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ABSTRACT
A STUDY OF VALUE DISTRIBUTION, ZERO SETS, INEQUALITIES,
AND COEFFICIENT CONDITIONS FOR ANALYTIC FUNCTIONS
WITH SLOW GROWTH AND LACUNARY SERIES WITH HADAMARD GAPS
By

Peter Tien-Yu Chern

Let n(r) be the number of zeros of f e¢ B in |z] € r, where
B is the space of Bloch functions. Anderson, Clunie, and Pommerenke
[J. Reine Angew Math. 279 (1974), p. 36] asked: is it true that
n(r) = o 1—1—; log log 'I%r'] as r — 17? The attempt to answer this
problem led to the following main result concerning with the lower
bound of the Nevanlinna counting function N(r,f,a) = N(r,a). There
exists a Bloch function f in |z] <1 such that for each a ¢ €

lim inf —Nrfi8) .

r — 1 log log 1z

where K is a positive constant.

Let B, be the 1little Bloch space. We show that
% log*[o(log 1—_1_;) + 1) is an upper bound of the Nevanlinna
characteristic function T(r,f) as r— 17 for f e B,, and we

show by example that this upper bound is sharp.

We next establish inequalities for lacunary series with Hadamard
gaps along small circular arcs in |z| < 1. Applications to the wvalue

distribution of B and B* are given.



Peter Tien-Yu Chern

Let B (a>1), L2(D) (14p<=), and S (0<n<e), be
the a-Bloch space, the Bergman p-space in |z| < 1, .and the Shapiro-
Shields class; respectively. We show that for each a ¢ €, the least
L

upper bound and the greatest lower bound of N(r,a) for 8<%, and

S all have the same order log -].-}-—r:

We obtain some results about the zero sets of «-Bloch functions
(x > 1). We show that these "x-Bloch zero sets" are quite different

from Blaschke sequences.

Some sufficient and some necessary conditions on the coefficients
for 8% and B: are shown. We also give conditions on blocks of

coefficients for B* and B:.
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INTRODUCTION

Let D denote the unit disc {z: |z] < 1}, € the complex plane,

and € =C v {»}. A function f in D is called an «-Bloch function
(«a > 0) if f is analytic in D and satisfies
(0.1) sup (1 - 1z])% |f'(2)] < = .

zeD
The set of all a-Bloch functions is denoted by 8%*. A Bloch function
is precisely a 1-Bloch function. Let B: (x> 0) be the set of
functions f analytic in D such that

(0.2) lim (1 - |z|)% |f'(2)] =0 .
lz|—1"

B: is called the space of little «-Bloch functions. A lacunary series

with Hadamard gaps means a function f analytic in D which can be

expressed as a power series in the form
© nk
(0.3) f(z) = g 8z, nk+1/nk ag>>1l.
k=0
The purpose of this paper is to study 8" and some lacunary

series with Hadamard gaps. We obtain some results concerning the

value distribution (Chapter 1, 3), the zero sets (Chapter 4),

the coefficient conditions for a-Bloch functions in lz] < 1

(Chapter 5), and some useful inequalities for lacunary series with

Hadamard gaps along circles in |z| = r <1 (Chapter 2).
1



Let us begin with some background in value distribution theory.

Picard (1880) proved that if f(z) is a non-rational function
meromorphic in €, then f takes every a ¢ ¢ infinitely often, with

at most two exceptional values.

Let f be a meromorphic function in €. If a ¢ E:, we denote by
n(r,a) the number of solutions of f(z) = a in |z| € r. We set

M(r,f) = max |f(z)|. The order of f is defined by
lz}=r

(0.4) p = lim sup MM

r— o log r ’

and the order of the roots of f(z) = a is defined by

(0.5) p(a) = lim sup lo ln L.8) |
og r
r — o

Hadamard (1893) showed that p(a) € p for all a € C.

Borel (1897) extended Picard’s result by proving that p(a) = p

for all a, with at most two exceptions.

Hadamard’s theory lacked precision and did not work well for
functions of infinite order or meromorphic functions. In the case when
f is meromorphic in é, the maximum modulus M(r,f) does not
behave satisfactorily as an indicator of growth, since M(r,f) is

infinite whenever f(z) has a pole on |z| = r.

For a € <‘C, the Nevanlinna counting function is defined by

r
(0.6) N(r,a) = Io n(t,a) -d—it; .

We put



1 (2" 10
(0.7) m(r,) = 5= | log* |f(re'®)jde , and
0
2n
1 1
(0.8) m(r,a) = 3= log* - de, aecC.
2 J‘0 f(rela) - a

The Nevanlinna characteristic of f is defined by

(0.9) T(r,f) = m(r,») + N(r,=») .

Nevanlinna (1925) stated his First Fundamental Theorem as follows: If

a e and f(0) # a, f is meromorphic in €, then
(0.10) m(r,a) + N(r,a) = T(r,f) + 0(1) .

The function T(r) gives an excellent description of the growth of
any meromorphic function in a finite disk or in the whole plane. N(r,a)
measures the number of roots of the equation f(z) = a in |z| € r,
while m(r,a) measures the average closeness of f(z) to a on
|z] = r. We deduce at once Hadamard’s inequality, namely p(a) € p,
for every a. However Nevanlinna’s aim was to obtain a sharper
version of Borel’s inequality. He did this by showing that in general
it is the term N(r,a) which dominates in (0.10). He showed that if

q »3, and a,,..,.aq are q distinct complex values then

q
(0.11) (q - 2)T(r,f) € I N(r,ay) - N, (r) + S(r) ,
v=1

where N,(r) measures the zeros of f’ and the multiple poles of f
and S(r) is a term in general much smaller than T(r). This is the

Second Fundamental Theorem. The Second Fundamental Theorem gives
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an extension both of Picard’s result and Borel’s result. The deficiency

of a is defined as follows:

o ysl s a(r,a) _ s M
(0.12) 6(a)-l1:1:f-§.7;.71-1 1:;-_3’112 T(r) °

Applying (0.12), Nevanlinna obtained the deficiency relation
(0.13) Y 6(a) § 2.

The concepts defined above are for meromorphic functions in €. For
functions defined in the disc D, we can get similar results by
replacing r — « by r — 1 and by making a few other minor

changes.

The first significant result concerning with the value distribution
of Bloch functions was obtained by Anderson, Clunie, and Pommerenke

[ACP]. They proved that if f ¢ B, then

(0.14) lim sup —N(r,£,0) € lim sup ——T(Lli)l— £ 172 .

r— 1" log logT}; r — 1" log logﬁ

They also asked ([ACP] tenth prob., p. 36) if it is true that
n(r,0) = o(x= log log =) as r — 1-
’ 1-r l1-r

for f e B?

A non-constant meromorphic function f in D is called admissible
[Hay] if

lim sup —TLL'{Zzw.
r— 1" logﬁ



Although the Second Fundamental Theorem provides a lower bound
for N(r,f) in terms of T(r), N,(r), and S(r), it doesn’t provide

us with a practical tool to evaluate 1lim inf N(r,f). The problem is

r— 1"
that
(0.15) S(r,f) = 0(log T(r,f) + log T%?) as r — 1- .
(see Hayman [Hay]).
By (0.14)
T(r,f) = 0(log log I%;) as r — 17, and hence
(0.16) S(r,f) = 0(log T%?) as r— 1 .

Thus S(r,f) has order log T%; which is larger than that of T(r,f).
Therefore the Second Fundamental Theorem does not work on this
problem. The Second Fundamental Theorem works for the admissible
functions only. Bloch functions are not admissible. In Chapter 1, we
develop a method to evaluate the lower bound of N(r,f) as r — 1
for analytic functions in D with slow growth, especially for Bloch

functions. The attempt to answer the tenth problem 1led to the

main results in Chapter 1.

Theorem 1.1.1. If f(z) is a lacunary series with Hadamard gaps

in D, and if

2m
(1.1.1) lim inf (1-r)* [ |£'(rei®)|® do » constant > 0
r — 1 0

then

lim inf —XEf) L 59

r — 17 log log i%; 9
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where Cq is a constant depending only on q.

® n
Theorem 1.1.2. If f(z) = § az k with a, # 0,
k=0 X
n./n aq>1, limsup |a|] >0, and lim T(r,f) = +o, then for
k+1/ "k K — ® & ol- ’ ’
each a ¢ C,
(1.1.7) N(r,f,a) = T(r,f) + 0(1) as r — 1" .

Theorem 1.1.3. There exists a Bloch function f in D which is

not little Bloch such that for each a ¢ €

(1.1.8) lim inf —N-(EaiélL a K
r = 1 log log -

where K is a positive constant.

Theorem 1.2.1. If f ¢ B,, then T(r,f) & % log*[o(log lTlr) + 1)

as r — 1°.

Theorem 1.2.2. If e¢(r) is a non-negative strictly decreasing

continuous function in (0,1) with ¢(17) = 0, then there exists a
little Bloch function f in D such that
T(r,f) » K log* [¥(r) log ﬁ] as r — 1- ,

where K .is a positive constant.

Theorem 1.2.3. If ¥(r) is a non-negative strictly decreasing

[ 4
continuous function in (0,1) with ¢(17) =0 and 9[1-“1‘('_1__ =
k=2 27!

+o, then there exists a little Bloch function g in D such that

N(r,g,a) » K log* [¥(r) log I%;] as r — 1, for each a € C,



where K is a positive constant.

Theorem 1.2.4. There exists a 1little Bloch function g in D

such that
(1.1.8) lim inf —"(L-&EIL aK for each ae €,
r — 1" log log 1=

where K 1is a positive constant.

In Chapter 2 we deal with some inequalities for gap series with
Hadamard gaps along small circular arce in |z|] = r < 1. Zygmund
{Zyl], Waterman [Wa], Binmore [Bil], and Gnuschke [Gn] established
some inequalities between certain sums and integrals of series with
Hadamard gaps along paths leading from inside of D to the boundary
of D. By way of contrast, we obtain some results along circles |z| =
r < 1. We begin with a Lemma of Binmore and then consider Dirichlet
series with Hadamard gaps and bounded coefficients. We establish
some inequalities along separated circular arcs in D (see Theorem
2.1.2). Then we use a kind of interpolation method for the sequences
of exponents to establish the inequalities along small circular arcs close
to |z|] = 1 (see Theorem 2.2.1). We deal also with the case with
unbounded coefficients. Some applications giving examples for
exhibiting the wvalue distribution for Bloch functions and «-Bloch

functions (a > 1) are given.

In Chapter 3, we deal with counting functions of analytic functions
with slow growth. A function f in D is said to be in the
Shapiro-Shields class S K (0 ¢ k < ®») if f is analytic in D and

satisfies



sup (1 - 1z)¥ |£(2)| < .
zeD

Let Lg(D) (1 § p (o) be the Bergman space of analytic function
f such that lflp is integrable on |z| < 1. The main purpose of
Chapter 3 is to show that the least upper bound and the greatest lower
bound of N(r,a) for 8% (¢ > 1), Lg(D) (1 € p < @), and

S~k (0 ¢ k ¢ ® all have the same order log T%; .

In Chapter 4, we deal with the zero sets for a—Bloch functions
(a > 1). It is well known that the zeros {zk} of nontrivial HP
(Hardy space 0 < p € ») functions are completely characterized by
the Blaschke condition
@
z

(1-]z.]) <o
k=1 k

In particular, all of the ) (0 6§ p ¢ ) spaces admit the same zero

sets [Du].

C. Horowitz [Ho] studied the zeros of functions in the Bergman
space Hg(D) (1 € p <o), and obtained some important results. In
Chapter 4, we obtain some analogous results for a-Bloch zero sets. We
show that these "a-Bloch zero set" (a > 1) are quite different from
the Blaschke sequences. By constructing a Horowitz-type infinite
product [Ho], adopting Beller’s technique [Bel], and using a result
on the coefficients of the a-Bloch functions [Ya] we obtain the

following main results.

Theorem 4.1. If « > 1, then there is an a-Bloch gzero set which is

not a Bloch zero set.



Corollary 4.1. For each « > 1, there is an a-Bloch zero set which

does not satisfy the Blaschke condition.

Theorem 4.2, If 1 < a < B8 and if 4a - 3 ¢ # then there exists

a f-Bloch zero set which is not an a-Bloch zero set.

In Chapter §, we study the coefficients of «-Bloch functions.

Coefficients of Bloch functions have been studied by Anderson, Clunie,
and Pommerenke [ACP], Mathews [Ma], Neitzke [Ne], and Fernandez [Fe],
among others. 1In this chapter we investigate coefficients of a—Bloch
functions. In section 2 following Bennett, Stegenga, and Timoney [BST]
we give two sufficient conditions on coefficients for B%*. In section
3 we obtain one sufficient condition and three necessary conditions on
coefficients of little a-Bloch functions. In section 4, we establish
some sufficient conditions and some necessary conditions on blocks of
coefficients for the classes B* and B:. The results we obtain in
this chapter are related to results of Hardy [Ha], Titchmarch [Ti],

Mathews [Ma] and Neitzke [Ne].



CHAPTER 1

THE VALUE DISTRIBUTION OF BLOCH FUNCTIONS
AND LITTLE BLOCH FUNCTIONS

Anderson, Clunie, and Pommerenke [ACP] have listed twelve open
problems for Bloch functions. The tenth problem says the following.
Let n(r) be the number of zeros of f ¢ B in |z| ¢ r. Is it true

that
n(r) = o(_l_ log log _1_) (r = 17) 2
1-r 1-r :

The attempt to answer this problem led to the results of this

chapter.

§1.1 The value distribution of Bloch functions

o n
_ k .
Theorem 1.1.1. If f(z) = }()z:o a z , with a, # 0, nk+1/nk
q>1, and if
2 2n ) .
(1.1.1) lim inf (1-r)* [ |£'(rei®))* do a K > 0,

r — 1" 0

then 1lim inf —N(r,f) » Cqs where Cq is a positive constant

r— 1" log logﬁ

depending only on gq.

To prove Theorem 1.1.1 we need the following two lemmas.

10
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lLemma 1.1.1. ([Zy2, Vol. 1, p. 215]).

@«
If h(x) = % (ak cos n X + bk sin n, x), 1'|k+1/nk aq>1l, and if
k=1
2

T (a® +b?) < o, then thl, a Aghhl,, where is a positive
k=1 Kk d *a

constant depending only on q.

Lemma 1.1.2. ([Zy2, Vol. 1, p. 216]) If g(x) is a nonnegative
measurable function defined on a set E in the real line ® with

positive linear measure |E| s8uch that

T%T f g(x)dx » A> 0 and T%T j g (x)dx 6 B ,
E E

then for 0 <686 <1, we have lE6' 2 |E|(1 - 6)2 A%/B, where

EG: {x ¢ E | g(x) » 6A}.

Proof of Theorem 1.1.1. For any O < r < 1, if fr(z) = f(rz),

lz]| <1, then f, ¢ L? (|]z|] = 1). It follows from Lemma 1.1.1 that we

have Mrl, » Aq Mfrh,.  Putting Eps = (8 € [0,2n] | |fr(el®)| »
Aq Mrl,/2), taking & =1/2, A = Aq Mply, B = MM, , g = |fr],
E = [0,2n] and applying Lemma 1.1.2, we have

2

1,2 .2 _
(1.1.2) B, gl > 2n (1-3) AL =3 A

E 2
2 'q°
According to the definition of Nevanlinna characteristic and (1.1.2)

we obtain
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™

L ™ yog" |£(rei®)| de

2n

T(r,f) =

» 2 1og" 1£(rei®)|? do

IE_ .| A afa?
» g log l T

A’ .| AL el
» 3 10’ | 72|

Thus

+
(1.1.3) T(r,f) » C_ log o B»

where Cq and Bq are positive constants depending only on gq.

Applying Parseval’s identity, we have

2n, -2 2n

. 2 2 k 1 2
= e ' .9
(1.1.4) kgo n, Iakl r o Io |f'(rel®)|" de

a (K*/Z) ?T%;37 for r near 1 ,

where the last inequality follows from the hypothesis in Theorem

1.1.1.

Integféting twice in (1.1.4) with respect to r, we have

; -——-EB-—- | la znk a (K ./2) 1o <2 f r near 1
k=0 2nk(2nk—l) ! T x g 1-r or n ’

and it follows that
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2 1 2m : 2
(1.1.5) lf,-lz = on |f(rel)|” d
® 2n
= I lg)’r
k=1
a (K*/Z) logl%;- for r near 1.

Combining (1.1.3) and (1.1.5), we obtain

(1.1.6) lim inf —T-fb—fi-l— » c
r = 17 log log — ir

This completes the proof of Theorem 1.1.1.

L4 n

_ k .
Theorem 1.1.2. If f(z2) = kEO a z with a, # 0, nk+1/nk aq>> 1,
lim sup lakl > 0, and lim T(r,f) = +», then for each a ¢ C,
k— o r — 1°
(1.1.7) N(r,f,a) = T(r,f) + 0(1) as r— 1" .

Proof of Theorem 1.1.2. Since f is a lacunary series with Hadamard

gaps and lim sup lakl > 0, by a result of Murai [Mu2],
k— o

lim inf m(r,f,a) is finite, for each a ¢ €. Since for each a ¢ C,
r— 1"

T(r,f) = N(r,f,a) + m(r,f,a) + 0(1) and N(r,f,a) is an increasing
function with respect to r, hence N(r,f,a) = T(r,f) + 0(1) as

r — 1. This completes the proof of Theorem 1.1.2.

Theorem 1.1.3. There exists a Bloch function f in D which is

not little Bloch such that
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(1.1.8) lim inf —Nf8) ¢ for each ace ¢,

r — 1" log log T%;

where K 1is a positive constant .

© n
Proof of Theorem 1.1.3. If f(z) = § =z k with n = Zk, then f
k=0

is Bloch but not little Bloch [Ya]. We want to show that (1.1.8) is

true for this f. According to Theorem 1.1.1 and Theorem 1.1.2, it

suffices to show (1.1.1). By Parseval’s formula, we have

2 2n ® 2n, -2
Qo) [ yri(rei®))® a0 = L n2r * (-n)? .
0 k=0
For any 0 < r < 1, there exists n, such that ne 1 & T%; < n,,
hence 2]l -r> 1 and 1 - €r <l - 1 . If we fix r,
Mo Ny M1 Ny
we obtain
® 2nk—2 2 2 2n,—2 2
) n r (1-r)" » n, r (1-r)
k=0
2
ot ()
2n,r n,
2n
yr !
4n‘_1

[ 4
p—
[
|

[
[ N—

It follows that
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2n .
lim inf (1-r)? _[ 1£' (re*®)1? do » %
r — 1" o
which completes the proof of Theorem 1.1.3.
A non-constant meromorphic function f in D is called

admissible [Hayl] if 1lim sup -I££L§l = 4o,
r— 1" logI:;

Theorem 1.1.4. There exists a non-admissible analytic function f

in D such that

ngr,az

6(a,f) = lim inf )

T(r = 0 for each complex number a.
r — 1 ’

Proof of Theorem 1.1.4. Let f be as that in the proof of Theorem

1.1.3. Then f is Bloch, and by (0.14) we have that
lim sup -IL£*§2 = 0. Since T(r,f) = +o as r — 1~ and a = 1, by
r — 1" log —

1-r

Murai’s result [Mu2] we have é(a,f) = 0, for each complex number a.

This completes the proof of Theorem 1.1.4.

61.2 The value distribution of little Bloch functions

It is natural to ask the following: Can we find a little Bloch
function f such that for each a € € (1.1.8) holds. The answer is
affirmative and will be given in Theorem 1.2.4. We first show that
% log*[o(log I%;) + 1] is an upper bound of T(r,f) as r — 1-, for
f € Bo (Theorem 1.2.1). We next obtain a result about the lower bound
of T(r,f) for some 1little Bloch functions in D (Theorem 1.2.2).
The result of Theorem 1.2.1 is sharp in the sense of Theorem 1.2.2.

Furthermore, in Theorem 1.2.3, we obtain a result about the lower
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bound of the counting function of some 1little Bloch functions. By
applying Theorem 1.2.3, we show that there exists a little Bloch
function f in D such that for each a € €, (1.1.8) holds (Theorem

1.2.4).

The main results in this section are in the following.

Theorem 1.2.1. If f ¢ B,, then T(r,f) £ % log*[o(log ﬁ) + 1]

as r — 1°.

Theorem 1.2.2. If ¥(r) is a non-negative strictly decreasing

continuous function in (0,1) with ®(1-) = 0, then there exists a

little Bloch function f in D such that

T(r,f) » K log*t [?(r) log Tl—!-_] as r — 1",

where K 1is a positive constant.

Theorem 1.2.3. If 9¢(r) is a non-negative strictly decreasing

continuous function in (0,1) with ®(17) =0 and § ¢[l - _ki—] =
k=2 2!

+o, then there exists a little Bloch function g in D such that

N(r,g,a) » K log* [¥(r) log Ti—r] as r — 17, for each a ¢ C,

where K 1is a positive constant.

Theorem 1.2.4. There exists a 1little Bloch function g in D

such that

(1.1.8) lim inf —N(r,g,8) aK for each ae¢C,

r — 17 log log i~x
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where K is a positive constant.

Theorem 1.2.1 provides an upper bound of T(r,f) for little Bloch
functions. The proof is due in essence to Anderson, Clunie and

Pommerenke [ACP].

Theorem 1.2.1. If f e By, then T(r,f) & % log*[o(log 1—1;) + 1]

as r — 1.

Proof of Theorem 1.2.1. Let f(z) = % anzn be a little Bloch
n=0

function in D. According to Parseval’s identity, we have

® 2n

(1.2.1) I n'ladr™ = Sl Io 1 (re'®)|? o
n=1

=o[ 1 2] as r — 17, since f e B, .
(1-r)

Integrating twice in (1.2.1) with respect to r, we have

2 2 2n
© n |an| r 1
(1.2.2) n£1 m o(log ﬁ) as r — 17 .

Since f 1is in B,, we obtain

1 2n )
(1.2.3)  T(r,f) = 5= [ log*|f(rei®)|do
70
2n
11 :
=2 o Io log* | f(rei®)|? de
2n
11 ,
“2° 2 fo log*[|f(rei®)|* + 1]de
2n
1 A 19y2
« 2 log 5 Io (1£(rei®)|* + 1)de]
s log*[o(log L-) +1] as r — 1"
2 1-r :
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This completes the proof of Theorem 1.2.1.

Corollary 1.2.2. If f ¢ B,, then N(r,f,a) € % log*[o(log ﬁ?) + 1]

+0(1) as r —1".

Proof of Corollary 1.2.2. According to the First Fundamental

Theorem of Nevanlinna, we have
m(r,a) + N(r,a) = T(r,f) + 0(1) for each a e C .
By Theorem 1.2.1,

T(r,f) 6 = log*[o(log 1—1;) +1] as r—>1 .

N~

This implies that

N(r,f,a) &

NI

log*[o(log Tl_-;) +1]) +0(1) as r — 1" .

Theorem 1.2.2. If o(r) is a non-negative strictly decreasing

continuous function in (0,1) with ®(17) = 0. Then there is a little

Bloch function f in D such that
T(r,f) » K log*[?(r) log ﬁ] as r — 17,

where K is a positive constant.

o k
Proof of Theorem 1.2.2. If f(z) = % a, 22 . with a =
k=1
vo(l - —k{_:)’ then f ¢ B,, since f is a lacunary series with
2
Hadamard gaps with 1lim a = 0 ([Ya].
Mo

According to Parseval’s identity, we have
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2 2n
(1.2.4) 5%%5%— C o . I£' (rei®)|® do
® k 2
_ 2 o2k _2(2 1) (1-r)
= k§2 ak 2 r o (r) °

For 0 < r <1, there is an integer £ such that
o) sy Cragt o2 p ey -2t

(1.2.4) yields

2 2m
) 1 ‘(rei8)|?
(1.2.5) o Io I£' (rei®)|? de
2 28 z(z‘—x) gl—rzz
ra 2w e ()
a?
N _; 2:! 2(2 —1) (2—3)2
8¢
e_ [
- 2(2%-1) sy p2°2
. 4.23—x _
o R = » e
of-1

Combining (1.2.4) and (1.2.5), we obtain

2m @

2

-1

If we

(1.2.6) . 5% Io If' (rei®))? de = kzz 22k a; rz(zk—x)
2 ¥re
(1-r)*

Since %(t) is decreasing in (0,1), we have

fix
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1 r .S

(1-t)

1
0°0 (1-t)°

dt ds » 9(r) j dt ds

(1.2.7) I: f: v (t)
= ¢(r) [log T%; + r], for 0 < r < 1.

Integrating twice in (1.2.6) with respect to r, using (1.2.7), we have

2 g2

(1.2.8) ) mk_—l)

2 -
r Tk a e ?(r) [ log T%; + r] ,
k=2

where n = 2k .
It follows from (1.2.8) that

2n

1 i8)12 do = 2 L
(1.2.9) = Io 1£(rei®)|® do = 1f 17 & 9(r) log 7= ,

as r — 17 .

Since f is a lacunary series with Hadamard gaps, we have
+ 2
(1.1.3) T(r,f) a Cq log lfrlz + Bq .
Combining (1.2.9) and (1.1.3), we obtain
(1.2.10) T(r,f) » K log*(¥(r)log T==) , as r — 1=,

where K is a positive constant. This completes the proof of Theorem

1.2.2.

Theorem 1.2.3. If o(r) is a nonnegative strictly decreasing

continuous function in (0,1) with lim ¥(r) =0 and
r-l-
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h) 9[1 - —F%T = 4w, then there exists a little Bloch function g
k=2

2
such that
N(r,g,a) » K log*[¥?(r)log T%;] as r— 1", foreach ae¢C,

where K is a positive constant.

To prove Theorem 1.2.3 we need the following lemma.

Lemma 1.2.1. [Mul] Let f be analytic in D and of unbounded
type and let p(z) be a non-constant polynomial. For each 0 ¢
[0,2n],  let gy (z) = f(z) + el® p(z).  Then meas{® ¢ [0,27] :
6(8,36) = 0 for each ae €] = 2n, where meas is the linear

Lebesgue measure.

o k
Proof of Theorem 1.2.3. Let f(z) = % a8, z2 be the function
k=2

constructed in the proof of Theorem 1.2.2. According to Theorem 1.2.2,

we have
(1.2.10) T(r,f) » K log*(v(r)log T%?) as r — 1- .
Since f 1is a lacunary series with Hadamard gaps and pX akz = 4o,

k=2
according to ([Zy2, vol 1, 8.12 Theorem, p. 214]), the set {ei® |

lim f(rei®) exists and finite} has linear Lebesgue measure zero,
 oud

and hence f is of unbounded type. Let ge(z) = f(z) + el® z,
According to Lemma 1.2.1, there exists a 8 € [0,2n] such that
6(a,g9) =0 for each ae €. If g = ge, then g € B, since f ¢ B,.

Also,
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(1.2.11) ™(r,f) = T(r,g(z) - eifz)

T(r,g) + T(r, - ei® z) + 0(1)

n

T(r,g) + 0(1) .

Combining (1.2.10) and (1.2.11), we obtain

T(r,g) » K log*(¥(r)log 1—};) as r — 1- .

Since é(a,g) = 0, for each a ¢ €, and g is of unbounded type, we

obtain
N(r,g,a) » K log*(v(r)log i%;) as r — 17,

This completes the proof of Theorem 1.2.3.

Theorem 1.2.4. There exists a little Bloch function g in D

such that

(1.1.8) lim inf —NTE:8) Ly for each a e €,

r — 1~ log log ﬁ

where K 1is a positive constant.

Proof of Theorem 1.2.4. Let #(r) = (log T};)“/’, for 0 <r ¢ 1.

?(r) is a non-negative strictly decreasing continuous function in

(0,1) with ®(1-) =0 and I v[l-—ki—l] = T ((k-1)log 2)~*/?
k=2 2 k=2

(log 2)"*/* § —L
k=2 (k-1)

= 4o,
1/a2
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Applying Theorem 1.2.3, there exists a little Bloch function g

in D such that

N(r,g,a) » K log+[v(r)log T%;] as r — 1" .

"]

Since log+[v(r) log T%?] log+[(log I%;)l = % 105*[10g I%;]

1 1 -
3 log log iz a r— 1-.

This completes the proof of Theorem 1.2.4.



CHAPTER 11I

SOME INEQUALITIES OF LACUNARY SERIES WITH
HADAMARD GAPS ALONG CIRCLES |z] = r < 1

§2.0 Introduction

The motivation of this chapter is to find more Bloch functions f,

in addition to the one found in Chapter 1, such that for each a ¢ €

(1.1.8) lim inf —NEf8) L x50,

r — 1" log logl_—r-
It is natural to look at a lacunary series with Hadamard gaps

@ nk
f(z) = § a z , lz) <1, nk+1/nkhx>1.
k=0

According to Murai’s result [Mu2], if lim sup |ak| > 0, then é6(a,f),
ko

the deficiency of f at a satisfies é(a,f) = 0. Therefore,

according to Theorem 1.1.1 and Theorem 1.1.2, in order to show

(1.1.8), it suffices to show that (1.1.1) is true.

Throughout this chapter, we consider f to be an analytic
function in D with Hadamard gaps. We will explore an inequality
concerning the radial variation of f due to Zygmund and some of its

extensions. In 1944, Zygmund [Zyl] showed that

1 © -1
I If()]dx < ®» => % ]akl n, (o,
0 k=0

24
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It is clear that, with the obvious modification, the radius 1 can be
replaced by any radius and that the converse is valid for arbitrary

power series. In 1950, Waterman [Wal] showed that

1 (-]
I (1 - x)“ |f(x)|p dx ¢ ®» => T laklﬂ n}—((a+1) ¢ w
0 k=0

for B> 1, O €6 «a ¢ g - 1. In 1967, Halasz [Hal] gave a new and
simpler proof for Zygmund’s result and also showed that
1 ®

[a-o1iteoraxce = 1 o) <= .
0 k=0

In 1972, Binmore [Bi2] proved Waterman’s result for « = g = 2. We
say that the curve C ¢ D goes to the boundary of D if C =
{z(t) : 0 6t <1} where |z(t)] &1 as t — 1-. In 1983, Zygmund’s
result was generalized by Gnuschke and Pommenerke [GP], where the
radius was replaced by an arbitrary curve which goes to the boundary
of D. In 1984, Gnuschke proved that if C is a half-open curve C
in D with 0 C, Cn aD #¢ then

. B _—(a+l) « ]

Lolalf oD am [ -z 15@)1f ezl

k=0 c
for « ¢ R, >0, where M, depends only on &« 8 and A. In
Gnuschke’s result, if we choose a« = 2, =1 and let f' replace f,
we obtain
[ ]
[ a-1z0* 117 @)1 1azl » g T Inal n°
C 1 k=0

° |al

1
M k=0 iy
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This result resembles (1.1.1) except for the fact that C is not a circle
in D. It would be desirable if we could replace C by circles of the

form |z] = r <1 in the above.

Gnuschke’s result was based on the following lemma which was

essentially proved by Binmore [Bil].

Binmore’s Lemma. Let p ¢ N and let wo,...,wp € € such that

(1) min Re W = 9 and
O<€kép

(ii) 0<a06|wj—wk|‘1/2 for j#k.

Then there exist co,...,cp € € such that

P -w.t
(2.0.1) h(t) = L c.e
j=0 *
satisfies h(l) = 1 and both
(2.0.2) Ih(t)] & 2tP 33 £or 04t (W,
and
(2.0.3) el 2pted/al for j=0,...,p .

In section 1, we establish inequalities for Dirichlet series with
Hadamard gaps and bounded coefficients along separated small circular
arce in |z| = r < 1 (see Theorem 2.1.2). In section 2, we use a kind
of interpolation method, when the radius r is sufficiently near to 1,
to establish inequalities along small circular arcs in |z] = r < 1 (see
Theorem 2.2.1). We also extend the inequalities along circles

|z] =r <1. In section 3 and 4 we deal also with the case with
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unbounded coefficients. In section 5 we present some applications,
giving examples for exhibiting the wvalue distribution for Bloch

functions and a-Bloch functions (a > 1).

§2.1 Inequalities of Dirichlet series with Hadamard gaps
and bounded coefficients along small circular arcs
in |zl =r < 1.

Theorem 2.1.1. Let {ak} be a sequence of complex numbers such

that

(2.1.1) lak/all (M o, for any k, £, where M 1is a constant .
Let {yk} be a sequence of positive numbers such that
(2.1.2) 1< & /Y, & A J\k/e:"k - 1 ¢ constant < 1

o 1. yk-ﬂ yk o ? ° ’

for k =1,2,..., where A,, A are constants. If

© -yks

s)=):ake , Res >0, and £ > 0,

f(e

then there exists a positive integer p which depends on A, A,, and

M such that if wJ. (j =0,...,p) satisfy the hypotheses of the Binmore

Lemma with p + 1 6 q 6§ p + 2, where q = Min Re w., then we have
04 jsp
P w./y
(2.1.3) la Pk T 1f(e I V)*
J=0

for v = 1,2,..., where K is a constant depending on A, A,, f, and

M.
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Proof of Theorem 2.1.1. For § = 0,...,p, let cj be the

coefficients of the function h in the Binmore Lemma. We have, for a

fixed v,
P “w./y P o -y, w./y
(2.1.4) Zc.f(er)=Zc.£akeka
j=0 9 =0 7 k=0
® P -w.(y,/y,)
= ¥ 8, Y c.e J kv
k=0 j=0
[- ]
= E a, h(yk/yv) .

k=0

Hence it follows from (2.0.3), (2.1.4), h(l) = 1, and triangle inequality

that

13 P w./y P w./y
(2.1.5) ZE 3 ogre T a 1 ogegl it T

o Jj=0 Jj=0
-]
> | I a h(y,/y )l

k=0 k k' v

a,
> la {1 - Z 125 mee v}

where o ¢ |"j - kl € 1/2 for j # k. Because p + 1 € q £ p + 2,

{yk} is increasing, and |h(t)| € 2tP eQ(l_t) for t a 0, we have

e , if k < v, and

y
(5

v

1-vy/y, P
(2.1.6) Ih(y, /¥y )| « 2¢° o ]

y, 1-y./y P
k KV i ko v

(2.1.7) Ihy/v )1 6 26 [SEe
v
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Because of (2.1.5), (2.1.6), and (2.1.7), we obtain

p -w./y
(2.1.8) I |f(e Y V)
Jj=0
Yk
P lay| S
a { 1 -2Me” ¥ — e ]
2p'eq k<v - Yy
y
v, 17 §k P
- 2Me [ k e v ] } .
kov yv

We shall show that the expression in curly brackets on the right of

(2.1.8) exceeds 1/2. Since yk+1/yk a A\, we have

(2.1.9) vEI [ ZE el T /Yy ] p‘ ;‘1[ kv el - Aok"v] P

k=1 Vv k=1
° _; 1 -2a7J,P
< ¥ [ A Y e ° ] .
J=1
1 - A7Jd5d
Since e o < constant <1 for each |, we can choose p

sufficiently large such that

(2.1.10) < :

v-l1 vy, 1-y./y_ P
T [ ;5 e k' v ] 1
k=1 v 8Me

Since yk+l/yk < Ag, we have

© y 1-w/vy, p ©® i 1 _ aJ (P
(2.1.11) : [(EXe KTV < g [ ¢! .
k=v+1 = v j=1

By (2.1.2) and (2.1.11), we can choose p sufficiently large such

that

o y, 1-vy,/y, P
(2.1.12) ¥ [_“. k V] ¢ L
k=v+¢l = Yy 8Me
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Combining (2.1.10) and (2.1.12), we can choose p sufficiently large
(depending on A, Ao, and M) such that the expression in curly

brackets of (2.1.8) exceeds 1/2. Thus we obtain

P w./Y,
(2.1.13) lal ¢k I Ife 7 V),

J=0

where p and K, depends on A, A\, and M. It follows that

P -w./y
(2.1.14) laPsk I Ife I P
v 2 j=0

where K,=Kf if 0 < p €1, and K3=(p+l)p-1 Kf if 8> 1.

This completes the proof of Theorem 1.2.1.

Theorem 2.1.2. If f is the same as in Theorem 2.1.1 and if

« ¢ R, then there exists a positive integer v, depending on {yk},

A, X, and M such that, for g > O,

1
g c + 7=
la,l 4y .
(2.1.15) Yk [ (1 - 0% 1£(rei®))” do
Yy C
v

_ Pl
for v 2 vy, c e [0,2n], where r = e yv’ with p the number

given by Theorem 2.1.1, and K is a constant depending on X, A,, M,

and 8.

Proof of Theorem 2.1.2. We first prove the case ¢ = 0. Let p

be the integer resulting from Theorem 2.1.1. For v = 1,2,...,

j=01,.,p, and 7T € [0,1] define functions
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=p+1+ jJ+ T .
(2.1.16) ZV'J(T) yV 4(P+1)YV

For fixed v and 7, let w‘j =y, Z, j(T)’ J=0,...,p. Then we have

all of the following:
Re wj =p+1 for J=0,...5Ps

|w.j - wkl £ % for J#k,

_ _ ik 1 . .
Wy —wl = gpea *qpea i Ik

If we put q = p + 1, then wj (j =0,...,p) satisfies the hypotheses
of the Binmore Lemma with «, = 1/(4p + 4). By applying Theorem 2.1.1,

we obtain

P wW./y
fax, 1 1ee T =k 1are, i, B0,

(2.1.17) |a_]
v .
J=0

where K, is a constant depending on A, Ao, M, and B.

Let 'y be the arc described by the union of the images of the

functions ¢ ., j=0,...,p. Because of (2.1.16) we have

v, J
-Re z_ .(7) - el
' V,J 1 yv
(2.1.18) ¢) S(2)] = lz; s(r)]e - Ta(p+l)y, © and
’ ’ v
-(pt1)/y,

1-1¢, @] =1-e

By (2.1.17) and (2.1.18), we have
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P g , «
LGN O LN TANO NN TRNCOT)

J=0

la 1f & PHD/Y, (1) /y,
K 4Dy, ¢

Iavlp e'(P+l)/yv __(p+1)/yv «

= o (Y, (1 -e )]
4K, (p+ly,
-(ptl)/y, -(p+1)/y,
Since e — 1 and yv(l-—e ) 2 p+1 a8 v > o

there exists v,, depending on {yk}, A, 2A,, and M, such that
-(ptl)/y, -(ptl)/y,

e i% and [yv (1 -e )]ai[%l] for v a v,,
and hence

P B « lavlp
O A S L APTCTIC R L AICOTRARS S

J= 3 ’ ’ v

for v » v, 7T € [0,1] where K, is a constant depending only on
Aoy A, M, and B. If we integrate (2.1.19) with respect to * from 0

to 1, then we obtain

lavlp 1 P g «
(2.1.20) -« g T jo H{ OO N L TN TR I TN C TP
v J=
[
P v,J(1)
-] 1£6e, 17 reg 1 e, D% de
J=0 £V, 3(0)
1
4y .
== [V - 0% 1(rei®)|f a0
270
-(p+l)/y
where r = e V for v Vo, with p the number given by

Theorem 2.1.1. Thus the proof of Theorem 2.1.2 is complete for c = 0.
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For the case c¢ # 0, replace (2.1.16) by

-z_ .(7)

. v,J
- ptl o, FT -
zV.J(T) Yy Tt 4(p+l)y, Lo cV..J'(T) € ’

and repeat the previous procedure. This gives us

c + =
la,1? 4y :
ek Y -0 jarei®)f as
v c
-(p+1)/y,
where r = e for v a vy, with p the number given by

Theorem 2.1.1 and K is a constant depending on A, Ao, M, and 8.

This completes the proof of Theorem 2.1.2.

§2.2 Inequalities of Lacunary series with Hadamard gaps and
bounded coefficients along circles |z] = r < 1.

Theorem 2.2.1. Let {ak} be a sequence of complex numbers

satisfying (2.1.1). Let {nk} be a sequence of positive integers

satisfying (2.1.2) with A = A, If
f(z) = % 8 z lz) <1,
k=0
then there exists a positive integer v,, depending on {nk}, A, and
M, such that, for any s 2 nvo, if n, € s (¢ LI then
Ia l" ¢+

(2.2.1)

x] Ban® 11’

for any c € [0,27], 8 > 0, and « ¢ R, where r = e-(P*1)/8 with p
given by Theorem 2.1.1, and K is a constant depending on A, g,

and M.
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Proof of Theorem 2.2.1. Let {yk} be a sequence of positive

numbers satisfying (2.1.2) with A = A,. Because yk+1/yk = nk+1/nk =
A, we can put n = dyk for any k =1,2,..., where d is a

positive constant. For Re t > 0, if

(2.2.2) f(e

then f is a Dirichlet series with exponents {-ykdt} and co-
efficients {ak}. Because {yk} and {ak} satisfy (2.1.2) and (2.1.1)
respectively, it follows from Theorem 2.1.2 there exists v, depending

on {yk}, A, and M such that

1
+—
la)f ST 3y .
(2.2.3) x| (1-r)= |£(rei®)|f do
Cc
v

for v a Vo, C € [0’2”]’ x € Ra ﬁ > 0, where r = e_(P+1)/Yv and P

is a positive integer depending only on A and M, where K is a

constant depending on A, f, and M.

Note that the inequality (2.2.3) holds for v 2 v,, where v, is
dependent only on {nk}, A, and M, and v, is independent of the

particular sequence {y,} satisfying (2.1.2) with A = A,.
k

If s » Ny » there exists a ny such that ny € s <{n We

v+l®

can construct a sequence {yk} of positive numbers satisfying (2.1.2),
with X = Ay, and y, = 8- From our previous argument, we obtain
|a |p €t as
v

<k | (1-r)® |£(rei®)|? do
C

(2.2.4)

a+l
s

Since s is arbitrary, we have completed the proof of Theorem 2.2.1.
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Theorem 2.2.2. If f, {ak}, {nk} are the same in Theorem 2.2.1
then there exists a positive integer v,, depending on {nk}, A, and

M, such that, for any s a ny,» if n, €8 < n o0 then

B
la|

2m o . )
(2.2.5) sk [ 0% 1£(rei®)|” ao
0

Ny

where « € R, 8 > O, r = e-(P+1)/8  with P a constant depending on

A and M, and K is a constant depending on A, #, «, and M.

Proof of Theorem 2.2.2. Since

] [ [ [
. 1a,1° 1a,1® 1a,1f syl
—— = Bns and € = < ’
1/4s A%g® A% % & &%
v v+l

the desired result (2.2.5) follows from Theorem 2.2.1.

§2.3 Inequalities of Dirichlet series with Hadamard gaps and
unbounded coefficients along small circular arcs

lz] = r < 1.

Theorem 2.3.1. Let {ak} be a sequence of complex numbers such

that

(2.3.1) 1< |a k| {(M<eo for k =0,1,...,

k+1/El

where M is a constant .

Let {yk} be a sequence of positive numbers satisfying
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(2.3.2) 1< s /y, & A and (W\)k/e"k‘1 < constant < 1
. . YR+1 YR o ’

for k = 0,1,..., where A and A, are constants. If

f(e °) = I a e , Res>0 and £>0,

then there exists a positive integer p, which depends on A, A,, and

M, such that if wJ.(j = 0,...,p) satisfy the hypotheses of the Binmore

Lemma with p+ 1 € q € p + 2, where q = Min Re w., then we have
0€ j€p
P ~w./y
(2.3.3) la1f «x £ ife IYF
J=0

for v = 1,2,..., where K is a constant depending on A, A,, #, and

M.

Proof of Theorem 2.3.1. According to (2.0.3), (2.1.4), h(1) = 1,

and triangle inequality, for a fixed v, we have

qQ P w./y a
(2.3.4) 31’1')& I Ifte 7 ") 2 e [1 - I l;kl lh(yk/yv)I] ,
ao j=0 k#v v

where «, and h are given in the Binmore Lemma. By (2.3.4), (2.1.6)

and (2.1.7) we obtain

P ~w./y
(2.3.5) I |f(e T V)
J=0
p p
a |a_| v-1 (y 1 -y./y
N ov[l_zezz —ke kv]
2pte? k=0 Yy
y
] - =X

® a y Yy P
-2 I |;‘-‘-| [—ke "] ] .
k=v+1 v y
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We shall show that the expression in curly brackets on the right of

(2.3.5) exceeds 1/2. Since yk+l/yk » A, we have

v-l 'y, 1-vy/y v-1 v 1 =X JP
(2.3.6) kEO [ ;% e KVIJPs kEO [V e ]
< ; [ A Y e1 X;J]p
j=1

_ad .
Because e1 o /AJ < constant (1 for each j, we can choose p

sufficiently large such that

(2.3.7)

( —

vil [ yk 1 - yk/yv ]p 1
-_— e .
k=0 = Yv ge’

Since yk“/yk < Ao, we have

L y, 1-vy,/y <P
@3 1 2 [xe KV]
k=v+1 v yv

J,\P ® JqP
- A - A
N ST N TN
Jj=1 =1
5. Ad-1
Since (MA)Y/e ¢ constant <1 for any J=.,L,2,..., we can
choose p sufficiently large such that
© a Zw 1-v./y ,pP

k k kv 1

(2.3.9) Dot e | <&

k=v+1 v Yy

Combining (2.3.7) and (2.3.9), we can choose p sufficiently large

(depending on A, A,, and M) such that the expression in curly
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brackets of (2.3.5) exceeds 1/2. Thus we obtain

-Ww.
J/y

P v
(2.3.10) lajl €K I [f(e )|

J=0

where p and K, depend on A, A,, and M. It follows that

P —w./y
(2.3.3) la)f <k, I ife I N)F

J=0

where K_ = xf if 068<1 and K = (p+ 1P xf if B> 1.

This completes the proof of Theorem 2.3.1.

Theorem 2.3.2. If f is the same as in Theorem 2.3.1 then there

exists a positive integer v, (depending on {yk}, A, A, and M)

such that, for g > 0,

1
B c + —
la_| 4y .
0
(2.3.10) ek [ V-0 £(re'®)|f a0
v c
-(pt1)/y,
for any v » v, c € [0,27], where r = e . with p a

constant integer given in Theorem 2.3.1, and K a constant depending

on A, Ao, M and 8.

Proof of Theorem 2.3.2. Inequality (2.3.3) follows from Theorem

2.3.1. Repeating the same procedure as in the proof of Theorem 2.1.2,

the result is obtained.
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§2.4 Inequalities of Lacunary series with Hadamard gaps and
unbounded coefficients along circles jz] = r < 1.

Theorem 2.4.1. Let {ak} be a sequence of complex numbers
satisfying (2.3.1) and let {nk} be a sequence of positive integers
n
satisfying (2.3.2) with A = A,. If f(z) = % a, zk then there
k=0

exists a positive integer v,, depending on {nk}’ A, and M, such

that,if s a n with n € s <(n , then
v, v v+l
la | c + -— .
(2.4.1) < K j S (1-r)* |£(rei®))? de
for c € [0,27n], « ¢ R, >0, where r = e—(p+1)/s’ p depends

on A, and M and K are constants depending on A, B, and M.

Proof of Theorem 2.4.1. Since {ak} satisfies (2.3.1), and

{nk} satisfies (2.1.2) and (2.3.2) with X = 1,, we can apply
Theorem 2.3.2 to the procedure of the proof of Theorem 2.2.1 to obtain

the desired result.

are the same in Theorem

Theorem 2.4.2. If f(z), {ak}, and {nk}

2.4.1, then there exists a positive integer v, such that, for any

a i P
san , if n, és < no then

2n .
(2.4.2) sk [ a-0% £ee’®))f
0

for «ae¢e R, >0 where r = e—(p+1)/8, p depends on A, and M

and K are constants depending on A, f, and M.
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Proof of Theorem 2.4.2. Since

on W LT LN T L P L
55— = 81s and € = < s
1/4s x « x « P «

A's A'n n s

v v+l

(2.4.2) follows from Theorem 2.4.1 by repeating the augments used in

the previous Section 8§2.3.

§2.5 Applications

Theorem 2.5.1. Let {ak} be a sequence of complex numbers and

{nk} be a sequence of positive integers satisfying

n a
(2.5.1) lim sup a | > 0, |:“+1—’:1-| (M<wo, and
k — o k%
n -1 k
(2.5.2) Kl a1, M) onstant <1,
n -1 k
k 2k -
e
for k = 0,1,2,..., where M, A are positive constants. If
o n
f(z) = % a z k
k=0
then
(2.5.3) lim inf —Nr.f8) K, for each ac €,

r — 1- log 1ong1r

where K) is a positive constant depending on A.

Proof of Theorem 2.5.1. Since f is a lacunary series with

Hadamard gaps and 1lim sup lakl > 0, according to Theorem 1.1.1 and
k™o
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Theorem 1.1.2 we need only show that

(1.1) lim inf (1 - r) I lf'(reie)lz de » positive constant.
r— 1

® n -1
Because f'(z) = [} n a z k with {nk ak} satisfying (2.3.1)
k=0

and {nk - 1} satisfying (2.3.2), we can apply Theorem 2.4.2 for

a = f =2 to obtain the desired result.

Theorem 2.5.2. If ¢ 1is a positive rational number and if

g " /2
f(z) hX 8 z , where {n,} satisfies (2.5.2) and a = n. ,
k=0 k
then
(2.5.4) lim inf MED2) 0 g for each ac ¢,

r— 1" log — 1
where K; is a positive constant depending on A.

Proof of Theorem 2.5.2. Since f is a lacunary series with

Hademard gaps and unbounded coefficients, we have 1lim T(r,f) = 4o,
r —1-
and it follows from Theorem 1.1.2 that

(2.5.5) N(r,f,a) = T(r,f) + o(1) as r — 1 for each a € C .

Thus, to prove (2.5.4) it suffices to show that

(2.5.6) lim inf M AK as r— 1-
r — 1" log —— 1

, where

K is a positive constant.

n, -1
I n a z
k=0 X K
the sequence {nk - 1} satisfies (2.3.2), thus, we can apply Theorem

Now f'(z) = , and since {nk ak} satisfies (2.3.1),
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2.4.2 for «a = ¢ + 2, f = 2, to obtain

In_ a_ | 2n .
(2.5.7) 1= —2— ek [ Q-2 jrxe'®)® o
z+2
n 0
v
-(p+1)/n,
for n, is sufficiently large, r = e , and p and K are

constants depending on A and M. Thus we have

(2.5.8) I lf’(reie)lz de a ———lL§I; as r — 1" .
0 (1-r)

Inequality (1.1.3) says that T(r,f) & C, log* lfrl: , where C) 1is a
positive constant depending on A. Applying Parseval’s identity, we

have

® 2n, -2 2n .
(2.5.9) I onllalir * = %; [ 18 xe™®® e
k=0 0

1

a as r — 17,
2n K(l-r)2+s

where the last inequality follows from (2.5.7).

Integrating (2.5.9) twice with respect to r, we have

2
"
2nk(2nk - 1)

I
k=0

2n
lo 1> r KK 1
(1-r)

as r— 1",

where Kx is a positive constant, and it follows that

2 1 2n i@, , 2
(2.5.10) il = L Io 1£(re®)|? do
® 2n
= 3 |ak|2 r a K, - as r— 1.
k=0 (1-r)

Combining (1.1.3), (2.5.10) we obtain the desired result (2.5.6).



CHAPTER III

COUNTING FUNCTIONS OF ANALYTIC FUNCTIONS
WITH SLOW GROWTH

§3.1 Introduction

Value distribution theory of analytic functions with slow growth
have been a subject of recent interest, in particular with respect to
bounds on the counting function. A function f in D is said to be
in the Shapiro-Shields class S -k (0 < k <o if f is analytic in D

and satisfies

k
sup (1 - |z]|)" [f(2)] < = .
zeD
Let Lg(D) (1 € p < ) be the Bergman space of analytic functions that
are p-th power integrable in |z| ¢ 1 and let B% (a > 0) be the a-

Bloch space.

Let f be a meromorphic function in D. If a € é, we denote by
n(r,a) the number of solutions of f(z) = a in |z| € r. For a e c,

the Nevanlinna counting function is defined by

r
N(r,a) = I n(r,a) % .
(]

The main purpose of this chapter is to show that the 1least upper
bound and the greatest lower bound of N(r,a) for B% (« > 1), Lg(D)
1

lédpo, and S ™M (0 ¢ n < ») all have the same order log 1=

43
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§3.2 An upper bound.
Theorem 3.1. If fesSk, k>0, then T(r,f) = 0(log 1_1_;)

as r — 1 and for each a € €, N(r,f,a) = 0(log lTlr) as r — 1.

(-]
Proof of Theorem 3.1. Let f(z) = I ap 2zD. Since f is analytic
n=0

in D, we obtain

1 (2" :
o f log* |f(rei®)|de
0

T(r,f)

1 2" + ‘e 2
= Io log* |f(rei®)|de

1 2m in. 2
1 f log[|f(rei®)® + 1]de
0

4n

log { 52 Iz” (1£(rei®)|® + 1)do

N
Nf—

log{O[E;—l;—;i] + 0(1)], (f e 5K
-r

N =~

= 0(log T%?) as r — 1,

and hence T(r,f) = 0(log 1—1!_-) as r — 1°. Therefore for each

ae€, N(r.,f,a) = 0(log T%;).

Corollary 3.1.1. If f e B* (« > 1), then T(r,f) = 0(log T%?)

and for each a € €, N(r,f,a) = 0(log ﬁ) as r — 1.

Proof. Since B* c¢ § -2(a-1) [Be2], the results follow from

Theorem 3.1.



45

Corollary 3.1.2. If f ¢ 1P(D), then T(r,f) = 0(log Ti—r) and

for each a ¢ €, N(r,f,a) = 0(log T%;) as r — 1°.

Proof. Since Lz(D) € §-2/P [Be2], the results follow from Theorem

3.1.

§3. A lower bound

It is natural to ask the following: For each « > 1, can we find

a function f ¢ B* such that for each a ¢ €, lim inf HﬁE;fiﬂl a K
r— 1" log'i_—r

> 0, where K is a constant. The answer is affirmative and will be

given in Theorem 3.2. We need the following lemma.

® n
Lemma 3.3.1. [Ya] Let f(z2) = ¥ a z k be analytic in
k=0
lz] < 1, with nk+x/nk a q > 1. Then fe B* (« >0) iff
lim sup lakln;—a ( o,

k — o

Theorem 3.2. If «a> 1, then there exists a function f ¢ B*

such that for each a ¢ €, lim inf !Lixfiﬁl »K>0, where K is a

r— 1" logﬁ-

constant.

Proof. Since « > 1, there exists a positive integer m such
[ ]

1 n .
that 1 + Eﬁ < «. Let f(z) = kfl 8, 2 K with nk“/nk =2, n, =1,
1
l-a+—
-m -
and a = nﬁ — @, We have ay nkl * = n, 2" < n; =1, and thus

lim sup a, nklﬂa < 1. According to Lemma 3.3.1, we have f ¢ B*.

k™ o

We first show that

lim inf M{-nno,
r— 1 logl—_-x:

where K is a constant .
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Applying Parseval’s identity, we have

—\bm 27 i
(3.3.1) 11—315; [ 159 (rei®y)? ao
1]
© 2n, -2
= Loamor C A

where by = 2 + 27 (B

For each 0 < r < 1, there exists a ng such that

1 -

€r <l - 1 . Fix r, and let 2 be given by the last in-
Mgy Dy
equality. Then

2n, -2
n b r k (l—r)bm

(3.3.2) "

e 8

k=1

2n,-2
* n, bn r ¢ (l—r)bm

v

n‘bm an‘-Z (;%]bm

2n,-2 2n
r ['} [}

>r

n

: [1 - n,11]4n‘_1 »e .

Combining (3.3.1) and (3.3.2), we obtain

2 o 2m72 et

(3.3.3) n r r —
k 'k (l—r)bm

ne18
[+

k=1

Integrating twice in (3.3.3) with respect to r, we have

e nZa2c K
(3.3.4) I o——— a

k=1 22y nem
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where cp = 2—(m—n)’

and it follows that

2n

1 .
(3.3.5) af 1l = = fo If(rei®)|? de
® 2n
k
= I |a |2 r
k=1 K
a K N S , where K, is a positive constant.
' (1-r)m

According to (1.1.3) and (3.3.5), we obtain

(3.3.86) lim inf KL 4 g |
r — 1 log 1x

where K is a positive constant.

Since f is a lacunary series with Hadamard gaps, lim sup |ap| > O,

n— o
and lim T(r,f) = +o, by Theorem 1.1.2 (Chapter 1), we obtain (1.1.7)
rol-
for each a € C, T(r,f) = N(r,f,a) + 0(1) as r — 1°. Combining

(3.3.6) and (1.1.7), we have, for each a ¢ €

lim inf !lezigl a K as r — 1 .
r — 1 log 1r

This completes the proof.

Corollary 3.2.1. If k > 0, then there exists a f ¢ s -k such

that for each ae €, lim inf !15*2?22 a L, where L is a
r — 1" log 1=
positive constant.
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Proof. Setting « = §+ 1, we have k = 2(a - 1). Since

gx ¢ §-2(a-1) = g-k [Be2], the result follows from Theorem 3.2.1.

Corollary 3.2.2. If p> o0, then there exists a function

b Ll;(D) such that for each aelC, lim inf N(r,f,8) a K,
r— 1" log —

where K is a positive constant.

1.

Proof. Since Sk c P (D), for ¢ > 0, the result follows

from Corollary 3.2.1.

Remark. Combining results in 83.2 and 83.3, we obtain that the
least upper bound and the greatest lower bound of N(r,a), a e €, for
8% (« > 1), Lz(l)) (1 6§ p<w), Sk (0<k <o) all have the same

order log 1—17 .



CHAPTER IV

ZEROS OF FUNCTIONS IN THE «-BLOCH SPACES

§4.0 Introduction
A function f(z) analytic in the unit disc D is called an a-Bloch
function (x > 0) if f satisfies

sup (1 - [z])% |£f'(2)] < =
zeD

The set of all a«-Bloch functions is denoted by B<%. A Bloch
function is precisely a 1-Bloch function. It is known that the zeros
{zk} of nontrivial HP (Hardy space 0 < p 6 ») functions are

completely characterized by the Blaschke condition

I A-Jz,]) <=
k=1 k

In particular, all of the HP spaces admit the same zero sets [Du].

In thié chapter, we obtain some results on the zero sets of «-Bloch
functions. We show that these "a-Bloch zero sets" (« > 1) are quite
different from the Blaschke sequences. Our main results are as

follows.

Theorem 4.1. If « > 1, then there is an a-Bloch zero set which

is not a Bloch zero set.

49
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Corollary 4.1. For each « > 1, there is an a-Bloch zero zet which

does not satisfy the Blaschke condition.
Theorem 4.2. If 1 < a < f and if « < % (B + 3) then there is
a f-Bloch zero set which is not an a-Bloch zero set.

The first and the second theorems are proved by constructing a
Horowitz-type infinite product [Bell], [Ho], adopting Beller’s technique
[Bel], and using a result on the coefficients of the a-Bloch functions

(see Theorem 5.1 of this dissertation).

Corollary 4.1 is an immediate consequence of Theorem 4.1.

8§4.1 Zero sels of a-Bloch functions

Beller’s Lemma. [Bel] If f e Lg(D), (0 < p <®w) and if {z,}

1 - |z
is the ordered zero set of f, then 1lim sup n_—,—ll—gn—!ll & % .

n— o

Corollary 4.1. If f € B, {z} is the ordered zero set of f,

then

Proof.. Since B ¢ LE for each 0 < p < =, the required result

follows from Beller’s Lemma.

Theorem 4.1. If « > 1, then there is an «-Bloch zero set which

is not a Bloch zero set.

Proof of Theorem 4.1. Since « > 1, there exists a positive

number q such that 1 + % ¢ . Let
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© (np, = n )
(4.1.1) fz)= M [1eb 2z * ¥
k=0
. 1
where n = 22 , -, = 0, bk = nkq. Since the radius of convergence
g (nk - nk—l)
of [ bk z is 1, it follows that f is analytic in
k=0

|z] <1, and its zeros are precisely the zeros of the factors of the
right side of (4.1.1). Let {zn}::l be the ordered zero set of f.

Clearly, for n o, &€ n & n,., we have

1
2 = b kT M) almy - my_,)
n k k
In particular,
-log n
1- 'zn l =1—exp{q(n —nk )}
k k k-1
log n, log n,

> — > ———= for sufficiently large k .
q(n, - n _ ) q(n))

Thus we obtain

(4.1.2) lim sup
n— o

0 =

It follows from Corollary 4.1 that f ¢ B, and hence (zp} is not a

Bloch zero set.

We next shall show that f ¢ BX, for each « > 1. Put f(z) =
(-]
by a, 2k, a8 a 0. According to [Theorem 5.1], it suffices to show that
k=0
n 2 n n
b kak=0(n°‘). Since a« > 1 + = and I kak 6 n Y a,, it
k=1 1 k=1 k=1

suffices to show that
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- 2/q
(4.1.3) ) = 0(n ) .
k=1 ak

n m
Llet Sp = I lakl, it follows from [Bel] that Snm = @1 1+ bk)‘

k=1 k=0
® - © 1 ® 1 1/q
Since } bk = I ] = ¥ _— { ®» , we obtain
k=1 k=1 n /9 k=1 |,2
o _, ®m m
(4.1.4) S < NI (A+b ) N b <K II b, ,
e k" y=o k¥ k=0 K
for some positive constant K .
In addition
m
n n .k % %-[ k] 1 [2211_:_1
4.1.5) 0 b = [ n 22 ] =g k00 @t 2-170
k=0 k=0
1, . m+1 _ 1 /om+1 2/q 2
=(2 1Y) z(2mt1) 2
= 29 ¢ 29 = 2zm = nmq .

(4.1.4) and (4.1.5) implies

2/q
(4.1.6) s“m < K(nm) .
If ngp—y <n < ny - ngp—,, we have

_ 2/q 2/q
(4.1.7) Sn = Sn,_, < Kn_, < Kn 9.

If ny - np—, € n < nyp, we have

GLD s s, Ha Y ¢ [T

< K 22/q n2/q .
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Combining (4.1.6), (4.1.7) and (4.1.8), we obtain (4.1.3). Thus f e B<.

This completes the proof.

Corollary 4.2. For each « > 1, there exists an a-Bloch function

f such that f does not satisfy the Blaschke condition.

This is an immediate consequence of Theorem 4.1.

Theorem 4.2. If 1 < « < f and if 4a - 3 ¢ # then there exists
a f-Bloch ordered zero set which is not an a-Bloch ordered zero set.

Proof of Theorem 4.2. Let ¢ > 0, p=2—(a—11—)+e, and

o (n, - n,_ )
fz) = N [1eb, 2 * *']
k=0

2k
where n = 2° , bk =n

Let {zn}::‘ be the ordered zero set of f. For n_, <{née n,
_ 1
P(nk - nk‘ )

1

-1
—(nk - nk—x)

lzpl = by - M

Do the same procedure to reaching (4.1.2), we obtain

l1- |z
(4.1.9) lim sup -—._-;-—IL' 1. 1 > 1 .
n—)wn log n P ——l——+e -—1—-+23
2(a-1) 2(a-1)

_Z(ail) + 2¢

It follows from Beller’s Lemma and (4.1.9) that f ¢ I.a .

—1
~2(a-1) 2(c-1) ~ "

Since B* c § €L for each % > 0 [Be2], it

a
follows that f ¢ B,
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a 0.

(-]
We next shall show that f ¢ Bf. Put f(z) = § a, zk, a,
k=0

According to [Thm. 5.1], to show f e Bf it is only necessary to show

n n
that [ k 8 = O(nﬁ). Let Sn = I a, . As in the proof of Theorem

k=1 .. k=0 X
4.1, we obtain S, € K 22/p n2/p for n=1,2,3,... . Also,
n n 1 + 2
I k a, € n } a = n Sn = O(n P)
k=0 k=0
and
2 _ — 1 ] - 4(x - 1) _4 =
1+ > - 1+2 [ T ;] = 1+7173 TICERY <1+ 4a -4
2(x-1)
=4a -3 <P .
v g
Thus I k a = 0(n"). This completes the proof of Theorem 4.2.

k=0



CHAPTER V

COEFFICIENTS OF «-BLOCH FUNCTIONS

§5.1 Introduction

Coefficients of Bloch functions have been studied by Anderson,
Clunie, and Pommerenke [ACP], Mathews [Ma], Neitzke ([Ne], and
Fernandez [Fe], among others. In this chapter we investigate
coefficients of «-Bloch functions. In section 2 following Bennett,
Stegenga, and Timoney [BST] we give two sufficient conditions on
coefficients for B%*. In section 3 we obtain one sufficient condition
and three necessary conditions on coefficients of little «-Bloch
functions. In section 4, we establish some sufficient conditions and
some necessary conditions on blocks of coefficients for the classes B*

x

and Bo. The results we obtain in this chapter are related to results

of Hardy [Ha], Titchmarch [Ti], Mathews [Ma] and Neitzke [Ne].

85.2 An extension of a theorem of Mathews

©
n

Theorem 5.0 [BST] If f(z) = % a z is holomorphic in D
n=0
n
and ap » 0. Then fe¢ B* iff I ka =0(n%), and then fes
n k=1
iff I k = o(n%).
k=1 ak
t s J+a-1
Theorem 5.1. Let f(z) = I a z". If § k lakl = 0(n « )
n k=J

n=0
for some J =1,2,..., then f e B%.
55
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Proof of Theorem 5.1. For J =1, put g(z) = % lanlzn, since

n=0
n [~ 3
I klak! = 0(n), it follows from Theorem 5.0, that g ¢ B*. Now
k=1
e k 1
lz|I1f'(z)] ¢ I k'ak' lz]” = g'(|z]) 6 constant =,
k=1 (1-]z})
and hence f ¢ B* .
Py s . (J) C
For J > 1, it is easy to verify that |f (z)] € por s
(1-1z])
and the result follows by successive integration.
(-]
Corollary 5.1. [Ma] Let f(z) = % a z" be holomorphic
n=0
n
in D, if there is a fixed integer J » 0 such that I leakl £
k=J

CnJ for each n, then f € B.
Proof. Setting « = 1, the result follows from Theorem 5.1.

[ ]
Theorem 5.2. Let f(z) = } a 2" be holomorphic in D. If « a1

n=0
n

and I kq"|ak|q = 0(n
k=1

“—l) for some q, 1 < q <o, then f ¢ 8%.

Proof of Theorem 5.2. Applying Theorem 5.1, it suffices to show

n
that I kla,| = 0(n%).
k=1
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I kla ] = I k k |a |
k=1 ¥ k=1 k
n e 9 /¢
. [ : kp-1] [ . "’k'q] (Holder
k=1 k=1 inequality)

0(n) O[nT]

1+ﬂ
O[n d ] = 0(n”) .

[ ] (-]
Corollary 5.2. [Ma] Let f(z) = % a zn, if % nlanlz (@
n=0 n=1

then f ¢ B.

Proof. Setting « =1 and q = 2, the result follows from Theorem

5.2.
Corollary 5.3. ([Ne, Theorem 1, p. 11]).
Let f(z) = } a zn, if I kthlaqu ¢ o, for some q > 1, then
n=0 n=1
f ¢ B.

Proof. Putting « = 1, the result follows from Theorem 5.2.

X
85.3 Conditions on coefficients for the little a-Bloch space Bo

"
™
’P
N
3

Theorem 5.3. Let f(z) be a function in B: where f(z)

then kl—a a, = o(l) as k — o,

k

L
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Proof of Theorem 5.3. From Cauchy’s formula

layl Znik k
VA

I 1 I f'(z) dz l
lz|=r

2 ' i .
ol [T Llel®) e | g
(o]

k_ike
re

&
27k (l—r)a

ok ' ¥ -1 as r—1-.

The minimum value of the last term occurs for r =1 - a«/(k - 1).

Evaluating for this r, we obtain

1-k -«
-1 1-k - _ . -1 K- - _ a-1
o - o™ -] () = 0at™
as k D o
Thus k' a = o(l) as k — o,
©
Corollary 5.4. [Ne] let f(z) = I a z". If f e B, then

ap —> 0 as n — o,

Proof. The result follows from Theorem 5.3, by setting « = 1.

o«
Theorem 5.4. Let f(z) = } a 2", If
n=0

J+a-1
n

:o(

J+a—2] ) as n— @,

n k! [ n
I =57 lal = ofl k
k=g (kDT Tk k=1

for some fixed J = 1,2,..., then f ¢ 8:.

To prove Theorem 5.4. We need the following Lemma 5.1.
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Lemma 5.1. ([Ne, p. 16] and [Ti, p. 224])

[ ) @
Let h(x) = § a xk and g(x) = I b xk both have radius of
n K k
k=0 k=0
n n
convergence 1, let sp = § a, tp= I bk’ sp 0, t, 0 for
k=0 k=0

each n, and suppose } s, and I t, are both divergent, and s, =

o(tp). Then h(x) = o(g(x)) as x — 1-.

(-]
Proof of Theorem 5.4. If J=1, let h(x) = I kla|x¥,
k=0

x—1 n

- k
g(x) = ¥ b, ¥ where b, = ; 8. = Y kla|] andt_= I b
k=0 k k I(a) n 0 k n 5 k’

by hypothesis, sp = o(tp) as n — «. Applying Lemma 5.1, we obtain
h(x) = o(g(x)) as x — 1" .

Since tp ~n®* as n — o, it follows from Theorem 5.0 that g(|z|) =

o[———l———;] as |z| — 1. This implies that
(1-1z])

()] € hlz1) = o(g() = o[ ———] as 2l =17,
(1-1=z])
thus f e B°.
(]
For J > 1 we have f(J)(z) = o[ 1 “] as lz] = 17, and
(1-1z])

the results follow by repeating the above procedure.

Corollary 5.5. ([Ne, Thm. 3(i), p. 15]) Let f(z) = % a

there exists a fixed integer J, J » 1 such that

A J
I k lakl = o(n") then f e B, .
k=1
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Proof: The result follows from Theorem 5.4, by setting « = 1.

n
We obtain f ¢ B' = B, since [ KW' ~n' as n—o e
(] []
k=1
! k
Theorem 5.5. Let f(z) = } a z be in B:. If there is a 6
k=0
n
such that 0 € arg ay € 8 + n/2 for each k. Then [ klakl = o(n%)

k=1
as n — o,

We need a lemma for the proof of Theorem 5.5. This Lemma is an

immediate consequence of ([BST, Thm 1.4 and Thm 1.10a}).

Lesma 5.2. [BST] If g(x) = % <, xk = o[ 1 a] as x — 1,
k=0 (1-%)
n
as x — 17, where cx 0 then } ¢ = o(n®*) as n — o,
k=0
Proof of Theorem 5.5. There is no loss of generality in assuming

that 8 = 0. Since f(z) € 8: , we have

I ka2 | = 1@ = 012D
k=1
and
I ka 2 | = (f'(2)) = o((1-12N™%) as |z| = 1- .
k=1 K
Therefore
Ik Re(a)z' = o((1-1z1)™") as |z =1

where o € Re ak. Similarly

Ik In(a)z""" = o((1-1zD™%) as |z| — 1-

where 0 € Im(ayg). Thus
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1

I ke 12" | = o(1-1z)7)
k=1

In applying the lemma above, put ck-, = klagk]. We obtain gllz]) =

o((1-]z|)™®) as |z| — 1. By Lemma 5.2, we have 2 kla | = o(n%)
k=1
as n — o, This completes the proof.

[}
Theorem §.6. If f(z) = % a, zk is in B: then for any fixed

k=0 1
n p+¢—§
integer p = 1,2,..., b kplakl = o|n as n — o,

k=1

Proof of Theorem 5.6. let g(z) = 2zf'(z) = § n a z". By a
n=1

result which is an extension of Hardy’s result ([Harl p. 45]), we have

—-(p+a—%

RPN PTE 0[(1—IZI) ] as |z] — 1° .

But

n n [
Iz|" kxl KPla, | kzl KPla, | |z ‘kxlkp'akl 1z|¥ for all z, |z| < 1

|
=] [

for each n =1,2,3,... . Taking |z] = e s

1
oy | - % —[p e 5] P+ a- %
e )X kplakl = olll - e = o|n as n — o;

k=1

=N Lo

since 5% €1 -e £ for n sufficiently large. This completes

the proof of Theorem 5.
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85.4 Conditions on blocks of coefficients in the class B*

Let f(z) = ; a, zk. In this section we shall give several
results concernitgl"blocks" of coefficients for «a-Bloch and little «-
Bloch functions. We will consider the portion of the power series for
f(z) between k =m and k = énm, where & = the gauss integer of
x + 1. The integer "6" of the upper bound is not critical to the
following analysis; simple revisions will accomodate any number
exceeding 1.

ém
Define pBp = kzm |ak|. We will first show that for functions whose

power series have real nonnegative coefficients, we can characterize

8" and B: by conditions on Bp.

(-
Theorem 5.7. Suppose that f(z) = % a8 zk, with ay » 0. Then
k=1

f e B if and only if Py € constant m*! for each m = 1,2,3,...

Proof of Theorem 5.7: If f ¢ B*, applying Theorem 5.0, we have

ém ém ém « «
mpfp =m I a € I ka € I ka € constant(ém) € constant m .
m - - k - k
k=m k=m k=1

If Pp € constant ¢ m*! for each m = 1,2,3,... . Fix n, and

suppose that p is an integer such that 6P én < 6p+'. To show
n

f ¢ B*, by Theorem 5.1, that it suffices to show that [ k a =
k=1

o(n%*).
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n & 62 &P+
T k < ¥ k +f k + + ¥ ka
k1 kTS Ty % gp K
6 2 62 p+l 6p+l
<6 ¥ a +6 % + + 6 I
k=1 ¥ Kes K o K
‘s 1Y 4+ 62 - 5% 4 e s 6p+x . 6p(a—x)

£ {6 + 8+ ---

€ constant 6p+’

a—13
°n

+ 6p+x}6p(a—x)

€ constant na .

This completes the proof of Theorem 5.7.

(-
Theorem 5.8. Suppose f(z) = I 8, zk with a, 2 0 for each k.
k=1

let «al. If feB then fy

Proof of Theorem 5.8. If f ¢

ém
z
k=1

ém

& —
ém

ém
"

ém J-1
Theorem 5.9. If [ k lakl
k=m

integer J, m and for a positi

Proof of Theorem 5.9.
nJ+a-1)

leakl = 0( as n — o,

n
)X
k=1

o(m®*!) as m — o,

Ba
o
_ 1 x, _ a—1
k a = o o((ém) ) = o((ém) ).
& MX mJ+“—2, for each positive

ve constant M¥, then f(z) =

By Theorem 5.1, it suffices to show that

If &S &€ n < 65%1, then
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2 & .3 8% 3 657 3
I kKla | € I klaj|+ I kila]|+- -+ I kgl
k=1 k=1 s s
s s? 652
D R PN IR L 't PA ISR A I S Y
1 é 58S
6 sM* + 52 M*(6J+a—2) 4 ooee 4 551 M*(GS(J+a_2))

(by hypothesis)

ML + gL, g2t D) | s(Jtanl),

J+a-1 s+l

— s+l
_ oM¥[(s ) -1] sm* (591D
6J+a—1 -1 63+a—l -1
& 2sM¥(65)t %1 - o7ty |

This completes the proof of Theorem 5.9.

(-]
Theorem 5.10. Let f(z) = } a, zk be in B*. If there is a 6
k=0

such that 6 < arg ax ¢ @ + Z, then I k|a
k=1

= 0(n*) as n — o,

2 k!

Proof of Theorem 5.10. The result follows from repeating the

procedure of the proof of Theorem 5.5, and applying ([BST, Theorem

1.10(a)]) putting ®(n) = n<.

(-]
Theorem 5.11. Let f(z) = } a, zk be in B<. If there is an
k=0

@ such that 6 € arg ay € 8 + n/2 for each k, then there is a

(6+1)m o1
positive constant C¥ such that Iakl & C¥X(m ).
k=6m
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Proof of Theorem 5.11. It follows from Theorem 5.10 that

n
I k|la,] = 0(n*) as n — «. Then
k=1 K

(6+1)m (6+1)m p. @
ém Y lakl & ¥ klakl & constant((é6+1)m) £ constant m
ém ém
(6+1)m
and thus I |ak| ¢ C¥ p*1 where C¥ is a positive constant.
k=6m
Theorem 5.12. If f(z) = % a 2" is an a-Bloch function. Then
n=0 n p+a—%
for any integer p » 0, we have [ kp|ak| € Cn .

k=1

Proof of Theorem 5.12. Hardy has shown [Hal] that if g(z) =

)X <, 2" is analytic in D and g(z) = O[ 1 a], « > 0 then for
k=0 (1-1z])
-0 { ¥ < a + %
. v n 1
I n? e | |z|" = o[ - ] )
in=1 n W(1-1z§TH/2,
Setting f'(z) = zg(z), 7 = -p+l. We obtain
o P n 1
I oPle | Iz = 0[ - ] :
n=1 n (1_'2')p+c¢ 172
Estimating 1 , we have
(1-z])P*="1/2
[ J [ p+a.. -
I ofjallz/"4c I n 1z|”
n= n=

Titchmarsh has shown [Ti, p. 224] that the above inequality implies

n
that [ kplakl & C np+a—1/2, for some positive constant C.
k=1 .
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Theorem 5.13. If f(z) = } a8, zk e 8% then
k=0

(6+1)m - +a-3/2
I K |a, | € constant o’ for each positive integer P
k=ém k

Proof of Theorem 5.13. It follows from Theorem 5.12 that

(6+1)m __ (6+1)m (6+1)m
sm I kP llakl <« I Kales I Klas
ém om 1
(6+1)m

« constent ((s+1)mP"* V2 o T WP hja | = 0@PtY?) |
ém
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