RETURNING MATERIALS:

LIBRARIES remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

$\mathbb{Z}_{2 p}$ - ACTIONS ON THE 2-DIMENSIONAL AND THE SOLID KLEIN BOTTLES

By

Fawaz Mohammad Abudiak

A DISSERTATION

```
Submitted to
    Michigan State University
in partial fulfillment of the requirements
    for the degree of
    DOCTOR OF PHILOSOPHY
    Department of Mathematics
```


ABSTRACT

$$
\begin{gathered}
\mathbb{Z} 2 p-A C T I O N S \text { ON THE } 2 \text {-DIMENSIONAL } \\
\text { AND THE SOLID KLEIN BOTTLES }
\end{gathered}
$$

By

Fawaz Mohammad Abudiak

In this thesis $P L$ homeomorphisms of periods p and $2 p$ are classified on both the 2-dimensional Klein bottle K^{2} and the solid Klein bottle K, where p is an odd prime number.

It is shown that up to weak equivalence there is only one class of homeomorphisms of period p on k^{2} and only three equivalence classes of homeomorphisms of period $2 p$ on K^{2}, distinguished by the fixed point sets of their $p^{\text {th }}$ powers.

Also, free cyclic actions of odd period are classified on K as well as cyclic actions of period 2 . In the first case it is shown that, up to weak equivalence, only one such action exists, while in the second case there are three such homeomorphisms, distinguished by the fixed point sets of their $p^{\text {th }}$ power.

```
    Finally, semi-free action on K are classified
for any finite period n. It is shown that these
exist only for n equals two and for all odd values
of n such that F( }\mp@subsup{h}{}{n})=\varnothing\mathrm{ .
```

TO MY PARENTS

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to professor Kyung Whan Kwun, my thesis advisor, for suggesting the problem and for his continuous support, patience, and encouragement during the completion of the problem.

TABLE OF CONTENTS

Page
INTRODUCTION 1
CHAPTER O. PRELIMENARIES AND DEFINITIONS. 3
CHAPTER 1. $Z_{2} \mathrm{Z}^{-}$- ACTIONS ON THE 2-DIM KLEIN BOTTLE 8
SECTION 1.1. $\mathbb{Z} \underset{p}{ }-A C T I O N S ~ O N ~ T H E ~ 2-D I M ~ K L E I N ~$ BOTTLE. 8
SECTION 1.2. $\mathbb{Z}_{2 p}$ - ACTIONS ON THE 2-DIM KLEIN BOTTLE 11
CHAPTER 2. $\mathbb{Z}_{2 p}-\operatorname{ACTIONS}$ ON THE SOLID KLEIN BOTTLE K 19
SECTION 2.1. FREE $\mathbb{Z} \underset{2 k+1}{ }-\operatorname{ACTIONS} O N \quad K$ 19
SECTION 2.2. $\mathbb{Z}_{2 p}-A C T I O N S O N \quad K$ 23
SECTION 2.3. SEMI-FREE ACTIONS ON K 40
BIBLIOGRAPHY 43

Let X and X^{\prime} be topological spaces. Two homeomorphisms h and g on X and X^{\prime} respectively are said to be weakly equivalent (written $h \sim_{\omega} g$) if there exists a homeomorphism $t: x \rightarrow X '$ such that $t^{-1} g t=h^{i}$ for some positive integer $i \neq 1$.

All maps and spaces considered in this thesis are in the piecewise linear category.

In this thesis we classify piecewise linear homeomorphisms of periods p and $2 p, p$ an odd prime, on both the $2-d i m$ and the solid Klein bottles.

Chapter 1 deals with the homeomorphisms of periods p and $2 p$ on the 2 -dim Klein bottle $K^{2}, ~ p$ odd prime. Proposition l of section $1 . l$ asserts that up to weak equivalence there is a unique homeomorphism of period p on K^{2}. Theorem 1 of section 1.2 gives all the homeomorphisms of period $2 p$ on K^{2} up to weak equivalence, p odd prime. In fact there are three such homeomorphisms h_{i} distinguished by the fixed point sets of $h_{i}^{p}, i=1,2,3$.

Chapter 2 is divided into three sections. Section 2.1 deals with the free homeomorphisms of odd period on the solid Klein bottle K. Proposition 3 of this section states that there is only one such homeomorphism up to weak equivalence. Section 2.2 provides a complete classification of homeomorphisms of period 2 p on K , p odd prime. The main theorem of this section is the classification Theorem 1 which asserts that up to weak equivalence there are only three such homeomorphisms h_{i}, distinguished by $F\left(h_{i}\right)^{\prime}, i=1,2,3 . \quad$ Finally section 2.3 deals with the semi-free periodic actions on K. These actions are given in Theorem 1 of that section.

Throughout this thesis, we work in the PL (piecewise linear) category and all spaces and maps will be piecewise linear.

A homeomorphism $h: X \rightarrow X$ is periodic if $h^{n}=$ identity for $n>1$ in $\mathbb{Z Z}$. If $n=2$, h is said to be an involution.

Let h be a periodic map of a space x. The cyclic group generated by h will be denoted by < h >. If h is periodic on X, then the orbit space of h is the quotient space obtained by identifying x with $h^{i}(x)$ for all i and all x in X. The orbit space of h will be denoted by $x /<h>$. The identification map $p_{h}: X \rightarrow X /\langle h\rangle$ is called the orbit map. When there is no confusion p_{h} will be simply written as p.

Two actions of $\langle h\rangle$ and $\langle f\rangle$ on x are said to be weakly equivalent if there is a homeomorphism t of X such that $\left\langle t^{-1}\right\rangle=\langle f\rangle$ and $t^{-1} t^{-1}=f^{i}$ for some i. Equivalently h and f are weakly equivalent if there are homeomorphisms t and \bar{t} that make the diagram commutative

i.e $p_{f} \bar{t}=t p_{h}$. With a special consideration of the fixed point sets of h and f this implies that $\bar{t}^{-1} f \bar{t}$ is a linear transformation (automorphism) of X with respect to h i.e it belongs to the group of deck transformations $A(X, h)$ with the connection with the proposition on page 5, this implies weak equivalence. If $\operatorname{tht}^{-1}=f$, then h and f are said to be equivalent.

The set $\{x \in X \mid h(x)=x\}$ of the fixed points of h will be denoted by $F(h)$ or $F i x(h)$.

Concerning the action we assume that (1) for every $h^{i} \epsilon\langle h\rangle, F\left(h^{i}\right)$ is a subcomplex of x; (2) the natural cell structure of the orbit space $x /\langle h\rangle$ and the orbit map $p: X \rightarrow X /<h>$ are simplicial and (3) p maps each simplex homeomorphically.

According to [16] these conditions are not restrictive, from the $P L$ point of view.

The following proposition concerning the free action of periodic homeomorphisms proves to be very useful in
proving weak equivalence, where $h: X \rightarrow X$ acts freely or is free if $F(h)=\varnothing=F\left(h^{i}\right)$ for all i for which $h^{i} \neq$ identity.

Proposition.

Let ($\mathrm{X},<\mathrm{h}>$) be a free periodic action in which h is of finite period, and x is a connected manifold. Let $\bar{X}=x /\langle h\rangle$ be the orbit space and $p: X \rightarrow \bar{x}$ be the orbit map. Let $x \in X, \bar{x}=p(x)$. Then \bar{x} is a connected manifold, (X, p) a regular cover, and $\langle h\rangle \cong \pi_{1}(\bar{x}, \bar{x}) / p_{*}\left(\pi_{1}(x, x)\right)$.

For a proof see proposition 8.2, Chapter 5 of [11]. Also see [11] for terminology of covering spaces.

A periodic homeomorphism $h: X \rightarrow X$ acts semifreely on X, if $F(h)=F\left(h^{i}\right)$ for all $1<i<n$, where n is the period of h. In other words any point $x \in X$ is either fixed by all h^{i} or is moved by all h^{i}, $1<i<n$.

A compact not necessarily connected 2-manifold F is said to be 2 -sided in x if there exists a neighborhood of F of the form $F \times[-1,1]$ with $F=F \times 0$ and $(F x[-1,1]) \cap \partial x=\partial F x[-1,1]$.

A simple closed curve J embedded in a closed surface S is 2-sided if there is a neighborhood of J in S of the form $J x[-1,1]$ with $J \approx J x\{0\}$. A simple closed curve J embedded in a closed surface S is one-sided

```
if it doesn't separate any connected neighborhood of
J in S.
```

A 3-manifold X in which every embedded sphere bounds a 3-cell is called irreducible. If in addition x doesn't contain a 2 -sided projective plane P^{2}, X is called P^{2}-irreducible.

A surface F is properly embedded in X if $F \cap \partial X=\partial F$.

A properly embedded disk E in X with $\partial \mathrm{E}$ does not bound a disk in $\partial \mathrm{X}$ is called a meridional disk.

Let F be two-sided surface in X. The manifold X^{\prime} obtained by splitting (cutting) X at (along) F is the manifold whose boundary contains two copies, F^{+} and F^{-}, of F such that the identification of F^{+} and F^{-}defines a natural projection f : ($X^{\prime}, F^{+} U F^{-}$) $\rightarrow(X, F)$ with $f \mid\left(X^{\prime}-\left(F^{+} U F^{-}\right)\right)$a homeomorphism onto X - F. Note that X^{\prime} is homeomorphic to X - (Fx(-1, 1)).

The 2 -dimentional klein bottle may be regarded as the identification space obtained as follows:
$\left\{\left[\begin{array}{l}r \\ z\end{array}\right]: \frac{1}{2} \leq r \leq 2,|z|=1, \frac{1}{2} z \sim-\frac{1}{2} z, 2 z \sim-2 z\right\}$.

Also it can be considered as the space obtained by gluing together two Mobius bands along their boundaries, where a Mobius band is the space that is formed by identifying
(s, t) with (-s, til) in $[-1,1] x \mathbb{R}$.

The 3-dim Klein bottle is the space that is obtained from $D^{2} X \mathbb{R}$ by identifying (z, t) with $(\bar{z}, t+1)$. An element of this space with representative (z, t) will be denoted by $[z, t] . D^{2}=\{z \in C| | z \mid \leq 1\}$, \mathbb{R} the field of real numbers. $C=$ field of complex numbers. $S^{1}=\{z \in C| | z \mid=1\}$.
$\mathbb{Z}_{2 p}$ - ACTIONS ON THE 2-DIMENSIONAL KLEIN BOTTLE

In this chapter we classify all the $P L$ homeomorphisms of periods p and $2 p$, where p is an odd prime on the two-dimensional Klein bottle.

Notations:

In this chapter we denote the 2-dim Klein bottle by K while in Chapter 2 we will use K^{2} for the $2-d i m$ Klein bottle and K for the solid Klein bottle.

Section l.l. $\mathbb{Z} \underset{p}{ }-A C T I O N S$ ON THE TWO-DIMENSIONAL KLEIN BOTTLE K.

We consider only the case where p is an odd prime number. For $p=2$ see [12] (also see [8]). Our main result is the following: Proposition 1.

If $h: K \rightarrow K$ is $\quad h \quad p l$ homeomorphism of period p on the 2 -dim Klein bottle K, where p is an odd prime, then $F(h)=\varnothing$ and h is weakly equivalent to $h_{1}: K \underset{\rightarrow}{\approx}$,
where h_{l} is defined by $h_{l}\left(\left[\begin{array}{ll}r & z\end{array}\right]\right)=\left[\begin{array}{ll}w & r\end{array}\right], w=e^{2 \pi i / p}$.

First we prove the following.

Lemma 2.

If h is as in proposition 1 , then $F(h)=\varnothing$ and the orbit space $K /\langle h\rangle \approx K$.

Proof

Let $B=K /\langle h\rangle$. By [4] we have $X(k)+(p-1) X(F(h))$ $=p X(B)$, where X indicates the Euler characteristic. Since $X(K)=0, \quad(p-1) X(F(h))=p X(B)$. Since p is odd, $\operatorname{dim}(F(h)) \neq 1 . \quad$ So $F(h)$ is either $0-\operatorname{dim}$ or \emptyset. Assume that $\operatorname{dim}(F(h))=0$ and that $F(h)$ consists of k points. Assume $k>0$. Then $(p-1) k=p X(B)$ and this implies that $k=\frac{p}{p-1} X(B) \cdot k>0$ yields that $(p-1) \mid X(B)$ and since B is a surface, $X(B) \leq 2$, so $p \leq 3$. But p is an odd prime so $p=3$. Hence $X(B)=2$ and then $B \approx s^{2}$, the 2 -sphere. But this is impossible since K is nonorientable. So k must be 0 contradicting our assumption $k>0 . \quad$ So $F(h)=\varnothing . \quad$ Moreover, $\quad X(B)=0$. Since $F(h)=\varnothing, \quad \partial B=\varnothing$ and since B is nonorientable $B \approx K$.

Proof of Proposition 1.

It is clear that $F\left(h_{1}\right)=\varnothing$ and $K /\left\langle h_{l}\right\rangle \approx K \quad$ (lemma 2). Let $h_{2}=h$. By lemma 2 above $K /<h_{2}>\pi . \quad<h_{1}>$ and <h> act freely on K. Let $q_{i}: K \rightarrow K /<h_{i}>, i=1,2$, be the orbit maps. Let t be any homeomorphism: $K /\left\langle h_{1}\right\rangle \rightarrow K /\left\langle h_{2}\right\rangle$. Since $F\left(h_{i}\right)=\varnothing, q_{1}$ and q_{2} are p-covering projections of K by K. But $\pi_{l}(K)$ has a unique normal subgroup
of index p, so t can be lifted to a homeomorphism $\bar{t}: K \rightarrow K$ such that the diagram below is commutative

i.e $\quad q_{2} \bar{t}=t q_{1}$. By the commutativity of the diagram

We obtain $q_{1}=q_{1} \bar{t}^{-1} h_{2} \bar{t}$. That is $\bar{t}^{-1} h_{2} \bar{t}$ is a nontrivial covering transformation on K with respect to q_{1}. But the group of covering transformations
$A\left(K, q_{1}\right) \cong\left\langle h_{1}\right\rangle($ see Chapter 0$)$. So $\bar{t}^{-1} h_{2} \bar{t}=h_{1}^{i}$ for some $1 \leq i<p . \quad$ This shows that $h \sim w^{h}$ l and completes the proof of proposition 1.

Section 1.2. $\mathbb{Z} 2 p^{\text {-ACTIONS }}$ ON THE 2-DIMENSIONAL KLEIN bottle.

Theorem 1.

$$
\text { If } h: K \rightarrow K \text { is a } P L \text { homeomorphism of period }
$$

2 p , where p is an odd prime, then h is weakly
equivalent to one of the following 2 p- periodic
homeomorphisms depending on whether $F\left(h^{p}\right)$ is $\varnothing, \approx s^{1}$ or $\approx s^{1} \dot{U} S^{1}$ respectively

$$
\begin{aligned}
& h_{1}\left(\left[\begin{array}{ll}
r & z
\end{array}\right]\right)=\left[\begin{array}{ll}
\frac{w}{r} & z
\end{array}\right] \\
& h_{2}\left(\left[\begin{array}{ll}
r & z
\end{array}\right]\right)=\left[\begin{array}{l}
-\frac{w}{r} \\
z
\end{array}\right] \\
& h_{3}\left(\left[\begin{array}{ll}
r & z
\end{array}\right]\right)=\left[\begin{array}{lll}
w & r
\end{array}\right]
\end{aligned}
$$

where $w=e^{\pi i / p}$.

The proof of theorem 1 occupies the rest of this section. Since h is of period $2 p, h^{2}$ is of period p on K, so by lemma 2 of Section l. $\mathcal{I}, F\left(h^{2}\right)=\varnothing$. The map h induces an involution h^{-}on $K /\left\langle h^{2}\right\rangle$, uniquely determined by h, such that $h^{-} q=q h$ where $q: K \rightarrow K /\left\langle h^{2}\right\rangle$ is the orbit map.

$$
\text { Now } h^{p} \text { is an involution on } K \text {. By }[12] \text { (also see }
$$

[8]) $F\left(h^{p}\right)$ is one of the following sets: \varnothing, two points, one 2 -sided nonseparating simple closed curve and two points, one 2-sided separating simple closed curve and finally two
one-sided simple closed curves. In other words $F\left(h^{p}\right)$ is homeomorphic to one of the following sets: \varnothing, S^{0}, $s^{1} \dot{u} s^{0}, s^{1}, s^{1} \dot{u} s^{1}$. So we consider the following two cases

Case 1: $F\left(h^{p}\right)=\varnothing$
Case 2: $F\left(h^{p}\right) \neq \varnothing$

Case 1.

$$
F\left(h^{p}\right)=\varnothing . \text { In this case } h \text { acts freely on } K .
$$

We prove the following:

Proposition 2.

If $h: K \rightarrow K$ is a homeomorphism of period $2 p$ on K, p odd prime, and if h acts freely, then h is weakly equivalent to h_{1}, where h_{1} is as in theorem 1 . Proof

Let $h=h_{2}$. Let $M_{i}=K /\left\langle h_{i}{ }^{2}\right\rangle$ and $q_{i}: K \rightarrow M_{i}$, $q^{\prime}{ }_{i}: M_{i} \rightarrow M_{i} /\left\langle h_{i}^{-}{ }^{\prime}, i=1,2\right.$, be the orbit maps, where h_{1}^{-}and h_{2}^{-}are the induced involutions by h_{1} and h_{2} on M_{1} and M_{2} respectively. Note that $F\left(h_{i}^{-}\right)=$ $q_{i}\left(F\left(h_{i}\right)\right)$, hence $F\left(h_{i}^{-}\right)=\varnothing, \quad i=1,2$. As in lemma 2 Section 1.1, $K /\left\langle h_{i}^{-}\right\rangle \approx K$. By lemma $2, M_{i} \approx K$, so $M_{i} /\left\langle h_{i}^{-}{ }_{i} \approx K /\left\langle h_{i}^{-}{ }_{i} \approx K\right.\right.$. Note also $K /\left\langle h_{i}^{-}{ }_{i} \approx K /\left\langle h_{i}\right\rangle\right.$. Let $g_{i}=q_{i}{ }_{i} q_{i}: K \rightarrow M_{i} /<h_{i}^{-}{ }_{i}$. Note that q_{i} is a p -covering projection for $i=1,2$ and q_{i}^{\prime} is a 2- covering projection for $i=1,2$. Since $F\left(h_{i}^{p}\right)=$ $\emptyset=F\left(h^{2}\right)=F(h),\left\langle h_{i}\right.$ > acts freely on K, so g_{i} is
a 2p-covering projection for $i=1,2$. Let
$\left.\left.t: K /<h_{1}\right\rangle \rightarrow K /<h_{2}\right\rangle$ be any homeomorphism. By [14] up to equivalence there is only one subgroup of andes 2 of $\pi_{1}(K)$ corresponding to the double cover of K by K. So M_{1} and M_{2} are equivalent, hence $\exists \bar{t}: M_{1} \xrightarrow{\sim} M_{2}$ such that $t^{\prime} 1_{1}=q_{2}^{\prime} \bar{t}$

Now since q_{1} and q_{2} are p-covering projections and $\pi_{l}(K)$ has a unique normal subgroup of index p, t can be lifted to $\overline{\bar{t}}: K \underset{\rightarrow}{\boldsymbol{\sim}} \mathrm{~K}$ such that $\overline{\mathrm{t}} \mathrm{q}_{1}=\mathrm{q}_{2} \overline{\mathrm{t}}$. Hence $t q_{1}^{\prime} q_{1}=q^{\prime}{ }_{2} q_{2} \overline{\bar{t}}$ i.e $\operatorname{tg}_{1}=g_{2} \overline{\bar{t}}$. As in the proof of proposition 1 , section $1.1, \operatorname{th}_{2} \bar{t}-1$ is a covering transformation on K. Note that g_{1} and g_{2} are $2 p$ - covering transformations and the group of covering transformations of K with respect to g_{1}, $A\left(K, g_{1}\right) \cong\left\langle h_{1}\right\rangle \quad($ see Chapter 0$)$. So we obtain that ${ }_{\mathrm{t}}^{\mathrm{h}} \mathrm{h}_{2} \mathrm{t}^{-1}=\mathrm{h}_{1} \mathrm{i}$ for some $1 \leq i<2 \mathrm{p}$.

Hence $h_{2}=h \sim_{w} h_{1}$. This finishes the proof of proposition 2 and case 1.

Case 2.

$F\left(h^{p}\right) \neq \varnothing$. By [12] (or [8]) $F\left(h^{p}\right)$ is homeomorphic to one of the following sets: $s^{0}, s^{0} \dot{u} s^{1}, s^{1}$, $s^{1} \dot{u} s^{1}$. If $F\left(h^{p}\right) \sim s^{0}=\{x, y\}$, then since $h\left(F\left(h^{p}\right)\right)=$ $F\left(h^{p}\right)$ and $F(h)=\varnothing, \quad h(x)=y$ and $h(y)=x$. But this implies that $h^{2} x=x$ and $h^{2} y=y$ contradicting the fact that $F\left(h^{2}\right)=\varnothing$. So $F\left(h^{p}\right)$ cannot be $\approx s^{0}$. If $F\left(h^{p}\right) \approx S^{1} \dot{U} S^{0}$, then since $F\left(h^{p}\right)$ is invariant under h, we get $h\left(S^{0}\right)=s^{0}$ and $h\left(S^{1}\right) \approx s^{1}$. As above this contradicts $F\left(h^{2}\right)=\varnothing$. Hence $F\left(h^{p}\right)$ cannot be $\approx s^{0} \dot{U} s^{1}$.

Now we are left with the two possibilities:
$F\left(h^{p}\right) \approx s^{l}$ or $s^{l} \dot{u} s^{l}$.

Lemma 3.
If $F\left(h^{p}\right) \approx S^{1}$ or $S^{1} \dot{u} s^{1}$, then $K /\left\langle h^{p}\right\rangle$ is
homeomorphic to Mobius band or an annulus respectively.

Proof

Let $B=K /<h^{p}>$. Since h^{p} is an involution on K, we have by [4] that $X(K)+X\left(F\left(h^{p}\right)\right)=2 X(B)$. But $F\left(h^{p}\right)$ is one-dim, so $X\left(F\left(h^{p}\right)\right)=0$. And since $X(K)=0$, $X(B)=0$. So B is homeomorphic to one of the spaces: K, $T^{2}=$ the 2 -dim torus, Mobius band M, an annulus A.

Now we claim that $\partial(B)=q(F)$, where $q: K \rightarrow B$ is the orbit map and $F=F\left(h^{p}\right)$. If $x \in K-F$, then x has a neighborhood $U_{x} \approx \mathbb{R}^{2}$ and $q_{\left(U_{x}\right)} \approx U_{x} \cdot q\left(U_{x}\right)$ is a neighborhood of $q(x) \in B$ and since $q\left(U_{x}\right) \approx U_{x} \approx \mathbb{R}^{2}$, $q(x) \in \operatorname{Int}(B)$. If $x \in F$, then x has a neighborhood $U_{X} \approx \mathbb{R}^{2} . F \cap U_{X}$ separates U_{X} into two components $\approx \mathbb{R}^{2}+$ and $q\left(U_{x}\right) \approx \mathbb{R}_{+}^{2}$ and is a neighborhood of $q(x) \in B$, i.e $q(x) \in \partial B . \quad$ This proves the claim. So $\partial B \neq \varnothing$, hence B cannot be $\approx K$ or T^{2}, for these have no boundary.

If $F \approx S^{l}$, then B has one boundary component and $B \approx M$.

If $F \approx S^{1} U S^{1}$, then ∂B has two boundary components and $B \approx A$.

Now, let h_{2} and h_{3} be as in theorem l. We prove the following lemma.

Lemma 4.

Let $h: K \rightarrow K$ be a periodic homeomorphism of period $2 p, p$ odd prime, and assume that $F\left(h^{p}\right) \approx S^{1}$. Then $\mathrm{h} \sim_{\mathrm{w}} \mathrm{h}_{2}$.

Proof
h induces $h^{-}: K /\left\langle h^{p}\right\rangle \rightarrow K /\left\langle h^{p}\right\rangle$ of period p and h^{-}acts freely on $K /\left\langle h^{p}\right\rangle$. Similarly h_{2} induces h_{2}^{-}: $K /<h_{2}{ }^{p}>\rightarrow K /<h_{2}{ }^{p}>$ of period p and h_{2}^{-}acts freely
on $K /\left\langle h_{2}{ }^{\mathrm{P}}\right\rangle$. By lemma 3 above $K /\left\langle h^{\mathrm{p}}\right\rangle \approx M$, a Mobius band and $k /<h_{2}{ }^{p}>\sim M$. Let $F=F\left(h^{p}\right)$ and $F_{2}=F\left(h_{2}^{p}\right)$. Let $\mathrm{K}^{\prime}=\mathrm{K} /\left\langle\mathrm{h}^{\mathrm{p}}\right\rangle, \mathrm{K}_{2}=\mathrm{K} /\left\langle\mathrm{h}_{2}^{\mathrm{p}}\right\rangle$ and $\mathrm{q}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}, \mathrm{q}_{1}$: $K \rightarrow K_{2}$ be the orbit spaces and orbit maps respectively. Also let $q_{1}^{\prime}: K_{2} \rightarrow K_{2} /\left\langle h_{2}^{-}\right\rangle \approx K /\left\langle h_{2}\right\rangle, q^{\prime}: K \rightarrow K^{\prime} /\left\langle h^{-}\right\rangle$ $\approx K /\langle h\rangle$ be the orbit maps of K_{2} and $K^{\prime} \cdot q_{1}\left(F_{2}\right)=$ $J_{2} \approx S^{1}$ and $q(F)=J \approx S^{1}$ are the boundaries of K_{2} and K^{\prime} respectively. $q^{\prime}{ }_{1}\left(J_{2}\right)$ and $q^{\prime}(J)$ are the boundaries of $K /<h_{2}>$ and $K /<h>$ respectively. since h^{-}and h_{2}^{-} are free of period p on M, an argument like the one used in section 1.1 using the Euler characteristic yields $K_{2} /\left\langle h_{2}^{-}\right\rangle \approx M \approx K^{\prime} /\left\langle h^{-}\right\rangle$. Let $t: q^{\prime}(J) \rightarrow q_{1}^{\prime}\left(J_{2}\right)$ be a homeomorphism. Extend t to a homeomorphism on all of $\mathrm{K} /<\mathrm{h}>$ still call it t .

Since q^{\prime} and q_{1}^{\prime} are p - covering projections and $\pi_{1}(M) \cong \mathbb{Z}$ has an unique normal subgroup of index p, we can lift t to a homeomorphism $\bar{t}: K^{\prime} \rightarrow K_{2}$ such that $q_{1}^{\prime} \bar{t}=t q^{\prime}$ and $\bar{t}(J)=J_{2}$ Now $q_{1}: K-F_{2} \rightarrow$ $K_{2}-J_{2}$ and $q: K-F \rightarrow K^{\prime}-J$ are double covering projections and $\pi_{1}\left(K_{2}-J_{2}\right) \cong \mathbb{Z} \cong \pi_{1}\left(K^{\prime}-J\right)$ we can lift $\overline{\mathrm{t}}$ to a homeomorphism $\overline{\overline{\mathrm{t}}}: K-\mathrm{F} \rightarrow \mathrm{K}-\mathrm{F}_{2}$ such that $q_{1} \overline{\overline{\mathrm{t}}}=\overline{\mathrm{t}} \mathrm{q}$. since $\overline{\overline{\mathrm{t}}}(\mathrm{F})=\mathrm{F}_{2}$ and $\overline{\overline{\mathrm{t}}}$ is continuous this is true on all of K.

Now, q^{\prime} is a covering projection and the diagram below commutes

hence for some $i, \bar{t}^{-1} h_{2}^{-} \bar{t}=h^{-i}$. Also, since $q h=h^{-} q$ and $q_{1} h_{2}=h_{2}^{-} q_{1}$, it follows that: $q h^{i}=h^{-i} q$. Hence $q^{i}=h^{-i} q=\bar{t}^{-1} h_{2}^{-} \bar{t} q=\bar{t}^{-1} h_{2}^{-} q_{1} \overline{\bar{t}}=\bar{t}^{-1} q_{1} h_{2} \overline{\bar{t}}=$ $q \overline{\bar{t}}{ }^{-1} h_{2} \overline{\bar{t}}$. Thus, if $x \in F$, then $h^{i+p}(x)=h^{i}(x)$, note that here $q \mid F$ is a homeomorphism. If $x \notin F$, then $h^{i+p}(x)=\overline{\bar{t}}^{-1} h_{2} \overline{\bar{t}}(x)$ or $h^{i}(x)=\overline{\bar{t}}^{-1} h_{2} \overline{\mathrm{t}}(x)$.
Therefore $h \sim_{w} h_{2}$.

Finally in order for the proof of theorem 1 to be complete we prove the following.

Lemma 5.
Let $h: K \rightarrow K$ be a periodic homeomorphism of period $2 \mathrm{p}, \mathrm{p}$ odd prime, with $F\left(h^{p}\right) \approx S^{l} u S^{l}$. Then $h \sim_{w}{ }^{\circ}$

Proof

$$
\text { Let } K_{3}=K /<h_{3}^{\mathrm{P}}>. \text { By lemma } 3, \quad K_{3} \approx A . \quad \text { As in }
$$

lemma 4 we obtain that $h \sim_{w} h_{3}$.
This finishes case 2 and completes the proof of
theorem 1.

CHAPTER TWO

$\mathbb{Z}_{2 p}-A C T I O N S$ ON THE SOLID KLEIN BOTTLE K

Section 2.1. FREE $\mathbb{Z}_{2 k+1}$ - ACTIONS ON K.

Lemma 1.
If $h: K \rightarrow K$ is $\quad h \quad(P L)$ homeomorphism of period $2 k+1, k \geq 1$, on K, then $F i x h$ is either \varnothing or $\approx s^{1}$.

Proof
Let $n=2 k+1$. n can be written as $n=p_{1}^{t} 1 p_{2}^{t} 2$ $\ldots p_{m}^{t}$ where p_{1}, \ldots, p_{m} are distinct odd primes and t_{1}, \ldots, t_{m} are positive integers. If $m=1$, then h is of period p_{1}^{t} on K which is a homology l- sphere. Hence by [4] Fix is either \varnothing or a homology l-sphere. F (h) cannot be 2 -dimensional because $p_{1}^{\mathrm{t}} 1 \neq 2$. So $F(h)$ is either \varnothing or $\approx S^{1}$. If $m=2$, then $n=p_{1}^{t} 1 p_{2}^{t} 2$ and $h^{p_{1}^{t}} 1$ is of period $p_{2}^{t} 2$. As above $F\left(h^{p}{ }^{t} 1\right.$, is either \varnothing or $\approx S^{1}$. If $F\left(h^{p}{ }^{t} 1\right.$) $=\varnothing$, $F(h)=\varnothing$. Since $F\left(h^{p} l^{t}\right)$ is invariant under h, then if $F\left(h^{p_{1}}{ }^{t}\right) \approx S^{l}$ and $F(h) \neq \varnothing, \quad h$ is of period $p_{1}^{t} l_{1}$ on $F\left(h^{p} 1^{t}\right) \approx S^{l}$ a homology 1 - sphere and again by [4] $F(h) \approx S^{1}$. Hence if $m=2, F(h)=\varnothing$ or $\approx S^{1}$.

Now assume that the result is proven for $m=i$.
Let $c=p_{1}{ }^{t} 1 \ldots p_{i}{ }^{t}$. Let the period of h be
cp ${ }_{i+1}^{t_{i+1}}$. Then $h^{p_{i+1}^{t}}$ is of period c on k so by
the induction hypothesis $F\left(h^{p_{i+1}}\right.$) is either \varnothing or $\approx s^{1}$.

by [4] $F(h) \approx s^{1}$ or \varnothing.
Hence $F(h)=\varnothing$ or $\approx S^{1}$.

Remark. The proof above shows that if $F(h) \approx S^{1}$, then $F\left(h^{i}\right)=F(h) \approx s^{1}$ for all $1<i<2 k+1$.

In the rest of this section we consider the free
$\mathbb{Z}_{2 K+1}$ - actions on K, i.e $F\left(h^{i}\right)=\varnothing$ for all
$1<i<2 k+1$.

Lemma 2.
Let $h: K \rightarrow K$ be a homeomorphism of period $2 k+1$,
$k \geq 1$. If $\langle h>$ acts freely on K, then $K /<h>\approx K$.

Proof
Let $B=K /\langle h\rangle$ and let $p: K \rightarrow B$ be the orbit map.
Since $\langle h>$ acts freely on $K, \quad K$ is a regular $2 k+1$
covering of B [ll, theorem 8.2, Chapter 5]. Hence $p_{\#}\left(\pi_{1}(K)\right) \cong \mathbb{Z}$ is a normal subgroup of index $2 k+1$ of $\pi_{1}(B)$. So we have a short exact sequence

$$
0 \rightarrow \mathbb{Z} \stackrel{\alpha}{\rightarrow} \pi_{1}(B) \stackrel{\beta}{\rightarrow} \underset{2 k}{ }+1 \rightarrow 0
$$

Since B is covered by a contractible space and no nontrivial finite group can act freely on a finite dimensional, contractible space [6; page 287], $\pi_{1}(B)$ has no torsion subgroup. Let $a=\alpha$ (generator of \mathbb{Z}) and b be such that $\beta(b) \quad$ is a generator of $\mathbb{Z} 2 k+1$. Since $p_{\#}\left(\pi_{1}(K)\right)$ is normal in $\pi_{1}(B), \quad b a b^{-1} \epsilon<a>$. So $b a b^{-1}=a$ or a^{-1}. If $b a b^{-1}=a^{-1}$, then $\pi_{1}(B) /\left[\pi_{1}(B), \pi_{1}(B)\right] \cong H_{1}(B)$ is finite (for the coset $\bar{b}=b+\left[\pi_{1}(B), \pi_{1}(B)\right]$ is of order $\left.2 k+1\right)$. Hence $X(B)=\sum_{i=0}^{3}(-1)^{i} \rho_{i}=1+\rho_{2}$ because $\rho_{1}=0=\rho_{3}, \rho_{3}=0$ because B is nonorientable. But this implies that $X(B) \geq 1$ contradicting the fact that $X(B)=0$. Hence $b a b^{-1} \neq a^{-1}$. So we must have $b a b^{-1}=a$ and so $\pi_{1}(B)$ is abelian. From the principal theorem for abelian groups $\pi_{1}(B)=\mathbb{Z}+\operatorname{Tor}\left(\pi_{1}(B)\right)=\mathbb{Z}+0=\mathbb{Z}$.

Hence $\quad \pi_{1}(B)=\mathbb{Z}$.

Note that B is compact, nonorientable, irreducible with $K^{2}(2-d i m$ Klein bottle) as its boundary. Moreover, B contains no 2 -sided projective planes p^{2}, because if B contains such p^{2}, then $p^{-1}\left(P^{2}\right)$ will be a $2-$ sphere S, and since K is irreducible S bounds a
a 3-cell C. Then $p(C)$ is a 3-manifold bounded by P^{2}. Now by [5] theorem 11.7 B $\approx K$.

Proposition 3.
Up to weak equivalence there is exactly one free $\mathbb{Z}_{2 k}+1(k \geq 1)$ action on K.

Proof.
Let $h_{l}: K \rightarrow K$ be defined by $h_{1}([z, t])=$
$\left[z, t+\frac{2 k}{2 k+1}\right] . h_{l}$ is a homeomorphism of period $2 k+1$ and $F\left(h^{i}\right)=\varnothing$ for all $1<i \leq 2 k$. So by lemma 2 above $\mathrm{k} /<\mathrm{h}_{\mathrm{l}}>\mathrm{K}$. Now let $\mathrm{h}: \mathrm{K} \rightarrow \mathrm{K}$ be any homeomorphism of period $2 k+1$ such that $F\left(h^{i}\right)=\varnothing, \quad 1<i<2 k+1$. Lemma 2 implies that $k /\langle h\rangle \approx K$. Let $p_{1}: K \rightarrow K /\left\langle h_{1}\right\rangle$ and $p: K \rightarrow K /\langle h\rangle$ be the orbit maps. p_{1} and p are $(2 k+l)-$ coverings of $K /\left\langle h_{1}>\right.$ and $K /<h>$ respectively.

Let $t: K /\left\langle h_{l}\right\rangle \rightarrow K /\langle h\rangle$ be a homeomorphism. Since $t p_{1}$ and p are $(2 k+1)$ - covering projections of K and since $\pi_{1}(K /\langle h\rangle) \cong \mathbb{Z}$ has a unique normal subgroup of index $2 k+1$, 3 a homeomorphism $\bar{t}: K \rightarrow K$ making the diagram

commutative, ie such that $t p_{1}=p \bar{t}$. Now as in proposition 1 , section $1.1, h \sim h_{1}^{i}$ for some $l \leq i \leq 2 k$. Hence any two free $\mathbb{Z} 2 k+1$ - actions on K are weakly equivalent.

Section 2.2. $\mathbb{Z}_{2 p}$ - ACTIONS ON K
In this section we classify all $\mathbb{Z}_{2 p}-$ actions on the solid Klein bottle K, up to weak equivalence, where p is a prime number. The case $p=2$ is studied in [13], so we study here the case where p is an odd prime.

Our main result is the following

Theorem 1.
If $h: K \rightarrow K$ is a homeomorphism of period $2 p$ on K, p an odd prime, then $F(h)=\varnothing$ and $F\left(h^{2}\right)=\varnothing$ and h is weakly equivalent to one of the following period $2 p$ homeomorphisms on K depending on whether $F\left(h^{p}\right) \approx M, A$ or S^{1} respectively:
$h_{1}([z, t])=\left[-z, t+\frac{p-2}{p}\right], \quad F\left(h_{1}^{p}\right) \approx$ Mobius band M $h_{2}([z, t])=\left[\bar{z}, t+\frac{p-1}{p}\right], \quad F\left(h_{2}^{p}\right) \approx$ Annulus A $h_{3}([z, t])=\left[-z, t+\frac{p-1}{p}\right], \quad F\left(h_{3}^{p}\right) \approx s^{1}$. The rest of this section is devoted to the proof of theorem 1 .

Let $h: K \rightarrow K$ be of period $2 p$. Since $\left(h^{2}\right)^{p}=1 d$, h^{2} is of period p on K. since K is a homology 1-sphere, then [4] gives that $F\left(h^{2}\right)$ is a homology r-sphere, where $r \leq 1$ and $1-r$ is even. Hence r is either -1 or 1 . $p \neq 2$, so $F\left(h^{2}\right)$ is either \varnothing or $\approx S^{1}$. Note that $F(h) \subseteq F\left(h^{2}\right)$. If $F\left(h^{2}\right)=\varnothing$, then $F(h)=\varnothing$. If $F\left(h^{2}\right) \approx s^{1}$, then since h is an involution on $F\left(h^{2}\right) \approx S^{1}$, it follows from Smith [15] that $F(h)$ is a homology r-sphere, $r \leq 1$. Hence $r=-1,0,1$ i.e $F(h)$ is one of the sets: $\varnothing, s^{0}, s^{1}$. So we consider the following cases:

Case 1: $F\left(h^{2}\right)=\varnothing$, hence $F(h)=\varnothing$.
Case 2: $F\left(h^{2}\right) \approx S^{1}$ and $F(h)$ is \varnothing, S^{0} or $\approx s^{1}$.

Case 1: $F\left(h^{2}\right)=\varnothing$.
In this case h is determined up to weak equivalence by the $F\left(h^{p}\right)$. We prove the following

Proposition 2.

Let $h: K \rightarrow K$ be of period $2 p$ on K, p odd prime, with $F\left(h^{2}\right)=\varnothing$. Then h is weakly equivalent to one of the homeomorphisms h_{1}, h_{2}, h_{3} depending on whether $F\left(h^{p}\right) \approx M, A$ or $\approx S^{l}$ respectively. (The maps h_{1}, h_{2}, h_{3} are the ones in theorem l).

Proof of Proposition 2.
h^{p} is an involution on K, hence by [13] $F\left(h^{p}\right)$ is homeomorphic to one of the sets: I opt, $D^{2} \dot{U} I$, M, A, S^{1}. Since $F(h)=\varnothing$ and $F\left(h^{p}\right)$ is invariant under $h, F\left(h^{p}\right)$ cannot be $I \dot{u} p t$ or $D^{2} \dot{U} I$, otherwise in the first case $h(p t)=p t$ and $h(I)=I$ so h would have at least 2 fixed points. In the other case $h\left(D^{2}\right)=D^{2}$ and $h(I)=I$ and Brouwer fixed point theorem implies that h has at least 2 fixed points. Hence $F\left(h^{p}\right)$ is homeomorphic to one of the sets M, A or S^{1}. The map h induces a homeomorphism h^{-}of period p on $K /\left\langle h^{p}\right\rangle$ defined by $h^{-} q=q h$ where $q: K \rightarrow K /\left\langle h^{p}\right\rangle$ is the orbit map. Note that $\left\langle h^{-}\right\rangle$acts freely on $K /<h^{p}>$. From $[13]$ if $F\left(h^{p}\right) \approx S^{l}$ or M, then $K /<h^{p}>\approx K$ and if $F\left(h^{p}\right) \approx A$, then $K /\left\langle h^{p}\right\rangle \approx D^{2} x S^{1}$, the solid torus.

Now, we show that any homeomorphism h of period 2 p with $F\left(h^{2}\right)=\varnothing$ is weakly equivalent to one of the homeomorphism h_{1}, h_{2}, h_{3}.
(i) Assume $F\left(h^{p}\right) \approx M$. We show that h is weakly equivalent to h_{1}. Note that $F\left(h_{1}\right)=F\left(h_{1}^{2}\right)=\varnothing$ and $K /<h_{l}^{\mathrm{P}}>\approx \mathrm{K}, \quad$ also since $\mathrm{F}\left(\mathrm{h}^{\mathrm{p}}\right) \approx \mathrm{M}, \quad \mathrm{K} /<\mathrm{h}^{\mathrm{p}}>\approx \mathrm{K}$. The induced maps h_{1}^{-}and h^{-}are free on $K /<h_{1}^{p}>$ and
 h^{-}and h^{-}are free of odd period p it follows from
lemma 2, Section 2.1 that $\left(K /\left\langle h_{1}{ }^{p}\right) /\left\langle h_{1}^{-}\right\rangle \approx K\right.$ and that $\left(\mathrm{K} /\left\langle\mathrm{h}^{\mathrm{p}}\right\rangle\right) /\left\langle\mathrm{h}^{-}\right\rangle \approx \mathrm{K}$. Let $\mathrm{K}_{1}=\mathrm{K} /\left\langle\mathrm{h}_{1}^{\mathrm{p}}\right\rangle$ and $\mathrm{K}_{2}=$ $K /\left\langle h^{p}\right\rangle$. Let $q_{1}: K \rightarrow K_{1}, q_{2}: K_{1} \rightarrow K_{1} /\left\langle h_{1}^{-}\right\rangle \approx K /\left\langle h_{1}\right\rangle$, $\mathrm{q}: \mathrm{K} \rightarrow \mathrm{K}_{2}$ and $\mathrm{q}^{\prime}: \mathrm{K}_{2} \rightarrow \mathrm{~K}_{2} /\left\langle\mathrm{h}^{-}\right\rangle \sim \mathrm{K} /\langle\mathrm{h}\rangle$ be the orbit maps. Since h_{l}^{p} and h^{p} are involutions, $q_{1}\left(F\left(h_{1}{ }^{p}\right)\right)=$ M_{1} is a Mobius band in $\partial\left(K_{1}\right)$ and $q\left(F\left(h^{p}\right)\right)=M_{2}$ is a Mobius band in $\partial\left(K_{2}\right) . F\left(h_{1}\right)$ is invariant under h_{1} and $F\left(h^{p}\right)$ is invariant under h, hence M_{1} and M_{2} are invariant under h_{1}^{-}and h^{-}respectively. Since $\partial\left(K /<h_{1}>\right)$ and $\partial(K /<h>)$ are 2 -dim Klein bottles, $q_{2}\left(M_{1}\right)$ and $q_{2}^{\prime}\left(M_{2}\right)$ are Mobius bands in $\partial\left(K /<h_{1}>\right)$ and $\partial(K /<h>)$ respectively.
$h_{1}{ }^{p}$ is an involution on K so by [9] and [10] a a meridional disk D in K which is invariant under $h_{1}{ }^{p}$. Cut K along D we obtain $K^{\prime} \approx D^{2} x I$ and by [g] $h_{l}^{p} / K^{\prime} \sim f, f(z, t)=(\bar{z}, 1-t)$. Let \bar{D} be an $h_{1}{ }^{p}$ invariant disk in K^{\prime}, then $q_{1}(\bar{D})=E_{1}$ is a meridional disk in K_{1}. h^{-}acts freely on K_{1} so $E_{1}, h_{1}^{-}\left(E_{1}\right), \ldots, h_{1}^{p-1}\left(E_{1}\right)$ are mutually disjoint. Hence $q_{2}\left(E_{1}\right)$ is a disk in $K /<h_{1}>$. Similarly for h^{p} we obtain E and $q^{\prime}(E)$ meridional disk in $K /\langle h\rangle$. Let $c_{1}=\partial\left(q_{2}\left(E_{1}\right)\right), \quad c=\partial\left(q^{\prime}(E)\right)$ and $e_{1}=\partial\left(q_{2}\left(M_{1}\right)\right)$, $e=\partial\left(q^{\prime}\left(M_{2}\right)\right) . e_{1}$ and e separate $\partial\left(K /<h_{1}>\right)$ and $\partial(K /<h>)$ respectively each into two Mobius bands. Also c_{1} and e_{1} meet in 2 points so do c and e.

Note that $\partial\left(K /\left\langle h_{1}\right\rangle\right)-c_{1}-e_{1}$, and $\partial(K /\langle h\rangle)-c-e$ each consists of two open rectangles. Now let $t_{1}: c_{1} u e_{1} \Re$ cue and extend t_{1} to $t_{2}: \partial\left(K /<h_{1}>\right) \rightarrow \partial(K /<h>)$ such that $t_{2} q_{2}\left(M_{1}\right)=q^{\prime}\left(M_{2}\right)$. Then extend to t_{3} on $q_{2}\left(E_{1}\right)$, finally acerose the open 3 -cell $K /<h_{1}>-$ $\partial\left(K /<h_{1}>\right)-q_{2}\left(E_{1}\right)$. The final map is a homeomorphism $t: K /\left\langle h_{1}\right\rangle \rightarrow K /\langle h\rangle$ with $t\left(q_{2}\left(M_{1}\right)\right)=q^{\prime}\left(M_{2}\right)$.

$\left\langle h^{-}\right\rangle$and $\left\langle h^{-}\right\rangle$are free so q_{2} and q^{\prime} are $p-$ covering projections and since $\pi_{1}(K) \cong \mathbb{Z}$ has a unique normal subgroup of index p, t can be lifted to a homeomorphism $\bar{t}: K_{1} \rightarrow K_{2}$ such that $t q_{2}=q^{\prime} \bar{t}$ and $\bar{t}\left(M_{1}\right)=M_{2}$. Now q_{1} is a double cover: $K-F\left(h_{1}^{p}\right) \rightarrow$ $K_{1}-M_{1}$ and q a double covering projection: $K-F\left(h^{p}\right) \rightarrow K_{2}-M_{2}$. But $\pi_{1}\left(K_{1}-M_{1}\right) \cong \mathbb{Z}, \bar{t}$ can be lifted to $\overline{\bar{t}}: K-F\left(h_{1}^{p}\right) \rightarrow K-F\left(h^{p}\right)$.

By continuity $\overline{\bar{t}}$ can be extended to all of K. So $q \overline{\bar{t}}=\overline{\mathrm{t}} \mathrm{q}_{1}$. Now as in the proof of lemma 4, section 1.2 we see that $h \sim_{w} h_{1}$.
(ii) Assume $F\left(h^{p}\right) \approx A$, an annulus. We show that $h \sim_{W} h_{2}$. Note that $F\left(h_{2}\right)=F\left(h_{2}^{2}\right)=\varnothing, K /\left\langle h_{2}{ }^{p} \quad D^{2} \times S^{1}\right.$, a solid torus. Similarly $K /\left\langle h^{\mathrm{P}}\right\rangle \approx \mathrm{D}^{2} \times \mathrm{S}^{1}$. Since h_{2}^{-} and h^{-}act freely on $K /\left\langle h_{2}{ }^{\mathrm{P}}\right.$, and $K /\left\langle h^{\mathrm{P}}\right\rangle^{\text {respectively }}$ and p is odd, then by [7] $K_{1} /\left\langle h_{2}^{-}\right\rangle \approx D^{2} \times S^{1}$ and $K_{2} /\left\langle h^{-}\right\rangle \approx D^{2} \times S^{1}$, notations as in (i) above. h_{2}^{p} and h^{p} are involutions imply that $q_{1}\left(F\left(h_{2}^{p}\right)\right)=A_{1}$ and $q\left(F\left(h^{p}\right)\right)=A_{2}$ are annuli in ∂K_{1} and ∂K_{2} respectively. As in (i) $q_{2}\left(A_{1}\right)$ and $q^{\prime}\left(A_{2}\right)$ are annuli in $\partial\left(K /<h_{2}>\right)$ and $\partial(K /<h>)$ the lathers are homeomorphic to $S^{1} \times s^{1}$. h_{2}^{-}and h^{-}free imply that q_{2} and q^{\prime} are p-covering projections. Note that $\mathrm{K}_{1} /\left\langle\mathrm{h}_{2}^{-}\right\rangle \approx \mathrm{K} /\left\langle\mathrm{h}_{2}\right\rangle$ and $\mathrm{K}_{2} /\left\langle\mathrm{h}^{-}\right\rangle \approx$ $\mathrm{K} /<\mathrm{h}>$. Hence $\left.\mathrm{K} /<\mathrm{h}_{2}>\approx \mathrm{D}^{2} \times \mathrm{s}^{1} \approx \mathrm{~K} /<\mathrm{h}\right\rangle$. As in (i) there are meridional disks. E_{1} and E in K_{1} and K_{2} respectively such that $q_{2}\left(E_{1}\right)$ and $q^{\prime}(E)$ are meridional disks in $K /<h_{1}>$ and $K /<h>$ respectively.

Let $c_{1}=\partial\left(q_{2} E_{1}\right) \cap q_{2} A_{1}, \quad c_{1}^{\prime}$ the complement of c_{1} in $\partial\left(q_{2} E_{1}\right), \quad c_{2}=\partial\left(q^{\prime} E\right) \cap q^{\prime} A_{2}, \quad c_{2}^{\prime}$ its complement in $\partial\left(q^{\prime} E\right)$. Let $t: c_{1} \rightarrow c_{2}$ be a homeomorphism. Extend t to a homeomorphism: $q_{2}\left(A_{1}\right) \rightarrow q^{\prime}\left(A_{2}\right)$ then on c_{1}^{\prime} on to c_{2}^{\prime}, then on $q_{2} E_{1}$ on to $q^{\prime} E$, next on the open rectangle $\partial\left(K /<h_{1}>\right)-q_{2} A_{1}$ on to $\partial(K /\langle h\rangle)$ -
$q^{\prime}\left(A_{2}\right)$, finally across the remaining $3-c e l l$ in $K /<h_{1}>$. Still call the new homeomorphism t. Note that $t\left(q_{2} A_{1}\right)$ $=q^{\prime} A_{2}$. As in (i) lift t to $\bar{t}: K_{1} \rightarrow K_{2}$ such that $q^{\prime} \bar{t}=t q_{2}$. Since $\pi_{1}\left(K_{1}-A_{1}\right) \cong \pi_{1}\left(K_{2}-A_{2}\right) \cong \mathbb{Z}$ lift \bar{t} to $\bar{t}: K-F\left(h_{2}^{p}\right) \rightarrow K-F\left(h^{p}\right)$, by continuity extend $\overline{\bar{t}}$ on all of K. So $q \overline{\bar{t}}=\bar{t} q_{1}$ on K. Hence as in (i) $h \sim h_{2}$.
(iii) Assume $F\left(h^{p}\right) \approx S^{1}$. We show that $h \sim_{w} h_{3}$. We use the same notations of (i). By [13] $K_{1} \approx K \approx K_{2}$, where $K_{1}=K /\left\langle h_{3}^{p}\right\rangle, \quad K_{2}=K /\left\langle h^{p}\right\rangle . \quad q_{1}\left(F^{p}\left(h_{3}^{p}\right)\right)=c_{1}$ and $q\left(F\left(h^{p}\right)\right)=c_{2}$ are simple closed curves in the interiors of K_{1} and K_{2} respectively. By lemma 2 (section 2.1) $\mathrm{K}_{1} /\left\langle\mathrm{h}_{3}^{-}\right\rangle \approx \mathrm{K} \approx \mathrm{K}_{2} /\left\langle\mathrm{h}^{-}\right\rangle . \quad \mathrm{q}_{2} \mathrm{C}_{1}$ and $\mathrm{q}^{\prime} \mathrm{c}_{2}$ are s.c.c in the interiors of $K /<h_{3}>$ and $K /<h>$ respectively. Let $\mathrm{t}: \mathrm{K} /\left\langle\mathrm{h}_{3}>\rightarrow \mathrm{K} /\langle\mathrm{h}\rangle\right.$ be a homeomorphism mapping $\mathrm{q}_{2}\left(\mathrm{c}_{1}\right)$ on to $q^{\prime}\left(c_{2}\right)$. As in (1) lift t to $\bar{t}: K_{1} \rightarrow K_{2}$ mapping c_{1} on to c_{2} and $q^{\prime} \bar{t}=t q_{2}$. By [13] $F\left(h_{3} p\right.$) and $F\left(h^{p}\right)$ are the "cores" of K, so c_{1} and c_{2} are the cores of K_{1} and K_{2} respectively. Hence $\pi_{1}\left(K_{1}-c_{1}\right) \cong \pi_{1}\left(K^{2}\right), K^{2}$ the 2 -dim Klein bottle. $\pi_{1}\left(K^{2}\right)$ has a unique normal subgroup of index 2 corresponding to K^{2} [14]. So we can lift \bar{t} to $\overline{\bar{t}}$: $K-F\left(h_{3}^{p}\right) \rightarrow K-F\left(h^{p}\right)$. As in (i) we conclude that h is weakly equivalent to h_{3}.

This completes the proof of proposition 2.
This takes care of case 1.

Case 2. $F\left(h^{2}\right) \approx S^{1}$ and $F(h)=\varnothing$ or S^{0} or $\approx S^{1}$.
We consider the following 3 subcases:
Subcase 2.1. $F\left(h^{2}\right) \approx S^{1}$ and $F(h) \approx S^{0}$.
We show that this case cannot happen.

Proposition 3.
There is no homeomorphism h of period $2 \mathrm{p}, \mathrm{p}$ odd prime, on K with $F\left(h^{2}\right) \approx S^{1}$ and $F(h) \approx S^{0}$. Proof
h^{P} is an involution on K. Hence by [13] $F\left(h^{p}\right)$ is homeomorphic to one of the rents: I $\dot{U} p t, D^{2} \dot{U} I$, M, A, S^{1}. Note that $F(h) \subset F\left(h^{p}\right)$. If $F\left(h^{p}\right) \approx M$, A or S^{1}, then $F\left(h^{p}\right)$ is a homology l-sphere. Since $F\left(h^{p}\right)$ is invariant under h, h is a period p homeomorphism on $F\left(h^{p}\right)$. Hence by [4] $F(h)$ is a homoloyg r-sphere with $r \leq 1$ and $l-r$ is even. So $r=-1$ or 1 , ie $F(h)$ is either \varnothing or $\approx S^{1}$ contradicting our assumption that $F(h) \approx S^{0}$. So $F\left(h^{p}\right)$ cannot be M, A or S^{1}. If $F\left(h^{p}\right) \approx D^{2} \dot{U} I$, then since $h\left(F\left(h^{p}\right)\right)=F\left(h^{p}\right), h\left(D^{2}\right)=D^{2}$ and $h(I)=I$. So h has one fixed point in D^{2} and one fixed point x in I. So h must interchange the sides of I - x and since p is odd h^{p} interchanges the sides of $I-x$ contradicting the fact that $I \subseteq F\left(h^{p}\right)$. Hence $F\left(h^{p}\right) \not \approx$ $D^{2} \dot{U} I$. Finally if $F\left(h^{p}\right) \approx I \dot{U} p t$, then since $F\left(h^{p}\right)$ is invariant under h, we have $h(I)=I$ so h must have
a fixed point in I. We get a contradiction as above.

Subcase 2.2. $F\left(h^{2}\right) \approx S^{1}$ and $F(h) \approx S^{1}$.
Note that $F(h)=F\left(h^{2}\right) \cap F\left(h^{p}\right)$ and h^{p} is an involution on K. Since $F\left(h^{p}\right)$ is invariant under h and $F(h) \approx S^{1}, F\left(h^{p}\right)$ cannot be 2-dimensional, otherwise h must interchange the two components of $U-F(h)$, where $\quad U \subset F\left(h^{p}\right)$ is a small neighborhood of x in $F(h)$ and since p is odd this implies that h^{p} interchanges the two components of $u-F(h)$ contradicting the fact that $U \subset F\left(h^{p}\right)$. So $F\left(h^{p}\right)$ cannot be $D^{2} \dot{U} I, M$ or A. Since $F(h) \subset F\left(h^{p}\right)$ and $F(h) \approx S^{1}, F\left(h^{p}\right)$ cannot be $\approx I$ upt. Hence the only possibility is the $F\left(h^{p}\right) \approx S^{1}$. So now we have $F(h)=F\left(h^{i}\right) \approx S^{1}$ for all $1<i<2 p$. We shall show that this cannot happen.

First we show the following:

Lemma 4.
If there exists a homeomorphism $h: K \rightarrow K$ of period 2p, p odd prime, with $F(h) \approx s^{l}$, then $K /<h>\approx K$.

Proof

h induces an orientation preserving homeomorphism h^{\sim} on the orientable double cover $D^{2} x S^{1}$ of K with period $2 p$ and $q h^{\sim}=h q$ where $q: D^{2} \times S^{l} \rightarrow K$ is the covering projection. By definition of $h^{\sim}, F\left(h^{\sim}\right) \neq \varnothing$ and $F\left(h^{\sim}\right)=q^{-1}(F(h))$. By $[7] F\left(h^{\sim}\right) \approx s^{1}$ and $F\left(h^{\sim}\right)=$ $F\left(h^{\sim i}\right), \quad 1<i<2 p$. Hence $h^{\sim p}$ is an involution on
$D^{2} \times S^{1}$ with fixed point set a simple closed curve. Tollefson [ll] shows that if an orientation preserving homeomorphism f on $D^{2} x S^{1}$ has a simple closed curve as its fixed point set, then f is equivalent to a rotation about the core $0 \times S^{1}$ of $D^{2} \times s^{1}$. In particular $F(f)=0 \times S^{1}$ ie it is unknotted. So $F i x\left(h^{p}\right)=0 \times S^{1}$ and since $F\left(h^{\sim}\right)=F\left(h^{\sim}\right), F\left(h^{\sim}\right) \approx$ $0 \times s^{1}$. Hence by [7] $D^{2} \times S^{1} /<h^{\sim}>D^{2} \times s^{1}$. Now consider the diagram

where $B=K /\langle h\rangle, q: K \rightarrow B$ the orbit map, $\tilde{q}:$ $D^{2} \times S^{1} \rightarrow D^{2} \times S^{1}$ the orbit map of $D^{2} \times S^{1}$ and $\mathrm{p}: \mathrm{D}^{2} \times \mathrm{S}^{1} \rightarrow \mathrm{~K}$ the covering projection of the orientable double cover $D^{2} \times S^{1}$ of $K . P^{\prime}: D^{2} \times S^{l} \rightarrow B$ is defined by $p^{\prime} \tilde{q}=q p$. Since $q \mid(K-F(h))$ is a $2 p-$ sheeted cover of $B-q(F(h))$ and $\tilde{q} \mid\left(D^{2} \times S^{1}-F\left(h^{\sim}\right)\right)$ is a $2 \mathrm{p}-\mathrm{cover}$ of $\mathrm{D}^{2} \mathrm{x} \mathrm{S}^{1}-\tilde{q}\left(\mathrm{~F}\left(\mathrm{~h}^{\sim}\right)\right)$ and since p is a covering map, then given $b \in B-q(F(h))$ we can find an open neighborhood V_{b} such that $p^{\prime-1}\left(V_{b}\right)=U_{1} \dot{U} U_{2}$ with
U_{i} open and $p^{\prime}\left(U_{i}\right) \approx V_{b}, i=i, 2$. Note also that $F\left(h^{\sim}\right)$ is a double cover of $F(h)$ and $q(F(h)) \approx F(h)$ and $\tilde{q}\left(F\left(h^{\sim}\right)\right) \approx F\left(h^{\sim}\right)$. Hence $D^{2} \times S^{l}$ double covers B. Since B is non orientable and $\partial B=K^{2}$ and is double covered by $D^{2} \times S^{1}, \quad B \approx K$.

The proof of lemma 4 can be used to prove the following: Corollary 5.

If $h: K \rightarrow K$ is a homeomorphism of period n, where n is an odd integer, with $F(h)$ a imple closed curve \approx core of K, then $K /\langle h\rangle \approx K$.

Proof

Since n is odd and $F(h) \approx S^{1}$, then by the remark following lemma 1 , section 2.1 , $F(h)=F\left(h^{i}\right)$ for all $1<i<n$. h induces h^{\sim} on $D^{2} x S^{l}$ with $F\left(h^{\sim}\right) \approx S^{1} \approx 0 \times S^{1}$, the core of $D^{2} \times S^{l}$. Now proceed as in the proof of lemma 4.

Since $F(h)=F\left(h^{i}\right) \approx S^{1}, F\left(h^{p}\right) \approx s^{l}$ and since
h^{p} is an involution on $K, F\left(h^{p}\right) \approx$ core of K. So we can assume that $F(h)=$ core of $K, q(F(h))=$ core of $\mathrm{K} /\langle\mathrm{h}\rangle \approx \mathrm{K}$.

Now h^{2} is of period p and $F\left(h^{2}\right) \approx s^{l}$ and by the above remark $F\left(h^{2}\right)=$ core of K. Hence to be done with this subcase we prove the following

Proposition 6.

There is no homeomorphism $h: K \rightarrow K$ of period p, p an odd prime, with $F(h)=$ core of $K \approx S^{1}$.

Proof

Let $q: K \rightarrow K_{1}=K /\langle h\rangle$ be the orbit map. By corollary $4, K_{1} \approx K, \quad q(F(h))=$ Core of K_{1}.

Let \bar{D} be a meridional disk in $K /<h>$ such that $\bar{D} \cap q(F) \quad$ is a point (Note that $\underline{q}(F)$ is the core of K_{1}). $q^{-1}(\bar{D})$ is either one disk or n disks meeting at a common interior point. Note that $\partial K=\partial K_{1}=K^{2}$ the 2-dim Klein bottle. $q \mid K^{2}$ is a p- sheeted cover of $\partial K_{1}=K^{2}$. $\partial \bar{D}$ is a simple loop $\alpha: I \rightarrow K^{2}$. Let $e_{0}=$ $\alpha(0)=\alpha(1)$ and let $\tilde{e}_{0} \in q^{-1}\left(e_{0}\right)$. Let $a=[\alpha]$, and let β be an orientation reversing loop which meets α transversaly once at e_{0} and let $b=[\beta]$. So $\pi_{1}\left(\partial K_{1}, e_{0}\right)=\left\langle a, b \mid b a b^{-1}=a^{-1}\right\rangle . \pi_{1}\left(K^{2}\right)$ has a unique normal subgroup of index $p \cong \pi_{1}\left(K^{2}\right)$, hence $(q \mid \partial K)_{\#}^{\#}$ $\pi_{1}\left(\partial K, \tilde{e}_{0}\right)=\left\langle a^{p}, b \mid b a b^{-1}=a^{-1}\right\rangle$. Let $\eta: I \rightarrow K$ be a loop which wraps once around the component of $q^{-1}(\partial \bar{D})=$ $q^{-1}(\alpha)$ containing $\tilde{\mathbf{e}}_{0}$, with $\eta(0)=\eta(1)=\tilde{\mathbf{e}}_{0}$. Then $(q \mid \partial K)_{\#}([\eta])=a^{p}$ and so $q \mid \eta(I)$ covers $\alpha(I)=\partial \bar{D}$ in a p to 1 fashion. Hence $q^{-1}(\bar{D})$ is a meridional disk D in K. Since $h q^{-1}(\bar{D})=q^{-1}(\bar{D}), h(D)=D$ i.e D is invariant under h.

Now cut K along D and K_{1} along \bar{D} to obtain $D x I$ and $D_{1} x I$ respectively, where $D \approx D_{1} \approx D^{2}$,
the standard disk. $\partial(D x I)$ contains two copies D^{\prime} and $D "$ of D and $\partial\left(D_{1} x I\right)$ contains two copies \bar{D} and $\bar{D}{ }^{\prime \prime}$ of \bar{D}. Let e be an arc $\approx I$ in \bar{D} joining the center of $\bar{D}(=\bar{D} \cap q(F(h)))$ and $\partial \bar{D}$. So \bar{D} ' contains a copy e^{\prime} of e and $\bar{D} "$ contains another copy $e^{\prime \prime}$ of e. Let $F \subset D x$ be $F(h)$ after cutting K and $\bar{F} \subset D_{1} x I$ be $q(h(F))$ after cutting K_{1}. Let E be a disk in $D_{1} x$ I bounded by e^{\prime}, $e^{\prime \prime}$, \bar{F} and an arc in $\left(\partial D_{l}\right) x \quad I$ joining the point $e^{\prime} \cap \bar{D} \cdot$ and the point $e^{\prime \prime} \cap \bar{D}{ }^{\prime \prime}$. See the figure below

$q^{-1}(E)$ consists of p disks $E^{(i)}, i=1, \ldots, p$ having F as a common edge. Let $\ell^{\prime}{ }_{(i)}=E^{(i)} \cap D^{\prime}$ and $\ell^{\prime \prime}(i)=E^{(i)} \cap D^{\prime \prime}$ in $D x I . \quad \ell^{\prime}(i)$ and $\ell^{\prime \prime}(i)$ are pairwise disjoint arcs for all i joining F to ∂D^{\prime} and $\partial D^{\prime \prime}$ respectively. Let $B^{\prime}(i)$ be the part of D^{\prime} that lies between ℓ^{\prime} (i) and $\ell^{\prime}(i+1)$ and ∂D^{\prime}. Define $B^{\prime \prime}(i)$ similarly. See the figure below ($=3$).

The case $p=3$

Let ψ be the identification map of $D x I$ and ψ^{\prime} the identification map of $D_{1} x$ I. ψ^{\prime} identifies e^{\prime} with $e^{\prime \prime}$ and \bar{D}, with $\bar{D} \prime$ so that $D_{1} \times I / \psi^{\prime}=K_{1}$. So ψ identifies ℓ^{\prime} (i) with $\ell^{\prime \prime}$ (i), $i=1, \ldots, p$. So it must identify B^{\prime} (i) with $B^{\prime \prime}$ (i) for $i=1$, ... p. Hence ψ identifies D^{\prime} with $D^{\prime \prime}$ in an orientation preserving manner. Hence $D \quad x \quad I / \psi=D^{2} x S^{1}$. So K cannot be restored from $D \mathbf{x}$ I. But $D \times I / \psi$ must yield K.

Remark 7.
In the above proposition p may be replaced by any odd positive integer.

This follows from corollary 5, section 2.2 and lemma l section 2.1 and the proof of proposition 6. This completes subcase 2.2.

Now we handle the last subcase

Subcase 2.3. $F\left(h^{2}\right) \approx S^{1}$ and $F(h)=\varnothing$. Since h^{p} is an involution on K by [13] $F\left(h^{p}\right)$
is \approx IUpt, $D^{2} \dot{U} I, \quad M, A, \quad S^{1}$. As before, since $F(h)=\varnothing, F\left(h^{p}\right)$ cannot be $I \dot{U} p t$ or $D^{2} \dot{U} I$. So we are left with the 3 cases $F\left(h^{p}\right) \approx M, A, S^{l}$. We shall show that none of these cases is possible.

First we prove the following:

Lemma 8.
Let $F=F\left(h^{2}\right)$ and let $x_{0} \in F$. Let $i=F \rightarrow K$ be the inclusion map. Then image $\left(\pi_{1}\left(F, x_{0}\right) \xrightarrow{i *} \pi_{1}\left(K, x_{0}\right)\right)=$ $\pi_{1}\left(K, x_{0}\right)$ i.e F generates $\pi_{1}\left(K, x_{0}\right)$.

Proof

We follow here a method of proof used by Conner and Raymond [2]. Let $f=h^{2}$. Let (K *, q) be the universal cover of K and let $\tilde{x}_{0} \in q^{-1}\left(x_{0}\right)$. Note that $h^{2}=f$ is of period p on K. Lift the \mathbb{Z} paction of f on K to a $\mathbb{Z} \underset{p}{ }$ action on K^{*}. From covering space theory f induces \tilde{f} on K^{*} with period p and $q \tilde{f}=f q$. Let $E=F(\tilde{f})$. From smith theory E is connected and acyclic and since E is connected, $q(E)=F . \quad$ Let $\alpha \in \pi_{1}\left(K, x_{0}\right)$
and let $\lambda(t)$ be a loop in K based at x_{0} representing α. Lift $\lambda(t)$ into a covering path $\hat{\lambda}(t)$ with $\hat{\lambda}(0)=\tilde{x}_{0}$ and $\hat{\lambda}(1)=\alpha\left(\tilde{x}_{0}\right) \in E \quad(f \circ r$ $q \alpha=q$ implies $q\left(\alpha\left(\tilde{x}_{0}\right)\right)=q\left(\tilde{x}_{0}\right)=x_{0}, \quad \tilde{f} \alpha=\alpha \tilde{f}$ implies $\tilde{f} \alpha\left(\tilde{x}_{0}\right)=\alpha \tilde{f}\left(\tilde{x}_{0}\right)=\alpha\left(\tilde{x}_{0}\right)$, hence $\left.\alpha\left(\tilde{x}_{0}\right) \in E\right)$. a a path $\hat{\lambda}^{\prime}(t)$ in E with $\hat{\lambda}^{\prime}(0)=\tilde{x}_{0}$ and $\hat{\lambda}^{\prime}(1)=\hat{\lambda}(1)=\alpha\left(\tilde{x}_{0}\right)$.

Then

$$
\psi(t)= \begin{cases}\hat{\lambda}(2 t) & 0 \leq t \leq \frac{1}{2} \\ \hat{\lambda}^{\prime}(2-2 t) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

is a loop based at $\tilde{\mathbf{x}}_{0}$ representing $[\psi] \in \pi_{1}\left(K *, \tilde{\mathbf{x}}_{0}\right)=$ 0. But $q\left(\hat{\lambda}^{\prime}(t)\right.$) represents $\beta \in \pi_{1}\left(F, x_{0}\right)$ (for $q\left(\hat{\lambda}^{\prime}(0)\right)=q\left(\tilde{x}_{0}\right)=x_{0}, q\left(\hat{\lambda}^{\prime}(1)\right)=q(\hat{\lambda}(1))=q\left(\alpha\left(\tilde{x}_{0}\right)\right)$ $=q\left(\tilde{x}_{0}\right)=x_{0}, \quad \hat{\lambda}^{\prime} \subset E$ implies $\left.q\left(\hat{\lambda}^{\prime}(t)\right) \subset F\right)$ and $[\psi]=0$ implies $\beta=\alpha$ in $\pi_{1}\left(K, x_{0}\right)$, for $\hat{\lambda} \sim \hat{\lambda}^{\prime}$ implies $q(\hat{\lambda})=q\left(\hat{\lambda}^{\prime}\right)$ ie $\quad \alpha=\beta$.

Now we are ready to handle the remaining cases for $F\left(h^{p}\right)$.
(i) $F\left(h^{p}\right) \approx S^{1}$. From Chapter 1 , section 1.2, we wee that $F\left(h^{p}\right)$ and $F\left(h^{2}\right)$ are in the interior of K which has \mathbb{R}^{3} as a universal cover. h^{p} induces an involution α on \mathbb{R}^{3} with $q \alpha=h^{p} q$, where $q: \mathbb{R}^{3} \rightarrow \operatorname{Int}(K)$ is the covering projection. since
$\pi_{1}\left(F\left(h^{p}\right), x\right) \cong \pi_{1}(K, x) \quad($ lemma 8$), F(\alpha) \approx \mathbb{R} . \quad$ Let $\bar{F}=q^{-1}\left(F\left(h^{2}\right)\right)$. By lemma 8 we obtain the fact that $\bar{F} \approx \mathbb{R}$. Since $F\left(h^{2}\right) \cap F\left(h^{p}\right)=F(h)=\varnothing, \quad F(\alpha) \cap \bar{F}=\varnothing$, otherwise $\tilde{x} \in F(\alpha) \cap \bar{F}$ would imply $p(\tilde{x}) \in F\left(h^{p}\right) \cap F\left(h^{2}\right)$. It is easy to see that $\alpha(\bar{F})=\bar{F}$. Hence α is an involution on $\mathbb{R}^{3}-\bar{F} \approx \mathbb{R}^{3}-\mathbb{R}$. By Alexander's duality theorem [3] we have $\tilde{H}_{i}\left(\mathbb{R}^{3}-\mathbb{R}\right)=H_{i}\left(S^{3}-S^{1}\right)$. But $H_{r}\left(S^{3}-S^{1}\right)=0$ for $r>1$ and \mathbb{Z} for $r=0,1$. In other words $\mathbb{R}^{3}-\mathbb{R} \approx \mathbb{R}^{3}-\bar{F}$ is a homology l-sphere. Now $F(\alpha) \subseteq \mathbb{R}^{3}-\bar{F}$ is a homology r-sphere with $r=-1,0,1$ by $[15]$. That is $F(\alpha)$ is a homology 1-sphere, s^{0}, \varnothing. But $F(\alpha) \approx \mathbb{R}$ has the homology of a point. This contradiction shows that $F\left(h^{p}\right)$ cannot be $\approx s^{1}$.
(ii) $F\left(h^{p}\right) \approx A$, an annulus. By [9] and [10] a an h^{p} - invariant meridional disk D embedded in K and D in general position with respect to $F\left(h^{p}\right)$. So $F\left(h^{p}\right) \cap D$ is a properly embedded arc I in D. Cut K along D to obtain a component $U \approx D^{2} x I$ and U contains two copies of D, say D^{\prime} and $D^{\prime \prime}$ each contains a copy of I, say $I^{\prime} \subset D^{\prime}$ and $I^{\prime \prime} \subset D^{\prime \prime}$. Let F be $F\left(h^{p}\right)$ after cutting $K . F \cap D^{\prime}=I^{\prime}$ and $F \cap D^{\prime \prime}=I^{\prime \prime}$. By Brown [l] F is an unknotted disk in U. Let \bar{F} be the image of $F\left(h^{2}\right)$ in U. Since $F\left(h^{2}\right) \cap F\left(h^{p}\right)=\varnothing, \quad \bar{F} \cap F=\varnothing . \quad K$ is obtained from U by identifying $(x, 0)$ in D^{\prime} with $(\varnothing(x), l)$ in $D^{\prime \prime}$
where \varnothing is an orientation reversing homeomorphism $D^{\prime} \rightarrow D^{\prime \prime}$. But $\bar{F} \cap F=\varnothing$ so in order to obtain $F\left(h^{2}\right)$ we have to let \bar{F} travel twice around K, otherwise $F\left(h^{2}\right) \cap F\left(h^{p}\right) \neq \varnothing$. But \bar{F} under the identification must be $F\left(h^{2}\right)$, but it is not, it is $2 F\left(h^{2}\right)$. Since $F\left(h^{2}\right)$ generates $\pi_{1}(K, x)$, lemma 8 , this cannot happen. Hence $F\left(h^{p}\right)$ cannot be A.
(iii) $F\left(h^{p}\right) \simeq M, M o b i u s$ band. As in (ii) this cannot occur.

This completes case 2 and finishes the proof of Theorem 1.

Section 2.3. SEMI-FREE ACTIONS ON K

In this section we study the semi-free actions on the solid Klein bottle K. We state our results in the following.

Theorem 1.
Let $h: K \rightarrow K$ be a periodic homeomorphism of period n acting semi-freely on K.

Then
(1) There is no such h if n is even and $n>2$.
(2) There are 5 such h up to equivalence if $n=2$.
(3) There is no such h if n is odd and $F(h)=$ "core" of K.
(4) There is a unique such h, up to weak
equivalence if n is odd and $F(h)=\varnothing$.

Proof

Case 1. n is odd, of course $n>1$.
By lemma 1, section 2.1, $F(h)$ is either \varnothing or a simple closed curve $\approx S^{1}$. If $F(h)=\varnothing$, then by definition of $h, F\left(h^{i}\right)=\varnothing$ for all $1 \leq i<n$. Hence <h> acts freely on K. By proposition 3, section 2.1, h is weakly equivalent to h_{1}, where $h_{l}: K \rightarrow K$ is defined by $h_{l}([z, t])=\left[z, t+\frac{n-1}{n}\right]$. This proves (4).

If $F(h) \approx S^{1}$, then $F\left(h^{i}\right) \approx S^{1}, \quad 1 \leq i<n$. If $F(h)=$ core of K, i.e $F\left(h^{i}\right)$ is unknotted then by remark 7 , section 2.2 , such an h doesn't exist.

This proves (3).
Case 2. n is even.
If $n=2$, then h is an involution on K. All involutions on K are classified up to equivalence in [13]. In fact, there are 5 such involutions, up to equivalence, distinguished by their fixed point sets.

If n is even >2, then n has one of the two forms $: n=2^{\alpha}, \alpha>1$ or $n=2^{\alpha} m$, m is an odd positive integer.

$$
\text { If } n=2^{\alpha}, \alpha \text { positive integer }>1, \text { then by [13] }
$$

such an h doesn't exist.

Finally, $n=2{ }^{\alpha} \mathrm{m}, \mathrm{m}$ positive integer >1.
If $F(h)=\varnothing$, then this cannot happen, otherwise since
h acts semi-freely, $F\left(h^{\frac{n}{2}}\right)=\varnothing$. But $h^{\frac{n}{2}}$ is an involution on K and by [l3] there is no involution on K with empty fixed point set.

Now, assume $F(h) \neq \varnothing$. Since $h^{2^{\alpha}}$ has an odd
period m, lemma 1 , section 2.1 gives $F\left(h^{2^{\alpha}}\right) \approx s^{1}$ and since h acts semi-freely on $K, F(h) \approx S^{1}$. Hence $F\left(h^{i}\right)=F(h) \approx S^{l}$ for all $l<i<n$. Since n is even $F(h)=$ core of K. Now we have $h^{2^{\alpha}}$ is a homeomorphism of odd period with fixed point set $\approx s^{l}=$ core of K. But this cannot occur by remark 7, section 2.2. This yields (1) and finishes the proof.

BIBLIOGRAPHY
[1] E. M. Brown, Unknotting in $M^{2} x$ I, Trans. Amer. Math. Soc. 123 (1966), 480-505.
[2] P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of manifolds, Markham Publishing Company/ Chicago, 1969, 227-264.
[3] A. Dold, Lectures on Algebraic Topology, 2ndedition, 1980, page 304, Springer-Verlag.
[4] E. E. Floyed, On periodic maps and the Euler characteristic of associated spaces, Trans. Amer. Math. Soc. 72 (1952), 138-147.
[5] J. Hemple, 3-manifolds, Ann. of Math. Studies 86, Princeton University Press, Princeton, New Jersey, 1976.
[6] S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
[7] P. K. Kim, Cyclic actions on lens spaces, Trans. Amer. Math. Soc. 237 (1978), 121-144.
[8] \qquad , Involutions on Klein spaces $M(p, q)$, Trans. Amer. Math. Soc. 268 (1981), 377-409.
[9] P. K. Kim and J. L. Tollefson, PL involutions of fibered 3-manifolds, Trans. Amer. Math. Soc. 232 (1977), 221-237.
[10] \qquad involutions on nonprime 3-manifolds, Michigan Math. J. 27 (1980), 259-274.
[ll] W. S. Massey, Algebraic Topology: An Introduction, Springer-Verlag, GTM \#56, 1967.
[12] M. A. Natsheh and F. Abudiak, PL involutions of the Klein bottle, Iraqi J. Sci. 21 (1980), 251-258.
[13] Rafael Martinez Planell, PL homeomorphisms of period 2^{n} of the solid Klein bottle, Thesis, Michigan State University, East Lansing, Michigan, 1983 .
[14] J. E. Quinn, Equivalence of Tubular Neighborhoods, Thesis, Michigan State University, East Lansing, Michigan, 1970 .
[15] P. A. Smith, Fixed points of periodic transformations, Appendix Bin Solomon Lefschetz's Algebraic Topology, New York, 1942 (Amer. Math. Soc. Colloquium Publications, Vol. 27).
[16] \qquad , Periodic transformation of 3-manifolds, Illinois J. of Math. 9 (1965), 343-348.
[17] J. L. Tollefson, Involutions on $S^{1} x S^{2}$ and other 3-manifolds, Trans. Amer. Math. Soc. 183 (1973), 138-152.

