
 

 

MSU
LIBRARIES

“

 
 

RETURNING MATERIALS:

PIace in book drop to

remove this checkout from

your record. FINES wiII

be charged if book is

returned after the date

stamped beIow.

 

 

 

  
 

 



EXISTENCE OF OPTIMAL NASH CONTRACTS

OF A PRINCIPAL-AGENT MODEL

SINGLE AND MULTIPERIOD CONSIDERATIONS

BY

Peter Cheng

A DISSERTATION

Submitted to

Michigan State University

1 partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Accounting

1982



ABSTRACT

EXISTENCE OF OPTIMAL NASH CONTRACTS

OF A PRINCIPAL-AGENT MODEL

SINGLE AND MULTIPERIOD CONSIDERATIONS

BY

Peter Cheng

This dissertation attempts (1) to construct an

abstract, general yet analytically rigorous agency

model of a business entity, and (2) to study the

conditions or circumstances such that the principal

can design an Optimal contract with his agent in both

the single and multiperiod settings.

In the single period model, it is shown that if

the contract to be negotiated belongs to the class of

totally bounded functions or to that of monotonic

increasing functions, the principal can be successful

in arriving at an Optimal contract.

The multiperiod model is constructed as a sequential

decision process on a discrete time basis. Dynamic

programming algorithm is a suggested solution

procedure to the prOblem. Under various assumptions,

it is shown that the proposed model meets the hypothesis



Peter Cheng

of tflne algorithm. The questions of the existence of

optimal or nearly optimal contracts, uniformly optimal

contracts and stationary Optimal contracts as well as

the convergence of the algorithm are investigated.

In the multiperiod model, the basic agency problem

is first considered on a "most well—behaved" setting.

This means that the payoff outcomes are observable by

both the principal and the agent. Analysis is carried

on both a finite and an infinite time horizon. Then,

it is assumed that the payoff is observable by the

agent alone while the principal receives a signal on

the payoff. The signal is chosen by the agent and

there is no restriction on how the agent should report

the payoff. This leads to an imperfect state information

model.

The imperfect state information model is analogous

to the reporting and auditing functions of an entity.

If appropriate measurability restrictions are imposed

on the various functions, it is shown that if the auditor

is acting in the best interest of the principal, the

audited financial statements are adequate for the deri-

vation of a long run Optimal contract through the dynamic

programming algorithm.
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CHAPTER I

PRELIMINARIES

1.1: Introduction
 

An agency can be defined as an economic arrange-

ment in which two or more individuals share the outcome

produced by an action or a sequence of actions and

the occurrence of some random event(s). The indivi—

dual who wishes to delegate the action responsibility

while receiving a share of the outcome is called the

principal. The party who makes the action decisions

is called the agent.

The study of the economic effects of various

contractual arrangements between the principal and

his agents has been of increasing interest in both

the accounting and economic literatures. Amershi and

Butterworth [1979] have identified three research

lines of inquiry on the subject. One branch of study

focuses on the welfare effects in terms of expected

utilities of contractual aggrangements among economic

agents. A number of writers have contributed to the



literature of this approach: Demski and Feltham [1978],

Harris and Raviv [1979], Holmstrom [1977,1979],

Kobayashi [1980], Mirrlees [1974,1976], Ross [1973,

1974], Shavell [1979], Spence and Zeckhauser [1971],

and Wilson [1968], among others. The question of market

efficiency with respect to the ability of markets to

absorb and transmit information about the activities

of economic agents was studied by Akerloff [1977],

Hirschleifer [1977], Spence [1974]. The third

direction focuses on investigating the interactive

effects of markets and contractual decentralization:

Alchian and Demetz [1972], Fama [1980], Jensen and

Meckling [1976].

This study concentrates on the first category.

Focus is placed on identifying the set of sufficient

conditions to guarantee the existence of optimal con-

tracts between the principal and hisagent in both a

single period and multiperiod settings. In the multi—

period model, emphasis is placed on the existence of

long run contracts. Although the formulation of the

model does not preclude the consideration of a two

period agency, the thrust of the research is to investi-

gate contracts over the life of the entity. The

multiperiod model is developed as a sequential decision

process on a discrete time bases. Contracts are

negotiated at the end of each period after the payoffs



are observed or reported by the agent. There is no

restriction that contracts for subsequent periods be

of the same form as those of the previous periods.

Under such a scenario, I would like to study the

circumstances, both economic and behaviorial, under

which the principal would be successful in designing

a contract which would maximize his expected utility

on the net return while at the same time allowing

the agent to maximize his own expected utility by

selecting an Optimal action choice.

1.2: Scope and Objective
 

The purposes of this research are: (l) to

construct an abstract, general yet analytically

rigorous agency model of a business entity, (2) to

study the conditions or circumstances such that the

principal can design an optimal contract with his

agent in both the single and multiperiod settings.

In a sole proPrietorship or a partnership, the

principals are the owners and the managers are the

agents. For corporations, the stockholders as repre-

sented by the board of directors are the principals

while the managers are the agents. The auditors are

assumed to act always in the best interest of the

principal: that is, they act c00perative1y with the

principal. It is also assumed that all principals



within the company act congruously and have common

utility preferences. Likewise, the agents within the

entity also have common goals and utility preferences.

The model in the subsequence chapters effectively

focuses on the relationship between one principal and

one agent.

Ng and Stoeckenius [1979] point out that, in

general, not only is the manager's action not

observable by the owner, the firm's payoff is also

unobservable by him as well. Since this asymmetry of

information exists between the principal and the agent,

the latter is required to issue financial reports

periodically to convey information concerning the firm

to the owner. If the manager's remuneration is

directly a function of his reported performance, then

the manager will have incentive to misrepresent in his

report. If auditing is effective in detecting the

misrepresentation, then it is of value to the owner,

provided that the audit cost is small enough.

Fama [1980] notes that the contracting literature

is almost uniformly concerned with one-period models.

He further argued that in a single period world, there

can be no enforcement of contracts through a wage

revision process imposed by the managerial labor

market. Radner [1981] shows that the sequential



observation of the agent's performance over time is by

itself an effective monitoring device. Since any real

world contracting process is dynamic, an agency model

is incomplete if its dynamics are not studied. A

complete dynamic general equilibrium analysis including

the external labor market is beyond the scope of the

research. I plan to study the partial equilibrium

effects on the contracting behaviors between the

principal and the agent. This means that the external

labor market Opportunities to the agent are represented

by a constant exogeneously determined. The principal

must pay him in such a way that the agent's expected

utility on his compensation is greater than the given

outside Opportunity set.

In the single period model, it will be shown, in

Chapter II, that if the contract to be negotiated is

bounded or if it is nondecreasing (monotonic increasing)

with respect to payoff, the principal can be successful

in searching for the optimal one within the above two

mentioned classes of contracts. Bounded contracts are

reasonable since no principal would pay his agents an

unlimited amount of compensation in excess of the payoff.

Monotonic increasing contracts are those of the bonus

type. Bonus has been an extremely common form of



remuneration. Agents are paid according to the payoff

outcomes. These two classes of contracts clearly

describe some common contracting behavior of economic

agents.

For the multiperiod model, there are no assumptions

nor restrictions placed on the form and types of the

long run contracts. All ad hoc assumptions and condi-

tions are imposed either on the net payoff function

(the payoff less the compensation paid to the agent),

the total expected discounted return function (the net

payoffs to the principal over the planning horizon

discounted to period 0) and the probability distribu-

tion of uncertain events (the period payoffs and the

reported payoffs). The first two are restrictions on

the economic behavior of the entity, how its payoffs,

per period and total, relate to each other and to

the environment in which the entity Operates. The

conditions on probability distributions are more be—

haviorial in nature. The distributions capture the

principal's beliefs of his expectation on the agent's

performance and the manner the agent reports, that is,

how truthful the latter is. These are discussed in

details in Chapter III and subsequent chapters. It is

the h0pe of this research that the general agency



model develoPed will describe, both normatively and

positively, the behavior of the principal and his

agent in the above context. It is a positive model

because if the conditions or assumptions are met and

Optimal contracts are found, the principal can predict

the behavior of the agent in terms of his performance.

The imperfect state information model proposed

in Chapter VII will attempt to describe the reporting

and auditing functions in terms of a multiperiod agency

model. The reduction of the imperfect state model to

a perfect state model through the auditing process and

the conclusion that the audited financial statement

is sufficient to design a long term Optimal contract

confirms the current belief about the value of auditing.

HOpefully, such a model will enhance some understanding

of the process of financial reporting and auditing as

they are related to the contracting procedures of the

company.

Most of the current researches in the agency area

are conducted by imposing certain ad hoc assumptions on

the model. Some of these assumptions are descriptions

of the economic environment of the entity and some are

behaviorial in nature while others are for mathematical

tractability of the model. Assuming a solution to the

problem, that is an optimal contract, exists under the



 

proposed assumptions, the researcher carries on either

to characterize the assumed Optimal contract or to

draw implications from the Optimal contract. There

is not any documentation about the kind of environment

and conditions under which a researcher can appro-

priately make such an assumption, the existence of an

optimal solution. This project attempts to lay the

foundation and investigate the fundamentals of the

agency problem.

Every attempt in the research is made to impose

the minimal amount of restrictions on the behavior

of the various functions. The model will be described

and analyzed in its most possible generality. It is

hoped that any results derived under such hypothesis

are applicable to a greater variety of situations.

Due to the mathematical and technical nature of the

analysis, discussions in the following chapters will

be separated into a general and non-technical descrip-

tion of the analysis and its results in the non-starred

chapters. The full technical model, with all theorems

and proofs is presented in the starred chapters. The

two appendices contain materials which are well-known

in the literature but are crucial to the develOpment

0f the model. They are collected there for completeness.



 

 

 

However, by developing the model in its most

general form, it becomes extremely difficult to give

a direct and elaborate characterization of the optimal

contract even after showing its existence. Character—

ization of the Optimal contract requires additional

hypothesis on the model. I do not intend to carry

the analysis to such an extent. Also, this research

will only discuss the conditions under which the

principal can design an optimal contract and suggest,

wherever possible, some procedure to arrive at or

approximate the solution. It will not discuss the

specific numerical aspects of the actual search for

solution.

1.3: Organization of the Study and Summary of Results
 

The organization of the study is as follows. A

general agency model with one principal and one agent

is analyzed in Chapter II. A set of sufficient

conditions for the existence of an Optimal contract

will be derived. Financial reporting and auditing are

then introduced into the model. As indicated earlier,

the auditor is assumed to act cooperatively with the

principal. This implies that the auditor's decision

variables are inputted into the model exogeneously

and the auditor is acting as a "surrogate" for the

principal. Auditing is essentially a dynamic process:
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analysis of the auditing function is deferred until

Chapter VII in the multiperiod model.

In the multiperiod model, the basic agency model

is first investigated (Chapter III). The setting

is the most "well-behaved" one in the sense that

payoffs are observable by both the principal and the

agent. The model is well-defined stochastically at

time 0. This means that the sequence of payoffs over

the entire planning horizon is defined stochastically

given an initial payoff at the initial period. A

probability distribution on this sequence of payoffs

exists with a well-defined probability belief on the

initial payoff. Analysis of the model is carried on

a finite time horizon (Chapter IV) and infinite time

horizon (Chapter V).

In the second part of the multiperiod analysis,

it is assumed that the actual payoff is observable

only by the agent while the principal will receive

a signal on the payoff. The signal is chosen by the

agent and there is no restriction on how the agent

should "report" the payoff. This leads to an imperfect

state information model (Chapter VII). The principal

must attempt to assess the likelihood of the actual

payoff given the signal produced by the agent. Hopefully,

he can achieve such a task through the auditing and
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contracting processes. Serious mathematical problems

arise under such a setting. These problems and their

suggested solutions are discussed in Chapter VI.

The model constructed in the subsequent chapters

imposes no differentiability restriction on the various

functions. Heterogeneous prObability beliefs between

the principal and the agent are allowed. In the

single period setting, it is first shown that under

very mild conditions on the agent's choice set and

utility function, the Nash constraint that the contract

is incentive compatible is met for all incentive

functions. Optimal contracts are shown to exist under

two classes of functions, totally bounded and monotonic

increasing functions.

The multiperiod model represents a sequential

decision process. Long run Optimal contracts are

determined on the basis of maximizing the principal's

total expected discounted net return (period payoffs

less the agent's remuneration) over the planning time

span. The model is considered under a finite and an

infinite horizon settings.

Dynamic programming algorithm is an iteration

procedure over time through which (1) it computes a

Conditional expectation: (2) the objective function

in two variables (state and incentive) is Optimized over
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one of these variables (incentive): (3) if an

optimal contract is to be constructed, a "selector"

which maps each state to a contract which achieves

the maximum in the second step is to be chosen. It is

shown that under certain circumstances such an algorithm

is valid to solve the multiperiod agency problem in

both the finite and infinite horizon models.

In the finite horizon model, Optimal contract

exists if the principal's total expected discounted

net return is continuous and behaves "somewhat" linearly

with respect to his period net return. In addition,

the dynamic programming algorithm provides a stronger

result. The optimal contract thus obtained maximizes

the principal's period net return as well as his total

expected discounted net return.

The infinite horizon model is discussed under two

separate sets of assumptions. The first set includes

conditions that the discount factor is less than unity

and that the total discounted expected net return is

bounded for all contracts. Existence of optimal

contracts is established. Under the dynamic pro—

guamming algorithm, the Optimal contract derived is

stationary, that is, the form of the contract remains

the same throughout time. The second set of assumptions

is that the total discounted expected net return to
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the principal is monotonic (either increasing or

decreasing) with respect to time. Under both sets of

assumptions, the infinite horizon solution is shown

to equal to the limit of that of the finite horizon

model when time is allowed to tend to infinity. Also,

it is shown the dynamic programming algorithm imple—

mented under these sets of conditions converges.

If appropriate measurability restrictions are

imposed on the various functions, the dynamic pro-

gramming algorithm can be implemented to the imperfect

state information model. In this part of the analysis

it is shown that if the auditor is acting strictly

in the best interest of the principal and the audit

is performed in the best possible manner, the audited

financial statement is adequate for the derivation of a

long run Optimal contract through the dynamic programming

algorithm.



CHAPTER II

SINGLE PERIOD MODELS

2.1: A General Agency Model

This section considers the situation in which

there is a principal with one agent. The agent is

entrusted with the task of selecting an action from

among a set of alternatives. Then some random event

occurs and the outcome of the action is some payoff

which is assumed to be observable by both parties.

The action choice, however, is not observable by the

principal. A problem is then to decide on some

"best" sharing scheme between the principal and the

agent. Under the assumption that the agent's utility

for wealth is positive and his utility for effort is

negative, it has been shown that a pure wage contract

is incentive incompatible, that is, the agent will

always choose the act which requires the minimum level

of effort (Ng and Stoeckenius [1979], Shavell [1979]).

On the other hand, since the action choice is not

observable by the principal, an incentive contract based

14



15

on the outcome alone may cause moral hazard problems.

Under such circumstances, Harris and Raviv [1979]

have shown that some information about the agent's

action by the principal is desirable even at some

cost, namely, some monitoring is "good". The solu-

tion to the general agency problem is the determination

of the action by the agent, an incentive function and

a monitoring system by the principal to motivate the

behavior of the agent.

The usual criteria adOpted by writers in agency

literature for the choice of optimal incentive con-

tracts are Pareto Optimality and Nash optimality.

The Pareto criterion provides the principal with an

expected utility at least as great as that which is

obtainable from among alternatives which satisfy

some minimal requirement (minimum security level)

imposed by the agent. This implies that the principal

and the agent decide COOperatively on the contract

and the action choice such that the expected utility

of the principal is maximized subject to the minimal

requirement. If the principal can observe the agent's

action choice as well as the payoff, or if there is

full and truthful communications between the principal

and the agent on the action and payoff, it would be

sufficient to guarantee that the agent will act

cooperatively. Some authors call this the first best



16

solution (Holmstrom [1979], Shavell [1979]). However,

a solution in the cooperative game does not necessarily

imply that there is full and truthful communication

of the action and payoff. The first best solution

implies that the agent always acts in the best interest

of the principal. He does not have a conflict of

interest over effort with the principal either by the

observability of the action or other monitoring means.

The Nash condition assumes noncooperative

behavior between the principal and the agent. It

requires an additional restriction, that the contract

must enable the agent to choose an action from among

the alternatives which maximizes his expected utility

under the contract. This allows the agent to choose

his actions freely based on his own choice criteria.

A typical situation of such a phenomenon would be the

asymetry of information between the principal and the

agent. The principal does not observe the agent's

action even after the payoff is Observed. There is no

way of enforcing any action choice on the agent. The

best thing the principal can do then is to design the

contract based on his "best" guess on the agent's

action. The solution set of the Nash problem is a

subset of that of the Pareto one. Hence there exist
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solutions which are Pareto efficient but are not

Nash solutions.

The following is a general agency model. Define

the expected utility of the principal as

¢1(I.a) = E1U1(u)(a,s) -I(w(a,s))), where

a E A set of possible actions

s E S set of states of nature

{2:A.xS 4 R payoff function w(a,s) = m

units of wealth.

I: Q 4 R Incentive function I(w(a,s)).

Throughout this paper, the same notation will be

used to denote a function as an element of a functional

space and the value of the function in the range. For

example, w denotes a payoff function as well as the

units of wealth payoff for a certain action a and

state of nature 5. The actual reference should be

clear from the context.

Under most common economic circumstances, it will

not be unreasonable to assume that the agent has only a

finite number of mutually exclusive action choices.

Then, without loss of generality, A is assumed to be

a finite subset of Rn. The set S is defined with

its usual statistical meaning in a decision theory

context (Savage [1954]) with probability beliefs Pi

on S, where i = 1 denotes the principal and i = 2
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denotes the agent. The usual homogeneity of beliefs

between the principal and the agent is not assumed in

this model. Let Ei denote the expectation Operators

with respect to the beliefs of the decision maker.

It is assumed that the utility function of the

principal, U1, is non-negative, concave and monotonic

increasing with respect to wealth. It can then be

shown that such a utility function is continuous on its

domain (Theorem 2.7).

For the agent, define his expected utility as

¢2 (Ila) = EZUZ (I (w(als) ) la) °

His utility function is also non-negative, concave, and

monotonic increasing in wealth, but non—negative, concave,

monotonic decreasing in effort. Assuming that both the

principal and the agent are utility maximizers, one can

formulate the problem as follows.

Maximize

E1U1(w(a.S) -I(w(a.S))

I e {1)

Subject to: 02(I,a) 2 v (1)

a 6 argmax E2U2(I(uwa,s)),a) (2)

aEA

v represents the minimum levels of security for the

agent to remain in the company. Solving the above

program subject to constraint (1) will yield the Pareto
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solution. Constraint (2) represents the additional

incentive compatibility condition that the Nash

solution requires.

2.2: The Pareto Optimal Contract
 

Under the conditions of Pareto Optimality, all

parties are assumed to act COOperatively in the best

interest of the company. The existence of a Pareto

optimal contract is usually not too difficult to

guarantee. Given sufficient regularity conditions,

at least one solution is guaranteed. Wilson [1968]

has demonstrated the existence of a Pareto optimal

sharing rule and characterized the behavior of this

sharing rule in a syndicate setting. Kobayashi [1980]

analyzed the role of private information of an individual

in the syndicate by redefining the core. He showed

that an equilibrium contract belongs to the core as

well as the existence of such equilibrium contracts.

Amershi and Butterworth [1979] investigated the

problem assuming diverse beliefs among the principal and

the agents. They analyzed the conditions for existence

of the optimal contract and the characteristics of such

an Optimal contract. Most of their findings on the

Pareto optimal contract are consistent with the results

of previous studies.
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2.3: The Nash Optimal Contract

In the formulation of the Pareto problem, one can

assume some kind of convexity prOperty for the Objec—

tive function and the constraints are generally well

behaved mathematically. Such assumptions will, to

some extent, simplify the solution techniques. Under

the Nash criterion, the additional constraint that the

agent is able to maximize his expected utility removes

any reason to impose the well behavior of the functions

of the model. Also, one cannot be sure that the

Optimal contracts are differentiable. Differentiability

is a requirement in most optimization techniques. The

problem is compounded if the principal and the agent

are allowed to hold diverse beliefs about the state of

the world.

One common method in showing existence is by

analyzing the first and second order conditions. Under

the assumptions of Kuhn-Tucker in the nonlinear

programming literature, these conditions are, in general,

satisfactory. Another usual method is to use the Euler—

Lagrange equation in the calculus of variation literature.

In the agency setting, however, both of these techniques

may not be apprOpriate. Both methods require

differentiability of the incentive contracts. The

principal's decision variable, incentive contract, is a
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function belonging to some functional space. A space

is of finite dimension if its elements can be expressed

as some finite number of vectors (or basis). There

are only very few finite dimensional spaces that are

of interest. In fact, the only one which is of any

use is the space of polynomials of finite degree. The

principal is effectively maximizing his expect

utilities over infinite dimensional spaces. Under

such handicapped conditions, most of the common cal-

culus methods fail.

Both Mirrless [1974] and Gjesdal [1976] have

correctly shown that the differentiability assumption

may be too restrictive. Holmstrom [1977] constructed

a counter-example, the optimal solution of which can

be attained by a nondifferentiable sharing rule and

no differentiable rule can precisely attain this

solution.

One of the more extensive works in demonstrating

existence is also done by Holmstrom [1977]. He proved

the existence of two classes of incentive contracts

under the Nash conditions. His work relied heavily

on the assumption of homogeneity of beliefs between the

principal and the agent. He also put some additional

restrictions on the behavior of the functions to arrive

at his results.
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The first step of the analysis is to generate

conditions on the agent's problem such that given any

contract I, his expected utility function will

always achieve a maximum. This will satisfy the Nash

additional condition that the contract is incentive

compatible.

To show incentive compatibility, the Weierstrass

Maximum Theorem (Theorem 2.3) is used. Loosely stated,

an upper semicontinuous function on a compact set

achieves a maximum. Upper semicontinuity is a milder

condition than continuity. When applied to the agent's

expected utility function with respect to the action

set, this means that if the agent shirks a very little

bit, that is, if a is allowed to change by a small

amount, then the agent's expected utility will not be

increased by a large amount. Hence, upper semi-

continuity simply means that the function is continuous

from above. The agent should not expect a substantial

gain if he changes his effort level slightly. This is

reasonable in terms of expected utility when all possible

states are considered.

Recall that A is assumed to be a finite subset

of Rn, it is bounded by definition. Compactness on

the real line means closed and bounded. All one

needs for A to be compact is that it is a closed
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subset. Upper semicontinuity on ¢2 requires some

additional condition on the utility function of the

agent. It can be shown that if U2 is upper semi-

continuous with respect to a, the action choice,

then the resulting expected utility is also upper

semicontinuous (Theorem 2.5).

With the above construction, indeed only very

mild conditions, the Nash constraint is satisfied.

Then the principal's problem is considered, again

applying the Weierstrass Theorem on his expected utility

function.

To guarantee upper semicontinuity on Oi is easy.

The principal's utility is monotonic increasing and

concave with respect to wealth, which is generally

the residual of the payoff after the manager's

compensation is deducted. A concave function is always

continuous (Theorem 2.7), and the integral, in our case,

the expectation operator, is continuous if the integrand

is continuous, which in turn implies upper semicontinuity.

Compactness of the space of incentive contracts

is more difficult to show. The space of incentive

contracts is of infinite dimensions. It would require

stronger conditions on the contracts than just being

closed and bounded. The mathematical requirement is

that the contracts are totally bounded. Total
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boundedness means that no matter how the elements

of the set (in this case set of functions) are

grouped, they are always enclosed in a ball of some

given radius. Here the radius has to be the same

for all possible groupings. It is a kind of uniform

bound for all possible payoff outcomes. Thus, if the

incentive contracts are totally bounded, then the

Weierstrass Theorem will guarantee the existence of

a maximum for the principal.

In most situations, one would expect that the

contracts should be increasing with respect to the

payoffs or a bonus as it is more commonly called. The

class of monotonic increasing contract is considered

next. Each contract of this type is assumed to be

bounded below. As the principal obtains the residual

of the outcome after he pays the agent and his utility

is increasing with wealth, given any wealth position

from the outcome, he would choose the incentive function

that would pay the agent the least amount. That is,

the optimal contract in the principal's viewpoint can

be defined as I; = inf [11,...,In} for each w E 0

where n denotes the number of possible contracts

given w. As the problem is formulated, the agent must

maintain a minimum security level in terms of expected

utility to remain in the company, the incentive function

should be bounded below for each m E O.
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Now, consider the sequence [1;], the elements

of which are defined earlier. This is a decreasing

sequence and it is shown that it converges to a limit

1* which is also a monotonic increasing function

(Theorem 2.12). As mentioned earlier, the upper

semicontinuity on O? on A and the compactness

of the action set A guarantee the existence of an

optimal action for the agent given any incentive

contract. Thus, for each 1;, there exists a

corresponding a; for the agent. The final step is

to show that the sequence [a;] also converges to a

limit a* which is then the Optimal action for the

agent if he is given the Optimal contract 1*

(Theorem 2.13).

Up to this point, it has been shown that if the

agent's action choice set A is a closed subset of

Rn, and if his expected utility function is upper

semicontinuous with respect to A, there always exists

an optimal a* such that his expected utility is

maximized. This will satisfy the Nash constraint of

incentive compatibility for all possible incentive

contracts.

Two incentive spaces are then identified such that

‘by choosing the appropriated contracts from these two

spaces, it will be guaranteed that the principal's

expected utility will achieve a maximum.
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The first of these spaces is the class of totally

bounded contracts. This is a very large class of

functions which includes the differentiable functions

and the equicontinuous functions which Holmstrom [1977]

has demonstrated to be optimal under homogeneous

belief assumptions. Functions from the totally

bounded class are compact. The principal's expected

utility function is continuous with respect to I.

These two conditions will guarantee, by the Weierstrass

Maximum Theorem, the existence of an optimal contract.

The second class of functions is the monotonic

increasing incentive functions. A typical example of

these functions is the bonus arrangement. Indeed it is

shown that one can always pick an Optimal monotonic

increasing contract to maximize the principal's expected

utility.

So far, an agency model has been described under

the usual decision choice theoretical context. The

assumptions imposed on the model, which are summarized

above, describe a very reasonable and general economic

environment. The restrictions on the utility function

are in accordance with the usual von Morgenstern

utility preference assumptions. If the contracts are

totally bounded or they are monotonic increasing,

the principal will always be able to negotiate a Nash

equilibrium contract such that both his and the agent's
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expected utilities are maximized. In other words,

if the agent exhibits a von Morgenstern utility

preference with respect to wealth and effort, then

the principal can always design a contract which is

either totally bounded or monotonic increasing to

achieve a Nash equilibrium.

2.4: Financial Reporting and Auditing
 

Generally, financial reporting means the conveyance

of information to the principal (owner) about the out—

comes of the actions taken by the agent (manager) in

a period of time. When such a function is introduced

into an agency model, it implies as well that the out-

comes of the events are not observable by the principal.

An additional objective of the principal is then to

ensure that the agent is reporting the outcome truth-

fully. Ng and Stoeckenius [1979] have demonstrated

that without monitoring, an incentive compatible con-

tract always induces nontruthful reporting. This

suggests that when the actual payoff and the agent's

effort are not observable, information about the agent's

performance is always valuable to the principal in

terms of increasing his expected utility. Of course,

the benefits derived from such information should be

sufficient to justify its cost. Harris and Raviv

[1979] showed that even imperfect information is bene-

ficial.
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As Baiman [1979] points out, there is a distinct

difference between monitoring and auditing. The

former means to verify the action taken by the agent

while auditing is taken as the verification of the

report of the outcome produced by the agent. In this

paper, the role of the auditor is defined as another

agent of the owner who "monitors" the reporting

function of the manager, while the incentive contract

is designed to minitor the actions of the manager.

Since the objective of the principal is to control

the reporting as well as the action choice by the

manager, the incentive contract and the auditor can

then together be considered as the monitoring system.

The "black" box of unobservables increases with

the addition of the auditing function into the model.

In most common situations, the original report submitted

by the manager is not observable by the principal.

The manager's report goes directly to the auditor who

performs the necessary tasks on the report, suggests

apprOpriate changes and adjustments and then attests

the report. The principal will receive the "audited"

report after all adjustments have been made or a

"qualified" or "disclaimed" report if the manager refuses

to make the suggested alterations. Under such a scenario,

the only variable which is observable by all parties is
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the audited report. Any contract that is enforceable

has to be based on variables which are observable by

both the principal and the agent. Therefore, it is

not unreasonable to suggest an incentive contract

based on audited outcome. In fact, if the auditor

performs all his audit tasks in the best possible

manner and in the best interest of the principal, the

audited outcome is shown in Chapter VII to be

sufficient to design an Optimal contract. The dis-

cussion of Optimal contracts under a reporting and

auditing environment will be deferred until Chapter

VII when an imperfect state information model in a

multiperiod setting is discussed.





CHAPTER II*

SINGLE PERIOD MODELS

2.1* The Model
 

Define the expected utility of the principal as

m1(I.a) = E1U1(w(a,s)-I(w(a,s))), where

a 6 A set of possible actions

5 6 S set of states of the world

U):A.XS 4 R payoff function w(a,s) = w units of

wealth

I: Q 4 R incentive contract I(w) = k2.

The following are some standard assumptions on decision

choice theory.

Assumption 8.1: Let the action set A be a

closed, bounded subset of a; where 0’ is a normed

linear space of dimension n < m.

Assumption 8.2: The set S is non-empty with a

sigma-algebra 0(5) defining the events in S, Pi’

i = l (principal), 2 (agent), are probability measures

on 0(s). It is assumed that all functions are measur-

able with respect to 0(5).

3O
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Assumption 3.3: (i) The utility function of the

principal U1, is assumed to be non-negative, con-

cave, and monotonically increasing with respect to

wealth.

(ii) The utility function of the agent U2,

is also nonnegative, concave, and monotonically in-

creasing in wealth, but decreasing in effort.

Assumption 8.4: There exists a mo. -w < wo < m.

such that ]w(a,s)] g 1mg] for each a 6 A and s E S.

Assumption 8.1 describes the action choice set.

More details about its tOpological structure will be

derived in the later part of this section. Since

focus is put on a single period model, at this stage

of analysis, S can be viewed as deterministic.

Hence no serious problem should arise on the measur-

ability of the functions, which are assumed to be

measurable. The assumptions on the utility function

simply imply that the preference relation of the

individuals is convex, complete and transitive.

Assumption 8.4 imposes a bound on the payoff function.

In any economic situation, it will be very unlikely

that the payoff is unbounded. One inherent consequence

of Assumption 8.4 is that the incentive function is

also bounded as no principal can pay his agent an

unspecified amount of compensation in excess of his return.
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Thus, the expected utility of the agent can be

defined as

sz(IIa) = E2U2(I (W(a,S) ) Ia)

and the typical principal-agent problem represented

by the following program:

Maximize E1U1(w(a',s) - I(w(a'.S)))

I E C

Subject to: m2(I,a’) 2 V (l)

a: 6 argmax E2U2(I(w(a.S)),a) (2)

a€A

C represents the incentive space and V represents

the minimum level of security for the agent to remain

in the company or the Opportunity set he could attain

outside the company. Solving the program subject to

constraint (1) yields the Pareto optimal solution or

commonly known as the first-best solution. Constraint

(2) represents the additional condition that a Nash

equilibrium requires.

Theorem 2.1: Let (d,H°H1) be an n-dimensional
 

normed linear space over the real field and n < m.

Then (d,H'H1) is tOpologically isomorphic to

(an. n- 112)-

Proof: Refer to Larsen [1973].
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Definition: A class of sets in a topological

space is said to cover a given set X if and only

if each point of X lies in at least one of the

sets. If the diameter of each set in a cover of X

is not greater than c, the class is called an

c-cover of X.

Definition: Let X be a subset of a topological

space. x is said to be compact if and only if every

class of open sets which covers X has a finite

subclass which also covers X.

Definition: A subset X of a complete normed

space is said to be sequentially compact if and only

if every sequence in X contains a convergent sub-

sequence with limit in X.

It can be shown that in a Banach space, compact-

ness and sequential compactness are equivalent. The

following is a well-known and useful result of a

finite dimensional space.

Theorem 2.2: Let 0' be an n—dimensional normed
 

linear space over the real field with n < m. Then

(i) d’ is a Banach space

(ii) If A c.d' is a closed bounded set, then A

is compact.

Proof: Refer to Rudin [1973].
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Theorems 2.1 and 2.2 establish the structure of

the action choice set and guarantee its compactness.

By Theorem 2.1 and without loss of generality, A is

assumed, for the rest of this paper, to be a closed

subset of Rn with an appropriate norm and all results

can then be generalized to other topological spaces.

2.2* Totally Bounded Incentive Functions

In this section, by considering the requirements

of the Weierstrass Maximum Theorem, a set of sufficient

conditions is derived for the existence of an Optimal

contract under the conditions established in Section 2.1*.

Definition: A real—valued function f defined

on a normed space X is said to be upper semicontinuous

at xo if and only if lim sup f(x) g f(xo).

X"X

0

Theorem 2.3 (Weierstrass Maximum Theorem): An

upper semicontinuous function on a compact subset X

of a normed linear space achieves a maximum on X.

Proof: Refer to Luenberger [1969].

First consider the agent's problem. The idea is

that given any incentive contract, we want the agent

to be able to select a E A such that his expected

utility function will achieve a maximum. This will

satisfy the Nash additional condition that the contract
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is incentive compatible. Since A is a closed and

bounded subset of Rn, it is compact by Theorem

2.2 (ii). All that remains to be shown is that m2

is upper semicontinuous on A.

Assumption 8.5: For each fixed 5 6 S and

e > 0, there exist a 6(5) > 0 such that 6: S 4 R

is measurable and U2(I(w(a,s)),a) < U2(I(w(ao,s)),ao)+-a

whenever Ha-—aOH < 6(5).

Theorem 2.5: Let I(w(a,s)), w(a,s) be bounded
 

measurable functions and U be the measure Of S.

Suppose for each fixed 5 E S and each s > 0, there

exists a 6(5) > 0 such that 6: S 4 R+ is measurable

and U2(I(w(a,s)),a) < U2(I(w(ao,s)),ao)+-e/2 when-

ever Ha-—aOH < 6(5). Then m2 = [S U2(I(w(a,s)),a)P2(s)ds

is upper semicontinuous on A.

Proof: Let c > 0 be given. For each s 6 S

define

60(5) = sup 6(5).

Clearly 60(5) is measurable since 6(5) is measurable.

Let

= f . ‘
So [5 E S. 60(5) > 1)
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and

Since 60(5) > 1 for every 5 G S

For Y > 0 to be chosen later, there exist

a subset SI of S such that u(S-—S') < y.

k

Hence there is a k such that S’ = L) Sn and

n=0

50(5) <11 Vs 65’.

Let 5’ = %. Then

U2(I(w(a.S)).a) < U2(I(w(ao.S)).ao) + 9/2

/ ,2. I

whenever Ha-aofl \ 6 and 5 6 S . This implies

IS! U2(I(w(a.s)).a)P2(s)ds < IS' 02(I(w(ao,s)),ao)92(s)ds

+ Is’ e/2 P2(s)ds.

By Assumption S.4, w(a,s) is bounded for each a 6 A,

s E S. This implies that I and consequently U2

are both bounded. Thus for each 6 > 0, there exists a

7 > 0 such that

g-S’ U2(I(w(als))ra
)P2(S)dS < 62/2

whenever u(s-s’) < Y



37

[S U2(I(w(a.8)).a)P2(S)ds

= J‘s: U20: (1(a,s)),a)P2
(S)ds

+ £_S, U2(1(w(a.8)).a)P2
(s)ds

< [S U2(I(w(ao.S)).ao)P2(S)dS + 5/2 + Is 5/2 P2(s)ds

Is U2(I(w(ao,s)),ao)P2(s)ds + e. QED

Assumption S.5 says that locally, when a approaches

a limit point, the increase in utility to the manager

given a very small change of effort will not be large.

This requirement seems reasonable, because with a small

increase in the agent's effort he should not expect a

large increase in the outcome as well as his compensation,

or else he will be remunerated for very trivial efforts.

Given an incentive contract I, Theorems 2.2 (ii)

and 2.6 guarantee the compliance of the requirements

of Weierstrass' Theorem and hence the Nash criterion is

satisfied. The problem is now reduced to finding an

incentive contract such that the principal's expected

utility function achieves a maximum.

It is easy to verify that space of incentive functions

satisfies the prOperties of a vector space. Since any

linear combination of two contracts is also a contract,

i.e., for every I and I E C, dI + (l-—o)I E C,

1 2 1 2

O l, C is locally convex. Formally, the aboveCr.

H
A

I
L
’
\

idea can be stated in the following theorem.
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Theorem 2.6: The space of incentive functions C

is a locally convex vector space.

Assumption 8.6: C is complete.

Hence, by the above construction, C is a locally

convex Banach space.

Now, let us digress for a moment and investigate

the behavior of the utility function of the principal

under Assumption S.3 (ii).

Theorem 2.7: Let ‘U: R 4 R be a concave mapping
 

on (a,b). Then U is continuous on (a,b).

Proof: The following proof is due to Rudin [1974].

Suppose a < s < x < y < t < b. Write S for the point

(s,U(s)) in the plane and do the same thing with S,Y,

and T. Then X is on or above the line SY: hence Y

is on or below the line through S and X: also, Y is

on or above XT. As Y 4 X, it follows that Y 4 X,

i.e., U(Y) 4 U(X). Left-hand limits can be obtained

in the same manner. Then continuity of U follows. QED

The above theorem establishes the continuity of the

utility function on its domain. The integral of a

continuous function is also continuous.

Theorem 2.8: For a given a E A, m1(I.a) =
 

I U1(w(a.S)-I(w(a,s)))Pl(s)ds is continuous on C.

S
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If C is of finite dimension, then by Theorem 2

(ii), a closed subset of C is compact. However, if

C is of infinite dimension the compactness of [I]

is not easy to guarantee. This leads to the following.

Definition: A subset X of a normed space is called

totally bounded if and only if, for each e > 0, there

is a finite set of Open balls which form an c-cover of X.

Theorem 2.9: If a closed subset I of a complete
 

normed space C is totally bounded, then it is

sequentially compact.

Proof: Let [In] be any infinite sequence in I.

As I is totally bounded, there is a finite l-cover of

1 1 . _
I, say [1(f1,§),...,I(fk,§)] where fj E I, j — 1,...,k.

At least one of these balls contains an infinite sub—

sequence, [In 1} say, of [In]. Take next a finite

%—cover of I and as before extract an infinite sub—

sequence, {I 1 say, of [I 1 contained in one of
n,2 n,l

these balls. Proceed in this way to find for each m

. c a ‘ r ‘1

an 1nf1n1te subsequence [In’mj say, of “In,m—l' such

that [In m} is contained in a ball of diameter m-l.

I

Now, consider the diagonal sequence [In n}. Then

CD , m .

{Ij,j}j=n 1s a subsequence of {In,n]j=n' and so 1s

contained in a ball of diameter n-1. Therefore,

‘In,n'-Im,m‘ g l/M1n(n,m).

Thus [I 7 is Cauchy, and hence is convergent in I
n,ni

as C is complete and I is closed.
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This shows that [In] has a convergent subsequence,

and proves sequential compactness. QED

In a Banach space, compactness and sequential

compactness are equivalent. The requirements of the

Weierstrass Theorem are satisfied to guarantee the

existence of an optimal incentive contract such that

the expected utility of the principal is maximized.

The following gives a useful example of the class

of totally bounded functions.

Definition: Suppose Q is a subset of Rn,

C(O) is the sup-normed Banach space of all continuous

real-valued functions on 0. A set C C C(O) is

said to be equicontinuous if and only if, for each

6 > 0, there exists a 6 > 0 such that

II(w1) —I(w2)] < e for all w1,u12 6 O with

Im1-w2] < 6 and for all I E C.

Notice that for a given 6, the same 6 can be

chosen for every I in J. Equicontinuity means

roughly that the degree of continuity is independent

both of the position in the set 0 and of the functions

in the space C.

Theorem 2.10 (Ascoli): Suppose Q is a bounded
 

asubset of Rn, C(O) is the sup-normed Banach space
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of all continuous real-valued functions on 0, and

C C C(O) is pointwise bounded and equicontinuous.

Then C is totally bounded in C(Q).

Proof: Refer to Rudin [1973].

2.3* Monotonic Incentives
 

Definition: 1(0) is monotonic increasing if

I(w1) g I(w2) whenever wl < wz for all w1,w2 6 O.

In this section, the class of incentive contracts

which are monotonic increasing as defined above is

considered. Recall that the principal's objective is

to find an incentive function such that his expected

utility is maximized. As the principal obtains the

residual of the outcome after he pays the agent and

his utility is increasing with wealth, given any wealth

position from the outcome, he would choose the incen—

tive function that would pay the manager the least

amount. That is, in the principal's viewpoint, the

optimal contract can be defined as I; = inf[Il,...,In]

for each w 6 0. In E C, and n denotes the possible

contracts given w. It is clear that I; is a

decreasing sequence. As the prOblem is formulated,

the agent must maintain a minimum security level in

terms of expected utility to remain in the company.
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Thus, the incentive function should be bounded below

at least pointwise. More explicitly, there exists a

*

Io such that inf[In} 2 IC for every w 6 0.

Theorem 2.11 (Egoroff): Let the measure of a set X

be OIX) < m. If [fn] is a sequence of measurable

functions which converges pointwise at every point of x,

and if e > 0, there is a measurable set E C X, with

u(x-—E) < e, such that {fn} converges uniformly on E.

Proof: Refer to Rudin [1973].

Theorem 2.12: Suppose I C C, where C is the
 

class of monotonic increasing functions, each I is

pointwise bounded below for each x E 0, and Q is a

n * .
subset of R . Let In = inf [11,...,In} where

*

[In] C C. Then In 4 1* and the limit I* E C.

Proof: Let ml < wz and w1,w2 E 0. Con51der

a subsequence {1.1 k} of {Ii}, where l g i g n

and k=1,2,°".
L81”.

* - )

and

1*

Then

*(
< . *

In wl) - I1,j(wl) g I1 m(ml) = Il'm(w2) _ 1n(m2),
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*

Thus, In is a monotonic increasing function of w

*

for each n. Clearly, 11(w) 2...2 Io(w) for every

*

w 6 0. Therefore, In(w) 4 I*(w) pointwise for each

*

w 6 0. By Theorem 2.11, In 4 I*. What remains to

be shown is that I* E C. Let s > 0 be arbitrary.

Let and be chosen as above. There exists
"’1 u”2

an n such that

* *

In(w2) < I (wz) + 6.

Then

it * * *
I (011) g In(wl) g In(w2) < I ((112) + s.

This implies that I*(w1) < I*(w2) + 5. Since 6 is

arbitrary, thus I* E C. QED

Theorem 2.12 provides a scheme to pick an optimal

contract from a class of nondecreasing functions and it

also establishes the existence of such a contract. If

the principal were to enforce I*, we still have to

ensure that the agent will be induced to choose the

correct action.

By Theorem 2.6, the upper semicontinuity of $2

on A and the compactness of the set A have

guaranteed the existence of an optimal strategy for

the agent given any incentive contract. Possibly

there can be more than one Optimal strategies for an

incentive contract. Under such circumstances, it is



 

 

C
I
.
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assumed that the agent will choose among the possible

optimal strategies one which would maximize the princi-

pal's expected utility. Let a* denote such strategy.

Thus, for [1;], there exists a corresponding

sequence of optimal strategies [a;] by the agent.

'k

Clearly [an] C A.

Theorem 2.13: Suppose I C C where C is the
 

class of monotonic increasing functions, each I is

pointwise bounded below for each m E 0 and Q is a

n * . *
subset of R . Let 1 = 1nf{1 ,...,I 1 and 1 4 I

n 1 n n

on 0. Suppose the set A is bounded below. Then

there exists an a* such that m2(1*,a*) is maximized.

* '\ o a

Proof: Since {an} C A which is a closed and

bounded subset of Rn, there exists a subsequence

* 'k

{a } such that an 4 a* where a* E A. We claim

m m

that a* is the optimal action choice. Let c > O

*

be arbitrary. By the convergence of [In] on 0.

1* *) * * /2

@2( nlan < ®2(I Ian) + C o

By Theorem 2.5 m2 is semicontinuous on A.

* *

* ' *m2(I ,an) s 11m sup m2(1 ,an)

n49

g C02 (I*Ia*) 0

Suppose there exists an a0 6 A such that

* s
C02(I*Ia) < 02(I*:ao).
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*

Then, by the convergence of [In]

* *

w2(In'ao) > m2(I ’ao) — e/2

> m2(I*.a*) - e/2

* *

> o2(1 ,an) - e/2

* *

Since 5 is arbitrary, we have

* 'k *

mZIIn.ao) > 62(In.an).

But this is impossible, because a;, by construction,g

is the action which maximizes m2 given 1;. Therefore,

a* is the action which maximizes m2 given the

Optimal contract 1*. QED



CHAPTER III

MULTIPERIOD MODELS - PRELIMINARIES

3.1: Introduction
 

There are two major considerations in the

construction of the multiperiod model: mathematical

rigor and economic as well as behavior implications.

Obviously, there is never a sharp distinction between

the two, for they are not mutually exclusive. The

thrust of discussions in this and subsequent chapters

will be devoted to the develOpment of a rigorous

analytic model for the prOblem. No specific re-

strictions are imposed on the incentive contracts or

its parameters. The main interest of the analysis is

to investigate under what conditions would the princi-

pal be able to negotiate an Optimal contract with the

agent such that the expected utilities of the outcomes

for both parties would be maximized over the long run.

Most of the conditions which guarantee the existence

of long run Optimal contracts are imposed either on

the net wealth return to the principal per period, the

46
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total expected discounted return to the principal,

or the probability distributions of the outcomes.

Conditions on the return functions, both per period

and in total, are descriptions of the economic

enrironments of the entity. For example, one of the

conditions required in the infinite horizon model

(Chapter V), is that the return to the principal per

period is bounded and the discount factor has to be

less than one. These are reasonable descriptions of

common characteristics of an economic enterprise.

Conditions on probability distributions are mainly

behaviorial in nature. The type of "Bayesian" update

as prOposed in the imperfect state information model

(Chapter VII) is similar to that imposed in a typical

behaviorial research.

Multiperiod models have not been extensively dealt

with in the agency literature. Authors of recent

works attempted to extend their models to their multi-

period counterpart at the end of their respective works,

for example, Baiman and Demski [1980]. Lambert [1981]

views the multiperiod model in terms of a two-period

agency and prOposed a delayed payment scheme for the

agent. Radner [1981] investigated the behavior of

contracts in a repeated agency setting and concluded

that if the process was repeated for long enough period
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of time, one can approach the first-best solution (a

Pareto Optimal contract) within some predetermined

error bounds. His analysis imply an infinite horizon

model.

This and subsequent chapters will attempt to

formulate the multiperiod agency problem and obtain

sets of conditions which guarantee the existence of

Optimal or nearly optimal contracts. The problem is

first formulated in a typical decision choice model

setting in terms of the most basic and rudimentary

generic elements of the decision processes of the

principal and the agent. Virtually no assumptions are

imposed on the functions other than those which are

required on the action choice set and the utility

function of the agent to guarantee the compliance of

the Nash incentive compatibility requirement. Any

analysis cannot be carried too far under such a general

formulation of the model. Dynamic programming algorithm

is a procedure for searching solutions in dynamic problems

and is well documented in both the Operation research and

stochastic Optimal control literature. By reformula-

ting the multiperiod agency problem under the dynamic

programming hypothesis, 1 am able to adapt the recent

findings of the above mentioned two bulks of researches

to investigate the existence of long run Optimal contracts.
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The adaptation of the dynamic programming algorithm

does not cause the model to lose any of its intended

generality. The algorithm provides a structural and

systematic procedure to search for an Optimal or

nearly optimal contract. It is through this systematic

procedure that one can find the conditions under which

an Optimal contract can be found. This research is

interested in the procedure of the search and the

adaptation of such a procedure to search for a solu—

tion. It does not intend to go on to investigate the

actual numerical and computational aspects of the

algorithm.

The multiperiod agency problem is developed as a

sequential decision process on a discrete time basis.

Contracts are negotiated at the end of each period

and there are no restrictions on the forms of the

contract. There is no requirement that the contracts

negotiated are to have the same form throughout the

entire time span. The agent is free to leave the com-

pany any time within the horizon the model considers.

When the agent leaves the company and a new one is

hired, then the model will revert back to time 0 and

the Optimization process will restart all over again.

'The principal will attempt to maximize his total

«Expected return over the time span and seek the corres-

EKNfiding Optimal contracts to achieve his goal.
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In the first part of the analysis, a most basic

multiperiod agency model will be considered. Both

the principal and the agent observe the payoff at

the end of each period before the contract is negotiated.

Payoffs in any particular period depend stochastically

on the payoffs in the previous period, the incentive

contract of the current period and the total accumula-

ted wealth of the company. Such a transition function

is assumed to be well-defined stochastically. Should

there be any disturbance arising from the above

description of the payoff transition, there always

exists a probability distribution on the disturbance

given the payoff and the incentive contract. In other

words, the entire sequence of payoffs over the planning

horizon can be stochastically defined at time 0 once

an initial payoff we is specified. The maximization

process is then reduced to finding a sequence of con—

tracts corresponding to the payoffs over all possible

initial payoffs.

Considerations of the basic model will be given

on finite horizon (Chapter IV) and infinite horizon

(Chapter V) assumptions. The finite horizon model

<:onsidered will be a long run model. Although a two-

;neriod agency is not excluded in the analysis, the focus

113 that of a much longer period, the economic life of

the entity.
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The development of this part of the analysis

dwells heavily on writings in the Optimal contral

literature by Blackwell [1965a, 1965b, 1974, 1978],

Denardo [1967], Strauch [1966], and particularly,

Bertsekas and Shreve [1978].

The second part of the research centers on the

imperfect state information model. Payoffs are observ—

able only by the agent who reports a signal to the

principal concerning the payoffs. Since the agent can

choose any information signal he pleases, it becomes

difficult if not impossible for the principal to

assess the likelihood of the actual payoffs conditioned

on the signal received. He can no longer project the

sequence of expected payoffs such that he can Optimize

his expected utility as in the first part of the

analysis. In the imperfect state model, necessary steps

must be taken to guarantee the existence of a probability

distribution on the discrepancy between the actual pay-

off and the signal reported (Chapters V1 and VII). This

is important because the principal is maximizing his

total expected discounted wealth and there is no way

that he can assess his expected wealth without some de-

gree of control on the distribution of the disturbance

uflaich is the discrepancy in the current context.
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Works in the literature concerning the imperfect

state information models are sparse. The more notable

ones are Astrom [1965], Juskevic [1976], Sawaragi and

Yoshikawa [1970], and Striebel [1975]. The proposed

model will draw materials from all these papers and

monographs freely, in particular that by Striebel whose

work is also documented by Bertsekas and Shreve [1978].

3.2: The Basic Multiperiod Model

It was proved in the single period model that

under very mild conditions on the agent's action choice

set and his utility function, the Nash constraint of

incentive compatibility is satisfied for all incentive

contracts. These conditions can be trivially carried

over to the multiperiod model. The condition on the

action choice set is that it must be compact. In a

multiperiod setting, the agent is choosing his sequence

of optimal actions from the possible action set which

is in fact the Cartesian or cross product of the sets

AO'A1"°"AN-l' Each of the Ai' i = O,l,...,N-l, is

compact by assumption. The Cartesian product of

compact sets is also a compact set. The multiperiod

model is formulated in such a way that both the

;principal and the agent is maximizing their expected

(iiscounted utilities on the outcomes. The agent will

(iiscount all his expected remuneration over the time
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periods to time 0 and apply his utility preferences

on the discounted compensation. The only utility

function in question is the one at time 0 which

is assumed to be upper semicontinuous with respect to

the action choice set. With these two assumptions on

the action choice set and the agent's utility function,

the Weierstrass Maximum Theorem will guarantee that

the agent will be able to select a sequence of optimal

actions such that his expected utility is maximized.

In this and subsequent chapters, it is assumed

that all Ai's are closed subsets of Rn, and hence

compact (Theorems 2.1 and 2.2(ii)), and the agent's

utility function is upper semicontinuous with respect

to the actions (Assumption 8.5). Thus all contracts

under consideration are incetive compatible. It is

also assumed that if there are more than one Optimal

action choice for a particular contract, that is, the

solution to the agent's problem does not have a unique

solution, the agent will choose among the possible

"Optimal" solutions one which maximizes the principal's

expected utility.

Now, given any contract, the agent is guaranteed

that he can select an Optimal action a* corresponding

tc>the contract. He will execute a* with payoff

<n(a*,s). The payoff will effectively capture all the

Inandomness of the state of nature. This will allow the
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following formulation of the multiperiod model to

suppress the state parameter and treat the payoff as

a random variable while assuming the existence of a

probability distrubition on all possible payoff wealth

positions.

The following definitions and conventions will

be adopted:

(1) O and C are two given nonempty spaces

referred to as the payoff and incentive spaces respec-

tively.

(2) For each m E 0, there is given a nonempty

subset U(w) of C referred to as the incentive

constraint set at w. The incentive constraint set

will exclude all contracts which give rise to an

expected utility to the agent which is less than the

outside labor market Opportunity.

(3) Denote by M the set of all functions

I: 0‘4 C such that 1(w) E U(w) for every w E 0.

Denote by U the set of all sequences F = (10.11,...)

such that I E M for every k. Elements of H are

k

referred to as contracts. Elements of H of the

form n = (1,1,...) where I E M are referred to as

stationary contracts.

Recall that the principal's utility function is

zassumed to be monotonic increasing with respect to
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wealth which is its only argument. As his total

expected return is maximized, his expected utility

on the return will also be maximized simultaneously.

To simplify the analysis that follow, it is assumed

that the principal is risk neutral. All results in

subsequent chapters will hold if the principal is

risk adverse although the proofs to various theorems

have to be modified to accommodate the risk adverseness.

Define the function

N-l k

JN,TF(wO) = E{k§0 CL 9(wkolklyk)}

and

J (m ) = lim J (m )
TT 0 N409 N,TT 0

where a discount factor, a positive real number

g the principal's net return function,

g: QCY 4 R*

y a disturbance term. For each fixed

(m,I) 6 0C, a probability p(y]w,1) on

the disturbance is given and E[-]w,1]

denotes the expectation Operator with re-

spect to that probability.

R is used to denote the real line and R* to denote

the extended real line, that is, R* = R U [-m,m].

The Cartesian product of sets X1,X2,...,Xn is denoted

by xx ...Xn
1 2
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J, as defined, is then the expected total net

return to the principal for N periods. It is

sometimes called the N-stage net return. Depending

on the values of a, that is, whether a is greater

or less than one, J represents the expected total

future or discounted wealth to the principal res-

pectively. The objective of the model is then to find

an incentive contract which will maximize JN.

TO complete the model, the manner in which the

payoff changes from period to period has to be

specified. The following transition function is

hypothesized.

wk+l = f(wI<’Ik'Jk'yk)’

The payoff in period k then depends on the payoff in

the previous period, the incentive contract which

directs the agent's action in the period and the

accumulated wealth of the company with a disturbance

term.

The basic multiperiod problem can now be formulated

as follows. For each we 6 Q,

Maximize J (m )

F611

Subject to wk+1 = f(wk,1k,Jk,yk).
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3.3: Optimality Concepts
 

*

For a fixed w E 0. let JN(w) and J*(w)

denote the Optimal net return function to the princi-

pal in the finite and infinite horizon models

respectively. Notationally,

*

JN(w) = sup JN,v(w) for every w E 0

W611

J*(w) = sup Jv(w) for every w E O.

FGU

Regarding the Optimal contracts, v* denotes the

optimal contract in a sense that such a contract will

*

give rise to JN or J*. However, v* needs not

always exist. A weaker form of Optimality is also

considered. A v” contract is one which enables the
Ca

principal to get an expected total net return of at

*

least JN-e or J*-—e, where e is a predetermined

positive number. Such a contract is called a nearly

Optimal contract. By definition, the contract w*

taken as a whole sequence of incentive function

*

{11,12,...] will give JN or J* as the total ex-

pected net return to the principal for the N periods.

A stronger form of optimality implies that at each

stage, k g N-—l, 1 can guarantee that the principal
k

*

will Obtain wealth position Jk' Such a contract is

called uniformly N-stage Optimal contract.
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Sometimes, it may become necessary to approximate

J or J* by considering a sequence of contracts

[an]. In doing so, the rate of convergence to Opti—

mality or near Optimality is always in important issue.

Given a sequence of positive real numbers [en] con-

verges to zero as n tends to infinity, the sequence

of contracts [en] is said to exhibit [en1—dominated

*

convergence to optimality if J NN,” converges to J

* I

and JN,Wn 2 JN(w)-en, for n = 1,2,.... Thus, 1f

{en} converges to zero quickly, so does JN.Fn to JN.

The existence of an {en3—dominated convergence se-

quence of contracts to an optimal contract will provide

an iterative scheme such that an Optimal or nearly

Optimal contract results.

Up to this point, the multiperiod basic agency

model has been structured primarily on the usual

decision-making economic model in its most general

terms. Unfortunately, the solution to such a model is

extremely difficult to arrive at or even to guarantee

its existence. This is again, like the single period

Inodel, due to the fact that the decision variable for

the principal, namely the incentive contract, is a

function which belongs to an infinite dimension space.

[hiless one is willing to impose a number of restrictions
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on the behavior of the various functions, it appears

impossible to solve the problem directly by using

any known analytical skills. Because of the unique

nature of the problem, a sequential decision process

on a discrete time basis, it can be reformulated under

a dynamic programming algorithm hypothesis. This

will describe a procedure which, under appropriate

conditions, guarantees an Optimal or nearly optimal

contract can be derived. with the various numerical

methods and computational algorithms developed by the

engineering discipline, more results can be generated

on the optimal contract.

3.4: Dynamic Programming Algorithm

In the Optimal control literature, multiperiod

models or dynamics are analyzed under two separate

branches of studies. The first one is that the

functions under consideration changes continuously

with respect to time, a continuous time model. A

natural solution procedure for such a model is to

formulate it as a system of differential equations.

The second branch is that the system changes at dis-

crete time intervals. A control function (the incentive

function for agency model) is selected at each of these

intervals to maximize or minimize the objective function.

Lbnaamic programming algorithm is the common procedure
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used to search for solutions of this type of problem.

In all appearance, the multiperiod agency model as it

is applied to economic entities naturally belongs to

the latter group of discrete time models. The

following will give a discussion of the dynamic pro-

gramming algorithm as a pausible solution procedure

to the prOblem.

A dynamic programming algorithm is a systematic

sequential search for a solution to the problem of

either maximizing or minimizing an objective function

in a dynamic setting. The search can go forward or

backward in time. There are three operations performed

repetitively. These Operations will be discussed in

greater detail in Chapter VI under the Borel models.

The operations are as follows. First, there is the

evaluation of a conditional expectation. Second, the

objective function in two variables (payoff and incentive)

is optimized over one of these variables (incentive).

Finally, if an Optimal or nearly Optimal contract is to

be constructed, a "selector" which maps each state to

a contract which achieves or nearly achieves the maximum

in the second step must be chosen.

There are two stages in the analysis of a problem

under the dynamic programming algorithm. The first

stage involved in the investigation of whether the

three Operations as outlined above are feasible under
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the assumptions of the problem. By feasibility, it

would mean whether or not one can execute these

operations. This is more of an existence phrase of

the procedure than the implementation steps. However,

there is a little more to be said than just mere

existence. At this stage, one is concerned with not

only the feasibility of the algorithm but also whether

or not there are iterative schemes to perform the

Operations. The second stage is the actual finding of

the solution procedure under the dynamic programming

algorithm hypothesis to arrive at a solution. This

includes the actual programming algorithm, the

various numerical aspects of the computation and

maybe the coding of the algorithm in terms of computer

software.

In Chapter 1, it was mentioned that the objective

of this research is to build a rigorous analytic model

in its most general terms to study the conditions

such that the principal can design an optimal contract.

Consistent with that objective, analysis in the sub-

sequent chapters on the multiperiod model are focused

on the first stage of the dynamic programming algorithm.

Given the complexity of the prOblem, it should not be

misled to believe that the second stage of actual

implementation is easy. The techniques used will
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depend on the various behaviors of the functions of

the model. If the functions behaves in a "nice" way,

an analytic solution may be feasible. If they behave

in some pattern, there are standard numerical methods

which exist in the literature to solve the problem or

to approximate the solution, for example, Marchuk [1982],

Glowinski, Lions and Tremilieres [1981] and Dahlquist

and Bjork [1974]. It is not the intention of this

research to investigate and develOp the numerical

aspects of the solution to the problem.

Dynamic programming algorithm will be adopted to

search for long run optimal or nearly Optimal contracts

in a multiperiod agency model. The model as prOposed

in the previous section will be reformulated under the

dynamic programming algorithm hypothesis. Analysis

will be conducted to investigate (i) whether the ad hoc

assumptions imposed on the different models are met by

'k

the algorithm, (ii) whether a JN or J* can be

achieved under the assumptions, (iii) if a J; or J*

exists, then whether or not there are Optimal or nearly

Optimal contracts that would give rise to the J; or

J*, and (iv) at each stage of the iteration, are

there any numerical search procedures that can product

the optimum.

To construct a dynamic programming model for the

nuiltiperiod agency problem, first consider the mapping

Ii defined by
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H(w,I,J) = E{g(w.I.J.y) +aJ(w.I.J.y))lI.w1

with the time subscript on the variables suppressed and

the expectation Operation is taken with respect to the

probability distribution of y given I and w.

Hence Hk represents the total expected discounted

net return to the principal from period k through N

given an incentive contract and a payoff outcome. The

dynamic programming algorithm will evaluate H
k

sequentially for k = 0,1,...,N-l and search for

*

an IR that will maximize the corresponding Hk'

Effectively, the algorithm is maximizing H recur-
k

sively N times with respect to 1k given w and an

initial value of J,JO. In order to describe the

Operation for all N periods together, define for each

I E M and every w E Q the mappings TI and T by

T: (J) (m) = H(w.I,J)

T(J)(w) = sup H(w.I.J)

I€U(w)

Same interpretation is given to TI as H, whereas

T -represents the solution of the dynamic programming

algorithm per period: the total discounted expected

*

return for Ik'

Let Tk, k = 1,2,... be the composition of T

‘Mith itself k times and TO(J) = J for every possible

.1. JN W(w) and Jn(w), the total eXpected net return
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function can now be defined in the dynamic programming

context as follows.

JN’F(w) = (T T ...T )(JO)(w)

.IW(w) = lim (T 1? ...T )(JO)(un.

N4w Io I1 N-l

The solution under the dynamic programming algorithm

can then be expressed as follows.

_ N

JN(w) - T (Jo)(w)

J(w) = lim TN(JO)(w)
N-Ocn

for every w E Q for the finite and infinite horizon

models respectively.

The multiperiod model has been formulated using

two different approaches. A model based on decision

making process is first constructed. The same model

is given in a dynamic programming structure. The natural

question that arises is whether the two approaches are

equivalent. In particular, one would be interested to

know whether J; = JN = TN(JO). In the following

chapters, assumptions are hypothesized under each of

the finite and infinite horizon models. It will be

shown that the function H satisfies the assumptions,

*

and, under these assumptions, JN = TN(JO). This will

establish the validity of using dynamic programming in
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generating solutions for the model. Next, the question

of the existence of Optimal or near Optimal contracts

will be investigated. Finally, the requirements to

arrive at the Optimal or near Optimal contracts will

be considered.



CHAPTER III*

MULTIPERIOD MODELS - PRELIMINARIES

3.1* Notations and Assumptions

The mathematical notations used in this work

are fairly standard. R is used to denote the real

line and R* to denote the extended real line, i.e.,

R* = R U [-m,m]. It is assumed throughout that R

is equipped with the usual tOpology generated by the

Open intervals (a,b), where a,b E R, and with

the Borel o-algebra generated by this topology.

Similarly R* is equipped with the tOpology generated

by the open intervals (a,b), a,b 6 R, together

with the sets (c,m], [-m,c), c E R, and with the

o-algebra generated by this tOpology. The Cartesian

product of sets X1,X2,...,xn is denoted by X1X2...Xn.

It was proved in the single period model that

the Nash constraint is satisfied for all incentive

contract if the action Space A is of finite dimension

and the utility function of the agent U2 is upper

semicontinuous with respect to his action choice a.

In this and subsequent parts of the analysis, it is

66
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assumed that the contracts under consideration are

incentive compatible. Therefore, given any contract,

the payoff function is well-defined with respect to

the state space. This enables the following analysis

to suppress the state parameter and treat the payoff

as a random variable and assume the existence of a

probability measure on all possible payoff wealth

positions.

The following definitions and conventions will

be adOpted:

(l) O and C are two given sets referred to

as the payoff space and incentive space respectively.

(2) For each w 6 0, there is given a nonempty

subset U(w) of C referred to as the incentive

constraint set at w.

(3) Denote by M the set of all functions I: O 4 C

such that 1(w) 6 U(w) for every w 6 Q. Denote by

H the set of all sequences v = (10.11....) such that

Ik 6 M for every k. Elements of H are referred

to as contracts. Elements of U of the form v = (1,1,...

where 1 6 M are referred to as stationary contracts.

(4) Denote by

F the set of all extended real-valued functions

J: O 4 R*. (The exact form of J will be

defined in the next section.)
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B the Banach space of all bounded real-valued

functions J: 0 4 R with the sup norm,

i.e., “J” = sup ]J(w)] for every J 6 B.

w60

(5) For all J,J’ write

J Jl if J(w) = (JI w) for every w 6 0

if J(w) g J'(w) for every w E Q.
I

J J

"
A

For all J 6 F and e 6 R, denote J+—e the function

taking the value J(m)+-e at each m 6 Q, i.e.,

(J4-c)(w) = J(w)+-c for every w 6 Q.

(6) The usual arithmetic for R* is adopted except

m-oo=—co+co=ooand O‘m=O.

Since the principal's utility function is assumed

to be monotonic increasing with respect to wealth which

is its only argument, it is assumed for the rest of

this analysis that the principal is risk neutral. Such

an assumption will not cause any loss in generality

because as the principal's total expected return is

maximized, so is his expected utility on the return.

3.2* The Basic Multiperiod Model
 

The expected utility of the principal or the agent

is defined as the expectation taken as an integral of

their respective utility functions with respect to the

probability measure on the state space. Such an

integral may not always exist as a Reimann integral.
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An outer integral is adopted as the expectation

Operator.

Definition: If f 2 O, the outer integral of

f with respect to a probability measure p is

defined by

* , .

I fdp = inf {I gdp: f g g, g 18 Borel-measurable].

If f is arbitrary, define

* * *—

f fdp = f f+dp — f f dp

where f+ = max[0,f], f- = max[O,-f].

Define the total net return to the principal

for N periods as

N-l

JN,W(wO) = E*[ Z} dkg(mk,1k.yk)1

k=0

where a discount factor, a positive real number

9 the principal's net return function g: QCY 4 R*

y a disturbance which takes values in a

measurable space (Y,?). For each fixed

(w,1) 6 0C, a probability measure p(dy]m,1)

on (Y,W) is given and E*[-]w,1] denotes

the expectation in terms of the outer integral

with respect to that measure.

To complete the model, the following transition

function is hypothesized for the payoff function.

wk+l = f(uk’1k'Jk’yk)'
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The basic multiperiod problem can now be

formulated as follows. For each wo 6 O,

Max1mlze JN,v(wo)

FER

Subject to wk+1 = f(mk,1k,Jk,yk).

3.3* Optimality_Concepts
 

*

For a fixed w 6 0, let JN(w) denote the optimal

net return functions to the principal in the finite

and infinite horizon models respectively, that is,

*

JN(w) = sup JN’V(w) for every w 6 Q

V€H

J*(w) = sup J (m) for every w 6 Q.

WEN

Regarding the contract, the following optimality

concepts are adOpted.

Definition: A contract F* 6 H is said to be

0 o *

N-stage opt1mal at w 6 0 1f JN'V*(w) — JN(w) and

optimal at w 6 0 if JW*(1) = J*(w).

A contract W* 6 H is said to be N-stage optimal

*. = . . = *.
1f JN,F* JN and Opt1mal 1f Jv* J

. . . * * .

Def1n1t1on: A contract v* = (10,11,...) 15

Called uniformly N-stage optimal if the contracts

*( *

Ii'Ii+l' o o .) is (N-i)-stage optimal for all

= 0,1,...,N—1.
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Definition: Given 6 > O, a contract We 6 U

is N-stage e—0ptimal if

* k 'f *

JN(U)) "' c. l JN(W) < °°

J (m) 2

N'Fc — l/e if J;(w) = w

The contract We 6 H is said to be e-optimal if

J*(m) -e if J*(w) < on

J (w) 2

”e l/e if J*(w) = on

Definition: If [on] is a sequence of positive

numbers with en 4 O, we say a sequence of contracts

[We] is said to exhibit [en1-dominated convergence

to optimality if

11m JN,T = JN

n4m n

and for n = 2,3,

*(. f J*

JN w)-—c 1 N(w) < w

JN,Vn(w) 2 J *

N.Fn_1(w) - 6 1f JN(w) = 0°

3.4* The Dynamic Programming Algorithm

The discrete time sequential decision process

provides a natural framework for adopting the dynamic

programming algorithm in generating an Optimal contract

or nearly optimal contracts. This section gives a

definition of JN "(w) and JF(w) in a dynamic

programming framework.
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Consider the mapping H: OCF 4 R* defined by

H(UJ'I0J) = E*{g(w.I.J.y)+aJ(f(w.I.J.y))]I.w1-

Hk represents the total expected discounted net

return to the principal from period k through N-l

given an incentive contract and a payoff outcome. To

describe the Operations for all N periods together,

define for each 1 6 M the mappings TI: F 4 F by

TI(J)(w) = H(w,I,J) for every w 6 O

and T: F 4 F by

T(J)(w) = sup H(w,1,J) for every w 6 Q.

16U(w)

Let Tk, k = 1,2,... be composition of T with

itself k times and TO(J) = J for every J 6 F.

JN,w(w) and Jv(w) can now be defined in the dynamic

programming context.

J (w) = (T T . . .T ) (J )(w)

N,v IO 11 IN_l o

J (m) = lim (T T ...T )(J )(1)

F N4m Io Il IN-l o

The solution can be expressed as

JN(w) TN(JO)(w)

J(w) 11m TN<J )(w)
N—Dm 0

for every w 6 0 for the finite and infinite horizon

models respectively.



CHAPTER IV

FINITE HORIZON MODEL

4.1: Introduction and Assumptions
 

The finite horizon model describes the long

term planning behavior of an entity. It assumes the

fact that the entity will dissolve at the end of N

periods. The model seeks Optimal contracts such that

the total expected discounted net return to the

owner(s) over the N periods is maximized. Sole

prOprietorship and partnership are the two prime

examples of entities which dissolve in a finite period

of time.

In considering the N-stage Optimization problem,

as indicated towards the end of the last chapter, the

*

central question is whether J = TN(JO) in which
N

'k

the optimal JN is obtained by successively computing

T(JO),T2(JO),... via the dynamic programming algorithm.

Another issue is the existence of Optimal or nearly

Optimal contracts. In order to respond to the above

questions affirmatively, some assumptions have to be

73
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imposed on the function H which describes the

transition of the total net return to the principal

from one period to another.

The first assumption concerns the behavior of H

in response to small changes in the value of J. For

every payoff wealth positions and every possible

contracts within the constraint set, given a small

change in J, the corresponding change in H is also

small, in fact within some predetermined bounds. This

is a weak statement to say that H is continuous with

respect to J.

The second assumption imposed a kind of linear

behavior on H from below with respect to J. It

says that if J is reduced by some positive value,

say r, then the value of H is reduced by no more

than r times the discount factor a. This assump—

tion restricts the behavior of H when a large change

in J occurs.

The third assumption is admittedly somewhat

more complicated. It allows one to get stronger

results on the existence of nearly Optimal contracts

than can be obtained under assumption two. It says

that if one were to approximate the entity's total net

return function J by a sequence of return functions,

[Jn] then each Jn can in turn be approximated by a

sequence of contracts within some predetermined bounds.
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The first two assumptions seem reasonable in most

economic environments in which business entities

Operate. There should be no drastic changes in the

total net return (or total wealth) of a company in

any period given any changes in the total wealth of

the previous period. The third assumption simply

implies that there always exists some computational

procedures to approximate the return function to a

desired accuracy. Although the current work does not

include the analysis of the actual numerical methods

to be used to solve the problem, I will attempt at

least to guarantee that some computation procedures

exist and they are implementable under the various

assumptions studied.

4.2: The Finite Horizon Model
 

The first step in the analysis of the finite

horizon model is to establish the validity of the

assumptions in the model, that is, whether the function

H as defined in the dynamic programming formulation

of the problem satisfies the assumptions. If one

were to examine the assumptions one and two carefully,

one would notice that assumption one is really a

special case of assumption two. Since the real number

in assumption two can be any positive number, it can

be made arbitrary small which is exactly what assumption
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one requires. All that is needed to be shown is that

H satisfies assumptions two and three (Theorem 4.1)

and extend the result to conclude that assumption one

is also satisfied.

*

The fact that JN = TN(JO) can be shown to be

true if Jk F(w) > —c under assumptions one or three.

*

This is also the case if JN < a under assumption two

(Theorems 4.2 and 4.3). J being negativelyk”(w)

finite is trivially satisfied in any economic situations.

No company can survive infinite losses for any one

period, not to mention that Jk is the total net re—

turn for k periods. The same situation applies for

* *

JN being finite. It is unrealistic to have JN in-

finite in any common business environment. With the

above facts established, one can say that dynamic

programming algorithm is apprOpriate as a solution pro—

cedure for the finite horizon models.

Next, the question of whether an Optimal or nearly

optimal contract would exist under the assumptions is

investigated. Under assumption three, it is shown

that there always exists an [en1—dominated convergence

to optimality sequence of contracts (Theorem 4.3).

Recall that assumption three says that if J is to be

approximated by a sequence of functions [Jn] then
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each Jn can in turn be approximated by a sequence of

contracts within some predetermined bounds. Theorem

4.3 guarantees that such sequence of contracts is an

[en1—dominated convergence to optimality contracts.

This implies that assumption three not only guarantees

the existence of a nearly optimal contract, it ensures

that one can find or adOpt an iteration procedure to

approximate the nearly Optimal contract.

In the develOpment of the model, there are no

restrictions placed on the individual functions and

their parameters with the exception of U2, the

agent's utility function being continuous from above

with respect to the action choice to guarantee the

compliance of the Nash constraint and H under the

above three assumptions. The model is drawn in its

maximum generality. A trade-off the researcher has

always had to make under such general setting is the

inability to make specific characterization of the

Optimal or nearly Optimal contracts. Such comments can

only be made if more information about the behavior

of individual functions are known, that is, more

assumptions and restrictions on the functions are needed.

The only characterization of the Optimal contracts,

under the current general formulation, that can be

made is that how the contracts are related to each

stage in the iteration procedures of the dynamic
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programming algorithm or how they behave each period

in the process of arriving at the Optimal. This may

sound disturbing to the application-oriented reader.

This research is carried on in the interplay of the

economic model and the dynamic programming model. The

correspondence in the two models, once established,

will allow the dynamic programming algorithm, which

is documented in both the Operation research and

Optimal control literatures, to take care of the

various numerical and computational aspects of the

actual search for solution to the model.

An uniformly N-stage Optimal contract is always

the more desirable contract because it maximizes the

total net return at any given point of time over the

planning horizon rather than just at the end of N

periods. Such a contract can be shown to exist if at

each period and for each payoff outcome, there is a

contract that would maximize Hk' that is the supremum

is attained in the relation Tk+1(Jo)(w) = sup H[w,I,T

16U(w)

And if a uniformly N-stage optimal contract exist,

k
(JO) ].

*

JN = TN(JO) (Theorem 4.4 and its corollaries).

In the dynamic programming algorithm, each Tk(Jo)

is computed sequentially over all possible contracts.

Under the structure of the model prOposed, this is

equivalent to saying that a sequential decision process
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is adopted and the total wealth return is maximized

at each stage of the process. This entails the

question of whether an Optimal can be achieved each

period. If the incentive constraint set is compact,

which is a typical requirement for optimization

problems, an Optimal contract can always be achieved

(Theorem 4.5). Together with the results of Theorem

4.4, it can be concluded that under the apprOpriate

assumptions of the finite horizon model, an uniformly

N-stage Optimal contract is guaranteed to exist under

the dynamic programming algorithm.



CHAPTER IV*

FINITE HORIZON MODELS

4.1* Introduction and Assumptions
 

In considering the N-stage optimization problem,

*

the central question is whether J = sup J = TN(J )
N N,F 0

W611

*

such that the Optimal JN can be obtained by

successively computing T(JO),T2(JO),... via the

dynamic programming algorithm. Another issue is the

existence of Optimal or nearly Optimal contracts. In

order to respond to the above questions affirmatively,

some assumptions have to be imposed on the function H.

Assumption F.l: If {Jk} C F is a sequence

satisfying Jk+1 2 Jk for all k and H(w.I,J1) > -6

for all m 6 Q, I 6 U(w), then

lim H(w.I,Jk) = H(w,1,lim J

k-Ocn k-Ooo

k) (1160. I 6U(=.u).

Assumption F.2: There exists a scalar a 6 (0,6)

such that for all scalars r 6 (O,m) and functions

J 6 F, we have

H(wIIIJ) 2 H(wIIIJ-r) 2 H(WoIIJ) -ar UJ £17: I 6 U(LU)0

8O
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Assumption F.3: There is a scalar B 6 (O,w)

such that if J 6 F, {Jn} c F, and [an] c R

satisfy

Zeno» en>0n=l,2,

n=l

J = lim Jn J 2 Jn n = 1,2,

nam

J(W)-€n n=1I2I W60 J(LU)<°°

Jn(w) 2

Jn_1(u1)--en n = 1,2, m 6 J(w) = w

H(w,1,J1) > -w for every w 6 O. I 6 U(w)

then there exists a sequence [In] CIM such that

lim T (J) = T(J)

n46 In n

and

T(J)(u1) -Ben = 1.2, w E Q,T(J) (1) <..

TI (Jn)(w) 2

n TI (Jn_1)(u)-Ben = 1.2. w 6 O.T(J)(w)==w

n-l

Actually, Assumption F.l is a special case of F.2.

Careful examination of the two assumptions will show

that if Assumption F.2 is met, F.l will be satisfied.

Assumption F.3 is somewhat more complicated. It allows

one to get stronger results on the existence of nearly

Optimal contracts than can be obtained under F.2

(Theorem 4.3).
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4.2* The Finite Horizon Model
 

The first step in the develOpment of the model

is to show that the function H as defined in the

previous chapter satisfies the three assumptions on

the finite horizon model. The proof of such a

statement requires four technical lemmas on outer

integrals and probability measures. These results

are very standard in mathematical analysis and

probability theory. For completeness, they are stated

without proof as follows.

Lemma 4.1: If e > O and f g g g f4—c, then
 

* 4* *

[fdp g] gdp g f fdp+2e.

Lemma 4.2: Let (X,B,p) be a probability space.
 

Let [en] be a sequence of positive numbers with

Z) c < m. Let {f ] be a sequence with lim f = f

n n n
n=l n4m

pointwise f 2 fn for n = 1,2,"'. Let

f(x) —cn if f(x) < co

fn(X) 2

H 8fn-l (x) - en if f (x)

and [*fldp < w. Then lim [*fndp = f* fdp.

n-Dco

Lemma 4.3: Let (X,B,p) be a probability space.
 

If p*([x:f(x) = m}) > 0, then for every g,

‘k

g :X 4 [-m,m] and B-measurable, I (g4-f)dp = m.
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Lemma 4.4: Let (X,B,p) be a probability space.
 

If E c.X satisfies p*(E) = 0, then for any

f:.X 4 R*

[*fdp = [*xx_Efdp.

Theorem 4.1: The mapping
 

H(w.I.J) = E*{g(w.I.J.y)+—aJ[f(w.I.J.y)]lu.I‘

satisfies Assumptions F.2 and F.3.

Proof: For r 6 (o,m)

H(WIIpJ) 2 H(WoI,J-r) o

By Lemma 4.1,

H(w.I.J) [*(g(w.I,J.y)4-OJ[f(w.I.J.y)])p(dy]w.l)

2 H(UJoIIJ"r)

2 H(w,I,J)-2dr.

Thus F.2 is satisfied. Let J 6 F, [Jn] C F, [an] C R

on

satisfy 2) e < m, e > O and for all n
=1 n n

J = lim Jn J 2 J

n-Oco —

n

J(w)-—en if J(w) < m

Jn(w) 2

Jn_1(w)-en if J(w) = w

H(w,I,J1) > -® V w 6 Q, I 6 U(w).
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Let [In] C:M be such that for all n

T(J)(w)-en if T(J)(w) < e

T_ (J)(w) 2

In 1/en if T(J)(w) = e

T_ (J) 2 T_ (J).

In In-l

Consider the set

A(J) = {w 6 013 I 6U(w) with

p*({yIJ[f(w.I.J.y)] = wllwol) > 0]

where p* denotes p-outer measure. Let I 6 M be such

that

p*({le[f(w.f(w).J.y>] = mllw.i(w)) > o v w e A(J).

Define for all n

1(w) if w 6 A(J)

In(w) if m Z.A(J)

Claim that [In] thus defined satisfies the requirement

of F.3 with B = l4—2d. For m 6 A(J), by Lemma 4.2

lim inf T_(Jn)(w)

n4m I

lim inf f*{g[Wpi(UJ) IJIY] + aJn[f(WIi(w) IJIY)]1P(dY1woi(W))

n—Oco

[*{g[w.f(w).J.y]+—aJ[f(w.I(m).J.y)]}p(dy]w.I(W)).

Since T_(J)(w) > -m, by Lemma 4.3

I

lim inf T_ (Jn)(w) = e ; T(J)(w).

n4w I
n
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For m 6 A(J), for all n

p*({y1J[f(wIIn(w)lJIY)] = 0°31w,In(u1)) = 0.

Let Bn 6 v {y]J[f(w.In(w),J,y)[ = e] C.Bn and

P(Bn(w.In(w)) = o v n.

By Lemmas 4.1 and 4.4

T (J )(w)
Inn

= f* xv_Bn(w)(g[w.In(w).J.y]-taJn[f(w.In(w).J.y)}p(dylw.In(w))

2

- 2de

n

= TI (J) (u) - Zaan

n

V w 6 A(J), lim inf T (Jn)(w) 2 lim inf T

11-400 In n46.)

T(J)(w)

lim inf TI (J )(w) > T(J)(w) V w 6 Q.

n4oo n n

But TI (Jn) g T(J) V n = 1,2,... by hypothesis

n

lim TI (Jn) = T(J).

n4co 11

If m is such that T(J)(w) < m, then m E A(J).

by Lemma 4.1,

T1 (Jn)(w) 2 T (J)(w) - Zoen

n n

I
F
.
/

T(J) (w) — (1+ 261) en.

Ii: lX'V-Bn(W)1’g[mlIr1(W)IJIY]"1' aJ[f(w.In(w) IJIY) ]}p(dy1w,1n(w))

I (J)(w)

n

Thus,
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If m is such that T(J)(w) = m, then either

(i) wEMJ) or (ii) w6A(J).

(1) Let the/A(J)

T (Jn) (w) 2 TI (J) (to) -2ae
1 n

n n

2 T1 (J) (to) - Zoen

n—l

2 TI (Jn_l)(w)-2oen.

n-l

(ii) Let h 6A(J)

* — — .,

TIn(Jn)(w) = [ {g[w,1(w),J.y]4-0Jn[f(w.1(w),J.y)]J

p(dy]w.1(w))

* _ — .

2 I {ng.I(w).J.y]+aJn_1[f<w.I(w>.J,y)]1

P(dylw.1(w)) -2den

= TI (Jn_1)(w)-2a€n

n-l

The claim is proved by letting 8 = 14-23. QED

Next, the correspondence of the solution values

between the economic model and the dynamic programming

*

model, that is, JN = TN(JO), is established under the

assumptions. Theorems 4.2 and 4.3 also show the existence

of a nearly Optimal contract under Assumptions F.2 and F.3.

Theorem 4.2: (a) Let F.l hold. Let
 

Jk U(w) > -w for all m 6 0, V 6 U, and k = 1,2,...,N.

Then

* N

JN - T (JO).
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*

(b) Let F.2 hold. Let Jk(w) < m for all

m 6 Q and k = 1,2,...,N. Then

* N

JN — T (Jo)

and for every 6 > 0, there exists an N-stage e-

Optimal contract, i.e., a We 6 H such that

* J J*

JN 2 N,F 2 N - s.

Proof: (a) For each k = 0,1,...,N-l, consider

a sequence [1;] C:M such that

lim T .[TN'k'1(J )] — TN‘k(J ) k = 0,1, ,N-l
. 1 o 0
14m I

k

N-k-l N-k-l _
T i[T (JO)] g T 1+1[T (Jo)] k - 0.1.. .N-l

Ik Ik
1 = 0,1,

By F.1 and Jk F(w) > -m, we have

at3 \

JN 2 sup...sup T i ...T 1 (Jo)

1o lN-l I O I N-l

o N-l

= sup...sup T . ...T . sup T . (J )
. . 1 1 . 1 o
1 1 o N—2 1 N—l

o N-2 IO IN_2 N-l IN_1

= sup...sup T i ...T i [T(Jo)]

1o lN-Z I o 1 N-2

o N-2
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*

Since J = sup J (w) V w 6 O

N NEH N'”

= sup (T T ...T )(J )

ten Io I1 IN-1 o

g TN(JO)

*

.. JN = TN(JO)

(b) The result clearly holds for N = 1. Suppose

it holds for N = k. Then J; = Tk(Jo) and for a

'k

c > O 3 We 6 H such that Jk,F€ 2 Jk-e. By F.2,

V I 6 M

J T \ *

k+l 3 1(Jk,v ) s TI(Jk) ' as

B ' d t' J* > k+1(J ) B definitiony in no ion, k+l = o . y

k+l *

T (Jo) 2 Jk+l

k+l _ *
T (J ) — Jk+1

Let E > 0 be given and let 5 = (Io,Il,...) be such

that

* _

J _ 2 Jk - e/Zd.

k,I

Let i e M be such that

'k * -

Ti(Jk) 2 T(Jk) - 6/2.

Consider the contract E_ = (I,Io,Il,...). Then

6

* ._ 'k _

J _ = T_(J _) 2 T_(Jk) - 5/2 3 T(Jk) - c

k+1,v= I k,v _ I I

* _

= J — e QED

k+1
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If Assumption F.1 were to be replaced by the

following assumption, the results of Theorem 4.2 (a)

can be strengthened.

Assumption F.1': The function Jo satisfies

Jo(w) g H(w.I.Jo) V w 6 O, 1 6 U(w) and if

[Jk] C F is a sequence such that Jk+1 2 J 2 J

for all k, then

lim H(w.I.Jk) = H(w.I,1im J ) V w 6 C, I 6 U(w).

k—Ooo k-hao k

Corollary 4.2.1: Let F.1' hold. Then
 

*

JN = TN(JO).

Theorem 4.3: Let F.3 hold. Let Jk U(w) > -w
 

*

V w e o. n e n and k = 1,2,...,N. Then JN = TN(JO).

Furthermore, if {an} is a sequence of positive

numbers with en 4 0, then there exists a sequence

of contracts {Tn} exhibiting {en1-dominated

*

convergence to Optimality. If, in addition JN(w) < m

V w 6 0, then for every 3 > 0, there exists an

e—optimal contract.

Proof: Let K = l.

J:(w) sup J1 (h)
WED 'F

= sup H[w,I(w),JO]

I€M

= T(Jo)(w) V w 6 Q.
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Given [en], by F.3, it is clear that there

a sequence [Tn] C H satisfying

lim J = J

n42 1,Vn l

*

J1(u)) - c

J (m) 2
1,J — -

n J1,7T (w) - on

n-l

Suppose the result is true for K = N-l.

exists

Let 8

be as specified in F.3. Consider a sequence

r .
.en} C R W1th an > O V n

co

lim e = O and Z) c

n4m n=1

A A n

r11C =Let (Tn, H, where Vn (11,1

. A=J11m J H N—l

n

-) be such that

—oo

* -1 V *

JN_1(u)-B an m 6 Q JN_1(w) < m

J A ((1)) E _1 *

N-l,Trn J A (w)-B en V w 6 0 JN_l(w)

N-1,W

n-l

Since Jk ”(w) > —m V w 6 O, k = 1,2,...,N, W 6 H

then H(w,I,J A ) > —m V w 6 0, I 6 U(w). Since

N-l'Tr

n

1' J J*1m =
A _

n4m N-l,w N 1
11

By F.3, it then implies H {1:} CIM such that V n

*

11m T (J A ) = T(JN-



* . a: ‘

T(JN_1)(.L) an if T(JN-l) (w) < co

T1n(JN 1 A )(w) 2 T (J >( ) 'f T(J* >( )— In. A LU '6 1 (.U

o In-l N—1,w N-l

o -l

. . * N—l . . .

By induction JN-l = T (J ) and by definition of

* *

JN, TN(JO) 2 JN. Hence

* *

J(JN_1) = TN(JO) 2 JN

But

J* 2 1 '1‘ (J ) T(J* )1m -

N n4m I N-1,F N—l

n

N

J - T(JN-l) — T (Jo)

Let n = (In,1n,1n, .). Then for all n

n o l 2

_ *

11m JN,W — JN

n4m n

‘k .. V . h *

JN(u))--en w 6 0 w1t JN(w) <

JN v (w) 2 * . *

’ n J (w)-—c V w 6 0 With J (N) =
N,W n N

n-l

Obviously, if J;(w) < w, Tn is e-optimal. QED

Theorems 4.1 through 4.3 established the validity

of adOpting dynamic programming algorithm as solution

procedures to the basic multiperiod agency problem.

The existence of nearly optimal contracts has also been

demonstrated. In fact, the dynamic programming algorithm

can provide much stronger results than those as stated.
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Under conditions provided in Theorems 4.4 and 4.5,

the algorithm is actually attempting to arrive at a

uniformly optimal contract.

 

*

Theorem 4.4: A contract v* = (10,11,...) is

uniformly N-stage optimal if and only if

(T *TN-k-1)(JO) = TN‘k(Jo) k = 0,...,N-l.

Ik

Proof: Let (T *TN-k-1)(JO) = TN'k(JO), k = 0,...,N-1.

Ik

N-k

Then (T *...T * )(JO) = T (JO). But

Ik IN-l

J* TN-k 2 (TI* .. 1* )(Jo)

k N-l

and

N—k *

T (Jo) 2 JN-k

* .—

JN_k (TI* .TI* )(JO)

k N-l

v* is uniformly N-stage Optimal.

Conversely, let U* be uniformly N-stage Optimal. Then

by definition, T(Jo) = J = T * (JO). For every

1 6 M, (TIT)(JO) = (T T * )(Jo). This implies
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2
T (J ) = SUP (T T)(J )

0 16M I o

= SUP (TIT * )(JO)

16M IN_l

* _ 2

g J2 (TI* TI* )(JO) g T (JO)

N—2 N-l

2 _ * _ _
T (Jo) - J2 — (TI* T * )(Jo) — (TI* T)(Jo).

N—2 IN-l N-l

By induction, the result can easily be extended for all

QED

Corollary 4.4.1: There exists a uniformly N-stage
 

optimal policy if and only if the supremum is attained

in the relation

Tk+1 (JO) (1”) = sup H[(1.‘=.I,Tk (JO)]

I6U(w)

for each m 6 O and k = 0,1,...,N—l.

Corollary 4.4.2: If there exists a uniformly N-
 

stage Optimal policy, then

* N
JN — T (JO).

Theorem 4.4 and its corollaries state that if the

supremum can be achieved at each stage of the optimiza—

tion process, the resulting contract is uniformly

Optimal. The next theorem states that if the incentive

constraint set is compact, the existence of a supremum

at each stage is guaranteed.
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Lemma 4.5: Let C be a Hausdorff space,
 

f: C 4 R* and U a subset of C. Let the set

U(i) = {1 e Ulf(1) 2 1] is compact for each 1 e R.

Then f attains a maximum over U.

Proof: If f(1) = m for all I 6 U, then

every 1 6 U attains the maximum. If

f* = sup[f(1)]1 6 U} < m, let [1n] be an increasing

sequence such that In < Xn+l for all n and

1 4 f*.

n

Thus U(ln) C‘U(1 ) for all n and the sets U(ln)
n+1

are nonempty and compact, H U (1n) = U(lo) is

n=l m

nonempty and compact. Let 1* 6 m U (1n) C‘U and

n=l

f(1*) 2 1n for all n

f(1*) 2 f*.

But f(1*) g f*

f(I*) = f*. QED

Theorem 4.5: Let the incentive space C be a
 

Hausdorff space and assume that for each m 6 0,

l 6 R and k = 0,1,...,N-1. The set

Uk(w,l) = [1 6 U(w)]H[w,I,Tk(JO)] 2 l] is compact.

Then J* = TN(JO) and there exists a uniformly N-stage
N

Optimal policy.
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Proof: Direct application of Corollary 4.4.1

and 4.4. and Lemma 4.5.



CHAPTER V

INFINITE HORIZON MODELS

5.1: Introduction
 

The construction of the infinite horizon models

requires a few more considerations than those in the

finite horizon models. Recall that in the economic

formulation of the model J (w) = lim J (m), that

F N4m N,F

is, Jv(w) is the limiting value of the total expected

discounted net return to the principal as N gets

large and JW(w) = lim (TI ...TI )(Jo)(w) in the

N46 0 N-l

dynamic programming model. The natural initial question

would be whether such limits exist and if they do,

would they be equal. In addition, an immediate concern

would be the convergence of the dynamic programming

algorithm. Another important matter to resolve is

the question of whether or not optimal or nearly Optimal

contracts exist.

This chapter will address the above problems on

two separate sets of assumptions: contraction and

monotonicity. Both assumptions are reasonable

96
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descriptions of the economic environments of a

business enterprise.

The contraction assumption says that payoffs

and returns that are receivable at a far distant

future have very little significance in the economic

decisions that are made today. In computing present

values, it is well-known that with a discount factor

of less than unity, the present value of any finite

amount for a long period of time is close to zero. A

discount factor of less than unity means that interest

rate is always greater than the inflation rate.

The second set of assumptions describe a mono—

tonicity behavior on the total net return function J.

This assumption can be set up in two distinct

scenarios. First, J can be monotonic increasing

with respect to time. Since J is the total accumulated

expected net return to the principal, the assumption

that J is monotonic increasing implies that the net

payoff each period to the principal is greater or equal

to zero. If one were to consider the net return for

each period in terms of expected value over all possible

payoffs, the requirement that the expected net payoff

to the principal is positive makes economic sense. The

entity will not survive if the expected payoff is

negative. 0n the other hand, if the total net return
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function is monotonic decreasing, the situation

considered is still not totally unrealistic. Consider

the following situation. An entity has been suffering

losses consistently from period to period. This would

mean that the payoff for each period is negative and

consequently J is monotonic decreasing. The objec-

tive of the model is to maximize expected total return

which means that it will search for some incentive

contracts that would make the magnitude of period loss

diminish over time with the expectation that the loss

will become identically zero and eventually swing over

to the positive side. Once the period payoff becomes

positive, J will be monotonic increasing and the

modeling will continue under the earlier set of

assumptions. Of course, such a situation will occur

if the return becomes positive before the company goes

bankrupt.

5.2: The Contraction Assumption

The contraction assumption is motivated by the

contraction prOperty of the mapping H associated with

discounted stochastic optimal total return with bounded

net return per period. As mentioned earlier, this

assumption will be satisfied with the discount factor,

a < l and the net return function g uniformly bounded
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above and below. As always is the case, bounded return

is an extremely reasonable assumption in most economic

settings. Theorem 5.1 will show that indeed H as

prOposed in Chapter III satisfies the contraction

assumption.

The next set of questions to be considered involve

whether the iteration process will generate contracts

that lead to an optimal total return function, that

is, whether J* = TN(J), and when the number of periods

N

N is allowed to tend to infinity, whether the dynamic

programming algorithm converges to any kind of limit.

If a finite limit exists, what is that limit equal to?

It can be shown that such a limit does exist and is

equal to the infinite horizon total return function for

any incentive contract (Theorem 5.2(a)). Also, it is

*

shown that JN equals to TN(J) for all N. These

two statements together imply that J*, the infinite

horizon Optimal return function is equal to lim TN(J)

N-Oa

(Theorem 5.2(b)). Also the mappings Tm and TT,

where m g N are contraction mappings (Theorem 5.2(c)).

With the aid of the Fixed Point Theorem which says

that a contraction mapping will converge to a unique

fixed point, J* is shown to be the unique fixed point.

Therefore, the validity of the dynamic programming algorithm

is established for the contraction assumptions.
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Next, some attempts to describe the Optimal

contract are made. If for each financial position,

involving both the total return to date and the last

net payoff, there exists an Optimal contract at that

position, then the optimal contract is stationary

(Theorem 5.5). This means that the same form of

contract is Optimal over the entire time span. This

result can further be strengthened by showing that the

maximum is attained for each financial position if

the incentive constraint set is compact. Compactness

means that the set is closed and bounded and is the

usual requirement for optimization problems. Also,

since T is a contraction mapping, the sequence Tm(J)

does converge to a limit as m tends to infinity.

Hence the Optimal contract may be obtained in the limit

from finite horizon optimal contracts by successively

computing T(J),T2(J),... (Theorem 5.6). The conver-

gence of Tm(J) implies the convergence of the dynamic

programming algorithm for the infinite horizon model

under the contraction assumption.

As it has been stated, the contraction assumption

yields very desirable results. The optimal total return

J* can be computed through a finite horizon mode TN(J)

by letting N go to infinity. It is unique. If the
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maximum is attained at each stage of the iteration

process, then the resulting optimal contract is

stationary.

5.3: The Monotonicity Assumption
 

In this section, two separate and parallel sets

of monotonicity assumptions are considered. It is

assumed that J the total return function to thek’

principal at the end of time period k is a monotonic

increasing or monotonic decreasing function over, that

is Jo(w) g H(w,I,JO) (Assumption 1) or

Jo(w) 2 H(w,I,Jo) (Assumption D) for all w 6 O and

all I 6 U(w). The economic motivation and interpreta-

tion of these two assumptions have been discussed in

the introduction of this chapter. In the following

analysis under Assumptions 1 or D, two additional

assumptions are required on the behavior of the function

H. The first Assumption 1.1 or D.l, describes a

continuity prOperty on H. Similar to Assumption One

of the finite horizon models, this assumption guarantees

that for small changes in the value of J, there will

be only small corresponding changes in the value of H.

The second Assumption, 1.2 or D.2, imposes a kind of

linearity on H from below. This guarantees that H

cannot decrease more than a fixed multiple with a
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decrease in J. Again, this assumption is similar

to Assumption Two under the finite horizon model.

The economic implications of these two assumptions

will be identical to that under the finite horizon

models.

As expected, Assumption 1 will be satisfied if g,

the net return to the principal per period is positive

and Assumption D is satisfied if g is negative

(Theorem 5.7). Hence, the analysis can be carried on

to investigate the equivalence of the economic and

dynamic programming model under these two assumptions.

This is done in three stages: (1) the Optimality

equation J* = T(J*) is investigated, (2) the question

of existence of optimal or nearly Optimal contracts

is settled, and (3) the convergence of the dynamic

programming algorithm is shown.

5.4: The Optimality Equation

Before considering whether the optimality equation

J* = T(J*) holds, the existence of a nearly optimal

contract for Assumption D is first established. If

Assumptions D, D.l and D.2 all hold, and the optimal

return J* is finite, the existence of nearly optimal

contracts is guaranteed (Theorem 5.8). In addition,

if the discount factor a is less than one, then the

nearly Optimal contract is stationary.
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The optimality equation can be established under

all Assumptions D, D.l and D.2 (Theorem 5.9 and

Corollary 5.9.1). However, the optimality equation

holds under Assumption 1 only when Assumption 1 is

accompanied by one of the additional conditions 1.1 or

1.2 (Theorem 5.10 and Corollary 5.10.1). A consequence

of the results of this section is that the validity of

adopting the dynamic programming algorithm for the

monotonicity assumptions is established.

5.5: Convergence to Optimality and Existence of
 

Optimal Contracts
 

Under Assumptions D, D.l and D.2, it can be shown

that if the supremum is attained in the Optimality

equation

J*(w) = sup H(w.I.J*)

I6U(w)

for every w 6 0, then the resulting contract is an

optimal stationary contract. In fact, the conditions

are both necessary and sufficient (Theorem 5.11). The

same results can be obtained under Assumption 1

(Theorem 5.12). However, to arrive at the conclusion,

one additional assumption, Assumption 1.1, is required.

If the supremum cannot be attained for some w 6 0,

it is shown (Theorem 5.13) that, under Assumptions D,
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D.l and D.2, the optimality equation can still be

used to construct a nearly optimal contract. In

addition, if the discount factor is less than one,

the nearly Optimal contract as constructed is

stationary.

Under Assumption 1, only a weak counterpart of

the above results can be given. If Assumptions 1

and 1.2 hold and if the optimal total return function

J* is finite, then a nearly Optimal contract exists

(Theorem 5.15). However, I am unable to give a counter—

part under Assumption 1 on conditions for existence

of a stationary nearly Optimal contract.

The dynamic programming model requires successive

generation of the functions T(JO),T2(JO),...,Tk(JO),...

for all k. In terms of the infinite horizon model,

it seems apprOpriate to define a function JOD by

Jm(w) = lim TN(J )(w) for every w 6 0.

N-Om O

The rest of this chapter will be devoted to the

discussion of whether J2 exists and whether Jco = J*.

In other words, it is a concern that whether the dynamic

programming algorithm converges under the two assump-

tions and if it does, will the limit be the same as

the Optimal total return.
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Fortunately, if Assumption 1 and 1.1 hold, all

the above questions can be responded affirmatively

(Theorem 5.14). However, under Assumption D, the

equality J2 = J* may fail to hold even in very

simple situations. A preliminary result shows that

in order to have JOD = J*, it is necessary and

sufficient to have J2 T(Jm) (Theorem 5.16). The

convergence of the dynamic programming algorithm under

Assumption D is essential to arrive at the Optimal

total return.

To show tha fact that Jco = T(Jm) requires some

elaborate technical details concerning the algebraic

structure of the various functions. These are pre-

sented in detail in Chapter V*. It can be generally

stated that if the incentive constraint set is compact,

then J2 = T(Jm) = T* under Assumptions D, D.l and D.2

(Theorems 5.16 through 5.18).

Once convergence is established, it is shown

(Theorem 5.19) that the limit of the dynamic programming

algorithm is an optimal contract and it is stationary.

5.6: Remarks

1n Chapters 111 through V, the focus of attention

is on a basic multiperiod agency model in which the

period payoffs are observable to both the principal and
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the agent and the sequence of payoffs are stochasti-

cally well-defined with a known probability

distribution. Analysis have been conducted on a

finite and infinite horizon settings. The circum-

stances or conditions under both settings that will

guarantee the principal's ability to negotiate an

optimal contract with the agent are extremely mild.

The two conditions imposed on the finite horizon

model are both on the manner in which the total net

return to the principal in the k4-1st period behaves

relative to the total net return to the kth period.

One of the conditions says that if the total return,

or total accumulated wealth in the entity, in period k

changes by a small amount, then given all other factors

equal, the expected change in the total wealth of

period k+-l is also small. The second condition goes

on further to say that the change is somewhat linear.

These two together implies that given some changes in

the wealth of a company, the effect of such changes in

subsequent periods is prOportionate to the change.

Both are conditions on the economic environment in

which the entity Operates. I believe that most if not

all business enterprises are Operating under these

circumstances. If future wealth were so unpredictable

with respect to current changes in company wealth,
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companies will be very hesitent to declare dividends,

acquire ventures which requires capital outlays.

The contraction and monotonicity assumptions

under the infinite horizon model are also conditions

on the economic environment of the enterprise. The

contraction assumption relies on the same assumptions

that any discounted cash flow or present value models

take on. These assumptions which include bounded

payoffs and discount factor less than one are widely

accepted in the literature. The monotonicity assump-

tion is based on the belief that no company will remain

in business if its expected period payoff is negative.

If any one of these two assumptions is met and con-

sideration of the model is not restricted to a finite

number of periods, one would be able to construct an

optimal stationary contract. This is possible because

by extending the planning horizon to an infinite period

of time, one allows time to become a monitoring device.

By repeating the process over long enough periods, the

behavior of the agent becomes extremely predictable. On

the other hand, if the agent intends to remain in the

company "forever", it will be difficult for him to cheat

"forever" and remain undiscovered. It will then be in

his best interest to act cooperatively with the

principal.
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Certainly, if the number of periods in the

finite horizon model is allowd to extend long enough,

all the infinite horizon model effects will be carried

through. The limiting effects of the infinite horizon

model provide an additional nicety to the optimal

contract: that it is stationary.



CHAPTER V*

INFINITE HORIZON MODEL

5.1* The Contraction Assumption
 

The following assumption is motivated by the

contraction prOperty of the mapping associated with

discounted stochastic optimal total return with

bounded return per period.

Assumption C: Let B be the Banach space of

all bounded real-valued functions on Q with the

supremum norm. There exists a closed subset Bo C B

such that JD 6 Bo' and for all J 6 BO, 1 6 M,

the functions T(J) and TI(J) belong to Bo' Further-

more, for every n = (10,11,...) 6 H, the limit

lim (T T ...T ) (J ) (w)

N-Oco IO I]. IN-l 0

exists and is a real number for each w 6 0. In

addition, there exists a positive integer m and

scalars w'a' With 0 < m < 1. a > 0, such that

)(TI(J) -TI(J’)|1 g oHJ—J’H v 1 6 M, J,J’ e B

[)(T T ...T )(J)-(T T ---T )(JVH

  

g {DJ-J!“ v I ,...,1m_1 6M, J,J’ e B

109
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The assumption is stated in a very general setting.

It is often convenient to take B = B and assume

a < l with g uniformly bounded above and below.

However, in some special cases, the contraction pro-

perty can be verified only on a strict subset B of B.

To start the analysis, it is first shown that

the function H meets the requirements of the

assumption.

Theorem 5.1: Let H(w,1,J) =
 

E*{g(m.I,y)4-dJ[f(w.I,y)]]w,1} be a mapping. Let

Jo(w) = O for every w 6 0. Assume that a < l

and for some b 6 R, there hold

0 g g(w,1,y) g b V w 6 Q, 1 6 U(w). y 6 1.

Then Assumption C is satisfied with B0 = (J: J 6 B, J 2 O}

and a = 2a, m = d and m = 1.

Proof: Clearly Jo 6 B0 and T(J), T1(J) 6 Bo

for all J 6 Bo and 1 6 M. Then for any

W = (10,11,...) 6 H,

JO 2 TI (J ) g .3 (TI ...TI )(JO)

0 o k

g (1‘ ...T )(J ) <j

— Io Ik+l o =

lim (TI ...TI )(J )(w) exists for all m 6 O.

N4m O N-l 0

Since
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*

H = (6.1..1) =f{9(w.1.y)+aJ[f(w.I.y>])p(dylw.I)

* i:

g] g(w.I.y)p(dylw.I)+a] J[f(u;-.I.Y)]p(dy|x.1)

*

g b+o]‘ J[f(w,1,y) ]p(dy]u),1).

 

Thus

N—l

(TI ...TI )(JO)(u)) g E akb
o N-l k=0

g l?a VwecaN=1,2,...

'- lim (T -..T )(J)(u:)6R Vweo.

N4m Io IN-l O

ngJ ((1)) .y] + aJ[f(w.I (w) .y)]

g gfm (w) .y] +aJ’[f(w.I (w) .y) ] + aHJ -J’H

Vw6Q,J,J’6B,16M and ye'y.

By Lemma 4.1,

J1*{9[w,1(u).yl+ aJ[f(w.I (w) .y) ]}p(dy[h,1)

g (*{g[h,1(h).y]+aJ’[f(h.1(w).y)])p(dy|h.1)

-t2aWJ-J’W

Hence

TI(J) (w) - T (J’) (m) g ZoHJ-J’H.
I

Similarly, we obtain

TI(J’) (w) - TI (J) (m) g 2el1J-J’il

ITI (J) ((1)) -TI (1’) (w)l g 2oHJ-J'H.

Taking supremum on the left-hand side over w 6 O

()TI(J) (w) -T1(J') (111))! g onJ-J’H ‘v’ I 6 M, J,J’ 6 B.

If J,J' 6 Bo' again we obtain

g[w.I (w) .y] +dJ[f(w.I ((11) .Y] g 9(w.I(i).Y1

+oJ'[f(m,I (w) .y) ] +aUJ—J’H.
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Then

[*{g[w.1(w).y]+-aJ[f(w.I(w).y])p(dy]m.I)

g [*{9[w.1(w).y]i-GJ'[f(w.I(w).y)]i-QHJ-J’H1p(dy)w.l)

g J‘*{9[WoI(W) IY] + aJ’[f(wlI (W) IY) 11p (dy1LUII) +C1HJ “J’H-

Proceeding as before, we obtain

HTI(J)-TI(J’)H g oHJ-J’H V I 6 M, J,J’ 6 BO. QED

Theorem 5.2: Let Assumption C hold, then
 

(a) For every J 6 B0 and u 6 H,

J = lim (T ...T )(J ) = lim (T ...T )(J).

” N4m o N-l ° N4m Io IN—l

(b) For each positive integer N and each J 6 Bo'

sup (TI ...TI )(J) = TN(J) and

WE“ o N—l

J* (T T )(J ) TN(J )= sup ... = .

N ten Io IN—l ° 0

(c) The mappings TM and T?. I 6 M are

contraction mappings in B0 with modulus m.

Proof: (a) Let k 2 0 be any integer and k = nm-tq

where q,n 2 O and 0 s q < m. By C, for any J,J' 6 Bo

()(TI ...T )(J)-—(TI ...T )(J’)H g onaqHJ-J’H.

o k-l o k-l

Since Jo 6 Bo
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Taking limits as k 4 a and n 4 a

11m (T ...T )(J) = lim (T ...T )(Jo).

k4a Io Ik-l k4m Io Ik-l

(b) By assumption Tk(J) 6 ED for all k.

Thus Tk(J)(w) < a V w 6 O and k. For any 5 > O,

6 M, k = 0,1,...,N-1 be such thatlet 1k

T__ (J) 2 T(J) - e

IN—l

(T_ T)(J) 2 T2(J) - e

IN-Z

(T_ TN‘1)(J) g TN(J) - c.
I

0

By Assumption C

TN(J) g (T_ TN’1)(J) + 6

IO

6 T_ [(T_ T1”) (J)+ e] + e
’ 1 I

o 1

g (T_ T_ ,TN—2)(J) + as + e

’ I I
o l

N-l k

g (T_ T T_ )(J) + ( Z) a 6)

IO Il IN_l k=O

N-l k

gsup(TI...TI )(J)+ (23 0.8)

— V6U o N-l k=O

TN(J) g sup (TI ...TI )(J).

NEH o N-1

But TN(J) 2 sup (TI ...TI )(J) by definition

— V6H o N-l

. * _ _ N
.JN—sup(TI...TI )(J)—T(J).

W6H o N-l
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(c) By Assumption C, T? is a contraction

mapping. Also for all I 6 M, k = 0,...,m-l, and
k

J,J’ 6 B
O

(T ...T )(J) g (TI ...TI )(J') + cpHJ-J'H.

o m-l o m—l

Taking supremum of both sides over I 6 M and from
k

part (b)

Tm(J) g Tm(J’) + cpHJ-J’H.

Similarly T'“(J’) < T‘“(J) + cpllJ-J’H

HTm(J) -Tm(J') H < coHJ-J’H. QED

Theorem 5.2 provides some very preliminary results.

It establishes the validity of the dynamic programming

algorithm. The next theorem is the well-known Fixed

Point Theorem in Banach Space which is quoted below

without proof.

Theorem 5.3 (Fixed Point Theorem): If B0 is a
 

closed subset of a Banach space with an apprOpriate norm

and. L.:Bo 4 B0 is a mapping such that for some positive

integer m and scalar o 6 (0,1),

!!Lm(2) -Lm(z’)H _g_ (DMZ-2’1! for all z,z' 6 BO

Then L has a unique fixed point in Bo' Furthermore,

for every Z 6 B,
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lim HLN(Z)-Z*H = 0

N49

where Z* 6 Bo such that L(Z*) = 2*

With the aid of the Fixed Point Theorem, Theorem

5.4 characterizes the optimal total return function

J* and Theorem 5.5 the total return function JI

corresponding to any stationary contract (1,1,...) 6

It also shows that these functions can be obtained

in the limit via successive application of T and TI

on any J 6 B.

Theorem 5.4: Let Assumption C hold. Then

(a) The optimal profit function J* 6 Bo and is

the unique fixed point of T within 30'

Furthermore, if J’ 6 B0 is such that

T(J’) 2 J’, then J* 2 J’

(b) For every I 6 M, the function J 6 B

I 0

and is the unique fixed point of TI within

B .

o

(c) lim HTN(J)-J*H = o v J 6 B
' o

N-ba

lim HT§(J)-J H = o v J 6 B , I 6 M.
I 0

N40

Proof: By Theorems 5.2(c) and 5.3, T and TI

have unique fixed points in 30' Clearly T¥(J) = JI.

Thus part (b) is proved.
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Let 3* be the fixed point

3* = T(J*).

For any E > 0, let I 6 M be such that

T_(J*) 2 3* - E.

I

By Assumption c that HTI (J) -TI(J') H g oHJ -J’H

T2(J*) 2 T_(J*) - OLE 2 3* - (1+O)E.

I I

- . m ~ ~ m..1 _.

Continuing, T_(J*) 2 J* - (l-tG-t..uta )6. By the
I _

. I I

assumption that ”(TI TI ...TI )(J)--(TI TI ...TI )(J )h

o l m-l o l m-l

g T’EJ-J'H

2m ~ m ~ m-l -

T_ (J*) 2 T_(J*) - co(l+Cl+...+0. )e

I ‘ I

2 3* - (l+co) (l+(1+...+C1m—1)E.

Thus for all k 2 l

TEm(J*) 2 3* — (1+co+...+ cpk—l)(l+a+...+am-1)E.

I

. . km ~ . . .

Since J_ = 11m T_ (J*). Taking limits as k 4 a

I R40 I

J 2 3* — —1-—(l+a+...+om-1)E.

i - 1%

Let E =(1-CD)(1+G+...+CIm-1)-l

J_2J*—e.

I

But J* 2 J and e > O is arbitrary
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On the other hand,

J* = sup lim (TI ...TI )(J*)

IEU N4a o N-l

lim TN(3’*) = 3*

N49

W
\

~

J* = J*.

By Theorem 5.3, part (c) follows immediately.

Since T is a monotonic mapping by assumption by

part (c) it follows that

if J’ 6 Bo such that T(J’) 2 J’

then J* 2 J’. QED

Theorem 5.5: Let Assumption C hold. Then
 

(a) A stationary contract v* = (I*,I*,...) 6 U

is optimal if and only if TI*(J*) = T(J*).

Equivalently, r* is optimal if and only if

TI*(JI*) = T(JI*)

(b) If for each m 6 0 there exists a contract

which is Optimal at w, then there exists

a stationary optimal contract.

Proof: (a) If r* is Optimal, then J1* = J*.

By Theorem 5.4(a) and (b)

TI*(J*) = T(J*).

If TI*(J*) = T(J*), then TI*(J*) = J*. By Theorem

5.4(a), J1* = J*. If TI*(JI*) = T(JI*)' Again,
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by Theorem 5.4(a)

,...) be an Optimal

contract at w 6 0.

By Theorems 5.2(a) and 5.4(a)

J*(w) = J *(w)

I

w

= lim (T * ...T * )(Jo)(w)

k-Ha I I

o,w k,w

= lim (T *, ... T * )(J*)(UD

k4ao I I

o,w k,w

3 lim (T * Tk)(J*)(w)
k4a I

o,w

= T * (J*)(w)

o,w

g T(J*) (w)

= J*(w)

T * (J*)(w) = T(J*)(w) for each w.

I

0,0.)

*

Define 1*(w) = 10 w(w) for 1* 6 M. Then

T *(J*) = T(J*). By part (a) the stationary contract

I

(I*,1*,...) is optimal. QED

Theorem 5.5 also establishes the existence and

characterization Of stationary optimal contracts.

Part (a) of Theorem 5.5 shows that there exists a
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stationalry Optimal contract if and only if the

supremum is attained for every w 6 0 in the

optimality equation, J* = T(J*). Theorem 5.6 strengthens

this result by showing that the supremum is attained

if Uk(w,1), the incentive constraint set is compact.

It also shows that stationary Optimal contracts may be

obtained in the limit form finite horizon optimal

contracts by successively computing T(J),T2(J),--°.

At the same time, it also proves the convergence of

the algorithm.

Theorem 5.6: Let Assumption C hold. Let the
 

incentive space C be a Hausdorff space. Suppose

that for some J 6 Bo and some integers ko > O, the

sets

uk(u.x) = {1 e U(w>1u[h.1.Tk(J)] 2 1}

are compact for all m 6 Q, 1 6 It and k 2 k0. Then

(a) there exists a contract v* = (1;,I*,...) 6 H

attaining the supremum for all m 6 Q and

k 2 ko with initial function J, i.e.,

k

(T *Tk) (J) = T +1(J) v k 2 k.

Ik

(b) For every contract r* satisfying (a), the

'1‘

sequence [Ik(w)} has at least one limit

point for each m 6 Q.
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(c) If 1*: 0.4 C is such that I*(w) is

*

a limit point of {Ik(w)} for each

w 6 0, then the stationary policy

(I*,1*,...) is optimal.

Proof: (a) Since Tk+1(J)(w) = sup H[w,1,Tk(J)]

16U(w)

and Uk(w,1) are compact for k 2 k0. By Lemma 4.5,

Tk+1(J)(w) attains a maximum

(T *Tk)(J) = Tk+1(J).

Ik

* 'k

(b) Let 1* = (10,1 .) satisfy part (a).1,..

Define

€k=sup{iiJ*-Ti(
J)H]i-2k} k=o'1'ooo

Since T(J*) = J*. By Assumption C and part (a)

1'.va - (T n“) (J) 2) = (T(J*) -T"”<J)H
1

n

g aHJ* -T“<J)!I v n 2 kc,

and

H (T ...T“) (J) — (T ,.Tk) (J) H g aHTn (J) -Tk (J) H

I I

n k

_g_ OHJ* -an) H + aHJ* -Tk(J) H

V n 2 k0, k = 0:11....

Thus

* k * nHiern(W)vT (J)] 2 H[w.1n(w).T (J)] - 296k

k2 J*(w) - 306 V n 2 k, k 0
_ k _ m

/

*

1n(w) 6 Uk[w,J*(w)-3dck] for all n 2 k and k 2 k0.
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Since Uk[w,J*(w)-3ack] is compact

*

[In(w)} has a limit point in Uk[w,J*(w)-3dek].

(c) Let 1*(u0 be a limit point of [1;(w)].

By part (b), 1*(w) 6 Uk[w,J*(w)-3dek] V k 2 k0. Thus

(TI*Tk)(J)(w) 2 J*(w)-306 V w 6 O, k 2 k
k — o'

By Assumption C, for all k

(TI. (J*) - (T1,.T“) (J) I! g aHJ* —Tk (J) H 6 ask

TI*(J*)(w) 2 J*(w) - 4aek.

By Theorem 5.4(c), 6k 4 O

T (J*) 2 J*(w).
1*

But J* = T(J*) 2 TI*(J*)

TI*(J*) J*.

By Theorem 5.5, the stationary contract (I*,1*,...)

is optimal. QED

5.2* The Monotonicity Assumptions
 

For the rest of this chapter, the two parallel

sets of monotonicity assumptions are considered.

Assumption 1: Jo(w) g H(w,I,Jo) V w 6 Q, I 6 U(w).
 

Assumption 1.1: Let {Jk} C F be a sequence
 

such that JO 2 Jk g J for all k, then
k+1

) = H(w,1,lim Jk) V w 6 Q, I 6 U(T).

k-Mn k k-Oco
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Assumption 1.2: There exists a scalar o > 0

such that for all scalars r > 0 and functions

J6F with JogJ,

H(onIJ) g H(WoIIJ+r) g H(wlIIJ) + or

V w 6 O and I 6 U(w).

Assumption D: Jo(w) 2 H(w,I,JO) V w 6 0, I 6 U(w)

Assumption D.l: Let [Jk} C F be a sequence

such that J g Jk g Jo for all k. Then
k+1

lim H(w,I,Jk) = H(w,I,lim Jk) V w 6 Q and I 6 U(w).

k4a k-Nn

Assumption D.2: There exists a scalar a > O
 

such that for all scalars r > O and functions J 6 F

With J g Jo

H(wlIIJ) " (11' S H(onlJ-r) __<_ H(wlIIJ)

V w 6 Q and J 6 U(w)

Clearly, under either set of assumptions, JV is

guaranteed to be well-defined by the monotonicity of

J for all F 6 H. It is also easy to see that under

each of these sets of assumptions the limit,

lim (TI TI ...TI )(JO)(w) is well-defined as a

N44 o 1 N-l

real number or 1?- Indeed, in the case of Assumption 1,
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O 0

g (TIOTI1 ...TIN_1)(JO) g ..., and

Jo 2 TIO(JO) 2 (TIOTII)(JO) 2

2 (TIOTIl ...TIN_1)(JO) 2

in the case of Assumption D. In both cases, the limit

clearly exists in the extended real numbers for each

m 6 0.

Once again, as a first step, the function H is

shown to satisfy these assumptions.

Theorem 5.7: Consider the mapping

H(w,I,J) = E*(g(w.I.y)i-aJ[f(w.I.y)])w.I).

Let Jo(w) = 0 V w 6 o. If

9(w.I.y) 2 0 V w 6 o. I 6 u(w). y 6 y

then Assumptions 1, 1.1 and 1.2 are satisfied with

the scalar in 1.2 equal to a. If

g(w.I.y) g 0 V w 6 0. I 6 U(w). y 6 W

then Assumptions D, D.l and D.2 are satisfied with

the scalar in D.2 equal to a.

Proof: Since Jo(w) = O V w 6 0 and

9(w.I.y) 2 O or g(w.I.y) g 0 V w 6 O. I 6 U(w). Y 6 W
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Assumptions 1 and D are trivially satisfied. By the

monotone convergence theorem of integration,

Assumptions 1.1 and D.l are satisfied since

g(w,1,y) 2 O.

For all r > O and J 6 F with JO 2 J

H(onpJ+ r) = E*{g(wIIIY) +aJ[f(WrIIY)]+ar1wII]

E*[g(w.1.y) +aJ[f(w.I.y)]lw.I) + or

H(w,I,J) + or.

Hence 1.2 is satisfied. Similarly, using 9(w,1,y) g 0

for all r > O, J 6 F, J g Jo

H(w,1,J-—r) = H(m,1,J) — or

and D.2 is satisfied. QED

In proving the next theorem, the following,

admittedly confusing notation is adopted.

Notation: The contract Vk[w] = (I:[w],1§[w],...)

is associated with w. I§[w] denotes, for each

w 6 Q and k a function in M while I:[w][z]

denotes the value of 1§[w] at an element Z 6 0.

Theorem 5.8: Let Assumptions D, D.l and D.2
 

hold. Let J* < a and e > 0 be given, there exist

an e-optimal contract. Furthermore, if, in D.2, the

scalar a < l, the contract We is stationary.
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Proof: Let [ck] be a sequence such that

6k > O for all k and

a

Z akek = e.

k=0

For each m 6 0, let [vk[w]} C U be a sequence of

contracts of the form rk[w] = (1:[w],1§[w],...)

such that for k = 0,1,...

Since J* < a, such a sequence exists. Let 1k 6 M

be defined by Ik(w) = I:[w](w) V w 6 Q and J
k

defined by

3 ((1)) =H[U.),I ((1)),lim(T ...T )(J)]Vw6o.

k k i-m 11m] I‘m] °
1

k = 0,1,

By D and D l

3 (w) = lim(T ...T )(J )(u)) = J ((1))

k 1.... Io[u)] 1‘36] ° ”km

2J*(w)-€k V 0.160: k=0,1,°"

By D.2, for all k = 1,2,... and w 6 O

T (3k)(w)

k-l

Hiw.Ik_1(u)) Ijk]

H[w.ik_1(LU) I (J*. - ek)]

l
l
\
/

I
I
V

H[wI-I-k_1(W) III*] — (16k

I
N H[u),I (w).1im(T ...T )(J )]

k‘l IE-1[w] IE-1[w] °

- ask = Jk_1(w) - ock.



126

Then

TI [Ti (Jk)] 2 Ti (Jk_l-aek)

k-2 k—l k-2

2 Ti (Jk_1-—a ck)

k-2

2 J (a~ 4-026 )
— k—2 bk-l k

(Tf T_I_ )(Jk) 2 Jo - (del+...+d ck)

o k-l

k

(T_ T)(J)2J*-Eae..

I I O ‘ i=0 1
o k

Let Us = (10,11, ) and taking limits

JV“ 2 J* - c

If a < 1, take ck = e(l-d) for all k. Let

"a = (1,1,...), where I(w) = Io[w](w) for all m E Q-

The r is an c-optimal stationary policy. QED

5.3* The Optimality Equation

The next two theorems with their corollaries prove

the Optimality equation, J* = T(J*), hereby establishing

the validity of the dynamic programming algorithm. The

corollaries attempt to set up the algorithm for stationary

contracts. For Assumption D, the Optimality equation

requires the compliance of all D, D.l and D.2, whereas

under Assumption 1, the same results hold only under 1

and one of the additional conditions, 1.1 or 1.2.
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Theorem 5.9: Let D, D.l and D.2 hold. Then
 

J* T(J*). Furthermore, if J’ e F is such that

J’ g Jo and J’ g T(J’), then J' g J*.

Proof: For every V = (Io'Il"") 6 H and

w E D. By D.l

JF(w) = if: (TIOTIl ..TIk)(Jo)(w)

= T [lim (T --T )(J )](w)
Io k4» I Ik o

1

S TI (J*)(w) g T(J*)(w).

0

Taking supremum of the left-hand side over F

J* g T(J*).

Let el and 82 > 0. By Theorem 5.2, 3 a

contract F = (i ,Il,...) such that
o

T_ (J*) g T(J*) - 61

I0

and

J7? > J* " 92

1

where

7T1 = (IloIZI ‘)

J_ = lim (T_ T_ ...T_ )(JO)

e T_ [lim (T_ ...T_ )(Jo)]

I R49 I I
o 1 k

E H
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= T (J_ ) 2 T (J*) - ac
- _ - 2

I0 ”1 I0

_2_ T(J*) - (61+a92).

But J* 2 J_ and 61 and 32 are arbitrary. Then

W

J* 2 T(J*)

J* = T(J*).

Let J’ e F be such that J’ g Jo and J’ g T(J’).

Let {ck} and a sequence with ek > O and a contract

E = (fo.f1,...) e n be such that

{(W)2NW)-% k=mL~-

Ik

From D.2

J* = sup lim (T ...T )(J )

wen ksa Io Ik °

2 sup lim sup (TI ...TI )(J')

_ TTEH k-Oco O k

2 lim sup (TI ...TI )(J')

— k-No o k

2 lim sup (T ...T )[T(J')-e ]

’ k4» Io Ik-l k

2 lim sup (T ...T )(J'-—e )

‘ kea Io Ik-l k

2 lim sup (TI ...TI )(J') — akek

_ k‘w O k-l

k i k i

21im [T(J’)—(Z a 6.1)] 2J' — Z a 61

_ R*m i=0 ’ i=0

since 6i are arbitrary

a J* 2 J . QED
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Corollary 5.9.1: Let D, D.1 and D.2 hold. Then
 

for every stationary contract

w = (1,1,...), JI = TI(J1).

Furthermore, if J' E F is such that J’ g Jo and

J’ g TI(J') then J’ g JI.

Proof: Use U (m) = {I(w)} instead of U(w) V w 6 0.

Use Theorem 5.9. QED

*

Lemma 5.1: Let I hold. Then J* = lim J .

N-Oa:

 

*

Proof: Clearly J* 2 JN for all N. Hence

*

J* 2 lim J . Also for all F = (10,11...-) 6 U:

— N4o N

(TI ...TI )(Jo) g J
*

o N-l N

Taking limits on both sides

*

J g lim J .
W — N4m N

Taking supremum of the left hand side

*
* I

J 3 11m JN

N-Ooo

*

J* = lim JN. QED

N-Om

Theorem 5.10: Let I and 1.1 hold. Then J* T(J*).
 

Furthermore, if J' 2 J0 and J’ 2 T(J'), then J’ 2 J*.

Proof: Using the arguments in Lemma 5.1 for all

w E 0

lim sup H(w,I,J;) = sup 1im H(w,I,J;).

N*m W€U(w) W€U(w) N*w
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By 1.1, then

'k *

1im T(JN) = T(lim JN).

N—Ooo N-bco

Since I and 1.1 are equivalent to Assumption F.1',

by Corollary 4.2.1,

N

J — T (Jo).

* *

Thus T(JN) = TN+1(J ) = Jo N+1' By Lemma 5.1 and combining

the results we have

J* = T(J*).

Let J’ 6 F be such that J’ 2 Jo and J’ 2 T(J’). Then

J = sup 1im (T ...T )(J )

wen N4m Io IN-l 0

g lim sup (T ...T )(J)

- Nae wen Io IN-l °

g lim sup (TI ...TI )(J’)

— Nam JEH o N-l

g 1im TN(J’) g J’. QED
_ Nam _

Corollary 5.10.1: Let I. and 1.2 hold. Let Q
 

be a finite and J*(w) < m for all w E 0. Then

J* = T(J*). Furthermore, if J’ E F is such that

J’ 2 Jo and J’ 2 T(J*), then J’ 2 J*.

Proof: Using a nearly verbation repetition of the

*

proof of Theorem 4.2 (b), we have JN = TN(JO) for all

N = l,2,'°'. We will now show that

* * a

1im H(w,I,JN) = H(w,I,lim JN) V w 6 32, I E U(w) .

N—Ooo N400
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Suppose for some 5 E O, I €‘U(E) and e > O

NN * ~~ *

H(w,I,Jk) + e < H(w,I,1im JN) k = 1,2,...

N-Om

*

Since 0 is finite and J*(w) = 1im JN(w) < m for all

N-an

w, 3 an integer k0 > 0 such that

* . *

Jk + (e/O) 2 lim JN V k 2 k

N-Ooo O

kBy 1.2, for all k 0

l
l
\
/

~~ * ,.V * N N . *

H(w,I,J ) + e 2 H(w;TuJ +-(e/u)) 2 H(w,I,lim J )
k — k — Nam N

which contradicts the earlier inequality

1% *

.2 lim H(w,I,JN) = H(w,I,lim JN)

N-Oco N-Mn

and the results follow by Theorem 5.10. QED

Corollary 5.10.2: Let I and 1.1 hold. Then for
 

every stationary contract F = (1,1,...), I = TI(JI).

Furthermore, if J’ 6 F is such that J’ 2 Jo and

J’ 2 TI(J’), then J’ 2 J1.

Next, necessary and sufficient conditions for the

Optimality of a stationary contract under the two

assumptions are studied.

Theorem 5.11: Let D, D.l and D.2. Then a stationary
 

contract r* = (I*,1*,...) is optimal if and only if

T (J*) 'T(J*).
1*

Furthermore, if for each w E 0, there exists a

contract which is Optimal at w, then there exists a

stationary optimal contract.
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Proof: If W* is optimal, then JI* = J*. By

Theorem 5.9 and Corollary 5.9.1, the result follows.

Conversely, if TI*(J*) = T(J*), By Theorem 5.9,

J* = T(J*) then it follows that TI*(J*) = J*. By

Corollary 5.9.1, JI* 2 J*.

W* is optimal.

* 'k *

= ILet Wm (I ,O,w l,w'°") be optimal at w E 0.

By D.1,

J*(w) = JI*,w(w)

= 1im (T * ...T * )(Jo)(w)

k4” I0.03 Ik.w

= T * [1im (T * ...T * )(JO)](w)

I k-Mo I I

0.0.) 11“) kn»

g T (J*)(w) g T(J*)(w) = J*(w)

Io.w

T * (J*)(w) = T(J*)(w) for all w E 0.

01w

Define I* E M by I*(w) = I; u)(w). Then

TI*(J*) = T(J*) and by result just proved (I*,1*,...)

is Optimal. QED

Theorem 5.12: Let I and I.1 hold. Then a
 

stationary contract v* = (I*,1*,...) is optimal if

and only if

T (J ).

I* I*

Proof: If F* is optimal, then JI* = J*. By

Theorem 5.10 and Corollary 5.10.2, the result follows.
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Conversely, if TI*(JI*

5.10.2, JI* = T(JI*)' By Theorem 5.10, JI* 2 J*

) = T(JI*)' By Corollary

W* is optimal. QED

Theorem 5.11 states that under Assumption D, if

the supremum is attain in the Optimality equation

J*(w) = sup H(w,I,J*)

I€U(w)

for every w E Q, then there exists a stationary contract.

However, if the supremum cannot be attained for some

w 6 Q, the Optimality equation can still be used to

construct a nearly Optimal contract, which is stationary

whenever the scalar d in D.2 is strictly less than

one .

Theorem 5.13: Let D, D.l and D.2 hold. Then
 

(a) Let c > 0, and {31] be such that

°° k
Z) a ck = e. e. > 0, i = 0,l,°'°. Let

=0 1

'k 'k

F* = (10,1 ,...) 6 H be such that

T *(J*) 2 T(J*) "' 6k k = 0,1,...

Ik

then J* 2 JI* 2 J* - e.

(b) Let c > 0 and the scalar in D.2, d < 1.

Suppose I* E M is such that

TI*(J*) 2 T(J*) - e(l-—a). Then

J* 2 JI* 2 J* — e.
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Proof: (a) Since T(J*) = J*

Apply T * to both sides

Ik-l

(T* T*)(J*) 2T* (J*)-(16k

Ik-l Ik Ik-l

2 J* - (ek4-dek).

Repeat the process, for every k = 1,2,...

k .

(T *...T 1,‘,)(J*)2J"' — (2 0116.1).

I I i=0

0 k

Since Jo 2 J*, it follows that

k i
(TI* ...TI*)(JO) 2 J* _ £2; a 6i k = 1,2,...

0 k 1-

Taking limit as k 4 a

JI* 2 J* - e.

(b) Let ck = e(l-—a) and I; = 1* for all k.

The result follows by part (a). QED

A weak counterpart of part (a) of Theorem 5.13

under Assumption I is given in Theorem 5.15. However,

I am unable to give a counterpart of part (b) under

Assumption I or conditions for existence of a

stationary Optimal contract.
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5.4* Convergence to Optimality and Existence of Optimal

Contracts
 

Define a function Jan 6 F by

J (m) = lim T (J )(w) for every w 6 Q.
a 0

N49

This section is devoted to investigate whether J“ = J*.

Fortunately, the relationship hold for Assumption I

under very mild conditions.

Theorem 5.14: Let I hold and assume that either
 

*

1.1 holds or JN = TN(JO) for all N. Then Jo = J*

where

1im TN(JO)(w) V w e o.Jc(w)

N49

*

Proof: By Lemma 6, J* = lim JN. By Corollary 4.2.1

N-Hn
*

JN = TN(JO)

*

J* = lim J = J . QED

Q

Nwo

The following is a counterpart of Theorem 5.8 and

part (a) of Theorem 5.13 under Assumption I for the

existence of nearly optimal contracts.

Theorem 5.15: Let I and 1.2 hold. Let Q be a
 

finite set and J*(w) < a for all m 6 0. Then for

any 6 > 0, there exists an e-optimal policy.
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Proof: For each N, let 8N = e/2(l-ta-t..uth-1)

_ N n N
and JN - {Io,Il,...,IN_1,I,I,...] be such that

I E M and for k = 0,1,...,N-1, IE 6 M and

-k-1 -k
(T NTN )(Jo) 2 TN (Jo) - e

N.

N'

Ik

Thus TIN (Jo) 2 T(Jo) - 6N. Apply TIN to both Sides

N—l N-2

(TIN TIN )(Jo) 2 (TIN T)(Jo) - aeN

N-2 N-l N-Z

2

2 T (Jo) - (1+d)eN.

Continuing (TN...TN )(J ) 2TN(J) - (1+o+...+oN'1)e
o — o

I I

o N-l

For N = 0,1,

J 2 TN(J ) - e/2.
F — o
N

As in the proof of Corollary 5.10.1, the assumptions

imply

*- N f 11JN — T (Jo) or a N.

. N * . . . .

By Theorem 5.14, lim T (Jo) = JN. Since Q is finite

N4:

and J*(w) < a for all w E Q E N such that

o
N

T 0(JO) 2 J* - e/2. Then

.and JN is the desired contract. QED

o
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Under Assumption D, D.1 and D.2, the equality

Ja = J* may fail to hold even in very simple

situations. The following preliminary result shows

that in order to have J” = J*, it is necessary and

sufficient to have J" = T(J“), a condition implying

the convergence of the dynamic programming algorithm.

Theorem 5.16: Let D, D.1 and D.2 hold. Then
 

J 2 T(J”) 2 T(J*) = J*.

Furthermore, Jan = T(J”) = T(J*) = J* if and only if

Jco = T(J”).

Proof: Clearly Jan 2 JV for all F E H

J 2 J*.

By Theorem 5.9 T(J*) = J*. For all k 2 0

T(J”) = sup H(w,I,J¢)

I€U(w)

k _ k+1

S SUP H(wIIlT (JO)] _ T (JO).

' I€U(w)

"
A qTaking limit on right side, T(J“)

J 2 T(J”) 2 T(J*) = J*.

T(J*) = J*Let J = T(J )
a 9

Ja = T(Jo) by hypotheSis.
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Let J... = T(JO). Since Jo 2 J”, by Theorem 5.9,

J 3 J*. Then Jan 2 T(J”) 2 T(J*) = J* implies that

J = T(J”) = T(J*) = J*. QED

To prove the fact that Jon = T(J”), the following

definitions and notations are needed.

Notations:

(1) For J E F, let E(J) denote the epigraph

of J, i.e., the subset of O x I1 given by

E(J) = {(w.1)IJ(w) 2 1]-

Under D, since Tk(JO) 2 Tk+1(Jo) for all k and

J2 = 1im Tk(Jo) thus

R*a

E(Jm) ll

"
:
3
8

k

E[T (JO)].

k 1

(2) For each k 2 l, the subset Ck of Q x C x I?

is given by

k-l
ck = {<w.I.M1H[w.I.T (Jon 2 x. w e n, I 6 own.

(3) Let P(Ck) denote the projection of Ck on

Q X 31, i.e.,

P(Ck) = {(w,X)Ia I e U(w) such that (n.1,i) e ck}.

(4) Let the set P(Ck) be defined as

P(Ck) = [(w,i)13 {in} such that

1nd)” (unkn) EP(Ck) n=O,1,...}.
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Lemma 5.2: Let D hold. Then for all k 2 1

-————- k
P(Ck) c P(Ck) = E[T (JO)].

Furthermore, P(Ck) = P(C = E[Tk(Jo)] if and only ifk)

the supremum is attained for each m E Q in

Tk(Jo)(w) = sup H[w,T.Tk‘1(JO)].

I€U(w)

Proof: If (w,l) 6 E[Tk(Jo)], then

Tk(JO)(w) = sup H[w,I,Tk-1(Jo)] 2 1.

I€U(w)

Let {an} be a sequence such that an > 0, en 4 0 and

let [In] C'U(w) be such that

k- k

H[w.In.T l(JOH 2 T (JO) ((1)) - en 2 X - en.

Then (w,In,1-en) E Ck and (w,X-en) 6 P(Ck) for all n.

Since 1 - en * X. (w.l) E P(Ck)

E[Tk(J ) c P(C )
o k ‘

Let (w,1) E P(Ck) E a sequence {In} such that

An 4 1 and a corresponding sequence {In} C‘U(w) such

that

Tk(Jo)(w) 2 H[w.1n.Tk'1(Jo)] 2 1n.

Let n 4 a, Tk(Jo)(w) 2 1. Thus

k
(w,X) E E(T (JO)]

375;? c E[Tk(Jo)]

-————- k
P(Ck) c P(Ck) = E(T (JO)].
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*

Assume that the supremum is attained by Ik_1(w)

for each m 6 0. Then for each (w,l) E E[Tk(JO)]

* k-l

H[Wllk_l((-U)9T (‘10)) g )‘0

This implies (unl) e P(Ck). Hence E[Tk(Jo)] c P(Ck).

By the first part of this theorem

P(Ck) = P(C = E[Tk(Jo)].k)

Now let P(Ck) = (Ck) = E[Tk(Jo)]. For every w for

which Tk(Jo)(w) > -e

[w Tk(J )(m e P(C)
' o k '

This implies that H a I;_l(w) E U(w) such that

H[w,1;_1(u).Tk‘1(Jo)J 2 Tk(JO)(w)

sup H[w,I,Tk-1(Jo)]

IEU(w)

The supremum is attained for all m for

which Tk(Jo)(w) > -o.

It also is trivially attained by all I 6 U(w) whenever

 

Tkm )(w) = -... QED
0

Definition:

0

P( F) C ) = {(w,1)( H I 6 U(w) such that

k=1 k a

(w,I,1) e F) ck}

k=l

P( F) Ck) = {(w,1)( 3 {l ] such that

k=1 n

in a l, (m,xn) E P(kCH ck)}.



141

Lemma 5.3:
 

 

 

P( F) c ) c: 0 P(C ) c {W P(C )

k=1 k k=1 k k=1 k

= F) E[Tk(Jo) = E(Jw), and

k=1

0 m a k

p( F1 c ) c (A P(C ) = F1 E[T (J )] = E(J ).

k=1 k k=1 k k=l ° ”

Theorem 5.17: Let D, D.1 and D.2 hold. Then
 

(a) J“ = T(J”) (equivalently Ja = J*) if

and only if

 

 

P( F) ck) = F) P(C

k=l k=

(b) Jo = T(J”) and the supremum in

J2(w) = suP H(w.I.JO)

I€U(w)

is attained for each w E 0 if and only if

P( F] ck) = fl P(C

k=l k=

 

Proof: (a) Let J” = T(J”) and (w,1) E E(J,)°

Thus J'(w) = sup H(w,I,Ja) 2 1. Let [an] be a

I€U(w)

sequence such that en > 0, en 4 0 3 a sequence {In}

such that

H(w,In,J') 2 i — en n = 1,2,...

k-l _
so H[w,In,T (Jo)] 2 i — en k,n — 1,2,...

(w,In,1-en) 6 C for all k,n
k



142

a

and (w.In,1-en) E kgl Ck for all n. Thus

a

(w,X-€n) 6 P(kCR Ck) for all n. But 1 - en 4 1

implies

 

(w,l) E P( F) ck)

 

 

 

 

 

k=1

E(Ja) CP( 0 ck).

k=1

By Lemma 5.3

fl P(C ) = E(J ) = P( F) c ).

k=1 k k=1 k

Let P( F) ck) = fl P(Ck). By Lemma 5.2,

k=1 k=1

 

P( F) Ck) = E(Jm).

k=1

Let w E Q be such that Ja(w) > -o. Then

L_E.

[w,J (w)] E P( F) Ck) 3 a sequence (1 ] with

” k=1 n

 

1n 4 Ja(w) and a sequence [In] C‘U(w) such that

H[w,I ,Tk'1(J )] 2 x k,n = 1,2,-~-
n o — n

By D.1, taking limit with respect to k

H[w,In,Jm] 2 1n n = l,2,°°'

Thus

T(J¢)(w) 2 H[w.In.J2] 2 kn.
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Let n 4 m implies T(J°)(w) 2 Jm(w) for all w 6 O

and J2(w) > -o. The inequality also holds if

J (w) = -¢
0

. T(J“) 2 Jo

By Theorem 5.16, J” 2 T(J”)

C J = T(J ).

Q Q

(b) Let Ja = T(J”) and the supremum is attained

for each m E Q in J¢(w) = sup H(w,I,J°) H I* E M

I€U(w)

such that for each (w,1) E E(JG)

H[w,I* ((1)) ,Ja] 2 x.

k~l
Thus H[w,I*(w),T (Jo)] 2 1 for k = 1,2,... and

[WII* (w)0)\] 6 fl Ck

k=1

(w,k) E P( F) Ck)

k=1

E(Ja) CP(fl ck).

k=1

By Lemma 5.3, P( F) Ck) = E(Ja) = F] P(Ck). Conversely,

k=1 k=1

9

let P( 0 ck) = E(Ja). For all m e 0 with

k=1

Jm(w) > -a

[w,Jc(w)] e E(JQ) = P( 0 c

H a I*(w) E U(w) such that

w

[w,I*(w).Ja(w)] E F C

k=1 k
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Thus

H[w,I*(w),Tk-1(Jo)] 2 Jo(w) k = 0,1,...

By D.1 and taking limits

T(J”) (w) 2 H[w.I*(w),J°] 2 Jam).

By Theorem 5.16, T(J”) = J”. If J°(w) = -o, every

I E U(w) attains the supremum and the proof is

complete. QED

Theorem 5.18: Let D, D.1 and D.2 hold. Let

the incentive space C be a Hausdorff space. Suppose

there exists an integer ko 2 0 such that for each

w 6 Q, 1 6 R and k 2 k0, the set

Uk(w,l) = (I E U(w))H[w,I,Tk(JO)] 2 X

is compact. Then

 

a

Proof: Let (w,l) be in F) P(Ck) H a sequence

k=1

{In} C U(w) such that

H[w.In,Tk(Jo)] 2 H[w,In,Tn(Jo)] 2 i v n 2 k.

Thus In E Uk(w,1) V n 2 k, k = 0,1,°". Uk(w,1) is

compact for k 2 k0. This implies that [In] has a

limit point I e Uk(w.l) V k 2 k0. But

Uo(w,1) D‘Ul(w,l) D... so I 6 Uk(w,l) for k = 0,1,...
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H[w,I,Tk(Jo)] 2 l k = 0,1,...

- co

(willx) 6 n Ck.

k=1

G

This implies (w,1) E P( F) Ck)

k=1

O O

a P( F) c ) D F) P(C ).

k=1 k k=1 k

Since Uk(w,l) is compact, by Lemma 445, the supremum

in Tk(J )(w) = sup H[w,I,Tk-1(J )] is attained
o o

I€U(w)

for every w E Q and k 2 k0. By Lemma 5.2,

P(Ck) = (Ck) for k 2 k0. But P(Cl) 3 P(CZ) 3...

and P(Cl) D P(CZ) D...

 

F) P(Ck) = 0 P(C

k=1 k=

By Lemma 5.2,

QED

After proving the fact that Jco = T(Ja) and

hence establishing the convergence of the dynamic

programming algorithm under Assumption D, the following

provides the conditions for the existence and compu-

tation of optimal stationary contracts under the decreasing

assumption.
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Theorem 5.19: Let the assumptions of Theorem

5.18 hold. Then

(a) there exists a contract F* = (1;,11. ) E H

attaining the supremum for all k 2 k0,

i.e.,

(T ,Tk)(J ) = Tk+l(J ) v k 2 k .
Ik o o — o

(b) For every contract w* satisfying (a),

the sequence (I;(w)] has at least one

limit point for each w 6 0 with

J*(w) > -~.

(c) Let 1*: Q 4 C be such that I*(w) is

a limit point of [1;(w)} for all m E Q

with J*(w) > -a and I*(w) 6 U(w) for

all m E 0 with J*(w) = -a. Then the

stationary contract (I*,1*,...) is Optimal.

Proof: (a) This follows from Lemma 4.5.

* *

(b) Let F* = (Io,Il,...) satisfy

(T ,Tk)(JO) = Tk+1(J > v k 2 k . w e o
o o

Ik

and J* ((1)) > -a

H[w,I;(w).Tk(JO)] 2 H[w,I;(w),Tn(Jo)]

*

In(w) E Uk[w,J*(w)] v k 2 k , n 2 k.
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*

Uk[w,J*(w)] is compact. {In(w)} has at least one

limit point.

(c) Each limit point I*(w) C'U(w) and

H[w,I*(w),Tk(Jo)] 2 J*(w) v k 2 k0.

Using D.1 and taking limits

H[w,I*(w),Jc] = H[w,I*(w),J*] 2 J* for all w 6 0.

This relation holds trivially for all m E Q with

J*(w) = -a.

TI*(J*) 2 J* = T(J*).

This implies TI*(J*) = T(J*). By Theorem 5.11

(I*,1*,...) is Optimal. QED.



CHAPTER VI

BOREL MODELS

6.1: Introduction
 

In the previous chapters, a basic multiperiod

agency model is developed. It was shown that under

apprOpriate conditions, optimal or nearly optimal

contracts exist and the dynamic programming algorithm

can be implemented to construct such contracts. All

these results rely on the assumption that the dis-

turbance term, yk, behaves in a reasonable manner,

that is, it is countable and there is a well-defined

distribution on its behavior over time. Put into the

context of the model, the assumption implies that once

an initial payoff is specified, the sequence of sub-

sequent payoffs for the entire planning horizon will be

defined stochastically. This means that at time 0

all payoffs are defined with a known probability distri-

bution conditioned on the initial payoff. The

optimization process will then be reduced to finding

an Optimal contract for the corresponding payoffs.

148
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If the assumptions in Chapters IV or V are met, an

Optimal or nearly Optimal contract can be guaranteed.

However, the disturbance can be arbitrary. Such

arbitrariness may be due to random externalities which

the company has no control of or to the internal

Operating procedures. The imperfect state information

model which is to be discussed in the next chapter is

perhaps the most common situation that gives rise to

an arbitrary disturbance. The actual payoff is not

observable by the principal who receives a report or

signal from the agent concerning the outcome. The

agent can freely choose his reporting function. This

will make it impossible for the principal to define his

expected payoffs at time 0 to search for an optimal

or nearly Optimal contract.

In fact, if the disturbance is allowed to be

arbitrary, various complications arise in the Optimi-

zation process. This chapter will discuss the problems

involved in the different phrases of the dynamic

algorithm. The main intent of going through the techni—

cal details is to set the stage for the imperfect state

information model such that the dynamic programming

algorithm can be utilized as a solution procedure. As

both the problems and their corresponding remedies are
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highly technical in nature, discussions in this chapter

can only be carried on at a very general level. A

significant amount of detail is omitted. The techni-

cally oriented reader is referred to the starred

chapter for a complete develOpment.

It was mentioned earlier in this work that there

are three Operations performed repetitively. First,

there is the evaluation of a conditional expectation.

Second, an extended real-valued function in two variables

(state and incentive) is maximized over one of these

variables (incentive). Finally, if an optimal or nearly

optimal contract is to be constructed, a "selector"

which maps each state or payoff to a contract which

achieves or nearly achieves the Optimum for the second

step must be chosen. The following sections will take

each of these Operations in turn and discuss the problems

associated at each stage if the disturbance is not

countable.

6.2: Existence of Probability Measures
 

Elementary statistics say that probability is the

measurement of the likelihood of the occurrence of a

certain event from a collection (set) of events. It

is a measure of the likelihood of occurrence. If the

set of events or the set of all possible combinations
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of events is countable, a probability distribution on

the elements of the set always exists. If the set

is arbitrary, then very little can be said about the

probability distribution of its elements. In the

context of the model in the previous chapters, the

conditional expectation involves not only the probability

distribution on one set, but on the product of two sets,

the payoff and the disturbance. It becomes essential

to investigate the interplay of the distributions on

these two sets.

Since probability distribution is a measure of

the likelihood of occurrence of the elements of a set,

its existence is closely related to the measurability

of the set. When arbitrary sets are encountered,

measurability is always a crucial issue. One can

envision measurability of a set as the ability to

count the elements in the set (counting measure) or

the ability to induce a distance between the elements

in the set in a one-dimensional setting or the area in

a two-dimensional case (a metric or norm). A probability

measure can be viewed as a function which maps the

elements in the set to the real line. The space of all

probability measures that can be defined on the given

set S is called the space of probability measures on

X. It is denoted by P(X). In Appendix I, it is shown
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that P(X) inherits all the prOperties of the original

set X. Hence, P(X) is measurable whenever X is

measurable. 0r conversely, if X is measurable,

then an unconditional probability measure always exists

with respect to the specific measure of X. Neverthe—

less, an arbitrary measurable space is an extremely

large space for any meaningful analysis to be conducted

on. In order to draw any useful implications one has

to restrict the research on a smaller subset which is

typical enough to encompass most if not all the

characteristics of the original set. The Borel set is

the most common candidate for such a purpose. To de—

fine Borel sets, the idea of a O-algebra is needed.

A collection of subsets of a set X is said to

be a o-algebra in X if it has the following properties:

(1) it contains X, (2) it contains any subset A of

X and the complement of A relative to X, and (3)

it contains all possible unions of subsets of X. Then

the Borel sets of X is the smallest O—algebra in X

such that it contains every open set in X. Since P(X)

inherits all the prOperties of the original space, it

is also a Borel space.

As mentioned earlier, the dynamic programming

algorithm requires the evaluation of a conditional

expectation which involves prObability measures on a
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product of the payoff and incentive spaces. It can be

shown (Theorem 6.2 and its corollaries) that a pro-

bability measure on a product of Borel spaces can be

decomposed into a marginal and a conditional probability.

Such decomposition is possible even when the parameters

or arguments of the distribution function are dependent.

In addition, such a process can be reversed (Theorem 6.3).

Given a probability measure and one or more conditional

probabilities, a unique probability measure on the

product space can be constructed. All these distributions

can be shown to be measurable if the original sets are

Borel sets.

With the establishment of probability distributions

on both the payoff and incentive spaces and the interplay

of these probabilities between these two spaces, the

conditional expectation Operations in Borel spaces are

well-defined.

6.3: Analytic Sets

The second stage of the dynamic programming algorithm

involves the maximization of an extended real-valued

function in two variables over one of these variables.

When the disturbance is countable, the whole array of

payoffs is defined stochastically given an initial payoff.

The incentive function is defined on the payoff space.

Under such circumstances, the resulting problem is a
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standard multiperiod maximization problem which has

been treated somewhat in detail in Chapters IV and V.

When the disturbance term is an arbitrary element

from a Borel space, then wk cannot be deduced from

the knowledge of mo at time period 0. Also the

exact form of the optimal or nearly Optimal contract

cannot be specified at time 0 even if the existence

of such contracts are guaranteed. The best one can do

is to be able to construct a "selector" which maps

each payoff to a contract which achieves or nearly

achieves the maximum. Essentially, the algorithm searches

for the maximum along the projection of the incentive

function on the payoff space in this second stage of

the process.

In searching along the projection of sets from

Borel space, a very serious prOblem is encountered.

So far in Chapters III through V, the multiperiod agency

problem is formulated to involve dealing with "nice"

sets. These "nice" sets have been either measurable sets

or Borel sets. But, at this stage, when projections

of these "nice" sets are used to search for a solution,

it would be desirable that the projections are "nice"

also. It is at this point that the use of measurable

sets and Borel sets breaks down, because one cannot be

sure that the projections required will be of the same
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type. The projections do not carry over the behavior

of the original sets. In fact, they may not be

measurable with respect to the spaces of the original

sets.

Fortunately, there is another class of sets

available, the so-called "analytic sets" which has the

desirable properties that are required in the current

model. There are many approaches to analytic sets, but

maybe the best for the current purposes is that the

analytic sets consist of the images of the Borel sets

under continuous functions. The image of an analytic

set under a continuous function is itself an analytic

set. The Borel sets thus form a subclass of the analytic

sets: each Borel set is an analytic set, but there are

analytic sets which are not Borel sets. Also, a pro-

jection is a continuous function. Now, letting the

analytic sets be the "nice" set, one obtains some

control of the results of projections, that is, a

guarantee of the measurability of the projections. This

will enable the investigation to carry forward. By

enlarging the Borel sets to include the analytic sets,

the model is ready for the implementation of the dynamic

programming algorithm. Technically, through the analytic

sets, the projection becomes measurable with respect to

the original sets.
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6.4: Construction of the "Selector"
 

The last stage of the Optimization process is the

construction of a "selector" which maps each payoff

to an optimal or nearly Optimal contract. In the last

section, analytic sets are utilized to enhance the

measurability of the projection. If analytic sets

are to be employed, it becomes inherent that the

various functions should be defined such that they are

measurable with respect to the analytic sets. The

main result in this section is that one can construct

a selector which is measurable (Theorem 6.14). Because

of various technical measurability problems, a much

more general and larger space is used. It is in this

larger space, the universally measurable functional

space in which all functions and composition of functions

are measurable with respect to the relative analytic

sets that the "selector" is defined and constructed.

Throughout the process of constructing such a selector,

a very elaborate abstract algebraic structure is imposed

on the payoff and incentive sets and the various

functions. The actual implementation of the dynamic

programming algorithm to numerically evaluate the

optimal contract and meet all these measurability re-

quirements will not be easy.
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However, the projections may not be that badly

behaved. Under certain conditions, it can be shown

that when extended real-valued functions involved

are semicontinuous, the selectors can be chosen to be

measurable with respect to the original Borel sets.

Such a selector is produced in Theorems 6.15 through

6.17.

The main concern in this chapter is to take care

of the technical difficulties in executing the dynamic

programming algorithm when the disturbance is un-

accountable. Admittedly, all these details have no

direct bearing on the original economic model. However,

if one were to adopt the algorithm to solve the im-

perfect state information model which is discussed in

the next chapter, one would have to guarantee the

feasibility of obtaining a solution through the algorithm.



CHAPTER VI*

BOREL MODELS

6.1* Introduction
 

If the state, incentive and disturbance spaces

are all arbitrary measure spaces, very little can be done.

Hence, for the general model, only sparse works are done

in the literature. One attempt in this direction is

the work of Striebel [1975] involving p-essential

suprema. The following objective function is adopted.

Jk+l(w) = pk-essential 52p E{g[w,I(w),y]

+ Jk[f(w,I(w),y,Jk_l)]} k = 0.---.N-l.

where the p-essential supremum is taken over all

measurable I from the payoff space 0 to incentive

space C satisfying any constraints which may have

been imposed. The functions Jk are measurable

and if the probability measures p0,...,pN_l are

chosen properly and the so-called countable €-

lattice property (refer to the monograph for a

158
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precise definition) holds, the above modified dynamic

programming algorithm generates the Optimal net

return function and can be used to Obtain contracts

which are Optimal or nearly Optimal for pN_1 for

almost all initial states. However, the selection of

the prOper probability measures is as difficult as

executing the dynamic programming algorithm and the

verification of the countable e-lattice property is

nontrivial even in very simple situations.

A second approach is to investigate models in

which the payoff (state) and incentive spaces are

Borel spaces or even Rn and the expected net return

function

h(w.I) = g(w.I.y)p(dy)w,I)

is assumed to be semicontinuous and/Or convex. Semi-

continuous models of this type are mainly focused

on various combinations of semicontinuity and compact—

ness assumptions such that the functions Jk are

semicontinuous. Most of the researches that were done

in this model (Freedman [1974:L Furukawa [1972],

Himmelberg, et. a1 [1976], Maitra [1968] and Schal [1972])

are carried out in a finite-dimension Euclidean state

space with assumptions of convexity, semicontinuity or
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both made on the net return function. Results are not

readily generalizable beyond Euclidean spaces

(Rockafellar [1976]).

Another approach, the Borel space framework was

introduced by Blackwell [1965]. The payoff (state)

0 and incentive C spaces were assumed to be Borel

spaces, and the functions defining the model were

assumed to be Borel-measurable. However, even over a

finite horizon the optimal total return function to

the principal need not be Borel-measurable and there

need not exist an everywhere e-0ptimal policy (Blackwell

(1965), Example 2). The problem arises from the

inability to choose a Borel-measurable function

uk: 0 4 C which nearly achieves the supremum uniformly

in w. The nonexistence of such a function interferes

with the construction of Optimal contracts via the

dynamic programming algorithm, since one must first

determine at each stage the measure p with respect

to which it is satisfactory to nearly achieve the

supremum for p almost every w. This is essentially

the same difficulty encountered with the Striebel

approach. The difficulties in constructing nearly

Optimal contracts over an infinite horizon are more

acute. Furthermore, from an applications point of

view, a p-—e-optimal contract, even if it can be
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constructed, is a much less appealing object than an

everywhere e-0ptimal contract, since in many situa-

tions the distribution p is unknown or may change

when the system is Operated repetitively, in which

case a new p-—e-optimal contract must be computed.

In the formulation that follows, the class of

admissible contracts in the Borel model is enlarged

to include all universally measurable contracts.

It will be shown that this class is sufficiently rich

to ensure that there exist everywhere e-Optimal

contracts, and, if the supremum in the dynamic

programming algorithm is attained for every w and

k, then an everywhere Optimal contract exists. Thus

the notion of p-optimality can be dispensed with.

Another advantage of working with the class of univer-

sally measurable functions is that this class is closed

under certain basic operations such as integration with

respect to a universally measurable stochastic kernel

and composition.

In a dynamic programming algorithm, there are

three Operations performed repetitively. First, there

is the evaluation of a conditional expectation. Second,

an extended real-valued function in two variables

(state and incentive) is supremized over one of these

variables (incentive). Finally, if an optimal or
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nearly Optimal contract is to be constructed, a

"selector" which maps each state to a contract which

achieves or nearly achieves the supremum in the

second step must be chosen. The following sections

will discuss the problems arising in each of these

operations and suggest solutions whenever feasible.

6.2* Probability Measures on Borel Spaces

The construction of a rigorous multiperiod agency

model via the dynamic programming algorithm is im-

possible when the payoff space and the incentive space

are arbitrary sets or even when they are arbitrary

measurable spaces. For this reason, the concept of a

Borel space is adopted and the prOperties of Borel

spaces are used to develoP the construction.

In evaluating the conditional expectation of the

total net return function, several prOperties of the

probability measures need to be developed, the first

and the obvious one being the unparameterized

probability measure. Since conditional expectation

involves probability measures on a product of Borel

spaces, it becomes essential to investigate the

interplay of the measures. It can be shown that a

probability measure on a product of Borel spaces

can be decomposed into a marginal and a Borel-
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measurable stochastic kernel. This decomposition is

possible even when a measurable dependence on a

parameter is admitted. Such a result is essential

to the filtering algorithm for the imperfect state

information model which will be developed in the

next chapter. In addition, such a process can be

reversed, that is, given a probability measure and

one or more Borel-measurable stochastic kernels on

Borel spaces, a unique probability measure on the

product space can be constructed.

If X is a tOpological space, 32 is the

collection of closed subsets of X and 5k the Borel

o-algebra on X. The space of probability measures

on (X,Bk) is denoted by P(X). C(X) is the Banach

space of bounded, real-valued continuous functions

on X with the supremum norm for any metric d on

X consistent with its tOpology. A probability measure

p E P(X) determines a linear functional

1p: C(X) 4 R defined by 1p(f) = I fdp. On the other

hand, a function f E C(X) determines a real-valued

9f: P(X) 4 R defined by 9f(p) = I fdp.

The prOperties of the probability measure space

P(X) have been given much attention in statistics

literature (Ash [1972], Feller [1971] are just a couple
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of classics), they are summarized in Appendix A. In

general, one can say that P(X) inherits all

characteristics of the space X. For example, if X

is a separable metrizable space, then P(X) is

separable and metrizable (Theorem A.4).

Definition: Let X and Y be separable

metrizable spaces. A stochastic kernel q(dy)x) on

Y given X is a collection of probability measures

in P(Y) parameterized by x 6 X. If 3’ is an

O-algebra on X and Y-1[6P(Y)] C 3, where

Y:IX 4 P(Y) is defined by y(x) = q(dylx), then

q(dy)x) is said to be JLmeasurable. If y is

continuous, q(dy]x) is said to be continuous.

Before proving the decomposition theorem for

stochastic kernels, the following theorem states their

general behavior when the state spaces are Borel spaces.

Theorem 6.1: Let X and Y be Borel spaces,
 

6 a collection of subsets of Y which generates 62

and is closed under finite intersections, and

q(dy]x) a stochastic kernel on Y given X. Then

q(dy]x) is Borel-measurable if and only if the

mapping 1E: X 4 [0,1] defined by 1E(x) = q(E]x)

is Borel measurable for every E 6 6.
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Proof: Let y:.X 4 P(Y) be defined by

y(x) = q(dy[x). For E 6 6, 1E = BE 0 y. If

q(dy)x) is Borel-measurable, then Theorem A.ll implies

1E is Borel—measurable for every E 6 6. Conversely,

if XE is Borel—measurable for every E 6 6, then

-1
o[(J 1 (B )] c:6 .

By Theorem A.ll, it implies

-l -l -1

Y [5 ]=Y [NU 9 {EH}
P(Y) E66 E R

-l -l

=G[U Y (8 (6))]

E66 E R

-l

=o[u x (BHJCG
E66 E R X

Z q(dylx) is measurable. QED

Corollary 6.1.1: Let X and Y be Borel spaces
 

and q(dny) a Borel-measurable stochastic kernel on

Y given X. If B 6 BXY' then the mapping

AszX 4 [0,1] defined by AB(X) = q(BX)x) where

Bx = {y 6'Y: (x,y) 6 B] is Borel-measurable.

Proof: If B 6 EXY and >c6 X, then BX C‘Y

ls homeomorphlc to B O [{x}Y] 6 EXY' Thus BX 6 52

so q(BXlx) is defined. Let fi*= [B 6 EXY: AB is

Borel-measurable]. fl is a Dynkin system. By Theorem

6.1, fl contains the measurable rectangles

.5 = BXY' QED
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The next two results are the decomposition and

integration theorems for stochastic kernels. The

first one says that any probability measure on a

product of Borel spaces can be decomposed into a

marginal and a Borel-measurable stochastic kernel. The

second theorem is the reversed statement: given a

prObability measure and one or more Borel-measurable

stochastic kernels, a unique probability measure on

the product space can be constructed. Together with

their corollaries, the two theorems provide relation-

ships between two or more prObability spaces which are

useful in the later development of the models.

Theorem 6.2: Let (X,J) be a measurable space, let
 

Y and Z be Borel spaces, and let q(d(y,z))x) be a

stochastic kernel on YZ given X. Assume that q(B)x)

is Jemeasurable in x for every B 6 BXY‘ Then there

exists a stochastic kernel r(dz)x,y) on Z given XY

and a stochastic kernel s(dy)x) on Y given X such

that r(§]x,y) is JEk—measurable in (x,y) for every

I
N 6 Bi, s(X]x) is Jemeasurable in X for every

Y E 52, and

“12.)” = [Y r(§)x.y)s(dyl><) V X 6 By. _z_ e 52.
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Proof: Assume without loss of generality that

Y = Z = (0,1]. Let s(dy)x) be the marginal of

q(d(y,z)]x) on Y i.e., s(X]x) = q(XZ]x) for

every X_6 52. For each positive integer n, define

subsets of Y

M(j,n) = ((j-l)/2n,j/2n)] j = l,...,2n.

Thus each M(j,n4—l) is a subset of some M(k,n) and

the collection {M(j,n): n = 1,2,...;j = 1,...,2n]

generates By. For Z 6 0 D Z, where Q is the set

of rational numbers, define q(dy(0,Z]]x) to be the

measure on Y’ whose value at X_6 6% is q(X(O,Z])x).

Then q(dy(O,Z])x) is absolutely continuous with

respect to s(dy]x) for every 2 6 0 D Z and x 6 X.

Define for z 6 O D Z

q[M(j.n) (o.z])x]/s[M(j.n> Ix]

Gn(z)x,y) = if Y E M(jID) and S[M(j.n))X] > o

o if y e M(j,n) and s[M(j,n))x] = o.

For each 2, the set

B(z) ((x,y) 6 XY: 1im Gn(z)x,y) exists in R}

n-boo

((x,y) 6 XY: [Gn(zlx,y)] is Cauchy]

r) u r) {(x,y) 6XY:)Gn(z)X.y)-

k=1 N=l m,n2N

- Gm(z)X.Y)‘ < %]

is $52-measurable.
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For fixed x and y and for m 2 n

Q[M(j.n)(O.ZJ)X] = f Gm(2)X.y)S(dy)X).

M(j.n)

But {M(j,n): j = l,...,2n] is the O-algebra generated

by Gn(z]x,y). This implies Gn(z)x,y) is a martingale

on Y under the measure s(dy]x). Each Gn(zlx,y)

is bounded above by 1, so by the Martingale convergence

theorem, Gn(z)x,y) converges for s(dylx) almost

every y

s[B(z)x)x] = 1.

Let

1im Gn(z]x,y) if (x,y) 6 B(z)

n-Ooo

G (Z‘XIY) =

2 otherwise

Let m 4 m, then

q[z(0.z])x] = [ G(z)x.y)s(dy)x) v x e x, z 6 Q n z

Y

and XL: M(j,n).

But 3; is a Dynkin system and by Theorem A.10, then

9[X(0o21)X] = I G(Z)X,y)s(dy)x) V x 6 x, z 6 Q n 2,
Y

X_6 By.

For each 20 6 Q 0 Z, define

C(zo) = {(x,y) 6 XY: 3 z e Q n z with z g 20

and G(z]x,y) > G(ZO)XoY)]
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u

C
Z

((x,y) 6 XY : G(z)X.y) > G(zo)x.y)}

C = L) C(zo)

206002

D(zo) {(x,y) 6 XY: G(°)x,y) is not right-

continuous at 20]

m

U P. U [(x,y) 6 XY: )G(ZIX.y)

n=1 k=1 ZEQnZ

2 g 2 g 20 + E - G(Zo)XoY)) 2 %]

206002

E = [(x,y) 6 XY: G(z)x,y) does not converge to

zero as 2 1 0]

co co

= U Q U [(x,y) 6 XY: )G(Z) (x,y) 2 35;}

n=1 k=1 zEQflZ

z<1/k

F [(x,y) 6 XY: G(1)XoY) 7‘ 1}-

For fixed x 6 X and 20 6 Q 0 Z, and for all z 6 Q 0 Z,

2 g z

0

f G(z)x,y)s(dy)x) g] G(zo)x,y)s(dy)x)

Y Y

2 G(z]x,y) g G(zolx,y) for s(dy[x) almost all y

. s[C(zo)x)x] = O and s(CX)x) = O.

This implies that if z 1 20, z 6 Q 0 Z, then

I G(z]x,y)s(dylx) if G(zo)x,y)s(dy]x)

Y Y
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and G(z]x,y) 1 G(zo)x,y) for s(dy)x) almost all y

s[D(zo)X)x] = O and s(DX)x) = 0.

Furthermore, as 2 1 O, z 6 0 0 Z

[Y G(z]x,y)s(dy]x) 1 0 V 2.6 52.

Since G(zlx,y) is‘non-decreasing in Z for s(dylx)

almost all y, then G(z)x,y) 1 O for s(dy)x)

almost all y

s(Exlx) = 0.

Let 2 = l in q[X(0,z])x], we obtain

f G(l)x,y)s(dy)x) = s(X[x) V Y 6 BY.

Y

Thus G(l[x,y) = 1 for s(dy)x) almost all y

s(FX[x) = 0.

For 2 6 Z, let {2n} be a sequence in 0 0 Z such

that 2n 1 2. For every x26 X, y 6 Y, define

1im G(z (x,y) if (x,y) 6 xy

n-Ooo n

F(z]x,y) = - (CUDUEUF)

2 otherwise

Clearly F(z)x,y) is well-defined, nondecreasing and

right—continuous.

It also satisfies for every (x,y) 6 XY

O§F(z)x,y)§1 V 262

F(l)x,y) = l
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and

lim F(z)x,y) = O

210

2 For each (x,y) 3 a probability measure

r(dz]x,y) on Z such that

r((o.z])x.y) = F(Z)x,y) v z e (0.1].

The collection of subsets §_6 52 for which r(§]x,y)

is JEk-measurable in (x,y) forms a Dynkin system

which contains ((O,z])z 6 Z}

r(§]x,y) is 352-measurable for every 2'6 52.

By the m notone convergence theorem, then V x 6 X,

z 6 Z, X_6 HY

qmomllx] I P(zlx.y>s(dylx)

Y

J” r((o.z])x.y)s(dylx).

Y

Again, the collection of subsets g_6 52 for which

Q(XZ)X] = f r(z)x,y)s(dy)x) holds forms a Dynkin

Y

system which contains {(O,z])z 6 Z]

°. q(g_zlx] = [Y r(§)x,y)s(dy]x) v 2 6 BY, 2 e 52.

QED

Corollary 6.2.1: Let X,Y and Z be Borel spaces
 

and let q(d(y,z)]x) be a Borel—measurable stochastic

kernel on YZ given X. Then there exist
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Borel-measurable stochastic kernels r(dz)x,y) and

s(dny) on Z given XY and on Y given X

respectively such that

q(_Y§)X) = [Y r(§)x.y)s(dy)x) V x 6 BY, _z_ e 32.

Corollary 6.2.2: Let Y and Z be Borel spaces
 

and q 6 P(YZ). Then there exists a Borel-measurable

stochastic kernel r(dz)y) on Z given Y such that

quZZ.) = [Y r(§)y)s(dy) V2 6 BY, 2 e BZ

where s is the marginal of g on Y.

Theorem 6.3: Let X1,X2,... be a sequence of
 

Borel spaces, Yn = X1X2"'Xn and Y = X1X2"°. Let

p 6 P(Xl) ‘be given, and, for n = 1,2,... let

qn(dxn+1)yn) be a Borel-measurable, stochastic kernel

on X given Yn. Then, for n = 2,3,... there
n+1

exist unique probability measures rn 6 P(Yn) such

that

(6.1) rn(X1X2. "Xn)

X ...,X

= [21535-4211 1 qn'an‘xl'XZ'

)
n-l

qn_2(dxn_llx1,...,xn_2)...q1(dx2[xl)p(dx1)

v5 e/sx ,...,>_<n 65X.

1 l n
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If f:‘Yn 4 R* is Borel-measurable and either

[ f+drn < s or [ f'drn < m, then

(6.2) [Ynfdrn = fxlfxz...fxnf(xl,x2,...,xn)

qn_1(dxn'xllX2pooo'X ) coo

n-l

ql(dx2)x1)p(dxl).

Furthermore, there exists a unique probability measure

r on ‘Y = X1X2"' such that for each n, the marginal

of r on Y is r .
n n

Proof: The spaces Yn, n = 2,3,... and Y

are Borel. Let n = 2, for B 6 52 , by Corollary

2

6.2.1, define

r2(B) = le ql(BXl[xl)p(dxl)

it is easy to see that r2 6 P(YZ) and satisfies (6.1).

Let f:‘Y2 4 R* be Borel-measurable and I f-dr2 < m.

Consider f+:‘Y2 4 [0,w], 3 an increasing sequence of

simple functions such that fn 1 f+. By the monotone

convergence theorem

1im f (x ,x )q (dx Ix )
n22 IXZ n 1 2 l 2 l

_ +
_ Ixz f (x1,x2)ql(dx2)xl) v x1 6 x1

+
o

IXZ f (Xer2)ql(dX2)X1) is Borel-measurable

and
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1im ] fndr 1im ]n2” 2 n22 fn(xl,x2)q1(dx2]xl)p(dx1)

lexz

+

IXIIXZ f (Xl'X2)q1(dX2lX1)p(Xm)
.

4.

But [Y2 fndr2 1 [Y2 f dr2

(6.2) holds for f+.

Similar arguments show (6.2) holds for f-

fdr = f+dr - f-dr
1Y2 2 [Y2 2 (Y2 2

f+(x1,x2)q1(dx2]x1)1x312

- [X2 f’(xl.x2)q1(dlexl)]p(dx1>

(xifx2 f(x1,x2)q1(dx2)xl)p(dxl).

Now assume rk 6 P(Yk) exists for which (6.1) and (6.2)

hold when n = k.

For B 6 Y let

k+1'

rk+1(B) = [Yk qk(BYk)yk)rk(dyk).

Then rk+1 6 P(Yk+l)' If B = §1§2'°'§k§k+l' where

then

rk+l‘b) = f Xxlx2...xk(yk)qk(§k+l‘yk)rk(dyk)

I31£§2°"I§k qk)§k+l)xl'xz'"xk)qk—l(dxk)Xk—l)

. ql(dx2]x1)p(dxl)

by (6.2) when n = k.
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(6.1) holds for n = k4-1.

Then use the previous result to show (6.2) for n = k4—1

proceeding as when n = 2 case.

By the induction hypothesis (6.1) and (6.2) holds.

Suppose r2 6 P(Yn) satisfies (6.1). Then the

collection fi-= (B 6 B )r (B) = r’(B)} is a Dynkin
Yn n n

system containing the measurable rectangles

I

3 — 5&n and rn — rn

Each of the measures rn is consistent, i.e., if m 2 n

then the marginal of r on Y is r . If each X
m n n k

is complete, by the Kolmogorov theorem, 3 a unique

r 6 P(Y) whose marginal on each Yn is rn. If Xk is

N

not complete, consider the completion Xk

its completion Yn' Again, 3 E 6 P(Y) whose marginal

and Y on

n

N iv N

on each Yn is rn. The uniqueness of r implies the

uniqueness of its correspondence r 6 P(Y). QED

In the course of proving Theorem 6.3, the following

result has also been proved.

Theorem 6.4: Let X and Y be Borel spaces and
 

q(dy)x) a Borel-measurable stochastic kernel on Y

given X. If f: XY 4 R* is Borel-measurable, then

the function 1: X 4 R* defined by

1(x) = f f(x,y)q(dy)x) is Borel-measurable.
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Corollary 6.4.1: Let X be a Borel space and

let f:.X 4 R* be Borel-measurable. Then the

function 9f : P(X) 4 12* defined by 9f(p) = J“ fdp

is Borel-measurable.

Proof: Define a Borel-measurable stochastic

kernel on X given P(X) by q(dep) = p(dx). Let

fsjp(x)x 4 R* be defined by fkp,x) = f(x). Then

ef(p> = J" f(x)p(dx) = f %'(p.x)q(dxlp).

By Theorem 6.4, 6f is Borel—measurable. QED

If f 6 C(XY) and q(dy]x) is continuous, then the

mapping y as defined in Theorem 6.4 is also continuous.

This is proved with the aid of two lemmas.

Lemma 6.1: Let Y be a metrizable space, d a
 

metric on Y consistent with its topology, and

X CLY. If g 6 Ud(X), then g has a continuous ex-

tension to Y.

Proof: Since 9 is uniformly continuous on X,

given 6 > 0 there exists 5(a) > 0 such that if

x1,x2 6 X and d(x1,x2) < 6(6), then Ig(xl)-g(x2)l < e.

Let X be the closure of X. Suppose y 6 X. Then

there exists a sequence (xn} C X for which XD 4 y.

Let s > 0 be given, 3 N(s) such that

d(xn,xm) < 6(6) for all n,m > N(e).

(g(xn)} is Cauchy in R.
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A

Define g(y) = lim g(xn). Thus [g(xn)-3(y)) < c

n-Oco

whenever n > N(e). Suppose now x 6 X and

d(x,y) < 6(e)/2. Choose n > N(e) such that

d(xn.y) < 6(5)/2. Then d(x,xn) < 6(5) and

A A

lg(x) -g(y)) g )g(x) —g(xn>) + (g(xn) -g(y>)

. < 29

For any sequence {x5} C X with x; 4 Y

A _ . :
g(y) — lim g(xn).

n-Oco

A c

9(Y) is independent of the sequence [xn] chosen.

If y 6 X, take xn = y, n = 1,2,... and obtain

A

g(y) = g(y)

A

g is an extension of g.

If {ym} is a sequence in X which converges to y 6 X,

then there exist sequences (x ] in X with
mn

ym = lim xmn' Choose n1 < n2 <... such that

n-Oco

. _ 1
11m x - y and d(xmn ,ym) < 6(5)/2. Then

m-Om m m

A . A ‘ _

g(y) = 11m g(xmn ) and (g(xmn )-g(ym) < 2/m. Letting

m4oo m m

m 4 m, then

A , A

g(y) = 11m g(ym)

111-900

A _

and g is continuous on X. Clearly

SUP )g(x)) = sug )g(y))-

XEX y€X
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- A

If X = Y, g is clearly unique. If X is a proper

A

subset of Y, by Tietze extension theorem, g can

be extended to all of Y such that

Hg) = sup ($(y>(. QED

y6Y

Lemma 6.2: Let X and Y be separable metrizable
 

spaces. Then the mapping 0: P(X)P(Y) 4 P(XY) defined

by o(p,q) = pq where pq is the product of the

measures p and q is continuous.

Proof: By Theorem A.7, X and Y can be

homeomorphically embedded in the Hilbert cube N. Let

X,Y C N and d be a metric on MN consistent with

its topology. Let g 6 Ud(X,Y), by Lemma 6.1, g can

be extended to a function 3 6 C(NV). Consider the

sit of finite linear combinations of the form

A A A A

Z) f.(x)h.(y) where f. and h. range over C(fl)

i=1 i i i l

and k any integer. Let c > 0 be given, by the

StoneAWeierstrass Theorem such a linear combination

exists and satisfies

k A A A

”.23 fihi-gH < 6/3.

1:

Let {pm} be a sequence in P(X) and pn 4 P, p 6 P(X)

and [gm] a sequence in P(Y) with qn 4 q, q 6 P(Y)

A A

Consider fi’hi the restrictions of fi and hi to
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X and Y

1im sup 1] gd(pnqn) -J" gd(pq>l
n41: XY XY

k

1im su (9- Z f.h.)d( q)

n4ap REY i=1 1 1 pn n1

"
A

k

2) 1' f.d h.d .— f.d h.d

+ i=1 n4:»‘£ 1 p“ I 1 q“ i 1 p i 1 q‘K
:

k

+ 1im If ( Z) fihi-g)d(pq)) S 6
n4: XY i=1 —

By the equivalence of Theorem A.5 (a) and (c)

pn 4 p = ] fdpn a [ fdp and qn a p = j qun 4 ] qu

o is continuous. QED

Theorem 6.5: Let X and Y be separable
 

metrizable spaces and let q(dy]x) be a continuous

stochastic kernel on Y given X. If f 6 C(XY),

then the function 1: X 4 R defined by

1(x) = f f(x,y)q(dylx) is continuous.

Proof: The mapping v:.X 4 P(XY) defined by

v(x) = qu(dy]x) is continuous by Corollary A.5.l

and Lemma 6.2. Thus 1(x) = (9f‘>v)(x) where

9f: P(XY) 4 R is defined by Bf(r) = I fdr. By

Theorem A.5, 6f is continuous

1 is continuous. QED

With the above results, it can be seen that the

conditional expectation Operators in Borel spaces are

well-defined.
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6.3* Analytic Sets and Universally Measurability

The dynamic programming algorithm is centered

around maximization of functions, and this is intimately

connected with projections of sets. More specifically,

if f: XY 4 R* is given and f*: X 4 R* is defined

by

f*(x) = sup f(x,y),

y6Y

then for each c 6 R

{x e xlf*(x> > c} = projx(((x.y) 6 xy f(X.Y) > cl).

If f is a Borel-measurable function, then

{(x,y)lf(x,y) > c] is a Borel—measurable set. Un-

fortunately, the projection of a Borel-measurable set

need not be Borel-measurable.

As mentioned earlier in the introduction, the second

stage of the dynamic programming algorithm involves in

the supremization of an extended real-valued function

in two variables over one of these variables. Essentially,

the algorithm searches for the supremum along the

projection of the set. If one were unable to guarantee

the Borel-measurability of the projection, it would

become impossible to implement the algorithm. However,

in Borel spaces, the projection of a Borel set is an

analytic set. By enlarging the Borel space to include
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all universally measurable functions, the model is

amendable for the implementation of the dynamic

programming algorithm.

Analytic sets have a very standard place in the

mathematical literature. The prOperties that are

required to develOp the multiperiod agency model are

summarized in Appendix B. This section will start

off with the measurability properties of analytic sets.

Definition: Let X be a set. A paving 9 of

X is a nonempty collection of subsets of X. The

pair (X,9) is called a paved space.

Let 0(9) be the G-algebra generated by 9. 95

denotes the collection of all intersections of

countably many members of 9 and 90 the collection

of all unions of countably many members of 9. N

denotes the set of positive integers. T and Z

are the set of all infinite and finite sequences of

positive integers respectively.

Definition: Let (X,9) be a paved space. A

Suslin scheme for 9 is a mapping from. Z) into 9.

The nucleus of a Suslin scheme 8:73 4 9 is

N(S)= U n S(Ol,...,o)

(01:02....)691 n=1

The set of all nuclei of Suslin schemes for a paving 9

is denoted by 2(9).
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Definition: Let X be a Borel space. Denote

by 3* the collection of closed subsets of X. The

analytic subsets of X are the members of £(Jk).

Actually, there are a number of ways to define

the class of analytic sets in a Borel space. Theorem

A.l3 provides seven equivalent definitions. At the

beginning of this section, it was indicated that ex—

tended real-valued functions on a Borel space X

whose upper level sets are analytic arise naturally

via partial supremization. Because the collection of

analytic subsets of an uncountable Borel space is

strictly larger than the Borel O—algebra, such functions

need not be Borel-measurable. Nonetheless, they can

be integrated with respect to any probability measure

on (X,E&). The following will discuss the measurability

properties of analytic sets.

Definition: Let X be a Borel space. The

universal O—algebra fix is defined by

7 = F) B (p). If E E , then B is uni-
*x pEP(X) x “X

versally measurable.

Theorem 6.6 (Lusin's Theorem): Let X be a Borel
 

space and S a Suslin scheme for fix. Then N(S) is

universally measurable, i.e., 3(ux) = EX.
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Proof: Let A = N(S), where S is a Suslin

scheme for 74X. For (01,...,ok) 62, define

U
NN(Gl,...,ck) = {(gl,g2,...) 6 m: g1 = 01,..., k k

and

M(Ol, .,ok) = {(gl,g2,...) E 52: gl g 01,...,gk g 0k)

= L} N(T ,...,T )
1 k

71§01,...,Tk§ok

Let

R(Oll° 10k) = U n 5(5).

z€M(Ol,...,Ok) s<z

Then R(Ol,...,ok) C K(cl,...,ok) where

k

K(Oll 00k) = T /Q' U ”- (g 391 8(713 v j)

19 1""' k“-2 k

Thus M(Cl) T m and R(ol) 1 A as 01 1 and

M(Ol,...,ck_1,ok) 1M(Ol,...,0k_1) and R(ol, 'Ok-l'ok)

R(Gl,...,ok_l) as Ok 1 m. Let p 6 P(X) and e > 0

be given. Choose :1'32"" such that

p*(A) g p*[R(Zl)] + 6/2

p*[R(:1.....§k_1>J g p*[R(Zl.....:k_l.

+ e/2k k = 2,3,"

Then p*(A) g p*[R(:1,...,§k)] + e. The set

K(7 ...,gk) is universally measurable

(
F
‘
I

kn
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H

II

P[K(Z1oo-u:k)] + P[X'K(Elo---I:k)]

P*[R(:1o---a§k)] + p[x'K(:10---I:k)]

2 p*(A) - e + pr-—K(§l,...,§k)].

l
l
\
/

Let

x 6 fl K(g .....g)
k=1 1 k

S('r1,...,'r.).

I
I
D
B

"
3
7
"

k 11 71§§1,...,Tk§gk j

Suppose for every Tl g gl, 3 a positive interer k(T1)

such that

k(T1) k

x£S('r1) DI: m U on S('r1,'r2,...,'rj)]

k=2 72§§2,...,Tkggk j=2

Let k = max k(¢ ). Then

T gt 1
l- 1

ko k

XZ {5(71) firm U m S(T1IT2I°°°I':-j)]?

r — .' .2
Tlgbl k—2 ¢2§g2,...,¢k§bk j 2

k
0

3 U n S(T1o---oTj)

Tl§§1,...,Tk ggk 3:1

0 o

= K(g .....Q )
1 k0

Contradicting that x 6 fl K(§ ,...,g )
l k

k=1

For some T1 g g1

x 6 S('rl) n [ H U f) S(?l.'r2.- .Tj)]

k=2 72§g2,...,¢k§gk j=l

Similarly, 3 ?2 g g2 such that

x E 551) H 851.;2)

m k _ _

n [ n U .n 5(71IT2It3I Iq.j)]
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Continuing, we obtain a sequence T1 g gl, ?2 g (2,...

such that

O

x E H 8(7r ,...,7r ) CN(s) =A
k=1 l k

G

..rj K(g1,...,gk) CIA V (g1....) em.

k—l

As k 4 a, K(g1,...,§k) decreases to a set contained

in A and X-K(§l,...,gk) increases to a set con-

taining X-A.

Letting k 4 a

l;p*(A) —e+p*(X-—A)

This implies l 2 p*(A) + p*(X-—A). But for any

E CX, p*(E) + p*(X-E) 2 l

p*(A) + p*(X-—A) = l

A is measurable with respect to p. QED

Corollary 6.6.1: Let X be a Borel space,
 

every analytic subset of X is universally measurable.

Proof: The closed subsets of X are universally

7

measurable, so JK‘X) C'UX. QED

As remarked earlier, the class of analytic subsets

of an uncountable Borel space is not a U-algebra, so

there are universally measurable sets which are not

analytic.
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In Theorem A.ll, when X is a Borel space, the

function 6A: P(X) 4 [0,1] defined by 9A(p) = p(A)

is Borel-measurable for every Borel-measurable A CZX.

The following theorem and its corollary will investi-

gate the property of this function when A is

analytic. The main result is that the set

{p 6 P(X)‘p(A) 2 c] is analytic for each real c.

Thus, there exists universally measurable probability

measure for the analytic set A.

Theorem 6.7: Let X be a Borel space and A an
 

analytic subset of X. For each c E R, the set

{p E P(X): p(A) 2 c} is analytic.

Proof: Let S be a Suslin scheme for 3* such

that A = N(S). For 5 G’ZL let N(s), M(s), R(s) and

K(s) be as defined as in Theorem 6.6, and

D

121 K(;1,...,gk) CA v (g1....,) e 5:.

Each K(s) is closed. Let p(A) Z c, for any n 2 l,

3 (E1,ZZ,...) E T such that

E(A) g EIR<Z1.....ER)] + 1/h.

Since R(s) C K(s)

§[K(El.....tk>] ; §[R(:1.....Ek>1
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U n {p E P(X) :p[K(s)] 2 c-l/nF.

E

C

Now, let 5 E r) L) r) {p E P(X): p[K(s)] 2 c-l/n}.

n=1 26m s<z

For each n, 3 (gl,g2,...) 6 m such that

pr F) K(; ,...,c )] 1im §[K(g ,...,g )]
k=1 1 k k“. 1 k

2 c - l/h.

But F) K(g1,...,gk) C A. Thus p(A) 2 c - l/n

k=1 —

n = 1,2, and p(A) 2 c

{p E P(A) :p(A) ; C3

(1 U n {p€P(X):p[K(s)]2c-l/n}.

n=1 26m s<z

By Theorem A.ll, for each n 2 l and s E?ZL the set

Tn(s) = {p 6 P(X) :p[K(s)] 2 c-l/n}

is Borel-measurable in P(X) and

{p e P(X) :p(A) g c} =

"
I
D
s

N (Tn) .

n 1

By Theorem A.l4 and Corollary A.l3.2,

{p e P(X)::p(A) 2 c} is analytic. QED

Corollary 6.7.1: Let X be a Borel space and A
 

an analytic subset of X. For each c E R, the set

{P F P(X): p(A) > c} is analytic.

Proof: For each c 6 R

{P E P(X) =P(A) > C} = U {p 6 P(X) :p(A) 2 c+1/n}

n=1

By Corollary A.l3.2 and Theorem 6.7, the set is analytic. QED
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6.4 Universally and Borel Measurable Selection
 

The last stage of the optimization process is the

construction of a "selector" which maps each payoff

to a contract that achieves or nearly achieves the

supremum. The following discussion will concentrate

on the universally measurable functions and show its

existence by actually constructing a selector

(Theorem 6.14). If the projection of a particular

Borel-measurable set turns out to be Borel-measurable,

then a similar selector which is Borel-measurable can

also be constructed (Theorem 6.17). Clearly, a Borel-

measurable selector is a special case of the general

universally measurable one.

Definition: Let X be a Borel space. The

analytic O—algebra 0k is the smallest O—algebra

containing the analytic subsets of X. Notationally,

4x = U[J(JX)], where 3* is the collection of closed

subsets of X. If E 6 a&. E is analytically

measurable.

It is noted, by Theorems 6.2 and 6.6, that for any

C .Borel space X, 5* $(Zx) C 4* C-UX

If X is countable, each of these collections of

sets is equal to the power set of X. However, if X

is uncountable, each set containment in the above

relationship is strict.
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Definition: Let X and Y be Borel spaces

and f a function mapping D CjX into Y. If

-1 .
D E Gk and f (B) 6 0k for every B 6 E&. f 15

said to be analytically measurable.

If D 6 Ex and f-1(B) 6 fix for every B E Bk,

f is said to be universally measurable.

Because of the set containment relationship, it

is clear that every Borel-measurable function is

analytically measurable, and every analytically measur—

able function is universally measurable. The converses

of these statements are false due to strict

containment prOperty.

In develOping the model for universally measurable

functions, it is necessary to show that universally

measurable stochastic kernels can be used to define

probability measures on product spaces in a manner

similar to Theorem 6.3. To do that, several preliminary

results are required.

Lemma 6.3: Let X be a Borel space and E C.X.
 

Then E 6 ux if and only if given any p E P(X),

there exists B 6 6* such that p(E.AB) = O.
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Theorem 6.8: Let X,Y and Z be Borel spaces.
 

D 6 “X and E 6 NY. Suppose f: D 4 Y and g: E 4 Z

are universally measurable and f(D) C E. Then g<>f

is universally measurable.

Proof: For p e P(X), define p’ e P(Y) by

I -1

p (C) =p[f (0)] V c 6 By.

Let V E 5% be such that

p[f-1(V) A f-1(U)] = p’(V.AU) = 0.

Since f-1(V) 6 Uk. 3 W E 5% such that hW’Af-1(V)] = 0.

Then p[W Af-1(U)] = 0. By Lemma 6.3, f-1(U) 6 “X

. -1
for every U E U? Since g (B) 6 NY for B 6 fig

-1[

f g-l(B)] is universally measurable. QED

Corollary 6.8.1: Let X and Y be Borel
 

spaces. D 6 uX and f: D 4 Y a universally

measurable function. If U E uy, then f-1(U) E “X'

Corollary26.8.2: Let X,Y and Z be Borel
 

spaces, D 6 Uk and E E Ay. Suppose f: D 4 Y

and g: E 4 Z are analytically measurable and

f(D) C E. Then g<>f is universally measurable. If

, -1
A c d&, then f (A) 6 uX.
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Corollary 6.8.3: Let X and Y be Borel spaces,
 

let f:1X 4 Y be a function, and let q(dy]x) be a

stochastic kernel on Y given X such that, for

each x, q(dylx) assigns probability one to the

point f(x) E Y. Then q(dylx) is universally

measurable if and only if f is universally measurable.

Proof: By Corollary A.5.l, the mapping

6: Y 4 P(Y) defined by 5(y) = py is a homeomorphism.

Let yzix 4 P(Y) be the mapping v(x) = g(dylx).

Thus y = 6<>f and f = 6-1<>y. The result follows

from Theorem 6.8. QED

Lemma 6.4: Let X be a Borel space and f:.X 4 R*.
 

The function f is universally measurable if and

only if, for every p E P(X), there is a Borel—

measurable function f’ :X 4 R* such that f(x) = fp(x)

for p almost every x.

Proof: Let f be universally measurable and

p E P(X) be given. For r E 0*, let

U(r) = (x: f(x) g r}

f(x) = inf{r E Q*:x E U(r)].

Let B(r) E 6& be such that p[B(r) AU(r)] = 0. Define

fp(x) inf{r E Q* : x E B(r)}

= inf '1; (x)

rEQ*
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where

r if x EB(r)

¢r(X) ={

m otherwise

fp: X 4 R* is Borel-measurable and

(x: f(x) ;=’ f (x)} C U [B(r) AU(r)] has

P rEQ*

p-measure 0.

Conversely, given p E P(X), let fp be a Borel—

measurable function such that f(x) = fp(x) for p

almost every x. Then

p({x:f(x) gc] A {xzfp(x) gen :0 Vc ER*

f is universally measurable. QED

Lemma 6.5: Let X and Y be Borel spaces and
 

g(dylx) be a stochastic kernel on Y given X. The

following statements are equivalent:

(a) The stochastic kernel q(dy‘x) is

universally measurable.

(b) For any B E 5&, the mapping XB.:X 4 R

defined by 1B(x) = q(B1x) is universally

measurable.
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(c) For any p E P(X), there exists a Borel-

measurable stochastic kernel qp(dy]x)

on Y given X such that q(dylx) = qp(dylx)

for p almost every x.

Proof: Suppose (a) holds. The function

y: X 4 P(Y) as defined by v(x) = q(dylx) is univer-

sally measurable. Let B E 5k and lB(x) = q(B‘x).

Let : P(Y) 4 X be defined by EB(p) = p(B). Then
eB

1B = BB<>y. By Theorem A.ll and 6.8, 1B is

universally measurable. Suppose (b) holds and choose

p E P(X). Y is separable and metrizable, E a

countable base 6 for the topology in Y. Let 3

be the collection of sets in B and their finite

intersections. For F E 3, let fF be a Borel-

measurable function such that

fF(X) = q(FIx) V x E BF

where BF E 5k and p(BF) = 1. Such a fF and BF

exist by (b) and Lemma 6.4. For x E F) B . let
F

FEJ

q (dylx) = q(dy‘x). For x E H BF' let q (dylx)

p FE? P

be some fixed probability measure in P(Y).
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q(dy]x) = qp(dylx) for p almost every x.

Y

Borel—measurable in x is a Dynkin system containing

The class of sets 3 in 5 for which qp(YIx) is

J. The class I is closed under finite intersection

and generates By.

By Theorem A.lO, statement (c) follows.

Suppose (c) holds and let p E P(X). Define

pr = X 4 P(Y) by

q(dylx).
(

A X V

II

.
.
‘

A

X
V

II

qp(dYIx)-

-1 —1 _
Let B E 5P(x)’ p[w (B) Ayp (B)] - 0. By Lemma 6.3,

y-1(B) is universally measurable

(c) = (a). QED

Lemma 6.6: Let X,Y and Z be Borel spaces and
 

let f: XY 4 Z be a universally measurable function.

For fixed x E X, define gX: Y 4 Z by

gX(y) = f(x,y). Then gX is universally measurable

for every x E X.

Proof: Let xo E X be fixed and let m: Y 4 XY

be the continuous function defined by w(y) = (xo,y).

For §_E 52, {y E‘Y: gX E Z} = m-1{(X.y) E XY: f(x,y) E Z}.

0

This set is universally measurable by Corollary 6.8.1. QED
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Now, the main result is ready to be stated.

Theorem 6.9: Let X1,X2,...

Borel spaces, Yn = X1X2...Xn and Y = X1X2...

be a sequence of
 

Let p E P(Xl) be given and, for n = 1,2,... let

qn(dxn+1]yn) be a un1versally measurable stochast1c

kernel on Xn+1 given Yn' Then for n = 2,3,...,

there exist unique probability measures rn E P(Yn)

such that

(6.3) rn(§1§2-'-§n) =1 I "my qn—1(§an1'X2""'Xn-1)
X X X

—l -2 —n—1

qn_2(dxn_1lx1,x2,...,xn_2)

...q1(dx2‘xl)p(dxl)

V x1 E 5; ,...,Xn E 8X

1 n

If f: Yn 4 R* is universally measurable and either

+ .-

f f drn < m or I f drn < m, then

(6.4) f fdrn = f I ...‘f f(x1,x2,...,xn)

Y X X X

n 1 2 n

qn_1(dxn]x1,x2,...,xn_1)...q1(dx2lxl)p(dxl).

Furthermore, there exists a unique probability measure

r E P(Y) such that for each n the marginal of r on

Y is r .
n n

Proof: There is a Borel—measurable stochastic

kernel §l(dx21xl) which agrees with q(dx21x1) for
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p almost every x1. By Theorem 6.3, define r2 E P(Y2)

by specifying it on measurable rectangles to be

r2(§i £2) = g q1(§21x1)p(dxl) v £1 6 5&1, g2 e 5&2.

-1

Assume f:'Y2 4 [0,m] is universally measurable and

f: Y2 4 [0,m] be Borel-measurable. Let f = f on

Y -N where N E B and r (N) = 0. By Theorem 6.3,
2 Y2 2

o = r2(N) = f f XN(x1,x2)ql(dlexl)p(dxl)

XX

—1 -2

= f q1(NX ‘Xl)p(dx1)

X1 1

ql(NX 1x1) = O for p almost every x1.

1

Since f(xl,x2) = f(xl,x2) for x2 E'NX . Thus

1

I; [f(x1.x2)-f(xl,x2)]ql(dlexl)l

2

g I lf(x1,x2)-f(x1,x2)]ql(dlexl) = o
N

Xi

for p almost every x1. Then

I f(x1,x2)ql(dx2‘xl) = I f(xl,x2)q1(dx21xl)

X1 X2

= j f(xl.x2)q1(dx21xl)

X2

for p almost every x1. By Theorem 6.4,

g f(xl,x2)q1(dx21xl) is Borel-measurable.

l
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By Lemma 6.4, I f(x1,x2)q1(dx2le) is

X2

universally measurable.

Furthermore,

I fdr2 = I fdr

Y2 X2 1 2

f(xl,x2)q1(dx2‘xl)p(dxl)

M

II

X
C
—
a

>
<
‘
—
—
>

i f(x1.x2)q1(dx21x1>p<dx1)

(6.4) holds for n = 2 and f 2 0. If

If f: Y2 4 R* is universally measurable

and satisfies I f+dr < m or I f-dr < m,
2 2

then (6.4) holds for f+ and 5‘, so it

holds for f.

Let f = X X , we obtain (6.3). Now assume the

51 52

theorem holds for n = k. Let qk(dx be a
k+l‘yk)

stochastic kernel which agrees With qk(dxk+l]yk) for

r almost every Xk' Define r by specifying
k k+1

it on measurable rectangles to be

rk+l(§l §2"‘§k+1) = f qk(’—(k+1lxi'xz"”'xk)dr

§1§2"°§k

V £1 E Bxl'o--'2<.k.1 6 Ex

k

k+1

Proceed as in the case n = 2 for n = k+-l. The proof

for the existence of r E P(Y) such that the marginal

of r on Xn is rn, n = 2,3,... is the same as in

Theorem 6.3. QED



198

In the course of proving Theorem 6.9, the following

fact has also been established.

Theorem 6.10: Let X and Y be Borel spaces
 

and let f: XY 4 R* be universally measurable. Let

q(dny) be a universally measurable stochastic kernel

on Y given X. Then the mapping' 1.:X 4 R* defined

by 1(x) = f f(x,y)q(dy‘x) is universally measurable.

Corollary 6.10.1: Let X be a Borel space and

let f:IX 4 R* be universally measurable. Then the

function 6f: P(X) 4 R* defined by 6f(p) = I fdp

is universally measurable.

The functions obtained by supremizing bivariate,

extended real—valued, Borel—measurable functions over

one of their variables have analytic upper level sets.

These functions are called upper semianalytic functions.

Definition: Let X be a Borel space, D c.X,

and f: D 4 R*. If D is analytic and the set

{x E le(x) > c] is analytic for every c E R, then

f is said to be upper semianalytic.

It is clear that the idea behind upper semianalytic

functions is similar to that for upper semicontinuous

functions in the Borel model. The next step is to
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investigate whether or not semianalyticity is preserved

in the Optimal function and under the expectation

Operator.

Lemma 6.7: (1) Let X be a Borel space, D
 

an analytic subset of X and f: D 4 X. The following

statements are equivalent. (a) The function f is

upper semianalytic, i.e., the set

{x E D: f(x) 2 c] is analytic for every c E R.

(b) The set in (a) is analytic for every c E R*.

(c) The set {x E D: f(x) 2 c} is analytic for every

c E R*. (d) The set in (c) is analytic for every

C E R*.

(2) Let X be a Borel space, D an analytic subset

of X, and fn: D 4 R*, n = 1,2,... a sequence of

upper semianalytic functions. Then the functions

inf fn, sup fn’ lim inf fn and lim sup fn are

n n n-Dm n-Nb

upper semianalytic. In particular, if fn 4 f, then

f is upper semianalytic.

(3) Let X and Y be Borel spaces, g:1X * Y,

and f: g(X) 4 R*. If g is Borel-measurable and f

is upper semianalytic. Then f<>g is upper semianalytic.

(4) Let X be a Borel space, D an analytic

subset of X, and f,g: D 4 R*. If f and g are

upper semianalytic, then f4-g is upper semianalytic.
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If, in addition, g is Borel-measurable and g 2 0

or if f 2 0 and g 2 0, then fg is upper semi-

analytic, where we define 0 °w = w '0 = 0(—w)

: (_oo)0 : 0.

Proof: (1) We show (b) = (a) = (d) = (c) =9 (b).

Clearly (b) = (a) and (d) = (C). Suppose (a) holds,

then {x E D: f(x) 2 -m] = D which is analytic by

definition, while the sets

{x E D: f(x) 2 m} = {X E D: f(x) 2 n}

:
3

II
3
8

II
3
8

H
H

{xED:f(x)2c}= [XED:f(x)>c-%}CER

.‘
3

are analytic by Corollary A.13.2

(a) = (d).

If (c) holds, then the sets

{XED:f(X)>w1=¢

{xED:f(x)>—oo}= U [XED:f(x)2n}

{xED:f(x) 2c]: u {xED:f(x) 2c+rll]

are analytic by Corollary A.13.2

(C) = (b)-

(2) Let c E R,

{x E D: inf f (x) > c} = H {x E D: f (x) > c}
n n

n n=1

{xED:sup fn(x) 2c}: U {xED:fn(x) 2c}

:
3

:
5 H

H



 

 

201

inf fn and sup fn are upper semianalytic

n n

by Corollary A.l3.2 and part (1).

And

1im inf fn = sup inf fk

n4m n21 k2n .

lim sup f = inf sup fk are upper semianalytic.

n4m n n21 k2n

(3) By Theorem A.18, the domain g(X) of f is

analytic. Let c E R,

Ix e x: (fog) (x) > c} = g'1({y e g(X) : f(y) > c))

is analytic by Theorem A.18.

(4) Let c E R,

{x E D:f(x)+g(x) 2 c} = U [{X ED:f(X) 2 r}

rEQ

(1 {x E D:g(x) 2 c-r}].

This is true if we adopt f(x) + g(x) = m + w = w for

all x E D and c E R*. By Corollary A.l3.2, f4-g

is upper sem analytic whenever f and g are.

Suppose g is Borel-measurable and g 2 0. Let c 2 0,

{x E D: f(x)g(x) 2 c} = LI {x E D: f(x) 2 r,

rEQ.r>O

g(x) > C/r].
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{X E D: f(X)g(X) > C} = {X E D: f(X) 2 O]

U {x e D: g(x) 2 0]

U [ (J {x E D: f(x) 2 r, g(x) < c/r}]

rEQ.r>O

{x E D: f(x)g(x) 2 c} is analytic.

Suppose f and g are both semianalytic and nonnegative.

For c E R, the set {x E D: f(x)g(x) 2 c] is analytic

as before

fg is upper semianalytic. QED

Theorem 6.11: Let X and Y be Borel spaces,
 

let D be an analytic subset of XY and let

f: D 4 R* be upper semianalytic. Then the function

f*: proj (D) 4 R* defined by f*(x) = sup f(x,y)
X

yEDX

is upper semianalytic. Conversely, if f*: X 4 R*

is a given upper semianalytic function and Y is an

uncountable Borel space, then there exists a Borel-

measurable function f: XY 4 R* such that

f*(x) = sup f(x,y) with D = XY.

yEDX

Proof: If f: D 4 R* is upper semianalytic and

c E R. The set
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{x E pron(D): sup f(x,y) 2 c]

YEDX

= prOjX({(X.y) E D: f(X.Y) > Cl)

is analytic by Theorem A.l7. Suppose f*: X 4 R* is

upper semianalytic and Y an uncountable Borel space.

For r E Q, let A(r) = {x E X: f*(x) 2 r]. Clearly

A(r) is analytic. By Theorem A.17, there exists

B(r) E EXY such that A(r) = pron[B(r)]. Define

G(r) = L, B(s) and f: XY 4 R* by

SEst2r

f(x,y) = SUP {r E Q: (x,y) E G(r))

= SUP Wr(X.y)

rEQ

where “f(x,y) = r if (x,y) E G(r) and ¢r(x,y) = -0:

otherwise. f is Borel-measurable. Let g be defined

by g(x) = sup f(x,y). If f*(x) 2 c for some

yEY

c E R E r E Q such that f*(x) 2 r 2 c. Thus

x E A(r). 3 y E Y such that (x,y) E G(r) and

f(x,y) 2 r and g(x) 2 r 2 c

f* (X) 2 g(X).

If g(x) 2 c for some c E R 3 r E Q and y E Y

such that g(x) 2 r 2 c and (x,y) E G(r). Thus

for some 5 E Q, s 2 r, we have (x,y) E 8(5) and

x E A(s). This implies f*(x) 2 s 2 r 2 c

g (x) g f: (x)

Thus g(x) = f*(x) . QED
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Theorem 6.12: Let X and Y be Borel spaces.
 

f: XY 4 R* be upper semianalytic, and q(dy]x) a

Borel-measurable stochastic kernel on Y given X.

Then the function 1: X 4 R* defined by

1(x) = I f(x,y)q(dylx) is upper semianalytic.

Proof: Let 9: XY 4 R* be defined as

g(x.y) = —f(x.y). Thus {(x.y) E XY:g(x.y) gb)

is analytic V b E R. Suppose g 2 0. Let

gn(x,y) = min{n,g(x,y)}. Each gn is lower semi—

analytic and gn ? g. Let

En = {(x.y.b) 6 XYR = gn(x.y) g b g n)

= m U {(X,y,r) E XYR : gn (XoY) < r!

k=1 rEQ

r _<_ 1 , 1}.

By Corollary A.l3.2 and Theorem A.l6, En is analytic.

Let u be the Lebesgue measure on R, p E P(XY)

and pu, be the product measure on XYR. By Fubini's

theorem,

(PUMEn) f (XE dudp
XY R n

=J‘ [n - 9n (my) ldp
XY

= n - I gn(x,y)dp.

XY

For c E R, by the monotone convergence theorem,
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{p E P(XY): f g(x.y)dp g C)

= n {p e P(XY) =J‘ gn(x.y)dp g c}

=1 XY

= fl {pEP(XY):(Pu)(En) 2n-C).

n 1

By Lemma 6.2, the mapping p 4 pp is continuous and by

Theorem 6.7, the function Sj :P(XY) 4 R* is defined by

-f 9(X:Y)dp is upper semianalytic.

Let 1(x) = 9f[q(dy}x)px]. Since the mapping x 4 q(dy1x)

is Borel-measurable and x 4 pX and [q(dy‘x),px] 4

q(dylx)pX are continuous from X to P(X) and

P(X)P(Y) to P(XY) respectively by Corollary A.5.l

and Lemma 6.2

By Lemma 6.7 (3), l is upper semianalytic.

Suppose g g 0. Let gn(x,y) = max{-n,g(x,y)}. Each

gn is lower semianalytic and gn 1 9. Let

En = {(x,y,b) E XYR : gn(x,y) g )5 g 0}.

En is analytic

(pu)(En) = f I X dudp = -f gn(x,y)dp.

E

XY R n XY

For c E R

(p E P(XY): f g(x.y)dp < c} = Llip E P(XY): I gn(x.y)dp < C‘

n=1 XY

= U {p e P(XY) : (pu) (En) > -c).

n=1

Use the same arguments as before. In the general case

I f(x,y)q(dy1X) = f f+(x.y)q(dylx)-f f-(x.y)q(dylx).
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Since f+ and -f- are upper semianalytic, and by

the preceding arguments each of the summands on the

right is upper semianalytic. By Lemma 6.7 (4),

1(x) is upper semianalytic. QED

Theorems 6.11 and 6.12 show that both the Optimal

function and the expectation operator are well behaved.

The next two theorems will outline the procedures to

Obtain a measurable selector which assigns to each

x E X a y E Y which attains or nearly attains the

supremum in

f*(x) = SUP f(X.y)

yEY

Theorem 6.13 (JankOV-von Neumann Theorem): Let X
 

and Y be Borel spaces and A an analytic subset of XY.

There exists an analytically measurable function

¢>:prOjX(A) 4 Y such that gr(m) C A.

Proof: Let f: T 4 XY be continuous such that

A = f(m). Let g = projx<>f. Thus 9: m 4 X is con-

tinuous from m onto pron(A). For x E pron(A),

g-1({x)) is a closed nonempty subset of m.
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Let C1(x) be the smallest integer which is the first

component of an element 21 6 g-1[(x)], and g2(x)

be the smallest integer which is the second compo-

nent of an element 22 E g-1({x}) whose first

component is §1(x). In general, let gk(x) be the

smallest integer which is the kth component of an

element 2k 6 g-1({x]) whose first (k-l)st

components are g1(x),...,gk_l(x). Let

WX) = (Cl(X).§2(X)...-)

Since 2k 4 $(x), ¢(X) E g-l({x}). Define m: pron(A) 4 Y

by m = pron° f0 u, so that gr(m) C.A. For

(01,...,Gk) 6 23, let

N(Ul,...,Gk) = {(C1,Q2,-oo) 6 97: C1 = 0110-00gk = 0k}
\v

M(ol,...,ok) = {(g1,g2,...) 6 91: gl g 01,...,gk g Gk}.

Let S = (01.02,...,Gk) E'ZL Suppose x 6 $-1[N(s)].

Let Mx) = (§1(x),g2(x),...). Then ¢'(x) €N(s) CM(s).

V 9[$(X)] 6 g[M(s)] and

§1(X) = Glyn-o,Ck(X) = Ck.

By the construction of w, 01 is the smallest integer

which is the first component of an element of g-1({x})

and for j = 2,...,k oj is the smallest integer which

is the jth component of an element of g-1({x})

whose first (j-1) components are Ul"'°'Gj—1
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. -1 _ . _
..g([x}) flM(01,...,oj_1,Oj-1)— gr 3 _ l,...,k

k

and xljglg[M(Ol....,oj_1,oj-1)]. This implies

k
J71
+ [NM] C 9[M(s)] - 3'91 9[M(01u--.0j_1 0]- -1)]-

I
t

Now suppose x 6 g[M(s)] - U g[M(C71,...,CI.l O.-1)].

j=1 3' 3

Since x€g{M(s)], 3 y= (711,712,...) Eg_1({x}) such

that  
Clearly, x E pron(A) = g(ET?) i

fix) is defined.

Let 1(X) = (;1(X).;2(X)....) and MX) Eg-l({x}).

Thus g[;(x)] = x. This implies 1' (X) EM(01,...,oj_l oj-l)

j = 112I"’Ik' Since $(X) Q’M(Ol-1), then c1(X) 2 01.

But g1 (x) is the smallest integer which is the first

component of an element of g—1({x}) .

C1 (X) g 711 S 01-

This implies (x) = o . Similarly, since
1 l

$'(X) {M(§1(X).02-1). Q2(X) ; 02. Again C2(x)

|
|
/
\

.
‘
3

N

l
/
\

o

t
o

.'. 52 (X) = 02.

Continuing v(x) €N(s) and x E i'-1[N(s)]. Thus

k

‘3-1[N(S)] :3 g[M(s)] .- U g[M(O ,...,O._ ,O’.—1].

j=1 l J 1 J
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k

. fl _

w, [N(s)] — g[M(s)] - girl/[(61,...,oj_l,oj -1]

3:1

M(t) is open in ‘3? for every t E Z. By Theorem A.18,

g[M(t)] is analytic

'. ¢'-1[N(S)] e ax v s e 23.

But {N(s) : s E Z] is a base for the topology on ‘R

O({N(S): s E'ZU) = 3m.

Thus

w-1[U({N(s):s e 21)]

= g[¢-1({N(s) : S GEM]

This implies ¢-1(B C ax and 11’ is analyticallyan)

measurable. By the definition of co and the Borel-

measurability of f and pron

-1 ,-1 -l .-1

:9 (BY) = (f {pronY (BYH)

-l -l

c; (f [DXYD

c: w’lvs ) c a
m ‘X

I. a) is analytically measurable. QED

Theorem 6.14: Let X and Y be Borel spaces,
 

D C XY an analytic set and f: D 4 R* an upper semi-

analytic function. Define f*:pron(D) 4 R* by

f* (X) = sup f(x,y).

§’€I5(
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(a) For every 6 > 0, there exists an

analytically measurable function

m:pron(D) 4 Y such that gr(m) C D

and for all x 6 pron (D)

f* (x) - c if f* (x) < co

f[X.co(X)] 2

— l/e if f* (x) = on

(b) The set I = {x 6 pron (D) : for some

= * . .

yX E DX' f(x,yx) f (x)} is universally

measurable and for every 6 > 0 there

exists a universally measurable function

co:projX (D) 4 Y such that grm) c: D and

for all x 6 pron (D)

fEX,cp(X)] = f* (X) if X E I

f*(x)-e if x£1,f*(x)<°°

fIX.co(X)] 2

1/6 if XEI, f*(x)=m

Proof: (a) The function f* is upper semi-

analytic by Theorem 6.11. For k = O,j-_l,:_2,...,

define

A(k) = {(xoy) e D: f(x.y) > kc}

B (k) = {x e pron(D) :ke < f* (x) g (k+ Us}

B (-..) = {x e pron(D) : f*(x) = -..]

B(cn) = {x E pron(D) : f*(x) = on}.
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The sets A(k), k=0,_-f_1,:_2,... and B(co) are

analytic, while the sets B(k), k = O,_-i;l,:_2,... and

B(—a) are analytically measurable. By the Jankov—von

Neumann theorem, there exists, for each R = 0,11,:2, . . .

an analytically measurable wk : pron[A(k)] 4 Y with

(x,mk(x)) E A(k) for all x 6 pron[A(k)] and an

analytically measurable c-o : projx (D) 4 Y such that

(X,c-o(x)) E D for all x E projx (D) .

Let k* be an integer such that k* 2 1/62.

Define to : pron(D) 4 Y by

9%(x) if x EB(k), k =O,_~I;1,_+_2,...

:p(x) = g(x) if x 6 13(4)

03k" (X) if X € B(co)

Since B (k) C pron[A (k) ] and B (on) C pron[A(k)]

for all k, this definition is possible. Clearly,

co is analytically measurable and gr(cp) C D. If

x E B(k), then (x,cpk(x)) €A(k) and

fifX.co(X)] = f[X.cok (X) ]

>k€ ; f*(x)-e.

If x E B(-eo), then f(x,y) = -en for all y E DX

and

f[x,co(x)] = -o = f*(x).
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If X E B(o)

f[X.co(x)] = f[x.cok*(X)] > k*e > l/e.

Emnce to has the required prOperties.

(b) Consider the set E C XYR* defined by

t
1
}

II {(X.y.b): (X.y) 6 D. f(X.y) ; b}

k=1 r€Q*

By Theorem A.l6 and Corollary A.l3.2, E is analytic

in XYR*

2 The set A = pronR*(E) is analytic in XR*.

And the mapping T: pron(D) 4 R* defined by

T(x) = (x,f*(x)) is analytically measurable.

I = (x: (x,f*(x)) e A} = T'1(A)

I is universally measurable by Corollary 6.8.2.

Since E is analytic, by the Jankov-von Neumann theorem,

3 an analytically measurable «HA 4 Y such that

(x,m(x,b),b) E E for every (x,b) 6A. Define

‘4'; : I 4 Y by

‘HX) = co(X.f*(X)) = (co°T) (X) V x E I.

By Corollary 6.8.2, '1' is universally measurable and

by construction f[x,~lx(x)]2 f*(x) for x E I

f[X.'&:(x)] = f* (X) V x 6 I.

O

D U ((x.y.b) : (X.y) e o, f(x,y) 2 r, r 2 b-l/k].
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By part (a) there exists an analytically measurable

1'-=Pr0jX(D) 4 Y such that

f*(x)-e if f*(x) <0:

f[X,¢€(X)] 2

l/E‘. if f* (X) = on .

Define co: projx (D) 4 Y by

p(x) if )< 6 I

(p(X) = o I

¢e(x) if x 6 prOjX(D)-I

Thus w is universally measurable and has the required

prOperties. QED

It is noted that since the composition of analyti-

cally measurable functions can fail to be analytically

measurable, the selector in the proof of Theorem 6.14 (b)

can fail to be analytically measurable. However, the

composition of universally measurable functions is

universally measurable, and so a selector which is

‘universally measurable is obtained.

Earlier in the chapter, it was mentioned that

the pnnajection of a Borel-measurable function need

Nevertheless, under certainnot be Borel-measurable.

conditions, it can be shown that when the extended

.realfwnalued functions involved are semicontinuous,

tflien tine selectors can be chosen to be Borel—measurable

 

 



214

Theorem 6.15: Let X and Y be separable
 

metrizable spaces. Let q(dylx) be a continuous

stochastic kernel on Y given X, and let f : XY 4 R*

be Borel-measurable. Define 1(x) = I f(x,y)q(dy)x) .

(a) If f is lower semicontinuous and bounded

below, then 1 is lower semicontinuous and

bounded below.

(b) If f is upper semicontinuous and bounded

above, then 1 is upper semicontinuous and

bounded above.

Proof: (a) Since f is lower semicontinuous and

bounded below, 3 a sequence, {fn] C C(XY) such that

fn ? f. Define 1n(x) = f fn(x,y)q(dy)x). Then kn

is continuous by Theorem 6.5 and by the monotone con-

vergence theorem kn T l

1 is lower semicontinuous.

(b) Same argument as (a) by complementation. QED

Theorem 6.16: Let X and Y be metrizable spaces
 

and 1£fl2 f: XY 4 R* be given. Define

f*(x) = sup f(x,y).

y6Y

(a) If f is lower semicontinuous, then f* is

lower semicontinuous.

(b) If f is upper semicontinuous and Y is

compact, then f* is upper semicontinuous

and for every x E Y the supremum is attained

by some y E Y.
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Proof: (a) Let (31 be ametric on X and d2

a metric on Y consistent with their topologies.

Let (ECZXY be open and x0 6 pron(G), 3 yO 6 Y

such that (Xo'yo) 6 G and some a > O with

N€(Xo.yo) = {(x,y) 6 XY::dl(X.XO) < c.

62(y.yo) < e] C G.

Then

C ' = 0 C 'xO \ pr03X[N€(xO,yo)] {x 6 X. dl(x,xo) < e} pronG

2 pron(G) is open in X.

Let c E R

{x E X: f*(x) > c? = projx({(x,y) 6 XY: f(x,y) > c}).

Since f is lower semicontinuous, this implies

{(x,y) : f(x,y) > c} is open

{x E X: f*(x) > c} is Open and f* lower

semicontinuous.

(b) Let x E X be fixed and let {yn} c.Y 'be

such tflnrt f(x,yn) 1 f*(x). This implies yn 4 yO

lim sup f(x,yn) g f(x,yo)where yo E Y since

n4a

f (leo) = f* (X) -

Let {x11} C X be such that Xn 4 x0. Choose a sequence

{YD} <:‘Y such that
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f(xn,yn) = f*(xn) n = 1,2,...

3 a mflmequence [(x ,y )) such that

“k “k

lim sup f(x .y ) = lim f(X oY )

Since Y’ is compact, {yn } 4 yo, yo 6 Y

R  
1im sup f*(xn) = lim sup f(xn.yn)

n4: n41:

= 111“ f(X 0y )

k4o “k “k

*

_<_ f(xo.yo) g f (X0)

f* is upper semicontinuous. QED

The next lemma is very similar to Theorem 6.13 in

the analytic model and Theorem 6.17 is the corresponding

counterpart of Theorem 6.14 in Borel—measurable model.

Lemma 6.8: Let X be a metrizable space, Y a
 

.separable metrizable space, and G an Open subset of

Xfih. 'Then pron(G) is Open and there exists a Borel-

measurable function to : pron(G) 4 Y such that

gr(m) C G-

Prrxaf: Let {yn: n = 1,2,...} be a countable

dense subset Of Y. For fixed y 6 Y, the mapping

x 4 (x,y) is continuous

.. {>< 61X: (x,y) 6 G} is Open.

 



217

Let on = {x e x: (x,yn) e G}. Thus prOJX (G) = n31 on

and prOjX(G) is Open. Define co: pron (G) 4 Y by

y1 if x 6 G1

co(X) = n-l

y if x 6 G - Ll G , n = 2,3,...
n n k=1 n

Clearly gr(cp) C G and m is Borel-measurable. QED

YTheorem 6.17: Let X be a metrizable space,

a compact separable metrizable space, D an Open sub-

set Of XY, and let f : D 4 R* be upper semicontinuous.

= sup f(XIY) 'be given by f*(x)

y 6DX

Let f* : pron (D) 4 R*

Then prOjX(D) is open in X, f* is upper semicontinuous,

and for every 6 > 0, there exists a Borel-measurable

such that grace) C D andfunction co- : pron(D) 4 Y

for all x 6 prOjX(D)

f*(x) - e if f*(x) < co

ffX,cp€(X)] 2

1/6 if f* (X) = a.

Proof: The set prOjX(D) is Open in X by Lemma

A

6.8. Let f: XY 4 R* be defined by

‘f(x,y) if (x,y) 6D

f(X.y) =

-¢ otherwise

For c 61R,

A

{x 6 X: sup f(x,y) > CT.' f* (X) > c} =

y6Y

{x 6 pron(D) .
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By Theorem 6.16 (b), f* is upper semicontinuous. Let

c > 0 be given. For k = O, i1,_+_-_2,..., define

MR) (091!) e D : f(x.y) > Re)

B (k) {x e pron(D) :kc < f*(x) g (k+ 1):}

B(—-) = {x 6 prOjX(D) f*(x) = -u]

\

B(a) = {x 6 pron(D) : f*(x) = a]

l(k+1)€

k6

 

 
  

The sets A(k) , k = 0.11.12“... are Open, while the

sets B(k), B(—¢), B(o) are Borel-measurable. By

Lemma 6.8, 3 for each k = 0,11,12,... a Borel-

measurable cpk : pron (Ak) 4 Y such that gr(cpk) C AR“

3 a Borel-measurable E): projx (D) 4 Y such that

gr (c?) C D. Let k* be an integer such that k* 2 1/92.

Define cps : projx (D) 4 Y by
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cok(x) if x 6 B(k) k = O,i1,:2

mew) = {g(x) if x e B(w)

c9k*(x) if x 6 B(oo)

Since B(k) c:prOjX[A(k)] and B(a) C prOjX[A(k)] for

all k, this definition is possible. Clearly, we

is Borel-measurable and gr(m€) C D. If x 6 B(k),

then, since (X.wk(X)) 6 A(k),

fIXIm€(X)] = f[Xocok(X)] > ke _2_ f* (X) - e-

If x e B(-c), then f(x,y) = -a for all y e DX

f[X:co€(X)] = -~ = f*(X).

If x 6 B(an),

f[X.co€(X)] = fix.mk*(X)] > k*e < 1/e

m” has the required prOperties. QED

L

SO far in this chapter, all the rudiments that are

necessary to carry out the dynamic programming algorithm

in Borel spaces are discussed. The discussion is to a

large extent technical in nature. The main ideas are

to develop measurability requirements for the various

Operations of the algorithm. In the next chapter, our

attention will be returned to the economic model and an

imperfect information model will be built on the results

derived in this chapter.
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It should be noted that the most logical order Of

events is to re-examine the finite and infinite models

for a basic multiperiod agency using the Borel space

ideas presented here. However, I choose not to follow

this sequence because the imperfect state information

model can be best used to describe the reporting function

Of an entity about its performance to the owners. Since

this application is Of the greatest interest to

accounting research, I shall proceed directly to the

imperfect state information model, leaving the basic

multiperiod agency Borel model for further research.



CHAPTER VII

IMPERFECT STATE INFORMATION MODEL

7.1: Introduction
 

Chapter VI discusses the problems that arise

when the disturbance space is uncountable. Specifi-

cally, it becomes impossible to define stochastically

the sequence of payoffs given an initial payoff.

Later in the chapter, by imposing measurability

restrictions on the functions and enlarging the payoff

and disturbance spaces to include all analytic sets,

the sequential search for Optimal or nearly Optimal

contracts can still be implemented.

The machineries built in Chapter VI, particularly

VI*, facilitate the modeling of the following economic

phenomenon. A contract is agreed upon by the principal

and the agent at the beginning Of a typical period,

say k. The agent makes his action choice in a manner

of a rational decision-maker. A payoff outcome occurs

at the end Of the period which is only observable by

the agent. The agent "reports" the payoff to the

principal. There is no reason to believe or to assume

221
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that the agent always reports truthfully. In fact,

the manner the agent reports the payoff should be

One which is in his own best interest. This may

induce a discrepancy or disturbance between the actual

payoff and the reported payoff. Since the agent

"chooses" the manner to report the payoff, the resulting

discrepancy can be anything. What is observable to

the principal is a sequence of past contracts and re-

ported payoffs. A contract is enforceable only as its

arguments are observable by all parties. Under such

circumstances, the only candidates for contracting will

be the sequence of past contracts and reported payoffs.

However, it has been shown in the literature by

various writers (Ng and Stoeckenius [1979], Harris and

Raviv [1979]) that an incentive contract based on the

outcome alone will cause more hazard problems. The

question facing the principal will be under what cir-

cumstances can he design a long term contract to achieve

a Nash equilibrium over the planning horizon.

The discrepancy between the actual payoffs and

the reported payoffs under the imperfect state informa-

tion model does not behave as nicely as the countable

disturbance assumed in Chapters III through V. Since

the reporting function belongs to some functional space

which is Of infinite dimension and the principal has no
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way of knowing what or how the agent is choosing the

reporting function, there is no reason to believe that

the disturbance is countable and has a well-defined

distribution function. It is uncountable because the

reporting function is unknown to the principal and it

is of infinite dimension, that is, the space is made

up Of an infinite number of independent vector basis.

The principal receives the value of the reporting

function, the mapping (or the how) of the actual payoff

to the reported payoff is never known to him. For this

reason, the principal is not able to induce the actual

payoff from the reported payoff. This causes more

serious problem in a multiperiod model. Since the

principal cannot induce the actual payoff given a

reported payoff in any period, it becomes more difficult

for him to define the whole sequence of payoffs even

stochastically given an initial value. Recall that the

payoffs form the state space for the multiperiod agency

model prOposed in the previous chapters, an alternative

state space must be defined before the problem can be

formulated. Such a state space must be inducible by

the knowledge of the past contracts and reported payoffs.

It must have a probability distribution conditioned on

the past contracts but independent Of the reported payoffs.

This condition is necessary to induce truthful reporting.
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As indicated earlier, contracts based on reported

alone provides incentive for the agent to report un-

truthfully. It has been suggested that (Myerson [1979])

if the principal desires the agent to tell the truth

about a particular event, the contract should be drawn

independent of that event. It will be shown later in

this chapter that this alternate state space is used

as an argument for the incentive contract, it has to be

independent of the reported payoff to induce the agent

to report truthfully. Lastly, the principal must be

able to utilize the state space to design a long run

Optimal contract.

7.2: The Imperfect State Information Model (ISI)

Before proceeding to describe the imperfect state

information model, a remark on the solution is in order.

Since it is not possible to define the state space

stochastically at period 0, the Optimal contract,

which consists of a sequence of contracts over the time

periods, cannot be defined. The idea of a contract has

to be modified to a function whose image is on the inter-

val [O,l] and whose function value assign a probability

measure on all feasible contracts given the principal's

belief of the initial payoff and the past contracts

and the reported payoffs.
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The model proposed here consists of the following

objects:

0 Payoff space

C Incentive space

Z Signal space, or the space of possible

reporting functions

é Information vector. Define for k = 0,1,...,N-l

Q = Z C .

o o

k "Ck-lzk

An element of Qk is called a kth

information vector, denoted by Qk.

k = O,...,N-l Incentive constraints.

These constraints exclude all contracts

which will give the agent an expected utility

less than Outside Opportunity set.

a Discount factor

g Net return function to the principal

s A conditional probability of the initial

signal given 0

s Conditional probability of Z given QC

N Time horizon: a positive integer or m

P Initial payoff probability space

The 181 model can now be described notationally as

follows. At period 0 the principal and the agent agree

on a contract ID with the principal's probability

belief Of getting the initial payoff mo to be p and

a reported payoff 20 with probability so given mo.

One can view 50 being the principal's assessment of
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the truthfulness of the agent's reporting action.

The agent chooses ao Optimizing his expected utility

with outcome mo. He then reports 20 to the princi—

pal who then updates his information vector and revises

his belief on what he may receive as for the
21

possible contracts that he may entered into with the

agent as 12. Then 12

repeated. Of course, the biggest problem here is that

is agreed and the process

the only information that the principal has is the ¢k.

If he were to contract based on reports alone, it has

been shown (Ng and Stoeckenius [1979]) that such a

contract will induce non-truthful reporting.

At this stage of modeling, not much can be said.

A bit of comfort is that it can be shown (Theorem 6.3)

that a sequence of probability measures

Pk(QoZOCO...QkaCk)V,p) can be defined on

QOZOCo"'OkaCk given a contract n and initial dis-

tribution p. For notational ease, let Dk denote

the set Of all sequences of the form (w ,z I
O O'

’ I
o,..

wk'zk'lk) 6 OZC...OZC. This enables one to define the

N-stage total discounted expected return to the principal

corresponding to a contract F 6 H as

N-l
k

JN,F(p) = g [ggg a g(wkIIk)]Pk_1(Vop)de_lo

k-l -

For the infinite horizon model, then Jn = lim J

N4m N'V
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In order to ensure the integral in JN v to be

defined, the following ad hoc condition is imposed

on the finite horizon model

JN,F(p) < m V v 6 H. p 6 P(Q).

This condition simply implies that the total expected

discounted return to the principal is finite.

For the infinite horizon models, to guarantee the

limit in the definition of JV to be well-defined,

one of the following conditions is needed.

(P) 0 g g(w,I) for every (w,I) 6 DC

(N) g(w,I) g 0 for every (w,I) 6 QC

(D) O < a < 1 and for some b 6 R, -b g g(w,I) g b

for every (w,I) 6 DC.

Condition (P) implies that the net return per period

to the principal g is positive. Condition (N) implies

that g is negative all the time. Condition (D) says

that g is bounded and the discount factor is less

than unity. Of the three conditions, condition (D)

certainly describes most common economic situations.

It is not unreasonable to assume that at least one of

the above conditions hold for the infinite horizon model.

As indicated earlier, based on the information

vector alone, there seems little h0pe to obtain a long

run Nash Optimal contract. However, by introducing a
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monitoring device, a sufficient statistic, which is

defined below, the 151 model can be transformed into

a "perfect state information" (PSI) model. The process

of transformation will be described in the next section.

The sufficient statistic is defined in such a way that

knowledge Of its value is sufficient to design an

Optimal contract and control the system.

First, the term statistic is defined. A statistic

for the 181 model is a sequence (no,...,nN_1) of

functions nk: P(Q)i>k 4 5k where Ek is non-empty

with generic elements of E k = 0,1,...,N-1. Then
kl

for a statistic (no,...,nN_1) to be sufficient for the

151 model, all Of the following conditions have to be met.

(a) The statistic must guarantee that the

incentive constraint set Uk(¢k) can be recovered

from nk(p;¢k). This enables the PSI model which is

defined on Ek to search for an Optimum among the

same set of feasible contracts.

(b) It must guarantee that the distribution of

depends only on the values of E and I Thus,
k k'

can be used to construct the state

gk+1

the variables gk

space of the perfect state information model.

(c) It must guarantee that the net return function

to the principal 9 corresponding to a contract n can

be computed from the distribution induced on the

(gk'Ik) pairs.
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What the sufficient statistic does is that the principal

can take the information vector and from there con-

struct an independent set of variables which he can

use to assess the performance Of the agent.

The 181 model describes very closely the reporting

function of an entity. Management performs their

routine tasks and decision making. A series of payoff

outcomes occur and management chooses a reporting

function to produce a set Of financial statements at

the end of each period. In most corporations, the

principal or the owner does not take part in both the

decision making and the reporting processes. The actual

payoff outcomes are then unobservable by them. Then

the financial statements are presented to the auditors

who perform the various audit tasks, make the necessary

recommendations for alteration and attest the financial

statements.

If one were to investigate the definition of a

sufficient statistic closely, it is not difficult to

see that it actually describes the audit function. The

auditor takes the reported outcome which is in fact

the information vector. After performing the audit tasks

and making the necessary changes, he produces the audited

financial statements. If an audit is performed in

accordance with the general accepted auditing standards,
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it is believed that the audited financial statements

provides fair representation of the financial standing

of the company. In other words, from the audited

statements one can induce an expected payoff or return

to the owner which is exactly Condition (c).

The requirement that the distribution of §k+1

depends only on the values of 5k and Ik and not

on the information vector ¢i parallels the auditing

profession's emphasis on independence. Auditors are

not to be involved in the reporting function of the

company.

Condition (a) apparently is imposed more for

control purposes than reporting. However, this condi-

tion implies that the principal can use the audited

financial statements to search for optimal decision.

The possible alternatives induced by these statements

are identical with those if the actual payoffs are

known. This guarantees that the decisions made are

feasible and, as shown in the later section that, they

are Optimal also with respect to the actual payoff.

This fulfills the Objective of the financial statements

that they should provide relevant information for

decision making.
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7.3: The Perfect State Information Model (PSI)

The manner that the sufficient statistic is de-

fined implies that given a distribution of the initial

payoff and the information vector, the principal can

transform the reported payoff into an expected payoff

with an independent probability distribution. If a

sufficient statistic is given, that is assuming it

exists, and its values can be computed from the know-

ledge Of P(Q) and § then the principal can definek'

a perfect state information model in terms of Bk.

For notational purposes, a (A) is used to denote

Objects in the PSI model.

The perfect state information model consists of

the following:

E k = O. 1' o o o 'N-l State Space
kl

C Incentive space

A

Uk’ k = 0,1,...,N-l Incentive constraints

a Discount factor

A

gk, k = 0,1,...,N-l One period net return to the

principal

A

t , k = 0,1,...,N-2 Probability distribution of

k (e I: I)
k+1 ~k’ k

N Horizon
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7.4: Reduction of the Imperfect State Information Model

This section studies the relationships Of the

various Objects between the 181 and the PSI models.

The discussion on the existence of a sufficient statistic

will be deferred until the next section. Throughout

this part Of the analysis, a sufficient statistic is

assumed tO exist. The Borel model as proposed in

Chapter VI guarantees the existence of an optimal solu-

tion (Theorems 6.13 and 6.14, Lemma 6.8 and Theorem 6.17).

By imposing the measurability restrictions on the E

and the incentive spaces, the PSI model consists of a

well-defined and measurable state space E with a

.—

probability distribution on E which depends on Ek

and I It becomes a direct application of the Borelk’

model. Hence an Optimal contract for the PSI model is

guaranteed to exist. The natural question to ask is

whether or not the Optimal contract Obtained from the

PSI model is also optimal for the 151 model.

In order to establish correspondence between the

two models, the initial probability measure on E

O

must be ensured such that it can be induced from know-

ledge Of the distribution of the initial payoff (Theorem 7.1).

The inter-relationship between the probability distri-

bution on the set (wo,Io,zo,...,wk,Ik,zk) 6 Dk and

A

that on (EO,I given a contract n in
_r

O,...,1k_l,ek)
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the PSI model is then derived (Lemma 7.1). The analysis

goes on to show that for every contract in the PSI

model, a corresponding contract in the ISI model can

be constructed (Theorem 7.2).

A

Next, given a particular contract w in PSI,

the total expected discounted net returns under the two

models are related by their respective probability

distribution (Theorem 7.3) and so are the Optimal total

return functions (Theorem 7.4). The final step is to

show the correspondence of the Optimal contracts between

the two models. I can only show a nearly Optimal con—

tract for the PSI model under the finiteness assumption

of the finite horizon model or the Assumptions (N) and (D)

of the infinite horizon model is also nearly Optimal for

the ISI model. However, correspondence for Optimal contracts

is shown for all assumptions Of both the finite and in-

finite models (Theorem 7.5).

The ISI model can then be reduced to the PSI model

for nearly Optimal contracts. In terms of the auditing

model, this implies that the nearly Optimal contracts

derived from the audited financial reports are as good

as those as if one were to Observe the actual payoff.

7.5: Sufficient Statistic
 

In this section, a sufficient statistic is prOposed

and shown to meet all the three conditions of a sufficient

statistic.
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It is derived by a process called filtering. In

essence, filtering is very similar to the commonly

known process of Bayesian statistics. The system starts

with the initial wealth outcome wo which has a priori

distribution p. After 20 is observed, the distri-

bution is "up-dated". The up—dated distribution is

called a posteriori distribution and is shown to be

well-defined and unique (Lemma 7.6). At the kth

stage, there will be some a priori distribution p;

of “k based on dk_1. Contract Ik-l is negotiated,

some 2 is observed and an a posteriori distribution
k

of wk conditioned on (¢k-l'Ik-l'zk) is computed.

This distribution is again well-defined and unique.

The process of passing from an a priori to an a pos—

teriori distribution in this manner is called filtering.

Then the sequence Of a posterior distributions of

wk' pk: P(Q)4>k 4 P(C) is shown to be a sufficient

statistic (Theorem 7.6).

The filtering process seems to capture very closely

the audit function. The auditor comes into engagement

with a client. Based on initial interview with manage—

ment and evaluation of the company's internal contral

system, the auditor form some a priori Opinion about

the 'correctness' of the reported outcome, or what the

initial payoff should be. After performing the necessary
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substance and compliance tests, the audit will up—date

the distribution. Such a distribution will again be

up-dated in subsequent periods based on the prior years'

working papers. The audit report thus become the out-

come of the filtering process.

In the process described above, again I am assuming

that there is no incentive nor moral hazard problems

exist between the principal and the auditor. The auditor

is acting strictly in the best interest Of the principal.

If the auditor is performing the audit tasks in the

best possible manner, the audited financial statements

is adequate for the derivation of a long-run Optimal

contract to be negotiated between the principal and

the agent.



CHAPTER VII*

IMPERFECT STATE INFORMATION MODEL

7.1* Introduction
 

The imperfect state information model consists

of two stochastic time series, namely the payoff

and the signal on the payoff. Obviously, the later

series is parameterized by the first one. In terms

of the economic model, the payoff is the wealth

outcome of a particular action selected by the agent.

He observes the payoff and then decides on the

manner that the outcome is to be reported to the

principal.

The information which is available to the

principal is a vector of the following form

Q = Z Ck 0 o...ck_lzk, k = O,...,N-l

where C is the incentive space and Z is the signal

space both Of which are assumed to be nonempty Borel

spaces. To the principal, since he has no direct

control on the form and magnitude of Zk, the report

or signal in his mind is nothing but a random event

236
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stochastically generated via a signal kernel

s(dzk+1)Ik,wk+1). The zk+1 Signal is then added

to the past Signals and incentives (20.10,...,zk,1k)

to form the (k4—1)st information vector

Qk+l = (ZO'IO""’zk'Ik'zk+1)' The first information

vector o; = (20) is generated by the initial

Observation kernel s0(dzo)mo), and the initial pay-

off wo has some given initial distribution p.

Since Qk is Observable by both the agent and the

principal, it becomes a basis for incentive contracting.

However, it is well-known that any incentive based

solely on Qk is likely to induce misrepresentation

of the outcome. The following section will develop a

sufficient statistic for the payoff, or more specific,

a control on the reporting function.

To describe the system in terms of p, the

initial distribution of mo, define

t(B)w.I,J) P([Y= f(w,I,J,y) 6 B})w.I.J)

p(f'1(B)(w,LJ)lw.I.J)

for B 6 60.

Thus t(Blw,I,J) is the probability that the (k+—l)st

state is in B given that the kth state is w.

the kth contract is I and the kth total net

return to the principal is J. Alternatively, the
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system can be viewed as moving from wk to wk+1

via the state transition kernel t(dwk+11wk'Ik'Jk)

and generates a return to the principal of g(wk'Ik)‘

7.2* The Imperfect State Information Model (ISI)

The model will consist Of the following objects

and their corresponding assumptions

0 Payoff space: a nonempty Borel space

Incentive space: a nonempty Borel space

Signal space: a nonempty Borel space

Incentive constraints: For k = O,...,N-l,

let 6k = Zoco'°'Ck-lzk' An element Of

ék is called a kth information vector.

For each k, U is a mapping from ék
k

to the set of nonempty subsets of C such

that

I‘k = {(oka) : grk 6 6k. 1k 6 Uk(Q’k)]

is analytic

Discount factor: a positive real number

Payoff to the owner: an upper semianalytic

function from PR to R*

Initial signal kernel: a Borel-measurable

stochastic kernel on Z given 0

Signal kernel: a Borel-measurable stochastic

kernel on Z given CQ
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t State transition kernel: a Borel-

measurable stochastic kernel on 0 given CC

N Horizon: a positive integer or a

P Initial payoff probability space: a nonempty

Borel space.

Definition: A contract for ISI is a sequence

v = (“O""'uN-l) such that, for each k, k = O,...,N-l.

“k(dIk‘P7¢k) is a universally measurable stochastic

kernel or C given P(Q)§k satisfying

uk‘Uk%>1P:¢k> = 1 V (p.¢k) e p(omk.

If for each p,k and , (dI p:¢') assigns mass
“1: k k

one to some point in C, v is said to be non-

randomized. Let U denote the set of all contracts n.

For ease Of notation, let Dk denote the set of

all sequences of the form (mo,Zo,Io,...,wk,Zk,Ik) 6

QZC...QZC. Thus, given p 6 P(Q) and

n = (”o""'uN-1) 6 U, by Theorem 6.3, there exists

a sequence of consistent probability measures

Pk(n,p) on Dk’ k = O,...,N-l defined on measurable

rectangles by
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Pk(1r.P)(QoZogo. . 'flkEk-gk)

= IQbIZOIS-o...jflkjgk Uk(9_~k‘p7zorlol°-°Ilk_lzk)

S(dzk‘Ik—l'wk)t(dwk‘Ik—l'wk—l)

...uo(dIolp:Zo)so(dZoIwo)p(dwo)

where .Q 6 B Z.6 E , 9-6 B
0' Z C'

Definition: Given p 6 P(Q), a contract

v = (“0""'uN—l) 6 H and a pOSItlve integer K g N.

the K-stage payoff corresponding to n at p is

K-l
k

JK'F(p) = ‘er-i[k§o a g(kak) ldPK_1(Tr.p)-

If N < m, the total net return to the principal

corresponding to v is JN v' For the finite horizon

model, either one of the following conditions on the

integral is assumed

N-l

a
[Z k+

(F-) fDN-l k=0 9 (wk.Ik)]dPN_1(7r.p) < a

V v6U.p6P(O).

+ N-l k _

(F > fgh 1 IQ§B a g (wk.1k)]dPN_l(v.p) < .

V Tr61'I.p6P(Q).

Then, JN n can be rewritten as follows

I

N-l k

JN’W(p) = gig a ka g(wk.1k)dpk_1(v.p)



241

If N = a for infinite horizon models, then

J = lim JN n’ the return to the principal corres—

N-Hn '

ponding to n. In order to ensure the limit JV is

well-defined in R*, one of the following conditions

is assumed on g

(P) 0 g g(w.I) for every (w,I) 6 0C.

(N) g(w.I) g 0 for every (w.I) 6 OC.

(D) O < d < l and for some b 6 R,

-b g g(w,I) g b for every (w,I) 6 0C,

Hence

J7me) = ki? 03‘ J‘Dk g(wk.Ik)de(7T.p) V W e n. p 6 pm).
=o

The concepts of Optimality at p, Optimality,

e-Optimality at p and e-Optimality of contract are

analogous to those given in Section 3.3*.

To aid in the analysis of the imperfect state

model, a sufficient statistic is introduced. It is

defined in such a way that knowledge of its value is

sufficient to design an Optimal contract and control

the system.

Definition: A statistic for the model ISI is a

sequence (no,...,nN_1) of Borel—measurable functions

H

nk: P(Q)§k 4 E where :k is a nonempty Borel space,

k = O,...,N-l.
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Definition: The statistic (nb,...,nN_l) is

sufficient (SS) if:

(a)

(b)

(C)

For each k, there exists an analytic

A A

set Pk C EkC such that prOjk(Tk)
D—l

=:_,k

and for every p 6 P(Q)

A

Pk = [(¢k.I)= [nk(p:Q&).I] 6 TR}-

-Ae-tDefine Uk _k) — ( k)gk.

There exist Borel-measurable stochastic

A

kernels tk(dgk+l‘§k'lk) on :k+1 given

EkC such that for every p 6 P(Q).

n 6 H. E 6 B: , for k = O,...,N-2,
—k+l "k+1

we have that

13k,fk) = Pk+1(w'p)[nk+l(p7ak+l) 6 Ek+1I

nk(P7¢k) = Ek'Ik = ik]

A D—O

tk(:"k+1

for Pk(n,p)-almost every (Ek,Ik), that is,

the set

A _

{(wolzoIIoIOOOIwkozklIk) 6 11k 3 tk(:k+1‘zk'lk)

= Pk+1(WaP)[’] When 5k = nk(P:¢k)IIk = 1k}

has Pk(n,p)-measure one.

There exist upper semi-analytic functions

A

gk: 9k 4 R* satisfying for every p 6 P(Q),

TFEH' k=O'Ooo'N-l'
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for Pk(n,p) almost every (gk'lk) where

the expectation (in the sense of an outer

integral) is taken with respect to Pk(n,p).

Condition (a) of the definition of a sufficient

statistic guarantees that the incentive constraint set

Uk(¢k) can be recovered from nk(p:¢%). Indeed, for

any p e P(o). ok 6 ek, k = O,...,N—l

A

ukwk) — Uk[nk(p:¢k) ]-

If Uk(¢k) = C for every gk 6 ék' k = O,...,N—l,

A

then condition (a) is satisfied with Pk = EkC. This

is the case of no incentive constraint. Condition (b)

guarantees that the distribution of gk+1 depends only

and I . Thus, the variableson the values of ER k

gk can be used to construct the state space of the

perfect state information model. Condition (c)

guarantees that the net payoff to the principal

corresponding to a contract can be computed from the

distribution induced on the (gk’Ik) pairs.

7.3* The Perfect State Information Model (PSI)
 

If a sufficient statistic as defined above exists

and its values can be computed from the knowledge Of
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P(O) and then a perfect state information@k'

model can be defined in terms of Ek. For notational

purposes a (A) is used to denote Objects in the

PSI model.

Definition: Let the ISI model and a sufficient

statistic (q0,...,nN_1) be given. The perfect

state information Optimal incentive model (PSI)

consists of the following:

Ek, k = O,...,N—l State space

C Incentive Space

A

Uk' k = O,...,N—l Incentive constraints

a Discount factor

A

gk, k = O,...,N-l One-period net return to

the principal

A

tk' k = O,...,N-2 State transition kernel as

defined in Definition SS(b)

 

Theorem 7.1: Define m: P(Q) 4 P(EO) by

co(p) (50) = (Q souzo: T10(p:Zo) e gollwommo)

E 6 E.
w :

O

for every

Then m is Borel-measurable.
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Proof: AS defined, m(p) is the distribution

of the initial state 60 in PSI when the initial state

we in ISI has distribution p. Then

w§fl(wo.p) = SOHZO: T(o(p:Zo) 6 )Iwo)
'—

H

H

is Borel-measurable for every 50 6 65 by Corollary

6.1.1. Define a Borel-measurable stochastic kernel

on Q given P(Q) by q(dwolp) = p(dwo). Then

co(p) (i0) = f wEo(wo.p)q(dwo)p).

By Theorems 6.1 and 6.4, m is Borel-measurable. QED

A .

Theorem 7.2: If n = (”O'°'°'GN-l) is a contract
 

for PSI, then the sequence

A A. .

(uo(d10)no(p7¢o)].....pN_l[dIN_l)no(p.¢6).Io.

""IN-2'nN-l(p7¢N-1)]

where Ok = (Z I k = O,...,N-l is ao, 0'...'Ik-1'Zk)

contract for ISI.

Proof: Condition (a) of the statistic {nk} to

be sufficient guarantees that the incentive constraint

set can be recovered from nk(p:Ok). Since

Ik («A(J) : ok 6 ek. I e Ukwkfl

(Maggi) : [R(pngng 6 9k}

and

A — P
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Thus for and p 6 P(Q), Ok 6 ék’ k = O,...,N-l

A

Uk(gk) = Uk[fik(P:¢k)]

and the result follows. QED

Theorem 7.1 ensures that the initial probability

measure on E can be induced from knowledge of the

distribution of the initial payoff. Theorem 7.2 provides

the very preliminary result that for every contract for

PSI, a corresponding contract for ISI can be constructed.

Obviously, the question to ask is whether the Optimal

contract for ISI can be induced from this Optimal con-

tract for PSI. Before exploring this question, a few

definitions and notations are in order.

Definition: For p 6 P(Q), define the mapping

VP,k : DR 4 :OCOH'Eka by

vp’k(worzovlooo:-owkozkrIk)

= [no(p:¢o).Io....,rk(p;o’k),1k]

where Theorem 7.2 holds. Thus, for q 6 P(Eo) and

A'- A A (i h ' fn — (“O""'uN-1) 6 , t ere :s a sequence O con-

sistent probability measures Pk(v,q) generated on

SOCO...Eka, k = O,...,N-l, which are defined on

measurable rectangles by
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A A _‘ C H C )

Pk (7r,q) (::. . . .:._k —k

A A

= I50 (C ...jgk pk(gkl§o.xo.....Ik+1.ek)tk_1(dikl§k_1.1k_1>

A

...uo(dIOI§o)q(dEo)

where E 6 B: , g_ 6 B
2k "k k Ck

A+ A- A A A

When (F ). (F ). (P), (N) or (D) holds, the net

total return to the principal corresponding to a contract

9 for PSI at E 6 E is

O

N-l
A k A A A

J A == 23 a I g (E .I )dP (v.p )

N,W(§) k=0 E c ...: c k k k k 5
o O k k

where N 6 [1,o] and the optimal return for PSI at

E E is. 6 o

7.4* Reduction of the Imperfect State Information Model

This section is devoted to study the relationships

between net returns, Optimal and nearly Optimal con-

tracts for the ISI and the PSI models. First, for a

A .

contract n for the PSI, these Objects are related to

A

the probability measures Pk(n,p) as defined in

Section 7.2 in the following manner.
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A A

Lemma 7.1: Suppose p 6 P(O) and n 6 H. Then
 

for k = O,...,N-l and for every Borel set

B C SOCO...:ka, we have

A ... AA

Pk(v.p)[vpfk(B)] = Pk[v.e<p)](B).

ea...
=0 e

0

Proof: It suffices to prove if

c 66 ,...,E 65:, g 63 then
-0 Co k Ck k Ck

A

Pk(7T.p) ({no(p:¢o) 6 50 Io 6 Co.....nk(p:(7fk) 6 5k. Ik 6 9k?)

_ A A _ _

— Pk[7r.co(p) ] (so So: - --:_~=_k 2k)

where

(no(p:oo) 6E0. IO 6 Co.....nk(p:q() 6 Ek' Ik 69k]

{(wo.zo.10.....wk.zk.1k) : no(p:¢o) 6 50.

IO 6 co.....nk(p:¢k) 65k. Ik 69k)

oj = (20,10, . . . ,Ij_1,zj).

For k = O, the result clearly holds by the definitions

A A

of Po(Tr,p) on Do, cp(p)(;;o) and Po(7r,q) on :OCo.

_ A A

If Pk(r¢.p)[vp}k(B)l =Pkiv.co(p)](B) for k<N and

since

A

tk(-‘ik+i‘§k'lk) = Pk+i(”'P)[“k+i(P’¢k+i) 6 546+“

“WP a): 5k: 1k: EEK]

then
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'1 EC!

A

Pk+1(Tr.p) ({no(p:¢o) 6 O 0

A
m

'°°'nk+l(p7q<+l) 6 §k+i'1k+1 E -C—k+l})

A

= .. I .. I “k+i(9k+i‘5k+i)
{110(1): (30) EEOIJOESOI'°'IT)k(pI gk) GEk'Jkeg-k ik+1

A A

tk(d§k+1|nk(p:¢k).Ik)de(TT.p)

' c. C p C I ”k+1 —k+l‘§k+l)tk( ’k+l gk'Ik) th'w‘PH

Zo-T,"’:k-4< Zk+1

A

= P1:.+i[”“‘3(p)](io 90' ' 'ik+i E-k+1)° QED

The next theorem establishes the relation between

the total net return functions to the principal for the

. A

two models for a given contract n.

_ A_ A

Theorem 7.3: (F+,E+)(F ,F )(P,P)(N,N)(D,D). For

A A

every p 6 P(Q) and v 6 n. we have

A A '

J A(p) =1 J A(:o)co(1:>><<:iao).
7T :2 TTN. o No

Proof:

A

i J A<:)e<p>(d:o)
:0 N,V

A A A

=I Z) a f gk(§k.Ik)de(vr.pE)w(p)(déo).

O k=O COCO...;ka

BY (F+) or (F‘) if N < a, by monotone convergence

theorem if N = o and under (P)(N) and by bounded

convergence theorem when N = m and under (D)
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N‘1 k A A A

= a i I gk(§k.1k)de(W.pE)w(p)(dEo).
k=0 :0 :OCO. . . kaI

I
I

A A

By definition of Pk(n,pE) and w(p)

N-l A A A

= 2 (1k f_ gk(:k.ik)de[rr.co(p)]-
k=O :OCO...:ka

By Lemma 7.1 and condition (c) of a sufficient statistic

N-l

= 2: (1k 9( I )de (VIP)

k:0 ka L”k' k

= J A(p). QED

N,F

Before proceeding to prove the correspondence of

the Optimal return functions and Optimal contracts, a

few other results are studied. The following lemma

defines the Optimal return function for PSI in terms of

the initial payoff probability measure p. Next, the

relationship between the Optimal return functions for

the models for p 6 P(O) is explored.

A+A_AAA

Lemma 7.2: (F )(F )(P)(N)(D). For every p 6 P(Q)
 

A*

i JN(eo)e<p)<d§O)

O

(J (6o)m(p)(d§o)

Eo N,
n.

:
1
)
“
,

:
l
>
'
U
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:
1
) A

Proof: For p 6 P(Q) and 6 H

A-k A

l JN(§o)e(p)<d§O> 2 J A(Eo)m<p><déo)
0 :0 N,TT

A E2 in g JN #(-o)m(p)(d§o).

W6U "O '

A

Let c > O and let 7’ 6 fi be e—Optimal. If

A*

n<p>((:olJN(:o) «J) = 0.

Then

I

A A

I J A (50)m(p)(d50) ; f J;(§o)m(P)(dEo) - e

: N,F E
OO

. A A*

.. iuR ; JN #(Eo)w(p)(d§o) ; i JN<:o)e(p)(d:o)

WEU ”o ' ”O

If

A*

co(p) ((50 : JN(50) = 00)) > 0.

Then

A Ei J A(so)e(p)<d.0)
:0 N,W

A* A*

2 (J: JN(EO)cp(p) (ago) - e + :p(P) ((90 : JNGO)

(so JN(EO)<w)

If

A*

f JN(;O)e(p>(d;o) = -e.

*

{EonN(Eo)<w}
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then

A

f J§<§o>w(p><d§0) = -e
H

1
1

O

and

A A*

sup 1 J A(:O>n<go> ; I JN(§O)m(p)(d§o).
AA

WEE o N’W o

[
I

1
1

Otherwise, the right-hand is finite for any a > O

and

I 9 <5 ) (g )SUP A cm 0 =o

#6fi :0 N'”

. A* A

.. i JN(go)e(p)<dzo) = in? i JN #<:O)e(p><dgo).

"o W6H ”O '

QED

+ A+ _ A__ A A A

Theorem 7.4: (F ,F )(F ,F )(P,P)(N,N)(D,D). For
 

every p 6 P(Q)

* A9:

JN(p) g JN(§O)e(p)(d€O).

I
N
C
—
J

0

Proof: By Theorem 7.3

*

J (p) = SUP J (p) 2 sup J A(p)

N WGH N’W — #6fi N,U

A

= sup I J A(SO)O(P)(d§O)-

A A E N,F
V6H 0

By Lemma 7.2

.... * d

- i JN(;O)e(p)( so). QED
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The next result shows the correspondence of

contracts for the two models.

_A_ A

Lemma 7.3: (F+,£+)(F ,F )(P,P)(N,N)(D,D). Let

A A

p 6 P(Q) and F 6 H be given, there exists n 6 H

such that

JN'F(p) A(go)w(p)(d§o).

N,W
II

I
I
I
C
—
‘
a

q
Proof: Let p 6 P(Q) and :

1 ll (uo.....uN_1) 6 U

be given. For k = O,...,N-l, let Qk(v,p) be the

probability measure on E C defined on measurable

rectangles to be

QkUanE,k 9k) = Pk(J.p)({nk(p:¢g) 6 5k. Ik 6 Ckl)

\

H a Borel-measurable stochastic kernel hk(dIk)Ek) on

Ck given Ek such that for every Borel set

B MC C

k k’

A

ok(v.p)(B) = ukusg Isk)dok(w.p).

I
I
I

I

kck k

In particular,

1 Pk(J.p)({¢'.Ik) 6 Tki)

A

= Pk(v.p)({[nk(p:¢().1k] E Tkl)

A

= Qk(W.p)(Tk)

A A

= f uk(Uk(€k)l§k)ko(J.p).

”kck

I
I
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A

By altering uk(dIkl§k) on a set of measure zero if

necessary, we may assume that

A

Qk(W.p)(B) = f uk(ngI§k)ko(V.p)

ka

I
I
I

A A

and pk(Uk(§k)l§k) = l for every 5k 6 Ek' Let

A_A A

v - (no.....uN_1>.

PSI. Since

A .

Then TT‘ is a contract for

w(p)(§o) = (Q so({zo: no(p:zo) e gollwo)p(dwo>

v es:
:0

0

Clearly, the marginal of Qo(n,p) on E0 is ¢(p)

and for k = O, by Lemma 7.1

, I 6 C

A A

Pomcupungo e- 0 _kn.
lo

QO(J.p) (Eb _C_o)

Now assume that

= c - A A E J“ 6 ‘

Then

Qk+1(rr,p) (Ek+l —C-k+l)

A

= e fc “k+1‘9k+i‘-Ek+i)d0k+1”'p)
Zk+l—k+l

A

( ( -¢j )6 e w Uk+l(E-k+l‘nk+l(p7gk+l))dpk+1(Tnp).

T“k+1 p. k+1 :k-l-l"

By condition (b) of Definition SS
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t
fi

E-k 9k ik+ l

= I I
E C ...= C
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A A

L1k+1 (EMU Ek+l) t (dgk+l‘ nk+1 ‘97 qt”) 'Ik) de (”'P)

A A

i “k+1‘9k+1‘Ek+i)t(dgk+i‘gk'IkakW'P)

A A

LJ1~'.+1(£k+ll §k+1)t(d§k+llgi,1k)

O O ”k k 5k+l

A A

deiF:w(P)]

A A ._
= pk+l[rr.o(p) ] ({§k+1 6 ik+1'1k 6 Elwin

m

For 'k 6

Qk (mp) (5k 9k)

By Theorem 7.3

JN,n(p)

Definition:

6 fi is said to

i J A(to)q(deo>

Z q

a, ,.g e e , k
Ck k C

ll

0 Z

l
.
.
.
-
l

A A

= Pk[J.co(p>]({§k 6 518 1k 6 gkl)

N,# (so)e(p)(dgo). QEDll

N
I
L
-
o

C
l
>

0

Let q 6 P(Eo) and e > O, a contract

be weakly q-e-Optimal if

A* _ A*

i JN(EO)q(d§o) - e If i JN(§o)q(d§o) < an

H "O

' A* e _
1f JN(§o)q(dso) — w

“
F
L
—
a

O

A

The contact v is said to be q-Optimal if

A A*
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Lemma 7.4: Let J: O 4 R* be upper semianalytic.
 

Then for e > 0, there exists u E U(ClQ) such

that TU(J)(w) 2 T(J)(w) - c for every w E Q,

where T(J)(w) - 6 may be a.

Proof: By Theorem 6.14, there are universally

measurable selectors um: Q 4 C such that for

m=l,2,... and w€§7. UmEUhL‘) and

T(J)(w)-c if T(J)(w) (en

T (J)(w) 2

”m ' 2m if T(J) (w) = a

Let u(dIIw) assign mass one to u1(w) if

T(J)(m) < m and assign mass 1/2m to um(w).

m = 1,2,... if T(J)(w) = a. For each §_€ BC

Xg[“1(‘*')] if T(J) (w) < on

u(§Jw) = a

Z 3; xcfummn if T(J) (w) = a»
m=l 2 -—

is a universally measurable function of w.

u is a universally measurable stochastic

kernel with the desired properties. QED

Lemma 7.5: (F-) If JO: 0 4 R* is identically
 

zero, then Tk(JO)(w) < a for every w E O. K = l,...,N.

Proof: Suppose for some K g N and mo 6 O

that for every w G O

T3(Jo)(w> < a j O,...,K—l
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and

k

T (Jo)(wo) — w

3 universally measurable selectors uj: Q 4 C

j = 1,...,K-1 such that uj(w) E U(w) and

(TuK_jTj'1) (JO) (w) 2 Tj (Jo) (w) - 1

j = l,...,K-1 V m 6 Q,

Then

(Tul...TuK_1) (JO) 2 (Tul...TuK_2)[T(JO) - 1]

; (Tu1~--TuK_3)[T2(JO) — 1 — a]

K-2
2 TK-1(Jo) - (l-ra-+..u+a ).

By Lemma 7.4, there is a stochastic kernel

u E U(CIQ) such that (TuOTK-l)O (JO)(wo) = w. Then

K-l(

(TuoTul.-.TuK_l)(JO)(wo) g TuofT Jo)-

l-d-...-dK-2] (w )
0

Choose any u E U(CIQ), let W = (u ,...,uK_1.ul,...,u)

so that v E H

K-l
k

2 d gdq (mp )

k=o I k u’o

J )
K,7T(wo

(Tuo...TuK_1) (Jo) (mo) = co

for some k g K-l f gqu(v,pw ) = a.

o

This contradicts (F'). QED
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r ..A- A A A

Theorem 7.5: (F+,B+)(F ,F )(P,P)(N,N)(D,D)
 

* A* :

JN(p) = i JN(§o)m(p)(dso) v p e p(n).

”0

Furthermore, if 9 is Optimal, m(p)-0ptimal or

weakly m(p)-—e-0ptimal for PSI, then 9 is optimal,

optimal at p or e-Optimal at p respectively for ISI

If 9 is e-Optimal for PSI and (F-,§-), (N,§) or

A

(D,D) holds, then 9 is also e—Optimal for ISI.

*

Proof: JN(p) sup JN,v(p)

WEE

A

inf/3‘; J A(Eo)co(p) (GEO)

WEN o N'W

|
|
\
/

A*

= i JN(§o)w(p)(dEo)-

“o

By Lemma 7.3, then

* Air

JN(p) = l JN(EO)m(P)(dEO) v p 6 9(0).
ha

.1

O

A A

Let v be e-0ptima1 for PSI. Clearly, under (N,N),

A* V _.

JN(§O) < a :0 e :‘o

A*A

J A(EO) g JN(§O) - e V :0 6 30'

- A- A*

Under (F ,F ), by Lemma 7.5, JN(§o) < m, and again

the above holds. From Theorem 7.3 and the first part

of this theorem
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, A

J (p) = J (5 )co(P) (<35)

Nu? E-[zo N7]; ° o

A

2; J;(:O>cp<p) (d‘io) - a
-0

*

= JN(p) - e

A

F is e-optimal for ISI.

Similar arguments hold for the rest of this theorem. QED

7.5* Existence of Statistics Sufficient for Contracting

This section presents two statistics which are shown

to be sufficient for contracting. The first statistic

is derived by a process called filtering. To aid the

discussion of filtering, there is the following basic

lemma.

Lemma 7.6: For the ISI model, there exist Borel-
 

measurable stochastic kernels ro(dwo‘p:zo) on 0

given P(Q)Z and r(dwlp;I,z) on 0 given P(Q)CZ

which satisfy

(A) if) so(§o‘wo)P(d%) = g; ro(Qolp:zo)so(dzOlwo)p(dwo)

—o -0

V jg 6 30. go 6 52. p 6 P(Q)

(B) fs<§lx.w)p<dw> = J“ j r<§lp:1.z>s(dzlx.w)p(dx)

£2 0;

VQGBO.§EBZ,p€P(G),I€C.
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Proof: For fixed (p;I) E P(O)C, define a

probability measure g on OZ by specifying its

values on measurable rectangles to be (Theorem 6.3)

q<gglpm = J" s<§lI.w)p(dw).

D

By Theorem 6.1 and 6.4, q(d(w,z)lp:I) is a Borel-

measurable stochastic kernel on OZ given P(Q)C.

By Corollary 6.2.1, this stochastic kernel can be

decomposed into its marginal on Z given P(Q)C

and a Borel—measurable stochastic kernel

r(dwlp:I.z) on 0 given P(Q)CZ such that the

theorem holds.

The existence of ro(dwo‘p;zo) is proved in a

similar manner. QED

The system starts with the initial wealth outcome

mo which has a priori distribution p. After Z0 is

observed, the distribution is "up-dated". The up-

dated distribution is called a posteriori distribution

and will be shown in the next lemma to be just

ro(dwolp:zo). At the kth stage, k 2 1, there will

be some a priori distribution pé of wk ‘based on

¢k_1 = (zo'Io""’Ik-2'zk—l)' Then, a contract Ik-l

is negotiated, some 2k is observed, and an a posteriori

distribution of wk conditioned on (¢k_1,1k_1,2k)

is computed. This distribution is just r(dw‘péylk_1,zk).
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The process of passing from an a priori to an a

posterior distribution in this manner is called

filtering. The process is formalized in the following

definitions.

Definition: The function f: P(O)C 4 P(Q) is

defined by

(C) f(p:1)(5_>) = ft(glw.1)p(dw) Vg e 60

is called the one stage prediction equation.

By Theorems 6.1 and 6.4, f is Borel-measurable.

Definition: Given a sequence gk 6 ék such that

¢k+1 = (gk'lk’zk+l)' k = O,...,N-Z and given p 6 P(Q),

define recursively

(D) po(p:¢6) = ro(dwolp:zo)

(B) pk+1(p:¢k+1) = r(dwlf[pk(p:¢k).Ik]:Ik.Zk+l)

k = O,...,N-Z.

Thus defined, for each k, pk: P(Q)<I>k 4 P(O) is

Borel-measurable. Equations (A)-(E) are called the

filtering equations corresponding to the ISI model.

Lemma 7.7: Let the ISI modle be given. For any
 

p 6 P(Q), v = (u0,...,uN_l), v 6 H and ER 6 60, then

pk (TT,p) [wk 6 _Q‘kigk] = Pk (p7gk) (.Qk)

for Pk(n,p) almost every ¢k, k = O,...,N-l.
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Proof: For any §% 6 B and 6 B
0 go 2

{2 £2 ] po(p:zo)(§%)dpo(v.p) = {2 £2 3 ro(§blp:zo)dpo(n,p)

L 0 ‘0 o -0'

= g g ro(£blp:zo)so(dzo‘wb)

—.o

P(dwo)

= g sosolwapwwo)
—o

= Pomp) (mo 6 530. 20 e gob.

The theorem follows for k = O by the definition of

conditional probability. Now assume the theorem holds

for k. For any 2k 6 HQ , 9k 6 Eb, Zk+l E 5% and

k

£§+1 6 50' Then

r 6? I 6C 2 'Z 1pk+l(p:Q&'Ik'
zk+1)(£&+1)de+

l(V.P)

\%( —k' k —-k' k+lt_k+1.

= f f Pk+i(P’Qi<' "k+1) (Qk+l)

Wkeq’k} 9k 1im £k+l

s (dzk+lllk’wk+l)t(dwk+llwk’Ik)

“k (dlklp: (Pfk) de (mp)

I f pk+l(p7¢k'Jk' zk+l) (flkn)

k -C-k 531t+1 £194

S(dzk+l‘Ik"”k-+l)t(dmkstl‘""k'Ik)

uk(dIkIp:flk)[pk(p:¢k)(dwk)]de(v.p)

= I I I I f Pk+1(P’¢k'Ik'zk+i) (Bk-t1)

{65%} 9k 9k flk+l -Z—k+1

S(dzk+i‘1k"”k+1)t(dwk+1‘“’k'1k)

[Pk(p7¢k)(dwk)]uk(dIklp:¢k)de(F.p)

'
D
L
’
:
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= I I J‘ r(_Qk+1lEi-pk (D:gk) 01k]71kt zk+l)

Wkeq’k] gt flk+l gk+1

s (dzk+l‘Ik' wk+1)f{pk(p7¢k)'1k](dmk+l)

Uk(dIkIP7¢&)de(VoP)

= {(3 g: l g ilk S<Ek+l‘1k'wk+l)f[pk(P:¢k)'Ik](dwk+l
)

k k —k —-+1

p,k(dlklp:¢k)de(TT:P)

a £1 s(-Z—k+lllk'w1v<+l)t(dwk+1lwk)[pk(p;¢k) (d‘kn

—- i-+l

uk(dIklp:¢k)de(W.p)

= Wk‘gik} i

= f I f I s(g-1~:+llIk'mk+l)t(du’k+llmk'1k)

kEQk} 3% 9k §h+1

uk(dIkIp:¢k) [pk(p:¢k) (dwk) lde(Tr.p)

= J‘ I I S(§k+1‘1k'wk+1)t(d°’k+1‘“’k'1k)

Wight} 9k 9k+i

Uk(dlkip79&)de(FIP)

= Pk+l(Tr'P) (Wit ‘5 q’k' Ik E 9k' Ll’k+1 ‘5 9k+1' zk+1 ‘5 §k+l})°

By the definition of conditional probability

Pk+1("'P) ”k+1 E £1k+1mi<+1] = Pk+1(P’¢k+1)(9k+1)

for Pk+1(v,p) almost every Qfi. QED

Theorem 7.6: For the ISI model, assume that
 

Uk(w) = C for every w 6 Q and k = O,...,N-l. Then

the sequence [po (p; (30) , . . . ,pN_1(p;¢N_1)] defined

by (D) and (E) is a sufficient statistic and the

resulting perfect state information model is stationary.

4
'

.
-
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Proof: Let Ek in the Definition SS be

P(Q), k = O,...,N-l. Since pk: P(Q)§k 4 P(Q) is

Borel-measurable for each k (p0,...,pN_1) is a

A

statistic. Let Pk = P(Q)C, k = O,...,N-l. Then

condition (a) of Definition SS is satisfied. For

g 6 P(Q), I 6 C and 5_6 E§(Q), define

_z_<§.I._E_> = {z e z=rtdwlf<§.1);1.z] e a}

A

t(§IE.I) =fJ“swans)I1.w’]t<dw’lw.1)a(dw).

O Q

But §j§,I,§_ is the (§,I)-section of the inverse image

of §_ under a Borel-measurable function. The

stochastic kernel

Hahn) = f 5(§11.w')t(dw'lw.l)

Q

is Borel-measurable by Theorems 6.1 and 6.4

A(_z_l:.1) .fJ‘S(§i1nn3twdw’hmIJE
(dw)

Q o

fk(§1w.1)§(dw)

Q

is Borel-measurable by the same theorems. By Theorem

A

6.1 and Corollary 6.1.1, t(d§’l§,1) is a Borel-

measurable stochastic kernel on P(Q) given P(Q)C.

For H 6 H, p 6 P(Q), E 6 B and k = 0,1,...,N—2,
P(Q)

by Lemma 7.7

 



265

Pk+1(v.p)[pk+1(p:¢k+l) 6 Elpk(p:¢k)

= Pk+1(T"oP)[zk+l E E(Ekllk'iipk(p7¢k) = Ek' Ik = 1k]

= E[Pk+1 (Tr'p)[zk+1 E g(gk'ik’E) i¢kiIk1ipk(p7¢k) = Ekllk =

Big; J; S[§_(Ekriko§_) ilk! (”k-+1]

t(dwk+llwk.1k)[pk(p:¢&)(dwk)]iPk(p:¢k) = Ek.1k = ’

A _ - _

= t(_':'_‘EkII-k)

for Pk(v,p) almost every (Ek'ik) where the

expectations are with respect to Pk+1(v,p).

Condition (B) is satisfied.

For H 6 H, p 6 P(C). and k O,...,N-l. By Lemma

7.7

E[g(ufi<vlk)‘pk “37%) = Ek' Ik = ik]

E{E[g(u>k.Ik)I¢K.Ik](pk(p;¢k) = Ek' Ik = ik}

E(gg(wk.1k)pk(p:¢k)(dwk)1pk(p:¢k) = Ek, Ik = 1k]

f g(wk.fk)Ek(dwk)

Q

for Pk(V,p) almost every (gk'ik) where the expecta-

tions are with respect to Pk(v,p). The function

A

g: P(0)C 4 R* defined by

A _ ..

g(E.I) = I g(w.I>E(dw>

Q

is upper semianalytic by Theorem 6.12

A

g satisfies condition (C). QED
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Theorem 7.7: Let the ISI model be given. The
 

sequence of identity mappings on P(O)§k,

k = O,...,N-l is a sufficient statistic.

Proof: Let Ek in Definition SS by P(O)§k.

k O,...,N-l and let nk be the identity mapping

on P(O)§k. Then (no,...,nN_1) is a statistic.

A

Let Pk = P(C)? , k = O,...,N-l. Condition (A) is

satisfied. If ik+l 6 Bb(0)¢ . 3k 6 P(Q)§k,

k+1

and ik 6 Ck' define

(§k+1) - = {zk+l 6 Z‘ (P’zo'lo'""Ik-1'zk'Ik'zk+1)
(E.I)
k k

6 5k+l}

where 5k = (p7zo'Io""'Ik+l'zk}' Now, define for

A - -
_ _ ' p

k — O,...,N 2, the stochastic kernel tk(d’k+l‘§k'1k)

on P(QMk+1 given P(O)§kC by

A _ - - _ _

tk(5k+1‘§k'1k) ’ I S[(Ek+l)(§ f )‘Ik'wk+l]

+1 k' k

t(dwk+1iwk.ik)pk(gk)(dwk)

V E 6 B
i—k+l P(O)§k+1

where pk(§k) is as defined by (D) and (E). Using

similar arguments as in Theorem 7.6, it can be shown

A

that t is Borel-measurable. By Lemma 7.7
k
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Pk+1(”'P)[”k+1(P’¢k+i) E Ek+1h‘k(p“3‘k) = Ek' Ik = i1:1

= Pk+1(n—Ip)[(gk'1k'zk+l) E Ek+1]

= “i 51-. (§k+l) (E f )lik'wk+l]t(dwk+1‘wk'fk)pk(-E-k) (dwk)

+1 k' k

_ A l? f

‘ t(-—k+1 "k' k)

M

for Pk(v,p) almost every (Ek'ik)' Condition (B) is

satisfied. For k = O,...,N-1, define

A

9k : P(C/Mkc 4 R* by

Sk(§k.fk> = f g(wk.ik)pk(2k)(dwk).

0k

By Theorem 6.12, is upper semianalytic for each k

A

9k

For p 6 P(Q), V 6 U and k = O,...,N-l from Lemma 7.7

E[g(mk.lk)‘n(p7¢k) = 5k. Ik = ik]

= $k<Ek.ik)

for Pk(v,p) almost every (gk’fk) where the expectation

is with respect to Pk(v,p)

Condition (C) is satisfied. QED
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APPENDIX ONE

This appendix develops the rudiments of probability

measures on Borel spaces. It tries to summarize the

basic facts of the subject. All results in this section

are available in the literature. They are collected

here for easy reference.

It is understood that throughout the appendix

X is a metrizable tOpological space with 5k as the

Borel o-algebra on X. The space of probability measures

on (X,fik) is denoted by P(X). C(X) is the Banach

space of bounded, real-valued continuous functions on

X with the supremum norm for any metric d on X

consistent with its topology. Ud(X) is the space of

bounded, real-valued functions on X which are uniformly

continuous with respect to d. A probability measure

p.6 P(X) determines a linear functional 1p: C(X) 4 R

defined by 1p(f) = I fdp and conversely, a function

f e C(X) determines a real-valued function

268
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9f: P(X) 4 R defined by 6f(p) = f fdp. These

relationships and the metrizability of the space X

enable one to show several properties Of P(X). In

particular, it can be proved that there is a natural

topology on P(X), the weakest topology with respect

to which every mapping Of the form of 6 is continuous,

under which P(X) is a Borel space whenever X is a

Borel space.

Definition: Let X be a metrizable space. A

probability measure p 6 P(X) is said to be regular

if for every B 6 Bk,

p(B) sup{p(F): F C.B, F closed}

inf{p(G): B C G, G Open].

Theorem A.l: Let X be a metrizable space.
 

Every probability measure in P(X) is regular.

Proof: Let p e P(X) be given and 6 be the

collection of B 6 EX such that

p(B) = sup{p(F): F CIB, F closed}

= inf{p(G): B C G, G Open}.

Let H ClX be Open, 3 an increasing sequence of closed

Q

sets {F } such that H = IJ F . Thus
n n=l n
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inf{p(G): H CIG, G Open]

p(H)

1im p(F )

114$ n

g sup{p(F): F c:H, F closed}

S P(H)

p(H) = sup{p(F): F C.H, F closed} and H 6 6

6 contains every Open subset Of X.

Suppose B 6 6, then

p(BC) = l - p(B) 1 — sup{p(F): F CLB, F closed}

inf{p(G):BC C G, G Open}.

Similarly

p(BC) = sup{p(F): F C BC, F closed}

6 is closed under complementation.

Let {En} C 6. Choose e > O and Fn CBn C Gn such

. . n
that Fn lS closed, Gn is Open and p(Gn-Fn) g e/Z .

Then

U B cu G =(U Fn)u[u (en-an
n= n=1 n=1 n=1

C (U Bn) U [U (Gn-Fn)].

n=1 n=1

0 a

Thus p( L) Gn) g p( L! Bn) + g. This implies

n=1 n=1
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P( L’ Bn) = inf{p(G) : L} Bn CIG, G Open}.

n=1 n=1

Also p( k} Bn) < p( L! Fn) + e and

n—1 n=1

m N

p( L] Bn) g p( L) Fn) + 2c for N sufficiently large.

n=1 - n=1

N

However, the finite union \J Fn is a closed subest

n=1Q

of L! B . Thus

n=1 n

P( L3 Bn) = SUP{P(F)= F C IJ B . F closed}

n=1 n=1 n

6 is closed under countable unions.

Hence 6 is a O-algebra and 6 = 5k. QED

Theorem A.2: Let X be a metrizable space and
 

d a metric on X consistent with its tOpology. If

pl,p2 6 P(X) and

I gdpl = I gdp2 V g 6 Ud(X)

then p1 = p2.

Proof: Let F be any closed prOper subset Of X

_ . 1
and Gn — [x 6 X..d(x,F) < H]’

For sufficiently large n, F and "'Gn are

disjoint non-empty closed sets for which

inf d(x.y) > 0. By Urysohn's Lemma,

x6F,y6~Gn

H fn 6 U X) such that fn(x) = O for x 6 N Gn'
d(
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fn(x) = 1 for x 6 F and 0 g fn(x) g 1 V x 6 X.

Then

p1(F) g f fndpl = I fndp2 g p2(Gn)

p10?) g p2(nQ Gn) = p2(F).

l

Reversing p1 and p2, we obtain pl(F) = p2(F).

By Theorem A.l, this implies p1(B) = p2(B) for every

B 6 13X. QED

These two theorems essentially says that a

probability measure on a metrizable space is completely

determined by its values on the Open or closed sets.

Also, a probability measure p on a metric space (X,d)

is completely determined by the values I gdp where g

ranges over Ud(X). Next, attention is paid to the

develOpment of the topology f[C(X)], the so—called

weak topology on P(X). However, the space C(X) is

tOO large to be manipulated easily, one would need a

countable set D C C(X) such that f(D) = ![C(X)].

Such a set D is produced by the next three lemmas.

Definition: Let c > O, p 6 P(X) and f 6 C(X),

V€(p:f) = {q 6 P(X) : If qu-f fdp) < 8].

Definition: Let D C C(X). Define the

collection Of subsets Of P(X):

v(D) = {V€(p:f): e > o. p e P(X), f e D].
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Let 7(D) be the weak topology on P(X) which contains

7(D), i.e., the tOpology for which 7(D) is a subbase.

Lemma A.l: Let X be a metrizable space and
 

D C C(X). Let {pa} be a net in P(X) and p 6 p(x).

Then pa 4 p relative to the topology f(D) if and

only if I fdpa 4 I fdp for every f 6 D.

Proof: Let pa 4 p and f 6 D. Let c > 0 be

given, and let 6 be such that for d 2 B implies

P E Vc(p:f)
d

J” fdpa » f fdp.

Conversely, let I fdpa 4 I fdp for every f 6 D.

Suppose G 6 f(D) contains p. Then p is

n

contained in some basic Open set F) V (p;f ) C G
e k

k=1 k

where ck > O, f 6 D and k = l,...,n. Let B be
k

such that for all a 2 B

If fkdpa—J‘ fkdpl < ck k = l,...,n

pa 6 G for d 2 B

1 p 4 p. QED
(1

Lemma A.2: Let X be a metrizable space and d a
 

metric on X consistent with its tOpology. If

f 6 C(X), then there exists sequences [9n] and {hn}

such that g i f and h 1 f.

n n

Proof: Let b 6 R and x0 6 X be such that

b g f(x) g f(xo) < m for every x 6 X.
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Define gn(x) = inf[f(y)4-nd(x,y)]. Thus for every

y6x

b g gn(x) g f(x) + nd(x,x)

g f(xO) + nd(x,xo) < a

b g gl g g2 §---§ f and lim gn g f

nan

For every x,y,z 6 X

f(y) + nd(x,y) g f(y) + nd(y,z) + nd(x,z)

gn(X) g gn(2) + nd(X.2).

Thus

lgn(X) —gn(2)l g nd(x,z)

gn 6 Ud(X) for each n.

Let a > O and {yn] C.X be such that

f(yn) + nd(x,yn) g gn(x) + e.

As n 4 c, either gn 1 a or y 4 x. If
n

9n 1 w = 11m 9n 2 f

n4m

gn T f.

If yn 4 x, since f is continuous

f(x) = lim f(y )
n

11ch

g lim 9 (X) + e

n

n49

lim g (x) = f(x). QED

n4m n
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Lemma A.3: Let X be a metrizable space and d
 

a metric on X consistent with its topology. Then

r[c (X) ] = .7'[Ud(X) ].

Proof: Since Ud(X) CC(X), 'a'[Ud(X) C'Zf[C(X)].

This implies JTUd(X)] C:J[C(X)]. Let

pO 6 V€(p:f) 3 so > 0 such that V€O(p07f) C‘V€(P:f).

By Lemma A.2, H g,h 6 Ud(X) such that g g f g h

r.

and J fdpo < f gdpO + eO/z, f hdpO < f fdpo + 50/2.

Let q 6 Veo/2(po7g) fl Veo/2(po:h), then

I fdpO < f gdpO + eO/Z < I gdq + co

g I qu + 60

and

.‘I

: P c

J qu g I hdq < J hdpO + eO/z < f fdpo + “O

r!

l, qu-J" fdpol < 60

q 6 v (po:f)

€O

and

VEO/2(po:g) fl VeO/z(po:h) CiV€(P:f).

Since pO 6 V€(p:f) 6 7[C(X)] this implies V€(p;f)

is Open in the I[Ud(X)] tOpology and

Y[C(X)] C I[Ud(X)]

J’[C(X)] = .7'[Ud(X)]. QED
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Lemma A.4: Let X be a metrizable space and d
 

a metric on X consistent with its topology. If D is

dense in Ud(X) then JIUd(X)] = f(D).

Proof: Clearly f(D) C23IUd(X)]. Let

v€(p7g) 6 V[Ud(X)] and pO 6 V€(p:g).

Let

so = e - If gde-f gdp! > 0.

Let h 6 D be such that Hg-—hH < 90/3. For any

q €‘Veo/3(Po:h)

If gdq-J" gdpl g If gdq-j hdql + If hdq-Ihdpol

+ If hde-f gdpol + lfgde-f gdpl

< 620/3 + 60/3 + 270/3

+ If gde-f gdp] = e

Veo/3(po7h) C V€(P:Q)-

This implies

.'/'[Ud(X)] c.7(D)

J’[Ud(X)] = f(D). QED
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Theorem A.3: Let X be a separable metrizable
 

space. There exists a metric d on X consistent

with its tOpology and a countable dense subset D Of

Ud(X) such that f(D) is the weak topology J[C(X)]

on P(X).

Proof: By Urysohn's theorem, X can be

homeomorphically embedded into a subset of the Hilbert

cube. Since the Hilbert cube is compact by Tychonff's

theorem, it is totally bounded.

3 a totally bounded metrization d on X.

This implies that (X,d) can be isometrically embedded

as a dense subset Of a compact metric space (Xd,d1)

where X szd. Let g 6 Ud(X), g has a unique

extension 3 6 C(Xd) such that Hg” = Hg“. The mapping

9 4 3 is linear and norm-preserving. Since C(Xd) is

separable, this implies Ud(X) is separable.

H a countable dense set D in Ud(X).

The result follows from Lemmas A.3 and A.4. QED

From this point on, whenever X is metrizable, it

is understood that P(X) is a topological space with

the weak tOpology J[C(X)].

Theorem A.4: If X is a separable metrizable
 

space, then p(x) is separable and metrizable.
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Proof: Let d be a metric on X consistent

with its tOpology and D a countable subset of Ud(X)

such that f(D) is the weak tOpology on P(X). Let

Rm be the product of countably many COpies Of R.

Define m: P(X) 4 Ra 'by

m(p) = (I gldp.I gzdp....)

where [g1,gz,...] is an enumeration Of D. Suppose

that m(p1) = m(p2), then

I gkdp1 = I gkdp2 for every gk 6 D.

Let g 6 Ud(X). H a sequence {gk} C D such that

Hgk "9H 4 O as i 4 a. Then

i

II gdp1-I gdpzl

3 lim supIJ(g- gki)dp11 + 1im supIJI gkdp1-J gkldpzl

i469 i4co

+ lim suplI(gk -g)dp2I
i4a i

g 2 lim supHgki -9H = O
i-OQ

I gdpl = I gdpz-

By Theorem A.2, p1 = p2

m is one-tO-one.

By Lemma A.l, for each gk 6 D, the mapping p 4 I gkdp

is continuous

m is continuous.
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Let {pa} be a net in P(X) such that m(pa) 4 m(p)

for some p 6 P(X). Then

I gkdpd * I gkdp for every gk 6 D.

By Lemma A.1, pa 4‘p

m- is continuous. The m is a homeomorphism.

Ron is metrizable and separable = P(X) is metrizable

and separable. QED

Theorem A.5: Let X be a separable metrizable

space and let d be a metric on X consistent with its

tOpology. Let {pn} be a sequence in P(X) and

p 6 P(X). The following statements are equivalent:

(a) pn 4 P

(b) I fdpn 4 I fdp for every f e C(X)

(c) I gdpn 4 I gdp for every 9 6 Ud(X)

(d) lim sup p (F) g p(F) for every closed

naa n -

set F CIX

(e) 1im inf pn(G) g p(G) for every Open

n-Oco

set G CIX.

Proof: The equivalence of (a), (b) and (c) follows

from Lemmas A.l and A.3. The equivalence of (d) and

(e) follows by complementation. To show (b) implies

(d), let F be a closed proper nonempty subset Of X.

Let Gk = [x 61X: d(x,F) < é}. F and “G. are disjoint
k

nonempty sets for k sufficiently large. 3 fk 6 C(X)
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such that fk(x) = l for x 6 F, fk(x) = O for

x 6 ch and 0 g fk(x) g l for every x 6 X. Thus

lim sup pn(F) g lim I fkdpn = I fkdp g p(Gk).

n4o n4c

(d) follows by letting k 4 a.

To show (d) implies (b), let f 6 C(X) and assume

without loss Of generality that 0 g f g 1 Let K be

a positive integer and define

F=Ix6x-f2]5l k=0 Kk 6 . k _ K" ,..., .

K

Define m:IX 4 [0,1] by w(x) = Z)(k/K)XF -F (x)

k=0 k k+1

where FK+l = ¢. Then

1
f-Rgmgf

For any q 6 P(X).

I g5 )< 1 2E
codq= (-)Q(F -F )=- q(F)

k=0 K k k+1 K k=1 k

. l .
lim sup I fdpn - (K) g lim sup I mdpn

n-Oa n-Oa

1 6= - lim sup p (F )
K n40 k=1 n k

:1 £5 I
S - P(F ) = mdP
— K k=1 k

g I fdp.

This implies

lim sup I fdpn g I fdp

n-Oca

for every f 6 C(X).
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But the above argument holds for -f

lim inf I fdpn -lim sup I (-f)dpn

n4: n49

—I (-f)dp = I fdp

|
|
\
/

3. I fdpn 4 I fdp for every f 6 C(X). QED

The above two theorems guarantee that when X is

separable and metrizable, the tOpology on P(X) can be

characterized in terms of convergent sequences rather

than nets. Theorem A.5 gives several conditions which

are equivalent to convergence in P(X).

Corollary A.5.l: Let X be a metrizable space.
 

The mapping 5: X 4 P(X) defined by 5(x) = pX is a

homeomorphism.

Proof: Clearly 6 is one—tO-One.

Let {xn} be a sequence in X and x 6 X. If

xn 4 x and G is an open subset of X, then either

(i) x 6 G, implies xn 6 G for large n

1im inf p (G) = l = p (G) or

x x
n4e n

(ii) x 6 G, then 1im inf p (G) 2 0 = p (G).

n4a n — X

X

By Theorem A.5, this implies pX 4 px

n

6 is continuous.
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On the other hand, if pX 4 pX and G is an Open

n

neighborhood of x, since 1im inf p (G) 2 p (G) = l.

n4a Xn _ X

Then xn 6 G for sufficiently large n

x 4X

n

6 is a homeomorphism. QED

Theorem A.6: If X is a compact metrizable space,
 

then P(X) is a compact metrizable space.

Proof: If X is a compact metrizable space, it is

separable and C(X) is separable.

Let {f be a countable set in C(X) such thatk)

f1 5 l, kaH g l for every k and {fk} is dense in

the unit sphere {f 6 C(X): ”f” < 1}.

Define mpm .. [-1,1]°° by co(p) =

(I fldp,I fzdp,...). m can be easily verified as a

homeomorphism. Suppose {pn} is a sequence in P(X)

and m(pn) 4 (91.02,...) 6 I-l,l]m. Let 6 > 0 be

given and f 6 C(X) with Hf” g l, 3 fk with

_ ! EHf ka < 3. Also 3 n0 2 0 such that

II fkdpn-I fkdme < g whenever n,m ; no. Then

IJ fdpn-I fdpml

"
A II fdpn — I fkdpn) + II fkdpn —I fkdme

+ (I fkdpm-I fdme < e

I. {I fdpn] is Cauchy in [-l,l].
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Let E(f) be the limit of such a sequence. If

“f“ > 1, define E(f) = Hf” E(Jén). Thus E is a

1

linear function on C(X), E(f) 2 0 whenever

f 2 O, IE(f)I g ”f“ for every f 6 C(X) and

E(fl) = 1. Let {hn} be a sequence in C(X) and

h (X) 1 O for every x 6 X. For each s > O, the
n

set Kn(e) = [x 61X: hn(X) > e] is compact and

For n sufficiently large, thH 1 O

which implies E(hn) 1 O.

3 a unique probability measure on O[ (J f (B )]

f6C (X)

which satisfies E(f) = I fdp for every f 6 C(X) since

E is a Daniell integral (see Royden [1968])

'. p 6 P(X)

and

ok = :3: I fkdpn = E(fk) = I fkdp k = 1,2,...

m(pn) 4 ¢(p) and m[P(X)] is closed on [-l,l]m.

Since [—l,l]co is compact, P(X) is compact. QED

Lemma A.5: Let X and Y be separable metrizable
 

spaces and m:iX 4 Y a homeomorphism. Define

k P(X) 4 P(Y) by

Mp) (B) = Men-1(8)] v B 6 BY

w is a homeomorphism.
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Proof: Let p1,p2 6 P(X) and p1 #’p2. Since

p1 and p2 are regular, 3 an open set G C X for

which p1(G) 36P2(G)

m(G) is relatively Open in m(X).

Thus m(G) = m(X) 0 B, where B is Open in Y and

)(p1) (B) = p1(G) a" p2(G) = )(pz) (B)

w is one-tO-One.

Let {pn} be a sequence in P(X) and p 6 P(X). If

pn * p. since m-1(H) is Open in X for every Open

set H C‘Y. By Theorem A.5,

lim inf ¢(pn)(H) lim inf pan-1(H)]

n4m n4m

g pim'1(H>] = ¢<p2)<H)

W(pn) 4 ¢(P) and w is continuous.

Reversing the arguments with {pnI and p such that

¢(pn) 4 w(p) will show that pn 4 p

w is continuous. QED

Theorem A.7 (Urysohn's Theorem): Every separable
 

metrizable space is homeomorphic to a subset of the

Hilbert cube N.

Theorem A.8 (Alexandroff's Theorem): Let X be
 

a topologically complete space, Z a metrizalbe space,
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and m: X 4 Z a homeomorphism. The m(X) is a

Gb—subset of Z. Conversely, if Y is a Gb-subset

of Z and Z is topologically complete, then Y is

tOpologically complete.

Theorem A.9: If X is a tOpologically complete
 

spearable space, then P(X) is topologically complete

and separable.

Proof: By Theorem A.7, 3 a homeomorphism

m:iX 4 N and the mapping w in Lemma A.5 with H

replacing Y is a homeomorphism from P(X) to P(H).

By Theorem A.8, m(X) is a Gé-subset Of N

¢[P(X)] = {p 6 PW) :pW-wXH = 0].

Since N is compact, by Theorem A.6, P(N) is compact.

m

Let G1 3 G2 3... such that v(x) = m G . Then

¢UWM] {PGEPW73PWFGQ =0}

n 1

II

8
ll

_
_
_
)
8

n n {p e Pm :pm-Gn) <5.
n=1 k=1

But by Theorem A.5 (d), for any closed set F and

c 6 R, the set {p 6 P(K):jp(F) g c} is closed and

this implies {p 6 P(fl):jp(N-Gn) < %} is Open

¢[P(X)] is a Gé-subset of P(N).

Again by Theorem A.8, this implies P(X) is topologically

complete. QED
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The next step is to establish the fact that

BP(X) is the smallest O-algebra with respect to

which 9B is measurable for every B 6 Ex. To do

that, a useful aid, the concept of a Dynkin system,

is needed.

Definition: Let X be a set and D a class Of

subsets of X. 3 is a Dynkin system if the following

conditions hold:

(a) X 6 3

(b) If A,B 6 6' and B c:A, then A-B 6 B

(c) If A 6 fl and A C A C

l'AZ' l 2 '°°'

m

then L! A 6 3-

n

n=1

The following is a well-known result in measure

theory, which is quoted without proof.

N

Theorem A.lO (Dynkin System Theorem): Let a be
 

a class of subsets of a set X, and assume 3 is closed

under finite intersections. If D is a Dynkin system

containing J, then 3 also contains 0(3).

Theorem A.ll: Let X be a separable metrizable
 

space and 6 a collection Of subsets Of X which

generates Bk and is closed under finite intersections.

Then BP(X) is the smallest O-algebra with respect to

which all functions of the form EB(p) = P(E), E 6 6
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are measurable from P(X) to [0,1], i.e.,

_ -1

E31°(x) — 0%ng 9E (BR)]°

Proof: Let 3' be the smallest O—algebra with re—

spect to which 9E is measurable for every E 6 6.

Let .8: {B 65X:GB is BP(X)

Clearly, fl is a Dynkin system, and by Theorem A.lO,

-measurable].

fl = 5*.

Let fi’ = [B 6 Ex: 9 is Jemeasurable}. Again
B

6' is a Dynkin system. Since 6 C 6', fl! ='6X° Thus

6f(p) = I fdp is Jemeasurable for f is the indicator

of a Borel set. 6f is Jemeasurable when f is a Borel—

measurable simple function.

Let f 6 C(X), E a sequence of simple functions fn

uniformly bounded below such that fn T f. By the

monotone convergence theorem 9f 1 9f. Thus 8f is

n

J—measurable. Then for e > O, p 6 P(X), f 6 C(X),

V€(p;f) is J-measurable.

'7

This implies BP(X) = c. QED

Theorem A.l2: If X is a Borel space, then P(X)
 

is a Borel space.

Proof: Let m be a homeomorphism mapping X onto

a Borel subset of a topologically complete separable

space Y. Then by Lemma A.5, P(X) is homeomorphic to
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the Borel set {p 6 P(Y) :p[co(x)] = 1}. But P(Y)

is topologically complete and separable by Theorem A.9,

P(X) is a Borel space. QED

In this appendix, it has been shown that the

space P(X) can be taken to be a topological space

with the weak topology J[C(X)]. It inherits most

Of the properties Of the space X. When X is separable H

and metrizable, P(X) is separable and metrizable; when

X is separable and topologically complete, P(X) is

separable and tOpologically complete; and when X is

a Borel space, P(X) is a Borel space.



APPENDIX TWO

The properties Of analytic sets are summarized

in this appendix. The analysis will st0p with a

collection of equivalent definitions of the set.

Again, there are no new results in this appendix.

The reader may be referred to some standard mathematics

text for a more elaborate treatment of the topic.

The definitions of a paved space, Suslin scheme

and analytic sets are given in Chapter VI* and will

not be repeated here. First, some preliminary results

are stated without proof. (The reader may request

the author for proof of the following theorem and its

corollaries.)

Theorem A.13: Let X be a space with pairings
 

9 and 2 such that 9 Cil.

(a) M9) c 2(2)

(b) 2(9) 5 = 2(9)

(c) moo .249)

(d) 9 c H9)

(e) 3(9) = XIMQH

289
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Corollary A.13.l: Let (X,9) ‘be a paved space

and suppose that the complement of each set in 9

is in 6(9). Then 0(9) C.&(9).

Corollary A.13.2: Let X be a Borel space. The

countable intersections and unions of analytic subsets

of X are analytic.

Theorem A.l4: Let X be a Borel space. Then
 

every Borel subset Of X is analytic. In fact, the

class Of analytic sets 343%) is equal to g(Ek).

Proof: Every Open subset Of X is an F so
O-I

every Open set is analytic. Corollary A.l3.l implies

B C 605 ). By Theorem A.13 (a) and (e), since J C E

x x x x

3(3):) c max) c AMUXH = Mix)

sax) = MEX). QED

If the Borel space X is countable, then every

subset of X is both analytic and Borel-measurable.

If X is uncountable, however, the class of analytic

subsets Of X is strictly larger than X' Note that

an immediate consequence of Theorem A.l4 is that if Y

is a Borel subset of the Borel space X, then the

analytic subsets of Y are the analytic subsets of X

contained in Y. A generalization of this fact is the

following.
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Corollary A.l4.l: Let X and Y be Borel spaces
 

and m: X 4 Y a Borel isomorphism. Then A C:X is

analytic if and only if w(A) C‘Y is analytic.

Proof: Let m:jX 4 Y be a Borel isomorphism and

A CZX is analytic. Then A = N(S) where S is a

Suslin scheme for :X' Let q>oS be the Suslin scheme

for BY defined by

(CD 0 S) (S) = w[S(S)]

Thus (p(A) = N(chS).

a By Theorem A.l4, p(A) is analytic.

If m(A) C‘Y is analytic, A CIX is analytic by a

similar argument. QED

Definition: Let (X,0) be a paved space and S

a Suslin scheme for 9. The Suslin scheme S is regular

if for each n 6 N and (01,02,...,O ) 6 23, then
n+1

) .s(Ol,OZ,...,on) : 5(01'02"°°'On'°n+1

Lemma A.6: Let (X,d) be a separable metric space
 

and S a Suslin scheme for :X' Then there exists a

regular Suslin scheme R for :k such that N(R) = N(S)

and, for every 2 = (61.62....) 6 T

lim diam R(gl,§2,...,gn) = 0 if

nag:

mq4yuqq)¢¢vn
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Proof: By the Lindelbrf property, for each

positive integer k, X can be covered by a countable

collection of Open balls Of the form

Bkj = {x 62X: d(x,xkj) < l/k) j = l,2,°°°. For

(gllgllgzlgleOO)
E m, deflne

R(El) = 5161

R(gl'cl'gZ'CZ) = R(Qloglogz) fl S(Ql.,C,2) etc.
U

Thus

a: - a

C R(s) = [ F) Bk: ] n I 0 8(5)]

<(7 c E c ) k=1 k s<z
*1'~1'~2'~2°"

where z = (61,62,...). Clearly R is a regular Suslin

scheme for 3*

lim diam R(g ,g ,...,g ) = 0 if

n4” 1 2 n

R(g1.g2.....gn) #(Z ’v’ n.

Let x 6 N(R) 3 (€1,61,Z2,62,...) 6 m such that

x 6 _ r) _ R(s)

s<(61o61. £2: C2)

Thus

x 6 (7 8(5) CN(S)

s<(61.62....)

N(R) C N(S) .
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Now let x 6 N(S), 3 (61,62....) 6 T such that

x 6 fl 5(8).

s<(glog20000)

Since {Bkjg j = 1,2,...] covers X, 3 for each k a

positive integer Zk for which x 6 Bkzk. Thus

a

x 6 kCH Bka

x 6 fl R(S) CN(R)-

s<(Z1,C1,:2162: . o .)

Thus N (S) C N(R)

N(R) = N(S). QED

Lemma A.7: Let (X,d) be a complete separable
 

metric space. If A C X is a nonempty analytic set,

then there exist a closed subset T1 of T and a

continuous function f: T1 4 X such that A = f(Tl).

Conversely, if T1 C T is closed and f: T1 4 X is

continuous, then f(Tl) is analytic.

Proof: Let A = N(R) be nonempty, where R is a

W

regular Suslin scheme for ax satisfying Lemma A.6.

Define

T1=IZ 6T: ’0 R(s) 76¢}.

s<z

Let 2: (gl,g2,...) be in 9). Let R(g1,g2....,gn) 7H3

for each n, E xn 6 R(gl,62,...,gn). By Lemma A.6,



294

{xnI is Cauchy and xn 4 x where x 6 X since X

is complete.

R is regular, for each n, {x

R(61,62,...,6n). Thus x6R(gl,62,...,gn)

x 6 fl R(s).

s<z

Now, let 2 6 T — Tl. Then for some sn < z, R(sn) =

If 2 6 [w 6 T: sn < w} an Open neighborhood, then

{m 6 T: Sn < w] C T — T1. Thus T - T1 is Open and

T1 is closed. For 2 6 T1, define f(z) to be the

unique pOint in n R(s). Let {2k} C T1 and 2k 4 z0

s<z

where 20 = (61,62....) 6 T1. By Lemma A.8, given

6 > O 3 sn < 20 such that diam R(sn) < e. For k

sufficiently large, 2k 6 {z 6 T: sn < 2]

f (zk) 6 R (sn)

d(f(zk),f(zo)) g diam R(sn) < e

f is continuous.

Now, suppose T1 C T is closed and f: T1 4 T is

continuous. Define a regular Suslin scheme R for

 

3* by R(s) = f({z 6 T1: 5 < 2]) where R(s) = ¢ if

[z 6 T then-s < z] = w. If 2 6 T
1' l’

f(z) 6 .C R(s) CN(R)

s<z

f(Tl) C N (R)

fl.
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Let x 6 N(R), then for some 20 = (61,62,...) 6 T,

x6 0 R(s).

s<zO

 

For each n, x 6 f({z 6 T1: (61.62....,6n) < 2]).

Given 6 > O, 3 Zn 6 T1 such that (61,62....,6n) < zn

and d(x,f(zn)) < 6. Then zn must converge to 20

as n 4 a. Since T1 is closed, 20 6 T1, f is

continuous implying

d(X,f(ZO)) g e

f(zo) = x

and

x 6 f(Tl). N(R) C f(Tl)

N(R) = f(T ). QED
1

So far, analytic sets are characterized as the

continuous images of closed subsets Of T. The following

lemma and theorem allows one to get an even sharper

characterization.

Lemma A.8: If T is a nonempty closed subset of
1

 

T, then there exists a continuous function g: T 4 T

such that T1 = g(T).

Proof: Let T1 be covered by a countable

collection of nonempty closed sets [8(61): 61 6 N]
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satisfying

mle(€l)' diam 8(61) g1 61:1,2,...

where d is a metric on T consistent with its tOpology.

Cover each 8(61) with a countable collection Of non-

empty closed sets {8(61,62): 62 6 N} satisfying

s<g1) : 5(g1,g2), diam s<g1.g2) g %. g2 = 1.2,...

Thus, for any (61,62....,gn_1)

S(§11Q20000I£n) 56¢ Qn=1,2,...

O

5(51'C2"”'§n—1) = U 8(61.£2.....6n)

§n=l

s<gl,g2,...,gn_1) 3 s(g1,g2,...,gn_1.gn) gn = 1,2,...

. 1 _ ...
dlam(C1,C2,...,€n)

g a Qn — 1'2,
~

Since T is complete, for each 2 6 T, F) S(s) consists

s<z

Of a single point.

Define g(z) to be this point. Thus N(S) = g(T) = Tl.

By the arguments of Lemma A.7, g is continuous. QED

Theorem A.lS: Let X be a Borel space. A nonempty
 

set A c:X is analytic if and only if A = f(T) for

some continuous function f: T‘4 X.

Proof: If X is complete, the theorem follows

from Lemmas A.7 and A.8. If X is not complete, it is

homeomorphic to a Borel subset of a complete separable

space and the result follows from Corollary A.l4.l. QED
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The above theorem gives a very useful characteri-

zation of nonempty analytic sets in terms Of continuous

functions and the Baire null Space T. The Baire null

space has a simple description and its topology allows

considerable flexibility.

Lemma A.9: The space T is homeomorphic to any
 

finite or countably infinite product Of OOpies Of itself.

Proof: We prove the lemma for the case Of a countable

infinite product. Let v1,W2,... be a partition Of N

into infinitely many infinite sets. Define

w: T 4 TTT... by T(Z) = (21.22,...) where zk con-

sists of the components of z with indices in Wk.

Clearly m is one-to-one and onto. Since convergence

in a product space is componentwise, m is a

homeomorphism. QED

 

Theorem A.l6: Let X1,X2,... be a sequence of

Borel spaces and Ak an analytic subset of Xk'

k = 1,2,... . Then the sets A1A2"' and A1A2...An,

n = 1,2,... are analytic subsets of X1X2... and

X1X2...Xn respectively.

Proof: Let fk: T 4 Tk be continuous such that

A = fk(T), k = 1,2,"‘. Let 6 be defined as in
k

Lemma A.9 and F: TT... 4 X1X2... be defined by
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F(zl,22,...) = (fl(zl),f2(22),...). SO Fcam is

continuous and maps T onto A1A2°°°. Similar

arguments for the finite products. QED

Another consequence of Theorem A.lS is that the

continuous image of an analytic set, in particular, the

projection of an analytic set, is analytic. It is

formalized in the following theorem.

Theorem A.l7: Let X and Y be Borel spaces and
 

A an analytic subset of XY. Then projx(A) is

analytic. Conversely, given any analytic set C C X

and any uncountable Borel space Y, there is a Borel

set B C:XY such that C = projx(B). If Y = T, B

can be chosen to be closed.

Proof: If A = f(T) c:XY where f is continuous

prOjX(A) = (prOjX<>f)(T) is analytic by Theorem A.20.

Now, suppose C = f(T) C X is nonempty and analytic.

C = projx[5r(f)] where

Eur) = {(f(z),z) e XT:z e 92}.

Since f is continuous, Er(f) is closed. If Y is

any uncountable Borel space, then 3 a Borel isomorphism

w from T onto Y.

Define a mapping T by §(x,z) = (x,m(z)). Then

@(x,z) is a Borel isomorphism from XT onto XY

C = pron<:[é}<f)1). QED
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Theorem A.18: Let X and Y be Borel spaces
 

and f:iX 4 Y a Borel—measurable function. If

A C,X is analytic, then f(A) is analytic. If B C;Y

is analytic, then f-1(B) is analytic.

Proof: Suppose A CZX is analytic. By Theorem

A.l7, 3 a Borel set B C:XT such that

A = projx(B).

Define ¢:ZB 4 Y by T(x,z) = f(x). Clearly I is

Borel measurable. This implies gr($) 6 EXTY

f(A) = pron[gr<))].

By Theorem A.l7, f(A) is analytic. If B C'Y is

analytic, then B = N(S) where S is some Suslin scheme

for c

N(f-1<>S) where f.1 OS is the SuslinH
1

C
D II

scheme for 5x defined by (f_1<>S)(s) = f-1[S(s)] V s 623,

f-1(B) is analytic by Theorem A.l4. QED

Now, the above results can be summarized in the

following theorem.

Theorem A.l9: Let X be a Borel space. The
 

following definitions of the collection of analytic

subsets of X are equivalent:

(a) £(dx)

(b) £(IJX)

 



(e)

(f)
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the empty set and the images of T under

continuous functions from T into X

the projections into X of the closed subsets

Of XT

the projections into X Of the Borel subsets

of XY, where Y is an uncountable Borel

space

the images of Borel subsets of Y under

Borel-measurable functions from Y into X,

where Y is an uncountable Borel space.

Proof: Only (f) needs to be shown.

If Y is an uncountable Borel space and f: Y 4 X

is Borel-measurable. For every B 6 by, f(B) is

analytic in X by Theorem A.18. Let 6 be a Borel

isomorphism from Y onto XT and let F C XT be

closed such that pron(F) = A. Define B = 6. (F) 6 BY.

Then (projx<>m)(B) = A is analytic. If A = ¢,

then f(¢) = A for any Borel measurable f:‘Y 4 X. QED
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