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ABSTRACT

A STUDY OF VALUE DISTRIBUTION, ZERO SETS, INEQUALITIES,

AND COEFFICIENT CONDITIONS FOR ANALYTIC FUNCTIONS

WITH SLOW GROWTH AND LACUNARY SERIES WITH HADAMARD GAPS

By

Peter Tien-Yu Chern

Let n(r) be the number of zeros of f e B in |z| ‘ r, where

B is the space of Bloch functions. Anderson, Clunie, and Ponmerenke

[J. Reine Angew Math. 279 (1974), p. 36] asked: is it true that

n(r) = °[I%; log log I%;] as r -+ 1‘? The attempt to answer this

problem led to the following main result concerning with the lower

 

bound of the Nevanlinna counting function N(r,f,a) = N(r,a). There

exists a Bloch function f in |z| < 1 such that for each a e C

lim inf "913‘? t x ,

r -+ 1" log log I:

where K is a positive constant.

Let 80 be the little Bloch space. We show that

% log+[o(log I%;) + 1] is an upper bound of the Nevanlinna

characteristic function T(r,f) as r -9 1‘ for f c 80, and we

show by example that this upper bound is sharp.

We next establish inequalities for lacunary series with Hadamard

gaps along small circular arcs in |z| < 1. Applications to the value

distribution of B and B‘" are given.



Peter Tien—Yu Chern

Let B“ (a > 1), L:(D) (1 i p < a), and 5”“ (0 < n < o), be

the a-Bloch space, the Bergman p-space in [z] < 1, .and the Shapiro-

Shields class; respectively. We show that for each a e t, the least

LE
upper bound and the greatest lower bound of N(r,a) for 8“, and

5”“ all have the same order log I%;'

We obtain some results about the zero sets of a—Bloch functions

(a > 1). We show that these "at-Bloch zero sets" are quite different

from Blaschke sequences.

Some sufficient and some necessary conditions on the coefficients

for B“ and 8: are shown. We also give conditions on blocks of

coefficients for B“ and 8:.
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INTRODUCTION

Let D denote the unit disc {2: |z| < l}, C the complex plane,

and i: = d: U {a}. A function f in D is called an a-Bloch function

(a > 0) if f is analytic in D and satisfies

(0.1) sup (1 — IzI)“ If'(z)| < . .

zeD

The set of all a-Bloch functions is denoted by B“. A Bloch function

is precisely a l-Bloch function. Let B: (a > 0) be the set of

functions f analytic in D such that

(0.2) lim (1 - Izl)“ |f‘(z)| = o .

IZI—fl’

B: is called the space of little a-Bloch functions. A lacunary series

with Hadamard gaps means a function f analytic in D which can be
 

expressed as a power series in the form

"k
(0.3) f(z) = Z ak=o kz , nk+1/nk i q > 1 .

The purpose of this paper is to study B“ and) some lacunary

series with Hadamard gaps. We obtain some results concerning the

value distribution (Chapter 1, 3), the zero sets (Chapter 4),
  

the coefficient conditions for a-Bloch functions in |z| < 1
 

(Chapter 5), and some useful inequalities for lacunary series with

Hadamard gaps along circles in lzl = r < 1 (Chapter 2).
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Let us begin with some background in value distribution theory.

Picard (1880) proved that if f(z) is a non-rational function

meromorphic in c, then f takes every a e I: infinitely often, with

at most two exceptional values.

Let f be a meromorphic function in c. If a c C, we denote by

n(r,a) the number of solutions of f(z) = a in |z| i r. We set

M(r,f) = max [f(z)]. The order of f is defined by

lzl=r

(0.4) p = lim sup 1° 10 M r f
r—bw logr ’

and the order of the roots of f(z) = a is defined by
 

(0.5) p(a) = lim sup mg)- .
raw logr

Hadamard (1893) showed that p(a) ‘ p for all a e C.

Borel (1897) extended Picard’s result by proving that p(a) = p

for all a, with at most two exceptions.

Hadamard’s theory lacked precision and did not work well for

functions of infinite order or meromorphic functions. In the case when

f is meromorphic in C, the maximum modulus M(r,f) does not

behave satisfactorily as an indicator of growth, since M(r,f) is

infinite whenever f(z) has a pole on lzl = r.

For a e 3:, the Nevanlinna counting function is defined by

r

(0.6) N(r,a) =10 n(t,a) 51:- .

We put



2n

 

(0.7) m(r,a) = 51;} Iog+ |f(reia)|d0 , and

0

2n

1 I

(0.8) m(r,a) = - log+ . d9 , a e C .

2" J.0 f(rele) - a   

The Nevanlinna characteristic Of f is defined by
 

(0 9) T(r,f) = m(r.°) + N(r,a) .

Nevanlinna (1925) stated his First Fju‘ndamental Theorem as follows: If

a e I: and f(O) 1 a, f is meromorphic in C, then

(0.10) m(r,a) + N(r,a) = T(r,f) + 0(1) .

The function T(r) gives an excellent description of the growth of

any meromorphic function in a finite disk or in the whole plane. N(r,a)

measures the number of roots of the equation f(z) = a in |z| ‘ r,

while m(r,a) measures the average closeness of f(z) to a on

|z| : r. We deduce at once Hadamard's inequality, namely p(a) 1‘ p,

for every a. However Nevanlinna’s aim was to obtain a sharper

version of Borel’s inequality. He did this by showing that in general

it is the term N(r,a) which dominates in (0.10). He showed that if

q i 3, and a,,...,aq are q distinct complex values then

9

(0.11) (q - 2)T(r.f) ‘ 2 N(r,av) - N.(r) + S(r) .

v=l

where N,(r) measures the zeros of f ' and the multiple poles of f

and S(r) is a term in general much smaller than T(r). This is t_h_e

Second Fundamental Theorem. The Second Fundamental Theorem gives
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an extension both of Picard’s result and Borel’s result. The deficiency

of a is defined as follows:

_ .. nra_ _ . N(r,a)

(0.12) 6(a) - 1112fW - l Ilia—amp T(r) .

Applying (0.12), Nevanlinna obtained the deficiency relation

(0-13) 2 6(a) ‘ 2 .

The concepts defined above are for meromorphic functions in c. For

functions defined in the disc D, we can get similar results by

replacing r -t w by r -> 1" and by making a few other minor

changes.

The first significant result concerning with the value distribution

of Bloch functions was obtained by Anderson, Clunie, and Pommerenke

[ACP]. They proved that if f c B, than

(0.14) lim sup N(r,f,0) ‘ lim sup TQ‘Jf) ‘ 1/2 .

r-91‘ log logr}; r->1‘ log 1031-};

They also asked ([ACP] tenth prob., p. 36) if it is true that

n(r 0) = o(-l- log log -l-) as r -# 1‘
’ l-r l-r

for f c B?

A non-constant meromorphic function f in D is called admissible

[Hay] if

lin sup 1&5? = +0 .

r -% 1' log T:;



Although the Second Fundamental Theorem provides a lower bound

for N(r,f) in terms of T(r), N,(r), and S(r), it doesn’t provide

us with a practical tool to evaluate lim inf N(r,f). The problem is

r -9 1‘

that

(0.15) S(r,f) = 0(log T(r,f) + log I%F) as r —» I- .

(see Hayman [Hay]).

By (0.14)

T(r,f) = 0(log log 1%?) as r -+ 1‘, and hence

(0.16) S(r,f) = 0(log 3%?) as r -+ 1- .

Thus S(r,f) has order log I%; which is larger than that of T(r,f).

Therefore the Second Fundamental Theorem does not work on this

problem. The Second Fundamental Theorem works for the admissible

functions only. Bloch functions are not admissible. In Chapter 1, we

develop a method to evaluate the lower bound of N(r,f) as r -+ 1'

for analytic functions in D with slow growth, especially for Bloch

functions. The attempt to answer the tenth problem led to the

main results in Chapter 1.

Theorem 1.1.1. If f(z) is a lacunary series with Hadamard gaps

in D, and if

211

(1 1.1) lim inf (I—r)’ I |f'(re19)|2 de a constant > 0

r -+ 1‘ 0

then

lim inf T(r,f) b C > 0
 

r -+ I- log log 1%;



6

where Cq is a constant depending only on 9.

 

o n

Theorem 1.1.2. If f(z) = 2 a z k with ak ¢ 0,

k=0 k

n /n i q > 1, lim sup | l > 0, and lin T(r,f) = +6, then for
k+1 k k __’ . BR [‘91-

each a e C,

(1.1.7) N(r,f,a) = T(r,f) + 0(1) as r -+ l” .

Theorem 1.1.3. There exists a Bloch function f in D which is

not little Bloch such that for each a e C

 

(1.1.8) lim inf N(gféi i K

r '9 1' log log 1:;

where K is a positive constant.

Theorem 1.2.1. If f e 90, then T(r,f) ‘ % log’[o(log 1%?) + 1]

as r—tl‘.

Theorem 1.2.2. If Mr) is a non-negative strictly decreasing

continuous function in (0,1) with N1‘) = 0, then there exists a

little Bloch function f in D such that

T(r,f) i K log+ [T(r) log é] as r —t l" ,

where K is a positive constant.

Mm 1.2.3. If T(r) is a non-negative strictly decreasing 

0

continuous function in (0,1) with 9(1‘) =0 and 2 9[1--l-(-}_— =

k=2 2 ‘

+0, then there exists a little Bloch function g in D such that

N(r,g,a) h K log“+ [9(r) log YEP] as r -* 1", for each a e C,



where K is a positive constant.

More-1.2.4. There exists a little Bloch function g in D

such that

(1.1.8) lim inf Mi K for each a e C ,

r -9 1" log log I:

where K is a positive constant.

In Chapter 2 we deal with some inequalities for gap series with

Hadamard gaps along small circular arcs in lzl = r < 1. Zygmund

[Zyl], Waterman [Wa], Binmore [Bil], and Gnuschke [Gn] established

some inequalities between certain sums and integrals of series with

Hadamard gaps along paths leading from inside of D to the boundary

of D. By way of contrast, we obtain some results along circles lzl =

r < 1. We begin with a Lemma of Binmore and then consider Dirichlet

series with Hadamard gaps and bounded coefficients. We establish

some inequalities along separated circular arcs in D (see Theorem

2.1.2). Then we use a kind of interpolation method for the sequences

of exponents to establish the inequalities along small circular arcs close

to [2] = 1 (see Theorem 2.2.1). We deal also with the case with

unbounded coefficients. Some applications giving examples for

exhibiting the value distribution for Bloch functions and a-Bloch

functions (a > 1) are given.

In Chapter 3, we deal with counting functions of analytic functions

with slow growth. A function f in D is said to be in the

Shapiro-Shields class 3 -k (0 < k < .) if r is analytic in D and

satisfies



sup (1 — 121)“ lf(2)l < a .
zeD

Let L:(D) (l i p < a) be the Bergman space of analytic function

f such that |f|p is integrable on |z| < l. The main purpose of

Chapter 3 is to show that the least upper bound and the greatest lower

bound of N(r,a) for B“ (a > 1), L:(D) (l i p < 0), and

S"k (0 < k < s) all have the same order log 3%; .

In Chapter 4, we deal with the zero sets for a—Bloch functions

(a > 1). It is well known that the zeros {zk} of nontrivial Hp

(Hardy space 0 < p i 0) functions are completely characterized by

the Blaschke condition

I (1-|z|)<o.

k=1 k

In particular, all of the HP (0 5 p i w) spaces admit the same zero

sets [Du].

C. Horowitz [Ho] studied the zeros of functions in the Bergman

space H:(D) (l 6 p < w), and obtained some important results. In

Chapter 4, we obtain some analogous results for a-Bloch zero sets. We

show that these "a-Bloch zero set" (a > 1) are quite different from

the Blaschke sequences. By constructing a Horowitz—type infinite

product [Ho], adopting Beller’s technique [Bel], and using a result

on the coefficients of the a-Bloch functions [Ya] we obtain the

following main results.

Theorem 4.1. If a > 1, then there is an a—Bloch zero set which is

not a Bloch zero set.



Corollarj 4.1. For each a > 1, there is an a-Bloch zero set which

does not satisfy the Blaschke condition.

Theorem 4.2. If 1 < a < fl and if 40: - 3 < B then there exists

a fl-Bloch zero set which is not an a-Bloch zero set.

In Chapter 5, we study the coefficients of a-Bloch functions.

Coefficients of Bloch functions have been studied by Anderson, Clunie,

and Pommerenke [ACP], Mathews [Ma], Neitzke [Ne], and Fernandez [Fe],

among others. In this chapter we investigate coefficients of a-Bloch

functions. In section 2 following Bennett, Stegenga, and Timoney [BST]

we give two sufficient conditions on coefficients for B“. In section

3 we obtain one sufficient condition and three necessary conditions on

coefficients of little a—Bloch functions. In section 4, we establish

some sufficient conditions and some necessary conditions on blocks of

coefficients for the classes 8“ and 8:. The results we obtain in

this chapter are related to results of Hardy [Ha], Titchmarch [Ti],

Mathews [Ma] and Neitzke [Ne].



CHAPTER I

THE VALUE DISTRIBUTION OF BLOCH FUNCTIONS

AND LITTLE BLOCH FUNCTIONS

Anderson, Clunie, and Pommerenke [ACP] have listed twelve open

problems for Bloch functions. The tenth problem says the following.

Let n(r) be the number of zeros of f e B in lzl ‘ r. Is it true

that

l-r l-r '

The attempt to answer this problem led to the results of this

chapter.

51.1 The value distribution of Bloch functions

 

o n
_ k .

Theorem 1.1.1. If f(z) — kilo 8k 2 , w1th ak 7f 0, nk+l/nk

q > 1, and if

2 2" ‘ 2

(1.1.1) lim inf (l—r) [ |f‘(re19)| do n K* > 0 ,

r -) 1‘ 0

T(r,f)
 

then lim inf

r —9 1— log log -l-_r

i Cq, where Cq is a positive constant

depending only on q.

To prove Theorem 1.1.1 we need the following two lemmas.

10
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ELLI. ([Zy2, Vol. 1, p. 215]).

Q

If h(x) = 2 (a cos n x + b sin n x), n /n i q > 1, and if
a k=1 k k k k k+l k

2 (a; + b;) < 0, then lhl, i Aqlhla, where A9 is a positive

k=1

constant depending only on q.

 

Lemma 1.1.2. ([Zy2, Vol. 1, p. 216]) If g(x) is a nonnegative
 

measurable function defined on a set E in the real line 6? with

positive linear measure IE] such that

-1-Ig(x)dxiA>O and -1—Iga(x)dx£B,

II?! E IEI B

then for 0 < 6 < l, we have lEé' i |E|(l — 6)2 Aa/B, where

E6 = {x c E | g(x) i 6A}.

Proof of Theorem 1.1.1. For any 0 < r < 1, if fr(z) = f(rz),

|z| < 1, then fr c L3 (lzl = 1). It follows from Lemma 1.1.1 that we

have lfrl, 5 Ag If,” Putting EM = {0 e [0,2n] | lfr(ei9)| i

Aq Ifrla/Z}, taking a = 1/2, A = A9 lfrla, B = lfrl: , g = lfrl,

E = [0,2n] and applying Lemma 1.1.2, we have

I= _
(1.1.2) lEr’al s 2n (1 — 2) Ag — A

E 2

2 q °

According to the definition of Nevanlinna characteristic and (1.1.2)

we obtain
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1f

T(r,f) = 5% log+ [f(re19)| d9

4. .

h 3% I log |f(re19)|’ d0

E
r,6

IE | A’ Ifrl’
1'16 + z

E 4n log [ 4

A’ A’ Ifrl’

5 .3 log ._9__z__£

Thus

+ 2

(1.1.3) T(r,f) n cq log Ifrla + Bq,

where Cq and Bq are positive constants depending only on q.

Applying Parseval’s identity, we have

0 2 2 an-Z 1 2n . 2

(1.1.4) 2 nk lakl r = E; I lf'(re19)| d0

k=0 0

1
i (K*/2) (l-r)’ for r near 1 ,

where the last inequality follows from the hypothesis in Theorem

1.1.1.

Integrating twice in (1.1.4) with respect to r, we have

2

“It In '2 r

2nk(2nk-l) k

a 2n 1

i (Kt/2) log 1:; for r near 1 ,
2 k

k=0

and it follows that
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a l 2" - 2

(1.1.5) Ifrla = E; |f(re19)| d9

0 2n

= X lakla r k

k=1

1
i (K*/2) logl_r for r near I .

Combining (1.1.3) and (1.1.5), we obtain

(1.1.6) lim inf ““3

r -+ 1' log log 1%;

i C .

q

This completes the proof of Theorem 1.1.1.

 

o n

_ k -
Theorem 1.1.2. If f(z) - kEo ak z with HR ¢ 0, nk+1/nk i q > 1,

lim sup lakl > 0, and lim T(r,f) : +a, then for each a e C,

k -9 w r -9 1‘

(1.1.7) N(r,f,a) = T(r,f) + 0(1) as r -9 l- .

Proof of Theorem 1.1.2. Since f is a lacunary series with Hadamard
 

gaps and lim sup Ink] > 0, by a result of Murai [Mu2],

k -9 0

lim inf m(r,f,a) is finite, for each a e C. Since for each a e C,

r -9 1'

T(r,f) = N(r,f,a) + m(r,f,a) + 0(1) and N(r,f,a) is an increasing

function with respect to r, hence N(r,f,a) = T(r,f) + 0(1) as

r -+ I“. This completes the proof of Theorem 1.1.2.

Theorem 1.1.3. There exists a Bloch function f in D which is
 

not little Bloch such that
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(1.1.8) lim inf "(’1f18% a K , for each a c c ,

r'-9 1" log log I:;

where K is a positive constant .

“ “k k
Proof of Theorem 1.1.3. If f(z) = X z with nk = 2 , then f

k=0

is Bloch but not little Bloch [Ya]. We want to show that (1.1.8) is

true for this f. According to Theorem 1.1.1 and Theorem 1.1.2, it

suffices to show (1.1.1). By Parseval’s formula, we have

a 2n 0 2n -2

51—51- |f‘(re19)|2 do = z n’ r k (I—r)2 .
2n k

0 k=0

. 1
For any 0 < r < I, there ex1sts n. such that n‘_1 6 I:; < n"

1
 

i 1 - r > -1- and l - i r < l - - . If we fix r,

“1-1 “1 "1—1 "1

we obtain

 

hence

 

w a 2n -2 a 2 an-Z 2

2 nk r (l—r) h n! r (l-r)

k=0

2

a 2n3-2 [ _l l

g n, r n,

2n

gr'

1 4":-1

*[1-,. l
c-l

i e”4 .

It follows that
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Zn .

lim inf (I-r)’ I lf'(re1°)l’ d6 u 3—1’

r -+ 1’ o e

which completes the proof of Theorem 1.1.3.

A non—constant meromorphic function f in D is called

admissible [Hayl] if lim sup -I£EL§1 = +0.

r -+ 1' log I:;

Theorem 1.1.4. There exists a non-admissible analytic function f
 

in D such that

mgr,a)

6(a,f) = lim inf T(r f)

r -+ 1’

= 0 for each complex number a.

Proof of Theorem 1.1.4. Let f be as that in the proof of Theorem

1.1.3. Then f is Bloch, and by (0.14) we have that

lim sup -I££L§l = 0. Since T(r,f) = +w as r -+ 1‘ and ak = 1, by

r -+ 1' log 1:;

Murai’s result [Mu2] we have 6(a,f) = 0, for each complex number a.

This completes the proof of Theorem 1.1.4.

51.2 The value distribution of little Bloch functions

It is natural to ask the following: Can we find a little Bloch

function f such that for each a e C (1.1.8) holds. The answer is

affirmative and will be given in Theorem 1.2.4. We first show that

% log+[o(log'T%;) + 1] is an upper bound of T(r,f) as r -+ 1’, for

f e Bo (Theorem 1.2.1). We next obtain a result about the lower bound

of T(r,f) for some little Bloch functions in D (Theorem 1.2.2).

The result of Theorem 1.2.1 is sharp in the sense of Theorem 1.2.2.

Furthermore, in Theorem 1.2.3, we obtain a result about the lower
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bound of the counting function of some little Bloch functions. By

applying Theorem 1.2.3, we show that there exists a little Bloch

function f in D such that for each a e C, (1.1.8) holds (Theorem

1.2.4).

The main results in this section are in the following.

Theorem 1.2.1. If f e 80, then T(r,f) ‘ % log+[o(log I—l-T) + l]
 

as r -9 1’.

Theorem 1.2.2. If Mr) is a non-negative strictly decreasing
 

continuous function in (0,1) with N1") = 0, then there exists a

little Bloch function f in D such that

T(r,f) i K log+ [C(r) log I%;] as r -+ 1’ ,

where K is a positive constant.

Theorem 1.2.3. If T(r) is a non~negative strictly decreasing
 

0

continuous function in (0,1) with C(l‘) = 0 and 2 CI] - -E%- =

k=2 2 ‘

+w, then there exists a little Bloch function g in D such that

N(r,g,a) i K log+ [C(r) log -l-] as r -+ 1’, for each a e C,

l-r

where K is a positive constant.

Theorem 1.2.4. There exists a little Bloch function g in D
 

such that

 

(1.1.8) lim inf N(r,g,a) i K for each a c C ,

r -9 1’ log log I%;
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where K is a positive constant.

Theorem 1.2.1 provides an upper bound of T(r,f) for little Bloch

functions. The proof is due in essence to Anderson, Clunie and

Pommerenke [ACP].

Theorem 1.2.1. If f 6 80, then T(r,f) 5 % log+[o(log 1%?) + 1]

as r -+ 1‘.

Proof of Theorem 1.2.1. Let f(z) = 2 anzn be a little Bloch

n=0

 

function in D. According to Parseval’s identity, we have

on 27:

(1.2.1) 2 nalazlrzn—z - 5% I lf'(re1°)|’ d9

n=1 0

 

= O[ 1 2I as r -+ 1’, since f e 80 .

(l-r)

Integrating twice in (1.2.1) with respect to r, we have

2 2 2n

0 n IanI r l -
(1.2.2) “El 2n(2n-1) - o(log I:;) as r -+ 1 .
 

Since f is in 80, we obtain

1 2" -
(1.2.3) T(r,f) = 5— I log+|f(re19)|d9

" 0

2n

1 1 -
= 5 - 5; I0 Iog+|f(re19)|’ d0

27!

1 l - 2

i 5 - 5; I0 log+[|f(re19)| + I]d0

2n

1 .1 '0 3
i 2 logI 2" I0 (|f(re1 )| + l)d9]

log+[o(log I%;) + 1] as r -9 1‘ .

N
I
H
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This completes the proof of Theorem 1.2.1.

Corollary 1.2.2. If f e 9,, then N(r,f,a) ‘ % 1og+[o(1og Flt) + 1]

+ 0(1) as r -’ 1".

Proof of Corollar1 1.2.2. According to the First Fundamental
 

Theorem of Nevanlinna, we have

m(r,a) + N(r,a) = T(r,f) + 0(1) for each a e C .

By Theorem 1.2.1,

T(r,f) 6 log+[o(log I%;) + 1] as r -4 1’ .

N
I
H

This implies that

N(r,f,a) 6

N
I
H

log+[o(log 31;) + 1] + 0(1) as r —-) 1- .

Theorem 1.2.2. If Mr) is a non-negative strictly decreasing
 

continuous function in (0,1) with N1") = 0. Then there is a little

Bloch function f in D such that

T(r,f) a K log+[<P(r) log TAT] as r —) 1" ,

where K is a positive constant.

 

 

a k

Proof of Theorem 1.2.2. If f(z) = 2 ak 22 , with ak =

k=l

¢©(1 - -:%:), then f e 80, since f is a lacunary series with

2

Hadamard gaps with lim an = 0 [Ya].

n+0

According to Parseval’s identity, we have
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2 2n

(1.2.4) XII-(FI- - 5,1; |f'(re10)|’ do

0

0 k 2

- . 2k 2(2—011:1kgz ak 2 r T(r) .

For 0 < r < 1, there is an integer I such that 2‘-' 1 g

2_(‘—1) > 1 - r 3 2-‘, l - 2-(“1) < r 6 l - 2-.. If we fix r,

(1.2.4) yields

1 r 2 1 2n 2

(1.2.5) T(r) 2" I0 If (re )l d9

9 2

2 23 2(2 —1) (l-r)
i a! 2 r - C(r)

a2 f
i _§ 229 r_2(2 —I) (2-0)2

at

v

'
—
T
:
‘

I v m

Combining (1.2.4) and (1.2.5), we obtain

. 2"
a

(1.2.6) 5% I0 If'(rei9)|’ d6 : kzz 22k a; r2(2k-1)

i T(r) -‘ .

<1-r)’

Since T(t) is decreasing in (0,1), we have
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1 r 3 1

(1-t)

  dt ds n 9(r) I dt ds

1' 8

(1.2.7) I I v(t) ,
0 o 0 0 (l-t)

= 9(r) [log 1%; + r], for 0 < r < 1.

Integrating twice in (1.2.6) with respect to r, using (1.2.7), we have

a 22k 82 2

k "k -4 .1.
(1.2.8) 2 2nk(2nk-l) r h e 9(r) I log l-r + r] ,

k=2

 

where nk = 2k .

It follows from (1.2.8) that

21!

.1 i9 3 — 3 .1.(1.2.9) 2" I0 |f(re )I de - Irria a v(r) log l~r ,

as r -+ 1‘ .

Since f is a lacunary series with Hadamard gaps, we have

+ 3

(1.1.3) T(r,f) I Cq log Ifrla + Bq .

Combining (1.2.9) and (1.1.3), we obtain

(1.2.10) T(r,f) i K log+(¢(r)log 1%?) , as r -9’l‘ ,

where K is a positive constant. This completes the proof of Theorem

1.2.2.

Iheorem.l.2.3. If C(r) is a nonnegative strictly decreasing
 

continuous function in (0,1) with lim V(r) = 0 and

r+1‘
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Z CII — -kl— : +o, then there exists a little Bloch function g
"1

k=2 2

such that

N(r,g,a) i K log+[v(r)log I%;] as r -+ 1’ , for each a e C ,

where K is a positive constant.

To prove Theorem 1.2.3 we need the following lemma.

Lemma 1.2.1. [Mul] Let f be analytic in D and of unbounded
 

type and let p(z) be a non-constant polynomial. For each 0 e

[0,2n], let g9(z) = f(z) + e16 p(z). Then meas{0 e [0,2n] :

6(a,g9) = 0 for each a c C] = 2", where mess is the linear

Lebesgue measure.

a k

Proof of Theorem 1.2.3. Let f(z) = 2 ak z2 be the function

k=2

 

constructed in the proof of Theorem 1.2.2. According to Theorem 1.2.2,

we have

(1.2.10) T(r,f) a» x Iog+(v(r)1og 14;) as r —’ I- .

Since f is a lacunary series with Hadamard gaps and I ah2 = +w,

k=2

according to ([Zy2, vol 1, 8.12 Theorem, p. 214]), the set {e19 |

lim f(reie) exists and finite] has linear Lebesgue measure zero,

r91"

and hence f is of unbounded type. Let ge(z) = f(z) + ei9 2.

According to Lemma 1.2.1, there exists a 9 e [0.2"] such that

6(a,g9) = 0 for each a c C. If g = g9, then g 6 80 since f e 80.

Also,
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(1.2.11) T(r,f) T(r,g(z) - eiez)

I
\

T(r.E) + T(r. - e19 2) + 0(1)

Thus) + 0(1) .

Combining (1.2.10) and (1.2.11), we obtain

T(r,g) s x Iog+(v(r)1og 1%?) as r -+ I- .

Since 6(a,g) : 0, for each a e C, and g is of unbounded type, we

obtahi

N(r,g,a) h K log+(v(r)log I%;) as r -+ 1‘ .

This completes the proof of Theorem 1.2.3.

Theore!;1.2.4. There exists a little Bloch function g in D
 

such that

(1.1.8) lim inf __!I£1512%_ a x for each a e c ,

r -+ 1’ log log 1:;

where K is a positive constant.

Proof of Theore! 1,2,3. Let T(r) = (log I%;)"/’, for o < r < 1.

0(r) is a non-negative strictly decreasing continuous function in

(0’1) With ¢(1—) = 0 and 2 'Il ’ 'E%TI = 2 ((k—I)Iog 2)"/2

k=2 2 k-

(log 2)"/’ 2 ———l-—- = +o.

k=2 (k-I)‘/’
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Applying Theorem 1.2.3, there exists a little Bloch function g

in D such that

N(r,g,a) i K log+ V(r)log -l- as r -9 1’ .

1-r

”lwins we] MIMI-17f +0.1... 1.1

1 l _
2 log log l-r as r -9 1 .

This completes the proof of Theorem 1.2.4.



CHAPTER II

SOME INEQUALITIES or LACUNARY SERIES WITH

HADAMARD GAPS ALONG CIRCLES lzl = r < 1

52.0 Introduction
 

The motivation of this chapter is to find more Bloch functions f,

in addition to the one found in Chapter 1, such that for each a e C

(1.1.8) lim inf "(r’f'a) n K > 0 .

r -) 1‘ log log1-_—r-

It is natural to look at a lacunary series with Hadamard gaps

co nk

f(z) = Z ak z , |z| < l , nk+1/nk i A > 1 .

k=0

According to Murai’s result [Mu2], if lim sup Iakl ) 0, then 6(a,f),

k-)o

the deficiency of f at a satisfies 6(a,f) = 0. Therefore,

according to Theorem 1.1.1 and Theorem 1.1.2, in order to show

(1.1.8), it suffices to show that (1.1.1) is true.

Throughout this chapter, we consider f to be an analytic

function in D with Hadamard gaps. We will explore an inequality

concerning the radial variation of f due to Zygmund and some of its

extensions. In 1944, Zygmund [Zyl] showed that

1 w _1

I |f(x)ldx < a => 2 lakl nk < o .

0 k=0

24
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It is clear that, with the obvious modification, the radius 1 can be

replaced by any radius and that the converse is valid for arbitrary

power series. In 1950, Waterman [Wall showed that

l m

I (l - x)“ |f(x)|p dx < a => 2 laklp n;(a+1) < a

0 k=0

for D > 1, 0 6 a 6 fl - 1. In 1967, Halasz [Hal] gave a new and

simpler proof for Zygmund’s result and also showed that

1 o

I (1 — x)"1 |f(x)|dx < a => 2 lakl < s .

0 k=0

In 1972, Binmore [BiZ] proved Waterman’s result for a = fl = 2. We

say that the curve C C D goes to the boundary of D if C =

(z(t) : 0 6 t < 1} where |z(t)| -’ 1 as t -’ 1‘. In 1983, Zygmund’s

result was generalized by Gnuschke and Pommenerke [GP], where the

radius was replaced by an arbitrary curve which goes to the boundary

of D. In 1984, Gnuschke proved that if C is a half-open curve C

in D with OeC, COED1¢ then

5 _

z lakl nk (“*1) . M, I (1 — IzI)“ If(z)I” IdzI
k=0 C

for a: e R, p > 0, where M, depends only on a, p and A. In

Gnuschke’s result, if we choose at : 2, fl = l and let f' replace f,

we obtain

1 a -s

(1 — IzI)’ lf'(z)l IdzI » - 2 In a I n
IC It1 k=0 kit It

lakl

2

k

 

Z
l
I
—
I

I
I
M

8

kOn
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This result resembles (1.1.1) except for the fact that C is not a circle

in D. It would be desirable if we could replace C by circles of the

form [2] = r < 1 in the above.

Gnuschke’s result was based on the following lemma which was

essentially proved by Binmore [Bil].

Binmore’sie-a. Let p e N and let w¢,,...,wp e C such that
 

(i) min Re wk = q, and

O‘k‘p

(ii) 0 < so 6 le — wkl 6 1/2 for j # k .

Then there exist co,...,cp e C such that

p -w .t

(2.0.1) h(t) = 2 c. e J

.I=o 9

satisfies h(l) = 1 and both

(2.0.2) |h(t)| ‘ th eq(1—t) for 0 s t < s ,

and

(2.0.3) lcjl ‘ zpseq/af for j = O,...,p .

In section 1, we establish inequalities for Dirichlet series with

Hadamard gaps and bounded coefficients along separated small circular

arcs in |z| = r < 1 (see Theorem 2.1.2). In section 2, we use a kind

of interpolation method, when the radius r is sufficiently near to l,

to establish inequalities along small circular arcs in |z| = r < 1 (see

Theorem 2.2.1). We also extend the inequalities along circles

[2| = r < 1. In section 3 and 4 we deal also with the case with
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unbounded coefficients. In section 5 we present some applications,

giving examples for exhibiting the value distribution for Bloch

functions and a-BIOCh functions (a > 1).

52.1 Inequalities of Dirichlet series with Hadamard ggps

and bounded coefficients along small circular arcs

in 124:: r < 1.

Theorem 2.1.1. Let {ak} be a sequence of complex numbers such

that

(2.1.1) [ah/82' < M < w, for any k, l, where M is a constant .

Let {yk} be a sequence of positive numbers such that

(2.1.2) 1 < A 6 y /y 6 A , JAk/e)‘k ’ 1 < constant < l,

k+1 k 0 o

for k = 1,2,..., where A0, A are constants. If

m -yks

e , Re 5 > 0, and p > 0 ,

then there exists a positive integer p which depends on A, 10, and

M such that if "j (j = 0,...,p) satisfy the hypotheses of the Binmore

Lemma with p + 1 6 q 6 p + 2, where q = Min Re w., then we have

O‘j‘p

p -w./y

(2.1.3) lavlp‘K 2 |f(e J VII”
i=0

for v = 1,2,..., where K is a constant depending on A, A0, 3, and

NL
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Proof of Theorem 2.1.1. For 3 = 0,...,p, let Cj be the

coefficients of the function h in the Binmore Lemma. We have, for a

fixed v,

p -w./y p a -y w./y

(2.1.4) 2 c. f(e J v) = 2 c. 2 ak e R J V

jeo J j-O J k-O

° 9 -wj(yk/yv)

l

M

t
o M O (
'
D

I a h(y /y ) .
k=0 k k v

Hence it follows from (2.0.3), (2.1.4), h(l) : l, and triangle inequality

that

2 .89 p -wJ-/yv p -wJ-/yv

(2.1.5) -2;- 2 lf(e )l * Z ICJI lf(e )l

«o i=0 0:0

fl

5 I Z a h(y /y )l
k=0 k k v

a

k

~IaI1— 2 I—llh(Y/y)l.
v { kiv av k v }

where so ‘ le - wk] 6 1/2 for j f k. Because p + 1 6 q 6 p + 2,

{yk} is increasing, and |h(t)| 6 2tp eq<1-t) for t i 0, we have

Y

Ir“
V

1 - yk/yv lp

(2.1.6) |h(yk/yv)| e 2e“ e , if k < v, and

y 1 — y /y 9

(2.1.7) lh(yk/Yv)l ‘ 28 I §E e k v I
V

if k > v .
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Because of (2.1.5), (2.1.6), and (2.1.7), we obtain

 

p -w./y

(2.1.8) 2 We J V)I

5:0

YR

“Elavl 2 Y 1 - T; P

a I 1 - 2Me 2 -—-e I

2p!eq k<v yv

Y

y 1 - 53 p

- 2 Me 2 I -E e v I I .

k>v yv

We shall show that the expression in curly brackets on the right of

(2.1.8) exceeds 1/2. Since yk+1/yk i A, we have

v-l y 1 - y /y p v-l _ 1 _ k-v p

(,5. “IW 1° 1.
< E I x-J e1 — Azj Ip .

j=1

l " 7t—«j/AJ.

Since e ° < constant < 1 for each j, we can choose p

sufficiently large such that

 

(2.1.10)

v21 [ 11 e1 - yk/yv ]p < 1

k=1 yv 8Me

Since yk+1/yk < A0, we have

s y 1 - y /y p w . 1 _ J P

(2.1.11) k=2+1 I ;5 e k V I o §=1[ A: e A I

By (2.1.2) and (2.1.11), we can choose p sufficiently large such

that

w y 1 - y /y p

(2.1.12) 2 I -5 e k V I < -l—-.

k=v+1 yv 8Me
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Combining (2.1.10) and (2.1.12), we can choose p sufficiently large

(depending on A, A0, and M) such that the expression in curly

brackets of (2.1.8) exceeds 1/2. Thus we obtain

-wj/yv)p

(2.1.13) IavI 4 Al 2 If(e I ,

i=0

where p and K, depends on A, A0 and M. It follows that

-w./y

J V)|fi
p p

(2.1.14) Ia I 6 K 2 If(e
v 3 .

J=0

where K, = X? if 0 < p s 1, and K, = (p + IN?"1 Rf if p > 1.

This completes the proof of Theorem 1.2.1.

Theorem_2,1.2. If f is the same as in Theorem 2.1.1 and if

a e R, then there exists a positive integer v0 depending on {yk],

A, A0, and M such that, for F > O,

 

l
+—

IavI’ C 4V. a , ,
(2.1.15) «+1 4 K I (I - r) If(re19)I de

y c
v

-211

for v 6 v0, c e [0,2n], where r = e yv, with p the number

given by Theorem 2.1.1, and K is a constant depending on A, A0, M,

and 5.

Proof of Theorem 2.1.2. We first prove the case c = 0. Let p

be the integer resulting from Theorem 2.1.1. For v = 1,2,...,

.1 = 0'1!”'!p! and ‘r s [0,1] define functions
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(2.1.16) 2 .(r) - 9+1 J + 7 -2V'J(T).
V.J ’ yv + 4(p+1)yv i and cVJ“) = e

For fixed v and 7, let w‘j = yv zv J(r), j = 0,...,p. Then we have

all of the following:

+ HRe wj = p for j = 0,...,p,

for j i k,

fi
l
l
-
J

, — ‘IwJ wkI

_ j-k I

'"3 "k' 4p+4 ‘ 4p+4
if j > k.

If we put q = p + 1, then "j (j = 0,...,p) satisfies the hypotheses

of the Binmore Lemma with “o = l/(4p + 4). By applying Theorem 2.1.1,

we obtain

5 p -wj/y

(2.1.17) Ia I 4 x 2 If(e
V 1 J20

”II” = K: 2 If(cmom”. In > o.

where K, is a constant depending on A, A0, M, and fl.

Let Fv be the arc described by the union of the images of the

functions (v j’ j = 0,...,p. Because of (2.1.16) we have

-Re 2 .(r) - Bil
' - ' via] 1 yv

(2.1.18) ICV’J(Z)I - Izv’j(T)Ie - _ZTP:T7;V e and

-(p+l)/yv

1 - Icmml = 1 -e

By (2.1.17) and (2.1.18), we have
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p a

2 If(tv’J(z))lp It; j(r) I <1 — ltv’j(r)l)

 

 

i=0

IaVI” e’(P*1’/’v —(p+1)/yv ,

K. 4(p+1>yv ‘1 ‘ e

lavlp e-(P+1)/Yv _(p+1)/yv a

= a+, [yv (1 - e )l

4K: (p+1)yv

-(p+1)/yv -(p+1)/yv

Since e -+ 1 and yv(1 — e ) -+ p + 1 as v -9 °.

there exists v0, depending on {yk}, A, A0, and M, such that

 

-(p+1)/y -(p+1)/y a
e V 5 % and [yv (1 — e v)]a i [ 2%; ] for V ) V0,

and hence

p p . , IaVI”
(2.1.19) )10 If(tv’j(r))l lfv,j(r)l (1 - lfv’j(r)l) i K: “+1

v

for v 6 v0, 1' e [0,1] where K; is a constant depending only on

A0, A, M, and 43. If we integrate (2.1.19) with respect to 'r from O

to 1, then we obtain

 

Ia I” 1
V . l— p I r ) p ' < ) 1 - ( > I“ d(2.1.20) “+1 K: '10 0 I (tv’j(r )I Irv j r l ( Irv“j T I 7

TV J-

1 p (vtj(1)
p

a

z i: ~10 It 'f(cv.J)l H”mil (1 _ 'tV.JI) dCVIJ

J v.5(0)

_1_

4y .

e l. I V (1 - r)“ If(re19)I” d0
K, 0

-(p+1)/yv

where r = e for v 3 v0, with p the number given by

Theorem 2.1.1. Thus the proof of Theorem 2.1.2 is Complete for c = 0.
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For the case c i 0, replace (2.1.16) by

-z .(T)
. I V,J

e 211 - ._.L.t.1_ . ezv,J(T) yv + Cl + 4(p+1)yv 1 . Cv’j(7) e .

and repeat the previous procedure. This gives us

 

c + —l—
I lfl 4y .

:11K I V (1 — r)“ If(re19)I5 do ,

v c

-(p+1)/yv

where r = e for v 3 v0, with p the number given by

Theorem 2.1.1 and K is a constant depending on A, A0, M, and 5.

This completes the proof of Theorem 2.1.2.

52.2 Inequalitieg of La_9_1_1nary series with Hadamard gaps and

bounded coefficients along circles lat] = r < 1.

Theorem 2.2.1. Let {akl be a sequence of complex numbers
 

satisfying (2.1.1). Let {nk} be a sequence of positive integers

 

satisfying (2.1.2) with A = A0. If

G nk

f(z) = 2 ak z , IzI < 1 ,

k=0

then there exists a positive integer v0, depending on {nk}, A, and

M, such that, for any 3 i n , if n 6 s < n , then

vo v v+1

laIIn .

(2.2.1) 2 I: 43 (I-r)“ If(re1°)|”

for any 0 «2 [0,27!], fl ) 0, and a c R, where r = e‘(P+1)/9 with p

given by Theorem 2.1.1, and K is a constant depending on A, p,

and M.
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Proof of TheoregL2.2.l. Let {yk} be a sequence of positive

numbers satisfying (2.1.2) with A = A0. Because yk+1/yk = nk+1/nk =

A, we can put nk = dyk for any k = 1,2,..., where d is a

positive constant. For Re t > 0, if

(2.2.2) f(e-

then f is a Dirichlet series with exponents {-ykdt} and co-

efficients {8 Because {yk} and {ak} satisfy (2.1.2) and (2.1.1)
k}'

respectively, it follows from Theorem 2.1.2 there exists v0 depending

on {yk}, A, and M such that

 

l
+ ———- .

IaVI” ° 4w . ,
(2.2.3) 2+1 ‘ K I (1-r)“ If(re19)| de

y c
v

for v 6 v0, c e [0,2n], a c R, p > 0, where r = e-(p+1)/yv and p

is a positive integer depending only on A and M, where K is a

constant depending on A, F, and M.

Note that the inequality (2.2.3) holds for v i v0, where Va is

dependent only on {nk}, A, and M, and Va is independent of the

particular sequence {yk} satisfying (2.1.2) with A = A0.

If s i nyo, there exists a DV such that nv 6 s < nv+1' We

can construct a sequence {yk} of positive numbers satisfying (2.1.2),

with A = A0, and yv = s. From our previous argUment, we obtain

 

I

IavIfi ° + '4? a . 5

(2.2.4) s“*1 o 2 IC (l-r) If(re19)I do

Since 3 is arbitrary, we have completed the proof of Theorem 2.2.1.
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Theorem 2.2.2. If f, {ak}, {n are the same in Theorem 2.2.1k}

then there exists a positive integer v0, depending on {nk}, A, and

M, such that, for any 5 i "Vo’ if nv 6 s < nv+1, then

6

lavl
 

27! a . 5

(2.2.5) 4 K I (l-r) If(re19)l do

0
1"v

where a e R, p > 0, r = e‘IPHVB with p a constant depending on

A and M, and K is a constant depending on A, n, a, and M.

Proof of Theorem 2.2.2. Since

    

5 fl 3 fl

2,, - lavl lavl _ lavl lavl

1/48 A«so: Aana no: so:

v v+l

the desired result (2.2.5) follows from Theorem 2.2.1.

52.3 Inegzalities of Dirichlet series with Hadamard ggps and

ugbojunded coefficients along small circular arcs

121 = r < 1.

Theorem_2.3.l. Let {ak} be a sequence of complex nmnbers such
 

that

(2.3.1) 1 < Is 1' < M < s for k = 0,1,...,
k+1/a

where M is a constant .

Let {yk} be a sequence of positive numbers satisfying
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(2.3.2) 1 < A 6 yk+l/yk 6 A0 and (MAW/elk“1 < constant < 1,

for k = 0,1,..., where A and A0 are constants. If

—s a -yks

f(e ) = Z a e , Re 3 > 0 and D > 0 ,

k=0 k

then there exists a positive integer p, which depends on A, A0, and

M, such that if wj(j = 0,...,p) satisfy the hypotheses of the Binmore

Lemma with p + l 6 q 6 p + 2, where q = Min Re w., then we have

O‘J‘p

p -W-/y

(2.3.3) IavIp 4 K E If(e J v)'fl

i=0

for v = 1,2,..., where K is a constant depending on A, A0, 3, and

Proof of Theorem 2.3.1. According to (2.0.3), (2.1.4), h(l) = l,
 

and triangle inequality, for a fixed v, we have

, q p -w /y

(2.3.4) 39$ 2 We J v>I . Iavl {1— 1: I331 wok/nu}.
a j=0 ksiv v

where so and h are given in the Binmore Lemma. By (2.3.4), (2.1.6)

and (2.1.7) we obtain

2 -w./y

(2.3.5) 2 If(e J ">I

i=0

P P

a l8 l v-1 y 1 - y /y

i -2-!- [l - 2e2 2 -£ e k v]

2p!eq k=0 yv

Y

m a y l-SI-BP

I: e —"e “I Ik=v+l v yv
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We shall show that the expression in curly brackets on the right of

(2.3.5) exceeds 1/2. Since yk+1/yk i A, we have

k-v
v-l yk 1 - y /y p v-l _ 1 - Ao p

(2.3.6) kEO[S’:e k ”I skEOIxJ‘Ve I

. $3 In .1 ‘9}?

1 — A;J
Because e /AJ ( constant < l for each. j, we can choose p

sufficiently large such that

(—

v-1 y 1 - y /y p

(2.3.7) 2 I —"- e k " I 12 .

k=0 1"; 8e

Since yk+1/yk < A0, we have

a y 1 - y /y p

(2.3.8) 2 ,Jsl IJ-‘e k vI

k=v+l v yv

( .2 M4 [13.1 - “I". 3;" l (I. .014 .1 - “I".
J 1 '=1

. j_

Since (MA)J/eA 1 < constant < l for any j = 1,2,..., we can

choose p sufficiently large such that

a 3k [ yk 1 - yk/yv 1P 1

_ e < _—(2.3.9) I: I—l

k=v+1 av yv 8e

Combining (2.3.7) and (2.3.9), we can choose p sufficiently large

(depending on A, A0, and M) such that the expression in curly
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brackets of (2.3.5) exceeds 1/2. Thus we obtain

‘W .J/y
p v

(2.3.10) IavI 6 Ki 2 If(e )I

i=0

where p and K, depend on A, A0, and M. It follows that

p -w./y

(2.3.3) In I” . x I If(e J “II”
V 3 J30

where R2 = K? if 0 6 R < l and K2 = (p + Up"1 Kp if D > 1.
1

This completes the proof of Theorem 2.3.1.

Theorem 2.3.2. If f is the same as in Theorem 2.3.1 then there
 

exists a positive integer v0 (depending on {yk}, A, A0, and M)

such that, for F > 0,

 

Ia I” C " ”‘1
'0

(2 3.10) “:1 s x I V (I—r)“ If(re1 )I” do

V C

-(p+1)/yv

for any v i v0, c 6 [0,26], where r = e , with p a

constant integer given in Theorem 2.3.1, and K a constant depending

on A, A0, M and fl.

Proof of Theorem 2.3.2. Inequality (2.3.3) follows from Theorem
 

2.3.1. Repeating the same procedure as in the proof of Theorem 2.1.2,

the result is obtained.
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52.4 Inequalities of Lacunary series with Hadamard ggps and

unbounded coefficients along circles IgL: r < l.

 Theorem 2.4.1. Let {ak} be a sequence of complex numbers

satisfying (2.3.1) and let {nk} be a sequence of positive integers

satisfying (2.3.2) with A = A0. If f(z) = ”Z ak :k then there

exists a positive integer v0, depending on {nkI:0A, and M, such

that,if s 6 my with nv 6 s < n then

0

v+l’

c + l—

45 (I-r)“ If(re1°)|” do 

Ie-VI‘9
(2.4.1) s“+1 ‘ 2 IC

for c e [0,2n], a e R, B > 0, where r = e-(p+l)/s’ p depends

on A, and M and K are constants depending on A, p, and M.

Proof of Theorem 2.4.1. Since {8k} satisfies (2.3.1), and
 

{nk] satisfies (2.1.2) and (2.3.2) with A = A0, we can apply

Theorem 2.3.2 to the procedure of the proof of Theorem 2.2.1 to obtain

the desired result.

 
Theorem 2.4.2. If f(z), {ak}, and {DR} are the same in Theorem

2.4.1, then there exists a positive integer v0 such that, for any

2 ' 6s nyo, 1f nv s < nv+1 then

 

p
a I 2" .

(2.4.2) Z s x I (I—r)“ If(re10)Ip do

3 0

for a e R, F > 0 where r = e-(p+l)/s’ p depends on A, and M

and K are constants depending on A, p, and M.
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Proof of Theorem 2.4.2. Since

    

2, IaVI’ IavI’ IaVI” IaVI”
-- = Bus and 6 = < ,
1/48 a: O: at a at a

A s A n n s

v v+1

(2.4.2) follows from Theorem 2.4.1 by repeating the augments used in

the previous Section 52.3.

52.5 Applications

Theorem 2.5.1. Let {ak} be a sequence of complex numbers and

{nk} be a sequence of positive integers satisfying

 

n a

(2.5.1) lim sup IakI > 0 , I-Eil-§:ll < M < w , and

k -+ w k k

n - l k

(2.5.2) 39-1—— = A > 1 , Jfll. < constant < 1 ,
n - l k

k A - 1

e

for k = 0,1,2,..., where M, A are positive constants. If

m n

f(z) = 2 ak z k

k=0

then

(2.5.3) lim inf N(r,f,ai 6 KA for each a e C ,

rI-é 1’ log log 1:;

where K; is a positive constant depending on A.

Proof of Theorem 2.5.1. Since f is a lacunary series with

Hadamard gaps and lim sup Iakl > 0, according to Theorem 1.1.1 and

k-fio
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Theorem 1.1.2 we need only show that

2n .

(1.1) lim inf (1 — r)’ I If'(re1°)|’ do s positive constant.

r -+ l- 0

a nk-l

Because f‘(z) = 2 nk ak z with {nk ak} satisfying (2.3.1)

k=0

and {11k - 1} satisfying (2.3.2), we can apply Theorem 2.4.2 for

a = fl = 2 to obtain the desired result.

Theorem 2.5.2. If a is a positive rational number and if 

o nk 6/2

f(z) = 2 ak z , where {nk} satisfies (2.5.2) and ak = nk ,

k=0

then

(2.5.4) lim inf Eiitiffll s K. for each a e c ,

r -+ 1’ log 1:;

where K; is a positive constant depending on A.

Proof of Theorem 2.5.2. Since f is a lacunary series with

Hadamard gaps and unbounded coefficients, we have lim T(r,f) = +w,

r -+ l-

and it follows from Theorem 1.1.2 that

(2.5.5) N(r,f,a) = T(r,f) + o(l) as r -+ 1‘ for each a c C .

Thus, to prove (2.5.4) it suffices to show that

(2.5.6) lim inf -21£L§l i K as r -9 l“ , where

r -9 1' log 1:;

K is a positive constant.

0 nk-l

Now f'(z) = 2 11k ak z , and since {nk ak} satisfies (2.3.1),

k=0

the sequence {nk - 1} satisfies (2.3.2), thus, we can apply Theorem
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2.4.2 for a = 6 + 2, fl = 2, to obtain

Inwal

(2.5.7) I = -——;:§—- 4 x I: (1 - r)2If (re“)1

nv

-(1>+1)/nv

for n is sufficiently large, r = e , and p and K

v

constants depending on A and M. Thus we have

(2.5.8) I If'(rei°)|2 do a'———ll§-— as r -+ 1- .
0 (1_r)2+t:

Inequality (1.1.3) says that T(r,f) 6 CA log+ lfrl: , where C;

are

is a

positive constant depending on A. Applying Parseval’s identity, we

have

m 2 2 2nk-2 1 2n

(2.5.9) REG nk IakI r = 2; ID If (re0)I’

1
F as r -+ 1'

2n 3(1-r)2+8

where the last inequality follows from (2.5.7).

Integrating (2.5.9) twice with respect to r, we have

112 Zn

2 2n (2nk - 1) “311'2 k ‘ K1 1 c
k=0 k k (l-r)

 

where K1 is a positive constant, and it follows that

 

2 1 2" '9 2

(2.5.10) Ifrna = 5; o If(rc1 )I do

a 2n

= 2 Iakl2 r k 6 K2 a as rI-é 1‘ .

k=0 (l-r)

Combining (1.1.3), (2.5.10) we Obtain the desired result (2.5.6).

as r -9 1’ ,



CHAPTER III

COUNTING FUNCTIONS OF ANALYTIC FUNCTIONS

WITH SLOW GROWTH

53.1 IntroduLction

Value distribution theory of analytic functions with slow growth

have been a subject of recent interest, in particular with respect to

bounds on the counting function. A function f in D is said to be

in the Shapiro-Shields class S 'k (0 < k < a) if f is analytic in D

and satisfies

k
sup (1 - lzl) |f(z)| < w .

zeD

Let L:(D) (l i p < w) be the Bergman space of analytic functions that

are p-th power integrable in [z] < 1 and let 8“ (a > 0) be the «—

Bloch space.

Let f be a meromorphic function in D. If a e i, we denote by

n(r,a) the number of solutions of f(z) = a in lzl ‘ r. For a e 3:,

the Nevanlinna counting function is defined by

r

N(r,a) = I n(r,a) gi .

The main purpose of this chapter is to show that the least upper

bound and the greatest lower bound of N(r,a) for B“ (a > 1), L:(D)

l
l i p < w, and S’n (O < n < a) all have the same order log 17;.

43
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53.2 An upmr bound.

Theorg! 3.1. If f e s'-k, k > 0, then T(r,f) = 0(log T%F) 

as r —9 1’ and for each a e C, N(r,f,a) = 0(log TE?) as r -’ 1".

Proof of Theore- 3.1. Let f(z) = 2 an 2". Since f is analytic

n=0

in D, we obtain

1 2" -
T(r,f) = 5; I log+ If(re19)Ide

0

2n

_ _l + '9 3
— 4" I0 log If(re1 )| dB

211

. El I 1og[If(reiG)’ + 1]d9

" 0

2n

.1. .1 'a 3‘ 2 log { 2" I0 (If(re1 )I + 1)de }

‘11 l -k

-5 og0———;i +0(1). (feS)

(l-r)

_ _l_ _
- 0(1og 1-r) as r -9 1 ,

and hence T(r,f) = 0(log'I%;) as r -9 1’. Therefore for each

a e c, N(r,f,a) = 0(log T§;).

Corollary 3.1.1. If f e B“ (a > 1), then T(r,f) = 0(108 TE?)

and for each a e C, N(r,f,a) = 0(log 1%?) as r -’ 1'.

Proof. Since 8“ C S "(“"l [BeZ], the results follow from

Theorem 3.1.
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Corollary 3.1.2. If f e L:(D), then T(r,f) = 0(log 1%?) and

for each a e C, N(r,f,a) = 0(log 1%?) as r -9 1’.

Proof. Since L:(D) C S"3/P [Be2], the results follow from Theorem

3.1.

63. A lower bound

It is natural to ask the following: For each a > 1, can we find

a function f e B“ such that for each a e C, lim inf ELELELEl i K

r—’l- log-1_—r

> 0, where K is a constant. The answer is affirmative and will be

given in Theorem 3.2. We need the following lemma.

 

o n

Lemma 3.3.1. [Ya] Let f(z) = Z ak z k be analytic in

k=0

lzl < 1, with nk+1/nk i q > 1. Then f e 8“ (a > 0) iff

. l-a
11m sup laklnk < w.

k—)m

Theorem 3.2. If a > 1, then there exists a function f e B“
 

such that for each a e C, lim inf ELELifEl h K > 0, where K is a

r—)l" log-1:?

constant.

Proof. Since a > 1, there exists a positive integer m such

Q

1. - “k - .. _
that 1 + 2m < a. Let f(z) — k§1 ak z with nk+1/nk — 2, n, — 1,

1
1~a+—

"m 1 —-a 2m 0
= 2 = =

and ak nk -+ a. We have ak nk nk < 13k 1, and thus

lim sup 3 n l_a < 1. According to Lemma 3.3.1, we have f e B“.

k _+ a k k

We first show that

lim inf I££L£%- h K > 0 , where K is a constant .

r41- 1031:;
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Applying Parseval’s identity, we have

-bmz'" .
(3.3.1) .11_£1§_ I If'(re19)I’ de

770

0 2n ~2

= 2 a: n: r k (l-r)bm

k=1

where bm - 2 + 2 (m ‘)

For each 0 < r < 1, there exists a n; such that

 

‘ r < I - -l . Fix r, and let 1 be given by the last in-

"2-1 "1

equality. Then

2n —2

(3.3.2) 2 hm r k (1-r)bm

'
v

3

I
I

N V
’

H

V  

[1 ’ 1r1,11]4n"—1 * e—‘ .

Combining (3.3.1) and (3.3.2), we obtain

a 2n “2

2 2 k e"
(3.3.3) 2 a n r i ‘---- .

= k (l—r)bm

Integrating twice in (3.3.3) with respect to r, we have

 

0 n2 82 rznk

k k L
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where cm = 2-(m-1)’

and it follows that

z 1 2" - 2

(3.3.5) Ifrla = 2; I0 If(re19)| d9

0 2n
: 2 laklz r k

k=1

5 K --l-- , where K, is a positive constant.

’ (l-r)Cm

According to (1.1.3) and (3.3.5), we obtain

(3.3.6) lim inf 115L§%— e K ,

r -9 1' log 1:;

where K is a positive constant.

Since f is a lacunary series with Hadamard gaps, lim sup lanl > O,

n-—)o

and lim T(r,f) = +w, by Theorem 1.1.2 (Chapter 1), we obtain (1.1.7)

r91“

for each a e C, T(r,f) = N(r,f,a) + 0(1) as r -+ 1‘. Combining

(3.3.6) and (1.1.7), we have, for each a e C

lim inf ELELELEZ i K as r -+ l‘ .

r -+ 1’ log --
l-r

This completes the proof.

Corollary 3.2.1. If k > 0, then there exists a f e S"k such
 

that for each a e C, lim inf ELELETSl h L, where L is a

r -+ 1’ log --
l-r

positive constant.
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Proof. Setting a = g + l, we have R = 2(a - 1). Since

a“ c s-=(¢-1) = s-k [Be2], the result follows from Theore- 3.2.1.

Corollary 3.2.2. If p > 0, then there exists a function

f c L:(D) such that fer each a e C, lim inf ELE‘ELEI i K,

r-Ol‘ log—-

where K is a positive constant.

1
- +2

Proof. Since .«rkc 1.p (n), for e > o, the result follows

from Corollary 3.2.1.

Relark. Combining results in 53.2 and 93.3, we obtain that the

least upper bound and the greatest lower bound of N(r,a), a e C, for

a“ (a > 1), 12(1)) (1 i p < a), 54! (o < k < .) all have the same

order log 1%; .



CHAPTER IV

ZEROS OF FUNCTIONS IN THE a-BLOCH SPACES

54.0 Introduction

A function f(z) analytic in the unit disc D is called an a-Bloch

function (a ) 0) if f satisfies

sup (1 — Izl)“ lf'(z)l < .

zeD

The set of all a—Bloch functions is denoted by B“. A Bloch

function is precisely a l-Bloch function. It is known that the zeros

{zk} of nontrivial Hp (Hardy space 0 < p i 0) functions are

completely characterized by the Blaschke condition

I: (1“IZ|)<°

k=1 k

In particular, all of the Hp spaces admit the same zero sets [Du].

In this chapter, we obtain some results on the zero sets of a-Bloch

functions. We show that these "ax-Bloch zero sets" (a > 1) are quite

different from the Blaschke sequences. Our main results are as

follows.

Theorem 4.1. If a > I, then there is an a-Bloch zero set which

is not a Bloch zero set.

49
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Corollary 4.1. For each a > 1, there is an a-Bloch zero zet which
 

does not satisfy the Blaschke condition.

Theorem 4.2. If 1 < a < p and if e < 21; (p + 3) then there is

a fl-Bloch zero set which is not an a-Bloch zero set.

The first and the second theorems are proved by constructing a

Horowitz-type infinite product [Bel], [Ho], adopting Beller’s technique

[Bel], and using a result on the coefficients of the a-Bloch functions

(see Theorem 5.1 of this dissertation).

Corollary 4.1 is an immediate consequence of Theorem 4.1.

54.] Zero sets of a-Bloch functions

Beller’s Le-a. [Bel] If f e L:(D), (0 < p < a) and if {Zn}

1 - z

is the ordered zero set of f, then lim sup ini—gn—L 6 i .

n-dm

Corollary 4.1. If f e 8, {Zn} is the ordered zero set of f,
 

then

Proof: Since B C L: for each 0 < p < a, the required result

follows from Beller’s Lei-a.

Theorem 4.1. If a > 1, then there is an a-Bloch zero set which
 

is not a Bloch zero set.

Proof of Theorem 4.1. Since a: > 1, there exists a positive

number q such that l + g < a. Let
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0 (n -n_)

(4.1.1) f(z) = n 1 + bk 2 k k 1

k=0

k l

where nk = 22 , n-, = 0, h1" = nkq. Since the radius of convergence

w (nk - nk_1)

of 2 bk 2 is 1, it follows that f is analytic in

k=0

|z| < l, and its zeros are precisely the zeros of the factors of the

right side of (4.1.1). Let {zn};:1 be the ordered zero set of f.

Clearly, for nk_1 ‘ n 6 nk, we have

 

 

l

ul=b-mk—%fl) =n“%—"””
n k k

In particular,

-log n

1 - [2D | : 1 - exp {g(n _ nk )}

k k k-i

log nk log n

  

> g(nk _ nk-1) > 9(nk) for suff1c1ently large k .

Thus we obtain

1 - 2

(4.1.2) lim sup —:,—'i-l-Ll l .

n a n 0g n q

It follows from Corollary 4.1 that f l B, and hence {Zn} is not a

Bloch zero set.

We next shall show that f e B“, for each a > 1. Put f(z) =

a

2 8k zk, ak i 0. According to [Theorem 5.1], it suffices to show that

k=0

n 2 n n

2 k ak = 0(n“). Since a > 1 + - and 2 k a i n 2

k=1 9 k=1 k=l

suffices to show that
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n 2/

(4.1.3) 3 sh = 0(n q) .

k=l

n m

Let Sn = 2 [a I, it follows from [Bel] that S = (l + b ).
_ k “m _ k

k—l k-O

w _1 a 1 a 1 l/q

Since 2 bk = Z 1/ = 2 __i < w , we obtain

k=1 k=l n q k=1 2
k 2

w _1 m m

(4.1.4) S < H (l + b ) H b < K n b ,

n” k=1 k k=0 k k=0 k

for some positive constant K .

In addition

“ k
l l. 2 2 1 2M+‘ - 1

m m 21‘ q q k=0 6 2 - 1
(4.1.5) fl bk = n 2 = 2 = 2 =

k=0 k=0

1 111+: _ l n+1 2/q 2
_(2 1) —(2 ) m _

= 2g < 2q = 22 = n q
m

(4.1.4) and (4.1.5) implies

2/q
(4.1.6) Snm < K(nm) .

If nm-, < n < nm - nm_,, we have

_ 2/q 2/q
(4.1.7) sn — Sum—1 < K nm__i < K nm .

If nm - nm_, ‘ n < nm, we have

(.1. S. = s... < Km} < x Hag)”

< K 22/q 112/q .
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Combining (4.1.6), (4.1.7) and (4.1.8), we obtain (4.1.3). Thus f e B“.

This completes the proof.

Corollary 4.2. For each a > 1, there exists an a—Bloch function

f such that f does not satisfy the Blaschke condition.

This is an immediate consequence of Theorem 4.1.

Theorem; 1.3, If 1 < a < B and if 4a - 3 < )3 then there exists

a fl-Bloch ordered zero set which is not an a-Bloch ordered zero set.

Proof of Theorem 4.2. Let s > 0, p = 2-(-a%l-) + a, and
 

 

  

w (n - n _ )

f(z) = n [1 + bk 2 k k ‘ ]

k=0

k

_ 2 _ 1/p
where nk - 2 , bk — nk

Let {Zn}n=x be the ordered zero set of f. For nk_1 < n ‘ nk,

nl=b-mk~%fl) =n N%_n“9
n k k

Do the same procedure to reaching (4.1.2), we obtain

1 - 2

(4.1.9) lim sup -:T-l-fll l = 1 > 1 .

nae " ”g" P —J—+. ——L-+m
2(a-l) 2(a-1)

—2(a11) + 28

It follows from Beller’s Lemma and (4.1.9) that f t La

1

. -2(a-1) 2(3—1) + " .
Since 8“ C S’ 5 L a for each n ) 0 [Be2], it

follows that f t B“.
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a

we next shall show that f c 85. Put f(z) = X ak 2k, a i 0.

k=0
k

According to [Thm. 5.1], to show f e 8p it is only necessary to show

n n

that 2 k a = 0(np). Let SD = 2 ak. As in the proof of Theorem

 

 

k=1 k .. k=0

4.1, we obtain sn ‘ x 22/9 nZ/p for n =1,2,3,... . Also,

n n 1 + g

2 k 8k 5 n 2 8k = n SD = 0(n P)

k=0 k=0

and

g _ 1 _ 4(a - 1) _ =

1 + P - 1 + 2 [ 1 + c] — 1 + 1 + 28(a - 1) < 1 + 4a 4

2(a-1)

= 4a - 3 < 5 .

n

Thus 2 k ak = 0(nfl). This completes the proof of Theorem 4.2.

k=0



CHAPTER V

COEFFICIENTS OF u—BLOCH FUNCTIONS

95. 1 Introduction

Coefficients of Bloch functions have been studied by Anderson,

Clunie, and Pommerenke [ACP], Mathews [Ma], Neitzke [Ne], and

Fernandez [Fe], among others. In this chapter we investigate

coefficients of a-Bloch functions. In section 2 following Bennett,

Stegenga, and Timoney [BST] we give two sufficient conditions on

coefficients for B“. In section 3 we obtain one sufficient condition

and three necessary conditions on coefficients of little a-Bloch

functions. In section 4, we establish some sufficient conditions and

some necessary conditions on blocks of coefficients for the classes B“

a:

and 80. The results we obtain in this chapter are related to results

of Hardy [Ha], Titchmarch [Ti], Mathews [Ma] and Neitzke [Ne].

55.2 _A_3n extension of a theore- of Mathews

 

 

Theorem 5.0 [BST] If f(z) = 2 an zn is holomorphic in D

n=0
n

and an a 0. Then f e a“ iff 2 k ak = 0(n“), and then f e a:

n k=1

iff X k ak = o(n“).

k=1

” n J J+ —1
Theore- 5.1. Let f(z) = )3 an z". If x k lakl =0(n °‘ )

n=0 R J

for some J = 1,2,..., then f e B“.
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0

Proof of Theorem 5.1. For J = 1, put g(z) = 2 lanlzn, since

n=0

n a

2 klakl = 0(n ), it follows from Theorem 5.0, that g e 8“. Now

k=l

“ k 1
IZIIf'(Z)l ‘ Z klakl IZI = g'(l2|) ‘ constant —-----1; .

k=1 (l-Izl)

and hence f c B“ .

. . . (J) C
For J > I, it is easy to verify that If (z)| £ “+J_1 ,

(1-IZI)

and the result follows by successive integration.

Corollary 5.]. [Ma] Let f(z) = 2 an zn be holomorphic

n=0

n

in D, if there is a fixed integer J i 0 such that 2 leakl ‘

k=J

CnJ for each n, then f e 8.

Proof. Setting a = l, the result follows from Theorem 5.1.

 

Q

Theorem 5.2. Let f(z) = 2 an 2“ be holomorphic in D. If a a 1

n=0

n

and 2 kq—‘laqu = 0(na_1) for some q, 1 < q < m, then f c B“.

k=1

Proof of Theorem 5.2. Applying Theorem 5.1, it suffices to show

= 0(n“).

n

that 2 klakl

k=1
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u use 1
zklal=2k 1...;

k:]_ k k=1
k

n 1 l/p n % l/q ( n d
p-

9 H01 er

‘ [kgl k ] [ REI k lakl ] inequalitY)

:1.

= 0(n) 0[n q ]

1
1+“

: 0[n q ] = 0(n“) -

 

Q

Corollary 5.2. [Ma] Let f(z) = 2 an 2“, if 2 nlanl2 < 0

n=0 n=1

then f e 3.

Proof. Setting a = l and q = 2, the result follows from Theorem

5.2.

Corollary 5.3. ([Ne, Theorem 1, p. 11]).

Q G

Let f(z) = 2 an 2 , if 2 kq-ilaqu ( w, for some q > 1, then

n=0 n=l

f e 8.

Proof. Putting a = 1, the result follows from Theorem 5.2.

' a

95.3 Conditions on coefficients for the little a-Bloch space 80

 

I
I

M

:
5
” N
r

Theorem 5.3. Let f(z) be a function in B: where f(z)

l—a

athen R k = 0(1) as k -9 a.

-
J
i
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Proof of Theorem 5.3. From Cauchy’s formula

 

_ l f'gz)

lakl ‘ I 2nik I _ k dz
lzl-r z

 

2 . - .

‘ 2%E I W I 2.152121 rie19 I d9

0
k ike

r e

°[ 1 J2"“ (1-r)“

  

"1

o(k r1—k(l - r)—a) as r -+ l‘ .

The minimum value of the last term occurs for r = l - a/(k - 1).

Evaluating for this r, we obtain

l-k -a

-i 1—k -a _ -1 a a _ a—i

k r (1 ‘ r) ‘ k [1 ’ k~1] [k—I] ‘ o(k )

as k -9 w

Thus kl—a ak = 0(1) as k -+ 0.

Corollary 5.4. [Ne] Let f(z) = 2 a zn. If f 6 Bo then

an -9 0 as n -+ w.

Proof. The result follows from Theorem 5.3, by setting a = l.

 

0

Theorem 5.4. Let f(z) = X a 2“. If

n k' [ n

2 ”'2‘“? la l = o 2 k
sz (R J). k k

for some fixed J = 1,2,..., then f e 8:.

To prove Theorem 5.4. We need the following Lemma 5.1.
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Le-a 5.1. ([Ne, p. 16] and [T1, p. 224])

" and g(x): 2b both have radius of

° k
Let h(x) = Z ak x k x

k=0 k=0
n

convergence 1, let sn = Z ak, tn = 2 bk’ sn i 0, tn i 0 for

k=0 k=0

each n, and suppose 2 sn and 2 tn are both divergent, and SD =

o(tn). Then h(x) = o(g(x)) as x -+ 1’.

 

 

a

Proof of Theorem 5.4. If J = 1, 1et h(x) = 2 klaklxk,

w k ka-l n k=0 1)

g(x) = 2 b x where b = ; s = 2 kla | and t = 2 b ,
k=0 k k T(cz) n k=1 k n k=1 k

by hypothesis, SD = o(tn) as n -+ 0. Applying Lemma 5.1, we obtain

h(x) = o(g(x)) as x -+ 1‘ .

Since tn ~ n“ as n -9 w, it follows from Theorem 5.0 that g(lzl) =

o[-—-l——a-] as [2) -) 1". This implies that

(1-IZI)

lf'(2)l . 11021) = o<g<z>) = o[—-—1—;] as IZI -+ 1".
(1-lzl)

thus f e 8:.

For J ) 1 we have f(J)(z) = o[ 1 a] as |z| -+ 1’, and

(l-lzl)

the results follow by repeating the above procedure.

Corollary 5.5. ([Ne, Thm. 3(1), p. 15]) Let f(z) =

k ”
M
B

9
r

N H h
”

0

there exists a fixed integer J, J i 1 such that

n J J
2 k lakl = o(n ) then f 6 Bo .

k=1
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Proof: The result follows from Theorem 5.4, by setting a = 1.

k3“'

n

We obtain f e B; = 80, since 2 ~ nJ as n -+ a.

k-l

O

Theora 5.5. Let f(z) = 2 a 21‘ be in 8:. If there isa G

k=0
n

such that O ‘ arg ak ‘ 9 + "/2 for each R. Then 2‘ klakl = o(n“)

k=l

 

k

as n-9w.

We need a lemma for the proof of Theorem 5.5. This Lemma is an

immediate consequence of ([BST, Thm 1.4 and Thm l.10a]).

 

Lemma 5.2. [BST] If g(x) = 2 ck xk = o[ 1 a] as x -9 1’,

k=0 (l-x)

n

as x -+ 1’, where ck i 0 then 2 ok = 0(n“) as n -+ a.

k=0

Proof of Theorem 5.5. There is no loss of generality in assuming
 

that 9 = 0. Since f(z) e B: , we have

2 k a lf‘(2)l = o((l-Izl>‘“>

k=1

.k-1 l
k

and

 

= (f'(Z)) = o((l—|z|)-a) as |z| -+ 1- .

Therefore

2 k Re(ak)zk" = o((1-|z|)'“) as [2) —+ 1-

where o ‘ Re ak. Similarly

2 k 1n(ok)z1H = o((1—|z|)’“) as |z| -+ 1-

where 0 ‘ Im(ak). Thus
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2 klaklzk“ = o((l—Izl>‘“> .
k=1

In applying the lemma above, put ck_, = klakl. We obtain g(|z|) =

n

o((l-lzl)‘“) as |z| -+ 1’. By Lemma 5.2, we have 2 klakl = 0(n“)

k=l

as n -+ a. This completes the proof.

Theorem 5.6. If f(z) = 2 ak 2k is in B: then for any fixed

k=0 1

n p+a~§

integer p = 1,2,..., 2 kplakl = o n as n -9 0.

k=1

0

Proof of Theorem 5.6. Let g(z) = zf'(z) = 2 n an 2“. By a
 

n=l

result which is an extension of Hardy’s result ([Harl p. 45]), we have

1
p k -(p+a—§) -

2 k lakl IZI = 0 (1"IZI) as IZI "’ 1 -

But

n n n k ° k
lzl 2 kplakl e 2 kplakl |z| ‘ 2 kplakl lzl for all z, |z| < 1

k=1 k=1 k=1

1

- a

for each n = 1,2,3,... . Taking |z| = e ,

-l4v+a-% p..-1
kplakl = o[[l — e "I I = oln 2] as n -+ w;

n

e”1 2

k=l

5
0
‘

since -l i l — e 4

2n

the proof of Theorem 5.

for n sufficiently large. This completes
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55.4 Conditions on blocks of coefficiegts in the class ,gf

Let f(z) = E ak zk. In this section we shall give several

results concernitg1"blocks" of coefficients for a-Bloch and little a—

Bloch functions. We will consider the portion of the power series for

f(z) between R = m and k = 6m, where 6 = the gauss integer of

a + 1. The integer "6" of the upper bound is not critical to the

following analysis; simple revisions will accomodate any number

exceeding 1.

6m

Define flm = kin lakl. We will first show that for functions whose

power series have real nonnegative coefficients, we can characterize

Ba and B: by conditions on flm.

0

Theorem 5.7. Suppose that f(z) = 2 ak 2k, with ak 6 0. Then

k=l

f e B“ if and only if 3m 6 constant m““ for each m = 1,2,3,...

Proof of Theorem 5.7: If f c B“, applying Theorem 5.0, we have
 

6m 6m 6m a a

m 3 = m X a 6 2 k a 6 2 k a 6 constant(6m) 6 constant m .
m _ k _ k _ k

k-m k-m k—l

If pm 6 constant ° 111""'1 for each m = 1,2,3,... . Fix n, and

suppose that p is an integer such that 6p 6 n < 6p+1. To show

n

f e B“, by Theorem 5.1, that it suffices to show that Z k ak =

k=l

0(n“).
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n o 5’ 5P+*

2 k < 2 k a + 2 k + -°° + 2 k a

k=1 8* k=1 k a 8“ op k

6 2 62 p+16p+‘

<5 )3 a +6 2 +-~+o 2

k=1 k k=6 8“ op 8*

‘ 6 la-i + 62 . da-i + ... + 6p+1 . 6p(a—1)

+ .—‘ {6 + 62 + ... + 6P 1}6p(a 1)

+ _

6 constant 6p 2 . na 1 6 constant na .

This completes the proof of Theorem 5.7.

Theorem 5.8. Suppose f(z) = E ak zk with ak 6 O for each R.

k=l

Let a i 1. If f e B: then flm = o(m“") as m -+ o.

 

Proof of Theorem 5.8. If f e a:

 

1 m 6m 1 6m 1 a a—i

3 flm = 3; 2 Elk 6 3; I k 8k = 3; 0((6m) ) = 0((6m) ).

m k-l

6m J-i J+a~2

Theorem 5.9. If 2 k lakl s M* m , for each positive

k=m

integer J, m and for a positive constant M*, then f(z) =

{D

X 8k ZR 6 Ba

Proof of Theorem 5.9. By Theorem 5.1, it suffices to show that
 

n

2 leakl = 0(nJ+a-1) as n -9 w. If 65 6 n < 69+‘, then

R l
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n J 5 J ‘2 J ‘8“ J
2 k lakl ‘ 2 k lakl + 2 k lakl + --' + 2 k lakl

k=l k=1 6 65

6 32 63+!

‘ 6 2 RJ 1Iakl + 62 2 RJ llakl + .0. + 63+: 2 kJ llakl

1 6 53

‘ 6M* + 62 M*(6J+a-2) + ... + 68+1 M*(6S(J+“—2))

(by hypothesis)

6M,[1 + 6J+a—l + 62(J+a-l) + ... _ 6s(J+a—l)]

J+a-l 3+1

  

_ 8+1

: 6M*[(o ) - 1] ‘ 6M*(6(J+a 1))

6J+a~l _ 1 6J+a-l _ 1

6 26M*(65)J+a_1 = 0(nJ+“_1) .

This completes the proof of Theorem 5.9.

Theorem 5.10. Let f(z) = 2 ak zk be in B“. If there is a 8

k=0

n

such that 9 < arg ak 6 0 + 3 then 2 kla

k=l

 

= 0(n“) as n -9 w.
2’ k'

Proof of Theorem 5.10. The result follows from repeating the
 

procedure of the proof of Theorem 5.5, and applying ([BST, Theorem

l.lO(a)]) putting V(n) = n“.

N

Theorem 5.11. Let f(z) = 2 ak zk be in B“. If there is an
 

k=0

9 such that O 6 arg ak 6 0 + n/2 for each R, then there is a

(6+l)m

positive constant 0* such that 2 [akl 6 C*(ma-‘).

k=6m
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Proof of Theorem 5.11. It follows from Theorem 5.10 that

n

2 klakl = 0(n“) as n -9 a. Then

k=l

(6+1)!!! (5+1)!!!
(1 a

6m 2 lakl 6 2 klakl 6 constant((6+1)m) 6 constant m

6m 6m

(6+1)m

and thus 2 [akl 6 0* 111""1 where C* is a positive constant.

k=6m

Theorem 5.12. If f(z) = 2 an zn is an a—Bloch function. Then

“:0 n p+a-%

for any integer p h 0, we have 2 kplakl 6 C n .

k 1

Proof of Theorem 5.12. Hardy has shown [Hal] that if g(z) =

 

E on zn is analytic in D and g(z) = 0[--l--;], c > 0 then for

k=0 (l-lzl)

—o ( 7 < a + %

a —7 n l

4E=1n 'CDI '2' - oll(l-|z|7—7+1/2]J.

Setting f'(z) = zg(z), 7 = -p+l. We obtain

 

 

Q

l

2nficlufl=0[ _ ].

n=1 “ <1—Iz|>P*“ 1/2

Estimating 1 +“_1/2 , we have

(1-12l)p

a a p+a~ - n

2 np lanl |z|n 6 C 2 n |z|

n=l n=l

Titchmarsh has shown [Ti, p. 224] that the above inequality implies

n

that 2 kplakl 6 C np+“—1/2, for some positive constant C.

k=l .



66

Theorem 5.13. If f(z) = 2 ak 2k 6 a“ then

k=0

(GEDmkp—i lnp+a¢—3/2

lakl 6 constant for each positive integer P

k=6m

Proof of Theorem 5.13. It follows from Theorem 5.12 that

(6+l)m _ (6+l)m (6+1)m

6m 2 RP llakl ‘ 2 kplakl ‘ 2 kplakl ‘
6m 6m 1

(6+l)m

6 constant ((¢S+l)m)p+°“”1/2 => 2 kp-llakl = 0(mp+a—3/2) .

6m
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