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ABSTRACT

THERMAL CONDUCTIVITY OF SOLID ARGON

BY

David Kent Christen

A cryogenic apparatus was designed and constructed to form

large-grained, essentially free-standing samples of crystalline

Argon. Subsequent in_§itu_measurements of the thermal conductivity

K(T) were made by a linear flow method, covering a temperature

range from the triple point, 83.8 K, to liquid He temperatures.

The low temperature data were highly reproducible within a single

run, while the high temperature data were reproducible among different

runs. The data were of sufficient density to enable quantitative

analysis in terms of present theory for heat transport in insulating

solids at low temperatures. In particular, we have performed first

principles calculations of the anharmonic crystal force contribution

to the thermal resistivity. These calculations are based upon best

known interatomic potentials, including three-body corrections.

They utilize a computer simulation of lattice wave interactions,

as described by first order perturbation theory. The results of

these calculations indicate that observed deviations from the T_1

.temperature dependence expected of K(T) at high temperatures can be

quantitatively explained in terms of the effects of thermal expansion

on the lattice vibrational frequencies. Furthermore, K(T) is found to

be a sensitive function of the exact functional form of the interatomic

potential energy. At low temperatures, where we fit our experimental

data with a relaxation time model, we discovered indications of a

lattice wave scattering mechanism which, at present, is not predicted

by simple models of phonon scattering by lattice defects. Manifestations
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‘00 of this anomalous mechanism were evident in the data from two separate

0
Ar samples.
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I. INTRODUCTION

A. General Properties of Rare Gas Solids

The chemically inert gas Argon was first identified by Sir

William Ramsay in 1894, resulting in the discovery of an entirely new

group of elements in the periodic table. ‘By the turn of the century

the so—called rare gases Helium, Neon, Argon, Krypton, and Xenon could

be separated into experimental quantities by the fractional distill—

ation of liquid air.l Argon is not truely a "rare gas" since it con-

stitutes about 1% of the atmosphere, and today it is readily attainable

and relatively inexpensive. The rare gases have many commercial uses,

and within the last two decades they have been recognized as valuable

materials for fundamental research. When the inert gases are solidified

by application of low temperatures, or in the case of He by low temper—

atures and high pressures, they assume a close—packed crystalline

structure. This is a direct consequence of the weak, short-range, and

essentially central nature of the van der Waals type interatomic forces.

Because of this inherent simplicity, solidified rare gases serve as

real prototype solids for which the theorist may develop microscopic

-descriptions of bulk properties. Unfortunately, the very nature of

these solids which makes them more amenable to theoretical description

results in certain physical properties which are experimentally

troublesome.

Direct evidences of weak interatomic forces are a low melting

temperature, high vapor and sublimation pressures, and a large ratio of

l



heat of fusion to heat of vaporization. This last property is a

consequence of the fact that there must be a relatively large change

in the total crystal energy upon melting, owing to the short—range

molecular force.

On solidifying a sample for experimental use, one must be concerned

with some further properties. Due to the shallow potential well in

which the atoms are bound, the probability of stray nucleation of

crystallites is large. Thus it is difficult to obtain large, single

crystals. Activation energies for various types of crystal defects

are small, and the thermal expansivity very large, compounding the

problem of maintaining a strain free sample. If an experimenter is to

physically manipulate a solid sample, he must also contend with a soft,

‘ . 3,4 ,
easily deformed spec1men at low temperatures. The rare gas solids are

electrically nonconducting and optically transparent because they have

closed electron subshells.

In spite of these properties, and because of them, there has been

much investigation into the crystallization process of these solids,

particularly Argon, and extensive study of the crystal character as a

5—12

function of various growth parameters.

B. Motivation for Heat Transport Study

. . . 2.4.13
At the time this research was begun, the well rev1ewed

collection of data for various rare-gas solid state properties revealed

several deficiencies. In particular, the temperature dependent thermal

conductivity had been measured by only three groups, with somewhat

different and rather confusing results.

Thermal conductivity, K(T), is defined by,



+ s

Q ,= -u<('r) VT. (1)

* —>

In this expression Q is the energy flux associated with the thermal

gradient VT.

14 made measurements for solid Ar, Kr, and NeWhite and Woods

above 2 K. In the high T region, where their data were sparse, they

observed K(T) & l/T . This T dependence was in disagreement with

the later results of Krupskii and Manzhellii,15 who observed a more

rapid decline in K(T) with increasing T. Furthermore, White and

Woods' data were much smaller at low temperatures than theory would

predict. Berne gt al.16 conducted a series of low temperature exper-

iments for solid Ar which were as much as an order of magnitude

larger. Unfortunately, their results were not well reproducible.

Even in the same run, measured values sometimes differed by a

factor of two.

From a knowledge of K(T), one can derive valuable information

regarding the nature of atomic vibrations. The rate at and manner

in which energy is transported from the hot to the cold end of a

dielectric solid is determined solely by the way in which the lattice

vibrational waves interact with one another, and with impurities,

various types of defects, and the sample boundaries. In various

temperature ranges, usually taken relative to the Debye temperature,

it is often true that K(T) displays a T dependence indicative of

a particular type of lattic wave scattering mechanism. Thus, K(T)

is a sensitive indicator of interatomic force anharmonicity, as well

as crystal perfection and purity.
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C. Thermal Conductivity

The mechanism for heat conduction in an insulator can be under-

stood in_two ways. One way, the singe particle approach, considers

a single atom and analyzes its motion as governed by that of all the

rest}7 The other way, which we will employ here, considers the

collective normal mode oscillations of the entire solid. These are

quantized and regarded as a system of excitations call phonons. In

this latter view, if the interatomic forces of a perfect and infinite

crystal are purely harmonic (i.e., bilinear in atomic displacements

from the equilibrium), then there is no energy transfer between normal

mode waves, and energy would flow unattenuated at approximately the

speed of sound. A real solid, however, is considered to be a system

of interacting phonons of finite lifetime. For this model one may

obtain an expression for the thermal conductivity which is analogous

to that of a classical gas.l8

K(T) = 1/3 Cv v l. (2)

Here 1 is the phonon mean free path, CV the specific heat at constant

volume, and v some average phonon velocity. Although not strictly

accurate in general, this simple relation explains some qualitative

features of K(T).

For temperatures greater than or comparable to the Debye temper-

ature, the dominant phonon scattering mechanism is the so—called

Umklapp type phonon-phonon interaction described by Peierls.19 This

interaction is due entirely to the anharmonic terms which result when

one expands the crystal potential in a Taylor series of small atomic

diaplacements from equilibrium. To lowest order, this effect predicts

a three—phonon process mean free path proportional to l/T, with a

magnitude determined by the scattering strength.



In the opposite limit, at very low temperatures, phonon-phonon

scattering is negligible and the mean free path in a perfect, but

finite, sample is determined by its size. In this case, phonons

propagate unattenuated to the surface, where they are considered to be

absorbed and re—emitted. Therefore, 1 is temperature independent

.nul K(T) varies as the specific heat, K(T) u T3 . For samples of

lesser quality k(T) may display a T dependence characteristic of some

type of strong defect or impurity scattering. if, for such a process,

2, 0: T"n , then K(T) at 1‘3"” . For example, ,9, a: T_1 for scattering

due to dislocations, in which case K(T) a T2.

D. Purpose

In the present thesis, we prepared samples of solid Ar under

controlled crystal growth conditions, and made subsequent in_§itu

measurements of }<(T) from approximately 2 K to the triple point

(83.8 K). Argon was the material chosen to be studied for the

following reasons: A triple point temperature of 83.8 K enables one

to employ the inexpensive cryogen liquid Nitrogen (boiling point 77.3 K)

during the prolonged periods of sample solidifications. The natural

Argon gas obtained by fractional distillation of air is relatively

inexpensive and very pure (the research grade Ar used for these

experiments contained a total impurity content of less than lOppm).

Normal Ar is nearly isotopically pure. The isotope Ar40 constitutes

99.6%, the remaining isotopes being Ar36 and Ar38. Thus, the concern

for mass defect phonon scattering is minimized. The interatomic

potential for Ar, corrected for three-body forces, is the best known

of all the rare gases, as displayed by its ability to predict

accurately several solid state, liquid, gas properties.21’22
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This provides a more meaningful comparison to current theoretical

models for heat transport.

The data obtained from these experiments are compared to results

given by various semi-quantitative models for phonon scattering. In

addition, we have performed first principles calculations of the

three-phonon anharmonic contribution to the thermal resistivity. The

normal mode frequencies and anharmonic coupling constants for an fcc

lattice are computed using the best known interatomic potential,2 as

well as the well-known Mie-—Lennard-Jones 6-12 potential. The results

are compared with the present data as well as data which became avail-

able during the course of this work.23



II. THE EXPERIMENT

A. Cryogenic Apparatus

To facilitate the solid Ar sample preparation and subsequent

13 gigg thermal conductivity measurements, a cryogenic apparatus was

designed and constructed. This device mounted in a conventional double

dewar system to enable cooling by either liquid N2 or liquid He bath.

A non-scale, sectional view of the cryostat sample chamber is shown in

'Figure 1.

1. Description of Apparatus

The outermost glass-walled exchange gas chamber facilitated a

coarse temperature control by means of a variable He gas pressure. The

He exchange gas admitted to this chamber served to transport heat from

the sample into the surrounding cryogen at a rate which could be some-

what controlled by the gas pressure. Stranded Cu braid, soldered into

the upper Cu flange, aided this process by providing a large effective

area exposed to the He gas. The exchange gas was admitted directly

from a source gas cylinder via a pressure regulator and needle valve.

Its pressure was monitored by two Wallace and Tiernan mechanical gauges

for pressures above 1 Torr, and by a Veeco thermo-couple gauge for

pressures below 1 Torr.

The glass-walled vacuum chamber contained 1 Torr He exchange gas

during the crystal growth stages of the experiment, and was evacuated

during thermal conductivity measurements. A vacuum of about 10—7 Torr,

as measured by a cold cathode ionization gauge, could be maintained in

7
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the vacuum chamber by means of a pumping station. This station consis-

ted of an oil diffusion pump with liquid N2 cold trap, a rotary backing

pump, and a rotary roughing pump.

The Cu radiation shield shown in Figure 1 served to prevent

excessive radiative transfer of heat from the Ar sample to the bath.

Although negligible at all but the highest temperatures, this effect

could cause errors in the measured thermal conductivity at temperatures

near the Ar melting temperature. The Cu shield contained narrow slits

covered with transparent Mylar to facilitate visual examination of the

sample.

The Ar sample tube itself was fabricated from sheet Mylar of 0.005"

thickness. We formed a cylindrical tube, of diameter approximately 1 cm,

from the Mylar sheet by wrapping it around a solid Teflon mandrel, and

securing the seam with epoxy. This thin-walled tube was then cemented

with epoxy into a small Al block at the lower end, and into a metal

bellows at the top. The metal bellows was soldered with the low temper—

ature solder, Cerro-bend, to the upper Cu block. This configuration

allowed relative vertical motion between the fixed upper Cu block and

the sample tube by means of expansion and contraction of the bellows.

The high purity Ar gas used to condense a crystal was admitted to

the sample tube through stainless steel gas-handling lines. A Wallace

and Tiernan pressure gauge served to monitor its pressure. The gas

source was a steel cylinder equipped with pressure regulator and

needle valve for flow control. All gas samples were derived from the

same tank of Matheson research grade Argon. Mass spectrometer analyses

provided with the source tank indicated a total of less then 10 ppm

impurity content, with the principle impurities being 02-—3.0 ppm,



ll

H20--3.5 ppm, and N2--2.0 ppm.

Wherever possible, stainless steel was used in this gas circuit

because of the relatively low binding energy of gases to stainless

steel.24 This alleviated the problem of sample contamination from out—

gassing of adsorbed air. -Conventional copper pipes served for all

other gas handling lines.

When not in use, the Ar gas circuit was kept either at a slight

over pressure, or completely evacuated. Before each run, we alternately

evacuated and flushed the system with fresh Ar gas.

2. Temperature Measurement

It was necessary to know precisely the temperature of the Argon

sample during crystal solidification and for thermal conductivity

measurements. For this purpose, calibrated Scientific Instruments Inc.

intrinsic Ge resistance thermometers were imbedded in drilled cavities

in the upper and lower blocks, and were firmly secured there with vacuum

grease. In addition, uncalibrated Ge and Pt thermal sensors occupied

cavities in the upper block. These sensors provided indication of

thermal changes for the purpose of temperature control.

A Leeds and Northrup K-S potentiometer was used to measure the

electrical resistance of these thermometers, and thus provide the temper-

ature. A four—lead configuration was used for each thermometer——two

leads carried a known excitation current of loollamps (for T25 K) or

lOITamps (TsS K), and the remaining tWo leads were run to the potent-

iometer to measure the resulting potential drop across the thermometer.

To compensate for possible thermal e.m.f.'s along the leads, all

measurements were repeated with the excitation current reversed, and

the two results were averaged. Figure 2 is a schematic representation

of this layout, including the circuitry for the lower block heater.



R
1

R
:

R
»

 

-
6
8
0
-
7
8
0

K
O

=
0
-
1
0
0

K
9

P
o
t
e
n
t
i
o
m
e
t
e
r

=
0
-
1
0
0

K
9

A
U
X
.

=
0
-
1
0
m

E
M
F

E
M
F

9
1

1

 

o
l
t

?
>—

\O

 

 

 

 
 

 

uorsroazd

U OI

 

   
 

 

xoa 1011u03

 

 

 

 

 

 
 

 
 

 
 

v
v
v
v

I

1
0
0

9

p
r
e
c
i
s
i
o
n

 
I

“I
VS

—t
ie

 

 
 
  
 

 
 

  

 

 

 
  

 

 

 
 

 
 

L‘
i
1

 
 

 

 
 

F
i
g
u
r
e

2
:

A
s
c
h
e
m
a
t
i
c

d
i
a
g
r
a
m

0
f

t
h
e
t
h
e
r
m
o
m
e
t
e
r

a
n
d

l
o
w
e
r
b
l
o
c
k

h
e
a
t
e
r

c
i
r
c
u
i
t
s
.

12



l3

Calibration of the lower Ge thermometer from 1.5 K to 100 K was

provided in table form by Scientific Instruments, and that thermometer

provided the standard to which we calibrated the upper thermometer.

The SI calibration was performed against a secondary N.B.S. Ge

standard thermometer. Repeatability after thermal cycling was reputed

to be within 0.5 mK.

To facilitate temperature interpolation between the 5 K intervals

provided in the SI calibration table, we made least squares splined

fits to the calibration data over the entire temperature range. Using

a quadratic relation of the form,

T-l 2
= a0 + al finR + a2 (lnR) ,

sets of constants a0, a1, and a2 were determined for over-lapping

temperature intervals of about 15 K. All temperatures were then computed

from the above equation by substituting the measured thermometer resist-

ance R, and the appropriate set of constants.

Precision of the temperature determinations varied from a deviation

of 10.1 mK at liquid He temperatures, where the Ge thermometers are

very sensitive, to one of about $3.5 mK at 80 K. We estimate the total

accuracy, accounting for possible calibration errors, to be 1:0.001T or

better over the entire temperature range of interest.

To insure that the thermometer temperatures were not falsely

elevated due to conduction of heat down the electrical leads, which

leave the cryostat at room temperature, all leads used were #36 gauge

Cu wire. Furthermore, the leads were anchored to the upper block as a

heat sink. This was accomplished by wrapping the leads around the

upper block many times and coating them with varnish.
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3. Temperature Control

During sample solidification (a process which generally extended

over a period of about three days) and especially during thermal con-

ductivity measurements, it was necessary to maintain the Ar sample at a

fixed temperature. This was accomplished in three related ways: First,

by pumping on the cryogenic liquid in the dewar vessel (the bath temp—

erature is determined by its vapor pressure). Second, by judiciously

adjusting the He exchange gas pressure in the exchange gas chamber.

Third, by the use of a sensitive electronic temperature controller in

order to balance heat loss to the bath with joule heat input.

For temperatures in the range 63-77 K, regulation of liquid N2 vapor

pressure provided reasonable stability. This was accomplished very

simply by pumping with a mechanical vacuum pump through a manostat type

pressure regulator. Bath pressures were monitored by a Hg manometer.

In most cases, the manostat could maintain the liquid N2 bath pressure

within i0.l Torr, providing temperature control to i0.02 K.

In a similar manner, vapor pressure regulation of a liquid He bath

provided temperatures below 4.2 K. At the lowest temperatures, liquid

He was condensed directly into the exchange gas chamber, and pumped to

as low a pressure as possible by a large capacity mechanical pump.

In the temperature range between 4.2K and 63K, where there is no

convenient cryogen, we employed a liquid He bath. With the exchange

gas chamber nearly evacuated, the sample temperature was maintained

constant by the temperature controller. In all cases, the sample temper-

ature was kept marginally higher than the surrounding, with the elec-

tronic device providing the necessary power to offset the thermal losses.

This procedure was found to give finest temperature control.
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The temperature controller, model 3610, used for this experiment

was manufactured by Scientific Instruments. Its principle of operation

is straightforward. An internal 1 kHz oscillator drives an ac Wheat-

stone resistance bridge, one leg of which is either the negative temper-

ature coefficient Ge sensor, or the positive temperature coefficient

Pt sensor, which is imbedded in the upper Cu block. During the bridge

balance condition (thermal equilibrium), the sensor resistance equals

that of the bridge's other leg, which consists of a six decade (0-9999.99Q)

precision variable resistor. If the temperature of the upper block de-

viates from that desired, the bridge is out of balance, with its output

signal being either in or out of phase with the oscillator signal, de-

pending on whether the temperature deviation of the sensor is above or

below the set point value. This out-of—balance signal is then amplified

and phase analyzed relative to the oscillator signal. The difference

in phase is used to produce a dc voltage which is amplified to control

the power output to the external heater wire wound onto the upper block.

Thus the power restoring the block to thermal equilibrium is proportional

to the deviation from the set point. Slight modification of the bridge

circuit and output stage were made for our application.

In practice, short term control of about :0.01 K was maintained

during crystal growth, with overnight stability to within 10.1 K.

During low temperature measurements, attended use of the controller

resulted in deviations of less than i1 mK.
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B. Sample Preparation

1. Crystal Growth Technique

The technique used to crystallize an Ar sample was similar to that

7’10’11 Argon gas is condensed to the liquidemployed by other workers.

phase, and then slowly solidified by preferentially cooling below the

triple point. The procedure is a modified Bridgman technique, i.e. the

sample directionally solidifies from the bottom to the top. This

technique was chosen because it has been verified that large grain

sizes are obtained in this way, as opposed to direct solidification

from the vapor, for example.5’7

The evacuated Mylar sample tube was maintained at about 84 K, just

above the Ar triple point temperature, 83.8 K, by using: 1 Torr He

exchange gas in the vacuum chamber, several Torr in the exchange gas

chamber, 1 atm. of gaseous He in the inner dewar, and liquid N2 in the

outer dewar. Even though all the temperature control occurs at the upper

Cu block, essentially no thermal gradients were present along the sample

tube. This was due to the presence of the stabilizing He exchange gas

and the fact that the good thermally conducting Cu shield defined

essentially a thermal equipotential.

Argon gas was then admitted to the sample tube via the stainless

steel inlet line and the capillary channel through the upper block. At

a pressure of about 600 Torr (Ar triple point pressure = 516.8 Torr),

the Ar would freely condense to the liquid. This process was continued

for about fifteen minutes until the sample tube was full of liquid Ar

at 84 K.

At this stage, the needle valve in the upper block was closed, and

preparation made to employ the moveable heater collar shown in Figure 1.
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The collar's i.d. was slightly larger than the tube, and it was wound

with 100 Q of #36 gauge CuNi heater wire. The collar was suspended from

above by two cotton threads which served to hoist it vertically at a

fixed rate. This rate was determined by a 2 rpm synchronous motor in

conjunction with a gear box of adjustable ratio. The driving mechanism

was situated on a platform outside and above the cryostat.

In the next stage of sample preparation, the collarwas positioned

2-3 mm above the tOp of the lower block and supplied with a heat input

of about 10 mwatt. The temperature controller set point was then

slowly decreased until solid began to form on the lower block. A solid

layer slowly grew to a thickness of about 0.5 mm, at which level the

liquid Ar was locally maintained at a temperature above 83.8 K by the

heater collar. Curiously, solid did not form for quite a distance above

the collar, even though the upper block and surroundings were below the

triple point. We surmised this phenomenon must have been due to warm

exchange gas convection currents rising upwards from the collar.

In this static situation, the seed of solid Ar on the lower block

was allowed to anneal for a period of 12-24 hrs. at a temperature just

below the triple point. In this manner, presumably the larger cry-

stallites would grow to absorb the smaller ones, until a lowest energy

configuration would result. Then a single crystal orientation would be

present at the solid—liquid interface.

To initiate crystal growth from the existing seed, the motor drive

was activated and the heater collar hoisted at the rate of 0.7 mm/hr.

The liquid-solid interface would slightly trail the bottom of the collar,

with the solid surface slightly convex. Besides totally determining the

rate of growth, the heater collar served another important purpose.
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Since the thermal conductivity of Mylar (or almost any substance which

could conceivably be used as a sample tube) is larger than that of

solid Ar near its triple point, the heat of fusion could be conducted

away more rapidly through the sample tube walls than through the existing

solid. Thus, crystallites would tend to nucleate on the sample tube

walls, creating new grains and a polycrystalline sample. Under these

conditions, one would observe the solid surface to be concave toward

the liquid. This problem is compounded by the fact that the nucleation

probability for Ar is relatively larger than that of other substances.

See Appendix A. By keeping the walls of the Mylar sample tube slightly

warm in the vicinity of the interface, the heater collar alleviated

this problem.

The slow growth rate of 0.7 mm/hr. was a practical consideration

based upon previous study. It has been found, for example, that grain

size is roughly inversely proportional to growth rate.6 Apparently, a

significant amount of surface migration and annealing can occur at rates

this slow, and this is some indication that the crystal impurity content

is substantially reduced by the zone refining effect of slow directional

solidification.28

The solidification procedure was continued for the length of the

sample tube, about 3 cm. As the solid neared the upper end it was

necessary to stop the heater collar and condense more liquid, since at

that stage the liquid level was below the bottom of the upper block. This

drop in liquid level had occurred continuously during the growth process,

and could be related quantitatively to the difference in liquid and solid

density; (DSI’D£ ZIJIS). The remaining liquid Ar was then slowly

frozen into contact with the upper block, and the entire sample left to

anneal over night at about 82—83 K.
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During this entire solidification process, all vacuum pumps and

unnecessary mechanical devices were shut down to reduce vibrations, and

avoid their possibly deleterious effects upon sample quality.

There has been some indication that a metastable hcp crystal

structure can occur in solid Argon, especially when the impurity content

6’25 In fact, the simplest and mostis high or the growth rate fast.

straightforward interatomic potential functions theoretically predict

hcp to be the slightly more energetically favorable structure, despite

X-ray confirmation of an fcc lattice.7 One can simply check for the

possibility of hcp domains by testing for optical birefringence. This

test was made for several samples using a white light source and two

polarizing filters. In all cases, the samples were observed to produce

sharp extinctions at 900 crossed filter positions only, implying optical

isotropy and hence a cubic structure.

2. Sample Manipulation

With the Ar completely solidified and at 80-82 K, we opened the

upper block needle valve and reduced the Ar supply pressure slightly in

order to sublime away the excess solid condensed in the inlet lines and

in the convolutions of the bellows. This was effected by intermittently

reducing the supply gas pressure to about 10 Torr below the equilibrium

vapor pressure. By visual examination, it was apparent when solid would

begin to disappear from around the sides of the portion of the upper

block which protruded into the sample tube. At that time, the sublimation

process was stopped, and the needle valve again closed.

At that stage, one of three approaches was taken: (1) Thermal

conductivity measurements were initiated and conducted only over the

Liquid N temperature range from about 83-64 K. (ii) The crystal was

2
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"sacrificed" in order to study its grain size by large scale sublimation

of its surface. (iii) Tedious and careful cool-down procedures were

begun to enable low temperature thermal conductivity measurements on

essentially free-standing samples.

Procedures (ii) and (iii) are described presently, while (i) will

be detailed in section C.

It has been recognized that many gross crystal characteristics,

in particular grain size and number, can be studied, without resort to

X-ray examination, by the method of thermal etching. Rare gas solids

are particularly well-suited for this technique because of their large

sublimation pressures. In this process, atoms which are on highly dis-

ordered sights tend to evaporate preferentially due to their relatively

weaker binding energy. In addition, grain boundary self-diffusion

activation energies are typically a factor of two less than those for

the bulk, so that rapid mass diffusion along the boundaries and onto

the adjoining crystal surfaces occurs. This creates a lower surface

free energy at the expense of mass within the grain boundaries.29 The

resulting mass defective regions then appear as etch lines on the sample

surface.

At temperatures about 82 K the equilibrium sublimation pressure

of solid Ar is well above half an atmosphere. By slowly reducing the

pressure over the solid Ar sample by about 10 Torr, we could effect a

rather rapid sublimation process which revealed the resulting etch lines

described above.

At first the solid could be seen to detach itself from the Mylar

growing tube progressively from top to bottom. Once detached,further

sublimating resulted in the etch patterns. In all cases the observed
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grains were quite large, with from three to seven grains apparently

comprising the entire sample. This estimate could be made fairly

reliably since the grain boundary lines could often be visibly followed

completely around the sample due to its optical transparency. On two

separate occasions, we successively removed layer after layer of solid

by extended sublimation. In this way the grain boundaries were traced

in their progression through the solid. Extremely rapid pumping resulted

in several other types of surface features which have been extensively

studied and documented.5’6 In particular, surface decoration "rosettes"

appeared upon very rapid sublimation, and propagated into the solid,

forming gross defects. Macroscopic void-like defects of a similar

nature also could be produced by sudden and rapid cooling. The two

effects are probably related since rapid pumping over the sample must

cool the surface quickly due to the heat of sublimation; thus the strains

produced in both cases are of a common origin.

To utilize a sample for low temperature thermal conductivity

studies, it was necessary to slowly cool the solid from its triple point

to liquid He temperatures. Ideally this must be done without inducing

unnecessary elastic strain, and without permitting the ends of the crystal

to lose intimate contact with the upper and lower blocks, which served

as the heat source and sink during thermal conductivity measurements.

Unfortunately, solid Ar undergoes a volume contraction of almost 9%

when cooled to liquid He temperatures (this is about nine times that of

Cu, for example, when cooled from room temperatures). Since the Mylar

sample tube contracts at less than half this rate, one expects that the

Ar would contract in length about 1 mm more than the Mylar during cool-

down. This, coupled with the fact that solid Ar is rather plastic near
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. its triple point, poses the additional problem of plastic deformation

due to the constraints of the sample tube. To alleviate this latter

problem,‘we attempted to keep the sample slightly separated from the

growing tube by a sublimation process similar to that described in the

previous section.

The metal bellows, which were positioned such as to allow relative

vertical motion between the sample tube and the upper block, served the

important function of preventing separation of the Ar sample from either

the upper or lower blocks. This was accomplished in the following way:

The number of convolutions was chosen such that the bellows possessed a

characteristic spring rate. This rate was such that an internal pressure

of magnitude approximately equal to the triple point Ar vapor pressure

resulted in bellows expansion of at least 1 mm. Thus, the solid

initially was formed under conditions of bellows expansion. With de-

creasing temperature, the rate of solid Ar thermal contraction is slower

than that of the vapor pressure drop (which is, in fact, exponential).

Therefore, there was always some net spring tension applied to the

surface of the Ar sample due to the bellows. Some detailed features

regarding the effect on the sample of this aspect of the cool-down

procedure are given in Appendix B.

With the sample pre-cooled to 78 K, we began the cool-down procedure

by transferring-liquid He into the inner dewar immediately after

evacuating the exchange gas chamber to a pressure of only a few microns.

With liquid He in the inner dewar, the He exchange gas chamber pressure

was undetectable (less than 1 micron), owing to cooling and to adsorption

of the cold chamber walls. Nevertheless, enough thermal contact was

present to necessitate power input from the temperature controller. The
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He gas pressure of 1 Torr which was present in the vacuum chamber before

the transfer, dropped to a value of about 100 microns with the He bath

present. We observed the lower block temperature to slowly decrease

to about 0.2 K below that of the upper block, indicating the presence

of a small temperature gradient along the sample length. This gradient,

which was due to the large temperature differential from sample to bath,

could be removed by supplying a small current to the lower heater, or

by reducing the He gas pressure in the vacuum chamber; however, a slight

gradient proved to be desirable. since it discouraged vapor phase mass

migration to the upper block and bellows dead volume.

Cooling from this point on could be achieved in principle by a

steady reduction in the temperature controller set point. During the

earlier stages of this research, this operation was carried out manually.

It soon became apparent, however, that this procedure was prohibitively

tedious, and we were plagued by thermal instabilities which developed

as the liquid He bath level fell. These instabilities were due to

changing thermal loads induced by desorption of He gas from the chamber

walls. In addition, upon re-transferring liquid He, we would unavoidably

warm the sample somewhat by the initial flow of warm He gas from the

transfer tube. The Ar sample would not tolerate these rapid temperature

fluctuations, as was immediately apparent by a generally cloudy appear—

ance, and ultimately by a very low value of the measured thermal con-

ductivity, indicative of a highly defected solid.

For the most part, these problems were remedied by modifying the

apparatus geometry, and by carefully pre—cooling the He transfer tube

before each transfer. In addition, we automated the cool-down procedure

by devising a motor driven potentiometer which would decrease the
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temperature controller set point at a predetermined rate. The same

synchronous motor and gear assembly used for crystal growth was made to

drive a 0-259 ten—turn precision potentiometer which we shunted across

the control arm of the temperature controller bridge internally. In this

way, precise cooling rates of about 1 K/hr. could be steadily maintained.

The cooling rate of l K/hr. was representative of what we found to

be a practical upper limit in order not to severly strain the sample

due to differential thermal contraction. In the course of this work,

it became apparent that a reasonable criterion for the strain condition

of the sample was its optical clarity. Several specimens became milky

in appearance at temperatures from 30-50 K, and in all these cases dis-

played low thermal conductivity values at liquid He temperatures. In

spite of our attempts, we were unable to obtain a sample that did not

possess at least some surface defects at low temperatures. Visual

inspection of these solids indicated, however, that the visible defects

were confined to the surface, and were probably due to strains produced

by surface bridging to, and subsequent contraction from, the specimen

tube wall.

C. Thermal Conductivity Measurement

To conduct thermal conductivity measurements on a solid Ar sample,

we first evacuated the vacuum chamber to as low a pressure as possible,

while retaining only enough He exchange gas in the exchange gas chamber

to facilitate accurate temperature control. At liquid He temperatures

the vacuum chamber pressure was typically 1X10”7 Torr, and at Liquid N2

temperatures it was about 2-3X10-7 Torr.

Measurements were made by first allowing the lower end of the sample

to thermally equilibrate with the temperature-controlled upper end.
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Barring inherent heat leaks to or from the lower block, the sample

temperature would eventually become constant. We then recorded the

temperature of the lower block. Maintaining the upper block at the

same fixed temperature, a known rate of joule heat was put into the

1009 lower block heater. This heater possessed a four—lead configur-

ation so we could make electrically unperturbed measurements of the

voltage drop across it by means of the L & N K-S potentiometer. The

heater current was measured by making a potentiometric measurement of

the voltage across a precision 109 resistor wired in series with the

heater (See Figure 2). Knowing both the voltage across and current

through the heater, we could accurately compute the heat input, 0 = I'V,

to the lower end of the sample. After a sufficient time, a condition of

steady state heat flow was reached whereby the lower end of the sample

was at some temperature AT higher than that of the upper end. Measuring

the new lower block temperature, we could then compute the thermal

conductivity, which is given by,

K(T) = Q (L/A)/AT. (3)

In Equation 3, L/A is a geometric factor equal to the ratio of length

to the cross-sectional area of the sample.

The sample length L was measured optically with a Wild cathetometer,

while the cross-sectional area A was taken to be that of the Mylar

sample tube, appropriately corrected for thermal contraction. We cal-

culated the temperature differential AT using the analytical represent-

ation of the calibration table described in section A.2.

It should be noted that the technique described above for deter—

mining the thermal gradient requires precise calibration of only one

thermometer-~the one mounted in the lower block. Temperature sensors
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in the upper block need only indicate thermal changes, in order to

facilitate keeping the upper block temperature constant during the

course of the two-step measurement procedure.

For fixed sample geometry, the size of the temperature differential

AT is, of course, determined by the thermal conductivity K(T) and the

rate of heat input 0. If one applies only a small rate of heat, the

errors in the measurement of AT will be correspondingly larger since this

quantity is itself a small difference between two relatively large

numbers (i.e. the difference between the initial and final absolute

temperatures of the lower block). On the other hand, a large Q and AT,:

which can be accurately measured, may cause errors in K(T) in two ways.

First, the pointwise, linear nature of Equation 1 may not be valid due

to the size of VT; in this case, the inclusion of higher order terms in

VT would be necessary. This problem is of fundamental origin, and will

be discussed in Section IV. Second, if K(T) is a rapidly varying function,

its variation over the length of the sample can cause errors in the

effective value given by Equation 3, which is assumed to be evaluated

at the average temperature of the sample. This problem is discussed

quantitatively in Appendix C.

In any case, we tested the severity of this problem by determining

the thermal conductivity at a given temperature for several different

heat rate inputs. We observed no systematic dependence of K(T) on AT,

and the resulting deviations were within the estimated experimental error.

Some representative values of the temperature gradients used for

these studies range from about 3 mK/cm at the lowest temperatures to

about 67 mK/cm near the triple point. A possible correction to

Equation 3 may be necessary in the value of the heat rate§2 in order to
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compensate for heat transport from the lower block by means other than

the Ar sample. Possible sources of such a spurious heat loss might be:

(1) Thermal conduction of the walls of the Mylar sample tube. (ii) Con-

duction of the residual gas in the vacuum chamber. (iii) Radiation from

sample to surroundings. (iv) Thermal conduction of the electrical leads

from lower to upper block.

A non-trivial contribution from any of these mechanisms would

result in a falsely elevated value of the measured thermal conductivity.

In the liquid He temperature range, we ascertained that an upper limit

to this error was about 0.3%. This result was derived from a direct

measurement made during an unsuccessful run in which the Ar sample

pulled away from the heat sink. The anomalously small measured thermal

conductivity was apparently due to the parallel conductors listed above

plus whatever small contribution the sample made. That this is true

was verified by an observed fifty fold increase in the thermal con—

ductivity after admitting 5 Torr of He gas to the sample tube.

Approximate calculation indicated that (iv) about could necessitate

a correction of at least 10% in the high T range, while the other three

effects were found to be negligible. It was difficult to measure this

stray conductance directly, however, because of the extremely long

thermal relaxation time at high temperatures. Our procedure, therefore,

was to measure the time dependence of the thermal relaxation and from

it infer the contribution of the lead conductance. We give a descrip—

tion of the principle and technique in Appendix D.



III. EXPERIMENTAL RESULTS

A. Data

In all, thermal conductivity measurements were carried out on seven

separate solid Ar samples. The data obtained were highly reproducible

within a single run, as was verified by sweeping through the temperature

range 2-10 K several times with each sample used for low T measurements.

This procedure was feasible at low temperatures since thermal relaxation

times were short, and measurements could be made within a matter of

minutes.

The experimental data are given in Table l, and in Figure 3 we

present a plot of our unsmoothed data, illustrating the temperature

dependence of the thermal conductivity for the seven Ar samples.

Figures 4 and 5 are similar graphs, including the results of other

14-16’23’48 The data of Krupskii and Manzhelii (K-M),15 shownworkers.

in smoothed form, were obtained using an experimental geometry and growth

technique similar to ours. Their specimens were probably very poly-

crystalline, however, since they had no provision for inhibiting stray

nucleation on the glass growing tube walls during crystallization.

Furthermore, at the lower temperatures they relied upon He gas within

the sample tube to provide heat contact between the sample and the thermal

sink or source, since the latter objects wenaspatially fixed and could

not compensate for specimen contraction. This series thermal resistance

was not accounted for and could conceivably cause errors in the computed

sample thermal conductivity.

28
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TABLE 1

Runs 2, 3, 4, 5

Run 7

Run 8

T(K)

75.62

80.50

82.42

82.40

9.96

10.90

13.57

5.17

5.26

5.27

5.35

5.50

5.57

5.58

5.69

5.84

5.85

5.85

5.86

5.98

6.01

6.07

6.08

6.12

6.15

6.27

6.41

6.55

6.56

6.60

6.69

K(T) (mw/cm K)

3.78

3.00

2.73

1.89

65.93

54.67

34.29

60.89

58.78

59.19

58.71

59.75

61.01

62.70

62.12

63.99

64.38

62.52

61.11

65.55

64.984

71.78

63.92

65.58

63.71

63.94

64.49

65.74

64.27

64.13

64.21
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TABLE 1 (cont'd)

T(K) K(T) (mw/cm K) T(K) K(T) (mw/cm K)

Run 8

4.88 52.43 6.81 63.89

4.94 56.90 6.82 63.65

4.99 56.25 6.84 64.82

5.00 54.75 6.96 63.09

5.13 57.82 7.06 63.70

7.12 63.31 11.27 39.12

7.21 62.81 12.13 34.90

7.51 60.76 15.08 31.60

7.91 57.97 16.92 23.68

7.93 57.37 20.16 18.32

8.03 60.87 24.69 15.19

9.05 52.35 44.35 6.92

9.61 47.78 65.43 4.23

10.17 44.10 77.74 2.99

81.93 2.28

Run 10

2.12 19.83 5.68 73.69

2.22 20.90 5.98 75.79

2.49 23.91 6.00 75.74

2.62 27.43 6.02 76.58

2.85. 30.15 6.31 75.06

3.03 33.82 6.72 72.57

3.33 37.23 7.33 69.32

3.95 50.30 7.51 68.08

4.49 57.79 8.86 53.99

4.92 63.81 10.82 43.95

5.21 70.64 13.41 31.03
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The data of White and Woods (W-W)14 came from polycrystalline

samplescontained in a metal specimen tube. It is acknowledged by W—W

that their samples were probably in a highly disordered state at the

' lower temperatures due to the constraints of the metal tube and their

relatively rapid cooling rates.

The recent work of Clayton and Batchelder (C-B)23 was carried out

on solid Ar samples grown under conditions of high pressure. In this way,

their measurements, employing a radial heat flow method, could be made

on samples of essentially constant molar volume,and thus the v01umetric

dependence of K(T) examined. To facilitate comparison without data, we

have included from their results the data from a sample whose molar volume

was 22.53 m1, approximately that of free-standing Ar at 00 K.

The data of Berne, Boato, and Depaz (B-B-D)16 is from the three

polycrystalline samples for which they obtained the best reproducibility.

Their experimental procedure involved extracting the sample from its

specimen tube and attaching spring loaded clamps connected to the cold

point and two gas thermometers. Thus measurements were made only at low

temperatures, where the vapor pressure is negligible. One specimen they

examined exhibited a much larger thermal conductivity (about 600 mw/cm K),

than shown on Figure 5, but measurements made at the same temperature

sometimes differed by a factor of tWo, a phenomenon which B-B-D attributed

to problems of thermal contact.

The single determination of Daney48 is included since it was

obtained under equilibrium conditions at the triple point by relating

the freezing rate of solid from the melt to the thermal conductivity,

other necessary parameters being known.
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B. Errors

1. High Temperature

The error bar shown in the high temperature range of Figure 2 is

representative of what we estimate to be a maximum experimental error of

10-122. The major contribution to this error is an uncertainty as large

as 7% in the temperature differential£\T.

In Chapter II Section A.2 we noted that the precision of temperatures

measured with the Ge thermometer was limited to about t3.5 mK at temper-

atures much above 60 K, due to the loss of sensitivity with increasing

temperature. Since the difference between two temperature measurements

determines AT, then a possible error of about £7 mK can result.

In addition, in Appendix D we described quantitatively the problem

of very long thermal relaxation times at high temperatures. For example,

before conversion from a Cu to an A1 lower block, we were experiencing

thermal equilibration times of about 12 hr. at 80 K, thus requiring

about 24 hr. for the acquisition of a single datum. After the conversion,

this time was cut to about 6 hr.; however, it remained difficult to main-

tain the upper block temperature constant to better than 0.01 K during

these extended periods. Although one would expect this latter error to

somewhat average out during the course of a measurement, the compounded

effects of these two types of temperature measurement errors place an

upper limit on the deviation in AT at about il7 mK. With the magnitude

of AT of about 250 mK in this temperature range, its resulting maximum

fractional error is 6-7%.

Uncertainties in the value of the geometrical factor L/A can also

cause errors in the computed K(T). Since the length L was measured

directly with a cathetometer, the error in this quantity is no more than
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. 0.3%. The Value of A, however, was assumed to be the cross—sectional

area within the Mylar sample tube. At room temperature this volume is

0.915 cm?, as determined by the size of the Teflon mandrel on which the

tube was formed. At 84 K, its value is expected to have decreased by

about 2% owing to the thermal contraction of Mylar, while at yet lower

temperatures one has to correct A by employing the thermal expansivity

of solid Ar. As a result, we estimate the error in A to be 12% over the

entire temperature range.

A final source of error at high temperatures involves the accuracy

to which we determine the conductance Kcond of spurious parallel heat

conductors. 'We estimate this accuracy to be within i3%. This estimate

is based upon knowledge of the properties of the lower block and the

goodness of fit of the data described in Appendix D.

The errors cited above propagate in K(T) to yield a maximum possible

fractional error given by the expression,

 

 

 

 

AK/K = : {lAL/LI + [AA/AI + A(AT)/AT -

(1 - AT Kcond/Q)

|. AKcond/Kcondm", } (4)

(Q/AT Kcond 7 1)

Evaluating Equation 4, one obtains, AK/’K 2 ill% at the highest

temperatures.

2. Low Temperature

At low temperatures,at and below the peak in K(T), the control and

accuracy of temperatures are much better, resulting in errors in the

temperature differential AT, A(AT)/AT e 0.2 mK/20 mK z 1%. The

geometrical errors are about the same as those described in the previous

section, while the effect of spurious parallel heat conductors is negligible.
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From Equation 4 we find that the maximum error in the low temperature

km is AK/K z 3.5%.

Another source of error at low temperatures might be due to a non-

negligible thermal boundary resistance between the Ar sample and the

thermal sink or source. If such an effect existed, it would cause a

temperature differential across the interface between the sample and block,

and would thus result in an apparent suppression in the measured thermal

conductivity. The possible sources of this phenomenon are: (i) Mismatch

in the acoustic impedances of the sample and block (Kapitza Resistance).

(ii) Some sort of disorder in the sample near its ends, resulting in

a much lower thermal conductivity in that region. (iii) A purely

geometrical effect whereby the effective surface area of the sample in

contact with the block is greatly reduced (perhaps by contraction, etc.).

The transport of heat across metal-insulator interfaces at low

temperatures has been studied for the case where the insulator is

Mylar.36 Expecting that these results can apply within an order of

magnitude to solid Ar, we find that the acoustic mismatch effect (1) is

completely negligible at the lowest temperatures studied (i.e. the thermal

. boundary resistance RB :: 10-3/T3 (K/mw) << RAr = (L/A)/K). Effects

(ii) and (iii), however, remain possible sources of error.

An empirical method of assessing the severity of these types of

errors is straightforward. Assuming that the thermal contact resistance

remains essentially constant from one run to the next, one can simply

determine KKT) for samples with different geometrical factors (L/A).

Trhe Ar sample thermal resistance R will be the larger fraction of the

Ar

total resistance for the case of the larger (L/A). Thus, for a given

geometry the apparent measured thermal conductivity K(T)app = Q (L/A)/AT
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is related to the real sample thermal conductivity K(T) according to,

1/K(T)app = l/K(T) + RC/(L/A). (5)

Thus, for constant R the sample with the larger (L/A) should displayC’

a larger apparent thermal conductivity.

This analysis can be applied to runs #10 and #8, for which

(L/A)10 = 2.63 and (L/A)8== 3.5. The lower geometrical factor for run

#10 was obtained simply by shortening the sample tube consistent with

other experimental requirements. A quick glance at Figure 3 shows that

the observed effect is contrary to Equation 5. Therefore, if the boundary

resistance is present, its magnitude either decreased drastically from

run #8 to #10, or there are other more predominant effects which influence

K(T) from run to run. We believe the latter to be true, since we

observed a marked dependence of K(T) on the strain state of the sample,

which is extremely sensitive to factors involving sample manipulation.

Thus, whatever thermal boundary resistance is present is concluded to

be of negligible relative magnitude.

C. Remarks

At this point we discuss some general features of the observed

temperature dependent thermal conductivity. Various, but not entirely

inequivalent, theoretical models have been preposed which predict

K(T) a T-1 for T 2 00.37-40 This dependence results from application

of first order perturbation theory to the third order anharmonic terms

in the crystal Hamiltonian. Such a theory predicts interactions between

thume phonons (either two combine to produce one, or one splits into two),

zlnd the T-1 behavior of K(T) is essentially the consequence of high T

‘Phonon occupation numbers varying linearly with temperature.
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Our data, however, appear to indicate a more precipitous decrease

in K(T) with increasing temperature. This observation is in general

agreement with the work of Krupskii and Manzhelii,17 whose endeavors dealt

only with the high T dependence of K(T). The K-M data demonstrated a

temperature dependence, l/K = AT + 8T2 (A,B > 0). These investigators

attempted to explain this result in terms of higher order phonon-phonon

transitions. It was originally suggested by Pomeranchuck41 and shown by

Ziman,40 for example, that the application of higher order perturbation

theory to higher order anharmonic crystal force terms results in a power

series dependence of the thermal resistivity (W = l/K) on T. In

particular, W a T2 is indicative of four-phonon processes, as is found

by application of first order perturbation theory to the fourth order

anharmonic potential, and second order perturbation theory to the third

order potential terms. Therefore, K-M proposed that four-phonon processes

accounted for the quadratic component in their experimental results.

The high T measurements of Clayton and Batchelder,23 performed on

isochoric samples, displayed only first order temperature dependence.

As a result, they reconciled their observations with those of K-M by

claiming the quadratic contribution in the results of K-M were due to

the effects of thermal expansion of the lattice. According to this

explanation, the expansion of the crystal with increasing temperature,

due to the cubic anharmonic crystal potential, effectively decreases

the Debye temperature. A measure of the effect is the Gruneisen constant

'Y = -32n9D/31nV, and the resultant fractional change in the thermal

(nanductivity for a given volume change is approximately,

AK/K r —(3Y + 5/3)AV/V. (6)
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With this relation, C-B demonstrated reasonable agreement between their

data at 75nK and the appropriately normalized (according to Equation 6)

results of K-M, thus refuting the existence of four-phonon contributions.

We examine this question more closely in Chapter IV.

As the temperature is lowered, K(T) is seen to rise and then turn

over at about 6 K. Were the crystal infinite and perfect, K(T) would

continue to rise with decreasing temperatures approximately as

Tnexp(GD/bT), where the constants n and b are of the order unity.42 This

behavior is explained by the exponential dying out at low temperatures

of phonons with wavevectors large enough to participate in the resistive

Umklapp—type collisions originally described by Peierls.37

Whether this exponential behavior is ever actually observed, as

well as the exact position and amplitude of the peak in K(T), are both

sensitive functions of the various types of crystal defects which limit

the phonon mean free path as the Umklapp phonon—phonon collisions vanish.

White and Woods'14 data indicate the peak in K(T) occurs at T = 8 K,

about OD/lo, whereas our, C—B, and B-B-D results are closer to GD/ZO.

This latter value is more in tune with that of other insulating

materials (e.g. Ge, Si, Te, Be, Diamond).42

Below the peak, K(T) decreases in accordance with the diminishing

number of phonons available to transport energy, and with the nature of

the scattering mechanism predominantly limiting the phonon mean free

path. At the lowest temperatures, our data indicate K(T) g T2 (with

reservations to be discussed). This functional dependence is in agree—

16,24
ment with other researchers who have made measurements on solid Ar

in this temperature range, although the magnitudes vary widely. According

to current theories, K(T) a T2 is indicative of phonon scattering due to
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the static strain fields surrounding dislocations. These

20,43,44

theories, however, appear to severely underestimate the strength of

the scattering, as indicated by studies of the thermal conductivity

of deformed alkali halides.45—47 In Chapter IV we describe some of the

above theories in more detail and show they predict rather large dis—

location densities when applied to our and existing data.

It should be noted that, while the high T data are fairly repro-

ducihle from run to run (and from experimenter to experimenter), the

low T data may vary by nearly an order of magnitude. This is, of course,

, due to the fact that K(T) at low T is extremely sensitive to the history

of the sample, i.e. its defect structure, while the high T lattice

wave scattering from defects is negligible in comparison to the much

more rapid anharmonic phonon-phonon interactions.



IV. THEORY

A. Preliminary Remarks

In order to understand the conduction of thermal energy through an

insulating solid, one would prefer to account, in a fundamental way, for

the manner in which the vibrating atoms of the lattice interact with one

another and with crystal defects, and then somehow relate this knowledge

to the macroscopic quantities: the heat flux 6, the temperature T, and

its gradient VT. This problem is normally attacked with the use of

various semi—empirical models and approximation techniques applied to

a Boltzmann equation for the "phonon gas".19’20’40:50,51
Few workers

have endeavored to approach this problem from as fundamental a level

as the interatomic potential, although in recent years the digital

computer has facilitated the direct application of lattice dynamics

and perturbation theory to certain specialized problems.52'-56

A A fundamental theoretical approach to the problem of heat transport

in solid Ar is especially fruitful due to the relative simplicity of

this solid. Moreover, one need consider only phonon contributions to

the energy conduction and may safely neglect several kinds of interactions

lDetween electrons and phonons. Most important, though, is that a quant-

Iitative test of a given transport theory may be made since it appears

tlnere now exists a semi-empirical interatomic potential which accurately

PITaiicts many thermodynamic properties of gaseous, liquid, and solid

Ar.21,22,57,58

42
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In the following, we describe contributions to the thermal resis—

tivity due to mechanisms of anharmonic three—phonon processes, strain

field scattering of phonons (point defects and dislocations), and

boundary scattering, all within the context of the Peierls-phonon-

Boltzmann equation.37 Although this problem may be approached somewhat

54,59
more elegantly with the use of linear response theory, it is found

that when the usual approximations are made, the two approaches are

equivalent.20 For the contribution of three-phonon processes to the

thermal resistivity, we employ a technique proposed by Krumhansl.6O

However, this approach is, for our application, found to be equivalent

to that of Ziman.40 This technique uses a numerical method which

utilizes the phonon dispersion relations and group velocities obtained

in the quasi-harmonic approximation, derived from the familiar Lennard—

Jones 6-12 potential,61 and also derived from the potential of Barker

and Bobetic.21 The latter potential includes the effect of three-body

interactions of the triple~dipole type.62

These results are then compared to experimental data in an

appropriate temperature region. The relaxation time approximation to

the solution of the phonon-Boltzmann equation is also discussed 63’64

' along with numerical evaluation by this method of the low temperature

thermal conductivity.

B. Harmonic Lattice Waves

In the quasi-harmonic approximation, the total lattice potential

energy ¢ is expanded in a Taylor series of small displacements KQ

about the equilibrium site it of the atom identified by the subscript i

+ +..).

Thus, for atoms at instantaneous positions r1 — Rp-F uy , the crystal

potential is,



44

+ . = + —)- a ’ 2 Cl 8cp {r2} <1> {R£}+X 86> {Rg} 9;“sz 3 ‘1’ “9,119; +,,, (7)

3R2
BRgaRg’

Here, Greek superscripts denote cartesian vector components. In the

+

simplest case, of which solid Ar is an approximate example, ¢({r£})

may be expressed as the sum of two-body potentials ¢(I;le) as,

+ I

1 = I

¢({r£}) figg¢(lr££1)

_+ + E _+ + -> _+ ->

- rg rx, gfl“ Rl — R£~, and nag —

“IL-"52f

These latter variables, for computational reasons, are the more convenient

' -)-

where we define rzg

in which to expand ¢. Thus the second order term in Equation 7 is given

by.

62) = 1 4 ’ a I B

/ iii/Eschusmm) “22 “M (3)

where,

_. 2 0t 8

In solving for the normal modes of the crystal, the zeroth order

term @“’is just a constant energy shift, while the first order term T”

has an average value zero (although 3¢/3R22’ is not neCessarily zero in

the quasi-harmonic approximation). Thus, one solves for the
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normal modes of the crystal by applying the theory of Born-von Kétméhn65,

to the quasi-harmonic crystal Hamiltonian,

__ 2 ’ (l H

H - 2 P2, + 1/4 X, g8 ‘buemnfl rim/um, . (9)

”723“ ii

+ 7

Here, P94 = mug, is the momentum of the atomga , and m its mass, assumed

to be the same for all atoms of the ideal crystal.

(The equations of motion for the atomic displacements at site 1 are,

ma? = - X ¢GB(R2¢) nix. (10)

28

Due to the translational periodicity of the ideal lattice, if i-*inn

Equation 10 the solutions must be the same, aside from a possible phase

difference depending on the site R . Thus, ua==ea exp(iq°fil) exp(-iwt).

i

. a, +

The quantity 8. is an amplitude, q is a constant vector which is seen

to appear as a wavevector, and we have assumed an oscillatory time

dependence. The, Equation 10 is,

(o2 e“ = l/m iii: $0M RM) (1 - “Mali-Eu») e8.

Here, the quantity,

bagel) = l/m E «bchR u’) (1 - expefi-Euo), . (11:1)
2'!

is called the dynamical matrix, which is symmetric. The dynamical matrix

is real for a crystal with inversion symmetry. So,

(U2 ea - 1' DaB (3) e8, ’ (11b)

8

is an eigenvalue equation which can be solved for three frequencies qu

and for the associated real polarization eigenvectors eqs’ S = 1, 2, 3.

~

By imposing cyclic boundary conditions, and requiring that the total
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number of modes of the crystal be 3N, where N= number of atoms in the

crystal, one obtains that there are N wavevectors {L of the form,

+

.= ‘11- '

q 7 /aonIn (nx, ny, n2) (12)

in Equation 12, a0 is the lattice constant of the fcc crystal, n ==(N/4)l/3

m

and n , n , and'n..are integer constants such that In I, In I, In I 511
x y z x y z m

. 3 .

and InXI-tInyI-tlnzlfi nm. These latter two conditions stipulate that

a must remain with the first Brillouin zone of the bee reciprocal lattice

of the crystal, since any wavevector outside that region represents

lattice waves of wavelength less than no and thus is physically meaning-

less.

By quantizing the above results (i.e. requiring [Jfi’fil] = 35 1

one finds the normal mode oscillators of energy hwq are populated

S

“in

with quantum excitations called phonons. These elementary excitations

are considered as plane waves with "pseudo-momentum"‘hq , propagating

independently of one another. If the ideal crystal is at some temper-

ature T, the average number of phonons N38 occupying a given oscillator

~

state of energy-hm is given by the Bose-Einstein distribution,

qs

-1 .

N“ = cx hm /k 'r - 1 1'3q [ p( q B) ] < >

>

where k“ is the Boltzmann constant, and quq,s.

By canonically transforming to a new set of coordinates “q ""d “3

such that [al,a:]==6 ,, the situation can be viewed in phonon

. q q qq

occupation number space. In this representation, the displacement

coordinates of an atom at site 1 in the crystal are,

+

U

i

D
Y

I (..I ) ( .) ( )

= .«tfim 2

q

a
,
1
:
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and the harmonic Hamiltonian of the crystal given by Equation 9 takes

the form,

H= r .1. +12. 1g lwq (aqaq / ) (15)

The quantity a‘l‘aq is a Hermitian operator in occupation number space,

q

whose eigenvalue is the number of phonons in state q. Thus,

I N > = >. 16

aqaql q Nq qu ( )

The operators in! and gas are, themselves, non—Hermitian, and have

only off-diagonal matrix elements.

a IN > /E IN -1> ,

q q q q

a+|N > Jfifif IN +1> . (17)

q q q q

C. Transport Equation and Thermal Conductivity

In a perfect, harmonic crystal, where the phonons are true normal

mode excitations, once the oscillator states are occupied, no change

in the occupation number can occur unless some external force perturbs

the system. The phonons move independently with pseudo-momentum hq

and do not interact with one another. Therefore, if one supplied energy

at one end of a perfect crystal, phonons would be created and would

propagate uninhibited to the opposite end. Thus, energy would flow with

no established temperature gradient, so that a thermal conductivity in

this case is undefined. In reality, of course, phonons are not true

normal modes due to anharmonicity and breaks in the lattice translational

symmetry, so that energy is attenuated and K is finite. As a result,

one can speak of a steady state situation whereby the phonon distribution

at any point in the crystal is static under the combined influence of

the driving thermal gradient VT and the resistive phonon collisions.
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Under the influence of only small driving forces, it is assumed

'the steady state phonon distribution function P“ is only slightly

q

different from the equilibrium Bose-Einstein distribution N3 . So,

we may write:

N =N§+n (18)

Here n is the deviation from equilibrium. In Equation 18, N3 at

any position I? in the crystal is evaluated for the temperature at

that point. In the steady state, energy is flowing at a constant

rate from the high to the low temperature end of the solid, and this

energy flux is given by,

+ + -+

= 1 Q N h = QQ / E q wq vq l/ g nq h<uq vq, (19)

where 3q is the phonon group velocity Bwq/Bq , and $2 is the total

volume. There is no contribution to the heat flux from the equilibrium

distribution, since it is an even function of a , as is wq , while

3q==—§ for a cubic crystal. If [kl is found in terms of the temper-‘

ature gradient VT, then Equation 19 provides an expression for K. Hardy,66

as well as Maradudin67 and Magid68, has shown that Equation 19 is but

an approximation to the true average heat flux, with other contributions

coming from non-diagonal terms. These are shown by Hardy to be time

dependent oscillatory functions in the classical harmonic approximation,

and thus contribute a negligible time-averaged result.

By using the fact that in the steady state the mean number of

phonons in any volume element does not change, one can find a transport

. The time rate of changeequation which, in principle, would yield nq

of N is,

q
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dN /dt = 3N Ar + + -VN .

q q/ Vq q (20)

In the steady state BNq/Bt = 0,and qu/dt represents the rate of

change determined by scattering. The second term on the r.h.s. of

Equation 20 is the change in Nq due to thermal diffusion. Then,

in the steady state,

+

v °VT 3N 3T = ' .q q/ nq (21)

In Equation 21, it is assumed the spatial dependence of Nq is through

the temperature TX f), and, to first order in VI; 3Nq/3T = ENS/3T.

It is usually possible to express the collision rate nq in terms

of a non-linear operator. This collision operator may, however, be

linearized to a good approximation19 such that fiq = Z, qu, n

q

In principle, one could then solve Equation 21 for 11 by inverting (3

q

I.

9

provided it has an inverse.

It has been more often the practice to approximate nq by use of

a phenomenological relaxation time 'Rl defined byzo:

nq = -nq/Tq. (22)

Here, “I is the characteristic time required for a disturbed phonon

distribution Nq to relax back to NJ) by means of phonon collisions.

Much work has been devoted to finding the functional form of Tq in terms

of ;,wqi and T for various types of scattering processes.20’41’43’44’50’69’73

In general, Tq- will include in some average way the occupations of all

other states, although a single mode relaxation time can be defined in

terms of the diagonal components of the collision operator, i.e. fiq :

qunqzi-nq/Tq,with all other nq,= 0.
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From Equations 19, 21, and the relaxation approximation Equation

22, one has,

-+ + —> I '

= - a h 3N° 31‘ T °VT.Q l/ E mq q/ q vq vq

For a crystal with cubic symmetry-6 °‘ VT. and one has

6 = -1/3 2 c (q) r v2 VT, -
q v q q

or,

K(T) = 1/3 X c (q) 1 v2, (23)
V q q o

q

hm 3N0

where. cv(q)= -—%~§% is the specific heat/unit volume of the phonon

statecl. Equation 23 is instructive since it is analogous to the

expression,

K = 1/3 C T <v2>
v

of a classical gas.

In the above discussion, it has been implicitly assumed that

phonons have been localized in space, since one must speak of a phonon

distribution function bk; which characterizes a "local" phonon occupa-

tion number. It is obvious that true phonons, which correspond to

plane waves in the crystal, are inadequate for this description, but

rather wave packet superposition states must be used. In order to

characterize a wave packet by a single wavevector E and frequency wq,

we must satisfy the relation 63<< E, where 63 is the wavevector spread

of the packet; but at the same time we must stipulate that the wave

packet not be too spatially large when compared to, say, the thermal

gradient. The spread in the wavevector and position of a wave packet

are related according to GQXGX 2 1-

The condition that the energy spread is not too large is obtained
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-1

from the distribution function N3 = [exp(‘hwq/kBT)-l] by demanding

’thw /k '1‘ < < 1 .19 In the Debye approximation, ‘hdm = v fidq 1‘ a k 0

q B D o B D
Sq.

So, 6q4ozT/GDaOis an appropriate condition on the wavevector. For

the criterion that the spatial extent of the packet is not too large,

we demand that the change in 1%; over the width of the packet, due to

the thermal gradient, be negligible, i.e.

aN°/ax 6x << N°, or 3N0/3T aT/ax 6x << N0

(1 q q (1

This relation provides the condition,

(1 - exp( shw/kBT))

'hw/kBT (Bi/3x)““

T

(3x <<

 

Thus, it is required that

(l - exp(—hw/kBT))

hw/k T (ST/3x)

B T

Since dqu =14 this requirement will be satisfied only if

dq 6x << T/O

x
 

D30

(1 - exp(-hw/kBT))

hw/k T (ET/3x)

B T

‘ >l/GDao > 1.
 

Even at low temperatures, this inequality is easily obeyed for

(24)

experimentally reasonable values of (3T/8x)/T. Therefore, under these

conditions it is permissible to speak of a "phonon" characterized by

a wavevector 2;, frequency wq , and velocity 3w /3q , as well as a

q a.

position coordinate in the crystal.
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D. Phonon Scattering Processes

1. Three-Phonon Processes

a. Formalism

In this section we present the three—phonon anharmonic scattering

operator qu, linearized in the manner suggested by Peierls.l

Although this operator does not have simple properties, it may be symmet-

9’60 and the thermal-conductivityrized by a simple transformation,3

_ . . ' 60 .
evaluated u31ng a formalism developed by Krumhansl, and applied by

53 . . . . . .
Bennett. The validity of the computatlon is discussed, and its

results for various forms of the interatomic potential are compared

with experiment in the temperature range applicable.

. . 19
In a perfect, but anharmonic, lattice, Peierls showed that

the anharmonic terms in the potential energy expansion account for

phonon-phonon scattering which can give rise to thermal resistance by

the so-called Umklapp process.

This can be seen by considering Born approximation transition

rates between pure phonon states, regarding the third order term in

the potential energy Taylor expansion as the perturbation,

 

(3) __ ’ , a B Y
<1) - “122;; Gig ¢usy(R22)“2r um, 1.129;, (25)

where,

83m ,)
29,

¢uBY(RQ¢) _ a B Y

”22’ ARM MM

Expressing the “11’ in terms of the normal mode coordinates of Ehction

B, gives:
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a, __ on ,+."* .‘*.‘* .g££ — Vh/ZmN E e [exp(1q RQI) - exp(1q Rggfl (aq ’ ES)‘ (26)

w

q

substituting Equation 26 into Equation 25, we obtain for the pertur-

bation:

3/2 2 (p I . ' ‘

(CIQCI') (P -ai)(a rat)(a ra’r . (27)

(144' mi)“ _q q -q q *1.)

453‘ = N/6 (fl/2N)

In Equation 27, the quantity ¢(q q q”) is a third order lattice

Fourier transform defined as in Maradudin, et al.,74

(I? o u = l 2 3/2 I (X B, )Y'

(q q q ) / m £260th (both/(RM) 8 eq tc1'

<1—exp (flip) (1-exp(13'§w)) (i-expu'ci-Euo ) . (28)

The extra factor of N in Equation 27 arises from the fact that the

I I

lattice sum Z, is written N Z , i.e. we have fixed on the atom at

£2 2'

the origin, and summed over its neighbors.

Then, the first order transition rate from a total phonon

occupation state lNi> to a state INf> is,

Pi+f = 21r/n2 |<NfI<DmIN1>I2 (5(a)f — mi). (29)

From Equation 27, it is seen that qfi’ couples states such that the

initial state has either two more or one less phonons than the final

state (e.g. agadad' destroys phonons qfi d” in the initial state,

and creates phonon (1 in the final state). These transitions are

seen to obey energy conservation of the form uh‘i wdri wdo= 0.

Furthermore, from the invariance of <fl” for a constant displacement
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of the entire crystal through a lattice vector, one can easily show

,,I +++,,+ +

that ¢(qq q ) = 0 unless Q+diq= G , where (; is a vector of the

recriprocal lattice given by,

E = ZH/aO (i: j: k), (30)

with i, j, and k being integers either all odd or all even. Thus,

the three-phonon transitions of Equation 29 are subject to the con-

servation laws,

w i w ._ w.) 0,

q

and

3: 3’1 +"= '5. ‘ (31)

These appear as conservation of energy and momentum, except that, in

the latter case, the phonon "pseudo-momentum" is conserved only if E = 0.

Transitions for which EF=O are known as Normal (N) processes, and they

do not contribute directly to the thermal resistance. However, if for

example 3+3} lies outside the first Brillouin zone, then 3': a + 37— E,

where (I is a reciprocal lattice vector which brings a” back into the

allowed region. Thus, this process has the effect of "flipping over"

the resultant wavevector to produce a phonon traveling, in a sense,

oppositely to the original flow. This is the Umklapp (U) mechanism by

which Peierls first explained thermal resistance of a perfect, but

anharmonic, crystal.37

To find the rate of change in the occupation of phonon states due

to first order collisions, one invokes Equation 29 and a Master equation,

,I,fi = z IP I - P

q q' q*q q+q
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to obtain,

h = ZTT/‘h2

q

                N+l N,+1N.q ( q )( q ) q

 
|¢(-qq’ q”) 7‘ Nq(qu+]-)(Nqo +1) + l<1>(q-q'-<I‘ )I? (32)

- (Nq+l)Nqu, —2|<I>(qq’-q”)|2 NqNq,(Nq,-,+1)}/oqwqmq,, .

In the above, we have written implicitly, for example,

+ ’5 +0

¢(qq’-q’) =a ‘D(qq’-q”) 5(wq + wa- wq”) A(q + q - q )-

In the present form, Equation 32 is non-linear and hopelessly

complicated, but we linearize it by writing in the usual way, Nq 3 N3

-+nq and retaining only first order terms in thenq ,19 (e.g.

o o o o o o
1 + ”+* N + l N ‘+ “I! N + l)(N + l).

(Nq + 1)(Nq + 1)Nq”+ nq(Nq, l)Nq nd( q ) q? q ( q ‘l

After some algebra, the details of which are shown in Appendix E, one

can define a collision operator according to,

£1 = Z G q; nql,

q q: q

where, for the diagonal elements:

 

C = —fin/16N SI. sinh(x/2) [I¢(QQ'T )I7

qq q”slnh(x/2) sinh(x/2)

(33a)

. u<p(q-q'-q">|"J/wm+[l4’m:9;9 >1il:(£</25)1_>L*J2;1<L-9._L1I
s n x

and for the non-diagonal elements:

G .- mn/ienz sinh(x’/2) ‘ [-|<I>(q-q’-q”)l2

qq q”sinh(x/2) sinh(x"/2)

" Iqu'Lq’) I2 + I¢(qq’-q”)I2]/W'w". (33b)
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In Equations 33a and 33b, we use an obvious notation, and employ the

dimensionless quantity' x==hw/kBT.

We rewrite here the phonon-Boltzmann Equation 2] in the form,

8 = Z G ,n ,,

q q/ qq q (34)

+

where, eq = Vq'VT aNq/B'I‘. Although the collision operator in its present

form is non—symmetric in q. q', there exist simple transformations

39’60 One of these, used by Krumhansl,6O resultswhich symmetrize it.

in the following quantities:

n* = 2 sinh(x/2) n ,

q q

6* = 2 sinh(x/2) e ,

q q

G* x3 2 sinh(x/2) G ,(2 sinh(x72))-l.

qq qq

 

Then,

8* = Z 6* '“*"
(35)

q ,qqq
q

and,

G* = ’hfl/16N XI sinh(x/2) [I¢(qq§qfll2

qq qqsinh(x72) sinh(x72)

+ %- I¢<qq'-q”) Izl/ww’w”+ [Nuts-Cf)“ I¢<q<f-CL)L2 ”@9131le

sinh(x”/2) mm m”

Gaq,= -‘h1T/16N <21” [l<I>(qq’-q”)|2 - |<1><<1--q’-q”)|2 (36)

.. I¢(qq’Lq’)I2]/(sinh(x"/2) mw'w")
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Since: G; , is real and symmetric, it must possess a set of

orthonormal eigenvectors in which 1k; can be expanded in an attempt

to solve Equation 35. In general, the eigenstates of 6* are not

known, but it is obvious that G*=N*+R* , where N* is the N-process

collision operator-and R‘ is the U—process operator. Some .eigen.

* u s

'
64

states of N are known, however, namely those of zero eigenvalue.

These eigenstates derive from phonon distributions which N-type

collision do not. disturb.

"a . his) A -1 0 fig 1 1 I

"Q‘s” - [exp(k3(r+ mad] : “cf 5': 'r 4 sinh‘u/z)’

 

and

No _‘hc'§_ 1 f .

‘ k8?4 sinhz (x/Z)

 

  
"q0(a) - [eXPer-c;a

The first expression is just the equilibrium distribution at a displaced

temperature, while the second is a distribution characteristic of a gas,

, - .‘ +

in thermal equilibrium, but uniformly drifting with velocity C . Thus,

the zero eigenvalue states of N" are,_

- A (a 2 sinh-(x 2)- . WORK). Q q/ . / I

n - I: 3niéq) Ala. qa/Z smut/2) (a 1, 2, ).

where the 1’s are normalization constants. These eigenstates are

orthogonal in the respect that,

a O '
2:; n°(q) nwfq)

c); nla(q) “18(6) = .6018 .



58

As a consequence of energy conservation, R3 , as well as N*r

also does not change r](q) , but n need not be considered since

0 o

it doesn't give rise to transport (See Equation 19). Likewise,

(nflqr N* does not change Tlfiq) because N-processes conserve crystal

momentum, while U-proccsses do not. We point out that there are

+ + + —> .

other similar distribdtions of the fern: A(G)'(q-G)/2 Sinh(X/2)

which are unaffected by N‘ , or by R* only in the q-subspace for

+ a

which G is the reciprocal vector inVolved in the three-phonon U-type

collision. These distributions are unchanged because the quantity

++ . . . . +
(q-G) is conserved in U-processes involving the reCiprocal vector G.

This can easily be seen by rewriting the U-process momentum conservation

, . V + +, +0 + + -> +, + +,, +

condition, e.g. q + q - q = G + (q - G) + (q - G) - (q - G) = O.

The above distributions, however, are not independent of 11° and n1

and so cannot be used as additional base states in which to expand

a solution to the transport equation.

The procedure, then, is to expand n; in terms of the zero—

eigenvalue states of N* according to,

* =nq 2 AOL n1a(q) (3.7)

O.

The transport Equation 35 is then used to find the coefficients An

so that n* is determined, and the thermal conductivity evaluated from

the expression for the heat flux,

+ +

= hw n*/2 sinh(x /2). (38)

Q 2 q Vq q q
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In order that this procedure be deemed reasonably valid, one must make

the following assumptions:

(1) The eigenstates of N* are complete and span the

same vector space as those of G* .

(ii) The zero-eigenvalue states of IV* are the most

important since they will dominate in the inverse

of the collision operator. This would be strictly

true at low temperatures where N*>°’R* due to the

"freezing out" of Umklapp processes, so that G* + N*

and the eigenstates of <3* (say, Igi> ) approach

those of N* ( Ini>). Then, G“.-1 = Z l/gi Igi><gi +

X 1/ni Ini><ni|, and the zero eigenvalue terms will

i

dominate.

(iii) The states “105(1) exhaust all the zero-eigenvalue

states of N* .

By applying Equation 37 to the transport Equation 35 and the heat

flux Equation 38, and employing cubic symmetry, one obtains an expression

for the thermal conductivity. The derivation is given in Appendix F

and the result is,

+ + 2

K(T)-3%zfxq;q“ {moped
 

 

ql4 sinh2 (xq/2) qq 4 sinh(x/2) sinh(x72) (39)
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Here, again, x chm /kBT and S2 is the crystal volume. An examination

- q q

of this expression reveals that it can be written,

-1 2 I

K(T) = ( 9* R* , 40W [E nqu) cal/2311):”) qq nlx(q) . ( )

q qq

where, ‘VT is taken to be along the x-axis. In vector notation,

Equation 40 becomes,

_1 l<n1x|e*>|2

K(T) =WT (EIXIR*In1X> (41)
 

The (negative) quantity in brackets is seen to be identical to the

function which is minimized according to the Ziman variational prin-

ciple,40 for the case where the trial distribution is taken to be nlxhqx

Thus, Equation 39 is a greatest lower bound to the true anharmonic

thermal conductivity.

b. Numerical Evaluation

'To evaluate the expression for the three-phonon contribution to

the thermal conductivity, given by Equation 39, we employ the numerical

method described here. The numerator of Equation 39 can be computed

once the phonon dispersion relations and group velocities have been

calculated; the denominator, on the other hand, involves a double sum

over the U—type collision operator, which necessitates finding all

the Umklapp triplets in the first Brillouin zone of the reciprocal

space of the lattice.

The crystal structure of solid Ar is ice, with one atom/unit cell.

Thus, the reciprocal lattice is bee, and the first Brillouin zone is

a truncated octahedron, shown in Figure 6. Due to cubic symmetry, a

function of a wavevector need be evaluated only in a l/48th irreducible

section of the first zone (IBZ) , since its value at any other equivalent
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point can be found by application of the appropriate cubic symmetry

operations (e.g. wq is a scalar function of all equivalent points in

the zone, while :é is a vector function of the same).

The l/48th irreducible section we have chosen for evaluation

of the eigenfrequencies, polarization vectors, and phonon group

velocities is indicated in Figure 6. The wavevectors within this

section are chosen to form a cubic grid and take on the values,

3 = 2Tf/aonm (nx, my, nz) (42a)

where,

nm 2 nx 2 ny 2 n2 (42b)

and,

nx + ny + n2 5 3/2 nm ' (42c)

In Equation 42, nm is the number of wavevectors along the positive

x-axis, and determines how coarse or fine the wavevector grid is

(the equivalent number of wavevectors in the entire zone is given

by 4 nm3). The conditions given by Equations 42b and 42c simply

stipulate that c; remain within the l/48th section chosen.

The eigenfrequencies wq and polarization vectors :q of the crystal.

lattice are then calculated at each grid point by solving the eigen-

value Equation llb, with the dynamical matrix 0(3) evaluated for a

given interatomic potential. The cartesian components of the phonon

group velocities are then computed by using the method employed by

Gilat and Dolling.76 In this technique, perturbation theory is applied

to the dynamical matrix in order to find the change in the phonon

frequency for small displacements about a given wavevector grid point.

For example, to find the thh. cartesian component of the phonon group
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~ +

velocity at grid point q , and for the polarization state :5, one forms

the perturbed dynamical matrix elements,

+ + +

6638M) - Dusk; + 59y) - Da8(q)

where GqY is a small wavevector displacement (we used 1% of the grid

cell edge ZW/aonm ) in the Y-th direction. Then, to first order, the

change in the phonon frequency is,

6(w2 I a): e“ '65” e8 (43)
qs GB qs a8 qs

+

where the eqs are the (previously obtained) polarization vectors

~ +

(the eigenvectors of the dynamical matrix at point q ).

Then, from Equation 43, the Y-th component of the group velocity

is,

V Gilat and Dolling verified this method to be much faster than rediagon-

alizing the dynamical matrix, and found the first order term to be a

very good approximation, even where degeneracies arise from symmetry

requirements (except along the [111] symmetry direction,(the F-L

line in Figure 4) in which case we find the velocity along this axis

by subtraCting frequencies for successive grid points, and dividing

by the grid point separation).

With the above information computed and stored in the computer, we

could then evaluate the numerator of Equation 39 by straight forward

summation over the wavevectors of the 182 , with care to properly

weight the results for those wavevectors which lie on symmetry lines,

planes, or on the surfaces of the first zone (these wavevectors possess
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a weight less than 48 since the volume of their cubic grid cells is

shared by other sections of the first zone, or by other zones). In

+ +

replacing a full zone wavevector sum of a function f(q), Z f(q),

grid _* q

by one over a grid, 2 f(q) , one has,

+ Q 3 + Q grid +

gflq) + W [d q f(q) +(21T)3% (dad f(q9-

BZ

éii

 

The second expression above is the familiar integral representation of

the wavevector sum, where Q/(Zfif is the density of points in

reciprocal space. The grid cell integration is performed over the

cubic cell of edge ZW/aonm , which is centered on the grid point a

If the grid is chosen sufficiently fine that f(;) does not vary much

over a grid cell volume, then the grid cell integral becomes,

Idaq’fIEi‘) = HE) [d3cf= 15(3) (zw/aonmI3 .

83H 83;}?

where f(a) is evaluated at the grid point a . Furthermore, since the

crystal volume 9 is Nag/4 (there are 4 atoms/unit cell in an fcc

lattice), and the total number of wavevectors in the first zone is N,

one has the result,

'IBZ
+ 3 + +

Z f(q) + N/4n Z W(q) f(q). (45)

a “‘ '

.)

Here, W(q) $.48 is the weight of the grid point 2; in the l/48th

zone, according to the number of symmetry operations of the type vector

77
+

of q . Thus, the numerator of Equation 39, expressed in computational

form, is

3 + +.+

[Iv/4nm Ewe) i xqs (q vqsa 5:1 )/4sinh2(xqs/2IF (46)
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At an intermediate temperature, a grid with nm=6 yielded a computed

value of Equation 46 to within 5% of the converged value, obtained for

anIZ. Thus, a grid with nm=12 was chosen. With nm=12, the number

of wavevector grid points in the l/48th irreducible zone is 240,

resulting in the equivalent number 6912 in the entire zone.

Evaluation of the denominator of Equation 39, which is,

I

a~ ~ ~

+ +

qs Z8 («mo Rgsq.S,/4 sinh(xq8/2) sinh(xq,81/2), (47)

requires the following:

’i3'=5-> +

(i) Wavevector conservation of the form q i q .

+

with 6.0 excluded.

" . it I i h; ‘ 0(11) Energy conservation [was qu, quJ A(q,q§

‘ -¥ -n ,

A<Q9d) is a positive function of q,s and q,s,

which is non-zero owing to the relatively coarse

discreteness of the wavevector grid. It, in effect,

allows deviation of the values of qu and wqb’

about their grid point values in proportion to the

size of a grid cell, and to the rate of change of the

frequencies within their grid cell. If the above

condition is satisfied for a given set of frequencies,

then the entire computed result of Equation 47 for that.

set is weighted by a function 8(2) , where z = has

i qu’t wdgL which is found by double integration of

the singular energy delta function over the grid cells

at a and EC
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8(2) = I} d3q1d3q2 6<z>/If d’qld’q2

as
cells

A more detailed description of this procedure and a

typical integral 5(2) are discussed in Appendix G.

(iii) Evaluation of the quantity,

1 II) ((11-qu 2

wq wq,mqusinh(xq/2) sinh(xd/2) sinh(x€/2)
9

where ¢(qq'q”)‘ is computed for a given interatomic

potential according to Equation 28.

All the wavevector triplets satisfying condition (i) could be

determined once and for all by performing a l/48th zone sum over q

and a full zone sum over a , with each a generated by symmetry

group operations on its 132 type vector. This procedure required

the first three shells of reciprocal wavevectors E , since this set

of 26 exhausts all the reciprocal vectors which can transform sums of

pairs of wavevectors in the first BZ back to the first BZ. The

resulting 15,926 Umklapp triplets (corresponding to a total equivalent

number 515,760 in the entire zone) were then stored on a data file for

future reference.

It is noted that, for computational purposes, Equation 47 can be

 

 

written, .,
[9‘2

‘ I 3 qq

(N/mm)21XB7,z W(q) [4lsinHZ(xq /2)

L. 9}}. SS

+ lq'!” R?“ 2 (qC?) “in
...__...._.__?.E1. .__.. .+ Lq; ) (1" (S 1)],

4 sinh (Xd/Z) 4 sinh (xq /2_)Sinh(XqI/2) qq
~
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182

due to the symmetry of Rag, . Here the summation 2 implies

2 I

that, according to some systematic labeling of theciaievectors in the

l/48th irreducible zone, 6’ is chosen less than or equal to a ; then

symmetry group operations are performed on q’ to generate all wave-

vectors of its type in the entire zone.

Following the above procedure, we obtain numerical results for

the three-phonon contribution to the thermal conductivity according

to the present model. Within the validity of this approach, we may

examine the temperature dependence of K , as well as its sensitivity

to different models for the interatomic potential. In addition, within

the accuracy resulting from quasi—harmonic lattice frequencies, we

can draw quantitative information regarding the volume dependence of K.

This results from the fact that, in the quasi-harmonic approximation,

zero-point motion and anharmonicity are roughly accounted for by

evaluating the derivatives of the interatomic potential at the

equilibrium interatomic separation, which results in a minimum crystal

free energy, rather than crystal potential energy. Then, the effect

of thermal expansion is to shift the lattice mode frequencies, which

in turn, is reflected in the value of the thermal conductivity.

De Wette, Fowler, and Nijboer80, and others, have calculated

several .thermodynamic properties of solid Ar within the context of

the quasi-harmonic approximation, using the analytically simple

Lennard-Jones pair potential. Their results verify this to be a

reliable method up to temperatures of about half the melting temperature.

Above this temperature it appears the more sophisticated theories of

linear response or self-consistent phonons are needed to properly

account for anharmonicity.81 However, in view of the limitations of



68

the present thermal conductivity model at the higher temperatures, an

effort along these lines seems unwarranted in this case.

Before proceeding to the results of these calculations, we discuss

briefly the model interatomic potentials used, and the form in which

they are utilized for calculation of the dynamical matrix, Equation lla,

and of the quantity ©(qq'q") , Equation 28.

The reviews of Pollacké and Horton61 have discussed in detail the

various potential models for rare gas solids, and their applicability

to the description of bulk properties. The simplest and traditionally

the most widely used of these has been the Mie-—Lennard-Jones (M-L—J)

pair potential, given by

we = $3";- [l/m m/rI‘“ - 1/n (O/rln],

The meanings of r,0 and E are explained in Figure 7.

(pm

0 

_
_
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Figure 7: A two-body interatomic potential ¢(r), shown as n lUHWLloU

of the interatomic separation r. The meanings of W and I

are illustrated.
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One always chooses n=6 to depict the van der Waals attraction of two

widely separated closed shell atoms (the induced dipole—dipole inter—

action originally calculated quantum mechanically by London). The

value m=12 is usually chosen to simulate the charge cloud overlap

repulsive force at close distances, since it results in the best agree-

" , . 83 , ,
ment of ¢ (0) with experiment. The quantities E and O are then

chosen to give best agreement with observed solid state properties.

Thus, these parameters have no fundamental theoretical foundation,

but rather are "effective" parameters which may result in adequate

description of only the bulk properties from which they are derived.

In fact, that the M—L-J potential is but a phenomenological model

for the true pair potential is evident from its completely inadequate

description of the temperature dependence of second virial coefficient

82

gas data.

Since the M—L-J potential is known to exaggerate the effect of

i . . 83 . .
all but the nearest atoms 1n a SOlld 1t has often been practice to

choose the parameters 6 and CI to appropriately depict a solid which

interacts only through nearest neighbor forces.

For the choice n=6, m=12, the M—L-J pair potential has the form,

Mr) = e[ (o/r)12 - 2 (cw/o6]. <48)

The parameters E and <3 have been determined for both the case of

first—and all-neighbor interactions, such as to best describe the

. . . . o 61
observed sublimation energy and crystal-lattice spacing at 0 K:

All-neighbor interactions: E/kB = 119.5 K

O = 3.82 A
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First-neighbor interactions: e/kB 168.1 K

O 3.709 A

The pair potential of Barker and Pompe (B-P)S7 is more commensurate

with the expected theoretical form of closed—shell atomic interactions.

This potential has the form,

L 2. c _

¢(r) = [exp(a(l—r/o)) 2 Ai (r/o-1)1 _ 2 21+6
. 1. (49)

1:0 i=0 5+(r/O)21+6

Here, 8: and (I have the same meaning as in Figure 7. The first terms

in Equation 49 are consistent with quantum mechanical calculations

which suggest the product of an exponential function and a polynomial

at overlap distances. The second terms are meant to describe the

(negative) asymptotic forces, with the r-G term being the dominant van

der Waals interaction at large separations. The small quantity <5 is

included to suppress the divergence at small r .

Barker and Pompe determined the constants in Equation 49, with

L=3, such that this potential function was consistent with pair data

(molecular beam data, quantal calculations, second virial gas

coefficients, gas transport properties, long-range interaction

coefficients), and with third virial gas coefficients and the solid state

sublimation energy at O0 K, all in conjunction with the inclusion of

the triple—dipole three-body potential. In this case, the total crystal

potential is

¢({r£}) = 1/2 Egan» + 1/3: Milieu”, rm.“ r559“.) , (50a)
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where,

¢3lrlzpr13:r23) = V(l + 3 COBBICO892 coseal/(r12r13r73)3 (50b)

is the three—body correction term derived from third-order perturbation

theory by Axilrod and Teller.84 The positive quantity v is proportional

to the static polarizibility of an atom, and the meaning of the other

parameters in Equation 50b is illustrated in Figure 8. This triplet

potential is thought to be the most important of any many-body interactions

in Ar, and has been shown to be absolutely necessary for adequate

description of third virial gas coefficients.r

By slightly modifying the pair potential Equation 49, (but retaining

its applicability to gaseous properties), Bobetic and Barker21 were able

to accurately predict several temperature dependent properties of solid

Ar (specific heat, thermal expansion, bulk modulus) at low temperatures.

 

 
Figure *3: A t! iplet C-l atoms, illustrating the meaning.“- L“ the pa?-

ameters‘. in Equation Sill).
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Their parameters for Equation 49 and 50b are given here:

E/kB = 140.23 K, (5: 3.7630 A, and for L = S,

A = 0.29214, A = -4.41458, A = ~7.70182, A = -3l.9293,

o 1 2 3

A4 = -l36.026, A5 = —151.000, C6 = 1.11976, C8 = 0.171551,

C = 0.013747, a = 12.5, 5 = 0.01, and D = 73.2)(10m84 erg cmg.
10

For visual comparison, Figure 9 illustrates the Barker-Pompe (B—P)

pair potential, along with the M—L-J all-neighbor potential. Assuming

the B—P potential to be the more realistic, once can observe the effect

whereby the minimum of the M—L—J potential must be set artificially

shallow in order to compensate for a too negative potential interaction

at intermediate distances.

Computation of the dynamical matrix 0(a) and the three-phonon

coupling constants ¢(qq'd0 require the second and third order coefficients

in the Taylor series expansion of the total crystal potential, e.g.

 

azod‘fizi) 33¢({‘££})

-Er--7§- and a B Y 0

BR}, I an“: 8R”, 3R“, 8R“,
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Figure 9: The pair potential ¢(r), according to the models of Lennard-

Jones, and Barker and Pompe.
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+ +

For the case where ¢({R£}) is the sum of pair interactions, 0({R£}) =

 

 

 

 

 

1/2 2 9(rifi) , this reduces to evaluating the quantities,

9.2. 2 O. 8
'

_ a (Miami) _ Ru; R29" [¢"(R ’)_¢,(R “+5 MR”)

¢ (R ,) - -—-—-——~—---—1r—-— it 11 a8 -———-—-v (51a)

0‘8 M 312053118, Ru’ ‘ , RM
22 it R22

33 I a I B I Y I " / ' z¢ (R ,) ¢(Ru) = RM RM RM [dim 03¢ (R££)+,¢ (12%)]

“8“ 9.9. an“, 3R8 , ml. 12’ , m J RM 4 Rip:
£2 £2 22 22 (51b)

Y 8 a .. .
+ (Gas RuecSaY Ramsey RM) ((1) -¢ mm)

Riz’

Here, the primed ¢'S are derivatives with respect to the equilibrium

atomic separation R Analytical expressions for ¢', ¢", and ¢m areI.

12

obtained by straight forward differentiation of a particular model

potential. In Appendix H we present expressions for these derivatives

for the case of the M—L—J (6—12) potential and the B-P pair potential.

The three-body contribution to the total crystal potential,

%({r£}) = 1/3! 2 0¢3(r11’,r9’2",r2:2:,),

zzz

is somewhat more difficult to utilize for lattice dynamical computations,

since it does not result in as simple expressions for the potential

derivatives, as does the two—body potential, as in the Equation 51. For

example, in making the transition to the convenient relative coordinates

Rig, one has for the second order coupling constant of the two—body

potential,

2 , 2 ,
8 ¢(R££) a 3 ¢(R££)

8 3R , a B '
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whereas, for the three-body potential, this becomes,

82¢ (R IR :Rw)
3 22' mi' 2% _ 329 3293

a 8 '— B - 0L 8
3R£ 3122/ BR“, 3RM 3am. 3R”,

1 112373.. + £8.
a - a

3R“: 812ml. 812“» BRIL’R”

The additional (mixed) terms result from the dependence of the values of

two of the interatomic separations of a triplet of atoms, on the

displacements of a third.

The triplet potential ¢3 can be written in the form,

-5/2

“(111" ru’“ r952") = ”m’ 2M 22’2” 3/8 Z‘ 22 231(222’ zzt’zu’ ,

where, 2 etc., and,

u’ "’ rim"

21 = I + z

2:19.
I]. Z!”

11 21

z"- = 222”" 21'2”" 222’

Z’ " 22'2” 212’ ' 222”

In terms of derivatives with respect to the appropriate variables,

zit' 22¢» and zitvone obtains for the three-body contribution to the

components of the dynamical matrix,

2

(3’(q)=2/mZ[4R RB++26—1§-+4R ...ML.
DaB it it . ”

£’£’ I 21Rfifiu Bzfii Bzifl

zit

32 32 3B 93 B . + ++ 4 R:W(R££Rfiio 322z322¢'++4 R3£"(RBB- £1) 5;;%§;EE;] $1n2(q'R££/2).
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Analytic expressions for the various potential derivatives which appear

in the above expression are given in Appendix H.

c. Results

In Figure 10 and Table 2 we present the results of numerical cal-

culations of the temperature dependent three-phonon thermal conductivity

according the the previously described model. These computations were

performed using the Control Data Corporation 6500 digital computer at

Michigan State University.

Figure 10 illustrates the effect on K(T) of the particular form

of the interatomic potential model used to determine the lattice frequencies

and anharmonic coupling constants. All these theoretical data are

calculated for a crystal density corresponding to that at O K (molar

volume = 22.55 cm3/mole). For each interatomic potential model, the

calculations are seen to yield the characteristic T—1 behavior for

‘T 2 20 K. Thus, for Ar the general criterion that T29D (GD=BS K)

for this dependence is somewhat relaxed, and extends down to about

OD/4.From the expression for the three-phonon conductivity, Equation 39,

and from Equations 46, 47, and 36, one can obtain an approximate analytic

expression for K(T) in the high T limit. This is accomplished by taking

small argument limits of the hyperbolic functions in Equations 36, 39, 46,

and 47, and by employing reduced, dimensionless variables according to:

a + E/(Zfl/a n )
o m

w + w/wo 3 we = “36375.

¢as (RM) + chug (RM) /<b "

d’aBy‘Ru” " ¢asy‘R£2” ”1""

+ + + @w/ )-1
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Figure 10: A plot of the three-phonon thermal conductivity K(T).

illustrating the effect of the interatomic potential

used. The potential models employed are the Mie--

Lennard-Jones (6-12) all-neighbor and nearest-neighbor

pair potentials, and the Bobetic and Barker pair potential

with the triple-dipole three-body correction.
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TABLE 2

Theoretical Three-Phonon Thermal Conductivity

  

Q
O
‘
J
-
‘
N
H
H

O
O
O
U
‘
U
I
O
C
D
O
‘
L
N

O
O
O
O
O
O
O
O
O

598.39

211.15

69.00

40.05

22.02

13.24

8.49

5.75

4.34

16.11

7.14

3.90

2.18

Temperature Thermal Conductivity

T(K) K(T) (mw/cm K)

5.0 387.48

6.0 150.95

8-0 58°91 Mie——Lennard—Jones A.N.

10.0 38.15 P t ti 1

20.0 17.86 00KB; ait

30.0 12.40 ens y

40.0 9.49

60.0 6.44

30,0 4.86

6.0 138.57

15-0 16’92 Mie—-Lennard-Jones

30.0 8.59
Potential

40-0 6°55 0 K D sit

80.0 3.35 en y

Bobetic-Barker Potential

with Triple-Dipole Correction

0 K Density

Bobetic-Barker Potential

with Triple—Dipole Correction

Equilibrium Density
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In these expressions, the quantities ¢" and ¢"'are potential derivatives

evaluated at the nearest-neighbor separation. After some straight forward

algebra, one obtains for the thermal conductivity under the high T

conditions,

c 0"”? 0"" ‘2 arm a '1 T'lK(T) =

O

The parameter C involves constants and sums, subject to momentum and

energy conservation, over non-dimensionalized phonon curves. This

quantity may be evaluated once and for all for use in the high T limit.

Listed below are the values of C which we calculated for the three

potential models used.

B-B potential: C = 12.07

For the case of nearest-neighbor interactions only, C fails to be

independent of the particular potential model only through the appearance

of terms in EQEfi'and 22%7‘ , which are generally of relative magnitude

0 o

2 and 10.1 respectively. For the all-neighborapproximately 10-3 - 10

potentials, however, there appear also in C terms involving ratios in

which the numerator and denominator are potential derivatives of the

same order. For this case, however, the numerators are evaluated at

higher order neighbor distances than the denominators; the latter as

before are evaluated at the N.N. separation. A typical such term,

for example, is ¢"(2N.)/¢"=0.03. Based upon these small corrections,

then, one would anticipate that the values of C for the different

potentials should be very nearly the same. But, in fact, they are not.
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The reason for this disparity lies in the large effect on the number

of Umklapp triplets, satisfying the energy conservation conditions,

which is caused by only small shifting in the relative values of the

phonon energies of different branches. Such small shifts result from the

shape of the interatomic potential. These small relative shifts arise

from the effects Of the small terms, discussed in the preceding paragraph,

on the dynamical matrix. For example, the average contribution to the

thermal resistivity per three-phonon process at 80 K differs by only

three parts in 1000 between the B—B and M—L—J A.N. potentials. However,

the absolute number of three—phonon processes occuring for the M-L-J

A.D. potential is larger by a factor of 1.24, accounting for the observed

differences in the thermal conductivities. This effect is even more

striking for the case of the M-L-J N.N. potential, which gives an

average resistivity per three-phonon process which is about 1.276 times

larger then that of the B-B or M—L-J A.N. potentials, while the number

of processes is only 0.54 that of the M-L-J A.N. potential. We

emphasize that this effect would not be anticipated or included in any

over-simplified model for heat transport, and must be detected only by

detailed analysis of the interaction processes.

For the MéL-J and B-B all-neighbor potentials, the first 10

inequivalent shells of atoms were found to be adequate for the evaluation

of the lattice frequencies and phonon group velocities. However, for

computation of the phonon scattering rates, which involve the quantity

¢(qq’q") given by Equation 28, the inclusion of more than two shells

resulted in the use of a prohibitive amount of computer time.
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Fortunately, the computed value of thermal conductivity was found to be

identical, to within one part in 1000, for the use of N.N. and of first

and second N. N. Detailed examination of the anharmonic coupling

constants ¢(qq’q”) revealed that this phenomenon was attributable to

cancellation of errors, since the effect of the neglect of more distant

atomic shells was to sometimes increase and sometimes decrease the value

of ¢(qq’q”) for different Umklapp triplets. In general, the overall

effect of the neglect of more distant atomic shells is to slightly

decrease the thermal conductivity.

In Figure 11 we have included the present experimental data, along

with that of K—M and C—B. These may be compared with the computed thermal

conductivities of the B-B potential, including the results obtained in

the quasi-harmonic treatment of the effects of thermal expansion. This

latter procedure differed from the previous analysis only in the respect

that the lattice frequencies were evaluated for a crystal density

corresponding to the equilibrium value at a given temperature. For this,

we used values of the lattice parameter ao, obtained by Peterson, Batchelder,

and Simmons,7 which were determined from X—ray diffraction patterns of

free-standing single crystals of solid Ar.

It is seen that the theoretical results are, in general, too low,

particularly in the intermediate temperature range above the region

of the exponential rise in K(T). This is probably the fault of the

thermal conductivity model used, since the effect of very rapid normal

processes (which are assumed in this model) is to help keep occupied

those phonon states which scatter strongly by U-processes, thus

contributing to the thermal resistance. In view of this fact, the

apparent agreement with the high T experimental data is surprising,
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Figure 11: The theoretical three-phonon thermal conductivity obtained

from the Bobetic and Barker potential model. evaluated both

for a 0 K crystal density, and for the equilibrium density.

Included for comparison are the present experimental results,

and those of Clayton and Batchelder, and Krupskii and

Manzhelii.
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since one would expect this model to yield a falsely suppressed thermal

conductivity in the high T range. Thus, one must be cautious in

aSsuming that thermal expansivity has completely told the story in the

reasonable agreementvfllfiithe high T data of K—M. Four-phonon processes

could conceivably be present, and account for the K-M data being low

enough to show apparent agreement with the three-phonon quasi-harmonic

calculations. On the other hand, the high T calculations may be higher

than a more careful analysis of anharmonic lattice vibrations would

yield.

2. Scattering Due to Defects

It was mentioned previously that in the temperature regime where.

U-type three-phonon processes are prevalent the contribution to the

phonon scattering by various types of lattice defects is relatively

small. However, at temperatures near and below the onset of the

exponential rise in the three-phonon conductivity, the precise behavior

of K(T) is determined entirely by the various types crystal defects,

impurities, or is limited by the size of the sample. The combined

effects of the various types of phonon scattering processes is to depress

and shift the peak in K(T) in a manner indicative of the relative

strengths of the different scattering mechanisms.

a. Formalism

The role of strain fields in thermal conductivity can be quantitatively

assessed only if one has detailed information concerning the nature of

the fields, and even then the computational difficulties are formidable.

Fortunately, since these effects occur at low temperatures, some of the

more usual approximations (such as the assumption of an isotropic,

dispersionless medium) are reasonably justified. It is common practice
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to manipulate the problem in such a way as to obtain a characteristic

phonon lifetime Tq’ which can then be used along with Equation 23 to

compute K(T).

Following the perturbation approach similar to that used for three-

phonon processes, we present a brief explanation of the origin of

strain field phonon scattering, and, in particular, show that it leads

to elastic phonon scattering.

The perturbation Hamiltonian for the case of crystal strains is

just the change in the crystal potential energy due to a displacement

field $1 in the crystal. This field is the result of either external

or internal stresses, and will depend in detail on the specific type of

crystal imperfection. In this case, atoms in the presence of the strain

field, now occupy instantaneous positions given by,

+

r

l

+

‘Rsz y;

.+

wherez'glis now the displacement from the displaced equilibrium position

+ +

R2 + Vi. Then, from Equation 8 the harmonic potential becomes,

a’= a, a B B
<14 1/4 {,2 ¢aB<RuJ(uuwmnuwvw .

M (18

or,

ml: I 6 C1 0. B ro d” + 1/2 Efilg8¢a8(nzfixjv£¢u£¢+1/2 v£¢v£¢1 . (52)

where 6: = $£ - Vin Here, #2 is just the harmonic potential energy when

no strain field is present, and the second term represents the strain

energy. Neither of the terms of the strain energy scatter phonons

since the initial and final states must be the same owing to energy

conservation; so these excitations remain normal modes of the crystal,

and the harmonic strain potential cannot contribute to thermal resistivity.
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Similar examination of the third order.crystal potential, however,

yields the following result, obtained from Equation 25,

km’_ a) , , B Y

¢ ‘ ¢ + 1/12 2 [Z ¢a8y(R22’[V22V22”22
29. 0281!

I+3V (53)
V6 MY

+ 3 V22V22’‘122 22u22u22] '

0f the anharmonic energy terms in Equation 53 arising from the strain

field, only those of the form Vuu scatter phonons. Thus the perturbation

Hamilitonian to be considered is,

a B
¢® = 1/4 2mi¢a8yR22) V22u22u22 ° (54)

+

Substituting into Equation 54 the normal mode expansion for URK"

Equation 26, one obtains, retaining only the energy conserving terms,

3) , 0! B Y
M?‘ a fi/BmN (in E2aZBY l¢a8Y( R“) eqqu22

TI TI ( V+E) (’$))a+(exp(-iq R£)-exp(-1q R¢)) exp 1q 1 exp 1q 2 qaq,

+ hermitian conjugate) .

+

By expressing the displacement field Vg in terms of its Fourier transform,

+ + + +

= Z V exp(iq°R

q i
f.

2’ '

one obtains,

M3 = n 8mN [c a a+,+ c* a+a

/ Z I q-q' q q q-q’ q qJ '
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where,

C ,= z 2 2 ¢ (R I) VYeaeB,
qq M'cBY qu GM 22 c; q q

‘ ~
(55)

. .+.+ .-+ + .-+’ u) ..p, + I

(exp(1q R£)-exp(1q'R¢))(exp(1q°R£)—exp(iq°R¢))(exp(ig“E£)-exp(iq‘§¢))

'From this result the following transition rates,

P , = W/3Zm2N2 c .2(N +1 N 5

and,

P ,= Tr/32m2N2 C 2N (N #1 6 w —
q+q lctr-q'I q q ) (qwd) '

which yield the rate of change of the phonon state as due to strain

field scattering alone,

. 2 2 2

n = -fl/32m N C 6(w -w ) (n -n ) . (56)

q E I q-dl q 4 q q' '

Therefore, to first order, strain field scattering of phonons is seen

to be elastic, and proportional to the square of the Fourier transform

of the total strain field (see Equation 55).

In the usual way, one can formally write Equation 56 in terms of

a relaxation time Tq, as,

where,

-1 2 2 2
T = ”/32!“ N C I 6 (0.) "w I)(1-n I n ) o

q 2,! Q'ql _q q q/ q

q
(57)

To evaluate this relaxation rate is extremely difficult, since into

the quantity qu, one must put information regarding the nature and

precise configuration of the total displacement field due to the combined

effect of all strain producing defects. Except for very specialized

cases, one does not know the exact number of configuration of strain
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producing defects, and must resort to several important approximations.

In surveying the work that has been done in this area,
20,43,44,50,69-73

generally several or all of the following simplifying assumptions are

made:

(i)

(ii)

The displacement field $2 is that calculated from

classical elastic theory for a particular defect

model. This is valid if the extent of the strain

field is large compared to the disordered region

responsible for the strain.

Defects are randomly distributed throughout the

solid. To a first approximation, this assumption

cancels the interference terms in Equation 56

which occur between strain fields of different

sources and kinds. Then the phonon scattering

rate due to the strain field of a defect of type

i is just proportional to the number of defects

of that type present in the solid. In this case,

one can define a total relaxation time due to all

types of defects according to T—1 = Z T;1 .

The validity of this assumption is sdmewhat

dubious, since it is well known,for example, that

dislocations often occur in arrays, and that point

defects interact with edge-type dislocations.29

This assumption also restricts the values of a" in

Equation 55 to 3-3' since A45“) now must be

approximately unchanged under a displacement of the

+

entire crystal through a lattice vector F3:
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(iii) Due to low temperature conditions, one normally takes

the phonon spectrum to be isotropic and dispersionless

+ + 2

(i.e. Vq=qwq/q , the Debye approximation). Likewise,

+ +

since Q'R£<< 1 for thermal phonons, one takes

+_+ + +

exp(iq'R£)=l+iq'P2 in Equation 55, and further restricts

the lattice sum to nearest neighbors only. Further-

more the anharmonic for e 0 at t . ma, c c n an ¢aBY(R££) Y

be approximated by the Gruneisen theory as,

(Rfit) 2 24YpV2 RgRERI/Rg ,
¢aBY

where, ‘Y= Gruneisen's constant

D= crystal density

v= velocity of sound

Ro= nearest neighbor separation.

Finally, integrals over angles are often

approximated by r.m.s. values.

Within the context of these simplifying assumptions, expressions

for the most common types of strain field scattering rates have been

20’43’44’50’73 For the most part, theirobtained by several workers.

results are similar, and we list here representative expressions for

the most common types of strain field scattering.

Point defects: The presence of a substitutional atom or vacancy

in a crystal lattice will introduce a strain field. If the medium is

isotropic and elastic, the displacement field is given by,

V(r) = Eror/r ; r>ro
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where r0 is the radius of the impurity atom or vacancy, and 511 is

the relative atomic misfit (i.e. V(ro)=€ro). For this field, analogous

to theteléctric field of a uniform spherical charge distribution, the

Fourier components of $(r) are,

+ . 3+ 2 .
. Vq = (4W1 Eroq/Qq ) Sin(qro)/qro (59)

The factor sin(qr&@um is seen to reduce the scattering rate at higher

temperatures where qro > 1. The low temperature scattering rate, given

2 .

by Carruthers,.O 18,

-l
Tpt = 8flO/45 (gErg/o) q4/v3 . (60)

Here, 93¢"L3¢"/Ro(from Equation 51b), 0 is the density of scatterers,,

and D and V have the same meaning as in Equation 58. The fact that

T£§<q4(or w4) is essentially a consequence of the spherical symmetry

of the strain field (analogous to Rayleigh scattering of sound). As

was mentioned in Chapter I,at low temperatures K(T) « T3"n for T—laqn 86

Thus, if point defects constituted the only departure of an infinite crysral_

from perfection, then K(T) G T-1 would diverge as T + 0. Other scattering

mechanisms must limit the thermal conductivity at low temperatures.

Dislocations: Results based on the conventional treatment of

dislocation strain field phonon scattering are somewhat suspect. First,

because of the relatively Complicated nature of this strain field, it is

essential to limit the treatment to only straight dislocations. In

reality, however, dislocations are known to more often occur in clusters,

and form spirals, closed loops, or other complicated configurations.

Second, even for the case of a straight edge or screw dislocation,

the displacement field is long—ranged, casting doubt on the validity

of Born approximation techniques.
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Klemens43 approached the problem for the case of simple, straight

dislocations, randomly distributed and oriented in the solid, using a

Gruneisen-type model for the anharmonic coupling. Carruthers20 later

solved the problem from the more fundamental atomic force constant

approach, and obtained the result,

-1

Td = 2/3 (0/128 v3) (gba/p)2q . (61)

In Equation 61, a = (1-2v)/(1-v), where \) is Poisson's ratio

and b is the Burger's vector. Other parameters are as in Equation 60.

This result happens to apply for a random array of straight edge

dislocations, but, due to the approximations and averaging procedure,

the expression for screw dislocations is essentially the same. Of

primary importance is the fact that T31 ¢ q, so that at low T, a crystal

possessing mostly diSlocation defects would have K(T)“T2 .

Ohasi44 has treated this same problem by the method of Green

functions, and also obtained the result 151 a q , but with the multi-

plying constant about 100 times larger than that of Carruthers. At first

glance, Ohasi's result seems to partially reconcile the marked discrepancies

whereby the dislocation density in Alkali Halide crystals obtained

from thermal conductivity measurements, along with Klemens' theory, were

as muCh as a factor of 1000 larger than dislocation denSities measured

from surface etch pit patternsflsm47 However, the experimental results

of Malinowski and Anderson85 present a strong argument for an entirely

different, and stronger, dislocation phonon scattering mechanism.

In their work, Malinowski and Anderson discovered that the 50%

reduction in the low temperature K(T) of a LiF crystal, resulting from

application of a shear stress, could be nearly restored by subsequent

y-irradiation of the strained region. This observation is consistent
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with a theory of Granato and Lucke,87 which has to do with the resonant

motion of dislocation cores within their equilibrium potential valley

between atom rows. In this model, the dislocation loops or segments are

pinned at their ends by impurity atoms or point defects. The segments

then vibrate as elastic strings, with the resonant frequency determined

by the segment length. These mobile dislocations effect strong resonant

scattering of thermal transverse phonons, explaining the 50% reduction

in udT), since then most of the remaining heat conduction is due only

to the higher frequency modes. Subsequent irradiation of the strained

sanmde presumably creates additional point defects, which pin the

(lislocation segments at more points, shortening the average segment

ltnngth, and increasing the resonant frequency. Then the thermal transverse

‘phonons lie in the low frequency tail of the damping curve, and are thus

free to conduct energy, restoring the original value of K(T).

This would seem to indicate that the residual phonon scattering,

whitfln must be due to the remaining dislocation strain fields, is in fact

a smaller effect, more in agreement with the results of Carruthers20 and

Klemens,43 rather than with those of Ohasif.4

Ishioka and Suzuki88 attempted to compute a scattering cross-section

for‘a simplified model of phonons interacting with a vibrating dislocation.

Theircxalculations are a quantum mechanical extension of those performed

by Graru1t0,89 which were based upon the classical results of Nabarro.

Since tile model of Ishioka and Suzuki is one of quasi-static dislocation

.motion, ‘the results are incomplete, and unable to reconcile the differences

with expemiment, including the T2 temperature dependence.

TTuere are two other important heat flow resisting mechanisms in

insuLators at low temperatures. These are the scattering of phonons by
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crystal grain boundaries (or the surfaces of the sample), and mass—

difference scattering. Although our experimental results indicate these

effects to be relatively small in high quality samples prepared from

high-purity Argon gas, for completeness we present expressions for the

scattering rates for these processes.

Mass—difference scattering: In a pure, non-quantum solid, the

existence of atoms of different isotopic mass does not produce strains,

so there is no change in the potential energy of the crystal. However,

the kinetic energy is modified according to,

T 1/2 1/2 X m g: + 1/2 ): (mg-EH3: = T0+Ar . (62)
02

m9

2" 2 2a
n
~
4

there, a - Z mg/N is the average atomic mass of the crystal, and the

2

perturbation energy is [IT a: 1/2 2m, -'n3)§:- Following the same first

2

order transition rate scheme as before, one obtains,

- 222: 2
n = -fl 8m N w M . 6(w -w )(n -n )

q / qgflqql q q’ q d '

where,

_ z A“ . 4-4; +~ (+ .+ )

qu,~ [ 2 l exp(1(q-q) R£)] eq ed. .

Assuming a random array of isotopic impurities, and using the set of

' 20
Simplifying assumptions previously mentioned, Carruthers gives the

result,

'1 .. 4 2 . 63Tam Q/N ow /41Tv . ( )
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In Equation 63"O=Zfi(l-mi/fi)2’ where fi is the fraction of atoms in the

solid having mass 3:. Thus, mass—defect scattering, like point defect

strain field scattering, is proportional to the fourth power of frequency,

and so cannot limit low temperature heat conduction.

Boundary scattering: For crystals in which the number of imperfections

is reasonably small, and at low temperatures such that the phonon mean

free path is large, the finite dimensions of the crystal come into play.

In this case, phonons are considered to propagate ballistically from one

surface element to the next, where they are either specularly reflected,

(Ir absorbed and subsequently randomly re-emitted. As a result, the

Thaltzmann equation as it is written in Equation 21 is inapplicable,

sixuce the distribution function Nq must now depend explictly on position.

Berman42 points out that this situation is analogous to that of

Knudsen flow of a gas through a tube. For that example, at ordinary

pressures, the rate of gas flow G is proportional to the pressure gradient

along the tube according to,

G « D4/n dP/dl ,

where, D is the diameter of the cylindrical tube, and n is the viscosity

of the gas. For a sufficiently dilute gas under Knudsen flow conditions,

one has,

c a D3 dp/d2 ,

and the concept of viscosity is lost, since gas atoms collide with one

another so infrequently. However, by defining an "effective" viscosity

according to,

3 _ 4

G d D dP/d2 .. D /neff dP/d2 ,
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one has the result that ‘neffaD, no longer independent of extrinsic

parameters.

Analogously, for heat flow under boundary scattering conditions,

a thermal conductivity is defined fitmIQf-KdT/dl, whereas its definition

within the context of a distribution function nq is unclear. Casimir

originally calculated the heat flux in the presence of phonon boundary

scattering, with the assumption that phonons were completely absorbed

at a surface element, and then re-emitted with the Planck distribution

function corresponding to the temperature of that surface element.

Casimir's results revealed that,

+ 3

Q°CTDVT,

vfluere D is the diameter of a cylindrical solid. Furthermore, from his

result, a thermal conductivity could be written in the form,

K(T) = 1/3 Cv v D, (64)

provided T is sufficiently low that Cv a T3, and provided one defines

an average phonon velocity v according to,

‘3) .

a _2 3

v a 2 vs /( 2 VS

s=1 s=l

Here, 3 denotes the polarization branch.

Equation 64 has been experimentally verified, although it has been

shown necessary to account for finite sample length, and for the

Possibildxy'of specular surface reflections of very long wavelength

modes.92-94 The case of grain boundary scattering is more complicated,

taince £1 model is required for the nature of the boundary mismatch. The

results are qualitatively the same as Equation 64, where D is a constant

dependent upon the size of the grains.
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,b. Numerical Evaluation

Employing expressions for relaxation rates according to the

preceding models, one may compare low temperature experimental data

to values obtained from Equation 23. Assuming validity of the Debye

approximation at temperatures below about 10 K, one may write

Equation 23 in integral form as,

_1 o/T2 _

K(T) = 1/3 (1/2w2)(kBT/h)3 Z v T x c (x ) T(x ) dx . (65)
S S S V 8 S S

‘where, cv(x) is the specific heat/mode, given by,

2 . 2
Cv(x) kB x /4Sinh (x/2) ; x - hw/kBT .

In the above, vs is the Debye velocity for branch 3. For Ar, 0285K,

so that Cv(x) is small near the upper limit of the integration in

Equation 65, and thus the branch distinction has little effect on the

integral. Therefore, Equation 65 can be written,

2

K(T) = 1/3 Cv v <T> (66a)

where, the specific heat Cv’ is just,

 

O/T 4

__ 3 2 '3 3 d"cv — (kBT/h) /8n 2 vS { sinh2(x ,2) - (66b)

The average velocity v is given by.

v2 = Z v-l/X v-3 . (66C)
9 s

s s

and the mean relaxation time <T> is,

@/T 4 9/T 4

X dx (66d)  

. __ T(x) x dx

(I) " l sinh‘(x/2) [ sinhTTx/z) '
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It is usual practice to write for T(x),

T-iX) = Z T;Ix) ,

i

where each i denotes a particular type scattering.

By directly summing reciprocal relaxation times, one explicitly

neglects any interference between elastic scattering processes, as

described in the preceding section. If U-type processes are still

important at the temperature of interest, a rate T51 , derived from

some model,69 may be included. A relaxation rate of N—type three-phonon

‘processes was traditionally excluded since N-type collisions conserve

txath momentum and energy, and so cannot, by themselves, resist energy flow.

Callaway,63 however, recognized that TN should somewhat be

included, since if N-processes are still rapid at low temperatures, they

can shuffle momentum and energy among the different modes, and thus

aid in keeping occupied those states which are scattered strongly by

other, resistive, mechanisms (R-type processes). Indirectly,then,lb-

type collisions could contribute to thermal resistance. Callaway

included this effect in a phenomenological manner by expressing sq,

in the Boltzmann Equation 21, as,

aq = -nq/TR - (N;(:)-Nq)/TR . (67)

This eXpression accounts for the fact that N—type processes will relax

the diAstribution N; back to the drifting phonon distribution, given by,

N;(Z) = (exp(h(w-Z'E)/RBT)-1)-1 .

While intrinsic resistive processes described by 1&1 relax Nq to the

eqU1librium distribution Na.



97

60

Krumhansl lent credence to Callaway's model by "deriving" a very .

similar result from a much more fundamental level. His work gives for <r>,

-l -1
(T) a < > < >I TR 5 + TR ]/Il+s), (68a)

where,

=<><>5 TN /‘TR . (68b)

The parameter 3 describes the relative importance of N-type collisions.

If N-processes are slow compared to R-processes, then 3 >> 1. and<T>+<TR>.

-l —1
However, for very rapid N-type collisions, S *’0 , and <T>+<TR > .

In this latter limit, it is seen that thermal resistivities of the

various resistive scattering mechanism are additive, i.e.

_ 2 -1 -1
W = l K = W =/‘ Z . 3 Wi (1/3 Cv v /<Ti >) .

i 1

This situation is the so-called Ziman limit.

c. Results

Using Equations 66, and 68, we fit the experimental low temperature

data. This procedure entailed performing numerically the integrals of

Equation 66d for a given set of trial relaxation rates at a fixed

temperature. The best set of scattering strengths were then found by

using a computer search routine94 such as to best fit the experimental

data over a given temperature intervalf Since only certain scattering

processes are important over certain temperature ranges, it was not

necessary to include all scattering mechanisms for each temperature

interval of interest. The procedure was as follows:

(i) The average phonon velocity was evaluated once and

for all, according to Equation 66c, using the experi-

mental data of Keeler and Batchelder.95 Likewise,



(ii)

(iii)
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for the values of the specific heat which go

into Equation 66a, we used the experimental

data of Finegold and Phillips.96

Employing a phenomenological relaxation rate to

depict U-type processes, which was of the form

-1 2 S -E/T 97

TU bUX T e 9

result in a thermal conductivity which best fit

we required that Equation 66a

our three-phonon theoretical data, previously

described, in the temperature interval from 5K to

12 K (this interval encompasses the exponential rise

in KCT». To simulate the conditions under which the

basic three-phonon calculations were made, the

quantity 3 of Equation 68b was taken to be zero

(i.e. very rapid N—processes). This procedure

resulted in a value bU = 4.836X10A K-S, and

E = 17.5 K.

A functional form for the Normal-process relaxation

rate was chosen after the work of Herring69

T-l = b X2T4 . The parameter b was then
N N N

determined by best fitting the experimental data

of run #7 for temperatures between 8 K and 15 K,

in conjunction with the previous results for bU and B.

These experimental data were chosen for this fit be-

cause of the good agreement with the data of some

other workers in that temperature interval, even

though there were disparities among those same data

at lower temperatures. This latter fact indicated
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that nearly all of the thermal resistivity in the

'8-12 K range was due to three-phonon effects,

which should amply be accounted for by only T;

and 1121 . The best fit yielded a value for

bN: bN = 1.254x1o5 K_4.

(IV) The remaining low temperature data (in particular,

that of run #10) were then used to ascertain the

appropriate scattering strengths of the various

scattering rates described in Section a.

Expressed in terms of the dimensionless parameter

x=hw/kBT , these scattering rates have the

following functional forms:

Point defects: T6: = a x4 T4 . In the

quantity 0 is tentatively

included the strengths of

both mass-defect and point

source strain field scattering.

Dislocations: Td a Y x T.

Boundaries: T;1 = v/D. Here,\ris the

average phonon velocity and D

a characteristic length.

Employing only the scattering rate functions listed above, no

combination of strengths could be found which adequately reproduced the

experimental data of run #lO both on the low T ramp and in the sensitive

2 2
area of the peak in K(T). However, the inclusion of a rate 151 = 6 x T

resulted in the agreement shown in Figure 12. In all cases, the best
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fits were rather insensitive to the (small) values of v/D and a.

Therefore, for these parameters we merely inserted D = 1cm, the

diameter of the sample, and a = 33K-4, which is the value one obtains

Equation 63 by considering only mass—defect scattering due to the

isotopic impurity Ar36.

The necessity of including the rate TD is illustrated in

Figure 13, which shows the family of curves which results when<5= O

and y is varied. Obviously, the exact temperature dependence of the

low T ramp is not well produced. Although a member of this family

appears to fairly well fit the low T ramp of Clayton and Batchelder's

data, it inadequately describes the dependence around the peak. Below

about 5 K, the temperature dependence of the curves in Figure 13 is

essentially T2, as expected from the simplified theory of straight line

dislocation scattering of phonons. Thus, our experimental data are

seen to vary more slowly then T2, consequently requiring the scattering

rate which varies quadratically with frequency in order to provide a

component to K which is linear in T.

Although this temperature dependence is unusual, this trend has

been observed previously by M03546 in crystals of CaFZ. One set of

his data could be fit by considering only TD , without need of Td

while another set could not be well fit with a variety of frequency

dependences. Moss attempted to explain this behavior in terms of the

formation of dislocation dipoles. In this case, the distant strain field

from two close, and oppositely oriented dislocations falls off as r-2

rather than r-l. Detailed analysis of this model results in the Simple

-1 -1 . 2 + + + . . . .
result TD = Td Sin ((q/2)°d ), whereciis the vector geining the two
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dislocation cores. For small separationszi, this rate is then

proportional to w q2d2¢x3T3({%¥% which is one order of uIIarger than

that of the T51 which we found to best fit the data. Besides, the small

2w d 2
quantity(jI-X) ‘would greatly decrease the effectiveness of this type

of scattering, demanding an unrealistically large density of dislocation

dipoles to result in the observed deviation from a T2 dependence of K(T).

The best fit of Equation 66a to the data of run #10 resulted in

the values Y'= 1.711X107 K_1 and 5 =1.500X106 K-z. Using Equation 61,

one may calculate a dislocation density O'from the quantity Y’according

to,

2 4

o =‘h/kB (p/gba) (192/v ) Y . (69)

where the parameters in Equation 69 were defined in Section a, and have

the values,

1.076x10J cm/sec.v'=

9'= .845 ¢"' = 5.63X10ll erg/cm3

D = 1.77 gm/cm3

b = 5x10"8 cm

a2= 1.558.

Then,0 = 306.8Y, which gives the result,0 = 5.24X109 cm—Z, for the

dislocation density.

In view of the need of the additional scattering term

and the fact that Peterson g£_al, were able, by X—ray analysis, to set

a lower limit of O'= 106cm.-2 for Ar samples prepared and handled in a

manner very similar to ours, the value of 0 obtained here is suspiciously

large. Therefore, it appears the present theory of defect phonon

scattering is somewhat lacking, and in need of refinements, especially
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in the area of dislocation effects.

Evidently, whatever aspect of the experimental procedure resulted

in the rather anomalous temperature dependence, was somewhat reproduced

for two of the runs. This can be Seen by inspecting Figure 14, which

is a plot of a family of curves of various values of Y’, but with 6 held

fixed at the value 1.5X106 K—z, which is that obtained from the best

fit of the data from run #10. It appears that the data from run #8

(small solid squares) also belong to a member of this family, while

it is clear that the data of run #7 (large open squares), and of C~B.

do not.

Surprisingly, another member of this family of curves also fits

very well the low T data of White and Woods. For that curve, however,

the distinction between <5= 0, and <5= 1.5X106 is not so pronounced,

due to the relatively large, and thus dominating, value of Y'(Y = 8.0X107

K-1 for that curve).

It is interesting to note the role of N-processes in depicting

the thermal conductivity In the relaxation time model. A measure of

this is the Quantity 3 of Equation 68b (s=<TN> (T15). For the fit

to the data of run #10, s varies from a value 80 at I K, indicating

relatively slow N—processes, to a value of about unity in the vicinity

of the peak in K(T). Thus, over that entire temperature range, one

would obtain erroneous results by attempting to add thermal resistivities

for different processes (Ziman limit).
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V. SUMMARY AND CONCLUSIONS

We have measured the thermal conductivity of solid normal Argon

over a temperature range from about 2 K to the triple point temperature

83.8 K. Care was taken to make measurements only on large-grained

or single crystalline, strain free samples. The data obtained were

highly reproducible within a single run, and of sufficient density to

make possible quantitative comparison with current theories of heat

transport in insulators at low temperatures.

In particular, we computed from first principles the thermal con-

ductivity of an Ar crystal whose lattice wave scattering is entirely

of the three-phonon type. The results of these calculations indicate

that resistance to heat transport via phonon-phonon interactions is

sensitive to the particular form of the potential energy function

through which the atoms interact. The heat transport is found to

depend sensitively upon even small variations in the magnitude and

relative values of the lattice frequencies (due to the exact shape

of the interatomic potential). At high temperatures these small

variations among potential models are manifested most importantly

in the absolute number of phonon-phonon processes observed to occur in

the crystal, and less importantly in the values of the scattering matrix

elements. At lower temperatures, this distinction is gradually lost.

Within the context of the quasi~harmonic theory of lattice

vibrations, the pair potential of Bobetic and Barker, in conjunction

with the three—body triple-dipole potential of Axilrod and Teller, is

106
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found to provide reasonable quantitative agreement with the high

temperature experimental thermal conductivity data of both constant

, density, and of free-standing Ar crystals. Thus, the observed T-l

temperature dependence of constant volume samples (as expected from the

' three-phonon collisions of first order perturbation theory), and the

‘ observed deviations from this T-1 dependence for free-standing samples,

appear to be adequately reconciled by the effects of thermal expansion

on the normal mode frequencies of the lattice. Therefore, the presence

of four-phonon or higher order lattice wave interactions appear to be

of minor importance in solid Ar.

For temperatures below 10 K, we fit the experimental data to a

relaxation time model of heat transport. This procedure indicated the

contribution to the thermal resistance due to grain boundary and impurity

scattering to be of negligible magnitude in comparison to that of other

mechanisms. Of these other mechanisms, the most predominant is that

described by the present theory of phonon scattering by the static

strain fields of dislocations. In addition, however, adequate fit to

the data necessitated the inclusion of a scattering mechanism which,

at present, has little theoretical foundation. This sort of behavior

has been observed in K(T) of other insulators, and may be due to some

strong coherent phonon scattering by arrays of dislocations, or by

dynamic scattering from vibrating dislocation cores.

Unfortunately, at present there exists no complete theory for

description of either of these phenomena, although the need for an

improved theory of dislocation phonon scattering has been previously

recognized. Our data tend to reinforce the apparent inadequacy in

the present theory of defect scattering, since the contribution to the
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thermal resistivity due to the scattering rate characteristic of dis-

location strain fields implies an unrealisticly large dislocation density,

especially in view of the care taken in the handling of these samples.

It should be noted, however, that there do appear to be certain inherent

difficulties in keeping free of defects samples which must undergo

thermal cycling.

It would be interesting to relate quantitatively the effects of

various manners and rates of cooling to the defect density, which must

result from differential thermal contraction. The thermal conductivity,

near the region of the peak, provides a sensitive indication of such

defect density, and would thus be a valuable tool in investigating

the manner in which defects are formed in simple solids.
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APPENDIX A: CRYSTAL NUCLEATION PROBABILITY

By employing the general theory of nucleation, one can obtain at

least a qualitative concept of the relatively large nucleation probability

of Ar.

The simplest case is that of homogeneous nucleation, i.e. the

formation of pure a-phase nuclei in a pure B-phase medium. If it is

supposed that thermodynamics can be applied to the a-3 system of nuclei

in the mother medium, the approach is as follows.

The change in the total free energy of the a-B system when a

nucleus of atoms is formed by statistical fluctuations is given by,

AG =- AGS + AGV.

The change in the surface free energy, Ass, is proportional to the

number of atoms on the surface of the nucleus,

K3 ==i a ,

and, the change in the bulk free energy,Ag , is proportional to the

, v

number of atoms in the nucleus,

The net change,AGiis a maximum for i = ic= (2a/3b)3, in which case,

AG .. Ase = 4/27 a3/b2.

This implies that nuclei with i<iC are unstable and will disperse

since AG increases with i; but, nuclei with i>ic will continue to

' grow since AG decreases with i.

108
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The rate of nucleation depends upon the mean time T needed to form

a nucleus of critical size ic. The energy AGC poses an activation energy

barrier for this process, so T a exp(AGc/kBT). The nucleation rate is

also proportional to the number of atoms/unit volume in the a-phase, to

the cross-sectional area of the critical sized nuclei, and to the

frequency with which atoms move through the boundary between the mother

medium and the nucleus. The only situation for which all of these

parameters are well known is the formation of spherical liquid droplets

in a vapor medium. In this case the rate of nucleation N is,26

P

(2flkaT)

/2
 

' _ 1

N - 1/2 n vg/Z (3Y/kBT) exp(-AGC/kBT) , (Al)

where,

Ac;C = 16wy3/3 (kBT/vg £n(p/po))2 . (A2)

The parameters in Equations A1 and A2 are as follows:

P a Pressure of the vapor,

Po‘ Equilibrium vapor pressure of the bulk liquid,

k - Boltzmann constant,

T - Temperature,

m - Atomic mass,

Vg' Volume/atom of liquid,

Y = Surface tension of liquid droplet, and

n = Number of atoms/cm3 in vapor.

Since all these parameters are known, we may calculate the nucleation.

rate for Ar and compare it to that of some familiar substance, e.g. H20.

Since this rate is a sensitive function of the degree of supersaturation

P/Po, we will simply assume this pressure ratio to be the same for both
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substances. Furthermore, the nucleation rates will be evaluated at the

triple point temperature of each substance to assure analogous conditions.

The results of these straight forward calculations are,

'Ar = 2.56x1028 exp(-55/(2n<p/po))2) , (A3)

and,

- 23 2
H O = 2.76X10 exp(-120/(£n(P/Po)) ). (A4)

2

80,

n /& — 105 (66/(2 (p/p ))2) (AS)
Ar H20 ‘ EXP “ ° '

For reasonable values of supersaturation the absolute rates given

by Equation A3 and A4 are unrealistically small. This does not necessarily

imply they are in error, however, since in normal practice observed

nucleation occurs heterogeneously (foreign particles, ions, or surfaces

catalyze the nucleation event). For example, it has been experimentally

verified for water that homogeneous droplet formation will never be

observed unless supersaturation is imposed very rapidly and is of

magnitude P/Po 1‘1 7.27

While Equation A5 does not depict real experimental conditions,

the huge disparity it displays between the rates for Ar and H20 gives

a qualitative indication of the rapidity with which Ar will nucleate.

This is fundamentally the result of the short-ranged and weak inter-

atomic forces of Ar, as manifested in the relatively small surface

tension which enters into Equation A2 as the third power.



. APPENDIX B: THE PROBLEM OF PLASTIC DEFORMATION

Under ideal conditions, one can easily derive the net stress on,the

upper surface of the solid Ar sample due to the bellows spring force. As

the temperature is lowered from the triple point (where there is no net

stress) this quantity will rapidly rise and then gradually fall off to

some constant value at O K, that constant value being given by the

'bellows' spring pressure evaluated at a displacement equal to that of the

overall length contraction of the sample. In practice, the important

question arises: Is there, at any time during the course of the cool-

down, a compressional stress sufficiently large to induce plastic

deformation of the sample? In an attempt to answer this question, we

‘evaluate the net stress at the temperature for which it is a maximum.

The zero initial displacement condition occurs at T=83.8 K and

P=516.8 Torr (i.e. at the triple point immediately after the solid has

frozen). A change in relative vertical position of the sample and upper

block due to bellows motion alone is given by (see Figure Bl),

AB = a(516.8 Torr - P) , ' (Bl)

where, P is the ambient pressure within the tube (Ar sublimation pressure),

and a is the bellows compliance rate which we measured to be about

1 mm/ZOO Torr. Likewise, a displacement Akbulk due to thermal contraction

of the solid is,

T

A1 = —£o/3 I 8(T') dT' . (32)

bulk 83.8K
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Here, .20 is the initial sample length :3 30mm, and 3(t) is the volume

thermal expansivity at temperature T.

At some temperature T, the net stress 0 is given by,

c = 516.8 Torr - Aflbulk/a - P , (B3)

and the condition for which 0 is a maximum is,

gg_= o- _ l/o dgbulk _ 9g. or d2bulk = g&_

dT dT dT ’ dT dT '

80,

10/3 8(T) = a dP/dT ,

 
Figure Bl: An illustration of the parameters AR and £0.
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1

and, dP/dT can be expressed as,30

dP/dT = P/T (103/T - 0.5) .

This yields the relation,

T = 0.5 p/B(T) (T‘1 - 5x1o'4). (B4)

One obtains from Equation B4 the solution,

T = 62.8 K , and P = ]2 Torr .

Thus,

2
O 2 5 7 - 2 . ,0 Torr Afibulk/a 6 8 gm/mm

Unfortunately, whether or not this stress exceeds the yield strength

of solid Ar a 63 K is not evident, since this quantity, as far as we

know, has not been measured on single or large—grained solids. A lower

limit on the yield stress may be obtained from the work of Stroilov

.EE.El°’31 who measured the yield stress of polycrystalline samples. These

workers recorded a value of about 43‘fi32 atffi3K. Also Stansfield

measured the ultimate tensile strength of solid Ar at 75 K, and obtained

2 32
a value of about 50 gm/mm . 0n the other hand, the theoretical yield

strength at O K is greater than 1000 gm/mmz.33 Thus, these values are

strongly indicative that plastic deformation is unlikely.



APPENDIX C: ON THE VALIDITY OF EQUATION 3

For a sample of constant cross-sectional area A and length L,

and whose ends are at temperatures T and T + AT, one obtains from

Equation 3 and Equation 1, respectively,

é/A = Kefffi) A'r/L : O/A = K(T) dT/dx. (c1)

So,

_ = 2

Keff(T) IL/AT K(T) dT/dx . (C )

The quantity' KeffiTD is an effective thermal conductivity defined by

Equation 3, andif = T +«.AT/2 is the effective temperature of the sample.

The right hand side of Equation CZ is true at any point in the solid.

Integrating over the length of the sample,

_ T+|T/2 AT/2 _

K (T) = l/AT _f K(T) dT = f K(T+T) dT , (c3)
eff

T-s. we
2 2

where, T = T - T .

To see how Keff(53 differs irom'<(T) evaluated at 5; we expand K(T)

in a Taylor series about T1

K(T) = K(T) + 3K(T-)/3T—T + 1/2 32K(-'I7)/3F2 T2 +

0f the terms retained, only the zeroth and second order terms contribute

to the integral, and one obtains,

Keff(T) - KXT)

K(T)

 2 1/24 K"(¥)/K(7r') ATZ (c4)
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Equation C4 gives the fractional difference between.Keff(T)and K(T)

in terms of the temperature differential AT.

By knowing the approximate temperature dependence of K(T), one can

set a safe upper limit on AT such that the effect of this type of error

is negligible. We give here some quantitative examples:

In the high temperature range, assume K(T) = $-; then, K" = 2A/T2.

Demanding no greater than a 1% error, one has the condition,

AT 5 @72— T. (c5)

Thus, at 80 K, for example, the allowed AT is AT S 28 K. .

2

Likewise, in the low temperature region, if K(T) = BT , then

Equation C5 is again the correct expression. At 2 K, AT 5 0.7 K.



APPENDIX D: THERMAL RELAXATION TIMES

The model for the transient heat flow problem of interest is

depicted in the Figure Dl. This setup consists of a highly thermally

conducting block at temperature T. The block is of mass ‘Mbl and

specific heat C . It is connected to a thermal reservoir at a fixed

temperature To<T by a thermal conductor with constant cross-sectional

area A ond and total length Lcond . This conductor possesses a total

heat conductance given by K = ( KA/L) . which is assumed to be

cond cond .

much less than that of the block. and it has a densitv pcond and a

specific heat C .
cond

\thermal

reservo r\ \13\
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Figure D1: A physical model for the transient heat flow problem.
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The temperature at position x in the conductor at some time t is

given bv the solution of the Fourier heat conduction equation.

/K 3T(x,t)/3t . (Dl)
2 2 _

3 T(x,t)/3x — C cond

cond pcond

By separation of variables. it is a simple matter to find a general

solution to Eouation D1 of the form.

T(x,t) = [B sian + C cosBx1e—t/T + Dx + E, (D2)

where.

-1 *2

= . D3

T Ccond pcond Kcond B ( )

This solution is subject to the following boundary condition:

(1) T(O,t) = To

(11) Thu”) = To

(iii) 3T(Lpt)/3X = -Mb1 Cbl &(L’t)/Kcond Acond

Condition (iii) is just Equation 1 of the text, with a given bv the heat

loss rate of the block. Mbl Cbl T(L,t)/Acond. Condition (1) implies

C=0. and E=To' while condition (ii) yields D=C. Condition (iii) determines

8 according to,

), (D4)(8L)C (MC)Cond/(MC)C = cot(BLco
ond ond nd

where, M = (pAL)

cond cond'

This transcendental relation has an infinite number of solutions 8n , so

the temperature at the block at any time t is,

T = T(L,t) = Z s sin(B L) e't/T
n n

n=1

1/8 (05)n + To 7 Tn = (Co/K)cond n
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Although the Bn can be determined,34 they are not needed explicitly

for our application.

For the case where the heat conductor consists of only the

electrical leads which run from the thermometer and heater on the block

to the thermal reservoir (upper block), the ratio of the total heat

capacities (MC)bl/(MC)cond in Equation D4 is large (about 390). Thus,

 

31L is small and approximately equal to “TMC)cond/(Mc)b1 .
cond

Since the higher order solutions are given by 8n L ”‘nfi'terms in
cond

Equation D5 for nl>l damp out quickly compared to the n=l term.

Our procedure was to employ Equation D5 in the form,

2111(T'T0) 3 2MB; 8111(81 Lcondn - t/T1 ; t > T2: (D6)

This was done by initially heating the lower block to some temperature

T>To in the absence of an Ar sample, and than allowing the block to

thermally relax toward the temperature To , while monitoring the time

dependence of T. From a least squares fit of Equation D6 to the

recorded data, we could ascertain the value of T . From Equation D3 and

the expression for BchonéJe find that,

T‘ ' (MC)bl/Kcond° (D7)

It should be pointed out, incidentally, that this form for T1 is

identical with that obtained for heat loss by radiation, which is described

by a relation of the same form as Equation D6. Thus, the Kcond derived

from the measured T1, can be regarded as a total conductance representative

of all_mechanisms of heat loss from the lower block. Once Kcond is evaluated

from Equation D7, the following corrected form of Equation 3 yields the Ar

thermal conductivity,

K = L/A (fa/Ar - K ) (D8)
cond '
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It should be noted that, although the geometrical factos A and L

cond cond

were used in the development of Equation D6, their values are not needed,

since they are contained in K One must know, however, the mass

cond'

Mbl and specific heat C of the block in order to evaluate Kcond from
b1

Equation D7.

For example, at 80 K we obtained from the least squares fit of

Equation D6, 1h.= 2.8 X 104 sec = 7.7 hr. This quantity, along with

the known mass Mb1 and the specific heat Cbl,35 yields the value,

Kcond = 0.18 mwatt/K. A typical value of the measured uncorrected

conductance, K = Q/AT, at this temperature is about 1 mwatt/K, so that

K represents a correction of about 18%.
cond

It is interesting to notice that if the Ar sample itself is

considered to be the conductor, then the ratio of total heat capacities

in Equation D4 is small at high temperatures. In the limit of a massless

block, 81L=I fl/Z, and T1 = chz/K(fl/2f. At temperatures near the triple

point the quantity Cp/K is very large for Ar (e.g. at 80 K, (cgyK)Ar z

7000 (Co/K)Cu . In this limit of a massless block, one calculates from

Equation D3 that‘r1= 45 min. Since a time interval equal to several t

is needed for the establishment of thermal equilibrium, this characteristic

is a significant handicap in making high temperature thermal conductivity

measurements .



APPENDIX E: THREE-PHONON COLLISION OPERATOR

We present here a derivation of the three-phonon collision

Operator.. Although these expressions are given elsewhere,19’52’53’7S

their interpretation is often obscured by notation, and in some cases

are inconsistent or erroneous (e.g. Julian52 notes the results of I

Leibfried75 are in error by a factor of two).

, When the third order anharmonic potential ¢m , given by

Equation 27 of the text, is written in terms of only the energy conserving

products of annihilation and creation operators, (i.e. products of the

f d i horm agaaagqor aqaqaq” 0 not contr bute), one as,

(3‘ a 3/2 II _ +

<I> N/6 (Tl/2N) 2, <I>(Siq ) [ aqaqaiqo+ aqaida_q,

-aa+.a,,-a+ a,a,,+ a+ a,a1’»+ at at adj . (El)

q-qq -qqq -qq-q -q-ci ,

Using the properties of ¢<qqq): ¢(Qdd) = ¢(qqq), etc. = -¢(-q-q-d)p

Equation El can be written in more condensed form,

«>3 = 1m (h/ZN)3/2 Z [@(qd-q" )a‘fa‘f‘a ,.
qqqu q q q

I n 1/2

- ¢< - - + p a H O 2q q q )aqaqadJ/wqwqwq ) (E )
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+

For the phonon state q=q,s, terms of the form a+afg u, for example,

q q q

represent transitions for which state q is increased by one phonon,

while terms of the form aqaga+,deplete the State q by one phonon, and

thus will contribute negatively to the rate of change of the distribution

“q. Using the Master equation 6 ==Z[P. -P J and the transition

q q’ q+q

rates given by Equation 29 of the text, we get Equation 32, reproduced

here,

0 2 ’

“q = 2"/h ‘h3/32N Z {2l¢(qq-q*)|2(N +1)(N,+1)N 4
qg” q q q

- l¢<-qq’ci7l2N (N ,+1>m .,+1) + qx _ 2. ~ 2 N +
q q q I q q q )I ( q l)Nquq

—2 ¢( 1 ”) 2N N ,N 1 .l qq q I q q( q» )}/wqwqwq. (E3)

These terms arise from selecting out of Equation 32 the final or

initial statescz, assigning the sign of the term in accordance with its

contribution to or depletion from the state.q, and then summing over

all other states ng” (the Efysum is implied due to the momentum

conservation condition 6(3i333?) . The phonon occupation products of

the form (Nq+1)Nde, are matrix elements of the products of three

operators agadad, taken between initial and final phonon occupation

number states according to Equation 17 of the text. The Nq are assumed

thermally averaged such that they represent the true local phonon dis-

tributions of the crystal.

Employing the Peierls linearization scheme described in the text,

one obtains,

I

h = w/16 fi/N 2{2I¢(qd;q”)lztn ((N°¥1)N°"-N°Qn°il))

q qs” q
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’l I, I I

+ nqd(N°+l)N°—N°(N°+l)) + nqx(N°+1))N°+1) - N°N°>1

I l/ I/ ,7

+ |<I>(q-q’-q”)|2[nq<N°N°- <N°’+1)(N°+1>) + nq,((N°+1)N°

- N°(N°11)) + nq” ((N°+1)N°’-N°(N°'+1))]/ww'w"

. - 2 ,

By writlng N° = e X/2/2sinh(x/2> and u°+1 = ex/ /2$1nh(x/2),

 

 

and utilizing the energy conservation conditions xix'ix" = 0a

0’ ol/ 0/ oil

we see that the term [(N +1)N -N (N +1)] , for_example, becomes,

I _ II _ I I! - + {- II 2 _ _)(+ ’I

ex/2 e x/2 _ e x/2 ex/2 _ e x/2(ex 3 x _ ex/ (e x 2 x )

o I o I/ '-

451nh(x/2) Slnh(x/2) 4sinh(x72) sinh(x72) '

Energy conservation requires X+X'-X"=(L so

[(N°’+1)N°"— u°'m°’1~1>1 = -sinh(x/2)/2sinh(x’/2)sinh<x"/2) .

With this, and similar results, one obtains,

 

 

. _ -sinh(x/2) _ a 2

nq -."fi/IGN gsfsinh(x72)sinh(x72)[l¢(qd q )l

_ L I 2 sinh(x72) _ _ a 2

+ l/2I¢(q q q')| ]nq + sinh(x/2)sinh(x72) [I¢(q q'q )l

+ |¢<qd'-q')|2 - l¢<qq’-q”)|21nqz}/W'w" ‘34)

Thus, Equation 134 may be formally written, fi = Z G ,n , , where the

q q’ qq q

diagonal and non-diagonal components of the collision operator G are

apparent. Due to similarities in notation, Equation E4 can most

readily be compared with the expressions given by Bennett,53 and we find

some disagreement in the value of the multiplying constants. These
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disparities are.apparently due to typographical errors in Bennett's

paper.



APPENDIX F; EXPRESSION FOR THE THREE—PHONON

THERMAL CONDUCTIVITY

To obtain an expression for the three—phonon thermal conductivity,

we begin by substituting the distribution n; = ZAan Qg)into the

1
a

Peierls-Boltzmann Equation 35 of the text.

at) ..- * > .—.. * >I6 X G Inla Ra EAOL R Inla .

a a

where we have used the Dirac vector notation (e.g. 6; = <q|9*>).

Then, operating from the left with (“18' , one obtains,

<n18|e*> = g (n18|R*lnla> AG ,

which is a matrix equation for the coefficients Ad. Now, the quantity,

I

(an|R*ln1°‘> “qzq’qan Raq’ '

vanishes unless a=8 , as a result of cubic symmetry. Furthermore, all

<n BIR*h1cfare equal for the same reason. Thus, the coefficients Au

1 1

are given by,

A = A = <n1a'e*>/<n1alR*|nla> ,

so that

n; = g (nla'e*>/<n1alR*lnla> n1a(q)
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+

Then the heat flux Q = Z hm 3 n*/25inh(x /2) becomes,

q q q q q

+

.

mmhmqqn1a(q) I , +
- o

a q 25inh(xq/2) g D1a(q) Slnh(X/2)3Nd/3T vd VT/<n1alR*ln1a>' (p1)

From Equation F1, one may define the thermal conductivity tensor

3 + #

K(T) according to Q = -K°VT.

Since 01a is odd in a, then the sum over a in Equation F1 is

non-zero only for the Ol—components of 3; . Likewise, the sum over 3'

vanishes unless‘VT has an.a-component, all a consequence of cubic

symmetry. Thus it is seen that K(T) is a scalar quantity given by,

xqqu1a(q) I

K(T) = -kB/Q (201/2; / ana(q)n1a(q)Raql .
 

4sinh2(x

or,

xq<3q3w (3 3’) R*
q 12/ E q q sri

4sinhz(xq/2) ,4sinh(x /2)sinh(x,/2)

qq q q

 K(T) = -kB/BQ [ qu



APPENDIX C: NUMERICAL TREATMENT OF EQUATION 47

The expression for the three-phonon thermal conductivity denominator,

Equation 47, involves double wavevector space sums of the form,

+ +’ l + fl +1!

2 Z f(quS) A(qiqiq ) 5(w 1w .tw a :

qs g?’ q q q

which, for a fine enough wavevector grid, can be represented for

computational purposes, as

IBZ
+ , +-fi-g,

(N/4n;)2 X w(q) Z f(qq) A(qiqiq )

qs qs'

, 3 3 v + i I 3 3 1
[L a ql a q2 6((wq+wl)-(wq+w2) wq,)/ffa qld q2 (c >

riffe

+ +

Here, again,W(q)weights the wavevectors q according to their cubic

symmetry type vectors, and the function.f0qq')has been pulled outside

the grid cell integrals since it does not vary much over the volume of

the grid cells. The resulting double integral averages the singular

+ +,

energy delta function over the full grid cells at Q.and q . In

Equation Gl, ha and “5 represent the small variations in the frequencies

+ +-

wq and m respectively, as the wavevectors gland q2 vary over the volume

+ +

of the grid cells at q and (1'.

Due to the finite size of the grid cells, this integration results

in a broadened weight function.S(z)which has a maximum value when

z==|wq i w ,t wd+= 0, but which is non-zero for values of 2 within the

+ +

extent of frequency variations within the grid cells at q and q}.

That this is so can be seen by execution of the integral for a

specific delta function representation. We present here an example
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for the case where,

. 1 €

5(x) — 11m 6 +0 n 2 2 .

X +E

Thus, one has for 8(2) , where Z = (wq‘wqrwd) r

a 3 /

5(2) = lim 3'” d qld qzlz 2,,r'ffd3qld3q2 (G2)
€+ O ggidsu-Hnl-wzl + E/

To a good approximation, the variation of frequency within a grid cell

is just the scalar product of the wavevector deviation and the phonon

group velocity at the grid point, i.e.

3w

2 2—3.+=+.+

ml wq+gl.wq aq ql v ql

Also, to simplify the integration, we approximate the cubic grid cell

by a spherical one of the same volume. Then, one has that,

+R AldqlAquZ

8(2) 0: E H, (z4-m1—w2)‘+£:z

 (G3)
!

where, Al and A2 are surfaces of constant frequency within the spherical

grid cell (e.g. see Figure G1).

In Figure 01, R is the radius of the spherical grid cell, given by

_ 1/3
R ~ (3/4fl) 21T/aonm .

Defining the quantities, w§==qu and wg==vdR, which represent the

maximum variation of frequency within the grid cells, Equation G3 can be

written,

u)0 0

TT2 1 “2 (mgz-w§)(wgz-w;)
- G4

_w2)2+€z dwldwz
( )  

5(2) a 3 3 o(z+w
quq, -w1-w2 1
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/

Figure 61: A spherical grid cell at grid point 3. illustrating

the phonon group velocity v . and a constant frequency

surface A. q

 

  
Figure 62: The region of integration for the variables w and w,

expressed in terms of w? and (03-
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By transformation to "center Of mass" and "relative" coordinates,

w = ml - wz and w = (ml + w2)/2 .

Equation G4 becomes,

 

 

€1T2 [wiz-(Wm/Z) 21 [wgz- (w-w/z) 2)

3(2) or quq, f] (z + w), + 52 dm dW . (GS)

The region of integration for these variables is shown in Figure G2.

In Figure 02, we have shown the case where w: > w; -

If we further define the variable C=Zi'w, we need not retain

terms in the numerator of Equation G5 which are non-zero order in C,

since integrals of the form,

n

. C dC

11m EIT—r
8+0 C +8

vanish unless n=0. Thus, Equation G5 becomes,

2

5(2) a: 37516,] [wiz-(w-z/2)2][wgz-(W+z/2)2] aw SIZES-13:7" (G6)

As can be seen from Figure G2, the integrations are carried out

over three separate regions. For example, the g-integral for region (1)

is,

o o
24» H»

lim al.5957. = 1im tan-1(C/E) 1 2
C, +8 0 0 (G7)

8+0 8+0 z-wl-w2

o o

EQuation G7 indicates that unless wi-wg<lz|<w1+w2 , there is no

contribution to 8(2) from integrals over region (1). The interval (3)

C-fiintegral gives the same information, while for interval (2), the

cxnndition is Oélzliwg‘wg . Thus, the range of values of z for which

5(2) is non-zero are,

0
(GB)
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The condition G8 reveals the intuitive percept that, in compensation

for the finite grid size, the energy conservation condition is allowed

a maximum deviance from z=0, which is characterized by the true wave—'

+ + _

vectors<1 and<1 not being situated at the center of the grid cells, but

rather at points on the surfaces defined by the direction of maximum

frequency change.

In general, one obtains the result,

b 2 2

5(2) = (fig—6,) [(0) -(W-IzI/2)2][w< -(W+Izl/2)2] dw

l 2 a

where,

> <

(i) a = Isl/2 - w , b = -Iz[/2 + m

if Iw: - mg] 5 I2] 5 wii+ w; .

(ii) a = -|z|/2 — w<, b -lz|/2 + w<

ifoslzlglwi-wgl .

and,m< (00>) is the smaller (larger) of a); and (I); .

The above result is similar to one obtained by Goldman gt_al,,78

which is based upon a general method by Gilat and Kam,79 but differs

in that Goldman_g£-§l. performed only a single grid cell integration,

requiring that deviations of the other cell's wavevector be correlated

in a certain way to those of the first.

Figure G3 displays the general features of 8(2), for various

(arbitrary) values of (u: and (Mg.
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10.no. 6..

Z (arbitrary units)

A plot of the function 8(2) vs 2.

= 2.0

Figure G3:

Curve A: w? a 3.0 w

Curve B: w° a 5.0 mg

Curve C: ml a 8.0 w;
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APPENDIX H: DERIVATIVES OF THE INTERATOMIC POTENTIAL

Presented here are analytical expressions for the first, second,

and third derivatives of the pair potential ¢(r) with respect to the

interatomic spacing, obtained from the models of M—L-J (6-12) and B—P.

These results derive from directly performing the algebra of differentiating

the analytic form of the given model potential:

Mie-—Lennard-Jones (6-12) potential:

¢<r) - euo/r)12 - 2(o/r)61 (ala)

¢'(r) = ~12€/r [(0/r)12 - (O/r)6] (Hlb)

.¢"(r) = -¢'/r + 725/:2 [2(o/r)12 - (C/r)6] (81c)

¢"(r) = -¢'/r2 - 3¢"/r - 432/:3 [tam/ml2 - (O/r)6]€ (Hld)

Barker-Pompe potential:

 

 

 

, L 2 C

a(l-r/C) 1 ————21+6
¢(r) = ate A (r/0 -1) - Z - 1 Hz

120 i i=0 6+(r/O)21+6 ( a)

L
- i i

¢'(r) = 6/0 [ea(: r/°:X Ai(ré?+;1) (7373—:I3-a) ("2b)
=2 1.

-+ Z C21+6?r/°), 1

1-0 (8+(r/O)z‘lg)2

r L
,— -1

¢"(r) = jidea” 0’ZA,<§*1>1[“2'232"*$é$"3]

L . o 41+10 (HZC)+ 2C21+6(21+6) (21+5)(£§21+4 2(Zi+6)(r[0) 1}

1-0 (6+(r/0)2”‘I[ 0 5+(r/O)233.5

L 2

.. e cxl-E) r 1 3131a 3ia(i—1).i(i-l)(i-2)
45 (r) '3 61"[8 Oi£:i(6"l) {-0 T(£_l‘)'7£_1)2 T(r/O _1)3

o o

6i+15

-6(2i+5x21+6)(§)4i*9 (HZd)

2

+ z c21+6(2i+6) [6(21+6)2(r/U)

i=0 (8+(r/ofm‘53 6+(r/o)2““*

 
 

+(2i+5)(2i+4)(r/O)21+3(6+(r/O)21+6)]}
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The triple-dipole potential function is written,

5/2

¢3(r1,r2,r3) = VIlezza + 3/8 lezzal(212223)- :

where, for convenience, we have labeled the squares of the sides of the

atomic triangle by 21, 22, and Z3. Here, the quantities 21, 22 and Z3

are given by,

Z1 = 21 + 22 - 23

Zz = 22 + 23 - Z1

23 23 + 21 - 22

The analytic forms for the derivatives of ¢3 , to second order, are,

5/2d): _ _ _ -

¢3 _ 8¢3/32i — 5/2 (133/zi + vlz zk+3/8 (Zi(zj Zk)+zjzk)](zizjzk) '

j

fij): 2 _ _ (D _ ‘2 - 23 — 8 ¢3/3Ziazj - 5/2 ¢3/zj 5/2 ¢3/zi (5/2) cps/zizj¢

5/2

I

+ \)[zk + 3/4 Zi](zizjzk)

and,

(ifl : 2 2 _ _ 2 (D _ _ _ -5/2

¢3 _ a ¢3/321 _ 1/4{ 15 ¢3/zi + 20 ¢3/zi v3[zj zk Zi](zizjzk) }

In the above, i, j, and k each take on values 1, 2, or 3, and are in

cyclic order.
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