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ABSTRACT

EFFECT OF STRESS ON ULTRASONIC WAVE VELOCITIES

IN ROCK SALT

by Othman M. Abu-Gheida

The main objective of this investigation was to

investigate the possible use of ultrasonic wave techniques

for studying stresses in an undisturbed continuous medium.

Present stress analysis methods employing strain gages or

photoelastic and stress coat techniques cannot be readily

used to analyze underground stress conditions. Recent

tests by many investigators revealed that the velocity of

ultrasonic waves propagating in rocks changed with changes

in hydrostatic pressure. No mathematical explanation has

been given for this change in rocks.

Theoretical expressions for the wave velocities

in an initially isotropic solid, subjected to homogeneous

stresses similar to underground conditions, were

developed in the present investigation. The theoretical

development considered the superposition of small strains,

due to waves, onto finite strains due to static stresses.

The relevant elastic constants which determine the wave

velocities were calculated in terms of the static stresses.

Lamé's constants and the third-order elastic constants of
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the finite theory of elasticity. Seven functions of the

three third-order elastic constants were derived. Four

of these functions were measured in rock salt.

Preliminary investigations on uniaxially stressed

salt and steel specimens were conducted to determine the

changes that occurred in the velocity and attenuation of

longitudinal waves. propagating in the lateral and axial

directions.

The basic information derived from the preliminary

tests was used in designing tests to determine the third~

order elastic constants of rock salt. Longitudinal and

shear wave velocities were measured in rock salt specimens

subjected to hydrostatic compression. Similar measurements

were made along the direction of uniaxial strain in tri—

axially stressed’ specimens.

The results revealed that the changes in velocity

at high pressure are reproducible. This indicated an

agreement with the theoretical predictions. Consequently,

the third—order elastic constants of rock salt were

determined from the changes in velocity at high pressures.

It was concluded that the theoretical and experi—

mental results of this investigation might have possibilities

of being used to study stress conditions in underground

salt formations. Other possible geophysical applications

are also discussed.
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NOTATION

Unstressed, unstrained state of an isotropic

body.

State of finite strain

State of finite plus infinitesimal strain

Coordinates in state A0

Coordinates in state A'

Coordinates in state A

Jacobian matrix of the transformation x: ~ xi

Jacobian matrix of the transformation x! + xi

X .

1

1

Jacobian matrix of the transformation x: *

Particle displacementsfrom state A0 to A'

Particle displacements from state A' to A

Strain, or infinitesimal strain from state A'

to A

. 0
Strain, or finite strain from state A to A

Stress, or total stress in state A

xii



iJ’

cij

ijr

kij

k1

kcs

mcs

u in/in

Increment of stress from state A' to A

Identity square matrix of dimension 3

Second-order elastic moduli

Effective elastic moduli

Third-order elastic constants

Third-order elastic constants

velocity: lst subscript refers to type of wave.

3 for shear and L for longitudinal, 2nd

subscript refers to direction of particle

motion, 3rd subscript refers to direction of

propagation.

velocity; lst subscript refers to type of

wave, 2nd subscript refers to type of stress,

h for hydrostatic and t for triaxial stress

with uniaxial strain

Young's modulus

Poisson's ratio

Bulk modulus

Density

Hydrostatic Pressure

Linear hydrostatic strain

Uhiaxial strain

Kilocycles per second

‘ Megacycles per second

Micro-inches per inch

xiii



I. INTRODUCTION

The use of ultrasonic pulse techniques to study

stress waves in solids advanced after world War II when

fast pulsed circuits were developed. During the past

decade, extensive literature has been published on the use

of ultrasonic propagation methods for studying dynamic

elastic moduli, propagation velocity and internal friction

in unstressed solids. Most of the investigations were

restricted to single crystals and unstressed specimens.

The factor of stress was recently introduced in some

experiments to study dislocations,27 residual stresses.58

changes in elastic moduli and propagation characteristics

in single crystals,39 polycrystalline metals30 and rocks.13

Such studies are still in the early stages of development

due to limited available data and absence of well defined

theories.

To date, characteristic changes in velocity versus

hydrostatic pressure in rocks have been interpreted as due

to pore closure at low pressure,14 and to undetermined

intrinsic changes at high pressures.53 A study of the basic

principles involved in wave propagation is required to

explain the intrinsic changes in velocity.

With the growing use of radioactive materials, there

is an increased demand for safe and economic disposal of



radioactive wastes. Recently, rock salt cavities have been

suggested for this purpose.66 Serata6O concluded that

knowledge of the existing underground stressvfield was

needed for the structural design of such cavities.

The objectives of the present research were to

investigate the possibility of using ultrasonic-wave methods

to study stress conditions in underground salt formations

and to determine the third-order elastic constants of rock

salt.

The theoretical development included a derivation

of wave velocities in an initially isotropic material when

subjected to homogeneous deformations due to hydrostatic

pressure or to triaxial stress with uniaxial strain.

Preliminary tests were conducted on uniaxially

stressed steel and salt specimens to determine the sensiti-

vity of the ultrasonic pulse method for measuring relative

attenuation and absolute velocity at different stress levels.

The results of these tests were used to design a

more sensitive circuit for measuring the changes in velocity

with an accuracy of 0.05%. This circuit was used to measure

changes in longitudinal and shear wave velocities in rock

salt due to hydrostatic pressure and to triaxial stress with

uniaxial strain. The maximum axial and lateral stresses

in the triaxial tests were 13,800 and 11,000 psi respectively.

The maximum hydrostatic pressure was 9,000 psi. The

dynamic elastic moduli and the third—order elastic constants

0f rock salt were determined from the collected data.
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II. LITERATURE REVIEW

2.1 Mechanical Properties of Rock Salt

The ultimate and safe disposal of radioactive waste

has become one of the important problems of this age.

The feasibility of using underground salt cavities for this

purpose has initiated extensive exploratory research on the

geophysical, radiological and economic aspects of using

rock salt cavities for reactor waste disposal. In 1955

the cumulative results of this research led the Committee

on Waste Disposal of the Division of Earth Sciences.

National Academy of Science, to endorse the disposal of

radioactive waste in salt cavities as a most promising and

practical solution.66

In 1959, Serata6O developed design principles for the

disposal of reactor fuel waste in underground salt cavities.

To arrive at his results, he conducted an experimental and

theoretical investigation of the chemical, radiological,

thermal and structural factors which affect the salt

cavity. Of these factors, he found that the structural

Stability of the cavity is of prime importance. Consequently,

61'62 and later Morrison.4S RamaHSl and ChOWdiahzo
Serata

studied the mechanical properties of rock salt such as

strength, Young's modulus, creep behavior, etc.



A summary of the results obtained by the above

investigators which are related to this investigation will

be presented below. For a summary and an account of previous

investigations that were done on rock salt the reader is

referred to Serata.6O

Uniaxial Compression

Serata6O analyzed the results obtained from uniaxial

compression tests on rock salt. He suggested that the wide

variations observed in the shape of the stress strain curve.

yield strength, Young's modulus (E). and Poisson's ratio

(V) were due to the variation of certain factors in the

testing procedure. Of these factors. he analyzed the follow-

1. Use of a friction reducer on the loading surface

of the salt.

2. Ratio of height to cross sectional area of the salt.

3. Method of measuring the strain by use of strain

gages or dial gages.

The results obtained by Serata indicated the following:

1. The friction developed on the loading surface of

the salt increased the yield strength through the

formation of a triaxial stress zone in the central

region of the specimen. This effect became more

pronounced when the ratio of cross sectional area

to the height was increased. Figs. 2.1 and 2.2.



2. The specimen size effeCL could be eliminated by the

use of a friction reducer.

3. The mechanical properties obtained after eliminating

the end friction were as follows:

(a) Mean maximum stress was 2,300 psi with a

standard deviation of 200 psi.

(b) Mean value of E was 0.14 million psi with a

standard deviation of 0.03 million psi.

(c) Poisson's ratio was more than 0.5 for stress

beyond 3,000 psi.

Chowdiah20 used the friction reduction technique

developed by Serata. The results he obtained from the uni-

axial compression of 5 inch cubic specimens, indicated the

following:

1. The stress strain curve did not exhibit any linearity

and as such the conventional methods of calculating

E and v could not be adapted.

2. The average value of E as calculated from the slope

of a straight line connecting two points on the

stress strain curve (chord modulus) was as follows:

 

 
 

E
E

Stress range. (SR—4 Gages) (Dlal Gages)

_ 981. Million psi Million pSi

0 to 1.000 1.408
0.4323

1.000 to 2,000 0.1913 0—

3- The value of v, when dial gages were used. varied

linearly from 0 to 0.5 as the stress increased from

0 to 1,500 psi, and increased very slightly for



higher stresses. The value of v when SR-4 gages

were used was consistently higher than the values

obtained from dial gages.

The high values of v, 0.5 and above, were explained

as due either to errors in the measurement or to brittle

fracture between the crystal grains resulting in a volume

increase of the specimen.

Biaxial Compression

Chowdiah20 used strain gages, dial gages and photo-

stress technique to determine the behavior of rock salt

due to biaxial compression. Five inch cubic specimens were

subjected to vertical and lateral stresses of equal or

different magnitudes. His results indicated the following:

1. Rock salt in a biaxial state of stress fails by

plastic flow.

2. Yielding begins when the octahedral shear stress

reaches a value of 1,885 psi. The octahedral shear

stress is defined by:

1

To =‘% [01-02)2 + (oz-o3)2 + (o3-ol)2]2

Where:

To = dCtahedral shear stress

O1'02'03 = principal stresses

For condition of equal lateral and vertical stresses

0=G=O

O = 0



this equation reduces to:

=~L3
o 3 U

'1’

Triaxial Compression

Handin26 studied the triaxial behavior of cylindrical

salt specimens subjected to a confining liquid pressure and

compressed in the third direction. His results indicated

that rock salt exhibits an increased ductility and plastic

behavior with an increase in confining pressure. A specimen,

at 1,200 atmosphere confining pressure, was shortened 75% be-

fore fracture.

Serata61 used the experimental results of Handin to

plot Mohr's envelope for rock salt. Mohr's envelope is

represented by the line A B C D E, Fig. 2.3. This envelope

is tangent to Mohr's circles for a number of triaxial tests

in a large range of the mean principal stress. Serata

Suggested that the envelope could be considered to be com—

posed of three portions:

1. A B corresponds to brittle behavior and can be

best described by the Coulomb-Mohr theory of

triaxial failure in the form:

T = t + 6 o
(2.2)

c

where:

T = shear stress on the plane of failure

9 = coefficient of internal friction of the

material



o
‘
d

I

~

4
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o = normal stress on the plane of failure

T = the constant part of the shear strength which

depends on the material.

2. B D represents a transition state.

3. The horizontal line D E represents a plastic behavior

which could be explained by the octahedral shear

strength theory of failure in the form of Eq. 2.1.

1

_.l 2 2 _ 2 2 = =
To - 3 [01-02) .+ (02-03) + (03 01) ] const. ko

when 01 = 02 = 03 this condition reduces to

J)

To - if (02’03) _ ko

If the octahedral shearing strength of salt is defined by k0.

k ) (2.3)=[2—_
o 3 (02‘03

then the maximum shearing stress corresponding to the line

D B will be:

O2‘03
= -—3-— k

max. _ 2 2J2 0 (2’4)

 

By an extension of Mohr's envelope method, a theory

0f underground stress field was developed by Serata61 and

investigated by Serata,61 Morrison45 and Raman.51 This

theory predicted that the underground stress field is

elastic at small depths and abruptly changes to plastic

at a certain depth depending upon the material. This

behavior was represented by Mohr's envelope FDE, Fig. 2.3-

FD represents the elastic state and DE the plastic state.

The theory and the results are given below:



The relation between the principal stresses and

strains is:

- _.1
ex - B [OX V(OY + 02)]

e =-; [o -v(o + o )] (2.5)
y E y z x

e = l-[o —v(o + o )]

z E z x y

where:

compressive stress and strain are considered

to be positive.

ex'€y = strains in horizontal directions

£2 = strain in vertical direction

OX'OY = stresses in horizontal directions

Oz = stress in vertical direction

E = Young's modulus

v = Poisson's ratio

The underground stress condition is essentially a

triaxial stress state with uniaxial strain. The horizontal

strains ex.€ are zero since no lateral strain is possible

when the medium extends to infinity. The vertical stress

is equal to the overburden pressure. The lateral stresses

are equal and are developed due to the restriction of lateral

deformation. Substituting these conditions in Eq. 2.5 leads

 

to:

v

L 1-v 0z

where:

O = O = O



10

This equation represents the relationship between the lateral

and vertical pressures at small depths. Eq. (2.6) remains

valid for increasing depths until the octahedral shearing

stress To reaches the value of the octahedral shearing

strength k0. At this point there is a sharp transition from

elastic to plastic behavior and the relation between UL and

Oz could be derived from the yield condition:

1

1 2 2 2 2
= =._ _ - + - 2.7To ko 3 [(0x oy) + (CY 02) (oz OX) ] ( )

When 0 = oy = 0L. this equation reduces to:

3= _. 2.8

0L Oz-i 2 ko ( -.?

Using Eqs. 2.6 and 2.8, Serata's transition theory was

represented in a plot of C vs. oz.(Fig. 2.4). Line AB

L

. V

represents an elastic state with a slope defined bY l-v°
 

Point B is a transition point. Line BC represents a plastic

condition with a slope of unity. Line CD represents elastic

unloading and DE plastic unloading. AB is equal to the

residual lateral stress after a complete cycle.

This transition theory was experimentally investi-

gated using different rocks.51 and salt.45 A uniaxial state

Of strain was created by applying axial loads to cylindrical

rOCk Specimens which were tightly fitted in thick-walled

Steel cylinders. Lateral stresses were calculated from

the measured strains in SR-4 gages on the outer surface of

the steel cylinders. For the tests on rock salt the steel
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Fig. 2. 1. Effect of dimension and end friction on maximum

stress. (Serata)
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cylinders had an inside diameter of 3.25 inches, an outside

diameter of 4 inches and a height of 3.25 inches. A friction

reducer consisting of a plastic sheet coated with a grease—

graphite mixture was applied to all sides of the salt to

prevent the development of shear stresses.

The experimental results obtained from the tests on

rock salt showed remarkable agreement with the theory as

outlined by Serata. The value of v, obtained from line AB,

was 0.17 and k0 1,750 psi. Fig. 5.9 shows a typical plot

of 0 vs. oz as obtained by the present author during this

L

investigation.

2.2. Theory of Stress Waves in Solids

2.2.1. Hooke's Law
 

A generalization of Hooke's linear law may be stated

a3: Each of the six components of stress is at any point

a linear function of the six components of strain. This

may be expressed as:

     

r - ._. - r' -‘

Oxx C11 C12 C13 C14 C15 C16 Exx

ny C21 C22 C23 C24 C25 C26 6yy

022 = C3i C32 C33 C34 C35 C36 Ezz (2.9)

Oyz C41 C42 C43 C44 C45 C46 yyz

Ozx C51 C52 C53 C54 C55 C56 sz

LonyL :61 C62 C63 C64 C65 C6: b'YXYJ 
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where:

o o o -- r 1xx' yy' 22 no ma stresses

0 O O —— sheer s rYX’ ZX’ XY t esses

C , C , ... C..-~ elastic constants of the material
11 12 13

E . € . e -- normal strains
xx yy 22

ny. sz. sz -- are two times the shear strains

40 . . .

It may be shown that the matrix Cij lS symmetric

i.e., C, , = C1) ji' For a completely aeolotropic (non symmetri-

cal, non isotropic) material, the elastic constants Cij

reduce to twenty-one constants. Where the material has axes

or planes of symmetry, relations may be established between

the elastic constants. For a cubic crystal there are only

three independent constants, and the Cij matrix becomes:

- _ —y

 

C11 C12 c12 0 0 0

C12 C11 C12 0 O 0

C12 C12 C11 0 0 O

0 0 0 C44 0 0

0 0 0 0 C44 0

_ 0 0 0 0 0 C44  
For an isotropic solid.

C11 = C12 + 2 C44

C12 = A

C = u

44
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where A and H are called Lamé's constants.

The matrix can be written as:

R... I. . . . .'
A A + 2a A O

A A l + 2n 0 0 0

O O O u 0 O

O O O O u 0

0 0 0 O O u

_ 1  
The generalized Hooke's law (Eq. 2.9) for an isotropic

solid in the elastic state may now be written as:

_ _ _ du 5V
0xx — A A + 2” Exx ny — M WXY _ u (5V'+ 5;)

du 5wOYY -— A A + 2p. €YY ze — LL 'YXZ — LJ. (5'2— + 3;) (2.10)

5v 5w=
= = +O... I A + 2.. 0y. M 'sz .. (a; 37)

where:

u, v. w = displacement components in x. y, 2 directions.

A = e + s + 5

xx yy 22

=-§E +-§! +-§! = dilatation = change in volume0X By dz

per unit volume

Lame's constants can be expressed in terms of E.V.

G. and K.

where:

E = YOung's modulus

Poisson's ratio

.P _ Applied hydrostatic pressure

Bulk modulus = TZT'- Change in volume

u

V

K II

G = Shear modulus =
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The relations are:

 

 

 

E ___ L(3?\ + 20.)

‘ A + u

V = )\

2 (x + u)

(2.11)
K = A + 3H

3

_ _ E

u — G - 2 (1 + V)

2.2.2 Wave velocities in an Infinite Linear Elastic

Isotropic Medium

The equations of motion for an isotropic linear

elastic medium are:

52u " doxx Box 50x2

Pg‘Pu=PX+T§;—+ y+—'az—

do do 50 2

p6 = pY + —5£§-+ 0y + z (2.12)

asz 502 6022
pw=pZ+—5X—+ Y+ z

where:

X. Y, Z are body forces in x, y, 2 directions

p = density

Substituting for the stresses in Eq.(2.10L.and

neglecting the body forces X. Y. Z, in Eq.(2.12 yields:

Pfi = (A + u)-%% + uvzu (2.13s)

PV = (A + 0) %$ + uvzv (2.13b)

pfi = (i + u) 37f:- + LLVZW (2.13c)
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These equations may be shown to correspond to the

propagation of two types of waves through a medium.36'41

Differentiating (2.13a) with respect to x,(2.l3b)

with respect to y and (2.13c) with respect to z, and

adding the three equations yields:

2

5 A _ ~ 21‘.

36'41 which shows that theThis is a wave equation

dilatation A is propagated through the medium with a

velocity (Vi) equal to:

LLB—E , (2.15)

On the other hand. A can be eliminated by

differentiating (2.13b) with respect to z, (2.13c) with

respect to y and subtracting the results. The resulting

equation is:

2
5 0w 0v _ 2 Qw _.§y

p597“??? ””7 (.y 52’

or' 52;
P 22‘ = )1: (72;, (2.16)

atz yz

where:

W92 is the rotation around the x axis.

This is another form of the wave equation and shows

that the rotation‘Wyz is propagated with a velocity VS:
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(2.17)

Similar soultions for the rotation about the y and z axes

may be obtained.

For a plane wave

component v,

into the form:

independent

(1 + 2H)

with a single particle displacement

of x and 2. Eq. (2.14) can be put

———'i u = w = 0 (2.18)

It can be verified by direct differentiation and

. 41substitution that this equation describes a wave of the type,

V

where:

(.0

V cos w (t — AL) (2.19)
0 V

L

angular frequency,

which travels with the velocity VL 0f Eq- (2-15) and has

a particle displacement v in the same direction as the wave

Prepagation y. This type of wave is called a longitudinal

Plane wave, and may be designated as:

where:

the first subscript, L, indicates a longitudinal

wave '

the second subscript, y, indicates the direction of

particle displacement. and

the third subscript, y, indicates the direction of

wave propagation.
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By similar procedure, it may be shown that two other

plane waves, VLxx' VLzz’ could be propagated in an isotropic

medium with the same velocity Vi.

For a plane wave. with a single particle displacement

v independent of x and y. Eq. (2.16) can be put into the

form:

2

pa—-}-’=u
at

 u .-.-.. w = O (2.20)

This equation describes a wave of the type,

2
V — vO cos w (t - Vs) (2.21)

which travels with the velocity VS of Eq. (2.17) and has a

particle displacement v perpendicular to the direction of

propagation z. This type of wave is called a transverse or

shear wave, and may be designated as Vsyz' Similar solutions

‘ .
V .can be obtained for stz’ sty' Vsyx' Vszx and szy

2.2.3. Rayleigh Surface Waves

In an unbounded isotropic elastic solid only

longitudinal and shear waves can be propagated. However.

when there is a bounding surface, elastic surface waves may

also occur. These waves are similar to gravitational surface

Waves in liquids and were first investigated by Lord Rayleigh

in 1887, who showed that their effect decreases rapidly

With depth, and that their velocity of propagation is

smaller than that of shear waves.

Kolsky36 gave a discussion of these waves and showed

that,
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If

Vn
R ='V— .

s

where:

Vh = velocity of Rayleigh wave,

VS = velocity of shear wave,

then R is found to satisfy the equation.

R8 - s R4 + (24 - 16 A2) R2 + (16 A2 — 16) = 0 (2.22)

where:

1 - 2v

A = 2 - 2v

v = Poisson's ratio.

Equation (2.22)shows that R depends on Poisson's

ratio. For V = 7 R = 0.9194; for V = 0051 R = 009554!

9
H
4

for steel v = 0.29. and R = 0.9258.

2.2.4. Longitudinal Waves in Elastic Rods

There are three types of vibrations which occur in

rods. They are classified as longitudinal. torsional and

36
flexural. The following discussion will be limited to

longitudinal waves.

An approximate solution for the longitudinal wave

velocity in an elastic rod can be obtained by assuming that

plane transverse sections of the bar remain plane during the

passage of the stress wave.36 Consider a small section.

RS: 0f the bar with a cross-sectional
area, A, as shown

below:
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R
S

o
+ §§XX 6XX“ r—'—"XX X X

Ex

Newton's second law of motion yields:

2u doxx

PAOX-SZ— = A'—3;— 5X

where:

A = area of cross section

u = particle displacement

or,

2 do
0 u _ xx

patz— 5X

But,

Oxx
E:

u

5;

Therefore.

2
dzu d On _ 512 .

2gp‘wflEa‘gl-Exz (2'3)

This is another form ofthe wave equation; its

solution may be written as:36

- - 2.24)u — f (VRt x) + F (VRt + x) (

where:

VR = \/% = propagation velocity in rods. (2.25)

and F. f are arbitrary functions depending on the initial



 

s
t

A
:
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conditions; f corresponds to a wave traveling in the direction

of increasing x while F corresponds to a wave in the

opposite direction.

For a wave traveling in the decreasing x direction,

u = F (VRt + x).
(2.26)

Differentiating Eq. (2.26) with respect to t yields,

3E'= VRF' (VRt + x).

Here F' denotes differentiation with respect to the argument

(th + x). Thus:

0 d du _ Egg3% = vR—afi But. X — E

E du _ du

Oxx _ (V;)'dt — pVR'dt

o _ V du

xx — P R 67-.“
(2.27)

This equation shows that there is a linear relation

between the stresses at any point and the particle velocity.

When a wave reaches the end of a bar it will be

reflected. The nature of the reflected wave depends on the

boundary conditions at the end. It may be shown that36

for a free end (no stress) the reflected wave will be

oPPosite in sign to the original wave. Thus, a compression

PU1Se'will be reflected as tension. Applying the condition

that the displacement is zero at the end of the bar, leads

to the conclusion that the reflected wave is of the same

Sign as the incident pulse.
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2.2.5. Limitations of the Rod Velocity Equation

In deriving Eq. (2.25) it was assumed that plane

transverse sections remain plane. However, there is a lateral

expansion and contraction in the rod that results in a

non-uniform distribution of stress in the sections. This

causes the sections to be distorted. This effect was first

investigated by Pochhammer50 in 1876. An account of

Pochhammer's treatment is given by Love,40 Kolsky36 and

Mason.41 An exact solution is given for cylindrical bars

whose length is much greater than their diameter. The

equation derived is valid for wave lengths which are much

longer than the diameter. They lead to the result that

harmonic waves cannot be propagated in bars at a velocity

larger than VR.

2.2.6. Elastic Waves in Finite Cylinders

Kolsky36 pointed out that "exact solutions have not

been obtained for vibration of cylinders of finite length."

The Pochhammer treatment leads to the result that no energy

can be propagated in a bar at a velocity larger than VR.

However, Kolsky, Silaeva,64 Tu and his colleagues,70 have

stated that a bar could be assumed to be an infinite

medium, when the ratio of the bar radius to the wave

length is large. This statement is especially important

when elastic wave velocities are measured by ultrasonic

pulse methods using rock specimens of small dimensions.

In such experiments it is desirable, in many cases. to
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measure Vi directly so that the velocities measured can be

compared to velocities observed in nature.

The following experimental results may be considered

as design criteria for the selection of specimen dimensions

and frequencies to be used to measure V in small specimens.

L

Tu and his colleagues70 measured the velocity of

longitudinal pulses, with different carrier frequencies, in

metal bars using quartz and barium titanate transducers.

Their results are presented in Figure 2.5. vg in the figure

indicates the group velocity. This is the velocity with

which the energy is transmitted in the bar41 and is equal

to the measured pulse velocity.7O They indicated that their

results agree with the theoretical calculation of Pochhammer

for values of-% less than 0.8, where a is the bar radius

and L is the wave length. At large % the group velocity

becomes equal to VL-

Silaeva and Shamina64 used ultrasonic pulse methods

to measure distribution of elastic waves in cylindrical

brass rods of different radii. Their results are presented

in Figure 2.6. This figure shows the regions in which VL

and VR are detected easily, depending upon the relative

dimensions of the specimen. The relative dimensions

Of the specimen are presented by the ratios of the length

(X) (distance between transducers) and radius (a), to the

wave length (L).
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Figure 2.6 may be interpreted to state that the

velocity measured by ultrasonic methods in rods will be VR

or v depending upon the ratio of 2-as well as the length of
L L

the specimen. For small ratios of-%. the measured velocity

will be VL for short specimens, and VR for longer specimens.

As the ratio-% increases, the length of the specimen for

which vL is observed becomes longer.

2.2.7. Determination of Elatic Moduli from

Wave Velocities

In general, the elastic moduli (Cij9Eq’ 2.9))1 of

a solid are determined by measuring the velocities of

longitudinal and shear waves in different directions. The

types of waves and directions to be chosen depend upon the

number of independent elastic moduli of the material.

For an isotropic solid, the elastic moduli A and

u are determined by measuring V and V3 in any direction.

 

 

L

The value of VR’ if known, provides an additional check.

_ A + 2g = E(1-V)

YL _ p . fiV/p (l+V)(1-2V)

{—21—i
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_ 2
u - P vS

A _ 2
— p VI - 2a

(2.28)

2

._i- Vs
‘ 2 2 2

2 (VI - vS )

Additional relations are shown in Tabka 2.1.

For a cubic crystal the elastic constants C11. C12

and C44 can be calculated from the measurement of longitu-

dinal and shear wave velocities in a (110) crystal.* If

the velocities are measured in the [110]direction, then:39

 

 

ll 12 44 _ 2

2 ‘ P V1

C - C

11 12 2

= 2.292 pv2 ( )

2

C44 ‘ p-V3

where:

Vi = velocity of longitudinal wave.

V2 = Velocity of shear wave having a particle

motion in the [llO] direction.

V3 = Velocity of shear wave having a particle

motion in the [001] direction.

Additional checks are furnished from the measurement

of longitudinal and shear wave velocities in a (100) crystal.

*The notation (110)or [110]refers to standard Miller

indices of crystals. The ( ) means plane. the [ ] refers to

direction.35 .
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Table 2.1. Connecting identies for elastic constants of

isotropic bodies (Birch). K = bulk modulus;

E -= Young's modulus: E = shear modulus:

B = compressibility = l/K; A = Lame's

constant7V = Poisson's ratio; p = density:

R1 = VL/Vs'

2 2 2_

K L pVR E A v pVL AVS -H

3A+2 ._A___ + .1+2u/3 -7;fifi 2(i+u) 1 2n

K—A A 3K-2A 3(K-A)/2

° 9K 3K—i 3K—i

9K8. _ ————i£——3K"2 K+4 3 .. 31““ K 2IL/3 2(3K+p.) IV

E E—ZE _ 4u-E

3K"E §§:§. éfiifi _§§§
o o o 0 3K 9K‘E 6K 3K 9K-E 9K“E

1+V (1+v)(1-2v)
A 1:1 A 1—2v

A 3v A v ° .' V 2V

2 1+v 2v 2—2v .

)‘L 3(1‘2V) 2u(l+V) LL l-ZV LL l-ZV

’ 3K(1'2V) 3K 1+v 3K 1+v 3K 2+2v

E Ev 3(1'V) E

3(1-2v) ° (1+v)(l—2v) 1+.)(1-2v) 2+2V

2
(R - 2)

2 4 2 2 l

P(V --v ) .. p(v -2V ) ° ' 
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C11 — P v42

(2.30)

C44 = 9 V52

where:

v4 = velocity of longitudinal wave in [100] direction,

< ll velocity of shear wave propagating in [100]

direction.

2.3. Ultrasonic Techniques for the Measurement of

Elastic Wave velocities and Attenuation in Solids

2.3.1. Ultrasonic Test Components

The basic components of an ultrasonic test system

1. Electrical signal generator and indicator,

2. Transmitting and receiving transducers.

3. specimen and couplant.

1. Electrical signal generator and indicator:

The function of the signal generator is to provide

an electrical signal in the form of a pulse or harmonic

wave. This pulse is applied to the transmitting transducer.

The electrical indicator is usually the CRO screen

Of an oscilloscope. Its function is to display the signal

from the receiving transducer.

2. Transmitting and receiving transducers:

The transducers used in ultrasonic testing can be

best described by the term "high frequency electromechanical
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transducers" i.e., elements that have the ability to transform

high frequency electrical energy into high frequency mechani-

cal energy and vice versa. The transmitting transducer

vibrates when an electrical pulse is applied to it. These

mechanical vibrationsare transmitted to the specimen through

a couplant. When the receiving transducer "feels" the vibra-

tions in the specimen it vibrates and produces electrical

signals which are displayed on the oscilloscope.

A conductive material such as silver paint is needed

on the two opposite faces of both transducers, for connection

to the electrical system.

Transducers are made from piezoelectric materials,

such as quartz crystals, or from polarized ferroelectric

ceramics such as barium titanate. A description of the

Properties of these materials and their electrical and

acoustic constants, can be found in any of the standard books

17,13,41
on this subject. For the purpose of this investi—

gation, it is sufficient to note the following:

Quartz piezoelectric transducers can be cut in

various orientations. to generate the type of wave desired.

An X-cut is used to generate longitudinal waves; a Y-cut

is used to generate shear waves.

A ferroelectric ceramic is polarized by applying a

large electrical field, usually at a temperature above the

Curie Point, and cooling the ceramic with the field applied.

After cooling, the ceramic acts like a piezoelectric crystal.
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The three most common transducers are quartz, barium

titanate and lithium sulfate.43 Quartz transducers have the

advantage of being stable over a wide temperature range and

the disadvantage of being the least efficient transmitters.

Barium titanate transducers have the advantage of being the

most efficient transmitters and the disadvantages of low

Curie point and a tendency to age. Lithium sulfate

transducers are the most efficient receivers. However.

their use is limited because lithium sulfate is soluble in

water.

The frequency of a transducer varies inversely, with

its thickness. However, the relation is not linear and

depends on the type of transducer, X or Y cut, and on the

material from which it is made.

3. Specimen and Couplant:

The surface of the specimen to which a transducer

is applied must be smooth to minimize the loss of acoustic

energy due to reflection and refraction at the interface.

A thin layer of a couplant is applied between the transducer

and the specimen.' The couplant serves as a means by which

the acoustical energy is transferred between the transducers

and the specimen. For longitudinal waves, a thin film of

grease or oil serves this purpose. For shear transducers

the couplant should possess the ability to transfer shear

waves. Satisfactory results can be achieved by using

Phenyl Salicylate or regular sealing wax. These materials
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are applied to the heated surfaces of the transducer and the

specimen to be joined. The transducer and the specimen are

then clamped together and allowed to cool.

2.3.2. Ultrasonic Test Methods

Several methods have been used to measure the velocities

and attenuation of ultrasonic waves in solids. The most

favored method is the pulse method in which a short train

of high frequency waves are propagated in the specimen. The

frequency of the waves is equal to the vibration frequency

of the transmitting transducer. When a rectangular voltage

pulse is used, the transducer is assumed to vibrate at its

natural frequency which depends on its thickness. waever,

a transducer can be driven to vibrate over a wide frequency

range by using a pulse which consists of a short train of

harmonic waves. The efficiency of the transducer is best

when driven at a frequency which is equal to its natural

frequency.

Pulse Echo Method (Figure 2.7)

This method uses only one transducer which acts as

both a transmitter and receiver. The original pulse is

reflected back and forth between two opposite parallel

faces of the specimen. Both velocity and attenuation can

be measured from the received signal. velocity is determined

by measuring the time delay between two echoes. Attenuation

is measured from the relative amplitude of successive echoes.
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Through Transmission (Figure 2.8)

In coarse grained materials, such as rock, the echo

method cannot be used because of scattering and loss of

acoustic energy both in the specimen and on the reflecting

surface. In such materials, two transducers are used on

the opposite faces of the specimen. The velocity is deter-

mined by measuring the delay time in the specimen. Relative

attenuation can be determined by comparing the amplitude

of the signals received from specimens of different lengths.

2.4. Experimental Results on the Effect of Stresses on

Ultrasonic Wave velocities and Attenuation in Solids*

During the past two decades, ultrasonic waves have

assumed an increasingly important role as an industrial and

research tool to study the physical properties of matter.

In industry, ultrasonic inspectroscopes and thickness

gauges are used to determine the integrity and dimensions

of metal castings or other solids.41 In research ultrasonic

waves, and their variations with temperature, stress and

frequency are used to study the composition of materials.

elastic moduli, mechanisms of internal friction, atomic

structure, imperfections in a crystal lattice and "even the

interaction of lattice vibrations with free electrons and

phonons."41

*The term "ultrasonic waves" refers to periodic

disturbances in a medium above the audible range, i.e., above

20.000 cycles per second.
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The purpose of this section is to review the use of

ultrasonic methods to measure the changes of elastic moduli

and attenuation in solids, with special emphasis on rocks.

Comprehensive bibliographies and discussion of additional

uses can be found in any of the standard books on this

subject.18'31'41

2.4.1. Single Crystals

Experimental results of the dependence of the elastic

constants of single crystals on pressure, are aimed at

investigating the atomic structure of crystals. Measured

changes in the elastic constants are compared with theoretical

changes that can be computed from Fuch's theoretical calcu-

lation of the cohesive energy contributions.59'75 For

example, the compressibility, B, for a cubic crystal can be

expressed as59

E15; =% (C11 + 2 C12) = 1:32 (2-31)

where:

5¢ = change in elastic energy per unit volume.

-%¥ = relative change in volume.

From quantum-mechanical considerations-Ex is
V

expressed in terms of the change in the radius of a sphere

having the same volume as the atomic cell. (¢) is expressed

in terms of the cohesive energy per atom of the crystal.59

The compressibility, B, at zero absolute temperature can

then be expressed as?9
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l_.__l__ 9.23;)
B—lZTrr 52 (2°32)

where:

r = radius of a sphere having the same volume as

the atomic cell when €(r) is minimum.

€(r) = cohesive energy per atom

Lazarus39 made the first ultrasonic measurements of

the changes of elastic constants with pressure. He measured

the changes in the elastic constants of NaCl, KCl, CuZn.

Cu and A1 with pressures up to 10 kilobars.* The elastic

constants were calculated from the measured velocities of

equations (2.29) and (2.30). The results for KCl and NaCl

are presented in Figures 2.9 and 2.10. Lazarus pointed

out that the increase in anisotrophy, C44 compared to

l . .
§.(Cll ' C12). of NaCl and KCl With pressure agrees With

75 predictions which are based on Fuch's calculationsZener's

Concerning the effect of short range exchange between closed-

shell ions on shear moduli.

Daniels and Smith21 reported similar measurements

on Cu, Ag and Au. The values found for the pressure deriv-

atives of the elastic constants were as follows:

Cu Ag Au

@ 6.18 6.43dP 5.59

dC
-— . 5 2.31 1.7961, 2 3

dC'
- . 80 0.639 0.438dP o 5

 

2 ~ .

*1 bar = 106 dynes/cm2 = 1.01972 kg/cm w 14 p31.
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where:

B = C11 + 2C12

3

C = C44

C._ C11 ’ C12

2

The main conclusion of the authors was that the

conventional assumption that short—range repulsions are

considered to act along lines joining nearest neighbor atoms

and depend only on the distance between them, does not account

for the shear constants and their pressure derivatives in

Cu, Ag and Au.

2.4.2. Polycrystalline Metals

While extensive literature has been published about

the effect of stresses on ultrasonic wave velocities in

Single crystals, very little work has been done with poly—

crystalline metals. A summary of this work follows:

Bergman and Shahbender5 measured the velocity changes

Of ultrasonic waves propagating in transverse direction to

the applied stress in (4 x 4 x 20 inch) aluminum columns

under uniaxial compressive stress. The ultrasonic modes

considered were longitudinal waves, shear waves with particle

motion along the direction of applied stress, and shear

Waves with particle motion transverse to the direction of

applied stress. The authors used a through transmission

method (Section 2.3.2). X and Y—cut quartz crystals were

used. All transducers were driven at 4 mcs. A similar set

' ide a

0f transducers was placed on an unstressed spec1men to PrOV



.
A
u

:
5
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delay line and a comparison circuit for more accurate

measurement of velocity changes.

The results obtained are presented in Figures 2.11-2.13.

Figure 2.11 shows the load—strain curve. Figure 2.12 repre-

sents the experimental values<mf Poisson's ratio as measured

by strain gages. Figure 2.13 represents velocity changes

as functions of the load.

The authors concluded the following:

1. The relevant elastic constant governing the velocity

of the longitudinal wave is independent of the

applied stress. The observed changes in velocity

may be accounted for by changes in density alone,

using the following equation:

Av

L- .l._
V — 62 (2 V) (2.33)

L

where:

AVL

'—v— = fractional change in velocity

L

62 = longitudinal strain at a given load

V = Poisson's ratio at the same load

2. Changes in shear wave velocities cannot be accounted

for by changes in density alone. This implies a

change in the relevant elastic constant governing

the propagation of shear waves. The authors gave

the following equation:

AV

% - V) + ‘V—él (2.34)
3

99.3.2 {-6
C 2
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where:

AC . . .
2? = fractional change in relevant elastic constant

of shear waves

£2 = longitudinal strain

Av

-V—- = fractional change in shear velocity

8

A discussion of the above results will be given in Section 5.8.

The velocity difference between horizontally and

vertically polarized shear waves initiated further exploratory

investigations by Rollins,58 Benson and Realson4 and Benson,3

to determine if this difference could be used to measure

static or residual stresses.

The experimental arrangement used by Rollins is

shown in Figure 2.14. Two 5 mcs shear transducers, A and

B, were cemented to the side of the specimen. The particle

motion of A was parallel to the direction of loading. The

particle motion of B was perpendicular to the direction of

loading. The two transducers were electrically connected

in parallel so that each sent out a pulse of acoustic

energy at the same instant. If the two shear waves travel

at the same speed their echoes should return to the trans—

ducers at the same time. The received signals from the

transducers would then be in phase and reinforce each

other. Hewever, when the two waves travel with different

velocities the echoes will not return at the same time and

received signals from the transducers will be out of phase.
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Since the two transducers are connected in parallel, the

receiver detects the sum of the two signals. When the

phase difference is 1800 the sum of the two signals will

be zero.

Figure 2.14 shows a schematic diagram of the echo

pattern in aluminum. The first zero echo occurs when the

phase difference is 1800; the second when the phase dif-

ference is 540°. Rollins observed that the first echo

arrives at an earlier time when the stress is increased.

He suggested that this might be a possible method of

measuring residual stresses.

Rollins,58 Benson and Realson4 and Benson3 were

able to obtain similar results using only one shear trans-

mitter with its particle motion oriented at 450 to the

direction of loading. In this case, "The ultrasonic wave

train can be thought of as having two components"4 of equal

amplitude, one with particle motion along the axis of

loading and the other with particle motion perpendicular

to the direction of loading. When a load is applied to

the specimen the two components travel with different

velocities, just as the two separate shear waves did in

the earlier example. "The different velocities of the

components produce a rotation of their resultant which is

completely analogous to the rotation of polarized light

going through a double refracting medium."58

When the two components are 1800 out of phase the

resultant of the two has rotated 900 in space. When this
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resultant wave train arrives at a receiving transducer

which is oriented in the same direction as the transmitter it

will produce no electrical signal because the receiving

transducer is insensitive to vibration in that direction.

Rollins used the echo method in which the transmitter served

as a receiver. Benson and Realson used a through trans-

mission method in which a shear transducer of the same

orientation as the transmitter was placed on the opposite

side of the specimen.

2.4.3. Rocks

Ultrasonic pulse methods have been used by many

investigators to study factors affecting wave velocities

in small specimens of rock. Birchl3 measured the velocity

of longitudinal waves in 250 types of rocks with pressures

uP to 10 kilobars. HughesBZ'33 and his colleagues measured

the variation of wave velocities due to pressure and

temperature. wyllie and his colleagues73 studied the effect

0f Porosity and water content. Tocher67 studied the effect

0f uniaxial stress. Similar studies were made by scientists

in the USSR72 and India.2 Rock salt was not studied by any

0f the above investigators. The only available literature

On rock salt comes from seismic measurements of PrOJect

48

COWbOY- The results obtained by the above authors

indicated that the influence of pressure, temperature and

water content on wave velocities followed a certain

general behavior common to most rocks. A summary of this
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general behavior is presented below. For the results obtained

for a particular type of rock, the reader is referred to the

original articles or to an excellent review paper by

Rinehart.

l.

53

The velocity of longitudinal waves increases with

an increase in hydrostatic pressure. At low

pressures, up to 500 bars, the velocity increases

by 10 to 30 percent of its original value. At

very high pressures, above 1,000 or 2,000 bars, the

velocity increases very slowly. Birchl4 suggested

that the rapid increase of velocity at low

pressures is due to closure of pore spaces and cracks

among the rock grains. Rinehart53 stated that the

slow increase of velocity at high pressures has

not been explained.

Velocities measured with decreasing pressures are

higher than velocities measured with increasing

pressures. Hughes32 suggested that this is due to

the fact that pores or cracks remain closed when

the pressure is released.

Frequency has little effect on velocity. At low

frequencies, 40 to 4,500 cps, the velocity variation

does not exceed 2%..14 At higher frequencies, 50 kcs

to 3 mcs, velocity is independent of frequency.

velocities measured in three perpendicular directions

in unstressed specimens do not differ by more than

2 or 3 percent.2’l4 A few rocks show a variation

up to 15%.14
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The principal factors determining longitudinal

velocity in rocks are density and mean atomic

weight. velocity is approximately a linear function

of density for rocks which have a common atomic

weight.14

velocity decreases with an increase in temperature.

Temperature tends to cancel out the pressure affect

when both are applied simultaneously.

velocity decreases with an increase in porosity and

water content.

The dynamic elastic moduli of rocks are higher than

the static moduli which are obtained from uniaxial

stress tests. The difference between the static

and dynamic values of Young's modulus varies

between 0 and 300 percent depending upon the type

of rock. For dense rocks, with a high value of

static E (7 x 106 psi), the difference is less

than 40%.while for rocks having low values of static

E (2 x 106 psi); the difference is more than 100%.

When uniaxial pressure is applied to rocks, the

longitudinal velocity in the direction of compression

increases in a manner similar to that observed in

hydrostatic compression. velocity in a direction

perpendicular to the compression, increases at a

lower rate. The difference between the two

velocities reaches 10% at fracture.
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10. Rook salt. The wave velocities and elastic

moduli of rock salt in situ were measured by Nicholls

and his colleagues48 in connection with the U.S.

Atomic Energy Commission, Project Cowboy.

The values obtained were as follows:

vL = 14,350 i 100 ft/sec. = 4,370 i_30 meters/sec.

VS = 8,380 i 100 ft/sec. = 2,550 i 30 meters/sec.

E = 5.09 x 106 psi

G = u = 2.05 x 106 psi

1 = 1.91 x 106 psi

K = 3.28 x 106 psi

V = 0.241

l/u = 0.931

The dynamic breaking strength of rock salt was

also investigated by the above authors using 30 to 50 inch

cores of salt. Small charges were exploded at the end of

the core. Strain gages attached at various distances

from the end, were used to measure the peak compressive

Strains at the point of failure.

The dynamic compressive breaking strength was

Calculated from the peak values of compressive strains and

the known value of dynamic E.

The data obtained are given as follows:



<
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Dynamic
Length Charge Length Peak compressive compressive

of weight
. breakingcore crushed strain strength

inches lbs. inches micro — in/in psi

31.6 0.1 9.6 3700 18,800

31.9 0.05 8.9 6700 34.100

39.2 0.15 10.2 7100 36.200

48.4 0.4 13.9 7500 38,200

Average 6250 31,800

 

Static tests were made for comparison and the authors

pointed out that the dynamic compressive strength was 7

times the static value.

2.4.4. Attenuation

The term "attenuation" as used in this investigation

refers to the dissipation of acoustic energy in a medium.

Attenuation in solids is due to many factors of which the

following are most important.

1. Internal Friction: The most direct method of

. . 36
defining internal friction is by the ratio:

QW

W

where:

AW = energy dissipated into heat while taking

a specimen through a stress cycle.

W = maximum strain energy in the cycle.

For liquids and gases internal friction is due to

viscosity and thermal conduction. These effects can be
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treated analytically. In solids the behavior is found to

be much more complex and to vary considerably with the nature

of the solid. Kolsky36 pointed out that there is at

present no satisfactory theory of internal friction in

solids.

2. Scattering: Scattering is the loss of acoustic

energy due to reflections and refractions at the

grain boundaries. This factor becomes very important

when the wave length is compatible with the grain size.

3. Beam spreading: The beam spreading phenomena may

be briefly explained by the following:

An X cut crystal mounted on one side of a

specimen will produce a plane wave pattern which

extends some distance into the sample and a spherical

wave pattern through the rest of the sample. In

the plane wave region there is essentially a very

small amount of reflection from the sides of the

specimen. In the spherical wave region there is

reflection from the sides of the specimen which

results in loss of energy and phase interference

which produces erroneous attenuation readings.

Therefore, reliable attenuation measurements should

be taken in the plane wave region.

Mason41 analyzed the beam spreading problem and

demonstrated that the plane and spherical regions can be

represented by the figure below:
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Hikata and his colleagues27 used the pulse echo

method to measure the changes in attenuation in an aluminum

Specimen under tension. Their results indicated that

attenuation increases with increasing stress in a manner

Similar to the stress—strain curve. A sudden jump dis-

continuity in the attenuation curve was observed near

the yield stress region of the aluminum. The authors

interpreted their results by using the theory of dislocation

damping. This theory assumes that the dislocation loops

are free to vibrate in a manner similar to a stretched
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string. As the external stress is increased the dislocations

break away from the weak impurity pinning points and the

loop length becomes larger and thus absorbs more of the

acoustic energy and leads to larger attenuations.

Auberger and Rinehartl used the through transmission

method (Section 2.3.2) to measure the relative attenuation

of rocks in a frequency range of 250 kcs to l mcs.

Attenuation was computed from the amplitude of the first

signals received for two specimens of different length.

 

20 log10 12:-

a = L2 " L1

where:

a = attenuation in decibels/unit length

A = amplitude of lst signal received

L = length of specimen

L2> Ll, Al) A2

For the rocks tested, a peak attenuation was observed

at a frequency which corresponded to the resonance frequency

Of the largest grains of the rocks. This frequency is

defined as:

."i
2L

Where:

VL = velocity of longitudinal wave

L = maximum macroscopic size of the grains.
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III. THE INFLUENCE OF HIGH STATIC STRESSES

0N ELASTIC WAVE VELOCITIES

3.1. Previous WOrk

Elastic wave velocities in a medium are derived

from the constitutive equations and the basic principles of

conservation of mass and balance of momenta. The wave

velocity V can be expressed as:

C

P

C = relevant elastic constant

p = density

The relevant elastic constant C depends on the type

Of wave, direction of propagation, temperature and the

material properties of the medium. Stress produces a

change in temperature, density, material properties, and

structural symmetry. The change in p can be determined

from the principle of conservation of mass.

p0 d v = pl d Vi

density

'
0 ll

d V = unit volume

52
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To find the changes in C it is necessary to examine

the constitutive equations, stress-strain relationships.

in which C appears. These equations are derived from energy

considerations. For isothermal processes it is assumed

that the work done on a medium, by the stresses applied to

it, is stored in the form of strain energy and that the

density of this energy is a function of the strain components.

In the classical theory of elasticity the strains

are assumed to be infinitesimal and the strain energy function

is expressed up to the 2nd power of the strain components.

Each component of stress is then the derivative of the

strain energy with respect to the corresponding strain com-

ponent. When the strains are measured from a state of zero

stress. the strain energy and the stresses are expressed as:

 

¢=lC.. 6.6.
(3'2)2 ij i j

G. = 5¢ = C.. e. (3.3)
i 86. ij j

i

where:

¢ = strain energy/unit volume

ilj =1, 2’ 000 6

repetition of a suffic implies summation with

respect to that suffix.

Oi = six components of stress

€i = six components of strain

Cij = 2nd order elastic constants

Cij are Called 2nd order elastic constants because

d . .

they are multiplied by 2n powers of strain in

the strain energy function (¢)-
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Equation (3.3) is the well known Hooke's Law.

For an isotropic material this equation reduces to Eq. (2.10)

with only two independent elastic constants A and u. In

this case the elastic wave velocities for an infinite medium

are:

Vi = l_%_2&
(3.4)

v8 = '\/—%%-
(3.5)

where:

V: = longitudinal wave velocity

VS = shear wave velocity

When‘the strains are measured from a stressed state.

EqS- (3.2) and (3.3) become:

0 1'
= ._i . . , (3.6)

¢ Oi ei + 2 cij eleJ

0. = 09 + c2; 5. (3.7)
i i ij j

where:

O: = initial stresses

In this case the Cij depend on the state from which

the strain 6 is measured, i.e., they depend on the initial stresses

0:. For an isotropic material under hydrostatic pressure P.

the Cij reduces to two indepdent constants l' and M'-

Brillouinl6 used the infinitesimal strain theory, Eqs.

(3-6) and (3.7), and derived the following expressions for

A' and u':

)\'

A + P
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The wave velocities Vi and vS are then:

Vi 2 -\/H+ 2 _—\/%p+ 2n - P (3.8)

' = -(/13.'_p=-(/Li_:__P_

V8 p' p'
(3-9)

density in the stressed state

 

 

'
0 II

These results were later rejected by Biot10 and

Birch12 because they are contrary to experimental data and

lead to the result that at sufficiently high pressures the

velocities will be zero.

A more accurate derivation of the changes in the

relevant elastic constants, C, was derived from the finite

theory of elasticity by expanding the strain energy function

¢. Eq. (3.6), to include higher powers of strain.

3.1.1. Finite Theory of Elasticity

In the finite theory of elasticity the assumption

0f infinitesimal strains is removed and the strain energy

function is expanded to include higher powers of strain.

Thus, the energy stored in the body in its stressed state

is:

0 =-% c..n. n. + C . n. nj nr + higher order terms

(3.10)

0i = finite strain

C- are called 3rd order elastic constants because

they are multiplied by 3rd powers of strain.
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The 3rd order constant Cijr form a 36 x 6 matrix.

Bhagavantam6 has shown that for a body with no structural

symmetry there are only 56 independent Cijr' For cubic

cyrstals the number of independent Cijr is 6 and for iso-

tropic bodies only 3. The stress is given by:

Oi = Cij nj + Cimn nm nn + higher order terms

(3.11)

Thus, stresses are not linear functions of the strains. This

is why the finite theory of elasticity is also called a

non-linear theory of elasticity.

Another consequence of the finite theory is that

the final coordinates of a point are not interchangeable

With the original coordinates as is assumed in the infinitesi—

mal theory. This is because the strains are large. Thus.

in the finite theory, stresses and strains can be expressed

in terms of either the initial or the final coordinates.

The choice of coordinates wouhfl depend on the type of problem

and the given boundary values. The initial coordinates are

Called "Lagrangian Coordinates“ and the final coordinates

are called "Eurlerian Coordinates."

The formulation of the finite theory of elasticity

in a completely general tensor notation is given by

Murnaghan,46-Eringen,23
Brillouin16 and Green and Zerna.

Murnaghan47 also gave the formulation using matrix notation.

BiOt9 and Rivlin54'55 discussed some of the fundamental

Concepts of the theory using rectangular cartesian coordi-

nates.



57

3.1.2. Small Elastic Deformations Superposed

on Finite Elastic Deformations

Green, Rivlin and Shield24 developed a general theory

for small elastic deformations superposed on known finite

deformations. Their theory was later specialized by Rivlin

and Hayes,56 Truesdall69 and Toupin and Bernstein68 to the

case where the small elastic deformations are due to wave

motion in a material originally subjected to pure homogeneous

deformations. The theory is developed by the above authors

in general tensor notation and without assuming any special

form for the strain energy function. Their treatment does

not explicitly bring out the third—order elastic constants.

Bhagavantam8 used Murnaghan's theory of finite

strain to derive the "effective elastic constants" of cubic

crystals under hydrostatic compression. The "effective

elastic constants“ are defined as the constants relating

additional stresses to the additional infinitesimal strains.

Bhagavantam assumed that:

¢1 = “’2 - 4’3
(3.12)

Where:

91 = strain energy of the infinitesimal strains

92 = strain energy of the infinitesimal strains

plus the finite strains considered as a

single composite finite state of strain

93 = strain energy of the initial finite strain

The effective elastic constants appear in @1' The

original 2nd and 3rd order elastic constants appear in
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¢2 and ¢3. The effective elastic constants are then

derived by equating the coefficients of the infinitesimal

strains appearing in both sides of the equation. The

results are as follows:

 

' _

C11 ‘ C11 + n (zcll + 2C12 + 6C111 + 4C112)

0 _
_ _

C12 ‘ C12 + n (C123 + 4C112 C11 C12) (3'12)

c
. _ 144

C44 ‘ C44 + n (C44 + Cl1 + 2C12 + 2 + C155)

Birchll obtained similar results for C11 but slightly

different expressions for C12 and CA4 by equating stresses

instead of energies. He assumed that:

l 2

where:

T1 = stresses due to infinitesimal strains

T2 = stresses due to infinitesimal plus the finite

strains

P = hydrostatic pressure

3.1.3. Determination of the Third-Order Elastic

Constants From Wave velocities

Examination of the formulas in (3.12) indicates

that certain functions of the third-order elastic constants

can be calculated when the effective elastic constants are

measured from wave velocities in the stressed state.

The second-order elastic constants can be calculated from

wave velocities at zero stress. Hydrostatic strain can be

measured for any pressure. However, there are only three
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equations for five unknown third-order elastic constants.

Thus, an explicit solution cannot be obtained.

Hughes and Kelly:0 were the first to obtain a

sufficient number of independent relations to determine the

third-order elastic constants from wave velocities for an

initially isotropic material. They used Murnaghan's form

of the strain energy function, Eq. (3.26), and considered

two types of stresses; hydrostatic pressure,P, and uniaxial

compressive stress, T. The velocities were given by:

Hydrostatic pressure:

2- _—3— 2+ + i+10p0 VL - l + 2n 3K0 [6 4m 7 u]

(3.14)

2 P n

= -—*— -—+ 1+6

Uniaxial compressive stress:

2 T 1+9

= —————- ++ 4m+4)\+10)
p0 szz A+2u 3K0 [22 A u ( u ]

p V 2 = A+2u — -1L-[2£- 2—)5-(m+)\+2u)] (3.15)

o Lyy 3KO 8

p0 V 2 = u --—g- [m +All + 4% + 4p]

T An

Po V 2 = u - [m +-—— + x + 2n}

syx 3Ko 4p

2 _ _._E_ - A_i_;E n - 2x]

po Vszx - u 3K0 [m 20

where:

Ko = compressibility

= densit at zero stress
Po Y

P = hydrostatic pressure
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T = uniaxial compressive stress along 2 direction

E,m,n = 3rd order elastic constants or Murnaghan

constants.

Hughes and Kelly used ultrasonic pulse methods to

measure the velocities of Eqs. (3.14) and (3.15). The

values of £,m and n were calculated from the known

stresses. These values are presented in the table below.

They are the only experimental values of £.m and n that the

present author found in the literature.

 

Units 1011 dynes/cm2

 

 

Material ‘ "A ‘ ' u fl m n

Polystyrene 0.2889 0.1381 —1.89 -1.33 -1.00

.:0.001 (:0.001 (:0.32 .10.29 .10.14

Armco Iron 11.00 8.20 -34.8 -103.0 +110.0

10.04 10.10 :6-5 .17.0 .:110

PYrex 1.353 2.75 1.4 +9.2 +42

.:0.003 .:0.03 (:4.0 ‘15 .135

 

3.2. Theoretical Derivation of Plane Wave Velocities

in an Isotropic Material Subjected to Homogeneous

Deformation

Expressions for wave velocities in an isotropic.

material subjected to hydrostatic compression or triaxial

Stress with uniaxial strain, will be developed by the

Present author in the following section. The equations

mine the
derived will be used in Chapters IV and V to deter

third-order elastic constants of rock salt.
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3.2.1. Strain

Consider an isotropic body which is initially un—

stressed and unstrained. In this initial state the body will

be called in state A0. When this body is subjected to

known uniform stresses of the type Oil # 032 ¢ 033 # 0

with all shear stresses = O and with no rotation of the body

as a whole it will be in state A'. Infinitesimal strains

(due to plane waves) carry the body from state A' to the

final state A.

Throughout the development ea rectangular cartesian

coordinate system will be used. The coordinates of a

particle in each state are as follows:

State A0 : X? (i = l, 2, 3)

State A' : x; (i = l, 2. 3)

State A : xi (i = l, 2. 3)

. o .

xi and x. can be expressed in terms of xi as follows.

i i

xi = x: + U; (xi)

'x5 = x; + U: (x?)

x. = x: + v: we

where:

U: are the displacements due to the stresses

0 o o

011' O22' O33

. 0 I

The Jacobian matrix of the transformation dxi » dXi

is given by Jl
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I +

f—ax! l Bll O O

— l —

Jl - 5X0 0 l+B22 O (3.17)

J

— J 0 0 1+833

_. 4.

where:

0 \ O \_ O

B BUi = oUZ B _ 0U3

11 5x9 22 5x0 33 5x0

i 2 3

Thus:

0 (3.18)dx' = J dx

Eq. (3.18) is a matrix equation between the dif—

and dxi. If the additional

(1 = 11213):

, o

ferential elements dxl

infinitesimal displacements are denoted bY ui’

then the final coordinates of a particle that was originally

o .
at xi are given by:

, = ' ' I' = l, 2, 3 3.19)x1 xi + ui(xj) l J ( ) (

Here ui is a function of all three coordinates xi. xé and

The Jacobian of the transformation dxi -—* dxi is

  

I

X3.

given by J2.

V _

l+b11 b12 b13

= (3.20)
J2 b21 l+b22 b23

b31 b32 1+b33 _

where:

dul 2 3

=2 .1 . = 1!

bij sq l J '

J2 can be written as the sum of a symmetric strain matrix

and a skew symmetric rotation matrix as follows:
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l oui do 1 oul ou

-E3+ ‘2‘ (3? + XJ + 5‘s...- x')
J 1 J J

J2 = E3 + Eij + 1]

where:

1 aui du.

Eij = 2'(5;§ + X.i) = strain matrix

1 dul Bu.

wij — 5-(5;§-— 5;?) = rotation matrix

E3 = identity square matrix of dimension 3

The matrix equation for the transformation dx'—*-dx

can now be written as:

dx = J2 dx' (3.21)

but dx' = J1 dxo (Eq. 3.18)

Therefore, dx = J2 J1 dxO

 

or

0

dx = J dx (3-22)

where:

’ ‘1
(1+bll)(1+Bll) b12(l+B22) bl3(l+B33)

= 3.23J J2Jl= b21(1+Bll) (1+b22)(1+322) b23(l+B33) ( )

+ 1+B

wb3l(l+Bll) b32(1+322) (1 b33)( 33L 
The total strain from state A0 to state A will be

designated by n. This strain is composed of two parts:



I
n

'
1

(
n
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the large initial strain, which may be expressed in terms

of 311' B22 and B33. and the additional infinitesimal

strain ei., which may be expressed in terms of bij'
J

Throughout the development the initial strains will be treated

as finite strains of order less than 0.1. The value of 0.1

represents 10% strain which is much higher than the maximum

strain of 2.5% as measured in the tests during this

investigation. To obtain a consistent order of accuracy

the following rule of approximation will be adopted:

In those terms which do not include bii'

 

. nd .
the first and 2 powers of B11, B22 and B33 Will

be retained. In coefficients of biionly the first

' t ' ed. Nopowers of B11. B22 and B33 Will be re ain

terms involving bij to a higher power than the first

will be retained.

. . . 47

The total strain n is given by:

n =% [J* J - E3] (3'24)

where:

J* = transpose of J

The elements of this strain are developed in Appendix

1 using the approximation rule above. They are:



 

 

 

 

 

2

B11
'11 “ b11 + B11 + 2b11 B11 + 2

B22

T'2 = b22 + B22"2b22 B22 +"§“

B332
n3 = b33 + B33 + 2b33 B33 + 2

b + b
_ 23 32

n4 - 2 (l + B22 + B33) (3.25)

b + b
_ 13 31

T‘5 ' 2 (1 + B11 + B33)

b + b
_ 12 21

1‘6 ‘ 2 (l + B11 + 322)

where:

n1 = n11 ' T‘2 = ”22 ' n3 = T‘33

n4 = T‘23 = U32

”5 = T‘13 = T‘31

Tl6 = 1]12 = 1'‘21

or [W] =

  

3.2.2. The Strain Energy and the Relation Between

Stress and Strain

Since the total strain n is considered to be finite.

the strain energy can be represented by Eq. (3.10):

= l— + hi her order terms

¢ 2 Cij ”i ”j + Cijr "i ”j T1r 9
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where:

¢ = strain energy per unit volume in A0 state.

All higher order terms in the eXpression of ¢

will be omitted throughout the development. For an iso-

tropic material.¢ can be expressed more conveniently as a

function of the strain invariants as follows:47

0 =-A—§—gE 112 - 24 12 + £_§_2m 113 - 2m 1112 + n I3

(3.26)

where:

I1' 12, 13 are first, second and third invariants

of strain as given below

A, u = Lame's constants

£.m.n = Third—order elastic constants or Murnaghan

 

  

constants.

=
(3.27)

I1 T‘1 + n2 + n3

n2 T14 n3 T‘5 ”5

I2 = det + det + det

Tl4 ”3 _F5 T‘1 n2

(3.29)I3 = det [n]

where:

det means determinant of the matrix.

The total stress 0 in the A state is related to the

47
total strain n by the formula:
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O = E; J'%% J* (3.30)

where:

p = density in A state

p0 = density in A0 state

-9— ~ 1 - Ip0 ( 1)

50
In this equation 53-is a symmetric 3 x 3 matrix.

The elements of this matrix can be developed using the

following basic formulas from Murnaghan:

61
1 = E

53—" 3

612

.56— = I]. E3 _ T]
(3.31)

513

Bfi—-= cof n

where:

cof n means cofactor of the matrix n.

511 512 513 3 .

____ .___ ' - 3 5 metricEach of the an . 50 and Sfi—-ls a X Ym

matrix. Combining (3.31) and (3.26) leads to

— 2 + f- A I1 E3 + 2n n + (211 — 2mI2) E3 + 2mIl n n co n

(3.32)

0
1
0
/

.
3
e

The elements of g% are developed in terms of A.

H: 3. m. n. bij and Bij in Appendix 2. EqS- (A 19:20)-
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The stress matrix 0 is then obtained from Eq. (3.30).

The procedure for obtaining the stresses is outlined in

Appendix 3. The results are:

B 2 B 2

O1 — 011 [A (B +'% Bll2 ' "52"" ‘5;- ' 2B22 333’

+ 2n (B +-§ B 2 - B B - B B )
11 2 11 11 22 11 33

+ z 82 + 2m(B 2 - B B ) + n(B B )1
11 22 33 22 33

+ bll [A (1 + 4 Bil) + 2n (1+4 Bll - 322-333)

+ 22 B + 4m311] ((3.34)

+ b22 [A(1-2 B33) + 2n ('Bll) + 22 B + m(-ZB33)

+ nB33]

+ b33 [1(1-2 822) + 2n (-Bll) + 22 B + m (-2B22)

+ nB22]

where:

B=B +B22+B33

O are written from (3.34) by cyclic22 = 02 and 033 = 03

Permulation of the numbers 1, 2 and 3.

 

23 32 - +
[24 (1+822 + B33 B11) + (2m 2A)B

‘ “311] + 2” (b32322+b23333)

(3.35)



0

of the

3.2.3.

or:

4 and
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05 are obtained from (3.35) by cyclic permutation of

numbers 1, 2 and 3.

Hydrostatic Pressure

In this case B11 B22 = B = - a

O _ O _ O _

O11 ‘ O22 ‘ O ‘

The stresses of Eqs. (3.34) and (3.35) become:

{-d (3A + 210-02 (g-A + u - 92 _ n)]

 

 

 

l

+ b11 [1 + Zu - a (41 + 4p + 62 + 4m)]

_ ‘2 + _
+ (b22 + b33) [1 + a (21 + Zn 6 2m n)]

2 3 2
02 = [—a (31 + 20) — a '2 1 + u - 9 - n)]

+ b22 [1 + 2n — a (41 + 4n + 62 + 4m)]

+ - 62 +2 -
+ (b33 + bll)[1 + a (21 24 m n)]

2 3 g
03 = [-d (3A + 2n) — a 5-A+ u — 9 -n)]

+ b33 [1 + 2u - a (41 + 48 + 62 + 4m)] (3.36)

+ 2 — 62 + 2m-n)]
+ (bll + b22)[1 + o (21 u

b + b
23 32 . _

= = =——* 2 -Q. 6A+6I~L+6mn)]

O4 O23 G32 2 [ u '

b + b

13 31
_

= = = 2 -a (6A+6(J.+6m 11)]

05 O13 031 2 I u

b + b

12 21 _ )
= _ — 2 —a (6A + 62 + 6m n 1

06 O12 021 2 ' u



7O

 

       

’ ‘E '- " " ‘1"' fl

0 -P A'+2 ' 1' 1'
1 u 0 0 0 bll

_ . | - I I |

02 P 1 1 +20 1 0 0 0 b22

03 -P A A A +2u 0 0 O b33

= 1. . (3.37)
04 0 0 0 0 u 0 0 b23+b32

05 0 , 0 0 O 0 u 0 l3+b31

06 0 [ , 0 0 0 0 0 u L 12+b21

__ _. L. _ “F 7_ ...-1 .—

where:

-P = -a(31 +211.) - 012(3- 1+ LL - 92 - n)

u' = u - a (3A+3u+3m --§) (3.38)

A' = 1+ a (2A+2u - 6E +2m-n)

1' + 2u' = 1+2u — a (41+4u+62+4m)

where:

A' and u' are the effective elastic constants for the

state A'.

The stresses 01 :to C6 are the stresses in the A

state in the x, y, 2 directions: therefore they satisfy the

equation of motion

 

50. azu.

X. p i P a 2

J t

where:

Oij = total stress in A state

Xi = body force.

If the body forces Xi are neglected. the x component

Of the equation of motion becomes:



71

0

 

anx any Oxz dzu

This equation can be transformed to the independent

coordinates xi of the stressed state A' by the chain rule.

a

For example, the first term -5§§ becomes:

aoxx BO dx' do ' BO 02'XX XX

5x = dx' dx + By' dx + dz' BE’ (3°41)

  

The partial derivatives of X". y”. z' with respect to x.y.z

are given by the Jacobian transformations of the type:

 

 

5 (f, g, h)

det I I

ax. = 3 (xi: Y I Z )

8x. D
i

where:

f = -x + x' + u

9=-y+Y'+V

   

 

 

 

h = -z + z' + w

D = det J2

— Bu Bu T

-1 7| 2'

d

det 0 l + 31;: 5§|

5w

8 (f. g. h) 5". l + .
5X. = _ det 54X, 3]., X.) = - _‘=_0—_ y 52—-

x D . D

8 8w 5v 5w _ 5v dw

.1 “3‘;- +'o'z'- +33;- B‘z" 52' 5?;
D
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Neglecting products of the bi' in the numerator yields:

 

 

 

 

 

 

 
 

ox' = 1 + b22 + b33

5x D

Similarly.

5 (fr 9: h)

dy' = _ det d (x', x, z') = _ b21

x D D

5(f. g. h)

52' _ _ det 5(x', y', x) _ _ b31

5x - D — D

Thus

ooxx _ doxx (1+b22+b33) + ooxx (_ b21) + aoxx (_ b31)

5x _ Bx' D dy' D 52' D

'50 do

-5§¥'and-§§§ of Eq. (3.40) can be transformed by similar

procedure. With the above transformations and the

additional relation47

_B_'_

p D

Eq. (3.40) becomes:

 

 
 

 

Bo l+b +b do b do b
xx 22 33 xx _21_ XX _.__1

W" w‘o “‘6?" D)+—SE'_( 0’

00 b 50 1+b +b do b32

ltd-“til” 3’3“ 11.1 ””313“?

50 b 60 b 00 l+b +b

xz 13 xz 23 X2 11 22

+W1-TH‘6—YT “'33—“an D '

.2163: (3.42)

D at2
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Oxx' Oxy' Oxz are given by Eq. (3.37). They can be written

as follows:

0xx = 011 = -P + Sxx

Oxy = 06 = 012 = 021 = Sxy (3.43)

Oxz = 05 = 013 = 031 = sz

where:

-P = hydrostatic pressure = 03x

S = additional stresses which are related to the

ij

infinitesimal strains eij by the effective

elastic constants A', u'.

With the above notation Eq. (3.42) becomes:

asxx dSX BSXZ ' 52u ‘

5X: + —5Y| + 52! = P at2 (3'44)

Eq. (3.44) was derived using'gg. = 0, since P is homogeneous

. asi.

and neglecting the higher order terms 5;:1‘(bij).

By similar procedure, the equations of motion for

the y and z directions can be transferred to the xi

coordinates, and Eq. (3.39) becomes:

 3—11 — ' ' i (3.45)
x! — p 2
i at

This equation is similar to the classical equation

(2-12) from which the velocities Vi and Vé were derived.

Thus, hydrostatic pressure does not produce any change
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in the laws of propagation and the velocities are given by:

I I

Longitudinal velocity = Vi = A—-%7;E-

I

Shear velocity = VS = '%T

Substituting for A', u' from Eq- (3.38) yields:

 

 

 

 

v =\/1+211-a (41.+411+62+4m (3.46)

L P

u-a (31+3u+3m—52'-)

v = . (3.47)

s P

3.2.4. Uniform Triaxial Stress withiUniaxial Strain

In this case.

311 = B22 = 0

B33 = -e
(3.48)

033 = -Oz

0:1 = 022 = ’0L

The stresses of Eqs. (3.34) and (3.35) become:



ll

22

or,

33

2 A

[ eA e (2

+ b22 [A+e

2
[-eA -e (g

+ bll [A+e

+b

+ 11 2
(b

b33 [1+2u

+ b

32
2 [2n

+ b

31 [2LL

+ b

21 [2”

+ C'
O 1L

+ C'
O 1L

+ c'

O 32

b
23 +

I

C44

b +
0

C44 13

i .
2 (C11

where the CE.

lJ

[-e (A+2u) + e

75

- 2)] + bll [1 + Zu + 22)]

(2A-22+2m-n)] + b [A -2£e]
33

_ 3)] + b22 [1 + 2n + e (Zu - 22)]

(2A —2£+2m-n)]+ b A - 23e]
33 [

2

(g-A + 3n + 2 + 2m)]

(3.49)

2) [A + e (2H - 22)]

-e (4A+8u + 22 + 4m)]

-e ( 2A + 2u + 2m)].- 2 b23 u e

—e (2A + 2u + 2m)] - 2 b

13 u 9

(2A - 2n + 2m-n)]

+ c' b
b 13

+ C'
b 121 ll 22 33

I i I

+ C b22 + Cl3 bb 112 11 33

. I

1 b11 + C31 b22 + C33 b33

(3.50)

C' b
55 32

C' b
55 31

' C12) (b12 + b21)

are the effective elastic constants.
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C11 = 1 + Zu + e (Zu - 22)

C'12 = A + e (2A — 22 + 2m-n)

' - -

C13 - A 22e

C51 = A + e (Zu - 22)

' _
(3.51)

C33 = 1 + 2n - e (41 + Bu + 22 + 4m)

CA4 = u - e (A + Bu + m)

C55 = u - e (1 + u + m)

.1. I I _ n

2 (Cli'clz) ‘ u ‘ e (A ' u + ”‘2'

The initial stresses CL and Oz are given by

2 A
—0 = - _ ._ _L eA e (2 2)

(3.52)

_ 2 3

-Oz - -e(A + Zu) + e (5-1 + Bu + 2 + 2m)

Thus the stresses Si' are related to the infinitesimal

strains b.. by:

l)

= I I I

S1 Sxx Cll bll + C12 b22 + C13 b33

S2 Syy C12 b11 + C11 b22 + C13 b33

= = I I

S3 Szz C31 (bll + b22) + C33 b33

(3.53)

34 = syz = Szy ‘ C44 b23 + C55 b32

s = s = s
I I

5 xz zx C44 b + C b3113 55

= — i I _ ' +

S6 Sxy - Syx 2 (C11 C12Hb12 b21)
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These are the stress-strain relationships for the

material in the A' state. It is interesting to note the

differences between these equations and the equations which

are derived from the classical theory for an unstressed

body which has the same symmetry as A'.

In the classical theory, an unstressed body which

has the same symmetry as A', i.e., symmetric about the z

40
axis, would have only five independent elastic constants.

The stress-strain relationships are given by:

—' — -

      

(— 7 _

S1 611 d12 d13 0 0 0 b11

0 b
S2 d12 d11 d13 0 0 22

b
S3 dl3 dl3 d33 0 O 0 33

84 = o 0 0 d44 0 0 b23+b32

s5 0 0 0 0 d44 0 bl3+b31

1
$6 0 0 0 0 0 -2--(d11 - d123LLf12+b21_

Thus, in the classical theory the elastic constant

matrix is symmetric while in (3.53) Ci3 # C51. Furthermore.

in the classical theory d44 = d55 and the shear stresses

S4 and S5 are related to twice the strains (b23+b32) and

whereas in (3.53) CA4 # C55 and the

(b13+b31) by 644’

shear stresses S4 and S5 are related to the deformation

'

I I .

gradients b23, b32, bl3 andb31 by C44 and C55

These differences are due to the presence of

initial stresses in A'. Similar relations to Eq. (3.53)



’w‘é

.
C
‘
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were obtained by Green24 and Biot.9 Both of them also

obtained the following relations between the effective

elastic constants:

I _ I = I _ I = _
C31 C13 C55 C44 02 0L (3.54)

These relations can be obtained from Eqs. (3.51) and (3.52)

by approximating oz and 0L to the first powers of e.

The equations of motion for the state A are:

 

501. dzui

'g—l+PX.=P

This is the same as Eq. (3.39) and it can be

transformed to the independent coordinate of body A' by

the same procedure leading to Eq; (3.45). When the body

forces are neglected the equations of motion become:

aSxx aSx asxz 52“ (3 55 )
= - ___ . a

WJ'BTX”? P at2

as as ' as 2
x = z = .§__\_' (3.55b)

31‘- Tifi-l’r—s“? P at2

58 a .QEE (3.55c)

s as
zx _ z 22 _ .

Bx'—‘5y_'¥+—B?"p atz

Where:

S._ are the stresses given in Eq. (3.53)

1J

u, v, w are particle displacements

For a plane longitudinal wave propagating in the

z direction, the particle motion can be described as:

_. . __ I
w — f (V'Lzz t z )
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(3.55c)

(3.66)

The velocity Vlzz can be found from Eq.

aszx as 6322 a2w
4+ _I____

52x + aZ'—p52

t

Substituting for the stresses from (3.53) and noting that

oui

bij = 3;? yields:

J

s - b +C'b_ c'

zx 44 13 55 31

SWI

C44 g—‘ + CSS ox'

_ C. I

Szy _ 44 5—3 + C55 5_'

. ou

Szz = C31 (§§‘+ '5§') + C33'32'

and

zx _ z _ 22 =

5x' ‘ 0 5y' “ 0 52' C33

Thus, (3.66) reduces to

Cl égj'lz =p|.a_2_w

33 522 dtz

This is a wave equation and the velocity is given by

 

 

 
Lzz p' p'

C33 A + 2p - e (4x + an + 21 + 4mL

(3.67)

(3.68)

By similar procedure the velocities of plane longi—

tudinal waves in the x and y directions are:

 

 

V _1/ C11 _q /A + zu + e (2“ - 23)

LXX

(3-691
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For a plane shear wave propagating in the z

direction with a particle motion (u) in the x direction,

the particle motion can be described as:

f (stz t - z)u

v = w = 0

The wave velocity stz can be obtained from (3.55a).

as as as 2
xx x xz - u __E

I—3;T + y' + z' p dt2

I all . 8V . 5W

Sxx _ C11 8§'+ C12 5§'+ C13 5;“

BSXX = 0

5X.

_.l . . du 5v

xy ‘ 2 (C11 C12) (oy' +'5§')

BS

3’4 = 0
Y

_ I an I aw

sz _ 44 52' + CSS 5;“

asxz CI @32

52' 44 a .2

Thus, (3.71) reduces to the wave equation:

and

 

 

(C44 fiVfiI- e (A + Bu +1ml
V = "T’ = I

sxz p P

(3.70)

(3.71)

(3.72)
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By similar procedure, the wave velocity of a plane

wave propagating in z direction with a single particle

motion (v) in y direction is given by Vsyz'

= V (3.73)
syz sxz

Similarly,

 

 

1 ~ n

- (C' - c' ) u —e (A —u. +m --)

v = v = 2 11. i2—= . 2 (3.74)
sxy syx PP

v _V =j/C'55=W-e0+u+m1

szx — szy p' p' (3.75)

 

 

 

 



IV. EXPERIMENTAL INVESTIGATION

The experimental investigation may be divided into

two major parts; preliminary and major investigations.

In the preliminary investigation, the changes in

ultrasonic attenuation and velocity of longitudinal waves

were measured in steel and rock salt specimens subjected to

uniaxial compressive stress. Measurements made in a

direction parallel to the applied load will be designated

as "axial" measurements. Measurements made in a direction

perpendicular to the applied load will be called "lateral"

measurements.

In the major investigation the following four

velocities were measured:

. . ,/ —a47\+4+61+4mv =1/7.+2g = 3+2u. ( Ll

Lh ph Pb

(4.1)

.- u-G(37\+3H+3m-%)

V =-(/£L = ‘ 7 (42)
Sh ph ph °

 

 

 

 

 

 

 

- + 8 + 22 + 413)v = x + 211 e (4% P (4.3)

Lt Pt

V = u-e(x+3u+ml (4.4)

st pt

where:

82
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The first subscript of V indicates type of wave:

L for longitudinal and s for shear, and the

2nd subscript of V indicates stress condition:

h for hydrostatic pressure, t for triaxial stress

with uniaxial strain in z direction.

Vlt = VLzz of Eq. (3.68), i.e., longitudinal

velocity in z direction.

VSt = Vsxz = Vsyz of Eqs. (3.72) and (3.73), i.e.,

shear wave velocities in z direction.

Lame's constants for unstressed rock salt.

.
>
"

s

p

ll

pt, ph = density at a certain stress level.

a = measured linear hydrostatic strain.

e = measured strain in the triaxial test.

4.1. Objectives

The main objective of the tests on steel was to

Gain experience in ultrasonic systems. The main objective

of the preliminary investigation of rock salt was to.

determine if changes in wave velocity and attenuation could

be used to detect anisotropy due to compression or

Predict yield before it occurs. The main objectives of

the major investigations were:

3,1. To determine the third—order elastic constants,

m and n of rock salt.
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2. To investigate the feasibility of using ultrasonic

pulse methods to determine the initial stresses

(hydrostatic pressure or triaxial stress with

uniaxial strain cases onlnyrom wave velocities

as predicted by the equations above.

3. To determine if the velocity measurements would

detect the transition from elastic to plastic

states|ofstress in the triaxial test.

4.2. Apparatus

The principal components of the apparatus may be

divided into six major groups; specimens, loading systems,

strain equipment, electronic equipment, transducers and

optical equipment.

Specimens

Rock salt: The rock salt used in all the tests

was mined from the International Salt Company mine in

Avery Island, Louisiana. Large specimens, about one foot

cubes or larger, were cut from the mine floor without the

use of explosives. These specimens were cut in the

laboratory to the desired dimensions for each test.

The rock salt was compact, white in color and 99.9% pure

NaCl. The macroscopic grain size of the crystals ranged

from 0.4 to 1.2 cm.

Steel: Hot rolled, mild steel "C1018" columns.

The ends and two sides were polished to final dimensions of

1.97 x 1.98 x 6 inches.
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Loading Systems

Loading machines: An Olson loading machine, with

a loading capacity of 300,000 lbs was used in the uniaxial

stress tests (Fig. 4.6). A Forney, Jobsite Press tester

model FT-ZO, was used in the triaxial tests. This tester

is designed for testing specimens in compression. It has

a manually operated pump and an accuracy of 500 lbs

(Fig. 4.23).

Thick walled steel cylinder: A thick-walled

stainless steel cylinder, 3.25 inches long with inside and

outside diameters of 3.25 and 4 inches, was used in the

triaxial tests (Fig. 4.19). This cylinder provided the

lateral stresses by restricting the lateral expansion of

the salt.

High-pressure vessel: The pressure vessel used

in the hydrostatic test had a capacity of over 10,000 psi.

It consisted of an 11 inch long steel cylinder with a 5

inch inside diameter and 7 inch outside diameter, circular

end plates and high strength bolts to fasten the plates.

Sealing was accomplished by teflon and oil rings placed

between the cylinder and the end plates. Insulated

wires were threaded through bolts in the top plate to pro-

Vide electrical connection through the vessel (Fig. 4.13).

Leakage was prevented by using Hyso cement to fill the holes

in the bolts.
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Pressure pump: A Blackhawk model P—85 hand pump

was used to develop the oil pressure in the vessel.

Strain Equipment
 

SR—4 strain gages: Post-yield strain gages,

type PA—3, were used in the uniaxial stress tests. Two—

element rosette gages, type FABX—SO—lz, were used on the

outer surface of the thick walled cylinder in the triaxial

test. Type A—l gages were used to measure linear strain in

salt in the hydrostatic test.

Dial gages: Half-inch displacement Ames dial gages,

with an accuracy of 0.0001 inch, were used to measure the

strain in the salt.

Strain indicators: A Sanborn Strain Recorder

(Fig. 4.6) and Baldwin Strain Indicator (Fig. 4.23)

were used in the uniaxial and triaxial compression tests

respectively.

Electronic Equipment

Oscilloscopes: Tektronic types 541 and 551 with

type D or CA plug-in units.

Pulsers: A Hewlett-Packard type 212A and a Rutherford

pulse generator type B7 were used. These pulsers give

rectangular 70 volt pulses. The pulse repetition rate and

width are adjustable in both pulsers. Both pulsers are

between the trigger-in

e(flipped with an adjustable delay time

or trigger-out and the main output pulse.
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Transducers

One inch diameter barium titanate disks vibrating

in thidkness mode were used to produce and detect longitudinal

waves. The disks used for the uniaxial stress tests were

0.5 inch thick with a fundamental frequency of 180 kcs.

The disks used for the triaxial and hydrostatic tests were

0.2 inch thick with a fundamental frequency of 500 kcs.

Barium titanate shear plates were used for shear

velocity measurements. The plates were 0.8 x 0.8 x 0.13

inches and had a fundamental frequency of 350 kcs.

The two opposite faces of each transducer were coated

with a layer of conductive silver paint or silver epoxy

cement. The paint on the face to be attached to the

specimen was extended to the edge of the back face. The

silver epoxy cement was used to attach thin phonographic

wire leads to the transducers.

Optical Equipment

A Dumont Oscillograph Record Camera, type 321A,

was used in the uniaxial stress tests (Fig. 4.6). This

camera accommodates a 50 foot roll of 35 mm film. The

film could be driven at different speeds. A projector

equipped with a mirror that reflects the image to a

gridded paper was used to analyze the film. Different

enlargements were obtained by changing the distance between

the mirror and the paper.



88

A Polaroid Oscillograph Camera was used in the

hydrostatic and triaxial tests. The films were analyzed

using a two-dimensional measuring microscope which is

manufactured by PYE Company of England. This device has

an accuracy of‘: 0.01 mm per 20 cm and a magnification

of 5 and 25.

4.3. Uniaxial Compressive Stress

Changes of attenuation and velocity of longitudinal

waves were measured in two directions; parallel to the

applied load (axial tests) and perpendicular to the

applied load (lateral tests). The same experimental

procedure was used for the rock salt and steel tests.

Specimen dimensions and transducers were as follows:

Steel: 1.97 x 1.96 x 6 inch steel columns

Salt: 2.5 and 3.5 inch cubic specimens

Transducers: 180 kcs barium titanate disks placed

in a holder.

Experimental Setup

A schematic diagram of the transducer attachment in

the axial and lateral tests is shown in Figure 4.1.

In the lateral tests two identical transducers were

placed on opposite sides of the specimen and held tightly

by rubber bands. High—vacuum Dow—Corning grease was used

as a couplant. Figures 4.2 and 4.3 show the transducer

attachment for steel and rock salt specimens.
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In the axial tests the transducers were cemented,

using plybond rubber cement, to one-inch steel disks placed

on both ends of the specimen. Bellow thick—walled steel

cylinders were placed around the transducers in order to

transmit the load without compressing the transducer

(Fig. 4.4). The steel disks provided uniform stress

distribution in the sample. The interfaces between the

steel disks and the specimen were coated with vacuum grease.

Figure 4.5 shows the specimen assembly. Figure 4.6 shows

the various test components.

A schematic diagram of the electrical circuit is

shown in Figure 4.7. The basic principles of this circuit

are the same as those of the through transmission test

discussed in Section 2.3.2.

Figure 4.8 shows a schematic diagram of two successive

pulses as they appear on the scope screen when a low sweep

rate is used. The pulse is applied to the transmitting

transducer at point A, which is the point at which the sweep

starts. Point B represents the instant when the wave

reaches the receiving transducer. The output of the receiving

transducer, after point B, shows a complicated damped

oscillatory motion, D, which disappears before point A'

(the instant when the second pulse from the pulser is

applied to the transmitter).

The received signal D consists of many wave

components that travel with different velocities in addition

to waves that are reflected from the sides of the sample.
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Input

T ransducer and Load

    

  

 

 

 

Pulse holder 1 l l i Transducer

’ Holder

Rosk Dial gages ____ R°°k ____ Shielded
Salt —--- Salt “‘- Cable

.
5 ‘

Spec1men ‘ 7 peeimen _ Rubber backing

Received 1 inch ' I I I—1

4- .
Signal steel disk Load

Thick walled

steel cylinder

Load

Axial propagation Lateral Propagation

Fig. 4. 1 Arrangement of specimen and transducers for the axial

and lateral tests.
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Figure 4. 2. Transducer attachment Figure 4. 3. Transducer attachment

for lateral propagation in steel. for lateral propagation in rock salt.

 

Figure 4. 4. Steel disks and transducers Figure 4. 5. Axial test on

for axial propagation. I‘OCk salt.



 
Figure 4. 6. Testing machine, oscilloscope, camera, pulser

and strain recorder used in uniaxial compression

tests.
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1. Pulse Generator

2. Output pulse: Amplitude 70 volts

3 Driving Barium Titanate transducer: 1 inch dia. , §inch thick,

180 kc frequency, silver plated on both faces.

4 Receiving transducer; same as the driving transducer

5. Received signal

6. Tektronix type 541 oscilloscope

7. Dumont oscillograph record camera

8. Sweep trigger signal

Fig. 4. 7 Block diagram of ultrasonic wave apparatus

DI

B

.\\ .
t~4

Fig. 4. 8 Schematic diagram of two successive pulses as they appear

on the oscilloscope screen.
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An analysis of the complicated pattern D is quite difficult

and for all practical purposes all measurements of this kind

are confined to the measurement of the time, t, which will

be the propagation time of the fastest wave between the two

transducers. Relative attenuation was determined from the

changes in amplitude of the first received signal (C in

Figure 4.8).

Procedure

-- Sweep speed and amplifier gain were adjusted to give

a trace similar to that of Figure 4.8.

-- Load was raised slowly to 500 lbs.

-- Pictures of the trace were taken with a Polaroid

camera to determine the best screen adjustments (illumina-

tion, focus, astigmatism and intensity).

-— The Dumont camera was attached to the oscilloscope.

-- The oscilloscope screen scale was illuminated and

pictures of the grid were taken.

-- Scale illumination was turned off.

-- The scope intensity was adjusted so that the point

of zero time (sweep start) would show as a continuous

line on the film (Fig. 4.9).

-- The oscilloscope single sweep switch was turned on

and the film was driven by the camera motor.

-- Loading was started and pictures of the trace were

taken at different loads by pressing the single sweep

buttom of the oscilloscope.
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-- The camera timing light served as a record to

determine the load at which a picture was taken. When this

light is on, it leaves a trace on the left side of the film

(Fig. 4.9).

-- Strain and dial gage readings were reccrded.

-- Steel was loaded up to 45,000 psi. Yield occurred

at about 30,000 psi.

-- Salt was loaded to 4,000 psi which is about 80%

of the crushing strength.

Data Reduction

As mentioned in the apparatus, the film was analyzed

by projecting the trace on a gridded paper. The grids on

this paper were drawn by projecting a picture of the

oscilloscope grid. _

In the axial test, the wave propagates through the

steel disks and the salt. Therefore, it was necessary to

measure the changes in propagation time and amplitude of the

first arrival in the steel disks alone. The results of this

test were combined with the results of the axial test

(steel disks and salt) in order to determine the propagation

time and amplitude of the first arrival for the salt

alone.

Table 4.1 shows typical reduced data for the axial

test on steel specimens. velocity is obtained by diVlding

the path length by the propagation time. The propagation

. , . . \

time was measured from the straight line portion (Fig. 4.9;
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with an accuracy of 1%. Percent change in velocity was

calculated as:

V - V

4!? _._____2
V 96-— V x 100

o

where:

V = velocity at a certain stress

V6 = velocity at zero stress

Relative attenuation was calculated from the changes

in the amplitude of the first received signal. For steel

specimens, percent change in amplitude was calculated as:

A - A
AA _ o

o

where:

A0 = amplitude in mv at zero load

A = amplitude at any load

For rock salt, relative attenuation was calculated

in decibels as follows:

db = 20 loglo -§—

0

The results are presented in Chapter V.

4.4. Velocities in Unstressed Specimens

The circuit shown in Fig. 4.7 was used to measure

the longitudinal and shear wave velocities of different

size specimens. Longitudinal and shear wave veloc1ties were

measured using different size specimens. The transducers

were attached to the specimens by Phenyl Salicylate. This

F o .

comPound was heated to its melting pOint (40 C) and a few
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drops were applied between the transducers and the salt.

The bond obtained after cooling was found to be satis—

factory for both longitudinal and shear waves.

Care was taken to have the two opposite faces of the

specimens parallel to each other and to align the shear

transducers so that their particle motions (directions of

polarization) were in the same direction.

Figure 4.10 shows typical signals from the longi-

tudinal transducers. The straight line portions of the

trace indicate the propagation time in the specimens.

Figure 4.11 shows typical signals from the shear transducers.

The first small signals on the straight line portion of the

trace are early arrivals of some longitudinal components.

The arrival of the shear wave is indicated by the first

large signal.

Figure 5.4 indicates the propagation time in

different length specimens. The longitudinal and shear

wave velocities are the slopes of the lines in the figure.

Lamé's constants were calculated as follows:

2

u-st

pV 2 - 2H
)‘ L

where:

p = average density
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Figure 4. 9. Typical traces from the uniaxial compression

tests showing the camera timing lights, zero time and signals.

.3"

lflllmfllllllllllul

llIll Illll lllll lllllll

lllfllllllillllllllll

“WWW

 
Figure 4. 10. Typical Figure 4. 11. Typical

longitudinal waves. shear waves.
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4.5. The Effect of Hydrostatic Pressure

0n velocity

The purpose of this test was to measure the longi—

tudinal and shear wave velocities given by Eqs. (4.1) and

(4.2).

 

V =—\/7\+2u-a(47\+4u+6£+4m)

ph
Lh

,u — a.(3x + 3n + 3m --§)
v h = *
s ph

In the above equation, the hydrostatic linear strain

 

 

(a) and the density ph depend on the hydrostatic pressure.

Thus, it was necessary to determine d. Then:

= aph Po(l+3)

where:

p0 = density at zero pressure

a = linear hydrostatic strain

Strain Measurement

The following procedure was used to determine the

strain a.

-- A thin coat of SR-4 strain gage cement was applied

to specimens and allowed to dry. This coat served the

Purpose of filling any holes or cracks on the surface of the

Specimen.

-- The coat was polished with sand paper and SR-4

gages of type A-l were attached.
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-— The strain gages and salt specimens were coated with

a Dow-Corning silicone rubber caulk (commercially known as

Dow-Corning Bathtub Caulk) to prevent oil leakage to the

strain gages or the specimen.

-- After drying, the whole assembly was coated with

approximately a 1/4 inch layer of Gulf Microwax 75. Coat-

ing was accomplished by dipping the specimen in the melted

wax. Figure 4.12 shows the layers of silicone, rubber and

wax.

-- A similar procedure was followed for coating and

attaching a similar strain gage to a steel specimen. This

gage was used as a compensating gage.

-- The steel and rock salt specimens were placed in the

high-pressure vessel. The electrical connections to the

strain gages were the same as discussed in the apparatus.

-- The gages from the steel and salt were connected

to form adjacent arms of a wheatstone bridge. This

arrangement provided for temperature and pressure compen-

sation. The strain output was the difference between the

strain in salt and steel.

-- a was calculated by adding recorded strain to the

strain in steel which was calculated from the known compres—

sibility of steel.

-- The results indicated a linear relation between

pressure and strain (a). The curve was very close to the

theoretical value of a:
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"
0 ll pressure

l,u = Lame's constants calculated from Section 4.4.

Experimental Setup for velocity Measurements

Longitudinal transducers were attached to the speci-

mens with a thin coat of high vacuum grease. The transducers

and the salt were then covered with coats of Dow-Corning

silicone rubber and Gulf Microwax 75.(Fig. 4.12). The

electrical leads from the transducers were soldered to

the electrical wires on the end plate of the vessel (Fig. 4.13).

Shear transducers were cemented to the specimens

with regular office sealing wax. This was accomplished

by warming the surfaces of the transducers and the salt and

applying a thin coat of the melted wax (melting point

120°C) to the two surfaces. The transducers were then

clamped to the salt and allowed to cool slowly.

It was mentioned in Section 4.3 that the accuracy

obtained by using the circuit of Fig. 4.7 to measure the

delay time in the specimen was of the order of.i 1%.

Better accuracy was needed in the hydrostatic and

triaxial compression tests. This was obtained by using a

modified comparison method to measure the changes in the

delay time due to stress, rather than the absolute time at

each stress level. A block diagram of this method is
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shown in Fig. 4.15. A description of this method as

developed by the present author, is included in the

following procedure.

Procedure

—- The l—inch steel disks with the transducers attached

(Fig. 4.4) were used to represent the unstressed specimen

in the circuit of Fig. 4.15. The delay time in the steel

disks was about 9 u sec.

-- The test specimens were placed in the pressure vessel

and the circuit was connected as shown in Fig. 4.15.

Figure 4.14, shows the various components used in the

test. The unstressed specimen assembly is shown to the

right of the pressure gage.

-- The straight line portions of the two signals were

superimposed to appear as a single straight line.

-- The oscilloscope sweep speed was increased to 1 or-%

u sec/cm scope division. At these speeds, only a small

portion of the straight line appeared.

-- The amplitude of the signal from the test specimen

was adjusted to coincide with the top horizontal grid line

of the oscilloscope screen. This adjustment was accomplished

by using the oscilloscope gain.

-- Loading was started. At each load level the ampli-

tude of the signal from the stressed specimen was adjusted

bask to its original level. Figure 4.17 shows three pictures

from a longitudinal test. Each picture was taken at several
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load levels. For example, the top picture was taken at 5

load levels. The traces of the received signal from the

test specimen are the thin approximately parallel traces.

The thick slanting trace represents the signals from the

unstressed Specimen at different load levels. A single

curved trace from the unstressed specimen indicates that

the zero time (scope trigger), which is not shown in

the picture, did not change. Thus, the horizontal distance

between any two signals represents a true change in propa-

gation time.

-- Measurements were taken for two cycles of loading

and unloading. Maximum pressure was 9,000 psi. In the

unloading of the first cycle and during the second cycle,

the changes in propagation time were small as shown in

the bottom picture of Fig. 4.17. Thus, measurements were

taken at larger load intervals.

-- Four specimens were used; two for longitudinal tests

and two for shear tests.

-- The same procedure was used for the shear and

longitudinal measurements. Typical traces from a shear

test are shown in Fig. 4.18. This figure shows the early

arrival of the longitudinal components.

Data Reduction

The polaroid pictures were analyzed using a two

dimensional traveling microscope. The change in propagation

time between any two pressure levels was calculated from
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the horizontal distance between the two traces. This

distance was measured along the center of the scope grid.

The accuracy of the time measurements was of the order of

.1 0.005 n sec.

Table 4.2 shows typical data for a hydrostatic test.

The quantities were calculated as follows:

-- Hydrostatic strain a was determined from the

results described in the hydrostatic strain measurements:

_ 3% + 2H

where:

P = pressure in psi

3A+2u = 9.238 x 106 psi;determined from measurement of

Vb and VS at zero pressure.

-- The path length at any pressure is given by LC + AL

where:

L0 = path length at zero pressure

AL = - a LO

-- At step: represents the change in propagation time

between two consecutive loads.

-- tO + 2 At: represents the propagation time at any

pressure.

~"- 2 At = total change in propagation time.
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Figure 4. 12. Transducer and Figure 4. 13. High pressure

specimen coating in the vessel and electrical

hydrostatic test. connections.

 
Figure 4. 14. Various components of the

hydrostatic test.
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Fig. 4. 15. A block diagram of the comparison method for measuring

small changes in velocity in the hydrostatic and triamal

compression tests.



 

4. l6. Delay time adjustment in

comparison method.
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4. 17. Typical traces from a 4. 18. Typical traces from a

longitudinal test at 2/5 shear test at 2 p. sec/

p sec/scope div. scope div.
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t - propagation time at zero pressure. This was

calculated from the average velocities in

unstressed specimens. The actual calculation

is given in Section 5.4.

VL = 4225 meters/sec.

V = 2450 meters/sec.

Lo

t - vaverage

-- The velocity at any pressure is given by V:

L + AL .

(meter) 0 (inch ) 106

V sec = t0 + At u sec

(9 sec)(0.0254)(meter)

sec sec

The results are presented in Chapter V.

4.6. Triaxial Compressive Stress With

Uniaxial Strains

The purpose of this test was to measure the longi-

tudinal and shear wave velocities of Eqs. 4.3 and 4.4,

 

_-\/l + Zu - e L4k + Bu + 22 + 4m)

VLt

_ Pt

 

 

_jvfp - e ix + 3p + m)
v _

st pt

where:

V and V t are the longitudinal and shear wave

Lt S

velocities in the direction of uniaxial

strain e.
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Experimental Setup

A plastic sheet was coated on both sides with a

grease-graphite mixture. The sheet was wrapped around the

solid cylindrical salt Specimens. The diameter of the speci—

men was 3.24 inches and the height was about 3.15 inches.

The specimen was then tightly fitted into the thick-walled

steel cylinder described in Section 4.2. Figure 4.19

shows the thick-walled steel cylinder and the salt specimen.

The assembly for the longitudinal wave measurements

was the same as for the axial test of Fig. 4.1. Figure

4.20 shows the transducer attached to the one-inch steel

disk, the dial gages used to measure the strain in the salt,

and the thick—walled cylinder.

Shear transducers were embedded in Armstrong

N
H

adhesive cement, type C-4, which filled the center of-—

inch thick steel rings (Fig. 4.21). Electrical wires

from the transducers were embedded in two thin grooves in

the back of the rings (left ring of Fig. 4.21). The front

faces of the rings were placed in direct contact with the

salt. Loading was applied to the back faces of the rings.

This arrangement provided uniform stress on the salt and

at the same time direct contact between the transducers

and the specimens. Figure 4.22 shows the assembly for a

shear test.
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Procedure

Figure 4.23 shows the experimental setup. Load

was applied to the specimens by the hand pump of the press

tester. The electrical circuit was the same as the circuit

used for the hydrostatic tests (Fig. 4.15). The same

procedure was used for measuring the change in propagation

time.

At each load the following readings were taken:

(1) picture of trace, (2) dial gage reading, and (3) tangential

strain from SR-4 gages attached on the thick-walled cylinden

Measurements were taken for two cyc1es of loading and

unloading. Maximum axial stress was 13,800 psi. Four

specimens were used; two for longitudinal waves and two for

shear waves.

Data Reduction

The films were analyzed by the same procedure des-

cribed in the hydrostatic test. Uniaxial strain e was

calculated from the average reading, AL, of the two dial

gages:

8:91..
L

o

where:

AL = average change in path length

L0 = path length at zero stress.

Velocity was calculated by the same procedure as

used in the hydrostatic test:
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L +AL
O

V=t +At
0

Lateral stress on the salt was calculated from the

tangential strain (et ) on the outer surface of the thick- 1

s

walled steel cylinder as follows.45

0 = - b2 - a2 o

L 2a ts

where:

CL = lateral stress in the salt.

ct = tangential stress on the surface of the

s

thick-walled cylinder.

b = 2 inches, outside radius of steel cylinder.

a = 1.625 inches, inside radius of steel cylinder.

0 = E e + v (a + o )

t3 t8 r5 25

where:

v = Poisson's ratio of steel.

oz , or = axial and radial stress on the outer

S‘ s .

surface of the steel.

or = oz = 0 on the outer surface

s s

E = 30 x 106 psi.

Substituting for a, b and 0t yields:

5

b2 - a2

o = - ———————- E e =-7.72 e

L 2a2 t3 t8
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where:

6t = measured tesile strain in u in/in

s

o = compressive lateral stress on rock salt, psi.
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Figure 4. 19. Thick walled Figure 4. 20. Longitudinal

steel cylinder. transducer and specimen

assembly in triaxial test.

 
Figure 4. 21. Shear transducers.

Figure 4. 22. Assembly for

shear wave measurements.
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V. RESULTS AND DISCUSSION

5.1. General Remarks

Before discussing the results, it might be desirable

to state that the velocities measured in this investigation

are assumed to be equal to the wave velocities in an infinite

medium. Furthermore, it was assumed that the waves in the

hydrostatic and triaxial tests are plane.

The assumption that the velocities measured are

equal to the velocities in an infinite medium can be

verified from the experimental results of Sileava (Fig. 2.6)

as follows:

The lowest frequency used was 180 kcs.

The longitudinal wave velocity in rock salt was

about 4225 meters/second.

Thus, the maximum wave length was:

422,500 cm/sec

180,000 cycle/sec = 2'35 cm
L:

- - . a
The minimum value of the ratio Ev Where

a = minimum radius of specimen, was

3.2 cm

2.35 cm = 1'36°

The maximum length of the specimens, x, was 3.5

inches = 8.9 cm. Therefore, the maximum ratio % was:

8.9 _

2.35 ‘ 3'8
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From Figure 2.6 it can be seen that the velocities

measured for these extreme values of E and.% are the wave

velocities in infinite media.

The plane wave region (sketch, Sect. 2.4.4) in the

hydrostatic and triaxial tests extended to 2.3 cm, while

specimen length ranged from 2 to 3.1 inches. It was

pointed out that this would cause large errors in absolute

attenuation measurements. However, attenuation was not

measured in these tests. The assumption of plane waves was

justified by the sharp rise time in the received signals

and by the fact that velocity was measured along the main

beam.

5.2. Uniaxial Compressive Stress Tests

on Steel

The results obtained from these tests are presented

in Fig. 5.1. Fig. 5.1a shows the stress-strain relationship

for the steel used. Fig. 5.lb shows the results of the

axial and lateral measurements.

For the axial test, attenuation is most probably

due to improvement of the coupling between the transducers,

end blocks, and the specimen interfaces. For the lateral

test, no improvement of coupling is expected since the

holders are fixed in position by rubber bands across

them and the change in the lateral dimension is too small

to affect the force with which the rubber bands are stretched.
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In both the axial and the lateral test, the velocity

was found to increase with increasing stress with a steeper

slop near the yield region. The maximum velocity is reached

at the maximum load. The maximum velocities are 1.4%.and

2.8% higher than the zero stress velocity for the lateral

and axial tests respectively. This is higher than the

resolution of the method: therefore, the change is assumed to

be the true behavior of steel. During unloading, the velocity

and attenuation showed a small change in both tests.

5.3. Uniaxial Compressive Stress Tests on Rock Salt

Figures 5.2 and 5.3 show the results obtained from

uniaxial compressive stress tests of six identical 3.5 inch

cubic rock salt specimens. Similar results were obtained

for six identical 2.5 inch cubic specimens. ~Relative

attenuation is calculated in decibels as discussed in

Section 4.3. Negative values indicate an increase in

attenuation and vice versa.

The behavior indicated by the results may be explained

by Serata's6O observations on the development of fracture

or cracks at the lateral surfaces and the development of a

triaxially stressed zone at the loading surfaces of the

specimen. A schematic diagram of these two zones is

'presented below.
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Fig. 5-.~1a Stress-strain relationship.
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Fig. 5. 2 Velocity change of ultrasonic longitidunal waves propagating

through five identical 3. 5-inch cubic Specimens with increase

of uniaxial compression
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In the triaxially stressed zone, the salt becomes

more compact and better transmission is expected as indi—

cated by the increase in velocity and decrease in attenuation

in the axial measurements. Opposite behavior is observed

in the lateral direction due to propagation in a fractured

zone.

As the load increases, the triaxial zone extends to

the center of the specimen. From 1,000 to a 3,000 psi,

lateral waves are partially propagating in the triaxial

zone; this explains the relatively constant values of

attenuation and velocity in this stress range. At

higher loads, the specimen starts to fracture and attenu-

ation in the lateral direction increases very fast.

Attenuation measurements are further complicated

by changes in coupling between the transducers and

specimens. The effect of this coupling cannot be separated

from the true changes in attenuation in the salt.

The difference between the velocities measured in

the axial and lateral directions.increases with increasing

axial stress. The velocity difference reaches 25% at 3,000

pSi (about 75% of the crushing strength).

5.4. Lame's Constants

Velocities were measured in different-length speci-

mens and in three mutually perpendicular directions in

cubic specimens. The purpose of using different—length

Specimens was to determine the effect of the couplant on



124

the propagation time. The purpose of the measurements made

in three directions was to determine if the assumption of

isotropy is valid for rock salt in its unstressed state.

Figure 5.4 shows the propagation time for longitudi-

nal and shear waves versus specimen length. The straight

lines connecting the points pass through the origin indi-

cating that the couplant effect is negligible.

velocities were calculated from the slopes of the

straight lines.

longitudinal velocity = 4255 meters/sec i 1%

shear velocity = 2450 meters/sec 1.2%

The accuracies indicated are determined from the accuracy

with which the propagation time (straight line portions,

Figs. 4.10, 4.11) was measured.

The cluster of six points at the end of the longi-

tudinal line (Fig. 5.4) was determined from measurements in

3 perpendicular directions in two approximately 5-inch

cubic specimens. They indicate that the velocity is the

same in all directions and thus the assumption of isotropy

is valid.

Lame's constants were calculated as follows:

_ 2
LJ.--pvS (50].)

where:

p = average density of all samples = 2.157 gm/cm3

(2.157 gm/cm3) x (245,000 cm/sec)2

1.2947 x 1011 dynes/cm2

‘
F ll

1
: ll
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_ 2 _
A - p VL 20

i = 1.261 x 1011 dynes/cm2 (5.2)

A + 20 = 3.85 x 1011 dynes/cm2

1 dyne/cm2 = 1.45 x 10-5 psi

Thus,

6 .
u = 1.877 x 10 p51

i = 1.828 x 106 psi

i + 20 = 5.58 x 106 spi

Poisson's ratio, V, was calculated as:

 

V

1 - 2(-~—S-)2

VL

v = = 0.247

Vs 2

2 — 2 (E70

L

The dynamic value of YOung's modulus 'was calculated as:

= 0 (3K + 2H)
20 (1 + V) k + uD

! II

4.68 x 106 psi

The bulk modulus, K = (3A + 2H) = 3.08 X 106 psi.

u
u
H

The values of VL. Vs, A, 0 obtained from velocity

measurements in situ (Section 2.4) are slightly higher than

the values obtained by the present author. The value of v

compares very closely (Table 5.1). The differences are due

to the fact that rock salt in situ is in a triaxially com—

pressed state while the specimens used by the author are in

an unstressed state. Compression causes an increase in

Vi. Vs‘ A and u as will be discussed in the following sections.
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Table 5.1. Dynamic elastic moduli of rock salt.

 
 

 

Present author In situ

VL (meter/sec) 4225 4370

V3 (meter/sec) 2450 2550

V = Poisson's ratio 0.247 0.241

0 = G (106 psi) 1.877 2.05

i (106 psi) 1.828 1.91

E (106 psi) 4.68 5.09

x (106 psi) 3.08 3.28

 

It is also interesting to note that the values of

A and u are very close to each other. This is in line with

the quantum mechanical assumption regarding the existence

of central forces between the particles of single crystals

of NaCl.68a This assumption leads to the conclusions that

C44 = C12 in single crystals of NaCl and A — u in

isotropic bodies.68a For NaCl:68a

C = 1.25 x 1011 dynes/cm2
12

1.26 x 1011 dynes/cm2
C44

2
2

and C12 C44
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For the rock salt tested:

11
i 1.261 x 10 dynes/cm2 a C12 of NaCl

0 1.295 x 1011 dynes/cm2 s 044 of NaCl

and A m u.

5.5. Hydrostatic Compression

Figure 5.5 shows the variation of longitudinal

velocity due to hydrostatic pressure in two specimens.

Figure 5.6 shows the variation of shear wave velocities.

In both figures, velocity increases very fast with

an increase of hydrostatic pressure from zero to about 1,000

psi. velocity increases at a progressively slower rate with

an increase of hydrostatic pressure from 1,000 to 4,000 psi.

velocity shows a slow but steady increase with increasing

hydrostatic pressure from 4,000 to 9,000 psi. velocities

measured during unloading of the first cycle are slightly

higher than the corresponding velocities measured during

loading. velocities measured during the second loading and

unloading cycles are very close to the velocities measured

during unloading of the first cycle.

Similar results for different types of rocks were

obtained by many investigators and reported in Section 2.4.

The characteristic shape of velocity versus pressure curves

was interpreted by the hypothesis of pore closure.

Birchl4 explained this hypothesis as follows: "Pressure

affects the elastic constants of rocks first by reducing

porosity and eventually, as pressure is increased, by an
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intrinsic effect upon the crystalline components." For

example, "in igneous rocks, porosity is of the order

of one tenth of one percent and under pressure of order

of one kilobar solid contact is restored and above this

point the pressure effect is close to the intrinsic one."

The higher velocities obtained during unloading are

interpreted as due to the fact that some pores remain

closed while unloading.

The present author agrees with the above descriptive

hypothesis. The fast increase of velocity at low pressures

is not reproducible and is most probably due to difference

in porosity between the specimens. 'However, the "intrinsic"

increase of velocity at higher pressures is reproducible.

Rinehart53 has stated that no satisfactory mathematical

explanation has been given for this intrinsic change in

rocks. The present author will give a mathematical explan-

ation for this effect in the following sections based on

the equations derived in Chapter III.

5.6. Triaxial Stress with Uniaxial Strain

Figures 5.7 and 5.8 show the variation of longi-

tudinal and shear wave velocities, measured in the direction

of uniaxial strain, as a function of the axial stress. The

shape of these curves is similar to the one obtained in the

hydrostatic tests and the same discussion applies here.

One of the objectives of this test was to determine

if ultrasonic methods would detect transition from elastic
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to plastic states of stress as discussed in Serata's transi-

tion theory (Fig. 2.4, Section 2.1). Figure 5.9 shows

a typical experimental plot of lateral stress 0L versus

axial stress oz. This figure shows a close agreement with

Serata's transition theory. However, no correlation is

observed between the transition points of this figure and

the velocity curves of Figs. 5.7 and 5.8. The absence of

correlation may possibly be explained by Sternglass and

Stuart's65 experimental results which indicated that the

wave front of longitudinal waves propagating in metal bars,

which are prestressed to the plastic region, travels with

the elastic wave velocity.

5.7 Determination of the Third-Order

Elastic Constants of Rock Salt

The following theoretical equations, for the

measured longitudinal and shear wave velocities during the

first loading cycle in the hydrostatic and triaxial

compression tests, were derived in Chapter III and redefined

in Chapter IV.

Hydrostatic Compression.

 

=_V/x + 2n - a (4x + 4p + 63 + 4m) (5 3)

ph '

\¢/u.- a (3% + 3n + 3m 'g)

v = (5.4)
sh ph

Lh
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Triaxial Stressf

 

 

 

 

_ ‘ 2v =W+2g e (4x+8p+2 +4m) (5.5)

Lt pt

S Pt

where:

A = 1.261 x 10ll dynes/cm2

u = 1.295 x 1011 dynes/cm2

-a = hydrostatic linear strain

-e = uniaxial strain in triaxial tests

ph = density at a given strain 0

pt = density at a given strain e

3 po (1 + 30;)

3
pt p0 (1 + e)

p = 2.157 gm/cm3

3, m, n = unknown third-order elastic constants

V

Lh' V
sh’ VLt and VSt are the measured velocities in

the first loading cycle of Figures 5.5 through

5.8 respectively.

The unknown third—order elastic constants can be

calculated from the above equations. For example, the constant

function (62 + 4m) can be calculated from Eq. 5.3.

2
th ph = k + 20 — a (4% + 4u + 62 + 4m)

2
A + 211 - V p (5.7)

Lh h (4% + 40)63 + 4m a
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Similar procedures can be used to calculate the remaining

functions (3m —-§), (22 + 4m) and (m). These four functions

of 2, m, and n should be constant for any strain a or e

and the corresponding velocity. However, due to pore closure

effects and non-reproducibility of velocities at low pressures,

the four functions of 2, m, and n were calculated by a dif—

ferential approach. Table 5.2 shows a typical calculation

for the constant function (22 + 4m) by the following

procedure:

2

 

= — + + 2 + 4th pt A + 20 el (41 80 2 m)

l l

2

= - 4x + 8 + 22 + 4m)VLt pt A + 20 e2 ( u

2 2

Thus:.

2 2

VLtl Ptl ' VLtz pt2

22 + 4m = — (4i + 80) (5.8)

e - e
l

where:

el = strain at a stress 01

e2 = strain at a stress 02 > 01

e > e , e is positive

2 1

V j) V

Lt2 Ltl

e2 — el = Ae

A similar procedure was used to calculate the other

functions (62 + 4m), (3m —-%) and (m). The results are

tabulated in Tables 5.3 and 5.4.
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Since rock salt remains isotropic in the hydrostatic

test, the same procedure was used to calculate (62 + 4m)

and (3m -'%) for the second loading cycle. The only change

in the seconc cycle is that A and u are different from their

values in the first loading cycle. The new values of A and

u were calculated from the average longitudinal and shear

wave velocities at the beginning of the second loading

cycle.

VLh = 4450 meters/sec.

V = 2640 meters/sec.

sh

2.157 gm/cm3

.
0 ll

Using Eqs. 5.1 and 5.2 yields:

2

1.51 x 1011 dynes/cmu

A

2

1.24 x 1011 dynes/cm

These values were substituted in the velocity equations. The

results are included in Table 5.3. A similar procedure

for the second loading cycle in the triaxial tests would

not be valid because of the induced anisotropy.
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Table 5.3. Calculated values of (62 + 4m) and (3m - g)

from hydrostatic tests.

-(62 + 4m) -(3m - g9

11 dynes/cm2 10ll dynes/cm2

Priggure _giggt Cycle Second Cycle First_§ycle Second Cygle

psi HL2 HL3 HL2 HL3 H51 H82 H81 H52

0 _- -_ -_ _- __ __ -- _-

5 6330 5555 -- -- 2762 3442 -- --

10 1524 1107 842 2798 1580 1982 799 615

20 -- 1811 227 677 303 568 245 --

30 261 836 194 274 210 292 91 161

40 -- 530 —- -- 117 120 —- —-

50 -- 366 140 146 63 76 45 77

60 127 -- -- -— —- ~- —— _-

70 -- 256 130 127 31 32 34 27

80 -- —— -— -- -- —— __ __

90 121 192 105 109 20 21 23 21

Selected values: 107 .i 16 22 .i 5 
 



 

Table 5.4. Calculated values of (22 + 4m) and (m) from

136

the first cycle of triaxial tests.

 

 

 

 
 

Axial -(23 + 4m) —m

8:3:ss 10ll dynes/cm2 loll dynes/cmz

psi TLl TL2 T81 T82

o --- ___ --- ---

6 i 218 217 '-* "‘

12 85 94 17 20

18 72 60 54 57

30 59 59 63 —--

42 63 70 75 47

54 53 67 63 -~-

66 6O 48 52 41

78 55 46 51 —--

90 46 44 --- 30

102 40 35 34 —-—

114 43 35 --- 17

126 35 36 --- ---

138 19 35 16 9

Selected values: 35 < 9 
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Figures 5.10—5.12 show a plot of the four functions

of 2, m, and n, tabulated in Tables 5.2 and 5.3, with

respect to the stress. The horizontal straight line segments

indicate the stress ranges for which the functions were

calculated by the procedure illustrated in Eq. (5.8).

The results indicate the following:

-— The four functions of 2, m and n increase with an

increase in stress. This increase is attributed to porosity

effects. At high stresses, porosity effects become less

and the four functions of 2, m and n approach constant

values.

-- Differences between two replications are also due

to differences in initial porosity. Lower values of any of

the functions were obtained from specimens that showed

higher changes in velocity (Figs. 5.5-5 8). Thus, it is

reasonable to reject low values of the functions obtained

from specimens which showed large changes in velocity.

For example, in the first cycle of the hydrostatic longitu-

dinal test, the results of Specimen HL3 are rejected and

the results of Specimen HL2 and accepted.

-- Figure 5.10 shows that the difference between the

two Specimens HL2 and HL3 becomes small during the second

CYcle. Furthermore, the function (62 + 4m) seems to con-

verge faster at higher loads. Therefore, the value of

$3 + 4m) is taken as:

_ (62 + 4m) = (107 i 16) x 1011 dynes/cm2 (5.9)
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where:

107 x 1011 is the average value from 7,000 to

91000 pSi.

‘: 16 x 1011 represents 67% of the difference between

107 x 1011 and the average value in the load

range of 5,000 - 7,000 psi.

-- By similar argument, the average value °f(3m -'§)

is taken as:

11

— (3m - g) — (22 i 5) 10 dynes/cm2 (5.10)
.—

—- The results of specimen TL2 (Fig. 5.12) incidated

that (22 + 4m) converged to a constant value of -35 x 1011

dynes/cm2 over a wide pressure range (9,000 - 13,800 psi

axial stress). The average value of (2E + 4m) from specimen

TLl, over the same stress range, is also —35 x 1011 dynes/cmz.

Therefore:

(22 + 4m) = - 35 x 1011 dynes/cm2 (5.11)

-- The value of (m) as determined from the triaxial

shear test (Fig. 5.12) did not indicate good convergence.

The results of specimen T82 indicate that (m) can be

assumed as:

- (m) < 9 (5.12)

-- The four equations above do not yield a unique solution

for E, m and n. This behavior can be explained as due to

differences in testing procedures: the functions (62 + 4m)

_
,

.
-
,

.
-
a
.
a
-
d
o
-
.
.
*
‘
.
‘
I
.
’
1
"
.

-
.

.
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and (3m —-§) were determined from a hydrostatic test while

the functions (22 + 4m) and (m) were determined from triaxial

tests.

—- Large errors can be expected in the measurement of

uniaxial strain, in the triaxial test, due to creep and

plastic behavior of the salt. In fact, the strain e at

each stress level was measured after a waiting period of

3 minutes during which some creep did occur. Thus, it is

reasonable to assume that the true values of Ae are less

than the values used in the calculation of the functions

(22 + 4m) and (m). Careful examination of Eq. (5.8) would

indicate that the true values of - (22 + 4m) and (-m)

must then be higher than those of Table 5.4.

-- It can be assumed that the unknown creep effects

are the same in the longitudinal and shear velocity

measurements of the triaxial test. Therefore, the results

of the test can be represented by the following single

formula:

N(22 + 4m)

N(m)
= constant (5.13)

N = unknown factor

-N(22 + 4m) = 35

-N(m) < 9

-- The third order elastic constants can be calculated

from Eqs. (5.9, 5.10 and 5.13) by assuming different

_(22 + 4m) (N)
m(N) ratios.
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Table 5.5. Third-order elastic constants of rock salt.

 

 

 

 

 

10ll dynes/cm

N(2§m+ 4m) + Nm m 2 n

4 38 -8 -2o.5 : 3 -39 i 0.5 -79 i 21

5 -7 -15.3 i 2.3 -7.6 i 1.1 -48 i 17

5.84 -6 -1o.0 : 1.6 -9.4 i 1.5 -12 i 14      
 

A sample calculation is given below:

 

Assume —(N)m = 7 x 1011

then:

N(22 + 4m)= §§_= 5

N(m) 7

Therefore,

22 = m

From Eq. (5.9):

62 + 4m = (—107 i 16) x 1011

7m = (-107 i 16) x 1011

Therefore:

11
(-15.3 i 2.3) x 10 dynes/cm2m

2 = (—7.6 i 1.1) x 1011 dynes/cm2

From Eq. (5.12):

3m _.§ = (-22.: 5) x 1011

n = 6m + (44 i 10) x 1011

= [(-92 i 13.7) + (44 : 10)]10ll

n = (~48 : 17) 1011 dynes/cm2
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where:

.i 17 = WVQ10)2 + (13.7)2

 

-- Figure 5.13 shows the average values of (22 + 4m)

and (m) for the second loading cycle in the triaxial tests.

The salt was assumed to be isotropic at the beginning of the

second loading cycle, and the functions (22 + 4m) and (m)

were calculated by the same procedure used to calculate

(62 + 4m) and (3m -'§) in the second loading cycle of the

hydrostatic test. It was pointed out that the assumption

of isotropy is not valid in the triaxial test. However,

it is assumed that the errors introduced in this assumption

are less than the advantages obtained in the calculation

of (22 + 4m) and (m), due to less creep effect in the second

loading cycle. Figure 5.14 shows the strain behavior for

two typical specimens. The strain in the second loading

cycle shows a linear behavior up to about 12,000 psi. very

little creep was observed in this range. After 12,000 psi

the strain increments become large and start to show creep

similar to that observed in the first loading cycle. This

behavior justifies the elimination of the values of

(22 + 4m) and (m) in Figure 5.13, at loads higher than

12,000 psi.

-- It can be concluded that the average values of (22 + 4m)

and (m) for the second cycle of the triaxial test (Fig. 5.13)

are:
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22 + 4m (-55 i_3) x 1011 dynes/cm2

(-12 + l) x 1011 dynes/cm2m

-- These values suggest the following choice of 2, m

and n from Table 5.4:

m = (—12 i 1) 1011 dynes/cm2

2 = (—9 i 1) 1011 dynes/cm2

n = (—26 i 6) 1011 dynes/cm2

-- This choice was made by plotting the values of

2, m and n from Table 5.4 as shown in Fig. 5.15. The value

of (m) was chosen as (-12 i l) 1011. Three horizontal

lines were drawn to intersect the (m) curve at the selected

11 dynes/cmg. Three verticalvalues of (-11, -12, -13) X 10

lines were then drawn from these points. The values of

2 and n were obtained from the points at which the three

vertical lines intersected the 2 and n curves.

-— The measured values of (62 + 4m) and (3m -‘%)

in the first and second cycles of the hydrostatic test

(Figs. 5.10, 5.11) and the average values of (22 + 4m)

and (m) in the second cycle of the triaxial test, are

all in close agreement with the final selected values of

2, m and n. Similarly, the measured value of (m) in the

first cycle of the triaxial test was -9 x 1011 for specimen

T82 and -17 x 1011 for specimen TSl. The average of these

two values is also in close agreement with the final choice

of m.
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Fig. 5. 5 Change of longitudinal velocity with hydrostatic pressure

 



s
h
e
a
r

v
e
l
o
c
i
t
y
(
m
e
t
e
r
s
/
s
e
c
.

)

2800

2700 ‘

Z600

2500

2400

144

 

  

 

 

 
 

HSZ

_ ,,;..——-—-—--—”“" t 4

J 0

/ HSl ;‘

. ‘ ‘ g A

/"

o

_- ./ A lst ‘cycle - loading

° lst cycle - unloading

X an’ cycle - loading

0 2nd cycle - unloading

I A l * I I I

2 4 6 8' 10

hydrostatic pressure (1, 000 psi)

Fig. 5. 6 Change of shear velocity with hydrostatic pressure
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Fig. 5.10 Change of (61 + 4m) with hydrostatic pressure
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Therefore, the final choice of 2, m and n is in

close agreement with the measured values in seven tests but

disagrees with (22 + 4m) in the first loading cycle of the

triaxial test. Therefore, the probability of the final choice

of the values of 2, m and n is %°

5.8 Evaluation

The literature review did not reveal any work on the

third-order elastic constants of rocks. However, the

experimental values of 2, m and n obtained in this investi—6

gation are in agreement with Brillouin's predictions and

Hughes'30 experimental results which indicated that the

third-order elastic constants are negative and larger than

the second-order elastic constants A and u.

Bergman and Shahbender5 measured the changes in

longitudinal and shear wave velocities propagating in a

direction perpendicular tothe applied uniaxial stress in

aluminum columns. They concluded that changes in shear wave

velocities could be explained by changes in density and

shear modulus while changes in longitudinal velocities could

the

10

be explained by changes in density alone. However,

30 . . 56 .

theoretical development of Hughes, Rivlin, Biot,

Bhagvantum,6 and the present author indicate that changes

in both longitudinal and shear waves are due to changes in

both density and effective elastic moduli. Furthermore,

the experimental results of Hughes and the present author
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were in close agreement with the theory. Therefore, the

present author cannot find any theoretical justification

for Bergman and Shahbender's assumption that changes in

longitudinal velocity are due to changes in density alone.

Hughes' experimental results provided the third-

order elastic constants of Polystyrene, Armco iron and Pyrex.

In the present investigation, the third-order elastic constants

of rock salt were calculated from the changes in velocities

at high stresses where the porosity effect is small. This

suggests the possibility of measuring the third-order elastic

constants of other solids. Consequently, it is reasonable

to assume that for compact isotropic materials the changes in

wave velocities due to known applied stresses can be

predicted from theoretical considerations provided that p0,

0: u. 3, m and n are known.

The question arises whether a reverse procedure is

possible, i.e., given po, 2, u, 2, m and n for a compact

material which is under the influence of unknown forces, is

it possible to calculate the stresses from absolute velocity

measurements in the material? This question is difficult

to answer because of the limited available data on this

subject. Furthermore, the theoretical development is

restricted to the special cases of uniaxial stress (Hughes),

hydrostatic compression (Hughes and present author), and

homogeneous triaxial stress (Rivlin and present author).

Essenaitlly, there are two things that must be considered.
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First an assumption must be made regarding the stress

distribution in the material to be tested, and second the

stress-strain relationship and the history of the deformation

must be known. The stress-strain relationship and history

of the deformation are needed because the velocity equations

include some functions of the strains and not stresses.

Therefore, the answer to the question may be affirmative

if the stresses can be uniquely determined from the strains

and if an intelligent assumption can be made regarding the

stress distribution, provided that all necessary velocities

can be measured.



VI . GEOPHYSICAL APPLICATIONS

The theoretical and experimental investigations in

this study may be extended to certain geophysical appli-

cations. Ultrasonic transducers might be placed at the ends

of drill holes, which are filled with liquid pressure, for

detection and transmission of waves.

The data obtained in the uniaxial compressive

stress tests suggest that measurement of longitudinal

velocities in the vertical and horizontal directions of mine

pillars may indicatesstructural stability of the pillars.

Currently there are two theories regarding the nature

of the underground stress field: the common hydrostatic

theory and Serata's61 triaxial theory which was reviewed

in Section 2. Measurement of velocity in three mutually

perpendicular directions could provide an experimental

verification of either theory. Equal velocities indicate

that the rock is still isotropic and thus the underground

stress field is hydrostatic. If two velocities in the

horizontal direction are equal but different from the

velocity in the vertical direction, then the underground

stress field is triaxial.

The data obtained in this investigation revealed

that the changes in velocity at high pressure are reproducible.
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The third-order elastic constants of rock salt were calcu—

lated from the intrinsic change in velocity. This suggests

the possibility of extending the experimental data to

determine the changes in overburden pressure with increasing

depth by measuring the velocity of longitudinal or shear

waves.

Wave velocity logging around underground cavities

might indicate some correlation with the stress and strain

distribution.



1.

VII . CONCLUSIONS

Unstressed rock salt is nearly isotropic. The

velocities measured in three mutually perpendicular

directions in five—inch cubic specimens were rela-

tively consistent with a maximum variation of less

than 3%.

The average longitudinal velocity in rock salt is

4225 : 1%.meters/sec. The average shear wave

velocity is 2450 i 2%.meters/sec.

The dynamic elastic moduli of rock salt are:

I

1 = (1.83 i 0.05) x 106 psi

= (1.26 i 0.05) x 1011 dynes/cm2

Lame's constants1 6

p. = (1.88 _t 0.05) x 10 psi

 I
(1.29 i 0.05) x 1011 dynes/cm2

Poisson's ratio, V (0.247 :_0.01)

Young's modulus, E = (4.68 i 0.10) x 106 psi

Bulk modulus, K = (3.08 :_0.07) x 106 psi

The dynamic elastic moduli of rock salt are much

higher than the corresponding static moduli. The

dynamic value of the bulk modulus is in close

agreement with the static bulk modulus as measured

from a hydrostatic test.
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Uniaxial compressive stress in rock salt produces

an increase in velocity of longitudinal waves

propagating along flie axis of compression and

a decrease in the velocity of longitudinal waves

propagating in the lateral direction. The dif—

ference between the two velocities reaches 25% at

3,000 psi (about 75% of the salt crushing strength).

Longitudinal and shear wave velocities increase

with an increase in hydrostatic pressure or tri—

axial stress with uniaxial strain. The

rate of velocity increase is very fast at early

stages of loading and approaches a steady slow

rate at high loads. The initial rapid increase in

velocity is not reproducible and can be explained

as due to porosity effects. The small but steady

increase in velocity at higher loads is reproducible

and can be explained as due to intrinsic changes in

the effective elastic moduli of rock salt.

The third-order elastic constants of rock salt

were determined from the changes in velocity at

high loads assuming that the porosity effects

are negligible at the highest loads used. The

calculated values are:

2 (~13.0 i 1.4) x 106 psi

2

(—9 i 1) x 1011 dynes/cm
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3 II

("17'4.i 1.4) x 106 psi

(‘12 i.1) X 1011 dynes/cm2

(37.7 i 8.7) x 106 psi:
3 ||

(’26.i 6) X 1011 dynes/cm2

The experimental results did not show any cor-

relation between the measured absolute velocities

and magnitude of stress. Furthermore, there was no

correlation with the transition from elastic to plastic

states of stress.

Velocity changes at high stress levels were

reproducible and indicated a correlation with

the change in stress. This behavior might

possibly be used to determine changes in over—

burden pressure with increasing depth in salt

formations.

The data obtained from the uniaxial compressive

stress bestssuggest that measurement of longitudinal

velocities in the vertical and horizontal

directions of mine pillars may provide information

about the development of fracture zones in the

pillar.

Since ultrasonic waves are sensitive for the

detection of the degree of anisotropy in a stressed

medium, ultrasonic wave methods might be used to

determine if the underground stress field is

hydrostatic.



VIII. RECOMMENDATIONS FOR FUTURE STUDY

The following aspects of the effect of stress on

wave propagation in solids are recommended for future study:

1. The literature review revealed a lack of

experimental data on the third—order elastic

constants of solids. A study of these constants

is essential for any investigation of material

behavior under high static stresses.

A general theoretical development to determine the

necessary and sufficient velocities to be measured

in order to determine unknown stresses.

A theoretical and experimental investigation to

correlate the third-order elastic constants of single

crystals with the non—linearity of intermolecular

interactions as predicted by quantum mechanical

analysis such as Porn—Mayer theory of ionic crystals.

Determine the best experimental procedure to

measure attenuation in stressed solids.

An experimental investigation, using wave

reflection and refraction techniques, to detect

the development of a plastic region in stressed

solids.
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Certain difficulties were encountered during the

course of this study. Based on these difficulties,

the following laboratory investigations on rock

salt or other rocks are recommended:

a. Repeat the same experiments with higher

hydrostatic and triaxial compressions.

Measure the longitudinal and shear wave velocities

in the lateral direction in the triaxial test.

Measure the changes of longitudinal and shear

waves in the same specimen.

Measure the wave velocities in biaxially com-

pressed salt blocks.

Measure the wave velocity in triaxially or

biaxially stressed hollow salt blocks.

During the course of this investigation the

phenomenon of acoustic emission was observed.

rA.1aboratory;investigation;of.this.phenomenon

in rocks might be helpful in studying slip

between the grain boundaries of rocks.



BIBLIOGRAPHY



10.

11.

BIBLIOGRAPHY

Auberger, M. and J. S. Rinehart. "A new method for

measurement of attenuation of ultrasonic longitudinal

waves in plastics and rocks," Colorado School of

Mines Bulletin, July, 1960.

Balakrishna, S. "Isotropic behavior of rocks," Current

Science, Vol. 24, No. 4 (April, 1955), 117-118.

Benson, R. W. "Ultrasonic stress analysis," Ultrasonic

News, Spring, 1962.

., and V. J. Realson. "Acoustoelasticity,"
 

Product Engineering, July 20, 1959, 56-59.

Bergman, R. H. and R. A. Shahbender. "Effect of

Statically applied stresses on velocity of propa-

gation of ultrasonic waves," J. Appl. Phys.,

Vol. 29 (December, 1958), 1736-1738.

Bhagavantam, S. "Third order elasticity," Proc. of the

Third Congress on Theoretical and Applied Mech.,

Bangalore, India, December, 1957.

., and T. R. Seshagiri. "Elastic
 

properties of polycrystalline agregates," Proc.

Indian Acad. of Sciences, Vol. 35A, No. 3 (1952),

129-135. '

., and E. V. Chelam. "Elastic behavior
 

of matter under very high pressure. Uniform

compression," Proc. Indian Acad. of Sci., vol. 52A,

No. 1 (1960), 1—19.

Biot, M. A. "Non-linear theory of elasticity and the

linearized case for a body under initial stress,"

Phil. Mag. 7th Series, Vol. 27 (1939), 468-487.

. "The influence of initial stress
 

on elastic waves," J. of Appl. Phys., V61. 11 (1940),

522—530.

Birch, F. "Finite elastic strains of cubic crystals,"

‘ Physical Review, Vol. 71, No. 11 (June, 1947),

809—824.

165



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

166

. "The effect of pressure upon the
 

elastic parameters of isotropic solids according to

Murnaghan's theory of finite strains," J. of

Appl. Phys., Vol. 9 (April, 1958), 279—288.

. "The velocity of compressional waves
 

in rocks to 10 kilobars. Part I," J. Geophys.

Research, Vol. 65, No. 4 (April, 1960), 1083-1102.

. "The velocity of compressional waves
 

in rocks to 10 kilobars. Part 2," J. Geophys.

Research, V01. 66, No. 7 (July, 1961), 2199—2224.

Breck, H. R., S. W. Schoellhorns and R. B. Baum.

"velocity logging and its geological and geophysical

applications," Bull. Am. Assoc. Petrol. Geologists.,

Vol. 41, No. 8 (1957).

Brillouin, L. Les Tenseurs. New York: Dover

Publications, 1946.

 

Cady, W. G. Piezoelectricity. New York: McGraw-

Hill Book Co., Inc., 1946.

 

Carlin, B. Ultrasonics. 2nd Edition. New York:

McGraw—Hill Book Co., Inc., 1960.

 

Cook, R. K. "Variation of elastic constants and

static strains with hydrostatic pressure: A

method of calculation from ultrasonic measurements,”

J. Acoust. Soc. Am., Vol. 29 (1957), 445—449.

Chowdiah, A. M. "Stress and strain distribution

around openings in underground salt formations,"

Ph.D. Thesis, Michigan State University,

East Lansing, 1963.

Daniels, W. B. and C. S. Smith. ."Pressure derivatives

of the elastic constants of Copper, Silver and Gold

to 10,000 bars," Physical Review, Vol. 111 (1958),

713-721.

Davids, N., editor. International Symposium on Stress

Waveggropagation in Materials. New York: Interscience

Publishers, Inc., 1960.

 

Eringen, A. C. NOnlinearglheory of COntinuous.Media.

New York: MCGraw-Hill Book Co., Inc., 1962.



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

167

Green, A. E., R. S. Rivlin, and R. T. Shield. "General

theory of small elastic deformations superposed on

finite elastic deformations," Proc. Roy. Soc. of

London, Series A, Vol. 211 (February, 1952), 128-154.

Green, A. W. and W. Zerna. Theoretical Elasticity.

New York: Oxford University Press, 1954.

Handin, J. W. and R. V. Hager, Jr. “Experimental

deformation of sedimentary rocks under confining

‘pressure: Tests at room temperature on dry

samples," Am. Assoc. Pet. Ge01.,

Bulletin 41, 1957, 1—50.

Hikata, A., R. Truell, A. Granato, B. Chick, and K.

Lucke. "Sensitivity of ultrasonic attenuation and

velocity changes to plastic deformation and recovery

in Aluminum," J. Appl. Phys., V01. 27 (1956),

396-404.

Holyman, H. W. "Seismograph evidence on the depth of

salt columns, Moss Bluff Dome, Texas," Geophysics,

11, No. 2 (1946), 128-134.

Hughes, D. S. and J. H. Cross. "Elastic wave velocities

in rocks at high pressures and temperatures,"

Geophysics, Vol. 16, No. 4 (October, 1951), 577-593.

., and J. L. Kelly. "Second—order

elastic deformation of solids," Physical Review,

Vol. 92, No. 5 (December, 1953), 1145-1149.

 

., and H. J. Jones. "Elastic wave

velocities of sedimentary rocks," Am. Geophys. Union.

Trans., V01. 32, No. 2 (April, 1951), 173—178.

 

., and C. Maurette. "Variation of

elastic wave velocities in basic igneous rocks with

pressure and temperature," Geophysics, Vol. 22,

No. 1 (January, 1957), 23-31. .

 

., . "Variation of elastic

wave velocities in granites with pressure and

temperature," Geophysics, V01. 21, No. 2 (April, 1956),

277—284.

  

Karus, E. V. and V. B. Zuckernik. "An ultrasonic

apparatus for studying the physical and mechanical

properties of rocks intersected by a drill-hole,"

Bull. Acad. Sci. USSR,Geophys. Ser., No. 4 (1958),

755-761.



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

168

Kittel, C. Introduction to Solid State Physics. 2nd

Edition. New York: John Wiley and Sons, 1961.

Kolsky, H. Stress Waves in Solids. Oxford at the

Clarendon Press, 1953.

 

Krishnamurthi, M. and S. Bulakrishna. "Measurement

of ultrasonic velocity in some Indian rocks,"

Proc. Indian, Acad. Sciences, Vol. 38A (1953),

495-501.

., . "Attenuation of sound

in rocks," Geophysics, Vol. 22, No. 2 (April, 1957),

268-274.

 

Lazarus, D. "The variation of adiabatic elastic

constants of KCl, NaCl, CuZn, Cu and A1 with pressure

to 10,000 bars," Physical Review, V01. 76 (1949),

545-553. '

Love, A. E. H. A Treatise on the Mathematical Theory

of Elasticity. 4th edition. New York: Dover

Publications, 1926.

Mason, W. P. Physical Accoustics and Properties of

Solids. Bell Laboratory series. Princeton: D.

Van Nostrand Co., 1958.

. Piezoelectric Cyrstals and Their
 

Application to Ultrasonics. Princeton: D. van

Nostrand Co., Inc., 1950.

McMaster, R. C., editor. Nondestructive Testing_Handbook,

Vol. II. New York: The Ronald Press Company, 1959.

 

McSkimin, H. J. "Notes and references for the measure-

ment of elastic moduli by means of ultrasonic

waves," J. Acoust. Soc. Am., Vol. 33, No. 5 (May, 1961),

606-615.

Morrison, D. M. "The transition test as a method for

determining the triaxial properties of rocks in the

condition of underground formations," M.S. Thesis,

Michigan State University, E. Lansing, 1962.

Murnaghan, F. D. "Finite deformation of an elastic

solid," Am. J. Math., Vol. 59 (1937), 235-260.

. Finite Deformation of an Elastic
 

Solid. New York: John Wiley and Sons, Inc., 1951.



 

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

169

Nicholls, H. R., V. Hodker, and W. I, Duvall. "Dynamic

rock mechanics investigations," Project Cowboy,

U.S. Bureau of Mines, Applied Physics Research

Laboratory, College Park, Maryland, September, 1960.

Olmsted, J. M. H. Advanced Calculus. New York:

Appleton—Century-Crofts, Inc., 1961.

Pochhammer, L. "Ueber die Fortpflanzungeschwindigkeit

Kliener Schwingungen in einem unbegrenzten isotropen

Kreiscylinder," J. reine u. angew. Math, 81, 324,

1876.

Raman, A. B. "Elastic plastic transition tests,"

.M.S. Thesis, Michigan State University, E. Lansing,

1962.

Rayleigh, L. Theory of Sound, Vol. 1. New York:

Dover Publications, 1945.

Rinehart, J S., J. P. Fortin, and L. Burgin.

"Propagation velocity of longitudinal waves in

rocks. Effect of state of stress, stress level

of the wave, water content, porosity,temperature,

stratification and texture," Proceedings of the

Fourth Symposium on Rock Mechanics, The

Pennsylvania State University, University Park,

Pennsylvania, March, 1961.

Rivlin, R. 8. "Large elastic deformations of isotropic

materials. I. Fundamental concepts," Phil. Trans.

Roy. Soc. London, V01. 240A (1948), 459-490.

. "Large elastic deformation of isotropic
 

materials. IV. Further developments of the general

theory," Phil. Trans. Roy. Soc. London. Vol. 241A

(1948), 379-397.

., and M. Hayes. ~"Propagation of a plane
 

wave in an isotropic elastic material subjected to

pure homogeneous deformation," Arch. Rational

Mech. and Analysis, V01. 8 (1961), 15-22.

Riznichenko, Y. V. "The development of ultrasonic

methods in seismology," Bull. Acad. Sci.‘USSR,

Geophys. Ser., No. 11 (1957), 31-37.

Rollins, F. R. "Study of methods for nondestructive

measurement of residual stress," WADC Tech. Report

59—561, Midwest Research Institute, December, 1959.

Seitz, F. The Modern Theory of Solids. New York:

McGraw-Hill Book Co., 1940.

 



60.

61.

62.

63.

64.

65.

66.

67.

68.

68a.

170

Serata, S. "Development of design principle for

disposal of reactor fuel waste into underground

salt cavities," Ph.D. Thesis, University of Texas,

19590

"Transition from Elastic to plastic
 

states of rocks under triaxial compression."

Proceedings of the 4th Symposium of Rock Mechanics

held at Pennsylvania State University, University

Park, Pennsylvania, April, 1961.

., and E. F. Gloyna. ”Principles of
 

structural stability of underground salt cavities,"

Journal of Geophysical Research, V01. 65, No. 9

(September, 1960).

Silaeva, O. I. "Methods for the study of Elastic

properties of rock samples under pressure,"

Bull. Acad. Sci. USSR Geophys. Series, 145—149,

1959.

., and O. G. Shamina. "The distribution
 

of elastic pulses in cylindrical specimens,"

Bull. Acad. Sci. USSR, Geophys. Series (1958),

17-24.

Sternglass, E. J. and D. A. Stuart. "An experimental

study of the propagation of transient longitudinal

deformations in elastoplastic media," J. Appl.

Mech., Vol. 20, No. 3 (September, 1953), 427-434.

The Committee on Waste Disposal of the Division

of Earth Sciences, National Research Council, "The

disposal of Radioactive waste on land," National

Acad. of Science, April, 1957.

Tocher, D. "Anisotropy in Rocks under simple compression,"

Am. Geophys. Union. Trans., Vol. 38, No. 1 (Feburary,

1957), 89—94.

Toupin, R. A. and B. Bernstein. "Sound waves in deformed

perfectly elastic materials. Acoustoelastic effect,"

J. Acoust. Soc. Am., V01. 33, No. 2 (February, 1961),

216-225.

Triffet, T. "Introduction to the mechanics of discontinue,"

Unpublished class notes. Applied Mechanics Department,

Michigan State University, E. Lansing, Michigan,

1962.



171

69. Truesdell, C. "General and exact theory of waves

in finite elastic strain," Arch. for Rational Mech.

and Analysis, Vol. 8 (1961), 263-297.

70. Tu, L. Y., J. N. Brennan and J. A. Sauer. "Dispersion

of ultrasonic pulse velocity in cylindrical rods,"

J. Acoust. Soc. Am., Vol. 27, No. 3 (May, 1955),

550-555.

71. Turnbull, H. W. The Theory of Determinants, Matrices,

and Invariants. New York: Dover Publications, Inc.,

1960.

72. V0larovich, M. P., D. B. Bulashov. "Study on the

velocities of elastic waves in rock specimens at

pressures up to 5,000 kg/cm ," Bull. Acad. Sci.

USSR, Geophys. Ser., No. 3 (1957), 319-324.

73. Wyllie, M. R. J., A. R. Gregory and G. H. F. Gardner.

"An experimental investigation of factor affecting

elastic wave velocities in porous media,"

Geophysics, V01. 23, No. 3 (July, 1958), 459-493.

74. ., ., and L. W. Gardner.

"Elastic wave velocities in heterogeneous and

porous media," Geophysics, Vol. 21, No. 1

(January, 1956), 41-70.

 

75. Zener, C. Elasticity and Anelasticity of Metals.

Chicago: The University of Chicago Press, 1960.



APPENDICES



APPENDIX I

_ 1. * -
n — 2 [J J - E31

  

 

  

r(l+bll)(1+Bll) b21(1+Bll) b3l(1+Bll)

J* = [J:J.] = b12(1+B22) (1+b22)(l+B22) b32(1+B22) (A-l)

_bl3(l+B33) b23(l+B33) (1+b33)(1+B33j

_(1+bll)(1+sll) b12(1+B22) bl3(1+B33) i

J = [Jij] = b21(1+Bll) (1+b22)(1+B22) b23(1+B33) (A-2)

b31(1+811) b32(1+B22) (1+b33)(1+B33)

Fl 0 0‘

E3 = 0 l O

10 0 l_

where:

i indicates row and j column. For example (J32)

b23(1+833).

By regular matrix multiplication, J J is a square

matrix of dimension 3 whose elements are:'

3

(J*J). = 2 J7. J.
1k j=l ij jk

* 3 *

(J J)ll = z Jlj le
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_ 2 2 2

— (1+b ) (1+B ) + b 1+ 2 2 2
11 11 21 ( 311) + b31 (1+311)

_ '2 .- 1 + 2Bll + Bll + 2bll + 4bllBll + higher order terms.

Thus:

1

2

= b + B + 2b Ell— (A-B)11 11 11 B11 + 2

By similar procedure,
2

n = n = b + B + 2b B +-E;;—
2 22 22 22 22 22 2

B332

”3 ‘ T‘33 = b33 + B33 + 2b33 E33 + 2

(J*J) = i J* - J* J + J* J + J
12 i=1 13 32 11 12 12 22 13 J32

(1+bll)(1+811) b12(1+B22) + b21(1+Bll)(1+b22)(1+822)

+ b31(1+Bll) b32(1+B22)

(b + B22) + higher order terms.+ b21)(1+B

12 11

. . * *

Similarly (J J)21 - (J J)12

 

 

Therefore,

1r‘6 = 1112 = 1121 = %'[(J*J)12 ‘ 0]

= biz : bZl (1+8ll + B22)

By similar procedure,

T‘5 = 1113 = 1]31 = blB 2 b3l (1+311 + 333’

04 = n23 = 032 - b23 : b32 (1+B22 + B33)
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l + 2 2 - 30 = (——§——E) Il - 21112 + ( 3 ) 11 — 2mIlIZ + n13 (A-5)

ll, 12 and I3 are functions of the symmetric

matrix H.

Therefore,

51 BI 31¢
2

83': (1+2u) 11(53l) -Zu(5;;) + (2+ 2m)Il (53;)

812 811 813

-2mIl (_339 - 2m12(dfi_) + n(sfi—) (A-6)

d0 . . . . .
'5; IS a symmetric matrix according to the follow1ng

theorem from Murnaghan.47

"If f(A) is a function, written symmetrically,

of the symmetric matrix A, then g% is, like A, a

symmetric matrix."

By the same theorem, the gradients of 11’ I2 and I3

with respect to n, are symmetric, given by:47

.511“.

an 3

512 ( 7)

___. = - A-

dn I1 E3 n

51
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cof n means cofactor* of n

  

   

      

r —-1

cof n= n6 T15 ”1 05 111 ”6

_ _ (A-B)

4 n3 1‘5 n3 n5 T‘4

  
It is important to note that in the process of differentiation,

the symmetry of the strain matrix is neglected and the nine

elements of n are regarded as independent elements. For

example, I2 is given by equation (3.28) as,

_ 2 2 2

I2“‘2"3"‘4 +13% 115 +1‘1"2 T'6

81

In this form 3;; = -Zn4 which is wrong. To get the right

4

answer the elements of n42 must be considered to be

independent. Thus,

2
-114

n23 T‘32

and-gig- = - n = - n
023 32 4

*If A is any square matric of dimension n, the cofactor

matrix of A (denoted by cof A) is the matrix obtained by

replacing each element of A by its cofactor, the cofactor of

qu being the product of the determinant of the (n-l) dimen-

sional matrix, obtained by erasing the p column and q row

of A; by (-1)p+q.
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812

B-fiz—n =-T1

“32 23 4

and

8

Bia=gi=alz =_n

T‘4 T‘23 an32 4

Combining Eqs. (A-6) and (A-7) yields:

89 2
fi=x1133+2un+(211 -2mIz)E3+2mIln+ncofn (A-9)

or,

5¢ = 1 I + 20 + 2 I 2 2 2
Efifi_ 1 n1 :1 — m 12 + 2m 11 ”1 + (0203 - n4 )n

80 = 1 I + 2 + 2 I 2 2 I 2 2
835 .1 u ”2 1 I“ 2 + m I1 T‘2 + (”113 ‘ T‘5 )n

84 2
a" = — ' 2n3 4 I1 + 2” T‘3 + 2 I1 2m I2 + 2m I1 03 + (”lnz T‘6 )n

a¢ = 2 + 2 I + ( )1371-4 IL 114 m 1 ’14 T16 T‘5 ' n1 1‘4

30
'335 = 2n n5 + 2mI1 n5 +'(06 n4 - “2 n5)n (A-lO)

CO = 2 + 2 I +( - )
3716 u 1"6 m 1 1‘6 T‘4 T‘5 1r‘6 113 n

The strains in the formulas above can be expressed in terms

of b.. and B.. as follows:

1) lJ

I1""‘1”"2+”3

Substituting for n1, 02 and n3 from Appendix I, yields:

11 = B + b + 2 (b11 B11 + b22 B22 + b33 B33)

2 2 2

+ B11 + B22 + B33

2 2 2
(A-11)
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where:

2 2 . .
I = B + 2 Bb + higher order terms. (A-12)

= 2 2 2

From Appendix I; n4, n5, me have terms of b

1J

appearing alone. Therefore, the squares of these strains

are neglected and Iz.is written as:

2 n2T‘3'F'13711J'1117'2

 

Hz U3 = b22333 + b33B22 + 322B33 + higher order terms

(A-13)

n3 “1 = b33811 + bllB33 + B11B33 + higher order terms

n1 n2 = b11B22 + b22B11 + B11822 + higher order terms

Therefore:

I2 = b11(322+B33) + b22(311+B33) + b33(322+311)

+ 322833 + B11B33 + 811822 (A—14)

= BnlIl B Bll + bBll + bll

(A-ls)

”212 = B B22 + bB22 + b22B

U3I3 = B B33 + bB33 + b3BB

I104 = [B+b+2 (b11311 + b22322 + b33B33)

1_ 2 2 2 1

+ 2 (B11 + B22 + B33 )‘

b + b

23 32

[ 2 (1 + 322 + B33)1
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_ .3.

I1 ”4 2 (b23 + b32)

Similarly,

I n =-5 (b + b )
l 5 2 13 31 (A—16)

I n = g-(b + b )
1 6 2 12 21

2 _ 2 _ _

T‘4 " T‘5 ‘ T‘6 1‘6 ”5 T16 "4 T‘4 1r‘5 = 0 (A47)

B
_ 11

n1 n4 ‘ 2 (b23 + b32)

n2 T‘5 2 13 31 (A'ls)

B
33

T‘6 T‘3 2 (b12 + b21)

From Eq. (A-lO),

80 _ 80 _ 2

2

Substituting for the strains and strain invariants yields:

50 1 2 2 2
Efii = A[B + b+2(bllBll+b22B22+b33B33) +I2(Bll + B22 + B33 )1

. 2

+ 2 B +b +2b B + Ell—1 + 2 [B2+2bB]
u l 11 11 11 11 2

+ 2m ElBBll+bBll+bllB1 - [bll(822+833)+b22(Bll+B33)

+ b33(322+Bil)+322333+311333+3113221

+ n“9221333 + b33322 + 322333]
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a0
= i B+b+

'531 [ 2(b11311 + b22322 + b33333)

1, 2 2 2

+ 2 (B11 + E22 + B33 )3

2

B11 2
+ 20 [811 +bll+2bllBll+ 2 } + 2[B +2bB]

2
+ .. ... - ..

2” [311 +2b11311 b22333 b33322 322333] (A 19)

+ “ [b22333 + b33322 + 322333]

“$2 = 0¢ and 6§$_ =-%$- are written from g2-by cyclic

1‘22 6:2 1‘33 T‘3 1‘1

permutation of the numbers 1, 2, 3.

a¢ a0 a0 ,
= = = 2n n + 2mI n + n(n n - n n )

534 5023 5n32 4 1 4 6 5 1 4

b + b
23 32

+ 2H [ 2 (1+B22+B33)]

b23 + b32 (B)

+ 2m 1 2 1

b + b
23 32 _

54) 12) +13

23 32 _
—--————- [28 (1+82 +B33) + 2mB nslll

 

 

83; = 2 2

Similarly,

30 _ b13 + b31 _ A-20Iafis - 2 [2u(1+Bll+B33)+2mB “322] ( )

a0 b12 + b21 _
.33 = 2 [20(1+Bll+822)+2m8 nB33]

where:
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APPENDIX III

 

5¢ *

°=%;J5-5J (A—Zl)

9' - l - (1 21 lp - Det J _ - 1 + 412 + 813) 2 (A-22)

O

The elements of J, (Jij) are given in Appendix I, Eq. (A-Z).

The elements of J*, (J:j) are given in Appendix 1. Eq. (A-l).

5¢

'53 is a symmetric square matrix of dimension 3, and can

be written as:

¢ ¢ ¢

11 12 13

¢ ¢ ¢

31 32 33   
where:

54
¢,,= d¢..=¢..

13 5nij an 13 31

The elements of (¢ij) are given in Appendix II. Eqs.

(A-19) and (A—20).

4 _

Let N = J'gfi J*
(A 23)

Then N is a symmetric square matrix of dimension 3 whose

elements are given by:

182



183

3 3 *

N. = z z . J
1r j=l k= 1] Jk kr

3 3 *

N = z 2 J 4. J
11 J=l k=1 1) JR kl

=§J ¢ J* +J J* +J *
j=l 13 jl 11 lj 32 21 lj J3 J31

N - J ¢ J* + ¢ * ¢ *
11 ‘ 11 11 11 J11 12 J21 + J11 13 J31

*

12 21 11 12 22 J21 + J12 ¢23 J31

+J¢J*+J¢J*+J¢*
13 31 11 13 32 21 13 33 J31

All terms of ¢.., i # j contain terms of b or B . All
13 rn rn

terms of J.. or J*.. i # j contain terms of b . All

1] 1)
rn

* . . .

terms of Ji' or Jij' 1 8 J contain terms of order 1.

Thus, all terms of ¢i" i # j multiplied by Jr
J n

or J:n' r # n, are higher order terms. Similarly all

'
*

terms of ¢ij' i # j, multiplied by the product Jrn ka.

r # n and k # m. are higher order terms.

Therefore,

_ * -
N11 - Jll ¢ll Jll + higher order terms

2 2

= (1+b11) (1+Bll) $11

' t ms
(1 + 2 b11 + 2 B11) $11 + higher order er

or

(1 + 2 b + 2 B
A—24)

1 11 11) ¢ , (12

II
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By similar procedure. it can be shown that:

N2=N22=(1+2b22+2822)¢2

N3 = N33 = (1 + 2 b33 + 2 B33) $3

and

N4 = N23 = N32 = b32 ¢2 + (l + B22 + 333’ ¢4 + 323 ¢

N5 = N3l = N13 = b13_¢3 + (1 + B33 + 311) ¢5 + b31 ¢

N6 = N12 = N21 = b21 4’1 + (1 + B11 + 322) (D6 + b12 ¢

5— can now be approximated as:

0

-g— = l - Il + higher order terms

0

= 1 - B - b

where:

B = B11 + E22 + B33

b = bll + b22 + b33

The higher order terms of %-are neglected because their

0

products with N are all higher order terms.

The stress 011 is now given by:

- = £-

01 " 011 p N1
0

substituting for ¢1 from (A—l9) yields
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o = A B + b + 2 + 1, 2 2 2

l [ (b11811 b22B22 + b33333) + 2 (311 + E22 + B33 )

+ B (2 bll - b) + (2 B11 - B) (B + b)]

2

B11
+

___.
.-2u[Bll+bll+2 bllBll + 2 + 311(2 bll b)

+ (2 B11 - B)(Bll + bll)]

2
+£[B +2bB]

2

+ 2” [311 + 2 b11311 ” b22533 " b33322 ' 322333]

+ n [b22333 + b33322 + 322333]

Collecting terms of bll' b22 and b33 yields:

2 2
B B

— ._ 2 _22_._ _§é_._

G1 ‘ [1‘3 + 2 B11 ‘ 2 2 2 322333)

+ 2 (B +-5 B 2 - B B - B B )
u 11 2 11 11 22 11 33

+£(B2)+2m(B 2—B B )+n(B B )1
11 22 33 22 33

+ bll [1(1+4 B11) + 2u(1 + 4 B11 - B22 — B33)

+ 2(2B) + m (4 311)] (A-26)

+ b22 [1(1—2 B33) + 2u(—Bll) + 2(23) + m(—ZB33)

+ n (833)]

_ + _

+ b33 [1(1—2 322) + 2p ( B11) + £(2B) m( 2322)

+

n (822)]
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Similarly 02 and 03 are written by cyclic permutation of

the numbers 1, 2, 3

23

+ 2“ (322 + 2 B22 ' B22333 ’ 322811)

2 2
+ £(B ) + 2m (B22 - B33B ) + n(B

11 33311)]

+ b 2 [1 (1 + 4B22) + 2B (1-4 B - B - B
2 22 33 11)

+ 223 + 4mB (A—27)
22]

[1(1-2311) + Zn ('322) + 223 — 2mB + "311]+ b 11

33

 + bll [3(1-2833) + Zu (-B22) + 2£B—2mB33 + nB33]

o = (1(3 +-— B — ———— - —§——-- 2 311322)

+ 2 (B + 3-B — B B - B B )
u 33 2 33 33 11 33 22

2

+2 B + 2m (B — B
33 11 322) + n (311 322)]

+ b 1 1+4B ) + Zu (1-4B - B - B )

33 I ( 33 33 11 22 (A-28)

+ 22B + 4mB33]

(1(1-2B ) + 2n (-B33) + 223 - ZmBzz + “322]+ b
11 22

 + b [1(1'311) + 2n (~333) + 2£B — 2mBll + n 311]

22

_ ¢

04 ‘ 'fi; (b32 (D2 + (1+322 + B33) $4 + b23 3)

2. 4, $3 are given in Appendix 2, Eq. (A-l9) and
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Therefore,

-9—- = =p0 b32 $2 b32 ¢2 b32 (%(Bll + B22 + B33) + Zn 322]

R— = =

p0 b23 $3 b23 $3 b23 [1(311 + B22 + B33) + 2” B33]

b + b

£L. = _ = 23 32 _
Po (1+B22+B33) ¢4 (1 B11) ¢4 2 [2u(l+B22+BB3 B11)

+2m(B11 + B22 + B33)‘nB11]

Thus:

a — b23 + b32 [2u(1+B + B -B ) + (2m+21)(B +B +B )
4 ‘ 2 22 33 11 11 22 33

‘n 311] + 2” [b32 B22 + b23 B33]

Similarly,

— bl3 + b31 2 (1+B + B ‘- B )+(2m+21)(B +B +B )

O5 ' 2 [ u 33 11 22 11 22 33

_ A—29)

n 322] + 2”[b31B11 + b13 B33] (

b + b

_ 12 21 - +B +806 _ 2 [2u(1+Bll+B22 B33)+(2m+2?\)(Bll 22 33)

'n B33] + 2”“012 B22 + b21 311]





 


