

This is to certify that the

dissertation entitled

Epoxide Rearrangement as a possible Approach to Clerodane Diterpenes

presented by

Yousef M. Abdallah

has been accepted towards fulfillment of the requirements for

PhiD. degree in Chemistry

Date 11 18 8

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

EPOXIDE REARRANGEMENT AS A POSSIBLE APPROACH TO CLERODANE DITERPENES

Ву

Yousef M. Abdallah

A DISSERTATION

Submitted to Michigan State University in partial fulfillment for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1985

ABSTRACT

EPOXIDE REARRANGEMENT AS A POSSIBLE APPROACH TO CLERODANE DITERPENES

Ву

Yousef M. Abdallah

We examined the rearrangement in Equation 1 possible approach to clerodanes diterpenes. To demonstrate the viability of such an approach, the Diels-Alder reaction regioselectivity of dienes 100a and 100b with acetylenic dienophiles, dimethyl acetylenedicarboxylate, ethyl propiolate and ethyl tetrolate studied. The was regioselectivity of the addition is excellent and reaction proceeds in high yield (55-95%). The regioreversed Diels-Alder reaction of dienes 100a,b with \$-nitroa, &-unsaturated esters 108 was examined and found to excellent, providing one isomer in good yield (57-78%). improved synthesis of the diene 100a via CuSO4.5H2O mediated dehydration of vinyl carbinol precursor was discovered.

The epoxidation stereoselectivity of a number of 5,5- dimethyl-3,5,6,7,8,8a-hexahydronaphthalenes 104 with m-chloroperbenzoic acid (MCPBA) and N-bromo-succinimide (NBS) was investigated. Excellent epoxidation stereoselectivity

was observed with substrates containing a methyl at the C-8a-ring junction. Treatment with MCPBA provided the α -epoxides in high yields (82-90%). β -epoxides were obtained as the major stereoisomer with substrates containing an H at the ring junction in excellent yields (MCPBA). Epoxidation of these substrates with NBS, aq. t-BuOH, proceeded with high stereoselectivity providing the α -epoxides as the exclusive, or major, stereoisomer in high yields (60-94%).

Exposure of β -epoxides 110 to BF3·Et2O provided excellent yields (79-92%) of rearranged fused indene oxetanes 117. Treatment of α -epoxides 109 with BF3·Et2O yielded either the rearranged product 122 or the oxetanes 117 and the related alcohols 123 and 124 in good yields, depending on the ring junction substituent. Treatment of the 6- β -hydroxy- α -epoxide 136 with BF3·Et2O resulted in ring B aromatization while 6- β -hydroxy- β -epoxides 137 provided a gross mixture of product.

TABLE OF CONTENTS

		<u>Page</u>
LIST OF	SCHEMES	v
LIST OF	FIGURES	vii
LIST OF	EQUATIONS	iх
LIST OF	TABLES	хi
INTRODUC	CTION	1
RESULTS	AND DISCUSSION	20
I.	Diels-Alder Reaction	21
II.	Regio-Reversed Diels-Alder Reactions	27
III.	Epoxidations	29
IV.	Epoxides Rearrangement Catalyzed by BF_3 Et_2O	59
EXPERIM	ENTAL	69
LIST OF	REFERENCES	108

LIST OF SCHEMES

			Page
Scheme	I	An Approach to the Synthesis of Clerodanes Diterpenes	. 2
Scheme	II	Biogenetic Pathway to Clerodane Synthesis	. 4
Scheme	III	Halsall's Approach to the Clerodanes	. 6
Scheme	IV	Sarma's Total Synthesis of (\pm) Averol 12	6
Scheme	V	Kakisawa's Total Synthesis of Ammonene 9	. 8
Scheme	VI	Kende's Total Synthesis of Ajugarin IV 6	. 10
Scheme	VII	Apsimon's Route to trans- Clerodanes	. 11
Scheme	VIII	Goldsmith's Synthesis of the Intermediate 48	11
Scheme	IX	deGroot's Synthesis of epi- Ajugarin I 60	13
Scheme	X	Ley's Total Synthesis of Ajugarin I 3	. 14
Scheme	ΧI	Tokorayama's Total Synthesis of Annonene 9	. 16
Scheme	XII	Tokorayama's Total Synthesis of the cis-Clerodane 10	16
Scheme	XIII	Diels-Alder Reactions of l-vinyl	. 17

			Page
Scheme	XIV	Goldsmith's Approach to Ajugarin-I via Diels-Alder Reaction	18
Scheme	χV	Kato's Synthesis of a Clerodin Homolog 96	19
Scheme	XVI	Diels-Alder Reactions of 6,6-dimethyl-l-vinyl cyclohexenes	22
Scheme	XVII	Synthesis of 136 a nd 137 and Rearrangements	68

LIST OF FIGURES

			Page
Figure	1	Selected Clerodanes Diterpenes and Relative Compounds	3
Figure	2 a	1 H-NMR (250 MHz) Spectrum of 110c.	31
Figure	2b	1 H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 6.67 ppm	32
Figure	2c	1 H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 3.32 ppm	33
Figure	2 d	1 H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 3.22 ppm	34
Figure	2 e	1 H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 2.76 ppm	35
Figure	2 f	1 H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 2.59 ppm	36
Figure	2 g	¹ H-NMR (250 MHz) Spectrum of 110c with Irradiation at $\delta = 2.10$ ppm	37
Figure	3a	1 H-NMR (250 MHz) Spectrum of 110c with the First Addition of Eu(fod) ₃	38
Figure	3Ъ	$^1\text{H-NMR}$ (250 MHz) Spectrum of 110c with the Second Addition of Eu(fod) $_3$	39
Figure	3c	1 H-NMR (250 MHz) Spectrum of 110c with the Third Addition of Eu(fod) ₃	40
Figure	3 d	1 H-NMR (250 MHz) Spectrum of 110c with the Fourth Addition of Eu(fod) $_{3}$	41
Figure	4	Proton Chemical Shift Correlation of 110c	42
Figure	5 a	¹ H-NMR (250 MHz) Spectrum of 109c .	45

			Page
Figure	5Ъ	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 6.47$ ppm	46
Figure	5c	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 3.33 ppm	47
Figure	5 d	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 3.01 ppm	48
Figure	5 e	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 2.75$ ppm	49
Figure	5 f	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 2.52$ ppm	50
Figure	6a	¹ H-NMR (250 MHz) Spectrum of 109c with the First Addition of Eu(fod) ₃	51
Figure	6Ъ	¹ H-NMR (250 MHz) Spectrum of 109c with the Second Addition of Eu(fod) ₃	52
Figure	6c	¹ H-NMR (250 MHz) Spectrum of 109c with the Third Addition of Eu(fod) ₃	53
Figure	6d	¹ H-NMR (250 MHz) Spectrum of 109c with the Fourth Addition of Eu(fod) ₃	54
Figure	7	The ORTEP Plot of a Single Crystal X-ray of 109c	55
Figure	8	The ORTEP Plot of a Single Crystal	58

			<u>Page</u>
Figure	5Ъ	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 6.47$ ppm	46
Figure	5c	¹ H-NMR (250 MHz) Spectrum of $109c$ with Irradiation at $\delta = 3.33$ ppm	47
Figure	5 d	¹ H-NMR (250 MHz) Spectrum of $109c$ with Irradiation at δ = 3.01 ppm	48
Figure	5 e	1 H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 2.75 ppm	49
Figure	5 f	1 H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 2.52 ppm	50
Figure	6a	1 H-NMR (250 MHz) Spectrum of $109c$ with the First Addition of Eu(fod) $_3$	51
Figure	6b	$^1\text{H-NMR}$ (250 MHz) Spectrum of $\textbf{109c}$ with the Second Addition of Eu(fod)3	52
Figure	6c	1 H-NMR (250 MHz) Spectrum of 109c with the Third Addition of Eu(fod) ₃	53
Figure	6d	$^1\text{H-NMR}$ (250 MHz) Spectrum of $\textbf{109c}$ with the Fourth Addition of Eu(fod) $_3$	54
Figure	7	The ORTEP Plot of a Single Crystal X-ray of 109c	55
Figure	8	The ORTEP Plot of a Single Crystal	58

			Page
Figure	5Ъ	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 6.47$ ppm	46
Figure	5 c	¹ H-NMR (250 MHz) Spectrum of $109c$ with Irradiation at $\delta = 3.33$ ppm	47
Figure	5 d	¹ H-NMR (250 MHz) Spectrum of $109c$ with Irradiation at $\delta = 3.01$ ppm	48
Figure	5 e	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 2.75 ppm	49
Figure	5 f	¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at $\delta = 2.52$ ppm	50
Figure	6a	¹ H-NMR (250 MHz) Spectrum of 109c with the First Addition of Eu(fod) ₃	51
Figure	6Ъ	¹ H-NMR (250 MHz) Spectrum of 109c with the Second Addition of Eu(fod) ₃	52
Figure	6c	¹ H-NMR (250 MHz) Spectrum of 109c with the Third Addition of Eu(fod) ₃	53
Figure	6d	¹ H-NMR (250 MHz) Spectrum of 109c with the Fourth Addition of Eu(fod) ₃	54
Figure	7	The ORTEP Plot of a Single Crystal X-ray of 109c	55
Figure	8	The ORTEP Plot of a Single Crystal X-ray of 1	58

LIST OF EQUATIONS

			Page
Equation	1	Epoxide 1 Rearrangement with $BF_3 \cdot Et_2O$	1
Equation	2	Preparation of 6,6-dimethyl-l-vinyl cyclohexene	20
Equation	3	Preparation of 2,6,6-trimethyl-l-vinyl cyclohexene	21
Equation	4	Diels-Alder Reaction of l-vinylcyclo-hexene with Ethyl Propiolate	23
Equation	5	Aromatization of 104c with DDQ	24
Equation	6	Aromatization of 104d with DDQ	24
Equation	7	Rearrangement of the Epoxide 111 with BF3 \cdot Et20	59
Equation	8	Rearrangement of the Epoxide 113 with BF3 Et20	60
Equation	9	Rearrangement of the Epoxide 115 with $BF_3 \cdot Et_2O$	60
Equation	10	Diels-Alder Reaction of 1-vinyl Cyclopentene with Dimethyl Acetykne Dicarboxylate Followed by Aromatization	63
Equation	11	Oxetane 117a Opening with Sodium Methoxide and by Aromatization with PCC	64
Equation	12	Oxetane 117a Treatment with Toluene Sulfonic Acid and Acetic Anhydride in py Benzene	65
Equation	13	Treatment of Acetates 125 and 126	65

			Page
Equation	14	A Proposed Mechanism for the $\alpha-$ epoxides 109 Rearrangement	66
Equation	15	Preparation of Diene 131	67

LIST OF TABLES

			Page
Table	I	Diels-Alder Reactions of 100a,b with Acetylenic Dienophiles	26
Table	II	Diels-Alder Reactions of $100a,b$ with β -nitro- α , β -unsaturated esters	26
Table	III	Epoxidation of 104 with m-chloroperbenzoic acid (MCPBA) and N-Bromosuccinimide (NDS) in Aqueous t-BuOH	30
Table	IV	Rearrangement of β -epoxides 110 with BF ₃ ·Et ₂ 0	62
Table	V	Rearrangement of α -epoxides 109 with BF ₃ ·Et ₂ O	62

INTRODUCTION

INTRODUCTION

Previously, we had investigated the Lewis acid catalyzed rearrangement of the epoxide 1 as shown in Equation 1. Rearranged alcohol 2 was the sole product

obtained from this reaction, isolated in 76% yield. The close structural relation of the C-3 to C-6 portion of the rearranged product 2 and clerodanes diterpenes suggested the possibility of constructing 3-14 from such a rearrangement. The presence of a C-3, C-4 double bond would allow functionalization at C-3, C-4 and of C-4-CH3 moiety. However, the ring fusion CH3 group of 1 must be replaced by an H without effecting the course of the reaction. Such an approach to cis- or trans-, clerodane diterpenes and related compounds (6-14) is illustrated in Scheme I. Interest in

SCHEME 1: An Approach to the Synthesis of Clerodane Diterpenes

clerodane diterpenes as targets for total synthesis stems mainly from the range of biological activities exhibited by a number of these compounds. For example, the neo-clerodane diterpenes, Ajugarins (I-VI) 3-8, isolated from the leaves of the East African medicinal plant, a.juga remota (Labiatae), exhibit a potent insect antifeedant activity against the desert locust, sehistocera vega2 and shows, in insecticidal addition, and insect-growth inhibiting activities. Other clerodanes of interest are annonene 92e, 102e, elongatolide-A 112f,g,h and the sesquiterpenes, Averol 1221, illimaquinone 13,21 which exhibit antibacterial activity, and arenarol 14.21

Clerodane diterpenoids such as the ajugarins have a rearranged labdane skeleton (15) and belong to a novel class of natural products found in nature in ever-increasing

Figure 1 Selected Clerodanes Diterpenes and Relative Compounds

numbers.³ These compounds, with both cis- and trans-ring fusions, are believed to be formed biogenetically⁴ from geranyl geranyl pyrophosphate via a labdane precursor after a series of backbone rearrangements involving hydrides and methyl shifts are catalyzed enzymatically and are thought to proceed these rearrangements as shown in Scheme II. This process could account for both cis- and trans-clerodanes formation.

Scheme II Biogenetic Pathway to Clerodane Synthesis.

Synthesis and Synthetic Approaches

To date, four total syntheses of clerodane diterpenes have been reported; and in addition, a number of approaches to clerodanes were attempted. None of these total syntheses seemed to be sufficiently general or to provide for the preparation of both the cis- and trans-clerodanes. These syntheses or synthetic approaches suffered from being either lengthy, tedious, non-stereospecific, including very low yield steps, or unable to achieve the goal. The major obstacle to be overcome in any syntheses of a clerodane diterpene is the construction of the decalin moiety with the Three main pathways have been proper chiral centers. utilized in the construction of the decalin framework: a) Wieland-Miescher ketones or related compounds, as the basic skeleton, where all the asymmetry has to be introduced; b) conjugate addition to an appropriate precursor enone, followed by cyclizations; and c) a Diels-Alder reaction; [4 + 21 cvcloaddition.

In the first synthetic approach by Halsall,⁵ the decalin moiety was constructed by a Robinson annulation to form 16 (Scheme III). Selective protection of 16, followed by reductive alkylation, gave the desired trans-fused compound 18. The C-8-CH₃ was to be added via a Wittig reaction; however, this sequence failed to methylenate the hindered ketone 18. Methyl lithium was successfully added

Scheme III Halsall's Approach to the Clerodanes.

a) NaOEt; b) 1,2-ethane diol; c) i) Li/NH3, ii) allyl bromide; d) CH3Li

Scheme IV Sarma's Total Synthesis of (\pm) Averol 12.

- a) i) Li/NH_3 , ii) $ArCH_2Br$; b) Ph_3PCH_2 ; c) $H_2/Pd/C$; d) PCC; e)
- i) CH3Li, ii) POCl3, pyridine, iii) RhCl3; iv) BuSLi-HMPA

to 18 to provide the alcohol 19; unfortunately, 19 could not be converted to a clerodane derivative.

A similar Wieland-Miescher ketone-type approach to Averol 12 was reported by Sarma.⁶ Reductive alkylation of 20, Scheme IV, gave the trans-decalol 21 which underwent a Wittig reaction under forcing conditions providing the corresponding exo-methylene compound. Hydrogenation of the hindered exo-methylene compound followed by CH₃Li addition and dehydration afforded (±) Averol 12.

Kakisawa⁷ reported the first non-stereospecific total synthesis of the clerodane diterpenes (\pm) -Annonene 9. strategy utilized the Wieland-Miescher ketone to construct the bicyclic framework. V. Scheme Dissolving metal reduction of the enone 22 followed by cyano-hydrin formation and dehydration resulted in a mixture (1:1) of the isomers 23. Separation of the mixture of olefins and reduction of nitrile via the intermediate aldehyde 24 gave the alcohol 25. Treatment of 25 with CH2 = CH-OCH2 CH3 under exchange conditions gave 26 which underwent the desired Claisen rearrangement upon heating; leading to the aldehyde This key step in the synthesis was stereoselective and 27. provided an exo-methylene at C-8. Hydrogenation of the C-8 exo-methylene afforded a mixture of 28 and its epimer at C-8; further elaboration converted 28 to (±) annonene 9.

A total synthesis of the clerodane diterpene Ajugarin-IV 6 (Scheme VI) was reported by Kende. 8 These workers also Scheme V Kakisawa's Total Synthesis of Ammonene 9.

a) Li/NH₃; b) i) KCN, ii) SOCl₂,pyridine; c) i) Dibal, ii) NaBH₄; d) ethyl vinyl ether,Hg(OAc)₂; e) heat,200°C; f) i) NaBH₄, ii) H₂/pd/C, iii) PCC; g) i) 3-furyl lithium, ii) Ac₂O, iii) Ca/NH₃; h) i) H⁺, ii) Ph₃PCH₂; i) dilithium ethane-1,2-diamine

Scheme V Kakisawa's Total Synthesis of Ammonene 9.

a) Li/NH₃; b) i) KCN, ii) SOCl₂,pyridine; c) i) Dibal, ii) NaBH₄; d) ethyl vinyl ether, Hg(OAc)₂; e) heat, 200°C; f) i) NaBH₄, ii) H₂/pd/C, iii) PCC; g) i) 3-furyl lithium, ii) Ac₂O, iii) Ca/NH₃; h) i) H⁺, ii) Ph₃PCH₂; i) dilithium ethane-1, 2-diamine

utilized the classical Wieland-Miescher ketone 29 as the basic skeletal building block (Scheme VI). Selective thioketalization, followed by a Wittig reaction, allowed the introduction of the exo-methylene group at C-4 and reductive **30**. alkylation then Oxygenation at C-6 was gave accomplished by bromination-dehydrobromination to provide the enone 31; CH₃Li addition and 1,3-oxidative transposition (CrO3·pyr2) gave the enone 32 in a low yield. Dissolving a metal reduction of 32 in the absence of a proton source resulted in a single isomer 33 with an equatorial methyl at Lithium aluminum hydride reduction of the C-6 ketone gave the C-6 equatorial alcohol 34. Hydroboration of 34 under equilibrating conditions with disiamylborane resulted in the conversion of the C-4 exo-methyl to the equatorial C-4,CH2OH group as well as the conversion of the C9-allyl group to a proponal chain after oxidation $(H_2O_2, -OH)$. resulting diol to the diacid and Oxidation of the esterification resulted in 35. Selective hydrolysis of the diester in 35 allowed the conversion of the least-hindered side chain ester to the acid 36. The butenolide moiety was introduced by reaction of the derived acid chloride from 36 with tris (trimethyl siloxy) ethylene, followed by heating and acid hydrolysis, to provide the \$-hydroxy ketone 37. A ketenylidene triphenylphosphorane reaction with 37 provided Ajugarin-IV 6.

Approaches to clerodanes that utilized the Robinson annulation for the construction of the decalin substructure

Scheme VI Kende's Total Synthesis of Ajugarin IV 6.

Ajugarin-1V (6)

a) i) 1,2-ethane dithiol,H⁺; ii) Ph₃PCH₂; iii) HgCl₂-CdCO₃; iv) Li/NH₃,allyl bromide; b) i) base,Me₃SiCl; ii) NBS; iii) LiBr-Li₂CO₃,DMF,reflux c) i) CH₃Li; ii) CrO₃·2py; d) i) Li/NH₃-THF; e) LAH; f) i) Sia₂BH,H₂O₂,OH⁻; ii) PDC-DMF; iii) NaClO₂; iv) CH₂N₂; g) i) KOH (l.l equiv),CH₃OH; ii) 6NHCl; iii) Ac₂O,Et₃N,DMAP h) i) (COCl)₂; ii) [(CH₃)₃Si]₂C=CHSi(CH₃)₃; iii) heat,H⁺ I) i) Ph₃P=CH=C=O

are discussed below. Apsimon reported a route to the trans-clerodene using an acid-catalyzed Michael addition and aldol cyclodehydration of 2-methyl-1,3-cyclohexanedione with enone 38 to give 39, Scheme VII. Monoprotected dione 39 was hydrogenated stereospecifically to 40. Addition of CHaLi and dehydration gave 41, which after thicketalization and oxidation, gave 42. The conversion of 42 to trans-clerodene has not yet been accomplished.

a) MOAc; b) Ma/pd-c; c) i) NeMgBr, ii) MCl/MeOM; d) i) 1,2-ethame dithiol,PTSOM, ii) CrOs.pyr

Goldsmith¹⁰ has reported an approach to Ajugarin-I 3 utilizing the strategy outlined in Scheme VIII.

Scheme VIII Goldsmith's Synthesis of the Intermediate 48.

a) KI3-HaHCO3; b) LAH; c) methyl chloroformate, pyridine; d) CrO3; e) NaH; f) P-TSOH, ethyl vinyl ketone

Iodolactonization of 3-cyclohexene-1-carboxylic acid 43 gave the iodolactone 44, which upon reduction (LAH) provided cis-3-hydroxy methyl cyclohexanol 45. Selective acylation of the 1°-OH with methyl chloroformate, oxidation to the corresponding ketone 46 and NaH-induced cyclization afforded the lactone 47. A Robinson-type annulation led to the cis-fused lactone 48.

deGroot11 has reported the stereospecific synthesis of enone ether 52 as intermediates to clerodanes: more recently, 11c he has reported the conversion of 52 to 4-epi-Ajugarin-I, Scheme IX. The 3-ketoester 49 was condensed with α-chloro-ethylacetate, then converted to the keto diester 50. A Robinson annulation of 50 with ethyl vinyl ketone provided 51 which, after enone protection, (LAH) reduction, dehydration and hydrolysis, provided the key intermediate, enone ether 52. Dissolving metal reductive allylation of enone 52, CH3Li addition and dehydration gave Hydroboration and conversion of the side chain to the **53**. corresponding ester, followed by allylic oxidation of the endocyclic double bond, gave the enone 54. Stereoselective hydrogenation of the enone 54 resulted in the equatorial C-8-methyl and Li(t-BuO)3 AlH reduction of C-6-ketone provided the equatorial C-6-OH which, upon acetylation, provided 55. tetrahydrofuran ring opening and acetylation gave 56. The side chain was developed by a procedure analogous to that

discussed in Kende's synthesis <u>via</u> compounds 57, 58 and 59. Epoxidation of 59 with MCPBA gave only (\pm) epi-ajugarin-I 60.

Ley12 reported the first total synthesis of Ajugarin-I 3 (Scheme X) utilizing a conjugate addition, annulation protocol. The enone 61, after protection of the aldehyde, was converted to 63 by conjugate addition. The A ring was generated by hydroboration and oxidation of the butenyl side chain followed by cyclization of the product keto-aldehyde to form the enone 64. Stereospecific vinyl cuprate addition and trapping of the resulting enolate with formaldehyde allowed the insertion of the hydroxymethyl substituent at C-5 to provide 65. Selective reduction of the ketone, protection of the diol as the acetonide. and dethioketalization afforded the aldehvde 66. The introduction of the side chain was accomplished by addition of the lithium anion of phenyl sulfonyl (trimethylsilyl) methane followed by acetylation, and Bu4NF treatment the vinyl sulfone 67 which was reduced with LiEt3BH to provide 68. The C-4-vinyl group was converted to the exomethylene group by ozonolysis, reduction, selenation and \$elimination of the selenoxide to give 70. To the butenolide precursor 69 was added the anion of 70 yielding 71 after lactonization and desulfurization. Deprotection of acetonide to the diol epoxidation with m-chloroperbenzoic acid, followed by acetylation, afforded a 1:3 mixture of Ajugarin-I 3 and 4-epi-Ajugarin-I 60 in 82% yield.

Scheme IX deGroot's Synthesis of epi-Ajugarin I 60.

a) i) $ClCH_2CO_2Et$; ii) NaOEt; iii) Na b) $Me_3N^*B_2OH$ c) i) $HC(OMe)_3$, BF_3 Et_2O ; ii) LAH; iii) H^* d) i) Li/NH_3 ; ii) allyl bromide; iii) CH_3Li ; iv) BF_3 Et_2O e) i) 9-BBN; ii) H_2O_2 ; iii) Jones; iv) CH_2N_2 ; v) $CrO_3/HOAC$ f) i) H_2 ; ii) Li $(O-t-Bu)_3HAl$; iii) Ac_2O g) i) pyridium bromide, Ac_2O h) i) KOH; ii) Ac_2O i) i) oxalyl chloride; ii) CH_2N_2 ; iii) $H_2O_1SO_2$ j) $Ph_3PC=C=O$ k) MCPBA

10 (0M) 10 (0M) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1) 10 (1)

Scheme IX deGroot's Synthesis of epi-Ajugarin I 60.

a) i) $ClCH_2CO_2Et$; ii) NaOEt; iii) Na b) $Me_3N^*B_2OH$ c) i) $HC(OMe)_3$, $BF_3 \cdot Et_2O$; ii) LAH; iii) H^* d) i) Li/NH_3 ; ii) allyl bromide; iii) CH_3Li ; iv) $BF_3 \cdot Et_2O$ e) i) 9-BBN; ii) H_2O_2 ; iii) Jones; iv) CH_2N_2 ; v) $CrO_3/HOAC$ f) i) H_2 ; ii) Li ($O-t-Bu)_3HAl$; iii) Ac_2O g) i) pyridium bromide, Ac_2O h) i) KOH; ii) Ac_2O i) i) oxalyl chloride; ii) CH_2N_2 ; iii) $H_2O_1SO_2$ j) $Ph_3PC=C=O$ k) MCPBA

Scheme X Ley's Total Synthesis of Ajugarin I 3. .

a) i) 1,2-ethane dithiol, H+; ii) CdCO₃-HgOAc; b) (5-hexenyl)₂CuMgBr; c) i) BH₃ (CH₃)₂)S; ii) NaOH, H₂O₂; iii) py.SO₃ in camphorsulphonic acid; d) i) (vinyl)₂CuLi; ii) CH₂O; iii) t-Bu(CH₃)₂SiCl, e) LAH; iii) acetone, CuSO₄; iv) TI(OCOCF₃)₃, THF; f) i) (Me₃SiCHSO₃Ph)Li+, ii) Ac₂O, pyr.DMAP, iii) Bu₄NF, iv) LiEt₃BH; g) i) O₃, EtOH; ii) NaBH₄; iii) N-phenylselenium phthalimide n-Bu₃P; iv) Et₂NH at reflux; h) i) nBuLi; ii) t-Bu(Me)₂Si-O-C \equiv C-Co₂Et, iii) Bu₄NF; I) i) Na-Hg, ii) TFA, iii) MCPBA, iv) Ac₂O

Scheme X Ley's Total Synthesis of Ajugarin I 3. .

a) i) l,2-ethane dithiol, H^+ ; ii) $CdCO_3-HgOAc$; b) (5-hexenyl)2CuMgBr; c) i) BH_3 (CH_3)2)S; ii) NaOH, H_2O_2 ; iii) py.SO₃ in camphorsulphonic acid; d) i) (vinyl)2CuLi; ii) CH_2O ; iii) $t-Bu(CH_3)2SiCl$, e) LAH; iii) acetone, $CuSO_4$; iv) $TI(OCOCF_3)_3$, THF; f) i) ($Me_3SiCHSO_3Ph$) Li^+ , ii) Ac_2O , pyr.DMAP, iii) Bu_4NF , iv) $LiEt_3BH$; g) i) O_3 , EtOH; ii) $NaBH_4$; iii) $N-phenylselenium phthalimide <math>n-Bu_3P$; iv) Et_2NH at reflux; h) i) nBuLi; ii) $t-Bu(Me)_2Si-O-C \equiv C-Co_2Et$, iii) Bu_4NF ; I) i) Na-Hg, ii) TFA, iii) MCPBA, iv) Ac_2O

Tokorayama13 has reported synthesis of both cis- and trans-clerodanes. The synthesis involved the stereoselective conjugate addition reactions to the system. The cis-clerodane synthesis. appropriate enone Scheme XI, started with (CH₃)₂CuLi addition to enone 72 and trapping the resulting enolate with formaldehyde which to the exo-methylene enone 73 after dehydration. Reduction of 73 with LiB(CHEtMe)3H in conjugate fashion and trapping of the resulting enolate with (Me2N)2PO-Cl according to Ireland¹⁴ afford 74. Removal of the phosphoramide and hydroboration and oxidation of the \$-C-9-vinyl moiety gave the aldehyde 75. The addition of 3-furyl lithium to 75 followed by acetylation and removal of the acetate group provided 10.

The trans-clerodane annonene 9 was prepared¹³ by an anologous pathway, as shown in Scheme XII.

Addition of Nagatta's 15 Et₂AlCN reagent to the enone 76 provided the trans nitrile 77. Protection of the ketone as the corresponding ethylene ketal and hydroboration-oxidation of the C-9- β -vinyl group gave the aldehyde 78. Addition of 3-furyl lithium acetylation and acetate removal provided 79. Ketone reduction and dehydration, followed by nitrile reduction and oxidation to the carboxylic acid 80, which had previously been converted to annonene 6.

The third strategy employed in clerodane synthesis is the Diels-Alder construction. The first approach reported

Scheme XI Tokorayama's Total Synthesis of the cis-Clerodane 10.

a) i) $(CH_3)_2CuLi$; ii) CH_2O ; iii) CH_3SO_2Cl ; iv) DBN b) i) LiB(CHMeEt)_3H; ii) $(Me_2N)_2P-OCl$ c) i) B₂H₆; ii) H₂O₂,OH; iii) Li/EtNH₂,Bu⁺OH; iv) $(COCl)_2$,DMSO d) i) 3-furyl lithium; ii) Ac₂O,pyridine; iii) Li/Liq·NH₃

Scheme XII Tokorayama's Total Synthesis of Annonene 9.

a) i) Bt2AlCN b) 1,2-ethane diol,H+ c) i) B2H6; ii) H2O2,OH; iii) DMSO,(COCl)2 d) i) 3-furyl lithium; ii) Ac2O,pyridine; iii) Li/NH3; iv) HCl,Acetone; v) Li B(CHMeBt)2H; vi) POCl3,pyridine e) i) Bu2AlH2; ii) AcOH; iii) NaClO2,NaH2PO4

by Tokorayama¹⁶ utilized the [4 + 2] cycloaddition of substituted maleic anhydrides such as Aconitic acid 81 and chloromethyl maleic anhydride 82 and also crotonaldehyde 83 with 1-vinylcyclohexene 101. The addition of aconitic acid 81 to 1-vinyl-cyclohexene 101 afforded the exo-product 84 (Scheme XIII). However, chloromethyl maleic anhydride and crotoraldehyde gave the expected end products 85 and 86.

Scheme XIII Diels-Alder Reactions of 1-vinyl Cyclohexenes .

Goldsmith¹⁶ used the [4 + 2] cycloaddition protocol in an approach to Ajugarin-I 3 (Scheme XIV). Cycloaddition of 2,4-pentadiene-l-ol 87 with l-carbomethoxy-P-benzo quinone gave a mixture of hemiketals 88. Ketalization, ring-junction isomerization 89 and zin-acetic acid reduction of 89 provided 90. Acetylation, followed by catalytic hydrogenation, resulted in the production of 91. Alkylation and lactonization of 91 provided 92; however, during this sequence of reactions, the ring-junction hydrogen epimerized

Scheme XIV Goldsmith's Approach to Ajugarin-I via Diels-Alder Reaction .

a) Mixing at room temperature in benzene b) DabCO c) H^+/CH_3OH d) Zn/HOAc e) i) Ac_2O ; ii) H_2/pt . HOAC f) i) $NaOCH_3$, HCO_2Me ; ii) n-BuSH; iii) $H_2/Rany$ nickle g) i) PhSeNa; ii) CH_2N_2 ; iii) O_3 , Et_2NH ; h) i) LAH; ii) Ac_2O I) Jones oxidation


resulting in the isolation of the cis-fused 92. The lactone moiety of 92 was opened (*SeNa) and the C-4-methylene group was introduced via selnoxide elimination to give 93. Reduction and selective acetylation, followed by oxidation of the 2°-alcohol 94, produced the desired intermediate 95.

Kato and Kojima¹⁷ synthesized a clerodin homolog **96** in 18 steps <u>via</u> the Diels-Alder adduct **97**, as shown in Scheme XV. This sequence of reactions is similar to the synthesis

Scheme XV Kato's Synthesis of a Clerodin Homolog 96.

a) Ag2O, SnCl₄ b) i) Zn, HOAC; ii) NaOMe; iii) $H_2/pd/C$ c) 1,2-ethane diol, H^+ d) i) LAH; ii) DHP, H^+ e) TsMIC, BuOK f) i) Acetone, H^+ ; ii) Dibal; iii) Ph_3PCH_2 g) i) MCPBA; ii) 3-furyl lithium cuprate h) i) H^+ ; ii) Ac2O

reported previously by Goldsmith and will not be discussed in detail.

		;
		1

RESULTS AND DISCUSSION

Our synthetic approach to the clerodane diterpene is outlined in Scheme I. The construction of the decalin moiety involves a Diels-Alder reaction of l-vinyl-6,6-dimethylcyclohexene 100a with an appropriate acetylenic dienophile, a stereoselective epoxidation of the resulting adducts and a Lewis acid catalyzed rearrangement of such epoxides that should lead to C-5-methyl migration providing substrates containing the required functionality for the decalin portion of the clerodanes.

l-vinyl-6,6-dimethylcyclohexene 100a^{18a} was readily available (Equation 2) by alkylation of 2-methyl

cyclohexanone 97 (RH,CH3I) to provide 2,2-dimethyl cyclohexanone 98 (50-75%) yield after purification by preparative liquid chromatography (prep. HPLC, Waters Prep. 500, ether-hexane, 2:98, 300 mL/min) followed by vinyl magnesium bromide (1.5M) addition to 98 providing 1-vinyl-

2,2-dimethyl-cyclohexanol 99, 72% yield (BP13 80-85°C). Dehydration was smoothly accomplished with CuSO₄.5H₂O¹⁹ (lequiv.) in refluxing benzene (2 hrs.) with azeotropic removal of water, a modification of the procedure of Ley to provide l-vinyl-6,6-dimethyl cyclohexene 100a in 85% yield, (BP11 50-51°C).

Another diene, 1-viny1-2,6,6-trimethyl cyclohexene¹⁹
100b will be required in order to investigate the generality of the rearrangement protocol and this was available by oxidation of \$\beta\$-ionone with sodium hypochloride 5.5% solution followed by decarboxylation by heating in quinoline as shown in Equation 3.^{18b}

$$\begin{array}{c|c}
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & &$$

Diels-Alder Reactions.20

Inspection of the literature for the Diels-Alder reaction of l-vinyl-6,6-dimethylcyclohexene 100a provided only two examples with nonsymmetrical dienophiles, 18 the [4+2] cycloaddition with 2-methoxy benzoquinone and 3-methylbenzofuran-4,7-quinone, illustrated in Scheme XVI. These reactions were examined as part of the syntheses of Tanshinone II, Tanshinone III and cryptotanshinone, respectively. Both reaction, with ethylenic dienophiles,

provide excellent regiochemical control (1-isomer), but the low yields obtained (40-50%) were a cause for concern. The related 1-vinylcyclohexene 101 has been studied much more extremely as a partner in the Diels-Alder reaction. We were dismayed to discover a recent report by Markgraf²¹ (Equation 4) which indicated that 1-vinylcyclohexene 101 and ethyl

propiolate provided a 2:1 mixture of the ortho:meta products, 102 and 103, in but 40% yield. This stands in stark contrast to selectivities reported in an earlier report by Anachenko²² where the reaction of 101 with propiolic acid was claimed to provide a 10:1 ratio of orthometa adducts. However, closer inspection of the primary literature suggests that ortho to meta ratios are much closer to those of Markgraf which were obtained as the bulk in the reaction mixture and was reported as a "mixture". Despite the low selectivity observed in the Diels-Alder reaction of 1-vinylcyclohexene with acetylenic dienophiles, we examined the [4 + 2] cycloaddition of the dienes 100a and 100b with a group of acetylenic dienophiles or equivalents studied the regioselectivities.20 The results are and contained in Table I. Diene 100a reacted exothermally with dimethyl acetylenedicarboxylate and provided 104a in 95%

The more encumbered diene 100b reacted sluggishly with dimethyl acetylenedicarboxylate at 120°C to afford the adduct 104b in 87% yield. Excessive heating (>120°C) causes aromatization of ring B of 104b. The less reactive unsymmetrical dienophile, ethylpropiolate, reacted with diene 100a at 110°C to provide the ortho:meta adducts 104c: 104d in a 3:1 ratio; the selectivity of this reaction rose to 6:1 (80%) when the reaction temperature was lowered to 50°C. The ratio of the adducts 104c: 104d was determined on the basis of 1H-NMR (250 MHz), high-pressure liquid chromatography (HPLC) and capillary gas chromatographic (GC) analysis. The identity of the adducts 104c and 104d was determined by separations on prep. HPLC eluted with ether: hexane, 2:98. The pure regioisomers, 104c and 104d, were each separately aromatized by treatment with 2,3dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to provide 105 and 106. Equations 5 and 6. Compound 105 exhibited the

following resonances in ${}^{1}\text{H-NMR}$ (250 MHz) δ = 7.56 (dd, J=7.5,1.25Hz, lH), 7.49 (dd, J=7.5,1.25Hz, lH), 7.18 (t, J=7.5Hz, lH); while 106 exhibited the following signals: δ = 7.83 (d, J=8.3Hz, lH), 7.73 (br s, lH), 7.36 (d, J=8.3Hz, lH). A comparison of these spectral data with the ${}^{1}\text{H-NMR}$ spectrum of 107^{23} , ${}^{1}\text{H-NMR}$, δ = 7.56 (br s, lH), 7.62 (d,

complex, J=8Hz, lH), 7.3 (d, J=8Hz, lH), indicates that, as expected, the assignment of the regiochemistry is correct.

The reaction of 100b with ethyl propiolate was slow at 120°C; however, the adducts 104e and 104f were obtained in 55% yield and in a 5:1 ratio. Methyl tetrolate reacted slowly at elevated temperature (150°C) in a sealed stainless steel reaction vessel with diene 100a to provide a 65% yield of the adducts 104g and 104h in a 9:1 ratio after 36 hours. Methyl tetrolate failed to react at all with diene 100b; and increasing the temperature of the reaction above 150°C, resulted in destruction of the starting materials and/or products. Furthermore, attempted Lewis acid catalysis²⁴ of the reaction of methyltetrolate with diene 100b was fruitless. Strong Lewis acids like BF3 Et2O resulted in instantaneous diene polymerization even at low temperatures,

Table 1 Diels - Alder Reactions of 100 a,b With Acetylenic Dienophiles

$$R_1 = R_2$$

Entry	Diene	R	RI	R ₂	T(C)	Yield	Adduct(or tho/meta)
ı	100 a	.Н	CO ₂ Me	CO ₂ Me	RT	95%	1040 ()
2	1006	Me	C O ² Me	CO ₂ Me	120	87%	104b (—)
3	100 a	н н	СО ₂ Е1	н со ₂ єі	50	8 0%	104c (6)
4	100 P	Me Me	CO ₂ Et	H ∞ ₂ Et	120	55 %	104e (5 104f (1)
5	1009	н	CO ² Me	Me	150	65 %	104g (=)
		н	.М е	CO ₂ Me			104h

Table 11. Diels-Alder Reactions of 100a,b with B - Nitro-Esters 108

while the more moderate Lewis acids, EtAlCl₂ and Et₂AlCl, were ineffective. Other Lewis acids which were reported by Roush to be effective in catalyzing the intramolecular Diels-Alder²⁴ reaction, NbCl₅, WCl₅, MoC(0)₅ and ZnI₂, were unsuccessful in this case.

Regio-reversed Diels-Alder Reaction.

Danishefsky 25 has demonstrated that β -nitro conjugated esters can be used in Diels-Alder reactions to provide regio-reversed products, 25 because the nitro group usually predominates over an ester group and directs cycloaddition. These β -nitro- α , β -unsaturated esters are acetylenic dienophile equivalents providing α, β-unsaturated esters as products after elimination of the elements of nitrous acid. We examined the reactions of \$\beta\-nitroacrylate 108a and β-nitrocrotonate 108b with dienes 100a and 100b and the results are tabulated in Table II. These dienophiles were quite reactive, readily providing [4 + 2] adducts in accord with the observations of Danishefsky.

(E)-Ethyl-\$-nitroacrylate 108a was reacted with 100a at room temperature to provide a mixture of the endo- and exo-adducts in 91% yield. The mixture was treated with 1,8-diazabicyclo[5.4.0]undecane (DBU) in refluxing benzene to provide 104d in 100% regionselectivity and 78% overall yield. The corresponding (E)-Ethyl-\$\beta-nitrocrotonate 108b reacted with diene 100a slowly at room temperature (12 hrs.) and provided the Diels-Alder adduct, which, after nitrous acid

elimination, provided 104i as the sole regioisomer in 57% overall yield.

The less-reactive diene 100b reacted with \$\beta\$nitroacrylate 109a at 110°C (12 hrs.) and provided 104i
after treatment with DBU in 71% overall yield. The more
hindered dienophile, (E)-Ethyl-\$\beta\$-nitrocrotonate, did not
react with diene 100b even at high temperature, 150°C; and
increasing the temperature above 150°C resulted in
destruction of the starting materials and/or products.

The marked increase in yield and regioselectivity observed in the reactions of dienes 100a and 100b with acetylenic dienophiles is noteworthy. The presence of the geminal dimethyl substituents at C-6 of 100a and 100b is the major deviation from the previous studies of cyclohexe 101 with acetylenic dienophiles. As is well known, 26 the barrier for the conformational interconversion in simple dienes is low (<6kcal/mole); and, in the absence of the steric hindrance effects, the s-trans conformer is more stable than the s-cis or s-skew conformer by ca. 2.1 kcal/mole.26 Reusch²⁷ has recently examined the UV absorption of diene 100a and 1-vinylcyclohexane 101 and has concluded that 100a appears to chiefly assume the s-cis (or s-skew) conformation and 1-vinylcyclohexene 101 exhibits an apparent s-trans-s-cis equilibrium. This factor will likely facilitate the [4 + 2] cycloaddition reaction for 100a,b relative to the vinyl cyclohexene. Thus, the adducts 104

are available for a study of the stereoselectivity of the epoxidation sequence and subsequent epoxide rearrangement.

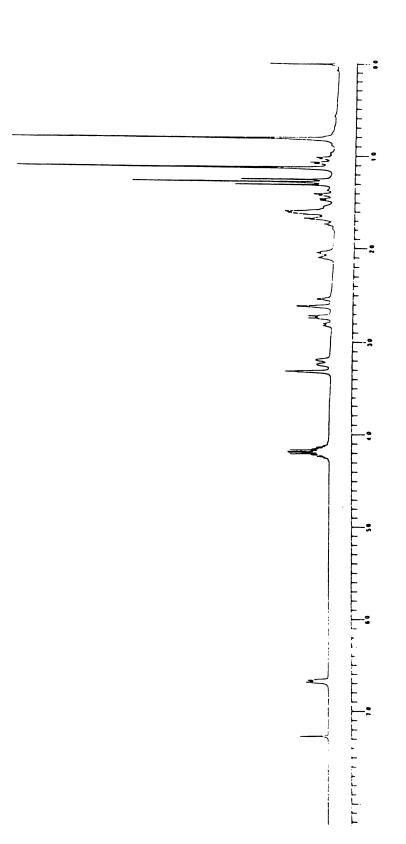
Epoxidation of Hexahydronaphthalenes 104.

We investigated²⁸ the epoxidation stereochemistry of the hexahydronaphthalene 104 available from the Diels-Alder reactions (vide supra). The epoxidizing reagents employed were: a) m-chloroperbenzoic acid (MCPBA) in CH₂Cl₂ and b) N-bromosuccinimide (NBS) in aqueous t-butanol (1:2, H₂O:t-BuOH). The epoxidation results, ratios of isomers and yields, are reported in Table III.

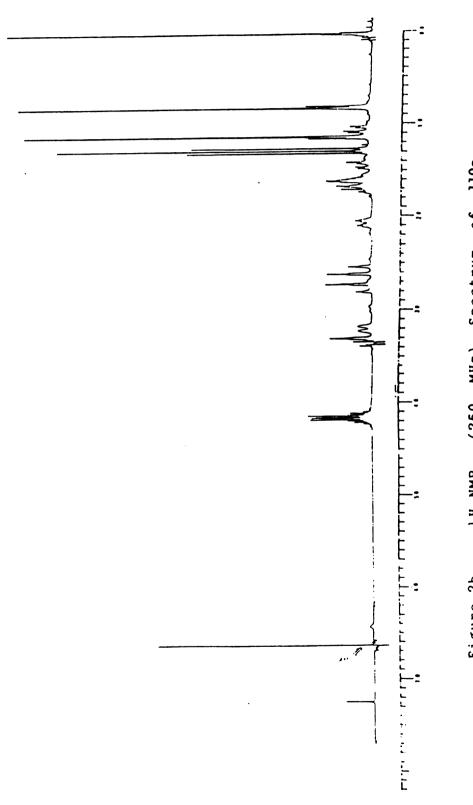
Epoxidation of ethyl-5,5-dimethyl-3,5,6,7,8,8a-hexahydronaphthalene-1-carboxylate 104c with MCPBA (0°, CH₂Cl₂, 1 hr.) gave a mixture of the α-epoxide 109c and the β-epoxide 110c; (109c:110c = 1:9) in 82% total yield. The ratio of these epoxides was determined by HPLC (10u) silica; ether:hexane; 1:4), gas chromatography (GC, carbowax column), and ¹H-NMR (250 MHz). The stereochemistry of these epoxides was determined using ¹H-NMR techniques (decoupling and shift reagent studies).

Compound 110c exhibited the following resonances in ¹H-NMR spectrum 6.67 (m, lH), 3.32 (br s, lH), 3.22 (d m, J=12.2Hz, lH), 2.75 (d m, J=20Hz, lH), 2.59 (d m, J=20Hz), 2.10 (d m, J=12.2Hz). The decoupling results, illustrated in Figure 2b to 2g, are as follows: Irradiation at \$\delta\$ = 6.67 resulted in simplification and collapse of the signals at

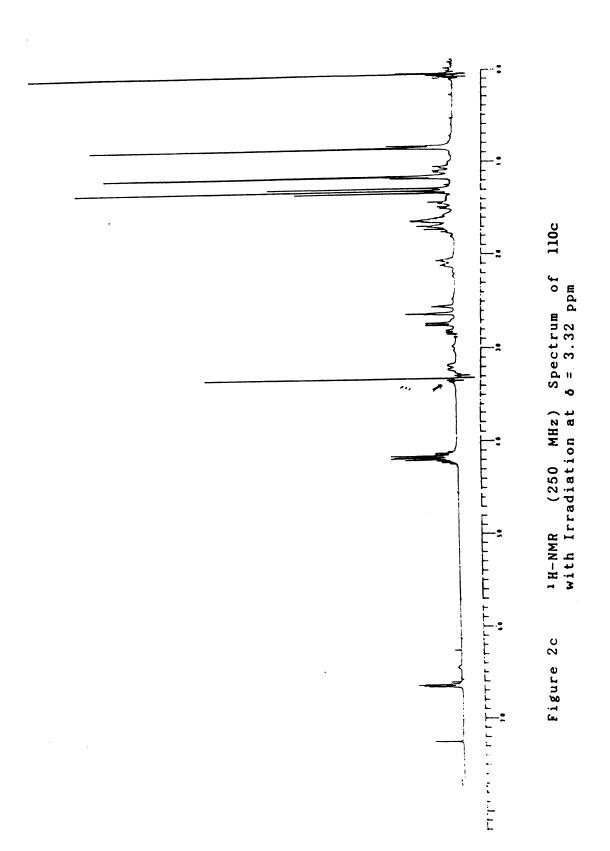
Yield% Ratio(109/110) 06 :001 0 :001 33: 67 85: 15 95:3 Epoxidation of 104 with m-chloroperbenzoic acid (MCPBA) <u></u> NBS, aq. Buoh 60 NBS,00,BuOH 54 NBS, adBuOH 94 and N-Bromosuccinimide (NBS) in aqueous t-BuOH. MCPBA Reagent MCPBA MCPBA MCPBA
 R
 R

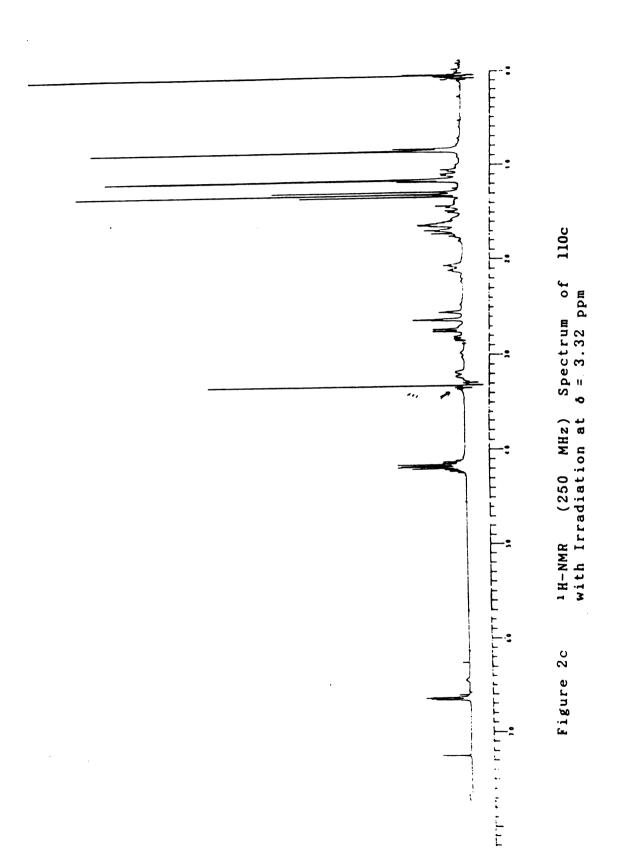

 CO2Me
 CO2Me

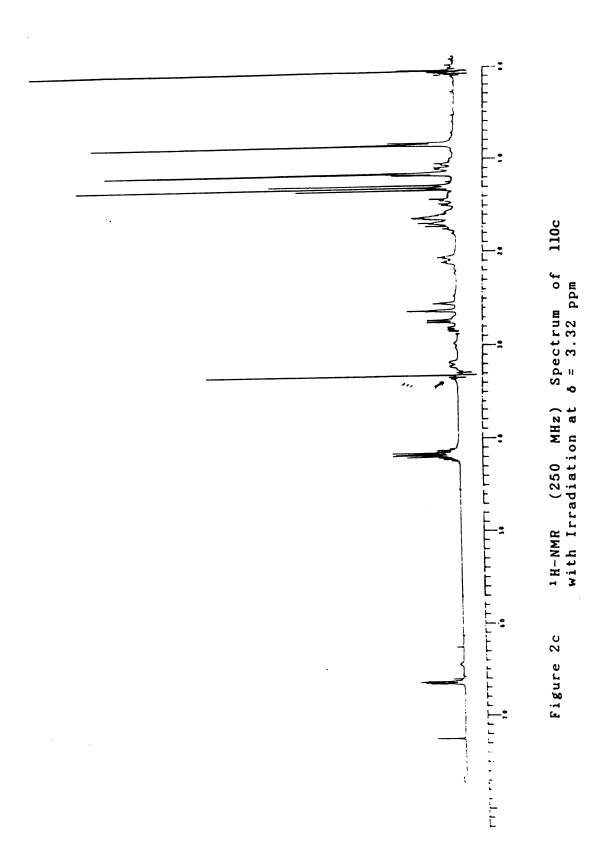
 CO2Me
 CO2Me

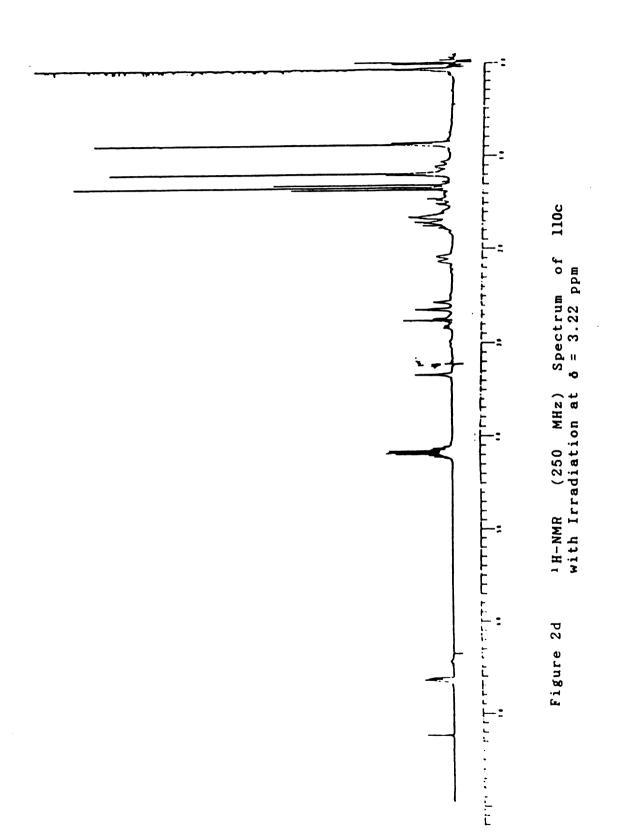

 CO2Et
 H

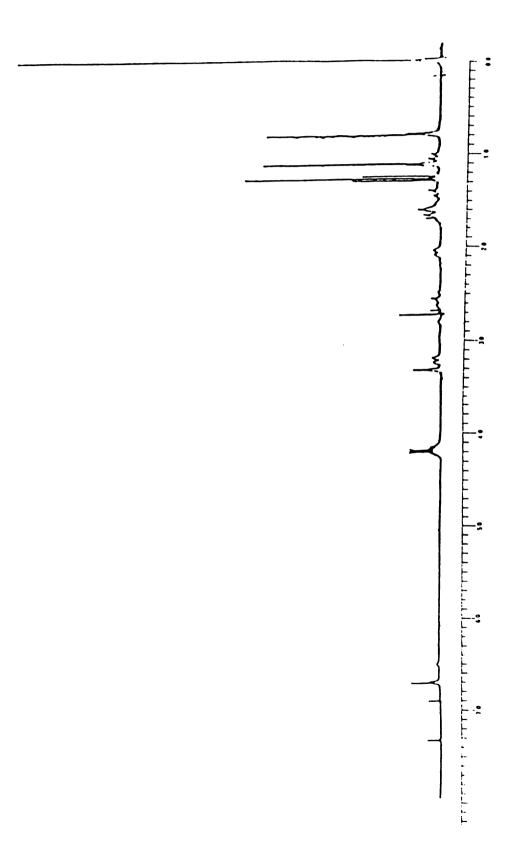
 CO2Et
 H

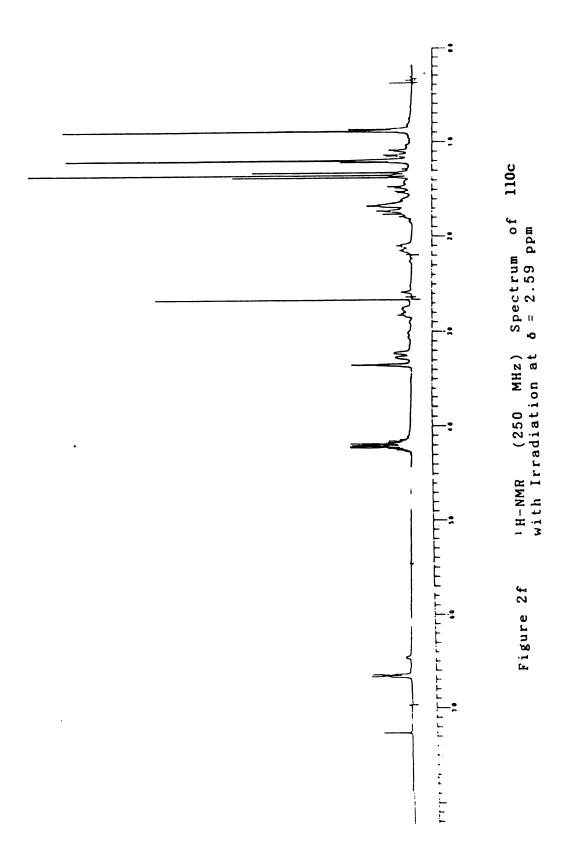

 H
 CO2Et
 H H CO₂Et H H Reagent Compound 04 104c 104 b 1044 1040 104 d 104 1041 Toble III Entry

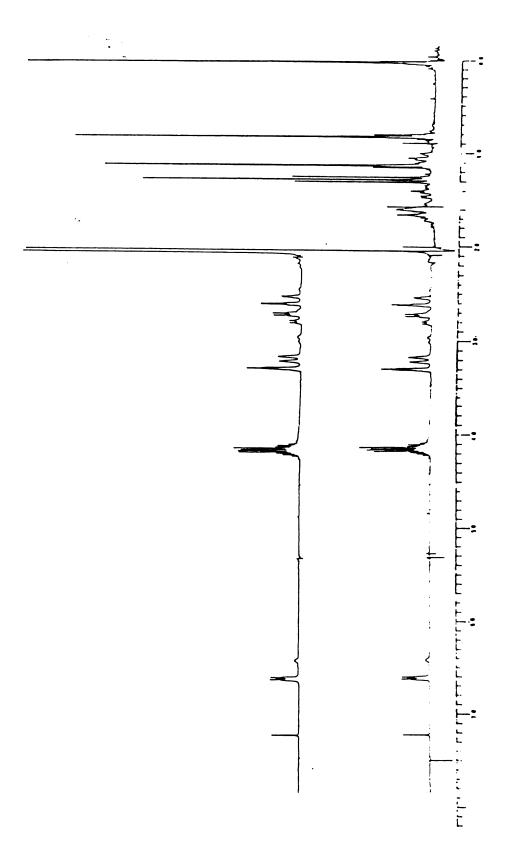


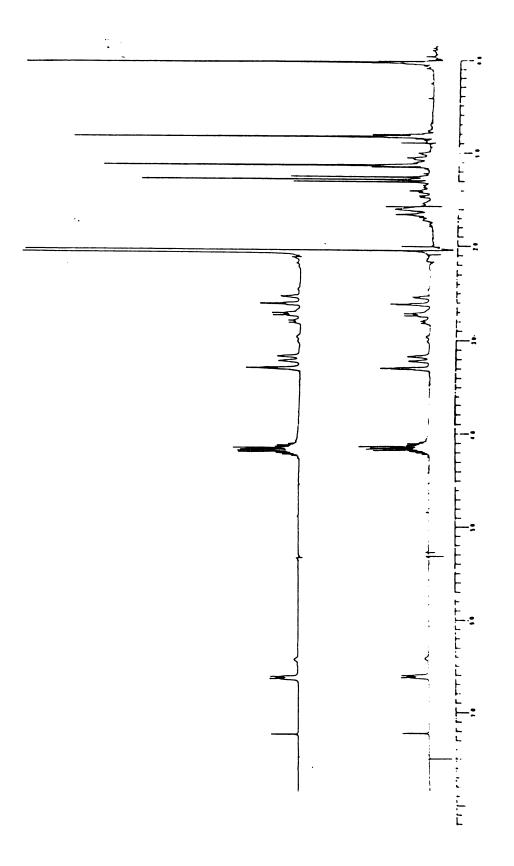

igure 2a $^1 ext{H-NMR}$ (250 MHz) Spectrum of 110



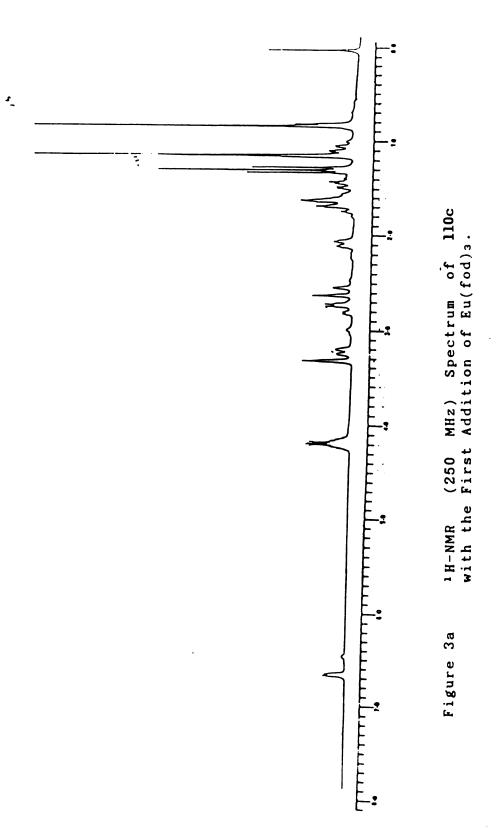

Spectrum of $\delta = 6.67 \text{ ppm}$ 1H-NMR (250 MHz) with Irradiation at Figure 2b

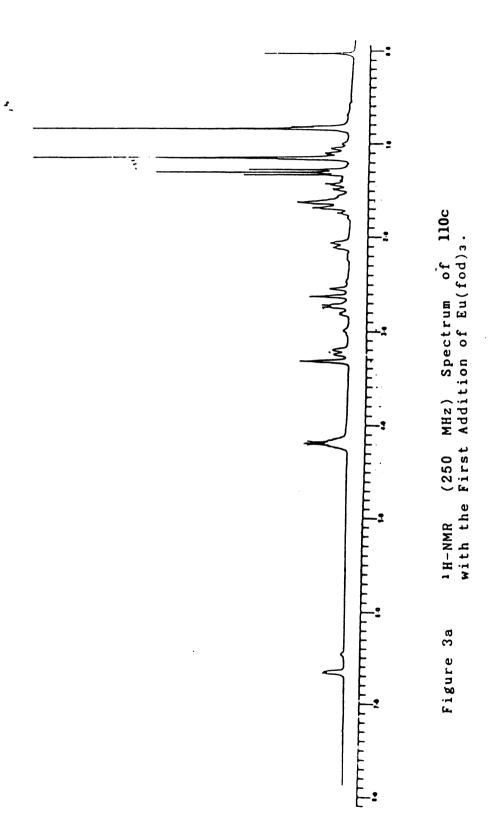


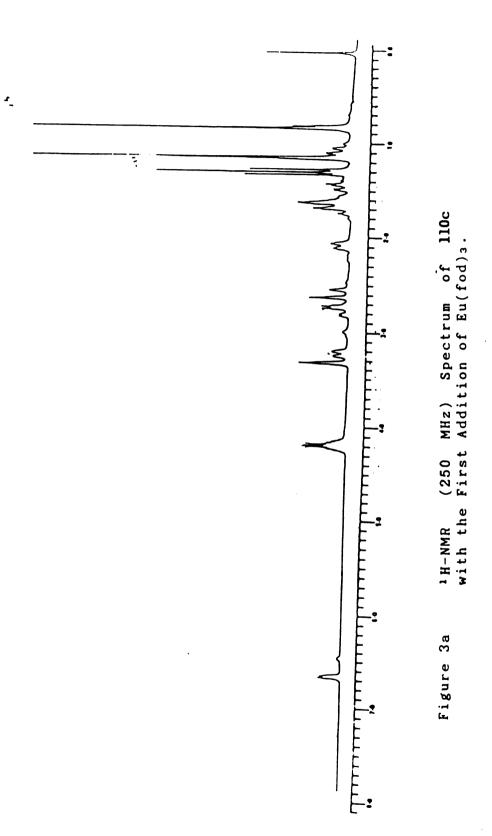


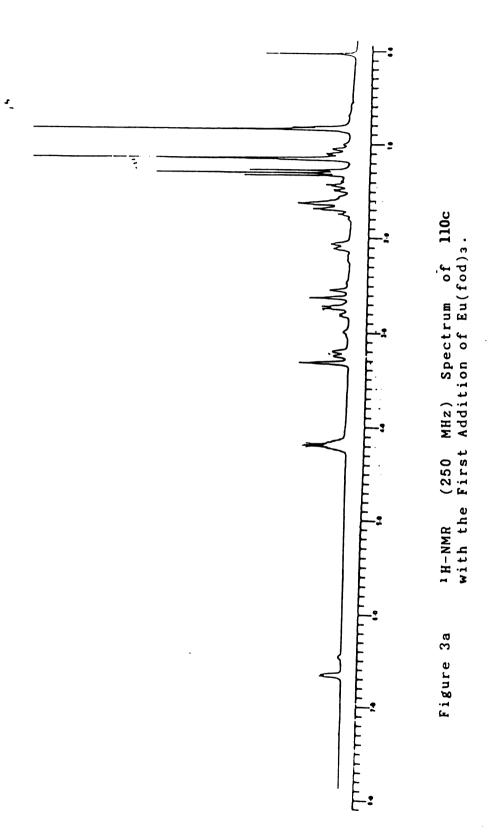


1H-NMR (250 MHz) with Irradiation at Figure 2e






re 2g ¹H-NMR (250 MHz) Spectrum of 110c with Irradiation at δ = 2.10 ppm



¹H-NMR (250 MHz) with Irradiation at Figure 2g

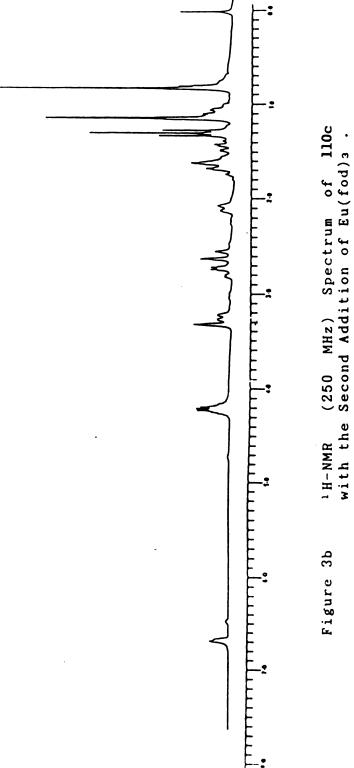
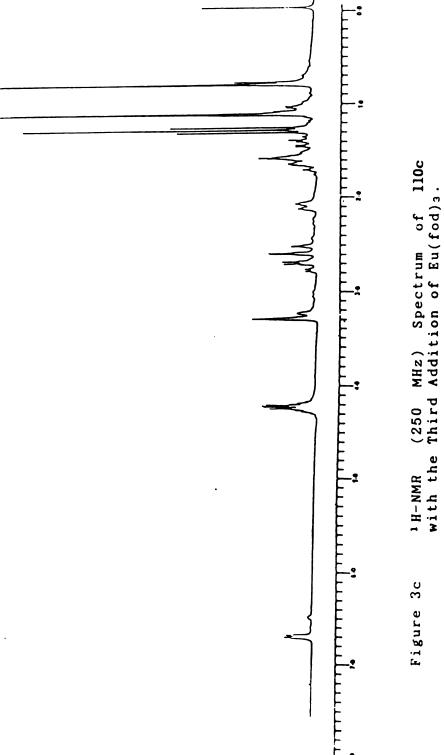
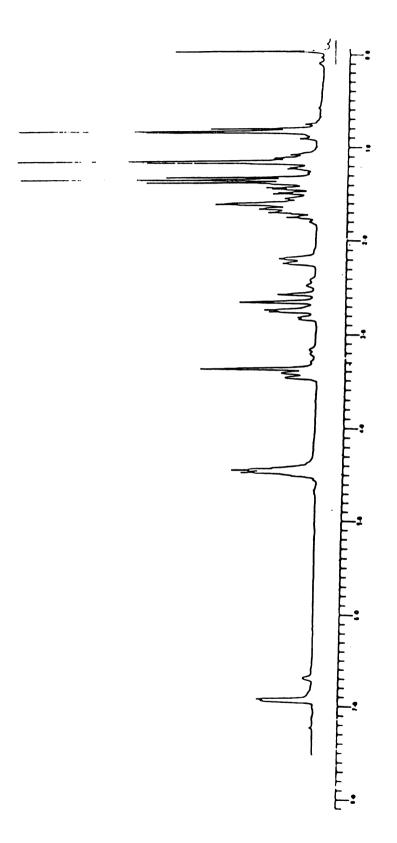
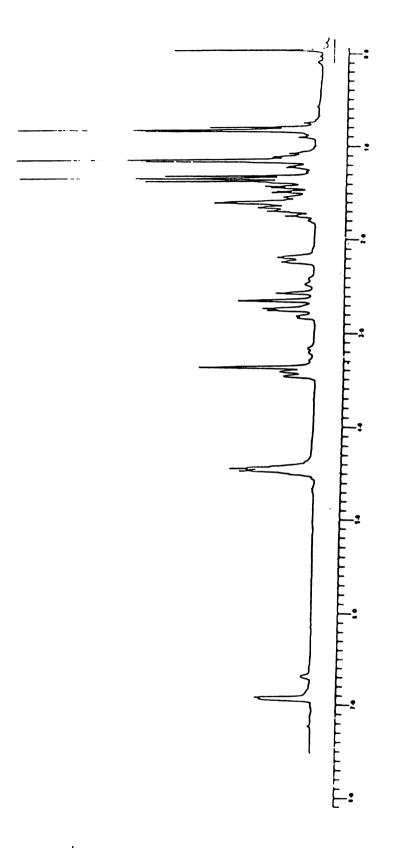





Figure 3b

 $^{1}\,\text{H-NMR}$ (250 MHz) Spectrum of 110c with the Fourth Addition of Eu(fod)3 . Figure 3d

 $^{1}\text{H-NMR}$ (250 MHz) Spectrum of 110c with the Fourth Addition of Eu(fod) $_{3}$. Figure 3d

	110c	10	109c
ð (ppm)	Eu(fod)3 addition	ð (ppm)	Bu(fod)3 addition
2.10	0.288	2.19	0.864
2.59	0.135	2.52	0.254
2.76	0.102	2.75	0.220
3.22	0.457	3.01	0.644
3.32	0.237	3. 3. 3.	0.320
6.67	0.490	6.47	0.898
	•		

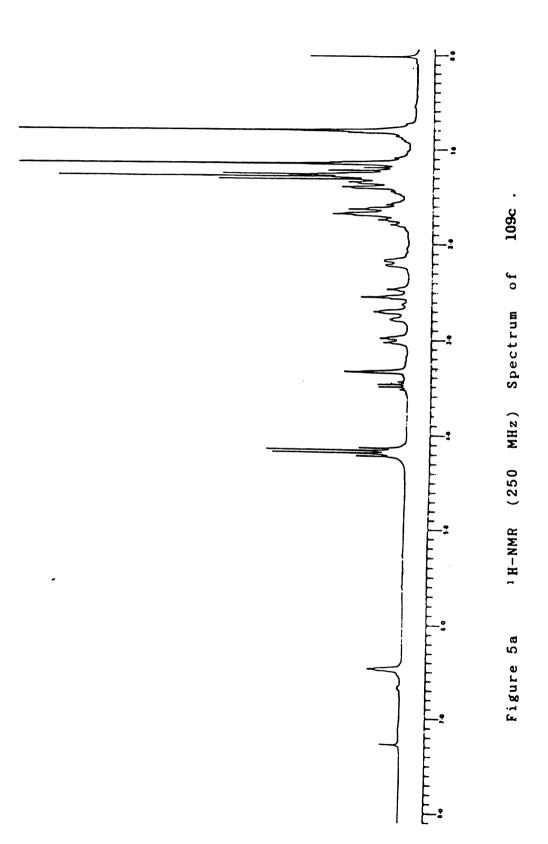
3.22 ppm CO₂E1 H 6.67 ppm H 2.76 ppm H 2.59 ppm 110c.

Figure 4: Chemical shifts changes with Eu(fod)3 addition to 109c and 110c and proton chemical shift correlation of 110c.

.

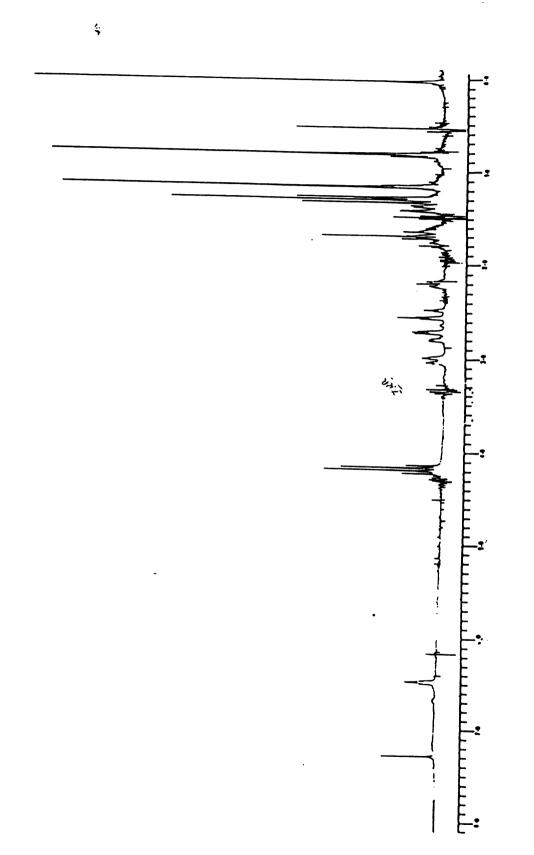
1

τ

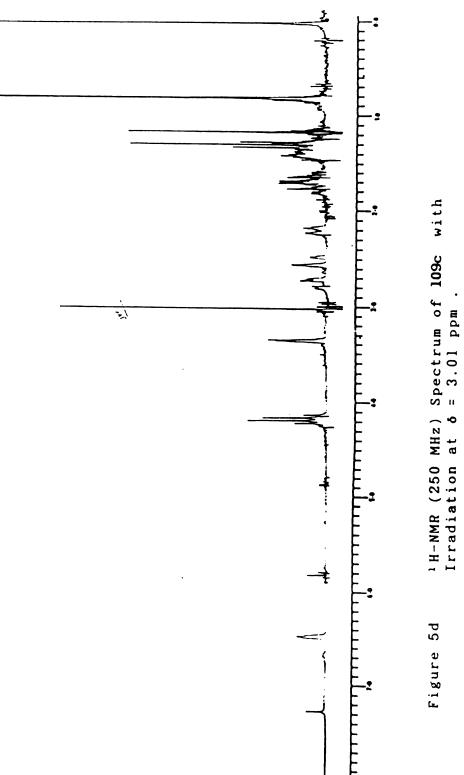

sp


3.22. 2.76 and 2.59. Irradiation at $\delta = 3.32$ resulted in sharpening of the signals at 2.76 and 2.59 ppm. Irradiation at $\delta = 3.22$ ppm resulted in simplification of the signals at 6.67, 2.76, 2.59 and 2.10 ppm. Irradiation at $\delta = 2.76$ ppm effected the signals at 6.67, 3.32, 3.22 and 2.59 ppm. Irradiation at $\delta = 2.59$ resulted in sharpening and simplification of the signals at 6.67, 3.32, 3.22 and 2.76 Irradiation at $\delta = 2.10$ ppm resulted in sharpening the resonance at 3.22 ppm. From these decoupling results and consideration of chemical shifts, the connectivities of the protons of the B-ring was determined to be that shown in Figure 4. The stereochemistry of the epoxide moiety was made on the basis of (Eu(fod)3) studies. In these studies, increments of Eu(fod)3 were added and the chemical shift differences were measured; these results are presented in Figures 5a-e. The resonance at 8 3.22 ppm, which had been attributed to the C-8a-H, shifted the most relative to the other protons, indicating the close spatial proximity of that hydrogen to the basic epoxide oxygen. Therefore, we have concluded that the ring junction hydrogen (3.22 ppm) and the epoxide oxygen are on the same face of the molecule. The structure of 110 as a β -epoxide was secured by single xray analysis.

The α -epoxide 109c was examined in a manner similar to that of the β -epoxide to assign the stereochemistry. Epoxide 109c exhibited the following signals in the ¹H-NMR spectrum: δ (ppm) = 6.49 (m, 1H), 3.33 (br s, 1H), 3.01 (d


m, J = 12.0Hz), 2.75 (d m, J=20Hz, lH), and 2.52 (d m, J=20Hz). Decoupling was performed as follows in Figures 6a-Irradiation at $\delta = 6.47$ effected the resonances at 3.01, 2.75 and 2.52 ppm. Irradiation at $\delta = 3.33$ sharpened and simplified signals observed at 2.75 and 2.52 Irradiation at $\delta = 3.01$ simplified those resonances at 6.47, 2.75 and 2.52 ppm. Irradiation at $\delta = 2.75$ simplified the signals at 6.47, 3.33, 3.01 and 2.52 ppm. Irradiation at & = 2.52 simplified the peaks at 6.47, 3.33, 3.01 and 2.75ppm. From a consideration of the observed chemical shifts and the couplings relationship of the protons in 109c, the following assignments can be made, C_2-H at 6.47 ppm, $C_4-\beta-H$ at 3.33 ppm, C-8a-H at 3.01 ppm, $C_2 \alpha$ -H at 2.75 ppm and $C_3 \beta$ -H at 2.52 ppm.

The epoxide stereochemistry was suggested to be α - by shift reagent (Eu(fod)₃) studies (Figures 6a-6e). The ring junction hydrogen at δ = 3.33 ppm was slightly shifted relative to the other protons of 109c and in direct contrast to the lanthanide-induced shift of the ring fusion hydrogen of the β -epoxide. These data suggest an α -orientation for the epoxide moiety which is corroborated by single-crystal x-ray crystallography; the ORTEP plot is shown in Figure $\frac{\alpha}{2}$.



 $^{1}\,H-NMR$ (250 MHz) Spectrum of 109c with Irradiation at δ = 6.47 ppm . Figure 5b

¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 3.33 ppm . Figure 5c

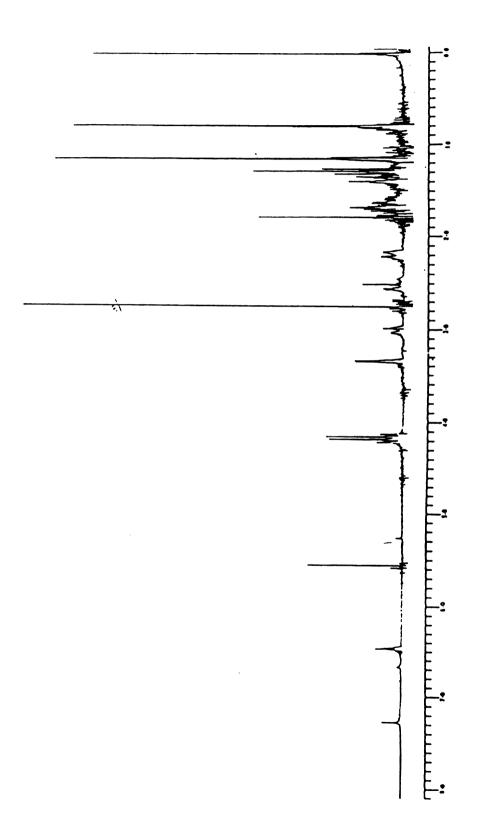
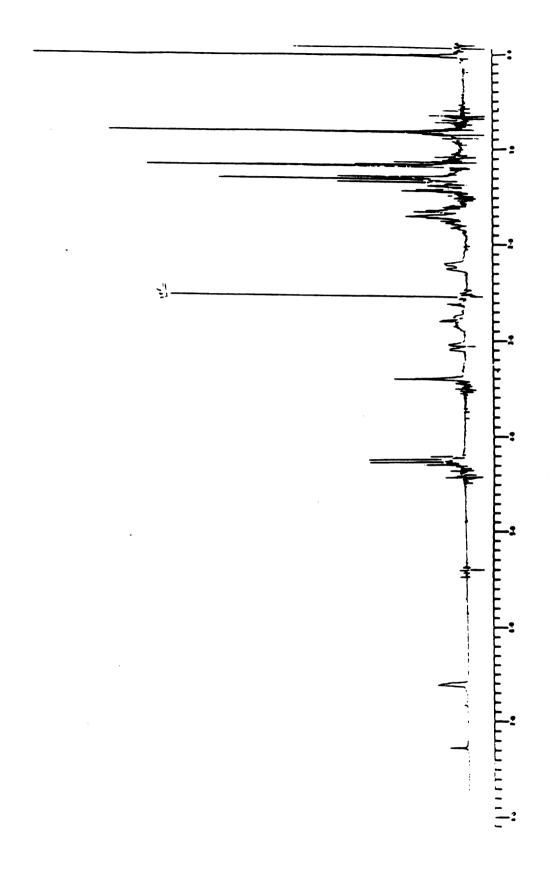
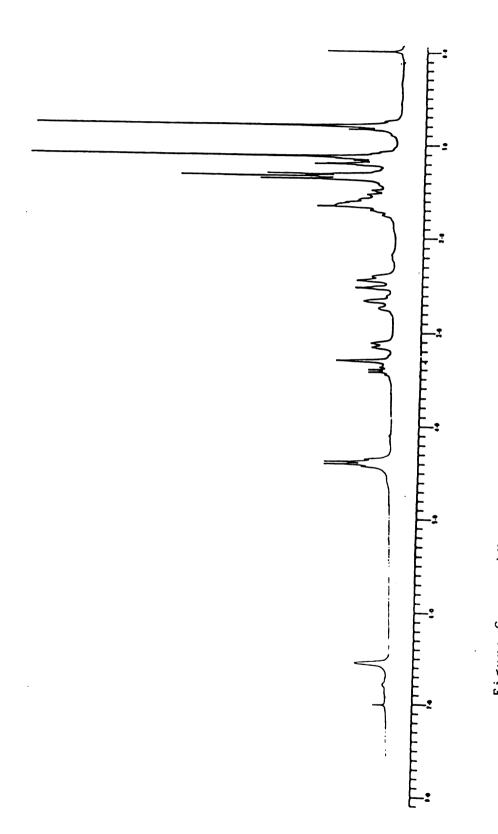
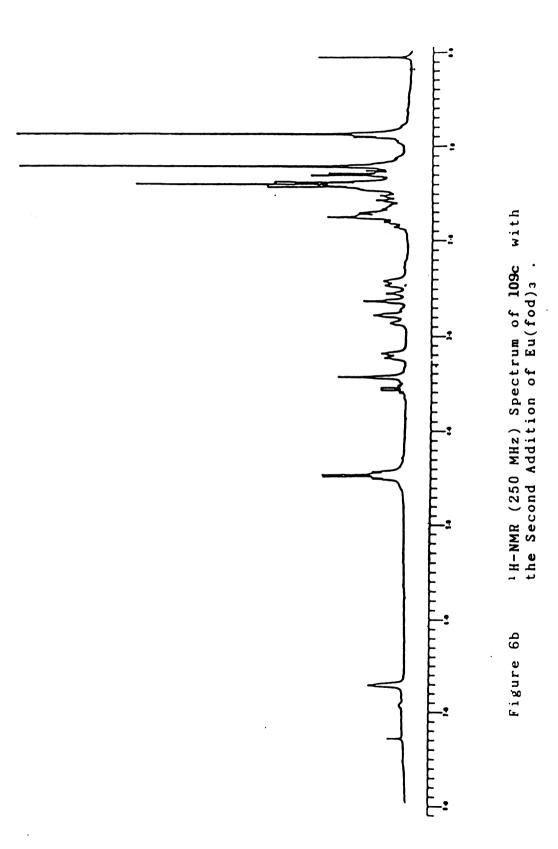
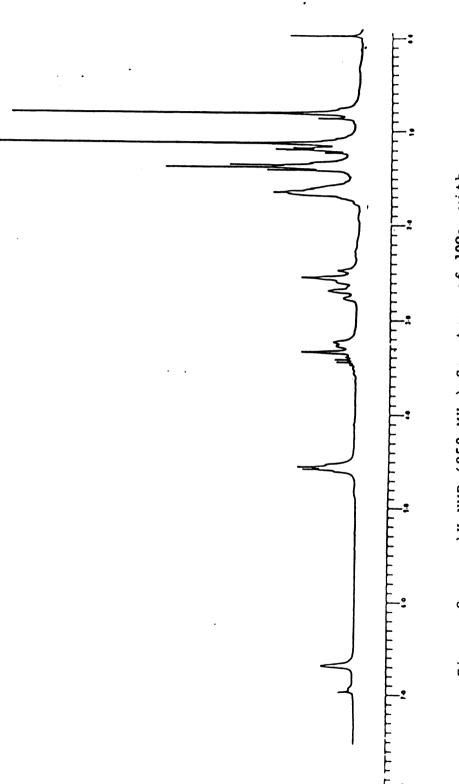
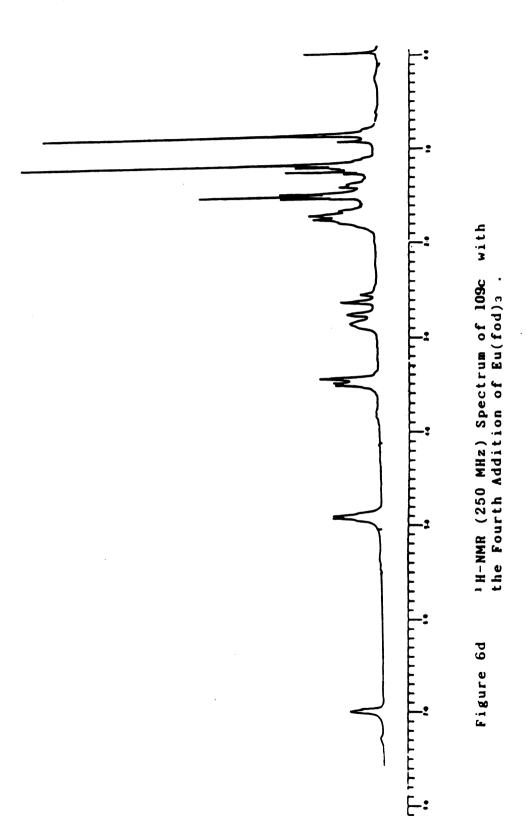



Figure 5e 1 H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 2.75 ppm .

¹ H-NMR (250 MHz) Spectrum of 109c with Irradiation at δ = 2.52 ppm . Figure 5f


Figure 6a

 $^{1}\text{H-NMR}$ (250 MHz) Spectrum of 109c with the First Addition of Eu(fod) $_{3}$.

 $^{1}\,\text{H-NMR}$ (250 MHz) Spectrum of 109c with the Third Addition of Eu(fod)3. Figure 6c

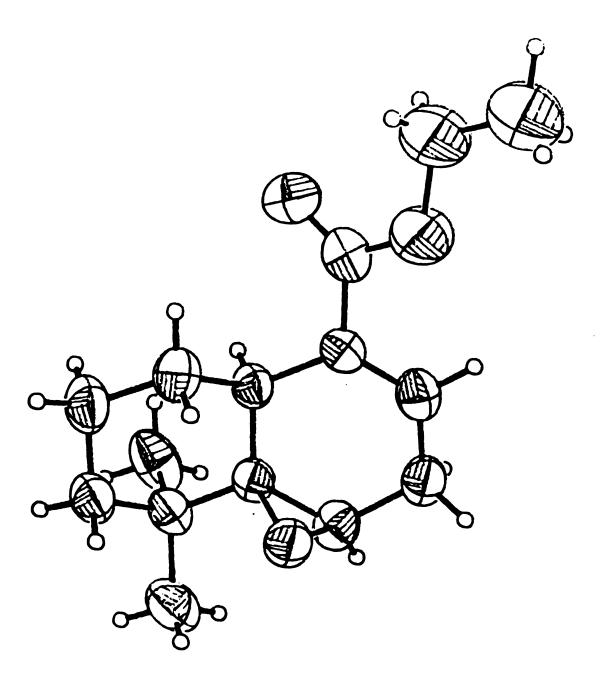
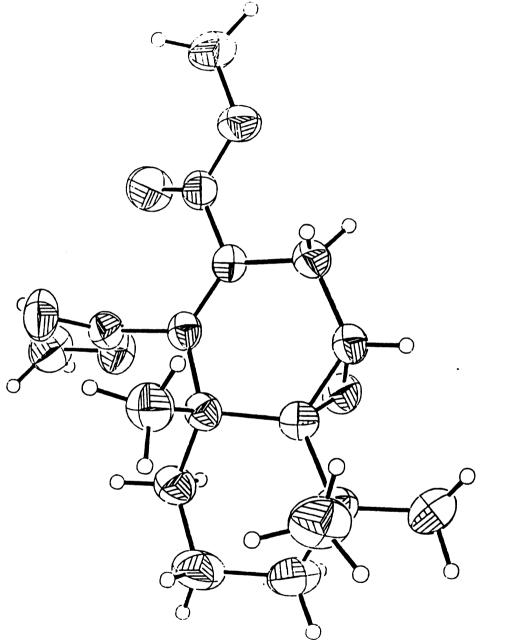


Figure 7 The ORTEP Plot of a Single Crystal X-ray of 109c.

Using the chemical shift and coupling precedents set in the examination of epoxides 109c and 110c, all other remaining epoxide stereochemistries were established. Epoxidation of 104b with (MCPBA, 0°C) gave a mixture of epoxides 1 and 110b in 95:5 ratio, 87%. The stereochemistry of the epoxide 1 was determined by 'H-NMR techniques (decoupling and shift reagent studies) and secured by single crystal x-ray crystallography. The ORTEP plot of epoxide 1 is shown in Figure 8.

The stereoselectivity obtained in epoxidation of 104b is as expected. The α -face selectivity is likely due to steric hindrance in the β -face approach by the axial methyls at C-4 and C-8a. Such selectivity, favoring the α -epoxide formation, is also observed in the epoxidation of 104e and 104f providing 109e and 109f in 81 and 90% yields, respectively.

Epoxidation (MCPBA) of 104g provided a mixture of epoxides 109g and 110g in 11:89 ratio, respectively and in a 78% overall yield which was separated by chromatography on silica gel.


The stereoselectivity of MCPBA epoxidation dropped in the epoxidation of 104a and 104d. In the case of 104a, a mixture of epoxides, 109a and 110a, were obtained in a 45:55, a: \$\beta\$ ratio in 95% yield; however, these epoxides were readily separable by fractional crystallization (30:70,

ether: hexane). Epoxidation of 104d with MCPBA provided a mixture of epoxides 109d and 110d in a 33:67 ratio in 77% yield.

The drop in facial selectivity in these last examples was surprising. The only deviation from other substrates is the substitution at C-2 which might cause conformational changes that would expose both the α - and β -face of the 4,4a-double bond.

From these results, we conclude that MCPBA provides mainly the β -epoxides when the group at $C_{8.0}$ is a hydrogen, while the selectivity turns around with substrates containing a C-8a-methyl.

Clearly, the desired α-epoxides can be prepared in small quantities at best with MCPBA as the epoxidation reagent. An epoxidation sequence that should provide the less available α-epoxides employs NBS in aqueous t-BuOH. The yields and ratios of products obtained upon treatment of dienes 104c to 104g with NBS in aq. t-BuOH as are present in Table III. Treatment of 104c with 2.0 equivalents of NBS in a 2:1 ratio of t-BuOH:water (2 hours) provided epoxide 109c directly in 94% yield as the sole product. The obtention of epoxides directly without the observation of an intermediate was a surprising but general event (vide infra). Compound 104g, when subjected to the NBS-epoxidation conditions, provided only 109g in 54% yield. Exposure of 104d to NBS under the standard conditions yielded epoxides 109d and 110d

gure 8 The ORTEP Plot of a Single Crystal X-ray of 1.

(85:15) in 60% yield. The selectivity dropped in this case as it did with MCPBA as the epoxidizing reagent.

Attempts to obtain the β -epoxides 110b, 110e and 110f using the aq. NBS-tBuOH conditions resulted in a mixture of decomposition products including B-ring aromatic materials. Other attempts to convert the α -epoxide 110b to the α -epoxide 110b via formation of an intermediate diol (H₃O⁺) also failed. With the epoxides 109 and 110 in hand, we proceeded to investigate the rearrangement protomoted by Lewis acids.

Epoxides 109 and 110, Rearrangement Catalyzed by BF3 · Et20:28

Epoxides are well known to rearrange to a variety of products upon Lewis acid treatment.²⁹ Steroidal epoxides, in which the epoxide moiety is part of a rigid system, have been extensively examined as rearrangement substrates; often with BF₃·OEt₂ serving as the Lewis acid. A number of instructive examples are illustrated in equation 7 to 9. For example, treatment of 4,4-dimethyl-5 α ,6 α -epoxycholestane lll with BF₃·Et₂O provided alcohol ll2 resulting from C₄-CH₃ migration to C-5,²⁹¹ Equation 7.

Halsall^{29m} studied the 4β -hydroxy-4,4-dimethyl-5 α ,6 α -epoxy-cholestane 113 rearrangement with BF₃·Et₂O and obtained 114 in 35% yield, a product stemming from synochronous C-5- β -methyl, C-6- α -hydrogen migration (Equation 8). Whitlock^{29h} reported a similar rearrangement

$$\begin{array}{c}
 & C_8 H_{17} \\
 & BF_3 \cdot E_{120} \\
 & OH
\end{array}$$

$$\begin{array}{c}
 & C_8 H_{17} \\
 & OH
\end{array}$$

$$\begin{array}{c}
 & (8) \\
 & U_1 \\
 & U_2 \\
 & U_3 \\
 & U_4
\end{array}$$

of compound 115 to provide 116 in variable yields (21-34%) as shown in Equation 9.

In all of these rearrangements, one might anticipate that a stereoelectronically allowed synchronous C-4 to C-4a methyl migration might energetically favor the release of the 1,3-diaxial interaction between C-4- β -methyl and C-10-angular methyl^{29g,h,l} and the release of strain in the three-membered epoxide ring.

With this background in mind and the necessary substrates for the study in hand, we first investigated the rearrangement with BF₃·Et₂O of the more available β -epoxides 110. In the steroid series, exposure of related C-4a-C-5 β -epoxides to Lewis acids have generally given a gross mixture of products. The results of β -epoxides 110 are listed in Table IV.

Treatment of the 8-epoxide 110a with BF3·Et20 (1.25 equiv. CH2Cl2, O°C; 10 minutes) provided 117a in 92% yield. The nature of 117a was deduced from inspection of the spectral data and subsequent chemical manipulation. first indications of a novel structure for the product of the rearrangement of 110a came from 1H-NMR and 13C-NMR data. In the ¹H-NMR (250 MHz, CDCl₃) compound 117a exhibited resonances at $\delta = 4.75$ (br m, 1H), 1.80 (br t, J=8.3Hz, 1H), 2.76 (dd, J=18.8, 2.3 Hz, 1 H), 2.2 (dd, J=18.8, 4.2 Hz, 1 H),1.44 (s, 3) and 1.22 (s, 3). These data are close to what one might expect for the desired, but unexpected in this series, rearrangement products; however, the & between the observed and expected chemical shift values for an olefinic hydrogen (4.75 ppm vs. ca. 5.25 ppm) and a CH_3 on an sp^2 hybridized carbon (1.44 ppm vs. ca. 1.70 ppm) were cause for concern.

Extensive decoupling (1 H-NMR), shift-reagent and nuclear Overhouser difference (NOEDS) studies suggested the C-9 and C-1- through C-4-arrangement with the

Table. IV. Rearrangement of β -Epoxides 110 with BF3·Et20·

Table Y Rearrangement of α -Epoxides 109 with BF₃Et₂0.

stereochemistry shown in Table VI for 117a. The ¹³C-NMR (68.9 MHz, CDCl₃) data for 117a demonstrated that there was indeed reason for concern, for compound 117a exhibited but two sp² C=C resonances (142.2(s) and 129.0(s)) and two signals (δ = 83.7 and 81.8 ppm) in an unusual chemical shift region. These data, along with the observation of the facile M+-58(C₃H₆O) loss in EI/MS (70eV), suggested a rearranged oxetane as the structure of compound 117. Some support for this conclusion was provided by a comparison of the EI/MS fragmentation of 117a after loss of C₃H₆O with the EI/MS (70eV) fragmentation pattern of dimethyl-2,3,3a,6-tetrahydroindene-4,5-dicarboxylate 120 prepared as described in Equation 10.31 Additional support for the proposed

structure was supplied by a comparison of the 1 H-NMR and 13 C-NMR resonances attributed to the oxetane portion of 117a (1 H-NMR δ = 4.22 ppm, 13 C-NMR δ = 83.7,81.8 ppm) with data for oxetanes previously reported. 32

The nature of the ring system was unequivocally demonstrated by exposure of 117a to NaOMe, MeOH providing the related 1,3-diene-5-C(CH₃)₂OH ring-opened material 121 (75%, Equation 11). Treatment of the dienol 121 with pyridinium

E=CO2Me

chlorochromate³³ (PCC) afforded the expected dihydroindenediester 120 which was identical in all respects when compared to the literature data³⁴ and an authentic sample prepared as described in Equation 10. The obtention of oxetanes 117 from the BF3·Et2O treatment of epoxides 110 unexpected. 29g, h, i, l, m However, an inspection of molecular models and the x-ray data demonstrates the ideal positioning of the C-3-C-4 ring bond of compounds 110 for migration with respect to the breaking C-5-O-bond giving 117 after ring closure. Similarly, epoxides 110c, 110d and 110g provided oxetanes 117c (80%), 117d (87%) and 117g (79%), respectively.

Rearrangement of a-Epoxides 109 with BF3 · OEt2

As was mentioned previously, the α-epoxide 1 provided the CH₃-migration product 2 (1.25 equiv. BF₃ Et₂O,CH₂Cl₂, 0°) in 76% yield. Similar treatment of the α-epoxides 109e and 109f (Table V) provided 122e and 122f in 83% and 81% yields, respectively. Despite this seemingly strong precedent for CH₃-migration, exposure of epoxides 109a, 109c, 109d, and 109g failed to give even trace quantities of

the desired products 122, yielding instead, oxetanes 117 (52-60%) and alcohols 123 (27-30%) and 124 (0-10%). The oxetanes 117a, 117c, 117d and 117g were compared to those isolated from rearrangement of epoxides 110 and were found to be identical in all respects. Alcohols, 123 and 124. separated (chromatography) and acetylated were (Ac2O,py,DMAP) to 125 give the acetates and 126. respectively. These acetates were compared to the 4-OAc,5isopropenyl compounds derived from oxetanes 117 (P-TsOH, Ac2O, PhH, reflux, 3 hours), 35 shown in Equation 12.

The acetates 125 prepared from the major alcohols 123 were indistinguishable from those derived from the oxetanes 117. The structures of alcohols 125 were secured after conversion of the acetates 125 and 126 into single trienes 127 (KOBut, THF, Equation 13); demonstrating that they differed only in stereochemistry at the carbinol center.

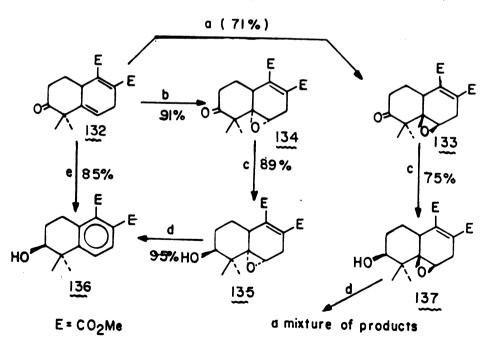
The conversion of epoxides 109 to oxetanes 117 requires an inversion of configuration at C-4 and C-4a of the parent compounds 109 with respect to the C-8a-H. Such a process might occur as outlined in Equation 14. Rupture of the C-

 $4a-\underline{0}$ bond, accompanied by C-8a-H migration and cleavage of the C-4a-C-4-ring bond, could provide the intermediate 128. Further reaction of 128 with BF₃·Et₂O could eventually lead to 117. Some support for the ring cleavage and recombination processes can be found in reports by Whitlock^{29h} and Demole³¹, respectively.

The processes described above illustrate the importance of remote substituents C-8a-CH₃ and the functional groups (1,2-double bond) in directing the epoxidation of the dienes 104 and the rearrangement of the epoxides 109 and 110. In order to facilitate the rearrangement of epoxides of the type 109 to clerodane intermediates 122, the C-8a-H must be replaced with a hydrogen equivalent that will not interfere with the rearrangement process. The group placed at C-8a should be at least as large as a -CH₃, must not eliminate, or participate during the rearrangement and must be transformed to the required hydrogen in later stages of the

synthesis. The carboakoxy group is a good candidate for such substituents. An alternative to the introduction of a functional group at the ring fusion might be the placement of a substituent in the A-ring to facilitate CH3-migration and/or impede oxetane formation. The group of choice might be a 3\$-hydroxy group.

The latter of these two possibilities was deemed the simplest to examine and, therefore, was investigated first. The required diene 130 was prepared as outlined in Equation 15 by the addition of vinyl magnesium bromide to 2,2-


dimethyl-1,3-cyclohexanedione at -78° C followed by dehydration with CuSO₄· $5\text{H}_2\text{O}$ to provide 131. Although the yield of alcohol 129 was modest (42%), attempts to add vinyl magnesium bromide to the mono-protected diene³⁶ resulted in the recovery of the starting material unchanged.

The Diels-Alder reaction of 131 with dimethyl acetylenedicarboxylate proceeded slowly at room temperature, providing the adduct 132 in 52% yield (Scheme XVII). Epoxidation of 132 with NBS aqueous, t-butanol provided a 1:6 mixture of epoxides 133 and 134 in 91% yield. Sodium borohydride reduction of the epoxide 134 provided, as expected, the equatorial alcohol 135 in 89% yield.


Rearrangement of 135 with BF₃·Et₂O resulted in the formation of the related B-ring aromatic diester 136. The structure of 136 was proved by comparison to an authentic sample, prepared by treatment of 132 with DDQ followed by sodium borohydride reduction; these materials were found to be identical in all respects.

Epoxidation of 132 with MCPBA provided exclusively the epoxide 133 in 71% yield which was reduced with NaBH4 to provide 137. Treatment of 137 with BF3 Et2O resulted in the formation of a large mixture of product which was unidentified and which concludes that the perturbation in the A ring was not good enough to direct the rearrangement to the required pathway.

Scheme XVII Synthesis of 136 and 137 and Rearrangements.

a) MCPBA, 0° C; b) NBS, aq. t-BuOH, 0° C, 134:133 = 6:1; c) NaBH₄, CH₃OH; d) BF₃·Et₂O, 0° C; e) i) DDQ; 95%; ii) NaBH₄, 89%.

RXPERIMENTAL

Experimental Section

General: Tetrahydrofuran (THF) and benzene were dried by distillation, under nitrogen from sodium benzophenone ketyl. Petroleum ether refers to 30-60°C boiling point fraction of petroleum benzin. Diethyl ether was purchased from Mallinkrodt, Inc., St. Louis, Missouri, and used as received. All other reagents were used as received unless otherwise stated; all reactions were carried out under a blanket of argon with the rigid exclusion of moisture from all reagents and glassware unless otherwise mentioned.

Infrared spectra were recorded on a Pye-Unicam SP-1000 infrared spectrophotometer with polystyrene as standard. Proton magnetic resonance spectra were recorded on a Varian T-60 at 60MHz or a Bruker WM-250 spectrometer at 250MHz as indicated, as solutions in deuterochloroform unless otherwise indicated. Chemical shifts are reported in parts per million on the ô scale relative to a tetramethylsilane internal standard. Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad), coupling

constant (Hz), integration]. ¹³C magnetic resonance spectra were recorded on a Bruker WM-250 spectrometer (68.9 MHz) and are reported in parts per million from tetramethylsilane on the ō scale. Electron impact (EI/MS) and chemical ionization (CI/MS) mass spectra were recorded on a Finnigan 4000 with an INCOS 4021 data system.

All chromatography was performed by the flash technique according to the procedure of Still et aP⁷ using the silica gel mentioned and eluted with the solvents mentioned. The column outer diameter (o.d.) is listed in millimeters.

6,6-Dimethyl-l-vinyl-cyclohexene 100a

To 15.4g (0.1 mol) of 2,2-dimethyl-1-vinyl-cyclohexanol in 300 mL of benzene was added 24.9g (0.1 mol) of CuSO₄ (H₂O)₅. The mixture was heated under reflux with azeotropic removal of water for 2 hrs. After cooling to room temperature, the copper sulfate was removed by filtration and the filtrate was concentrated by distillation of the benzene solvent at atmospheric pressure. The residual oil was purified by distillation BP₁₁ = 50-52°C, providing 11.6g (87%) of 100a as a colorless liquid.

1H-NMR (250 MHz, CDCl₂): \$\delta\$ 6.30 (dd, J=17.7,11.6Hz, 1), 5.77 (t, J=3.97Hz, 1), 5.26 (d, J=17.7Hz, 1), 4.91 (d, J=11.6Hz, 1), 1.05 (s, 6), 0.8-2.2 (m, 6). EI/MS (70eV): 136 (M⁺, 34.5), 121 (48.9), 107 (24.7), 93 (73.5), 80 (base), 69 (28.5), 55 (32.3), 40 (47.3), 33 (84.8). IR (neat): 2990,

2950, 2915, 2850, 1610, 1450, 1375, 1355, 1260, 1120, 930, $765cm^{-1}$.

General Procedure for Diels-Alder Reactions.

Ethyl-5,5-dimethyl-3,5,6,7,8,8a-hexahydronaphthalene-l-carboxylate 104c and 2-carboxylate 104d

To 2.0g (14.7 mmol) of 100a was added 3.0g (30.6 mmol) of freshly distilled ethyl propiolate; the mixture was then heated in a 50°C oil bath for 12 hrs. The reaction mixture cooled to room temperature and the excess ethyl propiolate was removed in vacuo to provide a colorless oil. The crude product was purified by preparative LC (Waters Prep 500; 2 columns; ether-hexane, 2:98; 300 mL min-1) providing 2.55g (74.1%) of 104c as a colorless viscous oil and 0.36g (10.5%) of 104d as a colorless viscous oil. 104c: ${}^{1}H-NMR$ (250 MHz, CDCl₃): $\delta = 6.88$ (br t, J=4.0Hz, 1), 5.35 (br t, J=4.0Hz, 1), 4.25 (m, 2), 3.28 (m, 1), 2.77 (m, 2), 1.38 (t, J=8.0Hz, 3), 1.3-2.0 (m, 6), 1.10 (s, 6). BI/MS (70eV): 234 (M+, 44.3), 219 (7.92), 205 (10.2), 187 (16.0), 173 (9.9), 166 (14.6), 145 (23.3), 135 (20.8), 119(20.3), 105 (38.6), 91 (base). IR (neat): 2960, 2915, 2880, 1720, 1680, 1650, 1380, 1365, 1255, 1230, 1075, $985cm^{-1}$. 104d: ${}^{1}H-NMR$ (250 MHz, CDCl₃): $\delta = 6.76$ (m, 1), 5.45 (t, J=3.3Hz, 1), 4.20 (q, J=7.02Hz, 2), 2.80-3.10 (m, 3), 1.45-2.8 (m, 6), 1.29 (t, J=7.02Hz, 3), 1.09 (s, 3), 1.04 (s, 3). RI/MS (70eV): 234 (M+, 39.6), 232 (6.5), 219 (26.6), 205 (9.4), 189 (20.8), 177 (10.5), 163 (13.7), 149 (22.0), 135 (32.7), 119 (26.2), 105 (54.4), 91 (base). IR (neat): 3010, 2960, 2920, 2870, 1716, 1650, 1460, 1380, 1353, 1290, 1253, 1240, 1110, 1090, 1030, 953, 915, 753, 740cm⁻¹.

General Procedure for Regio-Reversed Diels-Alder Reactions Ethyl-5,5-dimethyl-3,5,6,7,8,8a-hexahydronaphthalene-2carboxylate 104d

To 0.5g (3.7 mmol) of 100a in 20 mL of dry benzene was added 1.0g (6.9 mmol) of (2)-ethyl-\$\beta\$-nitroacrylate³⁸ 108a (R₂=H). The resulting yellow-orange solution was allowed to stir for 18 hrs. at room temperature, then the solvent was removed in vacuo to give a yellow oil. The crude product was filtered through a short column of silica gel (60-230 mesh, ether-pet. ether, 1:4) to afford the Diels-Alder adducts (0.96g, 91%) as a pale yellow viscous oil.

To 0.6g (2.1 mmol) of the adducts in 20 mL of dry THF was added 0.64g (4.2 mmol) of DBU. The mixture was stirred for 4 hrs. at room temperature, cast into ether (50 mL), washed with 0.1N aq. HCl, saturated aq. NaHCO₃ and brine (50 mL each). The organic phase was dried (Na₂SO₄) and concentrated in vacuo to provide the crude product as a viscous pale yellow oil. The crude 104d was purified by chromatography on a column of silica gel (20 mm OD; 230-400 mesh; ether-pet. ether, 1:4; 10 mL fractions) using the flash technique³⁷ to yield 104d (0.42g, 86%).

Ethyl-5,5-dimethyl-5,6,7,8-tetrahydronaphthalene-1-carboxylate 105

To a solution of 0.1g (0.4 mmol) of 104c in 10 mL of benzene was added 0.17g (0.6 mmol) of DDQ. The mixture was allowed to stir for 12 hours at room temperature; then was filtered through a pad of celite which was rinsed with benzene, and the combined eluate was concentrated in vacuo to afford a pale yellow oil. The crude product was purified by chromatography on a column of silica gel (20 mm OD; 60-230 mesh; ether-pet. ether, 1:9; 7 mL fractions) giving 0.097g (98%) of 105 as a colorless viscous oil. $^{1}H-NMR$ (CDCl₃): δ 7.56 (dd, J=7.5,1.25Hz, 1), 7.49 (dd, J=7.5,1.25Hz, 1), 7.18 (t, J=7.5Hz, 1), 4.34 (q, J=7.0Hz,2), 3.02 (br t, J=6.6Hz, 2), 1.6-1.85 (m, 4), 1.38 (t, J=7.0Hz, 3), 1.28 (s, 6).EI/MS (70eV): 232 (M+, 68.8), 217 (90.5), 203 (17.3), 187 (48.0), 186 (84.3), 171 (base), 161 (20.1), 143 (39.1), 128 (64.3), 115 (52.9), 105 (11.0), 91 (33.6), 77 (19.5), 51 (16.1), 43 (32.3).IR (neat): 3065, 2960, 2935, 2875, 1720, 1560, 1475, 1450, 1385, 1365, 1275, 1210, 1185, 1150, 1100, 1025, 760, $720cm^{-1}$.

<u>Ethyl-5,5-dimethyl-5,6,7,8-tetrahydronaphthalene-2-</u> carboxylate 106

In a similar fashion to that described for the preparation of 105, 0.1g of 104d yielded 0.084g (85%) of 106 as a viscous colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 7.78$ (br d, J=8.3Hz, 1), 7.73 (br s, 1), 7.36 (d, J=8.3Hz, 1), 4.35 (q, J=7.0Hz, 2), 2.80 (br t, J=6.6Hz, 2), 1.6-1.85 (m, 4), 1.36 (t, J=7.0Hz, 3), 1.28 (s, 6). EI/MS (70eV): 232 (M⁺, 18.2), 217 (base), 203 (17.3), 187 (13.9), 171 (8.4), 159 (3.2), 145 (19.1), 128 (16.4), 115 (15.3), 105 (3.9), 91 (11.9), 77 (5.11), 51 (3.6), 43 (6.0), 41 (7.2). IR (neat): 3040, 2960, 2930, 2875, 1720, 1610, 1570, 1460, 1420, 1385, 1365, 1290, 1270, 1235, 1200, 1185, 1170, 1110, 1055, 1020, 915, 770, 730cm⁻¹.

Dimethyl-5,5-dimethyl-3,5,6,7,8,8a-hexahydronaphthalene-1,2-dicarboxylate 104a

According to the general procedure for Diels-Alder reactions, 1.0g (7.3 mmol) of 100a was mixed at room temperature with 1.2g (8.5 mmol) of dimethylacetylene dicarboxylate. An instantaneous exothermic reaction occured; the reaction mixture was then stirred for an additional 1 hour. Chromatography of the mixture on a column of silica gel (50g, 60-230 mesh, 40 mm OD; 20 mL fractions). Fractions 5 to 12 gave 1.93g of 104a as a colorless oil (95%).

¹H-NMR (250 MHz, CDCl₃): $\delta = 5.36$ (t, J=3Hz, 1), 3.76 (s, 3), 3.72 (s, 3), 3.0 (m, 3), 1.2-2.0 (m, 6), 1.06 (s, 3), 1.03 (s, 3). EI/MS (70eV): 278 (M+, 2.5), 263 (2.3), 244 (base), 229 (46.9), 213 (5.05), 203 (11.4), 186 (19.8), 176 (7.4), 159 (12.3), 143 (13.9), 128 (17.9), 111 (61.0), 105

(22.8), 98 (11.6), 91 (37.9), 77 (24.9), 69 (26.2), 59 (61.7), 55 (45.8), 39 (95.6). IR (neat): 3020, 2950, 2930, 2870, 1725, 1430, 1260, 1100, $1040cm^{-1}$.

<u>Dimethyl-5,5,8a-trimethyl-3,5,6,7,8,8a-hexahydronaphthalene-</u> 1,2-dicarboxylate^{33b,38} 104b

According to the general procedure for the Diels-Alder reaction, 5.0g (33.3 mmol) of diene 100b was heated at 110°C with 5.6g (35 mmol) dimethyl acetylene dicarboxylate for 12 hours. The mixture was cooled to room temperature and filtered through a short column of silica gel (ether:pet. ether; 1:1). Purification of the resulting viscous oil on prep. LC (ether:hexane, 8:92, 250 mL/minute) provided 8.1g of 104b as a colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 5.70$ (dd, J=3.0,6.0Hz, 1), 3.8 (s, 3), 3.73 (s, 3), 3.20 (dd, J=6.0,23Hz, 1), 2.78 (dd, J=3.0,23Hz, 1), 1.2-1.8 (m, 6), 1.43 (s, 3), 1.18 (s, 3), 1.14 (s, 3). EI/MS (70eV): 292 (M+, 11.4), 261 (23.3), 260 (51.8), 245 (9.3), 233 (6.3), 217 (28.5), 210 (9.6), 203 (42.4), 189 (20.7), 178 (40.9), 176 (58.8), 163 (24.4), 149 (42.9), 83 (7.5), 69 (8.8), 55 (4.2), 40 (base). IR (neat): 3000, 2960, 2930, 2860, 1735, 1670, 1640, 1440, 1370, 1340cm⁻¹.

Ethyl-5,5,8a-trimethyl-3,5,6,7,8,8a-hexahydronaphthalene-1-carboxylate 104e

According to the general procedure for Diels-Alder reactions, 1.0g (6.7 mmol) of diene 100b was mixed with 1.5g (15.3 mmol) ethyl propiolate and heated at 120°C for 24 hours. Chromatography of the mixture on a column of silica gel (70g, 230-400 mesh, ether-hexane, 5:95, 20 mL fractions) afforded 0.77g (45.8%) of 104e as a colorless oil and 0.15g (9.1%) of 104f.

104e: ¹H-NMR (250 MHz, CDCl₃): $\delta = 6.64$ (t, J=4.2Hz, 1), 5.60 (t, J=4.1Hz, 1), 4.16 (q, J=7.0Hz, 2), 2.76 (t, J=4.2Hz, 2), 1.46 (s, 3), 1.28 (t, J=7.0Hz, 3), 1.18 (s, 3), 1.11 (s, 3), 0.9-1.8 (m, 6). BI/MS (70eV): 249 (M+, 5.97), 233 (47.5), 217 (15.9), 203 (12.1), 187 (40.5), 171 (19.8), 159 (28.9), 145 (41.3), 135 (25.5), 119 (base), 105 (92.4), 91 (78.0), 83 (8.9), 77 (26.8), 69 (15.6). IR (neat): 3060, 2960, 2920, 2870, 2820, 1715, 1670, 1630, 1460, 1385, 1370, 1230, 1180, 1060, 1025, 980cm-1.

104f: 1H-NMR (250 MHz, CDCl₃): 6 = 6.58 (d, J=3.2Hz, 1), 5.65 (dd, J=5.5,2.5Hz, 1), 4.22 (q, J=7.0Hz, 2), 3.01 (dd, J=5.5,20.8Hz, 1), 2.83 (d t, J=2.5,20.8Hz, 1), 1.3-2.0 (m, 6), 1.31 (t, J=7.0Hz, 3), 1.22 (s, 3), 1.18 (s, 3), 1.13 (s, 3). EI/MS (70eV): 248 (M+, 6.11), 233 (40.0), 217 (21.3), 203 (12.6), 187 (35.4), 171 (20.6), 159 (27.8), 145 (40.9), 129 (23.9), 119 (base), 105 (95.4), 91 (75.1), 77 (23.9), 69 (15.9). IR (neat): 3060, 2960, 2920, 2870, 2710, 1670,

1625, 1460, 1400, 1380, 1250, 1230, 1180, 1060, 1030, $980cm^{-1}$.

Ethyl-5,5,8a-trimethyl-3,5,6,7,8,8a-hexahydronaphthalene-2-carboxylate 104f

According to the general procedure for regio-reversed Diels-Alder reactions, 1.5g (10 mmol) of diene 100b was treated with 1.5g (10.1 mmol) (E)-\$\beta\$-nitroacrylate 108a at 110°C for 12 hours. The crude product was purified by chromatography on a column of silica gel (50g, 30 mm OD, 60-230 mesh, ether-pet. ether, 5:95) gave 2.28g (78%) yield of a mixture of exo- and endo-adducts. The adducts were treated with 1.7g of (DBU) in 50 mL benzene and the mixture was heated under reflux for 8 hours. Usual workup and chromatography of the residue over silica gel (65g, 40 mm OD, ether-Pet. ether, 2:98) provided 1.75g, 92%, of 104f as a colorless liquid.

Methyl-2,5,5-trimethyl-3,5,6,7,8,8a-hexahydronaphthalene-1-carboxylate 104g

To 0.5g (3.6 mmol) of diene 100a was added 0.7g (7.1 mmol) methyl tetrolate, and the mixture was heated in a sealed stainless steel cuvette at 150°C for 12 hours. The resulting dark oil was purified by chromatography on a column of silica gel (60g, 40 mm OD, ether-pet. ether, 3:97) to give 0.495g of 104g (58%) as a colorless oil and 0.055g of 104h (6.4%).

104g: ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.33$ (t, J=3.4Hz, 1), 3.67 (s, 3), 2.0-3.2 (m, 3), 1.79 (s, 3), 0.99 (s, 6), 1.0-2.0 (m, 6). BI/MS (70eV): 234 (M+, 25.7), 219 (34.5), 203 (9), 187 (15.1), 175 (12.7), 159 (26.5), 145 (17.2), 131 (21.2), 119 (34.1), 105 (base), 91 (40.2), 77 (19.1), 59 (21.7). IR (neat): 2950, 2930, 2860, 1720, 1685, 1600, 1435, 1380, 1360, 1325, 1270, 1230, 1150, 1100, 1050, 870cm⁻¹.

Ethyl-1,5,5-trimethyl-3,5,6,7,8,8a-hexahydronaphthalene-2-carboxylate 104i

According to the general procedure for regio-reversed Diels-Alder reactions, 0.6g (4.4 mmol) of 100 and 0.7g (4.9 mmol) of ethyl-\$-nitro crotonate reacted with 0.7g (4.9) mmol) 108b · in 30 mL of benzene at room temperature for 12 hours. The usual workup provided 0.93g (74%) of a yellow liquid of the nitro adducts. To 0.75g of the adducts was added 0.76g of DBU (.H, l hr., RT) after the usual workup, and purification of the residue by chromatography on a column of silica gel (30g, 30 mm OD, ether-pet. ether, 3:97) provided 0.57g (90% yield) of 104i. 1H-NMR (250 MHz, CDCl₃): $\delta = 5.38$ (br t, J=3.4Hz, 1), 4.11 (q, J=7.3Hz, 2), 2.7-2.89 (m, 3), 1.95 (br s, 3), 1.21 (t, J=7.3Hz, 3), 1.0 (s, 3), 0.97 (s, 3), 0.9-1.7 (m, 6). BI/MS (70eV): 248 (M^+, S) 4.3), 175 (82.4), 159 (28.4), 133 (19.9), 119 (37.4), 105 (base), 91 (72.4). IR (neat): 3060, 2960, 2940, 2870, 1735,

1540, 1460, 1385, 1375, 1350, 1220, 1175, 1150, 1100, 1030, 860, 830cm⁻¹.

General Procedure for m-Chloroperbenzoic Acid (MCPBA) Epoxidation

Ethyl-5,5-dimethyl-4-\$,4a-\$-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-1-carboxylate 110c and 4\alpha-4a,\alpha-epoxy
109c

To a solution of 0.5g (2.1 mmol) of 104c in 20 mL dry CH2Cl2 at 0°C (ice water bath) was added a solution of 6.89g (85%, 4.3 mmol) of m-chloroperbenzoic acid (MCPBA) in 20 mL of dry CH2Cl2 over a period of 1 hour. After stirring at 0°C for an additional l hour, a white precipitate was formed. The reaction was quenched with 10% aq. Na2S2O3 (20 mL), then the mixture was cast into ether - 10% aq., Na₂S₂O₃ (100 mL each). The organic layer was separated, washed with saturated aq. NaHCO3, water and brine (100 mL each), and dried (Na₂SO₄). Concentration in vacuo provided 0.43g (81%) of a mixture of 109c and 110c. Purification of the mixture on a column of silica gel (60g, 40 mm OD, ether-hexane, 5:95) to provide 0.387 (73%) of 110c as a colorless oil, which solidified upon cooling (colorless crystals), m.p. 52°C. Further elution afforded 0.043g (8.1% yield) of 109c as a white solid, m.p. $45-47^{\circ}$ C. 110c: 1 H-NMR (250 MHz, CDCl₃): $\delta = 6.67$ (br d, J=20Hz, 1), 4.2 (m, 2), 3.32 (br s, 1), 3.22 (br d, J=12.2Hz, 1), 2.73 (dt, J=6.1, 1.5Hz, 1),

2.10 (dt, J=12.2,1.5Hz, 1), 2.59 (dd, J=20,1.5Hz, 1), 1.4-1.8 (m, 6), 1.28 (t, J=7.2Hz, 3), 1.124 (s, 3), 0.81 (s, 3). $^{13}C-NMR$ (6.9 MHz, CDCl₃): $\delta = 166.4$, 132.5, 132.2, 66.3, 60.4, 54.5, 40.4, 34.6, 33.2, 27.1, 25.3, 22.1, 21.5, 14.2. EI/MS (70eV): 250 (M⁺, 88.1), 235 (10.1), 222 (35.6), 217 (9.4), 205 (58.5), 189 (24.6), 179 (33.4), 177 (23.5), 171(17.0), 161 (38.6), 154 (46.5), 149 (61.7), 139 (base). IR (neat): 2980, 2860, 1720, 1660, 1470, 1390, 1372, 1305, 1270, 1250, 1100, 1050, 940, 900, 765cm⁻¹. 109c: ¹H-NMR $(250 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 6.47 \text{ (m, 1)}, 4.21 \text{ (q, J=7.2Hz, 2)},$ 3.33 (br s, 1), 3.01 (dt, J=3,12Hz, 1), 2.75 (dm, J=20Hz, 1), 2.52 (ddd, J=3,1.5,20Hz, 1), 1.3-2.2 (m, 6), 1.25 (t, J=7.2Hz, 3), 1.15 (s, 3), 0.78 (s, 3). $^{13}C-NMR$ (68.9 MHz, $CDCl_3$): $\delta = 167.3$, 131.84, 131.37, 66.23, 50.24, 53.77, 37.80, 34.66, 32.72, 27.51, 26.98, 24.04, 22.27, 14.21. BI/MS (70eV): 250 (M+, 55.7), 235 (8.6), 222 (36.1), 217 (15.6), 205 (81.0), 189 (39.6), 179 (51), 171 (21.9), 161(60.6), 154 (52.9), 69 (34.5), 55 (25.4), 41 (27.8). IR (neat): 2970, 2930, 2870, 1740, 1695, 1440, 1390, 1365, 1280, 1260, 1210, 1120, 1100, 1070, $810cm^{-1}$.

A General Procedure for N-Bromosuccinimide Epoxidation in Aqueous t-Butanol

Ethyl-5,5-dimethyl-4-α,4a-α-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-1-carboxylate 109c

To 1.5g (6.4 mmol) of 104c in 30 mL of a mixture of tbutanol-water (2:1) at room temperature was added 1.95g (11.0 mmol) of N-bromosuccinimide (NBS). The mixture was stirred at room temperature for 1 hour, and then was diluted with water (100 mL). The solution was extracted ether (1x 00 mL); the combined organic phases were washed with saturated aq. NaHCO3 and brine (50 mL each) and dried (Na2SO4). Concentration in vacuo gave 1.5g (94%) of 109c as a colorless oil which solidified upon cooling.

Methyl-2,5,5-trimethyl-4β,4aβ-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-1-carboxylate 110g and 4α,4aα epoxy 109g

According to the general procedure for epoxidation with MCPBA, 0.25g (1.06 mmol) of 104g were treated with a solution of 0.33g (1.5 mmol) MCPBA, 85%. The usual workup and chromatography of the crude product on a column of silica gel provided 0.178g (68%) of 110g and 0.022g (8.5%) of 109g.

110g: ¹H-NMR (250 MHz, CDCl₃): $\delta = 3.71$ (s, 3), 3.28 (d, J=1Hz, 1), 2.6 (br s, 2), 2.48 (m, 2), 1.97 (s, 3), 1.2-2.0 (m, 6), 1.59 (s, 3), 1.15 (s, 3), 0.79 (s, 3). BI/MS (70eV): 250 (M⁺, 7.3), 235 (6.7), 219 (8.8), 207 (11.4), 185 (5.3), 176 (16.3), 163 (13.7), 157 (6.0), 91 (66.2), 77 (60.2), 69 (51.2), 55 (57.6), 41 (base). IR (neat): 2960, 2930, 1720, 1700, 1685, 1435, 1390, 1365, 1240, 1070cm⁻¹. 109g: ¹H-NMR (250 MHz, CDCl₃): $\delta = 3.73$ (s, 3), 3.27 (br s, 1), 2.975 (dm, J=12.3Hz, 1), 2.61 (d, J=19.5Hz, 1), 2.53 (d, J=19.5Hz, 1), 1.22-2.2 (m, 6), 1.70 (br s, 3), 1.11 (s, 3),

0.78 (s, 3). BI/MS (70eV): 250 (M+, 11.51), 235 (15.0), 232 (6.1), 221 96.24), 219 (18.5), 191 (11.8), 176 (43.6), 163 (28.6), 153 (32.7), 147 (32.0), 133 (21.2), 121 (39.0), 117 (10.8), 103 (31.8), 91 (62.4), 69 (58.7), 41 (base). IR (neat): 2960, 2930, 2860, 1720, 1700, 1685, 1430, 1380, 1365, 1240, 1020cm⁻¹.

Dimethyl-5,5-dimethyl-4β-4aβ-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-1,2-dicarboxylate 109a and dimethyl5,5-dimethyl-4α-4aα-epoxy-octahydronaphthalene-1,2dicarboxylate 110a

According to the general procedure for epoxidation with MCPBA, 7.0g (23.8 mmol) 104a was epoxidized with MCPBA (7.0g, 34.5 mmol, 85%) affording 6.73g (95%) of a mixture of epoxides 109a and 110a in a ratio of 45:55. Fractional crystallization from ether: hexane (3:7) gave 3.77g (52%) of 110 as white crystals, m.p. 74-76°C, and 3.03g of 109a (43%) as white crystals, m.p. 112-113°C.

110a: ¹H-NMR (250 MHz, CDCl₃): 6 = 3.74 (s, 3), 3.71 (s, 3),
3.33 (br dd, J=19.0,2.1Hz, 1), 2.12 (dt, J=13.7,2.5Hz, 1),
1.61 (m, 3), 1.1-1.5 (m, 5), 1.08 (s, 3), 0.80 (s, 3).

EI/MS (70eV): 294 (M+, 1.5), 279 (0.7), 263 (26.5), 234

(51.7), 219 (36.4), 202 (23.0), 191 (30.0), 175 (20.8), 165

(base). IR (neat): 1735, 1660, 1290, 1270, 1200, 1090,
1070, 1040, 940, 885, 870, 810, 785, 755cm-¹.

109a: ${}^{1}H-NMR$ (250 MHz, CDCl₃): $\delta = 3.77$ (s, 3), 3.70 (s, 3), 3.35 (t, J=1.5Hz, 1), 3.08 (dm, J=19.2Hz, 1), 3.05 (m, 1),

2.52 (dm, J=19.2Hz, 1), 1.2-1.8 (m, 6), 1.11 (s, 3), 0.8 (s, 3). BI/MS (70eV): 294 (M+, 4.5), 279 (7.5), 263 (21.7), 247 (13.2), 234 (51.5), 219 (27.9), 202 (17.3), 191 (21.9), 165 (base). IR (neat): 1730, 1720, 1650, 1260, 1090, 1070, 970, 955, 830, 760, 720cm⁻¹.

Ethyl-5,5-dimethyl-4α,4a-α-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-2-carboxylate 109d and 4β,4a-β-epoxy 110d

According to the general procedure for epoxidation with NBS in aq. t-butanol, 0.2g (0.85 mmol) of 104d was treated with 0.23g (1.28 mmol) of NBS at room temperature to provide 0.11g~(52%) of 109d and 0.0195g, 9%, of 110d after purification by chromatography on a column of silica gel 30 mm OD, 230-400 mesh, ether-pet. ether, 2:98). (30g, **109d**: 1 H-NMR (250 MHz, CDCl₃): $\delta = 6.66$ (dd, J=6.1,3.0Hz, 1), 4.2 (m, 2), 3.34 (br d, J-1.5Hz, 1), 2.93 (dt, J=18.5, 1.5Hz, 1), 2.79 (m, 1), 2.46 (ddd, J=18.5, 1.5, 3.0Hz,1), 1.92 (m, 1), 1.3-1.7 (m, 6), 1.20 (t, J=7.2Hz, 3), 1.0 (s, 3), 0.74 (s, 3). KI/MS (70eV): 250 (M+, 26.6), 217 (48.4), 177 (19.5), 161 (80.5), 147 (39.1), 133 (25.0), 119 (46.1), 109 (63.3), 105 (63.3), 105 (64.1), 91 (base). IR (neat): 2960, 2930, 2850, 2840, 1710, 1660, 1460, 1390, 1370, 1300, 1250, 1080, 1010, 895, 780, $740 cm^{-1}$. <u>110d</u>: ${}^{1}H$ -NMR (250 MHz, CDCl₃): $\delta = 6.45$ (t, J=3.3Hz, 1), 4.1 (q, J=7.2Hz, 2), 3.32 (br s, 1), 2.93 (dt, J=18.5, 0.5Hz, 1),2.73 (dm, J=18.5Hz, 1), 2.39 (dm, J=18.5Hz, 1), 1.25-1.8 (m, J=18.5Hz, 1), 1.

1), 1.22 (t, J=7.2Hz, 3), 1.08 (s, 3), 0.78 (s, 3). EI/MS (70eV): 250 (M+, 10.0), 235 (13.7), 221 (6.6), 204 (52.8), 189 (23.1), 176 (17.2), 161 (57.4), 147 (26.9), 133 (33.3), 123 (20.2), 107 (35.4), 96 (base). IR (CCl₄): 2960, 2930, 2840, 1720, 1660, 1450, 1390, 1370, 1310, 1080, 1000, 895, 780cm⁻¹.

Rthyl-5,5-dimethyl-4 & 4a- & epoxy-3,4,4a,5,6,7,8,8a-oxtahydronaphthalene-2-carboxylate 110d

According to the general procedure for epoxidation with MCPBA, treatment of 0.2g (0.8 mmol) of 104d with 0.2g (0.95 mmol, 85%) of MCPBA at 0°C provided, after the usual workup and chromatography on a column of silica gel (30g, 30 mm OD, 230-400 mesh, ether-pet. ether, 2:98), 0.1lg (51%) of 110d as a colorless oil and 0.055g (26%) of 109d as a colorless oil.

Ethyl-5,5,8a-trimethyl-4α,4a-α-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-1-carboxylate 109e

According to the general procedure for epoxidation with MCPBA, 0.14g (0.56 mmol) of 104e was treated with 0.17g (0.84 mmol) of MCPBA at 0°C. After the usual workup, purification by chromatography on a column of silica gel (30g, 30 mm OD, 230-400 mesh, ether-pet. ether, 5:95) gave 0.12g (81%) of 109e.

¹ H-NMR (250 MHz, CDCl₃): $\delta = 6.24$ (dt, J=8.3,2.0Hz, 1), 4.22 (q, J=7.0Hz, 2), 3.25 (br s, 1), 2.3-2.8 (m, 3), 1.46 (s,

3), 1.26 (t, J=7.0Hz, 3), 1.21 (s, 3), 0.81 (s, 3). EI/MS (70eV): 264 (M+, 2.5), 249 (3.7), 235 (10.0), 219 (10.2), 203 (8.1), 191 (8,7), 175 (14.9), 163 (30.8), 147 (205), 133 (15.7), 123 (33.4), 107 (34.4), 91 (45.6), 81 (45.1), 69 (53.3), 55 (57.9), 41 (base). IR (neat): 2980, 2930, 2880, 1715, 1465, 1390, 1375, 1370, 1240, 1230, 1190, 1075, 1065, 1025, 975, 900cm⁻¹.

Ethyl-5,5,8a-trimethyl-4α,4a-α-epoxy-3,4,4a,5,6,7,8,8aoctahydronaphthalene-2-carboxylate 109f

According to the general procedure for epoxidation with MCPBA, treatment of 0.25g (1 mmol) of 104f with 0136g (1.5 mmol, 85%) of MCPBA provided, after chromatography on a column of silica gel (35g, 30 mm OD, 230-400 mesh, etherpet. ether, 20:80) 0.24g (90%) of 109f as a colorless viscous oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 6.46$ (d, J=3.3Hz, 1), 4.16 (q, J=7.2Hz, 2), 3.37 (m, 1), 3.31 (dd, J=18.7,3.3Hz, 1), 2.45 (dm, J=18.7, 1), 1.27 (t, J=7.2Hz, 3), 1.21 (s, 3), 1.14 (s, 3), 0.8 (s, 3), 1.1-1.8 (m, 6). BI/MS (70eV): 264 (M⁺, 4.5), 249 (13.4), 235 (31.8), 218 (22.3), 203 (19.4), 189 (20.7), 175 (24.9), 266 (21.3), 161 (47.9), 147 (28.5), 133 (20.0), 123 (84.4), 107 (37.1), 91 (46.6), 79 (35.3), 69 (50.4), 55 (53.9), 41 (base). IR (neat): 2980, 2930, 2870, 2850, 1710, 1610, 1465, 1390, 1375, 1300, 1250, 1180, 1080, 1005, 975, 780, 740cm⁻¹.

A General Procedure for Epoxide Rearrangement with BF₂·Et₂O Rearrangement of dimethyl-5,5-dimethyl-4\$,4a-\$-epoxy 3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 110a with BF₃·Et₂O

To a solution of 0.1g (0.42 mmol) of 110a in 20 mL of dry methylene chloride, cooled to O°C (ice water), was added 0.06g (0.42 mmol) BF3·Rt2O in 5 mL CH2Cl2. The reaction mixture was allowed to stir for 10 minutes at 0°C under argon then was quenched with 5 mL of saturated aqueous NaHCO3. The reaction mixture was cast into ether, saturated aq. NaHCO3 (50 mL each), and the organic layer was separated (Na2SO4). Concentration in chromatography of the residue on a column of silica gel (30g, 30 mm 0D, 60-230 mesh, ether-pet. ether, 1:1) provided 0.092g (92%) of oxetane 117a. 1 H-NMR (250 MHz, CDCl₃): $\delta = 4.76$ (br t, J=2Hz, 1), 3.82 (s, 3), 3.76 (s, 3), 2.80 (br t, J=8.3Hz, 1), 2.76 (dd, J=18.8, 2.3Hz, 1), 2.26 (dd, J=18.8, 4.2Hz, 1), 2.12 (m, 1), 1.90 (t, J=8.3Hz, 2), 1.55 (m, 3), 1.44 (s, 3), 1.22 (s, 3). ¹³C-NMR $(68.9 \text{ MHz}, \text{CDCl}_3)$: $\delta = 169.4(s), 167.6(s), 142.2(s),$ 83.7(s), 81.8(d), 53.1(s), 52.2(q), 52.1(q), 129.0(s). 41.7(d), 33.7(t), 32.7(t), 30.3(t), 26.5(q), 24.5(q), 23.9(t). EI/MS (70eV): 295 (M+1, 0.6), 263 (5.9), 236 (1.4), 204 (m-60,55.4), 176 (base), 145 (32.4), 117 (42.9), 105 (50.8), 91 (31.7). IR (neat): 2945, 2860, 1720(br),

1645, 1430, 1375, 1360, 1260(br), 1190, 1105, 1070, 855, 830, 725cm⁻¹.

Rearrangement of ethyl-5,5-dimethyl-4\$,4a-\$-epoxy-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate 110c with BF3 · Et 20

To 0.5g (2 mmol) of epoxide 110c was added 0.3lg (2.2 mmol) BF₃ Et₂O at 0°C according to the general procedure for epoxide rearrangement. The usual workup and purification by chromatography on a column of silica gel (60g, 40 mm OD, 230-400 mesh, ether-pet. ether, 3:7) provided 0.4lg (82%) of oxetane 117c as a colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 7.03$ (dm, J=7.2Hz, 1), 4.72 (br s, 1), 4.24 (q, J=6.25Hz, 2), 3.02 (br t, J=9.0Hz, 1), 2.52 (ddd, J=19.5,7.2,1.7Hz, 1), 2.2 (br d, J=19.5Hz, 1), 2.08 (m, 1), 1.43 (s, 3), 1.5-2.0 (5), 1.12 (s, 3). ¹³C-NMR (68.9 MHz, CDCl₃): $\delta = 166.7$, 135.5, 135.3, 83.9, 82.2, 60.4, 53.1, 38.2, 34.2, 38.4, 30.4, 26.7, 24.4, 23.9, 14.2. EI/MS (70eV): 250 (M+, 2.8), 233 (6.3), 217 (2.6), 205 (8.1), 192 (24.2), 76 (3.4), 163 (20.4), 147 (12.3), 133 (14.22), 119 (93.2), 105 (21.3), 91 (base). IR (neat): 2950, 2850, 1720, 1650, 1460, 1385, 1370, 1260, 1205, 1105, 1080, 950, 915cm-1.

Rearrangement of Methyl-2,5,5-trimethyl-4\$,4a-\$-epoxy-3,4,5,6,7,8,8a-oxtahydronaphthalene-1-carboxylate 110g with BF3 · Et 20

To 0.15g (0.6 mmol) of the \$\beta\$-epoxide 110g was added 0.128g (0.9 mmol) BF3 Et20 at 0°C according to the general procedure for epoxide rearrangement. The usual workup and purification by chromatography on a column of silica gel (30g, 30 mm OD, 230-400 mesh, ether-pet. ether, 1:1) provided 0.122g (81%) of oxetane 117g as a colorless oil. \$\begin{align*} 1+-NMR (250 MHz, CDCl3): & = 4.66 (t, J=2.5Hz, 1), 3.78 (s, 3), 2.80 (t, J=9.2Hz, 1), 2.23 (m, 2), 2.14 (s, 3), 1.80 (t, J=7.5Hz, 2), 1.40 (s, 3), 1.17 (t, J=7.5Hz, 2), 1.14 (s, 3), 0.9-1.2 (m, 2). EI/MS (70eV): 250 (M+, 2.9), 219 (7.5), 192 (39.4), 177 (50.4), 160 (15.2), 133 (89.9), 117 (23.1), 105 (98.4), 91 (40.9), 79 (26.5), 59 (36.6), 43 (base). IR (neat): 2960, 2930, 2860, 1720, 1460, 1390, 1370, 1260, 1200, 1140, 1100, 1030, 975cm-1.

Rearrangement of Ethyl-5,5-dimethyl-4\$,4a-\$-epoxy-3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylate 110d with BF3 · Et20

To 0.15g~(0.6~mmol) of epoxide 110d was added 0.11g~(0.75~mmol) of BF₃ Et₂O at O°C according to the general procedure for epoxide rearrangement. The usual workup and purification by chromatography on a column of silica gel

(30g, 30 mm OD, 230-400 mesh, ether-pet. ether, 1:1) provided 0.13g (87%) of oxetane 117d.

1H-NMR (250 MHz, CDCl₃): $\delta = 7.40$ (dd, 7.2,3.0Hz,1), 4.75 (m, 1), 4.18 (q, J=7.2Hz, 2), 2.82 (dd, J=18.75,1.0Hz, 1), 2.65 (dd, J=7.1,1.0Hz, 1), 2.14 (dt, J=18.75,4.0Hz, 1), 1.5-2.1 (m, 6), 1.39 (s, 3), 1.30 (t, J=7.7Hz, 3), 1.125 (s, 3). BI/MS (70eV): 250 (0.7), 217 (0.34), 205 (1.5), 192 (9.3), 163 (10.0), 119 (52.0), 91 (base). IR (neat): 3030, 2960, 2860, 1715, 1450, 1385, 1360, 1250cm⁻¹.

Rearrangement of Dimethyl-5,5-dimethyl-4α,4α-α-epoxy3,4,4α,5,6,7,8,8α-octahydronaphthalene-1,2-dicarboxylate 109α

To 0.1g (0.34 mmol) of epoxide 109a was added 0.059g (0.42 mmol) BF₃ Et₂O according to the general procedure for epoxide rearrangement. The usual workup and purification by chromatography on a column of silica gel (30g, 30 mm OD, 230-400 mesh, ether-pet. ether, 1:1) gave 0.053g (53%) of oxetane 117a, 0.030g (30%) of dimethyl-7β-hydroxy-7α,β-isopropenyl-2,3,3a,6,7,7a-hexahydro-indene-4,5-dicarboxylate 123a and 0.008g (8%) of dimethyl-7α-hydroxy-7a-isopropenyl-2,3,3a,6,7,7a-hexahydroidene-4,5-dicarboxylate 124a.

123a: ¹H-NMR (250 MHz, CDCl₃): δ = 5.05 (m, 1), 4.84 (s, 1), 3.77 (s, 3), 3.74 (s, 3), 3.85 (m, 1), 3.06 (t, J=8.2Hz, 1), 2.72 (dd, J=4.0,16.5Hz, 1), 2.29 (ddd, J=2.0,8.2,16.5Hz, 1), 1.84 (br s, 3), 1.4-2.0 (m, 7). EI/MS (70eV): 276 (M+, H₂O,

2.1), 262 (13.9), 244 (11.8), 234 (43.8), 223 (23.5), 205 (14.9), 159 (13.2), 149 (base). IR (neat): 3600, 3030, 2960, 2930, 2860, 1725, 1600, 1440, 1340, 1250, 1170, 1150, 1100, 1050, 980cm⁻¹.

124a: ¹H-NMR (250 MHz, CDCl₃): δ = 5.02 (br s, 1), 4.94 (br s, 1), 4.30 (m, 1), 3.80 (s, 3), 3.75 (s, 3), 3.0 (m, 1), 2.63 (ddd, J=18.5,4.0,1.5Hz, 1), 2.45 (ddd, J=18.5,6.0,1.5Hz, 1), 1.80 (s, 3), 1.4-1.8 (m, 7). EI/MS (70eV): 294 (1.7), 276 (5.2), 261 (3.7), 245 (21.4), 237 (10.7), 221 (13.7), 213 (24.9), 201 (9.0), 189 (14.1), 161 (37.3), 145 (13.8), 123 (80.2), 105 (30.8), 91 (43.9), 43 (base). IR (neat): 3600, 2960, 2830, 1735, 1650, 1600, 1460, 1330, 1250, 1200, 1150, 1100, 1035, 980cm⁻¹.

Rearrangement of Ethyl-4,4a-dimethyl-4α,4a-α-epoxy3,4,4a,5,6,7,8,8a-octahydronaphthalene 109c with BF₃·Et₂O

To 0.1g (0.40 mmol) of the α -epoxide 109c was added 0.07g (0.5 mmol) of BF₃·Et₂O according to the general procedure for epoxide rearrangements. The usual workup and purification by HPLC (Perkin Elmer Series 211 equipped with a Waters Radial Compression Unit, 10u silica gel cartridge, and a Perkin Elmer 7500 Variable Wavelength UV detector, nm, eluted with ether-hexane, 1:4, 4 mL/min) gave 0.060g (60%) of oxetane 117c and 0.030g (30%) of the \$\mathbf{p}\$-alcohol 123c.

117c: \(^1\mathbf{H}\-\text{-NMR}\) (250 MHz, CDCl₃): \(^5 = 6.79\) (t, J=4.13Hz, 1), 5.03 (t, J=1.2Hz, 1), 4.83 (br s, 1), 4.21 (m, 2), 3.82 (dd, J=4.9,8.0Hz, 1), 3.09 (t, J=18.3Hz, 1), 2.50 (dt,

J=19.4,4.9Hz, 1), 1.05-1.35 (m, 3), 1.83 (br s, 3), 1.30 (t, J=7.2Hz, 3), 1.4-1.7 (m, 5). EI/MS (70eV): 250 (M⁺, 1.5), 232 (10.0), 204 (30.6), 192 (32.7), 176 (19.7), 159 (35.8), 147 (29.4), 133 (60.4), 119 (67.5), 105 (43.5), 91 (79.6), 85 (base). IR (neat): 3450, 2950, 2860, 1710, 1650, 1450, 1375, 1240, 1200, 1100, 1060, 960, 900, 740cm⁻¹.

123c: 1H-NMR (250 MHz, CDCl₃): $\delta = 6.78$ (t, J=4.3Hz, 1), 5.03 (t, J=1.2Hz, 1), 4.82 (br s, 1), 4.21 (m, 2), 3.82 (dd, J=4.9,7.9Hz, 1), 3.09 (t, J=8.3Hz, 1), 2.50 (dt, J=19.2,4.9Hz, 1), 1.82 (br s, 3), 1.4-1.75 (m, 5), 1.05-1.35 (m, 3), 1.29 (t, J=7.02Hz, 3). EI/MS (70eV): 250 (M+, 13.5), 232 (10.0), 204 (30.6), 192 (32.7), 176 (19.7), 159 (35.2), 147 (29.4), 133 (60.4), 119 (67.5), 105 (43.5), 91 (76.6), 85 (base). IR (neat): 3450, 2950, 2850, 1710, 1650, 1450, 1375, 1240, 1200, 1100, 1060, 960, 900, 740cm-1.

Dimethyl-2, 3, 3a, 6-tetrahdro-indene-4, 5-dicarboxylate 119

According to the general procedure for Diels-Alder reactions, 0.5g (5.3 mmol) of l-vinylcyclopentene 118 was mixed with 1.5g (10.5 mmol) of dimethylacetylene dicarboxylate and heated at 110°C for 24 hours. After cooling to room temperature and purification by chromatography on a column of silica gel (40g, 40 mm OD, 60-230 mesh, ether-pet. ether, 1:4) gave 0.79g (63%) of 119 as a colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 5.46$ (br t, J=2.2Hz, 1), 3.79 (s, 3), 3.75 (s, 3), 3.0 (m, 3), 2.32 (m, 2), 2.01 (m, 2),

1.4-1.7 (2). EI/MS (70eV): 236 (M+, 0.2), 204 (45.1), 176 (base), 145 (43.8), 117 (70.4), 105 (72.9), 91 (35.9). IR (neat): 3040, 2960, 2870, 1725, 1650, 1590, 1445, 1265, 1040cm⁻¹.

Rearrangement of Methyl-2,5,5-trimethyl-4α,4α-α-epoxy3,4,4α,5,6,7,8,8α-octahydronaphthalene-1-carboxylate 109α

To 0.05g (0.2 mmol) of epoxide 109g was added 0.057g(0.40 mmol) of BF3 · Et2O according to the general procedure for epoxide rearrangements. The usual workup and purification by chromatography on HPLC (15:85, ether:hexane, 4 mL/min) provided 0.028g (56%) oxetane 117g, 0.011g (22%) β -alcohol 123g and 0.005g (10%) of α -alcohol 124g. <u>123g</u>: ${}^{1}H$ -NMR (250 MHz, CDCl₃): $\delta = 5.01$ (br s, 1), 4.83 (br s, 1), 4.27 (br s, 1), 3.97 (m, 1), 3.74 (s, 3), 3.10 (t, J=8Hz, 1), 2.17 (s, 3), 1.81 (s, 3), 1.1-2.2 (m, 8). EI/MS $(70eV): 250 (M^+, 16.0), 232 (12.1), 227 (6.2), 218 (16.5),$ 207 (25.4), 191 (23.6), 185 (27.3), 173 (27.6), 147 (32.0), 133 (37.7), 119 (31.6), 109 (50.2), 105 (43.8), 79 (42.6), 77 (35.5), 55 (46.8), 41 (base). IR (neat): 3500, 3030, 2980, 2960, 2860, 1720, 1650, 1450, 1320, 1260, $1150cm^{-1}$. α -alcohol 124g: ¹H-NMR (250 MHz, CDCl₃): δ = 4.96 (br s, 1), 4.94 (br s, 1), 3.80 (s, 3), 3.10 (m, 1), 2.4-2.8 (m, 2), 2.20 (s, 3), 1.82 (s, 3), 1.0-2.0 (m, 8). BI/MS (70eV): 250 (2.9), 232 (1.6), 219 (7.5), 192 (39.4), 177 (50.5), 160(15.2), 133 (89.9), 117 (23.11), 105 (98.4), 91 (40.9), 79 (26.5), 59 (36.6), 43 (base). IR (neat): 3500, 3030, 2980, 2960, 2860, 1720, 1650, 1450, 1250, 1150, 1070, 980cm⁻¹.

Rearrangement of Ethyl-5,5-dimethyl-4\alpha,4a-\alpha-epoxy3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylate 109d with BF3 · Et 20

To 0.06g (0.24 mmol) of 109d was added 0.043g (0.3 mmol) BF₃ Et₂O according to the general procedure of epoxide rearrangement. The usual workup and purification by chromatography on HPLC (15:85, ether:hexane, 4 mL/min) provided 0.0131g (52%) of oxetane 117d, 0.017g (27%) of β -alcohol 123d and 0.005g (8%) of α -alcohol 124d.

#-alcohol 123d: 1H-NMR (250 MHz, CDCl₃): $\delta = 6.92$ (m, 1), 5.09 (br s, 1), 4.80 (br s, 1), 4.21 (q, J=7.2Hz, 2), 3.93 (t, J=4.5Hz, 1), 2.95 (m, 1), 2.4-2.8 (3), 1.83 (s, 3), 1.25 (t, J=7.1Hz, 3), 1.05-2.0 (6). EI/MS (70eV): 250 (M+, 9.6), 237 (5.1), 219 (8.9), 205 (14.1), 192 (81.7), 177 (50.6), 163 (47.0), 147 (22.3), 133 (76.3), 119 (base). IR (neat): 3500, 3030, 2960, 2930, 2860, 1725, 1650, 1450, 1360, 1280, 1150, 1100, 920, 840cm⁻¹.

<u>a-alcohol</u> <u>124d</u>: 1 H-NMR (250 MHz, CDCl₃): $\delta = 7.22$ (m, 1), 5.01 (br s, 1), 4.93 (br s, 1), 4.2 (m, 2), 3.90 (dd, J=6.2,9.0Hz, 1), 3.09 (m, 1), 1.82 (s, 3), 1.29 (t, J=7.0Hz, 3), 1.1-1.75 (m, 7). EI/MS (70eV): 250 (M+, 5.9), 237 (3.6), 205 (20.4), 192 (45.7), 163 (42.4), 147 (21.2), 135

(15.5), 119 (base). IR (neat): 3500, 3030, 2960, 2860, 1730, 1650, 1430, 1360, 1280, 1100, 920, 840cm⁻¹.

Treatment of Oxetane 117a with p-Toluenesulfonic acid and Ac2 O

To a solution of 0.05g (0.2 mmol) of oxetane 117a, in 20 mL benzene, was added 0.5 mL acetic anhydride and 0.1g (0.52 mmol) p-toluene sulfonic acid monohydrate. The mixture was heated under reflux for 4 hours, cooled to room temperature and cast into ether saturated aq. NaHCO₃ (100 mL each). The organic phase was separated and washed with water, brine (30 mL each) and dried (Na₂SO₄). Concentration in vacuo and chromatography, a column of silica gel (20g, 20 mm OD, 230-400 mesh, ether-pet. ether, 3:7) gave 0.051g (87%) of 127 as a colorless oil.

127: ¹H-NMR (250 MHz, CDCl₃): δ = 4.97 (dd, J=10,5Hz, 1),
4.86 (br s, 1), 4.70 (br s, 1), 3.71 (s, 3), 3.63 (s, 3),
2.95 (br t, J=8.3Hz, 1), 2.65 (br dd, J=17.5,5Hz, 1), 2.21
(ddd, J=17.5,10,1.67Hz, 1), 1.99 (s, 3), 1.77 (br s, 3),
1.5-2.1 (6). EI/MS (70eV): 302 (M*-HOAc, 1.5), 276 (2.2),
262 (5.1), 244 (6.2), 216 (6.1), 203 (9.4), 187 (5.0), 176
(7.8), 157 (7.12), 145 (7.4), 131 (6.7), 105 (11), 91
(13.2), 43 (base). IR (CCl₄): 2950, 2880, 1740, 1730, 1650,
1430, 1290, 1270, 1100, 1040, 900cm⁻¹.

(15g, 20 mm OD, 230-400 mesh, ether-pet. ether, 1:4) provided 0.023g (76%) of triene 127.

H-NMR (250 MHz, CDCl₃): $\delta = 6.15$ (d, J=8.4Hz, 1), 5.70 (d, J=8.4Hz, 1), 4.77 (br s, 1), 4.70 (br s, 1), 3.82 (s, 3), 3.80 (s, 3), 2.90 (t, J=8.2Hz, 1), 1.88 (br s, 3), 1.2-2.0 (m, 6). EI/MS (70eV): 276 (M+, 1.4), 245 (0.88), 234 (1.18), 204 (62.4), 176 (base), 161 (3.4), 145 (26.0), 131 (3.9), 117 (20.5). IR (neat): 3030, 2960, 2930, 2860, 1720, 1640, 1595, 1580, 1400, 1260, 1080, 1030, 960cm-1.

Dimethyl-7a-8-[2-hydroxy-isopropyl]-2,3,3a,7a-tetrahydro indene-4,5-dicarboxylate 121

To 4.3 mmol of NaOMe, prepared from 0.1g (4.3 mmol) of sodium metal, in methanol (10 mL) was added 0.020g (0.065 mmol) of oxetane 117a in methanol (5 mL) over five minutes. The resulting solution was stirred at room temperature for 4 hours, then cooled to 0°C; 5 mL of water was added slowly, followed by 10 mL of 1N aq. HCl. The methanol was removed off in vacuo and the aqueous layer was extracted with 50 mL of ether. The organic layer was separated and washed with saturated aq. NaHCO3, brine (50 mL each), and dried (Na2SO4). Concentration in vacuo gave a colorless oil which was purified by chromatography on a column of silica gel (15g, 20 mm OD, 230-400 mesh, ether-pet. ether, 30:70) to provide 0.015g (75%) of 121.

Dimethyl-7\$-acetoxy-7a-\$-isopropenyl-2,3,3a,6,7,7a-hexahydroindene-4,5-dicarboxylate 125

To a solution of 0.02g (0.65 mmol) of the β-alcohol 123a in 20 mL benzene was added acetic anhydride (1 mL), pyridine (1 mL) and a few crystals of 4-N,N-dimethyl-aminopyridine (DMAP). The mixture was stirred at room temperature for 8 hours then was quenched with 1N aq. HCl (10 mL). The mixture was cast into ether -1N aq. HCl (50 mL each). The organic layer was separated, washed with water (20 mL), saturated aq. NaHCO3 (50 mL), brine (50 mL) and dried (Na2SO4). Concentration in vacuo and purification by chromatography on a column of silica gel (15g, 20 mm OD, 230-400 mesh, ether-pet. ether, 1:1) provided 0.019g (84%) of β-acetate 125.

Dimethyl-7a-\$-isopropenyl-2,3,3a,7a-tetrahydro indene-4,5-dicarboxylate 127

To a solution of 0.037g (0.11 mmol) of a mixture of the a- and \$\beta\$-acetates 125 and 126 in benzene (20 mL) was added 0.020g (0.178 mmol) of KOBut. The resulting mixture was stirred at room temperature for over night; then cast into ether -1N aq. HCl (50 mL each). The organic layer was separated, washed with saturated aq. NaHCO3, brine (30 mL each), and dried (Na2SO4). Concentration in vacuo and purification by chromatography on a column of silica gel

¹H-NMR (250 MHz, CDCl₃): $\delta = 6.19$ (d, J=10.07Hz, 1), 5.71 (d, J=10.07Hz, 1), 3.80 (s, 3), 3.78 (s, 3), 3.00 (br t, J=8.7Hz, 1), 2.27 (m, 2), 1.51 (m, 5), 1.21 (s, 3), 1.15 (s, 3). EI/MS (70eV): 263 (0.7), 236 (3.6), 204 (11.3), 176 (base). IR (neat): 3520(br), 2950, 2870, 1715(br), 1640, 1595, 2580, 1430, 1260(br), 1080, 1030, 950cm⁻¹.

Dimethyl-2,3-dihdry-indene-4,5-dicarboxylate 120

To a solution of 0.01g (0.037 mmol) of 121 in 15 mL CH₂Cl₂ mixed with 0.3g of celite was added 0.2g (0.9 mmol) of PCC.^{33b} The resulting suspension was stirred at room temperature for 3 hours, then the solids were removed by filtration through a pad of celite which was rinsed with CH₂Cl₂ (20 mL). The solvent was removed in vacuo to provide a yellow residue which was purified by chromatography on a column of silica gel (10g, 10 mm OD, 230-400 mesh, etherpet. ether, 30:70) to provide 0.0062g (78%) of 120. ¹H-NMR (250 MHz, CeDe): δ = 7.64 (d, J=8.3Hz, 1), 6.69 (d, J=8.3Hz, 1), 3.68 (s, 3), 3.46 (s, 3), 2.82 (t, J=7.3Hz, 2), 2.43 (br t, J=7.3Hz, 2), 1.60 (m, 2). EI/MS (70eV): 234 (M+, 3.1), 203 (43.8), 202 (base), 201 (20.9), 175 (2.8), 187 (11.1), 144 (9.8), 115 (25.1). IR (neat): 3010, 2960, 2900, 2850, 1730, 1600, 1440, 1250, 1120, 1040, 890, 830, 790, 680cm-1.

Dimethyl-2.3-dihydro-indene-4.5-dicarboxylate 120

To a solution of 0.015g (0.064 mmol) of 119 in benzene (20 mL) was added 0.1g (0.36 mmol) of DDQ. The resulting mixture was stirred for 10 hours at room temperature, then filtered through a pad of celite, and the solvent removed in vacuo to give a yellow oil. The crude product was purified by chromatography on a column of silica gel (15g, 20 mm OD, 230-400 mesh, ether-pet. ether, 30:70) to provide 0.012g (81%) of 120.

Rearrangement of dimethyl-5,5,8a-trimethyl-4 &-4a- &-epoxy-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 1

To 0.5g (1.62 mmol) of 1 in CH₂Cl₂ (30 mL) was added 0.35g (2.48 mmol) of BF₃ Et₂O according to the general procedure for epoxide rearrangements. The usual workup and purification by chromatography on a column of silica gel (60g, 40 mm OD, 60-230 mesh, ether-pet. ether, 20:80) gave 0.43g (86%) of 2 as a colorless viscous oil. ¹H-NMR (250 MHz, CDCl₃): δ = 5.76 (m, 1), 3.92 (m, 1), 3.80 (s, 3), 3.75 (s, 3), 2.63 (d, J=4.0Hz, 2), 1.2-2.3 (m, 5), 1.70 (br s, 3), 1.02 (s, 3), 0.95 (s, 3). EI/MS (70eV): 308 (M+, 8.2), 276 (base), 258 (20.4), 244 (71.3), 230 (13.9), 215 (28.2), 199 (34.8), 189 (20.6), 171 (42.2), 156 (26.3), 91 (70.7). IR (CCl₄): 3570, 2970, 2950, 2880, 1740, 1720, 1620, 1430, 1395, 1390, 1290, 1250, 1200, 1100, 1080, 1060, 1030, 875cm-1.

Rearrangement of Ethyl-5,5,8a-trimethyl-4α,4a-α-epoxy-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate 109e

To 0.1g (0.379 mmol) of 109e was added 0.081g 0.568 mmol) of BF₃ Et₂O, according to the general procedure for epoxide rearrangements. The usual workup and purification by chromatography on a column of silica gel (25g, 20 mm OD, 230-400 mesh, ether-pet. ether, 1:1) gave 0.081g (81%) of alcohol 122e as a viscous colorless oil. ¹H-NMR (250 MHz, CDCl₃): $\delta = 6.73$ (t, J=4.0Hz, 1), 5.79 (m, 1), 4.16 (m, 2), 3.84 (m, 1), 2.45 (m, 3), 1.70 (br s, 3), 1.57 (s, 3), 1.29 (t, J=7.0Hz, 3), 1.15 (br s, 3), 0.9-1.3 (m, 4). EI/MS (70eV): 264 (M+, 13.9), 246 (4.7), 231 (14.6), 218 (26.7), 205 (13.0), 190 (13.6), 185 (63.2), 173 (13.9), 157 (20.0), 135 (7.9), 121 (20.9), 105 (33.0), 91 (47.5), 55 (75.1), 43 (base). IR (neat): 3500, 3030, 2960, 1730, 1430, 1260, 1090, 1060cm⁻¹.

Rearrangement of Ethyl-5,5,8a-trimethyl-4 a,4a-a-epoxy-3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylate 109f

To 0.06g (0.227 mmol) of 109f at 0°C was added 0.048g (0.34 mmol) of BF₃ OEt₂ according to the general procedure for epoxide rearrangements. The usual workup and purification by chromatography on a column of silica gel (15g, 20 mm OD, 230-400 mesh, ether-pet. ether, 1:1) provided 0.05g (83%) of 122f.

¹H-NMR (250 MHz, CDCl₃): $\delta = 6.57$ (br s, 1), 5.66 (br s, 1), 4.12 (q, J=7.2Hz, 2), 3.89 (t, J=4.3Hz, 1), 2.2-2.5 (m, 2), 1.65 (br s, 3), 1.23 (t, J=7.2Hz, 3), 1.18 (s, 3), 1.04 (s, 3), 1.1-2.0 (m, 5). EI/MS (70eV): 264 (M+, 17.4), 246 (11.5), 231 (22.7), 218 (23.4), 205 (34.7), 190 (18.6), 185 (base), 173 (42.9), 157 (19.3), 121 (27.6), 91 (53.2). IR (neat): 3600, 3030, 2980, 2960, 2850, 1730, 1650, 1430, 1360, 1250, 1200, 1175, 1100, 1050, 980cm⁻¹.

2,2-Dimethyl-3-hydroxy-3-vinyl-cyclohexanone 130

To a solution of 2.0g (28.6 mmol) 2,2-dimethyl-1,3-cyclohexane dione in dry THF (50 mL), cooled to -78°C (dry ice-iPrOH), was added 34.32 mL of vinyl magnesium bromide in THF (34.32 mmol) over 1 hour. After the addition was complete, the mixture was stirred for an additional 5 minutes at -78°C then carefully quenched with 30 mL of saturated aq. NH4Cl. The mixture was diluted with 60 mL of ether, the organic layer was separated, washed with saturated aq. NaHCO3, water, brine (50 mL each), and dried (MgSO4). Concentration in vacuo gave a colorless liquid that was purified by chromatography on a column of silica gel (120g, 50 mm OD, 60-230 mesh, ether:pet. ether, 1:1) to provide 1.0g (42%) of 130.

¹ H-NMR (250 MHz, CDCl₃): $\delta = 5.98$ (dd, 11.0,17.0Hz, 1), 5.26 (dd, J=11.0,1.2Hz, 1), 5.14 (dd, J=17.0,1.2Hz, 1), 1.65-2.75 (m, 7), 1.09 (s, 3), 1.02 (s, 3). EI/MS (70eV): 168 (M⁺,

17.0), 151 (4.7), 150 (1.8), 140 (1.79), 135 (1.73), 125 (10.3), 107 (4.7), 98 (99.7), 86 (26.8), 83 (82.9), 20 (28.4), 67 (25.4), 55 (base). IR (neat): 3600, 3020, 2985, 2840, 1705, 1460, 1380, 1365, 1315, 1200, 1130, 985, 960, 920, 850, 830, 730cm⁻¹.

6,6-Dimethyl-1-vinyl-5-oxo-cyclohex-1-ene 131

To a solution of 0.5g (2.97 mmol) of 130 in 60 mL benzene was added 0.74g (2.97 mmol) CuSO₄ 5H₂O. The solution heated under reflux with azeotropic removal of water for 3 hours. The mixture was cooled to room temperature and filtered through a short column of silica gel. The filtrate was washed with water (30 mL) and dried (MgSO₄). The solvent was removed by distillation to provide 0.3g (68%) of diene 131 as colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 6.27$ (ddd, J=1.2,10.7,17.1Hz, 1), 5.95 (t, J=4.1Hz, 1), 5.40 (dd, J=1.83,17.1Hz, 1), 5.06 (dd, J=1.83,10.7Hz, 1), 2.54 (m, 2), 2.47 (t, J=4.8Hz, 2), 1.24 (s, 6). EI/MS (70eV): 150 (M+, 21.8), 135 (3.7), 121 (16.1), 108 (30.1), 93 (base), 85 (7.4), 79 (45.6), 39 (77.0). IR (neat): 3020, 2965, 2925, 2875, 1710, 1468, 1445, 1380, 1360cm⁻¹.

Dimethyl-5,5-dimethyl-6-oxo-3,5,6,7,8,8a-hexahydronaphthalene-1,2-dicarboxylate 132

To 0.4g (2.6 mmol) of 130 was added 1.0g (7.0 mmol) of dimethyl acetylenedicarboxylate. The mixture was stirred at

room temperature for 2 hours, or could be heated at 110°C for 15 minutes. The reaction mixture was purified by chromatography on a column of silica gel (50g, 40 mm OD, 60-230 mesh, ether-pet. ether, 1:1) to provide 0.4g (52%) of 132 as a white solid, m.p. 76-77°C. ¹H-NMR (250 MHz, CDC12): a = 5.55 (dd, J=3.36,3.66Hz, 1), 3.79 (s, 3), 3.74 (s, 3), 3.59 (m, 1), 3.07 (dm, J=17.0Hz, 2), 2.74 (m, 1), 2.43 (dm, J=17.0Hz, 1), 2.21 (m, 1), 1.51 (m, 1), 1.31 (s, 3), 1.26 (s, 3). EI/MS (70eV): 292 (M+, 24.9), 260 (44.4), 245 (4.6), 232 (base), 217 (24.2), 205 (89.6), 189 (55.0), 177 (69.6), 163 (20.5), 145 (25.0). IR (neat): 2980, 2945, 2875, 1720, 1680, 1650, 1540, 1435, 1385, 1360, 1260, 1235, 1225, 1105, 1080, 965cm-1.

Dimethyl-5,5-dimethyl-4α,4a-α-epoxy-6-oxo-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 133

To a solution of 0.1g (0.34 mmol) of 132 in 9 mL of mixture of t-BuOH:water (2:1), cooled to 0°C (ice water), was added 0.12g (0.68 mmol) of NBS in one portion. The mixture was stirred for 3 hours at 0°C, then diluted with water (20 mL) and cast into ether (100 mL) and water (30 mL). The organic phase was separated and washed with saturated aq. NaHCO3, water (10 mL each), and dried (MgSO4). Concentration and purification of the residual oil by chromatography on a column of silica gel (25g, 20 mm OD, 230-400 mesh, ether-pet. ether, 7:3) provided 0.014g (13%) of 133 and 0.082g (78%) of 134.

133: 1H-NMR (250 MHz, CDCl₃): δ = 3.78 (s, 3), 3.76 (s, 3), 3.62 (br s, 1), 3.46 (dm, J=9.2Hz, 1), 3.10 (br d, J=9.2Hz, 1), 2.85 (t, J=5.0Hz, 2), 2.81, 1.69 (s, 3), 1.34 (s, 3).

EI/MS (70eV): 308 (M+, 1.7), 276 (16.3), 267 (2.0), 248 (3.0), 235 (base), 217 (8.1), 203 (17.6), 189 (10.9), 177 (45.3), 163 (12.4), 145 (15.3), 159 (6.3), 41 (83). IR (CCl₄): 2980, 2960, 2880, 1720, 1660, 1435, 1380, 1360, 1270, 1250, 1160cm⁻¹.

134: 1H-NMR (250 MHz, CDCl₃): δ = 4.31 (m, 1), 4.83 (s, 3), 3.76 (s, 3), 3.36 (dt, J=19.2,3.97Hz, 1), 2.88 (ddd,

134: TH-NMR (250 MHz, CDC13): 8 = 4.31 (m, 1), 4.83 (s, 3), 3.76 (s, 3), 3.36 (dt, J=19.2,3.97Hz, 1), 2.88 (ddd, J=19.2,1.83,1.53Hz, 1), 2.69 (m, 1), 2.55 (dm, J=13.62Hz, 1), 2.15 (br s, 1), 1.93 (m, 2), 1.58 (s, 3), 1.20 (s, 3). EI/MS (70eV): 277 (M+-OCH3, 31.9), 259 (17.9), 245 (4.4), 235 (12.3), 217 (18.1), 204 (9.9), 189 (8.0), 177 (9.0), 91 (20.3), 59 (43.0), 43 (base). IR (neat): 2980, 2945, 2875, 1720, 1650, 1550, 1445, 1260, 1105, 1080, 1050, 910cm-1.

Dimethyl-5,5-dimethyl-4 & 4a- & -epoxy-6-oxo-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 133

To a solution of 0.04g (0.136 mmol) of 132 in CH₂Cl₂, cooled to 0°C, was added 0.1g (0.5 mmol) of MCPBA in CH₂Cl₂ (5 mL). The mixture was stirred at 0°C for 1.5 hours, then quenched with saturated aq. NaHCO₃ (10 mL) and diluted with 30 mL ether. The organic phase was separated, washed with 10% aq. Na₂S₂O₃, saturated aq. NaHCO₃, water (20 mL each), and dried (MgSO₄). Concentration *in vacuo* provided 0.03g (71%) of 133 as a colorless oil.

Dimethyl-5,5-dimethyl-4 α ,4a- α -epoxy-6 β -hydroxy-

3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 135

To a solution of 0.075g (0.24 mmol) of 134 in methanol (10 mL), cooled to 0°C, was added 0.02g (0.5 mmol) of sodium borohydride in portions over 15 minutes. The mixture was stirred for 1 hour, then quenched by the careful addition of 10 mL of water. The mixture was extracted with CH₂Cl₂ (60 mL), the organic layer was separated and dried (MgSO₄). Concentration in vacuo and purification of the resulting oil by chromatography on a column of silica gel (20g, 20 mm OD, 230-400 mesh, ether) gave 0.067g (89%) of 135 as a colorless oil.

¹H-NMR (250 MHz, CDCl₃): $\delta = 3.78$ (s, 3), 3.72 (s, 3), 3.61 (m, 1), 3.37 (br s, 1), 3.06 (dm, J=19.5Hz, 1), 3.05 (br s, 1), 2.55 (dm, J=19.5Hz, 1), 1.91 (m, 1), 1.3-1.7 (m, 4), 1.05 (s, 3), 0.91 (s, 3). BI/MS (70eV): 310 (M+, 4.9), 292 (0.61), 279 (15.3), 278 (20.0), 260 (12.3), 246 (9.2), 235 (14.9), 217 (14.4), 203 (19.7), 189 (16.5), 179 (22.2), 163 (16.4), 145 (19.6), 119 (21.4), 105 (5.9), 91 (49.5), 77 (40.5), 59 (79.2), 43 (base). IR (CCl₄): 3500, 2940, 1720, 1650, 1430, 1380, 1360, 1260, 1240, 1190, 1060, 940, 890, 870, 825, 805, 760 cm⁻¹.

Dimethyl-5,5-dimethyl-4 β ,4a- β -epoxy-6 β -hydroxy-

3,4,4a,5,6,7,8,8a-octahydronaphthalene-1,2-dicarboxylate 137

To 0.02g (0.065 mmol) of 133 in methanol (10 mL) was added 0.05g (0.13 mmol) of NaBH₄ according to procedure employed in the preparation of 135 to provide 0.015g (75%) of 137.

¹H-NMR (250 MHz, CDCl₃): $\delta = 3.80$ (s, 3), 3.73 (s, 3), 3.55 (m, 1), 3.30 (br s, 1), 3.16 (dm, J=9.5Hz, 1), 3.13 (dm, J=17.0Hz, 1), 2.57 (dm, J=17.0Hz, 1), 2.52 (dm, J=9.5Hz, 1), 1.94 (m, 2), 1.58 (m, 2), 1.16 (s, 3), 0.98 (s, 3). EI/MS (70eV): 279 (M+-OCH₃, 15.6), 278 (13.3), 260 (8.3), 146 (6.4), 232 (13.7), 221 (15.5), 205 (35.5), 191 (30.2), 179 (14.3), 161 (12.9), 145 (17.4), 133 (12.6), 119 (18.3), 105 (25.9), 91 (33.1), 84 (base), 77 (25.6), 67 (19.5), 59 (55.7), 43 (71.3). IR (neat): 3500, 2960, 1720, 1650, 1430, 1380, 1360, 1260, 1190, 1060, 810, 740cm⁻¹.

Rearrangement of 135 with BF3 · Bt20

To 0.008g (0.026 mmol) of 135 was added 1 drop of BF3 Et20, according to the general procedure for epoxide rearrangements. The usual workup and purification by chromatography on a column of silica gel (30g, 30 mm OD, 230-400 mesh, ether:pet. ether, 7:3) provided 0.0074g (93%) of 136.

¹ H-NMR (250 MHz, CDCl₃): $\delta = 7.90$ (d, J=8.5Hz, 1), 7.46 (d, J=8.5Hz, 1), 3.96 (s, 3), 3.88 (s, 3), 3.76 (m, 1), 2.86 (m,

2), 2.0 (m, 2), 1.43 (s, 3), 1.39 (s, 3). EI/MS (70eV): 292 (M+, 4.0), 277 (4.5), 260 (base), 245 (8.9), 227 (17.7), 217 (11.8), 200 (28.3), 185 (9.2), 157 (6.1), 145 (13.8), 129 (15.7), 115 (17.4). IR (neat): 3500, 2980, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1150, 970cm⁻¹.

<u>Dimethyl-5,5-dimethyl-6-oxo-5,6,7,8-tetrahydronaphthalene-</u> 1,2-dicarboxylate 138

To a solution of 0.01g (0.034 mmol) of 132 in dry benzene (20 mL) was added 0.04g (0.176 mmol) of DDQ. The resulting mixture was heated under reflux for 5 hours then cooled to room temperature and filtered through a plug of silica gel, which was rinsed with benzene. Concentration in vacuo provided 0.0095g (95%) of 138.

1H-NMR (250 MHz, CDCl3): $\delta = 7.91$ (d, J=9.1Hz, 1), 7.47 (d, J=8.5, 1), 3.96 (s, 3), 3.90 (s, 3), 3.07 (dd, J=6.4,7.3Hz, 2), 2.68 (dd, J=7.3,6.4Hz, 2), 1.45 (s, 3). EI/MS (70eV): 290 (M+, 1.6), 258 (base), 243 (4.4), 236 (60.2), 215 (73.5), 199 (30.7), 187 (5.0), 172 (11.4), 158 (7.8), 144 (13.8), 128 (30.0), 115 (27.4). IR (neat): 2980, 2960, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1270, 1150,

Dimethyl-5,5-dimethyl-6-\$-hydroxy-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate 136

970cm-1.

2), 2.0 (m, 2), 1.43 (s, 3), 1.39 (s, 3). EI/MS (70eV): 292 (M+, 4.0), 277 (4.5), 260 (base), 245 (8.9), 227 (17.7), 217 (11.8), 200 (28.3), 185 (9.2), 157 (6.1), 145 (13.8), 129 (15.7), 115 (17.4). IR (neat): 3500, 2980, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1150, 970cm⁻¹.

<u>Dimethyl-5,5-dimethyl-6-oxo-5,6,7,8-tetrahydronaphthalene-</u> 1,2-dicarboxylate 138

To a solution of 0.0lg (0.034 mmol) of 132 in dry benzene (20 mL) was added 0.04g (0.176 mmol) of DDQ. The resulting mixture was heated under reflux for 5 hours then cooled to room temperature and filtered through a plug of silica gel, which was rinsed with benzene. Concentration in vacuo provided 0.0095g (95%) of 138.

1H-NMR (250 MHz, CDCl3): $\delta = 7.91$ (d, J=9.1Hz, 1), 7.47 (d, J=8.5, 1), 3.96 (s, 3), 3.90 (s, 3), 3.07 (dd, J=6.4,7.3Hz, 2), 2.68 (dd, J=7.3,6.4Hz, 2), 1.45 (s, 3). EI/MS (70eV):

J=8.5, 1), 3.96 (s, 3), 3.90 (s, 3), 3.07 (dd, J=6.4,7.3Hz, 2), 2.68 (dd, J=7.3,6.4Hz, 2), 1.45 (s, 3). EI/MS (70eV): 290 (M+, 1.6), 258 (base), 243 (4.4), 236 (60.2), 215 (73.5), 199 (30.7), 187 (5.0), 172 (11.4), 158 (7.8), 144 (13.8), 128 (30.0), 115 (27.4). IR (neat): 2980, 2960, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1270, 1150, 970cm⁻¹.

Dimethyl-5,5-dimethyl-6-&-hydroxy-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate 136

2), 2.0 (m, 2), 1.43 (s, 3), 1.39 (s, 3). EI/MS (70eV): 292 (M+, 4.0), 277 (4.5), 260 (base), 245 (8.9), 227 (17.7), 217 (11.8), 200 (28.3), 185 (9.2), 157 (6.1), 145 (13.8), 129 (15.7), 115 (17.4). IR (neat): 3500, 2980, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1150, 970cm-1.

<u>Dimethyl-5,5-dimethyl-6-oxo-5,6,7,8-tetrahydronaphthalene-</u> 1,2-dicarboxylate 138

To a solution of 0.01g (0.034 mmol) of 132 in

benzene (20 mL) was added 0.04g (0.176 mmol) of DDQ. The resulting mixture was heated under reflux for 5 hours then cooled to room temperature and filtered through a plug of silica gel, which was rinsed with benzene. Concentration in vacuo provided 0.0095g (95%) of 138.

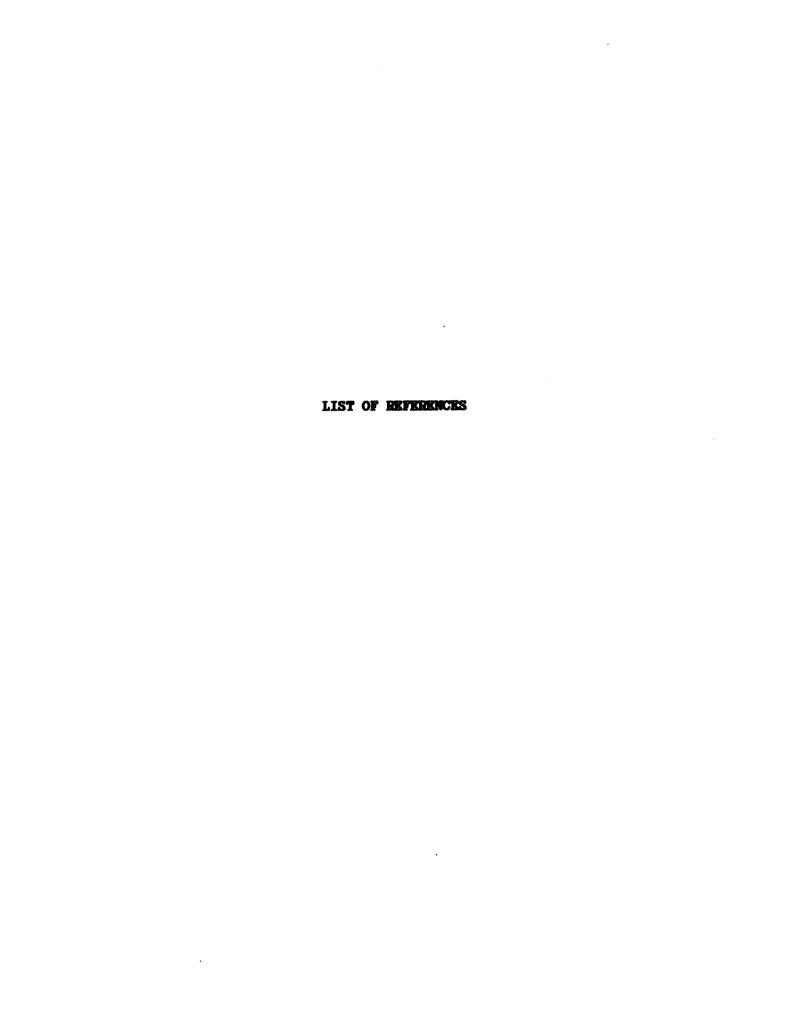
1H-NMR (250 MHz, CDCl₃): $\delta = 7.91$ (d, J=9.1Hz, 1), 7.47 (d, J=8.5, 1), 3.96 (s, 3), 3.90 (s, 3), 3.07 (dd, J=6.4,7.3Hz, 2), 2.68 (dd, J=7.3,6.4Hz, 2), 1.45 (s, 3). EI/MS (70eV): 290 (M+, 1.6), 258 (base), 243 (4.4), 236 (60.2), 215 (73.5), 199 (30.7), 187 (5.0), 172 (11.4), 158 (7.8), 144 (13.8), 128 (30.0), 115 (27.4). IR (neat): 2980, 2960,

Dimethyl-5,5-dimethyl-6-\$-hydroxy-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate 136

970cm-1.

1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1270, 1150,

2), 2.0 (m, 2), 1.43 (s, 3), 1.39 (s, 3). EI/MS (70eV): 292 (M+, 4.0), 277 (4.5), 260 (base), 245 (8.9), 227 (17.7), 217 (11.8), 200 (28.3), 185 (9.2), 157 (6.1), 145 (13.8), 129 (15.7), 115 (17.4). IR (neat): 3500, 2980, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1150, 970cm⁻¹.


<u>Dimethyl-5,5-dimethyl-6-oxo-5,6,7,8-tetrahydronaphthalene-1,2-dicarboxylate 138</u>

To a solution of 0.01g (0.034 mmol) of 132 in dry benzene (20 mL) was added 0.04g (0.176 mmol) of DDQ. The resulting mixture was heated under reflux for 5 hours then cooled to room temperature and filtered through a plug of silica gel, which was rinsed with benzene. Concentration in vacuo provided 0.0095g (95%) of 138.

¹H-NMR (250 MHz, CDCl₃): $\delta = 7.91$ (d, J=9.1Hz, 1), 7.47 (d, J=8.5, 1), 3.96 (s, 3), 3.90 (s, 3), 3.07 (dd, J=6.4,7.3Hz, 2), 2.68 (dd, J=7.3,6.4Hz, 2), 1.45 (s, 3). BI/MS (70eV): 290 (M⁺, 1.6), 258 (base), 243 (4.4), 236 (60.2), 215 (73.5), 199 (30.7), 187 (5.0), 172 (11.4), 158 (7.8), 144 (13.8), 128 (30.0), 115 (27.4). IR (neat): 2980, 2960, 1740, 1720, 1715, 1600, 1435, 1380, 1360, 1300, 1270, 1150, 970cm⁻¹.

<u>Dimethyl-5,5-dimethyl-6-\$-hydroxy-5,6,7,8-tetrahydronaph-</u> thalene-1,2-dicarboxylate 136

(0.13 mmol) of NaBH₄. The mixture was stirred for 1 hour at 0° C, then quenched with saturated aq. NaHCO₃ (5 mL). The mixture was cast into ether (20 mL), the organic phase was separated, washed with H₂O (5 mL) and dried (MgSO₄). Concentration *in vacuo* provided 0.0045g (89%) of **136**.

LIST OF EXFRENCES

- Tanis, S. P.; Nakanishi, K. J. Am. Chem. Soc. 1979, 101, 4398.
- 2. For isolation and biological activities of some clerodane diterpenes, see:
 - a) Kubo, I.; Lee, Y.-W.; Balogh-Nair, I. V.; Nakanishi, K.; Chapya, A. J. Chem. Soc. Chem. Commun. 1976, 949.
 - b) Kubo, I.; Klocke, J. A.; Miura, I.; Fukuyama, T. J. Chem. Soc. Chem. Comm. 1982, 618.
 - c) Kubo, I.; Fukuyama, Y.; Chapya, A. Chem. Lett. 1983, 223.
 - d) Ferrai, M.; Pelizzoni, F.; Ferrari, G. Phytochemistry 1971, 10, 3267.
 - e) Niwa, M.; Yamamura, S. Tet. Lett. 1981, 22, 2789.
 - f) McCrindle, K.; Nakamura, E.; Anderson, A. B. J. Chem. Soc. Perkin I 1977, 1590.
 - g) Anderson, T.; McCrindle, R. Acta, Chem. Scand. 1969, 23, 1066.
 - h) Schmitz, F. J.; Lakshmi, V.; Powel, D. R.; Vanderhelm, D. J. Org. Chem. 1984, 49, 241.
 - i) Carté, B.; Rose, C. B.; Raulkner, D. J. J. Org. Chem. 1985, 50, 2785.
- Terpenoids and steroids, specialist periodical reports,
 The Chemical Society, London, Vol. 1, 1971 to Vol. 13, 1983.
- 4. Misa, R.; Pandey, R. C.; Dev S. Tetrahedron 1964, 49, 3751.
- 5. Ardon-Jimenez, A.; Halsall, T. G. J. Chem. Soc. Perkin I 1978, 1461.
- 6. a) Sarma, A. S.; Chattopadhyay, P. Tet. Lett. 1980, 21, 3719.
 - b) Sarma, A. S.; Chattopadhyay, P. J. Org. Chem. 1982, 47, 1727.
- 7. Takashi, S.; Kusumi, T.; Kakisawa, H. Chem. Lett. 1979, 515.

- 8. Kende, A.; Roth, B.; Kubo, I. Tet. Lett. 1982, 21, 1751.
- 9. Apsimon, J. W.; Yamusaki, K. Chem. Lett. 1977, 1453.
- Goldsmith, D. J.; John, T. R.; Vanmiddlesworth, F. Synth. Comm. 1980, 10 (7), 551.
- 11. a) Luteijn, J. M.; VanDoorn, M.; deGroot, A. Tet. Lett. 1980, 21, 4127 and 4129.
 - b) Luteijn, J. M.; deGroot, A. J. Org. Chem. 1981, 146, 3448.
 - c) Luteijn, J. M.; deGroot, A. Tet. Lett. 1981, 21, 789.
 - d) Luteijn, J. M.; deGroot, A. Tet. Lett. 1982, 23, 3421.
- 12. Ley, S. V.; Simpkins, N. S.; Whittle, A. J. J. Chem. Soc. Chem. Commun. 1983, 503.
- 13. Tokoroyama, T.; Fujimori, K.; Shimizu, J.; Yamagiwa, Y. J. Chem. Soc. Chem. Commun. 1983, 1516.
- 14. Ireland, R. E.; Muchmore, D. C.; Hengarter, U. J. Am. Chem. Soc. 1972, 94, 5098.
- 15. Nagata, W.; Yoshioka, M. Org. React. 1977, 25, 255.
- 16. Goldsmith, D. J.; Srouji, G.; Kwong, C. J. Org. Chem. 1978, 43, 3182.
- 17. Kojima, Y.; Kato, N. Tet. Lett. 1980, 21, 5033.
- 18. a) Kakisawa, H.; Ikeda, M. *Nippon Kagaku Zasshi* 1967, 88, 476; Inouye, Y.; Kakisawa, H. *Bull. Chem. Soc. Japan* 1969, 42, 3318.
 - b) Van del Tempel; Huisman, H. O. Tetrahedron 1966, 22, 293.
- 19. This method which is a modification of that recently reported by ley: Hollinshead, D. M.; Howell, S. C.; Ley, S. V.; Mahon, M.; Ratcliffe, N. M.; Worthington, P. A. J. Chem. Soc. Perkins I 1983, 1579.
- 20. Tanis, S. P.; Abdallah, Y. M. Synth. Comm. 1986, in press.
- 21. Markgraf, J. H.; Greeno, B. W.; Miller, M. D.; Zaks, W. J.; Lee, G. A. Tetrahedron Lett. 1983, 24, 241. For a recent example of the Diels-Alder reaction of 101 with 2-methyl cyclopentanone, see: Ireland, R. E.; Thompson, W. J.; Mandel, N. S. J. Org. Chem. 1979, 44, 3583.

- 22. a) For a review, see: Onishchenko, A. S. in "Diene Synthesis", Israil Program for Scientific Translation, Jerusalem, 1964.
 - b) Nazarov, I. N.; Anachenko, S. N.; Torgov, I. V. Izv. Akad. Nauk SSSR (Eng. Trans.) 1959, 84.
- 23. Julia, M; Malassine, B. Tetrahedron 1974, 30, 695.
- 24. Roush, W. R.; Gillis, R. H.; Ko, A. I. *J. Am. Chem. Soc.* 1982, 104, 2669.
- 25. a) Segal, G. M.; Rybkina, L. P.; Kucherov, V. F. Izv. Akad. Nauk SSSR (Eng. Trans.) 1964, 1368.
 - b) Danishefsky, S.; Prisbylla, M. P.; Hiner, S. J. Am. Chem. Soc. 1978, 100, 2918.
 - c) Shin, C.; Yamaura, M.; Inui, E.; Ishida, Y.; Yoshimura, J. Bull. Soc. Chem. Japan 1978, 51, 2618.
- 26. a) Mui, P. W.; Grunwald, E. J. Am. Chem. Soc. 1982, 101, 6562.
 - b) Squillacote, M. R.; Sheridan, R.; Chapman, O. L.; Anet, F. A. L. ibid. 1978, 101, 3657.
 - c) Lipnick, R.; Garbish, B. W. ibid. 1973, 95, 6370.
- 27. Chenera, B.; Reusch, W. Tetrahedron Lett. 1984, 25, 4183.
- 28. Tanis, S. P.; Abdallah, Y. M.; Williard, P. G. *Tetrahedron Lett.* 1985, 26, 3651.
- 29. a) Ramage, R.; Southwell, I. A. *J. Chem. Soc. Perkin Trans. I* **1984**, 1323.
 - b) Bridge, A. W.; Morrison, G. A. J. Chem. Soc. Perkin Trans. I 1983, 2933.
 - c) Selover, S. J.; Crews, P. J. Org. Chem. 1980, 45, 69.
 - d) Maione, A. M.; torrini, I.; Romeo, A. J. Chem. Soc. Perkin Trans. I 1979, 775.
 - e) Ireland, C.; Faulkner, D. J.; Solheim, B. A.; Clardy, J. J. Am. Chem. Soc. 1979, 100, 1002.
 - f) Ireland, R. E.; Beslin, P.; Giger, R.; Hengartner, U.; Kirst, H. A.; Maag, H. J. Org. Chem. I 1977, 42, 1267.
 - g) Guest, I. G.; Marples, B. A. J. Chem. Soc. Perkin Trans. I 1973, 900.
 - h) Whitlock, H. W., Jr.; Olson, A. H. J. Am. Chem. Soc. 1970, 93, 5383.
 - i) Blackett, B. N.; Coxon, J. M.; Hartshorn, M. P.; Richards, K. E. Tetrahedron 1969, 25, 4999.
 - j) Hikino, H.; Kohama, T.; Takemoto, T. *Tetrahedron* 1969, 25, 1037.

- k) Blunt, J. W.; Hartshorn, M. P.; Kirk, D. N. Tetrahedron 1969, 25, 149.
- 1) Blunt, J. W.; Hartshorn, M. P.; Kirk, D. N. J. Chem. Soc. (C) 1968, 635.
- m) Halsall, T. G.; Jones, E. R. H.; Tan, E. L.; Chaudhry, G. R. J. Chem. Soc. (C) 1966, 1374.
- n) Coxon, J. M.; Hartshorn, M. P.; Rae, W. J. Tetrahedron 1970, 26, 1091.
- 30. Tanis, S. P.; Nakanishi, K. J. Am. Chem. Soc. 1979, 101. 4398.
- 31. Demole, E.; Enggist, P.; Borer, C. Helv. Chim. Acta 1971. 54, 1845.
- 32. Similar ¹H-NMR and ¹³C-NMR chemical shifts for oxetane resonances have been previously reported, see, for example:
 - a) Okuma, K.; Tanaka, Y.; Kaji, S.; Ohta, H. *J. Org. Chem.* 1983, 48, 5133.
 - b) Garcia-Alvarez, M. C.; Lukacs, G.; Neszmelyi, A.; Piozzi, F.; Rodriguez, B.; Savona, G. J. Org. Chem. 1983, 48, 5123. See also:
 - c) Welch, S. C.; Prakasa Rao, A. S. C.; Lyon, J. T.; Assercq, J.-M. J. Am. Chem. Soc. 1983, 105, 252; and references cited therein.
- 33. a) Burton, L. P. J.; White, J. D. J. Am. Chem. Soc. 1981, 103, 3226.
 - b) White, J. D.; Burton, L. P. J. J. Org. Chem. 1985, 50, 357.
- 34. Prinzbach, H.; Schmidt, H.-G. Chem. Ber. 1974, 107, 1988.
- 35. Stork, G.; Atwal, K. S. Tet. Lett. 1983, 24, 3819.
- 36. a) Rajan, N.; Rajagopalan, K.; Swaminathan, S. Tetrahedron Lett. 1980, 21, 1577.
 - b) Geetha, K. V.; Rajagopalan, K.; Swaminathan, S. Tetrahedron 1978, 34, 2201.
- 37. Still, W. C.; Mitra, A.; Khan, M. J. Org. Chem. 1978, 41, 2923.
- 38. a) Onezawa, S.; Shonosuke, Z. Bull. Chem. Soc. Japan 1963, 1143.
 - b) McMurry, J. E.; Musser, J. H. Org. Synth. 1977, 56, 65.