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ABSTRACT

STUDIES ON VOID FORMATION AND GROWTH

FOR INCOMPRESSIBLE NONLINEARLY ELASTIC MATERIALS

BY

Miao-Sze (Olivia) Chou-Wang

In this study, a class of bifurcation problems for a solid sphere

subjected to uniform tensile dead-loading po at its boundary are

examined within the framework of finite elastostatics and

elastodynamics. The sphere is composed of a particular class of

homogeneous isotropic incompressible nonlinearly elastic materials,

namely those of power-law type. First of all, we carry out an

investigation of the elastostatic problem. One solution to this

problem, for all values of po, corresponds to a homogeneous state in

which the sphere remains undeformed while stressed. However, for

sufficiently large values of po, there is in addition a second

possible configuration involving an internal traction-free spherical

cavity. The dependence on constitutive parameters of the critical

load at which bifurcation occurs is examined as well as the subsequent

void growth. The stress distribution after cavitation occurs is also

described. The results are obtained in closed analytic form.

Secondly, we study the elastodynamic version of the foregoing

problem for the special case of a neo-Hookean material. The sphere is
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set into motion by a suddenly applied uniform radial tensile dead-load

p0. One solution to the dynamic problem, for all values of po,

corresponds to a trivial homogeneous static state in which the sphere

remains undeformed while stressed. However, for sufficiently large

values of po, one has in addition another possible radially symmetric

motion involving an internal traction-free cavity. The "critical

load" at which an internal void may be initiated in the dynamic

problem is shown to coincide with that for the static problem.
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1. INTRODUCTION

Void nucleation and growth in solids have been of concern for a

long time because of the fundamental role such phenomena play in

fracture and other failure mechanisms. (See e.g. Goods and Brown [1]

for a discussion of cavity nucleation in metals). The phenomenon of

sudden void formation ("cavitation") has also been observed

experimentally in vulcanized rubber by Gent and Lindley [2].

Nonlinear theories of solid mechanics have been used recently to

account for such phenomena. The impetus for much of the recent

theoretical developments has been supplied by the work of Ball [3].

In [3], Ball has made an extensive study of a class of bifurcation

problems for the equations of nonlinear elasticity which model the

appearance of a cavity in the interior of an apparently solid

homogeneous isotropic elastic body once a critical load has been

attained. An alternative interpretation for such problems in terms of

the growth of a org-existing micro-void is given in [4]. Further

investigations of such bifurcation problems have been carried out in

[5-12]. It is worth noting that cavitation can be shown to occur only

when finite strain measures are taken into account (see e.g. [4],

[9]). The corresponding problems in linearized elasticity or in the

infinitesimal strain theory of plasticity do not exhibit such

bifurcations.

The purpose of the present study is to further investigate this



bifurcation approach to void nucleation in two specific contexts.

First of all, we carry out an investigation of the problem of static

tensile dead-loading of a solid sphere composed of a particular class

of homogeneous isotropic incompressible nonlinearly elastic materials,

namely those of power-law type. Secondly, we study the elastodynamic

version of this problem for the special case of a neo-Hookean

material.

In Section 2, we formulate the basic boundary-value problem that

arises when a solid sphere, composed of an incompressible isotropic

elastic material, is subjected to a prescribed uniform radial tensile

dead-load po on its boundary. One solution to this problem, for all

values p0, corresponds to a trivial homogeneous state in which the

sphere remains undeformed while stressed. However, for sufficiently

large values of po, one has in addition other possible radially

symmetric configurations involving an internal traction-free spherical

cavity. Such solutions have been shown by Ball [3] to bifurcate from

the homogeneous solution at a critical value of po, say pm” at which

the homogeneous solution becomes unstable. The possibility for these

bifurcated solutions to exist depends on the constitutive law for the

material under consideration.

In Section 3, attention is confined to a particular class of

homogeneous isotropic incompressible elastic materials, namely those

of power-law type. Such nonlinearly elastic materials were first

introduced by Ogden [13] and have been employed in a wide variety of

problems since then (see e.g. [14], [15]). An extensive discussion of

the properties of this class of materials has been provided recently



by Zee and Sternberg [16]. Our interest here is in examining the

dependence of the critical loads at which cavitation occurs on the

constitutive parameter n appearing in the definition of this class of

materials (see equation (3.1)). In Section 3, we first examine the

behavior of these materials under certain homogeneous deformations

namely uniaxial stress, equibiaxial stress and pure shear. These

results are shown in Figures 1-3. The explicit relationship between

the applied load po and the deformed cavity radius is examined and

plotted in Figure 4. It is found that as the hardening parameter n

increases, the critical load pa at which bifurcation takes place also

increases. For the special case of a neo-Hookean material, for which

n - 1, we recover results due to Ball [3]. The stress distribution in

the sphere is also described. An interesting feature concerning the

principal stresses immediately after cavitation is the presence of a

boundary layer near the cavity wall. To see this, we have plotted the

stresses in Figures 5-10 for applied dead loads po slightly larger

than per.

In Section 4, we consider the radially symmetric motion of an

isotropic incompressible elastic solid sphere composed of a neo-

Hookean material which is set into motion at time t - O by a suddenly

applied uniform radial tensile dead-load p0. If the material were

compressible, the medium would respond to such a loading by

propagating a dilatation wave inward from the boundary. In the

incompressible case, the effect of the tensile load is felt

immediately throughout the medium and the response takes the form of a

nonlinear oscillation. Such oscillation problems were first



investigated by Knowles [17], [18] for hollow circular cylinders and

have received considerable attention since then (see e.g. [19-22] and

the references cited therein). In Section 4, we show that one

solution to the dynamic problem described above, for all values of po,

corresponds to a trivial homogeneous static state in which the sphere
 

remains undeformed while stressed. However, for sufficiently large

values of po, one has in addition another possible radially symmetric

motion involving an internal traction-free cavity. A relationship

between the applied load po and cavity radius c(t) at time t is

obtained in the form of a second-order nonlinear ordinary differential

equation (see equation (4.19)). By adapting the techniques of Knowles

[17], [18], we show that periodic oscillations can occur if and only

if the applied tensile dead-load po is such that

po 2 5p/2, (1.1)

where p denotes the shear modulus for infinitesimal deformations of

the neo-Hookean material. As po‘+ 5p/2+, the deformed cavity radius

c(t) 4 0+. It is shown that the value of the "critical load" at which

an internal void may be initiated in the dynamic problem coincides

with that for the static problem. For values of p0 > 5p/2, following

the application of such a load at time t - 0, the cavity would expand

until its radius reaches a maximum value given by equation (4.27),

then would contract to zero and repeat the cycle.



2. BIFURCATION PROBLEM FOR A SPHERE:

FORMULATION AND SOLUTION

2.1 Formulation:

We are concerned here with a sphere composed of a homogeneous

incompressible isotropic elastic material. Let the undeformed solid

sphere be denoted by

Do-{(r,0,¢)I0.<_r<b,0<0521r,0_<_¢51r}. Thesphere is

subjected to a prescribed uniform radial tensile dead-load of

magnitude po on its boundary r - b. The resulting deformation is a

one-to-one mapping which takes the point with spherical polar

coordinates (r,0,¢) in the undeformed region Do to the point (R,6,Q)

in the deformed region D. We assume that the deformation is radially

symmetric so that

R - R(r) > 0, 0 < r < b; R(O+) z 0, 9 - 0, Q - ¢, on Do’ (2.1)

where R(r) is to be determined.

The principal stretches associated with the radially symmetric

deformation (2.1) are

- R(r)

Ar - R(r), A6 = A! - , (2.2)

where the dot denotes differentiation with respect to the argument.

The spherical polar components of the deformation gradient tensor F

associated with (2.1) are given by



9 M ' (2.3)

F - F - F - F - F - F - O.

Incompressibility then requires that the Jacobian determinant

J - Det F - l, which upon integration yields

R(r) - (r3 + c3)1/3, (2.4)

where c 2 O is a constant to be determined. If it is found that

c - 0, (2.4) implies that the body remains a solid sphere in the

current configuration. On the other hand, if c is found to be greater

than zero, then R(0+) - c > O and so there is a cavity of radius c

centered at the origin in the current configuration. In this event,

the cavity surface is assumed to be traction-free.

The strain-energy density per unit undeformed volume for a

homogeneous isotropic incompressible elastic material is denoted by

W - W( A1, A2, A3), (2.5)

where A1 (i - 1,2,3) are the principal stretches. The function W is

invariant with respect to interchange of the A1 and is taken to

satisfy the normalization condition W(l,1,1) - 0. In the sequel, we

proceed formally and assume that W possesses sufficient regularity

properties to permit the subsequent analysis.

The principal components of the Cauchy stress tensor 1 are given

by

- A '—- - p, (no sum on i), (2.6)

where p is the hydrostatic pressure associated with the

incompressibility constraint Adxzxaa- 1. For the radially symmetric



deformation with principal stretches given by (2.2), the principal

S tress components are

r (r) - v"2 w (v‘z. v. v) - pm.

RR 1 (2.7)
-2

769(r) - rm(r) - V w2(v 9 V, V) ' P(r)o

where, following Ball [3], we have introduced the notation

R c3 13

v-v(r)-;-(l+-—3)l. (2.8)

r

Notice that in (2.7) we consider r(r) rather than the more

conventional r(R). The subscript notation on W in (2.7) denotes

differentiation with respect to the appropriate argument. In (2.7),

we have also used W2(v-2, v, v) - W3(v-2, v, v), which follows from the

invariance of W with respect to interchange of its three arguments.

The dead-load boundary condition now requires that

1mm - PJTIZBTJZ - p0 [v(b>1'2. (2.9)

where the constant p0 > O is prescribed. We note that the boundary

conditions of vanishing shear tractions are satisfied identically. In

addition if c > 0, then the condition for a traction-free cavity

surface

TRR (0) - 0, (2-10)

must also hold.

In the absence of body forces, the sphere will be in equilibrium

provided that div 1 - O, which will hold provided that

”31 1'1
RR

3r + 2 R “an" '99]

 

- 0, (2.11)

holds throughout the sphere.



Thus, the problem to be solved is the following: For a

  

prescribed value of the dead-load traction p0 > 0, we seek a pressure

field p(r) and a constant c z 0 such that (2.11) and (2.9) are

satisfied where r r are given by (2.7) and (2.8). In

an’ '99’ <I><I>

addition if c > 0, then (2.10) must also e satisfied.

 

   

2.2 Solutions:

It may be readily shown that one solution to the foregoing

problem, for all values of po, is

p(r) - W1 (1, l, l) - p0, c - O. (2.12)

This corresponds to the trivial homogeneous state of deformation

R(r) - r, (2.13)

with corresponding stresses rRRu- Tee - 10° - p0.

Next we describe solutions for which c > 0, corresponding to the

presence of a traction-free cavity at the origin. For this purpose,

we adopt an approach developed by Morgan and Pence [10] and rewrite

the differential equation (2.11) in the form

—d[v-2 W (v.2 v v) - (r)] + 4

dr 1 ’ ’ p

 

2" W.1 W (v-2.V.V) - VZW (v-2.V.V)] = 0.
r 1 2

on 0 < r < b, (2.14)

where we have used (2.7),(2.8). On integration of (2.14), we have

p(r) - p(O) - v-2(r) w1(v"‘, v, v) + 2 J(r), o < r < b, (2.15)

where



J<r> -J {v'5<s)w,[v‘2(s).v(s).v(s)1 — v'z<s)w2[v‘2<s).v<s).v<s>1}d—j— ,

0

O < r < b. (2.16)

On substitution into (2.7) we obtain

rRR(r) - -p(0) - 2J(r), O < r < b. (2.17)

The traction-free cavity surface condition (2.10), together with

(2.17) and J(O) - 0, now yields

p(O) — O. (2.18)

Finally the boundary condition (2.9) at r - b is satisfied if

-2J(b) - p0 [v(b)]-2 . (2.19)

The condition (2.19) may be written in a compact fashion on

utilizing the change of variables 3 4 v in the integral (2.16). From

(2.8) it is seen that this change of variable is one-to-one and

invertible if and only if c > 0. Introducing the function

W(x) - W(x"’, x, x), (2.20)

and adopting the notation

W1(x) - 3:1?wa (2.21)

(2.19) may be written as

c3 2 3 W (v)

p - (1+-)’ ————1 dv, c>0. (2.22)
0 3 3

b ea m (V - 1)

<1+—3)
b

Equation (2.22) was first established by Ball [3] for the n-

dimensional version of the problem described here (see equation (5.18)

of [3]). Thus, for a given dead-load p0, solutions involving a
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traction-free internal cavity of radius c exist provided that c is a

positive root of (2.22). The associated pressure field is given by

p(r) - v’2(r)w1(v‘2, v, v) + 2J(r), o < r < b. (2.23)

The critical load pc1 at which an internal cavity may be

initiated is found by formally letting c 4 0+ in (2.22), and so

131m
p - —— dv. (2.24)
or (v3 _ 1)

This result was first established by Ball [3] in n-dimensions (see

equation (5.22) of [3]).

In summary then, we have seen that for all values of the applied

dead-load traction p0, one obtains the trivial solution (2.12)

corresponding to the homogeneous state of deformation (2.13).

Moreover, if positive roots c of (2.22) exist, then one obtains the

additional solutions involving a traction-free internal cavity

described above. Such solutions have been shown by Ball [3] to

bifurcate from the trivial solution at the critical value pm at which

the trivial solution becomes unstable.

2.3 The critical load:

Since the integral in (2.24) is improper; put may or may not be

finite, and so cavitation may or may not take place. As regards the

lower limit in (2.24), it is shown in Appendix A that

dW(l) «1213(1)

dv dvz

  _ 12“, (2.25)
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where p denotes the shear modulus for infinitesimal deformations of

the material. Thus by l'H8pital's rule, the limit of the integrand in

(2.24) is finite as v 4 1. An analogous issue was discussed by Horgan

and Pence [11] in the context of a composite sphere under tensile

dead-loading on its boundary (see equation (17) and the Appendix of

[11]). Consequently the question of whether or not p" is finite

depends on the behavior of W(v) for large values of stretch v.

Sufficient conditions to guarantee that pm be finite were given by

Ball [3] for both incompressible and compressible materials. Here we

provide an ad _gg treatment of this issue. Suppose, for example, that

the strain-energy density per unit undeformed volume for a homogeneous

incompressible isotropic elastic material can be written in the

polynomial form

A

W(v) - a0 + alv + azv2 + ------ + anvn , (n > 1), (2.26)

so that

WICV) - a1 + Zaiv + ------ + naavnqfl (2.27)

From (2.24), (2.27) we see that p“ will be finite if

v < v for large v. (2.28)

Thus if

n '< 3, (2.29)

the value of pct given by (2.24) will be finite.

We now consider some specific examples:

Example 1. The neo-Hookean material:

The strain-energy density function for this material is given by
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u

2 z 2

W(Al, A2, A3) - 2 (A1 + A2 4- A3 — 3), AIAZA3 - 1, (2.30)

where A1, A2, A3, are the principal stretches, and p > 0 is the shear

modulus for infinitesimal deformations. By virtue of (2.2), (2.8) and

(2.20) we thus have

A p -4 2
W(v) — 2 (v + 2v - 3). (2.31)

Therefore

W(v) » pvz for large v. (2.32)

Thus comparing with (2.26), we get n - 2 and so by (2.29), the

critical load pm is finite. In fact Ball [3] has shown that

p — 5M2. (2.33)
or

(See also Section 3 of the present work.)

Example 2. The Mooney-Rivlin material:

The strain-energy density function for this material is

u p
1 2 2 2 2 2 2 2 2 2 2

W(Al, A2, A3) - 2 (,\1 + A2 + A3 - 3) + 2 (A112 + A2A3 + A3A1 - 3),

AAA - 1, (2.34)
1 2 3

Where A1, A2 and A3 are the principal stretches, and #1, p2 are positive

constants. By virtue of (2.2), (2.8), and (2.20) we thus have

A u u

W(v) - 21 (v- -i

2

a

+ 2v2 - 3) + (v‘ + 2v’2 — 3) . (2.35)

Therefore

n V‘

W(v) -» —;— for large v. (2.36)
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Thus comparing with (2.26), we see that n - 4, and so by (2.29), the

critical load p“ is not finite. Of course it is well known that the

Mooney-Rivlin model is not a very accurate constitutive model for

large stretches (see, for example, Ogden [15] pp. 492-493 for a

discussion of biaxial deformation of a rectangular sheet).

Example 3. The Rivlin-Saunders material:

Experimental work of Rivlin and Saunders [23] suggests

consideration of a strain-energy density function of the form

pl 2 2 2 2 2 2 2 2 2
W(A,A,A)-—(A +1 +1 —3)+f(AA +AA +AA -3),

1 2 3 2 1 2 3 1 2 2 3 3 1

AlAzA3 - 1, (2.37)

where f is, as yet, an unspecified function, with f(O) - 0 and #1 is a

positive constant. By virtue of (2.2), (2.8) and (2.20) we thus have

I.A #1 - 2 4 -2
W(v) - -§-(v -+ 2v -— 3) + f(v -+ 2v - 3). (2.38)

In what follows, we discuss two special forms of (2.38):

l.A ”1 - 2 ”2 a -2 a
(i) W(v)--2-(v +2v —3)+—2(v +2v -—3) ,a>0,p2>0.

 

(2.39)

Clearly the special case a - 1 corresponds to the Mooney-Rivlin

material (2.34) considered in Example 2 above. We see that if

4a > 2, (a > 1/2),

4a

A [JV

W(v) 4 2 for large v. (2.40)

On comparing with (2.26), we have n - 4a, and so by (2.29) to ensure

that per is finite, we require that 4a < 3, i.e., a < 3/4, and.so p
CI‘

is finite for the material (2.39) if
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N
I
H

b
l
w

< a < (2.41)

For a S 1/2,

W(v) 4 yivz for large v, (2.42)

and so pct is again finite on comparing with (2.26) and (2.29). In

summary then, for the material (2.39), per is finite if

3

O<a<Z. (2.43)

We remark that the commonly used version of (2.39) with a - 2

does not yield a finite value of per. It is of interest to observe

here that Simmonds [25] has recently shown that a circular rubber-like

plate composed of the material (2.39) suffers a finitg deflection

under a concentrated vertical load at its center only if a > 1. For a

membrane [26], the corresponding result holds only if a > 2. See also

the discussion on pp. 281-282 of the book by Libai and Simmonds [27].

(ii) Another special form of (2.37) has been considered by Gent and

Thomas (1958) [24], in which f is taken to be the logarithm function.

Thus we have

 

A ll _ p _

W(v) - 2—1(v" + 2v2 — 3) +2—21n(v" + 2v2 — 2), p2 > o, (2.44)

so that 3 _3

A pl _5 p2 4V' - 4v

W1(v) - §-(-4v -+ 4v) + 2 4 _2 . (2.45)

v -+ 2v - 2

Thus

W1(v) 4 2piv for large v, (2.46)

and so from (2.24) we see that the critical load pc is finite for the

1:

material (2.44).



3. SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE

ELASTIC MATERIALS

3.1 A class of incompressible elastic materials:

We now consider a particular constitutive law, namely that of

power-law type, and provide an explicit solution for the bifurcation

problem discussed generally in Section 2. Thus consider

W(A A A) -#— (.\“+.\211
1’ ’ 3 2n 1 2

2n -1

2 +A3-3),A3-(A1A2),p>0,n>0,

(3.1)

where A1, A2, A3 are the principal stretches, and the constants p, n

are constitutive parameters. Constitutive models of the form (3.1)

were first introduced by Ogden [l3] and have been widely investigated

since then (see e.g. [14], [15]). The constant p in (3.1) is the

shear modulus for infinitesimal deformations and n is the hardening

exponent. The special case when n - 1 in (3.1) corresponds to the

neo-Hookean material.

We recall from Section 2 that the critical load pcr:is given by

(2.24), i.e.,

W1(V)

- —-—————-dv, (3.2)P
cr 1 (V3 _ 1)

where the notation (2.20) is used. Expressed in the notation of

(2.20), the strain-energy density (3.1) can be written in polynomial

15



16

form as

,. p

W(v) - a; (V4.11 + 2v2n—3),p>0,n>0. (3.3)

To ensure the existence of pm“ we recall from (2.29) that 2n should

be less than 3, i.e.,

n < % . (3.4)

It is of interest to observe that a restriction similar to (3.4)

also arises in the work of Carroll [28] concerned with the problem of

inflation of a hollow sphere composed of the material (3.1).

The response of the material described by (3.1) to certain basic

pure homogeneous deformations will now be discussed. A recent

investigation of these issues was carried out by Zee and Sternberg

[l6], and we now summarize those results in [16] which are relevant to

our problem here. The pure homogeneous deformations considered are as

follows:

(i) Uniaxial stress:
 

2n -n -1/2

111 r22 0, 133(A) p (A A ), A3 A, A1 A2 A ,

(ii) Eguibiaxial stress:

_2 > (3.5)

Zn -4n

733-0,722(A)-p(A -A ),A1-A2-A,A3-A ,

(iii) Pure shear:
 

 2n -2n -1

r -0,111(A)-p(A —A ),A1-A2-A,A3-l.
22 J

The normal stresses 131(A), 722(A), as well as 153(A), for each of

the pure homogeneous deformations (3.5), are monotonic increasing

functions of A for 0 < A < m. The stress-stretch relation (3.5)

appropriate to (i) (uniaxial stress) is plotted in Figure 1 for the

values of the exponent n given by n - 5/4, 1, 3/4, 1/2, and 1/4.
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(cf. Figure 3 of [16]). Note that the material hardens as n

increases. The graphs of 122(A) and.rll(A), corresponding to the cases

(ii) and (iii), are qualitatively similar to Figure 1 and are plotted

in Figures 2, 3 respectively.

It is of interest to remark on the character of the system of

governing partial differential equations, namely the displacement

equations of equilibrium [16]

-1

Cijkl(§)uk,lj — p.3F31 - O, J - det F - 1, (3.6)

where CL“1(F) are the components of the fourth-order tensor defined by

2

W(g)

C1jk1(§) - Ck113(§) - 3F 3F
(3.7)

1:] RI

Necessary and sufficient conditions for ellipticity of the system of

equations (3.6), (3.7) have been obtained by Zee and Sternberg in

[16]. For the special case of the material (3.1), these conditions

are particularly simple. Thus from the results of [16], p.85,

ellipticity holds for the material (3.1) t all deformations if

:
5

I
V

m
l
r
—
I

(3.8)

In what follows, we assume that (3.8) holds, and so recalling

(3.4), we thus have

(3.9)

N
I
H

I
A

:
3

A

N
I
C
O
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3.2 gavitation solutions:

Consider a quasi-static loading process in which the solid sphere

is subjected to a dead-load po that increases slowly from zero.

Cavity formation and growth is described by the relationship po -

po(c) given in (2.22).

For the material described by (3.1) (recalling the notation

(2.2), (2.8)) we have A1 - v-2, A - A3 - v and so the first derivative

2

with respect to A2 is O, i.e., w2(¢1, v, v) - 0, and the first

derivative with respect to A1 is given by

-.n+2 _ V2142), is n < 2 . (3.10)
'2

Vi CV . V. V) ' #(V 2

On using the notation (2.20), we thus obtain

  

W1(v) - 2,.(v2“" — W“), %s n < % , (3.11)

and so

W (V) v2n-1 _ -4n-1 1 3

- 2p , - S n < — . (3.12)

3 2 2

v - l v — 1

When the relationship (2.22) between the applied pressure po and

deformed cavity radius c is specialized to the particular strain-

energy function (3.1) (and (3.12) is used), one obtains

Zn-l -4n-1

(:3 2,3 v - v

p0 - po(c) - Zp (1 + j) dv,

b 3 v - l

 

N
I
H

l
e

Sn<

(3.13)

Before proceeding with an analysis of the relationship (3.13), it is

convenient to record here corresponding expressions for the stresses

subsequent to cavitation given by (2.7). On using (2.17), (2.18),
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(2.20), (2.21) we find

wlm
rRR(r) - —3—— (1V, (3.14)

c3143 v -— 1

(1 + —5>
r

while from (2.7) we obtain

-2 - -2
769 - r“ - vW2(v , v, v) - v2W1(v , v, v) + rRR(r). (3.15)

On using Wztui, v, v) - 0, (3.10) and (3.12) we obtain

 

Zn-l -4n-1

'V -
1 3

Ga“) "' 2" 3 dv. -2- s n < -2-. (3.16)

c3 ya v - 1

(1 + ‘3)

r'

and

Tee ' 'qxp ' Tm“) - #4 Iv"“<r> - v2"<r)]. (3.17)

where we recall from (2.8) that v(r) - (1 +°—)“3.
r3

We confine attention to the range of values of n in (3.9), namely

1/2 S n < 3/2. For specific values of n in this range, namely

n - 1/2, 3/4, 1, 5/4, the integrals in (3.13) and (3.16) may be

evaluated explicitly. The relevant integrals can be evaluated by

using results of Ryshik and Gradstein [29]. We assemble these

integrals in Appendix B. The corresponding expressions occurring in

(3.13) then become

1
n - 2: p - p, (3.18)
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3 31/2 3
n-%2Po-2fl(1+£‘3)2/3 %1n1+(1+c3/b) 4_?13(1+£3)1

b31+c33/b b

3 3

Am “‘3’” , (3.19)

c/b)’ -

n-l:

3 3 3
p _2p(1+c_)-2/3[ 5+4c/b ] ’ (3.20)

o 3 4

b

__5_.
n 4.

Caz/3 4 1 (1+c3/b3)1/6—1

po-2”(1+—3) —1r—-3-ln 31/3
b 3/3 (1+c3/b) -

1 C316 l 0316 c313

+-ln 1+(1+—)’ --1n 1-(1+—)/ +(1+—)’
3 3 6 3 3

b b b

_ 3 7 31/6

+%ln 1+(1+C—3)1/6+(la-£3)“3 ——1-arctan 2(1+C31b) _1

_ b b _ J3 J3

P 3 3 1 31/6

-%1n 1+(l+£5)1/3+(1+c—5)2/3 --larctan 2(1+03/b) +1

- b b , J3 ,/3

3 3

+% (1 +-c—3-)'5/3 +% (1 +—C;)'2/3

b b

3 31/3

— —1- arctan 13(1 + C / b )3 1 3 . (3.21)

J3 2+(1+e/b)’

Equations (3.18) - (3.21) provide a relationship po - po(c)

between the dimensionless applied dead-load po/p and the dimensionless

cavity radius c/b. The critical load pet is the value at which the

curve po - po(c) bifurcates from the straight line c = 0 corresponding
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to the trivial homogeneous solution. On letting c + 0+ in (3.18) -

(3.21) and applying l'HSpital's rule where appropriate, the critical

load pcr is tabulated below.

 

n 1/2 3/4 1 5/4

 

p p 1.5909p 2.5g 4.7426p

CI

      
 

As one might expect, the values of p“ increase as the hardening

parameter n increases. The graphs of po(c) according to (3.18)-(3.21)

are shown in Figure 4. From Figure 4 (and (3.18)), it is clear that

the case n - 1/2 is special. We recall from (3.8) that this is the

limiting value of n for which ellipticity holds.

The corresponding principal stresses, given by (3.16),(3.l7),

 

 

are:

n _ l.
2.

03 ’2/3

711R“) - It (1 +—3) . (3-22)

I

C3 1/3

799(r) ‘ T¢Q(r) ' fl (1 +‘;;) . (3.23)

_ 2.
n 4.

3 3 1/2 3

TRR(r) - 2p % 1n.1 + (1 + :‘/ : ) + % (1 +'£;)-1

1 + c / r r

3 3

+ % In C / r , (3.24)
(1 + 03/ r3)1/2 _ 1
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3 1/2 3
1 + 1 + 1 -

ree(r)-r®(r)-p %1n( c/r) -§(1+£3)1

l + c3/ r3 r

3 3 3

+§1n ”:12 + (14.33)“ (3.25)

(1+ c3/ r) I - r

n - l:

c3 -1/3 1 c3 -4/3

TRR(r) - 2p (1 +—3) + Z(1 +—3) , (3.26)

r r

3 3
c_ -a/3 _ _c__ 2/3

199(r) - rmu) - rRR(r) — p [(1 + 1.3) (1 + r3) ] (3.27)

n , 2.
4'

4 1 <1c3/ r3>3’3 —
TRR(r) - 2p — 1r - 3 1n 3 1/3

3/3 (1 + C3/ r) -

1 - c3 1/6 1 c3 1/6 c3 1/3

+§1n 1+(1+—3—) —31n 1—(1+-—3) +(1+—3—)

_ r r r

P 3 - 3 1/6

+%1n l + (1 “PS—QUE + (1 +£§)1/3 - A arctan 2:1“:3/ r) _

_ r r . J3 J3

_ 3 3 3 1/6

— % 1n 1 + (l +6—3)1/3 + (l +3302” - -—1 arctan 2<1+C3/ r) +1

_ r r _ ./3 ./3

1 c3 -5/3 1 c -2/3
+§(1+—;) +§(1+3)

r r

3 3 1/3

- —1 arctan J30" + c3Lr3)1 3 , (3.28)

J3 2 + (1 + c3/ r) ’
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3 3

(1 +3393” — (1 +33)“ . (3.29)’99“) - rmu) - rm(r) - u

r r

The graphs of th(r), 199(r) and 10¢(r) corresponding to (3.24)-

(3.29), i.e. for values of n - 3/4, 1, 5/4, are shown in Figures 5-10.

An interesting feature concerning these stresses immediately after

cavitation is the presence of a boundary layer near the cavity wall.

To see this, we have plotted the stresses in Figures 5-10 for applied

dead loads p0 slightly larger than pug A.similar boundary-layer

phenomenon was observed in [11] for the problem of tensile dead-

loading of a composite sphere composed of two neo-Hookean materials.



4. ELASTODYNAMIC PROBLEM FOR A NEO-HOOKEAN

SOLID SPHERE SUBJECTED TO A SUDDENLY

APPLIED DEAD-LOAD

4.1 Formulation:

In this Section, we consider the radially symmetric motion of an

isotropic incompressible elastic solid sphere composed of a neo-

Hookean material. The undeformed sphere has radius b, and it is set

into motion at time t - O by a suddenly applied uniform radial tensile

dead-load p0. In this incompressible case, the effect of the tensile

load is felt immediately throughout the medium, and the response takes

the form of a nonlinear oscillation.

Large amplitude oscillations of hollow incompressible elastic

cylinders were first considered by Knowles [17,18]. Methods similar

to those used in [17] and [18] have been applied to the case of

symmetric motions of a hollow thick-walled incompressible elastic

sphere in [19], and an unbounded incompressible elastic medium

containing a spherical cavity has been treated in [20]. See [21] for

a review of some of this work. See also the recent paper [22] for a

treatment, using phase-plane arguments, of radial motion of thick

spherical shells composed of incompressible materials.

The emphasis in [17-20] is on the characteristics of the motion,

such as the period and amplitude, and on conditions which will ensure

24
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the existence of periodic motions. In this Section we use the

techniques developed in [17-20] to investigate the dynamic analog of

the bifurcation problem described in Sections 2 and 3. For simplicity

of presentation we restrict our attention to the case of a neo-Hookean

material. We use similar notation to that introduced in Section 2.

Thus a point which at time t has spherical coordinates (R,6,¢) is

assumed to have been at the point (r,0,¢) in the undeformed state.

The motion is thus described by

R - R(r,t) > 0, 0 < r < b; R(0+,t) z 0; 9 - 0, w - ¢, (4.1)

where R(r,t) is to be determined. Since the material is assumed to be

incompressible, the deformation gradient F obeys det F - l, t 2 0.

For the motion (4.1), this implies Rz'DR/)r - r2, which when

integrated gives

R - R(r,t) - [r3 + c3(c)]3’3, c(t) z o, c 2 o, (4.2)

where c(t) is to be determined. The motion is completely determined

once c(t) is known. If it is found that c(t) - 0 for t 2 0, (4.2)

implies that the body remains a solid sphere in the current

configuration. On the other hand if c(t) > O (i.e. R(O+, t) > 0),

there is a cavity of radius c(t) centered at the origin in the current

configuration. In this event, the cavity surface is assumed to be

traction-free.

For the neo-Hookean material, the strain energy density per unit

undeformed volume is given by

g g 2 2 2 _ =
W(AI,AZ,>.3) 2 (A1 + 32 + 13 3), 313233 1, (4.3)

where A1 (i - 1,2,3) are the principal stretches, and p > 0 is the
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shear modulus for infinitesimal deformations.

For the radially symmetric motion (4.1), the principal stretches

are given by Ar -?R(r,t)/>r, A0 - A4, - R(r,t)/r. The principal

components of the Cauchy stress tensor 1 are again given by (2.6)

which for the material (4.3) and the motion (4.1) can be written as

3 3 4/3

TRR(R,C) =3 [I (R — C) — P(Rot)v

 

R2

(R3 _ C 3)2/3

 

799(R,t) = TQ¢(R,C) - p - P(R,t), t 2 O, (4.4)

where P(R,t) represents the arbitrary hydrostatic pressure.

It is assumed that the sphere is in an undeformed state and at

rest at time t - 0, so that R(r,0) - r, fi(r,0) - O, and so from (4.2)

we deduce that the current cavity radius c(t) must satisfy the initial

conditions

c(O) - o, é(0) - o, (4.5)

where the dot denotes differentiation with respect to time.

A dead-load po is suddenly applied and maintained at the surface

of the sphere so that the boundary conditions are

rRR (A,t) - 0, t < 0,

(4.6)
b 2

rRR(A.t)-PO(A). tZO.

where po is a positive constant and A - R(b,t) - (b3 + c(t)3}1/3 is the

deformed outer radius. In addition if c(t) > 0, then the condition

for a traction-free cavity surface

rRR(c,t) — O, t 2 O, (4.7)

must also hold.
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The equations of motion, in the absence of body force, governing

the radially symmetric motion of the sphere reduce to the single

equation

QT“ +l(2r -‘r
211 R an 99
 

— 1w) - pli, t Z 0, (4-8)

where p is the constant mass density of the material. Thus the

fmproblem to be solved is the following: For a prescribed value

dead-load traction p0 > 0, pg seek a pressure field P(R,t), and a time
 

dependent function c(t) 2 0, such that (4.2), (4.5), (4.8) app (4.6)

are satisfied where rRR, Tee, r¢° are givep p1 (4.4). 1p addition if
 

c(t) > 0, then (4.7) mus; also pg satisfied.
  

4.2 Solutions:

It is readily shown that one solution to the foregoing problem,

for all values of po, is

P(R,t) - p - po , c(t) - O, t a O. (4.9)

This corresponds to the trivial homogeneous (static) state of

deformation

R(r,t) - r, t 2 O, (4.10)

with corresponding stresses th*- r - r - p

69 ¢Q 0'

Next we describe solutions for which c(t) > 0, corresponding to

the presence of a traction-free cavity at the origin. On substitution

from (4.4) into (4.8) we obtain
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3 3 43 3 :34/3 2

Z (R—c)’ _P(Rt)+gg (R c) _ R =..

‘DR. p 4 ’ R 4 3 3 2m p
R R (R. — c )

(4.11)

The incompressibility condition (4.2) is now used to compute the

acceleration dzR/dt2 in terms of the acceleration d2c(t)/dt2 of

particles on the cavity surface, so that we have

2

32—3: - 2cR3(R3 c.3)(d—‘3)2 + c2 R‘2 192-. (4.12)

dt dt

Equation (4.12) is now introduced into the right hand side of (4.11)

   

 
  

to yield

-2 3 _ 3‘u3 3 _ 3‘w3 2

?_R p (R ‘c) _ P(R,t) +%g (R ‘0) _ a R 3 m

R R (R. - c )

-5 3 do 2 2 -2 dzc

- 2pcR (R. H)(t) + pc R. -—a (4.13)

2

dt

Equation (4.13) is now integrated with respect to R, to yield

3 3 “3 3 3 ya

u (R ‘3) — P(R,t) + P(c,t) + 2p [35 5°) - 3 g 3 2/3 ]d§

R c e (e - c)

= 2pc(d—c 2 55——L d5 + pc2_‘32° 95 . (4.14)
2

dt 53
C

The integral on the left hand side of (4.14) may be simplified, on

integration by parts, to yield
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3 3 4/3

c ) _

e3 (e

(E
 5 deg (4.15)

3 3 23
_ c )/

3 3 4/3 3 _ 3 1/3

- ”(R "‘33 + 2;: 43 2°) d4 — 24 ((53 — c3)
2R 6

2/3
  

d6.

The first integral on the right hand side of (4.15) is also simplified

on integrating by parts to yield

3 31J3

§

3 32u3

(g - C) dé _ _ 2HM + 2"

2 R 3 3

5 (€ - C)
C C

 

2” 2/3 (13'

(4.16)

Thus on combining (4.15), (4.16) and evaluating the integrals on the

right hand side of (4.14) directly, we rewrite (4.14) as follows:

 

  

 

3 3 4/3

p 43 'f) -— P(R,t)

R

3 3 4/3 3 3 1/3

- — P(c,t) + 2;; (R "°) + (R I; ‘3)

4R

do 2 c3 1 3 2 dzc 1 1
+ 2pc(—-) — -—+— +pc —-— . (4.17)

dt 4R3 R. 4c dtz c R

Equation (4.17) is now introduced into the right hand side of the

first of (4.4), and then the traction-free cavity surface condition

(4.7) is imposed. This leads to P(c,t) - O, t 2 0, and so we obtain

  

 

3 3 “a 3 3113

rRR(R,t) - 2p (R ‘C ) + (R E c )

4R

dc 2 c3 1 3 2 dzc 1 1
+ 2pc(—- '—- — - + —- + pc - - - . (4.18)

dt 4R3 R. 4c dt2 c R

Finally the boundary condition (4.6) at R - A - {b3 + c(t)3} is
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satisfied if

   

b 3 b" b

pO 3 3 1/3 - 2p 3 3 4/3 + 3 3 1/3

(b + c ) 4(b + c ) (b + c )

  

  

3

dc 2 c 1 #1

+ 2pc(dt 3 3 4/3 - 3 3 1/3 + 4c
4(b + c) (b + c)

2 dzc 1 1
+ pc 2 - - 3 3 13 , t Z 0. (4.19)

dt c (b + c )’

The relationship (4.19) between the applied load po and cavity radius

c(t) is the dynamic counterpart of (2.22), for the neo-Hookean

material. In fact, on formally replacing c(t) in (4.19) by the

constant c, it is readily verified that one recovers (3.20).

4.3 The basic differential equation:

To treat the differential equation (4.19), we adopt the

techniques of Knowles [17] and consider the quantity

x(t) - C—é—Q > o, (4.20)

where b is the original undeformed radius of the solid sphere. In

this notation (4.19) becomes a nonlinear second-order ordinary

differential equation for the dimensionless cavity radius x(t). From

(4.20) we have

c(t)-bx(t), fi-bfi, —--b-—. (4.21)

On introducing the notation
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  f(x) - —ZA[ 1 + 3 ] , (4.22)

pb2 4(1 + x3)"3 (1 + :3)”

and using (4.21), we rewrite (4.19) as

  

  

Po - x2 c13_x l _ 1

pb3(1 + x3)3’3 dtz 3‘ (1 + x3)3’3

dx 2 x3 1 3
+ 2x (—) - + — + f(x), t 2 o. (4.23)

dt 4(1 + x3)4/3 (1 + x3)1/3 4x

Since the motion starts when the sphere is undeformed and at rest (see

equation (4.5)), we deduce from (4.5), (4.20), (4.21) that the initial

conditions

x(0) - o, ggég) - o, (4.24)

must also hold.

4.4 Oscillations:

With the notation v - dx/dt, dzx/dtz - v dv/dx, it is possible to

write the differential equation (4.23) in the form

2

2x1p

d—: x3 34-- 1 3 13 v2 + 2x2 f(x) '3 2 :23' (4°25)
u+x)’ pba+x)’

 
 

Using (4.22), we find that (4.25) may be integrated with respect to x

over the interval from zero to x to yield

   
x4 _1__ 1 V2+_4,£ (1+x3)2/3 _ 1 _l

x (1 + x3)1/3 pbz 2 4(1 + x3)1/3 4

2pO 3 13

-—[(1+x)l—l],t20. (4.26)

pbz
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It is well known from the theory of vibrations that the motion

x(t) is periodic if and only if the 'energy curves' (4.26) are closed

curves in the x-v plane with a finite period f dx/v. The energy curve

in the x-v plane is symmetric about the x-axis. This curve, given by

(4.26), starts at the initial point x - 0, v - 0 at time t - 0. If p0

is sufficiently large to produce an internal cavity, x and v then move

into the region x > 0, v > 0 as t increases from zero. If v passes

through a maximum and returns to zero as x increases from zero, the

curve will be closed. According to (4.26), this will happen for a

given po if there is a root x > O of (4.26) when v = 0. Setting v - O

in (4.26) we obtain

P
_g_ 3 u3‘_ -1 3 2n _ 1

[(1+x) l] (1+x) 31/3

" 2(l+x)

 
l

- 5 . (4.27)

The right hand side of (4.27) is a monotone increasing function

of x for x > 0. As x 4 0+ in (4.27), we find, using 1'H6pita1's rule,

that

5

-—- 4 5+ . (4.28)

For a given p0 > Sp/Z, we denote by x.In the non-zero root of (4.27)

(there is nnly nng since the right hand side of (4.27) is monotonic

increasing). The quantity x.m is the maximum cavity radius in the

oscillation process. If po'< 5p/2, no positive root of (4.27) exists,

and hence periodic motions do not occur for this range of applied

tensile loads. Thus we have shown that the value of the "critical

load" n; which an internal cavity nny bg initiated in the dynamic
 

nroblem coincides with that for the static problem. (Recall equation
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(2.33)). Thus following application of a pressure p0 > Sp/2, an

internal cavity would form and expand until it would reach the value

xi, given by the root of (4.27), then would contract to zero and

repeat the cycle.

It is of interest to note that Knowles and Jakub [20] found that

no periodic motions exist for values of pressure above 5p/2 for the
 

problem of an unbounded solid, composed of a neo-Hookean material,

containing a spherical cavity which is set into motion by the sudden

application of a spatially uniform radial pressure to the cavity wall.

In fact, for this problem, the deformed cavity radius tends to

infinity as the applied pressure tends to the value Sp/2. A related

observation was made by Gent and Lindley [2] and by Ball [3] for the

corresponding static problems.
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n = 1.25

N
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Figure 1. Behavior of the power law material under uniaxial

stress .
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Figure 2. Behavior of the power law material under equibiaxial

stress.
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n =1.25

n = 1.0

n = 0.75

n = 0.5

n = 0.25

T

2 3

Figure 3. Behavior of the power law material under pure shear.
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2.5. n - 0.5

2.0-‘

1.5..

1 .0~

     
Figure 4. Variation of the deformed cavity radius c with applied

dead load po for a power law material with strain

energy density given by (3.1).
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Figure 5. Variation of the radial stress rfiR(r) with undeformed

radius r subsequent to cavitation for a power law

material (3.1) with n - 3/4.
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Figure 6. Variation of the radial stress 323(r) with undeformed

radius r subsequent to cavitation for a power law

material (3.1) with n - l.
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Figure 7. Variation of the radial stress rRR(r) with undeformed

radius r subsequent to cavitation for a power law

material (3.1) with n - 5/4.
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Figure 8. Variation of the stresses 799(r), 1QQ(r) with

undeformed radius r subsequent to cavitation for a

power law material (3.1) with n - 3/4.
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Figure 9. Variation of the stresses 199(r), 7Q¢(r) with

undeformed radius r subsequent to cavitation for a

power law material (3.1) with n - l.
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Figure 10. Variation of the stresses 166(r), rQQ(r) with

undeformed radius r subsequent to cavitation for a

power law material (3.1) with n - 5/4.



Appendices



Appendix A: Verification of (2.25)

Equation (2.25) has been established recently by Horgan and Pence

[11]. For completeness here, we provide a brief review of their

argument. First we recall from (2.20) that

1300 - W(v’3. v. v). (M)

and so

dW(v)

dv

 

- —2v'3w1(v‘3, v, v) + 2w2(v‘3, v, v), (11.2)

on using the chain rule and the fact that W2024,v,v) = WSCVq,v,v).

Thus

dW(1)

dv

 

- 2[w2(13 1) 1) _ W1(1, 1’ 1)] - 0, (A°3)

which establishes (2.25)1 as desired.

To verify (2.25)2, we recall from finite elasticity theory (see

e.g. Ogden [15]) that the shear modulus for infinitesimal deformations

of an incompressible homogeneous isotropic material with strain-energy

density 0(11, 12) is given by

30 30

”'2571'33—111 -I -3. (3'3)
1 2 1 2

Here I - A2 + A2 + A2, I - AZAZ + AZAZ + AZAZ, are the usual first and

1 1 2 3 2 1 2 2 3 3 1

second invariants. Thus from (A.1) we have
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131m - €1<il(v).‘fz(v>>.

where

I1(v) - v“ + 2V2, 12(v) - 2v’2 + v".

Using the chain-rule, and observing that

oil dIz

d—v--‘aV—-O, whenv= 1,

it is readily verified that

  

 

 

(1314(1) of: (1311 3121 031'

- -—- + ——-—-- I - I = 3
y 9

dvz 3331 dv2 Iz dv2 3 3
v - 1,

and so it follows from (A.4), on using (A 6), that

d2W(1)

- 12 u.

dv2

which establishes (2.25)z as desired.

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)



Appendix B. Verification of (3.18) - (3.21) and

(3.22), (3.24), (3.26), (3.23)

Here we present the details of the derivation of equations (3.18)

- (3.21) and (3.22), (3.24), (3.26), (3.28). We first treat the

indefinite integral which is needed to evaluate both (3.13) and

(3.16): (Constants of integration will not be written down.)

V211—1 _ v-4n-1

I = 3 dv, n < . (B.l)
 

N
I
H

I
A

l
e

It is convenient to record here the values of Zn - 1 and —4n - 1

corresponding to n - 1/2, 3/4, 1, 5/4, respectively. The integral

(B.l) will be decomposed into the two parts involving these exponents.

 

 

 

n 1/2 3/4 1 5/4

2n — 1 0 1/2 1 3/2

-4n — 1 -3 —4 —5 —6

      
 

(1) Evaluation of I for n - 1/2.

When n - 1/2,

—3 -3 3

I-JJJ—V—dv-Jv(:-l) dv-Jv33dv--;. (8.2)
 

v --1
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immediately evaluated to yield the desired expressions (3.18), (3.22).

(ii) Evaluation of I for n - 3/4.

First, we record here the indefinite integrals (2.128) of Ryshik

and Gradstein [29],

Jdv =_ 1 _b(3£+k—4)J dv ,k#1’

V'Z (k — 1)avkolz:-1 a(k - 1)

   

(8.3)

where 23 - a + bva, a # 0, b and i > 0 are constants.

When n - 3/4, from (8.1) we see that

I=J—°LV—— dv-J ‘3" =11—I. (3.4)

(v3 — l) v3(v3 - 1) 2

 

To evaluate 12, we use (8.3) with k - 4, a - —1, b - l, 2 - 1, and get

I.-[ .2 a] :v .
v(v —l) 3v v(v '1)

The second integral of (8.5) is evaluated as follows:

dv v2 dv v2 v2

3 = 3 3 - - (-—; ) dv + 3 dv

‘v(v - l) v (v — l) v (v - 1)

  

   

3

--llnv3+-1-ln(v3—1)-—lln-v—-, (8.6)
3 3 3 3

v -— 1

and so, from (8.5), we have

3

1 1 v

12 - 3 + 3 1n 3 . (8.7)
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In order to evaluate I1 in (8.4) we use a change of variables, i.e.,

3/2

r - v , and so

,[v dv 243 dr 1 r - 1 1 v3’2 — 1
I - - - - 1n --- - - ln -————-—-. (8.8)

1 3 2 3 r + 1 3 we

v -— 1 r 1- 1 v + 1

Thus on combining (8.7) and (8.8) in (8.4) we obtain an expression

for I. The definite integrals in (3.13) and (3.16) are then

immediately evaluated to yield the desired expressions (3.19) and

(3.24).

(iii) Evaluation of I for n = l.

 

When n - 1,

-5 -5 6

I- ——V'V dv- 3’ 5"”13dv- v’3(v3+1)dv
3 3

v -1 v -1

-J (v'2 + v‘3) dv = - l - —1. (13.9)
V 4

4v

0n using (8.9), the definite integrals in (3.13), (3.16) are

immediately evaluated to yield the desired expressions (3.20), (3.26).

(iv) Evaluation of I for n - 5/4.

When n - 5/4,

  

I -J VJ" 3" -J ‘3" =- 1 - 1‘. (3.10)

v3 - 1 v6(v3 - l) 3
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To evaluate I‘, we use (8.3) with k - 6, a = —l, b = 1, 2 = 1, to get

I -—1— + 3 ‘3: . (3.11)

V'(V - 1)

 

The integral in (8.11) is evaluated by using (8.3) with k = 3, a = —1,

b - 1, 2 - 1, to get

3 ‘33" =i2 + ——33V—. (3.12)

V'(V -— 1) 2v v — 1

The last integral in (8.12) can be evaluated using standard integral

 

tables. For example, (2.143) of Ryshik and Gradstein [29] gives

 

 

dv 1 (1 3 V + ”231/2 1 ,[3v
-——-—-——-- — - 1n — - arctan (8.13)

v3 _ 1 3 v — 1 J3 2 + v

Thus, on using (8.13), (8.12), (8.11), we obtain

2 uz

(l + v + v)

I = -l- + -l- - l 1n — —l arctan -—1§X—- . (8.14)

4 5v5 2v2 3 v — 1 J3 2 + v

In order to evaluate I3, we use a change of variable, i.e., r - v ,

to get

h

13 _ Viv dV' _ :‘dr - :dr + 3rdr . (B 15)

v «— l r — 1 r + 1 r — 1

By using (2.145.3) and (2.145.7) of [29], we have

   

2

I - - 1 1n (1 + JV) + -l arctan 212—:—l

 

3 6 1 — Jv + v J3 J3

2

+ 1 1n (JV - 1) + —l arctan 2 v + l. (8.16)

l+Jv+v J3 J3

Thus on combining (8.14) and (8.16), we obtain an expression for I

from (8.10). The definite integrals in (3.13) and (3.16) are then

readily evaluated to obtain the desired expressions (3.21) and (3.28).
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