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ABSTRACT

STUDIES ON VOID FORMATION AND GROWTH
FOR INCOMPRESSIBLE NONLINEARLY ELASTIC MATERIALS

By

Miao-Sze (Olivia) Chou-Wang

In this study, a class of bifurcation problems for a solid sphere
subjected to uniform tensile dead-loading p, at its boundary are
examined within the framework of finite elastostatics and
elastodynamics. The sphere is composed of a particular class of
homogeneous isotropic incompressible nonlinearly elastic materials,
namely those of power-law type. First of all, we carry out an
investigation of the elastostatic problem. One solution to this
problem, for all values of P, corresponds to a homogeneous state in
which the sphere remains undeformed while stressed. However, for
sufficiently large values of P, there is in addition a second
possible configuration involving an internal traction-free spherical
cavity. The dependence on constitutive parameters of the critical
load at which bifurcation occurs is examined as well as the subsequent
void growth. The stress distribution after cavitation occurs is also
described. The results are obtained in closed analytic form.

Secondly, we study the elastodynamic version of the foregoing

problem for the special case of a neo-Hookean material. The sphere is
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set into motion by a suddenly applied uniform radial tensile dead-load
P, One solution to the dynamic problem, for all values of P,
corresponds to a trivial homogeneous static state in which the sphere
remains undeformed while stressed. However, for sufficiently large
values of p,» one has in addition another possible radially symmetric
motion involving an internal traction-free cavity. The "critical
load" at which an internal void may be initiated in the dynamic

problem is shown to coincide with that for the static problem.
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1. INTRODUCTION

Void nucleation and growth in solids have been of concern for a
long time because of the fundamental role such phenomena play in
fracture and other failure mechanisms. (See e.g. Goods and Brown [1]
for a discussion of cavity nucleation in metals). The phenomenon of
sudden void formation ("cavitation") has also been observed
experimentally in wvulcanized rubber by Gent and Lindley [2].

Nonlinear theories of solid mechanics have been used recently to
account for such phenomena. The impetus for much of the recent
theoretical developments has been supplied by the work of Ball [3].

In [3], Ball has made an extensive study of a class of bifurcation
problems for the equations of nonlinear elasticity which model the
appearance of a cavity in the interior of an apparently solid
homogeneous isotropic elastic body once a critical load has been
attained. An alternative interpretation for such problems in terms of
the growth of a pre-existing micro-void is given in [4]. Further
investigations of such bifurcation problems have been carried out in
[5-12]. It is worth noting that cavitation can be shown to occur only

when finite strain measures are taken into account (see e.g. [4],

[9]). The corresponding problems in linearized elasticity or in the
infinitesimal strain theory of plasticity do not exhibit such
bifurcations.

The purpose of the present study is to further investigate this



bifurcation approach to void nucleation in two specific contexts.
First of all, we carry out an investigation of the problem of static
tensile dead-loading of a solid sphere composed of a particular class
of homogeneous isotropic incompressible nonlinearly elastic materials,
namely those of power-law type. Secondly, we study the elastodynamic
version of this problem for the special case of a neo-Hookean
material.

In Section 2, we formulate the basic boundary-value problem that
arises when a solid sphere, composed of an incompressible isotropic
elastic material, is subjected to a prescribed uniform radial tensile
dead-load p, on its boundary. One solution to this problem, for all
values P, corresponds to a trivial homogeneous state in which the
sphere remains undeformed while stressed. However, for sufficiently
large values of P,» one has in addition other possible radially
symmetric configurations involving an internal traction-free spherical
cavity. Such solutions have been shown by Ball [3] to bifurcate from
the homogeneous solution at a critical value of P, say p_, at which
the homogeneous solution becomes unstable. The possibility for these
bifurcated solutions to exist depends on the constitutive law for the
material under consideration.

In Section 3, attention is confined to a particular class of
homogeneous isotropic incompressible elastic materials, namely those
of power-law type. Such nonlinearly elastic materials were first
introduced by Ogden [13] and have been employed in a wide variety of
problems since then (see e.g. [14], [15]). An extensive discussion of

the properties of this class of materials has been provided recently



by Zee and Sternberg [16]. Our interest here is in examining the
dependence of the critical loads at which cavitation occurs on the
constitutive parameter n appearing in the definition of this class of
materials (see equation (3.1)). 1In Section 3, we first examine the
behavior of these materials under certain homogeneous deformations
namely uniaxial stress, equibiaxial stress and pure shear. These
results are shown in Figures 1-3. The explicit relationship between
the applied load P, and the deformed cavity radius is examined and
plotted in Figure 4. It is found that as the hardening parameter n
increases, the critical load P at which bifurcation takes place also
increases. For the special case of a neo-Hookean material, for which
n = 1, we recover results due to Ball [3]. The stress distribution in
the sphere is also described. An interesting feature concerning the
principal stresses immediately after cavitation is the presence of a
boundary layer near the cavity wall. To see this, we have plotted the
stresses in Figures 5-10 for applied dead loads P, slightly larger
than P__-

In Section 4, we consider the radially symmetric motion of an
isotropic incompressible elastic solid sphere composed of a neo-
Hookean material which is set into motion at time t = 0 by a suddenly
applied uniform radial tensile dead-load P, If the material were
compressible, the medium would respond to such a loading by
propagating a dilatation wave inward from the boundary. In the
incompressible case, the effect of the tensile load is felt
immediately throughout the medium and the response takes the form of a

nonlinear oscillation. Such oscillation problems were first



investigated by Knowles [17], [18] for hollow circular cylinders and
have received considerable attention since then (see e.g. [19-22] and
the references cited therein). In Section 4, we show that one
solution to the dynamic problem described above, for all values of P,
corresponds to a trivial homogeneous static state in which the sphere
remains undeformed while stressed. However, for sufficiently large
values of p,» one has in addition another possible radially symmetric
motion involving an internal traction-free cavity. A relationship
between the applied load P, and cavity radius c(t) at time t is
obtained in the form of a second-order nonlinear ordinary differential
equation (see equation (4.19)). By adapting the techniques of Knowles
[17], [18], we show that periodic oscillations can occur if and only
if the applied tensile dead-load P, is such that

P, = 5u/2, (1.1)
where u denotes the shear modulus for infinitesimal deformations of
the neo-Hookean material. As P, 5p/2+, the deformed cavity radius
c(t) » 0+, It is shown that the value of the "critical load" at which
an internal void may be initiated in the dynamic problem coincides
with that for the static problem. For values of P, > 5u/2, following
the application of such a load at time t = 0, the cavity would expand
until its radius reaches a maximum value given by equation (4.27),

then would contract to zero and repeat the cycle.



2. BIFURCATION PROBLEM FOR A SPHERE:

FORMULATION AND SOLUTION
2.1 Formulation:

We are concerned here with a sphere composed of a homogeneous
incompressible isotropic elastic material. Let the undeformed solid
sphere be denoted by
Do-{(r,0,¢)|Osr<b,0<0521t,05¢51r). The sphere is
subjected to a prescribed uniform radial tensile dead-load of
magnitude P, on its boundary r = b. The resulting deformation is a
one-to-one mapping which takes the point with spherical polar
coordinates (r,f6,¢) in the undeformed region Do to the point (R,6,9)
in the deformed region D. We assume that the deformation is radially
symmetric so that

R=R(r) >0, 0<r<b; R(O+) 20, 8 =6, & = ¢, on Do’ (2.1)
where R(r) is to be determined.
The principal stretches associated with the radially symmetric

deformation (2.1) are
. R(1)
Ar = R(r), Aa - A! - , (2.2)

where the dot denotes differentiation with respect to the argument.
The spherical polar components of the deformation gradient tensor F

associated with (2.1) are given by



6 44 ' (2.3)

F, =F, =F,,=-F =F =F =0.
Incompressibility then requires that the Jacobian determinant
J = Det F = 1, which upon integration yields
R(r) = (£ + ), (2.4)
where ¢ = 0 is a constant to be determined. If it is found that
c =0, (2.4) implies that the body remains a solid sphere in the
current configuration. On the other hand, if c is found to be greater
than zero, then R(0+) = ¢ > 0 and so there is a cavity of radius ¢
centered at the origin in the current configuration. In this event,
the cavity surface is assumed to be traction-free.
The strain-energy density per unit undeformed volume for a
homogeneous isotropic incompressible elastic material is denoted by
W= W( Al, Az, As), (2.5)
where Ai (i1 =-1,2,3) are the principal stretches. The function W is
invariant with respect to interchange of the Ai and is taken to
satisfy the normalization condition W(1,1,1) = 0. In the sequel, we
proceed formally and assume that W possesses sufficient regularity

properties to permit the subsequent analysis.

The principal components of the Cauchy stress tensor r are given
by

=X 5T - P, (no sumon i), (2.6)

where p is the hydrostatic pressure associated with the

incompressibility constraint Alxzxa = 1. For the radially symmetric



deformation with principal stretches given by (2.2), the principal

stress components are

-2 -2
TR(E) =V WG, v, v) - (), } .
-2 :
ree(r) - '¢¢(r) -V Wé(v , vV, V) - p(x),
where, following Ball [3], we have introduced the notation
R c3 1/3
v=v() == 1+ (2.8)

r
Notice that in (2.7) we consider 7(r) rather than the more
conventional r(R). The subscript notation on W in (2.7) denotes
differentiation with respect to the appropriate argument. In (2.7),
we have also used Wz(v-z, v, V) = Wa(v-z, v, v), which follows from the
invariance of W with respect to interchange of its three arguments.

The dead-load boundary condition now requires that

b

ra® = Pl Rpy ) = B, (@17 (2.9)

where the constant P, > 0 is prescribed. We note that the boundary
conditions of vanishing shear tractions are satisfied identically. 1In
addition if ¢ > 0, then the condition for a traction-free cavity
surface
T (O =0, (2.10)

must also hold.

In the absence of body forces, the sphere will be in equilibrium
provided that div r = 0, which will hold provided that

> R

RR
?2r 2 R

=0, (2.11)

[7er ~ To0]

holds throughout the sphere.



Thus, the problem to be solved is the following: For a

prescribed value of the dead-load traction P, > 0, we seek a pressure

field p(r) and a constant ¢ = 0 such that (2.11) and (2.9) are

satisfied where TR Tee’ "o are given by (2.7) and (2.8). In

addition if ¢ > 0, then (2.10) must also be satisfied.

2.2 Solutions:

It may be readily shown that one solution to the foregoing
problem, for all values of P, is
p(r) = w1 (1, 1, 1) - P,y €~ 0. (2.12)
This corresponds to the trivial homogeneous state of deformation
R(r) = r, (2.13)
with corresponding stresses TR~ Te8 = Tod ~ Po
Next we describe solutions for which ¢ > 0, corresponding to the
presence of a traction-free cavity at the origin. For this purpose,
we adopt an approach developed by Horgan and Pence [10] and rewrite

the differential equation (2.11) in the form

-4

d—c]l:[v_2 Wl(v-z,v,v) - p(r)] + 2rv [v-1 Wl(VQZ,v,v) - vzwz(v-z,v,v)] =0,

on0<r<b, (2.14)
where we have used (2.7),(2.8). On integration of (2.14), we have
p(r) - p(0) = v 2(r) Wl(v-z, v, v) +2J(r), 0<r<b, (2.15)

where



I(r) = J { v ()W, [v (), v(s),v(s)] - v'2<s>w2[v'2<s).v<s).v(s)]} &,
0

0<r<hb. (2.16)
On substitution into (2.7) we obtain
TRR(I) = —=p(0) = 2J(r), 0 < r <b. (2.17)
The traction-free cavity surface condition (2.10), together with
(2.17) and J(0) = O, now yields
p(0) = 0. (2.18)
Finally the boundary condition (2.9) at r = b is satisfied if
-23(b) = p, [v(b)] 2. (2.19)
The condition (2.19) may be written in a compact fashion on
utilizing the change of variables s -+ v in the integral (2.16). From
(2.8) it is seen that this change of variable is one-to-one and

invertible if and only if ¢ > 0. Introducing the function

;J(x) - W(x2, x, x), (2.20)

and adopting the notation

A d A
W (x) = 2 W(x), (2.21)
(2.19) may be written as
¢ 23 wl(v)
p = (1 + &) —L — dv, ¢ > 0. (2.22)
0 3 3
b 3 13 (v - 1)
(1+=)
b
Equation (2.22) was first established by Ball [3] for the n-

dimensional version of the problem described here (see equation (5.18)

of [3]). Thus, for a given dead-load P, solutions involving a
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traction-free internal cavity of radius c exist provided that c is a
positive root of (2.22). The associated pressure field is given by
p(r) = v‘z(r)wl(v‘z, v, v) + 2J(r), 0 <r <b. (2.23)
The critical load P, at which an internal cavity may be
initiated is found by formally letting ¢ -+ O+ in (2.22), and so
W (v)
p - —— av. (2.24)
cr (v3 - 1)
This result was first established by Ball [3] in n-dimensions (see
equation (5.22) of [3]).

In summary then, we have seen that for all values of the applied
dead-load traction P,, one obtains the trivial solution (2.12)
corresponding to the homogeneous state of deformation (2.13).
Moreover, if positive roots c of (2.22) exist, then one obtains the
additional solutions involving a traction-free internal cavity
described above. Such solutions have been shown by Ball [3] to
bifurcate from the trivial solution at the critical value p__ at which

the trivial solution becomes unstable.
2.3 The critical load:

Since the integral in (2.24) is improper, p__ may or may not be
finite, and so cavitation may or may not take place. As regards the
lower limit in (2.24), it is shown in Appendix A that

d&(l) dza(l)

- o’
dv dvz

- 124, (2.25)
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where p denotes the shear modulus for infinitesimal deformations of
the material. Thus by 1’'Hopital’s rule, the limit of the integrand in
(2.24) is finite as v + 1. An analogous issue was discussed by Horgan
and Pence [11] in the context of a composite sphere under tensile
dead-loading on its boundary (see equation (17) and the Appendix of
[11]). Consequently the question of whether or not P, is finite
depends on the behavior of G(v) for large values of stretch v.
Sufficient conditions to guarantee that pu:be finite were given by
Ball [3] for both incompressible and compressible materials. Here we
provide an ad hoc treatment of this issue. Suppose, for example, that
the strain-energy density per unit undeformed volume for a homogeneous
incompressible isotropic elastic material can be written in the
polynomial form

A

W(v) = a +av+a v o +av , (n>1), (2.26)
0 1 2 n
so that
W(v) =ma +2av+ ---c-- + nav . (2.27)
1 1 2 n
From (2.24), (2.27) we see that pu_will be finite if
v <v for large v. (2.28)
Thus if
n< 3, (2.29)
the value of P, given by (2.24) will be finite.

We now consider some specific examples:

Example 1. The neo-Hookean material:

The strain-energy density function for this material is given by
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I
2 2 2
W(Al, Az, Aa) -3 (Al + Az + A3 -3, xlxzxa =1, (2.30)

where Al, Az, As’ are the principal stretches, and u > 0 is the shear
modulus for infinitesimal deformations. By virtue of (2.2), (2.8) and

(2.20) we thus have

- B 2
W(v) = 7 (v + 2v- - 3). (2.31)
Therefore
W(v) - pvz for large v. (2.32)

Thus comparing with (2.26), we get n = 2 and so by (2.29), the
critical load P, is finite. In fact Ball [3] has shown that
P = 5K/2. (2.33)

(See also Section 3 of the present work.)

Example 2. The Mooney-Rivlin material:

The strain-energy density function for this material is

B B
1 2 2 2 2 2.2 2.2 2.2
W(Al, ,\2, Aa) -3 (,\1 + ,\2 + ,\3 -3) + 2 ()\1,\2 + ,\2,\3 + ,\3,\1 -3),

AAA =1, (2.34)
17273
where Al, Az and A3 are the principal stretches, and B, B, are positive

constants. By virtue of (2.2), (2.8), and (2.20) we thus have

R B, B i
W(v)-2—1(v"+2v2—3)+2—2(v“+2v2-3). (2.35)
Therefore
A ;sz
W(v) » — for large v. (2.36)
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Thus comparing with (2.26), we see that n = 4, and so by (2.29), the
critical load P, is not finite. Of course it is well known that the
Mooney-Rivlin model is not a very accurate constitutive model for
large stretches (see, for example, Ogden [15] pp. 492-493 for a

discussion of biaxial deformation of a rectangular sheet).

Example 3. The Rivlin-Saunde aterial:
Experimental work of Rivlin and Saunders [23] suggests
consideration of a strain-energy density function of the form

n
WO, A, A) == 2+ 22 4222 3) + £0 202 + 202 + 202 - 3y,
1 2 3 2 1 2 3 12 23 31

Alxzxa =1, (2.37)
where f is, as yet, an unspecified function, with £(0) = 0 and B is a

positive constant. By virtue of (2.2), (2.8) and (2.20) we thus have

A I _ _
W(v) -—zl(v"+2v2—3) + £V + v - 3y, (2.38)

In what follows, we discuss two special forms of (2.38):

4

" B 2 By s -2 «
(1) W) = -E-(v + 2v- - 3) + > (v +2v°=-3) , a> 0, K, > 0.

(2.39)
Clearly the special case a = 1 corresponds to the Mooney-Rivlin
material (2.34) considered in Example 2 above. We see that if
ba > 2, (a>1/2),
ha
A pZV
W(v) - 2 for large v. (2.40)

On comparing with (2.26), we have n = 4a, and so by (2.29) to ensure
that P is finite, we require that 4a < 3, i.e., a < 3/4, and so p
cr

is finite for the material (2.39) if
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N |-
A
R
N

Slw

(2.41)
For a < 1/2,

W(v) plvz for large v, (2.42)
and so pcr is again finite on comparing with (2.26) and (2.29). 1In
summary then, for the material (2.39), P, is finite if

3

0<a<z. (2.43)

We remark that the commonly used version of (2.39) with a = 2
does not yield a finite value of P_ - It is of interest to observe
here that Simmonds [25] has recently shown that a circular rubber-like

plate composed of the material (2.39) suffers a finite deflection

under a concentrated vertical load at its center only if a > 1. For a
membrane [26], the corresponding result holds only if a > 2. See also
the discussion on pp. 281-282 of the book by Libai and Simmonds [27].
(ii) Another special form of (2.37) has been considered by Gent and
Thomas (1958) [24], in which f is taken to be the logarithm function.

Thus we have

P2
2

- By 2 4 -2
W(v) = 2 (v +2v - 3) + In(v + 2v ™ - 2), K, > 0, (2.44)

so that s 3
~ B, -5 I 4v’ = 4v
Wl(v) -7 (-4v = + 4v) + 2 . ) (2.45)
v +2v. -2
Thus
Wl(v) - 2p£v for large v, (2.46)

and so from (2.24) we see that the critical load P is finite for the

material (2.44).



3. SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE

ELASTIC MATERIALS

3.1 A class of incompressible elastic materials:

We now consider a particular constitutive law, namely that of
power-law type, and provide an explicit solution for the bifurcation

problem discussed generally in Section 2. Thus consider

WA, A, A) i(J\z“+,\2n
1’ T3 2n 1 2

2n -1
i +27-3), A = (AA), >0, n>0,

(3.1)

where Al, Az, Xa are the principal stretches, and the constants u, n
are constitutive parameters. Constitutive models of the form (3.1)
were first introduced by Ogden [13] and have been widely investigated
since then (see e.g. [14], [15]). The constant p in (3.1) is the
shear modulus for infinitesimal deformations and n is the hardening
exponent. The special case when n = 1 in (3.1) corresponds to the
neo-Hookean material.

We recall from Section 2 that the critical load P is given by
(2.24), i.e.,

w (V)

- ——;————-dv, (3.2)
(v: -1)

cr
1

where the notation (2.20) is used. Expressed in the notation of
(2.20), the strain-energy density (3.1) can be written in polynomial

15
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form as

n m

W(v) = o= (v* 2

"~ 3), >0, n>0. (3.3)

"+ 2v

To ensure the existence of P+ we recall from (2.29) that 2n should

be less than 3, i.e.,

o]
A
Nw

(3.4)

It is of interest to observe that a restriction similar to (3.4)
also arises in the work of Carroll [28] concerned with the problem of
inflation of a hollow sphere composed of the material (3.1).

The response of the material described by (3.1) to certain basic
pure homogeneous deformations will now be discussed. A recent
investigation of these issues was carried out by Zee and Sternberg
[16], and we now summarize those results in [16] which are relevant to
our problem here. The pure homogeneous deformations considered are as
follows:

(1) Uniaxial stress:

2n -n -1/2
T rzz-O,rss(A)-y(A —4\),,\3-/\,A1-A2-A ,
(ii1) Equibiaxial stress:
> (3.5)

2n ~4n -2
133-0, rzz(,\)-p(k - ),Al-Az-A, AS-A ,

(iii) Pure shear:

2n -2n -1
r =20, rll(A) =-=u (AT =27, A1 - Az -, Aa = 1.

22 /

The normal stresses rll(x), rzz(x), as well as faa(k), for each of
the pure homogeneous deformations (3.5), are monotonic increasing
functions of A for 0 < A < o, The stress-stretch relation (3.5)
appropriate to (1) (uniaxial stress) is plotted in Figure 1 for the

values of the exponent n given by n = 5/4, 1, 3/4, 1/2, and 1/4.
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(cf. Figure 3 of [16]). Note that the material hardens as n
increases. The graphs of 122(,\) and ru(x), corresponding to the cases
(i1) and (iii), are qualitatively similar to Figure 1 and are plotted
in Figures 2, 3 respectively.

It is of interest to remark on the character of the system of
governing partial differential equations, namely the displacement

equations of equilibrium [16]

-1
C (P, | = p F =0;J=detF~=1, (3.6)

where Cuu(F) are the components of the fourth-order tensor defined by
2

PW(E)

Cijkl(f) = Cklu(F) = 2F °F ’ (3.7
1 k1

Necessary and sufficient conditions for gllipticity of the system of
equations (3.6), (3.7) have been obtained by Zee and Sternberg in
[16]. For the special case of the material (3.1), these conditions
are particularly simple. Thus from the results of [16], p.85,

ellipticity holds for the material (3.1) at all deformations if

=}
v
N =

(3.8)

In what follows, we assume that (3.8) holds, and so recalling

(3.4), we thus have

(3.9)

N =
IA
=}
A

N W
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3.2 vit o) olutions:

Consider a quasi-static loading process in which the solid sphere
is subjected to a dead-load P, that increases slowly from zero.
Cavity formation and growth is described by the relationship P, -
po(c) given in (2.22).

For the material described by (3.1) (recalling the notation

2

(2.2), (2.8)) we have A = vi oA = A, = v and so the first derivative

2

with respect to Az is 0, i.e., Wé(v-z, v, v) = 0, and the first

derivative with respect to Al is given by

Vo v, vy =t -, % <n< % : (3.10)
On using the notation (2.20), we thus obtain
W) = 2™ vy, a3 (3.11)
and so
WAJ ) G2l et . ,
- 24 3 ,-2'5n<§. (3.12)

A | v -1
When the relationship (2.22) between the applied pressure P, and
deformed cavity radius c is specialized to the particular strain-

energy function (3.1) (and (3.12) is used), one obtains

a vZn-l _ v-bn-l
p =p(c) = 2u (1 + )3 v,
0 1] 3 3
b 3 13 vi -1

< n<

N =
N W

c
1 +—=)
b3
(3.13)
Before proceeding with an analysis of the relationship (3.13), it is

convenient to record here corresponding expressions for the stresses

subsequent to cavitation given by (2.7). On using (2.17), (2.18),
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(2.20), (2.21) we find

W (V)
fRR(r) - — dv, (3.14)
ca s vi -1
(1+ —3)
r
while from (2.7) we obtain
-2 - -2
Tos = Top = W,V v, V) - vzwl(v LV, V) 4T (D). (3.15)

On using Wz(v-z, v, v) = 0, (3.10) and (3.12) we obtain

2n-1 -4n-1
v -V 1 3
fm(r) - 2pr 3 dv, 2 <n< 2 (3.16)
cs " v -1
1+ —3)
r
and
Too = Top = T(D) — # V(@ - VD], (3.17)

where we recall from (2.8) that v(r) = (1 +°—3)“3.
r

We confine attention to the range of values of n in (3.9), namely
1/2 < n < 3/2. For specific values of n in this range, namely
n=1/2, 3/4, 1, 5/4, the integrals in (3.13) and (3.16) may be
evaluated explicitly. The relevant integrals can be evaluated by
using results of Ryshik and Gradstein [29]. We assemble these
integrals in Appendix B. The corresponding expressions occurring in

(3.13) then become

1
n=- 5: P =, (3.18)
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3 3.1/2 3
n-Z:pO-Zp(1+°—3)2/3%1 1+ (1+c/b) +%(1+%)1
b 1+c%/0b° b
3, .3
*%1“ c/?” : (3.19)
(1 +c / b )’ -
n=1:
3 3 3
P-2p(1+°—)'2’3[ 5+“c/b], (3.20)
0 3 4
b
=2
4
3,1/6
¢ 23 4 1 (1+C/b) -
P, = 2p(1 + =) — rn-31n T
b 3/3 (1 + %/ pHY? -
L - 176 1 < s ¢ s
+3n [ 1+ @+ -cin | 1-a+5" 4+ a+5HHY
L b b b
[ 3 3] 3,1/6
+ % In | 1 + (1 +-£';)1/6 + (1 +-£;)“3 - -1 irectan 2(1+c’/ b)Y -
: b LS A J3
[ 3 3] 3,1/6
- % In | 1+ (1 +-5;) + (1 +__C:_a)z/s _ 1 arctan 2(1+cA/ b))
! b b [ /3 J3
3 3
+ % (1 4--(:—3)'5/3 + % (1 +£;)'2’3
b b
3, . 3.1/3
- L arctan 31 +c/b )3 — . (3.21)
J3 2+ (1+c% b)Y
Equations (3.18) - (3.21) provide a relationship P, = P,(c)

between the dimensionless applied dead-load po/p and the dimensionless

cavity radius c¢/b. The critical load P,

curve p,

is the value at which the

- po(c) bifurcates from the straight line ¢ = 0O corresponding
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to the trivial homogeneous solution. On letting ¢ -+ O+ in (3.18) -

(3.21) and applying 1’'Hopital’s rule where appropriate, the critical

load P__ is tabulated below.

n 1/2 3/4 1 5/4

P n 1.5909u 2.5p 4.7426u

cr

As one might expect, the values of P, increase as the hardening
parameter n increases. The graphs of po(c) according to (3.18)-(3.21)
are shown in Figure 4. From Figure 4 (and (3.18)), it is clear that
the case n = 1/2 is special. We recall from (3.8) that this is the
limiting value of n for which ellipticity holds.

The corresponding principal stresses, given by (3.16),(3.17),

are:
Lol
L.
03 -2/3
T(E) = B (1L +=) , (3.22)
r
Ca 1/3
ree(r) - r¢®(r) =p (1 +-—;) . (3.23)
r
-3,
n 4°

1/2 1 c3 -1
P 3 A+
l+c/x r

3, 3
. 1 1+ ((l+c/ 1)
rRR(r) 2u 3 In

&/
(1 +c% HYr o

In

(3.24)

W=
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2 1+(1+c/r3)1/2 1 ¢ a
r (r) =r_(r) =u | 5 1n -3 1 +—=)
88 2 [ 3 1+ 3 3
3 3 3
+ % 1n c/ L FasSYL (aus)
(1+ %/ HY? - r
n=1:
3 3
7 () = 2u [(1 +‘3—3)'”3 + %(1 +°—3)""3] , (3.26)
r Y
ro(r) = r..(r) =1 _(r) — (1 +i3)"’3 -1 +°—3)2’3 (3.27)
08 P RR o ra ra : :
-3
x
(x) - 24 { = 1 @rey/H -
7 (r) =24 — x - % 1n
RR 3/3 3 1+ )Y -1

1 [ S’ 1/6 1 c3 1/6 N 1/3
+-§1n 1+(1+—3') —gln 1—(1+'—3') +(l+—3—)
| r r r
[ 3 | 3.1/6
+ % In | 1 + (1 +c_3)1,5 + (1 +£;)1/3 - arctan 241+c/ r) —
! r r | /3 J3
[ 3 1 3,1/6
—tn |1+ @+ 4 1+ Y] - L arcran 23S /1)
! r ] /3 J3
3 3
1 ey 1 £ y-23
+s A+ a5
r r
3, 3.1/3
-1 arctan 31 + ¢ Lr3)1 3 , (3.28)
J3 2+ (1 +c/ )Y
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Top(T) = Tep(r) = 1.(r) - u |(1 +:‘§)'5’3 -Qa +:—:)5’6 : (3.29)
The graphs of rRR(r), ree(r) and r¢°(r) corresponding to (3.24)-
(3.29), i.e. for values of n = 3/4, 1, 5/4, are shown in Figures 5-10.
An interesting feature concerning these stresses immediately after
cavitation is the presence of a boundary layer near the cavity wall.
To see this, we have plotted the stresses in Figures 5-10-for applied
dead loads P, slightly larger than P - A similar boundary-layer
phenomenon was observed in [11] for the problem of tensile dead-

loading of a composite sphere composed of two neo-Hookean materials.



4. ELASTODYNAMIC PROBLEM FOR A NEO-HOOKEAN
SOLID SPHERE SUBJECTED TO A SUDDENLY

APPLIED DEAD-LOAD

4.1 Formulation:

In this Section, we consider the radially symmetric motion of an
isotropic incompressible elastic solid sphere composed of a neo-
Hookean material. The undeformed sphere has radius b, and it is set
into motion at time t = 0 by a suddenly applied uniform radial tensile
dead-load P, In this incompressible case, the effect of the tensile
load is felt immediately throughout the medium, and the response takes
the form of a nonlinear oscillation.

Large amplitude oscillations of hollow incompressible elastic
cylinders were first considered by Knowles [17,18]. Methods similar
to those used in [17] and [18] have been applied to the case of
symmetric motions of a hollow thick-walled incompressible elastic
sphere in [19], and an unbounded incompressible elastic medium
containing a spherical cavity has been treated in [20]. See [21] for
a review of some of this work. See also the recent paper [22] for a
treatment, using phase-plane arguments, of radial motion of thick
spherical shells composed of incompressible materials.

The emphasis in [17-20] is on the characteristics of the motion,

such as the period and amplitude, and on conditions which will ensure

24
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the existence of periodic motions. In this Section we use the
techniques developed in [17-20] to investigate the dynamic analog of
the bifurcation problem described in Sections 2 and 3. For simplicity
of presentation we restrict our attention to the case of a neo-Hookean
material. We use similar notation to that introduced in Section 2.
Thus a point which at time t has spherical coordinates (R,0,9) is
assumed to have been at the point (r,f6,4) in the undeformed state.
The motion is thus described by

R =R(r,t) >0, 0<r <b; R(O+,t) 20; 6 =4, & = ¢, (4.1)
where R(r,t) is to be determined. Since the material is assumed to be
incompressible, the deformation gradient F obeys det F = 1, t > 0.
For the motion (4.1), this implies RZ?R/)r - rz, which when
integrated gives

R = R(r,t) = [+ c(£)]", e(t) 20, t 20, (4.2)

where c(t) is to be determined. The motion is completely determined
once c(t) is known. If it is found that c(t) = 0 for t =2 0, (4.2)
implies that the body remains a solid sphere in the current
configuration. On the other hand if c(t) > 0 (i.e. R(0+, t) > 0),
there is a cavity of radius c(t) centered at the origin in the current
configuration. In this event, the cavity surface is assumed to be
traction-free.

For the neo-Hookean material, the strain energy density per unit

undeformed volume is given by
_b 2 2 2 _ _
WALAA) =5 AU+ 2 + A =3), A2 =1, (4.3)

where Ai (i =1,2,3) are the principal stretches, and g > 0 is the
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shear modulus for infinitesimal deformations.

For the radially symmetric motion (4.1), the principal stretches
are given by Ar =2R(r,t)/or, Ao - A¢ = R(x,t)/r. The principal
components of the Cauchy stress tensor r are again given by (2.6)

which for the material (4.3) and the motion (4.1) can be written as

3 3,4/3

(R c)

‘rRR(R,t) = U - P(th)v

ree(R,t) = rQQ(R,t) - U - P(R,t), t =20, (4.4)

(RS -c 3)2/3

where P(R,t) represents the arbitrary hydrostatic pressure.

It is assumed that the sphere is in an undeformed state and at
rest at time t = 0, so that R(r,0) = r, ﬁ(r,O) = 0, and so from (4.2)
we deduce that the current cavity radius c(t) must satisfy the initial

conditions

c(0) = 0, ¢(0) = 0, (4.5)
where the dot denotes differentiation with respect to time.
A dead-load P, is suddenly applied and maintained at the surface

of the sphere so that the boundary conditions are

TeR (A,t) =0, t <0,
(4.6)

b .2
TR (A,t)-Po(A). t=>0,

where P, is a positive constant and A = R(b,t) = (b3 + c(t:)3)1/3 is the

deformed outer radius. In addition if c(t) > 0, then the condition
for a traction-free cavity surface
1RR(c,t) =0, t=0, .7

must also hold.
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The equations of motion, in the absence of body force, governing
the radially symmetric motion of the sphere reduce to the single

equation

2T 1 .o
R TR m T Tee " Tee) T PR 20, (4.8)

where p is the constant mass density of the material. Thus the
problem to be solved is the following: For a prescribed value of the
dead-load traction P, > 0, we seek a pressure field P(R,t), and a time
dependent function c(t) = 0, such that (4.2), (4.5), (4.8) and (4.6)

are satisfied where Tx' Tes’ Top AL given by (4.4). In addition if

c(t) > 0, then (4.7) must also be satisfied.

4.2 Solutions:

It is readily shown that one solution to the foregoing problem,
for all values of P, is
P(R,t) = p ~ P, * c(t) =0, t=0. (4.9)
This corresponds to the trivial homogeneous (static) state of
deformation
R(r,t) = r, t 20, (4.10)

with corresponding stresses T~ "ee = Top ~ P

o
Next we describe solutions for which c(t) > 0, corresponding to
the presence of a traction-free cavity at the origin. On substitution

from (4.4) into (4.8) we obtain
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3 3,4/3 3 3,4/3 2
2 Mﬁ - P(R,t) +2& (R—C)/ - R = oR
2R ¥ 4 ’ R 4 3 3,2/3 P
R R (R" - ¢c)
(4.11)
The incompressibility condition (4.2) is now used to compute the
acceleration dzR/dt:2 in terms of the acceleration dzc(t:)/dt:2 of
particles on the cavity surface, so that we have
2
d—‘:- 2R - ) (§DH? + R ge. (4.12)
dt dt

Equation (4.12) is now introduced into the right hand side of (4.11)

to yield
- ( 3 _ 3:4/3 3 _ 3,4/3 2
R | # . sc - P(R,t) +%{E = Ac : - 3 : 3,2/3
R R (R" - c¢")
-5 3 dzc
= 2pcR "(R )(dt) + c R e (4.13)
dt

Equation (4.13) is now integrated with respect to R, to yield

3 3,.4/3 3 3,.4/3
4 —KR;‘CL - P(R,t) + P(c,t) + 2 [ € ’5°) - — £ = } de
R Lo GRS
- ?.pc(dc 2 ﬁ——L ¢ + pc2dC dc | at (4.14)

ae? €z
c
The integral on the left hand side of (4.14) may be simplified, on

integration by parts, to yield
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2 (=" ¢ de (4.15)
K ¢ & - 3?3 )

3 3,4/3 3 _ 3,1/3
- - —c) +2ur-ﬁéjfl-ds—ure«’—éﬁ%&

2R ¢ .

The first integral on the right hand side of (4.15) is also simplified

on integrating by parts to yield

R 3,.2/3

3,1/3 3 3, 1/3
J.h_ﬁﬁ_____z_ dg-_zyﬁ_&__LL + 2 _aﬁ_ds.
(& - c¢)
c
(4.16)
Thus on combining (4.15), (4.16) and evaluating the integrals on the
right hand side of (4.14) directly, we rewrite (4.14) as follows:

3 3,4/3

R =c) "
B = - P(R,t)
R
3 3.4/3 3 3,1/3
= — P(c,t) + 2u (R _‘c ) + R I: c)
4R
dc,2 c? 1 3 2 d’c 1 1
+2pc( ) —T—§+Zz + pc 2 e R . 4.17)
4R dt

Equation (4.17) is now introduced into the right hand side of the
first of (4.4), and then the traction-free cavity surface condition

(4.7) is imposed. This leads to P(c,t) = 0, t =2 0, and so we obtain

3 3.4/3 3 3,.1/3
rRR(R,t) = 2u [ (R ‘c ) + (R .; c) ]
4R
3 2
+2c(d’:)2 < - %+43—c +pc“’°2 %-% . (4.18)
4R dt

Finally the boundary condition (4.6) at R = A = (b° + c(t)a) is
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satisfied if

b 2 b b
p0 3 3.1/3 = 2“ 3 3.4/3 + 3 3,1/3
®° + ) 4 + %) ® + %)

3
dec.2 c 1 3
+ 2pc(57 - + =
dt [ 4(b3 + c3)4/3 (ba + c3)1/3 4e ]
2d% |1 1
+ pc PO , t20. (4.19)
a2 | ¢ @+ AHY

The relationship (4.19) between the applied load P, and cavity radius
c(t) is the dynamic counterpart of (2.22), for the neo-Hookean
material. In fact, on formally replacing c(t) in (4.19) by the

constant c, it is readily verified that one recovers (3.20).

4.3 The basic differential equation:

To treat the differential equation (4.19), we adopt the
techniques of Knowles [17] and consider the quantity

x(t) = EéEl >0, (4.20)

where b is the original undeformed radius of the solid sphere. 1In
this notation (4.19) becomes a nonlinear second-order ordinary
differential equation for the dimensionless cavity radius x(t). From

(4.20) we have

2 2
c(t) = bx(r), $S-b g, SS-p X

dt? dt?

(4.21)

On introducing the notation
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£(x) = Zl; : 3.4/3 + - 3.1/3 ’ (4.22)
pb 4(1 + x°) (1 + %)
and using (4.21), we rewrite (4.19) as
Py - %2 gfg_ 1 1
pbi(1 + xH?/® a2 | ¥ a+xH”?
dx. 2 x° 1 3
+ 2x (D) - + = | + £f(x), t=0. (4.23)
dt 4(l + xa)b/a 1+ xa)ua 4x

Since the motion starts when the sphere is undeformed and at rest (see
equation (4.5)), we deduce from (4.5), (4.20), (4.21) that the initial

conditions

(4.24)

x(0)-o,9§91-0

must also hold.
4.4 OQOscillations:

With the notation v = dx/dt, dzx/dt2 = v dv/dx, it is possible to

write the differential equation (4.23) in the form

2x2p
—d{x‘[i- D ]v2}+2x2f(x)- 2 (4.25)

dx 1+ xHY? b1 + x)¥?

Using (4.22), we find that (4.25) may be integrated with respect to x

over the interval from zero to x to yield

3,.2/3
x! i— - 3.1/3 v2+4‘; (IZX) B - -%
(1 + x)Y pb 4l + xHM?
2p0 3,.1/3
-—2 @A+ xH"-1], t2o0. (4.26)

pb’



32

It is well known from the theory of vibrations that the motion
x(t) is periodic if and only if the 'energy curves’ (4.26) are closed
curves in the x-v plane with a finite period f dx/v. The energy curve
in the x-v plane is symmetric about the x-axis. This curve, given by
(4.26), starts at the initial point x = 0, v = 0 at time t = 0. If P,
is sufficiently large to produce an internal cavity, x and v then move
into the region x > 0, v > 0 as t increases from zero. If v passes
through a maximum and returns to zero as x increases from zero, the
curve will be closed. According to (4.26), this will happen for a

given P, if there is a root x > 0 of (4.26) when v = 0. Setting v =0

in (4.26) we obtain

P ]
2@+ ot D - L s

_— - % . (4.27)
# 2(1 + x°)

The right hand side of (4.27) is a monotone increasing function
of x for x > 0. As x »+ 0+ in (4.27), we find, using 1'Hopital’s rule,

that
5
L, §+ . (4.28)

For a given P, > 5u/2, we denote by X the non-zero root of (4.27)
(there is only one since the right hand side of (4.27) is monotonic
increasing). The quantity x is the maximum cavity radius in the
oscillation process. If P, < 5u/2, no positive root of (4.27) exists,
and hence periodic motions do not occur for this range of applied

tensile loads. Thus we have shown that the value of the "critical
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(2.33)). Thus following application of a pressure P, > 5p/2, an
internal cavity would form and expand until it would reach the value
X, given by the root of (4.27), then would contract to zero and
repeat the cycle.

It is of interest to note that Knowles and Jakub [20] found that

no periodic motions exist for values of pressure above 5u/2 for the

problem of an unbounded solid, composed of a neo-Hookean material,
containing a spherical cavity which is set into motion by the sudden
application of a spatially uniform radial pressure to the cavity wall.
In fact, for this problem, the deformed cavity radius tends to
infinity as the applied pressure tends to the value 5u/2. A related
observation was made by Gent and Lindley [2] and by Ball [3] for the

corresponding static problems.
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Figure 1. Behavior of the power law material under uniaxial
stress.
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Figure 2. Behavior of the power law material under equibiaxial
stress.
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Figure 3. Behavior of the power law material under pure shear.
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Figure 4. Variation of the deformed cavity radius c with applied
dead load P, for a power law material with strain

energy density given by (3.1).
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Figure 5. Variation of the radiql stress fRR(r) with undeformed

radius r subsequent to cavitation for a power law
material (3.1) with n = 3/4.
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Figure 6. Variation of the radial stress rRR(r) with undeformed

radius r subsequent to cavitation for a power law
material (3.1) with n = 1.
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Figure 7. Variation of the radial stress TRR(I) with undeformed

radius r subsequent to cavitation for a power law
material (3.1) with n = 5/4.
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Figure 8. Variation of the stresses ree(r), rQQ(r) with

undeformed radius r subsequent to cavitation for a
pover law material (3.1) with n = 3/4.
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Figure 9. Variation of the stresses ree(r). rQQ(r) with

undeformed radius r subsequent to cavitation for a
pover law material (3.1) with n = 1.
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Figure 10. Variation of the stresses fee(r), r¢¢(r) with

undeformed radius r subsequent to cavitation for a
pover law material (3.1) with n = 5/4.
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Appendix A: Verification of (2.25)

Equation (2.25) has been established recently by Horgan and Pence
[11]. For completeness here, we provide a brief review of their

argument. First we recall from (2.20) that

W(v) = Wv2, v, v), (A.1)
and so

dw(v)
dv

- —2v'3w1(v'2, v, v) + 2w2(v'2, v, V), (A.2)

on using the chain rule and the fact that WZ(VQ,V,V) = Ws(ﬁa,v,v).

Thus

dw(l)
dv

- 2w (1,1, 1) -w(d, 1, ] =0, (A.3)

which establishes (2.25)1 as desired.
To verify (2.25)2, we recall from finite elasticity theory (see
e.g. Ogden [15]) that the shear modulus for infinitesimal deformations
of an incompressible homogeneous isotropic material with strain-energy
density Q(Il, Iz) is given by
W IV
po2sprerl -1 - (A.4)
1 2 1 2 )

Here 1 = Az + Az + Az, I = 242 AZAZ + AZAZ, are the usual first and
1 1 2 3 2 12 273 31

second invariants. Thus from (A.1l) we have

44
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W) - W(I (), T (v), (A.5)
where
I =v'i+2v', T(v=2v®+h (A.6)
Using the chain-rule, and observing that
di,  dI

1 2
v ~av - 0, when v = 1, (A.7)

it is readily verified that

N O 2 T3

aAw(1) W dzfl W dzfl
I -1 -3, (A.8)
dv 2 dv

dv v =1,

and so it follows from (A.4), on using (A.6), that

<f&(1)

dv2

which establishes (2.25)2 as desired.



Appendix B. Verification of (3.18) - (3.21) and

(3.22), (3.24), (3.26), (3.28)

Here we present the details of the derivation of equations (3.18)
- (3.21) and (3.22), (3.24), (3.26), (3.28). We first treat the
indefinite integral which is needed to evaluate both (3.13) and

(3.16): (Constants of integration will not be written down.)

N
A
o
A

W

v2n-1 _ v-lm-l
1= dv, . (B.1)
|

It is convenient to record here the values of 2n — 1 and -4n - 1
corresponding to n = 1/2, 3/4, 1, 5/4, respectively. The integral

(B.1) will be decomposed into the two parts involving these exponents.

n 1/2 3/4 1 5/4
2n - 1 0 1/2 1 3/2
—4n - 1 -3 -4 -5 -6

(1) Evaluation of I for n = 1/2.

When n = 1/2,
-3 -3, 3
) —l;:—!—— av = | < (: =1 gy viPava---L . (B.2)
v -1 vi -1 2v?
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immediately evaluated to yield the desired expressions (3.18), (3.22).

(ii) Evaluation of I for n = 3/4.

First, we record here the indefinite integrals (2.128) of Ryshik

and Gradstein [29],

dv - 1 _b(32 + k - 4) dv Kk = 1
v*z: (k - l)avk"lz;e.1 a(k - 1) vquf

(B.3)
where z, = a + bvs, a» 0, b and £ > 0 are constants.

When n = 3/4, from (B.1) we see that

I="L dV-J dv -1 -1, (B.4)

< -1 viv® - 1) 2

To evaluate Iz’ we use (B.3) with k=4, a=-1, b=1, £ =1, and get

IZ-I - ‘;" - 13-[ :1" . (B.5)
vi((v -1) 3v v(vi - 1)

The second integral of (B.5) is evaluated as follows:

dv v2 dv v2 v2
s = P - - (——; ) dv + — dv
v(v: - 1) vi(v - 1) v (vi - 1)
3
v
v - 1

- — 1 In v

3 (B.6)

+%1n(v3—1)-—%1n

and so, from (B.5), we have

(B.7)
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In order to evaluate I1 in (B.4) we use a change of variables, i.e.,

3/2

r =v ' ", and so
3/2
N N N e L e
vi -1 r -1 v + 1

Thus on combining (B.7) and (B.8) in (B.4) we obtain an expression
for I. The definite integrals in (3.13) and (3.16) are then
immediately evaluated to yield the desired expressions (3.19) and

(3.24).

(iii) Evaluation of I for n = 1.

[ v -v?> v?> (v6 - 1) -5 , 3
I = — dv = dv=| v~ (v +1) dv
v -1

-2 -5
- (v 4+ v’) dv = - v o (B.9)

On using (B.9), the definite integrals in (3.13), (3.16) are

immediately evaluated to yield the desired expressions (3.20), (3.26).

(iv) Evaluation of I for n = 5/4.

When n = 5/4,

3 6, 3 3
vi -1

I -J v/v_dv -J dv -1 -1, (B.10)
vi((v =-1)
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To evaluate I“, we use (B.3) with k=6, a=-1, b=1, £ =1, to get

I =1 4 —3‘13‘5— ) (B.11)
vi(v - 1)

The integral in (B.1l1l) is evaluated by using (B.3) with k = 3, a = -1,

b=1, 2 =1, to get

- dv - 12 + — (B.12)
vi(v -1) 2v vi -1

The last integral in (B.12) can be evaluated using standard integral

tables. For example, (2.143) of Ryshik and Gradstein [29] gives

2,1/2
(1 +v+vVv)
dv 1 _ 1 J3v
J S .~ "3 1n v -1 73 arctan 7+ v (B.13)
vi -1
Thus, on using (B.13), (B.12), (B.11l), we obtain
2,1/2
1 11 (1+v+v) 3y
I =— 4+ — - =1n — —= arctan (B.14)
4 5 2 3 v -1 J3 2 + v
Sv 2v
In order to evaluate I3, we use a change of variable, i.e., r = v“z,
to get
v/v dv r'dr rdr rdr
I3 - 3 - . - 3 + " . (B.15)
vi -1 r -1 r +1 r -1
By using (2.145.3) and (2.145.7) of [29], we have
2
I3 - — % 1n _ﬁl_i_l!l_ + 1 arctan 2/v - 1
1-/v+v J3 J3
2
+ % 1n —le—:—lz- + 1 arctan 2/v + 1. (B.16)
1+ /v+v J3 J3

Thus on combining (B.14) and (B.16), we obtain an expression for I
from (B.10). The definite integrals in (3.13) and (3.16) are then

readily evaluated to obtain the desired expressions (3.21) and (3.28).
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