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ABSTRACT

Z 2p - ACTIONS ON THE 2-DIMENSIONAL

AND THE SOLID KLEIN BOTTLES

BY

Fawaz Mohammad Abudiak

In this thesis PL homeomorphisms of periods p

and 2p are classified on both the 2—dimensional Klein

bottle K2 and the solid Klein bottle K, where p

is an odd prime number.

It is shown that up to weak equivalence there is

only one class of homeomorphisms of period p on K2

and only three equivalence classes of homeomorphisms

of period 2p on K2, distinguished by the fixed point

. th

sets of their p powers.

Also, free cyclic actions of odd period are class-

ified on K as well as cyclic actions of period 2p.

In the first case it is shown that, up to weak equival-

ence, only one such action exists, while in the second

case there are three such homeomorphisms, distinguished

by the fixed point sets of their pth power.



Finally, semi-free action on K are classified

for any finite period n. It is shown that these

exist only for n equals two and for all odd values

of n such that F(hn) = a.
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INTRODUCTION

Let X and X' be topological spaces. Two

homeomorphisms h and g on X and X' respectively

are said to be weakly equivalent (written h mm 9) if

there exists a homeomorphism t :X + X' such that

t-lgt = hl for some positive integer i # 1.

All maps and spaces considered in this thesis are

in the piecewise linear category.

In this thesis we classify piecewise linear homeo-

morphisms of periods p and 2p, p an odd prime, on

both the 2-dim and the solid Klein bottles.

Chapter 1 deals with the homeomorphisms of periods

p and 2p on the 2—dim Klein bottle K2, p odd prime.

Proposition 1 of section 1.1 asserts that up to weak

equivalence there is a: unique homeomorphism of period

p on K2. Theorem 1 of section 1.2 gives all the

homeomorphisms of period 2p on K2 up to weak equival-

ence, p odd prime. In fact there are three such

homeomorphisms hi distinguished by the fixed point sets

of hip, i = 1, 2, 3.



Chapter 2 is divided into three sections. Section

2.1 deals with the free homeomorphisms of odd period on

the solid Klein bottle K. Proposition 3 of this section

states that there is only one such homeomorphism up to

weak equivalence. Section 2.2 provides a complete

classification of homeomorphisms of period 2p on K,

p odd prime. The main theorem of this section is the

classification Theorem 1 which asserts that up to weak

equivalence there are only three such homeomorphisms

hi, distinguished by F(hip), i = 1, 2, 3. Finally

section 2.3 deals with the semi-free periodic actions

on K. These actions are given in Theorem 1 of that

section.



CHAPTER 0

PRELIMINARIES AND DEFINITIONS

Throughout this thesis, we work in the PL (piece-

wise linear) category and all spaces and maps will be

piecewise linear.

. . . . . n

A homeomorphism h : X + X is periodic if h =

identity for n >1 in Z5. If n = 2, h is said to

be an involution.

Let h be a periodic map of a space X. The cyclic

group generated by h will be denoted by <11>. If h

is periodic on X, then the orbit space of h is the
 

quotient space obtained by identifying x with hl(x)

for all i and all x in X. The orbit space of h

will be denoted by X/<11>. The identification map

ph : X + X/‘<h3> is called the orbit map. When there
 

is no confusion ph will be simply written as p.

Two actions of < h> and < f> on X are said to

be weaklygequivalent if there is a homeomorphism t of

-l> = < f> and tht-1 = f1 for some

 

X such that <tht

i. Equivalently h and f are weakly equivalent if

there are homeomorphisms t and t that make the diagram

commutative



"
I

Ph P

X/<h> § x/<f> 

i'e pf: = tph. With a special consideration of the

fixed point, sets «of h and f this implies that

t f t is a linear transformation (automorphism)

of X with respect to h i-e it belongs to the group

of deck transformations A(X, h) with the connection

with the proposition on page 5, this implies weak

-1

equivalence. If tht = f, then h and f are said

to be equivalent.
 

The set {xexlh(x) x} of the fixed points of

h will be denoted by F(h) or Fix(h).

Concerning the action we assume that (l) for

every hi 6 <li>, F(hi) is a subcomplex of X; (2) the

natural cell structure of the orbit space X/<h> and the

orbit map p : X + X/‘<h> are simplicial and (3) p maps

each simplex homeomorphically.

According to [16} these conditions are not restrictive,

from the PL point of view.

The following proposition concerning the free action

of periodic homeomorphisms proves to be very useful in



proving weak equivalence, where h : X + X acts freely
 

or is free if F(h) = a = F(hl) for all i for which

h1# identity.

Proposition.
 

Let (X, < h>) be a free periodic action in which

h is of finite period, and X is a connected manifold.

Let X = X/<t1> be the orbit space and p : X-+X be

the orbit map. Let xe X, E = p(x). Then X is a

connected manifold, (X, p) a regular cover, and

<h> 3:__ w1(§.§)/p,<nl(x, x)).

For a proof see proposition 8.2, Chapter 5 of [11].

Also see [11] for terminology of covering spaces.

A periodic homeomorphism h : X-*X acts semi-

freely on X, if F(h) = F(hi) for all l‘<i'<n, where

n is the period of h. In other words any point X€ X

is either fixed by all h1 or is moved by all hi,

l'<i‘<n.

A compact not necessarily connected 2—manifold F

is said to be 2-sided in X if there exists a neighborhood

of F of the form F x [-1, l] with F = F){O and

(F x [-1, 1]) n 3 X = 3 F x [-l, l].

A simple closed curve J embedded in a closed surface

S is 2-sided if there is a neighborhood of J in S of

the form J x [-1, l] with J w J x {O}. A simple closed

curve J embedded in a closed surface S is one-sided
 



if it doesn't separate any connected neighborhood of

J in S.

A 3-manifold X in which every embedded sphere

bounds a 3-cell is called irreducible. If in addition
 

. . . . 2
X doesn't contain a 2-Sided progective plane P , X

is called PZ-irreducible.
 

A surface F is properly embedded in X if
 

Fn3X=3F.

A properly embedded disk E in X with GE does

not bound a disk in Ex is called a meridional disk.
 

Let F be two-sided surface in X. The manifold

X' obtained by splitting (cutting) X at (along) F
 

, , +

is the manifold whose boundary contains two copies, F

- +

and F , of F such that the identification of F

- + ..

and F defines a natural projection f : (X', F LJF )

+ _

-+ (X, F) with fl(X' - (F U P )) a homeomorphism

onto X - F. Note that X' is homeomorphic to

X - (FX(-lr 1))°

The 2-dimentional Klein bottle may be regarded as
 

the identification space obtained as follows:

{[rZ]:LiSr52, |z|=1,1iz~-1:z, 22~-22}.

Also it can be considered as the space obtained by gluing

together two Mobius bands along their boundaries, where a

Mobius band is the space that is formed by identifying
 



(s, t) with (-s, t+l) in [-1, l] X Hi.

The 3-dim Klein bottle is the space that is obtained

from 021<2m by identifying (z, t) with (E, t+l).

An element of this space sith representative (2, t) will

be denoted by [2, t]. D2 = {z 6 Cl IzI S 1}, Hi the

field of real numbers. C == field of complex numbers.

81 = {z e<2l |z| = l}.



CHAPTER ONE

Z p - ACTIONS ON THE 2-DIMENSIONAL KLEIN BOTTLE

In this chapter we classify all the PL homeomor-

phisms of periods p and 2p, where p is an odd

prime on the two-dimensional Klein bottle.

Notations:
 

In this chapter we denote the 2-dim Klein bottle by

K while in Chapter 2 we will use K2 for the 2-dim

Klein bottle and K for the solid Klein bottle.

 

Section 1.1. 22p - ACTIONS ON THE TWO-DIMENSIONAL KLEIN

BOTTLE K.

We consider only the case where p is an odd prime

number. For p = 2 see [12] (also see [8]). Our main

result is the following:

Proposition 1.
 

If h : K + K is a pl homeomorphism of period p

on the 2—dim Klein bottle K, where p is an odd prime,

thai F(h) = fl and h is weakly equivalent to h : K
1 3 K:

7T. .

where hl is defined by hl([rz]) = [wrz], w=e2 i/P

First we prove the following.



 

Lemma 2.

If h is as in proposition 1, then F(h) = fl and

the orbit space K/<h>2=K.

Proof

Let B = K/<h>. By [4] we have x(k) + (p—l)x(F(h))

= px(B), where X indicates the Euler characteristic.

Since x(K) = O, (p-l)x(F(h)) = px(B). Since p is odd,

dim (F(h)) # 1. So F(h) is either O-dim or g. Assume

that dim (F(h)) = O and that F(h) consists of k

points. Assume k >0. Then (p—l)k = pX(B) and this

implies that k = 3%; x (B) - k>-o yields that (p-1)|X(B)

and since B is a surface, x(B)152, so p S 3. But p

is an odd prime so p = 3. Hence x(B) = 2 and then

B 2 52, the 2-sphere. But this is impossible since K

is nonorientable. 80 k must be 0 contradicting our

assumption k >0. So F(h) = fl. Moreover, x(B) = 0.

Since F(h) = fl, BB = fl and since B is nonorientable

B N K.

Proof of Proposition 1.
 

It is clear that F(hl) = fl and K/<lfif'=sK (lemma 2).

Let h2 = h. By lemma 2 above K/< h2> 8K. <h1> and <h>

act freely on K. Let qi :K‘tK/‘<hi>, i = l, 2, be the

orbit maps. Let t be any homeomorphism: K/<h1>'*K/<h2>.

Since F(hi) = fl, g1 and q2 are p-covering projections

of K by K. But “1(K) has a unique normal subgroup



10

of index p, so t can be lifted to a homeomorphism

+ K such that the diagram below is commutativer
f
l

x

 

  

E
K :7 4;; K

q1 q2

N! J,

t
K/<h > ; K/<h >
 

   

  
  

i.e q2t - tql. By the commutativity of the diagram

_ h _

q1 q2 q2 q1

1
t t \r

Ks >K 4

. --l ‘— . --l — .
We obtain q1 = qlt hzt. That is t h2t is a non-

trivial covering transformation on K with respect to

ql. But the group of covering transformations

A(K,q1) ; <hl> (see Chapter 0). So E-qszf = hll for

some 1 S i < p. This shows that h'rwhl and completes

the proof of proposition 1.
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Section 1.2. ZZZP-ACTIONS ON THE 2-DIMENSIONAL KLEIN
 

BOTTLE.

Theorem 1.
 

If h : K + K is a PL homeomorphism of period

2p, where p is an odd prime, then h is weakly

equivalent to one of the following 29- periodic

homeomorphisms depending on whether F(hp) is fl, 3 S1

1 . l .

or 2 S U S respectively

h ([er) =[323
1 r

h ([rz]) =15in
2 r

h ( [r z ]) = [:w r z]
3

n'

where w e l/p.

The proof of theorem 1 occupies the rest of this section.

Since h is of period 2p, h2 is of period p on

K, so by lemma 2 of Section 1.1, F(hz) = fl. The map

h induces an involution h- on K/<h2>, uniquely

determined by h, such that h-q = qh where

q : K + K/<h2> is the orbit map.

p is an involution on K. By [12] (also seeNow h

[8]) F(hp) is one of the following sets: (5, two points,

one 2-sided nonseparating simple closed curve and two points,

one 2-sided separating simple closed curve and finally two
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one-sided simple closed curves. In other words F(hp)

is homeomorphic to one of the following sets: g, 50,

SltJSO, Sl, SlIJSl. So we consider the following two

cases

, P _
Case 1. F(h ) - fl

P
Case 2: F(h ) ¢ a

Case 1.

F(hp) = fl. In this case h acts freely on K.

We prove the following:

Proposition 2.
 

If h : K—*K is a homeomorphism of period 2p on

K, p odd prime, and if h acts freely, then h is

where h is as in theorem 1.weakly equivalent to hl' 1

Proof

2

Let h — h2. Let Mi - K/<hi > and q1 .1<-*Mi:

<;'.: Mi-+Mi/<h-i>, i = l, 2, be the orbit maps, where

h 1 and h 2 are the induced involutions by hl and

h2 on M1 and M2 respectively. Note that F(h-i) =

qi(F(hip)), hence F(h'i) = d, i = 1, 2. As in lemma 2

Section 1.1, K/<h-i> 2 K. By lemma 2, Mi 2 K, so

M./<h—.>.‘::K/<h-.> 2: K. Note also K/<h-.> 2: K/<h.> .
1 l l l l

. = '. . : + . < '.>. h . is aLet 91 q lql K Ml/ h 1 Note t at q1

V

p- covering projection for i = l, 2 and q i is a

2— covering projection for i l, 2. Since F(hip) =

fl = F(hz) = F(h), <hi> acts freely on K, so gi is



13

a 2p- covering projection for i = l, 2. Let

t : K/<hl> + K/<h2> be any homeomorphism. By [14] up to

equivalence there is only one subgroup of indes 2 of

"1(K) corresponding to the double cover of K by K.

So M1 and M2 are equivalent, hence 3 t : M1 2 M2

such that tq'l = q' t

”
H

7
:

w

 

 

t—

Ml 7‘ 2

' '

q l q 2

K/<h > t 4, K/<h2>

Now since ql and q are p- covering projections

2

and fll(K) has a unique normal subgroup of index p,

t can be lifted to t : K E K such that qu = q2:.

' = ' = o = = I

Hence tq lq1 q 2qzt i.e tgl gzt. As in the

proof of proposition 1, section 1.1, :11 :h-1 is a

2

covering transformation on K. Note that 91 and

92 are 2p- covering transformations and the group of

covering transformations of K with respect to 91,

A(K, gl);;<hl> (see Chapter 0). So we obtain that

-l i

:h2: = hl for some 1 S i < 2p.
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Hence h2 = h Nw hl. This finishes the proof of

proposition 2 and case 1.

Case 2.

F(hp) # fl. By [12] (or [8]) F(hp) is homeomor-

phic to one of the following sets: SO, SOIJSl, Sl,

51:331. If F(hP)I~SO = {x, y}, then since h(F(hp)) =

F(hp) and F(h) = o, h(x) = y and h(y) = x. But

this implies that hzx = x and hzy = y contradicting

2 p .v 0

the fact that F(h ) = g. So F(h ) cannot be ~S .

If F(hp) z 810 SO, then since F(hp) is

. . O O l l

invariant under h, we get h(S ) = S and h(S ) z S .

As above this contradicts F(hz) = fl. Hence F(hp)

O 1

cannot be NS 6's .

Now we are left with the two possibilities:

F(hp) N S1 or S1 0 51.

Lemma 3.

If F(hp)” s1 or 510 31, then K/<hp> is

homeomorphic to Mobius band or an annulus respectively.

Proof

Let B = K/<hp>. Since hp is an involution on K,

we have by [4] that x(K) + x(F(hp)) = 2x(B). But

F(hp) is one-dim, so x(F(hp)) = 0. And since X(K)==O,

x(B) = 0. So B is homeomorphic to one of the spaces:

2 . .

K, T == the 2-dim torus, Mobius band M, an annulus A.
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Now we claim that 3(B) = q(F), where q :K + B

is the orbit map and F = F(hp). If xe‘K - F, then

2

x has a neighborhood U 3 Hi and q(U )z U . q(U )

x x x x

is a neighborhood of q(x) e B and since q(Ux) NUx a*JR 2,

q(x) eInt(B). If x eF, then x has a neighborhood

2 2

Ux mm . F n Ux separates Ux into two components ‘3 IR+

and q(Ux) z 1122+ and is a neighborhood of q(x) e B,

i.e q(x)€ BB. This proves the claim. So 3B # a,

2

hence B cannot be iaK or T , for these have no

boundary.

If F #5 , then B has one boundary component

If Fivsllel, then 3B has two boundary com-

ponents and B 3 A. U

Now, let h2 and h3 be as in theorem 1. We

prove the following lemma.

Lemma 4.

Let h : K-rK be a periodic homeomorphism of period

2p, p odd prime, and assume that F(hp)iUSl. Then

h ~w hz.

Proof

h induces h- :K/<hp>-*K/<hp> of period p and

h acts freely on K/<hp>. Similarly h2 induces h.2:

K/<h2p>-*K/<h2P> of period p and h-2 acts freely
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on K/<h2p>. By lemma 3 above K/<hp>s3M, a Mobius

band and k/<th>~M. Let F = F(hp) and F2 = F(th).

Let K' = K/<hp> , K2 = K/<th> and q : K + K', ql:

K + K2 be the orbit spaces and orbit maps respectively.

Also let q.1: K2 + K2/<h-2> zK/<h2> , q': K+K'/<h->

23K/<h> be the orbit maps of K2 and K'. ql(F2) =

stssl and q(F) = Jissl are the boundaries of K2 and

K' respectively. q'1(J2) and q'(J) are the boundaries

of K/<h2> and K/<h> respectively. Since h- and h;

are free of period p on M, an arguement like the one

used in section 1.1 using the Euler characteristic yields

K2/<h 2>iaM ~ K'/<h->. Let t : q'(J)-*qtl(J ) be a

2

homeomorphism. Extend t to a homeomorphism on all of

K/<h> still call it t.

"
H

 

 

K > K

q ‘[ ql

K' E > K2

q' J<11

K/<h> t is K/<h >
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Since q' and q3_ are p- covering projections and

1r1(M) gm has an unique normal subgroup of index p,

we can lift t to a homeomorphhml E': K' + K2 such

that q3.t = tq' and E(J) = J2. Now q1 :K - F2 +

K2 - J2 and q : K - F-+K' - J are double covering

projections and 1T1(K2 - J2) ;22 ;fl1(K' - J) we can lift

f to a homeomorphism : : K-F + K-F2 such that

qli = Eq. Since :(F) = F2 and E is continuous this

is true on all of K.

Now, q' is a covering projection and the diagram

below commutes

_ h __

K'___E..__)K \ K2(__t_ K'

I

2

2 /

qI q. q'

1 ql

K/<h> t .49 K/<h2> <_ t K/<h>

 

 

hence for some i, E-llfé E = h-i. Also, since

qh = h'q and qlh2 = h'2 ql, it follows that: qhi=h'iq.

Hence qhi = h-iq = E- h.ZEq = E-lh-qut: = E-lql h2: =

q=t:- h2 I. Thus, if xe F, then h i+p(x) = h inc),

note that here qIF is a homeomorphism. If x4 F, then

hi+p(x) = :"1h2?(x) or hi(x) = :-1h2:(x).

Therefore h ~ 11 .

w 2
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Finally in order for the proof of theorem 1 to be complete

we prove the following.

Lemma 5.

Let h : K + K be a periodic homeomorphism of

. . . p 1 1

period 2p, p odd prime, with F(h ):~s tJS . Then

h ~wll3.

Proof

Let K3 = K/<h3p> . By lemma 3, K3 ~ A. As in

lemma 4 we obtain that h ~ 11 . U
w 3

This finishes case 2 and completes the proof of

theorem 1.



CHAPTER TWO

22p - ACTIONS ON THE SOLID KLEIN BOTTLE K

Section 2.1. FREE ACTIONS ON K.
 Z 2k+l

Lemma 1.

If h : K + K is a (PL) homeomorphism of period

2k-+l, k 21, on K, then Fi.xtl is either w or

1

z 8 .

Proof

. t t

Let n = 2k + l . n can be written as n = pll.p22

.pgml where pl, ..., pm are distinct odd primes and

t1, .., tm are positive integers. If m = 1, then h

is of period pffi. on K which is a homology 1- sphere.

Hence by [4] Fi.xll is either a or a homology l-sphere.

F(h) cannot be 2-dimensional because psi. # 2. So

F(h) is either ¢ or 3813 If m = 2, then

t

n = pltl p2t2 and hpl 1 is of period p2t2 . As above

t t

F(hpll) is either 95 or ~81 . If F(hpl 1) = fl ,

t

F(h) = fl. Since F(hpl 1) is invariant under h, then

t

if F(hpl 1)::51 and F(h) a! o, h is of period pltl

t

on F(hplil) le a homology 1- sphere and again by

[4] F(h)ssSl. Hence if m = 2, F(h) = H or z 81.

19
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Now assume that the result is proven for m = i.

t t. .

Let c = p1 l...pi i. Let the period of h be

ti+l

ti+l pi+l
1+1 . Then h is of period c on K so by

ti+l

. . pi+l l
theinduction hypothesis F(h ) is either a or ::S .

ti+1
ti+1

pi+l pi+l 1
If F(h ) = fl , F(h) = g. If F(h ) z S , then

by [4] F(h) z S1 or fl.

1

Hence F(h) = g or 2:8 . U

Remark. The proof above shows that if F(h) z 51, then

F(hl) = F(h) z s1 for all 1 <i <2k + 1.

In the rest of this section we consider the free

. . i

Z52K+l - actions on K, i.e F(h ) — H for all

1 <1 <2k + 1.

Lemma 2.

Let h : K + K be a homeomorphism of period 2k + l,

k.21J If <h> acts freely on K, then K/<h>::K.

Proof

Let B = K/<h> and let p : K + B be the orbit map.

Since <h> acts freely on K, K is a regular 2k + 1

covering of B [11, theorem 8.2, Chapter 5]. Hence

p#(fl1(K))ssZ5 is a normal subgroup of index 2k + l of

nl(B). So we have a short exact sequence
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O.
..).

O + Z5 H (B)
1 252k + 1

Since B is covered by a contractible space and

no nontrivial finite group can act freely on a finite

dimensional, contractible space [6; page 287], “1(8)

has no torsion subgroup. Let a = a(generator of Z”

and b be such that B(b) is a generator of 252k + 1'

Since p#(fll(K)) is normal in N1(B), béib-lé <a>.

1 -l

_1 -1. If béib- = a , thenSo baib = a or a

hl(B)/[fl1(B), Wl(B)]; H (B) is finite (for the coset

l

E = b + [fl1(B), fll(B)] is of order 2k + 1). Hence

3 i
X(B) = Z (-l) p. = l + 0 because 0 = O = p , o = O

. i 2 l 3 3

i=0

because B is nonorientable. But this implies that

X(B)£Zl contradicting the fact that x(B) = 0. Hence

-1 -l -1

bab 7! a . So we must have bab = a and so

fll(B) is abelian. From the principal theorem for abelian

groups “1(8) = 2Z+ Tor(TT1(B)) = Z3 + O = Z .

Hence “1(8) = Z .

Note that B is compact, nonorientable, irreducible

with K (2-dim Klein bottle) as its boundary. Moreover,

. . . . 2

B contains no 2-Sided prOJective planes P , because

. . 2 -l 2 .

if B contains such P , then p (P ) will be a 2-

sphere S, and since K is irreducible S bounds a
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a 3-cell C. Then p(C) is a 3-manifold bounded by

P2. Now by [5] theorem 11.7 BRsK. U

Proposition 3.
 

Up to weak equivalence there is exactly one free

> .
ZZK + l (k _ 1) action on K.

Proof.

Let hl : K-+K be defined by h1([z, t]) =

2k . . .

[z, t + EEII ]. hl is a homeomorphism of period 2k-tl

and F(hl) = g for all l.<i.52kd So by lemma 2 above

k/<h1> z K. Now let h : K + K be any homeomorphism of

period 2x + 1 such that F(hl) o, l<i<2k+ 1.

Lemma 2 implies that k/<h>ssK. Let pl : K + K/<h1>

and p : K + K/<h> be the orbit maps. p1 and p are

(2k + l) - coverings of K/<hl> and K/<h> respectively.

Let t : K/<hl> + K/<h> be a homeomorphism. Since tp1

and p are (2k + l) - covering projections of K and

since Nl(K/<h>) ; Z! has a unique normal subgroup of .\

index 2k + l, 3 a homeomorphism t : K + K making the

K

K/<h > l_; K/<h>

diagram

r
*
l
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commutative, i.e such that tpl = pt. Now'.as in

proposition 1, section 1.1, h~h1l for some 1.Si 52k.

Hence any two free Z§2k+—l actions on K are weakly

equivalent. U

Section 2.2. 212p - ACTIONS ON K

In this section we classify all Z: - actions on

29

the solid Klein bottle K, up to weak equivalence,

where p is a prime number. The case p = 2 is studied

in [13], so we study here the case where p is an odd

prime.

Our main result is the following

Theorem 1.
 

If h : K-*K is a homeomorphism of period 2p on

K, p an odd prime, then F(h) = fl and F(hz) = fl

and h is weakly equivalent to one of the following

period 2p homeomorphisms on K depending on whether

F(hp)£aM, A or S1 respectively:

hl([z, t]) [-z, t + —E— J, F(hf’) z Mobius band M

p-l ], F(h;)) : Annulus AII

r
—
I

N
I

n +h2([zI t])

ll

r
—
a

I

N (
1
'

+

9-1 9 ~
h3([z. t]) J. F(h3 ) ~ 3

The rest of this section is devoted to the proof of

theorem 1.
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Let h : K + K be of period 2p. Since (h2)p = 1d,

h2 is of period p on K. Since K is a homology

l-sphere, then [4] gives that F(hz) is a homology

r-sphere, where r s l and l - r is even. Hence

r is either -1 or 1. p # 2, so F(hz) is either

1 2 2

a or 2:8 . Note that F(h) g F(h ). If F(h ) = fl,

then F(h) = fl. If F(hz) z 51, then since h is

2

an involution on F(h ) z 81, it follows from Smith

[15] that F(h) is a homology r-sphere, r S 1.

Hence r = -l, O, l i.e F(h) is one of the sets:

0 . .

fl, 8 , 51. So we conSider the following cases:

Case 1: F(hz) H, hence F(h) = fi-

1 O 1

Case 2: F(hz) S and F(h) is a, S or2
2

2
2

U
)

Case 1: F(hz) fl.

In this case h is determined up to weak equivalence

by the F(hp). We prove the following

Proposition 2.
 

Let h : K + K be of period 2p on K, p odd

2

prime, with F(h ) = fl. Then h is weakly equivalent to

one of the homeomorphisms hl' 2, h3 depending on

whether F(hp) z M, A or z Sl respectively. (The

maps hl' 2, h3 are the ones in theorem 1).
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Proof of Proposition 2.
 

hp is an involution on K, hence by [13] F(hp)

. . . 2.

is homeomorphic to one of the sets: I Upt, D UI ,

M, A, 51. Since F(h) = fl and F(hp) is invariant

under h, F(hp) cannot be IOpt or D20 I, otherwise

in the first case h(pt) = pt and h(I) = I so h

would have at least 2 fixed points. In the other case

h(Dz) = D2 and h(I) = I and Brouwer fixed point theorem

implies that h has at least 2 fixed points. Hence

. . l

F(hp) is homeomorphic to one of the sets M, A or S .

The map h induces a homeomorphism h- of period

p (n1 K/<hp> defined by h-q = qh where q : K-+K/<hp>

is the orbit map. Note that <h-> acts freely on

K/<hp>. From [13] if F(hp)fivsl or M, then K/<hp>:sK

and if F(hp) z A, then K/<hp> a D2 x 81, the solid

torus.

Now, we show that any homeomorphism h of period

2p with F(h2) = fl is weakly equivalent to one of the

homeomorphism h

1'2’3

(i) Assume F(hp)::M. We show that h is weakly

equivalent to hl. Note that F(hl) = F(hf) = fl and

K/<hlp>zK, also since F(hp) zM, K/<hp>zK. The

induced maps h]. and h are free on K/<hlp> and

K/<hp> respectively. Since K/<hlp> 3 K 3 K/<hp> and

hl and h are free of odd period p it follows from
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lemma 2, Section 2.1 that (K/<hfgj/th > c: K and that

1

(K/<hp>)/<h-> 3 K. Let Kl = K/<hlp> and K2 =

K/<hp>. Let ql : K + Kl, q2 : Kl + Kl/<hge'z K/<hl>,

q : K + K2 and q' : K2 + K2/<h-> ~ K/<h> be the orbit

maps. Since hlp and hp are involutions, ql(F(h1p)) =

M1 is a Mobius band in 3(K1) and q(F(hp)) = M2 is a

Mobius band in 3(K2). F(hlp) is invariant under h

l

and F(hp) is invariant under h, hence M1 and M2

are invariant under h3_ and h- respectively. Since

3(K/<hl>) and 3(K/<h>) are 2-dim Klein bottles,

I
- .

q2(M1) and q:2(M2) are Mobius bands in 8(K/<hl>)

and 3(K/<h>) respectively.

P

hl

3 a meridional disk D in K which is invariant under

is an involution on K so by [9] and [10]

h p. Cut K along D we obtain K' z D2 x I and by

l

[9] hlp/K' ~ f , f(z, t) = (Z, 1 — t). Let '5 be an

hlp invariant disk in K', then q1(5) = E1 is a

meridional disk in Kl. h- acts freely on K1 so

- p-l . . .

El, h].(El)' ..., h1 (E1) are mutually diSjOint.

Hence q2(El) is a disk in K/<hl>. Similarly for hp

we obtain E and q'(E) a meridional disk in K/<h>.

Let cl = 3(q2(El)).- c = 3(q'(E)) and el = 3(q2(Ml)).

e = 3(q'(M2)). el and e separate 3(K/<h1>) and

3(K/<h>) respectively each into two Mobius bands.

Also 01 and el meet in 2 points so do (2 and e.
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Note that 3(K/<hl>) -c Mel. and 3(K/<h>) -c -e each

1

consists of two open rectangles. Now let t1 :clue1 g

c ue and extend tl to t2 : 3(K/<h1>) + 8(K/<h>)

such that t2q2(M1)_=q (M2). Then extend to t3 on

q2(El), finally accross the open 3-cell K/<hl> -

3(K/<h1>) - q (E ). The final map is a homeomorphism

 

 

 

2 l

: < > < > ' = I .
t K/ h1 + K/ h with t(q2(Ml)) q (M2)

K t ) K

ql l'q

F .
K1 7 K2

q2 Jrq

t a
K/<hl> .7 K/<h>

<h1e' and <ll-> are free so g2 and q' are p-

covering projections and since hl(K);;Z: has a unique

normal subgroup of index p, t can be lifted to a

homeomorphism t : K + K such that tq2 = q'? and

1 2

{(M1) = M2. Now q1 is a double cover: K - F(hlp)->

Kl - M1 and q a double covering projection:

P
~ _

K F(h ) + K2 M2. But 1T1(Kl M1) = 25, t can be

lifted to I : K - F(hlp) + K - F(hp).
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By continuity t can be extended to all of K. So

qt = tql. Now as in the proof of lemma 4,

section 1.2 we see that h Nw h1°

(ii) Assume F(hp) z A, an annulus. We show that

N . _ 2 _ p 2 l

h w h2. Note that F(hz) — F(h2 ) — fl, K/<h2 > D ){S ,

a solid torus. Similarly K/<hp> z DZJcSl. Since h2

and h- act freely on K/<h2p> and K/<hp> respectively

and p is odd, then by [7] Kl/<h-2 > z D2 x S1 and

- 2 . . .

K2/<h > z D 1:51, notations as in (i) above. h

hp are involutions imply that ql(F(h2P)) = A1 and

q(F(hp)) = A2 are annuli in 3K1 and 3K2 respectively.

As in (i) q2(A1) and q‘(Az) are annuli in 3(K/<h2>)

and 3(K/<h>) the latters are homeomorphic to 51)(51.

112 and h free imply that g2 and q' are .p-covering

projections. Note that Kl/<h22>==K/<h2> and K2/<h-> z

K/<h>. Hence K/<h2> z D2 x S1 x K/<h>. As in (i)

there are meridional disks -El and E in K1 and K2

respectively such that q2(E1) and q'(E) are meridional

disks in K/<hl> and K/<h> respectively.

Let cl = 3(q2El)r1q2Al, c}. the complement of

c1 in 3(q2E1), c2 = 3(q'E)rlq'A2, c3 its complement

in 3(q'E). Let t : c1 + c2 be a homeomorphism.

Extend t to a homeomorphism : q2(Al) + q'(Az) then

on c3_ on to CE , then on qu1 on to q'E, next

on the open rectangle 3(K/<h1>) - qu1 on to 3(K/<h>) -
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q'(Az). finally across the remaining 3-cell in K/<hl>.

Still call the new homeomorphism t. Note that t(q2Al)

2. As in (i) lift t to E : Kl + K2 such that

'-= .' TTK-A~1T -A ~ ‘q t tq2 Since 1( 1 1):: 1(K2 2) = Z5 lift

3 to E : K - F(th) + K - F(hp), by continuity extend

q'A

"
H

on all of K. So qt = tql on K. Hence as in (i)

(iii) Assume F(hp) z 51. We show that h ~ h

We use the same notations of (1). By [13] K =us:K

P D P
_ < > _ < -> _where Kl K/ hi , K2 K/ h . q1(F(h3 )) c and

q(F(hp)) = c are simple closed curves in the interiors

2

of K1 and K2 respectively. By lemma 2 (section 2.1)

<->z z <-> l . . .

Kl/ h3 K K2/ h . qzcl and q c2 are s c c in

the interiors ofK/<h3> and K/<h> respectively. Let

t : K/<h3> + K/<h> be a homeomorphism mapping q2(cl)

on to q'(cz). As in (1) lift t to E : K + K
1 2

mapping cl on to c2 and q'? = tq2. By [13] F(h3p)

and F(hp) are the "cores" of K, so c1 and c2 are

the cores of K1 and K2 respectively. Hence

"1(K1 — cl) ; ”1(K2), K2 the 2-dim Klein bottle.

"1(K ) has a unique normal subgroup of index 2

. 2 . _
corresponding to K [14]. So we can lift t to n

"

K - F(h3p) + K - F(hp). As in (i) we conclude that

h is weakly equivalent to h3.

This completes the proof of proposition 2. D

This takes care of case 1.
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2

Case 2. F(h ) z 51 and F(h) a or S0 or 1:51.

We consider the following 3 subcases:

Subcase 2.1. F(hz) z S1 and F(h) 5:80.
 

We show that this case cannot happen.

Proposition 3.
 

There is no homeomorphism h of period 2p, p

odd prime, on K with F(hz) z 81 and F(h) : SO.

Proof

hp is an involution on K. Hence by [13] F(hp)

is homeomorphic to one of the sents: I Opt, D2 OI,

M, A, 31. Note that F(h) c F(hp). If F(hp) 2 M,

A or 81, then F(hp) is a homology l-sphere.

Since F(hp) is invariant under h, h is a period

p homeomorphism on F(hp). Hence by [4] F(h) is

a homoloyg r-sphere with. r'Sl and l - r is even.

So r = -1 or 1, i.e F(h) is either ¢ or 2 S1

contradicting our assumption that F(h) z SO. So

F(hp) cannot be M, A or 51. If F(hp) z D2 0 I,

then since h(F(hp)) = F(hp), h(DZ) = 02 and h(I) = 1.

So h has one fixed point in D2 and one fixed point

x in I. So h must interchange the sides of I - x

and since p is odd hp interchanges the sides of I -

contradicting the fact that If: F(hp). Hence F(hp) i

DZIJI. Finally if F(hp) z I Opt, then since F(hp) is

invariant under h, we have h(I) = I so h must have

X
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a fixed point in I. We get a contradiction as above. U

Subcase 2.2. F(hz) 3 S1 and F(h) z 81.
 

2
Note that F(h) = F(h ) n F(hp) and hp is an

involution on K. Since F(hp) is invariant under h

and F(h) z 81, F(hp) cannot be 2-dimensiona1, other-

wise h must interchange the two components of U - F(h),

where UCF(hp) is a small neighborhood of x in F(h)

and since p is odd this implies that hp interchanges

the two components of U- F(h) contradicting the fact

that UCF(hp). So F(hp) cannot be 02 01, M or A.

Since F(h)c=F(hp) and F(h) z 81, F(hp) cannot be

zIIth. Hence the only possibility is the F(hp) z 81.

So now we have F(h) = F(hl) z S1 for all 1 <i <2p.

We shall show that this cannot happen.

First we show the following:

Lemma 4.

If there exists a homeomorphism h : K + K of period

2p, p odd prime, with F(h) z 51, then K/<h>siK.

Proof

h induces an orientation preserving homeomorphism

h~ on the orientable double cover D2 x S1 of K with

l .

period 2p and qh~ = hq where q : D x S + K is the

covering projection. By definition of h~, F(hN) # B

and F(h”) = q-1(F(h)). By [7] F(h”) z s and F(h~) =

N1 . ~ . . .

F(h ), 1 <1 <2p. Hence h p is an involution on
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2 1 . . . .

D x S With fixed pOint set a Simple closed curve.

Tollefson [17] shows that if an orientation preserving

. 2 .

homeomorphism f on D x S1 has a Simple closed curve

as its fixed point set, then f is equivalent to a

. 1 2

rotation about the core 0 x S of D x 81. In

particular F(f) = O x S1 i.e it is unknotted. So

Fi.x(hp) = O x S1 and since F(h~p) = F(h”), F(hN):3

~ 2

O x 51. Hence by [7] D2 x Sl/<h > z D x 81.

Now consider the diagram

 

.
0

:
0
2

  WV ' ZJL 1 2 1

p D xS /<h~>~D xS 

B<

where B = K/<h>, q : K + B the orbit map, a

2 2 . 2 l

D x S1 -* D x S1 the orbit map of D x S and

2 1 . . . .

p : D x S + K the coverning prOJection of the orientable

2 2 .

double cover D x S1 of K. p' : D x S1 + B is

defined by p'q = qp. Since QI(K - F(h)) is a 2p:-

1

sheeted cover of B - q(F(h)) and END2 x S F(h~))

is a 2p — cover of D2 x S1 - q(F(h~)) and since p is

a covering map, then given be" B-q(F(h)) we can find an

open neighborhood Vb such that p'-1(Vb) = 010 U2 with
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U. open and p'(Ui) 2 V i = i, 2. Note also that

i b'

F(h”) is a double cover of F(h) and q(F(h)) z F(h)

~ ~ ~ 2

and q(F(h )) z F(h ). Hence D x S1 double covers B.

Since B is non orientable and BB = K2 and is double

2 1

covered by D x S , B 3 K. D

The proof of lemma 4 can be used to prove the following:

Corollary 5.
 

If h : K + K is a homeomorphism of period n,

where n is an odd integer, with F(h) a simple closed

curve z core of K, then K/<h> 3 K.

Proof

Since n is odd and F(h) z 81, then by the

remark following lemma 1, section 2.1, F(h) = F(hi)

for all 1 <i <n. h induces h~ on D2 x S1 with

~ 1 2

F(h ) z S z 0 x 81, the core of D x 81. Now proceed

as in the proof of lemma 4. U

Since F(h) = F(hl) z 81, F(hp) z 81 and since

hp is an involution on K, F(hp) z core of K. So

we can assume that F(h) core of K, q(F(h)) = core of

K/<h> z K.

Now h2 is of period p and F(hz) 2 S1 and by

the above remark F(hz) = core of K. Hence to be done

with this subcase we prove the following
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Proposition 6.

There is no homeomorphism h : K + K of period p,

p an odd prime, with F(h) = core of K z 81.

Proof

Let q : K + Kl = K/<h> be the orbit map. By

corollary 4, K1 3 K, q(F(h)) = Core of K1.

Let D be a meridional disk in K/<h> such that

Dr1q(F) is a point (Note that q(F) is the core of K1).

-1—

q (D) is either one disk or n disks meeting at a

. . . 2

common interior pOint. Note that 3K = 3K1 = K the

2

2-dim Klein bottle. qIK is a p- sheeted cover of

2 — . 2

3Kl = K . 3D is a Simple loop (1: I + K . Let eO =

a(0) = a(l) and let 306:q-1(e0). Let a = [a], and

let 8 be an orientation reversing loop which meets a

transversaly once at eO and let b = [B]. So

1 -1
>.fll(3Kl, e0) = <a, blbab- = a W (K2) has a unique

1

normal subgroup of index p ; W1(K2), hence (qIBK)#

Trl(3K, 5'0) = <ap, b bab-l = a-1>. Let n : I + K be a

loop which wraps once around the component of q-1(BD) =

q-l(a) containing 30, with n(0) = n(1) = 30' Then

P
(qIBK)#( [0]) = a and so q|n(I) covers a(I) = SD

. . -l - . . .

in a p to 1 fashion. Hence q (D) is a meridional

disk D in K. Since hq (o) = q'1(5), h(D) = o

i.e D is invariant under h.

Now cut K along D and K1 along D to obtain

D x I and D1 x I respectively, where D z D z D ,
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the standard disk. 3(D x I) contains two copies D'

and D" of D and 3(Dl x I) contains two copies

0' and D” of D. Let e be an arc 21 in D

joining the center of D(= Dr1q(F(h))) and SD. So

0' contains a copy e' of e and D" contains

another copy e" of e. Let FCZD x I be F(h) after

cutting K and FCDl x I be q(h(F)) after cutting

Kl. Let E be a disk in D1 x I bounded by e', e",

F and an arc in (SDI) x I joining the point e'rlD'

and the point e” n D" . See the figure below

  

  

.‘I

,’//‘./_,',

,I / t I .

1

I

. ,l I' I ,l ' ‘ .

" ..... / ’ ', _I

. I i . f 1'; / ,l '1; i I I

I f I . 'I // ‘ / 1/ // /,' "I / ‘ , ‘l'

/ ,' ‘r .- ,l . l

'/'/ /,’ //J [ll/1’"

..-

 

 

q-1(E) consists of p disks E‘l), i = l, ..., p

having F as a common edge. Let 2’(i) = E(l)rlD' and

2” = E(1)0 D" in D x I. 2'. and l" . are

(i) (1) (1)

pairwise disjoint arcs for all i joining F to BD'

and 3D" respectively. Let BN1] be the part of D'

and BD'.that lies between 1'. and 2'.

(1) (1+1)

Define B"(i) similarly. See the figure below (p =3).
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é—— 9—4 III—- r—"" —- fi-I- '— " m -— H

. / / l ’ / (3’/ r / / l’ I

, y / / / / / I I

  
‘DXI

The case p = 3

Let N be the identification map of D x I and w'

the identification map of D x I. W' identifies e
l

with e" and D' with D" so that Dl x I/W' = Kl.

So identifies 2' . with 2". i = l ... .
q) (l) (l), I I p

So it must identify 3' . with B". for i = l,

(1) (1)

., p. Hence w identifies D' with D" in an

. . . 2 l

orientation preserVing manner. Hence D x I/w = D x S .

80 K cannot be restored from D x I. But D x I/w

must yield K. D

Remark 7.
 

In the above proposition p may be replaced by any

odd positive integer.
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This follows from corollary 5, section 2.2 and lemma 1

section 2.1 and the proof of proposition 6. This

completes subcase 2.2.

Now we handle the last subcase

Subcase 2.3. F(h2) z S1 and F(h) = fl.
 

Since hp is an involution on K by [13] F(hp)

. . 2 . l ,

is RIIupt, D u I, M, A, S . As before, Since

p . 2.

F(h) = fl, F(h ) cannot be ILth or D LJI. So we

are left with the 3 cases F(hp) z M, A, 81. We shall

Show that none of these cases is possible.

First we prove the following:

Lemma 8.

Let F = F(hz) and let X06 F. Let i : F + K be

(K! 1(0)):

. . . 1*
the incluSion map. Then image(fll(F, x0)____,wl

n '. h , .l(K, x0) 1 e F generates 1(K x0)

Proof

We follow here a method of proof used by Conner and

2

Raymond [2]. Let f = h . Let (K*, q) be the universal

cover of K and let fioe'q-l(x0). Note that h2 = f is

of period p on K. Lift the Zip action of f on K

to a Zip action on K*. From covering space theory f

induces f on K* with period p and qf = fq. Let

E = F(f). From Smith theory E is connected and acyclic

and since E is connected, q(E) = F. Let defil(K, x0)
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and let A(t) be a loop in K based at xO

representing a. Lift A(t) into a covering path

1(t) with 1(0) = I and 1(1) = o(§o)e E (for

O

qcx = q implies q(a(§0)) = q(§0) = x0, Ed = a?

implies fa(x0) = af(x0) = a(x0), hence a(xo)e E).

3 a path A'(t) in E with 17(0) = :0 and

1'(1) = 1(1) = G(;O).

Then

1(2t) OStSk

W(t) =

1’(2-2t) L:Stsl

is a loop based at K0 representing [W] e fil(K*, ;O) =

0. But q(AYt)) represents Be'fll(F, x0) (for

q(1'(0)) = q(ZO) = x q(1'(1)) = q(1(1)) = q(a(§0))0'

A'CIE implies q(1'(t))CF) and [W] = 0

implies B = a in fll(K, x0), for A ~ 1' implies

q(A) = q(A') i.e (1= 8.

Now we are ready to handle the remaining cases for

F(hp).

(i) F(hp) 2 51. From Chapter 1, section 1.2, we

wee that F(hp) and F(h2) are in the interior of K

which has IR3 as a universal cover. hp induces an

. . 3 . p

involution a on ER with qa = h q, where

q : 1R3 ‘+ Int(K) is the covering projection. Since
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1T1(F(hp), x ~ 1r (K, x) (lemma 8), F(OL) z IR. Let) = l

E = qfl(F(h2)). By lemma 8 we obtain the fact that

Fa IR. Since F(h2)nF(hp) F(h) =9), F(OL)nF=¢,

otherwise iezF(d)r)E would imply p(§)e F(hp)r1F(h2).

It is easy to see that a(E) = E. Hence a is an

involution on IR3 - E 5:: 1R3 - 1R . By Alexander's duality

~ 3 3 l

theorem [3] we have Hi(fli - HI) = Hi(S -S ). But

Hr(53 -Sl) = 0 for r > 1 and 2Z for r = 0, 1. In

other words 1R3 - 1R 8: 1R3 - E is a homology l-sphere.

Now F(a) g HKB- E is a homology r—sphere with

r = -l, O, l by [15]. That is F(a) is a homology

1-sphere, 80, fl. But F(a) z HI has the homology of

a point. This contradiction shows that F(hp) cannot

be 2:81.

(ii) F(hp) z A, an annulus. By [9] and [10] 3

an hp-invariant meridional disk D embedded in K

and D in general position with respect to F(hp).

So F(hp)r1D is a properly embedded arc I in D.

Cut K along D to obtain a component U z D x I

and U contains two copies of D, say D' and D"

each contains a copy of I, say IKID' and I'W:D".

Let F be F(hp) after cutting K. Fer' = I' and

Fr1D" = I". By Brown [1] F is an unknotted disk

in U. Let F be the image of F(hz) in U. Since

F(h2)r)F(hp) o, ErlF = fl. K is obtained from U

by identifying (x,O) in D' with (¢(x), l) in D"



40

where a is an orientation reversing homeomorphism

._ . ' 2

D' + D". But FrlF = a so in order to obtain F(h )

we have to let F travel twice around K, otherwise

2 p — . . . .

F(h )r)F(h ) ¢ ¢. But F under the identification

2 . . . . 2 .

must be F(h ), but it is not, it is 2F(h ). Since

2 .

F(h ) generates fl1(K, x), lemma 8, this cannot happen.

Hence F(hp) cannot be A.

(iii) F(hp) : M, Mobius band. As in (ii) this

cannot occur.

This completes case 2 and finishes the proof of

Theorem 1.

Section 2.3. SEMI-FREE ACTIONS ON K

In this section we study the semi-free actions on

the solid Klein bottle K. We state our results in the

following.

Theorem 1.
 

Let h : K + K be a periodic homeomorphism of

period n acting semi-freely on K.

Then

(1) There is no such h if n is even and n >2.

(2) There are 5 such h up to equivalence

(3) There is no such h if n is odd and F(h) =
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(4) There is a unique such h, up to weak

equivalence if n is odd and F(h) = a.

Proof

Case 1. n is odd, of course n > 1.

By lemma 1, section 2.1, F(h) is either g or

a simple closed curve ‘381. If F(h) = fl, then by

definition of h, F(hi) = U for all l;$i‘<n. Hence

<h> acts freely on K. By proposition 3, section 2.1,

where h : K + K is

1' l

n-l

n

h is weakly equivalent to h

 

defined by hl([z, t]) = [z, t + ] . This proves (4).

If F(h) zsl, then F(hl) ~51, 15i<n. If

F(h) = core of K, i.e F(hl) is unknotted then by

remark 7, section 2.2, such an h doesn't exist.

This proves (3).

Case 2. n is even.

If n = 2, then h is an involution on K. All

involutions on K are classified up to equivalence in

[13]. In fact, there are 5 such involutions, up to

equivalence,distinguished by their fixed point sets.

If n is even. > 2, then n has one of the two

a O. .

forms : n = 2 , a > 1 or n = 2 m, m is an odd

positive integer.

If n = 2 , a positive integer > 1, then by [13]

such an h doesn't exist.
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Finally, n = 2 m, m positive integer > 1.

If F(h) = 2, then this cannot happen, otherwise since

2 B

. 2 2 .

h acts semi-freely, F(h ) = fl. But h is an

involution on K and by [13] there is no involution

on K with empty fixed point set.

0.

Now, assume F(h) # 2. Since h2 has an odd

(1

period m, lemma 1, section 2.1 gives F(h2 ) z 81 and

since h acts semi-freely on K, F(h) z 81. Hence

F(hl) = F(h) z S1 for all 1 <i <n. Since n is even

0.

F(h) = core of K. Now we have h is a homeomorphism of

. . . . l '

odd period with fixed pOint set 2 S = core of K. But

this cannot occur by remark 7, section 2.2. This yields

(1) and finishes the proof. U
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