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ABSTRACT

A NONLINEAR MULTISTEP METHOD
FOR SOLVING STIFF INITIAL VALUE PROBLEMS

By

Moody Ten-Chao Chu

A nonlinear multistep method which bears the nature
of the classical Adams-Bashforth-Moulton PC formula is
developed to solve stiff initial value problems of the

form y' = Ay+g(x,y).

It is shown that this method has properties of
consistency, convergence and A-stability in the sense
of Dahlquist. Several newly developed numerical techniques
have been incorporated into this algorithm. A detailed
analysis of its structure is also presented to enable us
to implement this method in such a way that the step size

and the order can be adjusted automatically.

Numerical results from extensive tests by a PECE mode
of this method shows its efficiency and several advantages,
such as no Jacobian evaluation is needed, much larger step
sizes can be used and only a few matirx inversions are

involved.
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1. INTRODUCTION

Conventional linear multistep method has been recognized
as one of the most effective ways to solve a general initial

value problem

y' = £(x,y); y(a) = yoi x € [a,b] . (1.1)
In the last two decades several very sophisticated and reliable
codes [12,17,28], based on a variable-step variable-order
formulation of the classical Adams method, have been
established so that (1.1) can be solved both easily and
cheaply. Nevertheless, when applied to stiff systems,

the efficiency of these codes becomes very limited because
impractically small step sizes must be adopted to ensure
the stability [12,19] of the approximate solutions. This
difficulty is inherent in the method itself [7] and hence
cannot be overcome by any improvement in the computer
capacity. On the other hand, most of the methods used for
solving stiff systems are implicit of necessity [7.,19,29]
and hence demand the use of some Newton-like iterations [1l3]

which usually are very expensive in Jacobian evaluations.



The object of this dissertation is to develop a
method which, inheriting all the merit of the classical
predictor-corrector schemes and being A-stable [7], does
not have those difficulties mentioned above when applied

to stiff systems.

The search for effective methods to solve stiff systems
has received considerable attentions since two decades
ago. Brief survey of the literature can be found in
Shampine and Gear [29], Enright, Hull and Lindberg [9],

Wwilloughby [37], Bjurel, Dahlquist, Lindberg and Linde [2].

In what follows we shall consider the stiff initial

value problem of the form

y' = Ay+g(x,y); v(@) =y x € [a,b] (1.2)
where A is an nxn real constant matrix with all its
eigenvalues having negative real parts and H%%H is small

relative to Al

. Notice that a much larger class of

problems

’

y' = A(x)y+g(x,y): y(a) = Yo (1.3)

including the linearization of Problem (l1.1l) near a

particular solution, can always be decomposed into

y' = Ay+ ((A(x) -A)y+g(x,y)}; vy(a) = yq



where A is chosen to keep ||A(x) -A|| uniformly small

at least for a short period of x. So the method developed
for Problem (1.2) can still be used to solve stiff system
(1.1) or (1.3), provided some prior knowledge about the

problem is known.

We begin in Chapter 2 with the main formulation of our
nonlinear multistep algorithm. Then after a generalized
Adams-Bashforth-Moulton PECE mode is defined, we prove three
theorems concerning its consistency, convergence and
A-stability. These theorems can be generalized easily to the
variable-step variable-order case [28]. Also included in
Chapter 2 are some numerical techniques for the calculations

of the matrix coefficients of our scheme.

In Chapter 3, we derive a variable-step PECE mode and
an algorithm which enables us to compute all the matrix
coefficients to any desired order in a very efficient way.

In the special case when A = 0O, this derivation corresponds

exactly to that by Shampine and Gordon [28].

Error estimation is given in Chapter 4. We also show
how these estimates can be calculated without too much
effort. Also treated in Chapter 4 is an automatic control
mechanism which is used in selecting step sizes and orders

throughout all numerical tests given in this dissertation.

A flowchart consisting of four blocks is provided in
Chapter 5 to suggest how our algorithm should be organized

and implemented.
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In Chapter 6, we give several test results
to evidence the effectiveness of our method. In particular,

we make comparisons to some existing stiff problem solvers.

Finally, conclusions and recommendations for further

study are given in Chapter 7.

We conclude this chapter with a brief historic review
of the method we used. The very original idea of our
approach for the step number not higher than two was proposed
by Certaine [6], but has been regarded as computationally
costly because of the difficulty in obtaining the matrix
coefficients [25]. Lawson [20] attempted to remove the
stiffness of the problem by performing a transformation of
the differential equation and then solved the resulting
equation with a standard method. This approach is essentially
the same as Certaine's method. Some algorithms to compute
the matrix coefficients are also suggested. Lee and
Preiser [22] tried to carefully select the matrix coefficients
for a certain numerical scheme so as to guarantee the
consistency of the resulting scheme. In this way several
formulas were given. They can be justified to be exactly
the same as those obtained from Certaine's method. All
these formulations are special cases of our consideration.
However, the computational cost can be reduced substantially
because of the algorithm presented in Chapter 3 and the
discovery of an efficient numerical technique in computing

matrix exponentials. Several other approaches considered
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by Jain [15), Miranker ([24], Murphy [26], Lambert and
Sigurdsson [18] are also closely related to our method by
certain representations of the integrals which will be

introduced in Chapter 2.



2. BASIC FORMULATION --- FIXED STEP SCHEME

2.1 PECE MODE

Let Xy denote the k~th mesh point along the
variable axis and hk+1 = Xyl X In what follows we
shall use Yy to represent a numerical approximation to
the exact solution y(xk) at the mesh point Xy and let

9y = g(xk,yk). By considering the variation of constant

formula, the solution to Problem (1.2) satisfies

Ax X
y(x,,,) =e n+1y(xm)+e n+l i Bl Ao (r,y(r))dr . (2.1.1)
be
n
Define a = ;——325— . then we are led to form the following
n+l “n
formula
Ah k
_ n+1l
Yne1 = € Yn+Ph izg fiTn-i+1 (2.1.2)

where the summation is an approximation to the integral

+1
;e g(xnﬁ-ahn+1,y(xn4-ahn+l))da (2.1.3)

0

r‘l A(l—a)hn

and Qki's are some matrix coefficients to be determined.

We shall consider the fixed-step explicit scheme first.

Ne abbreviate the notation h as h since constant

n+1l

step size is to be used. Assuming = 0 in (2.1.2)

%o
6



and regarding g as a function of a, a vector-valued
polynomial P(a) of degree ¢ k 1is used to interpolate

g componentwise at point X _ks1’°¥p such that

+1

P(l-1i) = for i =1,...,k. The polynomial given

In-i+1
by the Lagrangian formula is

k K geiol
P(a) = & g, ;.7 B <35 . (2.1.4)
i=1

It follows that the integral (2.1.3) can be approximated by

1
[ PPy q)4q
(0]
k 1 k .
= (] fUmIr g el gqyg L (2.1.5)
i=1 o j=1 7% n-t
j#i
It is, therefore, reasonable to choose Qki in (2.1.2) as
1 A(l-a)h K a+j-1
&y = j e I —7— da . (2.1.6)
0 j=1 J
j#i
As an example, when k =4, (2.1.2) becomes

1
_ _Ah A(l-a)h (o+l) (c+2) (c+3) ala+2) (o+3)
P41 =€ ypth fo € [ 6 9n = 2 In-1
+_a(a+1%ja+3) 9o _ a(a+lé(a+2) gn_3]da.

(2.1.7)
Here we use Pn+1 to denote the "predicted value" of
y(xn+1). We call the scheme (2.1.2) along with (2.1.6)
a generalized Adams-Bashforth formula of order k. 1If

A = 0, then (2.1.2) is reduced to a classical linear multistep
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scheme. The word "order" will be justified in the next

section.

An implicit scheme of order k+ 1 can be formed
*
in exactly the same way when the polynomial p (a) inter-
polates the points Xnek+1’" " o+l with values

%*
p (l-a) = for i =0,...,k. We denote the resulting

In-i+1

*
matrix coefficients of this implicit scheme by i for

i=0,...,k, respectively. It is worth noting that
k * k 1

D oan = D o8, = [ ATy,

i=0 i=1 o

Definition 2.1. By a (k,k+l)-order PECE mode we

mean the following numerical scheme consisting of a
predictor of order k and a corrector of order k+1

in the form of (2.1.2), i.e.,

Ah L3

P: Pny1 T € yn"'h égl Qki In-i+1 ’

. p -
E: In+1 = 91 Ppey) o

(2.1.8)

C: =Py, 4 z]"f‘, 5 +h 5 gP

Yo ¥n® 7 20 *ki Fn-it17 7 *k0 In+1
E:

In+1 T g(xn+l'yn+l)

As was pointed out in [27,33] and also will be shown in
Section 2.3, it is not an easy and economic task to compute
these matrix coefficients. The situation is worsened when
variable-step scheme is adopted. 1In Chapter 3, we develop an

algorithm which, taking the problem of saving memory storages



into consideration, enables us to obtain these integrals

efficiently.

2.2. MAJOR THEOREMS

We shall prove three major theorems concerning the
consistency, the convergence and the A-stability for the
fixed-step case, which provide the groundwork of this

nonlinear algorithm.

2.2.1. CONSISTENCY

With the nonlinear multistep method (2.1.2), we give

the following definition.

Definition 2.2. The local truncation error at X041 ¢

denoted by £(y(xn),h), of the method (2.1.2) is defined

to be

Z(y(x_),h)

k
1=0

) -eAh

= yl(x ).

n+1 n-i+1'y(xn-i+l
The notation £P(y(xn),h) will be used to represent the
local truncation error associated with an explicit scheme,
while £(y(xn),h) represents that associated with an implicit
scheme. A numerical scheme is said to be consistent if its

associated local truncation error is at least O(h).
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Theorem 2.1, Assume g ¢ Ck+l, then the local

truncation error £P(y(xn),h) of the explicit scheme (2.1.2)

with step number k is O(hk+l).

Proof: Recall that

1
_ A(l-a)h
By = J?O e 2; (a)dA (2.2.1.1)
K at+j-1
where g.(u) = 1 £1-2 | so
i 5=1 j=-1
iFi
P
£ (y(x_),h)
Ah L
= v(Xpy)-eyix) -h ;El i 9410 Y (B34 ))
Ll A(l-a)h
= [ dle y(x +ch)]
o)
k 1
A(l-a)
- h ii‘?l[j”o e gi(a)g(xy . v(x ;. 1))dal
1 A(l-a)h A(l-a)h
= j [-Ahe y(x_+ah) + he y'(xn+ch)]da
0
1 A(l-a)h
- h f e P(a)da
o
1

= h f eA(l_a)h[g(xn+ah,y(xn+ah))-P(a)]

1 (k) k
k+1 f All-a)h (g ](}(a)) I (a+i-1)]da. (2.2.1.2)

o) : i=1

= h

It follows that
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l ”J\ A(l—d)h k+l

1£P (v (x ) m) | < B+

Notice that if all eigenvalues of A have negative

real parts, then the spectral mapping theorem implies

(1-a)h

that He | £ 1 uniformly for some suitable norm

1
and hence | [ eA(l-a)hdaH<g 1. Consequently,
0
12 el =13 el
& . = |l & .1 < 1.
e

Similar argument shows that the local truncation error

£(y(xn).h) for the implicit scheme (2.1.2) with step

number Kk is O(hk+2)

2.2.2. CONVERGENCE

By convergence we refer to "fixed station convergence"

which has the following meaning.

Definition 2.3. The nonlinear multistep method (2.1l.2)

or the PECE mode (2.1.8) is said to be convergent if, for
all initial value problems (l1l.2), we have that

lim Y, = y(xn) holds for all x € [a,b] and for all
h-0
nh=x-a

solutions {y }] satisfying starting conditions Y; = n. (h)

for which 1lim ul (h) = y(a), i=0,...,k-1.
h-=+0

In this sense we have the convergence theorem.

Theorem 2.2. Let the (k,k+1l)-under PECE mode (2.1.8)

be applied to solve Problem (1.2) on [a,b]. Suppose

dall =0o(h . (2.2,1.3)
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g € C’' and H%%H_g Ly for some constant Ly 2 0. If
all starting values vy, satisfy ly(x) -yl < E, for

i=0,...,k-1, then for X, ¢ [a,b] we have

5 (xn-a)/\
”y(xn.)-yn” < [E0+ﬂ]e (2.2.2.1)
where
A= Lg(a +th”@kol ’
*
- 99 P
5 = m:x Ih 3,4 3y 2 (y(x ). h)+2(y(x_ ),h)| , (2.2.2.2)
k . k .
a= T |l and o = T [g,ll
i=1 i=0
In particular, if g € ¢! and Ej = o(W™*1), then
k+1
ly(x) =y [l = oh™ ™).
Proof: From the definition of local truncation
errors, we know
Ah k P
- <
y(xn+1) = e y(xn)+h 11:1 -2 g(xn_i+l,y(xn_i+l))+£ (y(xn).h) .
_ anh -
y(x 1) =e y(x )+ ReA S 9K i1 Y (X y4q1)) +Ly(x ).h) .
(2.2.2.3)

So the mean value theorem implies that the global error at

Xn+l

M2

md:=yunu)—%nl (2.2.2.4)
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is given by

(*R]

k
ee +h 2 ¥ 29 (x ) e _i+1

= . ' §
i=1 ki 3y

n+1l n n-i+1’'°n-i+1

* ~
3g Ah
+h Qko dY (xn+l'gn+l)[e ent

K
29 =
*ho D 5y nein1 Snoie)®noianl F0n (2:2.2.5)

where & =h 8.~ 22 (x_..,€ . )ZP(y(x_).,h) +2(y(x_).h)
n kO dy n+l’°n+l YiXn)e YiXp D)

gn-i+l lies between Yh-i+l and y(xn—i+l) for i > O;
and between Ph+1 and y(xn+1) for i = 0. By the
conditions on A and %3 we arrive at

kK .
lepeqll < llepll + b 1y :Eo l8ysllllensenll

k
2. 2 .* ~
+h Lg ”Qkomza Hékinﬂen_i+lu- (2.2.2.6)

. _ * 2 2. o
Define ¥ = 1+h Lo +h LgHQkOHa and Ej = X E;_;+6, then

obviously Ei-l < Ei for each i. By induction, (2.2.2.6)

implies that H;jH < E for j=0,...,n. Since

E, = ano4~%§5% &, the inequality (2.2.2.1) follows
immediately from the facts that 1+ x ¢ e* and nh = X, - a.
In particular, if g € Ck+l, then the theorem of

consistency implies § = O(hk+2).

The above two theorems justify that the nonlinear
multistep method, such as the mode (2.1.8), has the
consistency and convergence properties. For the computational

purpose, we also need the feature of A-stability.
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2.2.3. A-STABILITY

Dahlquist [7] defined a numerical method to be A-stable
if its region of absolute stability contains the whole of
the left half-plane. Equivalently, a method is A-stable
if all numerical solutions Yn tend to zero asymptotically
as n »+» » when it is applied to the differential equation
y’' = Ay where all eigenvalues of A have negative real
parts. To prove the A-stability property of our algorithm,
we approximate each matrix exponential in (2.1.2) by its

corresponding Padé approximation. Recall the following

definition [33].

Definition 2.4. A (p,q)-pair Padé approximation to

the matrix exponential eB is the matrix
1

qu(B) = [qu(B)] Npq(B) where
N (2) = §’3 (p+g-i)ip!  j
Pq j=o0 (P+a)!3:(p-3)! ’
(2.2.3.1)
q SNy )
- (p+g-j) iq: ]
qu(z) jzg (p+g):ji(a-3): (-2)

It is known [1,4,34,36] that the diagonal Padé approximation
E(B) of eB is unconditionally stable, provided that all
eigenvalues of B have negative real parts. Therefore, we

have the following theorem.

Theorem 2.3. The nonlinear multistep scheme (2.1.2)

based on diagonal Padé approximations to all its matrix

exponentials is A-stable.
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Proof: Wwhen applied to any test problem
y' = Ay; y(a) = Yo' the scheme (2.1.2) yields values
y ., = E(Bh)y_ = (E(ah))™ 1y, since g(x,y) is identically
zero. But all eigenvalues of A have negative real parts,
the unconditional stability of E(Ah) implies that

lim Yy, = O This establishes the A-stability of scheme (2.1.2).
n-o

2.3 NUMERICAL EVALUATION

In this section we shall describe some special
numerical techniques for the evaluations of the matrix

exponentials and the matrix coefficients.

2.3.1. COMPUTATIONS OF MATRIX EXPONENTIALS

The exponential of a matrix could be computed in many
ways [27]). For our purpose we consider only the rational
approximations because of its direct applicability. Nevertheless,
for stiff systems, direct application of a rational
approximation for the matrix exponential gives very poor
results as shown in the contour plot of square errors by
Blue and Gummel [3]. In fact, the error in approximating
the matrix exponential by diagonal Padé table entries has
been shown [10] to be increasing as the norm of the matrix
increases. Therefore, the first objective of any algorithm
involving Padé approximations is to decrease the matrix norm.
Since exponentials satisfy e? = (ea/b)b, one may always

use this property to reduce the matrix norm and improve the
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accuracy of the approximation. Ward ([33,35] has given an
error estimate for diagonal Padé approximation of order up
to P =15 and made it possible to return the minimum

number of digits of accuracy in the norm to the user. The

algorithm for computing e® can be summarized as follows:
2 a,.

_ jop i1

(i) Compute the mean of eigenvalues )\ =

n
(ii) Make the translation A, = A -3I.
(iii) Balance the matrix A; to obtain A, = D'IP:AIPD,
for which, ||A,||; = min |p~1a D||, where &
2V 1 D 1™ B
€Og

is the set of all nonsingular diagonal matrices
with entries as integral powers of the machine
base B and P is some preliminary permutation

matrix.

(iv) 1f [A,ll; < 1, set Aj =A,, m=0 and go to (vi).

(v) Find an integer m > O such that HAZH < 2™

AZ
Then define A3 = —
om
By
(vi) Use Padé diagonal table to compute e °~.
(vii) If (v) 1is skipped, go to (ix).
B3 Ag oM
(viii) Square e m times, i.e. compute (e ~)
- A m
(ix) Compute &P = exPD(e 3)2 D-lPT.
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This algorithm works quite satisfactorily in general.
However, there are some numerical "barrier" where
care should be taken. A good source of this material can

be found in Molen and van Loan [27].

2.,3.2. COMPUTATIONS OF INTEGRALS INVOLVING MATRIX EXPONENTIALS

To compute the matrix coefficients defined in (2.1.7),

it is necessary to compute the following integral:

1l
MO =I eA(l-G)hda ,
(0]
(2.3.2.1)
1 .
M. = j eA(l'q)h atda i=1,2,...
1 o

Observe that these matrices satisfy the following recursive

relations
hAMi = iM, ,-I. (2.3.2.2)
If A™! exists, then M, = (Ah)-l(eAh-I) and all the
other Mi's can be induced by (2.3.2.2). But for stiff
max |\;
systems, the condition number k(A) > EIH_+__' is large.
The a priori error estimate
-1 -1
lag™-a77|
c < k(a) (2.3.2.3)
-1 lla, - A
A H 1-k(A) __EHZ“_

indicates that the computed A; might be in large relative

error. Furthermore, these Mi's still exist even if A is

singular. So we introduce two methods to obtain them.
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The first method works for a normal matrix A and
involves its generalized inverse matrix A+. Recall that the
* *
matrix A is normal if and only if A A = AA where A"

is its corresponding adjoint matrix.

Observe that MO satisfies the linear system

(Ah)x = P 1 | (2.3.2.4)

Let B = Ah, and let the singular value decomposition of

s ol .
B be V U where V and U are orthogonal matrices
(o] o
* *
formed from eigenvectors of BB and B B, respectively:

2, = diag(\ys....\.) where )\, #0 for i=1,...,r are

*

eigenvalues of B B; and v, = fL Bui for i=1,...,r,

i
where vi and ui are column vectors of Vv and U,

+ zt o] .
respectively. It is known that B = U \Y is

(o] (0]
the generalized inverse of B and
% = B (PP 1) (2.3.2.5)

(0]

is a least Frobenius solution to (2.3.2.4).

Theorem 2.4. If B is normal, then

il +
MO = XO4-(I -B B) . (2.3.2.6)
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Proof. Since B 1is normal, it is known that Bu.= )\u

-— *
if and only if B'u = Nu. This implies B Bu = |x|2u and
BB = |x|2u. So the same orthonormal basis wu;,...,u  which
diagonalizes B into D = diag(xl,...,kr,o,...,o) can

also serve as an orthonormal basis for both B*B and BBY*.

% 0
Hence B has a singular value decomposition B = U U*
1 0o o
+ Z o *
and a generalized inverse B = U U . Dente U
o o
by [Ul'UZ] where Ul = [ul.....ur] and U2 = [ur+l""’un]’
then
t _B(1-a) L D(l-a) g )y
My=[ e da = U(f e da)u
0} 0]
-— *
1772 o , I vl
_ -1, % * *
_Ulz (e -I)U1+U2U2 . (2.3.2.7)

On the other hand,

* % %*
X =58 (eB-1) = wuue?-n)u" = el - 1)U

U, Z-l(eZ-I)UI . (2.3.2.8)

So (2.3.2.5) follows from (2.3.2.7), (2.3.2.8) and the

following identity

+ +_ % * 4+ * *
I-BB=I-UDUUDU = I-UD DU = U2U2 . (2.3.2.9)
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Corollary 2.1. If B is normal, then

- g 1 +
M =B (nM _;-I)+y (I-B'B) . (2.3.2.10)

Proof. By definition of (2.3.2.1) and the identity

(2.3.2.9), we see

1 1 *
M = j eB(l-a)anda = u(l eD(l-a)anda)U
n )
(0] (0]
-1, 1 $(1-q) n-1
Z(nf e o "da-I), O .
= U (0] U
L 0 s 1
n+1l
-1 1 s(1-a) n-1
2 ., 0 * n 5 e a da-I, O x o} (o}
= U Uvu (0] U +U 1 U
bO (0] (0] , O 0] mI
= gt (nM_ . -I)+—= (I-B'B)
n-1 n+1l
The second method works for a general matrix A
and involves its Drazin inverse matrix Ad. We first make
two definitions.
Definition 2.6. The index of a matrix A is the
1

smallest non-negative integer k such that rank Ak = rank Ak+ .

Definition 2.7. The Drazin inverse of A, denoted

-1
D D C ol _;
by A, 1is defined as the matrix A~ = P P -,
o o)
c o _;
provided A = P P where C 1is an invertible
o N

submatrix and N 1is nilpotent of index k.



21

Note that there are a variety of ways to calculate
AD [5]. In fact, the following lemma can be regarded as

the definition of AD from the algebraic point of view.

Lemma 2.1. If the index of A 1is Xk then AD is

the only matrix satisfying the following properties

(ii) aaP = aPa , (2.3.2.11)
(iii) aF*1aP = ak

Proof. The proof can be found in [5].

Theorem 2.5. If the index of A is k, then

k-1 i
M =8 (e’ -1+ (1-8"8) & —B—. (2.3.2.12)
i=0 (i+l):
Proof. Using the series expansion for eB®  and

the above lemma, one can show that

k-1 i i
d D, B D B”s _ _Bs
ds[B(e -D+(I-BB)S‘£S (Hlﬂ] = e

Corollary 2.2. If the index of A 1is %k, then

- rP D
Mn = B (nMn_l-I)+n(I-B B)

-1 i
7 AnsllBo (2.3.2.13)

k
i=0 (n+i+l) ! °



3. EFFICIENT IMPLEMENTATION --- VARIABLE STEP SCHEME

3.1. GENERATING COEFFICIENTS

The subroutine STEP by Shampine and Gordon [28]
gives an efficient way of generating coefficients for the
linear multistep method and a substantial savings of memory
storages. In this section we reformulate their settings

in the matrix form and hence preserve all the advantages.

We define the following quantities:

o
I
~
"

i i i-1 "'
.- x-x
hn+l
b;(n+l) =h G+iee+h 5 1>1
h
n+1l .
ai(n+l) = IIT;ITT , 1 >1,
(3.1.1)
By(n+l) =1,
vl(n+l)¢2(n+1)...¢i_l(n+l) .
Bj(n+l) = my,m ey, m B> b
93 (R) = y(n) weody () GIxX, geeeeexy 0] 151

22
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Recall that

Ah n+tl A(x -7)
= n+1 n+1
Pn+1 e Yn+‘!x e Pk,n(T)dT
n
where P n is a polynomial of degree < k and
Pk,n(xn_i+1) = 9h-i+1 for i=1,°*°°",k.

polating polynomial is given by

= g[xn]-+(x-xn)g[xn,xn_l]+... +

(x_xn) PP

-

a typical term, for i > 2, of k,n(x)
(X =xp) wee (Xmxy 5y 0)90Xp e Xy 0]
= (Shn+l)(5hn+l-+hn) Tt
wi(n)
(shn+l4-hn+ *'hn-i+3) wl(n)°°'¢i—1(n)
( Shn+;_)(5hn+1+hn) .
¢l(n+1) ¢2(n+l)
sh + §. (n)
n+l i-2
v Ty ey ) Bi(mrle;(n)
Introduce
1
Shn+l
cl'n(s)— ¢l(n+l)
( Shn+l )(Shn+l+hn)...(Shn+1+¢i-2(n)
¥4,(n+1) y2(n+1) ¥i_q (n+1)

(x -xn-k+2)g[xn' ...'xn_k_‘,l] )

(3.1.2)

Since the inter-

(3.1.3)

can be written as

(3.1.4)
i=1,
i=2,

(3.1.5)
)i>3,
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and
®;(n) = B (n+1) g (n) , (3.1.6)
then (3.1.3) can be rewritten as
k,
P (%) = E c. (s)g;(n) (3.1.7)

and (3.1.2) becomes

Ah k 1 A(l-s)h
_ n+l n+1 *
P+1°¢ yn+hn+l 2_?' (-j\ € ci,n(s)ds)wi(n)
i=1 O
(3.1.8)
Let
A(l-s)h
_ n+1l
di,n(s) = e ci,n(s) , (3.1.9)
then it can be shown that
A(l-s)h
e n+1l i=1,
A(l-s)h
_ n+l : o=
di,n(s)" e s i=2, (3.1.10)
¥ip(n)
\ [dl l(n+l)s +w]dl_l'n(s) 1> 3,
and
Ah k 1
_ n+1l *
P, =¢© Yot P i§1 (jo d; L(s)ds)g;(n) . (3.1.11)

For fixed n and i > 3, observe that
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S

Io di'n(so)dso
s ¥;_o(n So
= Io [ai-l(n+l)so*"VI:ITHT]d(XO d;_1,n(sy)dsy)
bipn) 8
= [ai_l(n-i-l)s +W] Io di—l,n(so)dSO
s sl
-XO ai_l(n+l) fo di-l,n(so)dsodsl . (3.1.12)
Define
(q) s Ja-l "1
di'n(S) = \I‘o Io .o ‘[‘O di,n(so)dsodsl..° dsq-l ) (3.1.13)
then (3.1.12) can be rewritten as
. (n)
(1) _ ¥i_o (1)
di,n(s) = [ai—l(n+l)s'+E;:ITHT]di-l,n(s)
—a. (n+1)al?) (s) (3.1.14)
i-1 il,n * M

In fact, it is not hard to show, by induction and integration

by parts, that for i > 3, the following is true:

¥;_o,(n)
i-2 (@) (q)

(q) = i=s
di,n(s) = [ai_l(n+1)s-l-‘yi“l(n)]di_l'n

—ga;_y(n+1)ai B s) . (3.1.15)

Scaling these quantities by defining

(1) ., (3.1.16)
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we then arrive at one of the important identities

W . = W, -ai_l(n+l)w for i > 3 . (3.1.17)

i-1,g+1
Up to this point, all these quantities we have derived

are formally the same as those by Shampine and Gordon [28]

except that these are in matrix form. When A 1is identically

zero, the quantities defined in (3.1.10), (3.1.12), (3.1.15)

and (3.1.17) become diagonal matrices and, in fact, each

diagonal matrix is of the form cI where the scalar c

is that used by Shampine and Gordon. In this case, the

quantities for i =1 and i = 2 can be handled trivially.

However, if A 1is a matrix as stated in Problem (1.2),

then for i = 1, the definition (3.1.13) of d{!)(s) implies

that
A(l-s)h Ah
(-Ah n+l)di1;( ) = e ml_omtl (3.1.18)
and, by induction, for gq > 2,
-1 Ah
@) q@-1) s27 M
('Ahn+1)d1,n(s) = 1 n (s) T e . (3.1.19)
Similarly, for i = 2, we have
A(l-s)h
(-ah, dit)(s) = se ml_alt) sy,
(-an_, naf9(s) = af¥ 1 (s) —a{%(s) for a2 . (3.1.20)

Resorting to the definition (3.1.17), we obtain
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Ah
(-Ahpiplwy,yp = I-e S
Ah
_ n+1l
('Ahn+1)wl,q = (q-l)wl'q_l-e for g > 2,
(3.1.21)
(-Ahp, gy, = I-wy g -
(_Ahn+l)w2,q = (q-l)wZ,q-l"wl,q for q > 2
Note that for stiff systems A is nonsingular, so wy q and
Wy,q for every q > 1 can be solved directly from (3.1.21),
once A~ is known. But even if A is singular, the
techniques described in section 2.3.2 can be used.
Since d(l)(l) = the scheme (3.1.11) becomes
i,n i,l’ T
k
Ah , *
_ n+1l DI . (n) . (3.1.22)
Phe1 = © yn+hn+l i=1 1,171
We now make a correction of this predicted value.
Recall that
Ah xn+1 A(x T)
n+1l n+1" *
Ynel = © yn*tlx e Pry1,n(T)dr (3.1.23)
n

*
where Pk+l n('r) is a polynomial of degree < k+ 1 with

) =

*
values Pk+1,n(
*

Pk+l,n(xn+l) = 9(xn+1’Pn+l), Observe that

Xo_i+l i+l for i=1,*,k and
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*
Pk+1,n(x)

= - o o - p e o &
= P p () Gemxp) ey 419 Xy ¥y ke

P

P41 (0F1)
Pr,n(X¥) + (Shp g ) omr {Shp oy + 27 Dy ) YT D) -y (v D)

P
Pr.on(X) *Cpiq 08Iy, (n+l) (3.1.24)

where the superscript P is used to indicate that the value

is replaced by g(x ). Substituting (3.1.24)

In+1 n+l'Pn+l

into (3.1.23), we see

+h

P
Ynel = Pne1t Pnel Ykel,1 Pxe1(PHL) (3.1.25)

We conclude this section by illustrating the inter-
relation between the coefficients based on (3.1.17) and
(3.1.21) for the case k = 3 in the following table where

arrows emanate from the generators:
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3.2. UPDATING DIVIDED DIFFERENCES

At the current point X, all the quantities

¢i(n) for i=1,*"°,k are known. To complete the step

P
from xn to xn+l' we need to know ¢k+l(n+l) as

indicated in (3.1.25). To prepare for the advance from

X to the next point X we need to know all the

n+1l +2°
quantities @i(n+l) for i=1,...,k. Moreover, as will

be shown in the next chapter, the quantities ¢§(n+l) for
i=1,""",k are also useful in the error estimations.
In this section we explain how these divided differences

can be updated.

First of all, think of Pk n in (3.1.3) as a

polynomial of degree k determined by the conditions

) = for i=1, -k and P

Pk,n(xn-i+1 gn-i+l k,n(xn+l) =

s . e
Pk,n(xn+l)' The divided difference ¢i+l(n+l) based on
the above values at Xop1Xne e X 11 is given by,
¢§+l(n+l)
- e o » e * o o
=y lnrl)e e (nl)g X, g et e Xy ]

)

bty g (L) (R g%y g4

e
d [xn+l' "xn-i+2]-g[xn’ "'xn—i+1]
*nt1 ®n-i+1
o o e * o o
= Yy (nrl)eoyy (kLG Xy g0t e Xg g ] -

gy (n+L)e ey, (ntl)
‘l’l(n) ¢ ‘l’i_l(n)
w?(n+l)-Bi(n+l)¢i(n)==¢?(n+l)-¢;(n) . (3.2.1)

cvi(n)
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This implies

' *

9 (n+1) = g, (n+1) +g;(n)  for i=1,°*+k . (3.2.2)
But Pk n(x) actually is a polynomial of degree < k. The
k-th order divided difference mi+l(n+l) =

e .. .. .
wl(n+l) wk(n+)g [xn+l’ 'xn-k+l] is identically zero.
Thus w?(n+l) for i =%k, **'1 can be generated according
to (3.2.2). Exactly the same argument as in (3.2.1) shows

the following two identities:

(n+1) = g, (n+1) =g (n) ,

Pivl
(3.2.3)

P * .
wi(n+1)-¢i(n) for i=1,°*"",k

P
®j4q (0+1)

But then it follows, by taking difference between (3.2.1)

and (3.2.3), that

e e e
cpi+l(n+l) —cpi+l(n+l) =cpi(n+l) —cpi(n+l) = eoce =cpl(n+l) —cpl(n+l)
q;§+l(n+l) - ], (n+1) =qp§(n+l) - @5 (n+1) = -.-=q>11°(n+1) -cp‘i"(ml) .

(3.2.4)

So the quantities ¢§(n+l) and wi(n+1) for i=%,-+,1
can now be generated from the following two important

identities:

P e

@5 (n+1) = @5(ntl) + (gL, | - o5 (n+1)) (3.2.5)

and
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g (n+l) = ¢§(n+1)-+(gn+l-¢§(n+1)) . (3.2.6)

3.3. MODIFIED PECE MODE

We now summarize the (k,k+l)-order PECE mode (2.1.5)

which advances from xn to x as follows:

n+l

Compute wi 1 1= ll...’k"'l;
* L . N
P: o,(n) = B;(n+l)g;(n) i=1, Jk o,
Ah k
- n+1l *
Phe1 = € yn+hn+1 iza wi,1 ¢i(n) '
cp]e<+1(n+l) =0
*
o (n+l) = 95, ((n+1) +o;(n) i =k,"*",1 ;
E: P = g(x P ) ; (3.3.1)
* 941 T 941 Tne) -3.
C: = p +h w ( P _ e(n+l)) .
* Yo n+1" "n+1%k+1,1'9n+1 " 91 :
Bt e = 9(Xpe1+¥ne )
® (ntl) = g —¢er1)
k+1 n+1l 1 ’
mi(n+l) = w?(n+1)4-¢k+l(n+l) , i=x,"",1.

3.4. ADVANTAGES

In this section we describe briefly the advantages of

the method given in the proceding three sections:
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(i) Throughout the calling of the whole algorithm

we only need to compute A-l (or the generalized inverse)
h
once and for all because (Ah )'l = (Ah )-l . old can
new old B;;;

be updated by scalar multiplications.

(ii) If the step succeeds and the step size is doubled,
Ah Ah
then e P&V . (e old)2

multiplications. Furthermore, any reasonable step size

can be obtained by matrix

selection mechanism should not cause frequent reductions of
step size, so the overhead resulting from the computation of

eAh is expected to be small.

(iii) When an implicit linear multistep scheme,

usually given in the form

k k ‘
T a.y h & B.f (3.4.1)

i=o i‘n-i+1 i=0 i"n-i+1l
with fixed constant step size h and constant coefficients
ui's and Bi's, is applied to solve Problem (1.2), at

each step one has to solve the nonlinear equation

Yne1 = PRoE(Xpyy ¥pey) + o (3.4.2)
k
where £(x,y) = Ay+g(x,y) and gy =h .§} Bifn-i+1'
.Za Q.Y 41+ Notice that w is a known quantity at the
i=

current stage., In order to apply the contraction mapping

theorem, it is required to have

k = h{g,|Le < 1 (3.4.3)
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where L is the Lipschitz constant for £f. Meanwhile,

£

when an implicit nonlinear multistep scheme (2.1.2) with
A

constant step size h 1is applied, the nonlinear equation

to be solved becomes

i\ A
Yol = P 8o I(Xppge¥pyp) to (3.4.4)
AN %) ah . |
where @ = h 2 %4 Jp-i+1 — € Y, . Again we require the
condition
A A
k =h |l Ly < 1. (3.4.5)

Under the assumption that the iterative method is used
to solve (3.4.2) and (3.4.4) with the same rate of convergence,

A
i.e., k =%k, it is seen that

A
n_ lPol e (3.4.5)
h W Lg . . .

This shows that for problem (1.2) where Le is much greater
A
than Lg, the step size h for the nonlinear scheme can

be chosen significantly larger than that of the linear scheme.

(iv) Since the equation (3.1.17) and all the quantities
(3.1.1) are exactly in the same format as those in [28]
except that wiq's are in matrix form, p;'s are defined
in terms of g and that wlq's and wzq's are generated
according to (3.1.21), all the efficient software designs
by Shampine and Gordon, such as the substantial reduction

in the overhead and the memory storages, can be perfectly

transferred.



4. ERROR ANALYSIS

In this chapter we first discuss the estimates of
errors which occur during the numerical integration. Then
we explain how those estimates can be used to control the

step size and the order.

4.1. ERROR ESTIMATION

Let un(x) denote the exact solution to the problem
I —3 'l —
u (x) = Au (%) +g(x,u_(x)); u (x ) =vy_ . (4.1.1)

Then the global error (2.2.2.4) can be split into

M2

nel = Y(Xpe1) - ¥nn

(y(x ) =u (x )]+ [u (x 1) - (4.1.2)

n+1l Yn+l]

We use the term "local error" to denote the second term
of (4.1.2). Since vy(x) and un(x) are solutions to the
same differential equation with different initial values

at xn, we see that

A(x—xn)

Iy - GOl < e

(y(x ) -u (x )

X .
[ 1P gy — gl (r)1dr . (4.1.3)
X
n

34
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Use the condition on A and the Gronwall inequality

we have
L (x-xn)
ly ) - GOl < lly () =u,(x)]le 9
for every x > X, . (4.14)

Given ¢ > O, let

“un(xn+l) _yn+lH <hpp e (4.1.5)
Then (4.1.4) and (4.1.5) imply that

- - L h

oy, Il < 8 lle 9™ en e . (4.1.6)

]

Repeating the inequality for i = O,+++,n, since e

]
O

we obtain

- L _(x -xX_)
“en+ln L elxp—%le g Lo (4.1.7)

which is the same kind of bound as (2.2.2.1) obtained by
controlling the general "local truncation error". Therefore

it only needs to control the local error in (4.1.5).

4.1.1. LOCAL ERROR FOR (k,k)-ORDER MODE

We first analyze the local error for the predicted

value. Equation (3.1.2) implies that

X+l A(xn+l—T)

Up(Xppy) =P = Ixn e (g(r,u (7)) 'Pk,n(T)]dT .

(4.1.1.1)
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Let @ (1) be a polynomial of degree < k such that

k,n

@1 onPnoiv1) = I X j4109n (¥ _j4y)) for 1=1,--0.k,  then

(4.1.1.1) can be split into

X
n+1l A(xn+l-7)

u (x ) =-P = Xx e [g(T:un(T))'-Qk'n(T)]dT

n

X
nt+tl A(x -7)
+ Ix e n+l [9k'n(T)'-Pk'n(T)]dT .

n (4.1.1.2)

The first integral is the error due to approximating

g(T,un(T)) by Ok n(1-). As was proved in Section 2.2.1,

this integral is O(Hk+l) where H 1is the maximum step

size considered. The second integral is the error due to

inaccurate values vy Notice that

n-i+1°

X
n+1l A(xn+l-7)

“j e [Ok'n(T)-Pk’n(T)]dTH =

x
n
k
= lhney T 0 1900 50000, (3000 = 900 500 0¥n 40
(4.1.1.3)
1 A(l-a)h
_ n+1l
where &, . = JO e 4;(x +ah_  ,)da and
k X=X/ i1
1.(x) = 0 2 ~ for i =1,+++,k. Let the
j=1 “n-i+l1 "n-j+1
j#i
ratios of successive step sizes be bounded, with the condition
k
on A, it can be shown [28] that a = X “éki“ is uniformly
i=1
bounded. In this case (4.1.1.3) 1is bounded by
k
HaLg ;El N, (% _i41) = ¥p_jepll- To get an estimate on this

summation, consider the variational equation to (4.1.1), i.e.,
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v’ (x) = [A+i9i-’;—'l}dx—”]wx); Vix_) = I . (4.1.1.4)

It is known that (4.1.1.4) has the solution

v(x) = 2x{x.2z) (4.1.1.5)
z=y(xn)

where vy(x,z) 1is the solution to (4.1.1) with initial value

y(xn) = z. Thus

u_ G,y ) =y (x,y(x ) +V(x) (y, -y(x)) +o(ly, -y(x )% .

(4.1.1.6)
k+1 .
Recall that yn-y(xn) = O(H ) by Theorem 2.2 in
section 2.2.2. If we assume y(xn_i+1)--yn_i+l =
y(xn)-yni-O(Hk+2), then, since V(x) = I+O0O(H), it
follows that
a k+2
un(xn_i+l)--yn_i+l = O(H ) (4.1.1.7)
and
_ k+1
un(xn+l)--Pn+l = O(H ) . (4.1.1.8).

We now analyze the local error for the corrected value.

Let yn+l(k) denote the result of correcting the predicted

value (k) = P of order k with a correction of

Pn+l
the same order. Let Ok n+l('r) be the polynomial of degree < k

n+1l

such that 9k,n+1(x ) = g(x (x )) for

n-i+1 n-i+1'%n‘*n-i+1

i=0,+r+,k-1. Then
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u (k)

n(xn+l)"yn+l

X
n+l A(xn+

S 17" (g (rou, (1)) - Py (7)]dr

X
n
Xn+l A(x -T)
= e ™I iglr,u (1)) =& . (r)]dr
xn
X
n+l A(x -T)
. [ e D+l [Okn_'_l(q-)-P;n(f)]d'r. (4.1.1.9)
X ' !
n

1

As in (4.1.1.2), the first integral is O(Hk+ ). The second

integral is bounded by

k-1

*
IPpe1 i§1 Sei (90X gy v (X 500)) =9 _5090¥p 50

+ ||h (x

*
n+1 kol (Xnyq ¥y (Xnpg)) -9 (X g P,y )]

x k-l
< Ha L {i‘/_;,l \\un(xn_i+l) 'yn—i+1” + llun(xn+l) - Pn+1” Jo (4.1.1.10)

By (4.1.1.7) and (4.1.1.8), we see that the second term on

2

(4.1.1.9) is O(Hk+ ). And hence,

_ k+1
un(xn+l)-yn+l(k) = O(H ) . (4.1.1.11)
By the same argument, we may show that
_ k+2
un(xn+l)"yn+1 = O(H ) . (4.1.1.12)

Define



1 (k) = un(x k) , (4.1.1.13)

Cn+l n+l) = Yne1l

then

(k) = (k)

n+1 un(xn+l)"yn+1

(k)i—un(x

Ynel “¥n+1 n+l)"yn+1

Hk+2

= Ypep " Yy (k) +O(HTT)

k) . (4.1.1.14)

Yn+el ~ Yn+1l

The importance of the estimate (4.1.1.14) is that the value

yn+l(k) can be readily obtained from Pt1r In fact, from
*
the definitions of Pk,n(T) and P;+1,n(T)’ we see that
*
Pk+1,n(x)
-— LI ) - p LN
- Pk,n(x)‘+(x-xn) (X=X k1) 9 [Xppq Xn-k+1]
—-— * e o o P e o o
- Pk,n(x)-b(x—xn+l) (x-xn_k+2)g [xn+l' 'xn—k+l]
(4.1.1.15)
It follows that
*
Pk,n(x)
= P p(¥)+ (x=x )ee e (X=X o) (K 1% nke1)
p e o o
9 [xn+1' 'xn-k+l]
P
Py (1)
= Pk'n(x)4-(shn+l) (Shn+1*'wk-2(n))¢k(n+l)wl(n+l)'"'¢k(n+l)

P
= Pk,n(x)+ck,n(s)°pk+l(n+l) . : (4.1.1.16)
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This implies

n+l(k) = P +1 hn+l x,1 mk+l(n+l) . (4.1.1.17)

Together with (3.1.25), we obtain the (k,k)-order error

estimate

P
len+l(k) ~ hn_,_l(wk_'_l'l-wk'l)tpk+l(n+l) . (4.1.1.18)

4.1.2. LOCAL ERROR FOR LOWER ORDER MODE

By (4.1.1.11), the local error resulting from a
PECE mode with both predictor Pn+l(k-1) and corrector

yn+l(k—l) of order k-1 is

le , (k=1) = u_(x_,,) -y, (k-1) = o(H") . (4.1.2.1)
Thus, we may write
n+l(k 1) = un(xn+l) n+1(k 1)
= yn+l(k)"yn+l(k_l)4'un(xn+l)"Yn+l(k)
= v, 1(K) -y (k-1) + o(H*])
~ Ynpe1(K) -y q(k-1) . (4.1.2.2)

The value yn+l(k-l) cannot be obtained as cheaply as

n+l(k) because



41

Ahn+l k-2
yn+l(k_l) =€ Yn* Bnta ;§1 Qk-l,ign-i+l
iy X
M hn+l§k-l,og(xn+l’Pn+l( -1)) (4.1.2.3)
where g(xn+l,Pn+l(k-l)) is not readily known. Define
Ah k-2
= _ n+l *
Ypep(k-1) = e Ya*Paer Z %k-1,i In-isl
*
* Doyl %k-1,0 9Fne1Prer) (4.1.2.4)
From (3.1.23), we have
Ah k-1
_ n+1l *
Ph+1(k-l) = e yn-!-hn+1 2 Wi ¢i(n) , (4.1.2.5)
and, similar to (3.1.25),
- _ P
yn+l(k-l) = Pn+l(k-l)+hn+l Wi 1,1 wk(n+l) (4.1.2.6)
It follows from (3.2.3) that
Ah k-1
_ - n+1 < P
yn+l(k-l)-e yn+hn+1 521 (wi’l-wi_l'l)wi(n+l). (4.1.2.7)
On the other hand,
¥pep (6=1) =y Ce=D)
*
= Hhék-l,o[g(xn+l'Pn+l)"g(xn+l’Pn+l(k_l))]
*
< Ha LgHPm_l-Pm_l(k-l)H (4.1.2.8)

(xn+l)n4-nun(xn+l

< Ha*Lg{HPm_l-un

)_Pn+1(k-l)“}
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1

Estimate (4.1.1.8) guarantees that (4.1.2.8) is O(Hk+ ).

Thus (4.1.2.2) can be modified as

le,,(k-1) = y_, (k) -y, (k=1) + o(s*"1)
= yn+l(k)'-§h+l(k-l)-+§h+l(k-l)
-y, (k-1) + ot
= v, (k) =¥, (k-1) + o ()
~ Yo (K) -§n+l(k-1) . (4.1.2.9)

By (4.1.1.17) and (4.1.2.6), we obtain the (k-1,k-1)-order

error estimate

~ _ P
le 1 (k=1) = h o (w j-w ) q)e(n+l) . (4.1.2.10)

By the same argument, we may obtain the (k-2,k-2)-order

error estimate

P

4.1.3. LOCAL ERROR FOR (k+1,k+1)-ORDER MODE

The procedure described in the last section fails

for the estimate

le  ,(k+l) = u ) =¥, (k+1) (4.1.3.1)

n(xn+1
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because there is no dominant term in this case. That is,

2

O(Hk+ ) 1is of the same order as

2

un(xn+l)"yn+l =

(k+1) = O(Hk+ ). If we were to take a step

un(xn+1)"yn+l

with a (k+1,k+2)-order mode, then (4.1.1.18) implies that

3

(

len+l(k+1) = h ). (4.1.3.2)

P k+
)¢k+2(n+l)-+0(H

n+1 'Yk+2,1 %k+1,1

For convenience, we assume that a constant step size

has been used. Then

Plrz (1) = TG 0B (kH1)
kg} m k+1
= g(x P (k+1)) + (-1) g
n+l’ " n+l m=1 n-m+1l m
= k+1
= 91 Py (KHL)) = g(x g0y g) + 0 In+1
_ ok+1 k+2
=v gn+l4'o(H )
= 9y p(0+1) -y, | (n) + O(H2) (4.1.3.3)
Here we have used the fact that Pn(k+l)"yn+l = O(Hk+2)

from (4.1.1.8). We thus obtain the (k+1,k+1l)-order

error estimate

lenpy Url) =hp (o 17000, 1) By (L) =0y (0)) 0 (4.1.3.4)

Notice that it is necessary to know Wiepn 17 wk+l(n+l) and

¢k+l(n) in order to apply this estimate.
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4.2, AUTOMATIC CONTROL

Any program embodying a multistep method will have
to invoke techniques in starting, changing step size and
changing order as necessary not only for the purpose of
reducing the cost but also for the consideration of stability.
For an A-stable method, the latter factor probably is less
concerned then the former when dealing with stiff systems.
In this section we follow closely the algorithm adopted
by Shampine and Gordon to develop a step size and order

selection mechanism.

4.2.1. ACCEPTION CRITERION

Let € > O be given. When the step from X to
el has been calculated to the stage PE in the mode (3.3.1),

we test the criterion

P
ERR=||le, ) (0| = l[hp g Cogepy gy, ) )0y (D < e (4.2.1.1)

according to (3.2.5) and (4.1.1.18). If this criterion

is satisfied, we accept this step by completing the remaining
CE part in that mode, overwriting the updated wi(n+l)

on the wz(n+1) and determining the step size and order

for the next step. If this test fails, we cut the current
step size in half and restart to predict the value Pn+1'

If there are three consecutive failures, then we reduce

the order to be 1.
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4.2.2. ERROR PREDICTION FOR FIXED STEP SCHEME

Recall that for i > 2,

Wi,1

1 A(l—s)hn

- I e +1

0]
sh sh +h sh +y . (n)
(o) (o) s - (4.2.2.1)
5! P} i-1
If constant step size h 1is used, then
1 1 A(l-s)h
wi'l = m j‘o e S(s+l) e (s+l-2)ds . (4.2.2.2)

This suggests that if the mesh sizes are not wildly different,
neither are these matrices Wy l's. In fact, one can
’

show that

Yx+1,1 " Y%,1

1 A(l—s)hn+l

= e
(o]
( Shhi )(Shn+l+hn) _“(s'hn+l+wk—2(n))((S-l)hn+l)dS
wl(n+l) wz(n+l) wk_l(n+1) ¥y (n+1) :
(4:2.2.3)
. bi(m)
Thus if we assume that hn+l > -5 for every i = 2,---,k,

then

Hmk+1,1'-wk,1ﬂ < Y; (4.2.2.4)
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where Y; is the coefficient for the classical
Adams-Moulton method, and is known to be relatively small.
Therefore, (4.1.1.18) suggests that the error at

X is predicted to be

n+2
P
where we have replaced dl1) (1) -all) (1) b
P k+1,n+1 k,n+1 Y
1 1 .
(+i'n(l)-d£‘;(l). Suppose h = hn+l and we wish to

consider hn+2 = yh with y near 1. For simplicity,
we assume that the preceding steps were all taken with the
same step size vyh. Suppose also that the order k has

been chosen properly so that the k-th order divided difference

is nearly constant. Then

p = “es P e
®py1(n+2) = (yh)(2vh) (kyh)£" [x_ 5. X x42)
k P
:zy%ﬁﬂMdmmlMH) (4.2.2.6)

wl(n+1)---¢i_l(n+1)
for i = 2,°*,k+1. 1In exactly the same context, we may

use the quantity

_ } P
ERK = [ (0, 1 q=wy ()0 (n+D)gy, ; (n+1)] (4.2.2.7)

as the error estimate at Xnel when the preceding steps

were all taken with step size h Notice that the

n+1l°

predicted error at X+ Uusing step size hm_2 = Yhn+1 is
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now given by Yk+l ERK according to (4.2.2.5). Moreover,

the same quantity yk+lERK also estimates the error at X+l

had a step size vh been used. We also use quantities

n+1
_ P
ERKML = |[h, ) (w y-wye_1,1) 0 (0t Dgy (n+1)]
(4.2.2.8)
P

ERKM2 = |l g Cuye 1,170k, 1) ko1 (P Doy g (1)
to estimate the local error at Xne1 and X 42 had the
preceding steps been taken with constant step size hn+l

at orders k-1 and k-2, respectively. Finally, when

the preceding steps are actually taken with constant

step size hn+l' we use
ERKP1 = |le ., (k+1)|
= by (o, 1700 ,1) By (D=9 (D] (4.2.2.9)

as the predicted error at x had the order k+1 been

n+2
used.

4.2.3. ORDER SELECTION

The purpose of order adjustment is to find a
polynomial with degree as low as possible which represents
the nonlinear function g(x,y(x)) locally with a reasonable
accuracy. We adopt the philosophy that the order is changed
only if the predicted error is reduced and there is a trend
in doing so. Therefore the order is lowered only if one of

the following happens:
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(i) k=2 and ERKMl O.5ERK ,
(ii) %X > 2 and max(ERKMl, ERKM2) ¢ ERK ,
(iii) ERKM1 < min(ERK,ERKPl) .,

(iv) There are repeated step failures.
And the order is raised only if one of the following happens:

(i) ERKP1 < ERK .,
(i1i) %X =1 and ERKFl < O.5ERK ,

(iii) The starting phase flag is still on.

4.,2.4. STEP SIZE SELECTION

After the order to be used is selected, we rename

it %k, and the corresponding predicted error at constant

step size, ERK. Then the predicted error at Xn+2 with
step size Yhn+1 is given by yk+lERK. Since it is
desired to have YkH'ERKg €, we select the step size
according to the ratio
1
y = (Q:3e) k+l (4.2.4.1)

ERK '

and

(i) Double the step size if y > 2 ,
(ii) Retain the step size if 1 vy < 2,

(iii) Reduce the step size by a factor

max{0.5, min{0.9,y}}) if y < 1,
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(iv) Halve the step size if there is a failure,

(v) Double the step size if the starting phase

flag is on.

4.2.5. STARTING PHASE

The local error at Xy for order O is given by

lel(O) ~ hwl'lg(xo,yo) . (4.2.5.1)

As suggested from (4.1.1.11]) and (4.1.1.12), we assume

Lel(l) = hzel(o). Then we would choose h such that
2 €
lte, (DI ~ |h wlllg(xo,yo)ll <3 - (4.2.5.2)
But |lw; ;ll < 1, so we choose the starting step size

h = min(h input, % llg(ij,—oyMl/z) . | (4.2.5.3)

The starting phase flag is turned off whenever the appropriate
order and step size are found, which is indicated by the lowering

of order or a step failure,.



5. PROGRAMMING FLOWCHARTS

In this chapter we assemble together all pieces
of algorithms mentioned in previous sections to give a
general overview of this nonlinear method. The organization

is composed of four blocks which are presented in terms of

flowcharts.

(9]
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5.2. BLOCK 2 -- PREDICTION AND ERROR ESTIMATION

| Evaluate predict > Generate
* e
ot(n) Prel vi(n+1)
Generate Evaluate y Advance
ERR, ERK, ERKM1
R (X0 1°Pney) x tox .

yes

L 4

Lower order

5.3. BLOCK 3 -- RESTART OF STEP

Turn off Restore x Count number
starting phase '1(“) 'Y vitml) of failures, iflag

Use optimal
step size

Halve X =1

Step size
too small

step size




5.4 BLOCK 4

:
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-- CORRECTION AND

AUTOMATIC ADJUSTMENT

Lower order
by 1

Transfer
estimated error
as ERK

Q

Reduce
step size

h 4

Evaluate
9(Xpy1¥nep)

Mtor L = 1,....k+1

Update 01(1»1)

Turn off
starting phase

Order lowered

or maxima

Raise order
by 1

Use allowable
step size

Compute

Y1.xe1 * Y2,x41

N

—

Obtain “xe2,1
by working on V




6. NUMERICAL EXAMPLES

Test results from several problems representing
both linear and nonlinear systems of equations are presented
in this chapter. We also give the comparison of our
algorithm NLMSUB with Gear's DIFSUB or Lawson's IRKSUB.
It should be emphasized that the principal objective of
these tests is to confirm the effectiveness of this non-
linear method, rather than to make the detailed comparison
of available method, although several results do show some

significant advantages.

6.1. HOMOGENEOUS LINEAR SYSTEM WITH COMPLEX EIGENVALUES [9]

Problem:
— - — -
"1' l' O, O l
-100, -1, 0, 0 (o]
y' = y: y(0) =
o, o, -100, 1 1
L o, o, -10000, -100 | L O

Exact Solution:

(e~ cos (10x) 7
-10e ®sin(10x)

yix) = e 19%% 05 (100x)
| ~100e"10%%5in(100x)] .

54
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Test Parameters:

Local Error Tolerance eps = 107 .
Time Interval x € [0,20]
Eigenvalues:
-1+10i, -100 + 1001 .
Test Results:
+ +
DIFSUB IRKSUB NLMSUB
*
MAX 5.80 5.62 12.73
STEPS 1488 404 11
FNS 3839 4594 23
JACOB 133 56 (o]
INV 133 168 2
PADE 0] (0] 1l
TIME 1.222 1.287 0.060#

Notations:
+ These data were picked up from the reference.

* These maximum errors were measured by

-log ./2 [yi(x)-yi]2

£ This execution was done on CYBER 750 in seconds.

Remarks :

This problem is desigend to assess the effect on the
performance of a method when the eigenvalue forms a rather

large angle with the negative x-axis. Our scheme is
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extremely efficient on this type of problem because of the
stability of diagonal Padé approximations. Notice that

no Jacobian evaluation is needed for this nonlinear method.

6.2. NONHOMOGENEOUS LINEAR SYSTEM WITH REAL EIGENVALUES [20]

Problem:
-4498, -599%96 0.006 - x
y, = Y + H
2248.5, 2997 -0.503 + 3x
1 25498
y(0) = 3555
-164G9

Exact Solution:

-X e-1500x+_l7998-1499lx

-2e T +7 1500
y(x) = .
-X -1500x 13499-1124.5x
l.5¢ ™ -3.5e - 1500
Test Parameter:
Local Error Tolerance eps = 1077,
Time Interval x € [0,25]

Eigenvalues:

-1, -1500
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Test Results:

DIFSUB" IRKSUB' NLMSUB |
MAX 6.42 6.54 6.73"
AVE 7.73 7.70 7.09"
MIN 9.82 11.99 8.56"
STEPS 235 104 16
FNS 539 592 33
JACOB 23 23 0
PADE 0 0 1
TIME 5.26 4.21 o.ost

Remarks :

This problem fits exactly into our model and hence
we expect accurate numerical outputs. The step control
seemed to allow the step sizes to be doubled all the way.
In fact, the step size allowable from x = 25.03 to the
next point was nearly 25. This is an optimistic indication

that even larger step sizes can be used as the time goes on.
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6.3. NONHOMOGENEOUS LINEAR SYSTEM WITH COMPLEX EIGENVALUES [20]

Problem:
(o, 1, 0, 0 (%% 4+ 2x ) (1)
-1, o, 0, ol o x2 - 2x 0
y'=1U Uy+U i y(o) =
0, 0, -100, -900 -800x+1 o
| 0, 0, 900, -100 | -1000x-1 | L1 ]
~ =
-l' l’ l' l
l l' -l' l, 1
where U = 3
1' l' "‘l, l
1, 1, 1, -1 ]

Exact Solution:

Csin X + x° 7
cos X - x2
y(x) =0 _
e 100x cos (900x) + x
he-lOOX sin(900x) - x .
Test Parameters:
Local Error Tolerance eps = 10077,
Time Interval x € [0,25]

Eigenvalues:

-100 + 900i, i



59

Test Results:

DIFSUB' IRKSUB" NLMSUB
MAX 4.55 4.22 6.75"
AVE 6.77 6.44 6.86"
MIN 9.32 8.37 7.31"
STEPS 2982 532 25
FNS 8332 2986 51
JACOB 37 a1 0
PADE 0 0 1
TIME 106.03 41.88 .19f

Remarks:

This problem is characterized by the large angles
formed by its eigenvalues with the negative real axis.
Gear's method has some difficulties in this situation,
Lawson's method works better. The matrix U is used
to couple all the components and hence makes the problem
complicated. The computation in our algorithm actually
terminated at x = 39.21 instead of 25 whereas the
next allowable step size was as big as 39. So conceivably
the above data is to be even more prominent if we take time
interval from O to 80. Notice that the numerical
difficulty for a stiff problem usually appears in the
steady-state part, i.e. when x 1is large. So at least
for this particular problem, the nonlinear method is more

efficient in the long run.
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6.4. NONHOMOGENEOUS LINEAR SYSTEM WITH VARIABLE

COEFFICIENTS AND REAL NON-CONSTANT EIGENVALUES [20]

Problem:
-1-0.01 8in(0.01x), o, o, 0]
0, -100-sinx , o, 0
y'=U Uy
o, o, -1000+cos x , (o]
L o, 0, o, -10 |
(3+0.03 sin(0.01x) (-1 )
200+2 sin x (0]
+U : Y(O) =
-1000 + cos x 2+e
L—ZO _ b3+ed .

Exact Solution:

e-x+cos(0.01x)+3

e—100x+cos b 4 +2

y(x) =U
-1000x+sin x
e -1
-10x-2 B
L e
Test Parameter:
Local Error Tolerance eps = 1077,
Time Interval x € [0,100] .

Eigenvalues:

-1-0.01 sin(0,01x), -100-sin x, -1000+cos x, -10 .
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~ =
-1, o, 0o, (0]
0, -100, o, (0]
' T
Y Uy
o, 0, -1000, (0]
. ol OI O’ -10_‘

( - _ =)
-0.01sin(0.01x), 0, 0, 0 3+40.03 sin (0.01x)
0, -sin x, O, 0 T 200+2 sin x

*‘U< U'y+ ?
0, 0, cos x, O -1000 + cos x
L o, o, o, O] | -20 J
Test Results:
+ +
DIFSUB IRKSUB NLMSUB
*
MAX 5.83 4.82 6.04
AVE 8.02 7.00 6.34"
*
MIN 10.11 8.36 12.06
STEPS 323 154 177
FNS 774 867 155
JACOB 31 44 (0]
PADE (0] (0] 1
TIME 16.54 26 .47 39#
Remarks:

Being a variable coefficient linear system, this

problem has real non-constant eigenvalues whose values are

in the neighborhood of

-1,

-10,

-100 and

-1000. We have
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to change its form to fit into our model problem (1.2) in
the program setting and thus make g(x,y(x)) depend on vy.
Notice that 75 steps were used for this problem over the
interval [0,36.6] 1in contrast to 25 steps over [0,39.2]
for the previous problem. The reason that much greater
amount of work was needed is probably due to the poor
representation of the severely nonlinear function g(x,y(x))
by polynomial P(x). There is some numerical evidence
supporting this conjecture: in the previous problem the
optimal order used was k = 3 (average k = 2.5) while

in this problem the order used was as high as k = 6
(average k = 3.7):; once the nonlinear part died out
(approximately when x > 20) so that g(x,y(x)) became
constant, the order dropped abruptly to k = 1 and the

step size began to grow dramatically.

6.5. NONLINEAR SYSTEM WITH COUPLING COMPONENTS [9]

6.5.1., COUPLING FROM TRANSIENT COMPONENTS TO SMOOTH COMPONENTS

Problem:
- 9 ru2. 2, 20 o
-1, o, o, (0] Y2+Y3+Y4 1
o, -10, O, 0 10(y§+y2) 1
y'= y + > i y(0) =
o, o, -40, o) 40 yy 1
| o, o, 0, -100 | 2 _ 1] .
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Test Parameters:

Local Error Tolerance eps = 10

Time Interval x € [0,20]

Eigenvalues:

-1, -10, -40, -100

Test Results:

DIFSUB' IRKSUB' NLMSUB
MAX 6.00 6.00 ?
STEPS 221 40 104
FNS 529 450 209
JACOB 22 31 o)
INV 22 93 2
PADE 0 0 1
TIME 0.178 0.314 0.351F
Notation:

? No error report because the close form of

exact solution is not known.

Remarks:

This problem has a nonlinear coupling from the transient
components to the smooth components and hence causes the high
nonlinearity on the function g(x,y(x)). The order used
was as high as k = 9

(average k = 4.68). But as

in the previous problem, once the transient solutions became
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stabilized, the order dropped to k = 1 and the step

size began to be large.

6.5.2. COUPLING FROM SMOOTH COMPONENTS TO TRANSIENT COMPONENTS

Problem:
(-1, o, o, 0] (2 h (1]
2
. » - ’ O, 0
Yy = ° 10 y + Byl ; y(0) = 1
o, O, =40, (0] 4B(y§4—y§) 1
2 2 2
L0, 0, o0, -100 | LIOB(Y1+y2+y3)d [ 1
where B = 20 .
Test Paramters:
Local Error Tolerance eps = 1078 ,
Time Interval x € [0,20] .

Eigenvalues:

—l' -lol —40, —100 -

Test Results:

pirsuBt IRksuB*Y | NLMsUB

MAX 5.31 5.40 ?

STEPS 650 1575 286
FNS 1839 18805 322
JACOB 66 319 o)
INV 66 957 37
PADE 0 0 36
TIME 0.597 6.171 1.776
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Remarks :

This problem has a very strong nonlinear coupling
from the smooth components to the transient components
and hence causes great difficulty. In fact, this coupling
causes the transient components to have very large positive
derivative at the very beginning, but eventually this
tendency is diminshed and the order is lowered when the
smooth components cannot match up the rapid decay of the
transient components. A nearly periodic reduction on
step sizes results in frequent calls on the Pade approximations.
This phenomenon is very unusual and is not known to us

what causes this to happen.

6.6. NONLINEAR SYSTEM WITH REAL EIGENVALUES [9]

Problem:
-0.2, 0.2, o 0] 0
I —
y = 10, -60, 0.125| y +| 0.125 YY5 y(0) = o}
o, o, -1 y3+-1 0
Test Parameter:
Local Error Tolerance eps = 1076 ,
Time interval x € [0,400] .

Eigenvalues:

0o, -0.167 » -0.012, -60 =+ -11
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Test Results:

pDIFSuBt IRKSUB' NLMS UB
MAX 6.10 4.51 ?
STEPS 186 508 3622
FNS 630 7918 73
JACOB 46 532 0
INV 46 1596 2
PADE o 0 1
TIME 0.149 3.200 o0.105%

Notation:

?? The execution was actually done to the

point x = 147.5 only.

Remark:

The execution had been carried out with step sizes
as large as 8.19 very smoothly to the point x = 147.5
when there was an indication to reduce the step size by

a factor vy = 0.9. Then the execution was terminated

Ah
because of an overflow in the computation of e NeW  There

are two reasons for this fact: the denominator in the Pade

Ah
approximation for e new s nearly singular and the

Ah
matrix e ¥ has a “bump" phase [27] near hnew‘ We

believe a careful programming should overcome these difficulties.
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6.7. NONLINEAR SYSTEM WITH REAL MIXED TYPE EIGENVALUES [11]

Problem:
- = r 2*
-1000, o, o, (0] z1
o, -800, o, I 22
y'=U U'y+U 5 H
o, o , 10, (0] 23
2
L o, o, o, -0.00£ L_24_‘
-1
y(0) = where z = Uy .
-1
-1 ]
Exact Solution:
~ 1000 i
1-1001e 1000
800
1-801e200%
y(x) = U
-10
l+9e-lox
0.001
1-0.001e°+ 901 |
Test Parameters:
Local Error Tolerance eps = 1078,

Time Interval x € [0,100]



Eigenvalues:
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-1000 + — 299 | _goo + —LE90__
1-100le 1-801e° "%
lO-—'—Zgﬁi B -0.001 + 0'0002 SoTx
1+9%e 1-1.001le™"
Program Setting:
[-1000, o, o, o ”zi I
o, -800, O, o | zg
y'=U Uy + U| 3
0] ’ o, -lop o z_ + 20z
3 3
o, o, 0, -0.001 z2
— - - by J
Test Results:
[ N 1 - [] N ] 1
otFsus 'owusus || orrsus | wosw || orrsus ! omosuis || oresus ! nusus otFsue :kmm
1 ] 1] ) [}
S .102x1071). 1074x10"1 || . 1049x100 1. 10225100 ||.1012x10% 1.1043x10% ||.1001x10% |.1088x10? ||.1028x10% |.1009x103
] 1 | ] )
Steps 7 129 110 . 168 115 216 e 252 a1
., : : : : :
Error. |19.1001078) 36831076 | 2. 667x1076  1.470x10°5 || 2. 2081075 1. 881x10°5 || 2.870x10°6 1. 8624107 2.984x1075 |6. s68x10"7
] ] ] ] [}
Evaluations ||179 ) %2 ™ 8 1233 s23 1291 616 |28
' ' | ] '
taverstons ||7 2 12 3 18 8 P2 9 2 110
] ! 1 1 ]
] ] ] ] [}
Agg;" 14632101 3.703x107* || 9.538x10%1 2. 377x1073 | 6.028x107319.070x10"3 || #. 635x1072] 7. 26x10°2 4.057;10“;1.732:‘10‘1
[ ] 1 ]
Pade : : : : :
Calling :l :2 :7 |3 :9

7 1t takes .98 seconds execution time on CYSER 750.

# Step size has been restrictsd not to be greater than 1.5.
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Remarks :

In the initial state of integration, the problem
is a mixed type nonlinear stiff system because of the
presence of a poéitive eigenvalues. But our algorithm still

seems to work satisfactorily. When x > 24, the under-
Ah

flow of the computer makes it impossible to recompute e new
through the Padé approximation in case eAhOld is obtained
by squaring and then hnew is obtained by reduction but
Ahnew is too small to be the argument for exponentials.

To monitor this we may either constrain the maximal allowable
step size or reduce the order P used in Padé approximation.
In either case this does not contradict the A-stability

since numerical results show a strong tendency to increase

the step size.



70

6.8. NONLINEAR SYSTEM WITH COMPLEX MIXED TYPE EIGENVALUES [17]

Problem:
-Bl, Bz. 0 0 5
-B ’ -B N o . o] z2.2
y'=IJ 2 1 UTy4-U 122 .
o, o, -33, (0] z3
2
LO ’ o, o, -Bl _ 24 i
P-Z-w
o]
y(0) = U where 2z = Uy .
-1
L -1 ]

Exact Solution:

2 2
wy +w,

2(Bzw14-61w2)

w24.w2
z(x) = 1 2 and y(x) = Uz(x)
Ps
1-(1+33)eﬁ3x
B
1-(1+sl)eB4x
B,x
where wy = l-e ~ [(la-Bl)cos Bzx--B2 sin Bzx]
le
w, = e [Bz cos Bzx+-(l+-Bl)sin Bzx]
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Eigenvalues:

z,~ Bl + [zz-Bz\l , 223-33, 224--B4 .
Test Parameters:

Local Error Tolerance eps = 1074

Time Interval x € [0,50]

B3 = 100, 34 = 0.1, Bl and Bz are varied.
Test Results:

BZ= BZ = 100 BZ = 100 Bz = 10

AVE 2.84 3.45 3.70 5.35!
STEPS 63 809 96 1866
FNS 127 1619 195 3933
INV 4 3 6 200
PADE 3 2 5 199
TIME 0.440 2.711 0.667 17.942
Notation:

! This work was done with local error tolerance

eps = 107°.

Remarks :

This set of problems will have different special

characters depending on different values of Bl and By-

When B

= -10 and BZ = 0, all eigenvalues are real

1
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numbers because zz(x) = 0. But there are positive values
at the transient region, so this problem is similar

to that in the proceding section. When Bl =1 and

32 = 100, all eigenvalues have negative real parts but

the first two form very large angles (nearly 88°) with

the negative x-axis. The accuracy returned is satisfactory
but the step sizes used are relatively small (average

2

6.2x10 °). When By = 10 and B, = 100, we have similar

situations (with angles nearly 84°) but the step sizes

used are relatively large (average 5.2 xlO_l

). The reason
for this contrast is not clear. When Bl = -10 and

Bz = 10, this is a mixed type problem with eigenvalues
having positive real part in the beginning and then

turning negative -~ eventually. The performance is

very poor. Particularly, there are frequent reductions

on the step sizes whereas the "global error" implies that
larger step sizes could be used. Probably this is an

indication that the error control mechanism built in

Chapter 4 is not perfect.



7. CONCLUSION AND RECOMMENDATION

The numerical examples in the preceding chapter
have demonstrated the workability of this nonlinear multistep
method which we have developed to solve stiff initial value
problems. Its efficiency can be certainly improved with
more careful programming work. We draw the following

conclusion from our investigation:

The formulas derived in Section 2.1 are somewhat cumber-
some to apply to practical situations. But since the
method is endowed with the A-stability property, the feature
of varying step sizes to avoid instability is not important.
Therefore in those cases where memory storage is limited,

this fixed step scheme can be used.

The numerical techniques described in Section 2.3.2
deserve further study because integrals involving
matrix exponentials occur frequently in optimal linear

regulator problems.

As was mentioned in Chapter 3, when A = O, most of
the quantities developed can be reduced to scalars which
are used by Shampine and Gordon in their famous subroutine
STEP. Because of the closeness, it is plausible that

these two codes can be combined with a built-in, stiff on

73
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and non-stiff off, automatic switch for general problems.
To accomplish this goal the primary work would be the
detection of stiffness which, unfortunately, is still on

a heuristic basis and needs more exploration.

Because of the presence of large Lipschitz constants
and the use of large step sizes, the error estimates
derived in Chapter 4 do not work completely satisfactorily.
We believe that more realistic error estimates would give
faster convergence. The global error analysis is still a

wide open problem.

Besides the weakness of demanding lots of
memory , this nonlinear method has not yet been completely
developed to handle the case when A 1is time dependent.
Although at the current stage a periodic updating mechanism,
such as the one suggested in (1.4), can be used, we wish
to establish an automatic one in the algorithm so that a

much larger class of problem can be handled.

Finally, more investigation needs to be done to explain
the stumbling behaviors of this nonlinear method when

applied to problems in Section 6.8.
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