

This is to certify that the

dissertation entitled

FORMAL TOTAL SYNTHESES OF

(+)- AND (+)-APHIDICOLIN

presented by

Yu-Hwey Chuang

has been accepted towards fulfillment of the requirements for

Steven P. Tanis

Major professor

Date March 30, 1987

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

FORMAL TOTAL SYNTHESES OF (±) - AND (+) -APHIDICOLIN

Ву

Yu-hwey Chuang

A DISSERTATION

submitted to

Michigan State University
in partial fulfillments of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry
1987

ABSTRACT

FORMAL TOTAL SYNTHESES OF

(\pm) - AND (+) -APHIDICOLIN

by

Yu-hwey Chuang

Formal total syntheses of (\pm) - and (+) -aphidicolin 1, an antiviral substance which is used in the study of DNA replication, have been accomplished (Scheme XVI). The syntheses employ a furan terminated cationic cyclization of (\pm) - or (+) -107, which were prepared by coupling $(\text{Li}_2\text{Cucl}_4)$ the Grignard reagent derived from 3-chloromethylfuran with (\pm) -(79%) or (+) -6,7-epoxy-8-benzyloxygeranyl chloride (75%). Exposure of compound 107 to BF_3 -OEt $_2$ yields (\pm) -108 (66-72%) and (+)-108 (66-72%). Oxidation and selective reduction of the 3-one followed by debenzylation provides (\pm) -85 (78%) and (+)-85 (74%). Alkylation, furan oxidation and double-bond reduction affords (\pm) -18 (67%) and (+)-18 (61%); an advanced intermediate in McMurry's total synthesis of (\pm) -1.

ACKNOWLEDGMENTS

The author wishes to thank Dr. Steven P. Tanis for his patience, support, guidance and friendship throughout this project.

The author also wishes to acknowledge the members of the faculty and staff for their assistance and advice throughout this work.

The author wishes to thank her fellow students for their advice and companionship.

Special thanks to my family for their love and support without which this work would not have been possible.

TABLE OF CONTENTS

		PAGE
1.	LIST OF TABLES	iii
2.	LIST OF FIGURES	iv
3.	LIST OF SCHEMES	v
4.	INTRODUCTION	1
5.	AN APPROACH TO THE SYNTHESES OF (\pm) - AND $(+)$ -	
	APHIDICOLIN 1 VIA FURAN TERMINATED CATIONIC	
	CYCLIZATION	17
6.	RESULTS AND DISCUSSION	20
7.	THE FORMAL TOTAL SYNTHESIS OF (+)-APHIDICOLIN	39
8.	EXPERIMENTAL	58
9.	BIBLIOGRAPHY	91

LIST OF TABLES

	PAGE
Table 1 Saponification of 104	31
Table 2 Cationic Cyclization of 107	33
Table 3 L-Selectride Reduction of 111 in the presence	
of metal salts	37

LIST OF FIGURES

			PAGE
Figure	1	Furan Equivalencies	18
Figure	2	Cationic Cyclization Intermediates of 83 and	
		107	33
Figure	3	Preparation of 114 and 115	41
Figure	4	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of 115	43
Figure	5 a	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of (\pm) -85	44
Figure	5b	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of (\pm) -85	
		with First Addition of Eu(hfpc) ₃	45
Figure	5c	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of (\pm) -85	
		with Second Addition of Eu(hfpc) 3	46
Figure	5d	1 H-NMR (250 MHz, CDCl ₃) Spectrum of (+)-85	
		with Zero to Second Addition of Eu(hfpc) 3	47
Figure	5e	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of (+)-85	
		with Third to Sixth Addition of Eu(hfpc) 3	48
Figure	6	Preparation of 116 and 117	49
Figure	7	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of a mixture	
		of 118 and 119	51
Figure	8	Extended Newman Projection of 118 and 119	52
Figure	9	¹ H-NMR (250 MHz, CDCl ₃) Spectrum of 119	53
Figure	10	Extended Newman Projection of 120 and 121	54

LIST OF SCHEMES

			PAGE
Scheme	I	Trost's synthesis of (\pm) -1	5
Scheme	II	McMurry's synthesis of $(\pm)-1$	7
Scheme	III	Corey's synthesis of $(\pm)-1$	9
Scheme	IV	Ireland's synthesis of $(\pm)-1$	12
Scheme	v	van Tamelen's synthesis of (\pm) -1	14
Scheme	VI	Marini Bettolo's synthesis of (\pm) -1	16
Scheme	VII	Proposed Retrosynthetic Scheme to 1 and	
		its analog 2	19
Scheme	VIII	Preparation of 84	21
Scheme	IX	Preparation of 86	23
Scheme	x	Preparation of 96	26
Scheme	XI	Preparation of (\pm) -18	27
Scheme	XII	Preparation of 104	30
Scheme	XIII	Preparation of 107	32
Scheme	XIV	Possible Routes to Accomplish Synthesis	
		of 18 from 108	35
Scheme	xv	Preparation of 85	36
Scheme	xvı	Formal Total Synthesis of (-)-18	41
Scheme	XVII	Conversion of 18 to 2	57

Formal total syntheses of (+/-) - and (+) - Aphidicolin

I. INTRODUCTION

Aphidicolin 1, a diterpenoid tetrol produced by the mold Cephalosporium aphidicola Petch¹, has provoked wide interest in recent years owing to its striking biological activity; more than 100 publications have appeared in the last 7 years reporting its use in biochemical studies. For example, aphidicolin shows marked activity against herpes virus, both in vitro and in the rabbit eye^{2,3}. In addition, aphidicolin possesses considerable antitumor activity in the C6 mouse colon and B16 mouse melanosarcoma screens⁴ and has been shown to inhibit the growth of leukemic T- and B-lymphocytes⁵.

$$\begin{array}{c} \text{OH} \\ \text{10} \\$$

Aphidicolin appears to act as a specific reversible inhibitor of DNA α -polymerase $^{6-8}$. Although the reasons for this activity are not clear, molecular models reveal the striking fact that all four of aphidicolin's hydroxyls can very nearly touch the same flat surface, an observation that

may well be connected with the biological activity of the molecule. It appears, however, that not all of the hydroxyl groups are required for activity. Preliminary structure-activity studies have indicated that the nonrigidly held hydroxyl groups at C-17 and C-18 are less important than the rigidly held hydroxyls at C-3 and C-16. Thus, acetylation of the C-17 hydroxyl group causes only a 20% diminution of activity against herpes simplex type 1 virus in human lung cultures, but oxidation of the C-3 hydroxyl to a ketone causes a 97% loss of activity.

On the basis of these data and on measurements made from molecular models, McMurry⁹ has hypothesized that aphidicolin's activity requires the presence of two hydroxyl groups rigidly held on a flat carbon framework at a distance of approximately 6.0 Å. Other hydroxyl groups nearby may also aid in binding but may not be required.

Triol 2 appears from molecular models to be an almost exact duplicate of aphidicolin 1 with respect to the disposition of its three hydroxyl groups. The intramolecular

distance between the hydroxyls at C-3 and C-12 in 2 is identical with the distance between C-3 and C-16 hydroxyls in aphidicolin (6.0 Å), and the extension of hydroxyls below the plane of the carbocyclic skeleton is also similar. McMurry prepared (\pm)-2 and (\pm)-3 and found that triol 2 showed 45% of the activity of aphidicolin in inhibiting in vitro DNA synthesis at a concentration of 0.33 μ g / ml and 3 was found to be inactive as expected. Since the material is racemic, it is possible that the enantiomer of 2 whose absolute stereochemistry corresponds to aphidicolin would exhibit 90% of the activity of 1. This point would have to be verified by synthesis and individual testing of the two enantiomers.

The challenges to synthesis offered by aphidicolin are several. There is, for example, the stereochemical problem presented by the A ring. Although the 3α -hydroxy- 4α -hydroxymethyl- 4β -methyl substitution pattern seems familiar at first glance, it is in fact unique. No other terpenoid natural product possesses this stereochemistry. Another and more severe stereochemical problem is that posed by the spiro center, C-9. In addition this spiro center, is also adjacent to another quaternary carbon, C-10. The presence of these two adjacent quaternary centers makes this region of aphidicolin quite crowded and thus a likely source of trouble during any projected synthesis.

The biological properties mentioned above, together with the unusual structure of aphidicolin, have occasioned much activity among synthetic organic chemists. As a result, several total and formal total syntheses of (+/-)-aphidicolin 1 have been reported 10 , 11 .

For a synthesis of (\pm) -1, some simplification in the target can be accomplished since the ketone 4, which is obtained by degradation of 1, had previously been converted into aphidicolin (eq. 1). Trost 10a has reported a synthesis of (\pm) -4 (Scheme I) from the Wieland-Miescher type ketone 8. Selective ketalization of 5 (79%) followed by a reductive formylation gave a single aldol 7 (68%). Reduction of 3-keto group of the fragile 7 to the 3α alcohol proved troublesome until Trost discovered that the ate complex generated from t-(i-bu) AlH gave the desired 8(99%) nearly BuLi and quantitatively. Hydrolysis afforded 9 (100%) which led to acetonide 10 (92%) after exposure to acetone and p-TsOH. Condensation of the ketone 10 with diphenylsulfonium cyclopropylide 12 under reversible ylide generation conditions followed by silylation gave 11 (56%). Thermal rearrangement of 11 via flash vacuum pyrolysis provided a 2:1 (97%) mixture of epimers of 12 at C-8. To circumvent this unacceptable

Scheme I Trost's synthesis of (\pm) -1

(a) HOCH_CH_OH, TsOH, PhH, reflux, Dean-Stark, 79%. (b) i. Li, NH_3, THF, 0.8 eq. of t-BuOH, -78°C, quench with isoprene and then Et_N, Me_SiCl; ii. CH_Li, ether, RT, and then -78°C, HCHO, 68%. (c) (iBu)_(tBu)AlHLi, hexane, heptane, ether, -78°C, 99%. (d) 3N HCl, THF, RT, 100%. (e) acetone, TsOH, reflux, 92%. (f) i. c-C_H_S*Ph_BF_4, KOH, Me_SO; ii. PhSeSePh, NaBH_4, DME, 60°C; iii. CH_3C[OSIMe_]=NSiMe_3, Et_N, PhH, 60°C, 56%. (g) Flash vacuum pyrolysis at 610°C, 97%. (h) Pd(OAc)_2, CH_2CN, RT, 73%. (i) i. Li, NH_3, THF, 0.8 eq. of t-BuOH; 1i. Me_SiCl, 82%. (j) n-BuLi, HMPA, THF; inverse addition to allyl iodide, 85°C, 35%. (k) i. (CH_3)_CHC(CH_3)_BH_2, diglyme, 0°C, and then NaOH, H_O_2, 45°C, 57%; ii.PCC, NaOAc, CH_Cl_2, RT and then 2% KOH, CH_3OH, RT, 54%. (l) i. DHP, TsOH, CHCl_3, RT; ii. 95% NH_NH_2, KOH, HO(CH_2CH_O)_3H, 140°-220°C, 91%; iii. 0.5% acetone, TSOH, RT, 78%; iv. see (k)ii., 87%.

outcome, the mixture was directly oxidized (Pd(OAc)2, 73%) to the enone 13. Dissolving metal reduction then gave a single enol silyl ether (i. Li, NH₃; ii. Me₃SiCl, 82%) 13 corresponding to the minor product of the initial rearrangement. The correct stereochemistry at C-8 presumably resulting from protonation of the anion to afford an axial C-H bond 13. Inverse quenching of the generated solution into hot (85°C) excess allyl iodide gave 15 (29%) which was converted to 4 (19%) as outlined in Scheme I. synthesis demonstrates the successful application of the cyclopentanone annulation using the cyclopropylide reagent for creating complex molecular architecture; however the overall yield of the 20 step sequence is only 1.06% from the ene-dione 5.

McMurry 10b has reported a concise stereospecific total synthesis of (\pm) -aphidicolin from 6 (Scheme II). Alkylation of 10 with methallyl iodide generated, as expected, 17 (89%) with the desired stereocenter at C-8. Oxidative cleavage afforded dione 18 $(OsO_4$, $NaIO_4$, 86%) and aldol cyclization gave McMurry's crucial intermediate 19 (95%). The original plan for the introduction of the elements of the D-ring called for a conjugate addition to enone 19. However the great degree of steric crowding at the enone β -carbon (C-9) precluded all chances for success. An intramolecular process was much more likely to succeed and was examined as outlined in Scheme II. Reduction of 19 (LAH, 95%) and vinyl ether exchange $(CH_2$ =CHOEt, Hg^{+2} , 90%) provided 20. The Claisen

Scheme II McMurry's synthesis of (\pm) -1

(a) i. CH₂=CHCOCH₂CH₃, pyrrolidine, PhH, 75%; ii. HOCH₂CH₂OH, p-TsOH, benzeze, 80%. (b) i. Li, NH₃, THF and then Me₃SiCl, Et₃N, 97%; ii. Ch₃Li, THF and then CH₂O, 100%; iii. Li(sec-Bu)₃BH, THF. (c) CH₃COCH₃, p-TsOH, CH₂Cl₂, 85%. (d) 1.2 eq. of LICA, THF and then methallyl iodide, 89%. (e) Trace of OsO₄, NaIO₄, H₂O, dioxane, 86%. (f) NaH, Trace of t-amyl alcohol, benzene, reflux, 95%. (g) i. LAH, ether, 95%; ii.CH₃CH₂OCH=CH₂, Hg(OAc)₂, 90%. (h) 0.03% NaO-t-pentyl, toluene, 220°C, 60%. (i) i. LAH, THF, 93%; ii. p-TsCl, pyr., 95%. (j) Na₂Fe(CO)₄, N-methylpiperidone, 30%. (k) i. CH₂=PPh₃; ii. OsO₄, pyr., then NaHSO₃; iii. H₃O⁷, 36%.

rearrangement of 20 was carried out initially in the presence of strong base to yield 21 (60%). Aldehyde 21 was then further elaborated to tosylate 22 (i. LAH, 93%; ii. p-TsOH, 95%). Tosylate 22 was cyclized by Collman's reagent to provide a 55% yield of 1:1 mixture of 4 and 23. The McMurry synthesis concisely constructs the troublesome D-ring, albeit with some regiochemical problems. The sequence described above gives 4 in 15 steps and 4.89% overall yield.

Corey 10c utilized a polyene cyclization to establish the of aphidicolin with the appropriate rings stereochemistry (Scheme III). This strategy very efficiently affords access to the basic carbocyclic skeleton upon which the sterically congested spirocyclic D-ring as well as the Cring must be appended. Condensation of 8-TBDMSO-geranyl bromide with the diamion of methyl acetoacetate afforded β keto ester 25 (90%). Formation of enol phosphate 26 (NaH, (C2H50)2P(0)Cl, no yield reported), followed by mercury II induced cyclization gave 27 after treatment with aqueous NaCl (60%). Ring A and B were thus established in a single step with the proper relative stereochemistry at C-4, C-5, and C-10. The requisite C-3-oxygen was introduced by free radical oxygenation (NaBH $_A$, O $_2$); and the streochemistry was corrected by oxidation PDC, deprotection (Bu,NF) and L-selectride reduction, giving acetal 28 (52%) after protection (tBuCHO, H⁺). The addition of the spiro D-ring to keto aldehyde 29 was accomplished by the Michael addition to gaseous methyl vinyl ketone (no yield reported) followed by a Robinson

Scheme III Corey's synthesis of (\pm) -1

(a) i. MsCl, Et₃N, -20°C; LiBr; ii. MeLi, Na, methyl acetoacetate, THF, 0°C, 90%. (b) NaH, (C₂H₅O)₂P(O)Cl, 0°C. (c) Hg(OTFA)₂, CH₃NO₂, 0°C; aq. NaCl, 60%. (d) i. (HOCH₂)₂, p-TsOH, 90%; ii. NaBH₄, O₂, DMF; iii. PDC; iv. n-Bu₄NF v. L-selectride; vi. (CH₃)₃CHO, TsOH, 58%. (e) i. LAH; ii. PCC; iii. acetone-H₂O-HClO₄, 90%. (f) THF-tBuOH, DBU, K₂CO₃, MVK(gas). (g) pyrrolidinium acetate. (h) i. (Me₃SiSCH₂)₂CH₂, ZnI₂, 88%; ii. Me₃SiCN, ZnI₂, 97%; iii. DIBAL, 75%. (1) Me₃SiLi, HMPA, -35°C, 80%. (j) LDA (3 eq.), HMPA; H⁷, 80%. (k) i. Na₂BH₄, ethanol, THF, -20°C; ii. tBuMe₂SiCl, DMAP, Et₃N, 90%; iii. 1,3-diiodo-5,5-dimethyl hydantoin, 86%; iv. H₂, Pd/C; v. Bu₄NF; vi. p-TsCl, DMAP, Et₃N. (l) LiN(tBu)₂, 90%. (m) 1-ethoxyethoxymethyllithium.

spiroannulation to give 31 (no yield reported). Selective thioketalization of conjugated ketone ((Me₃SiSCH₂-)₂, ZnI₂, 88%) 14 followed by the conversion of remaining ketone to the corresponding trimetylsilyl cyanohydrin (Me₃SiCN, 97%) 15 and reduction of the cyano with diisobutylaluminum hydride gave aldehyde 32 (75%). Reaction of 32 with trimethylsilyllithium in HMPA afforded 33 (80%) which was treated with lithium diisopropylamide and HMPA followed by quenching with aqueous acid giving 34 (80%). This method which is a variant of the Peterson olefination technique might be useful as a one carbon homologation protocol for those hindered systems plaqued by enolization. Reduction of the aldehyde 34 (NaBH,), tosylation of the primary alcohol, dithioketalization; and hydrogenation afforded keto-tosylate 35 (70%). Intramolecular alkylation of 35 to form the aphidicolin ring system completely dependant upon reaction conditions; in the event the use of kinetically controlled enolate formation with highly hindered bases at low temperatures favored the desired alkylation at C-12. Sodium methoxide in methanol gave exclusively alkylation at C-15. Reaction of 36 with 1-ethoxyethoxymethyllithium afforded a 1 1 mixture of (\pm) - 1 and epimer at C-16 with no yield The Corey sequence, although reported. effeciently constructing the basic A-, B-ring system, suffers from excessive length in the introduction of rings C and D. The sequence described above gives 1 in 27 steps from 24 in an overall yield of 6.5%, which does not take into account a number of crucial steps for which yields are not reported.

Ireland 10d reported a stereoselective total synthesis of (\pm) -aphidicolin from 37 (Scheme IV). Birch reduction of 37 gave 38 (52%). Methylation of 38 led exclusively to the desired angularly methylated ketone which was converted to 41 as outlined in Scheme IV. Photooxygenation of 41 gave 42 (sens., AcOEt, O2, hy, 81%). The hetero-Diels-Alder reaction of 42 with the methyl(trimethylsilyl)methyl acrylate provided 43 (69%) which was further elaborated to 44 (95%). Claisen rearrangement of 44 gave 45 (84%) thus constructing the 6 membered D-ring. The diazo ketone 46, formed through the oximino ketone, was photolyzed in the absence of added nucleophiles, and in an inert solvent medium to afford 48 (51%) as the sole product after cyclobutanone rearrangement on silica gel. Direct removal of the unwanted C-13 carbonyl was not successful because of the epimerization of C-8 center. Therefore, carbonyl group was reduced (99%) and protected by the bulky t-butyldimethylsilyl group (95%) which also blocked the α -face of the molecule. Osmium tetroxide hydroxylation of the olefin 49 was now quite efficient and gave a single diol, and then acetonide 50 (92%), as the only product. Removal of the C-13 hydroxyl function through reduction of its derived phosphorodiamidate was not complicated by overreduction; then ketal exchange provided 51 (82%). Enolization and then trimethylsilyl chloride trapping led virtually exclusively to the C-3,C-4-silyl enol ether which was converted to 52 (90%) by procedure of Saegusa and

<u>Scheme IV</u> Ireland's synthesis of (\pm) -1

(a) i. Na, EtOH, NH₃-Et₂O, 52%; ii. Al(OiPr)₃, CH₂COCH₃, toluene. (b) i. KNH₂, NH₃-Et₂O, MeI; ii. CH₂Li, Et₂O. (c) i. oxalic acid, H₂O-MeOH, 90%; ii. Li, NH₃, Et₂O, 85%. (d) i. Li, NH₃, Et₂O, 66%; ii. (CH₂CH₂OH)₂, p-TSOH, Benzene, reflux, 85%. (e) hematoporphrin dichloride, AcOEt, O₂, hv, 81%. (f) CH₂=C(CO₂CH₃)CH₂SiMe₃, 125°C, sealed tube, hydroquinone, 69%. (g) i. DIBAL, Et₂O, -78°C; ii. Ph₃P=CH₂, THF, 95%. (h) 150°C, 7.5 h, 84%. (i) i. n-BuLi, i-AmONO, THF, 85%; ii. NH₂Cl, THF. (j) hv, Et₂O, -73°-0°C. (k) SiO₂, gel, pet. ether/ether, 60%. (l) i. DIBAL, THF, -78°C, 99%; ii. TBSCl, imidazole, DMF, 95%. (m) i. OSO₄, pyr.; NaHSO₃; ii. CH₃C(OCH₃)₂CH₃, p-TSOH-H₂O; iii. TBAF, THF, 92%. (n) i. n-BuLi, DME/TMEDA, Me₂NPOCl₂; Me₂NH; ii. MeNH₂, THF, t-BuOH, Li, NH₄Cl, 86%; iiî. pyf.H OTS, acetone, 95%. (o) i. KH, THF; TMSCl, Et₃N; ii. Pd(OAc)₂, CH₃CN, 90%. (p) (CH₂O)₃, PhSH, Et₃N, EtOH, 78%. (q) Li, NH₃, t-BuOH-THF; Et₃N, TMSCl-THF, 90%. (r) i. CH₃Li, THF; HCHO; AcOH; ii. L-selectride, THF, aq. NaOH, 30% H₂O₂; 10% HCl-MeOH, 60%.

Ito¹⁶. Thus, application of the Petrow reaction¹⁷ led to the phenyl thiomethyl enone 53 (78%), which on lithium / ammonia reduction and then trimethylsilyl chloride trapping produced **54** (90%). Compound **54** was converted to (\pm) -1 (60%) in Scheme IV. This synthesis used outlined spiroannelation of related 2-methylene ketone through first hetero-Diels-Alder condensation and then Claisen rearrangement of the derived allyl vinyl ethers. The central feature of this synthesis is the rearrangement of the intermediate ((trimethylsilyl) methyl)cyclobutanone 47 to the aphidicolin bicyclo[3,2,1] octane ring system. The sequence described above gives (\pm) -1 in 31 steps from 37 and 1.36% overall yield.

van Tamelen^{10e} adapted his elegant biomimetic cationic cyclizations to the synthesis of (\pm) -1; providing the correct relative stereochemistry at C-3, -4, -5, and 10 (Scheme V). Alkylation of the anion of geranyl phenyl thioether with p-MeO-benzyl chloride provided 55 (86%); reductive cleavage of the C-S bond (Li / NH₃, 47%) and selective functionalization of the terminal double bond by the van Tamelen procedure (i. NBS, aq. tBuOH; ii. K_2 CO₃) gave epoxide 55 (33%). Epoxide opening (LiNEt₂, 57%); Sharpless epoxidation (tBuOOH, VO(acac)₂) gave an (\pm)-erythro glycidol which was protected as the corresponding benzyl ether 57 (72%). Cyclization (FeCl₃, toluene) afforded but 12% of the requisite diol-mono benzyl ether 58 which was subjected to Birch type conditions (Li, THF, EtOH), hydrolysis, and acetonide formation to yield

Scheme V van Tamelen's synthesis of (\pm) -1

(a) i. base, p-methoxybenzyl chloride, 86%; ii. Li, NH₃, -78°C, 47%. (b) i. NBS, THF-H₂O; ii. K₂CO₃; MeOH, 33%. (c) i. LiNEt₂, 57%; ii. TBHP, vo(acac)₂, 80%; iii. NaH, PhCH₂I, 90%. (d) FeCl₃, toluene, 12%. (e) i. Li, EtOH-THF, -78°C; ii. 0.5M HCl, EtOH; iii. CH₂COCH₃, TsOH, 55%. (f) i. trisylhydrazone, TsOH, 70%; ii. BüLi, TMEDA, hexane, -78°C, 82%. (g) maleic anhydride, benzene, 80°C, 86%. (h) i. Pd-C, H₂O-EtOH, 90%; ii. Pb(OAc)₄, O₂-sat'd. pyr., 28%. (i) i. MCPBA, 100%; ii. Na, PhH, reflux; iii. MsCl. (j) acetone-H₂O, reflux, CaCO₃, 60%. (k) CrO₃-pyr. 90%.

59 (55%).

Construction of the final ring was acomplished by a Diels-Alder cycloaddition to diene 60 which resulted from the Bond modification of the Shaprio reaction (i. 2,4,6-iPrPhSO2NHNH2; ii. nBuLi, 82%). Addition of maleic anhydride to 60 gave adduct 61 (86%). Hydrolysis, and hydrogenation of the diacid (90%) followed by Pb(OAc)4 decarboxylation of the vicinal diacid yielded olefin 62 (28%). Epoxidation (100%) of 62 and reduction with Na (20%) yielded an alcohol which was converted to mesylate 63. Solvolytic rearrangement led to alcohol 64 (60%) which upon oxidation (Collins, 90%) gave ketone 4; thus completing a formal total synthesis of (±)-1.

The van Tamelen synthesis is the only one thus far reported which controls the stereochemistry at C-3. Unfortunately the extremely low yield obtained in the cyclization coupled with a number of additional low yield reactions and the poorly functionalized C-ring results in a long and very low yield synthesis of ketone 4 (21 steps, 0.007%).

Marini Bettolo^{10f} has also reported employing a solvolytic rearrangement for a formal total synthesis of aphidicolin (Scheme VI). The synthesis begins with known diol 8 prepared by McMurry in 49% yield over 6 steps. Diol 8 was converted to the related bis-protected ketone (90%), which was formylated (66; NaH, HCO₂Et) and treated with methyl vinyl ketone; the Michael adduct was deformylated (NaOMe) and cyclized to provide 67 (75%). Photocycloaddition

Scheme VI Marini Bettolo's synthesis of (\pm) -1

(a) see Scheme II, a and b, 6 steps, 58%. (b) i. NaH, PhCh_Br, reflux, 3 h; 6N HCl, 90%. (c) HCO_Et, MeONa, PhH; 2N H_SO_A. (d) 3-buten-2-one, Et_3N, 0°C; MeONa, 75%. (e) allene, hv, THF, -78°C, 86%. (f) i. p-TsOH, PhH, ethylene glycol, reflux, 3 h, 80%. ii. O_, EtOH-CH_Cl_, -78°C; NaBH_4, -78°C, 4 h. (g) 1N HCl, THF; 1N NaOH, 76%. (h) i. NaH; CS_, THF, reflux, 2.5 h; MeI, reflux, 1.5 h, 72%; ii. NaBH_4, Et_O/MeOH. -20°C, 91%; (h) i. o-xylene, reflux, 2.5 h, 90%; ii. Et_3N, CH_Cl_, 0°C; MsCl. (j) acetone-H_O, 70°C, 5 h, 97%. (k) i. PDC, 81%; ii. Li, NH3, -78°C, 69%.

of 67 with allene at -78°C gave only 68 (86%) which led to protected aldol adduct 69 (61%) as outlined in Scheme VI. Ketal hydrolysis and rearrangement provided 70 (76%); which was converted to the corresponding dithio carbonate (72%); and the ketone was reduced (NaBH₄) to yield 71 (91%). Dithio carbonate elemination (\triangle , 90%); followed by mesylation gave 72, which suffered smooth solvolytic rearrangement to give 73 (97%). Oxidation (PDC, 81%) followed by Li / NH₃ treatment provided diol 74 (69%) which can be protected as the corresponding acetonide to give 4 (85%).

The Marini Bettolo sequence borrows from the routes of Trost, McMurry and van Tamelen to create the sequence. This formal total synthesis leads to 4 in 5% yield from 2-methyl 1,3-cyclohexane dione.

II. An Approach to the Syntheses of (+) and (+) Aphidicolin 1 <u>via</u> Furan Terminated Cation Cyclization

We have demonstrated the use of furans as terminators in a variety cationic cyclizations ¹⁸. As illustrated in eq. 2, the generation of an electron deficient center (R) in the side chain of a 3-substituted furan, should lead to 76 after an electrophilic attack and rearomatization. The products of

Figure 1 Furan Equivalencies

these cyclization sequences can serve as precursors to a plethora of functional groups such as those illustrated in Figure 1. Therefore, as part of a general program in furan chemistry and an interest in furans as dianion equivalents in annulation processes 19 we were interested in accomplishing formal total syntheses of (+/-)- and (+)-1 as outlined in Scheme VII. This study would exploit; (1) a furan-terminated polyolefin cyclization to rapidly establish the carbocyclic nucleus of aphidicolin 1, followed by (2) a furan to butenolide or dione conversion ultimately yielding McMurry's intermediate dione 18. Cyclization of 79 would afford 78 in which the A and B rings of the target have been established. With a furyl moiety integrated into the cyclization product, an efficient transformation to the McMurry intermediate 18

Scheme VII Proposed Retrosynthetic Scheme to Aphidicolin 1 and its analog 2

should be possible. The advantages of the sequence are rapid construction of the carbocyclic nucleus with the correct relative configuration at C-4, C-5, and C-10 resulting directly from the cyclization. In addition the possibility of an asymmetric synthesis will be investigated, utilizing optically pure 79, a product of an asymmetric Sharpless epoxidation²⁰.

III. Results and Discussion

An analysis of the substituents located at C-3 and C-4 of aphidicolin suggests, as in the Corey synthesis 10c , that an ω -oxygenated geranyl halide, after alkylation and cyclization would yield the proper relative stereochemistry at C-4. In addition, should the cyclization substrate possess a 6,7-epoxide, then the cyclized product would have an oxygen at C-3, however opposite in stereochemistry to that desired. We viewed this route as being extremely flexible as one could readily incorporate an optically pure side chain into furan 79, utilizing (-)-6,7-epoxy-8-TBDMSO-geranyl acetate 81 previously prepared by Sharpless 20 as the starting material.

Our original route to (\pm) -18²¹ is described in Scheme VIII. In the planning stage, we considered the nature of the protecting group for the C-8-OH incorporated into geranyl acetate 81. This group must survive conversion to the chloride 82, coupling²² with 3-ClMgCH₂furan, cyclization and hydroxyl inversion. We anticipated utilizing the 3-one related to 84 as the vehicle for OH inversion. However, as has been demonstrated by many other groups exploring the construction of 1 with the exception of van Tamelen, the C-4-CH₂OR must be deprotected to obtain good selectivity in the reduction of 3-one. This consideration and the expected fragility of the derived aldol caused us to employ the TBDMS group to protect at C-4.

Scheme VIII Preparation of 84

In the event, allylic hydroxylation of geranyl acetate using the catalytic SeO₂ protocol of Sharpless^{2O}, afforded the monoprotected diol 80 (72%). Henbest epoxidation (85%) and protection (tBuMe₂SiCl) afforded silyl ether 81 in 94% yield. Acetate cleavage (K₂CO₃, MeOH, 99%) and chlorination by the procedure of Stork²³ gave the highly oxidized geranyl chloride 82 in 85% distilled yield. Chloride 82 was smoothly coupled with 3-ClMgCH₂furan in the presence of Li₂CuCl₄^{22,24} to yield 83 (79%). With 83 in hand, we next examined the crucial cyclization reaction.

Our first cyclization attempts employed ZnI, Ti(OiPr), Cl as Lewis acids. These catalysts performed admirably in our earlier furan terminated epoxide initiated cyclizations, and in fact these Lewis acids gave 62% and 65% yields of 3β -OH pallescensin A, the 4α -CH, analog of 84, from epoxydendrolasin. In this case, exposure of 83 to ZnI, and Ti(OiPr)₃Cl provided wildly variable yields (0-49%) of 84. These results are unacceptable in the racemic route described and are considered useless for a projected optically pure synthesis of (+)-4. After considerable experimentation we discovered that consistent 25-35% yields of 84 could be realized after exposure of 83 to BF_3 -OEt₂ (3 eq.), Et_3N (1.5 eq.) in CH₂Cl₂-hexane-PhH (1:1:1) at -78°C. Under these conditions the bulk of the reaction mixture consisted of acyclic ketones. With tricyclic 84 available we examined the inversion of the C-3-Q bond.

As is described in Scheme IX, treatment of alcohol 84

Scheme IX Preparation of 86

with PCC^{10C} provided the 3-one in 91% yield. Deprotection (Bu₄NF) and reduction with L-selectride^{10b,C} gave diol 85 (97%). Exposure of 85 to acetone and oxalic acid in CH_2Cl_2 afforded the requisite acetonide 86 in excellent yield (90%).

With 86 in hand we examined the conversion of the furyl moiety to more useful functionality. Initially we attempted to introduce the necessary methyl at the unsubstituted furyl α -position by direct metallation and quenching with $\mathrm{CH_3I}$. Unfortunately all attempts²⁵ to deprotonate furan 86 and capture with $\mathrm{CH_3I}$ or $\mathrm{D_2O}$ afforded no products of electrophile capture. Application of more forcing conditions led to destruction of the acetonide moiety. Changing protecting groups for the 3 α -OH and 4 α -CH₂OH to MEM, Me₃Si, or tBuMe₂Si did not improve the situation. These observations are in good

agreement with the similar difficulties in the thiophene series noted by Heathcock²⁶ during an approach to the Securinega alkaloids.

A potential solution to this problem might lie in a selective and careful bromination of the furyl nucleus, followed by metal-halogen exchange and capture with an electrophile. In the model compound 87 (eq. 3)²⁷, application of the mild bromination conditions of Mitchell²⁸ (NBS, DMF) provided 88 in 84% yield. Repetition of this sequence (eq. 4) with the MEM ether 89 gave bromide 90 (88%) which suffered smooth metal-halogen exchange (n-BuLi, -78°C) and capture with Me₃SiCl to provide silylfuran 91 (85%).

Oxidation of 91 (eq. 5) utilizing the procedure reported by $Kuwajma^{29}$ (CH_3CO_3H) led to a mixture of butenolides 92 and

93 (4:1, 77%). Enol lactone 92 was readily isomerized to 93 upon attempted purification. Compound 92 is potentially quite useful in the formal total synthesis of aphidicolin; as the addition of CH₃-M would afford the desired dione directly³⁰. Unfortunately, 92 was readily and easily converted to butenolide 93 rendering this approach useless.

As a result of the double-bond isomerization of 92, we examined the introduction of methyl group onto furan in the alkylation step (Scheme X). In the event, the crude brominated furan 90 was treated with BuLi and quenched with MeI (-78°C) to provide the desired methylated furan 94 in 55% yield accompanied with 14% of starting material 88. The mixture of 94 and 89 is not separable at this stage. However, exposure of 94 to MCPBA³¹ gave ene-dione 94 in excellent yield (95%); the unmethylated 89 survived the MCPBA oxidation quantitatively. These compounds are now readily separated by silica gel chromatography.

Ene-dione 95 was hydrogenated smoothly to the target compound of the model system, 96, with the correct stereochemistry at C-8 after the epimerization on a column of silica gel. Dione 96 has a strong resemblance to the McMurry

Scheme X Preparation of 96

intermediate 18 in his total synthesis of (+/-)-aphidicolin. Therefore the likelihood of success in the actual system is high.

Careful bromination (NBS, DMF) of acetonide 86 afforded the unstable bromide 97. Bromofuran 97 was not purified, but was immediately subjected to metal-halogen exchange (nBuLi, -78°C) and alkylation with CH₃I to provide 68% of the desired methyl furan 98 and 8% of unreacted starting furan 86. The mixture of 98 and 86 was submitted to the oxidation conditions in the usual way to give ene-dione 99 in 97% yield (based upon 98) and recovered 86 (8%). Compound 99 was hydrogenated to provide the McMurry intermediate 18, which was identical in all respects to material prepared by

Scheme XI Preparation of (\pm) -18

McMurry^{10b}; thus accomplishing the formal total synthesis of (\pm) -aphidicolin 1.

This sequence was undertaken as a prelude to an anticipated formal total synthesis of (+)-1 and to demonstrate the utility of highly oxygenated, complex substrates as initiators in furan terminated cationic

cyclizations. Although the route outlined did indeed provide (\pm) -18, thus constituting a formal total synthesis of (\pm) -1, the problems encountered in the cyclization affording 84 were still unresolved. We viewed the 25-35% yield for cyclization as unacceptable in chiral approach to (+)-1.

We assumed that the size and the fragility of the silyl ether in 83 were responsible for the low and variable yields of 84 which were obtained. This assumption was based upon a poor mass balance and the observation of a sizeable amount of acyclic ketone in the crude reaction mixture. We reasoned that the bulk of the t-butyldimethylsilylether was preventing the starting epoxide from reaching assuming a productive conformation for cyclization; thus diverting sizable quantities of material to unproductive epoxide opening. reasons for choosing of t-butyldimethylsilyl ether as the protecting group of choice are (1) silyl groups can be removed under mild conditions (Bu,NF) without inducing retroaldol reaction; and (2) t-Butyldimethylsilyl group had been employed in the cyclization approach to (\pm) -1 by Corey 10C. Therefore, an alternate protecting function must be carefully chosen to allow an inversion of the C-3-QH without the loss of the C-4-CH2OH, via retro-aldol of the presumed intermediate 3-one. Of the seven total and formaltotal syntheses reported in the literature only the elegant erythro-glycidol initiated cationic cyclization approach of van Tamelen 10e constructed the C-3 and C-4 stereocenters differently; hence our concern.

A benzyl ether is relatively small and stable compared to an R_3Si- group. Also, benzyl ethers are known to be removed relatively easily by hydrogenolysis which might not cause the retro-aldol decomposition. Therefore, a benzyl ether was selected as the protecting group of choice for a second generation synthesis.

Benzylation of 6,7-epoxy-8-hydroxygeranyl-acetate 100²⁵ with benzylbromide and sodium hydride gave 101 albeit in 21% yield (eq. 6). However as a result of scrambling of acetyl group by NaH; and low mass balance we searched for other alternatives. One obvious solution is the utilization of a more robust C-1-QH protecting group. Benzoates are usually stable to such conditions and can be removed without touching the benzyl protecting group. Therefore, a benzoate was selected as the protecting group of choice. Benzoylation of geraniol (PhCOCl, pyridine, DMAP, CH2Cl2, 99%) followed by application of the Sharpless catalytic allylic oxidation (SeO₂, TBHP, 71%) gave 102. Compound 102 was then submitted to Henbest epoxidation (m-chloroperoxybenzoic acid, CH2Cl2) to afford the 6,7-epoxy-8-hydroxygeranyl-benzoate, 103, in 100% crude yield. Without further purification compound 103 submitted to standard benzylation conditions (NaH, PhCH₂Br, THF, 7h, room temperature) giving 104 in 22% yield

Scheme XII Preparation of 104

with 50% recovered starting material. This reaction did indeed provide the desired 104; however, the reaction rate is very slow and mass balance is low. We found that the addition of the phase transfer catalyst (Bu4N+I-, NaH, THF(or Et2O), 5h, RT) resulted in smooth benzyl ether formation to give 104 in 88% yield. With 104 in hand, several standard benzoate saponification methods (entry 1-6 in Table 1)³² were examined, but none of them gave completely satisfactory results (Table 1). Although LiOH in THF-H2O (entry 6) did provide the desired 105 in 91% yield, the extraordinary long reaction time required rendered these deprotection conditions less than useful. As we learned from the benzylation of 103, a phase transfer catalyst can be a very important addend to the reaction medium. Therefore, 2.2 equivalents of Bu4N+I-

Table 1 Saponification of 104

ļ	Conditions	Results
1	1% NaOH / MeOH, 5 days	no reaction
2	MeONa / MeOH, 2 days	10% conversion by GC
3	NaOH / MeOH, reflux, 4 h	decomposed
4	LiOH / THF, reflux, 4 h	decomposed
5	MeONa / MeOH, reflux, 4 h	decomposed
6	LiOH, THF-H ₂ O (5:1) 14 days	91%
7	LiOH / THF, Bu ₄ N ⁺ l ⁻ (2.2 eq.) 12 h	no reaction
8	MeONa / MeOH Bu ₄ N ⁺ l ⁻ (2.2 eq), 12 h	(99%)

was added to the LiOH and NaOMe mixture (entry 7 and 8). As is shown in Table 1, $Bu_4N^+I^-$ did not significantly accelerate benzoate hydrolysis in the LiOH-THF system, but it did assist the saponification of 104 to 105 by MeONa in methanol giving 105 in 99% distilled yield. With a supply of 105 insured we examined 105 in the chlorination and coupling reactions.

Utilizing Stork's procedure²³(1. BuLi, HMPA 2. p-TsCl, LiCl), 105 was converted to chloride 106 in 85% yield (Scheme

XIII). This modified epoxygeranyl chloride 106 was then coupled with the Grignard reagent produced from 3-furylmethyl chloride in the usual way (Li₂CuCl₄)^{21,22} to afford a 79% yield of coupled product 107.

Scheme XIII Preparation of 107

As was disscussed previously, the benzyl group is more stable and smaller than the t-Butyl dimethyl silyl protecting group. Therefore, we expected that the cyclization intermediate 107 would experience less steric crowding and it might more readily assume a fruitful cyclization conformation (Figure 2). When 107 was submitted to the usual cyclization conditions (Table 2) we obtained 30% of desired cyclized product 108 and recovered 60% of starting material 107. The cyclization process was pushed to completion with slight modification of the Lewis acid-Lewis base solvent brew

Figure 2 Cationic Cyclization Intermediates of 83 and 107

Table 2 Cationic Cyclization of 107

_			starting	
Conditions	108	109	material	
BF ₃ -OEt ₂ (3 eq.) Et ₃ N(1.5 eq.)	30%	0%	60%	
BF ₃ -OET ₂ (6 eq.) ET ₃ N(3 eq.)	72%	5%	0%	
ET ₃ N(3 eq.)				

(BF₃OEt₂(6 eq.), Et₃N(3 eq.) in hexane, benzene, methylene chloride (1:1:1), -78°C) to afford 72% of cyclized 108 and 5% of acyclic ketone 109 (Table 2). This result suggested that the rationale for the selection of the benzyl protecting group might be correct and that the nature of the protecting group plays a major role in the partitioning of 107 between desired and undesired pathways. We also examined the cyclization of 107 with Ti(OiPr)₃Cl; which led to a mixture consisting mostly of a monocyclic compound. The vast improvement in the yield of the crucial cyclization raised our hopes of successfully completing a formal total synthesis of (+)-aphidicolin 1 via a chiral epoxide initiated closure; however we must demonstrate that the C-3-QH stereochemistry can be adjusted.

compound 108 is the 4-CH₂-O-benzyl equivalent of silyl ether 84; the conversion of the 108 to furan acetonide 86 requires the inversion of configuration at C-3, a deprotection of the 4-CH₂-O-CH₂Ph; although not necessarily in that order; followed by acetonide formation. However as was mentioned previously we were concerned that a protected (benzyl ether) aldol intermediate would suffer a retroaldol reaction when we attempted to deprotect. Therefore we examined the direct inversion of the C-3-OH via a Mitsunobu reaction³³ of 108, and nitrite displacement³⁴ of the mesylate of 108. Unfortunately, the highly hindered nature of C-3 hydroxyl of 108 precluded any success with these measures.

We planned then to accomplish the inversion of C-3

hydroxyl in a manner identical to that utilized in the Corey^{10C} and McMurry^{10b} syntheses of (\pm) -1; that is reduction of the C-3-one with the C-4-CH2-OH unprotected. A number of possibilities exist to accomplish this transformation; for example (Scheme XIV) path A shows a debenzylation of the C-4-CH2-O-function to give 110, and in selective silylation of the produced diol would give silyl ether 84 employed in our (Scheme generation VIII) synthesis. possibility (path B) would proceed from ketone Deprotection of 111 would afford the aldol adduct encountered in the first generation (Scheme IX) approach.

Scheme XIV Possible Routes to Accomplish Synthesis of 18 from 108

We examined hydrogenolysis and dissolving metal cleavage of the benzyl linkage of 108 under a variety of conditions to no avail. We observed either no cleavage or furan reduction along with cleavage. Therefore path A (Scheme XIV) could not be employed and we examined path B. The cyclized 108 was submitted to the Swern oxidation (DMSO, (COCl)₂, Et₃N, THF) to afford 111 in 97% yield. Exposure of 108 to PCC provided wildly variable yields (60-90%) of 111 (Scheme XV).

Scheme XV Preparation of 85

Attempted hydrogenolysis of the benzyl ether 111 under a variety of reaction conditions was uniformly unsuccessful. As shown in Scheme XV, our most successful benzyl cleavage was

plagued with concomitant reduction of C-3 ketone. Diol 85 is useful to us; however 110 is of no direct utility. Milder nucleophilic thiol cleavage conditions such as those of Fujita³⁶ (BF₃OEt₂, CH₃CH₂SH, CH₂Cl₂) destroyed the starting benzyl ether 111.

Since we were unable to generate the aldol adduct presumed to be essential for the reported selectivity of L-selectride reduction, we began to exam the reduction of 111 with L-selectride in the absence and in the presence of a

Table 3 L-Selectride Reduction of 111 in the presence of metal salts

Entry	Salts	113	108	% Yield
1	no salt	2.8	1	99
2	Znl ₂ (1.5 eq.)	1.2	1	93
3	MgBr ₂ -OEt ₂ (1.5 eq.)	7.0	1	95
4	MgBr ₂ -OEt ₂ (2 eq.)	8.5	1	95
5	Ti(OiPr) ₃ Cl (1.5 eq.)	4.0	1	96
6	Ti(OiPr) ₄ (1.5 eq.)	5.7	1	93

variety of metal salts. We assumed that the proper combination of metal salt and solvent would conspire to provide a chelated intermediate which might be selectively reduced 37 . Pre-complexation of 111 with ${\rm ZnI}_2$; MgBr $_2$ -OEt $_2$; Ti(OiPr) $_3$ Cl or Ti(OiPr) $_4$ followed by reduction with L-selectride (Table 3) afforded ca. 1.2:1 to 8.5:1 ratios of 3α / 3β alcohols. The best conditions (entry 4) 2 equivalents MgBr $_2$ -OEt $_2$ and L-selectride (CH $_2$ Cl $_2$, -78°C) afforded a respectable 8.5:1 mixture of 113 and 111 in 95% combined yield.

Our interest in the selective production of monoprotected diol 113 was based on our assumption that the axial 3α -OH would be able to assist in the cleavage of the neighboring 4-CH₂-O-benzyl ether by analogy to the precedent of Kutney³⁸. In the event (eq. 7) treatment of 113 with LAH

in THF for 12 hours provided exclusively diol 85 in 94% isolated yield. The mono-protected 3β -OH diol 108 when exposed to the Kutney conditions (eq. 8) for 8 days afforded a ca. 1:1 mixture of diol 110 and starting material. This result indicates the importance of neighboring group participation in reductive debenzylation with LiAlH₄. Diol 85 was converted to acetonide 86 ((CH₃)₂CO, (CO₂H)₂, CaSO₄, CH₂Cl₂) in a slightly better yield (93%); and the remainder of the sequence follows our previous described route (Scheme XI).

IV. THE FORMAL TOTAL SYNTHESIS OF (+)-APHIDICOLIN

Having successfully overcome the cyclization and protecting group difficulties in the racemic series we examined the route to (+)-1 outlined in Scheme XVI. Our sole concern in this sequence was the transmission of chirality from the starting epoxy-furan to the product tricyclic aphidicolin precursor. Given the accepted chair-chair type folding of acyclic substrates in cationic cyclizations leading to the formation of six-membered rings³⁹ and our construction of the proper relative stereochemistry in the racemic routes described above we were confident of a successful outcome provided the C-3-Q bond is not compromised in the process.

In the event, epoxidation of 8-HO-geranyl benzoate under the conditions of Sharpless²⁰ afforded the corresponding

epoxide in 71% yield (\geq 95% ee). The optical purity of (-)-103 was determined by chiral shift reagent, Eu(HFPC)₃, and HPLC studies of its acetate 114 and Mosher ester⁴⁰ (MTPA) 115 (Figure 3,4). We have been unable to detect the presence of the enantiomer of (-)-103. Benzoate cleavage and chlorination as previously described (Scheme XIII) afforded the requisite allylic chloride (84%) which was coupled with 3-ClMgCH₂-furan (Li₂CuCl₄) to provide the desired cyclization substrate ([α]_D-2.168°; c 0.764, CH₂Cl₂) in 75% yield. Exposure to BF₃-OEt₂ and Et₃N in the benzene, hexane, methylene chloride mixture; at -78°C gave (+)-108 in 66-72% yield ([α]_D+46.813°; c 0.455, MeOH).

Swern oxidation led to (+)-111 (95%) which was reduced (L-selectride, MgBr₂-OEt₂) to provide the mono-protected diol (+)-113 (83%). Treatment of (+)-113 with LiAlH₄ gave (+)-85 (94%) which was converted to the desired acetonide as described in Scheme XVI. Chiral shift reagent studies of 85 (Eu(hfpc)₃, Figure 5), demonstrated that, within our limits of detection, compound 85 was optically pure. However at this point we cannot yet demonstrate that 85 possesses the absolute configuration depicted.

Bromination, metallation, methylation and oxidation as outlined previously yielded a chiral ene-dione which provided (-)-18 after reduction; thus completing the formal total synthesis of (+)-aphidicolin 1.

In order to prove that the observed transmission of chirality was in the desired and anticipated sense, we needed

Figure 3 Preparation of 114 and 115

Scheme XVI Formal Total Synthesis of (-)-18

 $[\alpha]_D$ -2.168° (c=0.764, CH₂Cl₂)

 $[\alpha]_D$ +46.813° (c= 0.455, MeOH)

LiAlH₄, THF

HO (+)-113

$$[\alpha]_D$$
 +53.64° (c= 0.11, MeOH)

LiAlH₄, THF

HO (+)-85

 $[\alpha]_D$ +43.75° (c= 0.16, MeOH)

[α]_D +22.60° (c= 0.77, CH₂Cl₂)

$$H_2$$
, Pd/C

 H_2 , Pd/C

 H_2 , Pd/C

 H_3 , Pd/C

 H_4

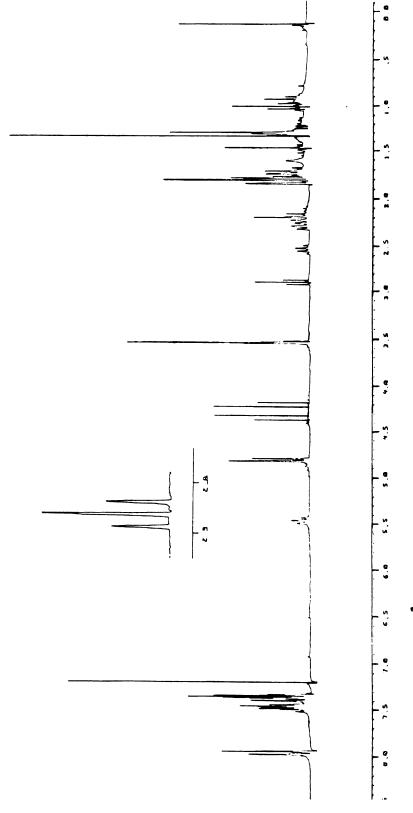


Figure 4 1 H-NMR (250 MHz, CDCl₃) Spectrum of 115

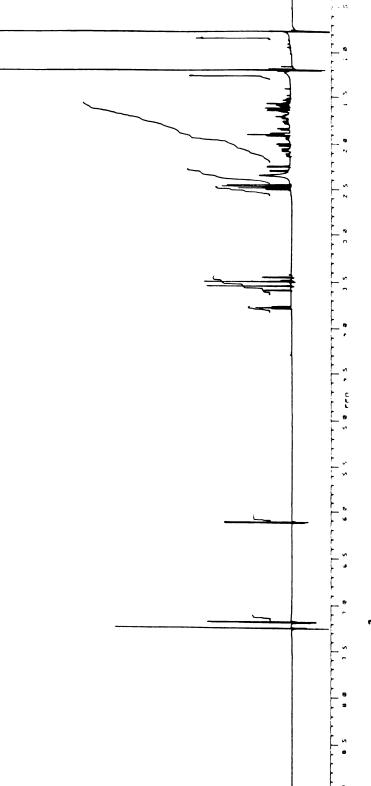


Figure 5a 1 H-NMR (250 MHz, CDCl $_3$) Spectrum of (\pm)-85

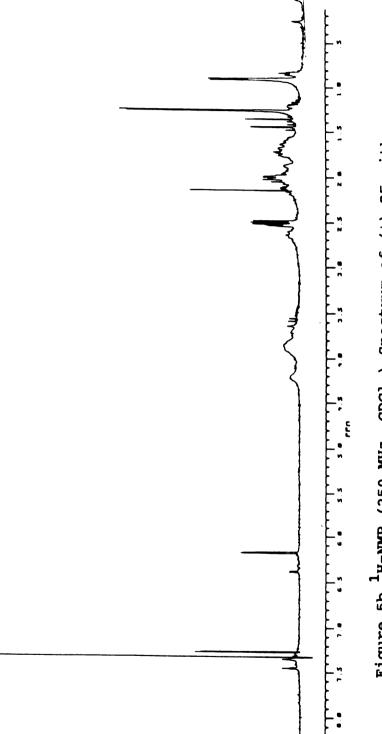
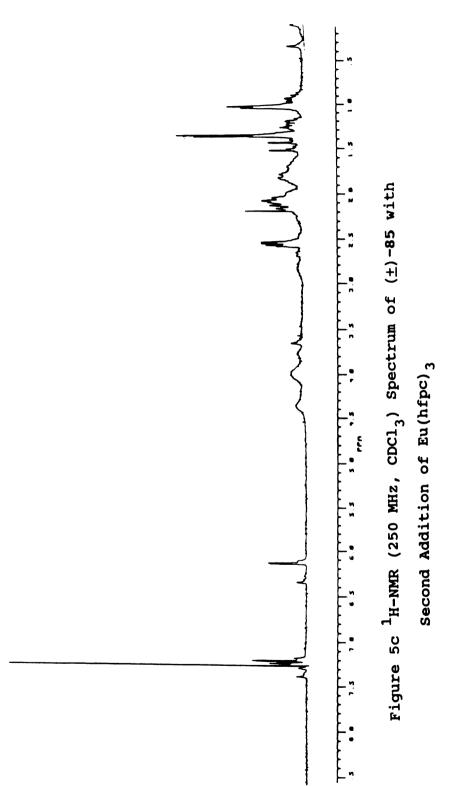



Figure 5b 1 H-NMR (250 MHz, CDCl $_3$) Spectrum of (\pm)-85 with First Addition of Eu(hfpc)₃

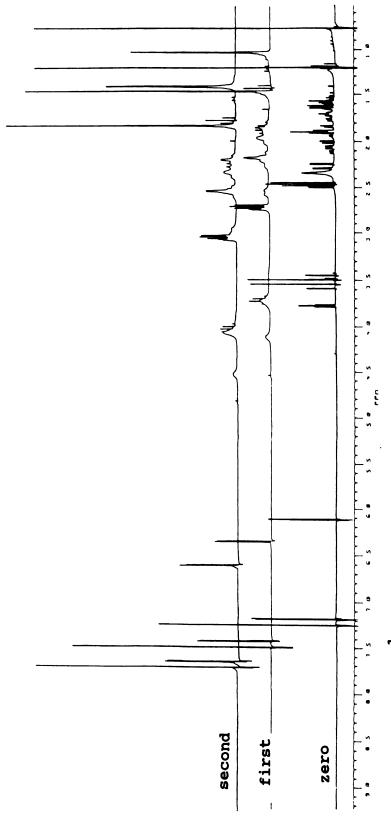


Figure 5d 1 H-NMR (250 MHz, 2 CDCl $_{3}$) Spectrum of (+)-85 with Zero to Second Addition of $Eu(hfpc)_3$

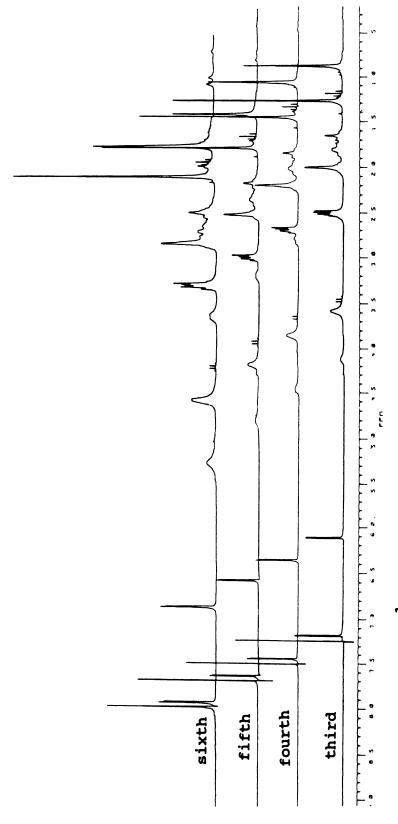
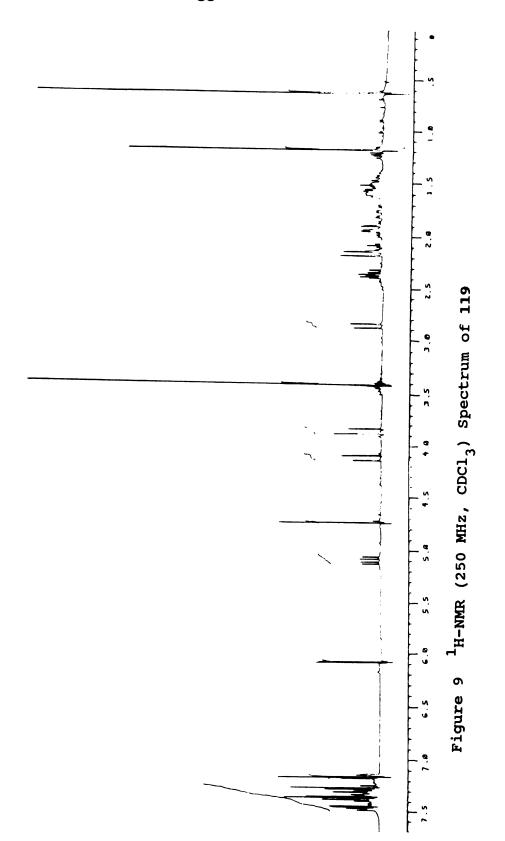


Figure 5e $^1\mathrm{H-NMR}$ (250 MHz , CDCl_3) Spectrum of (+)-85 with third to Sixth Addition of $Eu(hfpc)_3$

products. Attempts to prepare bis-bromobenzoate of (+)-110 and (+)-85, in order to utilize the exciton chirality technique of absolute configuration determination⁴¹, were not successful. After numerous attempts we obtained only monobromobenzoates 116 and 117 (Figure 6). Therefore, we decided to use the 0-methyl mandelate ester for establishment of absolute configuration⁴² recently elaborated upon by Trost.

Figure 6 Preparation of 116 and 117

The technique recently described by Trost for establishing the absolute stereochemistry of 2°-alcohol requires that a racemate and optically pure compound be available. One converts both the optically pure series and


racemate to the corresponding 0-methyl mandelate esters and correlate the ¹H-NMR spectra of the esters utilizing the following model. One views the ester <u>via</u> an "extended Newman projection " in which the intervening ester linkage is omitted. That substitutent which eclipses the phenyl ring in such an extended Newman projection is then always shifted upfield, presumably as a result of the shielding it experiences by the phenyl ring. These suggestions were verified by Trost with an extensive series of examples, and has been confirmed by X-ray.

Therefore (\pm) -108 was converted to a mixture of diasteriomers 118 and 119 with (S)-O-methyl mandelic acid, DCC and DMAP in CH2Cl2 (84%) (Figure 7). According to the Trost model (Figure 8) one would predict that the diasteriomer corresponding to the coupling of (S)-O-methyl mandelic acid with the undesired enantiomer of 108 (ie. 118) would possess a $C-4-CH_3$ which should not experience an upfield shift; however then in the desired diasteriomer 119 the 4β -CH $_3$ should be shielded. We observed 2-methyl signals for the mixture of 118 and 119 δ =0.88 and 0.62 respectively. Therefore, according to the established by Trost we anticipate observing a methyl signal 9) from (+)-108 at δ =0.62 ppm. for 119 prepared (eq. Reaction of (+)-108 with (S)-O-methyl mandelic acid, DCC, and DMAP in CH₂Cl₂ afforded an 83% yield of the corresponding mandelate ester, which exhibits a $C-4\beta$ -CH₂ signal at δ =0.62 ppm (Figure 9) thus confirming the absolute configuration of

118 and 119

Figure 8 Extended Newman Projection of 118 and 119

A: 2.97; 2.68 (AB, J=7.9 Hz, 2H)

B: 3.65 (s, 2H)

A: 3.26; 3.16 (AB, J=8.6 Hz, 2H)

B: 4.26; 4.19 (AB, J=12.2 Hz, 2H)

Figure 10 Extended Newman Projection of 120 and 121

the material in hand as that depicted in 119.

Further confirmation of the absolute configuration in this study was obtained from a similar study employing coupling (\pm) and (+)-113 with (S)-0-methyl mandelic acid (DCC, DMAP, CH_2Cl_2) gave 120 and 121. Figure 10 illustrates the Trost prediction for the NMR shifts associated with the diasteriomers 120 and 121. We expect to observe an upfield shift of the 4α -CH₂-OBn protons of 120 relative to diasteriomer 121. In this case we observe an AB pattern assigned to 120 at δ =2.97 (d, J=7.9 Hz); 2.68 ppm (d, J=7.9 Hz) and signal assigned to 121 were observed at δ =3.26 (d, J=8.6 Hz) and 3.16 ppm (d, J=8.6 Hz). The benzyl ether signals should also be effected, and we assigned a resonance

at δ =3.65 (s, 2H) to diasteriomer 120; and signals at δ =4.26 (J=12.2 Hz) and 4.19 ppm (J=12.2 Hz) to diasteriomer 121. When (+)-113 was coupled to (S)-0-methyl mandelic acid it provided diasteriomer 121 as predicted (eq. 10).

We have described formal total syntheses of (\pm) - and (+)-aphidicolin 1. The second generation approach affords (\pm) - and (-)-18 in 16 steps and 13.9% and 8.4% yields respectively from geraniol. This represents a considerable improvement over the first generation synthesis of (\pm) -18 (16 steps, 5.9%). The completion of the preparation of (-)-18 was accomplished with \geq 95% ee; demonstrating the utility of the epoxide initiated-furan terminated cyclization sequence for the transmission of chirality in a predictable fashion.

An application of this chemistry to the synthesis of optically pure 2 (Scheme XVII) is under way and will be reported in due course. McMurry has reported that (\pm) -2 possessed 45% of the DNA synthesis inhibitory activity of (+)-1 at a concentration of $0.33\mu g/ml$; should we be able extrapolate to the correct enantiomer of 2 we would predict that we would observe 90% of the DNA inhibitory activity of (+)-1. Such activity in a much simplified structure might provide routine access to a valuable biochemical tool.

Scheme XVII Conversion of 18 to 2

EXPERIMENTAL.

General Tetrahydrofuran (THF) was dried by distillation under nitrogen from sodium benzophenone ketyl; methylene chloride was dried by distillation under nitrogen from calcium hydride; N,N-dimethylformamide (DMF) was dried by distillation at reduced pressure from phosphorous pentoxide; hexamethylphosphoramide (HMPA) was dried by distillation at reduced presure from calcium hydride; pyridine was dried by distillation under nitrogen from calcium hydride; diisopropylamine was dried by distillation under nitrogen from calcium hydride. Petroleum ether refers to the 30-60°C boiling point fraction of petroleum benzin. Diethyl ether was purchased from Mallinkrodt, Inc., St. Louis, Missouri, and used as received. n-Butyl lithium in hexane was purchased from Aldrich Chemical Company, Milwaukee, Wisconsin and by the method of Watson and Eastham 43. titrated bromosuccinimide was crystallized from hot water and dried in vacuo over P₂O₅. All other reagents were used as recieved unless otherwise stated. All reactions were performed in oven (150°C) dried glassware under argon with the rigid exclusion of moisture from all reagents and glassware unless otherwise mentioned.

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected.

Infrared spectra were recorded on a Pye-Unicam SP-1000 infrared spectrometer or a Perkin-Elmer Model 167

spectrometer with polystyrene as standard. Proton magnetic resonance spectra (1H-NMR) were recorded on a Varian T-60 at 60 MHz, or a Bruker WM-250 spectrometer at 250 MHz in deuteriochloroform unless indicated. as solutions otherwise indicated. Chemical shifts are reported in parts per million of the δ scale relative to a tetramethylsilane internal standard. Data are reported as follows: Chemical shift (multiplicity (s = single, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), integration). ¹³C magnetic resonance spectra were recorded on a Bruker WM-250 spectrometer (68.9 MHz) and are reported in parts per million from tetramethylsilane on the scale. Electron impact (EI/MS) and chemical ionization (CI/MS) mass spectra were recorded on a Finnigan 4000 with an INCOS 4021 data system. High resolution mass spectra were performed by the MSU Regional Mass Spectroscopy Facility; Department of Biochemistry, East Lansing, MI. 48824. Elemental analyses were performed by Spang Microanalytical Laboratory, Eagle Harbor, MI. Flash chromatography was performed according to the procedure of Still, et al44 using 230-400 mesh Merck silica gel and eluted with the solvents mentioned. Analytical thin-layer chromatography was run on either Macherey-Nagel polygram SIL G/UV254 pre-coated plastic sheets or Merck SIL G/UV₂₅₄ pre-coated glass plates. Spots were visualized by either dipping into a solution of Vanillin (1.5 g) in absolute ethanol (100 ml) and concentrated sulfuric acid (0.5 ml) and heating with a heat gun or

spraying with a 5% solution of molybdophosphoric acid in absolute ethanol and heating to 120°C.

2-Brono-4,5,5a,6,7,8,9,9a-octahydro-6,6,9a-trimethyl-(5a α ,7 β ,9a β)-(\pm)-naphtho[1,2-b]furan-7-ol 88

To a solution of 3β -hydroxypallescensin A 87 (0.12 g, 0.5 mmole) in dry DMF (5 ml) chilled in an ice-water bath was added a solution of NBS (0.1 g, 0.5 mmole) in dry DMF (2 ml) over a period of 5 minutes. Stirring was continued at 0°C for 40 minutes and then quenched with ice-water (50 ml), ether (50 ml) and pentane (50 ml). The organic phase was separated; washed with brine (100 ml); dried (MgSO₄); and concentrated in vacuo to provide a brown solid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30 g, 25 mm o.d., 1:5 ether:pet. ether) using the flash technique. Fractions 16 to 19 afforded 1.35 g, 84%, of (\pm)-88 as a white solid. TLC (Merck, UV-vanillin, ether:hexane 1:5) R_{\$\sigma\$}=0.06.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 6.02 \text{ (s, 1)}, 3.28 \text{ (dd, J=5.1,} \\ 11.2 \text{ Hz, 1)}, 2.53-2.25 \text{ (m, 2)}, 2.12 \text{ (dt, J=3.0, 12.2 Hz, 1)}, \\ 1.90-1.25 \text{ (m, 7)}, 1.19 \text{ (s, 3)}, 1.05 \text{ (s, 3)}, 0.86 \text{ (s, 3)}. \\ \underline{\text{EI-MS}} (70 \text{ eV}): 314, 312 \text{ (M}^+, 12.9, 10.9), 281, 279 (23.2, 24.8), 119, 117 (96.7, 100.0), 91 (42.5).$

4,5,5a,6,7,8,9,9a-Octahydro-7-methoxyethoxymethoxyl-6,6,9a-trimethyl- $(5a\alpha,7\beta,9a\beta)-(+)$ -naphtho[1,2-b]furan 89

To a solution of diisopropylethyl amine (0.22 ml, 1.2

mmole) in dry methylene chloride (5 ml) chilled in an icewater bath was added methoxyethoxymethyl chloride (0.14 ml, solution followed by a of hydroxypallescensin A, 87, (0.14 g, 0.6 mmole) in methylene chloride (10 ml) over 15 minutes. The reaction mixture was stirred at room temperature for 24 hours; then quenched with ice-water (100 ml) and cast into ether (200 ml). The organic phase was separated; washed with saturated aqueous NH,Cl (200 ml), brine (200 ml); dried (MgSO $_{A}$) and concentrated in vacuo to afford crude 89. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30 g, 25 mm o.d., 1:5 ether:pet. ether) using flash technique. Fractions 15 to 17 afforded 0.183 g, 95%, of 89 as a liquid. colorless viscous TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_f=0.39$.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 7.17 \text{ (d, J=2.0 Hz, 1), 6.12 (d, J=2.0 Hz, 1), 4.88 (d, J=8.3 Hz, 1), 4.73 (d, J=8.3 Hz, 1), }$ 3.88-3.64 (m, 2), 3.57 (t, J=4.2 Hz, 2), 3.40 (s, 3), 3.21 $(\text{dd, J=4.2, 12.5 Hz, 1), 2.53-2.24 \text{ (m, 2), 2.10 (dt, J=3.0, 12.2 Hz, 1), 1.92-1.26 (m, 6), 1.20 (s, 3), 1.02 (s, 3), 0.88}$ (s, 3)

<u>EI-MS</u>: (33 eV) 322 (M⁺, 10.2), 231 (19.6), 201 (22.6), 177 (15.9), 89 (58.9), 59 (base)

2-Bromo-4,5,5a,6,7,8,9,9a-octahydro-7-methoxyethoxymethoxyl-6,6,9a-trimethyl- $(5a\alpha,7\beta,9a\beta)-(\underline{+})$ -naphtho[1,2-b]furan 90

According to the general procedure outlined for the

bromination of 87, on an identical scale, MEM-ether 89 was brominated to give 90 in 88% yield after purification by chromatography on silica gel using the flash technique. TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_f=0.42$.

 $\frac{1}{\text{H NMR}} \text{ (60 MHz, CDCl}_3): } \delta = 6.00 \text{ (s, 1), 4.87 (d, J=7.5 Hz, 1), 4.70 (d, J=7.5 Hz, 1), 3.87-3.40 (m, 4), 3.40 (s, 3), 2.54-2.13 (m, 3), 2.03-1.26 (m, 6), 1.20 (s, 3), 1.02 (s, 3), 0.87 (s, 3)$

<u>EI-MS</u>: (70 eV) 402, 400 (M^+ , 0.5, 0.5), 149 (2.5), 131 (2.2), 117 (2.1), 89 (37.0), 59 (base)

4,5,5a,6,7,8,9,9a-Octahydro-7-methoxyethoxymethoxyl-6,6,9a-trimethyl-2-trimethylsilyl-(5a α ,7 β ,9a β)-(\pm)-naphtho[1,2-b] furan 91

To a solution of 90 (0.1 g, 0.25 mmole) in dry Et₂O (5 ml) cooled in a dry ice-acetone bath was added nBuLi (2.48 M in hexane, 0.11 ml, 0.27 mmole) and the resulting gelatin-like solution was stirred for 30 minutes at -78°C. To the reaction mixture was added trimethylsilyl chloride (0.038 ml, 0.3 mmole), followed by HMPA (0.6 ml). The cooling bath was removed and the reaction mixture was stirred for 1 hour at room temperature; then stored in a refrigerator for 10 hours. The reaction was quenched with water (30 ml) and then cast into ether (50 ml). The organic phase was separated; washed with brine (50 ml); dried (MgSO₄); and concentrated in vacuo to provide a pale yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400

mesh, 20 g, 20 mm o.d., 1:5 ether:pet. ether) using the flash technique. Fractions 14 to 17 afforded 0.084 g, 85%, of 91 as white crystals, TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_{\phi}=0.44$.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 6.37 \text{ (s, 1), 4.86 (d, J=8.1 Hz, 1), 4.72 (d, J=8.1 Hz, 1), 3.87-3.65 (m, 2), 3.56 (t, J=8.2 Hz, 2), 3.39 (s, 3), 3.21 (dd, J=5.4, 10.3 Hz, 1), 2.59-2.17 (m, 3), 2.00-1.26 (m, 6), 1.19 (s, 3), 1.02(s, 3), 0.88(s, 3), 0.21(s, 9) \\ \underline{\text{EI-MS}}: \text{ (70 eV) } 394 \text{ (M}^+, 3.7), 303 (5.8), 273 (9.6), 231 (6.0), 89 (70.3), 59 (base)}$

4,5,5a,6,7,8,9,9a-Octahydro-7-methoxyethoxymethoxyl-6,6,9a-trimethyl- $(5a\alpha,7\beta,9a\beta)$ -(+)-naphtho[1,2-b]furan-2(3H)-one 92 and 4,5,5a,6,7,8,9,9a-octahydro-7-methoxyethoxymethoxyl-6,6,9a-trimethyl- $(5a\alpha,7\beta,9a\beta)$ -(+)-naphtho[1,2-b]furan-2(9bH)-one 93

To a solution of 91 (0.15 g, 0.38 mmole) in dry methylene chloride (4 ml) chilled in an ice-water bath was added NaOAc (0.09 g, 1.1 mmole) in one portion, followed by peracetic acid (0.4 ml, 6 mmole) over 2 minutes. The reaction mixture was stirred at 5°C for 3.5 hours then diluted with ether (50 ml) and washed with water (50 ml), saturated aqueous NaHCO₃ (2x25 ml), saturated aqueous sodium thiosulfate (2x25 ml) and saturated aqueous NaHCO₃ (25 ml) followed by drying (Na₂SO₄). Removal of solvent in vacuo afford 0.085 g, of crude product. The crude ¹H-NMR showed

80% of desired deconjugated butenolide 92. This crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30 g, 20 mm o.d., 1:4 ether:pet. ether) to afford 0.026 g, 20%, of 92, TLC (Merck, UV-iodine, ether:hexane 1:1) R_f =0.2 and 0.045 g, 35%, 0f 93, R_f =0.02.

Spectral data of 92: $\frac{1}{H}$ NMR (250 MHz, CDCl₃): δ = 4.86 (d, J=8.4 Hz, 1), 4.72 (d, J=8.4 Hz, 1), 3.79-3.70(m, 2), 3.56 (t, J=4.2 Hz, 2), 3.39 (s, 3), 3.18 (dd, J=4.2, 11.2 Hz, 1), 3.10-3.05 (m, 2), 2.15-1.25 (m, 9), 1.67 (s, 3), 1.01 (s, 3), 0.86 (s, 3)

Spectral data of 93: $\frac{1}{H}$ NMR (250 MHz, D₆-acetone): δ = 5.69 (t, J=1.2 Hz, 1), 4.80 (d, J=6.8 Hz, 1), 4.69 (d, J=6.8 Hz, 1), 4.48 (bds, 1), 3.72-3.66 (m, 2), 3.50 (t, J=4.2 Hz, 2), 3.30 (s, 3), 3.22 (dd, J=4.2, 10.4 Hz, 1), 2.92-2.77 (m, 1), 2.49-2.30 (m, 1), 2.10-1.83 (m, 2), 1.68-1.22 (m, 5), 1.08 (s, 3), 0.85 (s, 3), 0.70 (s, 3)

4,5,5a,6,7,8,9,9a-Octahydro-7-methoxyethoxymethoxyl-2,6,6,9a-tetramethyl- $(5a\alpha,7\beta,9a\beta)$ - (\pm) -naphtho[1,2-b]furan 94

According to the general procedure for preparation of 98, 89 (0.38 g, 1.18 mmole, in 15 ml DMF) was brominated by NBS (0.256 g, 1.3 mmole, in 3 ml DMF). The crude bromide 90 was submitted to lithium-halogen exchange by nBuLi (2.5 M in hexane, 0.57 ml, 1.43 mmole, -78°C) and quenched with MeI (0.1 ml, 1.61 mmole) to afford 94 in 55% overall yield from 89 with 0.053 g, 14%, of recovered starting material, 89, after purification by chromatography on silica gel. TLC

(Merck, UV-vanillin, ether:hexane 1:1) R_f=0.4.

 $\frac{1}{\text{H NMR}} \text{ (60 MHz, CCl}_4\text{): } \delta = 5.52 \text{ (s, 1), 4.75 (d, J= 7.0 Hz, 1), 4.55 (d, J= 7.0 Hz, 1), 3.73-3.38 (m, 4), 3.30 (s, 3), 2.53-2.10 (m, 3), 2.17 (s, 3), 2.00-1.26 (m, 6), 1.17 (s, 3), 1.00 (s, 3), 0.83 (s, 3)$

Octahydro-6-(methoxyethoxymethoxy)-5,5,8a-trimethyl-(2-oxopropylene)-(4a β ,6 β ,8a α)-1-naphthalenone 95

According to the general procedure for preparation of 99, a mixture of 94 (0.22 g, 0.65 mmole) and 89 (0.053 g, 0.16 mmole) was treated with m-chloroperoxybenzoic acid (0.135 g, 85%, 0.65 mmole) to provide desired 95, 0.219 g, in 95% yield and recovered the unreacted 89, 0.05 g, after purification by chromatography on silica gel, TLC (Merck, UV-vanillin, ether:hexane 5:1) R_f =0.21 for 95.

 $\frac{1}{\text{H} \text{ NMR}} (250 \text{ MHz}, \text{ CDCl}_3): \delta = 5.83 \text{ (d, J=1.9 Hz, 1), 4.74 (d, J=8.4 Hz, 1), 4.62 (d, J=8.4 Hz, 1), 3.69-3.62 (m, 2), 3.48 (t, J=4.2 Hz, 2), 3.30 (s, 3), 3.05 (dd, J=4.2, 12.5 Hz, 1), 2.60-2.20 (m, 2), 2.09 (s, 3), 1.88-1.45 (m, 7), 1.15 (s, 3), 0.94 (s, 3), 0.84 (s, 3)$

<u>EI-MS</u>: (70 eV) 352 (M⁺, 0.8), 246 (5.6), 136 (16.5), 121 (5.6), 89 (78.1), 59 (base)

<u>IR</u>: (Neat) 2940, 2880, 1700, 1630, 1455, 1365, 1050, 930, 730 cm⁻¹

Octahydro-6-(methoxyethoxymethoxy)-5,5,8a-trimethyl-(2-oxopropyl)-(2 β ,4a β ,6 β ,8a α)-1(2H)-naphthalenone 96

According to the general procedure for preparation of 18, 95 (43 mg, 0.12 mmole, in 10 ml EtOAc) was hydrogenated to afford 96, 43 mg, in 99% yield as a colorless viscous liquid after purification by chromatography on silica gel, TLC (Merck, UV-vanillin, ether:hexane 5:1) $R_f=0.26$.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 4.79 \text{ (d, J=6.5 Hz, 1), 4.66 (d, J=6.5 Hz, 1), 3.71-3.65 (m, 2), 3.52-3.48 (m, 2), 3.33 (s, 3), 3.09 (dd, J=4.2, 11.2 Hz, 1), 2.81 (dd, J=6.5, 16.4 Hz, 1), 2.15 (s, 3), 2.23-1.98 (m, 5), 1.93-1.42 (m, 6), 1.03 (s, 3), 0.93 (s, 3), 0.85 (s, 3)$

8-Brono-4a, 4b, 5, 6, 9b, 10, 11, 11a-octahydro-2, 2, 4a, 9b-tetramethyl- $(4a\alpha, 4b\beta, 9a\alpha, 11a\alpha)$ -4H-furo[2', 3':5, 6] naphtho[2, 1-d]-1, 3-dioxin (±)-97

To a solution of acetonide (±)-86 (80 mg, 0.28 mmole) in dry DMF (10 ml) was added a solution of NBS (60 mg, 0.3 mmole) in dry DMF (4 ml) over 10 minutes at 0°C. Stirring was continued for 20 minutes at 0°C and then 50 minutes at room temperature. The resulting pale yellow solution was diluted with water (100 ml), and then cast into ether (50 ml) and pentane (50 ml). The organic phase was separated; washed with water (100 ml), brine (100 ml); dried (MgSO₄); and concentrated in vacuo to provide 90 mg, 88%, of crude bromide as a pale yellow solid which was readily transformed into the methylated adduct without further purification. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 35 g, 9:1 hexane:ether), TLC (Merck, UV-

vanillin, ether:hexane 1:9) $R_f=0.21$, with some decomposition to provide 40 mg, 40%, of pure bromide (\pm) -97 as a white solid for spectral data.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 6.04 \text{ (s, 1), } 3.74 \text{ (m, 1), } 3.70$ (d, J=12.8 Hz, 1), 3.34 (d, J=12.8 Hz, 1), 2.49-2.34 (m, 2), 1.98-1.48 (m, 7H), 1.42 (s, 3), 1.36 (s, 3), 1.22 (s, 3), 0.79 (s, 3)

<u>EI-MS</u> (70 eV): 370, 368 (M⁺, 2.0), 297, 295 (11.3, 11.4), 205 (17.9), 149 (99.7), 91 (28.2), 43 (base)

4a,4b,5,6,9b,10,11,11a-Octahydro-2,2,4a,8,9b-pentamethyl- $(4a\alpha,4b\beta,9a\alpha,11a\alpha)$ -4H-furo[2',3':5,6]naphtho[2,1-d]-1,3-dioxin (±)-98

To a solution of crude bromide (±)-97 (90 mg, 0.24 mmole) in dry ether (10 ml) cooled in a dry ice-acetone bath was added n-BuLi (2.5 M in hexane, 0.1 ml, 0.25 mmole) via syringe and stirred for 30 minutes at -78°C. To the resulting bright yellow solution was added methyl iodide (0.02 ml, 0.32 mmole). The mixture was allowed to slowly warm to room temperature over 1 hour and then stirred for 4 hours at room temperature. Then, this reaction mixture was diluted with water (50 ml) and ether (50 ml). The organic phase was separated; washed by brine (50 ml); dried (Na₂SO₄) and concentrated in vacuo to give a yellow liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 20 g, 20:1 hexane:ether) using flash technique. Fractions 20 to 24 afforded, TLC (Merck, UV-

vanillin, ether:hexane 1:9) $R_f=0.26$, 57 mg, 68%, of methylated product (±)-98 and 6 mg, 8%, of starting acetonide (±)-86 as a mixture. This mixture can be readily separated at next step.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 5.70 \text{ (s, 1), } 3.72 \text{ (t, J=3.0 Hz, 1), } 3.70 \text{ (d, J=12.3 Hz, 1), } 3.32 \text{ (d, J=12.3 Hz, 1), } 2.50-2.35 \text{ (m, 2), } 1.97-1.42 \text{ (m, 7), } 2.21 \text{ (s, 3), } 1.40 \text{ (s, 3), } 1.33 \text{ (s, 3), } 1.18 \text{ (s, 3), } 0.77 \text{ (s, 3)}$ $\underline{\text{EI-MS}}: \text{ (70 eV) } 304 \text{ (M}^+, 5.0), \text{ } 289 \text{ (3.8), } 231 \text{ (30.4), } 43 \text{ (base).}$

Decahydro-3,3,6a,10b-tetramethyl-8-(2-oxopropylene)-(4a α ,6a α , 8 β ,10 β ,10b α)-6H-naphtho[2,1-d][1,3]dioxin-7-one (\pm)-99

To a solution of the mixture (114 mg, 0.38 mmole, of methylated acetonide (\pm)-98 and 12 mg, 0.04 mmole, of acetonide (\pm)-86) in dry methylene chloride (6 ml) chilled in an ice-water bath was added m-chloroperoxy benzoic acid (76 mg, 85%, 0.38 mmole) in one portion. Stirring was continued for 1 hour at 0°C and then 7 hours at room temperature. The reaction mixture was then diluted with ether (60 ml), aqueous NaHCO₃ (60 ml), water (50 ml), brine (50 ml), dried (Na₂SO₄) and concentrated in vacuo to give a yellow solid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 30 g, 1:1 hexane:ether) using flash technique. Fractions 13 to 14 afforded, TLC (Merck, UV-vanillin, ether:hexane 5:1) R_f =0.2, 116 mg, 97%, of (\pm)-99 as a white solid and recoverd 12 mg of starting acetonide (\pm)-

86.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): \delta = 5.99 \text{ (d, J=1.9 Hz, 1), 3.67 (t, J=2.9 Hz, 1), 3.60 (d, J=12.4 Hz, 1), 3.31 (d, J=12.4 Hz, 1), 2.65-2.15 (m, 3), 1.91-1.56 (m, 6), 2.18 (s, 3), 1.39 (s, 3), 1.35 (s, 3), 1.23 (s, 3), 0.80 (s, 3)

<math display="block">\underline{\text{EI-MS}} \text{ (70 eV): } 320 \text{ (M}^+, 0.3), 204 \text{ (30.0), } 149 \text{ (base), } 134 \text{ (54.2)}$ $\underline{\text{IR}} \text{ (Neat): } 2940, 2850, 1690, 1625, 1455, 1385, 1195, 1095,$

(-) -99

1000, 915, 855, 730 cm⁻¹

According to the procedure outlined for bromination of (±)-86, (+)-86 (150 mg, 0.52 mmole) was brominated with NBS (112 mg, 0.57 mmole) in 3 ml of DMF to give crude chiral bromide which was utilized without further purification. The chiral bromide 97 was metallated by n-BuLi (0.3 ml, 2.43 M in hexane, 0.73 mmole) and quenched with MeI (0.13 ml, 1.5 mmole) in 20 ml of dry ether at -78°C to provide 102 mg, 65%, of chiral 98 and 13.5 mg, 9%, of (+)-86 as a mixture which was oxidized with MCPBA (70 mg, 85%, 0.34 mmole) in 30 ml of CH₂Cl₂ to give 104 mg, 97%, of (-)-99.

 $[\alpha]_{D}^{=}$ -95.08 (c: 0.061, MeOH)

Decahydro-3,3,6a,10b-tetramethyl-8-(2-oxopropyl)-(4a α ,6a α ,8 β ,10 β ,10b α)-7H-naphtho[2,1-d][1,3]dioxin-7-one (\pm)-18

A solution of conjugated dione (\pm) -99 (50 mg, 0.16 mmole) and Pd-C (10%, 0.01 g) in ethyl acetate (20 ml) was

hydrogenated under H_2 (1 atm) for 7 hours at room temperature. The catalyst was then filtered off and rinsed with ether (10 ml). The solution was concentrated in vacuo and MeOH (20 ml) was added followed by $K_2^{CO}_3$ (0.5 g). The resulting suspension was stirred for 5 hours at room temperature. The solution was filtered through a pad of silica gel and concentrated to give a pale yellow solid. The crude product was purified by a column of silica gel (230-400 mesh, 10 g, 4:1 hexane:ether), TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_f^{=0.13}$, to provide 50 mg, 99%, of (±)-18 as a white solid. m.p.=104-105°C.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 3.63 \text{ (t, J=2.7 Hz, 1), 3.58 (d, J=12.5 Hz, 1), 3.26 (d, J=12.5 Hz, 1), 2.93 (dd, J=8.4, 17.5 Hz, 1), 2.23-1.94 (m, 5), 2.18 (s, 3), 1.37 (s, 3), 1.32 (s, 3), 1.88-1.52 (m, 6), 1.19 (s, 3), 0.79 (s, 3)
<math display="block">\frac{13}{\text{C NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 214.36, 207.74, 98.22, 72.65, 67,96, 47.92, 43.49, 41.73, 41.41, 35.88, 32.84, 30.57, 29.39, 26.04, 23.25, 20.23, 18.93 (2), 17.54
<math display="block">\frac{\text{EI-MS}}{\text{EI-MS}}: (70 \text{ eV}) 323 (\text{M}^++1), 307 (8.2), 171 (9.3), 158 (5.3), 119 (6.0), 107 (8.1), 105 (6.1), 93 (10.0), 86 (19.8), 84 (33.8), 43 (base) IR: (neat) 2930, 2870, 1705, 1455, 1375, 1255, 1235, 1195, 1160, 1090, 1000, 855 cm^{-1}.$

(-)-18

According to the procedure for the hydrogenation of (\pm) -99, (-)-99 (30 mg, 0.1 mmole) was hydrogenated (1 atm. H_2 , Pd-C) in 10 ml of ethylacetate to provide 29 mg, 96%, of (-)-

18.

 $[\alpha]_{D}$ = -44.0 (c: 0.025; MeOH).

6,7-Epoxy-8-benzyloxygeranyl alcohol 101

To a solution of 100 (4.3 g, 18.9 mmole) and benzyl bromide (3.87 g, 22.6 mmole) in dry THF (100 ml) chilled in an ice-water bath was added NaH (1 g, 20.8 mmole, 50% in oil, washed with dry hexane twice) in one portion. The resulting suspension was stirred at 0°C for 1 hour and room temperature for 2 hours, then quenched with saturated aqueous NH₄Cl (100 ml) and cast into ether (200 ml). The organic phase was separated; washed with water (100 ml), brine (100 ml); dried (Na₂SO₄); and concentrated in vacuo to afford yellow liquid. The crude mixture was separated by chromatography on a column of silica gel (230-400 mesh, 30 g, 1:1 hexane:ether) to provide a mixture of 101 1.405 g, 21%, TLC (Merck, UV-vanillin, ether:hexane 3:1) R_F =0.18.

 $\frac{1}{\text{H NMR}} \text{ of } 101 \text{ (60 MHz, CDCl}_3): } \delta = 7.30 \text{ (s, 5), 5.42 (t, J=7.0 Hz, 1), 4.53 (s, 2), 4.10 (d, J=7.0 Hz, 2), 3.43 (s, 2), 2.83 (t, J=6.0 Hz, 1), 2.45-2.00 (m, 2), 1.88-1.66 (m, 3), 1.66 (s, 3), 1.33 (s, 3)$

8-Hydroxygeranyl-benzoate 102

To selenium dioxide (0.30 g, 2.7 mmole) and salicylic acid (1.88 g, 13.6 mmole) in dry methylene chloride (50 ml), chilled in an ice-water bath under argon was added t-butyl hydroperoxide (90%, 54.6 ml, 0.49 mole) in one portion. To

this mixture was added a solution of geranyl benzoate (32.85 g, 0.13 mole) in methylene chloride (50 ml) over 30 minutes. The resulting colorless solution was stirred for 24 hours at room temperature, then was diluted with benzene (70 ml) and concentrated in vacuo. Ether (150 ml) was added to the residue; the organic phase was separated; washed with 10% KOH (4x50 ml) and concentrated in vacuo to provide a yellow liquid. The reaction mixture was dissoved in cold (icewater) acetic acid (30 ml) and dimethyl sulfide (33 ml) was added slowly at 0°C and the resulting solution was stirred for 5 hours at room temperature. The solution was then chilled in an ice-water bath and neutralized with 20% aqueous K2CO3 and was then cast into ether (300 ml). The combined organic phase was washed with water (300 ml), brine (300 ml); dried (Na₂SO₄); and concentrated in vacuo to provide a yellow The crude product was dissoved in EtOH ml), cooled in an ice-water bath and $NaBH_A$ (5 g, 0.13 mole) was added slowly. Stirring was continued for 10 minutes and reaction was quenched by carefully addition of 1N aqueous HCl (250 ml). The mixture was cast into water (300 ml), extracted with Et₂O (3x250 ml), and the combined organic extracts were washed with brine (800 ml), dried (Na2SO4) and concentrated in vacuo to give a colorless liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 120 g, 50mm o.d., 4:1 hexane:ether) using flash technique. Fractions 13 to 16 afforded 3.74 g, 11%, of starting material, TLC (Merck, UV-vanillin, ether:hexane 1:1)

 R_f =0.67 and fractions 18 to 29 afforded 22.34 g, 64% (71% based on the recovery of starting material) of 8-hydroxy geranyl benzoate 102, R_f =0.2, as a colorless liquid.

 $\frac{1}{\text{H} \text{ NMR}}$ (250 MHz, CDCl₃): $\delta = 8.05-8.00$ (m, 2), 7.58-7.36 (m, 3), 5.45 (t, J=6.5 Hz, 1), 5.38 (t, J=6.5 Hz, 1), 4.82 (d, J=6.5 Hz, 2), 3.95 (s, 2), 3.95 (s, 2), 2.22-2.04 (m, 5), 1.75 (s, 3), 1.64 (s, 3).

<u>CI-MS</u> (7 eV): 275 (M^++1 , 6.7), 274 (M^+ , 0.5), 257 (35.5), 153 (32.8), 135 (base), 107 (17.7)

IR (Neat): 3430 (br.), 3030, 2930, 1715, 1600, 1585, 1450,
1385, 1315, 1275, 1105, 1070, 1025, 715 cm⁻¹

Anal. Calcd. for C₁₇H₂₂O₃: C, 74.4; H, 8.08. Found: C, 74.41; H, 8.27.

(+)-6,7-Epoxy-8-hydroxygeranyl benzoate (+)-103

To a solution of 8-hydroxy geranyl benzoate 102 (9.65 g, 35.19 mmole) in dry methylene chloride (130 ml) chilled in an ice-water bath was added a solution of m-chloroperoxybenzoic acid (7.5 g, 85% purity, 36.95 mmole) in methylene chloride (110 ml) over a period of 1 hour. Stirring was continued for another 0.5 hour at 0°C and then 2 hours at room temperature. The reaction mixture was then cast into ether (300 ml) and saturated aqueous NaHCO₃ (300 ml). The organic phase was separated; washed with aqueous NaHCO₃ (300 ml), water (300 ml), brine (300 ml); dried (MgSO₄); and concentrated in vacuo to give 10.2 g, 100% crude yield, of 6,7-Epoxy-8-hydroxygeranyl benzoate 103 as a colorless liquid which was

utilized without further purification.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): \delta = 8.05-7.97 \text{ (m, 2), } 7.54-7.36 \text{ (m, 3), } 5.48 \text{ (t, } J=7.3 \text{ Hz, 1), } 4.81 \text{ (d, } J=7.3 \text{ Hz, 2), } 3.65-3.52 \text{ (m, 2), } 2.99 \text{ (t, } J=6.4 \text{ Hz, 1), } 2.28-2.10 \text{ (m, 2), } 1.75 \text{ (s, 3), } 1.76-1.62 \text{ (m, 3), } 1.25 \text{ (s, 3)} \\ \underline{\text{CI-MS}}: \text{ (7 eV) } 291 \text{ (M}^{+1}, \text{ 0.4), } 205 \text{ (11.9), } 169 \text{ (46.5), } 151 \text{ (48.1), } 111 \text{ (base)} \\ \underline{\text{IR}} \text{ (neat): } 3440 \text{ (br.), } 3030, 2930, 1715, 1450, 1385, 1315, } 1275, 1105, 1070, 1025, 715 \text{ cm}^{-1}$

(-)-6,7-Epoxy-8-hydroxygeranyl benzoate (-)-103

To a solution of L-diisopropyltartrate (5.87 g, 25 mmole) in dry methylene chloride (230 ml) cooled in a dry ice-CCl bath was added $Ti(OiPr)_A$ (7.82 ml, 26.3 mmole). The solution was allowed to stir for 5 minutes then 6.87 g (25 mmole) of 8-hydroxygeranyl benzoate in 40 ml of $\mathrm{CH_2Cl_2}$ was added over a period of 30 minutes followed immediately by the addition of TBHP (3.5 M in toluene, 14.5 ml, 50 mmole). The resulting yellow solution was stirred for 2 hours at -23°C and then was stored in a freezer overnight. To the chilled (dry ice-CCl₄) reaction mixture was added 4.5 ml of Me₂S and the solution was stirred for 40 minutes at -20°C; then the cold reaction mixture was added slowly to a vigorously stirred saturated aqueous NaF solution (550 ml) at room temperature. solution was stirred for 10 minutes; the aqueous layer was saturated with NaCl; and the gel-like precitipated inorganic fluorides were removed by filtration through a pad of celite.

The organic phase were separated; the aqueous layer was extracted with CH_2Cl_2 (3x200 ml) and the combined organic extracts were washed with water, brine (600 ml each); and dried (Na_2SO_4). The crude product was purified by chromatography on a column of silica gel (60-240 mesh, 200 g, 1:1 hexane:ethyl acetate) using flash technique. Fractions 30 to 45 afforded 5.16 g, 71%, of (-)-103 as a viscous colorless liquid.

 $[\alpha]_{D} = -5.769$ (c: 0.364, $CH_{2}Cl_{2}$)

(\pm) -6,7-Epoxy-8-benzyloxygeranyl benzoate (\pm) -104

To a solution of crude (\pm) -6,7-epoxy-8-hydroxygeranyl benzoate 103 (10.2 g, 35.19 mmole) in dry THF (200 ml) was added NaH (1.86 g, 38.66 mmole, 50% in oil, washed with dry hexane (2X)) in one portion. The mixture was stirred for 20 minutes at room temperature under argon. To the resulting dark brown solution was added benzyl bromide (4.6 ml, 38.66 mmole) in one portion, followed immediately by tetrabutyl ammonium iodide (5.19 g, 14.05 mmole); the resulting mixture was allowed to stir for 5 hours at room temperature. Solvent was removed in vacuo and the reaction was quenched by carefully addition of saturated aqueous NH_ACl (300 ml). The solution was cast into ether (200 ml); the organic phase was separated and the aqueous layer was extracted with ether (2X300 ml). The combined organic extracts were washed with water, brine (500 ml each); and dried (Na₂SO₄); concentrated in vacuo to provide a yellow liquid. The crude

product was purified by chromatography on a column of silica gel (230-400 mesh, 120 g, 50 mm o.d., 9:1 hexane:ethyl acetate) using flash technique. Fractions 20 to 38 afforded 11.89 g, 89%, of 104 as a pale yellow liquid, TLC (Merck, UV-vanillin, ether:hexane 1:1) R_f =0.41.

 $\frac{1}{\text{H} \text{ NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 8.01-7.93 \text{ (m, 2), } 7.51-7.33 \text{ (m, 3), } 7.31-7.22 \text{ (m, 5), } 5.50 \text{ (t, J=8.0 Hz, 1), } 4.82 \text{ (d, J=8.0 Hz, 2), } 4.54 \text{ (d, J=12.2 Hz, 1), } 4.48 \text{ (d, J=12.2 Hz, 1), } 3.51 \text{ (d, J=10.3 Hz, 1), } 3.44 \text{ (d, J=10.3 Hz, 1), } 2.88 \text{ (t, J=6.2 Hz, 1), } 2.35-2.17 \text{ (m, 2), } 1.88 \text{ (s, 3), } 1.88-1.66 \text{ (m, 2), } 1.36 \text{ (s, 3)}$

Chiral 104

According to the procedure of preparation of (\pm) -104, (-)-103 (4 g, 13.8 mmole) was benzylated by benzylbromide (1.8 ml, 15.1 mmole), NaH (0.7 g, 14.5 mmole, 50% in oil) and Bu₄NF (2 g, 5.4 mmole) in 200 ml of THF to provide 4.61 g, 88%, of chiral 104.

(\pm) -6,7-Epoxy-8-benzyloxygeranyl alcohol (\pm) -105

A mixture of 104 (7.51 g, 19.76 mmole), sodium methoxide (32 g, 0.59 mole) and tetrabutyl ammonium iodide (8.76 g, 23.71 mmole) in MeOH (475 ml) was stirred for 12 hours at room temperature. Then, MeOH was removed in vacuo and water (80 ml) was added. The solution was extracted with ether (2x200 ml), water (400 ml); dried (Na₂SO₄); and concentrated in vacuo to provide a yellow liquid. The crude product was

purified by chromatography on a column of silica gel (60-230 mesh, 100 g, 1:1 hexane:ether) using flash technique. Fractions 16 to 32 afforded 5.4 g, 99%. of 105 as a pale colorless liquid. TLC (Merck, UV-vanillin, ether:hexane 1:1) R_{ε} =0.09.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{ CDCl}_3): \delta = 7.34-7.20 \text{ (m, 5)}, 5.42 \text{ (t,} \\
J=8.0 \text{ Hz, 1)}, 4.55 \text{ (d, J=12.1 Hz, 1)}, 4.49 \text{ (d, J=12.1 Hz, 2)}, \\
4.13 \text{ (d, J=8.0 Hz, 2)}, 3.47 \text{ (s, 2)}, 2.87 \text{ (t, J=6.5 Hz, 1)}, \\
2.27-2.16 \text{ (m, 2)}, 1.79-1.67 \text{ (m, 3)}, 1.72 \text{ (s, 3)}, 1.35 \text{ (s, 3)} \\
\underline{\text{CI-MS}} (7 \text{ eV}): 277 \text{ (M}^++1, 1.2), 259 \text{ (31.0)}, 151 \text{ (19.0)}, 111 \\
\text{(base)}, 91 \text{ (72.2)}$

<u>IR</u> (Neat): 3420 (br.), 3030, 2920, 2860, 1670, 1450, 1380, 1195, 1000, 740, 700 cm⁻¹

(-)-6,7-Epoxy-8-benzyloxygeranyl alcohol (-)-105

According to the procedure of preparation of (\pm) -105, the chiral 104 (2.45 g, 6.4 mmole) was treated with MeONa (10.5 g, 0.19 mole) and Bu₄NF (2.9 g, 7.8 mmole) in 120 ml of MeOH to provide 1.76 g, 99% of (-)-105.

 $[\alpha]_{D}^{=}$ -6.132 (c: 0.424, MeOH) M⁺-OH cald. for $C_{17}H_{23}O_{2}$ 259.1698, M⁺-OH found 259.1694

(\pm) -6,7-Epoxy-8-benzyloxygeranyl chloride (\pm) -106

To a solution of (\pm) -105 (2.1 g, 7.61 mmole) in dry ether (18 ml) and HMPA (6 ml) chilled in an ice-water bath was added n-BuLi (2.4 M in hexane, 3.2 ml, 7.61 mmole) over 10 minutes. The resulting mixture was stirred for 10 minutes at

0°C; then p-toluenesulfonyl chloride (1.45 g, 7.61 mmole) in dry ether (5 ml) was added in one portion followed by anhydrous lithium chloride (0.64 g, 15.2 mmole). The resulting mixture was allowed to stirr for 1 hour at 0°C and 2 hours at room temperature; then was cast into saturated aqueous NaHCO₃ (200 ml) and ether (300 ml). The organic phase was washed with water (2x200 ml), brine (200 ml); dried (Na₂SO₄); and concentrated in vacuo to give a yellow liquid. The crude product was purified by chromatography on a column of silica gel (60-230 mesh, 50 g, 1:1 hexane:ether), TLC (Merck, UV-vanillin, ether:hexane 1:1) R_f=0.73, to provide 1.9 g, 85%, of 106 as a colorless liquid.

 $\frac{1}{\text{H}} \quad \text{NMR} \quad (250 \text{ MHz}, \quad \text{CDCl}_3): \quad \delta = 7.42 - 7.24 \quad (\text{m}, \quad 5), \quad 5.47 \quad (\text{t}, \quad \text{J}=6.7 \text{ Hz}, \quad 1), \quad 4.56 \quad (\text{d}, \quad \text{J}=12.2 \text{ Hz}, \quad 1), \quad 4.50 \quad (\text{d}, \quad \text{J}=12.2 \text{ Hz}, \quad 1), \quad 4.06 \quad (\text{d}, \quad \text{J}=7.9 \text{ Hz}, \quad 2), \quad 3.50 \quad (\text{d}, \quad \text{J}=11.2 \text{ Hz}, \quad 1), \quad 3.42 \quad (\text{d}, \quad \text{J}=11.2 \text{ Hz}, \quad 1), \quad 2.83 \quad (\text{t}, \quad \text{J}=6.4 \text{ Hz}, \quad 1), \quad 2.28 - 2.09 \quad (\text{m}, \quad 2), \quad 1.72 \quad (\text{s}, \quad 3), \quad 1.73 - 1.61 \quad (\text{m}, \quad 2), \quad 1.31 \quad (\text{s}, \quad 3)$ $\frac{\text{CI-MS}}{\text{CI-MS}} \quad (\text{7 eV}): \quad 295 \quad (\text{M}^+, \quad 0.7), \quad 169 \quad (\text{11.4}), \quad 151 \quad (\text{17.9}), \quad 111 \quad \text{CI-MS}$

<u>IR</u> (Neat): 3020, 2920, 1665, 1455, 1385, 1255, 1095, 740,

(+)-6,7-Epoxy-8-benzyloxygeranyl chloride (+)-106

(base), 91 (65.2)

According to the procedure for chlorination of (\pm) -105, (-)-105 (1.22 g, 4.4 mmole) was treated with nBuLi (2 ml, 2.43 M in hexane, 4.86 mmole) and HMPA (3.5 ml) in 60 ml of ether; followed by p-TsCl (1 g, 5.2 mmole) and LiCl (0.37 g,

8.8 mmole) to give 1.11 g, 85%, of (+)-106. $[\alpha]_{D} = +2.179$ (c: 0.78, CH₂Cl₂)

(\pm) -1-(3-Furyl)-7,8-epoxy-9-benzyloxy non-3-ene (\pm) -107

In the usual procedure 22 , 3-chloromethylfuran (0.83 g, 7.1 mmole) in 10 ml of THF was converted to the corresponding Grignard reagent and coupled with (\pm) -6,7-epoxy-8-benzyloxygeranyl chloride 106 (1.9 g, 6.5 mmole). Purification by chromatgraphy on a column of silica gel (240-400 mesh, 100 g, 9:1 hexane:ether) using flash technique afforded 1.73 g, 79%, of (\pm) -107 as a colorless viscous liquid, TLC (Merck, UV-vanillin, ether:hexane 1:4) R_f =0.34.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 7.41-7.24 \text{ (m, 6), } 7.18 \text{ (m, 1), } 6.25 \text{ (m, 1), } 5.19 \text{ (t, J=7.5 Hz, 1), } 4.57 \text{ (d, J=12.1 Hz, 1), } 4.51 \text{ (d, J=12.1 Hz, 1), } 3.48 \text{ (d, J=11.0 Hz, 1), } 3.40 \text{ (d, J=11.0 Hz, 1), } 2.82 \text{ (t, J=6.4 Hz, 1), } 2.47-2.38 \text{ (m, 2), } 2.29-2.04 \text{ (m, 4), } 1.69-1.56 \text{ (m, 2), } 1.59 \text{ (s, 3), } 1.32 \text{ (s, 3)}$ $\underline{\text{EI-MS}} \text{ (70 eV): } 340 \text{ (M}^+, 0.3), \text{ 173 (15.0), } 91 \text{ (base), } 81 \text{ (30.0)}$

<u>IR</u> (Neat): 3020, 2920, 1500, 1450, 1380, 1105, 1025, 875, 735, 700 cm⁻¹

(-)-1-(3-Furyl)-7,8-epoxy-9-benzyloxy non-3-ene (-)-107

According to the procedure for the preparation of (\pm) 107, (+)-106 (0.42 g, 1.43 mmole) was coupled with 3furfurylMgCl (0.2 g, 1.7 mmole, of furfurylchloride and 0.08
g of Mg) and Li₂CuCl₄ in 20 ml of THF to give 0.364 g, 75%,

of (-)-107.

 $[\alpha]_{D}^{=}$ -2.168 (c: 0.764, $CH_{2}Cl_{2}$) M⁺ cald. for $C_{22}H_{28}O_{3}$ 340.20386, M⁺ found 340.2033

6-Benzyloxymethylene-4,5,5a,6,7,8,9,9a-octahydro-6,9a-dimethyl- $(5a\alpha,6\alpha,7\beta,9a\beta)$ - (\pm) -naphtho[1,2-b]furan-7-ol (\pm) -108

To a solution of (\pm) -107 (0.11 g, 0.32 mmole) in dry methylene chloride (3 ml), benzene (3 ml) and hexane (3 ml) was added triethylamine (0.14 ml, 1 mmole). The solution was cooled in a dry ice-acetone bath and a solution of boron trifluoride etherate (0.24 ml, 1.95 mmole) in methylene chloride (7 ml) was added very slowly over a period of 2 hours. The resulting yellow solution was stirred for 45 minutes at -78°C. The reaction mixture was cast into ether (150 ml) and aqueous NaHCO3 (100 ml). The organic phase was separated; washed with 0.1 N HCl (100 ml), brine (100 ml); dried (Na_2SO_4) ; and concentrated in vacuo. The crude product was purified by chromatography on a column of silica gel (240-400 mesh, 50 g, 4:1 hexane:ether) using the flash technique. Fractions 13 to 16 afforded 5.5 mg, 5%, TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_f=0.45$, of uncyclized ketone 109 and 79 mg, 72%, of cyclized product (\pm) -108 as a white solid, $R_f=0.22$. m.p.=92-93°C.

 $\frac{1}{\text{H} \text{ NMR}}$ (250 MHz, CDCl₃): δ = 7.26 (m, 5), 7.14 (d, J=2.0 Hz, 1), 6.08 (d, J=2.0 Hz, 1), 4.52 (s, 2), 3.74 (dd, J=5.0, 10.0 Hz, 1), 3.61 (d, J=8.8 Hz, 1), 3.30 (d, J=8.8 Hz, 1), 2.55-

2.13 (m, 2), 1.90-1.49 (m, 8), 1.27 (s, 3), 1.06 (s, 3).

EI-MS (70 eV): 340 (M⁺, 18.0), 201 (21.1), 173 (24.9), 159

(22.7), 91 (base)

<u>IR</u> (Neat): 3440 (br.), 3030, 2930, 1505, 1455, 1375, 1075, 1025, 735, 695 cm⁻¹

(+) - 108

According to the procedure for the preparation of (\pm) -108, (-)-107 (0.26 g, 0.76 mmole) was cyclized with BF₃-OEt₂ (0.57 ml, 4.56 mmole, in 17 ml CH₂Cl₂) and Et₃N (0.32 ml, 2.28 mmole) in hexane, benzene, CH₂Cl₂ (7 ml each) to afford 0.36 g, 72%, of (+)-108. p.m.=84-85°C.

 $[\alpha]_{D}$ = +46.813 (c: 0.455, MeOH)

Anal. Calcd. for $C_{22}H_{28}O_3$: C, 77.61; H, 8.28. Found: C, 77.51; H, 8.31.

Benzyloxymethylene-4,5,5a,6,9,9a-hexahydro-6-6,9a-dimethyl- $(5a\alpha,6\alpha,9a\beta)$ - (\pm) -naphtho[1,2-b]furan-7(8H)-one (\pm) -111

To a solution of oxalyl chloride (51 ul, 0.58 mmole) in dry THF (2 ml) cooled in a dry ice-acetone bath was added DMSO (43 ul, 0.6 mmole). The solution was warmed to -35°C for 3 minutes. The resulting greenish yellow solution was cooled in a dry ice-acetone bath and then a solution of β -OH benzylether 108 (0.19 g, 0.56 mmole) in THF (2 ml) was added over 5 minutes. The solution was warmed to -35°C for 15 minutes, cooled back to -50°C and triethylamine (0.4 ml) was added. The resulting cloudy solution was warmed to room

temperature and stirred for 1 hour. The reaction mixture was diluted with ether (50 ml) and water (30 ml). Aqueous layer was furthered extracted with ether (2x50 ml). The combined organic extracts were washed with 0.1 N HCl (50 ml), brine (50 ml); and dried (Na_2SO_4). Removal of solvent followed by chromatography on a column of silica gel (240-400 mesh, 30 g, 4:1 hexane:ether) using the flash technique afforded 0.183 g, 97%, of keto benzylether (\pm)-111 as a white solid, TLC (Merck, UV-vanillin, ether:hexane 1:1) R_f =0.5.

 $\frac{1}{\text{H}} \quad \text{NMR} \quad (250 \text{ MHz}, \quad \text{CDCl}_3): \quad \delta = 7.34-7.19 \quad (\text{m}, \quad 6), \quad 6.14 \quad (\text{d}, \quad \text{J=1.7 Hz}, \quad 1), \quad 4.50 \quad (\text{d}, \quad \text{J=12.4 Hz}, \quad 1), \quad 4.36 \quad (\text{d}, \quad \text{J=12.4 Hz}, \quad 1), \quad 3.48 \quad (\text{d}, \quad \text{J=8.4 Hz}, \quad 1), \quad 3.29 \quad (\text{d}, \quad \text{J=8.4 Hz}, \quad 1), \quad 2.68-2.22 \quad (\text{m}, \quad 6), \quad 2.03-1.89 \quad (\text{m}, \quad 1), \quad 1.66-1.53 \quad (\text{m}, \quad 2), \quad 1.19 \quad (\text{s}, \quad 3), \quad 0.98 \quad (\text{s}, \quad 3), \quad$

<u>EI-MS</u> (70 eV): 338(M⁺, 4.0), 232 (8.6), 217 (10.5), 149 (8.9), 105 (8.5), 91 (base)

<u>IR</u> (Neat): 3030, 2950, 2850, 1700, 1500, 1450, 1375, 1230, 1105, 1030, 735, 700 cm⁻¹

(+) -111

According to the procedure of preparation of (\pm) -111, (+)-108 (70 mg, 20.6 mmole) was oxidized with oxalyl chloride (0.05 ml), DMSO (0.05 ml) and Et₃N (0.4 ml) in 5 ml of THF to provide 66 mg, 95%, of (+)-111.

 $[\alpha]_{D}$ = +75.2 (c: 0.125, MeOH)

General Procedure for the Reduction by L-selectride and Salt:

Preparation of benzyloxymethylene-4,5,5a,6,7,8,9,9a-octahydro-6-6,9a-dimethyl- $(5a\alpha,6\alpha,7\alpha,9a\beta)$ - (\pm) -naphtho[1,2-b] furan-7-ol (\pm) -113

To a solution of keto benzyl ether (\pm) -111 (100 mg, 0.3 mmole) in dry methylene chloride (25 ml) chilled to -10°C (ice-salt) was added MgBr₂-Et₂O (153 mg, 0.6 mmole) in one portion and stirred for 1 minute at -10°C. The result suspension was then cooled in a dry ice-acetone bath and added L-selectride (1 M in THF, 0.9 ml, 0.9 mmole) over a period of 5 minutes. The reaction mixture was stirred for 0.5 hour at -78°C and warmed to room temperature slowly over 1 hour. Stirring was continued at room temperature for 20 minutes. The reaction was quenched by carefully adding methanol (4 ml), followed by 20% aqueous NaOH (6 ml) and 30% aqueous H_2^0 (12 ml). The solution was stirred at room temperature for 1.5 hours and then diluted with ether (100 ml), washed with water (100 ml), saturated aqueous $\mathrm{NH_4Cl}$ (100 ml) and saturated aqueous $NaHCO_3$ (100 ml). The organic phase was dried (Na $_2$ SO $_4$) and removal of solvent <u>in vacuo</u> followed with purification by chromatography on a column of silica gel (240-400 mesh, 50 g, 9:1 hexane:ether) using flash technique. Fractions 30 to 48 afforded 85 mg, 85%, of desired α -OH benzyl ether (\pm) -113, TLC (Merck, UV-vanillin, ether:hexane 1:1) R_{ρ} =0.31 and fractions 52 to 56 afforded 10 mg, 10%, of β -OH benzyl ether (\pm) -108 which was resubmitted to oxidation, $R_f=0.22$.

 $[\]frac{1}{1}$ H NMR (250 MHz, CDCl₃): δ = 7.25 (m, 5), 7.14 (d, J=2.0 Hz,

1), 6.07 (d, J=2.0 Hz, 1), 4.57 (d, J=12.7 Hz, 1), 4.41 (d, J=12.7 Hz, 1), 3.77 (m, 1), 3.54 (d, J=8.5 Hz, 1), 3.31 (d, J=8.5 Hz, 1), 2.49-2.29 (m, 2), 2.01-1.51 (m, 8), 1.25 (s, 3), 0.87 (s, 3)

<u>EI-MS</u> (70 eV): 340 (M⁺, 1.4), 217 (17.0), 149 (36.3), 122 (13.8), 91 (base)

<u>IR</u> (Neat): 3480(br.), 3030, 2930, 1505, 1455, 1065, 730, 695 cm⁻¹

(+) -113

According to the procedure of preparation of (\pm) -113, (+)-111 (530 mg, 1.57 mmole) was reduced with L-selectride (6.4 ml, 1 M in THF, 6.4 mmole) and $MgBr_2$ -OEt₂ (810 mg, 3.13 mmole) in 130 ml of CH_2Cl_2 to give 496 mg, 93%, of a mixture of (+)-108 and (+)-113 (8.5:1).

 $[\alpha]_{D}^{=+53.64}$ (c: 0.11, MeOH)

4,5,5a,6,7,8,9,9a-Octahydro-6-hydroxymethylene-6,9a-dimethyl-(5a α ,6 α ,7 β ,9a β)-(\pm)-naphtho[1,2-b]furan-7-ol (\pm)-110

According to the general procedure outlined for the preparation of (\pm) -85, (\pm) -108 was converted to (\pm) -110 in 50% yield with 42% recovered starting material after purification by chromatography on silica gel.

 $\frac{1}{2}$ H NMR of 110 (60 MHz, CDCl₃): δ = 7.12 (d, J=2.0 Hz, 1), 6.05 (d, J=2.0 Hz, 1), 3.90-3.20 (m, 3), 2.60-2.10 (m, 2), 2.00-1.40 (m, 9), 1.20 (s, 3), 0.95 (s, 3)

General Procedure for the Reductive Debenzylation: Preparation of 4,5,5a,6,7,8,9,9a-octahydro-6-hydroxy methylene-6,9a-dimethyl-(5a α ,6 α ,7 α ,9a β)-(\pm)-naphtho[1,2-b] furan-7-ol (\pm)-85

To a solution of lithium aluminum hydride (25 mg, 0.66 mmole) in dry THF (5 ml) was added a solution of benzyl ether (\pm)-113 (15 mg, 0.04 mmole) in THF (5 ml) over 10 minutes and stirred for 11 hours at room temperature. The reaction mixture was carefully quenched with 20% aqueous NaOH (30 ml) and cast into ether (50 ml). The organic phase was separated; washed with saturated aqueous NH₄Cl (50 ml), water (50 ml), brine (50 ml); dried (Na₂SO₄) and concentrated in vacuo to provide a yellow solid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 8 g, 1:2 hexane:ether), TLC (Merck, UV-vanillin, ether:hexane 5:1) R_f=0.18, to provide 10.4 mg, 94%, of (\pm)-85 as a white solid. m.p.=119-121°C.

 $\frac{1}{\text{H NMR}} (250 \text{ MHz}, \text{CDCl}_3): \delta = 7.13 \text{ (d, J=2.0 Hz, 1), 6.09 (d, J=2.0 Hz, 1), 3.79 (t, J=3.0 Hz, 1), 3.59 (d, J=12.5 Hz, 1), 3.48 (d, J=12.5 Hz, 1), 2.54-2.27 (m, 2), 1.96-1.54 (m, 9), 1.26 (s, 3), 0.83 (s, 3).$

<u>EI-MS</u> (70 eV): 250 (M⁺, 31.6), 235 (21.47), 217 (base), 199 (19.3), 159 (22.3), 91 (36.4)

<u>IR</u> (neat): 3350, 2950, 1505, 1480, 1455, 1385, 1270, 1210, 1165, 1135, 1055, 1000, 890, 745 cm⁻¹

According to the procedure of preparation of (\pm) -85, (+)-113 (400 mg, 1.18 mmole) was debenzylated by LAH (0.45 g) in 100 ml of THF to give 276 mg, 94%, of (+)-85. m.p.=138-140°C

 $[\alpha]_{D}$ = +43.75 (c: 0.16, MeOH).

4a,4b,5,6,9b,10,11,11a-Octahydro-2,2,4a,9b-tetramethyl- $(4a\alpha,4b\beta,9b\alpha,11a\alpha)$ -4H-furo[2',3':5,6]naphtho[2,1-d]-1,3-dioxin (±)-86

To a solution of diol (\pm) -85 (250 mg, 1.0 mmole) in dry methylene chloride (30 ml) and dry acetone (2 ml) was added oxalic acid (few crystals) and anhydrous CaSO₄ (1 g, 4.77 mmole). The mixture was stirred overnight at room temperature. The solution was diluted with ether (30 ml), washed with aqueous NaHCO₃ (2x30 ml) and dried (Na₂SO₄). Removal of solvent followed with purification by chromatography on a column of silica gel (60-230 mesh, 8 g, 8:1 hexane:ether) using flash technique. Fractions 6 to 9 afforded 270 mg, 93%, of acetonide (\pm)-86 as a white solid, TLC (Merck, UV-vanillin, ether:hexane 1:9) R_f=0.27. m.p.=137-139°C.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, } d_6\text{-acetone): } \delta = 7.26 \text{ (d, } J=2.0 \text{ Hz, } 1),$ $6.15 \text{ (d, } J=2.0 \text{ Hz, } 1), 3.78 \text{ (t, } J=3.0 \text{ Hz, } 1), 3.70 \text{ (d, } J=12.0 \text{ Hz, } 1), 3.37 \text{ (d, } J=12.0 \text{ Hz, } 1), 2.55-2.30 \text{ (m, } 2), 2.11-1.50 \text{ (m, } 7), 1.43 \text{ (s, } 3), 1.28 \text{ (s, } 3), 1.21 \text{ (s, } 3), 0.82 \text{ (s, } 3).}$ $\underline{\text{EI-MS}} \text{ (70 eV): } 290 \text{ (M}^+, 41.5), 275 \text{ (25.8), 232 (4.5), 217}$

(base), 149 (47.6)

<u>IR</u> (KBr): 3010, 2970, 2890, 1505, 1480, 1380, 1205, 1165, 1095, 1010, 860, 765 cm⁻¹

(+) -86

According to the procedure of preparation of (\pm) -86, (+)-85 (250 mg, 1 mmole) was treated with acetone (2 ml), oxalic acid (few crystals) and CaSO₄ (1 g) in 30 ml of CH₂Cl₂ to give 270 mg, 93%, of (+)-86.

 $[\alpha]_{D}$ = +22.60 (c: 0.77, $CH_{2}Cl_{2}$)

6,7-Epoxy-8-acetyloxygeranyl benzoate 114

To a solution of (-)-103 (50 mg, 0.17 mmole) in a mixture of dry methylene chloride (20 ml) and pyridine (0.5 ml, 6.2 mmole) chilled in an ice-water bath was added a solution of acetic anhydride (20 mg, 0.19 mmole) in methylene chloride (15 ml) slowly. The mixture was stirred overnight at room temperature. The resulting solution was cast into water (40 ml) and ether (50 ml). The organic phase was separated; washed with 5% HCl (3x40 ml), aqueous NaHCO₃ (40 ml), water (40 ml), brine (40 ml); dried (MgSO₄) and concentrated in vacuo to provide a yellow liquid. The crude product was purified by chromatography on a column of silica gel (60-240 mesh, 20 g, 4:1 hexane:ether) using flash technique. Fractions 6 to 8 afforded 114 ,53 mg, (93%). TLC (Merck, UV-vanillin, ether:hexane 5:1) R_f=0.55.

 $\frac{1}{2}$ H NMR (250 MHz, CDCl₃): δ = 7.98-7.92 (m, 2), 7.50-7.30 (m, 3), 5.48 (t, J=7.4 Hz, 1), 4.82 (d, J=8.5 Hz, 2), 4.13 (d, J=11.7 Hz, 1), 3.92 (d, J=11.7 Hz, 1), 2.89 (t, J=6.4 Hz, 1), 2.36-2.17 (m, 2), 2.10 (s, 3), 1.83-1.63 (m, 2), 1.82 (s, 3), 1.35 (s, 3).

MTPA ester 115

solution of $(-)-\alpha$ -Methoxy- α -(trifluoromethyl) phenyl acetic acid (60 mg, 0.26 mmole) and $SOCl_2$ (20 ml) was refluxed for 45 hours. The excess SOCl, was removed in vacuo and diluted with dry methylene chloride (5 ml). To this crude MTPACL solution was added a solution of (-)-103 (50 mg, 0.17 mmole) in methylene chloride (10 ml), followed by pyridine (5 ml) and DMAP (5 mg). The reaction mixture was refluxed for 1.5 hours and quenched with 1 N HCl (50 ml) and cast ether (50 ml). The organic phase was separated; washed with saturated aqueous NaHCO₃ (50 ml), water (50 ml), brine (50 ml); dried (MgSO₄) and concentrated in vacuo to provide a yellow liquid. The crude product purified by was chromatography on a column of silica gel (230-400 mesh, 10 g, 4:1 hexane:ether) using flash technique. Fractions 9 to 11 afforded 115, 18 mg, in 20% yield, TLC (Merck, UV-vanillin, ether:hexane 1:1) $R_f=0.35$ and 20 mg of starting material was recovered.

 $\frac{1}{\text{H NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 8.02-7.74 \text{ (m, 2), } 7.56-7.35 \text{ (m, 3), } 5.49 \text{ (t, J=7.4 Hz, 1), } 4.84 \text{ (d, J=8.5 Hz, 2), } 4.39 \text{ (d, J=11.7 Hz, 1), } 4.25 \text{ (d, J=11.7 Hz, 1), } 3.59 \text{ (q, J=1.4 Hz, 3), }$

2.93 (t, J=6.4 Hz, 1), 2.36-2.10 (m, 2), 1.87-1.47 (m, 2), 1.82 (s, 3), 1.36 (s, 3)

Monobromobenzoate 116

According to the general procedure outlined for the preparation of MTPA ester 115, (+)-110 was converted to 116 in 85% yield after purification by chromatography on silica gel, TLC (Merck, UV-vanillin, ether:hexane 1:1) R_f =0.55.

 $\frac{1}{\text{H} \text{ NMR}} \text{ (250 MHz, CDCl}_3): } \delta = 7.90-7.77 \text{ (m, 2), } 7.67-7.44 \text{ (m, 2), } 7.13 \text{ (d, J=2.0 Hz, 1), } 6.09 \text{ (d, J=2.0 Hz, 1), } 4.40 \text{ (d, J=10.0 Hz, 1), } 4.25 \text{ (d, J=10.0 Hz, 1), } 3.81 \text{ (m, 1), } 2.63-2.30 \text{ (m, 2), } 2.10-1.53 \text{ (m, 8), } 1.31 \text{ (s, 3), } 1.13 \text{ (s, 3)}$

General Procedure for the Preparation of (S)-0-Methylmandelate ester: Preparation of 119

A few crystals of DMAP was added all at once to a colorless solution of (+)-108 (10 mg, 0.03 mmole), (S)-0-methylmandelic acid (5 mg, 0.03 mmole) and 1,3 dicyclohexyl carbodimide (6 mg, 0.03 mmole) in 25 ml of methylene chloride. After 24 hours, the reaction mixture was diluted with ether (25 ml) and washed with 1 N aqueous HCl (20 ml), saturated aqueous NaHCO₃ (20 ml), brine (20 ml), dried (MgSO₄) and concentrated in vacuo to provide a viscous liquid. The crude product was purified by chromatography on a column of silica gel (230-400 mesh, 5 g, 4:1 hexane:ether) to afford 12 mg, 83% (≥95% de), of 119.

 $[\]frac{1}{1}$ H NMR of 118 (250 MHz, CDCl₃): $\delta = 7.48-7.22$ (m, 10), 7.16

(d, J=1.8 Hz, 1), 6.08 (d, J=1.8 Hz, 1), 5.09 (dd, J=5.0, 11.7 Hz, 1), 4.73 (s, 1), 4.10 (d, J=12.2 Hz, 1), 3.85 (d, J=12.2 Hz, 1), 3.41 (s, 3), 2.86 (d, J=9.8 Hz, 1), 2.39-2.30 (m, 2), 2.15 (d, J=9.8 Hz, 1), 2.10 (dt, J=3.2, 12.5 Hz, 1), 1.97-1.40 (m, 6), 1.21 (s, 3), 0.88 (s, 3)

 $\frac{1}{\text{H} \text{ NMR}} \text{ of } \mathbf{119} \text{ (250 MHz, CDCl}_3): \quad \delta = 7.48-7.26 \text{ (m, 10), } 7.16$ $(d, J=1.8 \text{ Hz, } 1), \quad 6.08 \text{ (d, } J=1.8 \text{ Hz, } 1), \quad 5.09 \text{ (dd, } J=5.0, \\ 11.7 \text{ Hz, } 1), \quad 4.73 \text{ (s, } 1), \quad 4.11 \text{ (d, } J=12.2 \text{ Hz, } 1), \quad 3.85 \text{ (d, } J=12.2 \text{ Hz, } 1), \quad 3.41 \text{ (s, } 3), \quad 2.86 \text{ (d, } J=9.8 \text{ Hz, } 1), \quad 2.40-2.30 \\ (m, 2), \quad 2.16 \text{ (d, } J=9.8 \text{ Hz, } 1), \quad 2.11 \text{ (dt, } J=3.2, \quad 12.5 \text{ Hz, } 1), \\ 2.01-1.39 \text{ (m, 6), } 1.18 \text{ (s, 3), } 0.62 \text{ (s, 3)}$

 $\frac{1}{\text{H NMR}} \text{ of } 120 \text{ (250 MHz, CDCl}_3): \quad \delta = 7.49-7.20 \text{ (m, 10), } 7.07$ (m, 1), 6.16 (d, J=1.8 Hz, 1), 5.06 (t, J=1.5 Hz, 1), 4.69 (s, 1), 3.65 (s, 2), 3.34 (s, 3), 2.97 (d, J=7.9 Hz, 1), 2.68 (d, J=7.9 Hz, 1), 2.60-2.36 (m, 2), 2.08-1.57 (m, 6), 1.21 (s, 3), 1.00 (s, 3)

 $\frac{1}{\text{H NMR}} \text{ of } 121 \text{ (250 MHz, CDCl}_3): \quad \delta = 7.49-7.20 \text{ (m, 10), } 7.10$ $(d, J=1.8 \text{ Hz, } 1), \quad 6.14 \text{ (d, } J=1.8 \text{ Hz, } 1), \quad 5.02 \text{ (t, } J=1.5 \text{ Hz, } 1), \quad 4.58 \text{ (s, } 1), \quad 4.26 \text{ (d, } J=12.2 \text{ Hz, } 1), \quad 4.19 \text{ (d, } J=12.2 \text{ Hz, } 1), \quad 3.30 \text{ (s, } 3), \quad 3.26 \text{ (d, } J=8.6 \text{ Hz, } 1), \quad 3.16 \text{ (d, } J=8.6 \text{ Hz, } 1), \quad 2.60-2.36 \text{ (m, 2), } 2.08-1.57 \text{ (m, 6), } 1.15 \text{ (s, 3), } 1.01 \text{ (s, 3)}$

REFERENCES

- (a) Brundret, K. M.; Dalziel, W.; Hesp, B.; Jarvis, J. A. J.; Neidle, S. J. Chem. Soc., Chem. Commun. 1972, 1027. (b) Dalziel, W., Hesp, B.; Stevenson, K. M.; Jarvis, J. A. J. J. Chem. Soc. Perkin I 1973, 2841.
- 2. Bucknall, R. A.; Moores, J.; Simms, R.; Hesp, B. Antimicrob. Agents Chemother. 1973, 4, 294.
- 3. Ikegami, S.; Taguchi, T.; Ohashi, M.; Oguro, M.; Nagano, H.; Mano, Y. Nature (London) 1978, 275, 458.
- Douros, J; Suffness, M. "New Anticancer Drugs";
 Carter, S. K.; Sakurai, Y.; Eds; Springer-Verlag;
 Berlin, 1980, 29.
- 5. Pedrali-Noy, G.; Belvedere, M,; Crepaldi, T.; Focher, F.; Spadari, S. Cancer Res. 1982, 42, 3810.
- 6. Ohashi, M.; Taguchi, T.; Ikegami, S. <u>Biochem.</u> <u>Biophys. Res. Commun.</u> 1978, 82,1084.
- 7. Review: Huberman, J.A. Cell 1981,23, 647.
- 8. Review: Spadari, S; Sals, F.; Pedrali-Noy, G. <u>Trends</u>
 <u>Biochem. Soc.</u> 1982, 7, 29.
- 9. McMurry, J. E.; Webb, T. R. <u>J. Med. Chem.</u> 1984, <u>27</u>, 1367.
- 10. For Previous total and formal-total synthesis of aphidicolin, see: (a) Trost, B. M.; Nishimura, Y.; Yamamoto, K. J. Am. Chem. Soc. 1979, 101, 1328. (b) McMurry, J. E.; Andrus, A.; Ksander, G. M.; Musser, G. H.; Johnson, M. A. J. Am. Chem. Soc. 1979, 101, 1330; ibid, Tetrahedron 1981, 37, Suppl. 1, 319. (c) Corey, E. J.; Tius, M. A.; Das, J. J. Am. Chem. Soc. 1980, 102, 1742. (d) Ireland, R. E.; Godfrey, J. D.; Thaisrivongs, S. J. Am. Chem. Soc. 1981, 103, 2446; Ireland, R. E.; Dow, W. C.; Godfrey, J. d.; Thaisrivongs, S. J. Org. Chem. 1984, 49, 1001. (e) van Tamelen, E. E.; Zawacky, S. R.; Russell, R. K.; Carlson, J. G. J. Am. Chem. Soc. 1983, 105, 142; van Tamelen, E. E.; Zawacky, S. R. Tetrahedron Lett. 1985, 26, 2833. (f) Bettolo, R. A.; Tagliatesta P.; Lupi, A.; Bravetti, D. Helv. Chim. Acta 1983, 66, 1922.
- 11. For approaches to 1 and related compounds, see:
 (a) Cargell, R. L.; Bushey, D. F.; Dalton, J. R.;
 Prasad, R. S.; Dyer, R. D. J. Org. Chem. 1981, 46,

- 3389.
- (b) Nicolaou, K. C.; Zipkin, R. E. <u>Angew. Chem.</u> <u>Int. Ed. Engl.</u> **1981**, <u>20</u>, 785.
- (c) Kametani, T.; Honda, T.; Shiratori, Y.; Matsumoto, H.; Fukumoto, K. J. Chem. Soc. Perkin I 1981, 1386.
- (d) Pearson, A. J.; Heywood, G. C.; Chandler, M. J. Chem. Soc. Perkin I 1982, 2631.
- (e) Koyama, H.; Okawara, H.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1986, 26, 2685.
- 12. Trost, B. M.; Bogdanowicz, M. J. <u>J. Am. Chem. Soc.</u> 1973, <u>95</u>, 5321.
- 13. Stork, G.; d'Angelo, J. <u>J. Am. Chem. Soc.</u> 1974, <u>96</u>, 7114.
- 14. Evans, D. A.; Truesadale, L. K.; Grimm, K. G.; Nesbitt, S. L. <u>J. Am. Chem. Soc.</u> 1977, 99, 5009.
- 15. (a) Parham, W. E.; Roosevelt, C. S. <u>Tetrahedron Lett.</u> 1971, 923.
 - (b) Evans, D. A.; Truesdale, L. K.; Carroll, G. L. J. Chem. Soc., Chem. Commun. 1973, 55.
 - (c) Evans, D. A.; Truesdale, L. K.; Carroll, K. L. J. Org. Chem. 1974, 39, 914.
- 16. Ito, Y; Hirao, T.; Saegusa, T. <u>J. Org. Chem.</u> 1978 <u>43</u>, 1011.
- 17. Kirk, D. N.; Petrow, V. J. Chem. Soc. 1962, 1091.
- For some recent reports, see:
 Tanis, S. P.; Herrinton, P. M. J. Org. Chem. 1985,
 50, 3988; Tanis, S. P.; Herrinton, P. M.; Dixon, L.
 A. <u>Tetrahedron Lett.</u>, 1985, 26, 5347; and references cited there in.
- 19. Tanis, S. P.; Herrinton, P. M. <u>J. Org. Chem.</u>, 1983, 48, 4572.
- 20. Katsuki, T.; Sharpless, K. B. <u>J. Am. Chem. Soc.</u> **1980**, <u>102</u>, 5974.
- 21. Tanis, S. P.; Chuang, Y. H.; Head, D. B. <u>Tetrahedron</u> <u>Lett.</u> 1985, <u>26</u>, 6147.
- 22. Tanis, S. P. Tetrahedron Lett. 1982, 23, 5509.
- 23. Stork, G. Org. Syn. 1978, 54, 68.
- 24. Tamura, M.; Kochi, J. Synthesis 1971, 303.

- 25. For previous results about the approach to the synthesis of 1, see:
 Head, D. B. Ph.D. Dissertation, Part III, 1985.
- 26. Heathcock, C. H.;, Jennings, R. A.; von Geldern, T. W. J. Org. Chem. 1983, 48, 3428.
- 27. Tanis, S. P.; Herrinton, P. M. <u>J. Org. Chem.</u> 1983, 48, 4572.
- 28. Mitchell, R. H.; Lai, Y. H.; Williams, R. V. <u>J. Org.</u> <u>Chem.</u> 1979, <u>44</u>, 4733.
- 29. Kuwajima, I.; Urabe, H. <u>Tetrahedron Lett.</u> 1981, <u>22</u>, 5191.
- 30. Williams, D. R.; Barner, B. A. <u>Tetrahedron Lett.</u> 1983, 24, 427.
- 31. Williams, P. D.; LeGoff, E. <u>Tetrahedron Lett.</u> 1985, 26, 1367.
- 32. Mashimo, K.;, Sato, Y. Tetrahedron, 1970, 26, 803.
- 33. Mitsunobu, O. <u>Synthesis</u> 1981, 1.
- 34. Brooks, D. W.; Grothaus, P. G.; Palmer, J. T. Tetrahedron Lett. 1982, 23, 4187; Raduchel, B. Synthesis, 1980, 292.
- 35. Mancuso, A; Swern, D. <u>J. Org. Chem,</u> 1978, <u>43</u>, 2480.
- 36. Fuji, K.; Ichikawa, K; Node, M.; Fujita, E. <u>J. Org.</u> <u>Chem.</u> 1979, <u>44</u>, 1661.
- 37. Brunet, J. J.; Mordenti, L.; Caubere, P. <u>J. Org.</u> <u>Chem.</u> 1978, <u>43</u>, 4808.
- 38. Kutney, J. P.; Abdurahman, N.; Gletsos, C.; LeQuesne, P.; Piers, E.; Vlattas, I. <u>J. Am. Chem. Soc.</u> 1970, 92, 1727.
- For reviews of polyene cyclization, see: Johnson, W. S. <u>Acc. Chem. Res.</u> 1968, <u>1</u>, 1; van Tamelen, E. E. <u>Ibid</u> 1975, <u>8</u>, 152; Johnson, W. S. <u>Bioorg. Chem.</u> 1976, <u>5</u>, 51; Johnson, W. S. <u>Angew. Chem. Int. Ed. Eng.</u> 1976, <u>15</u>, 9.
- 40. Dale, J. A.; Mosher, H. S. <u>J. Am. Chem. Soc.</u> 1973, 95, 512.
- 41. Dillon, J.; Nakanishi, K <u>J. Am. Chem. Soc.</u> 1975, <u>97</u>, 5409.

- 42. Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G. Balkovec, J. M. J. Org. Chem. 1986, 51, 2370.
- 43. Watson, S. L.; Eastham, J. F. <u>J. Organomet. Chem.</u> 1967, <u>9</u>, 165.
- 44. Still, W. C.; Kahn, M.; Mitra, A. <u>J. Org. Chem.</u> 1978, 43, 2923.

