19%, respectively; whereas pod-set increased to 84 and 36%, respectively, when intraspecific hybrids were used as parents (Table 11). Pod abortion was delayed by using \underline{V} . $\underline{\text{mungo}}$ as the female parent.

Growth and morphology of V. mungo x V. angularis

hybrid. The single plant obtained from the cross of

(NI208 x T-9) x (KS#210 x Chien Shien) grew slowly

during the early seedling stage, but became increasingly

vigorous as it became more established (Fig. 2-d,f).

An examination of morphological characteristics strongly suggested that the plant was a species hybrid (Fig. 2-e). It was intermediate between the two species parents for germination habit, petiole length and shape of primary leaves, and growth habit (Table 12). The hybrid resembled the \underline{V} . angularis parent in color of epicotyl, lobing of leaflet margins, and simple compact racemes.

Crossability of V. umbellata and V. angularis. In the cross of <u>V</u>. <u>umbellata</u> x <u>V</u>. <u>angularis</u>, no significant difference for pod-set was found between the two cultivars of <u>V</u>. <u>umbellata</u> or between the use of cultivars and intraspecific hybrids as female parents (Table 13). Pod-set was significantly influenced by the cultivar of <u>V</u>. <u>angularis</u> used as pollen parent. The pollen parent KS#210 produced a higher pod-set (29%) than Chien Shien (45%). The pods developed slowly and abscised 1 to 2 weeks after pollination.

The reciprocal cross using \underline{V} . angularis as the female showed no differences in pod-set between the

Table 12. Comparison of morphological characteristics of \underline{V} , mungo (NI 208 x T-9),

V. angularis	angularis (KS#210 x Chien Shien) and their interspecific hybrid.	and their interspecific h	ic hybrid.
Character	V. mungo (female)	Hybrid	V. angularis (male)
Germination	epigeal	intermediate	hypogeal
Epicotyl color	purple	green	green
Petiole of primary leaves	sessile	short	long
Shape of primary leaves	lanceolate	ovate	cordate
Margin of leaflet	entire	lobed	lobed
Terminal leaflet (cm) L/W (ratio)	16.9/10.3 (1.64)	20.7/12.6 (1.64)	18.0/11.6 (1.55)
L/W (ratio)	15.7/10.1 (1.55)	18.6/11.6 (1.60)	15.0/10.9 (1.38)
Grow habit	determinate	indeterminate	indeterminate

Table 13. Crossability for the interspecific hybridization of \underline{V} . $\underline{umbellata}$ (R) and \underline{V} . $\underline{angularis}$ (A).

Paren Female		No. flowers crossed	Pod-set	Pod abscision (days)	² Shrivelled seeds (no./attempt)
R1	Al	126	27.8	5.6	0
R1	A2	118	36.4	9.3	0
Mean		122	32.0	7.5	0
R2	A1	148	31.1	5.0	0
R2	A2	194	53.6	6.6	0
Mean		171	43.9	5.8	0
(R2xR1)	(A2xA1)	188	52.1	10.5	0
A1	R1	138	65.2	24.3	1.6
Al	R2	116	74.1	21.7	1.8
Mean		127	69.3	23.0	1.7
A2	R1	166	63.9	22.1	2.6
A2	R2	104	75.0	21.4	3.1
Mean		135	68.2	21.8	2.8
(A2xA1)	(R2xR1)	146	84.9	23.5	3.3
Compari	son	% Pod-se	t Compa	rison	% Pod-set
Within 1	RxA	*3	Withi	n A x R	ns
between	n R	ns	betw	reen A	ns
between	n A	*	betw	reen R	ns
cultiva	ars vs F	ıs ns	cult	ivars vs F ₁ s	ns
RxAv		•		vsAxR	
cultiva	ar x cul	tivar **	F ₁ x	F ₁	**

 $^{^{1}}$ R1 = HK, R2 = S-91, A1 = Chien Shien, A2 = KS#210.

Mean of days to pod abscision after pollination.

³Significant at 5% (*) or 1% (**), ns = not significant by chi-square test.

parental cultivars of both species, nor differences between cultivars compared to heterozygous hybrids as parents (Table 13). Pods on \underline{V} . angularis developed normally up to 3 weeks, then aborted.

Pod-sets were significantly higher for <u>V</u>. <u>angularis</u> x <u>V</u>. <u>umbellata</u> than the reciprocal. Crosses using parental cultivars of <u>V</u>. <u>umbellata</u> and <u>V</u>. <u>angularis</u> resulted in 39 and 69% pod-set, respectively; whereas, 52 and 85%, respectively, were achieved by using intraspecific hybrids as parents. No viable seeds were obtained for this cross. From the culture of 20 embryos (1.3 mm in length), 3 hybrid plants were obtained. Two of these hybrid plants were from the cross of <u>V</u>. <u>umbellata</u> x <u>V</u>. <u>angularis</u> and the other from its reciprocal cross. Thus, interspecific hybrids were successfully secured for the reciprocal crosses of <u>V</u>. <u>umbellata</u> x <u>V</u>. <u>angularis</u> (Fig. 3-f).

Aybrid. The two plants derived by embryo culture from the cross of HK x Chien Shien grew normally (Fig. 3-a). Epicotyl color, shape of primary leaves, seed size and seed weight of the hybrid plants were intermediate between the two parental species (Table 14). The hybrid plants resembled the female parent, V. umbellata (HK), for indeterminate growth habit, elongated racemes and concave

Figure 3. Interspecific hybrids of V. umbellata x V. angularis and the reciprocal hybrid. 3-a: Plants of V. umbellata (HK, left), V. angularis (Chien Shien, right), and their interspecific hybrid (middle). 3-b: Leaves of V. umbellata (HK, left), V. angularis (Chien Shien, right) and their interspecific hybrid (middle). 3-c: Hybrid plants of V. umbellata x V. angularis, showing fruiting (left) and continuous vegetative growth (right). 3-d: F₂ seedlings of <u>V. umbellata</u> x <u>V. angularis</u>, showing the variation of primary leaf shapes and their parents, V. umbellata (left) and V. angularis (right). 3-e: Terminal leaflets of V. umbellata x V. angularis ${\rm F}_{\rm 2}$ plants, showing the variation of leaf shapes with their parents, V. umbellata (top left two) and V. angularis (top right two). 3-f: Reciprocal interspecific hybrid plant, V. angularis x V. umbellata.

Character	V. umbellata (female)	Hybrid	V. angularis (male)
Epicotyl color	purple	light purple	green
Shape of primary leaves	lanceolate	ovate	cordate
Margin of leaflet	entire	lobed	lobed
Terminal leaflet (cm) L/W (ratio)	16.6/9.6 (1.73)	19.0/11.0 (1.73)	16.4/9.6 (1.71)
Lateral leaflet (cm) L/W (ratio)	14.6/8.5 (1.72)	15.5/10.1 (1.53)	. 14.0/9.5 (1.47)
Growth habit	indeterminate	indeterminate	determinate
Racene	elongated	elongated	compact
Flower color	bright yellow	bright yellow	light yellow
Pollen stainability (%)	94.5	77.4	92.9
Pod length (cm)	9.3	7.3	8.2
No. of seeds per pod	0.9	2.8	5,3
Seed size (mm) L/W (ratio)	7.8/3.3 (2.36)	7.6/4.1 (1.85)	7.9/5.5 (1.44)
Seed weight (mg)	74.2	85.5	167.5
Hilum cushion	concave	concave	not concave

hilum cushion. The pollen parent, \underline{V} . angularis (Chien Shien), character of lobed leaflet was dominant in the hybrid to the entire leaflet margin of the female, \underline{V} . \underline{U} . \underline{U} \underline

The hybrid plants expressed indeterminate growth by producing juvenile shoots even after flowering (Fig. 3-c). They flowered profusely and produced viable seeds, though the fertility was less than the parental species (Fig. 3-c). The pollen stainability of the hybrids was 77% compared to 95 and 93% for HK and Chien Shien, respectively (Table 14). The length of pod and number of seeds per pod for the F_1 plants was less than the parental species due to the low fertility.

Ahn and Hartmann (1978) reported that the hybrid of \underline{V} . $\underline{umbellata}$ x \underline{V} . $\underline{angularis}$ had regular meiosis with 11 bivalents and a high degree of chromosome homology. In the current study, F_2 seeds from F_1 plants germinated normally. From 60 F_2 plants, a continuous variation was observed for epicotyl color and shape of primary leaves (Fig. 3-d,e). Combination of parental types was observed; e.g., the purple epicotyl of \underline{V} . $\underline{umbellata}$ with the cordate primary leaves of \underline{V} . $\underline{angularis}$ and vice versa were found in the population (Fig. 3-d).

The reciprocal crossability of this hybrid and the relatively high fertility of the F_1 and F_2 generations indicated that the only isolating barrier to this species cross was embryo abortion which can be overcome by embryo culture. Accordingly, \underline{V} . $\underline{umbellata}$ and \underline{V} . $\underline{angularis}$ are probably closely related and genetic exchange between them may be feasible.

GENERAL DISCUSSION AND CONCLUSIONS

Stebbins (1958) reviewed several mechanisms responsible for the isolation of species including hybrid inviability, lack of vigor and sterility.

These general mechanisms might operate between the four species of Vigna in this study. Five interspecific hybrids were successfully made from the six possible crosses of four species. In general, pod-set occurred in all of the interspecific crosses. Embryo abortion took place in the crosses of V. radiata x V. angularis, V. mungo x V. umbellata and V. umbellata x V. angularis.

The remaining interspecific crosses produced viable hybrid seeds with varying degrees of success.

The degree in crossability based on the use of two cultivars per species, and for cultivars versus intraspecific hybrid parents, suggested that parental genotypes and heterozygous parental genotypes might be important factors in successful interspecific crosses. Growth and development of hybrid seedlings was also influenced by the parental genotypes of both parents. As a result, the lethality and vigor of hybrid seedlings could be improved and recovered by judicious selection of parental genotypes. In this study, the interspecific hybrid of <u>V. mungo</u> x <u>V. angularis</u> and the reciprocal hybrid, V. umbellata x V. angularis, were produced through the use

of proper parental genotypes.

Reciprocal difference in crossability for pod-set, embryo abortion and viable seed were found for all six interspecific crosses. Except for the cross between V. umbellata and V. angularis, no other reciprocal interspecific crosses were successful. The unilateral success of most crosses suggested that cytoplasmic factors may be involved in the isolating mechanisms between these species (Ahn & Hartmann, 1977).

In the present study, viable hybrid seeds were only obtained for the interspecific crosses of \underline{V} . $\underline{radiata}$ \underline{x} \underline{V} . \underline{mungo} , \underline{V} . $\underline{radiata}$ \underline{x} \underline{V} . $\underline{umbellata}$ and \underline{V} . \underline{mungo} \underline{x} \underline{V} . $\underline{angularis}$. Hybrid seedlings of these species crosses can also be obtained through embryo culture. Hybrid seedlings obtained through embryo culture grew normally and reached flowering for the following F_1 crosses: \underline{V} . $\underline{radiata}$ \underline{x} \underline{V} . $\underline{angularis}$, \underline{V} . $\underline{umbellata}$ \underline{x} \underline{V} . $\underline{angularis}$ and \underline{V} . $\underline{angularis}$ \underline{x} \underline{V} . $\underline{umbellata}$.

The hybrid plants of <u>V</u>. <u>radiata</u> x <u>V</u>. <u>mungo</u> and <u>V</u>. <u>umbellata</u> x <u>V</u>. <u>angularis</u> were partially fertile, while the hybrids of <u>V</u>. <u>radiata</u> x <u>V</u>. <u>umbellata</u>, <u>V</u>. <u>radiata</u> x <u>V</u>. <u>angularis</u> and <u>V</u>. <u>mungo</u> x <u>V</u>. <u>angularis</u> were sterile. Cytological studies have shown poor chromosome pairing probably due to lack of homology (Sawa, 1973; Biswas & Dana, 1975; Ahn & Hartmann, 1977; Machado et al., unpublished).

Ahn and Hartmann (1977) postulated the evolutionary relationships of these four species based on crossability and divided them into two subgroups; viz., V. radiata with V. mungo and V. umbellata with V. angularis. Electrophoretic survey of isozyme patterns of these four Vigna species made no suggested genetic relationship between these four species due to the large number of variant bands (Bassiri & Adams, 1978). Based on the cultivars used in this study, the degree of crossability for these four Vigna species might be divided into four groups. The cross of \underline{V} . radiata x \underline{V} . mungo yielded most F_1 seeds which suggested these two species are closely related. Few F_1 seeds of \underline{V} . radiata x \underline{V} . umbellata and \underline{V} . mungo x V. angularis were obtained which suggested these two pair of species are slightly related. Interspecific F₁ plants of V. radiata x V. angularis and V. umbellata x V. angularis could only be obtained by embryo culture indicating these two pairs of species are remotely related. Neither seeds nor embryos of V. mungo x V. umbellata were obtained as these two species are probably more distantly related.

REFERENCES

- Ahn, C.S. and R.W. Hartmann. 1977. Interspecific hybridization among four species of the genus Vigna. In: Proc. First Intl. Mungbean Symposium, Asian Vegetable Research and Development Center, Shanhua, Taiwan. p. 240-246.
- Ahn, C.S. and R.W. Hartmann. 1978a. Interspecific hybridization between mungbean (Vigna radiata (L.) Wilczek) and adzuki bean (Vigna angularis (Willd.) Ohwi and Ohashi). J. Amer. Soc. Hort. Sci. 103: 3-6.
- Ahn, C.S. and R.W. Hartmann. 1978b. Interspecific hybridization between rice bean (Vigna umbellata (Thunb.) Ohwi and Ohashi) and adzuki bean (V. angularis (Willd.) Ohwi and Ohashi). J. Amer. Soc. Hort. Sci. 103: 435-438.
- Al-Yasiri, S.A. and D.P. Coyne. 1966. Interspecific hybridization in the genus <u>Phaseolus</u>. Crop Sci. 6: 59-60.
- Bassiri, A. and M.W. Adams. 1978. An electrophoretic survey of seedling isozymes in several Phaseolus species. Euphytica 27: 447-459.
- Biswas, M.R. and S. Dana. 1975. Black gram x rice bean cross. Cytologia 40: 787-795.
- Boling, M., D.A. Sander and R.S. Matlock. 1961.

 Mungbean hybridization techniques. Agron. J. 53:
 54-55.
- Chen, N.C., J.F. Parrot, T. Jacobs, L.R. Baker and P.S. Carlson. 1977. Interspecific hybridization of food legumes by unconventional methods of plant breeding. In: Proc. First Intl. Mungbean Symposium. Asian Vegetable Research and Development Center, Shanhua, Taiwan. p. 247-252.
- Chowdhury, R.K. and J.B. Chowdhury. 1977. Intergeneric hybridization between Vigna mungo (L.) Hepper and Phaseolus calcaratus Roxb. Indian J. Agric. Sci. 47: 117-121.
- Dana, S. 1966. The cross between <u>Phaseolus aureus</u> Roxb. and <u>P. mungo</u> L. Genetica. 37: 259-274.

- Dana, S. 1967. Hybrid from the cross Phaseolus aureus Roxb. x P. calcaratus Roxb. J. Cytology and Gene. 2: 92-97.
- De, D.N. and R. Krishnan. 1966. Cytological studies of the hybrid Phaseolus aureus x P. mungo. Genetica 37: 588-600.
- Honma, S. 1955. A technique for artificial culturing of bean embryos. Proc. Amer. Soc. Hort. Sci. 65: 405-408.
- Honma, S. 1956. A bean interspecific hybrid. J. Hered. 47: 217-220.
- Honma, S. and O. Heeckt. 1958. Bean interspecific hybrid involving Phaseolus coccineus x P. lunatus. Proc. Amer. Soc. Hort. Sci. 72: 360-364.
- Honma, S. and O. Heeckt. 1959. Interspecific hybrid between Phaseolus vulgaris and P. lunatus. J. Hered. 50: 233-237.
- Johansen, D.A. 1940. Plant Microtechnique. McGraw-Hill Book Co., Inc., New York.
- Linsmaier, E.M. and F. Skoog. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100-127.
- McLean, S.W. 1946. Interspecific crosses involving Datura ceratocaula obtained by embryo dissection.

 Amer. J. Bot. 33: 630-638.
- Mok, D.W.S., M.C. Mok and A. Rabakoarihanta. 1978. Interspecific hybridization of <u>Phaseolus vulgaris</u> with <u>P. lunatus</u> and <u>P. acutifolius</u>. Theor. Appl. Genet. 52: 209-215.
- Rachie, K.O. and L.M. Roberts. 1974. Grain legumes of the lowland tropics. Adv. Agron. 26: 1-132.
- Sanchez-Monge, E. and F. Garcia-Olmedo (ed.) 1977. Interspecific hybridization in plant breeding. Proc. 8th EUCARPIA Congress, Madrid, Spain.

- Sawa, M. 1973. On the interspecific hybridization between the adzuki bean, Phaseolus angularis (Willd.) W.F. Wight and the green gram, Phaseolus radiatus L. I. Crossing between a cultivar of the green gram and a semi wild relative of adzuki bean, in endemic name "Bakaso". Japan. J. Breed. 23: 61-66.
- Stebbins, G.L. 1958. The inviability, weakness, and sterility of interspecific hybrids. Adv. Genet. 9: 147-215.
- Taira, T., T. Lelley and E.N. Larter. 1978. Influence of parental rye on the development of embryos and endosperm of wheat-rye hybrids. Can. J. Bot. 56: 386-390.
- Verdicourt, B. 1970. Studies in the Leguminosae-Papilionoideae for "Flora of Tropical East Africa." IV. Kew Bul. 24: 507-569.

SECTION II

EFFECT OF E-AMINO-N-CAPROIC ACID ON INTERSPECIFIC HYBRIDIZATION IN THE GENUS VIGNA

ABSTRACT

The possibility of using chemicals to circumvent crossability barriers in interspecific hybridization was studied. Three chemicals, E-amino-n-caproic acid (EACA), gentisic acid and L-lysine were tested for their effect on interspecific crosses in the genus Vigna. as a foliar spray was the most effective chemical studied. Daily foliar applications of EACA to the plants of the maternal parent, Vigna radiata (mungbean) for 14 days before cross-pollination with V. umbellata (rice bean) significantly increased the numbers of viable hybrid seeds. Concentrations of EACA less than 100 mg/l appeared ineffective, whereas concentrations over 2500 mg/1 were phytotoxic. Concentrations of 100 to 1000 mg/l were the most effective. The overall numbers of viable seeds obtained were increased from 2- to 9-fold by EACA treatment depending upon the experiment number. Different cultivars of maternal Vigna species responded differently to EACA concentrations. Additionally, 1000 mg/l EACA applied as a post-pollination treatment increased numbers of viable seed similar to pre-pollination treatments. Treatment by either EACA or gentisic acid significantly enhanced the development of normal hybrid seeds produced for the V. radiata x V. umbellata cross. Applications of equal concentration EACA and L-lysine were as effective

as EACA applied alone for producing F_1 seeds of this interspecific cross. Appropriate chemical treatments increased the frequencies of normally appeared hybrid embryos by 15 to 22% relative to the control. The success with which the embryos could be cultured in vitro was improved accordingly. The proposed use of EACA for interspecific hybridization involving selected cultivars of \underline{V} . radiata and \underline{V} . umbellata reduced crossability barriers and greatly facilitated the movement of germplasm between these two \underline{V} igna species.

INTRODUCTION

Interspecific hybridization has played an important role in the evolution of flowering plants in nature (5). In plant breeding, interspecific hybridization has been used when a desired character can not be identified in the gene pool of a given species, but is present in a second species. The Leguminosae species are endowed with a richness of genetic diversity unparalleled by other economic plants; e.g., N-fixation, protein quality and quantity, oil content. The relatively narrow gene base (17, 19, 20) of some individual species, however, has limited varietal improvement. The use of interspecific hybridization significantly enlarges the genetic base of individual food legume species.

Interspecific hybridization of <u>Vigna</u> food legumes was recently studied at the Asian Vegetable Research and Development Center (AVRDC). The <u>V</u>. <u>umbellata</u> (rice bean) is highly resistant to bean fly (<u>Melanagromyze phaseoli</u>), <u>Cercospora</u> leaf spot and other diseases, but of little agronomic value as a cultivated species (2, 3). The nature of reproductive barriers between the major Asian food legumes in the genus <u>Vigna</u> has been studied (1, 14, 15, 16). Interspecific crosses were made with difficulty. The use of large numbers of pollinations have yielded extremely low numbers of interspecific hybrid

plants. These occasional interspecific hybrid plants are nearly always sterile (1, 3, 13).

Bates and Deyoe (6) theorized that crossability barriers evolved during speciation are mediated through a specific inhibition reaction (SIR) similar to immune responses in animals. The SIR may effect fertilization and development of hybrid embryos in wide crosses. Animal-effective immunosuppressants were applied to various cereal species to test the hypothetical model of interspecific and intergeneric crossability barriers (6, 7). An immunosuppressant, E-amino-n-caproic acid (EACA), did overcome crossability barriers in interspecific and intergeneric crosses of cereals (8, 9, 10, 21). Application of EACA by either injecting the solution into the leaf sheath or by foliar sprays increased embryo formation and seed set in several intergeneric crosses of cereals. In food legumes, injection of EACA was less effective, while foliar sprays with aqueous solutions of EACA to the maternal parent significantly increased viable hybrid seed set of the interspecific cross of V. radiata x V. umbellata (4.13).

The present study was undertaken to investigate the effects of EACA on the crossability of <u>Vigna</u> species to create new genetic variation for plant breeding programs for food legume improvement.

MATERIALS AND METHODS

Plant material. A series of experiments was conducted using Vigna radiata (mungbean) as the maternal parent and V. umbellata (rice bean) as the pollen parent. Two cultivars of mungbean, Tainan #1 and PHLV #18, and one cultivar of rice bean, HK, were used. These were obtained from the Asian Vegetable Research and Development Center (AVRDC) as AVRDC accession nos. 2013, 2184 and 4006, respectively. Two other interspecific crosses, V. mungo (black gram) x V. radiata and V. umbellata x V. angularis (adzuki bean) were attempted to test their response to EACA treatments. The cultivars used were black gram, "T-9", and adzuki bean, "Chien Shien", which were AVRDC accession nos. 3115 and 5124, respectively.

Cultural conditions. All plants were grown in the greenhouse. During winter, temperatures were adjusted to 26°C (day) and 18°C (night) with a photoperiod of 14 h light supplied with high intensity metal-halide lamps (10-12 klx). Plants used as maternal parents were grown in 20 cm pots containing either a mixture of soil, sand and peat (3:1:1) or a "Peat Lite Mix". Plants were fertilized with 3 g/pot of "Peter's" fertilizer (20N-20P-20K) biweekly. Two plants were maintained in each pot.

<u>Chemical treatments</u>. The chemicals, E-amino-n-caproic acid (EACA), gentisic acid and L-lysine HCl were tested and

compared for their success on the interspecific crosses The chemical treatments were made as aqueous solutions applied to the maternal plant as foliar sprays to run-off. Spray treatments were initiated prior to the meiotic stage of floral development. In V. radiata, meiosis occurs when the floral envelope of the bud is 2-3 mm in size. Daily treatments of EACA were initiated at this pre-meiotic stage and continued over a 14-day period before cross-pollination. The surfactant, "Tween 20", was used in all treatments. For post-pollination treatments, EACA was applied daily for 14 consecutive days after cross-pollination. A "cotton wrap" method was also tested and compared to foliar spray as a post-pollination treatment. method, the pedicels of cross-pollinated (hybrid) pods were wrapped with cotton into which an EACA solution was slowly dripped once a day continuously for 14 days.

Crossing techniques. Flowers for hybridization were emasculated the day before anthesis and immediately pollinated. The hybridization technique described by Buishand (12) and Boling et al. (11) was used. Plants were pollinated for five to seven consecutive days after termination of chemical treatments. Approximately equal numbers of pollination attempts were made for each treatment. After cross-pollinating for 5-7 days, all subsequent flowers were removed to eliminate competition between hybrid

and naturally self-pollinated pods.

Experimental design and data analysis. Randomized complete block and split-plot designs were used. The pods were harvested individually and the number of shrivelled and "normal" seeds noted. Seeds were then germinated to confirm their hybridity.

Two experiments were conducted to evaluate the chemical effects on the development of the hybrid embryos. Fertilized ovules were collected 12 or 14 days after pollination and the excised embryos were examined using a dissecting microscope. The development of embryos was classified as either normal or abnormal based upon visual examination of their gross morphological appearance and apparent degree of differentiation.

Analyses of variance were performed on all data after using either square root $(\sqrt{x+\frac{1}{2}})$ or arcsin transformations. Duncan's multiple range test was used to compare treatment means.

RESULTS AND DISCUSSION

Effect of EACA on V. radiata-V. umbellata hybrid cross. Foliar sprays with a \log_{10} concentration series of EACA from 0 to 10000 mg/l were tested. A large number of viable hybrid seeds was obtained (Table 1). In Experiment 1, the treatment of 100 mg/l EACA was superior to all other treatments including the control except for 1000 mg/l. The efficiency of viable hybrid seeds produced was 50.1 seeds per 100 attempts compared to 17.7 seeds for the control. Treatment with the highest concentration of EACA (10000 mg/l) was toxic to the plants.

In Experiment 2, three concentrations of EACA (100, 500 and 1000 mg/1) were tested. The treatment of 1000 mg/1 EACA significantly increased the number of viable seed as compared to the control (Table 1). The numbers of viable seed per 100 attempts for the treatment and control were 13.6 and 2.3, respectively. Differences among EACA treatments, however, were not significant. The number of viable seed obtained coincided with the percent pods that produced viable seed; i.e., the higher the percentage of pods with viable seeds the greater the number of viable seeds observed in both experiments. Differences between treatments for percent pods with viable seeds were not significant in the second experiment.

In subsequent experiments, attempts to identify the optimum concentration were made with no one consistent

Table 1. Effect of EACA treatments on the success of the interspecific cross of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$.

EACA treatment (mg/1)	No. flowers crossed	Total viable seeds obtained	No. of viable seeds per 100 attempts	Pods with viable seeds (%)
Experiment	1 ^z			
0	137	25	17.7b ^y	11.5ab
10	159	19	12.0b	8.9bc
100	142	69	50.1a	24.6a
1,000	124	24	22.3ab	15.7ab
10,000	76	0	0 в	0 c
Experiment	2 ^X			
0	88	2	2.3b	2.3 ^{ns}
100	86	6	6.9ab	6.9
500	93	8	8.5ab	7.4
1,000	96	13	13.6a	10.3

 $^{^{\}mathbf{z}}$ Data represent the total number and the mean of 6 replications.

yMean separation in columns within experiment by Duncan's multiple
range test, 5% level.

XData represent the total number and the mean of 4 replications. ns= Not significant.

concentration as the "best" EACA treatment. Concentrations of EACA less than 100 mg/l seemed ineffective, whereas concentrations over 2500 mg/l appeared phytotoxic.

Concentrations in the range of 100 to 1000 mg/l seemed most effective (Table 1). In general, high concentrations of EACA (over 2500 mg/l) caused chlorosis and abnormal floral morphogenesis on the treated plants. Morphogenetic anomalies induced by EACA treatments have been reported for Dolichos lab-lab (18).

The total number of viable seeds obtained and viable seeds per 100 attempts are higher in Experiment 1 than Experiment 2 for all corresponding treatments including controls (Table 1). The relative difference in degree of response between the two experiments and subsequent experiments was probably due to differences in environmental conditions. The application of EACA to the maternal parent significantly improved the development of embryos from wheat-rye crosses, but was not independent of the temperature regime (22) suggesting that in the present study, depending upon environmental conditions, the magnitude of response could vary from one experiment to another.

To determine the effect of plant growth stage on chemical treatment, an experiment was designed using various durations of pre- and post-pollination EACA treatments. Plants of the maternal parent, \underline{V} . radiata, were subjected to daily treatments of 100, 500 and 1000 mg/l EACA at various

growth stages. No significant differences were observed for the number of viable seed produced by EACA treatments made at different stages of plant development.

Post-pollination EACA effects on V. radiata-V. umbellata hybrid cross. The possibility of post-pollination treatments with EACA to reduce hybrid embryo abortion or breakdown was explored. Plants of the maternal parent, V. radiata, were sprayed daily with 100 and 1000 mg/1 EACA for 14 days after hybridization. Treatments with EACA increased 2- to 4 times the number of viable hybrid seeds as compared to the control (Table 2). A concentration of 1000 mg/l EACA was optimal for post-pollination treatment. At this concentration, numbers of viable seeds were significantly higher than that from untreated plants. As mentioned previously, foliar application of EACA in concentration greater than 2500 mg/l were phytotoxic. An experiment to test cotton wraps for post-pollination EACA treatments was conducted to possibly reduce phytotoxic effects. concentrations of EACA (2500 and 5000 mg/1) were used to compare with the control and the "optimal" 1000 mg/l EACA treatment. An increase in numbers of viable hybrids seed were obtained using the "cotton wrap" method (Table 2). No phytotoxic effect was observed from these treatments with relatively high concentration of EACA. Although EACA treatments significantly increased the number of viable

EAC treatm img,

Foliar sp

J

100

1,000

Cotton wa

0 1,000

2,500

5,000

Data re

Wean ser

Data reattempt

Table 2. Effect of EACA applied as post-pollination treatments on the success of the interspecific cross of \underline{V} . radiata \underline{X} \underline{V} . umbellata.

EACA treatment (mg/1)	Total viable seeds obtained	No. of viable seeds per 100 attempts	Pods with viable seeds (%)
Goliar spray e	xperiment ²		
0	21	32.8b ^y	23.5b
100	48	75.0b	31.3b
1,000	99	154.7a	42.2a
Cotton wrap ex	periment ^X		
0	24	30.8c	22.7 ^{ns}
1,000	70	87.8a	32.2
2,500	43	53.5abc	35.9
5,000	67	83.3ab	38.7

^ZData represent the mean of 4 replications. A total of 64 pollination attempts was made in each treatment.

ns=Not significant:

Mean separation in columns within experiment by Duncan's multiple range test, 5% level.

XData represent the mean of 4 replications. A total of 80 pollination attempts was made in each treatment.

seeds obtained, differences among treatments were not significant suggesting that the treatment with 1000 mg/l was equal or superior to other treatments.

To define more clearly the optimum duration for EACA application, an experiment was conducted using 1000 mg/l EACA applied daily as a foliar spray for 7 and 14 consecutive days as a pre-pollination or post-pollination treatment. The EACA applied daily either for 14 days before cross-pollination or for 7 days after cross-pollination significantly increased the number of viable seeds relative to the control (Table 3). There were no significant differences in effects among EACA treatments. The relatively low number of viable seeds obtained in all treatments, including the control, was probably due to the high temperatures encountered during this experiment.

Cultivar response to EACA treatment. Two cultivars of \underline{V} . radiata were used to determine their crossability with \underline{V} . umbellata and their responses to EACA treatments. Plants of the two cultivars, Tainan #1 and PHLV #18, were treated with a series of EACA concentrations (0 to 4000 mg/1) for 14 days before anthesis, and then crossed with the same cultivar (HK) of \underline{V} . umbellata. Crossability was higher for Tainan #1 which yielded more viable hybrid seeds than PHLV #18 regardless of the chemical treatment (Table 4). These data suggest that cultivar may play an important role in the success of interspecific hybridization.

Table 3. Effect of duration of treatment with 1,000 mg/l EACA on viable seed set of the interspecific cross of \underline{V} . $\underline{\underline{v}}$ $\underline{\underline{v}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}$ $\underline{\underline{v}}$ $\underline{\underline{v}$ \underline{v} \underline{v} $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}}$ $\underline{\underline{v}$ \underline{v} \underline{v} $\underline{\underline{v}$ \underline{v} \underline{v}

EACA treatment	Total viable seeds obtained	No. of viable seeds per 100 attempts	Pods with viable seeds
e-pollination			
7 days	5	6.9ab ^y	5.6
14 days	9	12.5a	9.7
ost-pollination			
7 days	7	9.7a	9.7
14 days	5	6.9ab	6.9
ontrol	1	1.4b	1.4

 $^{^{\}rm Z}{\rm Data}$ represent the mean of 3 replications. A total of 72 pollination attempts was made in each treatment.

YMean separation in column by Duncan's multiple range test, 5% level.

.s

::

1,0 1,0 Mea

TDa at

Table 4. Response of two varieties of \underline{V} . radiata to EACA treatments by interspecific hybridization with \underline{V} . umbellata. $\underline{^{Z}}$

EACA	Tainan #1		PHLV #18		Mean viable
treatment	Total viable seeds	Viable seeds per 100 attempts	Total viable seeds	Viable seeds per 100	seeds/100
(mg/1)				attempts	
0	34	40.5c ^y	22	26.2c	33.4d
100	133	158.3a	43	51.2b	104.7a
500	46	54.8b	63	75.0a	64.9b
1,000	52	61.9b	46	51.2b	56.5c
4,000	43	51.2bc	19	22.6c	36.9d
Mean	62	73.3	39	45.2	

 $^{^{\}rm Z}{\rm Data}$ represent the mean of 6 replications. A total of 84 pollination attempts was made in each treatment.

YMean separation in columns by Duncan's multiple range test, 5% level.

Treatments with EACA were effective on both mungbean cultivars as the number of viable seeds was increased (Table 4). However, the cultivars responded differently to the EACA concentrations. The interaction between cultivar and EACA treatment was highly significant ($\propto = .01$). The highest number of viable seed was exhibited by the treatment of 100 mg/1 EACA in "Tainan #1", while the highest number of viable seed in "PHLV #18" was produced from the treatment with 500 mg/1 EACA. The effective concentrations of EACA for the interspecific cross of \underline{V} . $\underline{radiata} \times \underline{V}$. $\underline{umbellata}$ ranged from 100 mg/1 to 1000 mg/1.

In an intergeneric cross of cereals, involving 10 cultivars, EACA generally enhanced total seed set of Triticum turgidum var. durum x Secale cereale by 45%, although the crossability of the 10 cultivars differed while certain cultivars were unaffected by EACA treatment (10). Such interactions between maternal cultivars and EACA treatments confound the development of a specific methodology for using EACA in interspecific and intergeneric hybridization.

Effects of EACA on other interspecific crosses. Interspecific hybridization of <u>V. mungo</u> x <u>V. radiata</u> has not been reported in the literature. The cross of <u>V. umbellata</u> x <u>V. angularis</u> was accomplished by culturing immature embryos in <u>vitro</u> (1). The possibility of successfully making these two interspecific crosses using EACA treatments was explored.

Plants of the maternal parent, <u>V</u>. <u>mungo</u>, were treated daily with 100, 1000 and 2000 mg/l EACA for 14 days; then cross-pollinated with <u>V</u>. <u>radiata</u> for 5 days. No viable hybrid seeds were produced by any of the treatments including the untreated plants. Treatments with 1000 and 2000 mg/l EACA induced phytotoxicity and premature pod abortion. For the interspecific cross of <u>V</u>. <u>umbellata</u> x <u>V</u>. <u>angularis</u>, maternal plants were subjected to daily treatments with the same concentrations of EACA described in the cross of <u>V</u>. <u>mungo</u> x <u>V</u>. <u>radiata</u> with the same results, viz., no viable hybrid seeds were obtained.

Effects of other chemicals on V. radiata-V. umbellata hybrid cross. Several chemicals including EACA, acriflavin, gentisic acid, salicylic acid and chloramphenicol have been used to enhance the crossability of interspecific and intergeneric hybridization in cereals with varying degrees of success (7, 8). Gentisic acid was tested to compare its efficiency to EACA. An experiment was designed using three concentrations (10, 100 and 1000 mg/l) of each chemical. Maternal plants, V. radiata, were sprayed daily with appropriate concentration of either EACA or gentisic acid for 14 days; then cross-pollinated with V. umbellata.

Both chemicals were effective in increasing the numbers of viable seeds obtained for this interspecific hybrid cross (Table 5). The EACA was a more effective promoter of

Table 5. Relative effect of EACA and gentisic acid on the success of the interspecific cross of \underline{V} . $\underline{radiata} \times \underline{V}$. $\underline{umbellata}$.

Chemical	Treatment (mg/1)	Total viable seeds obtained	No. of viable seeds per 100 attempts	Pods with viable seed (%)
EACA	10	13	20.3bc ^y	9.4c
	100	14	21.9bc	14.1abc
	1,000	36	56.3a	25.0a
	Mean	21	32.8	16.2
Gentisic acid	10	11	17.2bc	7 . 8c
	100	8	12.6bc	11.0bc
	1,000	20	31.3b	23.5ab
	Mean	13	20.4	14.1
Control		4	6.3c	6.3c

 $^{^{\}rm Z}{\rm Data}$ represent the mean of 4 replications. A total of 64 pollination attempts was made in each treatment.

YMean separation in columns by Duncan's multiple range test, 5% level.

hybrid seed production than gentisic acid. Treatments with 1000 mg/l of either EACA or gentisic acid produced totals of 36 and 20 viable seeds or 56 and 31 viable seeds per 100 attempts, respectively. The untreated plants, however, yielded only 4 viable seeds or 6 viable seeds per 100 attempts. Obviously, the use of these chemicals to accomplish the interspecific cross of \underline{V} . \underline{V}

An analogue of EACA, L-lysine, was also compared to EACA for overcoming crossability barriers in the V. radiata x V. umbellata cross. Two concentrations (100 and 1000 mg/l) of each chemical and two combinations in equal concentration of these two chemicals were compared with the control. Chemical treatments were applied daily as pre-pollination treatments described previously. Treatments with 100 and 1000 mg/l of either EACA or L-lysine resulted in increased numbers of viable hybrid seeds (Table 6). However, the differences between L-lysine treatments and the control were not significant. Treatment of the maternal plants by a combination of equal concentration of the two chemicals (50 mg/l + 50 mg/l) was superior to other treatments in terms of number of viable seeds produced, but it was not significantly different from that obtained with either chemical applied separately.

<u>Chemical effects on V. radiata-V. umbellata hybrid</u> <u>embryo development</u>. In the previous studies, the frequency

Table 6. Relative effect of EACA and L-lysine on the success of the interspecific cross of <u>V</u>. <u>radiata</u> x <u>V</u>. <u>umbellata</u>. ^z

Treatment (mg/1)	Total viable seeds obtained	No. of viable seeds per 100 attempts	Pods with viable seeds (%)
Control	2	2.3c ^y	2.3c
EACA			
100	8	9.1abc	9.1ab
1,000	11	12.5ab	11.4ab
L-lysine			
100	5	5.7bc	5.7bc
1,000	9	10.3abc	9.1ab
EACA + L-lysi	ne		
50 + 50	14	15.9a	14.8a
500 + 500	4	4.7bc	4.6bc

 $^{^{\}rm Z}{\rm Data}$ represent the mean of 4 replications. A total of 88 pollination attempts was made in each treatment.

YMean separation in columns by Duncan's multiple range test, 5% level.

of fertilization in V. radiata, using V. umbellata as the pollen parent, was relatively high as indicated by a high percentage of pod-set. However, most embryos aborted within 10-14 days resulting in empty pods at maturity. Extremely low numbers of embryos developed to mature seeds (14). An experiment was conducted using EACA and L-lysine to determine their effects on interspecific hybrid embryo development in vivo. Plants of the maternal parent were subjected to treatments with either various concentrations of single chemicals or combinations of two chemicals for 14 days prior to hybridization and post-pollination treatments for 7 consecutive days following cross-pollination. Hybrid ovules were sampled at 14 days after pollination. Excised embryos were examined and classified as either normal or abnormal based on their size and morphological appearances.

The development of young hybrid pods and seeds measured at 14 days after pollination were not affected by the chemical treatments (Table 7). Treatments with 100 and 1000 mg/l EACA, 100 mg/l lysine, and a combination of 500 mg/l EACA plus 500 mg/l lysine significantly increased the frequencies of normal embryos ($\propto = .05$) relative to nontreatments. Generally, embryo abortion occurred during all stages of embryogenesis; however, the critical stage of embryo abortion or breakdown was observed to occur 10 to 14 days after pollination. The low frequencies

Table 7. Effects of EACA and L-lysine on development of 14-day-old pods, seeds and embryos produced from the cross of V. radiata x V. umbellata.²

Chemical	Pod size		Length	Fertilized	Normal
treatment (mg/1)	Length (mm)	Width (mm)	of seed (mm)	ovules examined (no.)	embryos (%)
Control	65.0	5.5bc ^y	4.0	147	0.7d
EACA					
100	65.0	5.7a	4.0	131	9.3ab
1,000	58.1	5.6ab	4.1	115	7.0bc
L-lysine					
100	64.5	5.4bc	4.3	134	8.4ab
1,000	63.9	5.3c	4.2	144	2.9d
EACA + L-lysine					
50 + 50	68.7	5.4bc	4.2	155	3.3cd
500 + 500	66.2	5.4bc	4.2	144	13.1a

^zData represent the mean of 15 samples.

^yMean separation in columns by Duncan's multiple range test, 5% level.

of normal-appeared embryos observed in all treatments were probably attributed to a delay in collecting the hybrid ovules. Therefore, the experiment was repeated and expanded by adding the treatments with gentisic acid. Hybrid ovules were sampled at 12 days instead of 14 days after pollination. The frequencies of normal-appeared embryos in all treatments including control were correspondingly higher in this latter experiment relative to those shown in Table 7 (Table 8). The EACA concentrations of both 100 mg/l and 1000 mg/l resulted in significantly increased frequencies of normal-appeared embryos ($\alpha = .05$). Differences between treatments of lysine and control, however, were not significant. The application of EACA (500 mg/1) in combination with an equal concentration of lysine (500 mg/l) was as effective as EACA applied alone. The frequency of "normal" embryos produced as a result of EACA + lysine treatments was significantly increased as compared with that obtained from untreated, but did not differ significantly from that of EACA applied alone. the other hand, treatment with 1000 mg/l gentisic acid was found to be effective and similar to EACA treatments. Ιt increased the frequency of "normal" embryos by 13.8% (Table 8). Differences between treatments with gentisic acid and EACA, however, were not significant. The combination of gentisic acid with lysine had no effect on normal embryo development relative to the control.

Table 8. Effects of EACA, gentisic acid and L-lysine on development of 12-day-old \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$ embryos. \underline{z}

Chemical treatment	Concn (mg/1)	No. fertilized ovules examined	Normal embryos (%)
Control	0	217	13.2d ^y
EACA	100	216	35.2a
	1,000	198	32.8ab
Gentisic acid	100	221	19.6cd
	1,000	208	27.0abc
L-lysine	100	223	20.1cd
	1,000	217	21.5bcd
EACA + L-lysine	50 + 50	214	20.9cd
	500 + 500	204	28.6abc
Gentisic acid + L-lysine	50 + 50	193	22.2bcd
	500 + 500	223	13.9d

^ZMean of 4 replications.

YMean separation in column by Duncan's multiple range test, 5% level.

wit

ske

The

wei

emi

pre fo

sp

mо

vi ch

te

to

re

<u>V</u>.

m e

1

Ξ.

po

In general, EACA either applied alone or combined with lysine enhanced normal embryo development by 15 to 22% (Table 8). Both chemicals consist of six-carbon-chain skeletons carrying an amino group at the epsilon position. Therefore, it was presumed that both chemicals might behave similarly in promoting embryo development. Both chemicals were reported to improve significantly the formation of embryos in a wheat-rye cross (21) which agrees with the present study. Such chemical treatments are promising for plant breeding programs particularly for the interspecific cross of V. radiata x V. umbellata.

Suggested methodology. The chemical EACA, was the most effective for increasing both the total numbers of viable seeds and "normal" embryos formed among the chemicals tested. The use of EACA provides a valuable technique to circumvent certain crossability barriers to facilitate the movement of germplasm between distantly related species.

The use of EACA for interspecific hybridization of <u>V. radiata</u> and <u>V. umbellata</u> is suggested as follows:

(a) Initiate daily treatments of maternal parent at premeiotic (2 mm bud size) or desired stage of bud development, approximately 14 days before anthesis; use 100 to 1000 mg/l EACA as an aqueous foliar spray to run-off. (b) Emasculate flowers the day before anthesis and crosspollinate either immediately or the subsequent day; daily

pollination of additional flowers should be continued for 3 or more days. (c) Continue daily spray for 7 days after cross-pollination. (d) Remove all self-pollinated flowers to prevent competition. (e) Harvest pods either at immature stage (10 to 12 days after pollination) for embryo culture or at maturity (20 to 22 days). (f) Verify hybridity of hybrid seedlings by genetic markers and/or cytogenetic analysis.

LITERATURE CITED

- 1. Ahn, C.S. and R.W. Hartmann. 1977. Interspecific hybridization among four species of the genus Vigna. In: Proc. First International Mungbean Symposium. Asian Vegetable Research and Development Center, Shanhua, Taiwan, ROC. p. 240-246.
- 2. Asian Vegetable Research and Development Center. 1974. Annual Report for 72-73. Shanhua, Taiwan, ROC.
- 3. Asian Vegetable Research and Development Center. 1975.
 Annual Report for 1974. Shanhua, Taiwan, ROC.
- 4. Baker, L.R., N.C. Chen and H.G. Park. 1975. Effect of an immunosuppressant on an interspecific cross of the genus Vigna. HortScience 10: 313 (Abstr.).
- 5. Barber, H.N. 1970. Hybridization and evolution of plants. Taxon. 19: 154-160.
- 6. Bates, L.S. and C.W. Deyoe. 1973. Wide hybridization and cereal improvement. Econ. Bot. 27: 401-412.
- 7. Bates. L.S., A. Campos V., R. Rodriquez and R.G. Anderson. 1974. Progress toward novel cereal grains. Cereal Sci. Today 19: 283-285.
- 8. Bates, L.S. 1976. Chemical manipulation of crossability barriers. Barley Genetics III: 271-273.
- 9. Bates, L.S., R. Rodriquez, R.F. Waters and K.A. Mujeeb. 1976. Wide hybridization: gene transfer from barley and rye. Wheat Newsletter 22: 84-85.
- 10. Bates, L.S., E. Moreno, F.J. Zillinsky and K.A. Mujeeb.
 1977. Effect of E-amino-caproic acid foliar spray
 on seed set and embryo formation in Triticum
 turgidum L. var. Durum x Secale cereale. Chem.-Biol.
 Interactions 17: 363-365.
- 11. Boling, M., D.A. Sander and R.S. Matlock. 1961. Mungbean hybridization techniques. Agron. J. 53: 54-55.
- 12. Buishand, T.J. 1976. The crossing of beans (Phaseolus spp.) Euphytica 5: 41-50.

- 13. Chen, N.C., J.F. Parrot, T. Jacobs, L.R. Baker and P.S. Carlson. 1977. Interspecific hybridization of food legumes by unconventional method of plant breeding. In: Proc. First International Mungbean Symposium. Asian Vegetable Research and Development Center, Shanhua, Taiwan, ROC. p. 247-252.
- 14. Chen, N.C. and L.R. Baker. In Press. Influence of parental cultivar and parental heterozygosity on crossability among four species of Vigna. (In press).
- 15. Coyne, D.P. 1964. Species hybridization in <u>Phaseolus</u>. J. Hered. 55: 5-6.
- 16. Evans, A.M. 1975. Species hybridization in the genus Vigna. IITA Tropical Grain Legume Bull., Ibadan, Nigeria. Spp.
- 17. Loomis, R.S., W.A. Williams and A.E. Hall. 1971.
 Agricultural productivity. Ann. Rev. Plant Physiol.
 22: 431-468.
- 18. Rajendra, B.R., K.A. Mujeeb and L.S. Bates. 1979. Effect of E-amino-caproic acid on floral morphogenesis in Dolichos <u>lab-lab</u>. Chem.-Biol. Interactions 24: 117-120.
- 19. Roberts, L.M. 1970. The food legumes: Recommendations for expansion and acceleration of research to increase production of certain of these high-protein crops. The Rockefeller Foundation, New York.
- 20. Swaminathan, M.S. and H.K. Jain. 1973. Food legumes in Indian agriculture. In: Nutritional Improvement of Food Legumes by Breeding. (M. Milner, Ed.). PAG/UN. New York. p. 69-82.
- 21. Taira, Tomoaki and E.N. Larter. 1977. Effects of E-amino-n-caproic acid and L-lysine on the development of hybrid embryos of triticale (x Triticosecale). Can. J. Bot. 55: 2330-2334.
- 22. Taira, Tomoaki and E.N. Larter. 1977. The effects of variation in ambient temperature alone and in combination with E-amino-n-caproic acid on development of embryos from wheat-rye cross (T. turgidum var. durum cv. Jori x S. cereale). Can. J. Bot. 55: 2335-2337.

SECTION III TECHNIQUES IN CIRCUMVENTING CROSSABILITY BARRIERS IN THE INTERSPECIFIC CROSS, VIGNA RADIATA x V. UMBELLATA

SUMMARY

Application of techniques such as partial detachment of pods, defoliation, pollen mixture, interspecies grafting, species bridge and amphiploidy were studied to facilitate the crossing of Vigna radiata x V. umbellata. Number of viable F_1 seeds was increased in pods with partially broken pedicels and in pods excised from the plant 10-14 days after hybridization and cultured in vitro. Partial or complete removal of leaves from the maternal plants 4 days after pollination also increased the number of viable F_1 seeds. The "side-grafting" of two species, and the use of a third species bridge were effective in reducing embryo abortion and increasing the number of viable F_1 seeds.

Hybrid sterility was circumvented by doubling the chromosome number. Five triploid plants were derived from cultured embryos of the backcross of the amphidiploid to <u>V. radiata</u>. The triploid plants grew vigorously and flowered profusely with partial fertility.

INTRODUCTION

<u>Vigna radiata</u> (L.) Wilzcek (mungbean) is an ancient and important pulse crop in Asia and parts of Africa. It is an excellent source of protein, but its yield potential is low and it is susceptible to many insect and disease pests (AVRDC, 1974). The <u>V</u>. <u>umbellata</u> (Thunb.) Ohwi & Ohashi (rice bean), a closely related species of <u>V</u>. <u>radiata</u>, was reported to be highly resistant to bean fly (<u>Melanagromyze phaseoli</u>) but of little agronomic value as a cultivated species. <u>V</u>. <u>umbellata</u> is also highly resistant to <u>Cercospora</u> leaf spot, powdery mildew and root diseases (AVRDC, 1975). The present study was to incorporate this resistance from V. umbellata to V. radiata.

Interspecific hybridization between \underline{V} . $\underline{radiata}$ and \underline{V} . $\underline{umbellata}$ has been reported with limited success (Dana, 1967; AVRDC, 1974, 1975; Ahn & Hartmann, 1977; Chen et al., 1977). The interspecific cross was only successfully made when \underline{V} . $\underline{radiata}$ was used as the female parent, with difficulty due to low numbers of hybrid plants obtained. Most of the embryos were observed to abort prematurely (AVRDC, 1976; Ahn & Hartmann, 1977; Chen & Baker, in press). The hybrid plants obtained grew vigorously, but were highly sterile. Apparently, there were barriers to crossability between these two species.

Chen and Baker (in press) found that foliar applications of E-amino-n-caproic acid significantly increased the number of viable \underline{V} . $\underline{radiata} \times \underline{V}$. $\underline{umbellata} F_1$ seeds.

In the reciprocal cross between <u>Phaseolus vulgaris</u> and <u>P. coccineus</u>, Ibrahim and Coyne (1975) used the techniques of partially breaking the pedicels of pods or pod culture in Ziploc plastic bags to obtain several viable F_1 seeds.

Mixed species pollen were used to overcome interspecific incompatibility for a number of plant taxa including Populus (Stettler & Guries, 1976), Sesamum (Sastri & Shiranna, 1976) and Ipomea (Guries, 1978).

The incompatible or "foreign" pollen is generally used with a killed compatible, or "mentor" pollen which can ultimately effect interspecific fertilization. The use of third species "bridges" to overcome interspecific incompatibility have been successfully used (Dionne, 1963; Hermsen & Bamanna, 1973; Ronald & Ascher, 1976; Sams et al., 1977).

For the interspecific cross, \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$, hybrid sterility was overcome by doubling the chromosomes to induce amphidiploid (Dana, 1967; Ahn & Hartmann, 1977). The fertility of the amphidiploids was increased up to 80% as indicated by pollen stainability. However, the use of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$ or of the amphidiploids in a practical breeding program has not been reported. This paper reports on the use of several techniques to overcome crossability barriers in the interspecific cross of \underline{V} . $\underline{radiata}$ x \underline{V} . $\underline{umbellata}$ and their possible implications in plant breeding.

MATERIALS AND METHODS

Plant materials. The cultivars used in the interspecific hybridization were <u>V. radiata</u> cv. Tainan #1 and <u>V. umbellata</u> cv. HK. Three other species, <u>V. mungo</u>, <u>V. angularis</u> and <u>V. radiata</u> var. <u>sublobata</u>, were used as "species bridges". The cultivars used were <u>V. mungo</u>, "T-9", <u>V. angularis</u>, "Chien Shien" and <u>V. radiata</u> var. <u>sublobata</u>, "S1" and "S2". All materials were obtained from the Asian Vegetable Research and Development Center (AVRDC). A spontaneous amphidiploid "MR51" (AVRDC, 1976) of <u>V. radiata</u> x <u>V. umbellata</u> was used to backcross to V. radiata to derive triploid progenies.

Cultural conditions. All plants were grown in a glass-house. During the winter, temperatures were adjusted to 26° C (day) and 18° C (night) with a photoperiod of 14 hr light supplied with high intensity mercury lamps (10-12 klx). Plants were grown in 20 cm pots using a "Peat Lite Mix". The fertility program was to apply 3 g/pot of 20N-20P-20K biweekly.

Crossing Method. Flowers for hybridization were emasculated the day before anthesis and immediately pollinated. The hybridization technique used in crosses was described by Boling et al. (1961). After hybridization, all subsequent flowers were removed to eliminate competition.

Partial detached and detached pods. The techniques of partial pod attachment and excised pods were described by Ibrahim and Coyne (1975). In this study, pedicels of cross-pollinated pods were partially cut with a sterilized razor 10-12 days after hybridization. For excised pods, pods were removed from the plant at 10-12 days after pollination and surface sterilized with 10% chlorox followed by four rinses in sterilized water and were placed in sterile petri dishes and sealed with "parafilm". The dishes were cultured in the laboratory at 22° ± 2°C supplied with 16 hr artificial light. To determine the best time for detaching the pods, hybridization was made to obtain pods that were 10 to 18 days old. The pods were either partially detached or detached.

Defoliation treatments. All leaves were excised from the plant 8-12 days after cross-pollination. To determine the most effective time for defoliation, hybridizations were made at two-day intervals to provide 6 ages, from 2 to 12 days post-pollination. Four defoliation treatments were compared including a control. They were:

- (a) excise one leaflet from every leaf (approx. 33%);
- (b) excise two leaflets from every leaf (approx. 67%);
- (c) excise all leaves from the plant (100%); and
- (d) control.

<u>Pollen mixture</u>. The use of pollen mixture to increase the percent of the hybridization between \underline{V} . <u>radiata</u> and \underline{V} . <u>umbellata</u> was

through the use of the third species, \underline{V} . angularis. Pollen from the third species was mixed with pollen of \underline{V} . \underline{U} umbellata for cross-pollination with \underline{V} . \underline{V} radiata and compared to the use of \underline{V} . \underline{U} umbellata pollen alone (control). The mixing was accomplished by successively touching stigmata containing pollen of \underline{V} . \underline{U} umbellata and \underline{V} . \underline{U} angularis to the stigma of \underline{V} . \underline{V} radiata.

Interspecies grafting. Grafting between two species was made to increase the number of viable F_1 seeds in the cross of \underline{V} . radiata x \underline{V} . umbellata. Two types of grafting were used; viz., side-grafting and approach-grafting. In side-grafting, the scions from \underline{V} . radiata were sidegrafted onto the plant of \underline{V} . umbellata. In approachgrafting, plants of \underline{V} . radiata and \underline{V} . umbellata were grown side-by-side and the approach-grafting was made at 3 weeks after planting. Grafted plants were placed in a mist chamber for 2 weeks to facilitate survival of the grafted plants without excising the shoots or roots of either plant.

Species bridges. Two F₁ hybrids, <u>V. radiata x V. mungo</u> and <u>V. umbellata x V. angularis</u>, were used to test the "bridging species", <u>V. mungo</u> and <u>V. angularis</u>. The hybrid of <u>V. radiata x V. mungo</u> was hybridized with <u>V. umbellata</u> while the hybrid of <u>V. umbellata x V. angularis</u> was crossed with <u>V. radiata</u>. Two accessions of <u>V. radiata</u> var. sublobata

were crossed with \underline{V} . $\underline{radiata}$. The resultant hybrid plants were hybridized with \underline{V} . $\underline{umbellata}$ which used \underline{V} . $\underline{radiata}$ var. $\underline{sublobata}$ as a bridging species for the interspecific cross of V. $\underline{radiata}$ x V. $\underline{umbellata}$.

Amphiploidy. To induce amphiploids, cuttings from sterile hybrid plants were treated with 0.25% (2.5 mg/ml) colchicine for 8 hr; and then, rooted in a mist chamber. The induced amphiploids were backcrossed to <u>V. radiata</u> and the backcross embryos cultured <u>in vitro</u> on a Linsmaier and Skoog medium (1965). The successful plants derived from cultured embryos were grown to flowering and backcrossed again to <u>V. radiata</u>.

Experimental design and data analysis. Randomized complete block and split-plot designs were used. Data were taken on the number of flowers crossed, total number of seeds obtained, number of viable seeds and percentage of pods that produced viable seeds. The authenticity of hybrid plants from viable seeds was confirmed by several genetic markers (Chen & Baker, in press). The analysis of variance was performed and L.S.D. or Duncan's multiple range test used to compare the treatment means.

RESULTS AND DISCUSSION

Growth of pod, seed and embryo. Pods from the cross of <u>V</u>. radiata x <u>V</u>. umbellata and self-pollinated pods from <u>V</u>. radiata were excised at 4-day intervals and the length of pods, seeds and embryos measured. The growth rate of hybrid pods, seeds and embryos was relatively slow as compared to the selfed (Fig. 1). The growth of hybrid embryos increased from 4 days after pollination to a maximum at 12 days; whereupon, growth ceased.

Partial and detached pods. Partially detached and detached pods contained significantly more viable seeds than the control "attached" pods (Table 1). Partially detached pods was more effective than detached. However, more defined techniques for pod sterilization and cultural conditions were needed to further improve the success of in vitro pod culture. For example, the relatively poor results obtained from the detached pods in Experiment 1 were mainly due to incomplete sterilization that permitted the pods to rot before attaining maturity. Furthermore, the high humidity conditions in the petri dishes also caused the seeds to germinate (viviparity) before pod maturity. Thus, it is necessary to carefully control both sterilization procedures and relative humidity conditions to assure pod maturation.

The detaching technique used to overcome embryo abortion was based on the assumption that inhibiting

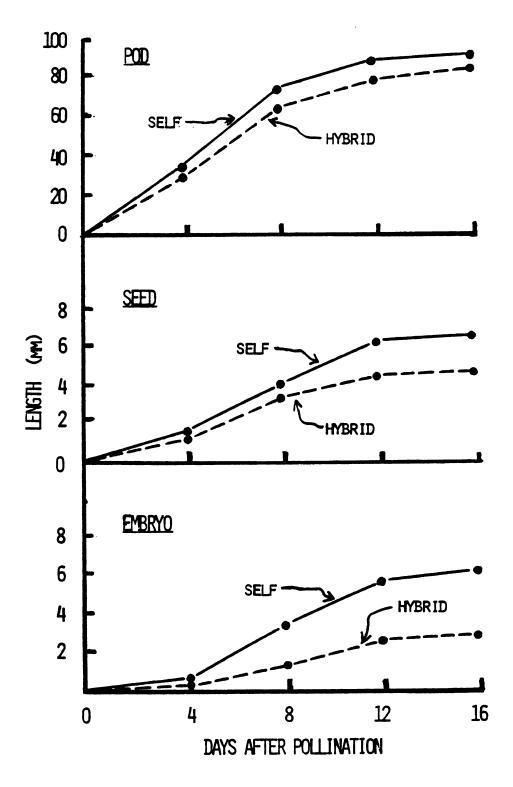


Figure 1. Comparative growth of pod, seed and embryo of natural self of \underline{V} . $\underline{radiata}$ and the interspecific hybrid, \underline{V} . $\underline{radiata}$ \underline{x} \underline{V} . $\underline{umbellata}$.

Effect of the partial detached and detached pods on the success of the interspecific cross, \underline{V} . radiata \times \underline{V} . umbellata. Table 1.

		Experiment 1			Experiment 2 ²	
Treatment	Viable seeds (no.)	Viable seeds per 100 attempts	<pre>% pods with viable seeds</pre>	Viable seeds (no.)	Viable seeds per 100 attempts	<pre>% pods with viable seeds</pre>
Partial detached pods	17.3	98	58.8	35.8	. 143	55.4
Detached pods	3.0	15	13.8	16.5	99	43.0
Control	2.3	11	10.0	6.3	25	17.9
L.S.D. 5%	2.9	1	12.9	9.1	1	18.4

l Mean of 4 replications; 20 pods per replication.

² Mean of 4 replications; 25 pods per replication.

substances are prevented from being translocated to the pods (Ibrahim & Coyne, 1975). Partially detaching the pedicels of pods permitted sufficient water absorption to continue physiological processes, but may have reduced the translocation of inhibitors. In vitro pod culture the inhibiting substances are eliminated and the pods continue necessary physiological and developmental functions under controlled temperature and light conditions. The best time to apply these techniques to reduce F_1 embryo abortion was 10 to 12 days after pollination (Table 2). The highest number of viable F_1 seeds (12) was obtained from the 10 day-old pods with partial detachment, while the maximum number of viable F_1 seeds (7.3) was produced from the 12 day-old pods with in vitro pod culture.

<u>Defoliation treatments</u>. As mentioned above, inhibiting substances may be translocated from the leaves to the pods and cause embryo abortion. Thus, partial or complete defoliation might reduce or eliminate hybrid embryo abortion. Complete removal of leaves from the maternal plants significantly increased the numbers of viable F_1 seeds from 5 to 12 times as compared to the controls (Table 3). The defoliation treatments also increased the percentages of pods that produced viable seeds (from 17 to 29%). Generally, the greater defoliation resulted in the highest number of viable seeds (Table 4). Regardless of the time of defoliation, the average

Effect of post-pollination time for partial detached and detached pods on the success of the interspecific cross, \underline{V} . radiata x \underline{V} . umbellata. Table 2.

	Pod size	ize	Part	Partial detached pods	spo		Detached pods	
Days after pollination	Length Width (mm)		Viable seeds (no.)	eeds Viable seeds % pods with per 100 viable attempts seeds	<pre>% pods with viable seeds</pre>		Viable seeds Viable seeds % pods with (no.) per 100 viable attempts seeds	<pre>% pods with viable seeds</pre>
10	53.9c ² 2.8c	2.8c	12.0a	240	56a	2.8bc	99	45abc
12	59.4bc 3.6b	3.6b	11.8a	235	67a	7.3a	146	75a
14	64.4ab 4.6a	4.6a	q0.9	120	52a	4.0ab	80	55ab
16	69.1a	4.8a	4.5b	06	47a	1.8bc	36	30bcd
18	68.4a	4.8a	1.3c	25	25b	0.8c	16	10d
Control	1	1	1.0c	20	20b	1.0bc	20	15cd

¹Mean of 4 replications; 5 pods per replication.

²Mean separation in columns by Duncan's multiple range test, 5% level.

Table 3. Effect of defoliation on the success of the interspecific cross, \underline{V} . radiata x \underline{V} . umbellata.

Treatment	Viable seeds (no.)	Viable seeds . per 100 attempts	<pre>% pods with viable seeds</pre>
		Experiment 1 ¹	
Defoliated	28.7	73.3	26.7
Undefoliated	2.3	7.5	3.3
L.S.D. 5%	4.6		4.7
		Experiment 2 ²	
Defoliated	12.7	66.3	38.4
Undefoliated	1.5	8.8	9.4
L.S.D. 5%	1.1		12.0
		Experiment 3 ²	
Defoliated	7.6	48.4	26.6
Undefoliated	1.5	9.6	9.4
L.S.D. 5%	0.9		8.4

¹Mean of 3 replications.

²Mean of 4 replications.

Effect of time and degree of defoliation on the success of the interspecific cross, \underline{V} . radiata x \underline{V} , umbellata. Table 4.

Overall	an	% pods with viable seeds	38b	68a	40b	45b	42b	29b	
Ove	Mean	Viable seeds per 100 attempts	77bc	224a	88b	9.7b	114b	15c	ı
		<pre>% pods with viable seeds</pre>	58a	71a	50a	67a	· 50a	25b	54
	100%	Viable seeds per 100 attempts	150bc	325a	63bc	113bc	200a	17c	145
ion		<pre>% pods with viable seeds</pre>	50ab	100a	46ab	38b	67ab	42ab	57
Degree of Defoliation	879	Viable seeds per 100 attempts	79bc	300a	63bc	175ab	133ab	17c	128
Degree (8	<pre>\$ pods with viable seeds</pre>	25b	75a	50ab	63ab	42ab	50ab	51
	33%	Viable seeds per 100 attempts	63bc	238a	213ab	88abc	113abc	25c	123
		<pre>% pods with viable seeds</pre>	17a	25a	13a	13a	8a	0a	13
	80	Viable % pods seeds with per 100 viablo attempts seeds	17a ³	33a	13a	13a	8a	0a	14
		Time ² of defolia- tion (days)	2	4	9	8	10	12	Overall Mean

Wean of 4 replications; split plot design.

²Days after pollination.

³Mean separation in columns by Duncan's multiple range test, 5% level.

numbers of viable seeds per 100 attempts were 123, 128 and 145 for 33, 67 and 100% defoliation, respectively, compared to 14 for the control. Complete defoliation (100%) following pollination caused a large number of pod abscission. The time of defoliation seemed to affect embryo abortion. Defoliation at 4 days after pollination was the most effective for obtaining F_1 seed as opposed to leaf removal 12 days after pollination (Table 4).

Adverse effect of defoliation on grain yield has been reported for several legume crops (Stewart et al., 1978; Enyi, 1979). The mechanism by which defoliation facilitated hybrid embryo development in this interspecific cross of \underline{V} . $\underline{radiata} \times \underline{V}$. $\underline{umbellata}$ is unknown. Defoliation of the maternal plant may have eliminated or reduced the synthesis of inhibitory substances in the leaves and be transported to the pods and seeds.

Pollen mixture. Use of pollen mixture combining a compatible pollen with a foreign species pollen to overcome interspecific incompatibility has been successful in Populus (Stettler & Guries, 1976). Application of pollen mixture to the cross of <u>V. radiata x V. umbellata</u> was made to learn regards its possible effect on embryo abortion.

Pollen of a third species, <u>V</u>. <u>angularis</u>, which was partially compatible with V. radiata (Ahn & Hartmann, 1978;

Chen & Baker, in press) was mixed with <u>V</u>. <u>umbellata</u> and used to pollinate <u>V</u>. <u>radiata</u>. The use of pollen mixture increased the number of viable hybrid seeds 3 times that of the control (Table 5). The number of viable seeds and percent pods producing seeds were increased. Possibly, either the pollen of <u>V</u>. <u>angularis</u> and/or the hybrid embryos of <u>V</u>. <u>radiata</u> x <u>V</u>. <u>angularis</u> stimulated the growth and development of the hybrid embryos. The effect of mixed pollen might be similar to that of "double pollination" described by De Vaulx and Pitrat (1977).

Interspecies grafting. Grafting between <u>V. radiata</u> and <u>V. umbellata</u> was successful. The grafted plants grew vigorously and produced seeds in both the scion and stock species. Moreover, a large number of viable hybrid seeds resulted by grafting as compared to control (Table 6). The use of side-grafting in which <u>V. radiata</u> was used as the scion on <u>V. umbellata</u> was the most effective in overcoming embryo abortion in the interspecific cross of <u>V. radiata</u> x <u>V. umbellata</u>. The number of viable seeds per 100 attempts was 187 using side-grafting as compared to 7 for the ungrafted control (Table 6). An increase in percentages of both viable seeds and pods that produced viable seeds was realized for the side-grafted plants. Approach-grafting was not as successful as side-graft.

Table 5. Effect of mixed pollen on facilitating interspecific hybridization of \underline{V} . radiata and \underline{V} . umbellata.

Treatment	Total seeds obtained	Viable No.	seeds %	Viable seeds per 100 attempts	% pods with viable seeds
Experiment	<u>1</u>				
Mixed pollen	232	9	4.0	22.5	17.7
Control	246	3	1.2	7.5	7.5
Experiment	2				
Mixed pollen	487	25	5.1	31.3	18.8
Control	455	7	1.5	8.8	8.8

Influence of interspecies grafting on overcoming crossability barriers for the interspecific cross of \underline{V} . radiata x \underline{V} . umbellata. Table 6.

Graft ¹ Nk treatment c	No. flowers crossed	Total seeds obtained	Viable seeds No. %	seeds	Viable seeds per 100 attempts	<pre>\$ pods with viable seed</pre>	
Side-graft	38	236	71	30.1	186.8	76.0	
Approach-graft	45	260	12	4.6	26.7	15.0	
Control	85	286	9	1.0	7.1	7.1	

Side-grafting was made by using V. radiata as the scion on a V. umbellata stock. Plants of the grafted two species were grown without excising respective shoots and roots of the grafts.

<u>V. mungo</u>, <u>V. angularis</u> and <u>V. radiata</u> var. <u>sublobata</u>, were tested. Pod-set was observed for the crosses of (<u>V. radiata</u> x <u>V. mungo</u>) x <u>V. umbellata</u> and (<u>V. umbellata</u> x <u>V. angularis</u>) x <u>V. radiata</u>, however, the pods abscised prematurely and no viable seed was produced. One hybrid plant was obtained from the cross, (<u>V. radiata</u> x <u>V. mungo</u>) x <u>V. umbellata</u>. The hybrid plant grew normally but was sterile and succumbed soon after flowering.

A promising potential bridging species was found for this cross. By using \underline{V} . radiata var. sublobata as a bridging species, considerably higher numbers of viable seeds were produced from the crosses of (\underline{V}) . radiata x \underline{V} . radiata var. sublobata) x \underline{V} . umbellata as compared to that of the cross, \underline{V} . radiata x \underline{V} . umbellata (Table 7). The number of viable seeds per 100 attempts were 497 and 296 for where a third species was involved as compared to only 11 for direct hybridization of the two species.

<u>V. radiata</u> var. <u>sublobata</u> has been considered a wild progenitor of cultivated <u>V. radiata</u> and <u>V. mungo</u>

(Arora et al., 1973). It was originally classified as <u>Phaseolus sublobatus</u> Roxb., but it has been separated from <u>Phaseolus</u> and given varietal status under <u>V. radiata</u> by Verdicourt (1970). The morphological diversity in <u>V. radiata</u> var. <u>sublobata</u> and its possible value as a source of resistance to yellow mosaic virus have been reported (Arora et al., 1973; Singh & Ahuja, 1977).

Table 7. Effect of V. radiata var. sublobata as a bridge species to improve the crossability

of V. radiata and V. umbellata.	/. umbellata.					
Cross	No. flowers crossed	No. flowers Total seeds Viable seeds crossed obtained No. %	Viable No.	seeds &	Viable seeds % pods with per 100 viable attempts seed	% pods with viable seed
(radiata x sublobata cv. Sl) x umbellata	36	278	179	88.9	497	64.4
(radiata x sublobata cv. S2) x umbellata	28	116	83	89.3	, 296	71.6
radiata x umbellata	64	390	7	1.8	11	9.4

The use of \underline{V} . $\underline{radiata}$ var. $\underline{sublobata}$ as a bridging species provides another means to circumvent barriers to crossability in the interspecific hybridization of \underline{Vigna} .

Amphiploidy. To circumvent hybrid sterility, the ploidy of sterile hybrid plants can be doubled with colchicine to produce amphiploids (Dana, 1967; Ahn & Hartmann, 1977). Amphiploids were induced by treating cuttings of the sterile hybrid with 0.25% colchicine (Fig. 2). The amphidiploid plants were partially fertile with pollen stainability to 81%. However, the vigorous vegetative growth, photoperiod sensitive, and poor pod-set suggest that it will not succeed as a new crop without improvement. So, one method to transferring the desirable genes is by backcrossing the amphidiploid to V. radiata.

A spontaneous amphidiploid (AVRDC, 1976) was used to backcross with \underline{V} . $\underline{radiata}$. Five triploid plants were obtained with the aid of embryo culture (Fig. 2). The triploid plants grew vigorously and flowered profusely with infrequent pod-set. Cytogenetic studies (Machado, 1978) showed meiosis in the triploid plants (amphidiploid $\times \underline{V}$. $\underline{radiata}$) was irregular with 11 bivalents and 11 univalents at metaphase I. The second division was also abnormal with multipolar division and non-congregating and lagging chromosomes. A number of progenies from the triploids were produced by natural self-pollination and by backcrossing to V. $\underline{radiata}$ (Fig. 2). $\underline{Variation}$ in

Figure 2. Plants of interspecific hybrid <u>V. radiata x V. umbellata</u>, amphidiploid, triploid and progenies of the triploid.

2-a: Hybrid plants (2X, right) and amphidiploid (4X).

2-b: Triploid plants derived from embryo culture (amphidiploid x <u>V. radiata</u>). 2-c: Plant of triploid x <u>V. radiata</u>, showing abnormal monoleaflet of leaves.

2-d: Progeny of the triploid derived from natural self-pollination.

morphological characteristics and levels of fertility were found among these progenies. Mitotic studies revealed that 2n=22 and 2n+1=23 somatic chromosome numbers occurred in these triploid progenies (Machado, 1978). Improvement and selection of economic traits could be accomplished by backcrossing to \underline{V} . radiata to recover desirable traits.

REFERENCES

- Ahn, C.S. and R.W. Hartmann. 1977. Interspecific hybridization among four species of the genus <u>Vigna</u>. In: Proc. First International Mungbean Symposium. Asian Vegetable Research and Development Center, Shanhua, Taiwan. p. 240-246.
- Asian Vegetable Research and Development Center (AVRDC). 1974. Annual Report for 72-73. Shanhua, Taiwan.
- Asian Vegetable Research and Development Center. 1975. Annual Report for 1974. Shanhua, Taiwan.
- Asian Vegetable Research and Development Center. 1976. Mungbean Report for 1975. Shanhua, Taiwan.
- Arora, R.K., K.P.S. Chandel and B.S. Joshi. 1973.

 Morphological diversity in <u>Phaseolus sublobatus</u> Roxb.

 Curr. Sci. 42: 359-361.
- Boling, M., D.A. Sander and R.S. Matlock. 1961. Mungbean hybridization techniques. Agron. J. 53: 54-55.
- Chen, N.C., J.F. Parrot, T. Jacobs, L.R. Baker and P.S. Carlson. 1977. Interspecific hybridization of food legumes by unconventional method of plant breeding. In: Proc. First International Mungbean Symposium. Asian Vegetable Research and Development Center, Shanhua, Taiwan, p. 247-252.
- Chen, N.C. and L.R. Baker. In Press. Influence of parental cultivars and parental heterozygosity on crossability among four species of Vigna. In Press.
- Chen, N.C. and L.R. Baker. In Press. Effect of E-aminon-caproic acid on interspecific hybridization in the genus <u>Vigna</u>. In Press.
- Dana, S. 1967. Hybrid from the cross <u>Phaseolus aureus</u>
 Roxb. x <u>P</u>. <u>calcaratus</u> Roxb. J. Cytology & Genet.
 2: 92-97.
- De Vaulx, R.D. and M. Pitrat. 1977. Relation of the interspecific cross between <u>Capsicum annum</u> L. and <u>Capsicum baccatum</u>. <u>In Interspecific Hybridization in Plant Breeding</u>. Proc. 8th EUCARPIA Congress, Madrid, Spain, 1977. p. 327-333.

- Dionne, L.A. 1963. Studies of the use of Solanum acaule as a bridge between S. tuberosum and species in the series Bulbocastana, Cardiophylla, and Pinnatisecta. Euphytica 12: 263-269.
- Enyi, B.A.C. 1975. Effect of defoliation on growth and yield in groundnut (Arachis hypogaea), cowpea (Vigna unguiculata), soybean (Glycine max) and green gram (Vigna aureus). Ann. Appl. Biol. 79: 55-66.
- Guries, R.P. 1978. A test of the mentor pollen technique in the genus <u>Ipomoea</u>. Euphytica 27: 825-830.
- Hermsen, J.G. Th., and M.S. Bamanna. 1973. Double-bridge hybrids of Solanum bulboeastanum and cultivars in Solanum tuberosum. Euphytica 22: 557-566.
- Ibrahim, A.M. and D.P. Coyne. 1975. Genetics of stigma shape, cotyledon position, and flower color in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus coccineus (Lam.) and implications in breeding.

 J. Amer. Soc. Hort. Sci. 100: 622-626.
- Linsmaier, E.M. and F. Skoog. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100-127.
- Machado, M. 1978. Personal communication. Dept. of Horticulture, Michigan State University, East Lansing.
- Ronald, W.G. and P.D. Ascher. 1976. <u>Lilium</u> x "Black Beauty" A potential bridging hybrid in <u>Lilium</u>. Euphytica 25: 285-291.
- Sams, D.W., P.D. Ascher and F.I. Lauer. 1977. Crossability of some green-peach-aphid-resistant tuberbearing Solanums, potential bridging species, and Solanum tuberosum ssp. tuberosum. Amer. Potato J. 54: 355-364.
- Sastri, D.C. and K.R. Shivanna. 1976. Attempts to over-come interspecific incompatibility in Sesamum by using recognition pollen. Ann. Bot. 40: 891-893.
- Singh, B.V. and M.R. Ahuja. 1977. Phaseolus sublobatus Roxb.: A source of resistance to yellow mosaic virus for cultivated mung. Ind. J. Genet. Plant Breed. 37: 130-132.
- Stettler, R.F. and R.P. Guries. 1976. The mentor pollen: phenomenon in black cottonwood. Can. J. Bot. 54: 820-830.

- Stewart, K.A., R.J. Summerfield and B.J. Ndunguru. 1978. Effect of source-sink manipulations on seed yield of cowpea (Vigna unguiculata (L.) Walp.). I-Defoliation. Trop. Agric. (Trinidad). 55: 117-125.
- Verdicourt, B. 1970. Studies in the Leguminosae-Papilionoideae for "Flora of Tropical East Africa." IV Kew Bul. 24: 507-569.