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ABSTRACT

ANALYSIS OF CLAY DEFORMATION BY
RATE PROCESS THEORY

by Rlchard W. Christensen

The deformational characteristics of clays are
analyzed from the point-of-view of the particle structure,
utilizing rates process theory. The deformatlions at the
particle level are treated as the breaking and reforming of
Interparticle bonds as a rate process, Theoretical consid-
erations concerning the nature of the particle structure,
and the physical aspects of deformatlon processes are
presented. A schematic model 1s used to represent the
behavior of the particle structure under load.

Creep and relaxation data obtained from specimens
prepared 1In the laboratory and undizcturbecd specimens are
presented. The expcrimental recults arrce well with the
behavior predicted by the model.

The variation of the modcel parameters in cyclic creep
loading 1is shown to be relatcd to particle level phenomena
taking place during deformcticn, The calculated values of

A , a rate theory porum.tor assoclated with the geometry
of the flowing unit, arc found to be consistent with known
geometrical properties of the particle structure. The
activation energy, 4 F, 1s calculated from the rate theory
parameter /57 and also from temperature-creep-rate data; the

two methods give nearly the same value of 4 F.
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CHAPTER I
INTRODUCTION

The stress-deformation-time behavior of clays is not
well understood. The principal reason for the lack of
knowledge 18 that clays are extremely complex in theilr
physical makeup. They consist of solid material (the in-
dividual clay particles), water, and sometimes air; and the
manner 1in which these components are combined in nature is
highly variable.

The 1ndividual particles, by themselves, comprise a
class of substances with a wide range of physical proper-
ties (Grim, 1953). Furthermore, the geometry of the particle
structure has a profound 1nflﬁence on clay properties and,
depending upon the environment at the time of formation, the
particle geometry can be quite different. A clear picture
of the particle geometry in various types of clays was only
recently obtalned through the use of the electron microscope
(Rosenquist, 1959).

The presence of water in the voids of the particle
network further complicates clay behavior. It has long been
recognized that the water nearest the clay particles is
strongly attracted by the surfaces forces of the particles
(see, for instance, Houwink, 1937) and has been arbitrarily

designated as the adsorbed water layer. However, the nature



of the adsorbed water and its influence on clay propertiles

1s still not resolved (Lambe, 1960). Furthermore, the
electrolylc content of the pore water influences the inter-
particle force filelds and, consequently, affects the particle
geometry, water properties, and shearing strength of the

clay (Moum and Rosenquist, 1960).

If air 1s present 1in the clay pores 1n addition to
water, the siltuatlon 1s even more complicated. However,
thls investigatlion deals only with saturated clays.

Recently much interest has been focused on the proper-
ties of the clay-water system; 1.e., the interaction of the
solld and fluild phases in a clay mass. As a result, con-
siderable knowledge has been gained 1n this area within the
past few years. These recent developments are utilized
herein in attemptlng to formulate a working hypothesis for
particle behavior during deformation.

The approach to be adopted in this study 1s to treat
the flow between individual clay particles as a rate process.
Using the equatlion of flow from the rate theory, a model 1is
devised to simulate the behavior of the particle structure
under external loads. The rate process approach to material
deformations 1s due to Eyring (Glasstone, Laldler, and
Eyring, 1941) and has been extensively used in studying the
mechanical properties of polymers (Tobolsky and Andrews,
1944), textiles (Eyring and Halsey, 1948), and colloldal

suspensions (Tobolsky, Powell, and Eyring, 1943). Murayama



and Shibata (1958) recently applied the methods of rate
theory to the flow properties of a Japarnese Alluvial clay.

Results of triaxial shear tests for creep and stress
relaxatlion loadings on two glacial lake clays are presented.
The experimental results are compared with the behavior
predicted by the model and the values of the model para-
meters calculated for each test.

Good agreement is found between the behavior predicted
by the model and the experimental results. The values for
the model parameters calculated by comparison of the theore-
tical and experimental curves are interpreted 1in terms of
the particle structure.

It 1s hoped that this study will rnelp to clarify the

role of the particle structure in deformation of clays.



CHAPTER II
THEORETICAL CONSIDERATIONS

2.1 Nature of the Clay-Water System

It 1s well known that individual clay particles are
thin, plate-like structures of a size less than 2 microns.
Because of thelr size and geometry, these particles possess
a very hilgh surface area-to-mass ratio and are strongly
influenced by surface forces.

In a clay-water system, the water in close proximity
to the particle 1s attracted to the particle surface and
forms what 1s called the adsorbed water film. The proper-
tles of the adsorbed water and its effect on the mechanical
properties of clay masses are still uncertain.

It was thought for some time that the adsorbed water
layers were rather thick--up to 0.1 microns according to
Terzaghl and Peck (1948)--and quite viscous. The conclusion
was drawn from thils concept that the viscous nature of clays
resulted from the presence of the viscous water layers sur-
rounding each particle. Recent research i1ndicates, however,
that the thickness of water affected by the clay particles
is no more than about 25 angstroms (see, for instance,
Rosenquist, 1959).

It 1s generally agreed that the water immedlately next
to the clay particle 1s different from ordinary water. On



the basls of heat of swelling and vapor pressure-temperature
data, Rosenquist (1959) calculated that a 10-angstrom layer of
crystalline (ice-1like) water surrounded the particles 1n the
particular clay tested. Furthermore, Anderson and Low (1958)
found that the speciflc volume of water near clay surfaces
1s greater than normal water. Thls data was cited by Low
(1960) as evidence that the adsorbed water has a structure
that 1s more ordered than that of normal water. Martin
(1959), on the other hand, presented data that indicates
that the water next to the particles 1s more disordered than
normal water. The question of the structure of the water
near the particle surfaces must, therefore, be conslidered
unresolved.

Low (1960) found that the activation energy of the
flow of water through Na-bentonite increases with time after
wetting and concluded that the adsorbed water 1s more viscous
than normal water. Rosenguist (1959) also found from
deuteron-diffusion measurements that the adsorbed water on
clay particles 1s more viscous than normal water. However,
Michaels (1959) pointed out some of the shortcomings in
assessing the properties of the adsorbed water from such
indirect evidence. Michaels also suggested that the adsorbed
water may be not only different from normal water but aniso-
tropic; 1.e., "the resistance offered by a water molecule
being slid along the surface may be considerably less than
that offered by a water molecule being elevated from or

lowered toward the surface."



Leonards and Girault (1961) showed that the phenomenon
of secondary compression in the consolidation test cannot be
attributed to adsorbed water films alone. They found that
clays in which the water had been replaced by carbon tetrach-
lorlde, a non-polar fluid, still exhiblt secondary compression.
Similarly, Norton (1952) described a simple experiment in
wnich dry, powdered clay when placed in a elastic membrane
and subJected to a vacuum behaves plastically 1n the same
manner as a molst clay. These findings suggest that the
adsorbed water on clay particles may be of relatively minor

Importance 1in the deformational properties of clays.

2.2 Clay Structure

A comprehensive description of clay structure was
first presented by Tan (1953). The individual particles are
assumed to form edge-to-face contacts with one another,
resulting in a continuous solid skeleton in a "card-house"
arrangement. Tan's concept was later verifled by Rosenquist
(1959) by means of electron microscopy. Figure 2.1 1is a
schematlic drawing of a clay particle network according to
Tan and 1s 1in remarkable agreement wilith Rosenquist's findilngs
for undisturbed marine clays. Remolded clay structures are
believed to be simllar except that the network may consist
of small "packets" of parallel particles rather than individ-
ual particles (Lambe, 1960; Mitchell, 1956).

Rosenquist (1959) also established that the individual

particles are actually 1In mutual contact by quick freezing



Figure 2.1. Schematic picture of clay (After Tan)

undisturbed clay specimens in liquid air and sublimating
off the 1ice. Little or no shrinkage was observed upon
removal of the frozen pore water and the dried specimen had
considerable strength, indicating the presence of a contin-
uous particle network.

Several mechanisms of bonding between clay particles
have been suggested: (1) Coulomb attractive forces, (2)
van-der-Waals-London forces, (3) cation bonding, (4) hydrogen
bonding, (5) 1Bnic bonding, and (6) covalent
bonding.

Direct methods for determining the relative magnitudes
of the various bonding types 1s lacking but the Coulombic
and van-der-Waals-London forces are generally thought to be
the most predominant (see, for instance, Van Olphen, 1951;
Rosenquist, 1959; Tan, 1959; and Lambe, 1953). In particular,
Iler (1955) presented strong evidence for the existence of

the Coulomblc attraction between. negatively charged flat



particle surfaces with positively charged edges by showing
electron micrographs of negatively charged silica particles
attracted to the edges of hectorite particles. It is likely
that all the bond types mentioned are present in clays to
some degree, but no reliable method for distingulishing thelr
relative contribution to the interparticle bond 1s presently
avallable.

According to the evidence currently avallable, the
nature of clay particle structure may be summarized as
follows:

1. The 1individual particles in a clay mass form a
continuous solid skeleton in which edge-to-face
contacts predominate.

2. At the contact points between particles, bonds
are formed as a result of microscopic force
fields In the clay-water system. These forces
consist mainly of Coulomb attractive and repul-
sive forces and van-der-Waals-London forces.

The combined effect of the microscopic force
flelds determines the strength of the inter-
particle bonds. These force filelds are influ-
enced by many factors; e.g., the size, shape and
mineral composition of the particles, the electro-
lytes in the pore fluild, adsorbed cations,
geometry of the structural network, vold ratio,

and perhaps others.



3. .The adeo’rbeq water f1lms on the particle surfaces
play a minor reole in determining deformational |
behavior--it may affect the viscous flow of clays
under stress but is probably not the prime cause

of wviscous flow,

2.3 Physical Aspects of Deformation

Since deformations111c1ays-1nvel§e the interaction of
discrete s0lid particles, a useful analegy can be drawn
from the phenomenon of sliding friction between solid suyr-
faces, According to modern concepts, friction is envisioned
as being the shearing resistance developed by the inter-
locking asperities of two surfaces brought together under
the action of a normal force (Bowden and Tabor, 1954). Even
in the case of highly polished surfaces, actual contact
occurs over a very small area so that the local stresses at
the contact points are sufficlent to produce ylelding.
Therefore, the total normal force

| P= Oy A |
where nypxis the yleld stress in compression and A, 18 the
actual area of contact. The maximum shearing force that
can be applled before falilure occurs 1is
F=TCTyp A
where'Eyp is the yleld stress in shear. Since the coeffici-
ent of friction gy is defined as ugp = % s> 1t can be seen

that u, = OE}LE .
yp
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Burwell and Rabinowicz (1953) have shown that ue is
not a constant, but depends upon the speed of sliding. For
a glven normal stress, they found that sliding occurs for a
wlde range of shearing forces--the coefficient of friction
increases with the speed of sliding up to the point of
failure. Horn and Deere (1962) found that the coefficient of
friction of phlogopite mica also increases with the speed of
sliding. It 1s probable that this relationship also applies
to clay particles since clay particles have crystal struc-
tures similar to those of the micas.

Burwell and Rablnowicz described the frictlonal
deformation process as the successive breaking of bonds
formed by the interlocking asperltles and subsequent forma-
tion of new bonds as the two surfaces move relative to one
another produclng new contacts. A simllar process may be
applicable to the phenomenon of sliding between clay parti-
cles. This application does not require that the clay
particles are 1in direct contact, although this appears to be
the case.

The deformational resistance of the clay structure
rests in the bonds formed between particles at the polints
of contact. The strength of these bonds may vary wildely 1in
any glven clay so that when external stresses are applied,
some of these bonds will fall in shear while others remaln
intact. The particle movements which follow breakage of

the bonds willl tend to bring the displaced particles
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into contact at other points as the deformation proceeds.
The bonds which are broken may also be expected to reform
in other positlions due to attractive forces which exist
between particles at close range. The resistance of clays
to deformation 1s thus seen to depend upon the strength of
the Interparticle bonds and the number of these bonds per
unit volume--a situation which 1s quite similar to the
development of sliding resistance between solid surfaces.

In solids, the yleld strength in shear, T is

yp’
usually assumed to be constant. However, 1n clays, the
strength of reformed bonds may differ from the strength of
the original bonds If the particle geometry 1s substantilally
altered during shear.

It was noted that the contact area in the case of
sliding friction between solids 1s directly proportional
to the normal force. 1In clays, on the other hand, the num-
ber of bonds per unit volume 1s primarily dependent upon
the preconsolidation pressure and particle geometry. The
consolidation process forces some of the water from the
pore spaces, thus bringing the particles closer together
and creatling more interparticle contacts. Even after un-
-loading, most of the bonds formed during consolidation
remain intact because of the close range attractive forces,
The particle geometry has considerable effect on the number
of bonds 1in that more interparticle contacts are possible
in a random arrangement than one in which the particles are

aligned parallel to one another.
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The number of bends may, also, be considerably affected by
shear stresses since the resulting shear strains tend to
disrupt the particle structure.

The abllity of clays to retain interparticle bonds
upon unloading provides an explanation for the experimentally
observed fact that preconsolidated clays possess a cohesion
intercept on the Mohr-Coulomb diagram while normally con-
solidated clays do not (Rosenquist, 1959) Under the
pfesent hypothesis, therefore, the necessity of explaining
friction and cohesion as two intrinsically different compon-
ents of shearing resistance 1s eliminated since they are
only different macroscoplc manifestations of the same micro-
scoplc process,

The conclusion may be drawn from this brief discussion
that deformatlen 1n clays under externally applled loads
involves a continuous process of breaking and reforming
Interparticle bonds. Processes of this type are well sulted
to theoretical treatment by the theory of absolute reaction
rates (Glasstone, Laldler, and Eyring, 1941). 1In the secticn
which follows, this theory 1s adapted to clay particle

structures.

2.4 Deformation of Clays as a Rate Process

The deformation of clays under applied stresses is
assumed to be the result of the breaking and reforming of
interparticle bonds which arise at the contact points between

particles as the result of the microscopic force fields that



13

exlst 1n the particle structure. The use of the term con-
tact points 1s not intended to imply that the mineral
surfaces of the particles are necessarily in actual contact,
although such may be the case. A contact point, as the term
is applied here, merely refers to the point at which a bond
1s formed between particles. Actual contact between the
mineral surfaces 1s not required. Since the interparticle
bond 1s the net result of the force fields of the "contact,"
the nature of the '"contact" need not be specified here.

The interparticle bond 1is assumed to present an
energy barrier to relative motion between particles. This
energy barrier will be represented by the symmetrical
potential surface shown in Figure 2.2a in which A 1s the
distance between the adjacent minimum positions A and B.
In order to break the bond between particle surfaces, an
amount of energy at least equal to the activation energy, A F,
must be suppllied to surmount the potential barrier. The
energy required to raise the bond to 1ts activated (loosened)
state may result from thermal oscillation of the atoms and
molecules making up the bond, applied stresses, or both.
Even 1i1f no external stresses are acting, the bond 1s pre-
sumed to pass through the activated state with a frequency

of

= l{T_e-
h

where k 1s Boltzmann's constant, h i1s Planck's constant, T 1is

k! A F/RT times per second

the absolute temperature, and R 1s the universal gas
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constant 1in accordance with the theory of absolute reaction
rates (Glasstone, Laidlef, and Eyring, 1941). 1In this case
there 1s no net movement, however, since the frequency 1is
the same 1in both directions.

It was noted earlier that clays possess a wide range
of bond strengths due to the heterogeneous nature of the
material. Therefore, in dealing with the breaking and re-
forming of bonds as a rate process, a broad spectrum of
activatlion energles may be anticipated instead of a single
value. In the development which follows, the value of A F
1s taken to represent the average of all bonds under con-

sideration.

/[ >
\

\Q_m
(b)

\\
AF (c)
79 |
1
L N

Figure 2.2. Potential surface for interparticle bond:
(a) without external stresses, (bz energy
gradlent due to external stress, (c) with
external stresses applied.
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Consider now a certain plane 1in the materlal over
which a shear stress C acts. Let the average shear force
exerted on a bond along the plane be @. The effect of this
force 1s to add to the potentlal surface, a potential
gradient -@gx, where x 1s the distance measured in the
direction of the stress (Figure 2.2b). The new potential
surface takes the form of Figure 2.2c. The force @ will do
work ¢~§L in moving from A to B in the forward direction.
If the movement 1s backward, or against the stress, the
work done 1s -¢._é__. According to rate process theory (see,
for instance, Tobolsky, Powell, and Eyring, 1943), the net

rate of place change 1In the forward direction 1is, then,

g 2

PV S R VZ-!" | R,
2KT

k' times

per second (2.1)
If the distance moved in each jump is A and the average
distance between points of flow in a directlon perpendicular
to the plane of flow is .ﬂl, the rate of shear strain 1s

given by

r- 2 % —::T e ~AF/RT sinh%’1 (2.2)
I

Since the average force locallzed on the individual bonds 1is
@, thus Z=9 b/, where / is the number of bonds per unit
area over the plane of shear.

The equation for shear deformatlon of the clay particle

structure then becomes
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” kT - AF/RT . .
7= 2 %% 4 e F/ sinh é%%%f (2.3)

which 1s the general equation for non-newtonian viscous fliow
(Eyring and Halsey, 1943).

Having established the flow relationship of Eguation
2.3, the total deformational behavior of clays is now con-

slidered.

2.5 A Model for Clay Structure

The flow relationshipAof Equation 2.3 1is, by itself,
inadequate to fully describe shear deformation in clays.

The major characteristics of clay deformatlon 1n additlon
to viscous flow that must be taken into account 1n the
theory are as follows.

Creep tests on clays show that an Instantaneous de-
formation takes place immedliately after trne load 1s applied.
This deformation is largely recoverable and has been attri-
buted to bending in the clay plates and the rotation of thre
flat particle surfaces toward one another agalnst tre action
of Coulomb repulsive forces (Tan, 1959).

Secondly, at stresses below the failure stress, thre
creep curves tend asymptotically toward some firal deforma-
tion (Lo, 1961; Casagrande and Wilson, 1950,. If the flow
process comes to a halt, then the stress must be carried by
intact bonds which do not flow. Hence, it may be assumed
that a yleld value exlists, below which no movement occurs.

Alternatively it may be sald that when the force on a rcord



1s very small compared to AF the flow rate 1s not measurable.
An explanation fof the exlstence of a threshold stress 1is
found in the hyperbollc character of the flow equation
derived from rate theory (Eq. 2.3).

Equation 2.3 1s of the form

7= Asinh B g

where
= kT - AF/RT v
A=2 4L ¢ / and B = _A
A h 2kT

Now 1f B >> A and B remains constant the flow curves willl cach
have an apparent yield 1limit below which the flow rate 1is tco
small to be measured. This yleld limit increases for de-

creasing values of A as shown in Figure 2.3.

7= A sinh Bg

B>> A l I
B = constant
A17>Ax>A3>A4

Strain rate 77

Force @

Flgure 2.3. Flow curves for non-newtonian vliscous flow showing
apparent yleld 1limits for the case »=A sinh B(Z;
B ’, A.
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Such flow curves have been observed on the macroscopic
scale in creep tests on clays (Houwink, 1937; Geuze and Tan,
1953). Since A 1s inversely proportional to the exponential
of the activation energy AF, the apparent yield limit Qy in-
creases with AF. If the force on a bond 1s below the appar-
ent yleld 1limit, the rate of flow 1s extremely small and may
not be detected by laboratory measurements. If the rate of
flow below the apparent yileld point 1s taken as zero, the

flow curve takes the form shown in Figure 2.4,

7 = A sinh By

I
N |
v I
P
o
£ |
o
- l
5 By N ¢-¢y=¢f
%) L o
I
|
|
|
Force @

Figure 2.4. Flow curve for interparticle bond having yleld
strength ﬂy.
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According to this flow curve, the bond possesses a yleld
strength ¢y beyond whilch flow proceeds according to the

relationshilp

3

7= A sinh B fp

where gy = @ - Qy is the force on the bond in excess of the
yleld strength. No flow occurs at stresses below ¢y'

In a clay mass, a spectrum of yleld strengths may be
anticipated due to the wlde range of activatlon energles.
The solid curve 1in Flgure2.5a shows a hypothetical distribu-
tion of bonds wlth respect to yleld strength for an unstressed
particle structure. The area under the curve 1s equal to the
total number of stress-carrying bonds‘p per unit area 1in the
plane of flow. Stress-carryling bonds are all those that will
be stressed when external loads are applied. Thus u = J +-7
in which V 1s the number of bonds which flow and n is the
number of bonds which do not flow.

Consider now the effect of external stresses on the
particle structure. Under a given sequence of loading, the

bond forces may be divided into the following categories.

@y = total yleld strength of the bond
Aﬁﬁyn = additional force that a bond can carry in
the nth increment before flowing or
4A¢yn = yleld strength of a bond for the nth increment
‘A¢n = 1nitilal force exerted on a bond due to the nth
increment
MA@y, = flow force on a bond due to the nth increment

¢gn = non-flow force on a bond during the nth
increment
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Additional deslgnations are defined where needed.

If a system of stresses 1s applied to the mass, the
bond whose flow curve 1s given in Figure 2.4 1s subjected
to a force, say A@. If A@ is smaller than the yield stress
Qy, the bond reacts elastically and does not flow. However,
if Ag 1s larger than ¢y, the bond flows, immediately after the

stresses are applied,under the force
(Aﬁf)o =AQ - ny

Unless all the bonds are stressed beyond their yield point,
the force Zlﬁf is gradually transferred to the stronger

bonds as flow proceeds. Thus, A@p steadily decreases to

zero and the bond ceases to flow. At this point, the flowing
bond carries a force ¢y.

As a first approximation, 1t may be assumed that all
the bonds 1initlally carry an equal share of the applied
stress. At the instant the first stress Increment 1s
appllied, each bond then carries a force A@;. As Flgure 2.5a
shows, the force A¢1 exceeds the yleld strength of some of
the bonds; these bonds flow until the flow force :QQfl on
each flowing bond 1s diminished to zero by transfer to
stronger bonds. The 1initlal total force per unit area of

particles tending to cause flow 1s

‘)0 \)o
(Fe1)o = 9 (APr1)g = 5 (881 - Apy)

2] o
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where ,, 1s the number of initially flowing bonds per unit
area.

After deformations have ceased, the total flow force
Feq1 has been transferred to the initially non-flowing bonds

so that they then carry the force

(Fe1)o

Moo

where n&a 1s the number of bonds that did not flow during

the first load increment.
At the end of deformation, the bonds whilch flowed are
stressed to their yleld strength, whlle those which did not

flow have a yleld strength

A gyg = Agyl - (ﬁgl)oo

with respect to additional stress. The distribution of bonds
with respect to A¢y2 before application of a second load
increment 1s as shown in Figure 2.5b. It will be noted that the
number of bonds with any remaining yleld strength is consld-
erably reduced by the first load increment. The same processes
take place during the second and all succeeding increments
until all yleld strength has been exhausted and fallure occurs.
The application of the nth load increment causes all
the stressed bonds to be subjected to a force increment 13¢n.
The 1initial flow force on any bond in the n®h increment is
Ag,, 1f Aﬁyn =0
(A@rn)o = Agy - APyn, if A¢n>A¢yn >0
0, 1f Agy,> Bg,



while the initial non-flow force on any bond in the nth

increment 1is

gy, 12 Ag> Dpy,
gg (n_l) = Agn) if Agyn > Agn

(Zgn)

At the end of the nth increment, the force carrled by a

glven bond is

gy 1t Ay > Dy,
Pg(n-1) * bpn+tinde | a Abyn > B8y

oo

(gn).,

If the clay mass 1s unloaded after the nth increment--
provided fallure has not occurred--the yleld strength of a

bond in the first unloading increment 1is
N L _
Ay = gy, + (I/Jgn)‘>°

Therefore, the initial bond distribution with respect to
unloading takes the form of Figure 2.5c. This curve is
elongated 1n the horizontal direction compared to that in
Figure 2.5a due to the addition of the term (¢gn)a° to the
yleld strength of each bond. For unloadling the flow process
proceeds in the same manner as described for loading. How-
ever, it may be noted that the initial unloading force Aﬁi
produces fewer flowing bonds than the first loading force
A@y. Therefore, the flow in the particle structure is
considerably less during unloading. Inherent In this behavior
is the experimentally observed fact that recovery 1is incom-

plete.
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The deformational propertles of the particle structure
Just described may be illustrated schematically by the model
shown in Figure 2.6. (U

|

l:-rlﬂ

It

Figure 2.6. Schematic model for clay particle structure,.

The spring k, represents the effect of bond stresses
below the yleld point--the stress on the non-flowlng bonds
plus the stress on the flowing bonds at or below the yleld
point. 1In thls stress range the bonds are assumed to behave
elastically. The right-hand side of the model represents
the effects of the bond stresses which cause flow. The flow
in the dashpot then represents the rate process.

Thus, when a shear stress 7 1s applied, elastic defor-
matlons occur in accordance with the combined resistance of
ki + ko which Indicates the elastic response of the particle
structure as a unit. As the deformation proceeds, the
stresses tending to cause flow are transferred to stronger

bonds untill all flow stops. The average flow properties of
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all the flowing bonds under a given stress increment. are
represented by the dashpot/s and, at any time, the stress
in the right-hand side of the model 1is the stress producing
flow,

It 1s readily seen that the model possesses the major
deformational characteristics observed in clays. For
example, 1f a constant load 1is applied, the springs k; and
ko deform elastically,’followed by viscous flow in the dash-
pot/S until all the load 1s finally carried by the spring ko
and the deformation ceases; it will be noted that this
behavior agrees with that reported earlier for clays.

The shear stress in the left-hand side of the model is

where Z'l is the shear stress in the viscous element and 7Y
1s the total shear strain. In the right-hand side, the shear

stress 1s
L=k (7-77), (2.5)

and according to Equation 2.3,

7= 4 sinh T (2.6)
where AF/RT
_ A kT - - A
£ =2 w° and X = TV T

From Equation 2.4

. 1 o L)
7 = o (T -17,) (2.7)
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Combining Equations 2.5, 2.6, and 2.7,

+ . .
katke + 1 7 8 sinh ol

o .

But for creep loading, [ = 0, so

Kitkp 7, = - A sinh « 7
kiko
or
d(o Ty) - sinh = 0, (2.8)
kikp

A8 T+ K, b

Upon integrating Equation 2.8,

-+ 1 1 kik2
b' = ol 1ln tanh [-2— O(ﬂ -1(1—+l{—é—' ( t- C)J (2.9)
At the instant the load 1s applied,
t=0 and L, = 1 A
kl+k2
so that
2(ky+ko) 1 o k1T
C = —m————— - - —
=B kiko tanh = exp ( K1+kp )
from which
kiko
1 1 AT
ZI, = = & 1n tanh [ P 0(15 kq+ko ¢ + tanh™1 exp
(-°‘_k_1_’:_)] (2.10)
ki+ko

From Equation 2.4,

1
7= E(Z'El)

The creep equation thus becomes
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1 1 1 k) ko
7= “""‘kz T + xKkp ln tanh [ 5 “ﬁ k1+k2 t
-1 okl T
+ tanh - x1b 2,11
exp (- 2T | (2.11)

In a similar manner, the differentlial equation for

stress relaxation is found to be

—_—l - s8inh « G, (2.12)
d(x8 kt)

Integrating and applying the boundary condition,
at t = 0, Il = to - .Lw

the stress relaxation equation becomes
; 1 1
T= Tw - & 1n tanh |7 &8 kit
-1 .
+ tanh exp (-o [Lo -‘Lw] ) (2.13)

Equations 2.11 and 2.13 describe the stress-strain-
time behavior predicted by the model for creep loading and
stress relaxation, respectively. The validity of the struc-
tural hypothesis developed in this chapter will depend upon
the agreement between the experimental and theoretical
behavior. The experimental program of this study 1is now

presented.



CHAPTER III

EXPERIMENTAL PROGRAM

3.1 Objectives

The first purpose of the experimental program is to
determine whether or not the proposed model reproduces ade-
quately the actual deformational behavior of clays. Secondly,
1f the theoretical and experimental behavior show reasonable
agreement, the experimental results may be used to evaluate
the model parameters which would provide some insight into
the particle nature of the deformation.

In order to achleve these obJectives, creep and stress
relaxatlon tests were performed on a number of speclally

prepared clay samples uslng a triaxlal loading apparatus.

3.2 Clays Used

The majority of tests reported in this study were
performed on speclmens of a glaclal lake clay obtained from
a site approximately 15 miles south of Sault Ste. Marle,
Michigan. The raw clay was obtained from a pit at a
depth of about 15 inches. A serles of diagnostic tests,
including x-ray diffraction studles (Christensen, 1963)
shows that thils clay contains approximately 50% 1llite, 20%

vermiculite, 20% chlorite, and some kaollnite and feldspars.
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A few creep tests were also performed on an undisturbed
glaclal lake clay from Marine City, Michigan. Although
identification tests have not been performed on this clay,
1t 1s presumed to be primarily an 1illite clay. The 1index
properties for both the Sault Ste. Marie and Marine City

clays are listed in Table 3.1.

TABLE 3.1. Index Properties of Clays Tested

Cla

Clay L.L. P.L. P.I. Fraction
Sault Ste. Marie 60.5% 23.6% 36.2% 0.60
Marine City 41,49 21.7% 19.7% 0.73

3.3 Sample Preparation

The Sault Ste. Marie clay was alr dried in the labora-
tory prlor to preparation of the test specimens. The
various methods of sample preparation are descrlbed below.

a. Laboratory Consolldated Samples. The alr dried

clay was soaked 1n distilled water and remolded at a water
content near the liquid 1limit. The remolded clay was placed
in a 6 inch diameter lucite cylinder and left to stand for
three weeks. An 1initial consolidation pressure of ,003
kg/cm2 was then placed on the clay. After at least 90%
consolidation was reached, the pressure was doubled and
maintained until 90% consolidation was again achleved. This

procedure was repeated until the clay was consolidated under
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a pressure of 0,36 kg/cmg. The load was then removed and

the clay allowed to rebound. Several weeks later, the clay
was extruded from the cylinder and cut into six sections,
each approximately 2 inches square in cross-section and 3.5
inches 1n helght. These sections were then waxed, wrapped in
aluminum foll, waxed agaln and stored in a moist room until
required for testing. Immedlately before testing, the waxed
sections were trimmed into triaxlal specimens 1.40 inches

in dlameter and 2.8 to 3.0 inches 1n length.

b. Remolded-Compacted Samples. The alr drled clay

was placed in a muller and reduced to a size less than 2 mm
in diameter (No. 10 U. S. Standard Sieve). Distilled water
was added until a water content of approximately 40% was
achlieved. The clay was then placed 1in an earthen crock,
covered with a rubberized cloth and stored 1n a moist room
to ensure an even water content distribution. After about
two weeks, the clay was removed from the molst room and
placed 1n a static compactlion ring, 11.25 inches 1n dliameter
and 6.5 inches 1n helight. The clay was placed in the com-
paction ring by hand, with a kneading action to remove as
much of the air as possible. A pressure of 1 kg/cm2 was
applied to the clay by the loadlng ram of a hydraullc testing
machine. The pressure was maintalned for one hour, after
which the load was released and the compacted cake removed
from the ring. The cake was sliced into 21 sections, each

approximately 2 inches square in cross-section and 4 inches
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in height. The sections were then waxed, wrapped in
aluminum foll, waxed again and stored in a moist room for

at least two weeks prior to testing to allow equalization

of moisture distribution and to minimize thixotropic effects,
Immediately before testing, the sections were removed from
the moist room and trimmed to a diameter of 1.40 inches

and a helight of 3.0 inches for triaxial testing.

c., Dry Clay Sample. The air dried clay was pulverized

with mortarand pestle until it would pass a No. 100 (U. S.
Standard) sieve. The pulverized clay was placed in a drying
oven ét 105°C and left for twenty-four hours. After removal
from the drying oven, the clay was formed into a cylindrical
speclmen and placed inside a rubber membrane fitted to a
cylindrical specimen mold. The clay powder was compacted
with a rod to densify the mass., After filling the mold,

the sample was fitted at the top with a lucite loading cap
and sealed. A vacuum was then applied to the sample through
the pore pressure line in the pedestal base. All water had
previously been removed from this line so that no moisture
could reach the dry sample. With the dry sample being sup-
ported by the vacuum, the sample mold was removed, the
detachable cylinder and cap of the triaxial cell secured

in place, and the chamber filled with water. Prior to
applying the chamber pressure, the sample dimensions were
taken. The weight of dry clay in the sample was determined
by welghing the supply of dried clay before and after form-
ing the sample.
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d. Undisturbed Marine City Sample: The undisturbed

Marine City clay was obtained by means of thin-walled
piston samplers with an inner dlameter of 3 inches. Tri-
axlal specimens were trimmed from the tube samples to the
same dlmensions as the remolded-compacted samples. Data
pertaining to each of the individual test samples may be
found in Table 3.2.

3.4 Triaxial Tests

All test specimens were subjected to a hydrostatic
consolidation pressure of 2.0 kg/cm2 which remained until
at least 90% consolidation was reached. Except for the dry
clay, a back pressure of 1.5 kg/cm2 was applled after con-
solidation by raising the chamber pressure and pore pressure
simultaneously in increments of 0.1 kg/cmz. The back pres-

sure was maintained for at least twelve hours before testing.

a. Creep Tests. The creep loads were applled by means

of a yoke resting on the loading piston. The yoke was fitted
with a hanger from which the welights, required to produce a
certaln stress, could be suspended. These weights were
placed on the hanger with great care to avoild subjecting
the sample to shock loading.

A dial gage, of sensitivity 0.001 inches or 0.0001
inches, was attached to a mount on the trilaxial cell with
the stem resting on the loading yoke so that the vertical

(axial) deformation of the specimen could be measured.



Throughout the test, the chamber pressure was maintained
constant by means of a constant pressure cell.

From the instant the creep load was applied, the axlal
deformation and pore pressure were recorded at thirty
seconds, one minute, two minutes, five minutes, and so on
with the time 1nterval between readingsbeling approximately
doubled after each reading. These data, along with the
constant volume conditions permit the calculation of the
effective princlpal stresses and principal strains.

Each creep locad was maintained until the deformation
had practiéally ceased and the pore pressure had reached
equilibrium. The length of time required tc achleve this
condition varied from about one hour to more than one week
depending on the stress level and the stress history of the
specimen.

The loading program was varled conslderably for dif-
ferent test speclmens. Some specimens received orly one
large creep load, while others were loaded in small incre-
ments. Still others were cyclically 1loaded; 1. e., the 1load
was increased in small increments and then unloaded 1n
similar increments until all the axlal stress had been re-
moved. The results of the cyclic loading tests are particu-
larly interesting because they permit a comparison of the
behavior of the material in loading and unloadirg.

b. Relaxatlion Tests: The specimens were subjected to

a constant rate of deformatlon by means of a constant speed
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drive mechanism., At a predetermined deformation, the drive
mechanism was disengaged and the deformation maintalned
constant,

From the instant the deformation was stopped, the axial
stress, pore pressure and time were recorded at time intervals
which were approximately doubled after each reading. The
axlal stress was measured by means of a proving ring in the
earller tests and later by means of a load cell. The load
cell, the design of which is described by Schmertmann (1960),
was employed in order to minimize creep in the specimen
during stress relaxation. Since the relaxation of stress in
the proving ring produces substantial deformation in the
specimen, 1t was thought that the measured decay of axial
stress might not represent true stress relaxation. After
checking the proving ring results with those from the load
cell which deforms very little with relaxation of stress, it
was found that the creep induced by the proving ring had
little or no effect on the measured stresses.

The room temperature was recorded during all tests by
means of a contlnuously recording temperature gage. Durilng
the winter months, when most of the tests were performed,
the temperature control was very good--variations greater
than 2°C were rare. During the summer months, however, the
room temperature varled as much as 10°C during the testing
of a single specimen. The temperature effects were most

pronounced on the stress relaxation tests--1n several cases,
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rendering the data useless. The effect on the creep tests,
although less severe, could also be seen in changes 1n slope
In the deformation-time curves. Where temperature fluctua-
tions became appreciable, this fact 1s noted 1n the data
which 1s presented in the Appendix.

A complete listing of the speclmens tested and the type
of test performed on each 1s provided in Table 3.2. The
results obtained from the experimental program are now
presented and analyzed 1n terms of the theory developed in

Chapter II.
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CHAPTER IV

EXPERIMENTAL RESULTS

4,1 Presentation of Data and Evaluation
of Model Parameters

In this chapter, the experimental results of this
investigatlion are analyzed in terms of the structural model
described in Chapter II. The first problem to be considered
is that of devising a consistent method of data representa-
tion which will enable the model parameters to be determined
quickly and consistently. In the following discussion, such
a method 1s presented.

Consider the theoretical creep equation derived for

the structural model in Chapter II,

. ki k
r= L+ 1 _1n tanh[l x5 12
ko koo 2 ki+kp
. k
-1 1
+ tanh exp ( -ot'C——kl+k2 )] (2.11)

In a three-dimensional stress system, the shear stresses
and strains on the octahedral plane give a good representa-
tion of the shear distortion in the specimen. The octahedral

shear stress 1s given by

Toct =% '\/ (Gy ‘0/2)2 + (0o -63)2 + (T3 -J1)?

and the octahedral shear strain is
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2
7gct= -3-\/(€1' €2)2+(€2- 6'3)2'*‘(6.3- €1)2

In the trlaxial test, the principal stress difference
(Cfl -Cf3) and the major principal (axlal) strain €, are
convenlently measured. Under constant volume conditions,

the stress and strain conditions imposed on the specimen are
and
€1 N 623 = €3 5 tl + 6‘2 + ;3 = 0

assuming that the strains are uniform,
With these conditions imposed, the octahedral shear stress

i1s given by

w |~

T =

oct <01 -(jé) = 3 D

in which D 1s the principal stress difference or the "deviator"

stress as 1t 1s frequently called in the nomenclature of soil

mechanics. The octahedral shear strain is
'7Bct - /5 <1

in terms of the axial strain €,
Equation 2.11 can now be rewritten in terms of the measured

quantities D and €~1 as




Immediately after application of the load (t = 0), tne
instantaneocus strain 1s
- D
(£1)0 = 3(k1 + kp)
while the ultimate strain under a given load (at t = o0 ) 1is

These relations can be combined with Equatlion 4,1 to obtain

a dimenslionless creep function of the form

1 -
U¥ =1+ 7 1n tanh [2(t) + tanh™ exp (-A)  (4.2)
- () ;
where U#* = _; ( 1’0 . E___EE s U = axlal deformation,
2 k
A=€0<D L z(t)=lo</5 K1k2 .
kl+l{2 2 kl+k2

The dimensionless creep function U* 1s seen to be de-
pendent upon the parameter A and the time functlion Z(t) and
varies between the 1limits of zero and one. By varylng the
parameter A, and plotting U¥* versus log Z(t), the family of
curves shown in Filgure 4.1 1is obtained.

To determine the parameters o and ;?, the experimental

data 1is plotted as U-Uo_yx versus log t. 7Tre sheet
Uoo_ UO

containing these points is then placed over the theoretlcal
curves and adjusted horizontally until the points colncide
with one of the theoretical curves, as nearly as possible.

The choice of the best theoretical curve to fit the data
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determines the value of the parameter A for that test. With
ki and ko known from separate considerations, the parameter
K may be calculated from the relation

kl+ K2
k1

Ol =

(4.3)

e
]
Nliw

The parameterff 1s found by noting the value of time t,
on the experimental curve,which coincides with some arbitrary

value of Z(t) on the theoretical curve sheet, since,

_ 2Z (t) (k1+kp) LoL)
/6 klkzt?(t (. 4)

With k; and kp calculated from the instantaneous and ultimate
creep strains and & and/3evaluated'by the curve fitting
technlique, all of the model parameters are determined.

In the relaxation test,

T=7T, - & 1n tanh I:§o</8 kit

+ tanh ! exp -«(To -To )3 (2.13)

-

or, in terms of the principal stress difference, D,

3
g =D°°-o<_\f-2:

+ tanh™? exp -

"1
1n tanh 15 a/ﬂ klt

2 5
§ X (DO - Q”)J (“-/)

In the same manner as described for the case of creep 1loadlng,
a dimensionless stress relaxation function 1is obtained in the

form
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1 :
D¥ = 1 + F 1n tanh [W(t) + tanh-1 exp (-B )] (4.6)

V2 :
where B = "3 X (Dg-D,.) , W(t) =-2-o</9 k,t ’
px = Do - D
. Do - Do

The dimensionless stress relaxation function D* depends
upon the parameter B and the time function W(t) and varies
between zeré and one. D* 1s seen to be of the same form as
U* and so the same theoretical curves can be utilized for
béth creep and stress relaxation. The determination of
and B for the relaxatlon test 1s carrled out in the manner

as described for the creep test, where, now

3B
x = Va2 (D, - D.) (4.7)
and
B = _2u(t) (4.8)

< kit

It was found during the course of the experimental
investigations, that the ultimate values of strain and
deviator stress for creep and relaxatlon respectively were
rarely reached within reasonable testing times. The time
intervals required were normally greater than one week and
in some cases more than a month. During that time the test
samples were often subjected to accldental shocks or vibra-
tions on the loading frame and/or temperature fluctuatiens.
Efforts to eliminate these environmental factors were unsuc-
cessful, so a method was sought by which these ultimate

values could be determined by the shape of the curves within
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shorter time 1Iintervals. For the case of creep, such a
method was developed by consldering the variation of strailn
rate with strain.

Conslider again the theoretical creep equation in the

form
€= F +G 1ln tanh [Ift + J] (4.9)
' D 1 1 _kike
where F = 3, , G=\/’Z<xk2 s, H=75 %8 ktkp ,
2 k
J £ tann~1 exp - (Vz x D —* )
3 k1+k2

The variatlon of strain rate with strain is given by

€ _ 4€ at _ €

—ac at_ * Td¢ &
Taking the first two derivatives of equation (4.4) yilelds

€= 2CH csch 2 (Ht + J)

and >
. -4GH® csch 2 (Ht + J)
€= tanh 2 (HT + J)
from which
d€ _ au
ae - @ < - 2H coth 2 (Ht + J) (4.10)
du
For (Ht + J) = 1, 3y = -2H = a constant. Hence, a

simple arithmetic plot of U versus U should produce a curve
which, after sufficient time has elapsed, willl have a constant
slope of -2H. Extrapolating the stralght portion of this
curve to ﬁ = 0 willl then yleld the required value of U, ,

the ultimate strain. Thils technique proved to be a very con-

venlent means of determining U, and also provided a valuable
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check on the value of a/ﬁ obtained from the curve fitting

technique.

An analogous procedure can be applied to the stress

relaxation data. In this case the required expressions are

D=D, -Lintanh Mt +N]

ab

= + 2 +
D M coth (Mt + N)

and

where L=f—§'§ , M= %cx,B ky

vz (Do - D)

N=tanh~! exp -"3

dD

(4.11)

(4.12)

for(Mt + N) > 1, == == +2M. The ultimate deviator stress,

. dD
D

« » 18 obtalned by extrapolating the curve D versus D to

D = O and the value of x . can be compared to that obtained

by the separate .determination of « and/ﬂ described earlier.

The complete procedure used 1in analyzing the experil-

mental data for determination of the model parameters is now

summarized,

Creep

1. Plot observed deformation-time readings as U

versus t. The 1initlal portion of the U-t curve

is plotted on an exaggerated time scale and extra-

D
polated to t = O to find Uy, Calculate k; + ko = 36"

2. From U-t curve, calculate the deformation rate U

at several points along the curve and plot U versus

U. Extrapolate the U-U curve to i}

U_ . Calculate ky = 36]3
(-]

and kl

0 and find



Ls

From the final straight portion of the U-U curve

k
evaluate 2H=-i£g— and calculate a/s = .Eli_ii
3. Plot deformation-time data as U_ 8 = U* versus log t
-]

and  find the theoretical curve which best fits
the data points. Calculate « andIB from Equations
4,3 and 4.4. Compare'xyé with the value found

in 2,

Stress Relaxation

1. From devlator stress-time data, plot D versus t.
2. From D-t curve, calculate b at several polints
along the curve and plot D versus D. Extrapolate

the final stralght portion of the -D curve to

D = 0 and find Do . Calculate xB = 2M El +(42 )
Do - D
- *
3. Plot Do = Do D versus log t and find the

theoretical curve which best fits the data points.
Calculate « and/B from Equations 4.7 and 4.8 and
compare d/S'with the value obtained in 2,
Figures 4.2, 4,3, 4.4, and 4,5 1llustrate the determin-
ation of the model parameters for tYpical creep and stréss
relaxation tests. Supplementary data are given in the

Appendix.

4,2 vValidity of the Structural Model

The stress-strain-time behavior predicted by the
structural model 1s represented by the dimenslonless creep

and relaxation functions U* and D* as shown in Figure 4.1,
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Figure 4.2.

Typical creep curves (Test No. C-C-1-5).
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Figure 4.4,

Typical stress relaxation curves (Test No,
F-R-5-1).
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and the abllity of the model to predict the behavior of
clays depends upon the agreement of the experimental data
points with these theoretical curves.

The data collected from each test performed 1n con-
nection with thils study are presented in the Appendix. From
inspectlion of these data, 1t can be seen that the agreement
between theory and experiment is qulte good in most cases,
It would appear from the experlmental evidence that the
structural model used herein to describe the deformational
properties of clays 1s a close approximation to the real
behavior. The evidence 1s, of course, indirect since only
the large-scale behavlior of the clays can be observed and
compared with the theory. However, this 1s the plight of
most microscopic theorles of material behavior, and thelr
validity can only be tested by such comparisons.

For some increments of creep loading, the deformations
were very small, and the dlal readings from these tests were
somewhat approxlimate since 1t was necessary to 1nterpolate
between the smallest dial divisions. Therefore, each set
of test data contalns a note as to the accuracy of the data
points obfainable from the dlal readings, assumlng that
readings can be accurately interpolated to one-half of the
smallest division. 1In those tests for which the scatter of
the experimental data seems to be excessive at first glance,
much of this scatter can be attributed to the limitations of

the dlal readings.
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In some of the creep tests, particularly the first stages
of unloading and reloading, relliable readings could not be ob-
talned at all because the deformations were too small or took
place too rapldly to be recorded with reasonable accuracy.
Consequently, no creep curves are shown for these tests,

The question may be raised whether or not the actual
creep and relaxation curves tend asymptotlcally to some ultil-
mate value as predicted by tre theoretical curves, since the
final portion of the curves 1s missing 1n most cases. As
mentloned 1in the previous section, the experimental data often
became erratic in this region due to uncontrollable environ-
mental factors. Consequently, 1t cannot be stated wlth
absolute certainty that all the experimental curves approach
an ultimate value. Tnere 1s counsiderable evidence 1in support
of thils assumption, however,

In several tests, the ultimate straln appears to have
been achieved (see for instarce, Figure A.33). Moreover, the
ultimate straln was frequently as difficult to record for
unloading increments as for loading and it 1s guite obvious
that recovery strains cannot continue indefinitely. 1In order
to establish this point conclusilvely, however, 1t would be
necessary to perform creep and relaxatlon tests 1In an environ-
ment free from temperature fluctuations and external distur-
bances. Such facllitles were unavailable to the writer, so
this point remains unproven.

In some of the creep tests--for example test number

C-C-1-7 in Figure A.7--the data points for the earliler part
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of the tests do not fit the theoretical curve that describes
the latter part of the test. Although theselbointe afe very
sensitive to the value chosen fer U,, this factor alone can-
not account for the magnitude of the deviation in evéry case,
It appears that, 1n some cases, the sample behaved differently

during the earlier stages of creep.

4,3 1Interpretation of Results

As 1s expected, the parameters are not constant for a
single test specimen, but vary with the stress level. A close
examination of the varlation of the parameters reveals sig-
nificant information about the behavior of the clay particle
structure under load. Certain combinations of these parameters
have particular physical significance and are compiled in
Table 4.1 for all tests.

The cyclic creep test 111ustrate,.e3pécially well, the
changes take place 1n the particle network during deformation.

Table 4,2 summarizes the trends observed in the quantities

ki ‘
ki+ ko

tions in the model parameters are now considered 1in detail.

s al and /é? during two loading cycles. The varla-

4,3,1 The Spring '"Constants'

The absolute values of the spring constants kj; and kp
have little physical significance because there is no way of
knowing how the resistance of these elements 1s developed in

k]

k1+ ko
interest, however, since 1t represents the portion of the

terms of the particle structure. The quantity is of
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total shear stress that lnitially tends to produce flow.
Figure 4.6 shows the varilation of Ei_ilﬁ§ wilth devlator
stress level over two complete cycles of loadling and unload-
ing. The data from the compacted specimen C-C-1 1s chosen
for thls 1llustration because of the completeness of the
data, but the other specimens show similar trends. Filgure
4,6a shows that, throughout first loading on specimen C-C-1,
nearly all of the applled stress causes flow at the bonds.
According to this trend, the initial bond strength distribu-
tlen curve must be skewed toward the direction of lower yleld
strengths, which agrees with the curve shown in Filgure 2.5a.

The unloading branch of cycle 1 shows that less than
half of the first unloading increment produces flow. For
subsequent unloading 1increments 1n the first cycle, EI_§£E§
steadlly increases untill, for the last increment, nearly all
of the stress causes flow. It was also noted that the creep
response becomes progressively slower with unloadling. These
observations indicate that the distribution of yleld strengths
1s more uniform for unloading than for loading in the first
cycle. Reference to Figure 2.5¢ shows that such behavior
1s predicted by the theory.

Theoretically, 1f no changes 1n the properties of the
particle structure take place, the distribution of bond
Yyield strengths for reloading should be the same as for first
loading. However, according to Figure 4.6c, the behavior of

k1
Tsz;—ﬁg durlng reloading 1s intermedlate between the cases
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of loading and unloading in the first cycle, which means
that the yleld strength distribution curve for reloading
must be flatter than for first loading.

A possible explanation for the change in the distribu-
tlon of yleld strengths after a loading cycle 1s that some
of the particles, in the process of flow, become aligned
along potential failure planes; thus reducing the number of
bonds 1in the planes of flow and weakening resistance to de-
formation along these planes. Wu, Douglas, and Goughnour
(1962) observed such particle alignment by means of diffrac-
tlon studles on thin sectlons taken from the fallure planes
of triaxial specimens. Hvorslev (1960) also detected
preferred particle orientation by drying triaxlal specimens
and noting the development of shrinkage cracks.

Furthermore, 1t 1s quite 1likely that some bonds with
greater yleld strengths could be created as a result of
particle interference during the flow process. Lambe (1960),
explalined that interference can occur when particles become
wedged together during deformation. Additional energy 1is
then required to 1ift the particles over one another so that
flow can continue. This would result in a shift in the dis-
tribution of yleld strengths toward greater strength and
tend to flatten the curve,.

The 1ncrease 1n —Kf—giﬁg_ for the second unloading 1is
basically the same as that for the first unloading. From the

Ky
consideration of the variation in —EIfI—EE— over two cycles
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of loading, 1t 1s possible to sketch, qualitatively, the
distribution of bond yileld strengths at the beginning of
each phase of loading. Figure 4,7 shows distribution
curves for the beginning of each loading and unloading

which are based on the observed phenomena.

15% 10ading

//"\\<j/f-2nd loading (reloading)
I

18t ang 2nd ynloading
SENNE.
/

Distribution \y

Yield strength ¢y

Figure 4.,7. Distribution of bond yileld strengths with
respect to the various phases of cyclic
creep loadin%--constructed from observed
trends of 1

ky+kp

4,3,2 The Parameter

According to Equation 2.7,

= —————A—————-
o 2 V kT

where A 1s the distance between equilibrium points on the

potential surface in the direction of flow and 0 is the
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number of flowing Interparticle bonds per unit area in the
plane of flow.

It may be assumed for simplicity that A , which is a
property of the close range interparticle forces and, perhaps,
the lattice structure near the particle surface does not
change appreclably. Then the factor which controls the
value of &« , for constant temperature, is \ . Therefore,
the variation of & for a glven sequence of loading glves
some indication of the shape of the yleld strength distribu-

tion curve and provides a check on the trends observed 1in
k1
ki + ko

Figure 4.8 shows that X changes but little during
the first loading of specimen C-C-1 untll the last increment
of deviator stress., Since the fractlon of the stress carried
initially by the flowing bonds (EEE%—EE ) 1s near unity for
all increments, large changes in V are not expected. Under
the last load increment the value of X 1s approximately
doubled, indicating a sudden reduction in the number of
flowing bonds in the plane of flow. The axlal strain pro-
duced by the last increment 1s more than twice the total
strain prior to that increment. Consequently, 1t 1s reason-
able to assume that the structural changes in the sample
during the last increment are substantlally greater than for
any preceding increment.

It was noted earlier that large strains can produce

preferred particle orilentation along potential fallure planes.
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Figure 4.8. Variation of the flow parameter, o , with
deviator stress, D, in cyclic creep leading

of specimen C-C-1.
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As the flat particle surfaces become parallel to one another,
fewer Interparticle bonds can develop per unit area and, con-
sequently, some of the bénds that are broken cannot reform.
If particle reorientation takes place during the last load
increment--which seems reasonable in view of the large
stralns observed--then the increase in &K can be attributed
to a reduction in the number of bonds in the plane of flow,

During the unloading phase of the first cycle,
decreases so V must be increasing which agrees wilth the
trends observed in _EIE%_EE— . The second loadlng cycle
shows that V increases with progressive loading and unload-
ing which also corroborates the evidence from REE%ETF' . In
general, the varilatlon in & substantliates the yield strength
distribution curves shown in Figure 4.7.

It may be noted in Table 4.1 that the consolidated
specimens, which have larger final vold ratios than the com-
pacted specimens, give larger values of K , indicating that
less bonds flow when the void ratio is larger. The dry
creep specimen DP-C-1, which has the highest vold ratlo of
all sbecimens tested, also gives the largest &« value for
comparable stages of loading. The implication of this trend
1s that the number of bonds per unit volume 1s 1nversely
proportional to the vold ratio which verifies the theoretlcal
prediction of Section 2.2,

The calculated values of K provide an excellent

opportunity to check the reliability of the hypotheses which
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led to the structural model. Recalling that

A
o P A
2V kT
and taking o« = 30 as a representatlive value, then
L - 2akr = 2 (30) (1.ho -22 8
5 - = 407 x 107°°) (298)
%- - 2.52 x 10718 ¢n3

In specimen C-C-1, the solid welght 1s 97.5 grams and the
specific gravity of the sollds, Gg, 1s 2.70. Therefore the

solid volume

Vg = 27%0 = 36.1 cm3
An average 11lite particle 1is approximately 0.5 microns in
diameter and 100 angstroms in thickness (Scott, 1963),
giving an average volume of approximately 2 x 1015 cm3.
. Since the Sault Ste. Marle clay has a clay fraction of

0.60, the total number of clay particles is then,

_(36.1) (0.60) - 1.09 x 10 particles.
2 x 10 ~

- The total volume of specimen C-C-1 after consolidation 1s
63.65 cm3, so the number of particles per unit volume
becomes,

1.09 x 1016
063.65

If 1t 1s assumed that each particle forms six contacts as

= 1,70 x 1014 particles/cm3

suggested by Rosenquist (1960), then the number of bonds per
unit area in the plane of flow,)z, 1s approximately



1= (6)(1.70 x 101“)(%)(0.5 x 10~%)(0.707)

B = 1.20 x 1010 Ponds/ o2

where u 1s equal to the number of bonds per unilt volume
times the distance between points of flow perpendicular to
the direction of flow and the particles are assumed to be
inclined to the plane of flow at an average angle of 45

degrees. Assuming that 75 per cent of the bonds flow,
A= (2.52 x 10°18)(1.20 x 10%9)(0.75)
A= 2.27 X 10'8 cm = 2,27 angstroms

where V = 0.75 p. It 1s of Interest to note that the dis-
tance between adjacent silica tetrahedra in an 1llite
particle 1s 2.55 anstroms (Grim, 1953). 1In view of the
calculated value of A = 2.27 angstroms, 1t seems reasonable
that the interparticle bonds are assoclated with the lattice

structure of the particles.

4.3.3 The Parameter &
I4

The concept that the particle structure possesses a
spectrum of yield strengths 1n 1ts interparticle bonds
Suggests that as stresses are applied to the structure in
increments, the activation energy of flow should 1increase
as stronger bonds are brought into the flow process. From
Equation 2.7,

- AF/RT

- 2 A KT
ye X no S
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so that/s should decrease, exponentially, as A F Iincreases
i1f A, 1s constant. Although A, may not be constant, the
activiation energy 1s assumed to dominate changes in/ﬁ be-
cause of the exponentlal effect of AF.

Figure 4.9 shows the variation of/S in specimen C-C-1
over two loading cycles. For all except the first loading,
/3 generally follows the expected trend--decreasing as the
load is increased for reloading (Figure 4.9c) and decreasing
again as the load 1s removed (Figures 4.9b and 4.9d4). Thus,
the average yleld strength of the bonds that flow increases
as loadlng progresses as a predicted by the yleld strength
distributlion curves 1n Figure 4.7.

However, for the first 1oading/@ increases which 1s
contrary to the expected behavior. This would seem to 1ndi-
cate that the bonds that reform in the flow process are
weaker than the original bonds. Such a phenomenon 1is
plausible in light of the evidence of structural changes
detected earller by the consideratilon of EIE%—EE and

For example, conslider an interparticle bond between
two particles meeting at a large angle and forming an edge-
to-face contact. The attractive forces between these two
particles are large due to the opposite charges of the edge
and face, whille the repulsive forces are small since the
flat surfaces of the two particles are far apart. Thils type
of contact, predominant in a random particle structure,

forms a strong bond. On the other hand, two particles
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meetling at a low angle form a much weaker bond because of
the repulslon developed between the flat surfaces as they
approach one another.

As the particles become aligned 1n the planes of flow,
the angles between particles forming bonds becomes progres-
sively smaller and thus the bonds may become weaker as
described above. A F, therefore, decreases andlg increases
with strain. Experimental evlidence for such particle allgn-
ment during the first loading has already been cited. The
stralns produced by subsequent loadings were much smaller so
structural changes probably had 1little effect on A F after
the filrst loading.

As seen from Table 4,1, nearly all of the calculated
values for/ﬁ fall within the range 5 - 15 x 10'7 min.'l
Using’ﬁ = lO‘6 as a representative value, A = 2,27 R and

4 x 707 = 1.178 x 10-5 cm. as

1 -
letting A= 3 X 0.5 x 10
before, the activation energy, A F, may now be determired.

Noting that

1
_ A kT L
AF = RT 1n [2 o (3 )}

and substituting the values from above, the actlvatlon energy

is

(2.27 x 10-8)(1.407x107°2) (298) ]
(.001987)(298) 1n [2 (1.178x 10-5) (10-2) (1.125x10-3")

=)

AF

AF 24,8 k cal mole-1

This value represents the mean strength of the interparticle
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bonds broken during the shearing process. Since the bond
strengths are comprised of a complicated interaction of
attractive and repulsive forces between the clay particles,
the contribution of the individual bonding and anti-bonding
force systems 1s impossible to assess wlth the knowledge of

the clay-water system presently available.

4,4,4 Creep Test on Dry Clay

It was stated, in connection with the discussion of
the clay-water system in Chapter II, that the role of the
adsorbed water films in determining the deformational charac-
teristics of clays 1s of minor importance. This view 1is
based, in part, on an experiment performed by Norton (1952)
in which 1t was shown that a dry clay, when placed in an
elastic membrane and the air withdrawn, behaves exactly like
a wet plastic clay. It wasbelieved that the conditlons of
this experiment could be duplicated in the trilaxial cell,
thus producing a dry clay speclmen that could be tested under
creep loading.

A specimen of oven-dry powdered clay was obtained using
the same technique used in preparing triaxial specimens of
dry sand. The detalls of this technique are described in
Chapter III. No molsture was permitted to enter the sample
during testing.

Because of the fluffy nature of the dry, powdered clay,
compaction in the sample mold was difficult and the resulting

Specimen has a rather high final void ratlo (e = 1.132) and,
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consequently, 1s quite weak. It was, however, possible to
perform one loading increment on the specimen using a small
deviator stress. The results of this test are shown in
Figure A.42, It can be seen that the curves for the dry
clay take the same form as the saturated clays for creep
loading. The calculated values of & and /3 for the dry clay
are also conslstent with those obtailned for the saturated
clays.

The findings of this test indicate that the behavilor
of the clay particle structure 1s not affected to any impor-
tant degree by the presence of adsorbed water films. Norton
(1952) suggests that the role of water 1n causing plasticity
in clays consists of forming an air-water boundary around the
surface of the wet clay mass, producing surface tension which
acts to press the particles together. The plasticity of a
wet clay mass 1s, thus, belleved to be a property of the

clay particles and not of the water.

4,3,5 Relaxation Tests

It has been demonstrated that the structural model for
clays developed in Chapter II provides a good representation
of creep behavior. The results of the stress relaxation
tests provide an opportunity to check the generality of the
model with another type of loading. The agreement between
the theoretical and experimental relaxation curves 1s quite
good. The calculated values of)ﬁ also agree with those

obtained in the creep tests (see Table 4.1). It will be
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noted in Table 4.1 that the value of ki is estimated from
creep tests performed on a similar specimen in order to
calculate ﬂ. This 1s necessary because the relaxation tests
provided no Independent means of evaluating the spring
"constants."

The values obtalned for o« 1in specimen F-R-8 are some-
what smaller than the corresponding values in creep loading
on similar specimens. Slince the results are obtained from
different samples, thils discrepancy may simply be due to
the unavoldable variation between samples; even though the
method of preparation is 1dentical. The other relaxation
tests ylelded values of X which agree with those obtalned
in creep loading on simlilar specimens. In general, the
agreement between the results of the relaxation tests and

the creep tests seems to support the valldity of the struct-

ural model.

4,3,6 Temperature Effects

The room temperature was measured by means of a
continuously recording temperature gage durlng the progress
of the loading tests. During the winter months, when most
of the tests were performed, the room temperature was very
well controlled--a maximum temperature variation of about
2°C was average for most tests. During the summer, however,
the temperature varied as much as 10°C during a single test.
These fluctuatlons were, for the most part, erratic and of

short duratlon and often produced unrellable results in the
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tests. In one instance, however, the room temperature was
maintained at a abnormally high level for four days, durilng
which time creep test D-9-4 was in progress.

The creep curve from this test 1s of Interest because
1t provides an opportunity to calculate a value for the
activation energy based on temperature variations. Figure
4,10 shows the creep curve from test no. D-9-4 along with
the room temperatures recorded during the test.

Referring to Equation 4.8, 1t 1s seen that, for large

values of time,

au k1k2 _ kikg F/RT
~-2H = - = - .
= Bt = - ) ) ¢ g
Taking logarithms of both sides,
1n ( ) -ins -24F (4.12)

T

where

2
= (k1k2 A )

kitko™ Ajvh

Differentlating with respect to temperature,

a dau _ AF

Upon integrating Equation 4.13 between the limits T, to Tp,

the activatlon energy becomes

_ai_
AF = R (2XI2 1y _(_dl_%_ (4.14)
T1-To (a0 _

11)
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It may be seen from Equation 4.14 that the calculation

of the activiation energy, A F, by this method requires the

evaluation of gg from the cr?ep curve for the temperatures
Tl and To. In Flgure 4,11, v 1s determined for the temper-
atures Ty = 26°C and Tp = 31.5°C. The segments of the creep
curve used 1n this determination are shown in Figure 4.10,
Substituting the appropriate values into Equation 4,14,

the activation energy, AF, becomes

-3
(.001987) (229 X 304.5y 4 (1:35 x 10”7,

F
4 5.5 .663 x 10-3

23.5 k cal mole~1

AF

This value of A F agrees quite well with that found by
another method in section 4.3.3 and adds further evidence

An support of the rate theory approach.
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CHAPTER V
CONCLUSION

The deformation of clays 1s studled from the point-of-
view of the particle structure. Thils consideration leads to
the concluslon that processes taking place at the particle
level during deformation can be treated by the methods of
rate theory. Using the flow relationship derived from the
rate theory treatment, the concept of a spectrum of bond
yleld strengths 1s developed. According to this concept,
some of the bonds 1n the particle structure flow under a
given stress 1ncrement whille others remain intact by virtue
of thelr greater yleld strength. It 1s shown that the
theoretical concepts presented could be simulated by a
simple structural model which agrees with the observed defor-
matlonal properties of clays.

The results of the experimental program show that the
behavior of the clays tested agrees well with that predicted
by the model for the test conditions employed. The loading
conditions are quite varied wilth specimens being tested
under single creep loads, incremental creep loads, cycllc
creep loading and stress relaxation. In nearly every case,
good agreement 1s found between the theoretlcal and experi-
mental results. The quality of agreement achieved tends to

substantiate the valldity of the rate process approach to



7

deformations at the particle level. For further investiga-
tilons along these lines, other loading conditions should be
employed; e.g., constant strain rate tests at different rates
of straln would be useful, as would experiments with con-
trolled temperature variations.

The creep test performed on a dry powdered clay sample
shows that the behavior of the dry clay, 1in creep, 1is
essentlally the same as the saturated clays. Thils result
lends support to the suggestion by Tan (1959) and others
(Leonards and Girault, 1961; and Norton, 1952) that the
adsorbed water fillms on the particles are not the prime
cause of viscous flow in clays. Additional tests on dry
clays under various loading conditions are needed; such
tests could provide valuable informatlion on the nature of
the interparticle bonds.

The calculated values of the model parameters show
considerable variation. In Figures 4.6, 4.8, and 4.9,
attentlion 1s focused on the varilation of these parameters
through two complete loading-unloading cycles. From the
trends observed in the quantity EfE%EE , 1t 1s possible to
sketch, qualitatively, the distribution of bond yileld
strengths for the various stages of loading. The variations
1n « and/ﬁ agree well with the distribution curves shown in
Figure 4.7 with the exception of‘ﬂ during the first loading
Stage.

During the first loading, 1t 1s believed that the yield

Strength distribution 1s affected by the breakdown of the
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orlginal particle network as the particles become allgned
along potentlal fallure surfaces. The increased alignment
along the slip plane 1s known to be accompanied by a tendency
toward volume reduction in the potential failure zones. The
calculated variation in the model parameters corroborates
this view and agrees with the experimental findings of other
workers (Wu, Douglas, and Goughnour, 1962; and Whitman, 1960).
The 1ncrease in the parameter‘ﬂ durlng first loading also
Indicates that the 1nterparticle bonds become weaker as
deformatlon proceeds. Thls phenomenon 1s explalined in terms
of the changing particle geometry from a random arrangement
toward parallelism. It 1s noted that the bonds should
become weaker due to the bulld-up of Coulomb repulsive
forces, as the flat particle surfaces come closer together,

Subsequent loading cycles show less structural change
than first loading as would be expected. The problem of
structural changes accompanying deformation needs further
investigation. With the recent development of the electron
microscope, such studles are now feasible and would contribute
much to the understanding of clay deformations at the particle
level,

The measured parameter X provides a means to check
the values of ¥V and A for the clay particle network. The
experimental values of &K are found to be entirely consistent

with the dimensions of the clay partlicles and particle

Eeometry.
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From the measured values of the parameter/@, a repre-
sentatlve value for the activation energy, AF, 1s calcu-
lated. The value 1s in agreement with A F calculated from
temperature effects., It 1s noted that present knowledge of
the clay-water system 1s insufficlent to enable AF to be
interpreted 1n terms of interparticle forces. The theoret-
ical consideration of the bonding forces between particles

provides a promising area for further investigatilons.
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Creep Curves for F-C-9-1; D=0-1.103 Kg/cm2
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Figure A.40.

Creep Curves for D-C-9-5; D=0.87-1.07 kg/cm2
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