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ABSTRACT

MONOTONE UNION PROPERTIES

IN TOPOLOGICAL SPACES

BY

Tinuoye Michael Adeniran

A topological space X has the absolute monotone

union property if whenever

(i)A= UA

(ii) Ai 3 Ai+l(topological equivalence), for each i,

where {Ail is a monotone increasing sequence indexed by

the positive integers, then A is necessarily topologically

equivalent to X. If for each i, Ai is open, A has the

open monotone union property.

The thesis investigates topological spaces having

some of these properties, our attention being drawn mainly

to one- and two—dimensional spaces. Given a sequence

{AilAi C2Ai+l} and a property P such that each Ai has the

given property, we investigate whether property P is ab-

solute; that is whether the monotone union .fi Ai has the

given property. Finally some results are obEiined when

we look at open monotone union property in invertible

locally connected plane continua.
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SECTION 1

INTRODUCTION

A topological space X is said to have the absolute

monotone union property if whenever
 

where {AiIAi C Ai+l} is a monotone increasing sequence

indexed by the positive integers with each Ai topologi-

I
I
I
-
3

A. then A is neces-
1+l’

sarily topologically equivalent to X.

cally equivalent to X and if Ai

Kwun [ll] shows that there are many manifolds

with related property. In particular he proves that if

X is a closed PL-manifold of dimension n, n # 4, and

p s X, then X - p has the Open monotone union property

(defined below). Without explicit definition, Brown [2]

proves that the monotone union of open n-cells is an

open cell. Kapoor [10] investigates the monotone union

property in complexes. More extensive work has been done

by Doyle [3,4] however; it is in [4] that the concept of

absolute monotone union property (as defined above) is

introduced and, compared with earlier works, extensively

used. Our approach, in this work, is aflchi to the treat-

ment of monotone union properties in the last work cited.
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Section 2 defines A(X, C) and investigates some

topological spaces that have or do not have the absolute

monotone union property relative to some classes C of

spaces. A characterization of the rationals is also ob-

tained (Theorem 2.8). Given a topological space X, what

subsets of X have the absolute monotone union property

in X? Section 3 exhibits some spaces all of whose sub-

sets have this property and further investigates the

nature of such spaces.

We next relax the definition of absolute monotone

union prOperty be requiring that only the condition

. T

Ai‘: Ai+l needs hold and not necessarily Ai = A Then
i+1°

given a prOperty P, and if each Ai has property P, does

the monotone union LE)Ai have property P? Some topologi—

i=1

cal properties are looked at in this perspective in Sec-

A}

tion 4; and in Section 5 we use weak topology to get some

more prOperties, specifically the separation axioms.

If each Ai is open, we call the resulting property

an gpen monotone union property. This property is applied
 

in Section 6 to invertible plane continua that are locally

connected.





SECTION 2

ABSOLUTE MONOTONE UNION PROPERTY

RELATIVE TO A CLASS C

In this section we present examples of topologi—

cal spaces that possess the absolute monotone union

property with respect to the class C of topological

spaces to which they belong. We also give examples

of spaces that do not have this property.

Definition 2.1: Let C be a class of topological spaces,

and let X be a member of C. X is said to have the abso-

lute monotone union property with respect to C, denoted
 

A(X, C), if whenever there exists a monotone increasing

sequence of copies of X:{Mi|Mi s C, Mi C Mi+l} such that

Mi c Y, Y s C, Mi 2 X, then

Il
l-
II

M.

l i

u
-
3
8

l

(where the symbol NE) indicates a monotone union over

sets indexed by the—integers). If Mi’ X and Y are in a

topological space Z, X is said to have the absolute

monotone union property in Z.

If X isa finite space, A(X, T) holds, where T is

the class of all topological spaces.

3
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Definition 2.2: A space X has dimension 0 at a point_p
 

 

if p has arbitrarily small neighbourhoods whose boundaries

are empty. A nonempty space X has dimension 0, dim X =.0,
 

if X has dimension 0 at each of its points. We say then

that X is a 0—dimensional space.

 

Lemma 2.1: A countable metric space is O-dimensional.

2592:: If Up is a neighbourhood of any point p s X of a

countable space X, let 6 > 0 be a real number such that

85(p), the spherical neighbourhood about p with radius

6, is contained in UP. Let {p1,p2,...} be an enumera-

tion of X and d(x,y) be the metric. Then there exists

a real number 0 < 5' < 6 such that 5' # d(pi,p) for all

i, and such that Sé,(p) czU. Then Bd(86,(p)), the bound-

ary of Sa,(p), is empty. Since p is arbitrary, X is

O-dimensional.

Theorem 2.2: Let Q be the space of rationals, M the class
fi— 

of separable metric spaces, then A(Q,M) holds.

Proof: Let {M.|Mg c.MJ } be a monotone increasing se—
—————- 1 1 1+1

quence of rationals, Mi C'Y. Since each Mi is countable,

each Mi is O—dimensional by Lemma 2.1. Furthermore a

countable union of countable spaces is countable; hence

(filMi is countable and therefore is O-dimensional.

i=1

Claim: Mi 2 Q for each i, and M Mi 2 Q. To prove these,

i=1

we use the General Imbedding Theorem of Hurewicz and

Walman [8]:



 



"Suppose X is an arbitrary space and dim

X < n < m, then X is homeomorphic to a subset

of I2n+l."

That is the O-dimensional Mi (and \fi)Mi) is homeomorphic

i=1

to a subset of I, the closed unit interval; hence each

M. (and K§)M.) can be mapped homeomorphically onto Q,

the rationals. We therefore have

1' 00

Q M., Mi cMi+l and Q — irileMi
l

(I§)Mi is countable and each point is a limit point)

1

and the definition of A(Q,M) is satisfied.

The characterization of Q is Theorem 2.8 below.

Theorem 2.3: If P is the space of irrationals, and M is
 

as in Theorem 2.2, then P does not have the absolute

monotone union property relative to M.

Proof: Let Q be the rationals and therefore P = E1 - Q

where E1 is the real line. Let {rl,r2,..} be an enumera-

tion of the rationals Q. Then Q = O ri, ri is a rational

i=1

number. Since P U {ri} is an irrational space for each

i, we can successively adjoin the rationals to the space

P to get a monotone increasing sequence of irrational

spaces:

P C.P U {r1} c.P U {rl,r2} c ...... C.P U {rl,r2...rn} cg...

 



 

 



ii

For convenience, denote P U {rl,r2,...rj} = P U ((4 rj)

i=1

by Pj’ each ri e Q. Then for each j, P E Yj. This

follows from the fact that each Pj is O-dimensional and

we can therefore use the General Imbedding Theorem quoted

in 2.2. However

(fijp. = P U ( G ri) = (E1 —‘Q) U Q = E1

j 1 3 i=1

But since P is the irrational space P #T E1 and therefore

A(P,M) does not hold.

It is shown above that if a subset A of X has the

absolute monotone union property relative to a class C,

X—A does not necessarily have the property. The foregoing

example shows that A(X,C) is not hereditary; that is if X

possesses the absolute monotone union property with re—

spect to C, it does not follow that every subspace of X

has that property:

Theorem 2.4: Let X be the joined curve, that is

x = {(o,y)1 - 1 i y i 1} U {(x, sin n/x)[ o < x i %} U

a simple arc joining the points Pl(O,—l) and P2(l/2,0)

(Figure 1). Since X is unique in the class of all topo—

logical spaces in X (for if there were to be any other

space Y homeomorphic to X, then X would be properly im—

beddable in one of its subsetsb X has the absolute mono—

tone union property relative to T. We now consider a

 



 



 

   

Figure 1

connected subspace Y a subarc homeomorphic to [0,W).or

In El, let

Y1 = {-1,«=)

Y2 = {-2,w)

Yn = I-n,°°)

Then Y. C Y. Y. I Y for each 1. But
1 1+1’ 1 0

[fi’Yi = (-w,W)T# Y0 as is required for A(Y0,T)

i=1

to hold.

Since the irrationals P can be embedded in the

space X of Example 2.4 above, and we have proved that

A(P,M) does not hold, this is another example showing

that A(X,C) does not hold.

 





 

Theorem 2.5: The property of having absolute monotone

union property is a topological invariant; that is if

A(X,C) holds for a topological space X in a class C, and

if x E y, then A(Y,C) holds.

Proof: Let A(X,C) hold, and let {Xilxi c C, c s C}

satisfy the definition of A(X,C). In addition suppose

f:X > Y is a homeomorphism of X onto Y. Then let

gi:X  > X. and g:X > I§)X. be the homeomorphisms
1 i=1 1

of X onto Xi and X onto H Xi respectively. Consider the

i=1

following diagram:

X.

l

91

-1

Y f > X

g

Uxi
i=1

The homeomorphism of f:X > Y gives the obvious homeo—

 morphism f—1:Y > X. And the facts that a composition

of two (or more) homeomorphisms is a homeomorphism yields

 

 

as the required two homeomorphisms of Y onto Xi and Y onto

00 _ E

£§ixi respectively. Thus Y — Xi’ Xi c Xi+l’

and Y T: \filxi and therefore Y has the absolute

i=1



 



monotone union property relative to C.

Theorem 2.6: The Cantor set K does not have the absolute
 

monotone union property relative to M, the class of

separable metric spaces.

Proof: Let Kl be the Cantor set in the closed interval

[0,1]. One of the characterizations of the Cantor set

is that it is a totally disconnected, compact, perfect,

metric space [6]. Thus K =T Kl' Let Ki be the Cantor

set in the closed interval [0,2]. By characterizing the

Cantor set as the set of all points in a closed interval

3K 3Khaving no units in their ternary expansion, K1 2

_ I

and K1 CIK2 — K2 U Kl'

We inductively construct Kn so that K; is the

Cantor set in the closed interval [0,n] with K E Kn’ and

K CLKn = Kg U Kn-l’ The first given characterization
n-l

of the Cantor set implies that for each positive integer

k, k ¢ m, K is topologically equivalent to .N Ki’ the

non-compactness of the monotone union lfilKilimplies that

K and pfilKi are not topologically the :aie, and therefore

K fails—to have the desired property.

In the proof of Theorem 2.2 and the ensuing dis-

cussions one is tempted to ask whether some of the dis-

cussed spaces, and the space Q of rationals in particular,

have the absolute monotone union property with respect to

any other class C of topological spaces besides M. The
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following example of a non-metric space shows that going

outside M does not yield the desired property:

Let {rl,r } be an enumeration of the2,0...

rationals, Q. Construct the rational comb space R as

follows: (Figure 2)

1

R = {(0,ri)} U {E,ri)ln = l,2,3,....}, ri s Q.

This gives a sequence {Ql/n} of l/n — rationals converg-

ing to Q0 = {(O,ri)} as limit. We next define a tOpology

on R as follows:

.
—

— ‘

_
-
—
-

—
-
—
—
—
—
-
_
—
—

l

(Orri) (HI 1 '3_rri) (llri)

Figure 2
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On R — {(O,ri)}, use the usual rational topology; for a

neighbourhood N of (0,rj) take a neighbourhood in

0

{(0,ri)} and all but a finite number of the vertical

{(l/n,ril)}'s.

Claim: R, together with the topology described above, is

not a metric space. For let S1 and 82 be two points on

{(0,ri)}, the rationals of convergence. Since any open

subset of R containing Sl meets any containing 82, we

1 and 82

respectively; thus R is not T2. However a metric space

hence the conclusion that R is not metric.

cannot get two disjoint open sets containing S

 

is T
2,

So let R0 be the rationals of convergence {(0,ri)}.

For Rl take {(0,ri)} U {(1,ri)} = R1. For R2, let

{(0,ri)} U {(1,ri)} U {(l/2,ri)} = R2.

For Rn, let {(0,ri)} U U {(1/k,ri) Ik = 1,2,...,n} be Rn.

This construction gives the monotone increasing sequence:

C.ROCR1CR2C.... CRn ....

Because each Ri is the rationals, for i = 0,1,2,..., each

R. I Q, the rationals space. But Lg) = R which is not

(X)

1 Ri

1=l

metric. Hence the non—metric R is not topologically

equivalent to the metric space Q thus completing the

proof.
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Remark: Let X be a space such that X cannot be imbedded

in itself. X has the absolute monotone union property

relative to the class of all topological spaces. The

proof that the Cantor set does not have the property

of absolute monotone union suggests that many spaces im-

beddable in themselves may not have this property.

Definition 2.3a: A series, (K,g), is a nonempty nonde-
  

generate simply ordered set.

Definition 2.3b: A continuous series, (K,;), is a series
  

 

with the following properties:

(i) If K1 and K2 are any two nonempty subsets of K

such that every element of K belongs to either

Kl or K2,

element of K

and every element of K1 precedes every

2, then there is at least one ele-

ment x in K such that

a. any element that precedes x belongs to K1 and

b. any element following x belongs to K2

(Dedekind's Postulate)

(ii) If a and b are elements of the set K and if a < b,

then there is at least one element x in K such

that a < x < b. (Postulate of Density)

Definition 2.3: A linear continuous series, (K,<), is a
  

continuous seriesvflfixflisatisfies the following property:

The set (K,i) contains a countable subset Q

in such a way that between any two elements
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of the set K there exists an element of Q.

‘Using the elementary properties of the real line E1 and

‘the definitions 2.3a, b and 2.3, we state the following

theorem:

fTheorem 2.7: El, together with the usual ordering of the

.Ieals, is a linear continuous series.

fTheorem 2.8: (A characterization of the Rationals in El):

ZLet X be a countably infinite space in El all of whose

1points are limit points. Then X is the Rationals.

 

IProof: Since the rationals are countably infinite and

(dense in El, it will suffice to show that any two count-

.able dense series having neither a first nor a last

eslement are ordinally similar, thus we would have charac-

‘terized the rationals. To this end, Huntington [7] has

Insed the method of George Cantor to prove precisely that.

In the proof that the rationals have the absolute

Inonotone union property with respect to M the prOperties

Insed are, in fact, those that characterize the rationals;

'this allows us to generalize Theorem 2.2 to the following.

Egorollary 2.9: If M is a countably infinite space all of
 

inhose pointsare limit points, then M has the absolute

Inonotone union property relative to the class of all

separable metric Spaces.

Iheorem.2.10: Let X be a subset of El such that X has

the absolute monotone union property in El. Then X is
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either an open interval, or a totally disconnected set

having at most a finite number of isolated points and at

least a limit point.

Proof: (The proof depends upon the continuum hypothesis).

There are two cases.

Case I. X contains an Open nonempty subset S.

Then there exists an increasing sequence {UilUi CLUi+ll

of prOper Open sets in El such that S 2 Ui and

El 2 LfilUi. Thus 8 = E1 has the absolute monotone union

i=1

property relative to El.

Before considering the second case, we need the

following:

Lemma 2.11: If S is a totally disconnected countably in—
 

finite subset of E1 with infinitely many isolated points,

then A(S,M) does not hold.

Proof: Enumerate the isolated points of S as {p1,p2,....}

and call the set P. For each pi, let U2 be a finite open

1

neighbourhood of pi such that U3 (1 S = {pi} and such that

1

‘U0 (W U0 = g for 1 # j. Next let U1 be the finite open

Pi Pj 0 Pi

neighbourhood U to which has been added an extra point

i

pil' for each 1, since Ul is an open interval containing

1

and pil’ it is clear that US. is topologically equiva-

1

lent to U1 .

Pi 2

In a similar fashion, let U be the finite open

i

neighbourhood U: to which have been added pil and pi2 for

1

Pi
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each 1. By using induction, define U: as the finite

 

 

1

Open neighbourhood US to which has been added the set

i

{p. ,p. ,...,p. l for each i, where {p. } is the rationals
1 1 1 1
10 2 k k

in U . (Figure 3)

Pi

U0 U0 U0

pi p2 pn O O O O

l- \ 1- \ l..\ 1..\ l4.\ I':X I:.\

\' I \' I \ 'l \‘ I II I \ .1 \ 1

Pl p2 . n ‘ .

U1 U1 U1

p1 p2 pn

Pl p11 p2 p21 pn pn

2 2 2

U U U

P1 P2
pn

{. . 1} /_ 11%--..){l11 1,; . ;°'"°{...}

pl pl Pll k32 p2 p2 bnpn p11
2 . 1 2

Figure 3

I l - °° l 1 .

Denote the p. s and the p. s in I) by P ; 1.e.,

1 l1 1 i=1 Pi

P = P U {pi I1 = 1,2,...} in such a way that each point

1

is a limit point of the union. Also let

Then we have P =T Pl =T P2 =T ....... =T Pk =T ........

since for each j, Pj is an enumeration of isolated points
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just as P is. Furthermore, P C P1 c:P2 c ... c Pk C ....

Thus we have

s = s U P =T (S-P) U P1 =T (S—P) U P2 =T . . .

=T (s U P) U Pk =T...

In addition,

1 k
s U P C.(S-P) U P c:(s—P) U P2 c....C (S—P) U P c...

thereby getting an absolute monotone union of (S-P) U P:J

[fl] (S-P) U P3.

j=l

However, successive addition of points pik to U: for each

i

i yields a dense set of points in U0 . Therefore the

. i

monotone union Qg)(s — P) U PJ is a dense set in U U0 .

'=l i=1 1

But P, and therefore S, is not dense in G U . And so

T m . i=1 i

S # IM)(S — P) U P], thus showing that S does not have
'=l

the absolute monotone union property. We now consider

the second case.

Case II: X is totally disconnected.

A. If X is finite, we have seen that X has the

absolute monotone union property with respect to any

class of tOpological spaces, and therefore A(X,M); hence

A(X,El).

B. If X is infinite, what is the topological

structure of X? Firstly, X must have a limit point for

if otherwise X is topologically Z, the integers. But Z

consists only of infinitely many isolated points and by
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Lemma 2.11, Z does not have the absolute monotone union

prOperty in El. Secondly, X cannot have infinitely many

isolated points. For if X has infinitely many isolated

points, again Lemma 2.11 shows that the desired property

fails for X.

 



 

 



SECTION 3

SPACES WITH HEREDITARY ABSOLUTE

MONOTONE UNION PROPERTY

Section 2 discussed some topological spaces having

the absolute monotone union properties relative to a class

C; also discussed were some spaces whose subsets have or

do not have these properties. An example was given to

show that given a space X and A(X,C), not all subsets of

X necessarily have the absolute monotone union properties

in that space. This section deals with those spaces all

of whose subsets have the absolute monotone union proper-

ties in them. To be more precise, we being with a

definition.

Definition 3.1: A t0pological Space X is said to have
 

the hereditary absolute monotone union property, denoted

HA(S,X), if every proper subset S of X has the absolute

monotone union property in X.

Remark: Henceforth in this section all spaces shall be

considered infinite unless otherwise stated.

Theorem 3.1: Let Z be the integers. The Z has the HA(S,Z)
 

prOperty.

l8

 



 11
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Proof: Let S be an infinite subspace of the integers.

S is homeomorphic to Z; hence there exists an infinite

T

subset Y0 in Z such that Z - Y0 is infinite and S = Y0.

Let Y1 = Y0 U {21} where Zl ¢ Yo. It is clear that Y1

is homeomorphic to S and Y0 CLYl. Inductively form the

T
monotone sequence {YiIYi+l'Yi = S} after Yk-l has been

got by letting Y to be Y U {zk}, zk ¢ Y0. Since
k k-l

m T T w . .

YOIJ Zi = S we have S = lmIYi, thus sat1sfy1ng the ab-

i=l i=1

solute monotone union property in Z.

 

Definition 3.2: Let X = {aili s Z+} be a set of points

indexed by the positive integers. Let Ul = {a1}.

U2 = {al’aZ}

U = {al,a2,...an_l,an}...

The set T = {Uili e Z+} along with g and X is called the

tower topology on X.
 

Theorem 3.2: Let X = {aili a 2+} with the tower topology.
 

Then X has the HA(S,X) property.

Proof: Let S be a subset of X. If S is finite, we are

done. So assume that S in an infinite subset of X. We

first claim that S has the same topology as X: For if

S = {bl,b
 

2,... bi = aj for some a3. 8 X}, suppose the first

element bl of S corresponds to ak in X for some k 6 2+.
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Then Uk = {al,a2,...ak} = {al,a2,..bl} is open in X; hence

Uk [)8 = {b1} is Open in S. If b2 corresponds to say aj

in X, then Uj is Open in X and Uj FIS ={bl,b2} is open

in S. Thus for each j a 2+, {bl,b2,...bj} is open in S;

and therefore S has the same topology as X. It is now

easy to see that any infinite subset S has the absolute

monotone union property in X.

Theorem 3.3: A space X with the discrete topology has
 

the HA(S,X) property.

 

Proof: Every infinite subset S of X is open and is topo-

logically equivalent to any other infinite subspace of X

with the same cardinality. There exists, therefore, an

infinite subspace S' of X such that S - S' is infinite,

card S = card (X - S') and S T: X - 8'. Let S1 = X - S'.

_ ' =For some x1 8 X S , let 82 S1 U {x1}. For some x2

8 X - 5', let S = S U {x }. Assuming that S has
3 2 2 k-l

been thus obtained, let Sk = Sk—l U {Xk-l} where Xk—l

}.
_ , . .

e X S . Th1s y1elds a monotone sequence {Silsi c.Si+l

T

Claim: (1) Si = S, (ii) S T=lfiJSiz For each

i=1

Si is open and thus [Elsi is open and infinite. There is

i=1

therefore a bijection f which carries any open set in S

to an open set in R 81’ And for any open set in E Si’

i=1 i=1

its inverse image is open in S by the discrete topology,

f is thus a bicontinuous bijection and the topological

equivalences claimed follow.
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Theorem 3.4: The space Q of the rationals does not have
 

the HA(S,Q) property.

Proof: Take as a subset of Q the integers Z. Let

{rl,r2,...} = Q' be an enumeration of the proper fractions

(rationals) in Q. Form a monotone increasing sequence

{Ri} as follows: Take as R the set r Z, and observe
l l’

_T _ . - -
that Rl — 2. Let {rl,r2}z — R2, that 15 R2 18 the set

of all points of the form {rl,z,rzzlrl,r2 e Q',z e Z}.

. . _T . _
S1m11arly R2 — Z and R1 CZR2. Inductively let Rk —

{rl,r2,...rk}z, ri s Q' for i = l,2,...,k. Then Rk =T Z,

 

co = = ' =TRk CLRk+l° However, éEjRi {rl,r2,...,}Z Q Z Q,

hence Z does not have the absolute monotone union property

in Q since (§)Ri #T Z.

i=1

Lemma 3.5: Let M be a metric space having the HA(S,M)
 

prOperty. Then M has at most one limit point.

Proof: Suppose M has at least two limit points, p1 and

p2. Then there exist in M two convergent sequences {ai}

and {bi} converging to p1 and p2 respectively. Let

S = {ai} U pl U p2.1 S is a convergent sequence in M hav-

ing pl as 1ts l1m1t po1nt. Let S1 = {ai} U bl U pl U p2.

T

The only limit point of S1 is pl, and S = S Let S =
l' 2

{ai} U {bl,b2} U pl U p2; similarly, the only limit point

. T

of $2 18 p1 and as before S — 82 and 81¢: 82. After

Sk-l has been obtained, let

Sk = {ai} U {bl,b2,...bk_l,bk} U pl U p2.
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S has pl as its only limit point, S T: Sk,and Sk-l C.S .
k k

Next consider E S.. This is the set: {a.}IJ{b.}lJp.U p2.
i=1 1 1 1 1

> p1 and bi  Because ai > p2, égisi has pl, p2 as

two limit points whereas S has only one, namely pl. Hence

sT °°S..761(2)ll

Theorem 3.6: Let M be a metric space having the HA(S,M)
 

property. Then M is a compact metric space with exactly

one limit point, or M is a discrete space with no limit

points.

 
2329:: If M in Lemma 3.5 has a limit point, M has to be

compact. For suppose M is not compact and has a limit

point. In particular let M be the union of the nonnega—

tive integers and {l/n}. The limit point of M is 0 and

there is no other. Let S1 = {l/n} U {O,-l}, S1 is com-

pact and has 0 as its limit point. Let 82 = {l/n} U

T . .

{0,-l,-2}. S1 = 82, 81:: $2, and 82 1s compact w1th the

limit point 0. Thus for each k, let Sk = {l/n} U

T T T

{OI—lIZIOOO—k}. Sl = 82 = 000 = S

each Sk is compact.

k’ Sk—l’ ask and

Buteflthough E Si = {l/n} U {0,—l,-2,...} has the

i=1

limit point 0, this last set is not compact. There does

not exist, therefore, a subset S of M such that S T= S.

l

and S T: (EJSi' Hence M has to be compact if it has a

i=1

limit and the HA(S,X) property holds.
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If M has no limit point, then M is topologically

equivalent to Z which is discrete, and we have seen that

Z has the HA(S,X) property.

Corollary 3.7: The Cantor set K does not have the HA(S,K)

property

Proof: K has more than one limit point.



 

 



SECTION 4

ABSOLUTE PROPERTIES UNDER MONOTONE UNIONS

Definition 4.1: A property P is absolute under monotone
 

 

unions (aumu) in a class C of topological spaces if for
 

each Y s C, X. c Y, X. c X. and for each i, each X. has
1 1 1+1 1

property P implies that (E)Xi has property P. We here

i=1

investigate some topological properties that are or are

not aumu with respect to a class C of topological spaces.

Theorem 4.1: Connectedness is an absolute property under

monotone unions in the class C of all tOpological spaces.

Proof: Let Y be a topological space having a sequence

.

{XiIXi C:Xi+l}Xl ¢ U of subsets With the property that

for each i, X5L is connected. Then 3 xi c. X hence
. 1’
1:1

there exists at least one point in common with the family

{Xi} of connected subsets of Y. The union. 3 Xi of this

i=1

family is therefore connected and the assertion is proved.

Theorem 4.2: Arcwise (path) connectedness is an absolute
 

property under monotone unions in the class C of all

tOpological spaces.

Proof: Let Y, {Xi} be as in 4.1 and Xi is arcwise (path)

connected. For any two points x,y e (E)Xi, there exists

i=1

24
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some j e Z+ such that x,y s Xj. Since Xj is arcwise

(path) connected, so 15 §§%Xi'

Theorem 4.3:. The property of being locally connected is
 

not aumu in C.

Proof: Modify the space X in 2.4 by letting the joined

sine curve be open at the point (0,1). Taking as X1 an

Open interval beginning at the point (0,1), as X2 an open

interval containing X as Xn an open interval containing
1

X a monotone increasing sequence {Xilxicz Xi+l} of
n-l’

open intervals each beginning at the point (0,1) is thus

 

obtained. Each Xi is locally connected. But it is easy

to see that each point x in {(x,y)|x = 0, -l < y < l} CLX

has a neighbourhood not containing any connected neigh-

bourhood of x.

Theorem 4.4: Disconnectedness is not absolute under mono—
 

tone unions in C.

Proof: If P is the set of irrationals in El, form a mono-
 

tone increasing sequence {PiIPi C Pi+l} as in Theorem 2.3:

Each Pi is disconnected but H Pi = E1 is not.

i=1

Corollary 4.5: The property of being O—dimensional is not
 

aumu in the class C of tOpological spaces.

Proof: Each Pi in 4.4 is O-dimensional but E1 is not.

Lemma 4.6: A O-dimensional space Y is disconnected.
 

Proof: Let Y be O-dimensional. In particular for each
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p s Y there exists arbitrarily small neighbourhoods of

y which are both open and closed because the boundaries

of such neighbourhoods are empty. Since these neighbor-

hoods are neither Y nor empty, Y cannot be connected for

the only subsets of a connected space both open and

closed are the empty set and the space itself.

Theorem 4.7: Let CO be the class of all countable metric

spaces. Then disconnectedness is an absolute property

 

under monotone unions in C0.

}, a sequence of  o . I C .Proof. Let Y a C0, {x1 chx1 x1+1

disconnected subsets of Y. Every subset of a countable

(metric) space Y is countable, hence for each 1, X1 is

countable (and therefore O-dimensional). We need to show

(§)Xi is disconnected. To do this, observe that a count—

i=1

able union of countable subsets is a countable subset.

Therefore (Elxi is countable and is therefore O-dimensional

i=1

(by Lemma 2.1). Apply Lemma 4.6 and we have proved that

(fi)xi is disconnected.

i=1

Corollary 4.8: The property of being countable is absolute
 

under monotone unions in any class C.

Remark: For any cardinality c greater or equal to the

cardinality of the rationals, the property of having

cardinality c is absolute under monotone unions in any

class C, for if for each 1 card Xi = c and Xi c:Xi+ then

EH ... ..
1!

card
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Definition 4.2: A set F is called an F0 — set (or an F0)

 

if F is the union of at most countably many closed sets.

A set G is called a G6 - set (or a GO) if G is the inter-

 

section of at most countably many open sets.

Theorem 4.9: The property of being F0 is aumu in any

class C of topological spaces.

Proof: Let Y s C such that {XiIXi c Xi+l} 15 a sequence

of subsets of Y with the property that each Xi is an F0.

Then for each i,

x. = ('3 C. .

1 i=1 13

where each C.1j is a closed set. Then pxi =OIlefi‘ij]

The right side is a countable union oflcountablylmany

closed sets; and as such it is the union of countably many

closed sets. Therefore KE)Xi is an F0 — set.

Lemma 4.10: Let x be a rational point in En. Then {x}

is a G6°

Proof: Let v: be a spherical neighbourhood of radius 1

with center at x; let v: be a spherical neighbourhood of

radius 1/2 with center at x. In general, let v: be a

spherical neighbourhood of radius l/n and center at x.

Then m v; is the countable intersection of open sets Vi

00

and this intersection therefore is G5. But ()V; = {x},

j=l

and therefore {x} is GO'
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Lemma 4.11: Let R = {rl,r2,...rk} be a finite set of

rationals in El. Then R is a G6 - set.

Proof: For each rj e R let Vij be a spherical neighbour—

hood of radius 1 and center at rj. In general VEj be the

th
n spherical neighbourhood of rj of radius l/n and cen-

ter at rj; for each rj s R. Then

6 Uvg.

q=1 i=1 3

is an open set containing R, since a (finite) union of

open sets is open. Let

k 00

Y= U 0V:-

j=l q=l 3

By Lemma 4.10, for each j = l,2,...,k, 0 V3. = {r.}.

k q=l J 3

Hence Y = U r.

j=l 3
G6 — sets and is therefore a G6

= R, that is Y is a finite union of

— set.

Lemma 4.12: The set Q of the rationals in E1 is not a

G<5 — set.

Proof: Suppose Q = n V1 where each V1 is open in El.

i=1 .

Since Q is dense, each V1 is also dense. Let Y be the

family

{Vi} U {E - rlr s Q}

Y is a family of open sets since E — r is open for each

r, Y is countable and dense in El, and E1 is a locally
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compact space. By.a theorem of Baire [5] the intersection

of any countable family of open dense sets in a locally

compact space is dense. Thus by this, F) A has to be

AEY

dense. However

00

oh: ovimE—rlreo}

ASY i=1

is empty and therefore is not the intersection of count-

ably many open sets in El. So Q is not a G6 - set.

Theorem 4.13: The property of being a G6 - set is not

absolute under monotone union in any class C.

 

 
Proof: Let C = {El}, and let Q = {rl,r2,...} be an enumera-

tion of the rationals in El. Form a monotone sequence

Xi as follows:

Let xl {r1}

X

I

2 — {rl,r2}

Xk = {rl,r2,...,rk}

By Lemma 4.10 and 4.11 X1 is a G6 and for each j e Z+, Xj

1
15 G5. Xi czE and for each 1 Xi C Xi+l’ however

@X -0
i=11

is the set of all rationals in El and it has been seen in

Lemma 4.12 that Q is not a G5.
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Definition 4.3: A space X is said to be LindelOf if
 

every open covering of X has a countable open subcovering.

Theorem 4.14: The property of being LindelOf is aumu in
 

any class C.

Proof: Let Y be an element of C, {XiIXi C'xi+l} a sequence

of subsets of Y such that for each i, Xi is LindelOf. Let

X = (E)Xi, and let {Uald e A} be an arbitrary open cover-

i=l w i

1ng of X. Then X = ig%xi = \dan. Therefore for each

d s A there exists some j e Z such that Ua (‘IXj is not

empty.

Claim: {Uar)Xj|j e Z+ and a e A} is a countable open sub-

covering for X. For, for each a e A, Ualfi Xj C.Xj, thus

getting a countable subfamily {UQFIXj} of {Ua}. Further—

more

X- = XU£Uaflxj}= 11

USA I
I
B
S

1

So X is LindelOf.

Definition 4.4: A space X is first countable (or, satis-
 
 

fies the first axiom of countability) if X has a countable

basis at each point p of X.

Theorem 4.15: The property of being first countable is
 

aumu in any class C.

Proof: Let Y s C, Xi C.Y, Xi CZXi+l for all 1, and Xi 15

first countable. Let X = (EJXLand suppose p s X. Then

i=1
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for some j e Z+, p s Xj c.X. By the first countability

of Xj, there exists at most a countably infinite family

{Ufi(p)lk e Z+} of neighbourhoods of p having the follow-

ing property: For each open G containing the point p

there is some Ui(p) c.G in Xj'

For each k, Ui(p) is open in Xj implies that there

exists an open set Uk in X such that Uk FIXE = Ufi(p).

Since p s U£(p), p 6 Uk as well. So let

{Uk(p) cxlUk(p) nxj = U];(p), k 5 2+}

 be the countably infinite family of neighbourhoods of p

in X. Thus for any G open in X and containing p, it is

easy to see that there exists some Uk(p) such that

Uk(p) c G. This proves that X is first countable.

  

Definition 4.5: A space is second countable (or, satis-

fies the second axiom or countability) if it has a

countable basis.

Theorem 4.16: Second countability is an absolute property
 

under monotone unions in any class C of topological Spaces.

Proof: Let Y s C w1th Xi c Y, Xi C’Xi+l’ and for each 1,

Xi is second countable. Let X = (E)Xi, for each i, let

. i=1

{V;|j e Z+} be a countable basis for Xi. We claim that

the set

_ w i i . . . +
U — aghvj|{vj} 1s a bas1s for xi, 3 e Z
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is a basis for X. For let U be open in X. Then for each

i S 2+, U FIXi is either empty or open in Xi. If U FIXi

is empty for some i, there is nothing to prove. SO as-

sume that U Frxi is not empty and therefore open. By the

second countability of Xi’ the open subset (in Xi) U FIXi =

UV]i for some j e: Z+. Furthermore since U c. .®xi, we

3
1:1

have

U=t){Ur\xi|UflXi7£9/}

1

Thus since each U FIXi is a countable Union of the Vi's,

 
U is a countable union of V3, for some i, j 3 2+, and

therefore every open set in X is the union of members of

the countable family U. Therefore (E)Xi is second

i=j

countable.

Theorem 4.17: Compactness is not an absolute property
 

under monotone unions in the class C of all t0pological

spaces.

Proof: Let Y ={1/n} U {0,1,2,...} :19, n = 1,2,...

Construct a monotone sequence of compact subsets {Xi} as

follows:

N H {l/n} U {0,1}

{l/n} U {0,1,2}N

II

Xk = {l/n} U {0,1,2,...k} n = 1,2,3,...
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It is obvious to see that each Xi is compact (since it is

closed and bounded). Xi C xi+l7 it is equally obvious to

see that

6x. = Y = {l/n} U {0,1,2,...}

is not compact for it is not a bounded set.

Theorem 4.18: The property of being a Tl-space is aumu

in any class C of topological spaces.

Proof: Let Y be a topological space with the sequence

{XiIXi C X } of subsets of Y such that each Xi is T .
1+1 1

00 . . -

Let X = Imlxi, and let x,y be two arbitrary dist1nct

i=1

points in X. Then there exists, for some j s Z+, th: X

such that x, y e Xj' Xj being Tl’ there exist open sets

U', V' in Xj such that x e U', x ¢ V', y s V', y ¢ U'.

Now there exist open sets U,V in X such that

Unx.=U'
J

vflxj=V'

Since x s U', x e U; similarly y e V. x s Xj and x ¢ V'

imply that x t V. Similarly, y ¢ U. We thus find sets

U, V open in X with x e U, y e V, x ¢ V and y ¢ U. By

definition X is T1 and the theorem is proved.

Theorem 4.19: Being T is not an absolute property under
2

monotone unions in some classes(3of topological spaces.

Proof: Let Y = E2, I1 the open unit interval (0,1).



I
T  



Let

X1 = (0

X2 = (0

X3 = (0

Xk = (0

Each X. is

1

since each

(Figure 4).
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x I ) U (1 x 11)

x 1 ) U (1 x 11) U (1/2 x 11)

x 1 ) U (1 x 11) U (1/2 x 11) U (1/3 x 11)

x 11) U (1 x 11) U....U (l/k x 11)

a finite union of Open intervals in E2 and

I1 is T , each X. is T . Let X = (E)X.
2 1 2 i-l 1

      
l/n 1/3 1/2 1

Figure 4
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Put the following topology on X: On X — (0 x I1) use the

usual topology on El. For a neighbourhood of a point x

1, take an open interval in I1 of 0 x I1 and allin 0 x I

but a finite number of the (l/k x Il)'s, k = 1,2,...

Using the argument similar to the construction of a non-

metric space in Section 2, we conclude that for any two

distinct points x, y in 0 x Il, there do not exist open

sets Ux’ Uy With UX fIUy = 9. Hence X = égixi is not T2.

Corollary 4.20: Any separation axiom beyond T2 is not an

absolute property under monotone unions in some classes

 

 
C of topological spaces.

Proof: Any space satisfying any separation axiom beyond

T satisfies T hence the corollary (using the defini—
2 2'

tion of separation axioms in [5]).

Corollary 4.21: Let {XiIXi c;Xi+l} be a sequence of
 

spaces such that each Xi is T2 (regular, Tychonoff, normal).

Then 3 X. is at least T .

i=1 1 1

Proof: A simple application of Theorems 4.18, 4.19 and

Corollary 4.20.

Corollary 4.22: Metrizability is not an absolute property
 

under monotone unions in the class of all topological

spaces.

Proof: Each Xi in theorem 4.19 is a metric space. But

X is not normal and therefore not metric.
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Another proof of Corollary 4.22 is afforded by

the following: Let Q = {rl,r2,...} be an enumeration of

the rationals in the plane on or above the x-axis.

Let X1 = {r1}

x2 = {ri'rz}

- i

Xk = {rl,r2,...rk}

Each Xi, being finite, is metrizable. So let X = GE)Xi

i=1

with the following topology: if (x,y) is a point of X

and s > 0, let

. b
(x,y) + {(r,0)|either|r - (a + ——)| < e or

/3

Ir—(a-—b)[<€}
/3

be a neighbourhood of (x,y)

Geometrically, such a neighbourhood with center at (x,y)

can be obtained by constructing an equilateral triangle

(Figure 5) with base on the x-axis and apex at (x,y). If

y = 0, let the point (x,y) be the desired triangle. Then

(x,y) + all rationals on the x-axis whose distances from

a base vertex of the triangle are less than s is an

s-neighbourhood with center at (x,y). R. H. Bing has

shown [1] that although this space X has a countable

basis, it is not regular and therefore not metric.
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.al

(+2'e+) (+2“)

 

Figure 5

Definition 4.6: A space X is said to be a nontrivial

product if X = Y x Z and neither X nor Y reduces to a

single point.

Theorem 4.23: Being a nontrivial product is not an abso—

lute property under monotone unions in C.

Proof: Let C = E3 . Let T1 and T2 be two solid tori

as shown below (Figure 6). There exists a homeomorphism

h:E3 BEER> E3 such that h:T2 > T2 is an onto homeo- 

morphism, and such that h is the identity exterior to

some sphere [12]. Then h(Tl) = h2(T2) is a torus such

that T1 c,interior h2(T2). Then

M3 = Cr'EDhnuz)
n=l
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is a 3-mainfold which is a monotone union of hn(T2). But

each h3(T2) is a copy of sz Sl; hence M3 is an open-

2 1

monotone union of copies of E x S [4].

 

Figure 6

Claim: M3 is not a nontrivial product. Suppose the

contrary. Then M3 is either (i) E1 x C1 or (ii) S1 x C2

where C1’ C2 are subsets of M3. Consider the homotopy

groups of M3 and of E1 x Cl and S1 x C2. For each k,

Wk(m3) = 0. Thus for NI, we have (i) “1 (E1 x C1) = 0

or (ii) n1 (51 x c2) = o. For (i) nl(El x cl) = 0 we

have Hl(El x C1) = nl(El) * Hl(Cl). Since nl(El) = 0,

wl(Cl) has to be 0; but nl(Cl) = 0 implies C1 = E2. And

therefore for (i) M3 = E1 x E2 = E3 which is a contra-

diction since M3 # E3. For (ii) Trl(Sl x C2)

nlSl) * nl(C2) = 0 is impossible since nl(Sl) = Z # 0.  
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Since the only two possibilities of M3 have been proved

not to apply, M3 = (filhn(T2) has to be a trivial product

n-l

even though each hn(T2) is a nontrivial product.

Theorem 4.24: Let C' = {E2}, the property of being a

connected open nontrivial product is absolute under mono—

tone unions in C'.

Proof: Let X. C:E2, X. CLX. and for each i, X. is a
————— 1 1 1+1 1

connected open nontrivial product. So let Xi = Y x Z

where neither Y nor Z reduces to single points. Then Y

and Z are locally compact connected sets, and Y x Z can

be imbedded in a 2—mainfold. Hence by a theorem of Jones

and Young [9], Y and Z can be either an arc, a simple

closed curve (and therefore homeomorphic to 81), a ray,

or an open curve (homeomorphic to an open interval). But

the homogeneity of Y and Z reduces these possibilities of

Y and Z to either S1 or I, where I is an open interval,

and therefore to El. So we have

either (i) Xi = E1 x E1

or (ii) xi = E1 x I

or (iii) xi = E1 x 51, xi 6E2.

(i) is not possible, since Xi # E2 = E1 x El. So we con—

sider (ii). If each Xi = E1 x I, then -¥lxi = E2 which

is a nontrivial product. (iii). If eadh Xi = E1 x 81,

then Xi is an annulus A. And the monotone union H Xi

i=1
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gives two possibilities.

a) E2

l§)Xi =

i=1 1 b) an annulus A

Since an annulus A is a nontrivial product (A = E2 x 81)

and E2 is also nontrivial, we have thus proved the

theorem.

 



 



SECTION 5

ABSOLUTE PROPERTIES IN WEAK TOPOLOGY

It has been shown above that there are some topo-

logical prOperties that are not absolute under monotone

unions. In particular any separation axiom beyond T1 is

not absolute under monotone unions in some classes C of

 spaces. Here the concept of weak topology is used in

order that these separation axioms be absolute.

Definition 5.1: Let X be a set, and let S = {Aald s A}
 

be a sequence of subsets of X such that each A“ has a

topology. Assume that for any a,8 e A the following two

properties hold:

(i) The topologies of Ad and A agree on AaJW.A
B 8

(ii) Either (a) each Ad F)A. is open in A“ and in

B

A8 or (b) each AOL f) A

B'

The weak topology in X induced (or determined)by S is

B is closed in Ad and in

A

 

To = {U clefor all O, U r)Aa is open in Ad}

In literature X is also said to have a topology coherent

withfl if X has weak topologyfTA induced by S. Denote

such a topological space by (X, To) to distinguish it

from other topoloqies.

41

I
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Lemma 5.1: Let (X, TA) be a topological space having the

weak topology induced by S = {Xilxi c Xi+l}' Then any

subset U open in Xj is open in (X, T6).

3322:: Let U c;Xj be an open subset in Xj‘ Then for any

k, U F)Xk is open in Xj f)Xk by definition 5.1 (i). Not-

ing that A open (closed) in Y and Y open (closed) in Z

implies that A is open (closed) in Z, and using Defini-

tion 5.1 (ii) (a) and (b), observe that U H Xk is open in

(x, T5).

Corollary 5.2: Any subset V closed in X is closed in

(x, T.)-

Corollary 5.3: A subset B C.X is open (closed) in X if

B n Xi is open (closed)in Xi for each Xi in 3.

Notation: For the remainder of this section, w shall de-

note the class of tOpological spaces that are coherent

with some family S of subspaces.

Theorem 5.4: T2 is an absolute property under monotone

unions in w.

Proof: Let {XiIXi C-X } be a sequence of T —spaces and
1+1 2

such that X = IEDXi has a topology coherent with {Xi}. Let

i=1

x,y be two distinct points of X. Then for some j e Z+,

x,y e Xj' Since Xj is T2, there exist open neighbourhoods

Ux’ Uy of x and y respectively such that UX fl Uy = U in

Xj' But by Lemma 5.1 UX and Uy are open in (X, To)'

|
H
x  
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Definition 5.2: A space Y is a Urysohn space if for
  

every distinct points x,_y S Y there exist open neighbour-

hoods Ux' UY of x and y respectively such that U¥4q U& = U.

Corollary 5.5:: The prOperty of being a Urysohn space
 

is aumu in class w.

Definition 5.3: A Hausdorff space Y is regular if each
 

y a Y and any closed set A not containing y have dis-

joint neighbourhoods.

Lemma 5.6:_ Y is regular if and only if for each y a Y
 

 and closed A not containing y, there is a neighbourhood

V of y such that V (IA = U.

Theorem 5.7: Regularity is an absolute property under
 

monotone unions in w.

£3923; Let {XiIXi C2Xi+l} be a sequence of regular spaces

and let X be its monotone union with the weak topology

induced by {Xi}. Given y s X and a closed subset A C.X

not contained y we want open neighbourhoods Uy of y and

V containing A with UyF)V = 0.

Case I: A is contained in a finite number of elements

of {Xi}. Then for some k large enough, y s X and A CLX
k k’

y ¢ A. By the regularity of Xk’ there exist Uy and V open

in Xk, and therefore open in X, such that y s Uy, A<: V,

and Uy F)V = H.

Case II: A is contained in infinitely many Xi's. Again

for some j e Z+, y s Xj'
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(i) If for this j, AFIXj = U. Then Xj being T2

(for it is regular) there exist x e-Xj, x f y, and an

open neighbourhood Uy of y with x U U&. Then let V =

X - U&. V is an open subset of X containing A and

Vnin‘IJ-

(ii) If A.FIXj # U. A closed in X implies that

A F)Xj is closed in Xj and therefore closedpin X (Coro-

laries 5.2 and 5.3).. Note that y ¢ Atfi Xj' By thegregu_

larity of Xj then there exists an open neighbourhOdfidey

of y such that U? F)(A F)Xj) = U in Xj. (Lemma 5.6)

Since U§ F)X. = U', we have Uklfi A =-U. So let

3 Y

V = X - U?. V is open in X, contains A and has an empty

intersection with Uy' Thus X is regular.

Definition 5.3: A Hausdorff space is normal if each pair
 

of disjoint closed sets have disjoint neighbourhoods.

Lemma 5.8: Y is normal if and only if for each closed
 

subset A and an open subset U containing A there is an

open subset V such that

ACVCVCU.

Theorem 5.9: Normality is an absolute property under
 

monotone unions in w.

Proof: Let {XiIXi C’Xi+l} be a sequence of normal spaces

with X = (§)Xi having a topology coherent with {Xi}° Let

i=1

C,D be two disjoint closed sets in X.
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Case I: C,D are each contained in a finite number of

elements of {Xi}. Then there exists a positive integer

k large enough so that C,D c:X By the normality of Xk.

there exist open disjoint subsets U,V in Xk such that

kl

C C U, D C.V, U r)V = U. But U and V are also open in

X; hence the assertion.

Case II: One of the closed sets is contained in infinitely

many Xi's. Without loss of generality, let D be contained

in infinitelynany Xi's. Thus for some j s Z+, C c.Xj.

(i) If for the j, D FIXj = U, then the normality

of Xj implies that for the closed set C c;Xj and open sub-

set U' of Xj containing C, there exists an open set V

withC CVCVQU' in xj, by Lemma 5.8. Vopen in xj

implies V open in X. So here let U = X — VI Then C c‘V,

DCU, andUnv= (X-V)(')\7=U.

(ii) If Xj n D # U. Since C(\ D = U, C ijj F)D = U.

But D closed in X implies D lej is closed in Xj' We

therefore have two disjoint closed sets C and Xj n D in

X.. By the normality of Xj there exists an open set U in

J

Xj with C c U and

Un<xjnm =g; that is 609:9!

Hence X is normal.

Case III: C,D are each contained in infinitely many of

the elements Xi' Let {X3} be the infinite subsequence of

{Xi} such that either X5 ()C # U or X3 F)D # U. Thus
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C: U (CflXi)andD=-© (ani)

i _ i

Each CIW X5 and DIN Xi is closed in X3 and in Xi re-

spectively. Let Xi be an arbitrary element in {X3}.

By its normality, there exist Uk’ Vk open in Xk such

I I ' _,

that cnxkcu and ank cvk, Wlth Ukflvk — U.
k

Similarly for the integer k + 1.

Set

U:

J.

Ui,V=

m 00

V1
=1 1:1

 where Ui’ Vi are the open sets satisfying the normality

. . . | I
=conditions. C H Xi CUi, D H Xi Civil and U1 0 Vi I3

for each Xf in {X3}.

1

Claim: U F)V = U. For if not, let x s U F)V. This im-

plies that for some i, j 8 2+, x e Ui and x e Vj’ 1.e.,

. . ,
Uin vj ¢ U. Let 1 i 3. Then Ui, vj cxj. We thus

have C F)Xi CLUi C.X3 which implies that there exist

U. X'. such that C(lX! CC X'. CU. with U. V. = .

J C J 1 n J J’ 3 fl 3 9;

Therefore x cannot be in Ui and in Uj: that is Ui (‘VU =

U. Since x is arbitrary U FIV = U, thus X is normal.



 



SECTION 6

OPEN MONOTONE UNIONS AND INVERTIBLE

PLANE CONTINUA

In this section we define open monotone union

property and then apply it to some spaces. Although this

property is used in spaces other than the 2-euclidean

spaces, our attention is drawn mostly to the application

of the property to locally connected invertible plane

continua.

Definition 6.1: Let A be a topological space. A has the

gpen monotone union property if whenever a space X = (§)Ai

i=1

Of open sets Ai exists such that

(1) Ai C Ai+l

(ii) Ai T: A,

then X 2 A.

If A, Ai and X are in a topological space Y, we say A has

the open monotone union (omu) property in Y.

Two Examples

(i) Let A = E1 and let An = (-n,n), an open in-

terval from —n to n, for each n a Z+. Then Ai C Ai+l and

A. T: A = El. It is easy to see that @A. T: El.
1 . 1

1:1

47
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(ii) Again by modifying the space X in 2 -4 so

that it opens at the point (0,1), let this be A with

monotone increasing open intervals starting from the

point (0,1).

Definition 6.2: A topological space X is said to be in-

vertible if, for each non—empty open set U of X, there

exists a homeomorphism h of X onto itself such that

h(X-U) C U. The map h is called an inverting homeomor-
 

phism for U.

Definition 6.3: A continuum is a compact connected set

having at least two points.

Theorem 6.1: Let C be a locally connected invertible

continuum in E2 such that C contains an open set U, U # C.

If U has the open monotone union property in C, then

there exists a point x e C such that C - {x} T: U.

Proof: Since U # C, let V be closed in C - U such that
1

T T
Vl = C - U = V, C — Vl = U. Let V2 be an open set of

diameter 1/2 with V2 T: V, Ué CZVl. Let Vn be the nth

open set of diameter l/n and such that Vn T: V, C — V T: U

as before. We thus get a sequence {Vi} of open sets

00

Vi+l c_Vi and '0 Vi = x, say. Then

i=1

@(C —vi) =C — {x},

i=1

hence the theorem.
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The next result is a slight generalization of

Theorem 6.1. It is found in Doyle [4], but it is given

here for the continuity of our presentation.

Theorem 6.2: Let C be an open connected set in El. If

C has the open monotone union property, then C T: E .

Pooof: Since C is embeddable as an open set in Sn, there

is a topological copy C' of C in En and U' is compact.

Then in En, C' lies interior to a sphere of radius r.

Assume that the origin is in C' or else there exists a

transformation which can perform the shifting. Then the

sphere of radius r lies interior to a copy C" of C'. By

continuing this construction and making spheres at least

one unit larger in radius, we get a sequence {C(n)} of

copies of C and (E)C(n) = En. (C' = C(1) and C" = C(z)

n=l

here). So if C has the open monotone union property, it

is En topologically.

Theorem 6.3: Let U g M have the omu property in M, U # M

where M is an invertible plane continuum. Then there

c . .
1’ U2 M such that Ul C U CU2 With U

the omu property in M and U1 T: U T: U2.

exist U ,U having
1 2

Proof: Let {Mj} be a sequence of open sets in M with

T—

Mj c Mj+l, Mj — U and
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Let h.:Mj ——> U be a homeomorphism of Mj onto U (the exist—

ence of such an hj being asserted by the fact that each

M. T= U). Then th(U) C.M. c.M
J J 3

be the inclusion map and consider the following diagram.

T— ‘0

j+l — U. Let i.Mj ——> Mj+l

5 A

I j+l

hj+1

identity

:
4

5
"

(
.
1

I

C
é
—
—
—
—
—
—
—
—
'
z

C
I

\

 

map

Thus it is clear that for each j, the equations

(1) hj+l . i - hgl (U) C.U

and

(ii) h . i - h‘l (U) s U
j+l j

hold since it is assumed that Mj # Mj+l° So let

—1

U1 = hj+l ' 1 ° hj (U).

Claim:(i) Ul has the open monotone union property in M:

Since U has the omu property, Mj

property. But the inclusion map equally preserves this

= h;l(U) has the omu

property; hence i - h;l(U) c Mj+l has the said property

in M. Similarly since hj+l is a homeomorphism,

hj+l|[i . h;l(U)] is a homeomorphic image of i - h;l(U)

and therefore has the omu property; that is

h - i . h;l(U) = Ul CtU has the open monotone union
j+l

property.
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Net let {M.} be the aforesaid sequence. Then

for each k, U T: Mk' So let h :M ——> M be a homeomorphism
k

of M onto itself such that hk(Mk) is topologically equiva—

lent to U. Since Mk C Mk+l’ we have U = hk(Mk) C hK(Mk+l)

(proper inclusion).

So for the desired U2, pick any k such that

Mk T: U, select a homeomorphism hk of M onto itself with

hk(Mk) = U, and let U2 = hk(Mk+l) thus obtaining U C U2 =

hk (Mk+l) '

Claim: (ii) U has the omu property: For since hk is a
2

homeomorphism, we can choose thMk as an inclusion of Mk

in Mk+l’ hence a homeomorphism. Thus if U has the omu

property, so does hk(Mk+l)‘

Next since U T: U by the homeomorphism of the
l

composite function hj+l - i - hgl and U T: U2 by a similar

process as described above, and since U1 and U2 have the

omu property as claimed, we can repeat the process by

substituting Ul for U and U2 for U respectively to obtain

the desired result.

Theorem 6.4: If U C M is a nondense open set having the

open monotone union property in an invertible plane con-

tinuum M, then U is connected.

Proof: From Theorem 6.1, there exists an x in M such that

M-{x} T: U. Since U has the omu property, there exists a

strictly increasing sequence {Ui} of copies of U such that

P
.

1
t
h
»
:

..
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U = (E)U. so that we now have

i=1 1

U =i'7iU. =M—{x}.

From Theorem 6.3, there exist sets 01, 02 c:M such that

01 C.U C 02, 01 and 02 have the omu property in M and

0 = U = 0 By the same theorem there exists 0i such20

that 0' C201 with the properties just mentioned above.
1

So suppose P1 is a component of U. Then there exists a

copy P2 of P1 such that Ul C'Pz. But P2 C-U3 since

P2 C-U T: U2 C'U3. We thus have inductively

U2i_lc.P2ic;U2i+l c..........

For each 1, U2i-l U P2i is an open (for each of Uj—l and

Pj is open), connected (since Uj— C Pj’ j = 2k, k 5 2+)
1

set; therefore

(U U P
21—1 21)

1.=1

is open, connected and is a strictly increasing union of

copies of U, thus U is connected.

Definition 6.4: A point p of X is said to be a cut point

of X if X—{p} = Y U Z where Y and Z are separated; other—

wise p is a non—cut point of X.

Corollary 6.5: Let C, U, and x be as in Theorem 6.1.

Then x is not a cut point of X.
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Proof: If x were a cut point and C— x T: U = Y U Z,

where Y and Z are separated, then U is not connected

thereby contradicting Theorem 6.4.

Theorem 6.6: Let S1 be the 1-sphere and suppose U :81

is a connected nondense locally connected open set in 81.

Then U has the omu property in 81.

Proof: Let p be any point of 81. For some 3 > 0 let

(p-€,p+s) be an e-neighbourhood of p and call it Vl. Let

V2 = (p-2€,p+2€) and so Vl C V2. In general, let Vn =

T_ . T_ 00
(p ne,p+ne). Then Vi<: Vi+l and Vi — U. Since U —iMlVi,

l _

U has the desired property in S .

Remark 1: The same proof goes for any open connected

non-dense locally connected set U in Sn, for n > 1.

Remark 2: The property of connectedness in 6.6 cannot be

dispensed with since by 6.4 it has been shown that if U

is not connected, U may fail to have the omu property in

sl(sn) .

Definition 6.5: Let X have the open monotone union

property, and suppose {AiIAi C’Ai+l} is the sequence for

which Ai T: X and (filAi T: X. Then for each i, A. is
1

1:

called the monotone subspace of X. 

Theorem 6.7: Let X have the open monotone union property

in an invertible plane continuum M, and let D C M be a
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compact subset of M, D # M. Then D can be imbedded in

one of the monotone subspaces of X.

PPooP: Let D C.M be compact, D # M, and let h be an in-

verting homeomorphism of M. D being compact, M-D is open.

We can as well assume that the homeomorphism h is such

that h(D) c M—D. It is also clear that h(D) # M-D. By

Theorem 6.1, there exists a point x in M such that

M-{x} T: X. Since h(D) C M-D C.M-{x} for such a point x,

T 00

— = = Cwe have h(D) c; M {x} x [MIX]: where {xilxi Xi+ }
1

i=1

satisfies the definition of X having the omu property.

But now h(D) is compact, hence h(D) lies in a connected

subset of M-D. By the monotonicity of the sequence {Xi}

we see that h(D) lies in one of the Xi's which is a

monotone subspace of X; hence the theorem holds.
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