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ABSTRACT

ANALYSIS OF CLAY DEFORMATION BY

RATE PROCESS THEORY

by Richard W. Christensen

The deformational characteristics of clays are

analyzed from the point-of—view of the particle structure,

utilizing rates process theory. The deformations at the

particle level are treated as the breaking and reforming of

interparticle bonds as a rate process. Theoretical consid-

erations concerning the nature of the particle structure,

and the physical aSpects of deformation processes are

presented. A schematic model is used to represent the

behavior of the particle structure under load.

Creep and relaxation data obtained from Specimens

prepared in the laboratory and undisturbed specimens are

presented. The echrimental results agree well with the

4 behavior predicted by the model.

The variation of the model parameters in cyclic creep

loading is shown to be related to particle level phenomena

taking place during deformation. The calculated values of

CK , a rate theory paramgter associated with the geometry

of the flowing unit, are found to be consistent with known

geometrical prOperties of the particle structure. The

activation energy,.4 F, is calculated from the rate theory

parameter /57 and also from temperature-creep-rate data; the

two methods give nearly the same value of 11 F.
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NOTATION

angstroms

actual contact area between two plane surfaces

<61 - (53) = principal stress difference or

'deviator stress

dimensionless stress relaxation function

void ratio

maximum shearing force in friction

flow force on interparticle bonds

activation energy

Planck's constant

Boltzmann‘s constant

spring "constants" of the structural model

normal force

universal gas constant

time

absolute temperature

axial deformation

dimensionless creep function

volume of solids in a clay mass

distance measured along the plane of flow

rate theory parameter associated with the geometry

of the flowing unit

rate theory parameter associated with the activation

energy of flow
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viii

shear strain

octahedral Shear strain

shear strain rate

principal strains

number of non-flowing bonds per unit area in the

plane of flow

distance between equilibrium points in the plane

of flow

distance between points of flow in the direction

perpendicular to the plane of flow

total number of interparticle bonds per unit area

in the plane of flow

coefficient of friction

number of flowing interparticle bonds per unit

area in the plane of flow

principal stresses

= yield strength in comparison

shear stress

= octahedral shear stress

yield stress in shear

shear force on an interparticle bond

yield strength of an interparticle bond in shear

distribution of bond yield strengths



CHAPTER I

INTRODUCTION

The stress—deformation-time behavior of clays is not

well understood. The principal reason for the lack of

knowledge is that clays are extremely complex in their

physical makeup. They consist of solid material (the in-

dividual clay particles), water, and sometimes air; and the

manner in which these components are combined in nature is

highly variable.

The individual particles, by themselves, comprise a

class of substances with a wide range of physical preper-

ties (Grim, 1953). Furthermore, the geometry of the particle

structure has a profound influence on clay preperties and,

depending upon the environment at the time of formation, the

particle geometry can be quite different. A.clear picture

of the particle geometry in various types of clays was only

recently obtained through the use of the electron microsc0pe

(Rosenquist, 1959).

The presence of water in the voids of the particle

network further complicates clay behavior. It has long been

recognized that the water nearest the clay particles is

strongly attracted by the surfaces forces of the particles

(see, for instance, Houwink, 1937) and has been arbitrarily

designated as the adsorbed water layer. However, the nature



of the adsorbed water and its influence on clay preperties

is still not resolved (Lambe, 1960). Furthermore, the

electrolyic content of the pore water influences the inter—

particle force fields and, consequently, affects the particle

geometry, water prOpertieS, and shearing strength of the

clay (Moum and Rosenquist, 1960).

If air is present in the clay pores in addition to

water, the Situation is even more complicated. However,

this investigation deals only with saturated clays.

Recently much interest has been focused on the prOper-

ties of the clay-water system; i.e., the interaction of the

solid and fluid phases in a clay mass. As a result, con-

siderable knowledge has been gained in this area within the

past few years. These recent develOpmentS are utilized

herein in attempting to formulate a working hypothesis for

particle behavior during deformation.

The approach to be adOpted in this study is to treat

the flow between individual clay particles as a rate process.

Using the equation of flow from the rate theory, a model is

devised to simulate the behavior of the particle structure

under external loads. The rate process approach to material

deformations is due to Eyring (Glasstone, Laidler, and

Eyring, 1941) and has been extensively used in studying the

mechanical properties of polymers (Tobolsky and Andrews,

1944), textiles (Eyring and Halsey, 1948), and colloidal

suSpenSions (Tobolsky, Powell, and Eyring, 1943). Murayama



and Shibata (1958) recently applied the methods of rate

theory to the flow properties of a Japanese Alluvial clay.

Results of triaxial Shear tests for creep and stress

relaxation loadings on two glacial lake clays are presented.

The experimental results are compared with the behavior

predicted by the model and the values of the model para-

meters calculated for each test.

Good agreement is found between the behavior predicted

by the model and the experimental results. The values for

the model parameters calculated by comparison of the theore—

tical and experimental curves are interpreted in terms of

the particle structure.

It is hOped that this study will help to clarify the

role of the particle structure in deformation of clays.



CHAPTER II

THEORETICAL CONSIDERATIONS

2.1 Nature of the Clay-Water System
 

It is well known that individual clay particles are

thin, plate-like structures of a Size less than 2 microns.

Because of their size and geometry, these particles possess

a very high surface area-to—mass ratio and are strongly

.influenced by surface forces.

In a clay-water system, the water in close proximity

to the particle is attracted to the particle surface and

forms what is called the adsorbed water film. The preper-

ties of the adsorbed water and its effect on the mechanical

prOpertieS of clay masses are still uncertain.

It was thought for some time that the adsorbed water

layers were rather thick--up to 0.1 microns according to

Terzaghi and Peck (l948)--and quite viscous. The conclusion

was drawn from this concept that the viscous nature of clays

resulted from the presence of the viscous water layers sur-

rrounding each particle. Recent research indicates, however,

that the thickness of water affected by the clay particles

is n0 more than about 25 angstroms (see, for instance,

Rosenquist, 1959).

It is generally agreed that the water immediately next

to the clay particle is different from ordinary water. On



the basis of heat of swelling and vapor pressure-temperature

data, Rosenquist (1959) calculated that a lO-angstrom layer of

crystalline (ice-like) water surrounded the particles in the

particular clay tested. Furthermore, Anderson and Low (1958)

found that the Specific volume of water near clay surfaces

is greater than normal water. This data was cited by Low

(1960) as evidence that the adsorbed water has a structure

that is more ordered than that of normal water. Martin

(1959), on the other hand, presented data that indicates

that the water next to the particles is more disordered than

normal water. The question of the structure of the water

near the particle surfaces must, therefore, be considered

unresolved.

Low (1960) found that the activation energy of the

flow of water through Na-bentonite increases with time after

wetting and concluded that the adsorbed water is more viscous

than normal water. Rosenquist (1959) also found from

deuteron—diffusion measurements that the adsorbed water on

clay particles is more viscous than normal water. However,

Michaels (1959) pointed out some of the Shortcomings in

assessing the properties of the adsorbed water from such

indirect evidence. Michaels also suggested that the adsorbed

water may be not only different from normal water but aniso-

trOpic; i.e., ”the resistance offered by a water molecule

being slid along the surface may be considerably less than

that offered by a water molecule being elevated from or

lowered toward the surface.”



Leonards and Girault (1961) showed that the phenomenon

of secondary compression in the consolidation test cannot be

attributed to adsorbed water films alone. They found that

clays in which the water had been replaced by carbon tetrach-

loride, a non-polar fluid, still exhibit secondary compression.

Similarly, Norton (1952) described a Simple experiment in

which dry, powdered clay when placed in a elastic membrane

and subjected to a vacuum behaves plastically in the same

manner as a moist clay. These findings suggest that the

adsorbed water on clay particles may be of relatively minor

importance in the deformational properties of clays.

2.2 Clay Structure
 

A comprehensive description of clay structure was

first presented by Tan (1953). The individual particles are

assumed to form edge-to-face contacts with one another,

resulting in a continuous solid skeleton in a ”card-house"

arrangement. Tan's concept was later verified by Rosenquist

(1959) by means of electron microscopy. Figure 2.1 is a

schematic drawing of a clay particle network according to

Tan and is in remarkable agreement with Rosenquist's findings

for undisturbed marine clays. Remolded clay structures are

believed to be similar except that the network may consist

of small "packets" of parallel particles rather than individ—

ual particles (Lambe, 1960; Mitchell, 1956).

Rosenquist (1959) also established that the individual

particles are actually in mutual contact by quick freezing
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Figure 2.1. Schematic picture of clay (After Tan)

 ‘1... 

undisturbed clay Specimens in liquid air and sublimating

off the ice. Little or no Shrinkage was observed upon

removal of the frozen pore water and the dried specimen had

considerable strength, indicating the presence of a contin-

uous particle network.

Several mechanisms of bonding between clay particles

have been suggested: (1) Coulomb attractive forces, (2)

van-der-Waals-London forces, (3) cation bonding, (4) hydrOgen

bonding, (5) ionic bonding, and (6) covalent

bonding.

Direct methods for determining the relative magnitudes

of the various bonding types is lacking but the Coulombic

and van-der-Waals-London forces are generally thought to be

the most predominant (see, for instance, Van Olphen, 1951;

Rosenquist, 1959; Tan, 1959; and Lambe, 1953). In particular,

Iler (1955) presented strong evidence for the existence of

the Coulombic attraction between.negatively charged flat



particle surfaces with positively charged edges by showing

electron micrographs of negatively charged silica particles

attracted to the edges of hectorite particles. It is likely

that all the bond types mentioned are present in clays to

some degree, but no reliable method for distinguishing their

relative contribution to the interparticle bond is presently

available.

According to the evidence currently available, the

nature of clay particle structure may be summarized as

follows:

1. The individual particles in a clay mass form a

continuous solid skeleton in which edge -to-face

contacts predominate.

2. At the contact points between particles, bonds

are formed as a result of microsc0pic force

fields in the clay-water system. These forces

consist mainly of Coulomb attractive and repul-

sive forces and van-der-Waals-London forces.

The combined effect of the microsc0pic force

fields determines the strength of the inter-

particle bonds. These force fields are influ-

enced by many factors; e.g., the Size, shape and

mineral composition of the particles, the electro—

lytes in the pore fluid, adsorbed cations,

geometry of the structural network, void ratio,

and perhaps others.



3. .The adsorbed. water films on the particle surfaces

‘play a minor role in determining deformational A

behavior-sit may affect the viscous,flow of clays

under-stress.but is probably not the prime cause

of viscous flow.

2.3 Physical Aspectsgor Deformation

Since deformationsirlclays-involve the interaction of

discrete solid particles, a useful analogy can-be drawn

from the phenomenon of sliding friction between solid sur-

faces. According to modern concepts, friction is envisioned

as being the shearing resistance deve10ped by the inter-

locking asperities of two surfaces brought together under

the action Of a normal force (Bowden and Tabor, 1954). Even

in the case-of highly polished.surfaces, actual contact

occurs oVer a very small area so that the local stresses at

the contact points are sufficient to produce yielding.

Therefore, the total normal force

P = (7"
. w “0 .

where CIyp is the yield stress incompressioneandAc is the

actual area of contact. The maximum Shearing force that

can be applied before failure occurs is

F = z:yp

where'Eyp is the yield stress in shear. -Since the coeffici-

Ac

ent of friction [If is defined as far =§ , it can-be seen

that )if = Ogfl .

YP
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Burwell and Rabinowicz (1953) have shown that’uf is

not a constant, but depends upon the speed of sliding. For

a given normal stress, they found that sliding occurs for a

wide range of shearingforces--the coefficient of friction

increases with the speed of sliding up to the point of

failure. Horn and Deere (1962) found that the coefficient of

friction of phlogopite mica also increases with the speed of

sliding. It is probable that this relationship also applies

to clay particles since clay particles have crystal struc-

tures similar to those of the micas.

Burwell and Rabinowicz described the frictional

deformation process as the successive breaking of bonds

formed by the interlocking asperities and subsequent forma-

tion of new bonds as the two surfaces move relative to one

another producing new contacts. A similar process may be

applicable to the phenomenon of sliding between clay parti-

cles. This application does not require that the clay

particles are in direct contact,although this appears to be

the case.

The deformational resistance of the clay structure

rests in the bonds formed between particles at the points

of contact. The strength of these bonds may vary widely in

any given clay so that when external stresses are applied,

some of these bonds will fail in shear while others remain

intact. The particle movements which follow breakage of

the bonds will tend to bring the displaced particles
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into contact at other points as the deformation proceeds.

The bonds which are broken may also be expected to reform

in other positions due to attractive forces which exist

between particles at close range. The resistance of clays

to deformation is thus seen to depend upon the strength of

the interparticle bonds and the number of these bonds per

unit volume--a situation which is quite similar to the

deve10pment of sliding resistance between solid surfaces.

In solids, the yield strength in shear, Z is

YP’

usually assumed to be constant. However, in clays, the

strength of reformed bonds may differ from the strength of

the original bonds if the particle geometry is substantially

altered during shear.

It was noted that the contact area in the case of

sliding friction between solids is directly proportional

to the normal force. In clays, on the other hand, the num—

ber of bonds per unit volume is primarily dependent upon

the preconsolidation pressure and particle geometry. The

consolidation process forces some of the water from the

pore spaces, thus bringing the particles closer together

and creating more interparticle contacts. Even after un-

-loading, most of the bonds formed during consolidation

remain intact because of the close range attractive forces.

The particle geometry has considerable effect on the number

of bonds in that more interparticle contacts are possible

in a random arrangement than one in which the particles are

aligned parallel to one another.



12

The number of bonds may, also, be considerably affected by

shear stresses since the resulting shear strains tend to

disrupt the particle structure.

The ability of clays to retain interparticle bonds

upon unloading provides an explanation for the experimentally

observed fact that preconsolidated clays possess a cohesion

intercept on the Mohr-Coulomb diagram while nOrmally con-

solidated clays do not (Rosenquist, 1959). Under the

present hypothesis, therefore, the necessity of explaining

friction and cohesion as two intrinsically different compon-

ents of shearing resistance is eliminated since they are

only different macroscopic manifestations of the same micro-

sc0pic process.

The conClusion may be drawn from this brief discussion

that deformation in.clays under externally applied loads

involves a continuous process of breaking and reforming

interparticle bonds. Processes of this type are well suited

to theoretical treatment by the theory of absolute reaction

rates (Glasstone, Laidler, and Eyring, lghl). In the section

which follows, this theory is adapted to clay particle

structures.

2.4 Deformation of Clays as a Rate Process
 

The deformation of clays under applied stresses is

assumed to be the result of the breaking and reforming of

interparticle bonds which arise at the contact points between

particles as the result of the microscopic force fields that
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exist in the particle structure. The use of the term con-

tact points is not intended to imply that the mineral

surfaces of the particles are necessarily in actual contact,

although such may be the case. A contact point, as the term

is applied here, merely refers to the point at which a bond

is formed between particles. Actual contact between the

mineral surfaces is not required. Since the interparticle

bond is the net result of the force fields of the "contact,"

the nature of the "contact" need not be Specified here.

The interparticle bond is assumed to present an

energy barrier to relative motion between particles. This

energy barrier will be represented by the symmetrical

potential surface shown in Figure 2.2a in which .1 is the

distance between the adjacent minimum positions A and B.

In order to break the bond between particle surfaces, an

amount of energy at least equal to the activation energy,.A F,

must be supplied to surmount the potential barrier. The

energy required to raise the bond to its activated (loosened)

state may result from thermal oscillation of the atoms and

molecules making up the bond, applied stresses, or both.

Even if no external stresses are acting, the bond is pre-

sumed to pass through the activated state with a frequency

of

= 52_e’

h

where k is Boltzmann's constant, h is Planck's constant, T is

k' ZiiF/RT times per second

the absolute temperature, and R is the universal gas
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constant in accordance with the theory of absolute reaction

rates (Glasstone, Laidler, and Eyring, 1941). In this case

there is no net movement, however, since the frequency is

the same in both directions.

It was noted earlier that clays possess a wide range

of bond strengths due to the heterogeneous nature of the

material. Therefore, in dealing with the breaking and re-

forming of bonds as a rate process, a broad spectrum of

activation energies may be anticipated instead of a single

value. In the develOpment which follows, the value of A F

is taken to represent the average of all bonds under con-

sideration.

/
/
:
>

K

 

 AF (c)

l

Figure 2.2. Potential surface for interparticle bond:

(a) without external stresses, (b2 energy

gradient due to external stress, 0) with

external stresses applied.
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Consider now a certain plane in the material over

which a shear stress Z'acts. Let the average shear force

exerted on a bond along the plane be d. The effect of this

force is to add to the potential surface, a potential

gradient -¢x, where x is the distance measured in the

direction of the stress (Figure 2.2b). The new potential

surface takes the form of Figure 2.20. The force ¢ will do

work ¢H§L» in moving from A to B in the forward direction.

If the movement is backward, or against the stress, the

work done is -¢.€;__. According to rate process theory (see,

for instance, Tobolsky, Powell, and Eyring, 1943), the not

rate of place change in the forward direction is, then,

¢.Rk, awn/2w]? _ e-fM/ekr] = 2 k, sinh

2kT

times 

per second (2.1)

If the distance moved in each Jump is A and the average

distance between points of flow in a direction perpendicular

to the plane of flow is ill, the rate of shear strain is

given by

 7;: 2 i :T e -AF/RT sinhéfi—Ta- (2.2)

I

Since the average force localized on the individual bonds is

¢, thus ‘5': w b’, where.V is the number of bonds per unit

area over the plane of shear.

The equation for shear deformation of the clay particle

structure then becomes
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'_ .2. kT -4F/RT 733 . .
7” 2 WT e sinh 2am {2.3)

which is the general equation for non-newtonian viscous flow

(Eyring and Halsey, 1943).

Having established the flow relationship of Equation

2.3, the total deformational behavior of clays is now con-

sidered.

2.5 A Model for Clay Structure
 

The flow relationship of Equation 2.3 is, by itself,

inadequate to fully describe shear deformation in clays.

The major characteristics of clay deformation in addition

to viscous flow that must be taken into account in the

theory are as follows.

Creep tests on clays show that an instantaneous de-

formation takes place immediately after the load is applied.

This deformation is largely recoverable and has been attri-

buted to bending in the clay plates and the rotation of the

flat particle surfaces toward one another against the action

of Coulomb repulsive forces (Tan, 1959).

Secondly, at stresses below the failure stress, the

creep curves tend asymptotically toward some final deforma-

tion (Lo, 1961; Casagrande and Wilson, 1950). If the flow

process comes to a halt, then the stress must be carried by

intact bonds which do not flow. Hence, it may be assumed

that a yield value exists, below which no movement occurs.

Alternatively it may be said that when the force on a cord



is very small compared to 13F the flow rate is not measurable.

An explanation for the existence of a threshold stress is

found in the hyperbolic character of the flow equation

derived from rate theory (Eq. 2.3).

Equation 2.3 is of the form

7‘: A sinh B C

where

~ kT -AF/RT

A = 2 44—- ———-e =A: h and B
2

2kT

 

Now if B >> A and B remains constant the flow curves will each

have an apparent yield limit below which the flow rate is too

small to be measured. This yield limit increases for de-

creasing values of A as shown in Figure 2.3.

7": A sinh so

B:n>A J J

B = constant

A17A2>A37Au
  

  

  

A3 A4

S
t
r
a
i
n

r
a
t
e

7
’

ap arent y old 1 ts

 
 

Force C

Figure 2.3. Flow curves for non-newtonian viscous flow showing

apparent yield limits for the caseyV-A sinh Bf;

B=” A.
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Such flow curves have been observed on the macroscopic

scale in creep tests on clays (Houwink, 1937; Geuze and Tan,

1953). Since A.is inversely prOportional to the exponential

of the activation energy 15F, the apparent yield limit Cy in-

creases with ziF. If the force on a bond is below the appar—

ent yield limit, the rate of flow is extremely small and may

not be detected by laboratory measurements. If the rate of

flow below the apparent yield point is taken as zero, the

flow curve takes the form shown in Figure 2.4.

7’: A sinh BC

 

  

l

.p |

a» |
.p

m

s I

s

'3 ' o-a4% gy _L. g'y—f

(0 fi‘

|

I

I

l

Force C

Figure 2.4. Flow curve for interparticle bond having;yield

strength.Cy.
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According to this flow curve, the bond possesses a yield

strength Cy beyond which flow proceeds according to the

relationship

7”: A sinh B Cf

where Cf = C - Cy is the force on the bond in excess of the

yield strength. No flow occurs at stresses below Cy.

In a clay mass, a Spectrum of yield strengths may be

anticipated due to the wide range of activation energies.

The solid curve in Figure2.5a shows a hypothetical distribu-

tion of bonds with respect to yield strength for an unstressed

particle structure. .The area under the curve is equal to the

total number of stress-carrying bonds’p per unit area in the

plane of flow. Stress—carrying bonds are all those that will

be stressed when external loads are applied. Thus p =.J +~q

in which V is the number of bonds which flow and q is the

number of bonds which do not flow.

Consider now the effect of external stresses on the

particle structure. Under a given sequence of loading, the

bond forces may be divided into the following categories.

Cy = total yield strength of the bond

ziCyn = additional force that a bond can carry in

the nth increment before flowing OP

Adyn = yield strength of a bond for the nth increment

th
liCn = initial force exerted on a bond due to the n

increment

lACfn = flow force on a bond due to the nth increment

an = non-flow force on a bond during the nth

increment
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Additional designations are defined where needed.

If a system of stresses is applied to the mass, the

bond whose flow curve is given in Figure 2.4 is subjected

to a force, say AC. If AC is smaller than the yield stress

Cy, the bond reacts elastically and does not flow. However,

if.AC is larger than Cy, the bond flows,immediately after the

stresses are applied,under the force

(Mao =A¢ - 25,

Unless all the bonds are stressed beyond their yield point,

the force Z3Cf is gradually transferred to the stronger

bonds as flow proceeds. Thus,.ACf steadily decreases to

zero and the bond ceases to flow. At this point, the flowing

bond carries a force Cy.

As a first approximation, it may be assumed that all

the bonds initially carry an equal share of the applied

stress. At the instant the first stress increment is

applied, each bond then carries a force ASCl. As Figure 2.5a

shows, the force .ACi exceeds the yield strength of some of

the bonds; these bonds flow until the flow force :ACfl on

each flowing bond is diminished to zero by transfer to

stronger bonds. The initial total force per unit area of

particles tending to cause flow is

J. \)o

(Ff1)0 = §:(13¢f1)0 = E:(A¢1 - ACyl)

0 O
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where ./o is the number of initially flowing bonds per unit

area.

After deformations have ceased, the total flow force

Ffl has been transferred to the initially non-flowing bonds

so that they then carry the force

(Ff1)o

r2”

where VFD is the number of bonds that did not flow during

the first load increment.

At the end of deformation, the bonds which flowed are

stressed to their yield strength, while those which did not

flow have a yield strength

A gy2 = Agyl " (ggl)°o

with respect to additional stress. The distribution of bonds

with respect to [SCyg before application of a second load

increment is as shown in Figure 2.5b. It will be noted that the

number of bonds with any remaining yield strength is consid-

erably reduced by the first load increment. The same processes

take place during the second and all succeeding increments

until all yield strength has been exhausted and failure occurs.

The application of the nth load increment causes all

the stressed bonds to be subjected to a force increment ACn.

The initial flow force on any bond in the nth increment is

{ACW if ACyn = o

(Agfn)o = {Agn "Agyn’ if A¢H>A¢Yn ’0

0, if ACyn> ACn 



I
‘
D

U
)

while the initial non-flow force on any bond in the nth

increment is

dy, if A Cn> My,

gg (fl-l) = Afln, if ACyn > ACn

(dgn)

At the end of the nth increment, the force carried by a

given bond is

Cy if ACn > ACyn

gg(n_l) + ACH+EEEQEL , if ACyn> ACn

00

(anlc,

If the clay mass is unloaded after the nth increment—-

provided failure has not occurred—-the yield strength of a

bond in the first unloading increment is

, I _

Therefore, the initial bond distribution with respect to

unloading takes the form of Figure 2.50. This curve is

elongated in the horizontal direction compared to that in

Figure 2.5a due to the addition of the term (an)“3 to the

yield strength of each bond. For unloading the flow process

proceeds in the same manner as described for loading. How-

ever, it may be noted that the initial unloading force tfiCi

produces fewer flowing bonds than the first loading force

ZiCl. Therefore, the flow in the particle structure is

considerably less during unloading. Inherent in this behavior

is the experimentally observed fact that recovery is incom-

plete.
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The deformational prOperties of the particle structure

just described may be illustrated schematically by the model

shown in Figure 2.6. IL

 

 

LI-FIC

 
 

I

It

Figure 2.6. Schematic model for clay particle structure.

The Spring k2 represents the effect of bond stresses

below the yield point--the stress on the non-flowing bonds

plus the stress on the flowing bonds at or below the yield

point. In this stress range the bonds are assumed to behave

elastically. The right—hand side of the model represents

the effects of the bond stresses which cause flow. The flow

in the dashpot then represents the rate process.

Thus,when a shear stress Z? is applied, elastic defor-

mations occur in accordance with the combined resistance of

kl + k2 which indicates the elastic reSponse of the particle

structure as a unit. As the deformation proceeds, the

stresses tending to cause flow are transferred to stronger

bonds until all flow stOps. The average flow prOperties of
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all the flowing bonds under a given stress increment.are

represented by the dashpot/3 and, at any time, the stress

in the right-hand side of the model is the stress producing

flow.

It is readily seen that the model possesses the major

deformational characteristics observed in clays. For

example, if a constant load is applied, the Springs k1 and

k2 deform elastically, followed by viscous flow inthe dash—

pot/9 until all the load is finally carried by the Spring k2

and the deformation ceases; it will be noted that this

behavior agrees with that reported earlier for clays.

The shear stress in the left-hand side of the model is

Z - Z = key (2.“)

where 371 is the shear stress in the viscous element and ’7’

is the total shear strain. In the right-hand Side, the shear

stress is

2:1 = k]_ (7'77): (205)

and according to Equation 2.3,

O

 

77: fl sinh 0(3) (2,6)

where AF/RT

; A kT ’ 3 .A

/9 .— 22 A, h e and o( ETU—ETI°

From Equation 2.4

-° 1 ‘ ‘
r: E (z -z:,) (2.7)
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Combining Equations 2.5, 2.6, and 2.7,

k -+k e _; -

__L_§_ z; = _L I, - l3 sinho‘Z:

0

But for creep loading, Z: = 0, so

 

k1+k2 Z', = — [3 sinh «x13.

R142

01"

d(°‘ Lg) _ - 'L'

klkg — sinh<x (2.8)

WW*5)

Upon integrating Equation 2.8,

a __ l 1 klkg

t, = _oL' 1n tanh [—2 «I5 ———-———k1+k2 (t.- 0)] (2,9)

At the instant the load is applied,

k1

 

‘t= O and Z,==—-———— Z
kl+k2

so that

2(1414442) 1 0< R1 1:
C = .. - - "——096 k1k2 tanh exp ( k1+k2 )

from which

k kg

1 l __1____-
2:, = - “OT—ln tanh [ '2‘ “/9 k1+k2 1’ + tanh'l exp

(.“k.___1I )1 (2.10)
kl+k2

From Equation 2.4,

_1_
T: k2 (2-2:!)

The creep equation thus becomes
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l 1 l kika

T=E§—E +3‘f'k—2—ln tanh ['2'0‘13 k1+k2

-1 0‘le
+ tanh - __....... 2.11exp ( kl+ k2 >I ( >

In a similar manner, the differential equation for

stress relaxation is found to be

d(cx'51)

d(cx/6 klt)

= - SinhCX-CI (2-12) 

Integrating and applying the boundary condition,

at t :0, 31:30 -'C°°

the stress relaxation equation becomes

' l l

I = Lag - 5(- ln tanh [5 086 kit

-1 .

+ tanh exp (-oc [T’o - L...) ) (2.13)

Equations 2.11 and 2.13 describe the stress-strain-

time behavior predicted by the model for creep loading and

stress relaxation, respectively. The validity of the struc-

tural hypothesis developed in this chapter will depend upon

the agreement between the experimental and theoretical

behavior. The experimental program of this study is now

presented.



CHAPTER III

EXPERIMENTAL PROGRAM

3.1 Objectives
 

The first purpose of the experimental program is to

determine whether or not the proposed model reproduces ade-

quately the actual deformational behavior of clays. Secondly,

if the theoretical and experimental behavior show reasonable

agreement, the experimental results may be used to evaluate

the model.parameters which would provide some insight into

the particle nature of the deformation.

In order to achieve these objectives, creep and stress

relaxation tests were performed on a number of specially

prepared clay samples using a triaxial loading apparatus.

3.2 Clays Used
 

The majority of tests reported in this study were

performed on Specimens of a glacial lake clay obtained from

a site approximately 15 miles south of Sault Ste. Marie,

Michigan. The raw clay was obtained from a pit at a

depth of about 15 inches. A series of diagnostic tests,

including x-ray diffraction studies (Christensen, 1963)

shows that this clay contains approximately 50% illite, 20%

vermiculite, 20% chlorite, and some kaolinite and feldSpars.
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A few creep tests were also performed on an undisturbed

glacial lake clay from Marine City, Michigan. Although

identification tests have not been performed on this clay,

it is presumed to be primarily an illite clay. The index

properties for both the Sault Ste. Marie and Marine City

clays are listed in Table 3.1.

TABLE 3.1. Index PrOperties of Clays Tested

 

Cla

 

Clay L.L. P.L. P.I. Fract on

Sault Ste. Marie 60.5% 23.6% 36.2% 0.60

Marine City 41.4% 21.7% 19.7% 0.73

 

3.3 Sample Preparation
 

The Sault Ste. Marie clay was air dried in the labora-

tory prior to preparation of the test Specimens. The

various methods of sample preparation are described below.

a. Laboratory Consolidated Samples. The air dried
 

clay was soaked in distilled water and remolded at a water

content near the liquid limit. The remolded clay was placed

in a 6 inch diameter lucite cylinder and left to stand for

three weeks. An initial consolidation pressure of .003

kg/cm2 was then placed on the clay. After at least 90%

consolidation was reached, the pressure was doubled and

maintained until 90% consolidation was again achieved. This

procedure was repeated until the clay was consolidated under
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a pressure of 0.36 kg/cme. The load was then removed and

the clay allowed to rebound. Several weeks later, the clay

was extruded from the cylinder and cut into six sections,

each approximately 2 inches square in cross-section and 3.5

inches in height. These sections were then waxed, wrapped in

aluminum foil, waxed again and stored in a moist room until

required for testing. Immediately before testing, the waxed

sections were trimmed into triaxial Specimens 1.40 inches

in diameter and 2.8 to 3.0 inches in length.

b. Remolded-Compacted Samples. The air dried clay
 

was placed in a muller and reduced to a size less than 2 mm

in diameter (No. 10 U. S. Standard Sieve). Distilled water

was added until a water content of approximately 40% was

achieved. The clay was then placed in an earthen crock,

covered with a rubberized cloth and stored in a moist room

to ensure an even water content distribution. After about

two weeks, the clay was removed from the moist room and

placed in a static compaction ring, 11.25 inches in diameter

and 6.5 inches in height. The clay was placed in the com-

paction ring by hand, with a kneading action to remove as

much of the air as possible. A pressure of l kg/cm2 was

applied to the clay by the loading ram of a hydraulic testing

machine. The pressure was maintained for one hour, after

which the load was released and the compacted cake removed

from the ring. The cake was sliced into 21 sections, each

approximately 2 inches square in cross-section and 4 inches
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in height. The sections were then waxed, wrapped in

aluminum foil, waxed again and stored in a moist room for

at least two weeks prior to testing to allow equalization

of moisture distribution and to minimize thixotrOpic effects.

Immediately before testing, the sections were removed from

the moist room and trimmed to a diameter of 1.40 inches

and a height of 3.0 inches for triaxial testing.

c. Dry Clay Sample. The air dried clay was pulverized
 

“Ultimortarand pestle until it would pass a No. 100 (U. S.

Standard) sieve. The pulverized clay was placed in a drying

oven at 105°C and left for twenty-four hours. After removal

from the drying oven, the clay was formed into a cylindrical

specimen and placed inside a rubber membrane fitted to a

cylindrical specimen mold. The clay powder was compacted

with a rod to densify the mass. After filling the mold,

the sample was fitted at the tOp with a lucite loading cap

and sealed. A vacuum was then applied to the sample through

the pore pressure line in the pedestal base. All water had

previously been removed from this line so that no moisture

could reach the dry sample. With the dry sample being sup-

ported by the vacuum, the sample mold was removed, the

detachable cylinder and cap of the triaxial cell secured

in place, and the chamber filled with water. Prior to

applying the chamber pressure, the sample dimensions were

taken. The weight of dry clay in the sample was determined

by weighing the supply of dried clay before and after form-

ing the sample.
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d. Undisturbed Marine City Sample: The undisturbed
 

Marine City clay was obtained by means of thin-walled

piston samplers with an inner diameter of 3 inches. Tri-

axial Specimens were trimmed from the tube samples to the

same dimensions as the remolded-compacted samples. Data

pertaining to each of the individual test samples may be

found in Table 3.2.

3.4 Triaxial Tests
 

All test specimens were subjected to a hydrostatic

2
consolidation pressure of 2.0 kg/cm which remained until

at least 90% consolidation was reached. Except for the dry

2
clay, a back pressure of 1.5 kg/cm was applied after con-

solidation by raising the chamber pressure and pore pressure

simultaneously in increments of 0.1 kg/cm2. The back pres-

sure was maintained for at least twelve hours before testing.

a. Creep Tests. The creep loads were applied by means
 

of a yoke resting on the loading piston. The yoke was fitted

with a hanger from which the weights, required to produce a

certain stress, could be suSpended. These weights were

placed on the hanger with great care to avoid subjecting

the sample to shock loading.

A dial gage, of sensitivity 0.001 inches or 0.0001

inches, was attached to a mount on the triaxial cell with

the stem resting on the loading yoke so that the vertical

(axial) deformation of the Specimen could be measured.



Throughout the test, the chamber pressure was maintained

constant by means of a constant pressure cell.

From the instant the creep load was applied, the axial

deformation and pore pressure were recorded at thirty

seconds, one minute, two minutes, five minutes, and so on

with the time interval between readingsbeing approximately

doubled after each reading. These data, along with the

constant volume conditions permit the calculation of the

effective principal stresses and principal strains.

Each creep load was maintained until the deformation

had practically ceased and the pore pressure had reached

equilibrium. The length of time required to achieve this

condition varied from about one hour to more than one week

depending on the stress level and the stress history of the

specimen.

The loading program was varied considerably for dif-

ferent test Specimens. Some Specimens received only one

large creep load, while others were loaded in small incre—

ments. Still others were cyclically loaded; i. e., the load

was increased in small increments and then unloaded in

similar increments until all the axial stress had been re—

moved. The results of the cyclic loading tests are particu-

larly interesting because they permit a comparison of the

behavior of the material in loading and unloading.

b. Relaxation Tests: The Specimens were subjected to
 

a constant rate of deformation by means of a constant Speed
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drive mechanism. At a predetermined deformation, the drive

mechanism was disengaged and the deformation maintained

constant.

From the instant the deformation was stOpped, the axial

stress, pore pressure and time were recorded at time intervals

which were approximately doubled after each reading. The

axial stress was measured by means of a proving ring in the

earlier tests and later by means of a load cell. The load

cell, the design of which is described by Schmertmann (1960),

was employed in order to minimize creep in the specimen

during stress relaxation. Since the relaxation of stress in

the proving ring produces substantial deformation in the

Specimen, it was thought that the measured decay of axial

stress might not represent true stress relaxation. After

checking the proving ring results with those from the load

cell which deforms very little with relaxation of stress, it

was found that the creep induced by the proving ring had

little or no effect on the measured stresses.

The room temperature was recorded during all tests by

means of a continuously recording temperature gage. During

the winter months, when most of the tests were performed,

the temperature control was very good--variations greater

than 2°C were rare. During the summer months, however, the

room temperature varied as much as 10°C during the testing

of a single Specimen. The temperature effects were most

pronounced on the stress relaxation testS—-in several cases,
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rendering the data useless. The effect on the creep tests,

althOugh less severe, could also be seen in changes in slope

in the deformation—time curves. Where temperature fluctua—

tions became appreciable, this fact is noted in the data

which is presented in the Appendix.

A complete listing of the Specimens tested and the type

of test performed on each is provided in Table 3.2. The

results obtained from the experimental program are now

presented and analyzed in terms of the theory develOped in

Chapter II.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Presentation of Data and Evaluation

of Model Parameters

 

 

.In this chapter, the experimental results of this

investigation are analyzed in terms of the structural model

described in Chapter II. The first problem to be considered

is that of devising a consistent method of data representa-

tion which will enable the model parameters to be determined

quickly and consistently. In the following discussion, such

a method is presented.

Consider the theoretical creep equation derived for

the structural model in Chapter II,

 

. k k

‘7": .____t + __1 1n tanh[—21— «,5 l 2

k2 k2“ kl+k2t

- k

-l _ _____.1__+ tanh exp ( o<C kl+k2 )1 (2.11)

In a three-dimensional stress system, the shear stresses

and strains on the octahedral plane give a good representa-

tion of the shear distortion in the Specimen. The octahedral

shear stress is given by

 

I:oct =71- ‘\/ (61 "0/2)2 + (62 ‘63)2 + ((3 -J1)2

and the octahedral shear strain is
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2

7”; sl/M‘i- €2>2+ <62— €3>2+ <63— 61>?
oc

In the triaxial test, the principal stress difference

(C11 -Cf3) and the major principal (axial) strain 6‘1 are

conveniently measured. Under constant volume conditions,

the stress and strain conditions imposed on the Specimen are

and

€1,362 =63;€1+€2 +73 = 0

assuming that the strains are uniform.

With these conditions imposed, the octahedral shear stress

is given by

'C =

oct
(61 ’63) = ’3‘ D

W
K
?
!

H

in which D is the principal stress difference or the "deviator

stress as it is frequently called in the nomenclature of soil

mechanics. The octahedral shear strain is

“

:Vbct : f; c°l

in terms of the axial strain 61

Equation 2.11 can now be rewritten in terms of the measured

quantities D and 6‘1 as

k k2
C _ D l 1
x. l — W + __ 1n tanh “/8 kl+k2t

 

 



Immediately after application of the load (t = O), the

instantaneous strain is

S D

(t 1)0 = 3(k1 + k2) ’

 

II t

\
‘
l

H U
)while the ultimate strain under a given load (at t

These relations can be combined with Equation 4.1 to obtain

a dimensionless creep function of the form

-,1
11* = 1 + A in tanh [z(t) + tanh’l exp (—A) (4.2)

 

 

;‘ _ (V ) _

where U* - 1 1 O = E___E2 , U = axial deformation,

2 k k k

A=go<D ___1 ;z(t)=lo<fl 13

kl+k2 2 kl+k2

The dimensionless creep function U* is seen to be de-

pendent upon the parameter A and the time function Z(t) and

varies between the limits of zero and one. By varying the

parameter A, and plotting U* versus log Z(t), the family of

curves shown in Figure 4.1 is obtained.

To determine the parameters o( and {9, the eXperimental

U-UO

Ug- UO

containing these points is then placed over the theoretical

data is plotted as = U* versus log t. The sheet

curves and adjusted horizontally until the points coincide

with one of the theoretical curves, as nearly as possible.

The choice of the best theoretical curve to fit the data
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determines the value of the parameter A for that test. With

kl and k2 known from separate considerations, the parameter

(x may be calculated from the relation

Kl+ k2

k1

C
fl
>

(4.3)R I

fi
l
e
d

The parameterff is found by noting the value of time t,

on the experimental curve,which coincides with some arbitrary

value of Z(t) on the theoretical curve sheet, since,

/5 _ 2Z(t)(k1+k2) (A A)

klk20< t

 

With kl and k2 calculated from the instantaneous and ultimate

creep strains and 0< and/6 evaluated by the curve fitting

technique, all of the model parameters are determined.

In the relaxation test,

I: = Ca, - (2; ln tanh [—2- 076 klt

+ tanh’l exp -o<(1:o -13,‘,)! (2-13)

or, in terms of the principal stress difference, D,

D = D — -§- 1n tanh [éru/fi klt

°° o<2 I

+ tanh"1 exp -/§ cx (DO - D,)] (4.5)

In the same manner as described for the case of creep loading,

a dimensionless stress relaxation function is obtained in the

form
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D*=1+ In tanh [W(t) + tanh’l eXp (-B )] (4.6)

u
fl
h
'

2

where s = -3- “(Do-D0,) , W(t) =33“? klt .

Do - D
13*:

. D-Doo
o

The dimensionless stress relaxation function D* depends

upon the parameter B and the time function W(t) and varies

between zero and one. D* is seen to be of the same form as

U* and so the same theoretical curves can be utilized for

both creep and stress relaxation. The determination of

and/6 for the relaxation test is carried out in the manner

as described for the creep test, where, now

 

3B

o<= [2 (120- D..-) (4.7)

and

= 2W(t) (4.8)

arklt

It was found during the course of the experimental

investigations, that the ultimate values of strain and

deviator stress for creep and relaxation respectively were

rarely reached within reasonable testing times. The time

intervals required were normally greater than one week and

in some cases more than a month. During that time the test

samples were often subjected to accidental shocks or vibra-

tions on the loading frame and/or temperature fluctuations.

Efforts to eliminate these environmental factors were unsuc-

cessful, so a method was sought by which these ultimate

values could be determined by the Shape of the curves within
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shorter time intervals. For the case of creep, such a

method was developed by considering the variation of strain

rate with strain.

Consider again the theoretical creep equation in the

form

6,: F +Gln'tanh[Ht + J] (4.9)

_P__ l 1 &
where F = 3kg , G = {gr—“"k'é'“ , H = ‘2’ (X /3 kl+k2 ,

2 k

J ‘= .tanh'l exp - (\f5— o< D --—-—l———- )

The variation of strain rate with strain is given by

d6 = d6 dt = 6

d5 dt ' d6 6

Taking the first two derivatives of equation (4.4) yields

é: 2GH csch 2 (Ht + J)

 

and 2

.. -4GH csch 2 (Ht + J)

€= tanh 2 (HT + J)

from which

of _ d1} _ __ 4 10Id? _ dU _. 2H coth 2 (Ht + J) ( - I

dU

For (Ht + J) =- 1, EU. 2: -2H 2= a constant. Hence, a

simple arithmetic plot of U versus U should produce a curve

which, after sufficient time has elapsed, will have a constant

lepe of -2H. Extrapolating the straight portion of this

curve to U = 0 will then yield the required value of'Uw ,

the ultimate strain. This technique proved to be a very con-

venient means of determining Up, and also provided a valuable
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check on the value ofcxf3 Obtained from-the curve fitting

technique.

An analogous procedure can be applied to the stress

relaxation data. In this case the required expressions are

D = Doc - L Meant. [Mt + N] (4.11)

dB
~and 55- = +-2M coth (Mt + N) (4.12)

3 l

where L=\/_20< , M_= '2-CXIB kl,

VG; (Do ‘ D)N=tanh‘1 exp - 3

dD

. dD

Dd, , is obtained by extrapolating the curve D versus Dyto

for(Mt + N) a- 1, :z +2M. The ultimate deviator stress,

D = 0 and the value of<x;3. can be compared to that obtained

by the separate determination of o( and/6 described earlier.

The complete procedure used in analyzing the experi-

.mental data for determination of the model parameters is now

summarized.

933.22

1. Plot observed deformation-time readings as U

versus t. The initial portion of the U-t curve

is plotted on an exaggerated time scale and extra-

polated to t = O to find U0. Calculate k1 +.k2 = 3%:‘

2. From U-t curve, calculate the deformation rate U

at several points along the curve and plot U versus

0 and findU. .Extrapolate the U-U curve to U

 U10. Calculate k2 = and k1 (k1 + k2) - k2.
D

3(3“,
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From the final straight portion of the U-U curve

 

k

evaluate 2H=nuiig— and calculate a}? = 2H.El:__3,

Plot deformation-time data as U- a = U* versus log t

00- O

andu find the theoretical curve which best fits

the data points. Calculate cx and/6 from Equations

4.3 and 4.4. Compare “/5. with the value found

in 2.

Stress Relaxation
 

l.

2.

From deviator stress-time data, plot D versus t.

From D—t curve, calculate D at several points

along the curve and plot D versus D. Extrapolate

the final straight portion of the D-D curve to

° 1 (if) 1

D = ODand gind D00 . Calculate «,6 = 2M El=+(.aU—)wpl.

O -

= -x-
PlotW D versus log t and find the

theoretical curve which best fits the data points.

Calculate cx and/5 from Equations 4.7 and 4.8 and

compare «)6 with the value obtained in 2.

Figures 4.2, 4.3, 4.4, and 4.5 illustrate the determin-

ation of the model parameters for typical creep and stress

relaxation tests. Supplementary data are given in the

Appendix.

4.2 Validity of the Structural Model
 

The stress-strain-time behavior predicted by the

structural model is represented by the dimensionless creep

and relaxation functions U* and D* as shown in Figure 4.1,
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Figure 4.2. Typical creep curves (Test No. C-C—l-5).
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Figure 4.4. Typical stress relaxation curves (Test No5

F-R-S-l .
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and the ability of the model to predict the behavior of

clays depends upon the agreement of the experimental data

points with these theoretical curves.

The data collected from each test performed in con-

nection with this study are presented in the Appendix. From

inspection of these data, it can be seen that the agreement

between theory and experiment is quite good in most cases.

It would appear from the experimental evidence that the

structural model used herein to describe the deformational

pr0perties of clays is a close approximation to the real

behavior. The evidence is, of course, indirect since only

the large-scale behavior of the clays can be observed and

compared with the theory. However, this is the plight of

most microscopic theories of material behavior, and their

validity can only be tested by such comparisons.

For some increments of creep loading, the deformations

were very small, and the dial readings from these tests were

somewhat approximate since it was necessary to interpolate

between the smallest dial divisions. Therefore, each set

of test data contains a note as to the accuracy of the data

points obtainable from the dial readings, assuming that

readings can be accurately interpolated to one-half of the

smallest division. In those tests for which the scatter of.

the experimental data seems to be excessive at first glance,

much of this scatter can be attributed to the limitations of

the dial readings.
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In some of the creep tests, particularly the first stages

of unloading and reloading, reliable readings could not be ob-

tained at all because the deformations were too small or took

place too rapidly to be recorded with reasonable accuracy.

Consequently, no creep curves are shown for these tests.

The question may be raised whether or not the actual

creep and relaxation curves tend asymptotically to some ulti-

mate value as predicted by the theoretical curves, since the

final portion of the curves is missing in most cases. As

mentioned in the previous section, the eXperimental data often

became erratic in this region due to uncontrollable environ-

mental factors. Consequently, it cannot be stated with

absolute certainty that all the experimental curves approach

an ultimate value. There is considerable evidence in support

of this assumption, however.

In several tests, the ultimate strain appears to have

been achieved (see for instance, Figure A.33). Moreover, the

ultimate strain was frequently as difficult to record for

unloading increments as for loading and it is quite obvious

that recovery strains cannot continue indefinitely. In order

to establish this point conclusively, however, it would be

necessary to perform creep and relaxation tests in an environ-

ment free from temperature fluctuations and external distur-

bances. Such facilities were unavailable to the writer, so

this point remains unproven.

In some of the creep tests-—for example test number

C—C-l-7 in Figure A.7-—the data points for the earlier part
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of the tests do not fit the theoretical curve that describes

the latter part of the test. Although these points are very

sensitive to the value chosen for U0, this factor alone can-

not account for the magnitude of the deviation in every case.

It appears that, in some cases, the sample behaved differently

during the earlier stages of creep.

4.3 Interpretation of Results
 

As is expected, the parameters are not constant for a

.single test Specimen, but vary with the stress level. A close

examination of the variation of the parameters reveals sig-

nificant information about the behavior of the clay particle

structure under load. Certain combinations of these parameters

have particular physical significance and are compiled in

Table 4.1 for all tests.

The cyclic creep test illustrate,.especially well, the

changes take place in the particle network during deformation.

Table 4.2 summarizes the trends observed in the quantities

k1 ‘

k1+ k2

tions in the model parameters are now considered in detail.

: <1. and /5? during two loading cycles. The varia—

4.3.1 The Spring, ”Constants"

The absolute values of the Spring constants k1 and k2

have little physical significance because there is no way of

knowing how the resistance of these elements is developed in

___.lf._1___is of
kl+ k2

interest, however, since it represents the portion of the

terms of the particle structure. The quantity
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total shear stress that initially tends to produce flow.

Figure 4.6 shows the variation of RE":;K§' with deviator

stress level over two complete cycles of loading and unload-

ing. .The data from the compacted Specimen C-C-l is chosen

for this illustration because of the completeness of the

data, but the other Specimens show similar trends. Figure

4.68 shows that, throughout first loading on Specimen C-C-l,

nearly all of the applied stress causes flow at the bonds.

According to this trend, the initial bond strength distribu-

tien curve must be skewed toward the direction of lower yield

strengths, which agrees with the curve shown in Figure 2.58.

The unloading branch of cycle 1 shows that less than

half of the first unloading increment produces flow. For

subsequent unloading increments in the first cycle, EE_:lE§

steadily increases until, for the last increment, nearly all

of the stress causes flow. It was also noted that the creep

reSponse becomes progressively slower with unloading. These

observations indicate that the distribution of yield strengths

is more uniform for unloading than for loading in the first

cycle. Reference to Figure 2.50 shows that such behavior

is predicted by the theory.

Theoretically, if no changes in the prOperties of the

‘particle structure take place, the distribution of bond

yield strengths for reloading should be the same as for first

loading. However, according to Figure 4.60, the behavior of

k1
iszx—EE during reloading is intermediate between the cases
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of loading and unloading in the first cycle, which means

that the yield strength distribution curve for reloading

must be flatter than for first loading.

A possible explanation for the change in the distribu-

tion of yield strengths after a loading cycle is that Some

of the particles, in the process of flow, become aligned

along potential failure planes; thus reducing the number of

bonds in the planes of flow and weakening resistance to de-

formation along these planes. Wu, Douglas, and Goughnour

(1962) observed such particle alignment by means of diffrac—

tion studies on thin sections taken from the failure planes

of triaxial Specimens. Hvorslev (1960) also detected

preferred particle orientation by drying triaxial Specimens

and noting the development of Shrinkage cracks.

Furthermore, it is quite likely that some bonds with

greater yield strengths could be created as a result of

particle interference during the flow process. Lambe (1960),

explained that interference can occur when particles become

wedged together during deformation. Additional energy is

then required to lift the particles over one another so that

flow can continue. This would result in a shift in the dis-

tribution of yield strengths toward greater strength and

tend to flatten the curve.

k1

The increase in *kl + kg for the second unloading is
 

basically the same as that for the first unloading. From the

k1
consideration of the variation in k1 + k2 over two cycles
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of loading, it is possible to Sketch, qualitatively, the

distribution of bond yield strengths at the beginning of

each phase of loading. Figure 4.7 shows distribution

curves for the beginning of each loading and unloading

which are based on the observed phenomena.

  

   

  

 

1St loading

//,,\\<:/,,2nd loading (reloading)

I
lSt and 2nd unloading

___ _V_.______.J{___\
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i
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u
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d
/

 
 

Yield strength 0y

Figure 4.7. Distribution of bond yield strengths with

reSpect to the various phases of cyclic

creep loadin --constructed from observed

trends of l
m

k1+k2

_5.3.2 The Parameter o<
 

According to Equation 2.7,

_ A

0(- 20kT

'where ,A is the distance between equilibrium points on the

potential surface in the direction of flow and O is the
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number of flowing interparticle bonds per unit area in the

plane of flow.

It may be assumed for simplicity that .1 , which is a

property of the close range interparticle forces and, perhaps,

the lattice structure near the particle surface does not

change appreciably. Then the factor which controls the

value of 0< , for constant temperature, is \) . Therefore,

the variation of ac for a given sequence of loading gives

some indication of the shape of the yield strength distribu-

tion curve and provides a check on the trends observed in

R1

k1 + k2 '

Figure 4.8 shows that CK changes but little during

the first loading of Specimen C-C-l until the last increment

of deviator stress. Since the fraction of the stress carried’

k

initially by the flowing bonds ("El—117752 ) is near unity for

all increments, large changes in 1) are not expected. Under

the last load increment the value of o< is approximately

doubled, indicating a sudden reduction in the number of

flowing bonds in the plane of flow. iThe axial strain pro—

duced by the last increment is more than twice the total

strain prior to that increment. Consequently, it is reason-

able to assume that the structural changes in the sample

during the last increment are substantially greater than for

any preceding increment.

It was noted earlier that large strains can produce

preferred particle orientation along potential failure planes.
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Figure 4.8. Variation of the flow parameter, CK , with

deviator stress, D, in cyclic creep loading

.of Specimen C-C-l.
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As the flat particle surfaces become parallel to one another,

fewer interparticle bonds can develop per unit area and, con-

sequently, some of the bonds that are broken cannot reform.

If particle reorientation takes place during the last load

increment-~which seems reasonable in view of the large

strains observed--then the increase in 0( can be attributed

to a reduction in the number of bonds in the plane of flow.

During the unloading phase of the first cycle, CK

decreases so \) must be increasing which agrees with the

k

trends observed in ’kl ikg . The second loading cycle
 

shows that 0 increases with progressive loading and unload-

ing which also corroborates the evidence from Rigérpfi'. In

general, the variation in 0< substantiates the yield strength

distribution curves shown in Figure 4.7.

It may be noted in Table 4.1 that the consolidated

Specimens, which have larger final void ratios than the com-

pacted Specimens, give larger values of 6X. , indicating that

less bonds flow when the void ratio is larger. The dry

creep Specimen DP-C—l, which has the highest void ratio of

all specimens tested, also gives the largest 0< value for

comparable stages of loading. The implication of this trend

is that the number of bonds per unit volume is inversely

prOportional to the void ratio which verifies the theoretical

prediction of Section 2.2.

The calculated values of CK provide an excellent

Opportunity to check the reliability of the hypotheses which
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led to the structural model. Recalling that

 

A
o<

2 J kT

and taking 0( = 30 as a representative value, then

2‘ - 2o<kT - 2 (30) (140 ‘22 87 _ _ . 7 x 10 ) (29)

3— = 2.52 x 10’18 cm3

In Specimen C-C-l, the solid weight is 97.5 grams and the

Specific gravity of the solids, GS, is 2.70. Therefore the

solid volume

Vs = 27%0 = 36.1 cm3

An average illite particle is approximately 0.5 microns in

diameter and 100 angstroms in thickness (Scott, 1963),

giving an average volume of approximately 2 x 10"15 cm3.

.Since the Sault Ste. Marie clay has a clay fraction of

0.60, the total number of clay particles is then,

_136.1) (0.601 = 1.09 x 1016 particles.

2 x 10 '

 

.The total volume of specimen C-C-l after consolidation is

63.65 cm3, so the number of particles per unit volume

becomes,

1.09 x 1016

63.65

If it is assumed that each particle forms six contacts as

 = 1.70 x 101“ particles/cm3

suggested by Rosenquist (1960), then the number of bonds per

unit area in the plane of flow,’p, is approximately



)1 (6)(1.70 x 1014)(%)(0.5 x 10‘”)(0.707)

’p = 1.20 x 1010 bonds/ cm2

where p is equal to the number of bonds per unit volume

times the distance between points of flow perpendicular to

the direction of flow and the particles are assumed to be

inclined to the plane of flow at an average angle of 45

degrees. Assuming that 75 per cent of the bonds flow,

71: (2.52 x 10‘18)(1.20 x 1010)(0.75)

A== 2.27 x 10’8 cm = 2.27 angstroms

where 1) = 0.75 )1. It is of interest to note that the dis—

tance between adjacent silica tetrahedra in an illite

particle is 2.55 anstroms (Grim, 1953). In View of the

calculated value of A = 2.27 angstroms, it seems reasonable

that the interparticle bonds are associated with the lattice

structure of the particles.

_§.3.3 The Parameteryfi

The concept that the particle structure possesses a

Spectrum of yield strengths in its interparticle bonds

suggests that as stresses are applied to the structure in

increments, the activation energy of flow Should increase

as stronger bonds are brought into the flow process. From

IEquation 2.7,

- AF/RT

= 2 .A kT

fl 21. he
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so that/9 should decrease, exponentially, as A1F increases

if A, is constant. Although )H may not be constant, the

activiation energy is assumed to dominate changes in/g be-

cause of the exponential effect of A1F.

Figure 4.9 Shows the variation of/B in Specimen C-C-l

over two loading cycles. For all except the first loading,

/5 generally follows the expected trend--decreasing as the

load is increased for reloading (Figure 4.90) and decreasing

again as the load is removed (Figures 4.9b and 4.9d). Thus,

the average yield strength of the bonds that flow increases

as loading progresses as a predicted by the yield strength

distribution curves in Figure 4.7.

However, for the first loading/5 increases which is

contrary to the expected behavior. This would seem to indi-

cate that the bonds that reform in the flow process are

weaker than the original bonds. Such a phenomenon is

plausible in light of the evidence of structural changes

detected earlier by the consideration of EEEé—ké'and o<

For example, consider an interparticle bond between

two particles meeting at a large angle and forming an edge—

to—face contact. The attractive forces between these two

particles are large due to the Opposite charges of the edge

and face, while the repulsive forces are small since the

flat surfaces of the two particles are far apart. This type

of contact, predominant in a random particle structure,

forms a strong bond. 0n the other hand, two particles
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meeting at a low angle form a much weaker bond because of

the repulsion developed between the flat surfaces as they

approach one another.

As the particles become aligned in the planes of flow,

the angles between particles forming bonds becomes progres-

sively smaller and thus the bonds may become weaker as

described above. AxF, therefore, decreases and #3 increases

with strain. Experimental evidence for such particle align-

ment during the first loading has already been cited. The

strains produced by subsequent loadings were much smaller so

structural changes probably had little effect on A F after

the first loading.

As seen from Table 4.1, nearly all of the calculated

values for/5 fall within the range 5 - 15 x 10'7 min.‘1

Using k = 10‘6 as a representative value, .A = 2.27 A and

4 x .707 = 1.178 x 10"5 cm. as

1 -

letting Al: g‘x 0.5 x 10

before, the activation energy, ALF, may now be determined.

Noting that

and substituting the values from above, the activation energy

is

(2.27 x 10'8)(l.407x10’22)(298)1

(.001987)(298) in [2 71.178x 10-5)(10-9)(1.125x10-34)

1

.J

AP1

AP1 24.8 k cal mole‘l

'Phis value represents the mean strength of the interparticle
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bonds broken during the Shearing process. Since the bond

strengths are comprised of a complicated interaction of

attractive and repulsive forces between the clay particles,

the contribution of the individual bonding and anti-bonding

force systems is impossible to assess with the knowledge of

the clay-water system presently available.

4.4.4 Creep Test on Dry Clay

It was stated, in connection with the discussion of

the clay-water system in Chapter II, that the role of the

adsorbed water films in determining the deformational charac—

teristics of clays is of minor importance. This view is

based, in part, on an experiment performed by Norton (1952)

in which it was shown that a dry clay, when placed in an

elastic membrane and the air withdrawn, behaves exactly like

a wet plastic clay. Itvwxsbelieved that the conditions of

this experiment could be duplicated in the triaxial cell,

thus producing a dry clay Specimen that could be tested under

creep loading.

A Specimen of oven-dry powdered clay was obtained using

the same technique used in preparing triaxial specimens of

dry sand. .The details of this technique are described in

Chapter 111. No moisture was permitted to enter the sample

during testing.

Because of the fluffy nature of the dry, powdered clay,

compaction in the sample mold was difficult and the resulting

Srmcimen has a rather high final void ratio (e = 1.132) and,
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consequently, is quite weak. It was, however, possible to

perform one loading increment on the Specimen using a small

deviator stress. The results of this test are shown in

Figure A.42. It can be seen that the curves for the dry

clay take the same form as the saturated clays for creep

loading. The calculated values of cx and f6 for the dry clay

are also consistent with those obtained for the saturated

clays.

The findings of this test indicate that the behavior

of the clay particle structure is not affected to any impor-

tant degree by the presence of adsorbed water films. Norton

(1952) suggests that the role of water in causing plasticity

in clays consists of forming an air-water boundary around the

surface of the wet clay mass, producing surface tension which

acts to press the particles together. The plasticity of a

wet clay mass is, thus, believed to be a pr0perty of the

clay particles and not of the water.

4.3.5 Relaxation Tests
 

It has been demonstrated that the structural model for

clays developed in Chapter II provides a good representation

of creep behavior. The results of the stress relaxation

tests provide an opportunity to check the generality of the

model with another type of loading. The agreement between

the theoretical and experimental relaxation curves is quite

good. The calculated values of/B also agree with those

obtained in the creep tests (see Table 4.1). It will be
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rioted in Table 4.1 that the value of k1 is estimated from

czreep tests performed on a similar Specimen in order to

czalculate‘fl. This is necessary because the relaxation tests

Iprovided no independent means of evaluating the Spring

"constants."

The values obtained for cx in specimen F-R-8 are some-

xnhat smaller than the correSponding values in creep loading

(an Similar Specimens. Since the results are obtained from

different samples, this discrepancy may Simply be due to

‘the unavoidable variation between samples; even though the

Inethod of preparation is identical. The other relaxation

tests yielded values of O< which agree with those obtained

in creep loading on similar Specimens. In general, the

agreement between the results of the relaxation tests and

the creep tests seems to support the validity of the struct-

ural model.

4.3.6 Temperature Effects

The room temperature was measured by means of a

continuously recording temperature gage during the progress

of the loading tests. During the winter months, when most

of the tests were performed, the room temperature was very

well controlled--a maximum temperature variation of about

2°C was average for most tests. During the summer, however,

the temperature varied as much as 10°C during a Single test.

These fluctuations were, for the most part, erratic and of

short duration and often produced unreliable results in the
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tests. In one instance, however, the room temperature was

Inaintained at a abnormally high level for four days, during

‘which time creep test D—9-4 was in progress.

The creep curve from this test is of interest because

it provides an Opportunity to calculate a value for the

activation energy based on temperature variations. Figure

4.10 Shows the creep curve from test no. D-9-4 along with

the room temperatures recorded during the test.

Referring to Equation 4.8, it is seen that, for large

values Of time,

d0 klkg _ klke 2 - F/RT
--—=::- 2H = -O( — - _._.___.. A c

U fl EEK—2 k1+k2 3‘51”

Taking logarithms Of both sides,

dU Air
1 _..._ = .. .. .—n (dU) 1n S RT (4.12)

where

S _ .5152.. 113.3

k1+k2 ,Aluh

Differentiating with respect to temperature,

d 1n ( dU ) = AF
(4.13)

dT dU RT?

Upon integrating Equation 4.13 between the limits T1 to T2,

the activation energy becomes

 

(422.)

AF = R (T1T2 )1n __9}i_2_ (4.14)
Tl‘Ta ( dU )

dU 1

(4.11)
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It may be seen from Equation 4.14 that the calculation

of the activiation energy, A F, by this method requires the

 evaluation of 33 from the creep curve for the temperatures

T1 and T2. In Figure 4.11, —§%— is determined for the temper-

atures T1 = 26°C and T2 = 31.5°C. The segments Of the creep

curve used in this determination are shown in Figure 4.10.

Substituting the apprOpriate values into Equation 4.14,

the activation energy, 75F, becomes

-3

F 1

A 5.5 .663 x 10"5

AF‘ 23.5 k cal mole‘l

THiiS value Of A F agrees quite well with that found by

aanother method in section 4.3.3 and adds further evidence

111 support of the rate theory approach.
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CHAPTER V

CONCLUSION

The deformation of clays is studied from the point-Of-

view Of the particle structure. This consideration leads to

the conclusion that processes taking place at the particle

level during deformation can be treated by the methods of

rate theory. Using the flow relationship derived from the

rate theory treatment, the concept of a Spectrum of bond

yield strengths is developed. According to this concept,

some of the bonds in the particle structure flow under a

given stress increment while others remain intact by virtue

Of their greater yield strength. It is Shown that the

theoretical concepts presented could be simulated ‘by a

simple structural model which agrees with the Observed defor-

mational prOpertieS of clays.

The results Of the experimental program Show that the

behavior Of the clays tested agrees well with that predicted

by the model for the test conditions employed. The loading

conditions are quite varied with Specimens being tested

tinder Single creep loads, incremental creep loads, cyclic

Clreep loading and stress relaxation. In nearly every case,

egood agreement is found between the theoretical and experi-

Inental results. The quality Of agreement achieved tends to

snubstantiate the validity Of the rate process approach to
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deformations at the particle level. For further investiga—

tions along these lines, other loading conditions Should be

employed; e.g., constant strain rate tests at different rates

of strain would be useful, as would experiments with con-

trolled temperature variations.

The creep test performed on a dry powdered clay sample

shows that the behavior Of the dry clay, in creep, is

essentially the same as the saturated clays. This result

lends support to the suggestion by Tan (1959) and others

(Leonards and Girault, 1961; and Norton, 1952) that the

adsorbed water films on the particles are not the prime

cause Of viscous flow in clays. Additional tests on dry

clays under various loading conditions are needed; such

tests could provide valuable information on the nature Of

the interparticle bonds.

The calculated values of the model parameters Show

considerable variation. In Figures 4.6, 4.8, and 4.9,

attention is focused on the variation Of these parameters

through two complete loading-unloading cycles. From the

trends Observed in the quantity __E%E1., it is possible to

sketch, qualitatively, the distributign Of bond yield

strengths for the various stages Of loading. The variations

in o< and/5 agree well with the distribution curves shown in

ZFigure 4.7 with the exception Of’fl during the first loading

stage.

During the first loading, it is believed that the yield

EStrength distribution is affected by the breakdown of the
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original particle network as the particles become aligned

along potential failure surfaces. The increased alignment

along the Slip plane is known to be accompanied by a tendency

toward volume reduction in the potential failure zones. The

calculated variation in the model.parameterscorroborates

this view and agrees with the experimental findings Of other

workers (Wu, Douglas, and Goughnour, 1962; and Whitman, 1960).

The increase in the parameter/fl during first loading also

indicates that the interparticle bonds become weaker as

deformation proceeds. This phenomenon is explained in terms

Of the changing particle geometry from a random arrangement

toward parallelism. It is noted that the bonds Should

become weaker due to the build—up Of Coulomb repulsive

forces, as the flat particle surfaces come closer together.

Subsequent loading cycles Show less structural change

'than first loading as would be eXpected. The problem Of

sstructural changes accompanying deformation needs further

investigation. With the recent develOpment of the electron

rnicroscope, such studies are now feasible and would contribute

rnuch to the understanding Of clay deformations at the particle

level.

The measured parameter<x provides a means to check

1:he values of V and )1 for the clay particle network. The

EEXperimental values of 0< are found to be entirely consistent

Vvith the dimensions of the clay particles and particle

geometry.
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From the measured values Of the parameter/5, a repre—

sentative value for the activation energy, 11F, is calcu-

lated. The value is in agreement with A1F calculated from

temperature effects. It is noted that present knowledge Of

the clay—water system is insufficient to enable 13F to be

interpreted in terms Of interparticle forces. The theoret—

ical consideration of the bonding forces between particles

provides a promising area for further investigations.
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