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ABSTRACT

CARRIER WAVE INTERACTION IN SOLIDS

By

Bin-Luh Cheng

The carrier wave characteristics of velocity-modulated

electrons and holes in solids are studied. The analysis is based

on the Maxwell's equations and the Boltzmann transport equations.

By considering the carriers in solids as charged particles with

effective mass m*, a hydrodynamic model is adopted to describe

the carrier behavior. Macroscopic equations of this model are

derived. From the solution of the carrier wave equations, equi-

valent transmission lines for electron and hole motion in solids

are deve10ped.

A general expression of the propagation constant of the

carrier waves in solids is obtained from the fundamental equations.

The dispersion characteristics for the carrier waves in an

extrinsic semiconductors are discussed in detail. The result

shows that the thermal-to-drift velocity ratio plays an important

role to the nature of the carrier wave while the collision be-

tween the carriers and the solid lattice determined the degree

of wave attenuation.

The possibility of wave amplification is investigated by

examining the kinetic power flow in solids surrounded by an
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electromagnetix:slow-wave circuit. It is found that the essential

condition for wave amplification is that the carrier wave which

carries negative electrokinetic power is excited.

The normal modes of the collisionless carrier waves in an

extrinsic semiconductor and an electromagnetic slow-wave circuit

are defined. Using these results, a solid-state traveling-wave

amplifier is studied by the coupledqmode analysis of wave inter-

actions. Theoretically, for high gain operation, a high mean

carrier drift velocity and low device operating temperature should

be used.
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CHAPTER I

INTRODUCTION

1.1 Space Charge Waves in Vacuum and the Carrier Waves in Solids

It is well known that there are fast and slow space-charge

waves associated with an electron beam drifting in vacuum with an

infinite homogeneous axial d-c magnetic field.1 The existence of

these waves depends on the Space charge bunching produced by

external longitudinal modulation. When the modulation of the beam

is small and the signal frequency is much higher than the plasma

frequency of the beam, the phase velocities of these waves are

slightly faster and slower than the d-c drift velocity of the

electron beam for the fast and slow space-charge waves, respectively.

However, the group velocities of these waves are identically equal

the beam's average drift velocity. When the beam has finite

dimensions in the transverse direction and the applied axial d-c

magnetic field is finite, more than one set of space-charge waves

can exist in the system.

Most electron beam devices operate according to the prin-

ciple of circuit-beam wave interaction in which the electromagnetic

wave propagating around the beam exchanges energy with one of its

space-charge waves. If energy is removed from the beam and trans-

ferred to the circuit wave, the device will serve as an amplifier

or oscillator. On the other hand, if signal energy is absorbed



by the beam, the device will act as a passive element and is

generally used as signal couplers.

As a result of rapid progress in solid state physics in

the past decade, groups of new solid state electron devices such

as transferred electron and avalanche transit time devices are

receiving widespread attention. At present, these devices can

only offer low power operation and have no competition, besides

space and weight, for the vacuum beam devices such as the

traveling-wave amplifier. However, their potential usefulness

in the future is so great that intensive research in various

aspects has been conducted almost everywhere.

It is natural to expect that there are similarities be-

tween electron streams in vacuum and the carrier streams in solids

in charged carrier behavior. Furthermore, it is hOped that the

principles of interaction used in the case of the electron beam

in vacuum can be extended to the solid state devices. It has

been shown by Weasel-Berg3 that there are space-charge waves

associated with drifting charged stream in a semiconductor. The

nature of these waves in solids is identical to those in the

electron beam except that they are heavily affected by the presence

of collision and thermal effects. It has been shown by Ho4 that

when the d-c drift velocity of the carrier is small compared with

its thermal velocity, a set of acoustic waves, similar to the

electroacoustic waves in gaseous plasma, may exist in the semi-

conductor. These waves are electromechanical in nature, i.e.

the wave propagation results from the interchange of kinetic

energy of the stream charged carriers with stored energy in a-c



electric field. For high operating frequency, these waves will

propagate at the thermal velocity of the carriers. There is also

a possibility of the existence of hybrid modes as a combination

of the space-charge waves and surface waves propagating along the

surface of the solid state plasma if the transverse dimension

is finite.5 All these waves are commonly known as "carrier waves"

in a semiconductor.

1.2 Previous Studies of the Carrier Waves in Solids

The studies of carrier waves in solid state plasmas was

stimulated by Konstantinov and Perel6 and also by Aigrain7 in

1960. They showed that in the presence of magnetostatic fields,

it is possible for electromagnetic waves to prOpagate in solids

with a small attenuation. In 1961, Bowers, Legendy and Rose8

performed a set of experiments to verify such possibilities.

The investigation of wave interactions in solid state plasmas

received greater attention and increased interest when the

technological utilization in solid state microwave devicesg-14,

such as the solid state traveling wave amplifier, was developed

recently.

The power conservation theorem of electron beams has

been investigated by several authorsls’16’17, for some time.

An analogous study in solid state plasmas was given by Vural and

Bloom18 in 1967. From the Poynting theorem for a conducting

medium, Vural and Bloom were able to obtain the effects of

diffusion and collision to stored energy density and power flow

of the carrier in solids. The electrokinetic power and energy



density of the electron stream are examined in detail for several

special cases and the conditions which lead to a condition where

the stream's kinetic power become negative were discussed.

Recently, Kino19 described the charged carrier motion in

a semiconductor due to longitudinal modulation at low temperature

through the expediency of a Space-charge wave concept.

With the idea of replacing the electron beam in a

traveling wave tube with drifting carriers in a semiconductor,

as shown in Fig. 1-1 the interaction of drifting carriers in semi—

conductors with the traveling wave in an external slow-wave circuit

was studied by Solymer and Ash9 in a one-dimensional treatment.

The conditions for amplification were derived by considering

carrier momentum, thermal diffusion and collision effects. Sumi10

made a three-dimensional investigation by ignoring the surface

charge and current at the semiconductor surface. He derived a

dispersion relation for the system and found that the characteristics

of prOpagating waves are similar to those of ultrasonic wave

amplification. For an n-type GA-As at room temperature, he pre-

dicted the attainable gain to be about 200db/mm. A further study

including the surface effects was made by Vural and Steele20 to

consider the interaction with a generalized admittance wall. Al-

though various slow-wave structures intended for use in solid-

21,22
state traveling wave amplifiers were proposed by several authors ,

no successful experiment has yet been reported.
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1.3 Objective and Outline of the Present Study

A review of the state-of-the art shows that most of the

physical phenomena in solids, such as the Gunn oscillation and

avalanche transit time oscillation, reported in the past few years

have been studied rather extensively in two general aspects: the

theoretical studies of the scattering mechanism in solids which

produces instability under high field by quantum theory23, and

analytical studies, mostly using computer technique, of the

charged particle dynamics based on the experimental velocity-

field characteristicsza. These approaches are either too theo-

retical or complicated in device application. None of these

approaches has attempted to describe the various instabilities in

solid state plasmas by the concept of wave interaction which was

so successfully used in the electron beam deviceszs. The Objective

of this study is to develOp an analytical technique, to study the

basic properties of the carrier waves in solids. Furthermore,

coupled mode theory will be used to examine all possible coupling

between carrier waves and external electromagnetic waves.

In Chapter II, the general characteristics of the carrier

waves in solids are described. Starting with Maxwell's equations

and the Boltzmann transport equations, several fundamental equa-

tions are obtained to describe the behavior of the charged carriers

in solids. After simplifying the fundamental equations by appro-

priate assumptions, the general wave equations for both electrons

and holes with longitudinal modulation are derived. The attenua-

tion and phase constants which describe the propagating char-

acteristics of the carrier waves are obtained by solving those



wave equations. Finally, considering a quasi-one-dimensional

model and defining the kinetic voltages due to velocity modula-

tion and thermal diffusion, two types of the transmission-line

equivalent circuits in terms of a-c current density and the de-

fined kinetic voltages for carrier waves in solids with the

external slow wave circuit under consideration are deduced.

From the prepagation constants obtained in Chapter II,

the dispersion relations and wave characteristics for an

extrinsic semiconductor are studied in detail in Chapter III.

Several special cases are discussed. It is shown that the

carrier waves are reduced to the space-charge waves of the

electron beam in vacuum in the absence of collision and thermal

diffusion. For a general case, the effects of longitudinal modula-

tion, thermal diffusion, and collision upon the wave characteristics

are examined. When the thermal-to-drift velocity ratio is changed

from one extreme to another, it clearly shows that the fast and

slow space-charge waves will gradually emerge into the electro-

acoustic waves. It is also shown that collision between the

carriers and solid lattice will cause attenuation in most cases.

Several dispersion diagrams for simple cases are checked with

those reported by Vural and Bloom26 to confirm the validity of

the theory developed.

In Chapter IV, the small signal kinetic power theorem for

longitudinal carrier waves is presented. Using the fundamental

equations and assumptions stated in Chapter II, a new form of

Poynting theorem which includes the effects of diffusion and

collisions is derived. The properties of the real power flow are



investigated and the possibility of wave amplification and

oscillation is examined in detail through the derived power and

energy equation.

Chapter V presents the coupled mode analysis of carrier

wave interactions. In order to apply the coupled mode technique,

the normal modes of each carrier wave must first be obtained. In

this chapter the normal modes of the collisionless carrier waves

in solids are obtained in terms of the equivalent kinetic voltage

and a-c current of the carriers. A coupled system which involves

a slow electromagnetic wave circuit and a modulated carrier wave

in the semiconductor is studied in detail. Using the derived

normal modes and neglecting some of the weakly-coupled effects

between the modes, an expression for gain is Obtained.

Chapter VI contains a discussion of results and con-

clusions.



CHAPTER II

GENERAL CHARACTERISTICS OF THE CARRIER WAVES

2.1 Introduction

Since the individual carriers in solids have different

velocities and energies distributed over a wide range, the char-

acteristics of the carrier waves in solids are determined by the

average behavior of the ensemble. Therefore, instead of trying

to calculate the contribution of each electron individually, a

statistical analysis is needed to derive the macroscopic equa-

tions describing the streaming carriers in solids. Generally,

quantum-statistical analysis.is used to describe the carrier

motion inside solids, however, in the long-wavelength limit the

quantum-mechanical description goes over to the classical des-

criptionzo. Here the general characteristics of carriers

(electron and holes) in solids interacting with their self-created

or externally imposed electric or electromagnetic field or both

is investigated. The analysis is restricted to the long-wave-

length exictations so that a classical statistical description

can be applied.

In order to treat the carrier stream hydrodynamically,

we further assume that the wavelength of any disturbance is much

longer than the Debye length lo; the interactions of carriers

with lattice vibrations are taken into account by introducing
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constant collision frequencies; the effect of band-to-band transi-

tions is neglected due to the assumption that the energy and

momentum changes per particle are small and the effect of the

environment is taken into account by introducing effective masses

for electrons and holes.

In this Chapter, a set of fundamental equations is intro-

duced to describe the hydrodynamic model of the carrier stream

in the solid. A general wave equation of the carriers is derived

from those fundamental equations and the propagation constants

for the longitudinal carrier waves in an extrinsic semiconductor

are obtained from the wave equation. Using this result, the char-

acteristics as well as the dispersion relations of the carrier

waves in an extrinsic semiconductor can be studied and will be

examined in detail in Chapter III. Equivalent transmission-lines

for carrier waves in the solid including an external slow wave

circuit surrounding the solid are also deve10ped from the funda-

mental equations by defining proper kinetic voltages and equi-

valent current density. In our quasi-one-dimensional model, the

longitudinal electrokinetic waves are coupled to the external

electromagnetic waves through an ideal transformer which indicates

a possibility of energy exchange between the carrier wave and the

external slow wave circuit. The real power of the carrier wave

dissipated by the collision effect between the carriers and the

solid lattice is examined from the real power loss or the equi-

valent transmission-line, the result is checked with that obtained

from the kinetic power theorem in Chapter IV. The suppose of

this equivalent transmission-line is to introduce a circuit
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equivalence for the propagating carrier waves; when the trans-

mission-line equivalence of the specific designed slow wave circuit

is also developed, it would be possible to investigate the energy

exchange and conditions of wave amplification by the circuit theory.

2.2 Fundamental Equations

The fundamental equations describing the average behavior

of such carriers are Maxwell's equations and the macroscopic equa-

tions of the hydrodynamic model which are derived from the micro-

scopic Boltzmann equation by taking moments of the velocity dis-

tribution. These equations can be written as follows:

vi -= f (p-n) (24>

v x 172‘ = 53 (2.2)
1:- at

.. g 31‘:

VXH 3h+je+eat (2-3)

Vofi = 0
(2'4)

0d - an =v Je e at o (2.5)

.“ 32 =v Jh + e at o (2.6)

ave e _, _. Vi»-

3r=-7<€+Vexufi>'veve‘7vn ‘2'”
me

4 v2

__h_ a e. - - -' - 3idt * (E + vh X L5H) thh 1) VP (2-8)

“‘h

Je = -en V6 (2.9)

3h = ep 3h (2.10)



where - the

:
3
1

“
1

I the

p'flthe

e = the

n = the

p = the

£
4
1

I the

1

theL
. a

<
1

II the

= the

:
1
"
:
1
m

- the

' the

the

- the

(
D
C

S
a
i
l
-
0
5
3
l
-

(
D

II

the

8 the

12

electric field intensity

‘magnetic field intensity

permeability of the solid

permittivity of the solid

electron density

hole density

electron current density

hole current density

electron velocity

hole velocity

electron charge = value

effective mass of electrons in the solids

effective mass of holes in the solids

collision frequency between the electrons and

solid lattice

collision frequency between the holes and the

solid lattice

k = the Boltzmann constant = value

T = absolute temperature of the carriers

vT_ = (25$)% 8 mean thermal velocity of electrons in the

m

e solids

a 3kT % d
VTW- (-;D 8 mean thermal velocity of holes in the soli s

“h

Equations (2.1) thru (2.4) are the Maxwell's equations

in the presence

(2.5) and (2.6)

of charge and current inside the solid. Equations

are the zeroth moment of the Boltzmann tranSport

equation which are commonly known as the equations of continuity
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for electrons and holes, respectively. Equations (2.7) and (2.8)

are the first moments of the Boltzmann transport equation of the

so-called equations of motion for electrons and holes. Equations

(2.9) and (2.10) are the basic definitions of current density due

to the drifting charged particles.

Solving the above fundamental equations with a given set

of boundary conditions, the average behavior of the charged

carriers in the solids can be described for a given excitation.

2.3 Basic Assumptions and the Simplified Fundamental Equations

Since the main purpose of this work is to try to obtain

a general wave description of the carrier motion in solids, any

second order effects will be ignored for simplicity, while the

important phenomenological results will be retained in order to

explore physical insights into the problem. With this intention

in mind, the following assumptions and approximations are made:

(1) The carrier temperature is considered to be constant

through the specimen,

(2) Each variable can be expressed as the sum of a time-

independent (d-c) term and a time-dependent (a-c) term. The

magnitude of the time-dependent term is small compared with that

of the time-dependent term, so that a small signal analysis is

used,

(3) All of the a-c components of the velocities of the

carriers, densities of the carriers, electric field and magnetic
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field have a periodic time-dependence with constant frequency w,

(4) There is a strong homogeneous d-c magnetic focusing

field in the longitudinal direction, namely the positive 2 direc-

tion; so that the carriers are confined to move in the longitudinal

direction and thus a one-dimensional model is utilized. All the

vectors are in the z-direction and all the variables are functions

of 2 only.

By the above assumptions, the electric field intensity,

the magnetic field intensity, the velocities of the carriers, the

carrier densities and the current densities can be written in the

following forms

if = E + E1 -= 2[EO + E1(z,t)]

O 0

ve = ueO +Ive1 = z[ueO +'vel(z’t)]

vh = uhO + vhl = 2[uh0 + vh1(z,t)]

Je = 3e0 + 3E1 = z[Je0 + Jel(z,t)]

--0 =4 +4 =5

Jh JhO Jh1 ZEJho + Jh1(z't)]

where

\EO‘ >>'\E1‘ , \nO‘ >> |n11 , etc.

1 = E ejwt, n = n jwtE 10 1 106 , etc.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Here the subscript "O" and "1" denote the time-independent and

time-dependent terms, respectively.

Substituting Equations (2.11) through (2.20) into Equa-

tions (2.1) through (2.10), neglecting all second order terms,

separating the time-independent and time-dependent parts and con-

sidering the time-dependent parts only, the following system of

scalar equations is obtained:

BE1 e
5— = ; (p1 - ml) (2.21)

J81 + Jhl + Jwe E1 = o (2.22)

aJ

e1 _ .
82 — Jmen1 (2.23)

aJ

hl _ _

62 Jwepl (2.24)

av v n

e. __e.1 l:__1. s
(jw + ve)vel + m* E1 + ue0 82 + no 82 O (2.25)

e

5V V2 8P
_ e_. _lh .34...

UL» + 611)th m: E1 + uho 52 + po 32 o (2.26)

Je1 = -e(n0vel + nlueo) (2.27)

Jhl = e(p0vh1 + pluhO) (2.28)

In summary, following the basic assumptions stated at the

beginning of this section, the fundamental Equations (2.1) through

(2.10) are reduced to a set of first order linear differential

Equations (2.21) through (2.28) which can easily be handled in the

subsequent developments.
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2.4 Wave Equations and the Progagation Constants

In order to describe the carrier motion in solids under

external modulation by the wave concept, it is desirable to obtain

wave equations which express the voltage and current waves travel-

ing along the sample. With this purpose in mind, differentiating

Equation (2.25) with respect to 2, we have:

 

2 2 2

8V BE 5 V V _ a n

(Jw+v)-£]-’+e—*—-L+u e1+ T 1:0 (2.29)
e z 52 e0 n 2

me 32 O 32

Differentiating Equation (2.27) with respect to z and rearrang-

ing, yields:

 

 

8V BJ an
e1 ___ _ I_ (I __el + u ___—1 (2.30)

32 n0 e az e0 32

8.]e1
Replacing with the right hand side of (2.23), Equation

(2.30) becomes:

3V an
e1 1 . l

= - —— + _
.

52 “0 (anl ueo 32 (2 31)

Substituting Equations (2.21) and (2.31) into Equation (2.29),

one obtains:

 

2

2 n

2 2 6 n1 anl e O 2
- O _+ ___- O

(ueo VT“) 22 + ueo(ve + 32w) AZ (m* 6 w + vae)n1

a e

2 n

-9;—°p1=0 (2.32)
m e

e

This is the wave equation in terms of the a-c electron density.

Similarly, the wave equation in terms of the a-c hole density

can be obtained as:
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2

2 2 a P1 6P1 LEQ 2

(“ho " VT+) 2 + uhowh + jzw) 32 + ( * e w + jun’f1)p1

z mh

P

- 9—- —Q n = 0 (2.33)
* e 1

"'h

Introduce the following parameters:

I“0 3:
wp_ = e[-—;] = radian electron plasma frequency

em
e

p0 5:
wp+ = e['—;fl = radian hole plasma frequency

Emh

Be = (n/ue0 = phase constant for cold electron waves

6h = w/uho = phase constant for cold hole waves

kT- = vT_/ue0 thermal-to-drift velocity ratio of electrons

kT-I- = vT+/"ho

Equations (2.32) and (2.33) become

thermal-to-drift velocity ratio of holes

 

 

2 2

23% “e . 1‘11 22; 2 .12.
(1-|<T_) 2+(Ll +JZBe)Bz+(2 MBQ'PJBQUM1

az e0 u e0
e0

(1)2-

-—123—p1=0 (2.34)

ue0

6213 v ap 032 v

2 1 _h._ - ___1 .91- 2 _e_
(1 k”) 622 + ("ho + JZBh) 32 + (u: 8h + 18h "bowl

0

w2

--E*-61=0 (2.35)
2

“no

This is the wave equation for the carrier densities in

solids with a longitudinal excitation. A general solution for

the above simultaneous differential equations are of er form;

there F is defined as the prOpagation constant for the carrier
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waves. Fromequations (2.34) and (2.35), an equation for F is

obtained as

2

(1- 2)I‘2+:§_+-2 )P+EE'.- 2+ .VL. .
I kT- (n J Be 2 Be 1% u ]

e0 ueo e0

u)2

w w
w2t_ Vb 2' Bi 2

[(l-kwfl"2 +(_+JZBh)I‘+2 -Bh+thuh0]: [u ]

“ho rm “ao“ho

(2.36)

Now let us consider the carrier waves propagating along

extrinsic semiconductors which have a considerably large donor

(n-type) or acceptor (p-type) concentration, in other words, the

following conditions are assumed to be satisfied:

for n-type semiconductor N >> 111 or n >> p

for p-type semiconductor Na >> pi or n << p

+
9
:

where N , N , n and p are the concentration of donors,

d a ii

acceptors, intrinsic electron, and intrinsic holes, respectively.

In such cases, the effects of minority carriers are neglected

because of their relatively small concentration, and the wave

equations reduce to

2 a“: .e at 2.; 2 re .
(1 -lgr_) 2+(:-—+j25e) az +(2 -3e+jaeu )n1 0 (2.37)

 

32 e0 ue0 e0

or

82? V 5? w2

(lair—gm“4126,981+(-§i-eh+Jah-h—)p1=0(238)
az “110 “110

The prOpagation constants for longitudinal electrokinetic carrier

waves in an extrinsic semiconductor in which the majority carriers

greatly out-number the minority carriers can be written as:
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F =-L_l-__[V_+j:r] (2.39)

2'1 Ul0 l-k: 2‘” 1

where

3,2 2 ‘1’: 2 2 v ’5r1 = [awz - k1- - (.02 (l-kT) + jkT E] (2.40)

Note the subscript "e" or "h" in Equations (2.39) and (2.40) was

abbreviated for simplicity.

In general, the propagation constants 3+ are complex

and can be expressed as

II, = 01+ - 18: (2.41)

where 04, and 5+ are the real and imaginary parts of the

prOpagation constant, and are known as the attenuation and phase

constants of the longitudinal carrier waves, respectively.

2.5 The Eqpivalent Transmission-line for Carrier Waves in Solids

Including an External Slow Wave Circuit

In general, if the electromagnetic wave from the external

slow wave circuit is taken into account, we have to use the three

dimensional analysis and the knowledge of the boundary conditions

as well as the structure of the slow wave circuit are needed in

detail. However when the magnitude of the electromagnetic wave

is small compared with that of the electromechanical wave due to

longitudinal modulation, a quasi-one-dimensional model is used.

In this case, we express the electric and magnetic field in the

rectangular coordinates as

E-E’ +1? =21: +321: +§E +21: (2.42)



fi=fi +fi =21: +S‘cn +§H +9.11 (2.43)

Since the magnitude of the electromagnetic wave coupled to the

system is small, the velocities and densities of the carriers are

still strongly affected by the longitudinal modulation; therefore

the transverse components of those variables are small compared

with those of the longitudinal ones and can be neglected. Under

this condition, the variables 3;, 35, n, p, 3; and 3h are

considered to be one dhmensional as expressed in Equations (2.13)

through (2.18). Substituting Equations (2.13)-(2.20), (2.42)

and (2.43) into the fundamental equations (2.3), (2.5)-(2.10)

and consider the a-c terms in the z-components of the vector

equations, we have the following scalar equations as

 

 

an an
_11-_1x= .
ax ay Jel+Jh1+st Elz (2.44)

aJ

e1

32 - jwen1 0 (2.45)

aJ

32 +jwepl = 0 (2.46)

av v2 an

(ju)+v)v +9—E +u 41+i—1=0 (2.47)
e e1 m* 12 e0 32 no 32

e

av v2 Sp
-2. _IIJ. _h._.l=

(jm +'vh)vhl * Elz +’uhO 32 +' P 32 0 (2°48)
mb 0

Jel = -e(n0vel + nlueO (2'49)

Jhl = e(povhl +'p1uho) (2.50)
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In order to develop an equivalent transmission-line circuit

for the system, the following kinetic voltages and current density

are defined

*

me_ _.__
2.

vel e ueOvel ( 51)

*

“h

Vhl e uhOVhl (2°52)

m*

n

._._ - _e_l 2
VT- e n vT_ (2.53)

0

*

“'h 1’1 2
VTH- e vT*_ (2.54)

0

= 2.55Jml v xfil ( )

Ve1 and Vhl are the kinetic voltages corresponding to the

velocity modulation of electrons and holes, respectively. VT-

and VT+ are the kinetic voltages corresponding to the thermal

diffusion of electrons and holes, respectively. 3&1 are the

total equivalent a-c current density due to the electromagnetic

field of the slow wave circuit which can also be expressed as

3m1 -- 3d + jwe El (2.56)

where 3 = 3 +-3 is the conduction current density in the
c1 e1 hl

solid and jwe E1 is the displacement current density in the solid.

Here, both the space-charge wave and the electromagnetic wave are

taken into consideration, the conduction current density and the

electric field intensity can be expressed as

J61 a (3c1)SC + (369m (2'57)



22

i5‘21 ,_. (3930 + (39314 (2’58)

where the subscript "SC" and "EM" refer to the effect due to the

space-charge wave and the electromagnetic wave respectively.

From Equation (2.22) we have

(3.3930 + Jweal)sc = 0 (2.59)

Using Equations (2.57) through (2.59), Equation (2.56) becomes

--0

Jml a (3C1)EM + “(E9211 (2'60)

The above expression gives a clearer physical picture for 3ml

which is composed of both the conduct ion and displacement current

densities due to the electromagnetic field of the slow wave circuit.

Using these four kinetic voltages and the equivalent current

density defined above, Equations (2.44) through (2.50) can be re-

written in the following form

 

 

’1‘“ E12 = Jel + Jhl ' Jmlz (2'61)

2

N ew _

3:1 g 'j‘” —§" VT- (2'62)VT-

aJhl swz

z = -ju) £2 VT+ (2.63)

a vT-I-

ve av BVT-

use + 33"“ - 212 4182 + 82 = o (2.64)

v 5V av

.11. _ _111 __1‘1 .(15h + "110)th Elz + 32 + 62 0 (2.65)

8012 V

Je1 a HIP; [vel + $1 (2'66)
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2

..Eflzt YT:Jhl “ho [th + KL] (2.67)

where J are the z-component of 3 .

mlz m1

In order to develop an equivalent transmission-line equa-

tion in terms of the kinetic voltages of velocity modulation and

the current density, VT- can be put in terms of Ve1 and Je1

from Equat ion (2 . 66)

2 ue0
VT- = kT_[-‘Vel +--§-Jel] (2.68)

a”?

Substituting the V obtained above into Equations (2.62) and
T-

(2.64) yields

 

 

aJel w2_

3'.— 3.8.81 +1.. f2 V... (“’9’
e0

3V v
el = _ - __l__. .2. 2

az jBevel 2 [U + jZI‘T-BCJVEI

1- _ e0

k; z

+ Jun g—lz J 1 + 43—2 (2.70)

l-kT an e l-kT
p- -

For the sake of simplifying these equations, the following simple

changes of variables are made:

1882
J61 = Jele

(2.71)

. 2 JB 2
Vel = (1-kT_)V 1e (2.72)

1682
312 = Elze (2.73)

Equations (2.69) and (2.70) are then reduced to:
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'

ajel - - Y v'
52 e1 el

6‘“
._411 a _ u _ t +, u

32 zelJel Aelvel E

where

2

u12:. 1
Y6]. ' -jwe 2 1 2

ue0 -kT-

2

Z = -jw kr-
el 2

cm

p- 2

v 2

A61= 12 [Hg—+3‘” :1.-
1-kT_ e0 e0

 

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

Starting fromLEquations (2.63), (2.65) and (2.67), and following

a similar procedure, one obtains

 

31$;- -YV'

52 h hl

aV'

h].- I I

32 ththl Ahlvlll +E1

u,2

th g - 2 '2E

1-kT‘l--ue0

1.;

zhl = "”7
ewp_

2

2k

~11 g [_L'I- ju) 4]

1"‘1"I\+uhuh°

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

The relationship between the electron and hole waves can be found

from Equation (2.61) as
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J +J -J ='jweE

e1 hl mlz (2'84)12

FromlEquations (2.74) through (2.84), an equivalent transmission-

line for carrier waves in solids is obtained and shown in Fig.

2.1. The elements of this equivalent line include capacitors,

inductors, ideal transformers and two common base transistors

with zero internal resistance and complex amplification factors.

When v >> 2k§w which is always true10 for the case of semi-

conductors, the amplification factors per unit length reduce to

A 1 =_1_2_:€—_ (2.35)

e 1-kT_ ue0

1 “h
——— (2.86)

14;; “no
A111:

Since the two transistors are the only non-reactive elements in

the equivalent transmission-line, the real power dissipated or

created in the line per unit volume is given by

=.l u I* I 1*

P81 2 ReEAevelJel + AthIJhl]

1 ve * vh *

2 ufl0 e1 e1 “h0 h1 hl

(2.87)

The above expression may also be considered as the total real

a-c kinetic power loss or gain in solids per unit volume. This

result will be proved in Chapter IV from the equation of real

power flow directly.

There is an alternative way of interpreting the equi-

valent transmission-line for the carrier waves in solids; that

is, instead of presenting the equivalent-line in terms of the

kinetic voltages due to velocity modulation and the a-c current
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densities, one can also develop an equivalent line in terms of

the kinetic voltages due to thermal diffusion and the a-c current

densities. For this purpose, expressing Ve by V and Je

1 T- 1

from Equation (2.66) and substituting the result in Equation (2.64)

one obtains

 

 

a
T- = _ _ I +

32 zeTJel AeTVT- El (2°88)

where

V. a (1 - _L)‘,
(2 89)

T- k: T- '

g 1 BzeT 2 (09 + y») ReT + leT (2.90)

cm
p-

A =-—1-[3£—+3233 (2 91)
eT 2 u e °

1-kT e0

Rewriting Equation (2.62) we have

aJe1
___... - ' . 2

52 YeTvT- (2 9 )

where

2

cw _

YeT - ju) -——£-—22 (2.93)

v - u

T- e0

Using Equations (2.63), (2.65) and (2.67) and following a similar

procedure, the equivalent transmission-line equations for holes

are obtained as

aV'
__Ii 3 _ _ .

az thJhl any,“ + 31
(2.94)

aJ

hl " “Y W
(2.95)

52 hT T+
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where

1
v. =3 (1 .- -——-)v (2.96)

T+ 2 '1‘+

“1+

1

th g 2 (Vb + j‘”) a RM + jth (2'97)
80)

F'-

“2

= ___.zt_-_
YhT )0.) 2 - 2 (2.98)

“N uho

__+ 12 (2.99)___-[“111“, 9.1

Now, from Equations (2.88) through (2.99) together with Equation

Am

(2.84), we have another form of the equivalent line analog in

terms of V V J and J as shown in Fig. 2.2. In this
T-’ 'l‘l-’ e1 hl

case, R81. and RM. can be considered as the internal resistances

of the two common base transistors, respectively. For the case of

semiconductors in room temperature, the collision frequencies

which usually have the order of 1012 cps are much higher than the

operation frequency or v >> w, therefore the amplification factors

per unit length reduce to

 

V

= 1
AeT 2 J’s—u (2.100)

l-kT_ e0

1 ”h
 

(2.101)

A“ .__ 1"“; “no

Similar to the previous case, the total real a-c power loss

or gain in this equivalent line per unit volume can be evaluated by

*

PeT 21‘9”"eT T-J81 + ReTJelJel + AhTvT+Jhl + phT‘Ihthl] (2'102)
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Using the Equations (2.89), (2.96), (2.100), (2.101), (2.66) and

(2.67), the above equation can be simplified as

=1 .\:§_ * 3h. *
PeT 2 Re[u velJel +' Vhthl] (2.103)

e0 uhO

which is checked with both Equation (2.87) and the result obtained

from the kinetic energy theorem developed in Chapter IV.
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CHAPTER III

DISPERSION RELATIONS OF THE

CARRIER WAVES IN AN EXTRINSIC SEMICONDUCTOR

3.1 Introdgction

For any wave there is a functional relationship between the

propagation constant and the operating frequency which is known

as the dispersion relation. The instability as well as the nature

and the prOpagation characteristics of waves can be examined from

its dispersion relation. For carrier waves in solids, the dis-

persion relations strongly depend on the longitudinal modulation,

thermal diffusion and the collision between the carriers and the

solid lattice.

In general, the propagation constant of the longitudinal

carrier waves in solids can be solved from Equation (2.36). How-

ever, instead of solving this fourth order equation for P, the

specific propagation constant for an extrinsic semiconductor (in

which n >> p or p >> n) indicated in Chapter II will be in-

vestigated. From Equations (2.37) and (2.38), the real and

imaginary parts of the propagation constant for longitudinal

carrier waves in an extrinsic semiconductor can be expressed as

 

 

1 Vi —
a = - L [— + a'] (3.1)
1+ “01 l'k'ii 20: i

=59... 1 " :

i-_|_-_ u 2 U + 6,] (3.2)
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where

2

u2_ u2=21__u.321(1-k2)-k2
(33)

“1 Bi 42 2 Ti Ti ’
w w

2 ”1
I I: _

“151 k’l‘iZw (3'4)

where the subscript "i" can be replaced by "e" or "h" to denote

the electron of hole waves. However, this subscript will be

drapped in later discussion for simplicity.

Taking the thermal-to-drift velocity ratio kT and the

collision-to-plasma frequency ratio v/u)p as parameters, various

dispersion diagrams under different conditions are plotted in

this Chapter. The effects of longitudinal modulation, thermal

diffusion and collision to the wave characteristics are studied

and discussed in view of these dispersion diagrams.

3.2 Eguivalence of an Electron Beam in Vacuum

When the devices are operating at low power level with

relatively high drift potential and extremely low temperature,

both the thermal diffusion and collision effects can be neglected.

This situation is similar to the electron stream in vacuwm and

the expression for attenuation and phase constants of Equations

(3.1) and (3.2) reduce to

q+ = 0 (3.5)

= .1— ‘
Bi “0 (w + mp) (3.6)

The group and phase velocities of these waves are
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w
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PHASE CONSTANT a

Fig. 3.1 Dispersion Diagram for the Longitudinal Carrier Waves

in an Extrinsic Semiconductor with Thermal Diffusion

and Collision Effects Neglected.
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. E. .3v81: 68... u0 (3.7)

u

a fl—.=VP: 6: 1T5”?— (3.8)

It can readily be seen that the propagating properties

of these carrier waves are identical to the space-charge waves

in vacuum. Hence, similar to a modulated electron beam in vacuum,

the electron or hole bunching process in an extrinsic semiconductor

can be analyzed by the concept of fast and slow space-charge waves

whose phase velocities are faster and slower than the average drift

velocity of the carriers reapectively. Since the attenuation con-

stant is zero, the fast and slow carrier waves will propagate along

the extrinsic semiconductor with a constant amplitude provided

there is no interaction with external circuit waves.

3.3 Cold Carrier Stream with Collision.Effect

When the collision effect is taken into account while

thermal diffusion is neglected, Equations (3.1) through (3.4)

become

0+ = - £3: [fig-T: 0'] (3.9)

3+ = ‘f— (1 1' 5') (3.10)

- 0

w2 2

01.2 _ 6'2 = _ .3”, Li. (3.11)

m 4w

a'a' = 0 (3.12)
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Since both a' and 8' are real quantities, two sets

of solutions of o' and 3' from.Equations (3.11) and (3.12)

can therefore be obtained depending upon the relative magnitude

between the plasma frequency and the collision frequency. The

prOpagation characteristics of the carrier waves will differ

accordingly. Two general cases will be discussed as follows:

3.3.1 Slight Collision Case

If v < pr, the solution of a' and 8' becomes

 

"92. .;2_ 2

+ u 1-- (2w )

'- 0 0 p

II

C
I
E

and the phase velocities become

 

 

u

vp+ = w 0

"' 1 lT—EL/i - (-¥-§2
w pr

The m-a and w-B diagrams for this case are shown in Fig.

3.2.A and Fig. 3.2.B respectively.

If one compares the propagation constants and phase

velocities shown in Equations (3.15) through (3.17) with those

of the cold, collisionless electron stream obtained in Section

3.2, one observes that the fast and slow space-charge wave

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Fig. 3.2 Dispersion Diagrams for the Cold Longitudinal Carrier

 

Waves in an Extrinsic Semiconductor with Collision

(A) 0) vs a Plot

(3) w vs B Plot

where the Solid Lines Refer to the Carrier Waves with

v < 2wp and the Dashed Lines Refer to the Carrier

Waves with v > 2wp.
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characteristics is still unchanged when the collision Of the

carriers is less frequent. However, the phase velocities of the

fast and slow carrier waves approach each other due to collision.

This phenomenon can be explained as follows: The collision be-

tween the drift carriers and solid lattice will disturb the drift

velocities of the carriers. The result Of the collision makes

the carrier return to a random state such that the velocity

modulation will be decreased. When the collision frequency is

increased to v = pr’ both the phase velocities of the fast and

slow carrier waves will approach the d-c drift velocity. Further-

more, the carrier waves will no longer be lossless in the presence

of a slight collision. An attenuation constant is used to repre-

sent the collision effect. It is shown in Equation (3.15) that

both the fast and slow waves will attenuate at the same rate which

is directly proportional to the collision frequency.

3.3.2 Collision Dominated Cases

If v > 2wp, the solution Of a' and 8' become

2

2 w

a. = 21.2. _ _g (3.18)

w w

B. = 0

Using Equations (3.18) and (3.19) the attenuation and phase con-

stants can be found as

(1+ = _ __zuo[1 +\/1————_ (4)2
(3.20)

(3.19)

= "’— (3.21)0i “0



38

The phase velocities Of the carrier waves can be deter-

‘mined by Equation (3.21) and are found to be a constant which is

equal to the d-c drift velocity. Physically, we can explain it

in the following way: The fact that the velocities Of the

carriers after colliding with the heavy particles in solids are

completely random, will deteriorate the bunching effect. Con-

sequently, the phase velocities Of the fast and slow waves will

emerge to the d-c drift velocity as the collision frequency in-

creases. When the collision frequency is high enough, the

velocities of the carriers will become quite random in a short

drifting range and thus no bunching effect will occur within the

extrinsic semiconductor. In such a case, the carrier waves will

propagate with the same velocity which is equal to the average

drift velocity of the carriers. Since the electrons will give

up some of their a-c energy by collision, the attenuation con-

stant is directly proportional to the collision frequency in a

slight collision case. It seems that there will be two distinct

attenuation constants in the collision dominated case as indicated

in Equation (3.20). For a fixed collision frequency, the attenua-

tion for the fast wave increases with the ratio Of collision-to-

plasma frequency while that of the slow wave decreases with v/wp

according to Equation (3.20). It was pointed out by Vural and

Bloom26 that in the completely collision dominated limit, where

gh<< 1, the "slow wave" seems to become lossless. We will look

at this situation from another point of view. We have shown that

the fast and slow waves emerge with the same phase and group

velocities when v > ZmP, a single attenuation constant for the
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carrier waves can be found by taking the arithmetic mean of the

two waves. The result is identical to that given by Equation

(3.15). Therefore, we may conclude that the attenuation constant

is only a function of collision frequency for the cold carrier

wave8 a

3.4 The Collisionless Carrier Waves

When the collision effect between the carriers and the

solid lattice is neglected, the expression for attenuation and

phase constants become

= 0 (3.22)

 

 

(1)2 5

Bi ‘2" 1 1: lsi+g§(1-K.i) (3.23)
= 2

‘10 l-kT_

It can be figured out from the above equations when the average

velocity of the carriers is smaller than its thermal velocity,

i.e. u '< v
0 T

if the Operation frequency is sufficiently low. The cut off

, no lossless longitudinal carrier waves are excited

frequency m can be evaluated by letting the square root term

0

Of Equation (3.23) equal zero. The result is

u _.

mo = mp /1 - (3Q)2 (3.24)

T

When the d-c drift velocity Of the carriers is considerably lower

than the thermal velocity, the cut-off frequency approaches the

plasma frequency of the carriers by Equation (3.24).

According to Equation (3.23), there are lossless carrier

waves excited even at a low Operating frequency when the average
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drift velocity of the carrier is higher than its thermal velocity.

The phase constant at the low frequency near zero can be Obtained

from Equation (3.23) as

 

-132 1

30+ - + “0 (3.25)

When the system is Operated at high frequency such that

m >>1mp Equation (3.23) reduces to

wB = (3.26)

i no i VT

In this case, two kind of the lossless carrier wave exist

in the extrinsic semiconductor; one is the fast wave with both

group and phase velocities larger than the d-c drift velocity of

the carriers and the other is slow wave with both group and phase

velocities smaller than the d-c drift velocity of the carriers.

Note when uo < VT, the slow wave will propagate in the backward

d irect ion .

The general sketch Of the dispersion diagrams of the

collisionless case is shown in Fig. 3.3 and a computer plot for

the collisionless longitudinal carrier waves in an extrinsic semi-

conductor with various thermal-to-drift velocity ratio is shown

in Fig. 3.4. In case of u > v it can be seen that the slow

0 T’

wave in an extrinsic semiconductor will become a backward wave

when the operating frequency is lower than the plasma frequency

of the carriers. It can also be seen when uo >> vT, the dis-

persion diagram of the collisionless carrier waves approaches

that of the electron beam equivalence case which has been shown
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Fig. 3.3 Dispersion Diagrams for the Collisionless Longitudinal

Carrier Waves in an Extrinsic Semiconductor with Thermal

Diffusion under Consideration

(A) no >vT (B) no < VT

where the Dashed Lines Refer to the Asymptotes of the

Dispersion Diagrams at High Operating Frequency.
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in Fig. 3.1; on the other hand, when u 1<< v the dispersion

0 T’

diagram of the collisionless carrier waves approaches that Of the

electroacoustic waves which will be discussed in the next section.

3.5 The Electroacoustic Waves

When there is no axial d-c electric field applied across

the solids, the average drift velocity Of the carrier is zero.

In such a case the carrier waves are affected by the a-c modula-

tion only and are called electroacoustic waves. In this case, it

is easier to Obtain the propagation constant from the wave equa-

tion directly.

At u0 = 0, the a-c carrier wave equation in an extrinsic

semiconductor of (2.37) becomes

Oznl

v2 +(w2 - wz - jwv) = 0 (3-27)
T 322 p

 

Using the assumption that the solution Of n1 has a form of er

(where F = a-jB), the above equation can be degenerated as

2 2
2 2 U) ' (D

vT

as = 3‘1} (3.29)
2vT

and the attenuation and phase constants for electroacoustic waves

in an extrinsic semiconductor are obtained from Equations (3.28)

and (3.29) as
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__ 2 _ 02 0202 %

4-'-£L—-—' +' -J‘ +'l w < w
2

f2 VT (0) - 0):)2 p

o+,= , (3.30)

- 2 2

._ w - w F (gzqz _‘5

+- J2 v 1 + 2 2 2 - 1 w >’wp

T (w - w )

L P J
2 -w.-

w - w2 r 2 2 _W%

13 /2 v 1 +' 20 v 2 2 ' 1 w < w
T (w - w ) p

e P 1

3+ = (3.31)

E- 002 / (”2‘12 35

‘- 2 2 2

‘/2 VT (0) - mp) _J p

When the Operating frequency is sufficiently high, i.e. w >> mp

and w >> 0, the above equations reduce to

='-.;1_

'- T

= Q.
a: i VT (3.33)

On the other hand, when the operating frequency is sufficiently

low, i.e. w << mp and m << v, Equations (3.30) and (3.31) become

(.0

3 -'_Eq+ + v (3.34)

'— T

= + AL
0

Bi - 2vTc1)p (3 35)

According to Equation (3.31), two sets of the electroacoustic waves

exist in a longitudinal modulated extrinsic semiconductor: one

propagates forward and the other propagates backward as shown in

Fig. 3.5. The dispersion diagrams of these two waves are

symmetrical since no d-c drift potential is applied. Equation

(3.33) indicates that the group and phase velocities of these
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waves approach a constant equal to the thermal velocity of the

carriers in the +2 or -z direction respectively. Note there

exists a cut-Off frequency which equals the plasma frequency of

the carriers if the collision effect between the carriers and the

solid lattice is neglected.

The attenuation constant given by Equation (3.30) is a

function of the Operating frequency, the plasma frequency, the

collision frequency and the thermal velocity. However, it is

noted by Equation (3.32) when the system is operated at high

frequency, the wave attenuation is dominated by the collision

effect between the carriers and the solid lattice. 0n the other

hand, when the system is Operated at low frequency, the plasma

frequency play an important role to the wave attenuation according

to Equation (3.34). The w-a diagrams of the longitudinal

carrier waves in an extrinsic semiconductor with only a-c driving

source are shown in Fig. 3.6.

3.6 General Case for the Carrier Waves in an Extrinsic Semiconductor

The general dispersion characteristics for the longitudinal

carrier waves in an extrinsic semiconductor is given by Equations

(3.1) through (3.4). In this section, the diSpersion diagrams

are plotted from those equations with the aid of a digital computer

and the dispersion relations in terms of various parameters are

discussed.

Fig. 3.7 shows the w-B diagram for the carrier waves

in an extrinsic semiconductor with the thermal-to-drift velocity

ratio as parameter. It has been indicated in the previous sections
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that the longitudinal carrier waves in an extrinsic semiconductor

will approach the space-charge waves when the thermal diffusion

is neglected (i.e. RT = 0); and will approach the electroacoustic

waves when the average drift velocity of the carriers is zero

(i.e. kT a)¢9. Starting with a small thermal-to-drift velocity

ratio (RT = 0.1), the carrier waves approach the fast and slow

space-charge waves prOpagated with nearly the same group velocity;

when the thermal-to-drift velocity ratio increases, the phase and

group velocities of the fast wave will speed up whereas that of

the slow wave will slow down from its average drift velocity.

The slow wave will propagate in the backward direction in case

the average drift velocity Of the carrier is smaller than its

thermal velocity. When the thermal-to-drift velocity ratio in-

creases further, both the phase and group velocities of the fast

and slow waves will increase in the forward and the backward

directions respectively; they will approach the thermal velocity

of the carriers when kT is sufficiently large. A general transi-

tion from space-charge waves to the electroacoustic waves in an

extrinsic semiconductor by varying the thermal-to-drift velocity

ratio is clearly shown by the shift of the dispersion diagrams

in Fig. 3.7.

The same condition for a (011 diagram is shown in Fig.

3.8. At first glance, we may find that all the attenuation con-

stants are independent of the Operating frequency when w >> mp;

therefore, a high frequency Operation is suggested for prOpagating

carrier waves in solids in order to minimize the distortion.

Secondly, it can be seen that there is less energy loss when the
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carrier waves approach pure electroacoustic waves or pure space-

charge waves. In other words, the over all attenuation will

decrease with an increasing thermal-to-drift velocity ratio when

uo < “T and will increase with an increasing thermal-to-drift

velocity ratio when u >‘v . It is noted that the attenuation

O T

constants corresponding to the forward progressing carrier waves

with positive group velocities are negative and those corresponding

to the backward progressing carrier waves with negative group

velocities are positive; therefore, no instability of the carrier

waves will occur without coupling to an external circuit or

applying high frequency pump source in a manner of parametric

amplification.

Fig. 3.9 through 3.13 shows the dispersion diagrams of

carrier waves in an extrinsic semiconductor with collision fre-

quency as parameter while the thermal-to-drift velocity ratio is

fixed. It can be seen that when the collision frequency increases,

the attenuation constants increase rapidly whereas the phase con-

stants stay almost constant. Physically, this means that the

collision between carriers and the solid lattice will cause an

energy loss; however, it will not affect the nature Of the carrier

wave to a significant degree.
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CHAPTER IV

KINETIC POWER OF THE IDNGITUDINAL CARRIER WAVES

4.1 Introduction

The function of most of the microwave electron device is

to convert the d-c carrier stream energy into high frequency

electromagnetic wave energy or vice versa. Consequently, the

energy conversion principle for electromagnetic waves in the

presence of carrier stream plays an important role in device physics.

Once the power flow nature of the carrier waves is known, one can

get a general idea about the characteristics of the interactions

involving external circuit and stream carrier or carrier waves

of the stream. The carrier stream can act as either a positive

or negative resistive load to the external electromagnetic circuit

wave depending upon which of the carrier waves is excited in the

interaction. If the carrier stream acts as a positive resistive

load, it will absorb energy from the electromagnetic fields around

it. Signal couplers are examples of this kind. On the other

hand, the carrier stream can supply energy to the electromagnetic

fields when a negative energy-carrying wave is excited. Most of

the amplifiers and oscillatOrs work under this principle.

In this chapter the power and energy relations between

the carrier stream and the external circuit are investigated.

Starting with the macrosc0pic classical model described in
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Chapter II, we derive a new form of the linearized Poynting

theorem interpreting the power and energy flow of electromagnetic

and longitudinal carrier waves in solids. Using the derived

equation Of real power flow, the conditions for wave amplifica-

tion are discussed.

4.2 Derivation of Small Siggal Kinetic Power Theorem for

Longitudinal;Carriers with Egternal Surrounding Circuit

It was stated in Chapter II that the basic equations of

solid state plasma considered as a conducting fluid are Maxwell's

equations and the Boltzmann transport equations. From the

Maxwell's equation we have

~= 83
VXE mat (4.1)

V x H e(pvn nve) + e at (4.2)

From the first moment of the Boltzmann transport equation we have

2 a

V V

-_L- ._._e ”.“9..‘°'*'* _.
n Vn at +(ve V)ve + m* (E + ve x B) +veve (4.3)

e

v av

.2"; ._JJ. -°. .. -e_ -' _. -
p Vp at;+(vh I7)vh *(E+thB)+vhvh (4.4)

In order to take the electromagnetic wave due to the external

surrounding circuit into account, a quasi-one-dimensional model as

stated in Section 2.6 is used. Substituting the expressions for

the variables of this model of Equations (2.13) through (2.19),

(2.91) and (2.92) into Equations (4.1) through (4.4) and considering

the time-dependent terms only, we have
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BE
1g .__. 4.5V X E1 1;. at ( )

v x E = 3 1+ 3 +-€«-—l (4.6)
1 e1 hl at

V2 a“ a;

T- = e1 e1 e I I

- n0 vnl at ue0 52 m* (E'l'+ ve1 x BO +ue0 x Bl)

e

.+ vevel (4.7)

v2 a? a; '

T... 1 h]. e -0 -o —o —o —o

- — - — +
p VP1 at “80 az * (E1 +vh1 x B0 “ho x Bl)

0 mh

+ vhvhl (4-8)

where

Je1 = -e(novel + nlueo) = z Je1 (4.9)

Jhl = e(p0vhl + pluho) = z Jhl (4.10)

Dot multiplying Equation (4.5) by E', Equation (4.6) by 43 ,

* *l l

m mh
Equation (4.7) by 32'361' Equation (4.8) by - ;-3g1 and

adding together, one obtains

 

  

afi aE
-0 -o = "—1- - .__];

V (El X HI) 11511 at e E1 at

* -o —0

av 3v v

e 81 e1 T- I.__ . +. .____.+.___

+ e 361 E at ue0 az nO vnl + vevel]

* _. .. 2

“h a 6"h1 5"h1 vT+ 3
- _ 0 +

e Jh1 [ at "60 52 +' p0 vp1 + VhV61] (“'11)

where the terms 3é1°(;;1 X Eb) etc. are vanished by vector

identity. Rewriting Equation (4.11), we have
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o .7. = - a—

* *

m av mh v

.42 ._le -.__ hl -

e el( at +vev l) e hl( t vhvhl)

* J
m B
_e_ a. _ _el

+ e {UeOEaz (Jelvel) vel az ]

2
v aJ

T- 3.. _ el

+ n0 Eaz (Jelnl) nl as J}

* J

”6 EL. fiJLL
- e {uhotaz (Jhlvhl) - vhl az ]

2

aJ

_T'"_ a. _ hl
+ po [32 (Jhlpl) p1 az ]} (4.12)

The a-c continuity equations for electrons and holes are

 

= e __ (4.13)

5Jul .8 231
32 at

 (4.14)

Substituting Equations (4.13) and (4.14) into Equation (4.12) yields

 

. a a = - 5.. 2 2

* 2 a

m av an v _ n

+—e-[J el-euv —l-e-I—n —l]
e e1 at e0 e1 at no 1 at

* 2

- [J 32,111+ u V 31:1... 33.9 EPA]

e hl t ho hl at po 1 at

* 2

ES. 3.. 2:2.a_. ++.

+ e [“eo az (Jelvel) nO az (Jelnl) veJelvelJ

* 2

"h a_ VT+a_- -—- J ._._ +

e E“ho az ( hlvhl) + no az (Jhlpl) vhJelvel]

(4.15)
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Using the kinetic voltages due to velocity modulation and thenmal

diffusion defined in Equations (2.51) through (2.54) together with

the expression for the current densities of (4.9) and (4.10), the

above equation becomes

0 -'. L

V (E1 x 31) + az (velJel + vhthl + VT-Jel VT+Jhl)

=._ a_ 2 2

hat (61314-15111)

 

v v n v an

' m:(“0"e1 15'? + ueonl 35:4 + ueOVel 2;} + '%3 n1 3%

8V v2 8P

' mh(p0vhl 5:1 + uhOpl .31 + uhOvhl 3% + '3; p1 —at1)

V V

- “—ZO VelJel - :3; vhth1 (4.16)

which can be further simplified as

V'GJI x if1) + :2que1+ vhthl + VT-Jel+ vT+Jhl)

v2

+ 1.3;...3... 4+ + 2. + a; :6
v2

+ ”6‘90"; + zuhoplvhl + '3‘: pin

=--\:‘i—v J -v.—h-v J (4.17)
ueO e1 e1 uhO hl hl

For the purpose Of making a clearer physical picture, the follows

ing instantaneous kinetic powers and energy densities are defined

Pml = E1 x F11 (4.18)

P’ =2P =2VJ (4.19)
e1 e1 e1 e1
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.4 = C = C 4.2

Phl z Phl z vhthl ( 0)

‘ = ‘ = +' 4.21PT 2 PT 2(VT_Jel VflJhl) ( )

w = 8(6 E2 + H2) (4-22)ml 1 “ 1

* 2 'k 2 * *

w1 " W‘er‘o"e1 + “‘hPovm) + “‘e(“e0“1"e1 + "II“hOPIVM) (“’23)

V2 V2
_ * T- 2 * T- 2

wT - litme nO nlJ+ mh p0 p1] (4°24)

Using the above expressions, Equation (4.17) can be written as

v

. d a a. = -.JL_

V (Pm1‘+ Pe1 +'Phl +lfiT) + at ("ml + wl + WT) ueo Pel

”h

- uho Phl

Integration Of Equation (4.25) over the whole space gives the

(4.25)

instantaneous power and energy equation. It is

-9 —o —o —0 . -o a-

J‘saml + Pe + P + PT) ds + at Ivmml + w1 hl + WT) dv

l

V v

= .f (LP 1 + -h-ph1)av (4.26)

v ue0 e uh0

The physical meaning of each term of Equation (4.26) are

TIv(ue Pel +' b"Ph1)dv = the a-c power loss due to collision

e0 “ho

effect

361 = energy flow Of the electromagnetic wave

Pél I kinetic energy flow due to velocity modulation of electrons

fihl I kinetic energy flow due to velocity modulation of holes

PE I kinetic energy flow due to the thermal diffusion Of the

carriers
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Wm1 = sum of the electric and magnetic energy densities of the

electromagnetic wave

W1 I kinetic energy density of the carriers

WT 8 thermal energy density of the carriers

The equation of real power flow of the system can be

obtained by taking the time average of Equation (4.26). If all

the time-dependent variables of the system have a periodic varia-

tion of constant frequency, we may map all the variables into a

complex plane and the equation of real power flow of the system

reduces to

v
-0 —o —o -0 —o - - ._e_-

IsRe<9ml + 9el + éhl + 9T) ds _ ueO IvRe[9e1]dv

- ELI; IvReIZOhljdv (4.27)

where

”m1 = 950171 x H1) (4.28)

581 -= ‘2‘: 1; VelJ:1 (4.29)

5111 = 2 35 vhf; (4.30)

5T = 2 55(VT_J:1 + VNJhl) (4.31)

where (5&1 is the rf complex electromagnetic power density,.-0)e1

is the kinetic power density due to the velocity modulation of

electrons, 5&1 is the kinetic power density due to the velocity

modulation of holes and 5% is the kinetic power density due to

the thermal diffusion of the carriers.
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Equation (4.27) can also be Obtained from the complex rf

fundamental equations directly; for this purpose, we map all the

variables onto a complex plane and consider Equations (4.1) through

(4.10) as complex equations. Taking complex conjugate of Equation

(4 . 6) yields

—0** *

v x11 —3 e1+3h1 - 36,. E1 (4.32)

Dot multiplying Equation (4. 5) by H* Equation (4.32) by 4E

*

1’ 1’

—0*

Equation (4.6) by ;-3:1, Equation (4.7) by - Eh Jhl and adding

together, we have

* *

H + Jme E E

*

V°61XJ1J g'j‘w‘ H11 11

 

* .. 5"}.1 _._ 3h. 3111.0“, "h1+ 1+ J“: (",1 + vhvhl) (4.33)

which can be rewritten as

* *

a 4* * * ma * mh *

V'(E1 x “1’ “ ‘jwm H1H1 " ‘5 E1E1 ’ e velJel + e vhthl)

*

a... ( J* ) 11$].- + J*

e ueOEat ve1 e1 ve1 az J vevel el

2 *

VT A- aJe

+ -——- a.

n0[a2 (nlJe1) n1 azA1}

* *

“‘h aJhl

?{“2W:2 (vhlJhl) vhl az___] + thhthl

v2

+._I:;[a_.

Po az

J*

5 hl

52

 (61.1:1) - pl 1} (4.34)
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From the rf complex continuity equations, we have

 

aJ

e1 _

aJ

J = -

Oz jmep1 (4.36)

Using Equations (4.9), (4.10), (4.35) and (4.36) together with

the kinetic voltages of (2.45) through (2.48) defined in Chapter

II, Equation (4.34) becomes

7 if" +a—(v J* +v J* +v J* +v J*)
V (El X l) az e1 e1 hl hl T- e1 T-l- hl

2

+ H 11* E E*+ * * VT" *
“t“ 1 1 e 1 1 u‘e("‘0"e1".221 ' no “1“1)

v2

'1: * T+ *-

+ mh(p0vhlvhl ' po ”1"?1

V V

e * h *
=-—v J -—v J (4°37)ueo e1 e1 u.no hl hl

With the defined complex power density (4.28) through (4.31),

Equation (4.37) reduces to

. -D -0 —9 —+ m 2 2 * 2

v (961 + 981 + 961 + 9T) + j 2 [PIHII - eIEfl + menolvell

V2 V2

* 2 * T- 2 * T+ 2

+ ““h"0“’h1| ' “‘e n “‘1‘ " “‘h p ‘91‘ 3
0 0

V V

e h= .. __9 _ _ (4.38)
ueO e1 uhO hl

Integrating Equation (4.38) over the whole space gives the rf

complex power equation of the system as
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Ishflaml + 5el + ahl + 5,191;

2

2 2 * 2 VT- 2

+ MW - w + memotveu "a; w >
v2

* 2 T4- 2

+ “‘hwo‘vm‘ ' E “’1‘ ”d"

ve vh

+ L— Ivlmteel-Jdv + :1;- Ivlniehfldv = 0 (4°39)
e0 0

The real part of the above equation which is identical to Equa-

tion (4.27) gives the expression of real power flow of the system

and the imaginary part of Equation (4.39) gives the balance equa-

tion of the rective power. It is

[SIQOl + 581 + 51.1 + 5T) 13' + gljv|ju|nl|2 - 4111\2

2 2

* 2 VT- 2 * 2 VB. 2

+ memolvel| - “0 ‘nl‘ ) + mh(p0‘vhl‘ - Po “’1‘ )]dv

Ve Vh

+ 5; Im J‘veeldv + 3; Im Ivehldv = o (4.40)

It can be seen fromnEquation (4.27) that the sum of the

electromagnetic power from external slow wave circuit and the

kinetic powers due to velocity modulation and thermal diffusion

of the carriers are conserved only when there is no collision in

the process. Generally they are not conserved and will decrease

v

or increase in an amount of -Re Iv[;£-'P 1 +--h-Ph1]dv depending

e0 e 0

upon the nature of the carrier wave whether it carries a positive

or negative kinetic power respectively. Such amount of energy

gain or loss of the system is checked with that obtained from the
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equivalent transmission-line analog in Chapter II.

In a particular case when the effects of both collision

and thermal diffusion are neglected and the carriers are electrons

only, Equation (4.27) is then reduced to

£81145“! +3 e1] odg = 0 (4-41)

which is the same as the kinetic power theorem deduced by Chu32

for the electron stream in vacuum coupling with a slow wave

circuit.

4.3 Discussions for Possible Wave lification from Kinetic

Power Theorem

The equation of real power flow of (4.27) in the last

section shows the possibility of exchange energy between the

longitudinal carrier waves in solids and the electromagnetic waves

from a slow wave circuit. When the collision effects are neglected,

the sum of the rf electromagnetic power from the surrounding slow

wave circuit and the total kinetic power of the carriers is con-

served. Similar to the case of an electron beam in vacuum, wave

amplification arises when the carrier waves which carry a negative

electrokinetic power are excited. When the collision effect is

taken into consideration, it seems that an additional power of

v v

_ .3. +_h_
IVReEUeO Pe1 “ho Ph1]dv is generated along the stream when

both Pe and Phl are negative and thus further amplification
1

arises due to collision effect. Actually, the collision effect

will reduce the amount of amplification; the reason is that the

kinetic powers Pe1 and Phl themselves are functions of the
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collision frequency and will decrease when the collision frequency

is raised.

Here we investigate the electrokinetic power densities of

the one-dimensional model where the carrier waves propagating

through an n-type semiconductor with negligible hole concentration.

In such a case, the simplified fundamental equations (2.21), (2.23)

and (2.25) reduce to

e
= - —-

. 2

1‘ E1 6 n1 (4 4 )

r Jel = Jwenl (4.43)

v2

2. _L- =
(jw + Ve)"e1 + m, E1 + I“ ueOVel + “o 1‘ no 0 (4.44)

e

where F = a - jB is the propagation constant of the carrier

waves defined in Chapter II.

Using the three equations stated above, the a-c velocity

and density of the electrons can be expressed in terms of the

electron current density as

2 2 2 2

«un_ + vT_(a - B - 1208)

 

ve1 -ju)eno[ju) + Ve + “80(0, - 13)] J81 (4.45)

= 1:43.

1“1 jwe J81
(4.46)

The real kinetic power densities due to velocity modulation and

thermal diffusion in the system are obtained from Equations (4.29),

(4.31), (2.45), (2.47), (4.45) and (4.46) as
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2 2 2 2 V
(Be-B)[wp- - v:_(a -B )] - ZanT_(;§—-+-a) J J*

ReEPel] a v e0 'Elhgl' (4°47)

(Be - e)2 + (u—e—+ 002 2W1:-
e0

2

VT- 1 *
Re[PT] = 2 :- J 1.181 (4.48)

eem ¢ e

where v9) = w/B is the phase velocity of the carrier wave. When

the thermal diffusion effect is neglected, i.e. PT = 0; the total

real kinetic power density is given by Equation (4.47) as

 

l - u /v J J

Repel] = e0 9) . 4L2 (4.49)
V

(Be-a)2 + (f- + (1)2

e0

For slight collision case, ve < 2mp_, the phase velocities of

the fast and slow waves are given by Equation (3.17) and the real

electrokinetic powers due to velocity modulation are

 

*

v u J J

= - e 2_Q_§.1_¢_l
ReEPeli] j; 1 (20%)-) 0) 2 p (4.50)

The above equation shows that the real electrokinetic power

is positive for the fast wave and negative for the slow wave. It

is also shown that the real electrokinetic power will decrease

with an increasing collision frequency; when the collision frequency

is sufficiently high, such that ve > 2wp_, there is no real

electrokinetic power flow and thus no amplification arises since

both the fast and slow waves are synchronous with the d-c drift

motion.

When the thermal diffusion effect is taken into account,

there exist a certain amount of real kinetic power due to thermal
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diffusion given by Equation (4.48). For the forward space-charge

waves under consideration, the phase velocities of these waves are

always positive and so are the Re[PT]. Hence the real kinetic

power flow due to thermal diffusion acts as a load in the energy

conversion process. For a backward slow space-charge wave,

ReEPT] becomes negative because of its negative phase velocity;

therefore a possible application of solid state backward wave

amplifier or oscillator is anticipated.

Consequently, the concept of wave amplification can be

investigated by examining the energy exchange from the moving

carriers to a surrounding circuit. From the equation of real power

flow, the possibility of wave amplification arises when the slow

carrier wave, which carries a negative kinetic energy, is excited.

Although the sum of the rf electromagnetic power from the surround-

ing slow wave circuit and the total kinetic power of the carriers

v v
e h

equal a positive amount of - Re[-—-P + --P ]dv when a

negative kinetic energy carrying wave is applied; it seems that

the collision effect will reduce the amoutn of amplification because

the real kinetic power flow, Re[Pe1] and Re[P decrease rapidly
1113’

in terms of an increasing collision frequency. A backward wave

amplifier or oscillator is observed from the fact that the real

kinetic power flow may become negative when the backward slow

space-charge wave is excited.



CHAPTER V

COUPLED MODE ANALYSIS OF CARRIER WAVE INTERACTIONS

5.1 Introduction

Besides the three well-known forms of the equations of

motion in classical mechanics, i.e. the Newtonian, the Hamiltonian

and the Largrangian; there is another form called the normal mode

form which is a set of first-order differential equations and is

sometimes proven to be very useful in the theory of coupled

systems.

When two or more systems are weakly coupled, that is,

when the energy associated with the coupling is small compared

with the energy contained in each system, we may analyze the

equations of motion by finding the normal modes of the isolated

systems and then express the coupled system by a slight perturba-

tion on the motion of the isolated systems. In most of the

physical systems, some of the modes of the isolated systems will

play a minor role in the coupling mechanism. Thus the problem

can be further simplified with good approximation by neglecting

the coupling effect between those modes.

It is a necessary condition that the system be weakly

coupled in order to take advantage of the couple mode method in

which linearized equations are used. Should this not be the case,

all the possible coupling effects between the modes have to be

71
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considered. Furthermore, the solutions of the coupled system

will be significantly different from the uncoupled solutions such

that a knowledge of the solution for the isolated system will not

be useful.

In this Chapter we will work on a case that an extrinsic

semiconductor with a relatively small minority carrier concentra-

tion is used as the prOpagation medium and the effect of collision

between the majority carriers and the solid lattice in the semi-

conductor is neglected. Starting with the equivalent transmission-

line equation of the collisionless longitudinal carrier waves in

an extrinsic semiconductor, the normal modes of these waves are

derived and then the coupled-mode approach is used to analyze the

collisionless carrier waves in an extrinsic semiconductor with

an external slow electromagnetic wave. A weak coupling condition

is assumed for simplicity.

5.2 Derivation of an Equivalent Transmission-line Equation of

the Collisionless Longitudinal Carrier Waves in Solids

In Chapter II, we have derived the prOpagation constant

for the longitudinal carrier waves in extrinsic semiconductors.

When the effect of the collision between the carriers and the

solid lattice is neglected, the propagation constants from

Equation (2.39) become:

 

" 2

1 — 2 m 2
I‘ =-j‘”—-—— 1+ +-P-(1- ) (5.1)

i u0 149% L Kr (1)2 kT

With the kinetic voltages V1 and VT defined in Chapter II,

Equations (2.23) and (2.27) can be rewritten as:
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2

5J1 w

___ a .1036 -‘%v (5.2)

az v T

T

2 2

222' 82 5 3
J1 = u V1 + euo 2 VT ( ° )

0 VT

Here, the subscripts denoting electrons or holes are dropped for

simplicity.

As mentioned in Chapter II, the a-c current density and

the two kinetic voltages have a solution of er type and can

be expressed in the following way:

v1 = “(9.1%z + vIQJ-z (5.4)

vT = vmer'tz + ngeI‘_z (5-5)

J1 = may};z + JmeF-z (5-6)

where the coefficients Vlg, V19, V'IQ’ VTG’ J16) and J19 are

independent of 2.

Substituting Equations (5.5) and (5.6) into Equation (5.2)

we have

Y z P z

I‘+ Jlrse + + 1"$1198 '

2

$2_ P 2 P z
— -_]u)e 2 (v'K‘Be+ + VTGS - ) (5-7)

v
T

. P 2 P z
Equating the coeffic1ents of e‘+ and e - separately on both

sides of Equation (5.7) we obtain

(5.8)
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(5.9)

Similarly, substituting Equations (5.4) through (5.6) into Equa-

tion (5.3), equating the coefficients of 6F+z and er'z

separately and using Equations (5.8) and (5.9) yields

<

ll

V1s =

U0 uo
_ + _I. 5.1

p

u u

_0_ .0.
2 (1 + jw I‘_)J19 (5.11)

ewp

The effects of longitudinal modulation and thermal diffusion can

be expressed by a combined equivalent voltage as

V = V + V

l T

2

u P+u

.-.. [—9. + ___Qi. (1 _ k’i‘)]J]E-)€r+z

2

amp

U

0
+[—+

60.)

P

where V

mew

j P

2

F_u0

 2 (1 - k;)]JleeF'z (5.12)

jwew

P

can be considered as the total electrokinetic voltage

of the collisionless longitudinal carrier wave in an extrinsic

semiconductor since we have derived the total electrokinetic power

for the collisionless longitudinal carrier waves in an extrinsic

4*4

semiconductor from Equation (4.26) as I80!1 +-VT)J1-ds or

-O*-O

ISVJl-ds . Replacing P+ with the right hand side of Equation

(5.1) yields

.2.

U m
0 2 _2_ 2 F+z F-z

v = ewz kT1+ wz (1 - RT) - [Jhae - Jlee ] (5.13)
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Differentiating the above equation with respect to 2 gives

‘_

2

v o 2 ‘” 2 1‘2 I‘

5'“? Hing.“ 'k'r) ' [I‘+'J1®e+ 'r-“Ilee '23
U)

P (5.14)

Substituting Equation (5.1) into (5.14) and using Equations (5.6)

and (5.13) one obtains

 

a! = - -82 jBTV 28.11 (5.15)

where

.. 111. 1
BT — u 2 (5.16)

0 l-kT

m2

.. w2__1_ 2
2s — -j 1 “2 [1.1. +-2 - 141)] (5.17)

w?

Similarly, differentiating Equation (5.6) with respect to z

and using Equations (5.1) and (5.13) we have

5J1 5 18
az -jBTJl - st ( ° )

where

emz

Y = 43$ —1’- (5.19)
s 2 2

“‘1' “0

Equations (5.15) and (5.18) can be rearranged as

a_ = -
(52 + jBT)V 23.11 (5.20)

L..- = ..
5.21

(32 jeT)Jl st ( )

Making the following simple changes of variables
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-18 2

v =v'e T (5.22)

-j z

=J' BIJ1 16 (5.23)

Equations (5.20) and (5.21) are reduced to:

32:- .
AZ ZSJ1 (5.24)

aJi
___.= _ I
82 st (5.25)

Equations (5.24) and (5.25) have the same form of the standard

transmission-line equations with voltage V' along the line and

current density J1 through the line. However, the transmission-

1ine analog is not perfect because of a phase shift introduced

in Equations (5.22) and (5.23).

5.3 Normal Modes of the Collisionless Longitudinal Carrier Waves

in Solids

5.3.1 Derivation of the Normal Mode Equation

The equivalent transmission-line Equations (5.20) and

(5.21) derived in the last section can be considered as the

Hamiltonian form of the equations of motion for the collisionless

carrier waves in an extrinsic semiconductor due to longitudinal

modulation and thermal diffusion. The equations show that the

total voltage and current density are coupled, which allows for

an interchange of electric and kinetic energy as the waves pro-

pagate down the line. However, the transmission-line analog can

also be described by a particular form of first-order differential
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equations called the normal mode form of the equation of motion.

The advantage of using such a form is that the decoupled dif-

ferential equations can sometimes be easily handled. Furthermore,

the kinetic power carried by the carriers can readily be obtained

by using normal modes formulation. For the purpose of obtaining

these forms, linear combinations of the Hamiltonian equations

which will decouple the variables are to be sought. With this

in mind, multiplying Equation (5.21) by an arbitrary constant 2

and adding to Equation (5.20) we have:

 

 

Z

a. = - _§_(32 + 13.1,)(v + 2 J1) YSZ (v + Ysz J1)

letting zs/Ys = Z2 and Y82 = Ts Equation (5.26) becomes:

a. a
(82 +jaT +-F8)(V +-Z J1) 0 (5.27)

where

Z 11 (1)2

= .8. . _0_ 2 .2 - 2 =
Z i Y i 2 kT + 2 (1 k1) :28 (5.28)

S cm w

P

2

s s u0 l-k: kT wZ kT Bs °

Since there are two solutions for Z and F3, Equation (5.27)

can be expressed as two separate equations. They are

L ' - =

[a2 + 1(3T 53)](v + 28.11) 0 (5.30)

2L. - a
[32 + 10% + 88)](V ZaJl) o (5.31)

Evaluating 6T ;:Bs by replacing the right hand side of Equations

(5.16) and (5.29) and comparing with Equation (5.1), one obtains

(5.26)
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that j(aT ; as) = -F+ . Consequently, Equations (5.30) and (5.31)

can be expressed as

(g; - 14m+ = o (5.32)

(g; - I‘_)d = o (5.33)

where

4., = K+(V i 7-851) (5.34)

Equations (5.32) and (5.33) are called the normal mode

form of equation of motion for the collisionless carrier stream

in an extrinsic semiconductor. They describe the collisionless

carrier waves in an extrinsic semiconductor in a different form

from Equations (5.20) and (5.21). The quantities a;_ which are

made up of a linear combination of the total kinetic-voltage V

and the a-c current density J are called the normal modes of

1

the carrier waves in an extrinsic semiconductor and K+ are the

prOportionality constants which will be evaluated in the next

section. Since the prOpagation constant of a; and at modes

are R+ and F_ respectively, we may call the a; mode the fast

wave and the at mode the slow wave according to the statements

discussed in Chapter III.

5.3.2 Evaluation of Normal Mode Amplitude Constants and Kinetic

Energy,Relation

It is well-known that the average power transmitted down

a transmission-line is given by the time average of the product

of the voltage across the line and the current flow through the
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line. Applying this to the transmission-line analog of the carrier

waves in solids, we have the a-c power per unti cross section area

as

_4*

P = % Re[V - .11] (5.35)

For the purpose of evaluating the proportionality constant

K+ let us consider that only the a; mode is being excited along

the sample; that is a: = 0 or

V
=.__

5.32 J (6)

In such a case, the normal mode of the fast wave becomes

(7_+ = 2K+V (5.37)

and the a-c power carried by the charged carriers when only the

a; mode is excited can be written as

2

LVJ.
P+ - % Z (5.38)

a

Using Equation (5.37), the kinetic power carried by a; mode is

* 2 2
P+ = 3: d+a+ = 2K+\v\ (5.39)

Since at = 0, the kinetic power carried by the a; mode equals

total a-c power of the collisionless carrier waves in solids;

equating Equations (5.38) and (5.39), we have the expression for

K+ as

 

(5.40)
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Similarly, the proportionality constant K_ for the a: mode

can be evaluated by setting a; = 0. The result is

1

K = 2/2 (5.41)
 

Therefore, the complete expression of the normal modes describing

carrier waves in solids are obtained as

- l

@(zat) - m

 [V(z) i z“|!.11(z)]ej‘”t (5.42)

8

Using Equations (5.39) and (5.46), we may express the a-c

power density in terms of normal modes when both fast and slow

waves are present. It is

P = 15 Re[V-J:] = k(\a+\2 - \a_\2) (5.43)

The above equation implies that the 4;, mode carries

positive kinetic power while the at mode carries negative kinetic

power. The physical interpretation of positive and negative kinetic

powers is as follows: On the average, the carrier stream carries

a larger amount of kinetic energy than it carries in the d-c state

when a fast mode is excited. In the other case, the carrier stream

carries a smaller average kinetic energy than it carries in the

d-c state when a slow mode is excited.

5.4 Normgl'Mode Application -- Traveling Wave Amplification of

Carrier Wave in Solids

Solid state traveling-wave amplifier (STWA) has been studied

9-14
by several workers recently . Its most attractive feature is

the extreme high gain, which makes it a potentially active device
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in a microwave integrated system. The practical difficulties are

the device heating problem and the saturation of carrier drift

velocity. However, with the rapid advances in solid state technology,

it is feasible that the STWA might be able to operate at higher

power and frequency range. The methods of analysis on the theo-

retical work published use either an extended classical Pierce's

approach27 or match the wave impedances on the slow wave semi-

conductor boundary28. Both approaches are rather lengthy. Quite

often, some of the important aspects such as the coupling scheme,

or the energy exchange between circuit and carrier wave may not be

revealed explicitly. In this section,'the coupled-mode approach

is used to study the interaction between the carrier wave and the

slow electromagnetic wave. This method appears to be simpler and

clearer in describing the various possible interactions.

Here, a simple model of traveling wave amplifier is in-

vestigated. As shown in Fig. 5.1, the majority carriers in an

extrinsic semiconductor drifting along a tightly coupled electro-

magnetic slow wave circuit are considered. The system is assumed

to be lossless, that is, the real power loss due to collision

between the carriers and the solid lattice, and the series and

shunt resistances of the slow wave circuit are neglected. The

equivalent transmission-line equations for a lossless carrier

wave in an extrinsic semiconductor are given by Equations (5.24)

and (5.25), and the normal modes of these carrier waves are derived

in Equation (5.42) in the last section. For a lossless slow wave

circuit, the transmission-line equations are
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Fig. 5.1 (A) Carrier Stream Coupled to a Slow Wave Circuit

(B) Equivalent Circuit.

Carrier Stream is Capacitively Coupled to the Circuit
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and - _Si. is the Displacement Current Induced in the

Circuit.
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3V

8—29 = ~ij Jc (5.44)

aJc

where the series inductance L and the shunt capacitance C are

given per unit length.

The normal modes for a lossless transmission-line are29

l
 dc+ = (vc -_+_ Zch) (5.46)

1:.

Zc III/6' (5.47)

It is noted that ab+ is the wave propagating forwards, whereas

where

a;_ is the wave propagating backwards and Zc is the circuit

characteristic impedance.

When the circuit and carrier stream are closely coupled

as shown in Fig. 5.1, a displacement current will be induced in

the circuit by the carrier stream; in the meantime, a force due

to the circuit field will act upon the carrier stream. The

modified transmission-line equations are called the coupled-mode

29
equations which can be expressed as follows:

For carrier wave:

(§;.+-jBT)J1 = sysv (5.48)

5V

a.— = - —c

(32 + jarw 28.11 + 62 (5.49)
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For slow wave circuit:

aVc
5}— = -ij .1C (5.50)

N BJ
_azc = -ij Vc - __azl (5.51)

Putting the voltage and current density in terms of normal modes,

we have

vc = fzc (ad + ac) (5.52)

Jc = ll/Zc (ac, - ac) (5.53)

V = fla (a+ + a) (5.54)

J1 = ll/ZEWJ. - a_) (5.55)

Using the above expressions together with Equations (5.1), (5.16),

(5.17), (5.19) and (5.27), the coupled-mode Equations (5.48)

through (5.51) become

(3; - 1194+ - (g; - I‘_)a_ = o (5.56)

(:2- - I“|_)a+ + (g; - 1"_)a_ = 2:3; (ac+ + ac) (5.57)

(g; + meme, + (g; - meme- = o (5.58)

(g; + jecmc, - (g; - 1584.- = - f g; (4+ - a.) (5.59)

where

a =W (5.60)
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so is the propagation constant for normal modes of the slow wave

circuit.

Using the relation of Equations (5.56) and (5.58), the

coupled-mode equations can be simplified as

B
a... - = ' —c -—-c— .-

a. 2c
i $2 t. meme: = -1, 2: (1w+ - r_a_) (5.62)

Note that the forward and backward coupled circuit modes ag+

and 4;- are not directly coupled. Shmilarly, the fast and the

slow carrier modes 4+’ and at are not directly coupled. Each

of the fast and the slow carrier modes is directly coupled to the

forward and backward circuit modes, and the circuit modes are

directly coupled only to the carrier modes.

The basic concept of a solid state traveling-wave amplifier

is to utilize drifting carriers in a solid surface adjacent to

and interacting with a slow electromagnetic propagating circuit.

There are many possible kinds of slow wave structures for STWA,

typical ones are those such as helix, meander-line and interdigital

circuit. A mosaic pattern was suggested by Solymar and Ash9 and

also by HinesZI. One of the schematic representations of a STWA

is shown in Fig. 5.2.

If the group and drift velocities of the circuit wave and

the lossless longitudinal carrier waves are approximately synchronous,

which is similar to the condition in the traveling wave amplifica-

tion in beam devices, the slow circuit wave will interact strongly

with moving carriers. Should this be the case, the electric field
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of the slow wave circuit slows the carrier down, and the loss

of carrier kinetic energy is being transferred to the circuit

wave. If the energy is continuously transferred from the

drifting carriers to the slow wave, it will result in wave

growth with distance along the circuit. It has been shown29

that for a traveling-wave amplification, the forward circuit

wave agfi' should be strongly coupled to the slow carrier wave

at. The coupled-mode Equation (5.61) and (5.62) are then reduced

to

BGL

SE- : cna_ + Cmac—r (5°63)

adol-

az " C214- + C224m- (5’64)

where

C11 = F_ (5.65)

T.
012 =1 52 z_ BC (5.66)

a

2c
C21 = k 2— I‘_ (5.67)

- a

C22 = -jac (5.68)

Assuming that the z-dependent part of both a: and aé+ have

P z

the form e c , Equations (5.63) and (5.64) become

(1'. - cum, = c12 4.4 (5.69)
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Solving the above two equations for Fe and using the right hand

side of Equation (5.65) through (5.68), the propagation factor is

obtained as

 

Z

I“. = 5: <r_ - we) 1 Jag-1932 + 149531 + 529:) (5.71)

The prOpagation factor is generally a complex quantity. The two

modes are said to be actively coupled if the PC has a positive

real part.

The transfer factor which is defined as the fraction of

the total power transfer between modes29 is found to be

2

F = [1 + —‘l—-1-— (1“ + jg )2 '1 (5.72)
and 2c 1961; - c 1

Close coupling occurs when two modes are synchronized and the

transfer factor approaches unity; that is

F_ = -j3C (5.73)

Substituting Equations (5.1) and (5.60) into Equation (5.73),

the condition for synchronization is obtained as

  
2 2

VT 82.

u0 - vc(1 +- -§-+- 2 (5.74)

\J vc 0.)

where vc =.7%E- is the group velocity of the lossless slow circuit

wave.

Equation (5.74) shows that in order to have the system

synchronized, a higher drift velocity is needed at higher opera-

tion temperature and/or larger carrier concentration. Note that

the effect of carrier concentration becomes less important if the
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system is operated at a higher frequency.

Maximum gain occurs when the synchronized condition given

by Equation (5.73) is reached. Under such a condition, the

positive real part of PC is

_ .2
[ac]m - 55 ac Za (5.75)

Using Equations (5.28), (5.47), (5.60) and (5.75) the maximum gain

per unit wavelength can be expressed as

 
 

 

  

[a ] w r -‘ T %
= c m = _p__ L_ 1‘

Gm B 2v cuo/c 2 (5 '76)
e C 2 U.) 2

k1' + ‘3 (l'k'r)
L m .J

When the system is operated at a high frequency, that is

w >> wp’ Equation (5.76) can be reduced to

uo 3: L 2
= .__ L ..cm 2". mpg, ) (C) (5.77)

A plot of the relative gain as a function of operation

frequency with the thermal-to-drift velocity ratio as parameter

is shown in Fig. 5.3. For a fixed kT, the gain reaches its peak

attainable value and then levels off as the operation frequency

is considerably higher than the carrier plasma frequency. Fig.

5.3 also shows that a higher attainable gain can be achieved for

a smaller kT value. Therefore, it can be concluded that for a

good solid state traveling wave amplifier, it is desirable to have

high d-c carrier drift velocity, high frequency and low temperature

operation. In reality, the highest possible drift velocity is

limited by the hot-carrier effect and the lower temperature
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operation is restricted by the complexity of experimental setup.

Taking Indium Antimonide as an example, the highest drift velocity

attainable before the Gunn-type instability occurs is about

1 x 107 cm/sec30 and the lowest attainable value of RT is about

0.7.31

 



CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusions

This investigation has attempted to provide a better under-

standing of the carrier waves propagating in solids due to longi-

tudinal modulation. Restricting ourselves to the long-wavelength

excitations, a classical statistical analysis is used to describe

the electron and hole motion inside the solids. By several

appropriate assumptions stated in Chapter II, the macroscopic equa-

tions of the carriers in solids are obtained from Maxwell's equa-

tions and the Boltzmann tranSport equations as the fundamental

equations of the carrier stream considered as a conducting fluid.

General wave equation is derived by the simplified fundamental equa-

tions to describe the wave characteristics of a stream of electrons

and holes in solids. Special attention is paid to the extrinsic

semiconductors since most of the commercial semiconductors belong

to this type. The dispersion characteristics of the electron or

hole waves propagating in these kind of semiconductors are obtained

from the simplified wave equation.

A transmission-line analog of the carrier waves including

the effect of an external slow wave circuit is develOped by de-

fining the kinetic voltages due to velocity and density modulation.

Equivalent transmission-line circuits are constructed in terms of

92
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the kinetic voltages and the a-c electron and hole currents; besides

the capacitors and inductors, the elements of these equivalent

circuits include ground base transistors and ideal transformers

which indicate the possible amplification and energy exchange

between the carriers and the external circuit waves. The real power

dissipated per unit length obtained from these equivalent trans-

mission-line circuits checks closely with those obtained from the

kinetic power theorem in Chapter IV. This analysis gives a

possibility to investigate the coupling between the carriers and

the surrounding slow wave circuit and to figure out the conditions

of wave amplification by circuit theory provided that the equi-

valent transmission-line of a proper designed slow wave circuit is

also developed.

The propagation characteristics of the electron or hole

waves propagating in an extrinsic semiconductor have been examined

in detail. It has been shown that in general two basic types of

electromechanical waves exist in an extrinsic semiconductor with

longitudinal modulation. When the average drift velocity of the

carriers is higher than its thermal velocity, the space-charge

waves are strongly excited. As the carrier thermal velocity

exceeds its average drift velocity, the electroacoustic wave will

become dominate. The fast and slow space-charge waves carry

positive and negative kinetic power respectively. For a growing

wave instability, the slow space-charge wave must be excited

such that the kinetic energy of the carriers can be taken out and

transferred to the circuit surrounding it. It has been shown that

the collisions between the carriers and the solid lattice play the
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role of consuming carrier kinetic energy, since such collisions make

the carriers return to a random state and cause them to lose velocity

modulation. Under the condition when the space-charge waves are

strongly excited, that is, u >> v and the collision frequency

0 T’

is high enough, the fast space-charge wave and slow space-charge

wave will emerge as one kind of carrier wave which is synchronous

with the drift motion.

Starting with the fundamental equations which describe

the carrier behavior in solids, an expression for real power flow-

ing through the solids with longitudinal modulation is obtained.

The result indicated that the electromagnetic power will grow along

the longitudinal direction if a negative kinetic power carrying

wave is excited in the interaction. This agrees with the argument

that the amplification can occur when the slow space-charge wave

is excited because the slow space-charge wave carries a negative

kinetic power due to velocity modulation. In a special case when

collisions and thermal diffusion are neglected, the result shows

that the sum of the electromagnetic power and the kinetic power of

velocity modulation prOpagated along the solid is consérved. In

a degenerate case, the same result has been given by Chu32 as the

kinetic power theorem of an electron beam in vacuum.

Normal modes of the collisionless carrier waves in solids

are evaluated from the equivalent transmission-line equations.

Each mode is normalized by letting the a-c power carried by the

carriers be equal to the product of the normal mode and its con-

jugated. Once the normal modes of the separated systems are de-

fined, modes of a coupled system can easily be found by using
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coupled-mode theory.

The solid state traveling wave amplifier in which the slow

space-charge carrier wave interacts with the surrounding lossless

slow electromagnetic wave is used to demonstrate the application

of the coupled-mode theory. The conditions for synchronization as

well as a maximum gain expression were derived. In reality, the

inevitable slow wave circuit loss, the collision effect between the

charged carriers and the solid lattice and the surface effect of

the solids (for example, the reduction of carrier mObility in a

surface layer, which arises from random scattering of carriers at

the surface) will definitely reduce the theoretical gain by a

significant margin. However, since no such device has been built,

its future potential is yet to be determined.

The electroacoustic wave in solids due to longitudinal

modulation has never been observed or reported elsewhere. It is

our belief that its general characteristics will be very much the

same as those in gaseous plasma. They will certainly affect the

propagation of electromagnetic waves in solids. It would be

interesting to perform experiments to observe their diapersion

characteristics and other phenomena such as the dipole resonance

and Tonks-Dattner resonances.

The general study of longitudinal carrier waves cannot only

lead to a clearer description of the existing interactions in solids,

but also predict new interactions such as the possible solid state

backward wave oscillator, the instability due to space-charge waves

of carrier stream, the electroacoustic waves interact with back-

ground stationary plasma, and two carrier stream instability, etc.
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Numerous microwave radiations from solid state materials,

such as in the Gunn oscillator, the avalanche diode, and the

TRAPPAT mode oscillator have been reported in the past few years.

The analysis given for these devices were either too theoretical,

using statistical quantum theory, or too experimental, using the

experimental carrier velocity versus electric field intensity curve

of the material to obtain the negative conductance characteristics.

Quite often, some of the important aspects of the interaction such

as the coupling scheme and energy exchange between circuit and

carrier waves may not be revealed explicitly. By using the normal

mode formulation developed here, most of those devices can be

explained more clearly.

For the coupled mode analysis of carrier wave interactions,

we have restricted our analysis to the weakly coupled systems in

order to neglect some of the weakly couplings between the modes.

However, for strongly coupled systems, we have to solve a more

complex system. The effects of collisions and thermal diffusion

upon the dispersion relation and carrier wave content can be studied

in more detail with the aid of a digital computer using appropriate

numerical analysis.
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