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ON THE HANEUVERING AND MODELING OF FLEXIBLE STUCTURES

3?

Choura Slim

A rigid hub-single flexible beam system is the focal point of this

study. A time-dependent torque is applied at the hub to maneuver the

tip position in space and time. Two approximate models are derived to

describe the flexibility in the system. Approximate analytical and

numerical solutions are obtained for a rectangular-pulse angular

velocity using an approximate flexure model. It is shown that it is

easy to eliminate the effect of any mode by a proper choice of the

constant angular velocity.
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CHAPTERONE

INTRONCIION

In literature, a number of people are interested in the modeling

and control of flexible structures. Jasinski [6], Sung [11] and Viscomi

[13] developed the equations of motion of a slider crank mechanism.

They started from kinematics to generate a set of two coupled equations

in flexure and extension. Nachman [8] and Cannon [3] took simple

rotating beams and developed the equations of motion by neglecting the

effect of extension.

In the first part of this thesis, our interest was to obtain and

examine the fundamental equations of motion for simple rotating beams.

These equations describe the coupling between flexure and extension,

and the torque applied at the hub. Consequently, these equations are of

use in the control and positioning of the beam in space and time.

In the second part we were interested in one maneuvering problem

using an approximate simple flexure model. The maneuvering test was

confined to a certain range of angular velocities for which the model

‘was valid” The model used was valid within 10% maximum deflection with

respect to the length of the beam. Our physical system was a rigid-hub

flexible beam mechanism (fig.1). A time-varying torque was applied at

the hub to maneuver the beam tip position. This investigation was

confined to planar motion. The experimental beam was made of aluminum

and had a rectangular-cross section. The maneuvering problem consisted

of rotating the hub through a finite angle with desired physical states
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of its tip position at the end time. For instance, a rest position of

the beam is desired for accurate operations.

 
TORQUE

fig.1: Hub—beam system



cummrwo

WATIONS OF MOTION

The basic differential equations governing the axial and

transverse displacements of the robot arm relative to its rotating

undeformed position are developed by energy methods.

The plane mechanism (fig.1) consists of a rigid hub of radius ro

and mass moment of inertia Ih’ and a flexible beam of length L, cross-

section area A (bxh), and constant material properties. The hub angular

rotation is 0(t) measured counterclockwise from the x-axis. The

transverse and longitudinal displacements v and u respectively, are

measured with respect to the undeformed position of the beam, i.e. an

observer is located at the origin 0 and rotates with the hub. It is

assumed that plane sections remain plane during deformation. The

effects of shear defamation and rotary iertia are assumed negligible.

We shall consider two approximations to the physical problem.

(1)W

The extensional deformation can be simulated by measuring the

distance PP" (see fig.2) where P" corresponds to the projection of P'

on the x'-axis. According to Cannon [3] these approximations are valid

for a maximum deflection less than 10% of the beam length.

If a small chunck of material is to be taken, then from (fig.2) in

its undeformed configuration it lies on the x'-axis. A particle P

3



located on the neutral axis (N.A.) moves to a new position I" . Any

particle point Q at a distance s perpendicular to the neutral axis from

P at its undeformed configuration moves to Q' at a distance 3' normal

to the neutral axis from P' .

 
£151; Deflected configuration of a particle point

If the expansion and compression of any section are small during

defamation, then it is reasonable to assume that s' and s are equal.

Then the position vector

1 - BM, (2.1)

can be written as

A A

1(x,s,t)- (ro-t- x + u - c,)e1 + (v + c2)e2 (2.2)

The angle ¢ is assumed small and expressed as:



o a tan¢ a sin¢ ~ av/ax (2.3.1)

and cos¢ a 1.0 , (2.3.2)

Equation (2.3.1) is valid if the vector RP'O is approximately

parallel to the tangent at the neutral axis through P'. Then the

position vector I is expressed as:

A A

I (x,s,t) - (r°+ x + u - abet/awe1 + (v + s)e2 (2.4)

The velocity vector is obtained by differentiating (1.4) once with

respect to time

i (x,s,t) - { au/at - sag/axat - (v + S); };1

A

+ { (ro+ x + u)§ - adv/6x5 + av/at }e2 (2.5)

Where the differentiations of e1 and e2 with respect to time are 3 e2

and -3 e1 respectively. The energy methods are then employed. The total

kinetic energy of the system is:

T ' Tbeam + Thub (2’6)

where

b/2 L'. .

I r - 1 dx (h ds) (2.6.1)T - 0.5pI

beam -b/2 o

2

hub ' °°5Ih9
(2.6.2)



h is the height of the beam cross section and L' corresponds to

the deformed arc length of the beam. L' is assumed to be equal to the

undeformed beam length L. The potential energy depends on the

deformations u and v. The total potential energy is:

L 2 L 2 2 2

V - 0.5EAI (flu/6x) dx +0.5EII (av/6x ) dx (2.7)

0 0

where the first term corresponds to the total strain energy due to

compression or tension, and the second term represents the total

bending energy. The work done by the torque,r, at the hub is expressed

as:

W - 1.0 (2.8)

Next, Hamilton's principle is employed where the variation is

taken into the extensional and flexural deflections u and v and the

rotating angle 0.

t52

I (6T - 5V + 6W) dt - 0 (2.9)

t1

The cross section area and the moment of inertia come from the

following expressions

b/2

A - I h ds - bh (2.10)

~b/2

b/2 2 s .

I - I hs ds - hb /12 (2.11)

-b/2



The

The

coupled equations of motion are then:

2 2 2 ” 2 2

EA au/ax + pA [(ro+x+u)3 + v0 + 25 av/at - au/at ] - 0 (2.12.1)

a 4 4 2 2 2 2 2

E1 av/ax - pI av/ax at + p13 av/ax

2 so 0 2 2

+ pA [-v3 + (ro+x+u)0 +20 au/at + av/at ] - 0 (2.12.2)

L

r(t) - { pIL + 1h + I

2 2 2

[pAv + pA(ro+x+u) + pI(3v/6x) ]dx }0

O

L 2

{ I [2pAv8v/at + 2pA(ro+x+u)au/6t + pIav/ax 8v/8t6x]dx }a

O

L 2 2 s 2 2 2

{ I [~pA8u/8t v + pIav/axat + pA(r°+x+u)av/at ]dx }

0

(2.12.3)

corresponding boundary conditions are:

u(0,t) - 0 (2.12.4)

au/ax(L,t)- 0 (2.12.5)

v(0,t) - 0 (2.12.6)

av/ax(0,t) - 0 (2.12.7)

63/3x2(L,t) - 0 (2.12.8)



63/6x8(L,t) - 0 (2.12.9)

328v/6x(L,t) - 3° - a3/axac2(1.,t) - o (2.12.10)

where (2.12.10) is a natural boundary condition. The Rayleigh beam

model is valid for the case where the width of the beam is not small.

(ii) fiegggulli-Euler Approximation

In this case, the width is considered to be small, and in each

section all particles have the same velocity. Hence the new position

vector x for a particle point on the neutral axis becomes

; (x,t) - (ro+ x + u)e1 + ve2 (2.13)

The derivation of the governing equations of motion is accomplished in

the same manner as in case (i).The final equations are:

2 2 .2 .. 2 2

EA au/ax + pA[ (ro+x+u)o + v0 + 25 av/at - au/at ] - 0 (2.14.1)

4 4 2 .. . 2 2

EI av/ax + pA[ -v3 4- (r°+x+u)0 + 20 au/at + av/at ] - 0 (2.14.2)

L 2 2 ..
1(t) - { Ih + I; [pAv + pA(ro+x+u) ]dx }0

L

+{ I [ 2pAv6v/at + 2pA(ro+x+u)'6u/6t ]dx }3

0

L 2 2 2 2

+{ I I: -pAau/at v + pA(r°+x+u)av/at ]dx } (2-14-3)

0



The corresponding boundary conditions are:

u(0,t) - O

8u/8x(L,t) - 0

v(0,t) - O

8v/6x(0,t) - O

2 2

av/ax (L,t) - O

S 3

mm»: (L,t) - o

(2

(2

(2

(l

(2

(2

.14.4)

.14.5)

.14.6)

.14.7)

.l4.8)

.14.9)

Both approximations include two coupled equations in flexure and

extension, and a torque dependent on u,v,0, and the system's

parameters.

The rigid body motion can be deduced from equations (2.14.1)

through (2.14.3) by dividing equation (2.14.1) and (2.14.2) by Young/s

modulus E, then letting u and v go to zero and E go to infinity. The

first two equations (2.14.1) and (2.14.2) become identities and

(2.14.3) becomes of the form

1(t) - It?

L 2

where I - I + pA (ro+x) dx
t h 0

(2.15)

(2.16)
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The decoupled equations can be derived by going back to the position

vector (2.13), set u to zero and get the simple flexure model in the

same manner as case (i). The simple extension is obtained by setting v

to zero. In equation (2.14.1) terms involving v and its derivative are

treated as internal forces exciting the extensional vibration of the

beam and vice versa in equation (2.14.2). The terms pA(ro + x)32 and

pA(ro + x)? represent body forces in the first and second field

equations respectively .



CHAPTERTHREE

SIHPLEFLEXURE

It is difficult to get an analytical solution to the coupled

equations of motion (2.14). In this Chapter, we shall deduce a simple

approximate model of flexure. The equations of motion are obtained by

setting 11 to zero in equation (2.13), writing the kinetic energy and

potential energy expressions and using Hamilton's principle. This leads

to the equations of motion

4 4 2 .. 2 2

E1 av/ax + pA[ -v§ + (ro+x)o + av/at ] - 0 (3.1.1)

L 2 2 g. L o

1(t) - { Ih + pAI [v + (ro-t-x) ]dx }0 + { 2pAI [vav/at]dx }0

O 0

L 2 2

#{ pAI [(ro+x)av/at ]dx } (3.1.2)

0

The boundary conditions are

2 2 s s

v(0,t) - 8v/6x(0,t) - av/ax (L,t) - av/ax (L,t) - 0 (3.1.3)

To generalize this problem, nondimensional equations of motion

will be used. The nondimensional variables and parameters are described

as the following

11



12

re - ro/L

3* - 5/1 a/pL’

ee 2

- 0/(E/pL )

2

I - I/AL

r - r/AEL

3

1 - Ih/pAL

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

.1)

.2)

.3)

.4)

.5)

.6)

.7)

.8)

.9)

Equations (3.1”1) and (3.1.2) then reduce to the following

nondimensional boundary value problems

* “ * *‘ * 2 * *ee* 2 2

I a v /8x - v 5* + (r°+x )o + a v*/ac* - o

1

1*(t*) - { I: + J [ v*2 + (r:+x*)2]dx* }

+ { 2I:[ v*av*/ac*] dx* }5*

(3.3.1)
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1

+ { I [ (r:+x*)azv*/ax*2 ]dx* } (3.3.2)

o

The associated boundary conditions are:

v*(o,c*) - 0 (3.3.3)

av*/ax*(o,c*) - 0 (3.3.4)

32v*/ax*2(l,t*) - 0 (3.3.5)

63v*/8x*3(l,t*) - 0 (3.3.6)

Without the body force term, equation (3.3.1) is seperable. Let

* * * * *

v (x .t ) - fix )q(t) (3.4)

Then the eigenvalue problem is:

4

§"" - p O - 0 (3.5.1)

0(0) - ¢'(0) - 0"(1) - 0"‘(l) - 0 (3.5.2)

This eigenvalue problem is the same for a fixed cantilever beam. The

solution of equations (3.5.1)-(3.5.2) is

2 2 * * *

¢n(x ) - coshfinx - cosfinx - en(sinhflnx - sinflnx ) (3.6.1)

where



cosh)?n + cos]?n

e -

n
 

sinhfin + sinfln

coshfin cosfln - -1

(3.6.2)

n-l,2,3,... (3.6.3)

Equations (3.6.1) and (3.6.3) are expressions of the problem

eigenfunctions and eigencondition respectively.

By expanding the body force (r:+x*).0.* about the eigenfuntions

On's, an infinite set of ordinary differential equations results:

.. *2 *2 «k

qn + (wn - a )q - -an0

where

* 2 ”a:

wn - finj I

 

n- l,2,3,... (3.7)

(3.8)

n- l,2,3,... (3.9)

The expansion of the body force does not lead to a uniform convergence

of the series to (r:+x*).0‘*. This is because the boundary condition at

x* - 0 is not consistent with the eigenfunctions ¢n(x*) which vanish at

*

x - 0. However, the series represents a good approximation to the body

*

force function away from x - 0.



CHAPTERFOUR

RECTANGULAR PUISE ANGULAR VEIDCITY

In this case the angular velocity is a nonzero constant during the

maneuvering time and zero after the final time. Mathematically, the

angular velocity and acceleration are written as:

3*(t*) - 5* [ u(c*) - u(c*-t*) ] (4.1)
m e

3*(c*) - a; [ 5(c*) - 6(t*-t:) ] (4.2)

where H and 5 are the heaviside step and Dirac-delta functions

respectively. Using zero initial conditions, i.e. the beam is initially

at rest, the set of ordinary differential equations (3.7) are written

as:

H; + (w:2 - 3*2(t*))qn - -an3*(c) (4.3.1)

with

qn(0) - dq/dt*(0) - 0 (4.3.2)

By using an asymptotic approach, the nonhomogeneous term can be

translated into the initial conditions. First (4.3.1) is integrated

from time zero to e

.15
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C 6

qun(t*) dt* + wlzloqnu‘t) dt*

*2 ‘ * * s 2 * *

-Dm Io[h(t ) - H(t - te)] qn(t ) dt

6
* * * * *

- -an&m [6(t ) - 8(t - ‘6’] dt

0

which can be reduced to (as 6 goes to zero)

+ 0*

qn(0 ) ‘ 'anom

Therefore the new problem becomes as:

.. ~* *2 5*2 * 0 0 < * < *

qn<t > + (wn - m >qn(t ) - t te

qn(0) - 0

* *

dqn/dt (0) - -an&m

The solution is

a 5* sins t*

q (t*) - - n m n
n
 

* *

O<t <t

e
x
n

*2 - a*2 1/2

where n - (w

n n m
n - l,2,3,...

(4.

(4.

(4.

(4.

(4.

(4.

(4.

Equation (4.6.1) is valid only when 3; < w: for any n - l,2,3,...

.1)

.2)

.1)

.2)

.3)

.1)

.2)
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*

The same asymptotic approach is used at time te’ where equation

* *

(4.3.1) is integrated from time te - e to t8 4- 6. By letting 6 go to

zero and replacing qn by rn, the final equation becomes:

? + w r - o c > t: (4.7.1)

* *

a 9 sins t

_ n m n e

 

 

 

*+ * *-

rn(te - te) - qn(te ) - K (4.7.2)

n

* *+ * * *- *

drn/dt (ce - te) - dqn/dt (ce ) + anbm

- a 5*[1 - coss t*] (4.7.3)
n m n e

Therefore:

2 *

a 3 sins t

* n m * * *

rn(t ) - [ - ~ ]coswh(t - te)

n

*

+ anbm 1 * i * * * * s 4 8

- * ( - cossnte) s nwn(t - te) t > te ( . )

w
n

Therefore the formal solution of the initial boundary value problem

(3.3) is :

v*(x*,c*) -z 1{qn(t*)[fl(t*) - H(t* - t:)]

“-

+rn(t*)[H(t* - c:)] }on(x*) (4.9)
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where qn(t*), rn(t*) and §n(x*) are defined in equations (4.6) , (4.8)

and (3.6.1) respectively.

Equation (4.9) is a generalized or approximate solution because of

the nonuniform convergence of the body force series. This equation is

valid as long as the Bernoulli-Euler approximation is not violated. The

dynamics of the beam during maneuver is not very important. However,

the dynamics after the final time are the focal point of the

maneuvering problem. The latter consists of examining the behavior of

rn(t*) at time t: and thereafter. A very interesting point to make is

that the term by term in the series solution (4.9) can be made zero by

making sn an integer multiple of 2s/t: , i.e.

2k * k 1 2 3 4 1osn - 1r/te - , , ,... ( . )

2 2 2 2 1 2

solving for 3* - (w* -42 a /c* ) / (4.11)
m n e

11' *

The relation between an and the final time te is

* *

5m - a/te (4.12)

where a is the maneuvering angle. For example, if b; is to be made such

that there is no contribution from the first mode, then

*2 22 212

i; - (w1 - 4k « /c: ) / - a/t: k - 1.2.3,... (4.13)

*

The nondimensional natural frequency w1 can be written as:

w‘f - 2m“: (4.14)
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where T: is the first nondimensional natural period.

Introduce (4.14) into (4.13) and solve for t:, then

22 212

c: - If (4: k + a ) / /2« k - 1.2.3,... (4.15)

Therfore t: corresponds to an infinite set of critical final times

such that the first term does not have any contribution to the free

vibration response.



MGM. ANALYSIS

In this section, a general numerical scheme shall be constructed

to solve the simple flexure problem. This scheme will be useful for any

time-dependent angular velocity and acceleration. The nondimensional

equation of motion (3.3.1) shall be used. The first term in this

equation is approximated by a central difference on space and averaged.

on time between the previous and future times. The second and third

terms are evaluated at the present time, and the fourth is approximated

by a central difference. The number of steps in space and time are N

and M respectively, where M is the number of time steps up to the final

time t*, i.e.

e

(5.1.1)

Z
I
P

3(
-

At* - (5.1.2)

:
Z
I
r
-
t

o

The finite difference approximation of the nondimensional flexure

equation is given by

1* { 1 *j +1 *1 ' 1

_‘ _

AX* 2

20



N
i
b

+ (r:+1Ax*)7i*(jAc*) - v"J Yugo?)

1

+1 -1

+i {x3j +v"j -2v*J}-o (5.2)

*2 1At 1 i

(5.2) can be arranged as the following:

 

1+1 3+1 *‘ 1+1 1+1 3+1

v* - 4v* + ( 6 + ZAX )v* - 4v* + v*

2 - ' -
1+2 1+1 I*At* i i 1 i 2

*‘ * * 1 *‘ * -* *

- 2 Ax ( 2v J - v j' ) + 2 Ax [ -(ro+ iAx )3 (jAt )

* *2 1 1 *

I At I

j -1 -l -l -l

+ v* 3*2(jAt*) ] - { v*J - 4v*J + 6v*J - 4v“.J

1 1+2 i+l i i-l

+ v } (5.3.1)

where the terms of the left side of the equal sign are the future time

unknowns, and i andj are defined as integers corresponding to space

and time respectively. The approximated boundary and initial conditions

are:

v - 0 (5.3.2)
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*J
v - 0 (5.3.3)

1

J .1 J

v* + v* - 2v* - 0 (5.3.4)

N+1 N-1 N

J J J J

v* - 3v* + 3v* - v* - 0 (5.3.5)

N+2 n+1 N N-l

o

v* - 0 (5.3.6)

1

o -1

v* - v* - 0 (5.3.7)

1 1

*‘1 2 a:

where v is a fictitious point at t - -At . The combination of

1

equations (5.3.1)-(5.3.5) constitute a set of linear algebraic

equations which are to be solved simultaneously at each time step. For

progarmming convenience the linear equations are written in a matrix

form:

- B (5.4.1)

where

*3 *M *M *M *M T

Xk'[22 2324 EN] (5-4-2)

M - 1+1: j, j-1



23

  

*‘ * * * . *3 2 *

5 - 2Ax [ -(r° + I Ax ) 5*(jAc*) + g 3* (jAt ) ]

* i

I

AX*‘ *J *j ' 1

+ 2 [ 21 - y ] - 9 (5.4.3)

2

1*At* 1 1

where i - 2,3,...,N

j - 0,1,2,3,...,M,M+1,...

and

j-l j-l j-l j-l *j-l
* * * *

Q ‘ 3 1+2 ' “3 1+1 + 63 1 ’ “3 1-1 + 3 1-2 (5'“'“)

The boundary conditions (5.3.4) and (5.3.5) are accounted for in

(5.4.4) when i is equal N-l or N.

The matrix M is of the following format

a -4 1 O 0 O 0 ......... 0 O 0 0 0

-4 a —4 1 0 0 0 ......... 0 0 0 O 0

l -4 a -4 l O 0 ......... 0 0 O 0 O

0 l -4 a -4 l 0 ......... 0 0 0 0 0

fl - . . . . . . . . . . . . (5.4.5)

0 0 0 0 0 0 0 ......... l —4 a -4 l

0 0 0 0 O 0 0 ......... 0 l -4 a-l -2

0 0 0 0 0 0 O ......... 0 O 1 -2 a-5   
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where o - 6 + 2 A" (5.4.6)

and M is an (N-1)x(N-l) matrix. The matrix 11 accounts for the boundary

conditions at the fixed and free ends.

tan u - - V

The above scheme is applied to a rectangular-pulse-angular

velocity. The expression (4.2) can be approximated by

9* *

In/At:

3-01.... .M-‘M+l...time

0
3
(
-* ' * * ~2-

t-OAt . .. .t te+At.

I

i

.

fig(3): Impulse approximation
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If At* is chosen as small as possible, then the impulses at t*-0

* 2

and tint—te can be approximated by a step function of duration At and

 

5*

magnitude _2_ . Therefore, the angular acceleration is expressed as:

At*

'; if j - o

3*(3Ac*) - 4 o if 0 < j < M (5.5)

-D* /At* if j - u
m

L 0 if j > M

The angular velocity is defined as:

' 0 if j - 0

3*(jot*) - < a; if 0 < j < M (5.6)

0 if j - M

k 0 if j > M 

The numerical scheme above is constructed using an implicit

method. We shall study the stability of this scheme:

Stability

J A

Let 3* - VowjeiKJ (5.7)

1

where j - J -l
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Substitute (5.7) into equation (5.2)

Vow { wJ e(i+2)KJ _ 4wJ e(i+l)l(.j + (6 + 2a)wj eiKJ

- 4WJ e(i'l)Kj + VJ e(1-2)Kj }

" 20‘Vo ( 2‘41 €in - wj'l e1K1 ) + Zak."r2 At*2 VowJ ein
m

'Vow'l {wj e(i+2)l<j _ 4143 e(i+1)l(j + 6wj 811g

4:1 o(1'1)K3 + w3 o(1'2)KJ } (5.8)

Note that (5.8) corresponds to the homogeneous field equation of

(5.2). Dividing through by wJ eixj and using the following identities:

 

 

K1 K1

cosK - e + e (5.9)

2

K1 40

sinK - e ’ e (5.10)

2

Then equation (5.8) becomes:

2 2 .*2 *2

{ 2(1 - cosK) + a } w - 2{ a + com At /2 } w

2

+ { 2(1 - cosK) + a } - 0 (5.11)

Let B - 2(1 - cosK)2 (5.12)
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*4

a - A“ (5.13)

'k *2

1 At

1*”
2

1 - o(1 + _2 At* ) (5.14)

2

Then the roots of equation (5.11) are

  

w,’, - a I p 1 [ { a I p }2 - 1 ]1/2 (5.15)

For small angular velocity 1 is approximately equal to 0:. Then it is

easy to see that the term under the radical sign in equation (5.15) is

negative. Therefore, the roots are complex and conjugate.

  W1 2 - 7 i 3 [ 1 - ( 7 )2 ]1/2 (5.16)

’ a + fl a + 5

It can be shown that the magnitude of w1 and w2 are

| w | - 1 (5.17)

Equation (5.17) proves that the scheme used is unconditionally

stable, i.e. the stability of the scheme is independent of the choice

of space and time step sizes.



CHAPTER SIX

NUMERICAL.RESULTS

The nondimensional parameters chosen in the computer programs are

the following

,1

1* - 1.0288 10 (nondimensional moment of inertia

of the beam)

1; - 0.091146 (nondimensional mass moment of

inertia of the hub)

r: - 0.125 (nondimensional hub radius)

*

L - l (nondimensional beam length)

a - s/2 (angle of rotation)

t: - 33,457.35 (nondimensional final time)

Physical properties of, for example, an aluminum beam

3

p - 2710 kg/m (aluminum density)

9 2

E - 71 10 N/m (aluminum Young's modulus)

28
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-3

b - 8.467 10 m (width)

,2

h - 1.905 10 m (heigth)

L - 0.762 to (length)

,6 2

A - 1.613 10 111 (area)

-13 c

I - 9.6361 10 or (beam moment of inertia)

-3 2

Ih - 1.7628 10 kg/m (hub mass moment of inertia)

ro - 0.09525 m (hub radius)

The maximum static deflection (when deflected about its z-axix

under its own inertia) - L/3

 

z:

' a

“\ : ”/’Y

‘ mono HUI

’r” . “s“

' l

: FLEXIBLE mm
0"

I ~‘\

: “\‘L «I '

‘4‘ ' A

: “~~ ' l
:

s\““ : h

: ‘~ :

l ,’
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m : Hub-beam system in three dimensions



Plot 1: Tip displacement using the series solution
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Plot 2: Tip displacement using the finite difference scheme
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Plot 3: Torque applied at the hub
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Plot 4: Comparison between exact and approximate representations

of the body force



CHAPTER SEVEN

DISCUSSION OF RESULTS

The rectangular velocity has discontinuities at t*- 0 and t*- t:.

These discontinuities produce impulsive loadings at the begining and

ending of the maneuver. These impulses occur in the field equation of

motion as body forces. The sudden change of the angular velocity from

zero to I; at t*- 0 and I: to zero at t*- t: produce defamation in the

beam. In plots (1) and (2) there are two phases: forced-motion phase

and free-motion phase. In the forced—motion phase, the number of

oscillations from zero to t: is equal to k (see equation (4.15)).

For a - s/2, one can show that

c: - If (k2 + 1 )V2 -- 21? (7.1)

For instance if k - 6, there will be six oscillations in the forced-

motion phase. The free motion depends on the physical state of the beam

at the final time. It also depends on the velocity jump which has an

absolute value of (r: + x*)6; . This jump depends on the point location

in space, and also on the magnitude of the maximum angular velocity.

Plots (1) and (2) correspond to the case where the first mode has

no contribution to the overall response in the free vibration phase.

Plot (1) was obtained by taking eight terms of the series solution

(4.9). It was verified that 8 terms are adequate to represent the
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series solution. Plot (2) was obtained by using the finite difference

scheme described in Chapter 5. Plots (1) and (2) are in good agreement.

The minor difference occuring at t*- t: and thereafter is due to an

inaccurate estimation of the maximum angular velocity IZ'Uy the series

solution (4.9). The main error was generated from the representation of

the body force by a nonunifom convergent series.. Plot (4) describes

very well the difference between the ideal function (r: + x*) and the

partial sum of the series. It was verified by taking more terms that

the series is convergent to the function in plot (4). The numerical

solution is a representation of the exact solution. It was verified

that the curve in plot(2) is recovered for different step sizes.

Plot (3) was obtained using the numerical scheme. It represents

the applied torque necessary to produce a constant angular velocity.

Note the two impulses which produce the sudden changes in angular

velocity at t*- 0 and t*- t: The vibrations, in the first and second

phases, indicate that a torque has to be applied at the hub in order to

kill the rotational vibrations of the rigid hub due to the nonzero

*

moment at x - 0.



SUMMARY AND CONCLUSIONS

- Two approximate mathematical models were derived in order to describe

the overall flexibility of a rotating beam.

- An approximate analytical solution was found and then used to

estimate the necessary maximum angular velocity required to delete the

effect of any desired mode in the free vibration phase.

- A general numerical scheme was developed, and shown to be

unconditionally stable.

- The analytical and numerical solutions are in good agreement in

killing the first made in the free vibration phase.

36



f
i
n
-
l
a
i
d
S
h
i
r
t

O
E
"

APPENDIXA



C************************************************************C

C C

C THIS PROGRAM IS USED TO SOLVE THE NONDIMENSIONAL C

C SIMPLE FLEXURE FOR ANY TIME-DEPENDENT ANGULAR C

C VELOCITY ( THE ANGULAR PULSE ANGULAR VELOCITY C

C IS AN ILLUSTRATION IN THIS PROGRAM) C

C C

C************************************************************C

PROGRAM BACK

DOUBLE PRECISION W(20,20),A(19,l9),T,SI,THT2

DOUBLE PRECISION Vl(19),V2(l9),DX,DT,Cl,C2,D,SIH,TORQUE

#,V3(19),TE,R0,B(19),PI,ALPHA,Sl(19),S2(19),S3(l9),THTT

#,Y,THTM

OPEN(100,FILE-'AMINIS')

C DEFINITION OF PARAMETERS

C SI: NONDIMENSIONAL MOMENT OF INERTIA OF THE BEAM

C R0: NONDIMENSIONAL HUB RADIUS

C Y: CONSTANT 0F INTEGRATION

C SIH: NONDIMENSIONAL MASS MOMENT OF INERTIA OF THE HUB

C TE: NONDIMENSIONAL FINAL TIME AT WHICH ROTATION IS STOPPED

C KK: THE NUMBER OF TIME STEPS UP TO TE
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DT: NONDIMENSIONAL TIME INCREMENT

DX: NONDIMENSIONAL SPACE INCREMENT

ALPHA: FINAL ANGLE

THTM: NONDIMENSIONAL MAXIMUM ANGULAR VELOCITY

SI-1.0288E-7

20-0.125

Yh((R0+1)**3.0-R0**3.0)/3.0

SIM-0.091145833 '

D-(l.8751041)**2.0*SQRT(SI)*0.041630544

TE-ACOS(-l.0)/(2.0*D)

xx-sooo

P-RK

DT-TE/P

ox-1.0/20.0

PI-ACOS(-l.0)

ALPHA-PI/2.0

THTM-ALPHA/TE

C**** ZERO ALL THE MATRIX ENTRIES, DEFINE INITIAL CONDITIONS

112

111

D0 111 Kl-l,l9

DO 112 K2-l,l9

A(Kl,K2)-0.0

CONTINUE

CONTINUE

D0 101 I-1,19

V1(I)-0.0

V2(I)-0.0



101

135

c****

c****
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CONTINUE

T-0.0

rurz-O

TORQUE-0.0

WRITE(100,135)T,THT2,V2(19),TORQUE

FORMAT(F16.8,1X,F12.8,lX,F12.8,lX,F16.14)

T-DT

DO 102 J-1,6000

DEFINE THE ANGULAR VELOCITY AND ACCELERATION

IF(J.GE.1.AND.J.LT.(KK))THT2-THTM

IF(J.EQ.(KK))THT2-0.0

IF(J.GT.(KK))THT2-0.0

IF(J.EQ.1)THTT-THTM/(DT)

IF(J.NE.1)THTT-0.0

IF(J.EQ.(KK))THTT--THTM/(DT)

DEFINE THE NONHOMOGENEOUS VECTOR B

02-0x**4.0/(sr)

00 103 1-1,19

IF(I.EQ.l)G-Vl(3)-4*V1(2)+6*V1(l)

IF(I.EQ.2)G-V1(4)-4*Vl(3)+6*V1(2)—4*Vl(1)

IF(I.GT.2.AND.I.LT.18)G-Vl(I+2)-4*V1(I+1)+6*V1(I)

# -4*Vl(I-l)+Vl(I-2)

IF(I.EQ.18)G--2*V1(19)+5*V1(18)-4*V1(17)+V1(l6)

IF(I.EQ.l9)G-Vl(l9)-2*V1(18)+V1(17)

B(I)--2*C2*(RO+(I+1)*DX)*THTT
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# +2*C2*THT2*THT2*V2(I)-2*C2*(V1(I)-2*V2(I))/DT**2.0-G

103 CONTINUE

C**** RESET THE NONZERO ENTRIES IN THE MATRIX A

C1-6+2*DX**4.0/(SI*DT**2.0)

N-1

D0 113 K1-3,17

A(K1,N)-1.0

A(Kl,N+1)--4.0

A(K1,N+2)-C1

A(K1,N+3)--4.0

A(Kl,N+4)-l.0

N-N+1

113 CONTINUE

A(1,1)-C1

A(1,2)--4.0

A(1,3)-1.0

A(2,1)--4.0

A(2,2)-Cl

A(2,3)--4.0

A(2,4)-1.0

A(18,16)-1.0

A(18,17)--4.0

A(18,18)—C1-1.0

A(18,19)--2.0

A(19,17)-1.0

A(19,18)--2.0

A(19,19)-C1-5.0
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C**** CALCULATE THE FUTURE TIME DISPLACEMENT VECTOR

CALL DLINEQ(V3,B,A,W,l9,20,IERR)

C**** CALCULATE THE TORQUE NECESSARY TO PRODUCE THE PRESCRIBED

C**** ANGULAR VELOCITY USING SIMPSON'S METHOD

00 161 I-1,19

Sl(I)-ABS(V3(I))**2.0

82(I)-2.0*(V3(I)-V2(I))*V3(I)/DT

S3(I)-(R0+(I+1)*DX)*(V3(I)+V1(I)-2*V2(I))

#/DT**2.0

161 CONTINUE

SUMl-DX/3.0*(2.0*Sl(1)+4*Sl(2)+2*Sl(3)+4*Sl(4)+2*Sl(5)+4*Sl(6)

#+2*Sl(7)+4*Sl(8)+2*Sl(9)+4*Sl(10)+2*Sl(11)+4*Sl(12)+2*Sl(13)

#+4*Sl(14)+2*Sl(15)+4*Sl(16)+2*81(17)+4*Sl(18)+Sl(19))

SUM2-DX/3.0*(2.0*82(1)+4*82(2)+2*52(3)+4*82(4)+2*82(5)+4*82(6)

#+2*82(7)+4*82(8)+2*82(9)+4*82(10)+2*82(11)+4*82(12)+2*82(13)

#+4*82(14)+2*82(15)+4*82(16)+2*S2(17)+4*82(18)+S2(19))

SUM3-DX/3.0*(2.0*S3(1)+4*83(2)+2*S3(3)+4*83(4)+2*83(5)+4*S3(6)

#+2*53(7)+4*s3(8)+2*s3(9)+4*s3(10)+2*s3(11)+4*s3(12)+2*s3(13)

#+4*S3(14)+2*S3(15)+4*S3(16)+2*S3(17)+4*83(18)+SB(19))

TORQUE-((SIH+Y+SUM1)*THTT

#+SUM2*THT2+SUM3)*1E+6

C**** PRINT THE RESPONSE

WRITE(100,179)T,THT2,V3(19),TORQUE

179 FORMAT(F16.8,1X,F12.8,1X,F12.8,lX,Fl6.l4)
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C**** REINITIALIZE THE DISPLACEMENT VECTORS

D0 106 I-l,19

V1(I)-V2(I)

V2(I)-V3(I)

106 CONTINUE

T-T+DT

102 CONTINUE

STOP

END

0******+****************** END op PROGRAM ********+****************c

6******************************************************************C

C C

C DEFINITION OF VARIBLES C

c -------------------- c

C T: NONDIMENSIONAL TIME C

C THT2: NONDIMENSIONAL ANGULAR VELOCITY C

C THTT: NONDIMENSIONAL ANGULAR ACCELERATION C

C TORQUE: NONDIMENSIONAL APPLIED TORQUE C

C Vl,V2,V3: NONDIMENSIONAL DISPLACEMENTS AT DIFFERENT TIME C

C A: MATRIX C

C B: NONHOMOGENEOUS VECTOR C

C C

C******************************************************************C
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C**************************************************************C

C C

C THIS PROGRAM CALCULATE THE TIP RESPONSE USING 8 TERMS C

C FROM THE SERIES . C

C C

C**************************************************************C

PROGRAM SERIES

DIMENSION V(8),VV(8),BE(8)

#,PHI(8),W(8),WN(8),A(8),EE(8)

DOUBLE PRECISION A,V,W,WN,T,BE,PHI,VV,EE,THTO

#,Z,VT,VVT,DT,SI,ALPHA,TO,PI,RO

0PEN(lOO,FILE-'DELTA1')

PI-ACOS(-l.0)

C**** DEFINE THE NONDIMENSIONAL WAVE LENGTH

BE(1)-l.8751041

BE(2)-4.69409ll

BE(3)-7.8547574

BE(4)-10.9955407

BE(5)-14.1371684

BE(6)-l7.2787595327

BE(7)-20.420352251
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c****

c****

c****

c****

c****

i
t

102
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BE(8)-23.56l944900414

DEFINITION OF PARAMETERS ALPHA: ANGLE OF ROTATION

SI: NONDIMENSIONAL MOMENT OF

INERTIA

R0: NONDIMENSIONAL HUB RADIUS

T0: NONDIMENSIONAL FINAL TIME

ALPHA-PI/2.0

r-o.0

SI-l.0288E-04

R0-0.125

00 102 3—1,8

EE(J)-(DCOSH(BE(J))+DCOS(BE(J)))/(DSINH(BE(J))+DSIN(BE(J)))

PHI(J)-DCOSH(BE(J))-DCOS(BE(J))-EE(J)*(DSINH(BE(J))

-DSIN(BE(J)))

A(J)-2.0*(EE(J)*R0+1.0/BE(J))/BE(J)

W(J)-BE(J)**2.0*SQRT(SI)

CONTINUE

CV-1.0/(SQRT(1.0+16.0*l.0))

THTO-CV*W(1)

TO-ALPHA/THTO

or-r0/5000.0

PRINT *,nr

00 101 I-1,6000

00 105 J-1,8

WN(J)-SQRT(W(J)**2.0-THTO**2.0)

I
.
'
_
-
-
m
s
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C**** DEFINE THE DISPLACEMENT AND VELOCITY DURING THE FORCED

C**** VIBRATION MOTION

IF(T.LE.TO)THEN

V(J)--A(J)*THTO*DSIN(WN(J)*T)/WN(J)*PHI(J)

VV(J)-°A(J)*THTO*DCOS(WN(J)*T)*PHI(J)

ENDIF

a
.
H

L
i
)
“
:
A
L
L
‘
h
‘
a
J
A
'
J
1

.

C**** DEFINE THE DISPLACEMENT AND VELOCITY DURING THE FREE

C**** VIBRATION MOTION

 
IF(T.GT.T0)THEN

V(J)-(-A(J)*THTO*DSIN(WN(J)*TO)*DCOS(W(J)*(T-T0))/WN(J)

#+A(J)*THTO*(1.0-DCOS(WN(J)*TO))/W(J)*DSIN(W(J)*(T-TO)))*

#PHI(J)

VV(J)-(A(J)*THTO*DSIN(WN(J)*TO)*W(J)*DSIN(W(J)*(T-TO))/WN(J)

#+A(J)*THTO*(1.0-DCOS(WN(J)*TO))*DCOS(W(J)*(T—TO)))*PHI(J)

ENDIF

105 CONTINUE

C**** SUM OF THE FIRST EIGHT TERMS IN THE SERIES

VT-V(1)+V(2)+V(3)+V(4)+V(5)+V(6)+V(7)+V(8)

VVT-VV(1)+VV(2)+VV(3)+VV(4)+VV(5)+VV(6)+VV(7)+VV(8)

WRITE(100,104)T,VT,VVT

104 FORMAT(F18.8,3X,F12.8,3X,F12.8)

T—T+DT

101 CONTINUE

PRINT *.A(1).A(2).A(3).A(4).A(5).A(6).A(7).A(8)
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STOP

c************************ END op PROGRAM **********+*************c

C****************************************************************C

C

C

DEFINITION OF VARIABLES

T: NONDIMENSIONAL TIME

V(I): NONDIMENSIONAL TIP DISPLACEMENT USING THE ITH TERM

VV(I): NONDIMENSIONAL TIP VELOCITY USING THE ITH TERM

W(J): NONDIMENSIONAL NATURAL FREQUENCY OF THE JTH MODE

PHI(J): NONDIMENSIONAL EIGEN-FUNCTION OF THE JTH MODE

A(J): NONDIMENSIONAL CONSTANT FROM THE EXPANSION OF THE

THE BODY FORCE ABOUT THE EIGENFUNCTIONS PHI(J)'S

C

C

C****************************************************************C
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