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ABSTRACT

A NONLINEAR MULTISTEP METHOD

FOR SOLVING STIFF INITIAL VALUE PROBLEMS

BY

Moody Ten-Chao Chu

A nonlinear multistep method which bears the nature

of the classical Adams-Bashforth-Moulton PC formula is

developed to solve stiff initial value problems of the

form y' = Ay+g(x,y).

It is shown that this method has prOperties of

consistency, convergence and A-stability in the sense

of Dahlquist. Several newly developed numerical techniques

have been incorporated into this algorithm. A detailed

analysis of its structure is also presented to enable us

to implement this method in such a way that the step size

and the order can be adjusted automatically.

Numerical results from extensive tests by a PECE mode

of this method shows its efficiency and several advantages,

such as no Jacobian evaluation is needed, much larger step

sizes can be used and only a few matirx inversions are

involved.
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l . INTRODUCTION

Conventional linear multistep method has been recognized

as one of the most effective ways to solve a general initial

value problem

y’ = f(x.y); y(a) = yo; x e [a.b] . (1.1)

In the last two decades several very sophisticated and reliable

codes [12.17.28], based on a variable-step variable-order

formulation of the classical Adams method, have been

established so that (1.1) can be solved both easily and

cheaply. Nevertheless, when applied to stiff systems,

the efficiency of these codes becomes very limited because

impractically small step sizes must be adapted to ensure

the stability [12.19] of the approximate solutions. This

difficulty is inherent in the method itself [7] and hence

cannot be overcome by any improvement in the computer

capacity. On the other hand, most of the methods used for

solving stiff systems are implicit of necessity [7.19.29]

and hence demand the use of some Newton-like iterations [13]

which usually are very eXpensive in Jacobian evaluations.



The object of this dissertation is to develop a

method which, inheriting all the merit of the classical

predictor-corrector schemes and being A-stable [7], does

not have those difficulties mentioned above when applied.

to stiff systems.

The search for effective methods to solve stiff systems

has received considerable attentions since two decades

ago. Brief survey of the literature can be found in

Shampine and Gear [29]. Enright, Hull and Lindberg [9],

Willoughby [37]. Bjurel, Dahlquist, Lindberg and Linde [2].

In what follows we shall consider the stiff initial

value problem of the form

y’ = Ay+'g(x.y>: y(a) = Yo’ x 6 [a,b] (1.2)

where A is an n><n real constant matrix with all its

eigenvalues having negative real parts and Hg?” is small

relative to ”AU. Notice that a much larger class of

problems

I

Y =A(X)Y+9(X.y): y(a) = yo. (1.3)

including the linearization of Problem (1.1) near a

particular solution, can always be decomposed into

17’ = Ay+ {(A(X) -A)y+9(x.y)}: y(a) = Yo



where A is chosen to keep HA(x)-—AH uniformly small

at least for a short period of x. 80 the method developed

for Problem (1.2) can still be used to solve stiff system

(1.1) or (1.3), provided some prior knowledge about the

problem is known.

we begin in Chapter 2 with the main formulation of our

nonlinear multistep algorithm. Then after a generalized

Adams-Bashforth-Moulton PECE mode is defined, we prove three

theorems concerning its consistency, convergence and

A-stability. These theorems can be generalized easily to the

variable-step variable-order case [28]. Also included in

Chapter 2 are some numerical techniques for the calculations

of the matrix coefficients of our scheme.

In Chapter 3. we derive a variable—step PECE mode and

an algorithm which enables us to compute all the matrix

coefficients to any desired order in a very efficient way.

In the special case when A = 0, this derivation corresponds

exactly to that by Shampine and Gordon [28].

Error estimation is given in Chapter 4. we also show

how these estimates can be calculated without too much

effort. Also treated in Chapter 4 is an automatic control

mechanism which is used in selecting step sizes and orders

throughout all numerical tests given in this dissertation.

A flowchart consisting of four blocks is provided in

Chapter 5 to suggest how our algorithm should be organized

and implemented.
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In Chapter 6, we give several test results

to evidence the effectiveness of our method. In particular,

we make comparisons to some existing stiff problem solvers.

Finally, conclusions and recommendations for further

study are given in Chapter 7.

we conclude this chapter with a brief historic review

of the method we used. The very original idea of our

approach for the step number not higher than two was prOposed

by Certaine [6], but has been regarded as computationally

costly because of the difficulty in obtaining the matrix

coefficients [25]. Lawson [20] attempted to remove the

stiffness of the problem by performing a transformation of

the differential equation and then solved the resulting

equation with a standard method. This approach is essentially

the same as Certaine's method. Some algorithms to compute

the matrix coefficients are also suggested. Lee and

Preiser [22] tried to carefully select the matrix coefficients

for a certain numerical scheme so as to guarantee the

consistency of the resulting scheme. In this way several

formulas were given. They can be justified to be exactly

the same as those obtained from Certaine's method. All

these formulations are special cases of our consideration.

However, the computational cost can be reduced substantially

because of the algorithm presented in Chapter 3 and the

discovery of an efficient numerical technique in computing

matrix exponentials. Several other approaches considered



by Jain [15], Miranker [24] , Murphy [26] , Lambert and

Sigurdsson [18] are also closely related to our method by

certain representations of the integrals which will be

introduced in Chapter 2.



2. BASIC FORMULATION --- FIXED STEP SCHEME

2.1 PECE MODE

Let xk denote the k-th mesh point along the

variable ax1s and hk+l = Xk+l"xk' In what follows we

shall use yk to represent a numerical approximation to

the exact solution y(xk) at the mesh point xk, and let

gk = g(xk.yk). By considering the variation of constant

formula, the solution to Problem (1.2) satisfies

Ah Ax x

y(x )-—- e n+1y<x )+e “+1 j‘ “+1 e AT9(T:Y(T))dT . (2.1.1)
n+1 n

x
n

Define a = §——3E;— , then we are led to form the following

n+1 n

formula

Ah k
_ n+1

yn+1 ‘ e yn+hn+l 12.30 ékign-i+1 ”'1'”

where the summation is an approximation to the integral

+1
1 A(1-o)hn

P e g(xn+-dh
J
0 (xn4-ahn+l))do (2.1.3)

n+l'y

and Qki's are some matrix coefficients to be determined.

we shall consider the fixed—step explicit scheme first.

we abbreviate the notation hn+1 as h since constant

step size is to be used. Assuming = O in (2.1.2)
Qko

6



and regarding g as a function of d, a vector-valued

polynomial P(o) of degree < k is used to interpolate

g componentwise at point x ,xn such that
n-k+l'°"

P(l-i) = for i = l,...,k. The polynomial given
gn-i+l

by the Lagrangian formula is

k k o+j-l

P(o) = Z; gn_i+l n ._i . (2.1.4)

i=1 j=1 3

j#i

It follows that the integral (2.1.3) can be approximated by

1

  

  

I eA(l-a)hP(d)dd

O

k l k .

= ( [ e‘n‘u'c‘)h n 19:3;l-do)g '+1 (2.1.5)

i=1 0 j=1 3 1 “'1

jai

It is, therefore, reasonable to choose Qki in (2.1.2) as

1 A(l-o)h k a+'-1
@k1 = f e n -s£§5-da . (2.1.6)

o j=1 3

jai

As an example, when k = 4, (2.1.2) becomes

1
_ Ah A(1-o)h (o+1)(o+2)(o+3) __d(o+2)(o+3)

Pn+1 - e yn+h f0 e [ 6 9n 2 gn-l

o(d+l)(d+3) ‘ o(d+l)(d+2)

+ 2 gn-Z - 6 gn—31da'

(2.1.7)

Here we use Pn+1 to denote the "predicted value" of

y(x ). We call the scheme (2.1.2) along with (2.1.6)
n+1

a generalized Adams-Bashforth formula of order k. If

A = 0, then (2.1.2) is reduced to a classical linear multistep
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scheme. The word "order" will be justified in the next

section.

An implicit scheme of order k4—l can be formed

*

in exactly the same way when the polynomial p (a) inter-

polates the points x with values
n-k+l' ' ' ° 'Xn+l

*

p (l-o) = for i = O,...,k. We denote the resulting
gn-i+1

*

matrix coefficients of this implicit scheme by Qki for

i = O,...,k. respectively. It is worth noting that

k * k 1

z aki = 2: aki =j‘ eA(l “lhda.
i=0 i=1 0

Definition 2.1. By a (k,k+l)-order PECE mode we

mean the following numerical scheme consisting of a

predictor of order k and a corrector of order k+-l

in the form of (2.1.2), i.e.,

Ah k

P: pn-l-l = e yn+h 5:31 Qki gn-i+1 '

. P =

E' gn+l g(Xn+l'pn+l) '

(2.1.8)

c- =eAh +h :13 9* +h «5* P
' yn+1 yn i=1 ki gn-i+1 ‘kO gn-+l'

E:

gn+1 = g(xn+l'yn+l)

As was pointed out in [27.33] and also will be shown in

Section 2.3. it is not an easy and economic task to compute

these matrix coefficients. The situation is worsened when

variable-step scheme is adOpted. In Chapter 3, we develOp an

algorithm which. taking the problem of saving memory storages



into consideration. enables us to obtain these integrals

efficiently.

2.2. MAJOR THEOREMS

We shall prove three major theorems concerning the

consistency, the convergence and the A—stability for the

fixed-step case, which provide the groundwork of this

nonlinear algorithm.

2.2.1. CONSISTENCY

With the nonlinear multistep method (2.1.2), we give

the following definition.

Definition 2.2. The local truncation error at xn+1 ,

denoted by £(y(xn).h), of the method (2.1.2) is defined

to be

£(y(xn) .h)

k

Y(Xn)-h .Z} éki g(x

l=O

Ah )).= y(x )-e

n+1 n-i+l'y(Xn-i+l

The notation £P(y(xn).h) will be used to represent the

local truncation error associated with an explicit scheme.

while £(y(xn).h) represents that associated with an implicit

scheme. A numerical scheme is said to be consistent if its

associated local truncation error is at least 0(h).
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Theorem 22;. Assume g e Ck+1, then the local

truncation error {P(y(xn),h) of the explicit scheme (2.1.2)

with step number k is O(hk+l).

Proof: Recall that

e Li(o)dA (2.2.1.1)

k o+j-l
where Li(u) = H . So

 

j=1 ”‘1
j#i

p
£(y(xn).h)

k

Ah

= y(xn+l)-e y(xn)-h £31 éki g(Xn-i+l’Y(Xn--i+l))

l A(l-o)h
= I d[e Y(Xn+ah)]

0

k l
A(l-d)

' h figl[§0 e £i(a)g(Xn-i+1’ y(xn-i+l))da]

1 A(l-o)h A(l-o)h
= I [-Ahe y(xn+oh)+-he y’(xn+dh)]do

O

1 A(l—o)h
- h f e P(o)do

O

1 A(l-o)h
= h [o e [g(xn+oh,y(xn+oh))-P(d)]

l (k) k

_hk+1dr' eA(1‘°)h [9 £2530”) n (d+i-l)]do. (2.2.1.2)

o - ' '=1

It follows that



ll

1

||£p(y(xn).h)\\ g hk+lllg(k)||..||l eAu-mhdall =0(hk+l). (2.2.1.3)
0

Notice that if all eigenvalues of A have negative

real parts, then the spectral mapping theorem implies

A(1-o)h

that He H gyl uniformly for some suitable norm

1

and hence Hf eA(l-a)hdoH g 1. Consequently.

akill _<. 1.

p u
t
fl
r
c
a

H

k * ‘

”£0 akin 1.,

Similar argument shows that the local truncation error

£(y(xn),h) for the implicit scheme (2.1.2) with step

number k is O(hk+2).

2.2.2. CONVERGENCE

By convergence we refer to "fixed station convergence"

which has the following meaning.

Definition 2.3. The nonlinear multistep method (2.1.2)

or the PECE mode (2.1.8) is said to be convergent if. for

all initial value problems (1.2), we have that

lim y = y(xn) holds for all x 6 [a,b] and for all

haop n

nh=x~a

solutions [yn] satisfying starting conditions yi = ni(h)

for which lim n.(h) = y(a). i = O,...,k-1.
1

h40

In this sense we have the convergence theorem.

Theorem 2.2. Let the (k,k+1)—under PECE mode (2.1.8)

be applied to solve Problem (1.2) on [a,b]. Suppose
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g E C’ and Hggfl g Lg for some constant Lg-Z 0. If

all starting values yi satisfy ”y(xi)-yiH.g EO for

i = O,...,k-l. then for xn 6 [a,b] we have

ll 6 (Xn-a)l\

y(xn.) -ynH g [Eo+fi]e (2.2.2.1)

where

* * Ho)

*

_ $3.9. P
a — mix Hh @ko ay 2 (y(xn).h)+£(y(xn).h)H . (2.2.2.2)

k * k *

0- ZS Hikill and a = ,2'3 Hikill
i=1 l=O

In particular, if g E Ck+1 and E0 = O(hk+l), then

_ k+1

Hymn) -y,,n - on: >.

Proof: From the definition of local truncation

errors, we know

Ah k P_. T

y(xn+l) — e y(xn)+h 1:1 Qki g(xn_i+l.y(xn_i+l))+=£ (y(xn).h) .

_ Ah h 2’5 *

Y‘Xml) ‘ e Y(Xn) + i=0 ék1 9(Xn-i+l’y(Xn-i+l))+£(y(xn)'h) '

(2.2.2.3)

So the mean value theorem implies that the global error at

Xn+1

n+1 = y(an)-yn+1 (2.2.2.4)
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is given by

k
~ _ Ah" * ag ~

en+1 I e en+h fEl Qki by (Xn-i+l'§n-i+l)en—i+l

* ~

9.21 Ah

+ h Qko ay (Xn+l'§n+l)[e en+

k a ..

H“ 12:31 éki ay(Xn-i+l’§n-i+l)en-i+l] +6n (2°2°2°5)

*

= i3
where an h ékO BY (

lies between y

xn+l.§n+l)=£p(y(xn) .h) + 2(y(xn) .h).

and y(x ) for i > O:
n-i+l

) for i = 0. By the

gn-i+l n-i+l

and between p and y(x
n+1 n+1

conditions on A and 3%) we arrive at

k * ~

nan...) 2 Mann +h Lg 3.30 Hakinnemmu

-+h2L 2“

'k k ~

g @kolligl \lékillllemiHH . (2.2.2.6)

Define x = 14-h Lgo*4-h2L§H§;OHo and Bi = x 31—14'6' then

obviously Ei-l < Ei for each i. By induction, (2.2.2.6)

implies that néju g En for j = 0.....n. Since

En = anO+v%Ei% 5, the inequality (2.2.2.1) follows

immediately from the facts that 14-x < eX and nh = x -a.
n

In particular, if g E Ck+l, then the theorem of

consistency implies 6 = O(hk+2).

The above two theorems justify that the nonlinear

multistep method, such as the mode (2.1.8), has the

consistency and convergence properties. For the computational

purpose, we also need the feature of A-stability.
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2.2.3. A-STABILIT¥

Dahlquist [7] defined a numerical method to be A-stable

if its region of absolute stability contains the whole of

the left half-plane. Equivalently, a method is A-stable

if all numerical solutions yn tend to zero asymptotically

as n 4 m when it is applied to the differential equation

y’ = Ay where all eigenvalues of A have negative real

parts. To prove the A-stability property of our algorithm,

we approximate each matrix exponential in (2.1.2) by its

corresponding Padé approximation. Recall the following

definition [33].

Definition 2.4. A (p,q)-pair Padé approximation to

the matrix eXponential eB is the matrix

 

 

_ -1
qu(B) - [qu(B)] Npq(B) where

N m): g (mgfi)m{ zj

pq j=0 (p+q):3:(p-J): '

(2.2.3.1)

q . .
= (p+q+1)!q1 _ 3

qu(z) jig (p+q):j3(q-j)1 ( 2)

It is known [1,4,34,36] that the diagonal Padé approximation

E(B) of eB is unconditionally stable, provided that all

eigenvalues of B have negative real parts. Therefore. we

have the following theorem.

Theorem 2.3. The nonlinear multistep scheme (2.1.2)
 

based on diagonal Padé approximations to all its matrix

exponentials is A-stable.
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Proof: When applied to any test problem

I

y = Ay; y(a) = yo, the scheme (2.1.2) yields values

yn+1 = E(Ah)yn = [E(Ah)]n+lyO since g(x.y) is identically

zero. But all eigenvalues of A have negative real parts,

the unconditional stability of E(Ah) implies that

lim yn = O. This establishes the A-stability of scheme (2.1.2).

nam

2.3 NUMERICAL EVALUATION

In this section we shall describe some Special

numerical techniques for the evaluations of the matrix

exponentials and the matrix coefficients.

2.3.1. COMPUTATIONS OF MATRIX EXPONENTIALS

The exponential of a matrix could be computed in many

ways [27]. For our purpose we consider only the rational

approximations because of its direct applicability. Nevertheless,

for stiff systems, direct application of a rational

approximation for the matrix eXponential gives very poor

results as shown in the contour plot of square errors by

Blue and Gummel [3]. In fact. the error in approximating

the matrix exponential by diagonal Padé table entries has

been shown [10] to be increasing as the norm of the matrix

increases. Therefore, the first objective of any algorithm

involving Padé approximations is to decrease the matrix norm.

Since exponentials satisfy ea = (ea/b)b, one may always

use this prOperty to reduce the matrix norm and improve the
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accuracy of the approximation. Ward [33.35] has given an

error estimate for diagonal Padé approximation of order up

to P = 15 and made it possible to return the minimum

number of digits of accuracy in the norm to the user. The

algorithm for computing eA can be summarized as follows:

2..

(i) Compute the mean of eigenvalues 'f = i=1:11

(ii) Make the translation A1 = A-iI.

(iii) Balance the matrix Al to obtain A2 = D-lPTAlPD,

for which, HAZHl = ngn HD'lAlDU, where 33'

B

is the set of all nonsingular diagonal matrices

with entries as integral powers of the machine

base B and P is some preliminary permutation

matrix.

(iv) If [[Azlllgl, set A =A3 2, m = O and go to (v1).

(v) Find an integer m > 0 such that HA2“.S 2m.

Then define A = —3-.

3 2

>

A

(vi) Use Padé diagonal table to compute e 3.

(vii) If (v) is skipped, go to (ix).

A3 A3

(viii) Square e m times, i.e. compute (e )

2m

—- A m

(ix) Compute eA = exPD(e 3)2 D-lPT.
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This algorithm works quite satisfactorily in general.

However, there are some numerical "barrier" where

care should be taken. A good source of this material can

be found in Molen and van Loan [27].

2.3.2. COMPUTATIONS OF INTEGRALS INVOLVING MATRIX EXPONENTIALS

To compute the matrix coefficients defined in (2.1.7).

it is necessary to compute the following integral:

1

M = I eA(l-a)hdo ,
o

0

(2.3.2.1)

1 .

— f eA‘l'O‘)h oldo i = 1.2,...

0

Observe that these matrices satisfy the following recursive

relatiOns

hAMi = iMi_l-I . (2.3.2.2)

If A‘1 exists, then M0 = (Ah)'l(eAh-I) and all the

other Mi's can be induced by (2.3.2.2). But for stiff

max 1.]

systems. the condition number k(A) 2-EIE_}IiT' is large.

i

The a priori error estimate

 
 

“.51 4‘11)

HA-lH i k(AfiAc -AH
(2.3.2.3)

l ‘W"W

1

indicates that the computed A; might be in large relative

error. Furthermore. these Mi's still exist even if A is

singular. So we introduce two methods to obtain them.
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The first method works for a normal matrix A and

. . . . . +

involves its generalized inverse matrix A . Recall that the

'k *

matrix .A is normal if and only if A A = AA where A*

is its corresponding adjoint matrix.

Observe that MO satisfies the linear system

(Ah)X= eAh-I. (2.3.2.4)

Let B = Ah, and let the singular value decomposition of

>3 0 ,.

B be V U where V and U are orthogonal matrices

O O

'k *

formed from eigenvectors of BB and B B, respectively;

:3: diag(xl,...,xr) ‘where xi # 0 fbr i = l,...,r are

*

eigenvalues of B B; and vi = fL-Bui for i = 1.....r,

i

where vi and ui are column vectors of V and U,

+ zrl O *

respectively. It is known that B = U V is

O O

the generalized inverse of B and

$2 = B+(eAh-I) (2.3.2.5)
O

is a least Frobenius solution to (2.3.2.4).

Theorem 2.4. If B is normal, then
 

" +

M0 = XO-l- (I -B B) . (2.3.2.6)
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Proof. Since B is normal. it is known that Bu.= Au

._ *

if and only if B*u = Au. This implies B Bu = |x|2u and

*

BB = [1|2u. So the same orthonormal basis u1""”h1 which

diagonalizes B into D = diag(xl.....xr,0,...,0) can

also serve as an orthonormal basis for both B*B and BB*.

23 0

Hence B has a singular value decomposition B = U U*

-1 o o

+ Z: O *
and a generalized inverse B = U U . Dente U

0 O

by [U1,U2] where Ul = [ul.....ur] and U2 = [ur+l""’un]'

then

1 1

Mo _ I eB(l-a)do U(f eD(l a)dG)U

O O

_. *

Z 1(eZ-I)I 0 U1

= [U 0U]

l 2 o , I U;

__ -1 Z * *
— U1 Z} (e --I)Ul-t-U2U2 . (2.3.2.7)

On the other hand,

~ * *

x0 = B+(eB—I) = UD+U U(eD-I)U = UD+(eD-I)U*

_ *

= U1 2 l(ail-1ml . (2.3.2.8)

So (2.3.2.5) follows from (2.3.2.7). (2.3.2.8) and the

following identity

.1. +* * + * *

I-BB=I—UDUUDU =I-UDDU =U2U2. (2.3.2.9)
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Corollary 2.1. If B is normal, then

-I)+——l-- (I-B+B) . (2.3.2.10)
+

Mn _ B (nMn n+1-1

Proof. By definition of (2.3.2.1) and the identity

(2.3.2.9), we see

1 1

M = j eB(l_a)dndd = U(f

n o o

eD(l-a)dndd)U*

1
Z—lmj eZ(1’°‘)an‘lde_1), O

 

= U 0 U

0 , 1

n+1

—1 l 23(1—0) n-l
Z) , O * n 5 e d dd-I, O * O O

= U U U 0 U +-U 1 U

0 O 0 p O O mI

= B+(nM -I)+—!'— (I-B+B)

n—l n+1

The second method works for a general matrix A

and involves its Drazin inverse matrix Ad. We first make

two definitions.

Definition 2.6. The index of a matrix A is the

k+1

smallest non-negative integer k such that rank Ak = rank A .

Definition 2.7. The Drazin inverse of A, denoted

-l
D D c o _1

by A , is defined as the matrix A = P P ,

O O

c o _1

provided A = P P where C is an invertible

O N

submatrix and N is nilpotent of index k.
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Note that there are a variety of ways to calculate

AD [5]. In fact, the following lemma can be regarded as

the definition of AD from the algebraic point of view.

Lemma 2.1. If the index of A is k then AD is
 

the only matrix satisfying the following prOperties

(i) ADAAD = AD ,

(ii) AAD = ADA , (2.3.2.11)

(iii) Ak+lAD = Ak

Proof. The proof can be found in [5].

Theorem 2.5. If the index of A is k, then
 

k-l i

MO = BD(eB-I)+ (I-BDB) 23 —B—. (2.3.2.12)

i=0 (1+1):

Proof. Using the series expansion for eBS and

the above lemma. one can show that

k-l i i
d D B D B s _ Bs

Corollary 2.2. If the index of A is k, then

D D k—l

M =B(nM —I)+n(I-BB) 23'

(n-121Bl

(n+i+1)} ° (2.3.2.13)



3. EFFICIENT IMPLEMENTATION ---- VARIABLE STEP SCHEME

3 . l . GENERATING COEFF IC IENTS

The subroutine STEP by Shampine and Gordon [28]

gives an efficient way of generating coefficients for the

linear multistep method and a substantial savings of memory

storages. In this section we reformulate their settings

in the matrix form and hence preserve all the advantages.

We define the following quantities:

 

 

bl = xi"Xi-l '

x-xn

S = I

hn+1

wi(n+l) = hn+l4'°' 4'hn—i+2 , 1'2 1

h
n+1 .

oi(n+l) = ¢i(n+l) , 1‘2 1.

(3.1.1)

(81(n+l) = l .

tl(n+1)¢2(n+1)...¢i_l(n+1) '

Bi(n+l) = ¢1(n)¢2(n).o.¢i-1(n) I l > 1 ,

c"1"" = 1’1‘“) ”Ni—1‘“) 9[Xn'Xn-1“""Xn—i+1] i > 1 °

22
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Recall that

4 n

P — e YnA-j‘ e Pkln(T)dT (3.1.2)

where Pk n is a polynomial of degree < k and

(x for i = l,"',k. Since the inter-

Pk,n n-i+1) = gn—i+1

polating polynomial is given by

g[xn] + (x -xn)g[xn,xn_l] 4.... +

(x-xn) (X‘Xn-k+2)g[xn'""Xn-k+1] . (3.1.3)

a typical term, for i‘2 2. of P x) can be written as
k,n(

(x-xn) ---(x-x )g[xn,--.,x
n-i+2

 

 

 

  

' (Shn+l)(3hn+l+hn) "

oi(n)

... (shn+l4-hn4- i'hn-i+3) ¢1(n)°°°¢i-l(n) (3.1.4)

= ( Shn+1 )( Shn+1++hnn) ...

W1(n+1) [2(n+l)

sh +-w. (n)

n+1 1—2

'° ( Wi_l(n+l) ) Bi(n+l)cpi(n)

Introduce

l i= 1.

( ) siln+l 1:2

ci,n s = $1 n+1) '

(3.1.5)

5h Sh +h sh + . ( )
n+1 __2:l___ ... n+1 11—2 n .(m)( ¢2(n+l)) ( wi_l(n+l) )123 ,
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and

Cp:(n) = Bi(n+ 1) cpi(n) . (3.1.6)

then (3.1.3) can be rewritten as

 

k. *

Pk'n(x) = 23 ci'n(S)cpi(n) (3.1.7)

i=1

and (3.1.2) becomes

Ah k l A(l-s)h

_ n+1 n+1 *

Pn+l-e Yn+hn+l .4? (f e c21.n(5)d“3)°"i(n)
1—1 0

(3.1.8)

Let

A(l-s)h

_ n+1

di,n(s) — e Ci,n(s) , (3.1.9)

then it can be shown that

eA(l-s)hn+1 i = 1

A(l-s)h

di'n(s)= e “+13 1 = 2 , (3.1.10)

11—2(n) .

(lai-1<n+1>s+(.—i—_l(—nfld1-1.n<5> 1 2 3 .

and

Ah k l

_ n+1 *

Pn+1 - e Yn+hn+l 151 ((0 di'n(S)dS)cpi(n) . (3.1.11)

For fixed n and i‘2 3, observe that
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5

f0 di,n(sO)dSO

s . (n) 8O

— ( +1) a-wl‘z ]d( d ( )d )
- Io [Ci-l n 5‘o (‘i'—T_l(n 5‘0 i-1,n S1 s1

wi-2‘“) s
= [ci_1(n+1)s+m] IO di-l,n(SO)dSO

s 5l

..(O ai_l(n+1) f0 di_l,n(so)dsodsl . (3.1.12)

Define

(q) s Sq-l s1

di'n(s) = f0 f0 -.- f0 di'n(so)dsodslo-o dsq_l . (3.1.13)

then (3.1.12) can be rewritten as

(1) _ $1-2(n’ (1)
di,n(s) — [Ci—1(n+l)s+“V;:ITHTJ i-l,n(s)

-di_l(n+1)dizi’n(s) . (3.1.14)

In fact, it is not hard to show, by induction and integration

by parts, that for i‘2 3, the following is true:

(q) _ 11-2‘n’ (q)
di,n(s) - [oi_l(n+l)si-¢i-l(n) i-l,n(s)

-qai_l(n+1)dififg(s).. (3.1.15)

Scaling these quantities by defining

wi'q = (q-1): d§?;(1) . (3.1.16)
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we then arrive at one of the important identities

u). =u). for 123 . (3.1.17)

i,q i-l,q"ai-1(n+l)w1- l ,q+l

Up to this point, all these quantities we have derived

are formally the same as those by Shampine and Gordon [28]

except that these are in matrix form. When A is identically

zero, the quantities defined in (3.1.10), (3.1.12), (3.1.15)

and (3.1.17) become diagonal matrices and, in fact, each

diagonal matrix is of the form (it where the scalar c

is that usedlnz Shampine and Gordon. In this case, the

quantities for i = l and i = 2 can be handled trivially.

However, if A is a matrix as stated in Problem (1.2),

then for i = 1, the definition (3.1.13) of difg(s) implies

that

A(l-s)h Ah

(-Ahhn+l)d11n(s ) = e n+1--e n+1 , (3.1.18)

and, by induction, for (3‘2 2,

-1 Ah
(q) _ (q,-l) sq n+1

(“Ahn+1)d1,n(3) - <11,n (s) --——(q_1). e . (3.1.19)

Similarly, for i = 2, we have

A(l-s)h

(-Ahn+l)d(l)(s) = se n+1-dih)1(s) ,

(-Ahn+1)déqg(s ) = déqn1)(s)-dd(?)(s ) for q“; 2 . (3.1.20)

Resorting to the definition (3.1.17), we obtain
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Ah
_ n+1

(_Ahn+l)w1,l - I-—e '

Ah
_ n+1

(”Ahn+l)wl,q — (q-1)wl'q_l-e for q'z 2 ,

(3.1.21)

(‘Ahn+1)w2,1 = I"“”1,1 '

(-Ahn+l)w2,q = (q'l)w2.q-1"w1.q f°r q‘2 2

Note that for stiff systems A is nonsingular, so ml q and

wz q for every q‘Z 1 can be solved directly from (3.1.21),

I

once A-1 is known. But even if A is singular, the

techniques described in section 2.3.2 can be used.

Since d(l)(l) = w the scheme (3 l 11) becomes
i,n i,l’ ' '

k
Ah . *

_ n+1 Z} w. m (n) . (3.1.22)

Pm4"e Yh+hmu.r1 “”1 1

We now make a correction of this predicted value.

Recall that

Ah Xn+1 A(x T)
n+1 n+l- *

yn+1 = e yn+-(x e Pk+l’n(T)dT (3.1.23)

n

*

where Pk+1 n(T) is a polynomial of degree < k4—l with

) =values

*

Pk+1,n

* .

Pk+l,n(xn-i+1 gn—i+1 for l - 1'. O'k and

( Observe that

Xn+l) = g(xn+l,Pn+l)'
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*

Pk+1,n(x)

__
_ no. ... p ..._ pk'n(x)+ (x xn) (x Xn—k+l)g [Xn+1' 'Xn-k+l]

 

P

‘Pku‘ml’
= Pk,n(x)*'(5hn+l) (Shn+1 F '+hn-k+2) ¢l(n+1)"'¢k(n+l)

= Pk'n(x)+ck+l'n(s)cp:+l(n+l) (3.1.24)

where the superscript P is used to indicate that the value

is replaced by g(x ). Substituting (3.1.24)
gn+1 n+l'Pn+l

into (3.1.23), we see

+11

P

yn+1 ' Pn+1 n+1 wk+1,l ”k+l(n+l) ' (3'1'25)

We conclude this section by illustrating the inter-

relation between the coefficients based on (3.1.17) and

(3.1.21) for the case k = 3 in the following table where

arrows emanate from the generators:
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3.2. UPDATING DIVIDED DIFFERENCES

At the current point Xn all the quantities

¢i(n) for i = 1,°°°,k are known. To complete the step

P

from xn to xn+1, we need to know ¢k+l(n+l) as

indicated in (3.1.25). To prepare for the advance from

we need to know all thex to the next point xn
n+1 +2'

quantities, mi(n+l) for i = 1,--o,k. Moreover, as will

be shown in the next chapter, the quantities ¢§(n+1) for

i = l,°°°,k are also useful in the error estimations.

In this section we explain how these divided differences

can be updated.

First of all, think of PR n in (3.1.3) as a

polynomial of degree k determined by the conditions

Pk,n(Xn-i+1) = gn-i+l for 1 = 1'...’k and Pk,n(xn+l) _

. . . e

Pk,n(xn+l)' The diVided difference mi+l(n+l) based on

the above values at xn+1,xn,---,xn_k+1 is given by,

¢:+l(n+l)

= 000 e .0.

(1(n+l) wi(n+1)g [Xn+l' .xn_i+1]

= (1(n+1)"')i_1(n+l)(xn+1-Xn—i+l)

e[x 00.x ] [x 00.x ]

g n+l’ ' n-i+2 ’9 n' ’ n-i+l
 

x -x .

n+1 n-i+l

 

= (111(1'1'1'1) . . .wi_l(n+l)ge [xn+l' . . . 'Xn-i‘l'l] -

¢1(n+l)°.°wi-l(n+l)
)1(n) ... ¢i_l(n) cp1””

cp‘:(n+1)-Bi(n+1)cpi(n)=cpei(n+1)-cp§{(n) . (3.2.1)
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This implies

'
~1-

¢:(n+l) = ¢E+l(n+1)-+wi(n) for i = l,"‘.k ° (3°2°2)

But Pk,n(x) actually is a polynomial of degree < k. The

k-th order divided difference mi+l(n+l) =

(1(n+1) °°'mk(n+)ge[xn+l,°°°,xn_k+l] is identically zero.

Thus ¢:(n+l) for i = k, ”'31 can be generated according

to (3.2.2). Exactly the same argument as in (3.2.1) shows

the following two identities:

(n+1) Cpi(n+l)-cp:(n) .
c"1+1

(3.2.3)

P * .

cpi(n+l) -cpi(n) for :L = 1,'°',k
p

from”)

But then it follows, by taking difference between (3.2.1)

and (3.2.3), that

e _ e _ .°._ _ e

cpi+l(n+l) -cpi+1(n+l) -cpi(n+l) -cpi(n+l) - -cp1(n+l) cpl(n+l)

P e __ P e _ ...__ P e
cpi+l(n+1) -cpi+l(n+l) —cpi(n+l) -cpi(n+l) — —cp1(n+l) -cpl(n+l)

(3.2.4)

So the quantities ¢§(n+l) and ¢i(n+l) for i = k,---,1

can now be generated from the following two important

identities:

P _ e P e

¢i(n+l) - ¢i(n+l)-+(gn+l-¢l(n+l)) (3.2.5)

and
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cpi(n+l) = cp:(n+l) + (gn+l-cp:(n+l)) . (3.2.6)

3.3. MODIFIED PECE MODE

We now summarize the (k,k+1)-order PECE mode (2.1.5)

which advances from xn to xn+1 as follows:

Compute wi,l 1 = l,'--,k+1;

* o

P: cpi(n) = Bi(n+l)cpi(n) 1 = l. '".k .

Ah k

_ n+1 *

Pn+l ' e yn+hn+1 1:31 u31.1 “91"” '

e —

mk+l(n+l) - O

e(n+1) = e (n+1)+ Nn) i = k 1 -
cpi cp1+1 Cp1 ' ' ’

P — o

E: gn+1 — g(xn+l'Pn+l) , (3.3.1)

C' =P +11 (1) (P .. e(n+l)).

' yml nH. mfllfingmd Cpl ’

_ __ e

¢k+1(n+l) ‘ gn+1 c91‘1““) '

_ e - _ ...
cpi(n+l) — cpi(n+l) +cpk+l(n+1) , 1 — k, ,1

3.4. ADVANTAGES

In this section we describe briefly the advantages of

the method given in the proceding three sections:
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(i) Throughout the calling of the whole algorithm

 

we only need to compute A_1 (or the generalized inverse)

d for all b cause (Ah )'1 - (Ah )-1 .hold canonce an e new — old hnew

be updated by scalar multiplications.

(ii) If the step succeeds and the step size is doubled,

AhneW‘ Ahold 2

then e = (e ) can be obtained by matrix

multiplications. Furthermore, any reasonable step size

selection mechanism should not cause frequent reductions of

step size, so the overhead resulting from the computation of

eAh is eXpected to be small.

(iii) When an implicit linear multistep scheme,

usually given in the form

= h .2: B f (3.4.1)

with fixed constant step size h and constant coefficients

di's and 31's, is applied to solve Problem (1.2), at

each step one has to solve the nonlinear equation

k

where f(x.y) = Ay4-g(x.y) and w = h -E; Bifn_i+1"

k 1-1

£51 aiyn-i+l' Notice that w 13 a known quantity at the

current stage. In order to apply the contraction mapping

theorem, it is required to have

k=h|BO|Lf< 1 (3.4.3)
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where Lf is the Lipschitz constant for f. Meanwhile,

when an implicit nonlinear multistep scheme (2.1.2) with

A

constant step size h is applied, the nonlinear equation

to be solved becomes

A A

yn+1 = h Qk0 g(Xn+1'yn+1)+”" ‘3'4°4)

A A E: Ahy . .
where w - h i=1 Qki gn-i+l"e n' Again we require the

condition

A A

k - h HékOH Lg < 1 . (3.4.5)

Under the assumption that the iterative method is used

to solve (3.4.2) and (3.4.4) with the same rate of convergence,

A

i.e., k = k, it is seen that

IB | L
= @0 ‘L—f . (3.4.5)

.I kg 9

s
u
r
>

This shows that for problem (1.2) where L is much greater
f

A

than Lg, the step size h for the nonlinear scheme can

be chosen significantly larger than that of the linear scheme.

(iv) Since the equation (3.1.17) and all the quantities

(3.1.1) are exactly in the same format as those in [28]

except that miq's are in matrix farm, mi's are defined

in terms of g and that mlq's and wzq's are generated

according to (3.1.21), all the efficient software designs

by Shampine and Gordon, such as the substantial reduction

in the overhead and the memory storages, can be perfectly

transferred.



4. ERROR ANALYSIS

In this chapter we first discuss the estimates of

errors which occur during the numerical integration. Then

we explain how those estimates can be used to control the

step size and the order.

4.1. ERROR ESTIMATION

Let un(x) denote the exact solution to the problem

I _ . -
un(X) - Aun(X)+-g(X.un(x)). un(xn) — yn (4.1.1)

Then the global error (2.2.2.4) can be Split into

en+1 = y(xn+l)"yn+l

= [Y(Xn+l)’un(xn+1)]+[un(xn+1)‘yn+1] (4.1.2)

We use the term "local error" to denote the second term

of (4.1.2). Since y(x) and un(x) are solutions to the

same differential equation with different initial values

at xn, we see that

A(x-xn)

(y(x) -un<x>u 2 (a (mu) -un<xn>>n

x .

+ ) HeA(X-T)[g(TIY(T))-g(T.un(T))]d¢ . (4.1.3)

x
n

34
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Use the condition on A and the Gronwall inequality

we have

L (x-xn)

(y(x) -un(x>H _<. Hymn) - un<xn>He g

for every X‘Z Xn . ((4.14)

Given 6 > 0, let

“un(xn+1)"yn+lH < hn+1 e (4°l'5)

Then (4.1.4) and (4.1.5) imply that

~ ~ Lghn+l

Hen+lH g.HenHe +hn+l e . (4.1.6)

Repeating the inequality for i = O,---,n, since 30 = O,

we obtain

L (x -x )

~ n+1 O

HeMIH g €(Xn+1‘xo)e ‘3 (4.1.7)

which is the same kind of bound as (2.2.2.1) obtained by

controlling the general "local truncation error". Therefore

it only needs to control the local error in (4.1.5).

4.1.1. LOCAL ERROR FOR (k,k)-ORDER MODE

We first analyze the local error for the predicted

value. Equation (3.1.2) implies that

xn+1 A(Xn+l-T)

un(xn+l)"Pn-+l= )Xn e [g(¢,u
(T)) -P n(T)]dT

n k,

(4.1.1.1)
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Let 9 (T) be a polynomial of degree < k such that
k,n

9 for i = l,---,k, then

k,n(Xn-i+l) = g(xn-i+l'un(Xn—i+l))

(4.1.1.1) can be Split into

Xn+1 A(Xn+l-T)

“6(Xn+1"P =( e [g(Toun(T))-9k'n(T)]dT
n+1

+ I e n+ [9k'n(T)-Pk'n(T)]dT .

(4.1.1.2)

The first integral is the error due to approximating

g(T,un(T)) by 9k n(T). As was proved in Section 2.2.1.

1

this integral is 0(Hk+ ) where H is the maximum step

size considered. The second integral is the error due to

inaccurate values yn-i+l‘ Notice that

xn+l A(Xn+l-T) 9 ( ) P ( )]d H _

“E e [ k,n T " k,n T T -

x

n

k

= th+1 .2; (bkik-flx
i=1

 

n-i+l'un(Xn-i+l))"g(Xn-i+l'yn-i+l)]H

(4.1.1.3)

l A(l-o)hn+1

where éki = (O e Li(xn+chn+l)do and

k x-xn_.+1

zinc) = n X :1 for i = 1,---,k. Let the

j=1 n-i+l n-j+l

321

ratios of successive step sizes be bounded, with the condition

k

on A, it can be shown [28] that o = Z} ”QkiH is uniformly

i=1

bounded. In this case (4.1.1.3) is bounded by

k

HaLg £51 ”un(xn-i+l)"Yn-i+lu' To get an estimate on this

summation, consider the variational equation to (4.1.1), i.e..
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 V’(x) = _[A+ag(xa'YY(X))JV(x): V(x ) = I . ‘(4.1.1.4)

It is known that (4.1.1.4) has the solution

V(x) =91é—fii3-l (4.1.1.5)

z=y(xn)

where y(x,z) is the solution to (4.1.1) with initial value

y(xn) = 2. Thus

un(X.yn) = y(X.y(Xn) ) + V(x) (yn - y(XnH + 0(uyn - y(xn)H2) .

(4.1.1.6)

k+1 .

Recall that yn-y(xn) = 0(H ) by Theorem 2.2 in

section 2.2.2. If we assume y(xn—i+l)"yn-i+l =

y(xn)-yn4-O(Hk+2), then, since V(x) = I4-O(H), it

follows that

_ k+2
un(Xn-i+l)"yn-i+l - 0(H ) (4.1.1.7)

and

_ k+1
un(xn+l)--Pn+1 — 0(H ) . (4.1.1.8)_

We now analyze the local error for the corrected value.

Let yn+l(k) denote the result of correcting the predicted

value (k) = P of order k with a correction of
Pn+1

the same order. Let 9k n+1(T) be the polynomial of degree < k

n+1

such that 9k,n+l(xn—i+l) = g(Xn—i+l'un(xn-i+l)) for

i = O,--‘,k—l. Then
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un(xn+l) -yn+l(k)

x

= “*1 eA‘XnH‘fltghmnun -P}:'n('r)]d'r

x
n

Xn+1 A(x -T)

= I e n+1 [g(Toun(T))"9k'n+l(T)]dT

x
n

x
n+1 A(Xn+l-T)

+ f e [ek'n+l(¢)-P;'n(¢)]dw . (4.1.1.9)

X

n

1
As in (4.1.1.2), the first integral is 0(Hk+ ). The second

integral is bounded by

k—l
*-

th+l 3E1 Qki[g(Xn--i+l'un(Xn-i+l))"g(Xn—i+l’yn-i+l)]H

*

+ th+1 §k0[g(xn+l'un(xn+l))"g(xn+l'Pn+l)]

* k-l

g_Ha L9 {.2} Hu
1 Xn-i+l)"Yn-i+ln4'Hun(Xn+l)"Pn+lH}°(4'l°1'lo)

1:

n(

By (4.1.1.7) and (4.1.1.8), we see that the second term on

2
(4.1.1.9) is 0(Hk+ ). And hence,

Hk+l

un(xn+l)-yn+1(k> = 0( ) . (4.1.1.11)

By the same argument, we may show that

= 0(H ) . (4.1.1.12)

Define



(k) . (4.1.1.13)

then

(R) = u k)
en+1 n(xn+l)"yn+l(

yn+l"yn+l(k)+un(xn+l)"yn+l

2

(k) + 0(Hk+ )
= Yn+1"Yn+1

Yn+l-Yn+l(k) o (4.1.1.14)

The importance of the estimate (4.1.1.14) is that the value

yn+l(k) can be readily obtained from Pn+l° In fact, from

. . * *

the definitions of Pk’n(T) and Pk+l'n(T), we see that

*

 

Pk+l,n(X)

_
no. _ p ..._ Pk'n(X) + (X-Xn) (X Xn—k+1)g [Xn+]_’ 'Xn-k+1]

* ... P ...
_ Pk'n(x)-+(x—xn+1) (X-Xn—k+2)g [Xn+l' 'Xn-k+l]

(4.1.1.15)

It follows that

*

Pk'n(X)

= Pk.n(x)4.(X-Xn)...(X_Xn—k+2)(xn+l_Xn-k+l)

p .00

g [Xn+l' 'xn-k+l]

P

¢k+l(n+l)
= pk n(x)+(shn+1) (shn+1+-wk_2(n))1k(n+l)(1(n+1)-n-¢k(n+l)

P

Pk'n(X)+Ck'n(S)Cpk+]-(n+l) . ‘ (4.1.1.16)
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This implies

yn+l(k) = P 4—h (n+1) . (4.1.1.17)

p

n+1 n+1 wk,l CPk+1

Together with (3.1.25), we obtain the (k,k)-order error

estimate

P

len+l(k) ~ hn+l(wk+l,l—wk,l)¢k+l(n+l) . (4.1.1.18)

4.1.2. LOCAL ERROR FOR LOWER ORDER MODE

By (4.1.1.11), the local error resulting from a

PECE mode with both predictor Pn+l(k—l) and corrector

Yn+l(k- l) of order k-l is

1en+l(k-l) = un(Xn+l)- yn+1(k-1) = 0(Hk ) . (4.1.2.1)

Thus, we may write

len+l(k‘1) = un(xn+l)'-yn+1(k-l)

= yn+l(k)'-yn+l(k—l)4'un(xn+l)"yn+l(k)

= Yn+1(k)yn+1(k-l)4.O(Hk+1)

” Yn+l(k)-Yn+l(k-l) . (4.1.2.2)

The value yn+1(k-l) cannot be obtained as cheaply as

Yn+l(k) because
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Ahn+l k-2 *

yn+l(k-l) = e yn+hn+l £21 Qk-l.ign-i+l

+ h (4.1.2.3)

*

n+le-1.Og(xn+l'Pn+l(k-l))

where g(xn+l,Pn+1(k-l)) is not readily known. Define

Ah k-2
-— _ n+1 *

yn+l(k_l) - e yn+hn+l £21 Qk-l,i gn-i+l

*

+ hn+1 3k-1.o g(xn+l'Pn+l) (4°1°2°4)

From (3.1.23), we have

Ah k-l
_ n+1 *

Pn+l(k-l) — e yn-I-hn+1 £31 wi,l ¢i(n) , (4.1.2.5)

and, similar to (3.1.25),

Yn+l(k-l) = P

p

n+1‘k‘l)*'hn+1 wk—l.l c9km“) ° (4-1-2°6)

It follows from (3.2.3) that

Ahn+l k-l P_ _ ¢~ _

Ym+1(k‘l)"e Ynf*hn+1 1:1 (wi,l u’1—1,1)‘"i(n+1)° (4-1°2-7)

On the other hand,

)\§n+1(k'1’“yn+1‘k‘1’”

= HMP)t-l,0[g(xn+l'Pn+l)"<L’I(Xn4-1’Pn+l(k"l))1

lg Ha*Lgupn+l-pn+l(k-1)H (4.1.2.8)

-3 HQ*Lg{HPn+1'un(Xn+l)H'FHun(Xn+1)—Pn+l(k-l)“}
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Estimate (4.1.1.8) guarantees that (4.1.2.8) is 0(Hk+l).

Thus (4.1.2.2) can be modified as

1en+l(k-l) = yn+1(k) -yn+l(k-l) +0<Hk+l>

= Yn+1(k1"§h+1(k‘l)41§n+l(k'l)

..yn+l(k-1)+-O(Hk+l)

= yn+l(k) _§n+l(k-1)+0(Hk+l)

z yn+1(k)-§n+1(k-l) , (4.1.2.9)

By (4.1.1.17) and (4.1.2.6), we obtain the (k-1,k-l)-order

error estimate

~ _ P

len+l(k_l) ~ hn+l(wk,1 wk_l’l)¢k(n+l) . (4.1.2.10)

By the same argument, we may obtain the (k-2,k-2)-order

error estimate

~ P

len+l(k-2) ~ hn+1(wk-1,1"wk—2,1)¢k-1(n+1) . (4.1.2.10)

4.1.3. LOCAL ERROR FOR (k+1,k+1)—ORDER MODE

The procedure described in the last section fails

for the estimate

len+l(k+l) = un(xn+l)-yn+l(k+l) (4.1.3.1)
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because there is no dominant term in this case. That is,

2
u 0(Hk+ ) is of the same order as

(k+1) = 0(Hk+2

n(xn+l)"yn+l =

un(xn+1)--yn+1 ). If we were to take a step

with a (k+l,k+2)-order mode, then (4.1.1.18) implies that

3k+
len+l(k+l) - h (n+1)+-0(H

P

n+1‘wk+2.1‘wk+1,1)”k+2 )- (4-1-3-2)

For convenience, we assume that a constant step size

has been used. Then

k

¢:;2(n+l) = V +lg(xn+l'Pn+l(k+l))

k+1 m k+1

= g("n+1'Pn+1(k+1))+ E: ('1) gn—m.+1
m—l m

_ k+1

- g(:'(n+l'Pn-i-l(k+l))"g(xn+1'yn+l)+V -gn+1

_ k+1 k+2

- V gn+l+o(H )

= ¢k+l(n+l)-¢k+l(n)+-0(Hk+2) (4.1.3.3)

k+2
Here we have used the fact that Pn(k+l)--yn+1 = 0(H )

from (4.1.1.8). We thus obtain the (k+l,k+l)-order

error estimate

len+1(k+l)“hn+1(wk+2—1‘wk+1,1)(@k+1(n+1)‘¢k+1(n)) ' (4°1°3°4)

Notice that it is necessary to know wk+2 l' wk+l(n+l) and

¢k+l(n) in order to apply this estimate.
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4.2. AUTOMATIC CONTROL

Any program embodying a multistep method will have

to invoke techniques in starting, changing step size and

changing order as necessary not only for the purpose of

reducing the cost but also for the consideration of stability.

For an A-stable method, the latter factor probably is less

concerned then the former when dealing with stiff systems.

In this section we follow closely the algorithm adOpted

by Shampine and Gordon to develOp a step size and order

selection mechanism.

4.2.1. ACCEPTION CRITERION

Let 6 > 0 be given. When the step from xn to

xn+1 has been calculated to the stage PE in the mode (3.3.1L

we test the criterion

9
ERR=Hlen+l(k)H =”hmi‘wkn,1‘wk,1)°9k+1(n+1))) g 6: (4.2.1.1)

according to (3.2.5) and (4.1.1.18). If this criterion

is satisfied, we accept this step by completing the remaining

CE part in that mode, overwriting the updated ¢i(n+l)

on the ¢:(n+l) and determining the step size and order

for the next step. If this test fails, we cut the current

step size in half and restart to predict the value Pn+l'

If there are three consecutive failures, then we reduce

the order to be 1.
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4.2.2. ERROR PREDICTION FOR FIXED STEP SCHEME

Recall that for i 2’2.

  

_ (l)

U31.1 ‘ dim”)

- l A(l-s)hn+1

_ I e

O

( Shn+1 )(Shn+l+hn) ...(Shn+1+‘)'i--2(n))ds (4 2 2 1)

(1(n+l) ¢2(n+l) ¢i_l(n+1) ° ‘ ' ' '

If constant step size h is used, then

1 l A(l-s)h

wi,l = 73:17? (0 e s(s+l)°°' (s+i-2)ds . (4.2.2.2)

This suggests that if the mesh sizes are not wildly different,

neither are these matrices wi 1's. In fact, one can

show that

wkndl‘Wcl

1 A(l-s)hn+

   

 

l

= e

0

( Shn+1 )(Shn+l+hn) H.(Shn+l"')'k-2(n))((Snuhn+l)ds

(1(n+l) (2(n+l) ¢k_l(n+l) ¢k(n+l)

(4.2.2.3)

. 11‘“)
Thus if we assume that hn+l-2 j_ for every i = 2,---,k,

then

Hwk+1'l-mk,lH S,Y; (4.2.2.4)
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*

‘where Yk is the coefficient for the classical

Adams-Moulton method, and is known to be relatively small.

Therefore , (4 . 1 . l . 18) suggests that the error at

x is predicted to be
n+2

p

lfih+2(k) ’ hn+2(wk+1,1’wk,1)¢k+2(n+2) (4°2°2'5)

(l) (l)
where we have replaced dk+l,n+l(l)"dk,n+l(l) by

(1) (l) _ .

dk+l,n(l)"dk,n(l)' Suppose h - hn+1 and we Wish to

consider hn+2 = yh with y near 1. For simplicity,

we assume that the preceding steps were all takenwwith the

same step size yh. Suppose also that the order k has

been chosen properly so that the k-th order divided difference

is nearly constant. Then

P p
wk+l(n+2) = (Yh)(2Yh) "'(kyh)f [xn+2,°°',xn_k+2]

k p

~ Y “k+1(n+1)wk+l(n+l) (4.2.2.6)

where 01(n+l) = 1 and oi(n+1) = h'Zh"" “(l-l)h
 

¢l(n+l)---¢i_l(n+l)

for i = 2,°°°,k+l. In exactly the same context, we may

use the quantity

_ _ p
ERK — th+l(wk+l,l wk,l)ok+l(n+l)mk+l(n+l)u (4.2.2.7)

as the error estimate at xn+1 when the preceding steps

were all taken with step size h Notice that the
n+l'

predicted error at Xn+2 uSing step Size hn+2 = Yhn+l is
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now given by yk+l ERK according to (4.2.2.5). Moreover,

the same quantity yk+lERK also estimates the error at xn+1

had a step Size yh been used. We also use quantities
n+1

P

ERKMI ‘ th+1(wk,1‘wk—1,1)Ok(n+l)¢k(n+l)H

(4.2.2.8)

P

ERKM2 ‘ ”hmflwk—l.1‘”"k-2.1)Ok-l(“+1)°‘°k—1(n+1)H

to estimate the local error at xn+1 and xn+2 had the

preceding steps been taken with constant step Size hn+1

at orders k-l and k-2, respectively. Finally, when

the preceding steps are actually taken with constant

step Size hn+l' we use

ERKPl = H1en+1(k+1)ll

= ”hn+2(wk+2,1‘wk+1,1)(”k+1(n+l)‘”k(n))H (4.2.2.9)

as the predicted error at x had the order k+1 been
n+2

used.

4.2.3. ORDER SELECTION

The purpose of order adjustment is to find a

polynomial with degree as low as possible which represents

the nonlinear function g(x,y(x)) locally with a reasonable

accuracy. We adOpt the philOSOphy that the order is changed

only if the predicted error is reduced and there is a trend

in doing so. Therefore the order is lowered only if one of

the following happens:
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(i) k = 2 and ERKMl g 0.5ERK ,

(ii) k > 2 and max(ERKM1, ERKMZ) g ERK ,

(iii) ERKMl g min(ERK,ERKPl) .

(iv) There are repeated step failures.

And the order is raised only if one of the following happens:

(i) ERKPl < ERK .

(ii) k = 1 and ERKPl < 0.5ERK ,

(iii) The starting phase flag is still on.

4.2.4. STEP SIZE SELECTION

After the order to be used is selected, we rename

it k, and the corresponding predicted error at constant

step Size, ERK. Then the predicted error at x with

Yk+1 ER

n+2

step Size yh is given by In, Since it is

desired to have YkH'ERKg e, we select the step size

n+1

according to the ratio

1

93.5.2)k+1
ERK . (4.2.4.1)Y=(

and

(i) Double the step size if Y.2 2 ,

(ii) Retain the step size if 1.3 y < 2 ,

(iii) Reduce the step size by a factor

max{0.5, min{0.9,y]] if Y < l ,
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(iv) Halve the step size if there is a failure,

(v) Double the step size if the starting phase

flag is on.

4.2.5. STARTING PHASE

The local error at x1 for order 0 is given by

lel(0) m hwl,lg(XO'YO) . (4.2.5.1)

As suggested from (4.1.1.11) and (4.1.1.12), we assume

£e1(l) = hLe1(0). Then we would choose h such that

“1e (1)“ ~ H112 9(x )H < 5- (4 2 5 2)
1 . N UJ1,1 o'Yo 2 ° - - -

But “ml 1“ g'l, so we choose the starting step size

.56
h = min(h input

o'yo

. 211-me )Hl/Z) . ' (4.2.5.3)

The starting phase flag is turned off whenever the appropriate

order and step size are found, which is indicated by the lowering

of order or a step failure.



5 . PROGRAMMING FLOWCHARTS

In this chapter we assemble together all pieces

of algorithms mentioned in previous sections to give a

general overview of this nonlinear method. The organization

is composed of four blocks which are presented in terms of

flowcharts.
(
H
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BLOCK 1 -- PREPARATION OF COEFFICIENTS5.1.
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5.2. BLOCK 2 -- PREDICTION AND ERROR ESTIMATION
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5.4 BLOCK 4 -- CORRECTION AND AUTOMATIC ADJUSTMENT
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6. NUMERICAL EXAMPLES

Test results from several problems representing

both linear and nonlinear systems of equations are presented

in this chapter. We also give the comparison of our

algorithm NLMSUB with Gear's DIFSUB or Lawson's IRKSUB.

It should be emphasized that the principal objective of

these tests is to confirm the effectiveness of this non-

linear method, rather than to make the detailed comparison

of available method, although several results do show some

significant advantages.

6.1. HOMOGENEOUS LINEAR SYSTEM WITH COMPLEX EIGENVALUES [9]

    

Problem:

p- -! ‘1

-1, 1, o, o r 1

—100, —1, o, o o

y” = y: y(O) ==

0, o, —100, 1 1

L o, 0, —10000, —1oo_j g o 1 .

Exact Solution:

  

r-e—x cos(le) 1

-10e—xsin(10x)

Y(X) = e—looxcos(100x)

B-lOOe'loOXsin(100x)d .

54
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Test Parameters:

 

Local Error Tolerance eps = 10-6 ,

Time Interval x 6 [0,20]

Eigenvalues:

-1 :1: 101'. , -100 i lOOi

Test Results:
 

 

 

DIFSUB+ IRKSUB+ NLMSUB

MAX 5.80 5.62 12.73*

STEPS 1488 404 11

FNS 3839 4594 23

JACOB 133 56 0

INV 133 168 2

PADE 0 0 1

TIME 1.222 1.287 0.060#      
Notations:

+ These data were picked up from the reference.

* These maximum errors were measured by

-169 f2: [yi(X)-Yi]2

 

# This execution was done on CYBER 750 in seconds.

Remarks:

This problem is desigend to assess the effect on the

performance of a method when the eigenvalue forms a rather

large angle with the negative x-axis. Our scheme is
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extremely efficient on this type of problem because of the

stability of diagonal Padé approximations. Notice that

no Jacobian evaluation is needed for this nonlinear method.

6.2. NONHOMOGENEOUS LINEAR SYSTEM.WITH REAL EIGENVALUES [20]

Problem:

-4498, -5996 0.006-X

y’=
y + 7

2248.5, 2997 -0.5034—3x

1 25498

Y(O) = 1500

-l6499

Exact Solution:

-x e-1500x4_17998-1499lx
 

 

 

-2e -+7 1500

y(x) = .

-x -1500x 13499-1124.5x
1.5e -3.5e - 1500

Test Parameter:

Local Error Tolerance eps = 10-7 ,

Time Interval x 6 [0,25]

Eigenvalues:

-l. -1500 .



57

Test Results:
 

 

 

DIFSUB+ IRKSUB+ NLMSUB '

MAx 6.42 6.54 6.73*

AVE 7.73 7.70 7.09*

MIN 9.82 11.99 8.56*

STEPS 235 104 16

FNS 539 592 33

JACOB 23 23 0

PADE , 0 0 1

TIME 5.26 4.21 0.051     
 

Remarks:

This problem fits exactly into our model and hence

we eXpect accurate numerical outputs. The step control

seemed to allow the step sizes to be doubled all the way.

In fact, the step size allowable from x = 25.03 to the

next point was nearly 25. This is an optimistic indication

that even larger step Sizes can be used as the time goes on.



58

6.3. NONHOMOGENEOUS LINEAR SYSTEM WITH COMPLEX EIGENVALUES [20]

      

Problem:

r0, 1, 0, O.) px2+2x .1 Pl.)

-1. 0. 0. O T x2-2x 0

y’ = U U y+U ; y(0) =

0, 0, -100, -900 —800x+l 0

L_0, 0, 900, -100_‘ L-1000x—14 (1.4

"—1, 1, 1, 1)

l, -1, l, l

where U =

l
o
l
l
—
I

1' l, "l' l

  L 1. 1, 1, -1‘

Exact Solution:
 

P 0

Sin x+x2 1

cos X--x2

e‘lOOX cos(900x)-+x

-100x

e  Sin(900x)-x
£—

Test Parameters:
 

Local Error Tolerance eps = 10' ,

Time Interval x 6 [0,25]

Eigenvalues:
 

-100 :t 900i , ii
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Test Results:
 

 

 

DIFSUB+ IRKSUB+ NLMSUB

MAx 4.55 4.22 6.75*

AVE 6.77 6.44 6.86*

MIN 9.32 8.37 7.31*

STEPS 2982 532 25

FNS 8332 2986 51

JACOB 37 41 0

BABE 0 0 1

TIME 106.03 41.88 .19#      
Remarks:

This problem is characterized by the large angles

formedtng its eigenvalues with the negative real axis.

Gear's method has some difficulties in this Situation,

Lawson's method works better. The matrix U is used

to couple all the components and hence makes the problem

complicated. The computation in our algorithm actually

terminated at x = 39.21 instead of 25 whereas the

next allowable step Size was as big as 39. So conceivably

the above data is to be even more prominent if we take time

interval from 0 to 80. Notice that the numerical

difficulty for a stiff problem usually appears in the

steady-state part, i.e. when x is large. So at least

for this particular problem, the nonlinear method is more

efficient in the long run.
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6.4. NONHOMOGENEOUS LINEAR SYSTEM WITH VARIABLE

COEFFICIENTS AND REAL NON—CONSTANT EIGENVALUES [20]

  

Problem:

-1-0.01 sin(0.01x), 0. 0, 0"

0, -100-sin)(, 0, 0 T

YI=U U y

0. 0. ~1000+cos><, O

L— O: O: 0: -10J

P3+0.03 sin(0.01x) F-l T

200+2 sin x 0

-+U : Y(0) =

-1000+-cos x 2+e

L-ZO 3 L_3-+-e_‘ .    

Exact Solution:
 

  

 

,

e-x+cos(0.01x)-+37

-100x+cos x

y(x) = U e -+2

-1000x+sin)<

e -l.

L -le-2 3

e

Test Parameter:

Local Error Tolerance epS = 10-7 ,

Time Interval x 6 [0,100] .

Eigenvalues:
 

-l-0.01 sin(0,01x), -100-Sin x, —1000+cos x, -10 .
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Program Setting:
 

  

     

 

 

 

      

r- o

—l, O, O, 0

O, -100, O, O T

y’ = U U y

0, O, -1000, O

L OI OI 0’ -].C)_‘

G- . ‘1 r- . q

-0.0lSin(O.le), O, O, O 3+0.03 Sin (0.01x)

0, -sin x, O, O T 200+2 sin x

4—U< U y+—

O, 0, cos x, O —lOOO+—cos x

C' O, O, O, Q) L-ZO 4

Test Results:

+ +

DIFSUB IRKSUB NLMSUB

*

MAX 5.83 4.82 6.04

*

AVE 8.02 7.00 6.34

*

MIN 10.11 8.36 12.06

STEPS 323 154 177

FNS 774 867 155

JACOB 31 44 O

PADE O O 1

TIME 16.54 .26.47 39#

Remarks:

Being a variable coefficient linear system, this

problem has real non-constant eigenvalues whose values are

in the neighborhood of -l, -10, -100 and -1000. We have
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to change its form to fit into our model problem (1.2) in

the program setting and thus make g(x,y(x)) depend on y.

Notice that 75 steps were used for this problem over the

interval [O,36.6] in contrast to 25 steps over [0.39.2]

for the previous problem. The reason that much greater

amount of work was needed is probably due to the poor

representation of the severely nonlinear function g(x,y(x))

by polynomial P(x). There is some numerical evidence

supporting this conjecture: in the previous problem the

optimal order used was k = 3 (average k = 2.5) while

in this problem the order used was as high as k = 6

(average k = 3.7): once the nonlinear part died out

(approximately when x 2 20) so that g(x,y(x)) became

constant, the order dropped abruptly to k = l and the

step size began to grow dramatically.

6.5. NONLINEAR SYSTEM WITH COUPLING COMPONENTS [9]

6.5.1. COUPLING FROM TRANSIENT COMPONENTS TO SMOOTH COMPONENTS

Problem:

’ a r 2 2 27 r
‘10 0! OI O Y2+y3+y4 11

0, —10, 0, 0 10(y§+yi) 1

y’= y + 2 ; y(0) =

O, O. -40. O 40 Y4 l

[0, 0, 0, -1004 L2 1 [14 .      
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Test Parameters:
 

Local Error Tolerance eps = 10-6

Time Interval X 6 [0,20]

Eigenvalues:
 

-1, -10, -40, -100

Test Results:
 

 

 

  

DIFSUB+ IRKSUB+ NLMSUB

MAX 6.00 6.00 ?

STEPS 221 40 104

FNS 529 450 209

JACOB .22 31 0

INV 22 93 2

PADE 0 O 1

TIME 0.178 0.314 0.3511    
Notation:

? No error report because the close form of

exact solution is not known.

Remarks:

This problem has a nonlinear coupling from the transient

components to the smooth compOnentS and hence causes the high

nonlinearity on the function g(x,y(x)). The order used

was as high as k = 9 (average k = 4.68). But as

in the previous problem, once the transient solutions became
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stabilized, the order drOpped to k = l and the step

size began to be large.

6.5.2. COUPLING FROM SMOOTH COMPONENTS TO TRANSIENT COMPONENTS

      

 

Problem:

C1, 0, 0, 01 '2 1 "1“

2

o 0, —10, O, O

1' = y + Byl ; y(0) = 1

0. o. ..40. o 4B(Y]2_+Y§) 1

2 2 2

(.0: O, 0, —100_ LlOB(Y14-y24-y3)d Ll-

where B = 20 .

Test Paramters:

Local Error Tolerance eps = 10-6 .

Time Interval X 6 [0,20]

Eigenvalues:

-l, -10, -40, -100

Test Results:

 

 

DIFSUB+ IRKSUB+I NLMSUB

MAX 5.31 5.40 ?

STEPS 650 1575 286

FNS 1839 18805 322

JACOB 66 319 O

INV 66 957 37

PADE 0 0 36

TIME 0.597 6.171 1.776      
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Remarks:

This problem has a very strong nonlinear coupling

from the smooth components to the transient components

and hence causes great difficulty. In fact, this coupling

causes the transient components to have very large positive

derivative at the very beginning, but eventually this

tendency is diminshed and the order is lowered when the

smooth cOmponents cannot match up the rapid decay of the

transient components. A nearly periodic reduction on

step Sizes results in frequent calls on the Pade approximations.

This phenomenon is very unusual and is not known to us

what causes this to happen.

6.6. NONLINEAR SYSTEM.WITH REAL EIGENVALUES [9]

 

' Problem:

-O.2, 0.2, O O O

I = -ey 10. 60, 0.125 y + 0.125 yly2 y(0) = 0

O, 0, -l y34-l 0

Test Parameter:

Local Error Tolerance eps = 10_6 ,

Time interval x 6 [0,400]

Eigenvalues:
 

O. -O.167 * -0.012. -60 4 -ll
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Test Results:

 

 

DIFSUB+ IRKSUB+ NLMSUB

MAX 6.10 4.51 ?

STEPS 186 508 36??

FNS 630 7918 73

JACOB 46 532 0

INV 46 1596 2

PADE 0 0 1

TIME 0.149 3.200 0.105#     
 

Notation:

?? The execution was actually done to the

point x = 147.5 only.

Remark:

The execution had been carried out with step sizes

as large as 8.19 very smoothly to the point x = 147.5

when there was an indication to reduce the step Size by

a factor y = 0.9. Then the execution was terminated

Ah

because of an overflow in the computation of e new. There

are two reasons for this fact: the denominator in the Pade

Ah

approximation for e new is nearly singular and the

Ah

matrix e new has a "bump" phase [27] near hnew' We

believe a careful programming should overcome these difficulties.
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6.7. NONLINEAR SYSTEM WITH REAL MIXED TYPE EIGENVALUES [11]

    

  

 

 

 

   
 

Problem:

F‘ A V ‘1 r' 2N

-1000, 0 , 0, 0 Z1

0 , -800, O, 0 'T 2%

y’= U LU Y+U 2 ;

O , O , 10, O 23

2

L. O , O , O, -0.00£ ‘z4‘

-l

y(0) = where z = Uy .

-1

C-ld

Exact Solution:

’ 1000 j

1—1001elOOOX

800

1-8Ole800x

y(X) = U

-10

1+9e”10X

0.001

_ 1-0.001e0°001xd

Test Parameters:

Local Error Tolerance eps = 10-6 .

Time Interval x 6 [0,100]



Eigenvalues:
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2000 1600
-1000 + I -800 'I'

1—10016lOOOX 1—801e800x

10-—'—2£_)-l-5§ . -0.001+ 0°03; 001x

1+9e l-l.OOle '

Program Setting:

[11000, O , 0, 0 ‘7 in ‘

0 , -800, O, 0 T 2:

y'=U U y + U 2

O , 0 , -10. 0 z3+2Oz3

L_ 0 , 0 , O, -0.001d ‘2: J 

Test Results:

   

 

e

I

01800 W

0

maxim

.

DIFSUB w

+ r

mmn mam
 

 

 

   

I
9

01m: : me

I

Current 4) _1

Time .10243110 (.10741110

I

I

Step: 70 .29 no

I

P I

resent I

Error 9. 100:1”. 3.633110'6

I

same)... 179 is: as:

I

I

[met-3100: 7 -2 12

I

Average I

sup 1.453x10".3.703x10"

I

I

PIG. |

Calling .1

1

I

. 10492110“ I . 1022.110"

1

I

(43

I

I

I

z.as7:10".1.470x10'5

u

(

I89

I

l

(3

I

(

9.535.104.2477xxo‘3

I

I

i

(2

I

. 10121101 1. 10431401

I

I

(115

I

1

I

2.200110". l.8§1:10°5

n

I

1233

I

l

15 (8

I

I

-3' .3
6.025310 (9.070100

l

I

l

(7

J

168

408

    

216

I

I

l

I

I

. 1001110z .. 1045x102

I

I

I 1“

I

I

I -

2.870xlO'6.l.562x10 5

I

I

[291

I

I

20 .9

I

I

- I .

4.635110 z.msauo z

I

523

  

I

I

l

I

I

.1025:on ..1009x103

I

I

I

I

l

252 211

2.904x10":6.565x10'7

I

I

616 .425

I

I

25 .10

.m -1
4.0mm '4.7mm

I

I

'9

I
 

f It takes .98 seconds execution £1. 00 CHER 750.

I Step size (as been rue-1cm not to be greater than 1.5.
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Remarks:

In the initial state of integration, the problem

is a mixed type nonlinear stiff system because of the

presence of a poSitive eigenvalues. But our algorithm still

seems to work satisfactorily. When x‘z 24, the under-

Ah

flow of the computer makes it impossible to recompute e new

Ah

through the Pade approximation in case e Old is obtained

by squaring and then hn is Obtained by reduction but
ew

Ah is too small to be the argument for exponentials.
new

To monitor this we may either constrain the maximal allowable

step size or reduce the order P used in Padé approximation.

In either case this does not contradict the A-stability

since numerical results Show a strong tendency to increase

the step size.
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6.8. NONLINEAR SYSTEM WITH COMPLEX MIXED TYPE EIGENVALUES [l7]

 

    

  

 

 

 

 

 

Problem:

p 2 234

P B O ' 01 21-22
‘31' 2' 2

"B I ‘3 I O I 0 Z Z

y’=U 2 l UTy+U 122 ;

O I O I -83, O 23

2

10' 0' 0"Bl L241

)- 2-1

0

y(0) = U where z = Uy .

-l

L-IA

Exact Solution:

2 2

m1”‘”2

2(3201 + 51102)

2 2

U"1’”“2
z(x) = and y(x) = Uz(x)

53

B

1-(1+B3)e 3"

B4

1-(1+61)eB4X   
where [(li—Bl)cos 82x-82 sin 32x]

(1)1"

wz = e [82 cos 82x4-(l+-Bl)sin 82x]
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Eigenvalues:

zl' Bl i [22-82Ii , 223-83, 224--B4 .

Test, Parameters:

Local Error Tolerance eps = 10"4

Time Interval x 6 [0,50]

B3 = 100, B4 = 0.1, Bl and 82 are varied.

Test Results:

 

 

Bl==—10: B1 = 1; 81 = 10; Bl = 10,

62= 62 = 100 62 = 100 02 = 10

AVE 2.84 3.45 3.70 5.35:

STEPS 63 809 96 1866

FNS 127 1619 195 3933

INV 4 3 6 200

PADE 3 2 5 199

TIME 0.440 2.711 0.667 17.942      
 

W:

. This work was done with local error tolerance

eps = 10-6.

Remarks:

This set of problems will have different Special

characters depending on different values of Bl and 82.

When 8 = -10 and 82 = 0, all eigenvalues are real

1
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numbers because 22(x) a 0. But there are positive values

at the transient region, so this problem is similar

to that in the proceding section. When Bl = l and

82 = 100, all eigenvalues have negative real parts but

the first two form very large angles (nearly 88°) with

the negative x-axis. The accuracy returned is satisfactory

but the step Sizes used are relatively small (average

2
6.2)(10— ). When Bl = 10 and 82 = 100, we have Similar

situations (with angles nearly 84°) but the step sizes

used are relatively large (average 5.2)(10.l ). The reason

for this contrast is not clear. When 81 = —10 and

82 = 10, this is a mixed type problem with eigenvalues

having positive real part in the beginning and then

turning negative ' eventually. The performance is

very poor. Particularly, there are frequent reductions

on the step sizes whereas the "global error" implies that

larger step sizes could be used. Probably this is an

indication that the error control mechanism built in

Chapter 4 is not perfect.



7. CONCLUSION AND RECOMMENDATION

The numerical examples in the preceding chapter

have demonstrated the workability of this nonlinear multistep

method which we have develOped to solve stiff initial value

problems. Its efficiency can be certainly improved with

more careful programming work. We draw the following

conclusion from our investigation:

The formulas derived in Section 2.1 are somewhat cumber-

some to apply to practical situations. But.since the

method is endowed with the A-stability prOperty, the feature

of varying Step sizes to avoid instability is not important.

Therefore in those cases where memory storage is limited,

this fixed step scheme can be used.

The numerical techniques described in Section 2.3.2

deserve further study because integrals involving

matrix exponentials occur frequently in Optimal linear

regulator problems.

As was mentioned in Chapter 3, when A = 0, most of

the quantities developed can be reduced to scalars which

are used by Shampine and Gordon in their famous subroutine

STEP. Because of the closeness, it is plausible that

these two codes can be combined with a built-in, stiff on

73



74

and non-stiff off, automatic switch for general problems.

To accomplish this goal the primary work would be the

detection of stiffness which, unfortunately, is still on

a heuristic basis and needs more exploration.

Because of the presence of large Lipschitz constants

and the use of large step Sizes, the error estimates

derived in Chapter 4 do not work completely satisfactorily.

We believe that more realistic error estimates would give

faster convergence. The global error analysis is still a

wide open problem.

Besides the weakness of demanding lots of

memory , this nonlinear method has not yet been completely

develOped to handle the case when A is time dependent.

Although at the current stage a periodic updating mechanism,

such as the one suggested in (1.4), can be used, we wish

to establish an automatic one in the algorithm so that a

much larger class of problem can be handled.

Finally, more investigation needs to be done to eXplain

the stumbling behaviors of this nonlinear method when

applied to problems in Section 6.8.
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