
ABSTRACT

STRESS AND STRAIN DISTRIBUTION AROUND OPENINGS

IN UNDERGROUND SALT FORMATIONS

by Attru M. Chowdiah

It has been observed in nature that underground

rocks show a tendency to flow under triaxial state of stress.

While underground formations are generally in a triaxial

stress state, biaxial and uniaxial stress states exist

around openings under certain conditions. This study

investigates the distribution of stress and strain around

various forms of openings created in underground salt

formations.

The investigation includes theoretical analyses of

the stress and strain distributions and experimental evalu-

ation of the theoretical results by using the photostress

technique in the following three categories:

1. The stress strain relations in uniaxial and biaxial

compression.

2. stress distribution around circular and square

openings under uniaxial compression,
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3. stress distribution around circular and oval open-

ings under biaxial compression.

The values of the elastic constants of the material

have been determined from the stress strain relations. A

study of the strain distribution on the entire surface

of test specimens has led to conclusions on homogeneity

and isotropy of the material. The ultimate loads and the

corresponding strain distributions around the openings under

uniaxial compression have been determined. In case of

biaxial compression the loads and strain distributions have

been obtained when the material around the opening showed

large deformations.

Expressions for theoretical stress and strain around

a circular opening when subjected to equal horizontal and

vertical stresses have been derived assuming plane stress

condition. The value of the yield stress at which the

material showed a tendency to flow was determined from the

biaxial test on a solid specimen. Using this value, the

theoretical stresses and strains around a circular opening

under equal horizontal and vertical compression have been

calculated and compared with experimental results.

From a study of the ultimate loads and the correspond—

ing strain distributions, it was observed that the failure
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did not occur when the maximum stress around the opening

initially reached the uniaxial strength of the material.

Based on these experimental results, empirical relations

on failure strength of openings have been found.

Although the behavior of all underground materials

is not identical, the results of the study on rock salt

may be extended to underground formations in general.
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CHAPTER I.

INTRODUCTION

1.1 General Remarks

Natural underground formations consist of many

types of rocks which vary in composition and physical pro-

perties. A rock is a heterogeneous mixture of grains of

polycrystalline materials which are randomly oriented, and

distributed. sometimes with their intergranular spaces

filled with water or air to varying degrees, and held to-

gether by some kind of bond force. Most of these rocks

deform very little under ordinary compressive loads. But

a geophysical exploration has shown that rock flows in

varying degrees, depending on the environmental conditions

as evidenced by folds in the rock strata.

Underground structures occur in mining operations

of all kinds, in tunneling, in making cavities for under-

ground nuclear testing or for storage of materials like

radioactive waste and gaseous and liquid petrochemical

products. Whatever be the use of the underground structures.

a study of the physical behavior of the rocks is essential



in formulating the theories of their structural stability.

The engineer who is used to working with elastic

materials like structural steel, finds it difficult to

explain the behavior of rocks in terms of the engineering

parameters. Some of the questions that the person who is

confronted with engineering problems involving rocks has

to answer, are

1. How do the individual grains deform under the load

and is it possible to determine such deformation at least

qualitatively?

2. To what extent does the behavior of the individual

grains affect the overall behavior of the mass? In other

words, what assumptions on the behavior of the mass in terms

of homogeneity and isotropy can be made?

3. Can the behavior of the rock mass be described in

terms of the conventional constants connected with stress

and strain? Alternatively, is it possible to approximate

the behavior of the material under different stress states

to a HOoke solid, a Newtonian liquid or a St. Venant solid?

4. Is it possible to formulate some principles on which

the design of openings in the material can be based, using

the information obtained from laboratory tests on the

material?



5. Would it be reasonable to extend the principles

governing one type of rock to other underground formations?

By the very nature of the restraint offered by the

massiveness of the material, underground openings are

normally in a triaxial stress state. But the possibility

of other states of stress cannot be ruled out and as a

matter of fact, certain regions surrounding a cavity are in

biaxial and uniaxial stress states, and for a complete

understanding of the problem of stress distribution, it is

first necessary to study the uniaxial and biaxial stress

states as well.

Rock salt has been chosen as a model rock in the

present study. It is encountered in large quantities as

rock salt formations in the United States and many other

parts of the world. The material is granular and crystal-

line and exhibits characteristics of brittle. elastic and

plastic behavior, which are also shown by other rocks in

varying degrees. Rock salt flows more readily than other

rocks and a notable example of such a flow is the salt

domes found in the southwestern United States near the Gulf

of Mexico. Rock salt from one of the salt domes was used

for this study, since it is sufficiently homogeneous and

isotropic.



1.2 Objective

The behavior of rock salt differs considerably from

that of a metal. It changes from its brittle behavior in

uniaxial stress state to plastic behavior in triaxial stress

state whereas a typical metal, like steel, behaves much

the same-way under all stress states.

The objective of this research is to investigate

the uniaxial and biaxial properties of the material and

furthermore. to analyze stress distribution around some

specific forms of openings in it. The investigation includes:

1. The stress strain relation in uniaxial and biaxial

compression.

2. Stress distribution around circular and square

openings under uniaxial compression.

3. Stress distribution around circular and oval openings

under biaxial compression.

By such an investigation it is intended to formulate

the basic principles governing the stress strain distribution

around cavities created in underground salt formations.

1.3 Experimental Technique

Photo stress technique has been used in the experi-

mental investigation exclusively. The main considerations



which led to the choice of the technique are

1. It enables us to observe the strain distribution

over the entire surface.

2. The residual strains can be measured at any time

and a complete history of the behavior of the material

can thus be obtained.

3. Large strains can be measured by a suitable choice

of plastic.

The experimental technique is limited in the following

two aspects. First. the principal strains have not been

separated due to the non-availability of the oblique

incidence meter. However, this does not affect the analysis.

as the principal strain differences are utilized in the

analysis of the large plastic strains. Secondly. the

technique is restricted only to one and two dimensional

analysis lacking in analysis of the third principal stress

effect. Nevertheless. this does not restrict the useful-

ness of the technique as the two dimensional analysis may

provide the first approximation to the three dimensional

analysis.



CHAPTER II

PREVIOUS WORK DONE ON SALT

2.1 Uniaxial Compression Test

The mechanical behavior of salt depends very much

on the method of testing, and no standard procedure has been

established. The maximum uniaxial strength of salt has been

reported in the range of 2000 to 5500 psi depending upon

the investigator. The wide variation in the results has

been attributed to the variation in the testing procedure.

rather than the strength of the material itself.

Serata30 has analyzed and explained the basic

mechanism of the uniaxial behavior of the material. The

friction developed on the loading surfaces of the salt

increases the ultimate strength and modulus of elasticity.

and generally changes the stress strain curve.

The stress strain curves depend on the ratio of

height to cross—sectional area of the specimen. This

variation is due to the formation of a triaxial zone in the

central region of the specimen.

When end friction is completely eliminated, no

lateral stresses are set up any where in the specimen and

6



the stresses become completely axial. Accordingly the

stress strain curve so obtained becomes independent of the

end effects.

The mechanical properties obtained by Serata3O

after eliminating the end friction are as follows:

1. Mean maximum stress was 2300 psi with a standard

deviation of 200 psi.

2. The proportional limit was arbitrarily chosen at

0.5% off-set strain, and the corresponding yield

stress was in the range of 1800 psi to 2200 psi.

3. Mean value of modulus of elasticity was 0.14 million

psi with standard deviation of 0.03 million psi,

based on dial gage strain measurements. The size

of the specimens varied from 1.75" cube to 3.5"

cube. the intermediate sizes varying in height

to width ratio.

4. The Poisson's ratio was more than 0.5 for stresses

beyond 300 psi, based on SR 4 gage strain measure-

ments. The value was close to 1.0 in the case of

aggregate and close to 0.5 in the case of a single

crystal.

The Poisson's ratio18 calculated on the basis of

propagation velocity of seismic wave in a salt formation at



a depth of 10,000' was 0.499998.

5. Strain hardening effects were observed. The strain

hardening effects did not change with the time interval

between unloading and reloading.

2.2 Triaxial Test

Some of the earlier triaxial tests on salt and rocks

were done by Bridgman.3 Specimens made of rock salt crystals

were pulled under hydrostatic pressure of 420,000 psi by

a tensile force which amounted to a stress of 7,300 psi

on the final area of the specimen and obtained a reduction

of 20% in its area. The cross section at the necking part

did not have any evidence of slip plane. He pulled Solenhofen

limestone under hydrostatic pressure of 400,000 psi and

obtained a reduction in area of 53%. The specimen showed

necking first and then there was a fracture on a single

shear plane.

Handinl4 created a triaxial stress state in one case

by confining salt in a copper jacket and compressing it in

the third direction, and intfluaother case by exposing the

salt to kerosene under pressure. Serata30 used the

experimental results of Handin14 to plot Mohr's envelopes

which showed that the envelopes at smaller confining pressures



gave smaller ultimate shear strengths than the envelopes

at larger confining pressures. Beyond a certain value of

the mean principal stress, the Mohr's envelope became

horizontal. The point of transition of the Mohr's envelope

from a curve to a horizontal straight line, defines the

stresses at which the material becomes plastic. The value

of the mean stress obtained from the stresses at the point

of transition was found to be 5.500 psi.

Serata30 made tests after reducing friction at room

temperatures and also at temperatures up to 7700F and

demonstrated that the salt becomes plastic. The ultimate

shearing strength decreased with the increase in temperature

up to 500°F, and beyond SOOOF the strength decreased less

rapidly. On the other hand, the ductility increased with the

temperature. The differential yield strength at 2% off~set

strain increased by more than 100%.by increasing the mean

principal stress.

Serata30 created large mean stress by using a high

pressure cylinder in which a cylindrical salt specimen

with a cylindrical hole was confined and axially compressed.

The lateral restraint provided by the cylinder wall created

the lateral stress. The lateral stresses were calculated

on the basis of strains measured on the outer surface of the



10

pressure cylinder. By applying an axial stress of 16,000

psi and measuring the closure of the cylindrical hole in the

salt by the volume of the displaced mercury from the cavity.

he studied the creep behavior of salt. Some of his con—

clusions are that the yield condition based on octahedral

shear strength and the Mohr's theory of failure are appli-

cable to salt only when the mean principal stress exceeds

5,500 psi or when the temperature of salt exceeds 5000F.

A method of determining the octahedral shear strength

and to demonstrate transition from elastic to plastic state

in a triaxial state of stress of a material has been

developed by Serata32 and investigated by Serata,32

Morrison22 and Raman.28 The theory and the results are

briefly given below.

Cylindrical salt specimens were closely fitted in

a thick walled steel cylinder, under frictionless conditions.

An axial stress was applied on the salt, and the lateral

stress was provided by the restraint afforded by the wall

Of the steel cylinder. The lateral stress was calculated

from the measured strains in the SR 4 gages on the outer

surface of the steel cylinder.

Fig. 2.2.1 is a representation of the stresses by

Mohr's envelope. The envelope A B C D E represents the
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stress state for a brittle material. A B corresponds to the

brittle behavior. C D E to plastic behavior and B C to the

intermediate state of transition. Part A B is a representation

of the Coulomb-Mohr theory of failure in the form of

T = T + 60

c

where T = shear stress on the plane of failure,

6 = coefficient of internal friction in the material.

0 = normal stress,

Tc = the constant part of the shear strength which

depends on the material.

The horizontal straight line D E represents the octahedral

shear strength theory of yielding when the material is

plastic. The ordinate of the line C D E is the maximum

shear. T . and is given by

max

T = '—;-—‘k

max 2 r3' 0

When the material is confined as is the case in the

material enclosed in a steel cylinder the stresses are repre-

sented by the envelope F D E. The straight line F D

represents the completely elastic state and the horizontal

line D E represents the plastic state. When a material is

subjected to an axial stress of oz, the lateral stress in

the other two principal directions are equal to o theLI
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strains in the two lateral directions are zero. and the

following equations hold.

In the elastic state.

OL
— =tanOL= —'L
o l-n
z

and sin ¢ = l-2n

where ¢ is the angle made by the straight line F D of the

envelope which is tangentialto the Mohr's circle.

In case of rocks, ¢ has values in the range of 150

to 450. while the angle of internal friction 9 is in the range

of 50° to 80°.

In the plastic state.

 

o = o + -2-k

. L 2" {3' 0

d CL

and - tan B = l
d o

z

. . 0
resulting in B = 45

Fig. 2.2.2 represents the relation between the

stresses 0L and oz. The straight lines A B and B C repre-

sent the elastic and the plastic state respectively during the

loading stage. The straight line C D and D E represent the

elastic and plastic state respectively during the unloading

stage. E A represents the residual lateral stress in the

material given by the cylinder wall due to plastic flow in
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the material. The vertical distance between E D and B C

gives values of 34 2 k0 for the material.

Measurements of axial and lateral strains give the

equation for modulus of elasticity E of the material.

 

 

 

z _ L

2 0- o + o

L L z

E = e e

z _ L

2 o o + o

L L z

Compressibility of the material is represented by

A v n
 

Where

A v

v

 

volumetric strain

v = volume of material at the beginning of each

cycle of loading and unloading.

b and n - constants to be determined experimentally.

Morrison22 experimented on the friction reducers

and found that the coefficient of static friction of a

friction reducer consisting of 2 layers of plastic coated with

grease-graphite mixture was the lowest and was 0.00246.

Some of his conclusions on triaxial tests on rock salt are

1. 5 was close to 450 with an average deviation of 0.90.
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2. Repeated cycles of loading increased octahedral

shear strength and modulus of elasticity.

2.3 Tests on Rock

Tests on rocks have been done to prove that they

no longer remained brittle under high confined pressures.

In addition to Bridgman3 whose work was briefly mentioned

earlier some others have experimented with rocks.

Griggs13 tested Solenhofen limestone, marble and

quartz under triaxial stress state. He was unable to ob-

tain plastic flow of the material, but obtained higher

ultimate strength of marble.

Adamsl demonstrated that rocks could be made to

flow under high confining pressure at room temperature.

The confining pressures were obtained by enclosing the

specimen in a steel jacket.

Robertson45 tested several varieties of rocks. He

demonstrated that all rocks obeyed Hooke's law to some

extent, and that marble and limestone can undergo large

plastic deformations. He found that the silicate rocks and

minerals did not behave plastically.
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CHAPTER III

PRINCIPLES OF PHOTOSTRESS

3.1 History

The Photostress4O techinque was first attempted in

1930 in France using glass as a birefringerent material.

Subsequently plastics were developed but there were dif-

ficulties of good bond with material, sensitivity to strains

and stability with regard to time. It was in 1953 that the

method was successfully employed in measurement of strains

in elastic and plastic ranges in France.

3.2 Technique

A sheet of plastic known as photostress plastic

is bonded with a special kind of cement to any part of a

structure where strain distribution is to be determined.

When the structure is stressed, the strains on the surface

of the structure are transferred to the plastic. By the

use of a reflection polariscope the strain distribution on

the plastic is determined. This technique is known as

photostress.

16
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3.3 Principles of Measurement of Strain

The principles of photostress are essentially the

same as photoelasticity. But there is an important difference.

In photoelasticity. a model of the structure in which the

strain distribution is required is made out of a bire-

fringent material and the strain distribution of this model

is determined. In photostress, the actual structure is

coated with the photostress plastic and the strain distri-

bution of the loaded structure is determined.

Some crystalline materials like calcite exhibit

the property of double refraction or birefringence. When

a ray of light passes through the crystal, it is split into

two plane polarized rays which travel at different velocities

and vibrate in two mutually perpendicular directions.~ This

property is called double refraction. The photostress

plastic developed by the Budd Company becomes doubly

refractive or birefringent when strained and the planes of

vibration of the polarized beams correspond to the directions

of principal strains in the plastic.

An instrument known as a large field instrument was

used in the strain measurements. It is a reflection polari-

scope and is schematically represented in Fig. 3.1. A ray

of light originates at the light source L. passes through
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the polarizer P and the quarter wave plate 01' passes through

the photostress plastic S attached to the surface of the

specimen T, is reflected from the surface of cement which

bonds the plastic to the specimen. passes through quarter wave

plate 02 and the analyzer A, and is observed by the person

V. The quarter wave plates can be removed from the path of

the ray of light if necessary.

The plane polarized light passing through P becomes

circularly polarized when it passes through 01. The quarter

wave plate is a permanently birefringent material and when

the polarized light passes through it, the light emerges

with 2 components of equal amplitude vibrating at an angle

of 900 apart. After passing through the plastic, when the

circularly polarized light passes a second time through the

quarter wave plate 02. it becomes a plane polarized light

again but now the plane of polarization is at right angles

to the plane of polarization of the incident ray. Thus we

have a crossed-circular polariscope. In this arrangement

the isoclinic lines are removed and it is easy to identify

the black lines on the plastic as lines of zero maximum

shear.

An isoclinic is a line connecting the points where

the principal stress directions are the same. These appear
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as black lines in plane polarized light. When the plane of

principal stress in the plastic coincides with the plane of

vibration of plane polarized light, the ray of light passes

through the plastic unobstructed. but cannot pass through the

analyzer if it is at right angles to the polarizer. Accord—

ingly the directions of principal stresses are the directions

of the axes of the polarizer and analyzer which are mutually

perpendicular.

The method of determining the isoclinic is as follows:

The quarter wave plates are removed from the path of the

light, the polarizer and analyzer are set at right angles

to each other and the whole system is rotated. The black

lines corresponding to the directions of the axes of the

system give the isoclinics. These isoclinics can be traced

on the plastic or photographed.

When the quarter wave plates are removed and plane

polarized white light passes through the strained plastic.

a set of black and colored lines called a fringe pattern is

observed. The relative retardation in the polarized rays

causes the color pattern. These colored lines are called

isochromatics. An isochromatic is a locus of points at which

the difference of principal strains is constant.

The principal strain difference at any point can be
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represented by the relation

Where £1 and 62 are the principal strains.

t = thickness of the plastic.

K = strain sensitivity constant which depends on the

plastic being used and which can be determined

experimentally.

0
'
\

II retardation = n%,

where A wave length of the ray which is extinguished.

n = 0, l, 2. -—-

n is called the fringe order.

Usually the dividing line between the red and blue

is chosen as a characteristic color for measurement of strains

and is called "tint of passage." This line is sharp because

the red and blue correspond to the low frequency and high

frequency. Every time n changes. the tint of passage occurs.

3.4 Determination of Principal Strain Difference

The quarter wave plates are moved into the path of

the light. The polarizer and analyzer are set at right

angles to each other. The isoclinics do not appear and only

the isochromatics are observed. The procedure to determine
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the order of a fringe is as follows. A black line or a

black region is located on the fringe pattern. This black

region is the area of zero principal strain difference and

will be designated as zero order fringe. The tint of

passage closest to the zero order fringe is of order 1. the

next tint of passage is of order 2, and then the order

increases by an integer every time a tint of passage is met

with. In order to cover a large number of points on the

plastic, it is necessary to obtain fractional order fringes.

This is achieved by a technique called goniometric compen-

sation. Keeping the quarter wave plates in the path, the

analyzer axis is rotated with respect to the polarizer axis

by an angle a. As the analyzer is rotated from its crossed

position the tints of passage move from their original

positions. The fringe order n moves to the position where

the actual fringe order is n‘i Thus a large part of
_9.‘_

180'

the area can be covered by obtaining sufficient number of

fractional order fringes. The fringe order at points not

covered can be interpolated.

However. if accurate analysis at a point is required.

the following procedure is adopted. The quarter wave plates

are removed out of the field. The crossed polarizer analyzer

system is rotated until an isoclinic falls on the point.
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The quarter wave plates are brought into the field again.

The analyzer alone is now rotated so that the nearest tint

of passage falls on the point. If a is the angle through

which the analyzer is rotated, and n is the order of the

fringe brought on the point, then the actual fringe order

at the point = n Once the fringe order is known.
+2..

-'180'

principal strain difference is obtained from equation

a

if? .3; 180H
5 - e =
1 2 2tK

 

3.5 Determination of the Principal Strains

One of the methods of determining the principal

strains is called the oblique incidence method. and is

briefly given below.

In the Figure 3.2 let x, y represent the directions

of principal strains in the plastic and z the third principal

strain direction normal to the plane of the plastic. Let

the axis 2 and y rotate about the axis x by an angle a.

Let the light ray strike the surface of the plastic along

2: instead of z, and corresponding to this incidence. the

retardation 6; is measured. Similarly the axis x and 2 can

be rotated by an angle B. Let the light ray now pass along

21 instead of z and corresponding to this incidence. the
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retardation SE is measured. From the values a. B, 5g and 0B

I

the principal strains along x and y can be separately

determined. For convenience if we make a = B = 450. then

.-—£2'—.5 +252)
x 3tK a 2

So.
6 =-£Z; (5' +-——0

Y 3tK B 2

where ex. 6y are the principal strains.

This technique is done by using an oblique incidence meter.

3.6 Selection of Plastic

The type of plastic and its thickness depends on the

strain conditions of the test piece. The_Budd Company

furnishes a list of plastics available, their thicknesses.

the recommended maximum strains and the strain sensitivity

constant K. From this information, the value of the

principal strain difference to produce one fringe is calcu—

lated. A rough estimate of the expected max. strain dif—

ference determines the number of fringes that can be expected.

It is very difficult to observe more than 4 fringes produced

by white light. because the fringes tend to fade away at

higher fringe orders. Accordingly, when white light

is used. a plastic which would give 4 or less number of

fringes is selected. Under monochromatic light there is no
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tendency for the fringes to fade away and hence a larger

number can be observed.

Photostress is a visual technique and the accuracy

depends on the observation errors. The errors are larger

in measuring smaller strains. The error can be as large

as 25% for less than 1/3 fringe when the large field

instrument is used. Hence it is better to have fringe

order of one or more. It is necessary to obtain a plastic

of uniform thickness.

Photostress plastic available from the Budd Company

is in the form of sheets and viscous liquid.

There are 2 types of sheet, the type S and the type

M. The type S is recommended for maximum strain of 2.5%.

The type M is used for large plastic deformations and elastic

deformations of materials like rubber. It is recommended for

maximum strains of 30 to 50%. The sheet plastic is to be

used wherever possible. The sheets have uniform thickness

with a tolerance of.: .003". They have uniform strain-

optical properties and are free from internal stresses.

They can be bonded at room temperature.

Liquid plastic is available in 2 types. Type A and

type G are recommended for maximum Strains of 2.5%.and 30 to 50%

respectively. It is necessary to use this in cases where it
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is impossible to attach a sheet. It is recommended in the

case of structures with openings of small radii of curvature.

closely riveted connections, and generally small parts. It

is suitable in case of very large deformations. as in drawing

of sheet metal and in problems of plastic deformations. It

is especially useful in case of curved surfaces both simple

and complex.

3.7 Advantages

The strain distribution at every point of the region

coated with the plastic is available. In case of strain

gages, average strain over the gage length is recorded. In

the photostress the strain is not an average and can be

interpreted as strain with zero gage length. The analysis

can be made on any loaded structure and stresses of the

actual structure are obtained. The plastic can be attached

to any material (salt. concrete, wood, glass. rubber, bone.

any metal). It is applicable to any type of deformation

elastic, plastic and elastic-plastic. It can be used under

static, dynamic, and cyclic loading.

By making a suitable choice of the plastic and the

strain measuring instrument, strain measurement can be made

to an accuracy of.: 10"6 inch/inch. Directions of principal
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strains can be measured accurate to.i 20. The shear strain

distribution is obtained directly in case of normal incidence

of light. Separate values of principal strains can be

obtained by an additional oblique incidence measurement.

Areas of large stress concentration are easily de—

marcated by simple observation. This is particularly useful

in cases where the loading conditions are very complex and

a theoretical stress analysis cannot be done. Large strains

as high as 50% can be measured. Local yielding of material

can be determined with good accuracy. Measurements on any

size of surface ranging from a small crystal to a large

airplane wing can be made.

Strain measurements under any atmospheric conditions.

even when the structure is immersed in a liquid if the liquid

is transparent like water and oil, anepossible. The method

can be used in a wide range of temperature, from —600F to

+3500F. by using certain correction factors. Temperature can

go up to +500°F for a period of 30 minutes. The fringe

patterns can be photographed. and moving pictures can be

taken if strains are rapidly changing. If for some reason

it is not possible to get close to the structure, the strain

measurements can be made from a distance, by direct obser-

vation. television or photo-electric devices.
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The plastic behavior is independent of time. A

complete record of strain distribution can be obtained from

the time the plastic is bonded. This is of special signifi-

cance when creep time measurements are necessary.

3.8 Limitations

The method cannot be used on areas which are not

accessible to light.

Errors in measurements are introduced due to re-

inforcement of the coated part Wlth the stress plastic if

the thickness or the modulus of elasticity of the coated

part is small. Errors can be introduced in case of bending

of plates where the measurements are being made of the points

somewhere inside the plastic instead of on the surface of

the plate. In such cases corrections have to be introduced

in the calculations.

The strain sensitivity constant K changes for

temperatures outside the range of -440 to +850F. Here again

corrections have to be introduced.
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Fig. 3.1. Arrangement of the components in a large field

photo stress meter.

 
 

 
Fig. 3.2. Rotation of principal axes in oblique incidence

measurements.



CHAPTER IV

4.1a Strength Theories of Rock Salt

Strength theories of any solid may be described in

terms of state of stress, state of strain and energy of

distortion. Some of the theories which are relevent to the

study of salt work are briefly examined here.

Maximum shear stress theory: In any state of

stress. yielding will begin when the maximum shear at a

point reaches a critical value. If 01 and 03 are the maximum

and minimum principal stresses. and k is a constant for the

material. then

In case of uniaxial condition if Go is the yield stress in

o

I o I O

the material then, Er'= k and the criterion can be represented

as

This criterion does not make any distinction between a tensile

or compressive yield strength and both are considered equal.

But this is not true in case of brittle materials. The

2 9
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tensile strength of salt is low compared to its compressive

strength. However. the stress distribution around under-

ground openings is predominantly compressive and hence the

low tensile strength is not of any consequence. Accordingly

Co has to be considered as yield strength in compression

and the yield condition C1 — 03 = 00 is valid in compression

only.

In a triaXial Stress state of salt it is found that

the maximum shear Stress at which failure occurs does not

remain constant, but increases with the mean principal stress.

Hence it is necessary to examine the material by using the

Mohr's theory.

Mohr's theory: In this theory also the failure

occurs when the maximum shear at a point reaches a critical

O1’03
value. The maximum shear stress ='———§—-— =‘k. The dif-

ference between this and the maximum shear stress theory is

that in the Mohr's theory the critical value k is a function

0 +0

of —l—§——- which represents the center of the Mohr circle.

whereas in the maximum stress theory k is a constant for the

material. If an envelope tangent to all the circles is

drawn. the point of tangency of the envelope with the

largest circles is considered to represent the state of stress
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ori the plane of failure. This method has been extensively

Lused to represent failure of non-metallic brittle materials.

In Mohr's theory, the envelope does not depend on

tflie intermediate principal stress. The analysis30 of

tnriaxial tests on salt have shown that the Mohr's envelope

.is modified by the intermediate principal stress. Accordingly

“the triaxial test results can be represented by Mohr's

theory, only when the wean principal stress exceeds a certain

value.

Energy of distortion theory: While the maximum

Shear stress theory as well as the Mohr's theory do not

recognize the influence of the intermediate prinCIpal stress,

the energy of distortion theory takes into account. the

intermediate principal stress. Hence it is necessary to

consider this theory in the study of yielding in salt.

According to the energy of distortion theory. yielding

begins when the strain energy of distortion U reaches a

critical value where.

l 2 2 2

U 2'I2G[}Ol — 02) + (02 - 03) + (0

Another way of stating the same condition is that yielding

begins when the octahedral shear stress To reaches a critical

value where.
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l 2 2 2
=—— -V- +{g —* -+-';; _«

To 3 \J"l ”2' ‘- 2 93' ‘ 3 (“1'

In case of uniaxial condition if 00 is the yield stress

then the yield condition can be represented as

 

2 2 2 2

(01 oz) (12 03) -+ (03 01) 2 GO

or,

\2 U

T = o

o 3

4.1b Stress Strain Relations in the Plastic State

The solution of a plane stress problem in plastic

state in a continuous medium consists in determining stresses

which satisfy the following three conditions.

1. The equilibrium equations in polar coordinates,

 

  

do 50 o - o
r 1 r9 r 6 .

Or + r 60 + r — 0 '4Ol 1'

do 60 o
l 9 r9 r9
_ +—-—-

=
o or 59 Or + 2 r O (4 1 2)

2. The yield condition,

01 - 03 = 00, (4.1.3)

or

2 2 2 2

(ol — 02) + (02 - 03) + (03 — 01) — 200 (4.1.4)

3. The boundary conditions.

The stress strain relations: The stress strain
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relations may be expressed in the following form.

F(T ) [ J

dep - o 0' d T

l o

 

 

 

2 T l

o

p F(To) l

dez = 2 T 02) d To (4.1.5)

o

F(T )

p = o .
de3 2 T [03 d To

0 J 
where F (To) is a function of To and which can be determined

experimentally.

The function F (10) can be determined from the results

of a uniaxial test. From the results of the uniaxial test.

a relation

.p _

Eel — f (To) (4.1.6)

can be established, where f (To) is another function of To

This will result in a relation2

d f'tb'

F (To) =E'T— (4.1.7)

0

Using value of F (To). values of deg, 663 and deg are

determined.

The stress and strain distribution can thus be

determined by using the equations given above.

The generalized stress strain curve:26 Another

method of considering the stress strain relation is as follows.
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From (4.1.5) a relation.

 

.3. 92 92 92
(del) + (dez) + d(e3)

P
deo II.

or,

dep F(T ) d ’1' (4.1.8)
0 O O

P
may be obtained, where deo is called the generalized plastic

strain increment. Integration of this expression leads to

P _
so - f (To) (4.1.9)

P
The relation between 60 and To is called the generalized

stress strain curve. The generalized stress strain curve in

the case of a uniaxial compression test. is the relation

between

J—Z—e'iandfi'o.

3 1

P
The generalized plastic strain Go begins when To

reaches a critical value k1 which is a characteristic of the

material. Figure 4.1.1 represents the case of unlimited

strain hardening where the value of To has an initial value

of k and increases Mdljl e5. Figure 4.1.2 represents a
1

case of limited strain hardening where To increases gradually

from an initial value of k1 to a maximum value of k2 and

remains constant at k with increase in 6:. Figure 4.1.3

2

represents a case of perfect plasticity where the value of
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To remains constant at k with increase in EP. k is a
2 o 2

characteristic of the material.

Radial loading: When the ratios of the stresses

remain constant throughout the loading. the loading is

called radial. In such a case the total plastic strains

obtained from (4.1.7) and (4.1.5) become

f(TO)

 

 

 

p f('ro)

62 = 2 To 02 (4.1.10)

6P _ f(T0) 0'

3 — 2 T 3

o

where f(To) can be obtained experimentally.

These equations are not strictly applicable when

loading is not radial. But they have been used for non

radial loading and the results so obtained have to be

considered as approximate. The theory based on Eqs.(4.l.1Q)

is called theory of plastic deformations or total strain

theory. The theory based on Eqs.(4.l.5)is called the theory

of plastic flow or incremental theory.

The stresses, the incremental values of strains and

total strains may be obtained from the expressions given

above.
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4.2 Uniaxial Compression Test.

The uniaxial test is the most extensively adopted

form of describing the behavior of rocks under stress.

Non metallic brittle materials like salt have high

compression strength but the tensile strength is very low.

For such materials the mechanical properties in compression

are of importance.

_The conventional stress strain diagram in case of

a strain hardening material depends on the strain rate and

the temperature at which the test is conducted. However,

the effect of strain rate at room temperature is small and

can beneglected. Thus a typical stress strain curve is

represented by the curve A C D in Fig. 4.2.0.

There are two methods of approximating the stress

strain curve for purposes of analysis. In one method it is

replaced by two straight lines AB and BD representing the

elastic and the plastic part respectively and the point B

represents the yield stress Co of the material. In the

‘other method a combination of a straight line up to the

yield point and a curve of the form 0 = kem beyond the yield

point is used. k and m are constants which have to be

determined to correspond to the stress strain curve obtained

experimentally.
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If the specimen is unloaded in the elastic range.

the path of the stress strain curve is almost parallel to

the curve obtained during loading. But when the specimen

is unloaded at the point C beyond the yield point. and reloaded.

the path of the stress strain curve traces a loop close to a

line CF drawn parallel to the elastic part AB and can be

approximated by the straight lines CF and PC. If the re-

loading is continued beyond the point C. the stress strain

curve follows the path CD. which would be obtained if the

test was done without unloading.

In some materials the stress strain diagram is a

continuous curve right from the beginning and can be repre-

sented by a curve ABCD in Fig. 4.2.1. If the specimen

is unloaded at a point C and reloaded, the pathoothhe

stress strain curve can be approximated by the straight lines

CFC parallel to a line AG which is a tangent to the curve

at A.

When strain hardening effect is small. the stress

strain curve may be represented by an inclined straight

line AB and a horizontal straight line BD in Fig. 4.2.2.

B represents the yield point. A material with constant Go

beyond the yield point is considered ideally plastic.

In cases where the elastic strains and the strain
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hardening effect are both small. the stress strain curve

can be represented by a horizontal straight line BD in

Fig. 4.2.3.

The compression stress strain curve in salt has no

straight line part. In case of materials whose stress

strain relations do not conform to Hooke's law throughout

the elastic range, the modulus of elasticity is defined in

several ways. They are

a. Initial tangent modulus.--The slope of the stress

strain curve at the origin.

b. Tangent modulus.--The slope of the stress strain

curve at any specified stress.

c. Secant modulus.--The slope of the secant drawn from

the origin to any specified point on the stress strain curve.

d. Chord modulus.--The slope of the chord drawn between

any two specified points on the stress strain curve.

For example, according to A.S.T.M. in the case of concrete.

the modulus of elasticity to the nearest 50.000 psi is

 

E_ 52'51

6 - 0.000050

where:

E = Chord modulus of elasticity, in psi.

S = stress corresponding to maximum applied load in

psi.
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S1 = stress corresponding to a longitudinal strain

of 50 micro in/in., in psi.

6 = longitudinal strain produced by stress S2.

The Poisson's ratio. to the nearest 0.01 is

6 - €

 

fl = 2 1

e - 0.000050

where:

n = Poisson's ratio.

62 = transverse strain at mid height of the specimen

produced by streSs $2.

61 = transverse strain at mid height of the specimen

produced by stress 81'

Salt does not exhibit a clearly defined yield point.

contrary to metals. In such a case. the yield. strength is

defined as the stress at which the material experiences a

specified value of permanent strain. A value of 0.5% for

this permanent strain may be used in case of salt while

0.2% is widely used in metals.

When a cubical specimen of a brittle material like

salt is compressed uniaxially. frictional forces are set up

at the surfaces of contact of the specimen and the compression

plates. due to the lateral expansion of the specimen. The

material in contact with the compression plates tends to

stick to the compression plates. and the material on the
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sides and away from the surfaces of contact is crushed and

separates itself leaving a central core. If friction at the

surfaces of contact is eliminated, the failure takes place

along planes parallel to the sides of the cube.

”The material fails in several ways. Cleavage

fracture occurs along parallel planes in small steps.

Separation of the grains along the grain boundaries occurs

due to breaking down of the cohesive forces. The material

is considered isotropic in our analysis. But in reality the

random orientation of grains may develop stress causing local

failure of the material.

4.3 Biaxial Test

The failure of the material in biaxial state of

stress is different from that of the uniaxial state. The

material in this case. is confined in two directions and the

material flows. It is assumed that yielding begins when

the quantity U reaches a critical value where.

2 2 2

In the plastic state of stress it is necessary to

determine f(To) of (4.1.10) in order to calculate the

strain distribution. The principal stresses are 01 = 02

and 03 = 0.
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J?
To — 3 01 (4.3.1)

d T

0 _ _2_
d O — 3 (4.3.2)

1

F(T )

dep = 0' d T

l 2 T 1 0

p F(*ro)

del = 6 dol (4.3.3)

From a biaxial test a relation between

2 [2' e

Let 2 {2' e

Differentiating Eq.(4.3.4)gives

and To can be obtained.

l
—
"
U

H
'
U

= f(TO) (4.3.4)

d f(1 ) dr

0
 

 

p _ o

2 J2 del — d T dc dol

o 1

d f(r )

p_f2_ 0
21—2— del 3 are dol

d f(T )

13.1 ______0
del - 6 d To dol (4.3.5)

(4.3.3) and (4.3.5) gives.

d f(TO)

d To

 

F (To) = (4.3.6)

Hence the function f(TO) can be determined by drawing

.172...
3

a curve showing the relation between 2 (2’s? and 1.

Both 01 and s? were measured experimentally in one of the

tests.
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4.4 Circular Hole in an Infinite Medium Under Biaxial State

of Stress (Fig. 4.4.1)

This problem is considered as a plane stress problem

of a thick walled cylinder subjected to a uniform external

radial pressure. In Fig. 4.4.1 is shown a circular hole of

radius a in a plane of infinite dimensions and subjected to

equal vertical and horizontal stress = p. Considering a

circle of radius b. very large compared to the radius a of

the hole. the external forces on the surface of the cylinder

are Or = —p and (re = 0. The solution of the thick walled

cylinder under a uniform radial compression stress = p at

its outer radius and zero radial stress at its internal

radius will follow.

The stresses and strains are axially symmetric.

Hence the radial stress or and the tangental stress 09

are the principal stresses, 0 is zero. and the stresses

r9

are independent of 9. The principal stress oz in the

direction of axis of the cylinder is zero.

The treatment as a plane stress problem is to be

recognized as an approximation to the actual conditions

which are in between plane stress and plane strain existing

underground.

The stress and strain distribution in completely
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plastic. elastic-plastic and elastic stress states are now

given.

4.5 Completely Plastic Cylinder in Plane Stress Condition

Stresses assuming perfect plasticity: The yield

condition of (4.1.4). after substituting 02 = or. 03 = Ge

and 01 = 0 becomes

2 2 2

or or CG + 06 — 00 (4.5.1)

 

 

Ge = -—5- or - V 4 00 — 3 or (4.5.2)

5 or or — 09

+ ——-——— = . .5r 0 (4 5 3)
 

(4.5.2) in (4.5.3) gives

 

d or 1

4.

dr 2r

  

J 4 02 - 3 02 + o = 0 (4.5.4)

o r r

The solution of (4.5.4) is

sin-l I3 0r + 1 1n 1 _ 3 O

2 2 so 2 4

 

H
M

  

- ln r =

O
N

  
 

+ C (4.5.5)

where C is a constant.

The boundary conditions are
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(4.5.6) in (4.5.5) gives

(4.5.8) in (4.5.5) gives

 

 

 

 

    

 

  

' 2

1 _§.. - ‘13:. S. ’1 .;.§.. 3.]; + .l'... 1n 1 __ ..3.. 3;...

n r ' 2 1n 2 o 2 4 02
. o 0

Cr 5

+ __.
(4.5 9)

o
0

or, -‘r "H

a 3 sin- 3 .3; 3 of or

1: = e 2 2 GO 1 - T 3'2“— + ‘2—‘3‘0 (4.5.10)

0

(4.5.2) gives

0 o 02
9 r 3 r

O - 2 O - 1 — 4 '3":— (4.5.11)

0 o 0

(4.5.9) or (4.5.10) and (4.5.11) describe the stress

distribution in a completely plastic state.

0

'EE is first obtained by trial and error from

o

0

(4.5.10) and substituting values of 'EE in (4.5.11) gives

0

32
o .
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The second boundary condition (4.5.7) gives the

relationship between external pressure p and the ratio -§tu

(4.5.7) in (4.5.10) gives

P G P

 

 

    
  

I

s. _ 2 ‘ 2 '0 __ _3__ _P__ _:P_
b - e . o l 4 2 + 2 0 (4.5.12)

- .. L Or O C .1

Table 4.5.5 gives values of and o in

o 0

terms of'—§- obtained by trial and error from (4.5.10) and

(4.5.11).

I or

Fig. 4.5.2 shows the relationship between'g“ and

o

o
6

——' and —é-.

o r

0

Strains for hardening plastic material: Total plastic

strains may be obtained from (4.1.10) as follows.

P f(T0) .
e = -—————- 0

r 2 T r

o

f(T )

P ..__..£L.__ .

0

6p: fire) 0.

z 2 T 2

o

f(T ) f(T )

P _ P =.____Q__ . _ . =_____2__

Er 69 2 T (or 09) 2 To X
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Table 4.5.5. Stresses in the completely plastic state

under uniform external pressure.

 

 

 

 

."_r 3.6.. a
GO 00 r

0 —l 1

-0.1 -l.046 0.901

—0.2 -l.0848 0.8091

-0.3 -l.1155 0.7192

-0.4 —l.138 0.6324

—0.5 -l.1512 0.5475

-0.6 —1.1544 0.4639

-0.7 -l.l453 0.3796

—0.8 -l.1211 0.2920

—0.9 -1.0765 0.1937

-1 0 -l.0 0

Substituting To = £%;' 00 in (4.5.14) gives

P P 9r 09
er - £9 = 1.061 f(TO)[ go - '00 :l (4.5.15)

The values of s: - eg may be calculated for any cylinder

after determining f(TO) experimentally.
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4.6 Elastic Plastic Cylinder” in Plane Stress Condition.

Plastic region.--Let the elastic plastic boundary

be at r = p. and the radial stress at the elastic plastic

boundary be designated by Orp' The stresses or and 06 are

given by (4.5.9) or (4.5.10) and (4.5.11).

The boundary condition is

r = p, or = Crp (4.6.1)

(4.6.1) in (4.5.10) gives

 

 

    

.. O" '1’ -

l3; sin“l (£§;~—£B)
2 2 o 7 o 2 0

2:6, 0 1_—§——£‘3—-+—P—r (462)
p 4 2 2 0 ° °

0 o

L _ L o _

Or a
(4.6.2) gives 3—2 for any value of -Eru

0

Elastic region.-—The stresses in this region

are obtained by considering a cylinder of external radius

b and internal radius p with the following boundary conditions.

at r = b. or = -p (4.6.3)

at ; r = p, or = Orp (4.6.4)

at r = p, the yield condition (4.5.1) is to be

satisfied. (4.6.5)

The elastic solution is of the form



Where A

(4.6.3)

(4.6.4)

(4.6.8)
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_ A

— +or '-;z- 2 Cl

A

09 - - r2 + 2 C1

and C are constants.

l

in (4.6.6) gives

_ A

’ p ”'IET_ + 2 C1

in (4.6.6) gives

A

0:9 = P? + 2 C1

and (4.6.9) give

 

 

A = b -p . rp

2 2

b "P

2 2
-(pb + O p )

2 c = 2 rg
1 b _ p

(4.6.6)

(4.6.7)

(4.6.8)

(4.6.9)

(4.6.10)

(4.6.11)

(4.6.12)
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0 2 O 2

.IL +._£2 _ IL.P_ +._£B.E_

09 b2 .22 co 00 00 a2 00 a2

'6’ = _._5 2 2 2 + 2 2 (4.6.13)

0 r a 2_._ P. .P_ _.E_

2 2 2 2

a a a a

(4.6.12) and (4.6.13) give the stresses in the elastic

region in terms of 0

 

rp'

Orp may be expressed in terms of p by making use of

condition in (4.6.5) as follows. (4.6.6) and (4.6.7)

give. when r = p. the radial stress Orp = '—%— + 2 Cl (4.6.14)

P

the tangental stress 09p = -2 + 2 Cl (4.6.15)

P

(4.6.14) and (4.6.15) in the yield condition expressed in

(4.6.5) gives, when r = p,

3 A2

4

P

2 2
+ (2 Cl) _ 00 (4.6.16)

 

(4.6.10) and (4.6.11) in (4.6.16) gives

2 2 2

b2 p2 (p + or ) 2 -(Pb + Orp P ) 2
3

p4 b _ p (52 _ p2)

(4.6.17) gives
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_ l or 2 l 2 3 or_E_____B 3+3; -—(1_£-) 1_——-—92 (4.6.18)00 4 b2 2 b2 4 CO

The above derivation for stresses is summarized and given

below.

or 09

In the plastic region, 3— and'g— are given by

0 o

0

(4.5.9) or (4.5.10) and (4.5.1lLJm.elastic region, 'EE and

o

c o
e

'3‘ are given by (4.6.12) and (4.6.13) in terms of;£2 .

O O

0

(4.6.2) giveS""£2 for any given —§-.
_ 00 p

o
r . . .

External pressure '5‘ for any value of";42 IS given by

0 0

(4.6.18).

w The case when b is very large compared to pfl

In such a case “g“ tends to become zero. In the plastic

or 06

region the stresses -— and EE' will not change and are given

0 o

by (4.5.9) or (4.5.10) and (4.5.11).

In the elastic region, substituting'-fi— = O in.

(4.6.12): (4.6.13) and (4.6.18) gives

2 2 o

=22 _L _.o_._rp
Go (1 2 ) 2 Go (4.6.19)

r r

o
l

O

H
O
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09 _E 9.3 9.2. 01‘_ = " __Q .

O O (l + 2) + 2 0 (4.6.20)

0 0 r r O

_E 3 Org 1 3 or 2
O = -70 +7 1 -TO—§— (4.6.21)

0 O O

O

The relation between and -—%— is given by (4.642).

O at
.

The stress distribution in case of a cylinder of

internal diameter of 1" and external diameter of 4" is

worked out for values of %r ranging from 1 to 4. The steps

involved are

0

1. For assumed values of ‘E—y values of GEE . and the

O

C o

. . . r 6

stresses in the plastic region';- and 'E- are

0 0

calculated from (4.6.2), (4.5.10) and (4.5.11).

0

.2. Using values of SEQ obtained in step 1, values of

‘ 0

“EB are calculated from (4.6.18).

0

o

3. Substituting values of SEE and [2- obtained

o 0o

o o
6 .

in steps 2 and 3, values of a; and 3%“ 1n the

o o

elastic region are given by (4.6.12) and (4.6.13).

Table 4.6.5 and Fig. 4.6.2 give the stress

distribution for all the 4 values of ‘g—u
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4.7 Completely Elastic Cylinder in Plane Stress Condition-

The stresses are of the form

A

or - 2 + 2 C

r

A (4.7.1)

09 = ‘7 + 2 C

r

The boundary conditions are

r = a, o = O

,. r

r = b. or = -p

The stresses are

2

_ 'P .81.

Or — 2 (l 2)
l - g_ r

b2

09 = J: (l +—2) (4.7.2)
1 - ‘3' r

b

o = 0

z

The strains are

l -E a2

er = 'E 2 (l - 0) -'-§ (1 + n)

a r
1 -

b2

(4.7.3)

1 - a2

.- =————B-— (1:.-n)+-— (1+n)
9 E 2 2

1 -§— r
2



Radial displacement.

£3.91 _
dr — Er (4.7.4)

1 - ~ a2

u = ————P——— (1 - n)r + (1 + n) — (4.7.5)
E 2 r

l _ 2_

b2

4.8. Completely Elastic Cylinder in Plane Stress Condition

Assuming Incompressibility

6 =92.

r dr

e ='2
9 r (4.8.1)

6 = e
z z

Incompressibility condition is

+ =Er + 69 62 O

du u _
dr + r + 62 — 0 (4.8.2)

From (4.7.3) it is seen that 62 is independent of r and 9.

Accordingly 62 is assumed to be independent of r and 6.

Integrating (4.8.2) gives
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u = — Z + P- (4.8.3)

2 r

where D is a constant.

Let u = 111 when r = a (4.8.4)

(4.8.4) in (4.8.3) gives

62 a2 \\ a
=— —3- + u — ° 'u 2 r / 1 r (4 8 5)

(4.8.5) gives

e =d_u = _ :2. a}. + 1 _"fi _3

r dr 2 2 1 2
r r

u £2 a2 ‘ a
= — = —‘ — - u ""e9 r 2 2 1 + 1 2 (4.8.6)

r r

a2 a

Er " E6 = ' 6 —2 ' 2 “.1 '3
r r

The elastic stress strain relation and the incom-

pressibility condition give.

0 ' = 2 G e

r r

.L

o = 2 G e

9 9 (4.8.7)

I

o ' = :2 G e

z z

- l_ I

CIr 09 — or 09

= 2 G (er "' Ge) (4.8.-8)
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(4.8.6) in (4.8.8) gives

 

2

— _ .1. ._ E.
or - 09 - 2 G [ 82 2 2 ul 2;]

r r

Equilibrium equation is

d o 0 - o

r + ._£____2 = 0

dr r

(4.8.9) in (4.8.10) gives

d or 2

+ 2 G [ - 6 EL- - 2 u‘ '3—
r z r3

 

 

d 3 1

r

Integrating:

u 2

_ .1. ea
or - B 2 G a 2 62 2

r r

Boundary conditions are

r = a, o = 0

v r

r=bl ’O'r="P

(4.8.13) in (4.8.12) gives

-22 a .31..

u1 28 2 ' 6z 2

1 _.s_

2
b

B=__:2__
2

l - 33

b

(4.8.14) and (4.8.15) in (4.8.12) give;

(4.

(4.

(4.

(4.

(4.

(4.

(4.

8.9)

8.10)

8.11)

8.12)

8.13)

8.14)

8.15)



2

o - —P-— 1 -3— (4.8.16)
r 2 r2

1 -'EE

b

(4.8.14) and (4.8.16) in (4.8.9) give.

2

= .431... s.
09 2 [1 + r2 ] (4.8.17)

1 --§§

b

e. =_L__:P__ 1_3_a__2_

r 66 2 2

a r

1'7
b

1 "E a2

66 ='EE 2 1 + 3"; (4.8.18)

a r

1'7
b

E =__l.___-.E__

2 36 a2

1-‘3
b

((4.3.15) and.(4.8.l7) give elastic stresses.

(4.8.18) gives elastic strains .‘

4.9 Circular H018 in an Infinite Medium Under Biaxial

Compression (0 fl 0 )

x Y

. 29 . . . .
Sav1n gives an approx1mate solution for the elastic-

plastic problem of a thin sheet of infinite dimensions with a

hole of radius - a and subjected to stresses ox = 11 Go and
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=1 '°°x. "CY 2 00 at infinity, 1 12 are dimenSionless quantities

‘)\(

0:11
1.o<_ 42 <_1. (Fig. 4.9.1).

In the plastic zone. the condition for plasticity

based on the maximum shear stress theory is given as

2 2 . 2

(4.9.1)

The stresses in the plastic region bounded by the curve L

are

Or a

-— = (1--)
o
o

09 _ 1

O _ (4.9.2)

0

0r9 = 0

Go

The stresses in the elastic regions are obtained as

0 K + l 2 2 4
r 1 2 a a a

__. = ._______ _ .—— _ _ —— ——- 9O (2 )(1 72) 1(1 262+354)cosz

o r r r

o X + K 2 4
6
_ = (J-——2-) (1+'y-a—) + 1(1+3g'a-)cos29 (4.9.3)
o 2 2 4

o r r

2 4

r6 a a .
--—= )\ + —_ _
do (1 51:2 38 4) 8.11129
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The equation for the elastic plastic boundary curve L

satisfying the yield condition on the boundary and stresses

on both sides of the boundary is obtained as2

2 (Kl - 7\2)

  

 

 

£321.: .1 _ cos 29 (4-9-4)
a 2 -.«?\l - >\2 (2 _ )\ _ )\ )2

l 2

Where

Y _ l

- 1 - A -

(.1 + >\2) (2 J. 12)

2

B = A A 2 (4.9.5)

(2 ' 1 " 2)

 

(2_x -M4

. 36 . .
Timoshenko gives the stresses in a completely

elastic state. The stresses are

Cx+0 2 OX-O 4 2

or: 2 (1-a)+——2—-¥(1+3a-4a)cosze

Gx+0 2 Cx-C 4

Ge =.___§__X (l + a ) _.___§__X (l + 3 a ) cos 29

0x - 0y 4 2

are = - 2 (l - 3 a + 2 a ) sin 29
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O

For a specific case of'3§ ='%. the elastic stresses become

Y

2 2 1 4 2
=._ - a _ —- + a — a 9or 3' 0y (1 ) 3 Gy (1 3 4 ) cos 2

2 2 l 4
=~— + a +-— +09 3 0y (1 ) 3 CY (l 3 a ) cos 29

l ' 4 2 .
= -' - C1. + (10r9 3 0y (l 3 2 ) Sln 29

4 2 .1 2 4

(or - 09) - -3 0y a — 3’Oy (2 — 4 a + 6 a ) cos 29

On the boundary when r = a:

- .£
09 - 3 0y (l + cos 29)

The maximum and minimum values of 09 on the boundary

occur when 9 = O0 and 9 = 90°.respectively and the values

are

maximum 0 = .Q o
9 3 y'

minimum 06 = 0

Yielding begins on the hole boundary when max 09 = 00

or when 0 = 'Q o and o = 'i o .

, 8 o x 8 o

On x and y axis, the or and 09 are principal stresses.

o 0x 1

When 9 = 90 c and — = —l

o 3

Y

o = o (1 - 2 a2 + a4)

r Y

1 g_ 2 4

09 - 0y (3 + 3 a - a )

_ 2 £3. 2_ 4
(or-oe)- o ( 34-38 28).
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When 9 = 0 and “E = 'l.

o 3

Y

2 4

(o - 09) -o ((3 + 2 a )

The principal strain difference is when 9 = 90°, 6r - 69 =

__1__+_:1 _2gé‘_4 =o _ =
( E .) Cy ( 3 + 3 a 2 a ),, when 9 0 , er 69

-(l—g—flyoy (-§- + 2 0(4).

4.10 Circular Hole in an Infinite Elastic Medium Under

Uniaxial Compression of 0y = S (Fig. 4.10.1)

The elastic stresses are given by substituting Ox = 0

in the equations under-biaxial compression.

The stresses are,

° 2 ° 4 2
o=—¥(1-a)-—¥(1+3a-4a)cosze
r 2 2

0' 2 0.. 4

o=—1(1+a)+—1(1+3a)cosze
e 2 2

3x 4 2_ _ ° 9

°r9 2 (1 3 a + 2 a ) sin 2

C - U = - o 02 - o (l - 2 a21+ 3 a4) cos 29

r 6 y y

‘ a

where 1; = a

On the horizontal and vertical axes, the principal stresses

become.
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when 9 = O, c - c9 = — o (1 - c2 + 3 a4).

r Y

when 9 = 900, G — U = -o (- 1 + 3 a2 - 3 a4}.

r 9 y

The tangental stress along the boundary r = a becomes,

J = G (l + 2 cos 29)

9 Y

The maximum and minimum values of 09 on the boundary occur

when 9 = O0 and 900 respectirely and the values are

max. 06 = 3 Uy

[=1. :‘0mir 06 y

Yielding of material begins on the boundary of hole

when the applied stress becomes G = '-—

4.11 Square Hole in an Infinite Medium Under Uniaxial

Compression (Fig. 4.11.1)

Savin29 gives the solution of the problem of elastic

stress distribution for a square hole of side a 2‘3 R and

subjected to uniform stress of Ox = p at infinity from the

center of the hole. R is a parameter to make an approximation

to the boundary of the hole.

The boundary of the hole is represented in rectangular

coordinates as

X

II R (cos 9 —'% cos 39)

y = R (sin 9 +-% sin 39)
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The stresses are

or + 09 = 2 [END +TIT(_0Z)]

 ; 2

Ce - or + Q i are =fi—1fi [(001) §'(0‘) +601 (0.) W00]

 

 

0U (01.)

WW) = 10"(a) . and

w (a)

where (”(6) = R ('3; - '2'; <13)

Ma) =p R[-:-a +%OL +33”; a3]

_ 3

w (a) =-pR[-:-a + 91a'478“ ]

84 (a + 2)

a is a complex variable andau, ¢, w,are functions of a.

The stresses in the square hole depend on the rounding-

off radius of the corners of the square hole, The stress on

the hole boundary for two different rounding-off radii are

given below.
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a. 0

Values of —Q

' P

Go Rounding off Rounding-off

radius = .06 a radius = .0245 a

O ~0.808 -0.936

35 —0.268 -0.544

40 0.980 0.605

45 3.0 4.368

50 3.86 4.46

55 3.366 2.888

90 1.472 1.760

The maximum tangential stress occurs at the corners

and increaseswdth the decrease in the rounding-off radius

at corners.

4.12 Oval Hole in an Infinite Medium Under Biaxial

Compression

The boundary of the opening in an infinite plate

is represented in rectangular coordinates by the equations

x p cos 9 + r cos 3 6

(4.12.1)

y q sin 5 — r sin 3 B.)

where p, q, r are parametersof the ovaloid, 6 = angle made

with the x axis.
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The values of the parameters for any opening may be

obtained by first choosing a suitable value for r.

Greenspan12 gives the following equation for the

tangential stress in the elastic state on the boundary,

[(p2 + 6 rq) sin2 B + (q2 + 6 rp) cosZ_B

_6r(p+q) c0822B+9r2] 09

2 2

sin2 B + q cos2 B - 9r2)(0X + 0y) (9

2 2 2

(p - q ) (0x + 0y) - (p + q) (0X - 0y)

(p + q - 2r)

 

[(p - 3r) sin2 B - (q - 3r) cos2 B ] (4.12.2)

where,

ox, CY are applied stresses in the x, y directions

at infinity.

In the case of a biaxial stress state with ox = o =

S. the boundary stresses are given by

(p2 sin2 B + q2 cos2 B - 9r2).

2 2

(p-q) ( .2 2- (p + q _ 2r) \(p - 3r) Sln B - (q -3r) cos B >

09 L .  
(p2 + 6 rq) sinZB + (q2 + 6 rp) c032 9

- 6r (p + q) cos2 2 B + 9r2 (4.12.3)
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CHAPTER V

EXPERIMENTAL PROCEDURE

5.1 Preparation of Specimen

Size: Previous investigations by Serata3O have

demonstrated that the stress strain relation in case of

rectangular prisms under uniaxial compression depends on the

relative dimensions of the specimen, and that the variation

is not great if friction at the loaded surfaces of the salt

blocks is eliminated. Practical.considerations of the

available size of the salt block and the relative dimensions

of the openings with respect to the size of the test specimen

dictated the use of 5" cubes for all the tests. The salt

used in the tests was obtained from a Louisiana salt dome.

Attaching photo stress plastic: All the photo stress

plastic sheets were obtained from the Budd Company. Two

types of plastic were used (1) S type of thickness 0.122"

and (2) M type of thickness .072?. The S type plastic was

first used and it was found that the number of fringes

obtained was too large. Subsequently M type plastic was

used for all the tests. The first fringe occurs at a

70
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principal strain difference of. approximately 1000 mii in

case of 0.12" S type plastic and approximately 8000 mii in

case of 0.072" M type plastic. The plastic was machined to

the contour of the opening in the salt specimen and then was

attached on to the surface of the test piece by using

reflective cement. Salt has a non-reflective surface and

hence reflective cement was used. The cement was allowed to

dry for a period of not less than 24 hours at room temperature

before any testing was done.

Marking of lines: A network of intersecting lines

was drawn on the plastic surface by using a red grease

pencil. It was possible to obtain fine lines on the surfaces

of two of the plastic sheets by etching with a steel pin

and filling the etchings with a grease pencil. But the

other plastics were soft and lines had to be drawn with a

fine grease pencil without any etching.

SRr4 Gages: In some of the experiments the strains

were measured by SR~4 gages. It is not possible to obtain

a completely uniform surface on salt specimens. Hence a

thin layer of SRr4 precoat was applied on the surface.

When the precoat dried, the strain gages were attached using

Duco cement in the usual manner.
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5.2 Testing Device

All the tests of the uniaxial group were done in a

Universal testing machine of capacity 300,000 lb. The

loading mechanism was such that the load could be maintained

at any desired level with ease. The experiments of the bi-

axial group were done in a rectangular loading frame shown

in Fig. 6.17.20. The frame consisted of WF steel sections

connected together by angles and bolts. The load was

applied by two 50 ton hydraulic jacks, one of them clamped

to the top horizontal beam and acting vertically and the

other clamped to the right vertical column and acting

horizontally. The hydraulic pressure was supplied by a

pump and the pressure was indicated in a pressure gage.

The load applied was obtained by using a curve relating the

pressure in the jack and load applied by it.

5.3 Loading Conditions

Use of friction reducer: In the compression tests

on salt, frictional forces are developed at the loading

surfaces of salt specimens. This force has a dominating

effect upon the behavior of the specimen.

In order to eliminate the frictional forces at the

loading surfaces in this investigation, friction reducers
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were used. The friction reducer consisted of a sheet of

aluminum foil placed in between two thin sheets of plastic

laminated with a mixture of grease and graphite.

5.4 Description of the Uniaxial Tests

Uniaxial compression tests on solid specimens:

The serial numbers of the experiments in this category are

1A, 1B, 4 and 5. In both the tests 1A and 1B, uniaxial

compression was applied gradually from zero to the ultimate

load in equal increments of 5000 lbs. (approximately 200 psi).

Strain measurements were made using SR—4 gages and mechanical

dial gages. Two AR—l Rosette gages, one at the center of

each of two opposing vertical faces, measured the strain on

I!

a nominal gage length of %§ . Three A-l8 gages, one in the

axial direction on a grain, one in the axial direction but

on the boundary of a grain, and one in the lateral direction

on a grain measured the strains of individual grains on a

relatively small nominal gage length of 1/8". The grains

were chosen to be as near the center of the face as possible.

Three dial gages, one in the axial direction, two in the

lateral directions were used to measure the total deformation.

The objective of these two tests was to obtain a stress

strain relation under uniaxial compression and to know
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something about the behavior of the individual grains.

Tests '4 and 5: The results of tests 1A and 1B

showed that the magnitudes of the modulus of elasticity E

and the Poisson's ratio n depended on the magnitude of the

stress, and that the strains at every point were not equal

under uniform stress. In the photo stress method of analysis,

the difference of two principal strains are measured and

these strains depend on the elastic constants at any stress

level. In order to eliminate the use of the elastic con-

stants in determining the principal strain difference, it

was decided to obtain a relation between stress and

principal strain difference by using the photo stress

method. The objectives of the tests were (1) to obtain

a stress versus principal strain difference curve, (2) to

obtain the stress distribution on the entire surface under

uniaxial stress, and (3) to test the behavior of the photo

stress plastic when subjected to large strains.

In both the tests 4 and 5 uniaxial compressive load

was applied gradually increasing from zero in increments

of stress of 250 psi until failure. Two photo stress plastic

sheets, one S—type on the rear vertical face and one M—

type on the front vertical face were attached on the cube.

The Mrtype measured large strains and the S—type measured
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the small strains. One AR—l rosette gage was attached to

the center of each of the two remaining vertical faces.

Three dial gages measured the total deformations in the

axial and lateral directions.

Uniaxial test with circular holes: The serial

numbers of the test in this category are (2), (3), (6) and

(8). The diameter of the hole in all the tests was 1 inch.

S-type photo stress plastic was attached to one face in the

case of tests (2) and (3). The number of fringes observed

in the case of S plastic was very large and so it was found

necessary to use an Mrtype plastic in the other tests.

In test 2,an.S-type plastic was attached. The

average stress in the specimen was raised from zero to

2,000 psi in steps of 200 psi and then the load was gradually

reduced to zero. After several days the Specimen was

stressed again from zero until failure of the specimen.

In test 3, an S-type plastic was used.l The average

stress was raised from zero to 1,400 psi in steps of 100

psi and unloaded to zero. In test 6, one S-type plastic

was attached to the rear face and an Mrtype plastic was

attached to the front face of the specimen. The strain

distribution was observed on the S-type plastic for stresses

from 0 to 1,000 psi and later the large field meter was
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shifted to the front to observe strains on the M—type. 'The

average stress was gradually raised from O to failure of the

specimen in increments of 250 psi. In test 8, an M—type

plastic was used.. The average stress was raised from

0 to failure of the specimen in increments of 250 psi.

Uniaxial tests with square holes: The serial numbers

of the tests in the category are (7), (9), and (10). M-type

plastic was used in all cases. The loading was gradual from

0 to failure of the specimen in steps of average stress =

250 psi.

Biaxial tests on solid specimens: The serial numbers

in the group are (11) and (12). The objective of these

tests was to obtain a relation between the octahedral shear

stress and the plastic strains under a biaxial stress state.

In the first cycle of test 11 the specimen was

loaded with equal horizontal and vertical stresses up to

3,000 psi and unloaded to zero. In the second cycle, the

equal stresses in both directions were raised to 4,000 psi

and brought back to zero. In the third cycle, the hori-

zontal stress was first raised from zero to 1,000 psi and

keeping it constant at 1,000 psi, the vertical stress was

raised from zero to 4,000 psi. Then the vertical stress

was lowered to zero and finally the horizontal stress was
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also brought back to zero. In the fifth cycle both the

stresses were kept equal during the loading process from

0 to 4,000 spi and then keeping the horizontal stress

constant at 4,000 psi, the vertical stress was reduced to

zero, and finally the horizontal stress was also brought

back to zero. One Mrtype plastic was attached to the front

face of the specimen. Three A-8 gages were attached, one

each at the top, middle and bottom of the vertical center

line on the rear face measured the vertical strains. One

A-8 gage attached close to the center of the rear face

measured the horizontal strains. One dial gage in the

vertical direction and two dial gages in the horizontal

direction measured total deformations.

In test 12, the horizontal stress was raised from

zero to 1,000 psi in the first cycle. Keeping it constant

at 1,000 psi, the vertical stress was first raised gradually

to 4,000 psi and then lowered to zero. Finally the horizontal

stress was lowered to zero. In the second cycle, the ratio

of vertical to horizontal stress was kept constant at 3,

and both stresses were gradually raised, the vertical from

zero to 4,000 psi in equal increments of 750 psi and the

horizontal from zero to 1,333 psi in equal increments of

250 psi. Finally both the stresses were gradually lowered
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to zero keeping the same constant ratio of the stresses.

One M—type plastic was attached to the front face.

Three A-8 gages, one each at the two ends and one at the

middle of the horizontal center line of the rear face, were

used for measuring the horizontal strains. Two additional

A-8 gages attached on the middle center line as close to

the center as possible were used for measuring the vertical

strains. Mechanical dial gages one in the vertical direction

and two in the horizontal direction were also used for the

strain measurement.

Biaxial tests with circular holes: The serial numbers

in this category are (13) and (14). The diameter of the hole

at the center of the specimen in both tests was 1".

In test 13, one Metype plastic was attached to the

front face. On the rear face, two A-18 gages, one on a

horizontal center line and the other on a vertical center

line were attached close to the edge of the hole. Three

dial gages were also mounted for recording total deformations.

The test specimen was subjected to equal vertical

and horizontal stresses. The stresses were gradually

increased from zero to 4,000 psi in equal increments of 250

psi and brought back to zero at the same rate.

After releasing the load, the specimen was left
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undisturbed for three days and residual strains were re-

corded.

In test 14, the specimen was loaded such that the

ratio of the average vertical stress to the average hori-

zontal stress was maintained at 3.0 throughout the experi-

ment. The stresses were gradually raised, the vertical

stress from zero to 4,000 psi and the horizontal stress

from zero to 1,333 psi and finally both the stresses were

gradually reduced to zero. Details of photo stress plastic

and strain measuring arrangements are the same as in test 13.

Biaxial test on oval holes: The serial numbers of

the tests in this category are (15) and (16). In both cases

the hole consisted of two semi-circles of 1/2" diameter

connected by a rectangle 1/2" wide and 0.933" long.

In test 15, there were two holes along the horizontal

center line with a distance of 2.369" between the centers

of the holes. One Mrtype plastic was used. Total deformations

were measured by 3 dial gages. The specimen was subjected

to equal average stresses in the vertical and horizontal

direction throughout the expreiment. The stresses were

gradually raised from zero to 3,000 psi and kept constant

at 3,000 psi for 16 hours and then gradually brought back

to zero.
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In test 16, there was only one hole at the middle of

the horizontal center line of the specimen. Details of

plastic and dial gage mounting are the same as in test 15.

The specimen was. subjected to equal average stresses in

both the horizontal and vertical directions. The stresses

were gradually raised from zero to 3,000 psi and maintained

at that level for 40 hours and then gradually lowered to zero.



CHAPTER VI

EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Uniaxial Compression Test on Solid Specimens

The stress strain curves of rock salt in uniaxial

compressions are shown in Figs. 6.1.5, 6.4.5 and 6.5.5.

The curves are characterized by the following features.

1. No part of the curve is a straight line.

2. The strains recorded by dial gages are higher than

those recorded by SRr4 gages.

However, the slope begins to change rapidly at

approximately 1,000 psi. It is not possible to locate

exactly either the proportional limit or the yield point.

The method that is proposed is to consider the stress

strain curve as a combination of several straight lines.

Modulus of elasticity E: The value of E in any

stress range will be defined by chord modulus.

0 - 0
E = Ef - €b

f b

where, of, Ob are stresses at the ends of a specific portion

of the stress strain curve, and 6f, 6b are the corresponding
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strains. The value of E thus obtained for stresses in the

range 0 to 1,000, 1,000 to 2,000, 2,000 to 3,000, 3,000 to

failure are given below.

 

 

 

Stress range Average E based on Average E based on

in psi SR—4 gage (106 psi) dial gage (106 psi)

0 to 1,000 1.408 0.4559

1,000 to 2,000 0.1913 0.1757

2,000 to 3,000 0.0909 0.0803

3,000 to failure 0.0596 0.0402

 

The values of E based on the SR-4 gages and dial gages

in the stress range of O to 1,000 psi are 1.408 and 0.4559

million psi respectively which are not in agreement. The

large difference in the values at this range is probably due

to the readjustment of the end surfaces of the specimen in

the initial stage of the loading. The dial gage deformations

include the initial readjustment of the ends and hence the

deformations are larger than those recorded at the center

by the SR~4 gages. However, the values of E at stresses

above 1,000 psi based on SRr4 gages are higher than those

based on dial gages.

The stress strain relation based on SRr4 gages is
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used for analyzing strains around openings. The basis for such

a procedure is that the holes are located in the center of the

specimen where the strains were measured by SR—4 gages. It

is noted here that the material is not completely elastic at

any stress level in uniaxial loading condition.

Poisson's ratio: Poisson's ratio, n, with respect

to the axial stress is shown in Figs. 6.1.6, 6.4.6 and 6.5.6.

The common characteristics of these curves are:

l. The values of n based on SR-4 gages are very high

in the initial stages and decrease in a very irregular

way as the stress increases.

2. All values of n baSed on SR—4 gages are greater

than 0.5 except at stresses of 500 psi and 750 psi

in Fig. 6.5.6.

3. The values of n based on dial gages increase gradually

ranging from 0 to 0.9 with increase of stress.

The values are less than 0.5 for ranges of stress,

0 to 1,680 in Fig. 6.1.6, 0 to 1,280 in Fig. 6.4.6

and 0 to 1,300 in Fig. 6.5.6. It seems to be a

reasonable approximation to assume that n varies

linearly from 0 to 0.5 as the stress increases from

O to 1,500 psi, on the basis of dial gage measure—

ments.
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Stress and strain distribution: Fig. 6.5.2 shows

the strain distribution on the surface of the specimen,

when it is subjected to a uniform load of 2,500 psi in the

vertical direction. Fig. 6.5.7 shows the stress distri-

bution on a horizontal axis through the center of the

specimen. Fig. 6.5.8 shows the stress distribution on the

vertical axis through the center of the specimen.

The strain distribution of Fig. 6.5.2 shows that the

fringe pattern is almost circular. »Each of the lines

represents points of equal principal stress difference.

Since the vertical stress is the only stress acting, the

lines also represent points of equal stress. The center of

the fringe pattern does not coincide with the center of the

specimen. This indicates that some eccentricity in the

loading exists.

Fig. 6.5.3 shows the relation between the uniaxial

stress which is the principal stress difference in this

case and the principal strain difference. The curve A

is based on SRr4 gages attached to the center of the

specimen. The curve B is based on an average of the photo

stress readings at the center, two points on the horizontal

center line, one on each side 1/4" from the center, and two

points in the vertical center line at 1/4" on either side of
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the center. The difference in the two curves A and B may be

explained like this. The strain measured by the SR—4 strain

gage is an average of the strain on its gage length of 13/16".

The photo stress measurements are made at specific points

only and the average of the readings at the 5 points apparently

are different from the strain gage measurements. The use of

these relations in strain analysis is an approximation as the

material is not completely elastic.

Fig. 6.5.7 shows that the stress is maximum at 0.75"

from the center. The stresses remain uniform for a distance

of 1/2" on either side of the point of maximum stress and does

not vary very much on the right of the center, but is reduced

more rapidly on the left of the center. If the eccentricity

were removed, the stress distribution would be symmetrical

with the center of the specimen. The stress distribution in

the Figs. 6.5.7 and 6.5.8 is based on Fig. 6.5.3 (curve B).

Behavior at failure: The failure occurred in all

the cases by formation of cracks, mostly vertical followed

by crushing (Figs. 6.1.20 and 6.5.20). The ultimate strength

values for tests 1, 2, 3, 4 were 3,752 psi, 3,858 psi,

3,203 psi and 3,556 psi respectively. The average value of

the ultimate stress was 3,722 psi neglecting the lowest

value. There was evidence of eccentricity in loading in
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the test 4 which gave the ultimate stress of 3,203 psi and

hence this value is being ignored. The specimens for tests

1 and 2 came from the same block and the specimens for tests

3 and 4 came from another block. The average value of the

ultimate strength for tests 1 and 2 was 3,800 psi. For

analysis of strains in uniaxial tests it is assumed that the

yielding begins when the principal stress difference is

3,800 psi.

Behavior of the individual grains: The stress

strain relation for individual grains are shown in Fig. 6.1.7.

The axial strains on the grain boundary were very much larger

than the strains on the interior of it. The axial stress

strain relation for the grain boundary is closer to that

obtained for the mass by the SRr4 gage than that obtained

by dial gages. But on the other hand the lateral strains

on the interior of the grain are very much smaller than

those obtained for the mass either by SRr4 gage or by dial

gages. This has to be expected and confirms the unpre-

dictable behavior of the individual grains.

Homogeneity: In a homogeneous mass the smallest

part anywhere in the mass should have the same physical

properties as the mass. The irregularities at specific

points along any fringe indicate that the physical properties
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vary from point to point. However, the general shape of the

fringe pattern of the specimen in Fig. 6.5.2 shows that the

fringes have an ordered pattern. Hence it can be concluded

that the material has statistical homogeneity.

Isotropy: In an isotropic mass, the physical properties

should be the same in all directions. Salt is made up of a

number of crystals whose size and orientation vary from

point to point in the mass, and therefore, ideal isotropy

cannot be expected. When a load 15 applied, the grains may

slide one on another, deform in the three principal

directions and rotate, depending on the properties of the

individual grains and the manner in which they are packed.

Accordingly local displacements, local shear strains and

local changes in volume may occur.

An examination of the isoclinics show how the principal

stress directions vary from point to point. As the load

varies the principal stress directions vary at the points.

This indicates that the principal strain directions vary

from point to point because of translation, deformation and

rotation of the individual grains. But the overall distri-

bution of the principal strains leads to the conclusion

that the mass is statistically isotropic.
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6.2 Circular Hole Under Uniaxial Compression.

Fig. 6.3.3 shows the strain distribution in the

case of circular hole subjected to an applied uniaxial

stress of 500 psi. The maximum stress expected is 1,500

psi and according to our assumptions, the material every—

where is in the elastic state. The analytical values of

(el — 62) based on the equation in section 4.10 are

compared with the experimental values in Table 6.3.11. The

)analytical values of (e are based on experimental
1_€21

values of strain difference measured by photo stress in a

uniaxial test of a solid specimen. The analytical values

) are based on values of secant modulusof (61 — 2

E2

corresponding to the stress in each direction, obtained

from SR—4 gages of a uniaxial test, and on the assumption

of n = 0.5. The experimental values are substantially

higher than the analytical values. This difference is

explained by the fact that the material close to the boundary

of the hole is in a biaxial state of stress and at larger

distances from the boundary, the material tends to be in a

uniaxial state of stress. The stress strain relations are

different in the two cases. The closest approximation to

) and thisthe experimental values are given by (e 2
1'62

seems to be the better method of approximating strains.
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Fig. 6.8.3 shows the distribution of principal strain

difference on three radial lines, around a circular hole

when subjected to a uniaxial stress of 2,750 psi.

The analysis is made on the assumption that the

yielding begins when 01 - 03 reaches a value of 3,800 psi.

In the elastic stress distribution, the tangential stress

is the minimum principal stress at points on a radial line

normal to the direction of the applied stress. Hence yield—

ing begins when the tangential stress reaches a value of

3,800 psi. At a distance 0.8" from the center of the 1"

hole the value of tangential stress is 3,800 psi, by assuming

a completely elastic state in the specimen. The strain

distribution for points beyond a radius of 0.8" on the line

normal to the direction of the principal stress is calcu—

lated on the basis of the elastic theory and stress strain

relation shown in the Fig. 6.5.3 (curve B). Along the radial

line parallel to the direction of stress, the 01 - 03 never

exceeds the applied stress of 2,750 psi. On a radial line

at 450 to the direction of the applied stress, oz stress

is always intermediate stress and the maximum value of

01 - 03 - (1.37) (2,750) = 3,770 psi. Hence on all the

points along the radial lines making 00 and 450 to the

direction of applied stress, the strain distribution is
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calculated on the basis of stress strain relation in Fig.

6.5.3 (curve B). The principal strain differences calcu—

lated on the above basis and those observed by photo stress

are compared in Table 6.8.11. The analytical values based

on Fig. 6.5.3 curve B, for points on a line normal to the

direction of the load are higher than the experimental

values.

Fig. 6.12.4 gives the stress strain relation when a

solid is subjected to a horizontal stress of 1,000 psi and

a vertical stress varying from 0 to 4,000 psi. Since the

state of stress close to the opening is in a biaxial state

of stress it is of interest to calculate (el - 62) on the

basis of a biaxial stress strain relationship. Accordingly

the values of (61 - £2) have been computed based on Fig.

6.12.4-{curve B)and shown in Table 6.8.11. Again, the

analytical values are higher than the experimental values.

But the values based.on biaxial stress strain relation are

closer to the experimental values than those based on

uniaxial stress strain relation.

This discrepancy is due to several reasons. The

stresses computed are not strictly correct because part of

the cylinder is in a plastic state. The stress state

nearer the opening is in a biaxial state and that in the
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region farther away tends to be uniaxial. It seems to be

more correct to compute the strains in the problem based on

biaxial stress strain relation.

Nature of failure: The average maximum applied

stress at the time of failure was 3,043 psi. In test 2 the

specimen was damaged by an initial impact loading, the

applied stress was raised to 1,990 psi, brought back to

zero, and after a lapse of several days, it was again raised

to the point of failure. If the result of this test were

neglected, the average maximum applied stress at failure

was 2,850 psi. In test 6 the failure occurred very abruptly

by cracking along the planes making about 100 with direction

of loading and at an applied stress of 2,500 psi (Fig. 6.6.20).

In test 8, the failure took place after large deformations

accompanied by cracks at an applied maximum stress of 3,200

psi (Fig. 6.8.20). The circular opening which was 1" in

diameter became almost elliptical with the horizontal diameter

increasing in length to 1.12" and the vertical diameter

decreasing in length to 0.8". In both the tests 6 and 8,

cracks originated close to ends of the horizontal diameter

making an angle of 50 to 100 with the vertical.

Area of hole before loading = 0.785 in2
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Area of hole after loading

assuming an elliptical shape

with major axis = 1.12" and

minor axis = 0.8"

Area after loading

initial area of the hole

 

-% (1.12)(O.8) in2

0.704 in2

0.886

Table 6.3.11. Principal strain difference on the center

line normal to the direction of stress in

case of a circular hole under uniaxial

compression of 500 psi.

 

 

)r (0 (e ) (6 - 6 )

 

- e — e

1 2radial 1 2 1 2 1 l 2 2

distance Analytical Analytical Experimental

inch psi mii mii mii

.6 925 1,160 1,870 3,000

.75 570 770 1,125 1,620

1.0 465 700 562 1,100
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Table 6.8.11. Principal strain difference in case of

circular hole under a uniaxial stress of

 

 

 

 

2,750 psi.

Radial Experi- Analytical Analytical

9 distance :enta: 61 - €2 E1 - €2

Angle made 1 2 Fig. 6.5.3 Fig. 6.12.4

with direction Curve B Curve B

of load in mii mii mii

90° 0.75 11,490 25,500

0.8 10,080 20,500 14,600

1.0 7,450 14,000 11,800

1.5 9,070 10,350 11,400

2.0 9,570 14,500 11,800

0° 0.6 10,080 1,500 3,400

0.75 5,040 500 1,200

1.0 6,040 2,700 2,800

1.5 11,840 7,000 7,400

2.0 15,620 10,000 9,400

Actual Based on Based on

Note by Uniaxial Biaxial

Photo Calibration Calibration

Stress
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6.3 Square Hole Under Uniaxial Compression.

Figs. 6.10.3 and 6.10.4 show the strain distribution.

at points on lines passing through the center of the opening

and making angles of 00 and 900 with the direction of the

applied stress of 2,320 psi. The tangential stress on the

boundary of the hole is given below, assuming that the

rounding off radius is .O6a where a is the length of the side

of the square hole, and the stress state is elastic.

 

 

Angle made with

 

the direction of 09 on the

the applied load boundary

6° (psi)

0 —l,875

35 — 622

40 2,273

45 6,960

50 8,955

55 7,809

90 3,415

 

According to the assumption that yielding does not

occur till 00 reached 3,800 psi, the material along the two

center lines is elastic. Assuming that the stress strain



95

relation in the uniaxial test is valid the principal stress

difference corresponding to the experimental values of the

principal strain differences on the two center lines are

calculated on the basis of Fig. 6.5.3 curve B, and are shown

in Table 6.10.12. The maximum tangential stress occurs at

the corners. The experimental value of maximum principal

strain difference at the corners is about 40,000 mii.

Nature of Failure: The failure occurred at an applied

average stress of 2,830 psi. In two of the tests the failure

occurred by formation of cracks originating at two diagonally

opposite corners and running at an angle of 80 to 130 with

the direction of the stress (Fig. 6.7.20). The deformation

in the two tests was small. In test 9, the size of the

opening at the time of failure was 0.89" along the vertical

center line and 1.05" along the horizontal center line.

In test 10, the failure occurred by formation of cracks at

all the 4 corners at an angle of 90 to 120 with the direction

of the applied stress, and at a few other places originating

from the ends of the specimen and ending approximately on

the center line. The deformation in this test was large, the

hole measuring 1.183" on the horizontal center line and

0.835" on the vertical center line (Fig. 6.10.20). The area

of the hole after failure was .9878 square inches.
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Table 6.10.12. Principal strain difference and principal

stress difference on lines normal and parallel

to direction of load in case of a square

opening under a uniaxial stress of 2,320 psi.

 

 

 

 

Distance Center line Center line

from parallel to normal to

“center loading loading

61 " 62 O1 ' O2 61 ' 62 O1 ' 02

(Experi- (Fig. (Experi- (Fig.

mental) 6.5.3-B) mental) 6.5.3—B)

mii psi mii psi

0.6 25,000 3,125

0.625 19,000 2,850 25,000 3,125

0.75 13,500 2,550 15,500 2,662

1 7,500 2,000 11,500 2,675

1.25 4,500 1,550 10,000 2,262

1.5 5,000 1,625 9,500 2,212

1.75 5,750 1,750 9,000 2,175

6.4a Biaxial Compression on Solid Specimens--Equal

Stresses in Both Directions

Fig. 6.11.3 gives the stress strain relation when the

specimen was subjected to equal stresses.

The stress strain curves based on SR—4 gages and

dial gages are close in the stress range of 2,000 psi to

4,000 psi while loading. The unloading was done once at

3,000 psi and once at 4,000 psi. For purposes of determining
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the permanent strains at other stress levels, the slope of

the unloading curve from 4,000 psi by SR—4 gage was utilized.

A justification for this is that the slopes of both the

unloading curves from 3,000 psi and 4,000 psi are almost

parallel.

. . P
Fig. 6.11.4 shows the relation between 212-61

2

and 3 01

Eq. (4.3.4).

in order to obtain the function f(TO) of

p E
and O are given inThe value of 2 2 €1 3' 1

Table 6.11.11.

Showing values of‘§ 01 against 2 (2 sf

in biaxial compression of solid specimen.

Table 6.11.11.

 fi

 

0:1. = 02 g 01 2 J3 elp

micro

psi psi in./in.

1,250 589 282

1,500 707 1,696

1,750 824 3,393

2,000 942 5,938

2,250 1,060 8,484

2,500 1,178 11,594

2,750 1,296 15,129

3,000 1,414 18,947

3,250 1,532 24,179

3,500 1,650 27,997

3,750 1,767 31,956

4,000 1,885 41,288
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The results . plotted in Fig. 6.11.4 are used to

determine strains for other cases.

The stress strain curve in Fig. 6.11.3 does not

exhibit linearity. However, except in the stress range of

1,000 psi to 1,500 psi, the curve is close to a straight

line.

Behavior of the material: The photo stress analysis

did not indicate any eccentricity in loading. The material

did not show any kind of fringe pattern until the stresses

reached 4,000 psi when there were small regions where non-

uniformity of stress was seen. The examination of the iso—

clinics showed that while most of the region showed that the

principal strains were parallel to the direction of applied

loads, there were spots which showed a maximum deviation of

150 from the principal strain direction expected. The

assumption that the material is statistically homogeneous

and isotropic is demonstrated to be true.

When the specimen was under equal stresses of 4,000

psi, the material seemed to flow without crushing. This

conclusion is based on the examination of the material

after releasing the load and also comparing its behavior to

the case of uniaxial stress failure.

The specimen was subjected to 4,000 psi in both
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the horizontal and vertical directions and keeping the hori-

zontal stress at 4,000 psi, the vertical stress was released

gradually. It was possible to maintain stresses at 4,000

psi in the horizontal direction and 100 psi in the vertical

direction. But when the confinement afforded by the 100

psi was removed, the material started failing. But the

failure was different from that of a uniaxial test (Fig.

6.11.20). The material failed by formation of a crack in

a vertical plane from the edge of the end plate. This

shows that the material behavior has changed under biaxial

stress state.

6.4b Biaxial Compression on a Solid Specimen

Unequal stresses in the vertical and the horizontal

directions: Fig. 6.12.2 shows the distribution of strains

when the specimen was under a stress of 4,000 psi in the

vertical direction and 1,000 psi in the horizontal direction.

Fig. 6.12.4 shows the relation between (0 - 02) and
1

(61 — £2). The remarks regarding the discrepancy in the‘

two curves made in uniaxial testing apply in this case also.

Fig. 6.12.5 shows the stress strain relation (keeping

the horizontal stress at 1,000 psi) between the vertical

stress and vertical strain. The stress curve does not
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exhibit linearity at any stage.

Behavior of the material: Fig. 6.12.2 shows that

the strain distribution is not the same at every point,

but can be considered statistically uniform.

Examination of the material after releasing the load

showed no signs of cracking or failure. The material seems

to be flowing (Fig. 6.12.20). That the behavior of the

material in biaxial stress state is different from that of

the uniaxial state is demonstrated by the fact that the

material did not fail when one of the principal stresses

reached 4,000 psi whereas the material failed at about 3,800

psi in uniaxial compression.

6.5a Circular Hole Under Equal Horizontal and Vertical

Forces

Fig. 6.13.2 shows the strain distribution in case of

a circular hole subjected to uniform equal pressures of 4,000

psi in the horizontal and vertical directions at the ends

of the specimen. The specimen was 4.861" wide, 4.871"

high and 4.876" along the axis of the hole 1" in diameter.

Assuming that yielding takes place at 00 = 4,000 psi, To =

1,885 psi. From Fig. 6.11.4 of a biaxial test,

f(To) = 41,300 micro inch/inch, when To = 1,885 psi (6.5.1)
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Assuming that the problem is equivalent to a thick

walled cylinder of external diameter of 4.864", internal

diameter of l" subjected to an external uniform pressure of

4,000 psi and is in a completely plastic state, the value of

e: — 65 are calculated using (4.5.10), (4.5.11), (4.5.15) and

(6.5.1). These values are compared with the experimental

values in Table 6.13.11 and Fig. 6.13.5. Here, the stresses

based on perfect plasticity are used in the stress strain

relations for hardening plastic material and this is an

approximation.

The experimental values are found to be in the range

of 65 to 79% of the analytical values. The possible reasons

for the differences are

1. From Figs. 6.13.2 and 6.13.5, it is seen that the strain

distribution is not completely symmetrical due to possible

eccentricity in loading.

2. The assumption that yielding begins when 00 reaches

4,000 psi may not be exact.

3. The effects of the end steel plates may not be ignored.

Furthermore the strain in the direction parallel to the axis

of the hole, 6: may be calculated by using (4.5.13) and

(6.5.1) and is given below.

At r = a, e: = 43,800 mii.

The theoretical change in length of the hole, at its boundary

= 4.876 x 43,800 micro inch/inch = 0.213".
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The length of the hole by measurement = 5.09"

5.09" - 4.864"Experimental value of change in length

0.226"

This value of change in length of the hole agrees reasonably

well with theoretical value.

The higher value of 00 = 4,000 obtained in biaxial

stress state can be explained in the following way. In the

case of biaxial testing the material is free to expand in

the third direction, whereas in the triaxial testing, the

deformation of the material is limited due to confinement in

the cylinder. For a larger deformation, the value of 00 will

be larger and hence there is justification in assuming 00

= 4,000 psi in biaxial stress state and a smaller value in

triaxial stress state.

The deformations: At the applied load of 4,000 psi

there were no cracks and no damage of any kind (Fig. 6.13.20).

Under the load, the specimen was 4.77" wide, 4.77" high

and 5.09" along the axis of the hole and the hole diameter

was 0.9".

Area of the hole after loading

initial area of hole = 0'81

Assumption regarding the behavior as a thick walled

cylinder: The fringe pattern in Fig. 6.13.2 shows that the
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fringes are nearly circles. The fringes become closer to a

circle, near the hole. The circular cylinder behavior is

. . . r
approx1mately up to a radius of 1.2', or'; = 2.4

6.5b Circular Holes Under Unequal Horizontal and Vertical

Forces

The experimental strain distribution in the case of

a circular hole subjected to a vertical stress of 3,750

psi and a horizontal stress of 1,250 psi is given in Fig.

6.14.2 From these isochromatic lines, it is noticed that
_'

O' -O'r 9 lines do not cross the vertical center line. The

strain distribution on a horizontal axis through the center

of the hole is given in Figs. 6.14.3. For the purpose of

comparison the theoretical elastic stresses for points along

the vertical and horizontal center lines through the hole

are tabulated in Table 6.5.11.

. , 29 . . .

SaVin 3 equation for elastic plastic boundary

curve L given in (4.9.4) cannot be applied in this case

where

0
|
.
o

x l .

='§,,because the curve L cannot enCircle the hole..

L
<

The deformations: The size of the Specimen before

testing was 4.87" wide 4.885" high and 4.94" along the

axis of the 1" diameter hole: after loading the width

increased by 0.015", the height decreased by 0.145", and
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the length of axis of the hole increased by 0.16".

105

The

horizontal diameter of the hole decreased by .02" and the

 

 

 

 

 

vertical diameter of the hole decreased by 0.1" (Fig.

6.14.20).

Table 6.5.11. Elastic stresses around a circular hole when

0

_2<_=l

0 3'

Y

Horizontal Axis Vertical Axis

e = 0 e = 0 e = 0 e = 900 e = 900 e = 900

:1; :9. (Ir—09 32—: is _____Ur_69
0 0 0 0 0 c

Y Y Y Y Y Y

.1 0 2.667 2.667 0 0 0

.9 0.217 2.195 1.979 0.036 0.217 0.181

.8 0.349 1.836 1.486 0.129 0.349 0.220

.7 0.426 1.561 1.147 0.26 0.419 0.160

.6 0.444 1.369 0.926 0.409 0.443 0.034

.5 0.437 1.208 0.792 0.562 0.436 0.125

.4 0.417 1.105 0.718 0.705 0.414 0.291

.3 0.435 1.039 0.683 0.828 0.385 0.443

.2 0.358 1.016 0.67 0.921 0.358 0.563

.1 0.34 1.004 0.664 0.981 0.339 0.64

0 0.333 1.00 0.667 1 0.333 0.667

Area before loading = 0.785 sq. inches.

Area after loading assuming an _.1 ( 9)( 98)

elliptical shape .98" major axis _ 4 ' '

and ‘ .9" minor axis . = .693 sq. inches.

Area after loading = 0.882

Initial area
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6.6a Oval Holes Under Uniform Biaxial Compression

fiaThe shape of the oval hole is given in Fig. 6.15.10.

For these dimensions of the hole the values of p,q, r in

(4.12.1) may be assumed as

p = 0.75"

q = 0.28"

r = -0.03"

The tangential stresses on the boundary of the hole

assuming elastic state is given below.

 

Angle made with the Boundary stress

horizontal line through

center of the hole .39 06

= B s .
p51

0 3.28 9.850

10° 3.44 9,870

15° 3.6 10,800

190 3.62 10,880

30° 2.97 8,900

60° 0.942 2,825

90° 0.79 2,370

 

Two oval holes symmetrically located under uniform

biaxial compression, 3: The distribution of principal strain

difference around the holes when the specimen was subjected

to a stress of 3,000 psi in horizontal and vertical directions
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is shown in Fig. 6.15.2.

The load was kept constant for a period of 16 hours

to observe the behavior of the material in creep. The

distribution of the principal strain difference at the stress

level of 3,000 psi in the beginning and at the end of 16

hours, on the entire region, was experimentally determined

and shown in Fig. 6.15.6. It is analyzed on three lines,

the horizontal line through the center of the holes, the

vertical line through the center of the pillar and the

vertical line through the center of the hole, as given in

Figs. 6.15.7, 6.15.8 and 6.15.9 respectively. The strains

have increased with time everywhere. The maximum principal

strain difference on the boundary at the time the applied

stresses first reached 3,000 psi was more than 35,800 micro

in./in. After keeping the stresses constant for 16 hours

the strains became very large on and near the semicircular

boundary making it impossible to make any measurements in that

region. The strain distribution at the beginning and at the

end of the period of 16 hours is shown in Fig. 6.15.6.

Method of failure: At the initial stage of keeping

the applied stresses at 3,000 psi, the average decrease

in height of the hole was 0.12" and the average decrease in

the width of the hole was 0.013". The stresses were gradually
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raised to 4,000 psi when the defomrations became very large,

the height of the holes decreasing gradually until the

collapse of the holes.

Initial hole area 0.662 sq. inch

Hole area after loading

at 3,000 psi 0.508 sq. inch

Area of hole after loading

Area of hole before loading = 0°76?

6.6b Single Oval Hole Under Uniform Biaxial Compression

The principal strain difference in the specimen

when subjected to equal horizontal and vertical stresses

of 3,000 psi are shown in Fig. 6.16.3. The stresses of 3,000

psi were maintained for a period of 40 hours. The principal

strain difference at the beginning, after 16 hours and

after 40 hours of reaching 3,000 psi, on the entire region

was experimentally determined and shown in Fig. 6.16.6. It

is analyzed on three lines, the horizontal line through the

center of the hole, the vertical line at a horizontal distance

of 1.18" to the right of the center of hole and on the

vertical line through the center of the hole as shown in

Figs. 6.16.7, 6.16,8, and 6.16.9. Inspection of

these figures show that the strains have gradually increased

with time at every point. The maximum £1 - 62 on the
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boundary was more than 36,000 micro in./in. at the applied

stress of 3,000 psi.

At the end of the period of maintaining constant

stresses for 40 hours the decrease in the height of the hole

was .07" and the decrease in the width of the hole was

0.053" (Fig. 6.16.20).

Area of hole before loading 0.662 sq. inches

Area of hole after loading at

3,000 psi
0.553 sq. inches

Area of hole after loading

Area of hole before loading

0.835

In the preceding sections, the multiaxial properties

of rock salt and stress strain distributions of openings

created in the material have been discussed. Wherever

possible the theoretical and experimental results have beer

compared. Some results are reasonably in good agreement,

and for such results which are not, reasons explaining the

discrepancies have been given. In conclusion, the

photo stress method has proved to be suitable for

studying stress strain distribution in underground openings

in rock salt.
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Test nos. 1A and 1B

4 A, B: 2 specimens 5" x 5" x 5"

C: Average of dial gage

1.4 — readings after correcting

for initial lag.

1 Type: Aggregate salt

End friction reduced

1.2 —

1.0 -

SR 4 Gage

0 d

H

4.)

{3
0.8 ‘

m

'6 1

a C

'3 A

9* 0.6 _

. . . B
POisson s ratio=a5 ‘

A 'A(

. A

I Dial Gage o

0.4 — ‘
A o

I A .

I A‘ A o

q\\'l A ‘

o

‘ O

0.2 —- l A . R

A . ° Dial Gage

I

I ‘ ,A‘. o

A O

4AA! ‘
O A '0 ‘ I I ' T | I I

0 l 2 3 4

Axial stress (1000 psi)

Fig. 6.1.6. Axial stress Poisson's ratio relation in

uniaxial compression.
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PrinCipal strain difference 500 psi

at points on line AB Test no. 3
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Fig. 6.3.3. Circular hole under uniaxial compressive stress

of 500 psi.
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Fig. 6.4.6. Axial stress Poisson's ratio relation in
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Fig. 6.5.6. Axial stress Poisson's ratio relation in

uniaxial compression.
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Test no. 13

E: Experimental

F: Analytical 0 = 4000 psi

‘_* ‘_ 02 = 4000 psi
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Fig. 6.13.5. Distribution of principal strain difference

along AB in case of circular hole under

equal vertical.and horizontal compression

of 4000 psi.
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Test no. 14
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J A? Test no. 15
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Fig. 6.15.7. Two oval openings under equal horizontal and

vertical compression of 3000 psi -‘distri+

bution of principal strain difference along

the line joining the centers of the holes.
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Test no. 15
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Test no. 15
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Fig. 6.15.9. Two oval openings under equal horizontal

and vertical compression of 3000 psi -

distribution of principal strain difference

on a vertical line through center of right

hole.
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6.16.7. One oval opening under equal horizontal and

vertical compression of 3000 psi -'distri-

bution of principal strain difference on the

horizontal line:through center of hole.
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- vertical compression of 3000 psi - distri-

bution of principal strain difference on the

vertical line through a point at 1.18 inch

from center Of hole.
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Test no. 16

C>——-<D On reaching stress level

£§~~~¢5 16 hours after do

,20__ El—s-ifl 40 hours after do

Edge of hole

‘ r
3000 psi
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2Io

Center of hole

Vertical distance from center of hole (inch)

6.16.9. One oval opening under equal horizontal

and vertical compression of 3000 psi -

distribution of principal strain

(difference on the vertical line-through

center of hole.
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Fig. 6.1.20. Failure of a Fig. 6.5.20. Failure of a

solid specimen under solid specimen under

a uniaxial stress of a uniaxial stress of

3,858 psi. 3,556 psi.

  
Fig. 6.8.20. Failure of a Fig. 6.6.20. Failure of a

circular opening under circular opening under

a uniaxial stress of a uniaxial stress of

3,200 psi. 2,500 psi.

  
Fig. 6.10.20. Failure of a Fig. 6.7.20. Failure of a

square opening under a square opening under a

uniaxial stress of uniaxial stress of

2,850 psi. 2,750 psi.
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Fig.

 

Fig. 6.17.20. Biaxial

loading device and

photo stress large

field meter.

. J

 

Fig. 6.11.20. Yielding of a

solid specimen after

reducing vertical stress

to zero from a hydrostatic

stress of 4,000 psi.

 

Yielding of

a circular hole under

a hydrostatic stress

of 4,000 psi.

Fig. 6.13.20. Fig.

  

 

;‘

Fig.

  

 

6.16.20. Yielding of an

oval hole under a hydro-

static stress of 3,000

psi.

6.?3720. Yielding of a

solid specimen under a

vertical stress of 4,000

psi and a horizontal stress

of 1,333 psi.

 

6.14.20. Yielding of a

circular hole under a

vertical stress of 4,000

psi and a horizontal stress

of 1.333 psi.



CHAPTER VII

SUMMARY AND DISCUSSION

7.1 The Mechanical Properties

The stress strain relation of the salt in a uni-

axial compression test is a continuous curve from the begin—

ning to the point of failure, and as such the conventional

method of calculating the values of E and n cannot be

adopted. The curve is considered as a combination of several

straight lines, and the chord modulus is defined by the

slope of the straight line in any stress range. The strains

obtained by dial gages are consistently higher than those

obtained by SRe4 gages.

Average values of E are:

stress ran e Average E Average E

g (SRr4 gages) (Dial gages)

psi million psi million psi

0 to 1,000 1.408 0.4559

1.000 to 2.000 0.1913 0.1757

The values of Poisson's ratio based on SR—4 gages

are more than 0.5. This indicates that the material in—

creased in volume under uniaxial compression, due to
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separation of the grains. As an approximation based on

dial gages. it may be assumed that. n varies linearly from

0 to 0.5 as the stress increases from 0 to 1,500 psi. and

remains as 0.5 for stresses above 1,500 psi. Large values

of Poisson's ratio up to even 1.0 have been observed by

others.2 This phenomenon has been interpreted as being

caused by brittle fracture among the crystal grains result-

ing in volume increase of the specimen.

The average stress at failure in a uniaxial compression

test was 3,800 psi, with the corresponding principal strain

difference of 42,800 micro in./in. The salt used in this

investigation is considerably stronger than most other salt.

However. the greater strength appears to be due to its

pure and homogeneous character.

In a biaxial state of stress it may be assumed that

the material becomes plastic when the value of 00 reaches

4,000 psi or To reaches 1,885 psi. When To = 1,885. the

value of the function f(TO) in (4.1.10) becomes 41.300

micro in./in. and when 0 = 0. the value of (a? - 63)

2

becomes 43.800 micro in./in.

The principal strain difference at which failure

takes place in a uniaxial stress state and at which plastic

yielding begins in a biaxial stress state are nearly the
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same. Accordingly it seems reasonable to assume that in the

case of uniaxial stress states. failure occurs when the

maximum principal strain difference becomes 42.800 micro

inch per inch at the point of maximum stress concentration

on the boundary.

Some of the experimental data are given in Tables

7.3.1 and 7.3.2.

Table 7.3.1. Experimental data on uniaxial tests.

 

 

 

Solid Circular Square

Applied stress

at failure 3.800 2.850 2.830

(psi)

Relative

strength 1 0.75 0.745

Max. e1 - £2 mii 42,800 more than more than

at a lied stress at 0 = 23.300 at 35.000 at

pp 3.800 a = 2,750 o = 2,320

Area of hole at

failure 0.886 (of 0.987 (of

€- one test one test

Initial area of only) only)

hole

Theoretical max. 30 3.860

stress on hole (based on

boundary (elastic) rounding

off radius

= 0.06 x

length of

side)
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7.2 Nature of Deformation and Failure

In uniaxial compression the material failed by forma-

tion of almost vertical cracks followed by crumbling of the

sides. which indicated that the friction at the loading

surfaces had been reduced to a considerable extent. In

case of both circular and square openings under uniaxial

compression. failure occurred along planes passing through

the points of maximum stress concentration on the boundary

of the opening. and making an angle of 50 to 100 with the

direction of the applied load. This indicates that.the

behavior of the material around the openings is closer to a

uniaxial stress state.

The tests on circular holes under equal biaxial stress

showed sufficient justification to assume that the problem

can be treated as a thiCk walled cylinder under uniform

external pressure. The behavior as a circular cylinder was

observed up to a radius of about 1.2". The ratio of experi—

mental to theoretical values of principal strain difference

is between 0.645 and 0.792. Considering the assumption of

ideal behavior of the material. the results seem reasonably

good.

Biaxial test on the various openings indicated that

the strains are time dependent even at stress levels below
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the yield point.

7.3 Theoretical Analysis.

The plane stress problem of a circular hole in

an infinite medium subjected to equal horizontal and vertical

compression has been analyzed:hmcompletely plastic. elastic-

plastic and elastic states. assuming that it can be con-

sidered as a thick walled cylinder under uniform external

pressure. The octahedral shear strength theory of yielding

has been assumed in the analysis. The plane stress condition

may be recognized as an approximation to the actual condition

which is somewhere in between plane stress and plain strain.

A method of calculating f(To) of (4.1.10) in case of biaxial

compression has been given. As an illustration.the stresses.

in case of a cylinder of internal radius of l" and external

radius of 4" for various values of 2. have been calculated.

The elastic stresses in case of circular and square

openings under uniaxial compression. and in case of circular

and oval openings under hydrostatic and non—hydrostatic

compression have also been calculated.

It was found that Savin's29 solution for an elastic-

plastic problem of a circular opening under non-hydrostatic

compression cannot be applied in a case-when the elastic—
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plastic boundary is not a continuous curve around the opening.

A plane stress solution for the problem in elastic-

plastic stress state. of a thick walled cylinder under uni-

form external pressure. assuming yielding due to difference

of radial and tangential stress. was worked out. This solution

was found to be the same as the one for the plane strain

problem under the same assumption. Since the assumed

yield condition cannot be valid in the plane stress condition.

because oz stress is not an intermediate stress. the solution

is not incorporated in this thesis.

7.4 Evaluation of the Photo Stress Method

Prior to this investigation there was no information

available on the use of photo stress on brittle aggregate

materials like salt. It was first tried on plaster of Paris

and found unsuitable for it as the material failed without

any observable magnitude of strain in the photo stress

plastic. In one of the experiments the plastic became

separated from the salt surface under large strains and this

difficulty was overcome by making the surface more coarse

but uniform. The only limitation was the impossibility of

making any kind of measurements when the strains became

extremely large around the openings. In fact. there is
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no direct method of measuring strains at all in such a case:

but it can possibly be stated in terms of volumetric strain.

The method has been demonstrated to be quite successful

for laboratory determination of the strain distribution on

the entire region around the cavity.

It has been possible to observe the behavior of the

grains in relation to the whole mass and to reach conclusions

on the homogeneity and the isotropy of the material.

7.5 Behavior of the Material.

The behavior of the material has been examined from

the point of view of individual grains and that of the mass

as a whole. An examination of the stress strain curves of the

grains (Fig. 6.1.7) indicates that the stress strain re-

lations vary for different points on the same grain. But

the behavior of the grains is better understood from a study

of the isochromatics and isoclinics obtained for various

uniaxial and biaxial stress systems. Such a study indicates

that there is neither homogeneity nor isotropy when every

point on a grain and every grain in the mass is considered.

The change in the direction of principal strains at a

point with the change in magnitude of stress proves that

the grains undergo a combination of deformations. rotation
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and translation depending on the orientation of the grains.

the manner in which the grains are packed and the physical

properties of the grains. But the general distribution of

fringe pattern and of isoclinics gives sufficient justifi-

cation to assume statistical homogeneity and isotropy for

the mass.

The brittle behavior of salt is dominating the

behavior of the material in uniaxial stress state. Tri—

axial testing30 has proved that the material becomes plastic

in multiaxial conditions. The fact that the material in a

biaxial stress state did not fail when the maximum principal

stress reached 3,800 psi (which is the ultimate strength in

uniaxial compression) in a solid cube as well as around the

openings of different shapes. may be attributed to change of

material behavior. from brittle nature to nearly becoming

plastic. The same explanation may be applied to the fact

that the material demonstrated a tendency towards large

deformations at a higher stress level of 4,000 psi. Perhaps

the behavior may be better described by a Kelvin or a Maxwell

model. A precise formulation on the subject needs a more

detailed investigation of biaxial as well as triaxial testing.
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7.6 Relationship to the Behavior of Underground Formations

in General

Most rocks are made up of grains of more than one

polycrystalline material in varying proportions. According-

ly the degree of homogeneity and isotropy in some of the

rocks would be less than that of rock salt. Field measure-

ments38 of rock in Iraq showed that in a closely jointed.

finely crystalline limestone. the value of E was 1.2 million

psi parallel to bedding and 1 million psi at right angles

to it. The deformation characteristics of the rocks depend

on the two major factors. namely, the orientation of the

grains and previous stress strain history of the material.

Rock bursts in deep openings have beenattributed to release

0f conserved energy and the conserved energy depends on the

history of rock formation. Accordingly it would be un-

reasonable to expect that all rocks would behave like salt.

HOwever. the processes of deformation and the principles

of stress and strain distribution would be uniformly

applicable to all materials with the same degree of homo-

geneity and isotropy.



CHAPTER VIII

CONCLUSIONS

From the theoretical and experimental analysis

developed in the preceding chapters. the following con-

clusions may be arrived at.

l. The uniaxial compression test has indicated that the

stress strain relation of rock salt does not exhibit linearity

at any stage. A reasonable approximation to consider the

stress strain curve as a combination of several straight

lines has been made. The values of chord modulus of

elasticity E. obtained by such an approximation are

Average E Average E

Stress range (SR-4 gages) (Dial gages)

million psi million psi

0 to 1.000 1.408 0.4559

1.000 to 2.000 0.1913 0.1757

2. The values of the Poisson's ratio obtained from

SR—4 gages was greater than 0.5 throughout the test. whereas

in the case of dial gages. the values increased almost

linearly from 0 to 0.5 in the stress range of 0 to 1.500

psi and was larger than 0.5 beyond the stress of 1.500 psi-

149
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Such large values indicate that the volume change occurred

during the process of lateral deformation.

3. The average failure strength of the material was

3,800 psi. Both the values of modulus of elasticity and the

failure strength obtained in this investigation are higher

than those obtained previously.30 This increase is due to

the difference in the composition and the source of origin

of the salt.

4. Biaxial compression showed that the material has a

tendency to flow by yielding at equal horizontal and vertical

stresses of 4,000 psi. The corresponding values of octahedral

shear stress and the permanent strain along the direction

of the stress are 1,885 psi and 14.600 micro in./in.

respectively.

5. The theoretical analysis of stress and strain in

case of a circular hole under hydrostatic compression. in

plane stress condition. in plastic, elastic-plastic and

elastic states was made. The theoretical results compared

reasonably well with the experimental results. The elastic

stresses were calculated in case of circular and square

openings under uniaxial compression. and in case of circular

and oval openings under biaxial hydrostatic and non—hydro—

static compression. The theoretical and experimental results
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in elastic state did not show any agreement. This dis—

crepancy may be attributed to the manner in which the

elastic constants were calculated and partly to the low

sensitivity of the photo stress plastic for small strains.

6. The theoretical analysis of stress strain distri-

bution around the circular opening based on the assumption

of thick walled cylinder under uniform external pressure.

in plane stress condition has shown consistent agreement with

the experimental results in completely plastic condition.

The ratio of experimental to theoretical values of principal

strain difference in a completely plastic state was between

0.645 and 0.792. In this case the behavior of the specimen

as a cylinder was seen up to a radius of about 1.2"

£._
(a — 2.4).

7. The circular and square openings under uniaxial

compression failed by formation of well defined cracks and

with little deformation at an average applied stress of

2,840 psi. The circular opening under biaxial compression

of 4,000 psi tended to flow without collapsing. while the

oval opening under the same biaxial compression collapsed

by undergoing large deformations. This increase in the

failure strength and deformation is attributed to the change

in the behavior of the material from brittle to plastic.
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8. The photo stress method for analyzing strain distri-

bution surrounding the underground openings has proved

to be valuable in verifying the theoretical analysis.

9. The general distribution of the fringe pattern and

the isoclinics on the surface of the test specimens gave

sufficient justification for the assumption of statistical

homogeneity and isotropy. although the behavior of the

individual grains was quite random.



CHAPTER IX

FUTURE RESEARCH

During the course of the present investigation.

certain limitations were encountered and on that basis.

the following recommendations on future research are made.

1. The analytical results in the two dimensional

analysis did not show complete agreement with the experi-

mental results. Hence it is necessary to consider the

effect of the third principal stress and strain in order

to analyze the stress and strain around openings. This

would be possible by providing a testing device for

applying stresses and measuring strains in the third

principal direction.

2. An attempt at solving the problem of a circular hole

under uniaxial compression in elastic-plastic state showed

that it involved the solution of two non-linear partial

differential equations. These .could be solved by finite

difference method. Hence numerical methods of analysis

may be developed for determining the stress strain distri-

bution around various forms of underground openings in

uniaxial and multiaxial stress states.
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3. One of the problems of practical importance is the

case of multiple openings. encountered in mining operations.

Analysis of stress and strain and design criteria for such

openings may be developed.

4. The present investigation has shown that the strain

is time-dependent to a considerable extent particularly at

higher stresses. It would be more correct to consider

the deformation as a combination of instantaneous strain and

time dependent strain. Such a consideration would lead to a

more exact analysis of stress and strain around openings.

Hence Maxwell and Kelvin models may be made use of to

represent the behavior of salt.

5. The present investigation has shown that the large

field meter is inadequate to make point by point measurement

of large strains. Furthermore. it would be desirable to

separate the principal strains. Hence an oblique incidence

meter and a large field meter may be acquired in order to

make a more accurate analysis.
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