MONOTONE UNION PROPERTES IN TOPOLOGICAL SPACES

> Thesis for the Degree of Ph. D. MICHICAN STATE UNIVERSITY TINUOYE MICHAEL ADENIRAN 1969

This is to certify that the
thesis entitled

Monotone Union Properties
 in Topological Spaces
 presented by

Tinuoye Michael Adeniran
has been accepted towards fulfillment of the requirements for Ph.D._degree in Mathematics

Date \qquad

ABSTRACT

MONOTONE UNION PROPERTIES IN TOPOLOGICAL SPACES

By

Tinuoye Michael Adeniran

A topological space X has the absolute monotone union property if whenever
(i) $A=\bigcup_{i=1}^{\infty} A_{i}$
(ii) $A_{i} \stackrel{T}{=} A_{i+1}$ (topological equivalence), for each i, where $\left\{\mathrm{A}_{\mathrm{i}}\right\}$ is a monotone increasing sequence indexed by the positive integers, then A is necessarily topologically equivalent to X. If for each i, A_{i} is open, A has the open monotone union property.

The thesis investigates topological spaces having some of these properties, our attention being drawn mainly to one- and two-dimensional spaces. Given a sequence $\left\{A_{i} \mid A_{i} \subset A_{i+1}\right\}$ and a property P such that each A_{i} has the given property, we investigate whether property P is absolute; that is whether the monotone union $\underset{i=1}{\binom{\infty}{m}} A_{i}$ has the given property. Finally some results are obtained when we look at open monotone union property in invertible locally connected plane continua.

MONOTONE UNION PROPERTIES

IN TOPOLOGICAL SPACES

By

Tinuoye Michael Adeniran

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

$$
\begin{aligned}
& G 61594 \\
& 4-17-70
\end{aligned}
$$

(c) Copyright by

TINUOYE MICHAEL ADENIRAN

1970

Dedicated to
TINUOLA
OYELADUN
and ROSEMARIE

ACKNOWLEDGMENTS

My indebtness to Professor Patrick H. Doyle goes far beyond the courtesy usually accorded advisers in this kind of work. It can be said without any exaggeration that without his singular efforts which include excellent supervision and guidance, various suggestions, continuous encouragements, a very firm stand against some opposing forces, and a great deal of understanding, this work could not have been completed in its final form. My gratitude to him will probably be made more manifest by following his various suggestions and fine examples in the future.

I would also like to thank Dr. H. Davis for his help in reading the manuscript and in giving very valuable suggestions.

It is also appropriate for me to thank all those (too numerous to be listed) who have encouraged me, positively or otherwise, to determinedly go through the many pitfalls that befell me in the past four years and in the preparation of this thesis.

TABLE OF CONTENTS
Page
LIST OF FIGURES vi
SECTION

1. INTRODUCTION 1
2. ABSOLUTE MONOTONE UNION PROPERTY RELATIVE TO A CLASS C 3
3. SPACES WITH HEREDITARY ABSOLUTE MONOTONE UNION PROPERTY 18
4. ABSOLUTE PROPERTIES UNDER MONOTONE UNIONS 24
5. ABSOLUTE PROPERTIES IN WEAK TOPOLOGY 41
6. OPEN MONOTONE UNIONS AND INVERTIBLE PLANE CONTINUA 47
BIBLIOGRAPHY 55

TABLE OF CONTENTS

Page
LIST OF FIGURES vi
SECTION

1. INTRODUCTION 1
2. ABSOLUTE MONOTONE UNION PROPERTY RELATIVE TO A CLASS 3
3. SPACES WITH HEREDITARY ABSOLUTE MONOTONE UNION PROPERTY 18
4. ABSOLUTE PROPERTIES UNDER MONOTONE UNIONS 24
5. ABSOLUTE PROPERTIES IN WEAK TOPOLOGY 41
6. OPEN MONOTONE UNIONS AND INVERTIBLE PLANE CONTINUA 47
BIBLIOGRAPHY 55

LIST OF FIGURES

Page

Figure 1 7

Figure 2 10
Figure 3 15
Figure 4 34
Figure 5. 37
Figure 6 38

SECTION 1

INTRODUCTION

A topological space X is said to have the absolute monotone union property if whenever

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

where $\left\{A_{i} \mid A_{i} \subset A_{i+1}\right\}$ is a monotone increasing sequence indexed by the positive integers with each A_{i} topologically equivalent to X and if $A_{i} \stackrel{T}{=} A_{i+1}$, then A is necessarily topologically equivalent to X.

Kwun [11] shows that there are many manifolds with related property. In particular he proves that if X is a closed PL-manifold of dimension $n, n \neq 4$, and $\mathrm{p} \varepsilon \mathrm{X}$, then $\mathrm{X}-\mathrm{p}$ has the open monotone union property (defined below). Without explicit definition, Brown [2] proves that the monotone union of open n-cells is an open cell. Kapoor [10] investigates the monotone union property in complexes. More extensive work has been done by Doyle [3,4] however; it is in [4] that the concept of absolute monotone union property (as defined above) is introduced and, compared with earlier works, extensively used. Our approach, in this work, is akin to the treatment of monotone union properties in the last work cited.

Section 2 defines $A(X, C)$ and investigates some topological spaces that have or do not have the absolute monotone union property relative to some classes C of spaces. A characterization of the rationals is also obtained (Theorem 2.8). Given a topological space X, what subsets of X have the absolute monotone union property in X ? Section 3 exhibits some spaces all of whose subsets have this property and further investigates the nature of such spaces.

We next relax the definition of absolute monotone union property be requiring that only the condition $A_{i} \subset A_{i+1}$ needs hold and not necessarily $A_{i} \stackrel{T}{=} A_{i+1}$. Then given a property P, and if each A_{i} has property P, does the monotone union $\binom{\infty}{m} A_{i}$ have property P ? Some topological properties are looked at in this perspective in Section 4; and in Section 5 we use weak topology to get some more properties, specifically the separation axioms. If each A_{i} is open, we call the resulting property an open monotone union property. This property is applied in Section 6 to invertible plane continua that are locally connected.

SECTION 2

ABSOLUTE MONOTONE UNION PROPERTY

RELATIVE TO A CLASS C

In this section we present examples of topological spaces that possess the absolute monotone union property with respect to the class C of topological spaces to which they belong. We also give examples of spaces that do not have this property.

Definition 2.1: Let C be a class of topological spaces, and let X be a member of C. X is said to have the absolute monotone union property with respect to \mathcal{C}, denoted A(X, C), if whenever there exists a monotone increasing sequence of copies of $X:\left\{M_{i} \mid M_{i} \in C, M_{i} \subset M_{i+1}\right\}$ such that $M_{i} \subset Y, Y \in \mathcal{C}, M_{i} \stackrel{T}{=} X$, then

$$
x \stackrel{T}{=}(\underset{i=1}{\infty}) M_{i}
$$

(where the symbol $\underset{i=1}{(M)}$) indicates a monotone union over sets indexed by the integers). If M_{i}, X and Y are in a topological space Z, X is said to have the absolute monotone union property in Z.

If X is a finite space, $A(X, T)$ holds, where T is the class of all topological spaces.

Definition 2.2: A space X has dimension 0 at a point p if p has arbitrarily small neighbourhoods whose boundaries are empty. A nonempty space X has dimension 0 , $\operatorname{dim} X=0$, if X has dimension 0 at each of its points. We say then that X is a 0-dimensional space.

Lemma 2.1: A countable metric space is 0-dimensional. Proof: If U_{p} is a neighbourhood of any point $p \varepsilon X$ of a countable space X, let $\delta>0$ be a real number such that $S_{\delta}(p)$, the spherical neighbourhood about p with radius δ, is contained in U_{p}. Let $\left\{p_{1}, p_{2}, \ldots\right\}$ be an enumeration of X and $d(x, y)$ be the metric. Then there exists a real number $0<\delta^{\prime}<\delta$ such that $\delta^{\prime} \neq d\left(p_{i}, p\right)$ for all i, and such that $S_{\delta},(p) \subset U$. Then $B d\left(S_{\delta},(p)\right)$, the boundary of $S_{\delta},(p)$, is empty. Since p is arbitrary, X is 0-dimensional.

Theorem 2.2: Let Q be the space of rationals, M the class of separable metric spaces, then $A(Q, M)$ holds.

Proof: Let $\left\{M_{i} \mid M_{i} \subset M_{i+l}\right\}$ be a monotone increasing sequence of rationals, $M_{i} \subset Y$. Since each M_{i} is countable, each M_{i} is 0-dimensional by Lemma 2.1. Furthermore a countable union of countable spaces is countable; hence $\underset{i=1}{(M)} M_{i}$ is countable and therefore is 0 -dimensional. Claim: $\quad M_{i} \stackrel{T}{=} Q$ for each i, and $\left(\underset{i=1}{(M)} M_{i} \stackrel{T}{=} Q\right.$. To prove these, we use the General Imbedding Theorem of Hurewicz and Walman [8]:
\square
"Suppose X is an arbitrary space and dim $\mathrm{X} \leq \mathrm{n}<\infty$, then X is homeomorphic to a subset of $I^{2 n+1}$."

That is the 0 -dimensional M_{i} (and $(\underset{i=1}{\infty}) M_{i}$) is homeomorphic to a subset of I, the closed unit interval; hence each $M_{i}\left(\right.$ and $\left.(\underset{i=1}{\infty}) M_{i}\right)$ can be mapped homeomorphically onto Q, the rationals. We therefore have

$$
Q \stackrel{T}{=} M_{i}, M_{i} \subset M_{i+1} \text { and } Q \stackrel{T}{=}{\underset{i=1}{\infty})_{i}, M_{i}}
$$

$(\underset{1}{(\underset{M}{M}})_{i} M_{i}$ is countable and each point is a limit point)
and the definition of $A(Q, M)$ is satisfied. The characterization of Q is Theorem 2.8 below.

Theorem 2.3: If P is the space of irrationals, and M is as in Theorem 2.2, then P does not have the absolute monotone union property relative to M. Proof: Let Q be the rationals and therefore $P=E^{1}-Q$ where E^{l} is the real line. Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of the rationals Q. Then $Q=\bigcup_{i=1}^{\infty} r_{i}, r_{i}$ is a rational number. Since $P U\left\{r_{i}\right\}$ is an irrational space for each i, we can successively adjoin the rationals to the space P to get a monotone increasing sequence of irrational spaces:

$$
P \subset P U\left\{r_{1}\right\} \subset P U\left\{r_{1}, r_{2}\right\} \subset \ldots \subset \subset P \cup\left\{r_{1}, r_{2} \ldots r_{n}\right\} \subset \ldots
$$

For convenience, denote $P U\left\{r_{1}, r_{2}, \ldots r_{j}\right\}=P U\left(\sum_{i=1}^{j} r_{j}\right)$ by P_{j}, each $r_{i} \in Q$. Then for each $j, P \stackrel{T}{=} Y_{j}$. This follows from the fact that each P_{j} is 0-dimensional and we can therefore use the General Imbedding Theorem quoted in 2.2. However

$$
(\underset{j=1}{\infty})_{j}=P \cup\left(\bigcup_{i=1}^{\infty} r_{i}\right)=\left(E^{1}-Q\right) \cup Q=E^{1}
$$

But since P is the irrational space $P \not \neq^{T} E^{1}$ and therefore A (P, M) does not hold.

It is shown above that if a subset A of X has the absolute monotone union property relative to a class C, X-A does not necessarily have the property. The foregoing example shows that $A(X, C)$ is not hereditary; that is if X possesses the absolute monotone union property with respect to C, it does not follow that every subspace of X has that property:

Theorem 2.4: Let X be the joined curve, that is
$x=\{(0, y) \mid-1 \leq y \leq 1\} U\left\{(x, \sin \pi / x) \left\lvert\, 0<x \leq \frac{1}{2}\right.\right\} U$
a simple arc joining the points $P_{1}(0,-1)$ and $P_{2}(1 / 2,0)$ (Figure 1). Since X is unique in the class of all topological spaces in X (for if there were to be any other space Y homeomorphic to X, then X would be properly imbeddable in one of its subsets), X has the absolute monotone union property relative to T. We now consider a

Figure 1
connected subspace Y_{0}, a subarc homeomorphic to $[0, \infty)$. In E^{1}, let

$$
\begin{aligned}
& Y_{1}=[-1, \infty) \\
& Y_{2}=[-2, \infty) \\
& Y_{n}=[-n, \infty)
\end{aligned}
$$

Then $Y_{i} \subset Y_{i+1}, Y_{i} \stackrel{T}{=} Y_{0}$ for each i. But
$\binom{(M)}{M} Y_{i}=(-\infty, \infty)^{T} \neq Y_{0}$ as is required for $A\left(Y_{0}, T\right)$
to hold.
Since the irrationals P can be embedded in the space X of Example 2.4 above, and we have proved that $A(P, M)$ does not hold, this is another example showing that $A(X, C)$ does not hold.

Theorem 2.5: The property of having absolute monotone union property is a topological invariant; that is if $A(X, C)$ holds for a topological space X in a class C, and if $X \stackrel{T}{=} Y$, then $A(Y, C)$ holds.

Proof: Let $A(X, C)$ hold, and let $\left\{X_{i} \mid X_{i} \subset C, c \in C\right\}$ satisfy the definition of $A(X, C)$. In addition suppose $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}$ is a homeomorphism of X onto Y . Then let $g_{i}: x \longrightarrow x_{i}$ and $g: x \longrightarrow\left(M_{i=1}^{\infty}\right) x_{i}$ be the homeomorphisms of x onto x_{i} and x onto $(\underset{i=1}{\infty})_{i}$ respectively. Consider the following diagram:

The homeomorphism of $f: x \longrightarrow Y$ gives the obvious homeomorphism $f^{-1}: Y \longrightarrow X$. And the facts that a composition of two (or more) homeomorphisms is a homeomorphism yields

$$
\begin{aligned}
& g_{i} \cdot f^{-1}: Y \longrightarrow X_{i} \text { and } \\
& g \cdot f^{-1}: Y \longrightarrow\left(M_{i=1}^{\infty}\right) x
\end{aligned}
$$

as the required two homeomorphisms of Y onto X_{i} and Y onto $(\underset{i=1}{\infty}) x_{i}$ respectively. Thus $y \stackrel{T}{=} x_{i}, x_{i} \subset x_{i+1}$, and $Y{ }^{T}=\binom{\infty}{i=1} X_{i}$ and therefore Y has the absolute

monotone union property relative to C.
Theorem 2.6: The Cantor set K does not have the absolute monotone union property relative to M, the class of separable metric spaces.

Proof: Let K_{1} be the Cantor set in the closed interval [0,1]. One of the characterizations of the Cantor set is that it is a totally disconnected, compact, perfect, metric space [6]. Thus $K={ }^{T} K_{1}$. Let K_{2}^{\prime} be the Cantor set in the closed interval $[0,2]$. By characterizing the Cantor set as the set of all points in a closed interval having no units in their ternary expansion, $\mathrm{K}_{1} \stackrel{\underline{T}}{\underline{T}} \mathrm{~K}_{2} \stackrel{\underline{T}}{\underline{T}} \mathrm{~K}$ and $K_{1} \subset K_{2}=K_{2}^{\prime} \cup K_{1}$.

We inductively construct K_{n} so that K_{n}^{\prime} is the Cantor set in the closed interval $[0, n]$ with $K \stackrel{T}{\underline{T}} K_{n}$, and $K_{n-1} \subset K_{n}=K_{n}^{\prime} \cup K_{n-1}$. The first given characterization of the Cantor set implies that for each positive integer $k, k \neq \infty$, k is topologically equivalent to $(\underset{i=1}{k})_{i} k_{i}$, the non-compactness of the monotone union $\left(\underset{i=1}{(M)} K_{i}\right.$ implies that K and $\underset{i=1}{(\mathbb{M})} K_{i}$ are not topologically the same, and therefore K fails to have the desired property.

In the proof of Theorem 2.2 and the ensuing discussions one is tempted to ask whether some of the discussed spaces, and the space Q of rationals in particular, have the absolute monotone union property with respect to any other class C of topological spaces besides M. The
following example of a non-metric space shows that going outside M does not yield the desired property:

Let $\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of the rationals, Q. Construct the rational comb space R as follows: (Figure 2)

$$
\left.\left.R=\left\{\left(0, r_{i}\right)\right\} \cup\left\{\frac{1}{n}, r_{i}\right) \right\rvert\, n=1,2,3, \ldots .\right\}, r_{i} \varepsilon Q .
$$

This gives a sequence $\left\{Q_{1 / n}\right\}$ of $1 / n$ - rationals converging to $Q_{0}=\left\{\left(0, r_{i}\right)\right\}$ as limit. We next define a topology on R as follows:

Figure 2

On $R-\left\{\left(0, r_{i}\right)\right\}$, use the usual rational topology; for a neighbourhood N_{0} of $\left(0, r_{j}\right)$ take a neighbourhood in $\left\{\left(0, r_{i}\right)\right\}$ and all but a finite number of the vertical $\left\{\left(1 / n, r_{i} \mid\right)\right\}^{\prime} s$.

Claim: R, together with the topology described above, is not a metric space. For let S_{1} and S_{2} be two points on $\left\{\left(0, r_{i}\right)\right\}$, the rationals of convergence. Since any open subset of R containing S_{1} meets any containing S_{2}, we cannot get two disjoint open sets containing S_{1} and S_{2} respectively; thus R is not T_{2}. However a metric space is T_{2}, hence the conclusion that R is not metric. So let R_{0} be the rationals of convergence $\left\{\left(0, r_{i}\right)\right\}$. For R_{1} take $\left\{\left(0, r_{i}\right)\right\} U\left\{\left(1, r_{i}\right)\right\}=R_{1}$. For R_{2}, let $\left\{\left(0, r_{i}\right)\right\} \cup\left\{\left(1, r_{i}\right)\right\} \cup\left\{\left(1 / 2, r_{i}\right)\right\}=R_{2}$.

For R_{n}, let $\left\{\left(0, r_{i}\right)\right\} \cup U\left\{\left(1 / k, r_{i}\right) \mid k=1,2, \ldots, n\right\}$ be R_{n}. This construction gives the monotone increasing sequence:

$$
R_{0} \subset R_{1} \subset R_{2} \subset \ldots \subset R_{n} \subset \ldots
$$

Because each R_{i} is the rationals, for $i=0,1,2, \ldots$, each $R_{i} \stackrel{T}{=} Q$, the rationals space. But $\underset{i=1}{\lfloor M} \mid \infty R_{i}=R$ which is not metric. Hence the non-metric R is not topologically equivalent to the metric space Q thus completing the proof.

Remark: Let X be a space such that X cannot be imbedded in itself. X has the absolute monotone union property relative to the class of all topological spaces. The proof that the Cantor set does not have the property of absolute monotone union suggests that many spaces imbeddable in themselves may not have this property. Definition 2.3a: A series, (K, \leq), is a nonempty nondegenerate simply ordered set.

Definition 2.3b: A continuous series, (K, \leq), is a series with the following properties:
(i) If K_{1} and K_{2} are any two nonempty subsets of K such that every element of K belongs to either K_{1} or K_{2}, and every element of K_{1} precedes every element of K_{2}, then there is at least one element x in K such that
a. any element that precedes x belongs to K_{1} and b. any element following x belongs to K_{2} (Dedekind's Postulate)
(ii) If a and b are elements of the set K and if $a<b$, then there is at least one element x in K such that $\mathrm{a}<\mathrm{x}<\mathrm{b}$. (Postulate of Density)

Definition 2.3: A linear continuous series, (K, \leq), is a continuous series which satisfies the following property: The set (K, \leq) contains a countable subset Q in such a way that between any two elements
of the set K there exists an element of Q. Using the elementary properties of the real line E^{l} and the definitions $2.3 \mathrm{a}, \mathrm{b}$ and 2.3 , we state the following theorem:

Theorem 2.7: E^{1}, together with the usual ordering of the reals, is a linear continuous series.

Theorem 2.8: (A characterization of the Rationals in E^{1}): Let X be a countably infinite space in E^{l} all of whose points are limit points. Then X is the Rationals.

Proof: Since the rationals are countably infinite and dense in E^{l}, it will suffice to show that any two countable dense series having neither a first nor a last element are ordinally similar, thus we would have characterized the rationals. To this end, Huntington [7] has used the method of George Cantor to prove precisely that.

In the proof that the rationals have the absolute monotone union property with respect to M the properties used are, in fact, those that characterize the rationals; this allows us to generalize Theorem 2.2 to the following. Corollary 2.9: If M is a countably infinite space all of whose points are limit points, then M has the absolute monotone union property relative to the class of all separable metric spaces.

Theorem 2.10: Let X be a subset of E^{1} such that X has the absolute monotone union property in E^{l}. Then X is
either an open interval, or a totally disconnected set having at most a finite number of isolated points and at least a limit point.

Proof: (The proof depends upon the continuum hypothesis). There are two cases.

Case I. X contains an open nonempty subset S. Then there exists an increasing sequence $\left\{U_{i} \mid U_{i} \subset U_{i+1}\right\}$ of proper open sets in E^{l} such that $S \stackrel{T}{=} U_{i}$ and $E^{l} \stackrel{T}{=}\binom{\infty}{M} U_{i}$. Thus $S=E^{l}$ has the absolute monotone union property relative to E^{l}.

Before considering the second case, we need the following:

Iemma 2.11: If S is a totally disconnected countably infinite subset of E^{l} with infinitely many isolated points, then $A(S, M)$ does not hold.

Proof: Enumerate the isolated points of S as $\left\{p_{1}, p_{2}, \ldots\right\}$ and call the set P. For each p_{i}, let $U_{p_{i}}^{0}$ be a finite open neighbourhood of p_{i} such that $U_{p_{i}}^{0} \cap S={ }^{i}\left\{p_{i}\right\}$ and such that $U_{p_{i}}^{0} \cap U_{p_{j}}^{0}=\varnothing$ for $i \neq j$. Next let $U_{p_{i}}^{1}$ be the finite open neighbourhood $U_{p_{i}}^{0}$ to which has been added an extra point $p_{i l}$, for each $i,{ }_{i}$ since $U_{p_{i}}^{l}$ is an open interval containing p_{i} and $p_{i l}$, it is clear that $U_{p_{i}}^{0}$ is topologically equivalent to $U_{p_{i}}^{1}$.

In a similar fashion, let $U_{p_{i}}^{2}$ be the finite open neighbourhood $U_{p_{i}}^{0}$ to which have been added $p_{i l}$ and $p_{i 2}$ for
each i. By using induction, define $U_{p_{i}}^{k}$ as the finite open neighbourhood $U_{p_{i}}^{0}$ to which has been added the set $\left\{p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right\}$ for each i, where $\left\{p_{i_{k}}\right\}$ is the rationals in $\mathrm{U}_{\mathrm{p}_{\mathrm{i}}}^{0} \cdot$ (Figure 3)

Figure 3

Denote the $p_{i_{1}}$'s and the p_{i} 's in $\bigcup_{i=1}^{\infty} \stackrel{l}{p}_{i}^{l}$ by P^{1}; i.e., $P^{1}=P \cup\left\{p_{i_{1}} \mid i=1,2, \ldots\right\}$ in such ${ }^{1}{ }^{i=1}$ way that each point is a limit point of the union. Also let

$$
P^{2}=P^{1} \cup\left\{P_{i_{2}} \mid i=1,2, \ldots\right\}
$$

Inductively after defining $\mathrm{p}^{\mathrm{k}-1}$, let

$$
P^{k}=P^{k-1} \cup\left\{P_{i k} \mid i=1,2, \ldots\right\}
$$

Then we have $P={ }^{T} P^{1}={ }^{T} P^{2}={ }^{T} \ldots \ldots .=^{T} P^{k}={ }^{T}$. since for each j, P_{j} is an enumeration of isolated points

just as P is. Furthermore, $P \subset P^{1} \subset P^{2} \subset \ldots \subset P^{k} \subset \ldots$. Thus we have
$S=S U P={ }^{T}(S-P) U P^{1}=T(S-P) U P^{2}=T .$.
$={ }^{T}(S \cup P) \cup P^{k}={ }^{T} \ldots$
In addition,
$S \cup P \subset(S-P) U P^{1} \subset(S-P) U P^{2} \subset \ldots . C(S-P) U P^{k} \subset \ldots$ thereby getting an absolute monotone union of ($S-P$) $U p^{j}$

$$
\left(\begin{array}{l}
(\infty) \\
j=1
\end{array}(S-P) \cup P^{j}\right.
$$

However, successive addition of points $p_{i k}$ to $U_{p_{i}}^{0}$ for each i yields a dense set of points in $U_{p_{i}}^{0}$. Therefore the monotone union $(\underset{j=1}{(M)})(S-P) U P^{j}$ is a dense set in $\bigcup_{i=1}^{0} U_{p_{i}}^{0}$. But P, and therefore S, is not dense in $\bigcup_{i=1}^{\infty} U_{p_{i}}^{0}$. And so $S \not \neq^{T} \underbrace{\infty}_{j=1})(S-P) U P^{j}$, thus showing that S does not have the absolute monotone union property. We now consider the second case.

Case II: X is totally disconnected.
A. If X is finite, we have seen that X has the absolute monotone union property with respect to any class of topological spaces, and therefore $A(X, M)$; hence $A\left(X, E^{1}\right)$.
B. If X is infinite, what is the topological structure of X ? Firstly, X must have a limit point for if otherwise X is topologically Z , the integers. But z consists only of infinitely many isolated points and by

Lemma 2.11, Z does not have the absolute monotone union property in E^{l}. Secondly, X cannot have infinitely many isolated points. For if X has infinitely many isolated points, again Lemma 2.11 shows that the desired property fails for X.

SPACES WITH HEREDITARY ABSOLUTE MONOTONE UNION PROPERTY

Section 2 discussed some topological spaces having the absolute monotone union properties relative to a class C; also discussed were some spaces whose subsets have or do not have these properties. An example was given to show that given a space X and $A(X, C)$, not all subsets of X necessarily have the absolute monotone union properties in that space. This section deals with those spaces all of whose subsets have the absolute monotone union properties in them. To be more precise, we being with a definition.

Definition 3.1: A topological space X is said to have the hereditary absolute monotone union property, denoted HA (S, X), if every proper subset S of X has the absolute monotone union property in X.

Remark: Henceforth in this section all spaces shall be considered infinite unless otherwise stated.

Theorem 3.1: Let Z be the integers. The Z has the HA (S, Z) property.

*)

Proof: Let S be an infinite subspace of the integers. S is homeomorphic to Z; hence there exists an infinite subset Y_{0} in Z such that $Z-Y_{0}$ is infinite and $S=T Y_{0}$. Let $Y_{1}=Y_{0} U\left\{Z_{1}\right\}$ where $Z_{1} \notin Y_{0}$. It is clear that Y_{1} is homeomorphic to S and $Y_{0} \subset Y_{1}$. Inductively form the monotone sequence $\left\{Y_{i} \mid Y_{i+1}, Y_{i} T_{=S}\right\}$ after Y_{k-1} has been got by letting Y_{k} to be $Y_{k-1} U\left\{Z_{k}\right\}, Z_{k} \notin Y_{0}$. Since $Y_{0} \bigcup_{i=1}^{\infty} Z_{i}^{T}=S$ we have $S^{T}=\binom{(\infty)}{i=1} Y_{i}$, thus satisfying the absolute monotone union property in Z.

Definition 3.2: Let $X=\left\{a_{i} \mid i \varepsilon Z^{+}\right\}$be a set of points indexed by the positive integers. Let $U_{1}=\left\{a_{1}\right\}$.

$$
\begin{aligned}
U_{2} & =\left\{a_{1}, a_{2}\right\} \\
U_{3} & =\left\{a_{1}, a_{2}, a_{3}\right\} \\
\cdot & \cdot \\
U_{n} & =\left\{a_{1}, a_{2}, \ldots a_{n-1}, a_{n}\right\} \ldots
\end{aligned}
$$

The $\operatorname{set} T=\left\{U_{i} \mid i \varepsilon Z^{+}\right\}$along with \varnothing and X is called the tower topology on X .

Theorem 3.2: Let $X=\left\{a_{i} \mid i \varepsilon Z^{+}\right\}$with the tower topology. Then X has the HA (S, X) property.

Proof: Let S be a subset of X. If S is finite, we are done. So assume that S in an infinite subset of X. We first claim that S has the same topology as X : For if $S=\left\{b_{1}, b_{2}, \ldots \mid b_{i}=a_{j}\right.$ for some $\left.a_{j} \varepsilon X\right\}$, suppose the first element b_{1} of S corresponds to a_{k} in X for some $k \varepsilon Z^{+}$.

Then $U_{k}=\left\{a_{1}, a_{2}, \ldots a_{k}\right\}=\left\{a_{1}, a_{2}, \ldots b_{1}\right\}$ is open in X; hence $U_{k} \cap S=\left\{b_{1}\right\}$ is open in S. If b_{2} corresponds to say a_{j} in X, then U_{j} is open in X and $U_{j} \cap S=\left\{b_{1}, b_{2}\right\}$ is open in S. Thus for each $j \varepsilon Z^{+},\left\{b_{1}, b_{2}, \ldots b_{j}\right\}$ is open in S; and therefore S has the same topology as X. It is now easy to see that any infinite subset S has the absolute monotone union property in X.

Theorem 3.3: A space X with the discrete topology has the HA (S, X) property.

Proof: Every infinite subset S of X is open and is topologically equivalent to any other infinite subspace of X with the same cardinality. There exists, therefore, an infinite subspace S^{\prime} of X such that S - S^{\prime} is infinite, card $S=\operatorname{card}\left(X-S^{\prime}\right)$ and $S^{T}=X-S^{\prime}$. Let $S_{1}=X-S^{\prime}$. For some $x_{1} \varepsilon X-S^{\prime}$, let $S_{2}=S_{1} U\left\{x_{1}\right\}$. For some x_{2} $\varepsilon X-S^{\prime}$, let $S_{3}=S_{2} U\left\{x_{2}\right\}$. Assuming that S_{k-1} has been thus obtained, let $s_{k}=s_{k-1} U\left\{x_{k-1}\right\}$ where x_{k-1} $\varepsilon X-S^{\prime} . \quad$ This yields a monotone sequence $\left\{S_{i} \mid S_{i} \subset S_{i+l}\right\}$. Claim: (i) $S_{i}{ }^{T}=S$, (ii) $S{ }^{T}=\left(M_{i=1}^{\infty}\right) S_{i}$: For each S_{i} is open and thus $\left.(\underset{i=1}{\infty})_{i}\right) S_{i}$ is open and infinite. There is therefore a bijection f which carries any open set in S to an open set in $(\underset{i=1}{(\infty)})_{i}$. And for any open set in $(\underset{i=1}{\infty})_{i}^{\infty} S_{i}$, its inverse image is open in S by the discrete topology, f is thus a bicontinuous bijection and the topological equivalences claimed follow.

Theorem 3.4: The space Q of the rationals does not have the HA (S, Q) property.

Proof: Take as a subset of Q the integers Z. Let $\left\{r_{1}, r_{2}, \ldots\right\}=Q^{\prime}$ be an enumeration of the proper fractions (rationals) in Q. Form a monotone increasing sequence \{ R_{i} \} as follows: Take as R_{1} the set r_{1}, Z, and observe that $R_{1}=T$. Let $\left\{r_{1}, r_{2}\right\} Z=R_{2}$; that is R_{2} is the set of all points of the form $\left\{r_{1}, z, r_{2} z \mid r_{1}, r_{2} \varepsilon Q^{\prime}, z \varepsilon z\right\}$. Similarly $R_{2}={ }^{T} Z$ and $R_{1} \subset R_{2}$. Inductively let $R_{k}=$ $\left\{r_{1}, r_{2}, \ldots r_{k}\right\} Z, r_{i} \varepsilon Q^{\prime}$ for $i=1,2, \ldots, k$. Then $R_{k}={ }^{T} Z$, $R_{k} \subset R_{k+1}$. However, $\left(\underset{i=1}{(M)} R_{i}=\left\{r_{1}, r_{2}, \ldots,\right\} z=Q^{\prime} Z={ }^{T} Q\right.$, hence Z does not have the absolute monotone union property in Q since $\left(\underset{i=1}{(M)} R_{i} \not \neq^{T} Z\right.$.

Lemma 3.5: Let M be a metric space having the HA (S, M) property. Then M has at most one limit point.

Proof: Suppose M has at least two limit points, p_{1} and p_{2}. Then there exist in M two convergent sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ converging to p_{1} and p_{2} respectively. Let $S=\left\{a_{i}\right\} U p_{1} U p_{2} \cdot S$ is a convergent sequence in M having p_{1} as its limit point. Let $S_{1}=\left\{a_{i}\right\} U b_{1} U p_{1} U p_{2}$. The only limit point of S_{1} is p_{1}, and $S T_{1}=S_{1}$. Let $S_{2}=$ $\left\{a_{i}\right\} \cup\left\{b_{1}, b_{2}\right\} \cup p_{1} U p_{2}$; similarly, the only limit point of S_{2} is p_{1} and as before $S{ }^{T}=S_{2}$ and $S_{1} \subset S_{2}$. After S_{k-1} has been obtained, let

$$
S_{k}=\left\{a_{i}\right\} \cup\left\{b_{1}, b_{2}, \ldots b_{k-1}, b_{k}\right\} \cup p_{1} \cup p_{2}
$$

S_{k} has p_{1} as its only limit point, $\mathrm{S}^{\mathrm{T}}=\mathrm{S}_{\mathrm{k}}$, and $\mathrm{S}_{\mathrm{k}-\mathrm{l}} \subset \mathrm{S}_{\mathrm{k}}$. Next consider $(\underset{i=1}{(\infty)})_{i}$. This is the set: $\left\{a_{i}\right\} U\left\{b_{i}\right\} \cup p_{i} \cup p_{2}$. Because $a_{i} \longrightarrow p_{1}$ and $b_{i} \longrightarrow p_{2},\binom{(\infty)}{m} s_{i}$ has p_{1}, p_{2} as two limit points whereas S has only one, namely p_{1}. Hence $S^{T} \neq\left(\begin{array}{c}\binom{\infty}{m} \\ i=1 \\ i\end{array}\right.$.

Theorem 3.6: Let M be a metric space having the HA (S, M) property. Then M is a compact metric space with exactly one limit point, or M is a discrete space with no limit points.

Proof: If M in Lemma 3.5 has a limit point, M has to be compact. For suppose M is not compact and has a limit point. In particular let M be the union of the nonnegative integers and $\{1 / n\}$. The limit point of M is 0 and there is no other. Let $S_{1}=\{1 / n\} U\{0,-1\}, S_{1}$ is compact and has 0 as its limit point. Let $S_{2}=\{1 / n\} U$ $\{0,-1,-2\} . S_{1}{ }^{T}=S_{2}, S_{1} \subset S_{2}$, and S_{2} is compact with the limit point 0. Thus for each k, let $S_{k}=\{1 / n\} U$ $\{0,-1,2, \ldots,-k\} . \quad S_{1}{ }^{T}=S_{2}{ }^{T}=\ldots{ }^{T}=S_{k}, S_{k-1}, \subset S_{k}$ and each S_{k} is compact.

But although $\underset{i=1}{(\underset{\sim}{\infty})} \mathbf{S}_{\boldsymbol{i}}=\{1 / n\} \cup\{0,-1,-2, \ldots\}$ has the limit point 0, this last set is not compact. There does not exist, therefore, a subset S of M such that $S T=S_{i}$ and $S^{T}=\binom{\infty}{m} S_{i=1}$. Hence M has to be compact if it has a limit and the $H A(S, X)$ property holds.

If M has no limit point, then M is topologically equivalent to Z which is discrete, and we have seen that Z has the HA (S,X) property. Corollary 3.7: The Cantor set K does not have the HA (S, K) property

Proof: K has more than one limit point.

ABSOLUTE PROPERTIES UNDER MONOTONE UNIONS

Definition 4.1: A property P is absolute under monotone unions (aumu) in a class C of topological spaces if for each $Y \in \mathcal{C}, X_{i} \subset Y, X_{i} \subset X_{i+1}$ and for each i, each X_{i} has property P implies that $\binom{\infty}{(m)} x_{i}$ has property P. We here investigate some topological properties that are or are not aumu with respect to a class C of topological spaces.

Theorem 4.1: Connectedness is an absolute property under monotone unions in the class C of all topological spaces. Proof: Let Y be a topological space having a sequence $\left\{x_{i} \mid x_{i} \subset x_{i+1}\right\} x_{1} \neq \varnothing$ of subsets with the property that for each i, X_{i} is connected. Then $\bigcap_{i=1}^{\infty} x_{i} \subset x_{1}$; hence there exists at least one point in common with the family $\left\{x_{i}\right\}$ of connected subsets of Y. The union $(\underset{i=1}{\infty})_{i} X_{i}$ of this family is therefore connected and the assertion is proved. Theorem 4.2: Arcwise (path) connectedness is an absolute property under monotone unions in the class C of all topological spaces.

Proof: Let $Y,\left\{X_{i}\right\}$ be as in 4.1 and X_{i} is arcwise (path) connected. For any two points $x, y \in\left(\begin{array}{c}\binom{m}{i=1} x_{i} \text {, there exists }\end{array}\right.$
some $j \varepsilon Z^{+}$such that $x, y \varepsilon X_{j}$. Since X_{j} is arcwise (path) connected, so is $\left(\begin{array}{l}\binom{\infty}{m} x_{i}\end{array}\right.$

Theorem 4.3: The property of being locally connected is not aumu in C.

Proof: Modify the space X in 2.4 by letting the joined sine curve be open at the point $(0,1)$. Taking as X_{1} an open interval beginning at the point $(0,1)$, as X_{2} an open interval containing X_{1} as X_{n} an open interval containing x_{n-1}, a monotone increasing sequence $\left\{x_{i} \mid x_{i} \subset x_{i+1}\right\}$ of open intervals each beginning at the point $(0,1)$ is thus obtained. Each X_{i} is locally connected. But it is easy to see that each point x in $\{(x, y) \mid x=0,-1<y<l\} \subset x$ has a neighbourhood not containing any connected neighbourhood of x.

Theorem 4.4: Disconnectedness is not absolute under monotone unions in C.

Proof: If P is the set of irrationals in E^{l}, form a monotone increasing sequence $\left\{P_{i} \mid P_{i} \subset P_{i+1}\right\}$ as in Theorem 2.3: Each P_{i} is disconnected but $\underset{i=1}{\binom{\infty}{m}} P_{i}=E^{1}$ is not.
Corollary 4.5: The property of being 0-dimensional is not aumu in the class C of topological spaces.

Proof: Each P_{i} in 4.4 is 0-dimensional but E^{l} is not.
Lemma 4.6: A 0-dimensional space Y is disconnected.

Proof: Let Y be 0-dimensional. In particular for each

$\mathrm{p} \varepsilon \mathrm{Y}$ there exists arbitrarily small neighbourhoods of y which are both open and closed because the boundaries of such neighbourhoods are empty. Since these neighborhoods are neither Y nor empty, Y cannot be connected for the only subsets of a connected space both open and closed are the empty set and the space itself.

Theorem 4.7: Let C_{0} be the class of all countable metric spaces. Then disconnectedness is an absolute property under monotone unions in C_{0}.

Proof: Let $Y \in \mathcal{C}_{0},\left\{X_{i} \subset Y \mid X_{i} \subset X_{i+1}\right\}$, a sequence of disconnected subsets of Y. Every subset of a countable (metric) space Y is countable, hence for each i, X_{i} is countable (and therefore 0 -dimensional). We need to show $\left(\begin{array}{l}\binom{\infty}{m} \\ i=1\end{array} x_{i}\right.$ is disconnected. To do this, observe that a countable union of countable subsets is a countable subset. Therefore $\left(\begin{array}{c}\infty \\ m \\ i=1\end{array}\right) x_{i}$ is countable and is therefore 0-dimensional (by Lemma 2.1). Apply Lemma 4.6 and we have proved that $\binom{\infty}{\mathrm{m}} \mathrm{X}_{i}$ is disconnected.
Corollary 4.8: The property of being countable is absolute under monotone unions in any class C.

Remark: For any cardinality c greater or equal to the cardinality of the rationals, the property of having cardinality c is absolute under monotone unions in any class C, for if for each i card $x_{i}=c$ and $x_{i} \subset x_{i+1}$, then $\operatorname{card}\left(\underset{i=1}{\binom{\infty}{m}} x_{i}\right)=c$.

Definition 4.2: A set F is called an $\mathrm{F}_{\sigma}-$ set (or an F_{σ}) if F is the union of at most countably many closed sets. A set G is called $a G_{\delta}-$ set (or $a G_{\delta}$) if G is the intersection of at most countably many open sets.

Theorem 4.9: The property of being F_{σ} is aumu in any class \mathcal{C} of topological spaces.

Proof: Let $Y \in \mathcal{C}$ such that $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ is a sequence of subsets of Y with the property that each X_{i} is an F_{σ}. Then for each i,

$$
x_{i}=\bigcup_{i=1}^{\infty} c_{i j}
$$

 The right side is a countable union of countably many closed sets; and as such it is the union of countably many closed sets. Therefore $\left(\begin{array}{c}\infty \\ m \\ m\end{array}\right) X_{i}$ is an $F_{\sigma}-$ set.
Lemma 4.10: Let x be a rational point in E^{n}. Then $\{x\}$ is a G_{δ}.

Proof: Let V_{x}^{l} be a spherical neighbourhood of radius 1 with center at x; let V_{x}^{2} be a spherical neighbourhood of radius $1 / 2$ with center at x. In general, let V_{x}^{n} be a spherical neighbourhood of radius $1 / n$ and center at x. Then $\bigcap_{j=1}^{\infty} V_{x}^{j}$ is the countable intersection of open sets V_{x}^{j} and this intersection therefore is G_{δ}. But $\bigcap_{j=1}^{\infty} V_{x}^{j}=\{x\}$, and therefore $\{x\}$ is G_{δ}.
ak

Lemma 4.11: Let $R=\left\{r_{1}, r_{2}, \ldots r_{k}\right\}$ be a finite set of rationals in E^{l}. Then R is $a G_{\delta}$ - set.
Proof: For each $r_{j} \varepsilon R$ let $V_{r j}^{l}$ be a spherical neighbourhood of radius 1 and center at r_{j}. In general $V_{r j}^{n}$ be the $n^{\text {th }}$ spherical neighbourhood of r_{j} of radius $1 / n$ and center at r_{j}; for each $r_{j} \varepsilon R$. Then

$$
\bigcup_{q=1}^{\infty} \bigcup_{j=1}^{\infty} v_{r j}^{q}
$$

is an open set containing R, since a (finite) union of open sets is open. Let

$$
Y=\bigcup_{j=1}^{k} \quad \bigcap_{q=1}^{\infty} V_{r j}^{q}
$$

By Lemma 4. 10 , for each $j=1,2, \ldots, k, \bigcap_{q=1} V_{r j}^{q}=\left\{r_{j}\right\}$. Hence $Y=\bigcup_{j=1} r_{j}=R$, that is Y is a finite union of G_{δ} - sets and is therefore $a G_{\delta}$ - set.

Lemma 4.12: The set Q of the rationals in E^{l} is not a G_{δ} - set.
Proof: Suppose $Q=\bigcap_{i=1}^{\infty} V^{i}$ where each V^{i} is open in E^{1}. Since Q is dense, each V^{i} is also dense. Let Y be the family

$$
\left\{V^{i}\right\} U\{E-r \mid r \varepsilon Q\}
$$

Y is a family of open sets since $E-r$ is open for each r, Y is countable and dense in E^{1}, and E^{1} is a locally
compact space. By a theorem of Baire [5] the intersection of any countable family of open dense sets in a locally compact space is dense. Thus by this, $\bigcap_{A \varepsilon Y} A$ has to be dense. However

$$
\bigcap_{A \varepsilon Y} A=\bigcap_{i=1}^{\infty} V^{i} \cap\{E-r \mid r \varepsilon Q\}
$$

is empty and therefore is not the intersection of countably many open sets in E^{1}. So Q is not $a G_{\delta}$ - set.

Theorem 4.13: The property of being a G_{δ} - set is not absolute under monotone union in any class C.

Proof: Let $C=\left\{E^{l}\right\}$, and let $Q=\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of the rationals in E^{l}. Form a monotone sequence
X_{i} as follows:

$$
\begin{aligned}
\text { Let } X_{1} & =\left\{r_{1}\right\} \\
x_{2} & =\left\{r_{1}, r_{2}\right\} \\
\bullet & \\
X_{k} & \cdot \\
\bullet & \left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \\
&
\end{aligned}
$$

By Lemma 4.10 and $4.11 X_{1}$ is $a G_{\delta}$ and for each $j \varepsilon Z^{+}, X_{j}$ is $G_{\delta} \cdot X_{i} \subset E^{l}$ and for each $i X_{i} \subset X_{i+l}$, however

$$
\left(\begin{array}{l}
\binom{m}{m} \\
i=1
\end{array} x_{i}=Q\right.
$$

is the set of all rationals in E^{1} and it has been seen in Lemma 4.12 that Q is not a G_{δ}.

Definition 4.3: A space X is said to be Lindelöf if every open covering of x has a countable open subcovering. Theorem 4.14: The property of being Lindelöf is aumu in any class C.

Proof: Let Y be an element of $C,\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ a sequence of subsets of Y such that for each i, X_{i} is Lindelöf. Let $x=\binom{(\infty)}{m=1} X_{i}$, and let $\left\{U_{\alpha} \mid \alpha \varepsilon A\right\}$ be an arbitrary open covering of x. Then $x=\left(\begin{array}{c}\infty \\ m \\ m\end{array}\right) x_{i}=\bigcup_{\alpha \neq A} U_{\alpha}$. Therefore for each $\alpha \varepsilon A$ there exists some $j \varepsilon Z^{+}$such that $U_{\alpha} \cap X_{j}$ is not empty.

Claim: $\left\{U_{\alpha} \cap X_{j} \mid j \varepsilon Z^{+}\right.$and $\left.\alpha \varepsilon A\right\}$ is a countable open subcovering for X . For, for each $\alpha \varepsilon A, U_{\alpha} \cap \mathrm{X}_{\mathrm{j}} \subset \mathrm{X}_{\mathrm{j}}$, thus getting a countable subfamily $\left\{U_{\alpha} \bigcap X_{j}\right\}$ of $\left\{U_{\alpha}\right\}$. Furthermore

$$
\bigcup_{\alpha \in A}\left\{U_{\alpha} \cap x_{j}\right\}=\left(\begin{array}{c}
\binom{m}{i=1} \\
x_{i}
\end{array}=x\right.
$$

So X is Lindelöf.
Definition 4.4: A space X is first countable (or, satisfies the first axiom of countability) if X has a countable basis at each point p of X.

Theorem 4.15: The property of being first countable is aumu in any class C.

Proof: Let $Y \varepsilon C, X_{i} \subset Y, X_{i} \subset X_{i+1}$ for all i, and X_{i} is first countable. Let $X=\binom{\infty}{m} X_{i=1}$ and suppose $p \varepsilon X$. Then
for some $j \varepsilon Z^{+}, p \varepsilon X_{j} \subset X . \quad B y$ the first countability of X_{j}, there exists at most a countably infinite family $\left\{U_{k}^{\prime}(p) \mid k \varepsilon Z^{+}\right\}$of neighbourhoods of p having the following property: For each open G containing the point p there is some $U_{k}^{\prime}(p) \subset G$ in X_{j}.

For each $k, U_{k}^{\prime}(p)$ is open in X_{j} implies that there exists an open set U_{k} in X such that $U_{k} \cap X_{j}=U_{k}^{\prime}(p)$. Since $p \varepsilon U_{k}^{\prime}(p), p \varepsilon U_{k}$ as well. So let

$$
\left\{U_{k}(p) \subset X \mid U_{k}(p) \cap X_{j}=U_{k}^{\prime}(p), k \varepsilon Z^{+}\right\}
$$

be the countably infinite family of neighbourhoods of p in X. Thus for any G open in X and containing p, it is easy to see that there exists some $U_{k}(p)$ such that $U_{k}(p) \subset G . \quad$ This proves that X is first countable.

Definition 4.5: A space is second countable (or, satisfies the second axiom or countability) if it has a countable basis.

Theorem 4.16: Second countability is an absolute property under monotone unions in any class \mathcal{C} of topological spaces.

Proof: Let $Y \varepsilon \mathcal{C}$ with $X_{i} \subset Y, X_{i} \subset X_{i+1}$, and for each i, X_{i} is second countable. Let $x=\left(\begin{array}{c}\binom{\infty}{m} \\ i=1\end{array} X_{i}\right.$, for each i, let $\left\{V_{j}^{i} \mid j \varepsilon Z^{+}\right\}$be a countable basis for X_{i}. We claim that the set

$$
u=\left\{\bigcup_{i=1}^{\infty} v_{j}^{i} \mid\left\{v_{j}^{i}\right\} \text { is a basis for } X_{i}, j \varepsilon z^{+}\right\}
$$

is a basis for X. For let U be open in X. Then for each $i \varepsilon \mathrm{Z}^{+}, \mathrm{U} \cap \mathrm{X}_{\mathrm{i}}$ is either empty or open in X_{i}. If $\mathrm{U} \cap \mathrm{X}_{\mathrm{i}}$ is empty for some i, there is nothing to prove. So assume that $U \cap X_{i}$ is not empty and therefore open. By the second countability of X_{i}, the open subset (in X_{i}) $U \cap X_{i}=$ $\bigcup_{j} v_{j}^{i}$ for some $j \varepsilon Z^{+}$. Furthermore since $U \subset\binom{(m)}{m=1} x_{i}$, we have

$$
U=\underset{i}{U}\left\{U \cap x_{i} \mid U \cap x_{i} \neq \varnothing\right\}
$$

Thus since each $U \cap X_{i}$ is a countable Union of the $V_{j}^{i}{ }^{\prime} s$, U is a countable union of V_{j}^{i}, for some $i, j \varepsilon Z^{+}$, and therefore every open set in X is the union of members of the countable family u. Therefore $\underset{i=j}{\binom{\infty}{m}} x_{i}$ is second countable.

Theorem 4.17: Compactness is not an absolute property under monotone unions in the class C of all topological spaces.

Proof: Let $Y=\{1 / n\} \cup\{0,1,2, \ldots\} \subset E^{1}, n=1,2, \ldots$ Construct a monotone sequence of compact subsets $\left\{X_{i}\right\}$ as follows:

$$
\begin{aligned}
\mathrm{x}_{1} & =\{1 / \mathrm{n}\} \cup\{0,1\} \\
\mathrm{x}_{2} & =\{1 / \mathrm{n}\} \cup\{0,1,2\} \\
\cdot & \\
\mathrm{x}_{\mathrm{k}} \cdot & =\{1 / \mathrm{n}\} \cup\{0,1,2, \ldots \mathrm{k}\} \mathrm{n}=1,2,3, \ldots
\end{aligned}
$$

It is obvious to see that each X_{i} is compact (since it is closed and bounded). $X_{i} \subset X_{i+1}$; it is equally obvious to see that

$$
\underset{i=1}{\binom{\infty}{m}} \mathrm{X}_{i}=\mathrm{Y}=\{1 / \mathrm{n}\} \quad U\{0,1,2, \ldots\}
$$

is not compact for it is not a bounded set.
Theorem 4.18: The property of being a T_{1}-space is aumu in any class C of topological spaces.

Proof: Let Y be a topological space with the sequence $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ of subsets of Y such that each X_{i} is T_{1}. Let $x=\left(\begin{array}{l}\binom{\infty}{m} \\ i=1 \\ i\end{array}\right.$, and let x, y be two arbitrary distinct points in X. Then there exists, for some $j \in Z^{+}, X_{j} \subset X$ such that $x, y \varepsilon X_{j}, X_{j}$ being T_{1}, there exist open sets U^{\prime}, V^{\prime} in X_{j} such that $x \varepsilon U^{\prime}, x \notin V^{\prime}, Y \varepsilon V^{\prime}, Y \notin U^{\prime}$. Now there exist open sets U, V in X such that

$$
\begin{aligned}
& U \cap x_{j}=U^{\prime} \\
& V \cap x_{j}=V^{\prime}
\end{aligned}
$$

Since $x \varepsilon U^{\prime}, x \in U ; \operatorname{similarly} y \varepsilon V . \quad x \varepsilon X_{j}$ and $x \notin V^{\prime}$ imply that $x \notin V$. Similarly, $y \notin U$. We thus find sets U, V open in X with $\mathrm{x} \varepsilon \mathrm{U}, \mathrm{Y} \in \mathrm{V}, \mathrm{x} \notin \mathrm{V}$ and $\mathrm{y} \notin \mathrm{U}$. By definition X is T_{1} and the theorem is proved.

Theorem 4.19: Being T_{2} is not an absolute property under monotone unions in some classes C of topological spaces. Proof: Let $Y=E^{2}, I^{1}$ the open unit interval $(0,1)$.

Let

$$
\begin{aligned}
& x_{1}=\left(0 \times I^{1}\right) \cup\left(1 \times I^{1}\right) \\
& x_{2}=\left(0 \times I^{1}\right) U\left(1 \times I^{1}\right) U\left(1 / 2 \times I^{1}\right) \\
& x_{3}=\left(0 \times I^{1}\right) \cup\left(1 \times I^{1}\right) \cup\left(1 / 2 \times I^{1}\right) U\left(1 / 3 \times I^{1}\right) \\
& \vdots \\
& x_{k}=\left(0 \times I^{1}\right) \cup\left(1 \times I^{1}\right) U \ldots U\left(1 / k \times I^{1}\right)
\end{aligned}
$$

Each X_{i} is a finite union of open intervals in E^{2} and since each I^{l} is T_{2}, each X_{i} is T_{2}. Let $X=\binom{(m)}{i=1} X_{i}$ (Figure 4).

Figure 4

Put the following topology on X : On $\mathrm{X}-\left(0 \times \mathrm{I}^{1}\right)$ use the usual topology on E^{l}. For a neighbourhood of a point x in $0 \times I^{1}$, take an open interval in I^{l} of $0 \times I^{l}$ and all but a finite number of the $\left(1 / k x I^{l}\right)^{\prime} s, k=1,2, \ldots$ Using the argument similar to the construction of a nonmetric space in Section 2, we conclude that for any two distinct points x, y in $0 \times I^{l}$, there do not exist open sets U_{x}, U_{y} with $U_{x} \cap U_{Y}=\varnothing$. Hence $X=\left(\underset{i=1}{(\infty)} X_{i}\right.$ is not T_{2}. Corollary 4.20: Any separation axiom beyond T_{2} is not an absolute property under monotone unions in some classes C of topological spaces.

Proof: Any space satisfying any separation axiom beyond T_{2} satisfies T_{2}, hence the corollary (using the definition of separation axioms in [5]).

Corollary 4.21: Let $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ be a sequence of spaces such that each X_{i} is T_{2} (regular, Tychonoff, normal). Then $\left(\begin{array}{c}\infty \\ i=1 \\ m\end{array}\right) X_{i}$ is at least T_{1}.

Proof: A simple application of Theorems 4.18, 4.19 and Corollary 4.20.

Corollary 4.22: Metrizability is not an absolute property under monotone unions in the class of all topological spaces.

Proof: Each X_{i} in theorem 4.19 is a metric space. But X is not normal and therefore not metric.

Another proof of Corollary 4.22 is afforded by the following: Let $Q=\left\{r_{1}, r_{2}, \ldots\right\}$ be an enumeration of the rationals in the plane on or above the x-axis.

$$
\text { Let } \begin{aligned}
X_{1} & =\left\{r_{1}\right\} \\
X_{2} & =\left\{r_{1}, r_{2}\right\} \\
& : \\
X_{k} & =\left\{r_{1}, r_{2}, \ldots r_{k}\right\} \\
: &
\end{aligned}
$$

Each X_{i}, being finite, is metrizable. So let $x=(\underset{i=1}{\infty})_{i}^{m}$ with the following topology: if (x, y) is a point of X and $\varepsilon>0$, let

$$
\begin{gathered}
(x, y)+\left\{(r, 0) \mid \text { either }\left|r-\left(a+\frac{b}{\sqrt{3}}\right)\right|<\varepsilon\right. \text { or } \\
\left.\left|r-\left(a-\frac{b}{\sqrt{3}}\right)\right|<\varepsilon\right\}
\end{gathered}
$$

be a neighbourhood of (x, y)

Geometrically, such a neighbourhood with center at (x, y) can be obtained by constructing an equilateral triangle (Figure 5) with base on the x-axis and apex at (x, y). If $y=0$, let the point (x, y) be the desired triangle. Then $(x, y)+$ all rationals on the x-axis whose distances from a base vertex of the triangle are less than ε is an ε-neighbourhood with center at (x, y). R. H. Bing has shown [1] that although this space X has a countable basis, it is not regular and therefore not metric.

Figure 5

Definition 4.6: A space X is said to be a nontrivial product if $\mathrm{X}=\mathrm{Y} \mathrm{X} \mathrm{Z}$ and neither X nor Y reduces to a single point.

Theorem 4.23: Being a nontrivial product is not an absolute property under monotone unions in C. Proof: Let $C=E^{3}$. Let T_{1} and T_{2} be two solid tori as shown below (Figure 6). There exists a homeomorphism $h: \mathrm{E}^{3} \xrightarrow{\text { onto }} \mathrm{E}^{3}$ such that $\mathrm{h}: \mathrm{T}^{2} \longrightarrow \mathrm{~T}^{2}$ is an onto homeomorphism, and such that h is the identity exterior to some sphere [12]. Then $h\left(T^{1}\right)=h^{2}\left(T^{2}\right)$ is a torus such that $T^{1} C$ interior $h^{2}\left(T^{2}\right)$. Then

$$
M^{3}=\underset{n=1}{\binom{\infty}{m}} h^{n}\left(T^{2}\right)
$$

is a 3-mainfold which is a monotone union of $h^{n}\left(T^{2}\right)$. But each $h^{j}\left(T^{2}\right)$ is a copy of $E^{2} \times S^{1}$; hence M^{3} is an openmonotone union of copies of $\mathrm{E}^{2} \mathrm{x} \mathrm{S}^{1}$ [4].

Figure 6

Claim: M^{3} is not a nontrivial product. Suppose the contrary. Then M^{3} is either (i) $E^{l} \times C_{1}$ or (ii) $S^{1} \times C_{2}$ where C_{1}, C_{2} are subsets of m^{3}. Consider the homotopy groups of M^{3} and of $\mathrm{E}^{1} \times \mathrm{C}_{1}$ and $\mathrm{S}^{1} \times \mathrm{C}_{2}$. For each k, $\pi_{k}\left(m^{3}\right)=0$. Thus for π_{1}, we have (i) $\pi_{1}\left(E^{1} \times C_{1}\right)=0$ or (ii) $\pi_{1}\left(S^{1} \times C_{2}\right)=0$. For (i) $\pi_{1}\left(E^{1} \times C_{1}\right)=0$ we have $\pi_{1}\left(E^{1} \times C_{1}\right)=\pi_{1}\left(E^{1}\right) * \pi_{1}\left(C_{1}\right) . \quad$ Since $\pi_{1}\left(E^{1}\right)=0$, $\pi_{1}\left(C_{1}\right)$ has to be 0 ; but $\pi_{1}\left(C_{1}\right)=0$ implies $C_{1}=E^{2}$. And therefore for (i) $M^{3}=E^{1} \times E^{2}=E^{3}$ which is a contradiction since $M^{3} \neq E^{3}$. For (ii) $\pi_{1}\left(S^{1} \times C_{2}\right)=$ $\left.\pi_{1} S^{1}\right) * \pi_{1}\left(C_{2}\right)=0$ is impossible since $\pi_{1}\left(S^{1}\right)=z \neq 0$.

$$
\text { Bun- } E=0 .
$$

$$
521506
$$

srudfores
過

楽
$\rightarrow+$
nen

Since the only two possibilities of M^{3} have been proved not to apply, $M^{3}=\binom{\infty}{m} h^{n}\left(T^{2}\right)$ has to be a trivial product even though each $\left.h^{n}{ }^{n=1} T^{2}\right)$ is a nontrivial product. Theorem 4.24: Let $C^{\prime}=\left\{E^{2}\right\}$, the property of being a connected open nontrivial product is absolute under monotone unions in C^{\prime}.

Proof: Let $X_{i} \subset E^{2}, X_{i} \subset x_{i+1}$ and for each i, X_{i} is a connected open nontrivial product. So let $X_{i}=Y \mathrm{x} \mathrm{Z}$ where neither Y nor Z reduces to single points. Then Y and Z are locally compact connected sets, and $Y \mathrm{X} Z$ can be imbedded in a 2-mainfold. Hence by a theorem of Jones and Young [9], Y and Z can be either an arc, a simple closed curve (and therefore homeomorphic to S^{1}), a ray, or an open curve (homeomorphic to an open interval). But the homogeneity of Y and Z reduces these possibilities of Y and Z to either S^{1} or I, where I is an open interval, and therefore to E^{1}. So we have

$$
\begin{aligned}
\text { either (i) } X_{i} & =E^{1} \times E^{1} \\
\text { or (ii) } X_{i} & =E^{1} \times I \\
\text { or (iii) } X_{i} & =E^{1} \times S^{1}, x_{i} \subset E^{2} .
\end{aligned}
$$

(i) is not possible, since $X_{i} \neq E^{2}=E^{1} x E^{1}$. So we consider (ii). If each $X_{i}=E^{1} x I$, then $\underset{i=1}{(M))} x_{i}=E^{2}$ which is a nontrivial product. (iii). If each $X_{i}=E^{1} \times s^{1}$, then X_{i} is an annulus A. And the monotone union $(\underset{i=1}{\infty}) x_{i}$
.
gives two possibilities.

$$
\left(\underset{i=1}{(M)} x_{i}= \begin{cases}\text { a) } & E^{2} \\ \text { b) } & \text { an annulus } A\end{cases}\right.
$$

Since an annulus A is a nontrivial product ($A=E^{2} \times S^{1}$) and E^{2} is also nontrivial, we have thus proved the theorem.

SECTION 5

ABSOLUTE PROPERTIES IN WEAK TOPOLOGY

It has been shown above that there are some topological properties that are not absolute under monotone unions. In particular any separation axiom beyond T_{1} is not absolute under monotone unions in some classes C of spaces. Here the concept of weak topology is used in order that these separation axioms be absolute.

Definition 5.1: Let X be a set, and let $S=\left\{A_{\alpha} \mid \alpha \varepsilon A\right\}$ be a sequence of subsets of X such that each A_{α} has a topology. Assume that for any $\alpha, \beta \varepsilon A$ the following two properties hold:
(i) The topologies of A_{α} and A_{β} agree on $A_{\alpha} \cdot \cap A_{\beta}$
(ii) Either (a) each $A_{\alpha} \cap A_{\beta}$ is open in A_{α} and in A_{β} or (b) each $A_{\alpha} \cap A_{\beta}$ is closed in A_{α} and in A_{β}.

The weak topology in X induced (or determined) by S is

$$
T_{s}=\left\{U \subset X \mid \text { for all } \alpha, U \cap A_{\alpha} \text { is open in } A_{\alpha}\right\}
$$

In literature X is also said to have a topology coherent with S, if X has weak topology T_{s} induced by S. Denote such a topological space by $\left(X, T_{s}\right)$ to distinguish it from other topologies.

Lemma 5.1: Let $\left(X, T_{s}\right)$ be a topological space having the weak topology induced by $S=\left\{x_{i} \mid x_{i} \subset x_{i+1}\right\}$. Then any subset U open in X_{j} is open in (X, T_{s}).

Proof: Let $U \subset X_{j}$ be an open subset in X_{j}. Then for any $\mathrm{k}, \mathrm{U} \cap \mathrm{X}_{\mathrm{k}}$ is open in $\mathrm{X}_{\mathrm{j}} \cap \mathrm{X}_{\mathrm{k}}$ by definition 5.1 (i). Noting that A open (closed) in Y and Y open (closed) in Z implies that A is open (closed) in Z, and using Definition 5.1 (ii) (a) and (b), observe that $U \cap X_{k}$ is open in $\left(\mathrm{X}, T_{s}\right)$.

Corollary 5.2: Any subset V closed in X is closed in (X, T_{s}).

Corollary 5.3: A subset $B \subset X$ is open (closed) in X if $B \cap X_{i}$ is open (closed) in X_{i} for; each X_{i} in S.

Notation: For the remainder of this section, ω shall denote the class of topological spaces that are coherent with some family S of subspaces.

Theorem 5.4: T_{2} is an absolute property under monotone unions in W.

Proof: Let $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ be a sequence of T_{2}-spaces and such that $x=\binom{\infty}{m} X_{i}$ has a topology coherent with $\left\{x_{i}\right\}$. Let x, y be two distinct points of x. Then for some $j \varepsilon Z^{+}$, $x, y \in X_{j}$. Since X_{j} is T_{2}, there exist open neighbourhoods U_{x}, U_{y} of x and y respectively such that $U_{x} \cap U_{y}=\varnothing$ in X_{j}. But by Lemma $5.1 U_{X}$ and U_{y} are open in $\left(X, T_{s}\right)$.

Definition 5.2: A space Y is a Urysohn space if for every distinct points $x, y \in Y$ there exist open neighbourhoods U_{X}, U_{Y} of x and y respectively such that $\bar{U}_{x} \cap \bar{U}_{Y}=\varnothing$. Corollary 5.5: The property of being a Urysohn space is aumu in class W.

Definition 5.3: A Hausdorff space Y is regular if each $Y \varepsilon Y$ and any closed set A not containing y have disjoint neighbourhoods.

Lemma 5.6: Y is regular if and only if for each $y \varepsilon Y$ and closed A not containing y, there is a neighbourhood V of Y such that $\bar{V} \cap A=\varnothing$.

Theorem 5.7: Regularity is an absolute property under monotone unions in W.

Proof: Let $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ be a sequence of regular spaces and let X be its monotone union with the weak topology induced by $\left\{X_{i}\right\}$. Given $y \in X$ and a closed subset $A \subset X$ not contained y we want open neighbourhoods U_{y} of y and V containing A with $\mathrm{U}_{\mathrm{y}} \cap \mathrm{V}=\varnothing$.

Case I: A is contained in a finite number of elements of $\left\{X_{i}\right\}$. Then for some k large enough, $y \varepsilon X_{k}$ and $A \subset X_{k}$, $Y \notin A$. By the regularity of X_{k}, there exist U_{y} and V open in X_{k}, and therefore open in X, such that $Y \varepsilon U_{Y}, A \subset V$, and $U_{y} \cap \mathrm{~V}=\varnothing$.

Case II: A is contained in infinitely many X_{i} 's. Again for some $j \varepsilon Z^{+}, y \varepsilon X_{j}$.
(i) If for this $j, A \cap X_{j}=\varnothing$. Then X_{j} being T_{2} (for it is regular) there exist $x \varepsilon X_{j}, x \neq y$, and an open neighbourhood U_{y} of y with $x \notin \bar{U}_{y}$. Then let $V=$ $x-\bar{U}_{Y} \cdot V$ is an open subset of X containing A and $v \cap U_{Y} \neq \varnothing$.
(ii) If $A \cap X_{j} \neq \varnothing$. A closed in X implies that $A \cap X_{j}$ is closed in X_{j} and therefore closed in x (Corolaries 5.2 and 5.3). Note that $y \notin A \cap X_{j}$. By the regularity of X_{j} then there exists an open neighbourhood U_{Y} of y such that $\bar{U}_{y} \cap\left(A \cap X_{j}\right)=\varnothing$ in X_{j}. (Lemma 5.6) Since $\bar{U}_{y} \cap X_{j}=\bar{U}_{Y}$, we have $\bar{U}_{Y} \cap A=\varnothing$. So let $\mathrm{V}=\mathrm{X}-\overline{\mathrm{U}}_{\mathrm{Y}} . \mathrm{V}$ is open in X , contains A and has an empty intersection with U_{Y}. Thus X is regular.

Definition 5.3: A Hausdorff space is normal if each pair of disjoint closed sets have disjoint neighbourhoods.

Lemma 5.8: Y is normal if and only if for each closed subset A and an open subset U containing A there is an open subset V such that

$$
A \subset V \subset \bar{v} \subset U .
$$

Theorem 5.9: Normality is an absolute property under monotone unions in ω.

Proof: Let $\left\{X_{i} \mid X_{i} \subset X_{i+1}\right\}$ be a sequence of normal spaces with $\left.x=(\underset{i=1}{\infty})_{i}^{\infty}\right) x_{i}$ having a topology coherent with $\left\{x_{i}\right\}$. Let C,D be two disjoint closed sets in X .

Case I: C,D are each contained in a finite number of elements of $\left\{x_{i}\right\}$. Then there exists a positive integer k large enough so that $C, D \subset X_{k}$. By the normality of X_{k}, there exist open disjoint subsets U, V in X_{k} such that $C \subset U, D \subset V, U \cap V=\varnothing$. But U and V are also open in X ; hence the assertion.

Case II: One of the closed sets is contained in infinitely many X_{i} 's. Without loss of generality, let D be contained in infinitelymany X_{i} 's. Thus for some $j \varepsilon Z^{+}, C \subset X_{j}$.
(i) If for the $j, D \cap x_{j}=\varnothing$, then the normality of X_{j} implies that for the closed set $C \subset X_{j}$ and open subset U^{\prime} of X_{j} containing C, there exists an open set V with $C \subset V \subset \bar{V} \subset U^{\prime}$ in X_{j}, by Lemma 5.8. V open in X_{j} implies V open in X. So here let $U=X-\bar{V}$. Then $C \subset V$, $D \subset U$, and $U \cap V=(X-V) \cap \bar{V}=\varnothing$.

$$
\text { (ii) If } X_{j} \cap D \neq \varnothing . \quad \text { since } C \cap D=\varnothing, C \cap X_{j} \cap D=\varnothing
$$

But D closed in X implies $D \cap X_{j}$ is closed in X_{j}. We therefore have two disjoint closed sets C and $X_{j} \cap D$ in X_{j}. By the normality of X_{j} there exists an open set U in X_{j} with $C \subset U$ and

$$
\overline{\mathrm{U}} \cap\left(\mathrm{X}_{\mathrm{j}} \cap \mathrm{D}\right)=\varnothing \text {; that is } \overline{\mathrm{U}} \cap \mathrm{D}=\varnothing
$$

Hence X is normal.
Case III: C, D are each contained in infinitely many of the elements X_{i}. Let $\left\{X_{j}^{\prime}\right\}$ be the infinite subsequence of $\left\{X_{i}\right\}$ such that either $X_{j}^{\prime} \cap c \neq \varnothing$ or $X_{j}^{\prime} \cap D \neq \varnothing$. Thus

$$
C=\bigcup_{i}^{\infty}\left(C \cap x_{i}^{\prime}\right) \text { and } D=\bigcup_{i}^{\infty} \quad\left(D \cap X_{i}^{\prime}\right)
$$

Each $C \cap X_{j}^{\prime}$ and $D \cap X_{k}^{\prime}$ is closed in X_{j}^{\prime} and in X_{k}^{\prime} respectively. Let X_{k}^{\prime} be an arbitrary element in \{ $\left.X_{j}^{\prime}\right\}$. By its normality, there exist $\mathrm{U}_{\mathrm{k}}, \mathrm{V}_{\mathrm{k}}$ open in X_{k} such that $C \cap X_{k}^{\prime} \subset U_{k}$ and $D \cap X_{k}^{\prime} \subset V_{k}$, with $U_{k} \cap V_{k}=\varnothing$. Similarly for the integer $k+1$.

Set

$$
U=\bigcup_{i=1}^{\infty} U_{i}, V=\bigcup_{i=1}^{\infty} V_{i}
$$

where U_{i}, V_{i} are the open sets satisfying the normality conditions: $C \cap X_{i} \subset U_{i}, D \cap x_{i}^{\prime} \subset v_{i}$, and $U_{i} \cap v_{i}=\varnothing$ for each X_{i}^{\prime} in $\left\{X_{j}^{\prime}\right\}$.
Claim: $U \cap V=\varnothing$. For if not, let $x \varepsilon U \cap V$. This implies that for some $i, j \varepsilon Z^{+}, x \varepsilon U_{i}$ and $x \varepsilon V_{j}$, i.e., $U_{i} \cap v_{j} \neq \varnothing$. Let $i \leq j . \quad$ Then $U_{i}, v_{j} \subset x_{j}$. We thus have $C \cap x_{i}^{\prime} \subset U_{i} \subset x_{j}^{\prime}$ which implies that there exist $U_{j} \subset x_{j}^{\prime}$ such that $C \cap x_{i} \subset \subset \cap x_{j}^{\prime} \subset U_{j}$, with $U_{j} \cap v_{j}=\varnothing$. Therefore x cannot be in U_{i} and in U_{j} : that is $U_{i} \cap v_{j}=$ \varnothing. Since x is arbitrary $\mathrm{U} \cap \mathrm{V}=\varnothing$, thus x is normal.

SECTION 6

OPEN MONOTONE UNIONS AND INVERTIBLE
PLANE CONTINUA

In this section we define open monotone union property and then apply it to some spaces. Although this property is used in spaces other than the 2-euclidean spaces, our attention is drawn mostly to the application of the property to locally connected invertible plane continua.

Definition 6.1: Let A be a topological space. A has the open monotone union property if whenever a space $X=\left(\sum_{i=1}^{\infty} A_{i}\right.$ of open sets A_{i} exists such that
(i) $A_{i} \subset A_{i+1}$
(ii) $A_{i}{ }^{T}=A$, then $\mathrm{X} \stackrel{\mathrm{T}}{=} \mathrm{A}$.

If A, A_{i} and X are in a topological space Y, we say A has the open monotone union (mu) property in Y.

Two Examples
(i) Let $A=E^{1}$ and let $A_{n}=(-n, n)$, an open interval from $-n$ to n, for each $n \varepsilon Z^{+}$. Then $A_{i} \subset A_{i+1}$ and $A_{i} T=A=E^{1}$. It is easy to see that $\underset{i=1}{(M)} A_{i} T^{T}=E^{1}$.
(ii) Again by modifying the space X in $2 \cdot 4$ so that it opens at the point $(0,1)$, let this be A with monotone increasing open intervals starting from the point $(0,1)$.

Definition 6.2: A topological space X is said to be invertible if, for each non-empty open set U of X, there exists a homeomorphism h of X onto itself such that $h(X-U) \subset U$. The map h is called an inverting homeomorphism for U.

Definition 6.3: A continuum is a compact connected set having at least two points.

Theorem 6.1: Let C be a locally connected invertible continuum in E^{2} such that C contains an open set $U, \bar{U} \neq C$. If U has the open monotone union property in C, then there exists a point $x \in C$ such that $C-\{x\}^{T}=U$.

Proof: Since $\bar{U} \neq C$, let V_{1} be closed in $C-\bar{U}$ such that $V_{1} T=C-U=V, C-V_{1} T_{i}=U$. Let V_{2} be an open set of diameter $1 / 2$ with $V_{2}{ }^{T}=V, \bar{V}_{2} \subset V_{1}$. Let V_{n} be the $\mathrm{n}^{\text {th }}$ open set of diameter $1 / n$ and such that $V_{n} T_{=} V, C-V^{T}=U$ as before. We thus get a sequence $\left\{\mathrm{V}_{\mathrm{i}}\right\}$ of open sets $\bar{v}_{i+1} \subset V_{i}$ and $\bigcap_{i=1}^{\infty} V_{i}=x$, say. Then

$$
\left(\underset{i=1}{\infty}\left(C-v_{i}\right)=c-\{x\},\right.
$$

hence the theorem.

enuoth

The next result is a slight generalization of Theorem 6.l. It is found in Doyle [4], but it is given here for the continuity of our presentation.

Theorem 6.2: Let C be an open connected set in E^{1}. If C has the open monotone union property, then $C{ }^{T}=E^{n}$. Proof: Since C is embeddable as an open set in S^{n}, there is a topological copy C^{\prime} of C in E^{n} and \bar{C}^{\prime} is compact. Then in $E^{n}, C '$ lies interior to a sphere of radius r. Assume that the origin is in C^{\prime} or else there exists a transformation which can perform the shifting. Then the sphere of radius r lies interior to a copy $C "$ of C^{\prime}. By continuing this construction and making spheres at least one unit larger in radius, we get a sequence $\left\{C^{(n)}\right\}$ of copies of C and $\left(M^{\infty}\right) C^{(n)}=E^{n} . \quad\left(C^{\prime}=C^{(1)}\right.$ and $C "=C^{(2)}$ here). So if C has the open monotone union property, it is E^{n} topologically.

Theorem 6.3: Let $U G M$ have the omu property in $M, \bar{U} \neq M$ where M is an invertible plane continuum. Then there exist $U_{1}, U_{2} \subset M$ such that $U_{1} \subset U \subset U_{2}$ with U_{1}, U_{2} having the omu property in M and $U_{1}{ }^{T}=U^{T}=U_{2}$.

Proof: Let $\left\{M_{j}\right\}$ be a sequence of open sets in M with $M_{j} \subset M_{j+1}, M_{j} T_{=U}$ and

$$
U^{T}=\underset{j=1}{(M)} M_{j} \subset M
$$

Let $h_{j}: M_{j} \rightarrow U$ be a homeomorphism of M_{j} onto U (the existence of such an h_{j} being asserted by the fact that each $\left.M_{j}{ }^{T}=U\right) . \quad$ Then $h_{j}^{-1}(U) \subset M_{j} \subset M_{j+1}{ }^{T}=U$. Let $i: M_{j} \longrightarrow M_{j+1}$ be the inclusion map and consider the following diagram.

Thus it is clear that for each j, the equations

$$
\text { (i) } h_{j+1} \cdot i \cdot h_{j}^{-1} \text { (U) } \subset U
$$

and

$$
\text { (ii) } h_{j+1} \cdot i \cdot h_{j}^{-1} \text { (U) } \neq U
$$

hold since it is assumed that $M_{j} \neq M_{j+1}$. So let $U_{1}=h_{j+1} \cdot i \cdot h_{j}^{-1}(U)$.

Claim: (i) U_{1} has the open monotone union property in M : Since U has the omu property, $M_{j}=h_{j}^{-1}(U)$ has the omu property. But the inclusion map equally preserves this property; hence $i \cdot h_{j}^{-1}(U) \subset M_{j+1}$ has the said property in M. Similarly since h_{j+1} is a homeomorphism, $h_{j+1} \mid\left[i \cdot h_{j}^{-1}(U)\right]$ is a homeomorphic image of $i \cdot h_{j}^{-1}$ and therefore has the omu property; that is $h_{j+1} \cdot i \cdot h_{j}^{-1}(U)=U_{1} \subset U$ has the open monotone union property.

Net let $\left\{M_{j}\right\}$ be the aforesaid sequence. Then for each $k, U^{T}=M_{k}$. So let $h_{k}: M \longrightarrow M$ be a homeomorphism of M onto itself such that $h_{k}\left(M_{k}\right)$ is topologically equivalent to U. Since $M_{k} \subset M_{k+1}$, we have $U=h_{k}\left(M_{k}\right) \subset h_{K}\left(M_{k+1}\right)$ (proper inclusion).

So for the desired U_{2}, pick any k such that $M_{k} T_{T} U$, select a homeomorphism h_{k} of M onto itself with $\mathrm{h}_{\mathrm{k}}\left(\mathrm{M}_{\mathrm{k}}\right)=\mathrm{U}$, and let $\mathrm{U}_{2}=\mathrm{h}_{\mathrm{k}}\left(\mathrm{M}_{\mathrm{k}+1}\right)$ thus obtaining $\mathrm{U} \subset \mathrm{U}_{2}=$ $h_{k}\left(M_{k+1}\right)$.

Claim: (ii) U_{2} has the omu property: For since h_{k} is a homeomorphism, we can choose $h_{k} \mid M_{k}$ as an inclusion of M_{k} in M_{k+1}, hence a homeomorphism. Thus if U has the omu property, so does $h_{k}\left(M_{k+1}\right)$.

Next since $U_{1}{ }^{T}=U$ by the homeomorphism of the composite function $h_{j+1} \cdot i \cdot h_{j}^{-1}$ and $U^{T}=U_{2}$ by a similar process as described above, and since U_{1} and U_{2} have the omu property as claimed, we can repeat the process by substituting U_{1} for U and U_{2} for U respectively to obtain the desired result.

Theorem 6.4: If $U \subset M$ is a nondense open set having the open monotone union property in an invertible plane continuum M, then U is connected.

Proof: From Theorem 6.1, there exists an x in M such that $M-\{x\}^{T}=U$. Since U has the omu property, there exists a strictly increasing sequence $\left\{U_{i}\right\}$ of copies of U such that
$U=\underset{i=1}{(M)} U_{i}$ so that we now have

$$
\mathrm{U}^{\mathrm{T}}=\underset{i=1}{(M)} \mathrm{U}_{i} \mathrm{~T}=\mathrm{M}-\{\mathbf{x}\} .
$$

From Theorem 6.3, there exist sets $0_{1}, 0_{2} \subset M$ such that $0_{1} \subset U \subset 0_{2}, O_{1}$ and 0_{2} have the omu property in M and $0_{1} T^{T}=U{ }^{T}=0_{2}$. By the same theorem there exists 0_{i} such that $0_{i} \subset 0_{1}$ with the properties just mentioned above. So suppose P_{1} is a component of U. Then there exists a copy P_{2} of P_{1} such that $U_{1} \subset P_{2}$. But $P_{2} \subset U_{3}$ since $\mathrm{P}_{2} \subset \mathrm{U}^{\mathrm{T}}=\mathrm{U}_{2} \subset \mathrm{U}_{3}$. We thus have inductively

$$
U_{2 i-1} \subset P_{2 i} \subset U_{2 i+1} \subset \ldots \ldots \ldots
$$

For each $i, U_{2 i-1} U P_{2 i}$ is an open (for each of U_{j-1} and P_{j} is open), connected (since $U_{j-1} \subset P_{j}, j=2 k, k \varepsilon Z^{+}$) set; therefore

$$
\left(\underset{i=1}{(M)}\left(U_{2 i-1} U P_{2 i}\right)\right.
$$

is open, connected and is a strictly increasing union of copies of U, thus U is connected.

Definition 6.4: A point p of x is said to be a cut point of X if $\mathrm{X}-\{\mathrm{p}\}=\mathrm{Y} U \mathrm{Z}$ where Y and Z are separated; otherwise p is a non-cut point of X.

Corollary 6.5: Let C, U, and x be as in Theorem 6.1.
Then x is not a cut point of x.

Proof: If x were a cut point and $C-x \quad T=U=Y U Z$, where Y and Z are separated, then U is not connected thereby contradicting Theorem 6.4.

Theorem 6.6: Let S^{1} be the l-sphere and suppose $U \subset S^{1}$ is a connected nondense locally connected open set in s^{1}. Then U has the omu property in S^{1}.

Proof: Let p be any point of S^{1}. For some $\varepsilon>0$ let ($p-\varepsilon, p+\varepsilon$) be an ε-neighbourhood of p and call it V_{1}. Let $\mathrm{V}_{2}=(\mathrm{p}-2 \varepsilon, \mathrm{p}+2 \varepsilon)$ and so $\mathrm{V}_{1} \subset \mathrm{~V}_{2}$. In general, let $\mathrm{V}_{\mathrm{n}}=$ $(p-n \varepsilon, p+n \varepsilon)$. Then $V_{i} \subset V_{i+1}$ and $V_{i}{ }^{T}=U$. Since $U T\left(\underset{i=1}{(M)} V_{i}\right.$, U has the desired property in S^{1}.

Remark 1: The same proof goes for any open connected non-dense locally connected set U in S^{n}, for $n>1$.

Remark 2: The property of connectedness in 6.6 cannot be dispensed with since by 6.4 it has been shown that if U is not connected, U may fail to have the omu property in $S^{1}\left(S^{n}\right)$.

Definition 6.5: Let X have the open monotone union property, and suppose $\left\{A_{i} \mid A_{i} \subset A_{i+1}\right\}$ is the sequence for which $A_{i}{ }^{T}=X$ and $\underset{i=1}{(M)} A_{i}{ }^{T}=X$. Then for each i, A_{i} is called the monotone subspace of X.

Theorem 6.7: Let x have the open monotone union property in an invertible plane continuum M, and let $D \subset M$ be a
compact subset of $M, D \neq M$. Then D can be imbedded in one of the monotone subspaces of X .

Proof: Let $D \subset M$ be compact, $D \neq M$, and let h be an inverting homeomorphism of M. D being compact, $M-D$ is open. We can as well assume that the homeomorphism h is such that $h(D) \subset M-D$. It is also clear that $h(D) \neq M-D$. By Theorem 6.1, there exists a point x in M such that $M-\{x\}^{T}=X$. Since $h(D) \subset M-D \subset M-\{x\}$ for such a point x, we have $h(D) \subset M-\{x\}^{T}=x=\left(\underset{i=1}{(M)} x_{i}\right.$ where $\left\{x_{i} \mid x_{i} \subset x_{i+1}\right\}$ satisfies the definition of X having the omu property. But now $h(D)$ is compact, hence $h(D)$ lies in a connected subset of $M-D$. By the monotonicity of the sequence $\left\{x_{i}\right\}$ we see that $h(D)$ lies in one of the X_{i} 's which is a monotone subspace of x; hence the theorem holds.

1. Bing, R. H., "A connected countable Hausdorff space," Proc. Amer. Math. Soc. 4 (1953) 474.
2. Brown, M., "The monotone union of open n-cells is an open n-cell," Proc. Amer. Math. Soc. 12 (1961) 812-814.
3. Doyle, P. H., "On monotone unions of manifolds," Proc. Amer. Math. Soc. 19 (1968) 854-856.
4. Doyle, P. H., "Topics in topological manifolds" (Notes).
5. Dugundji, J., Topology, Allyn and Bacon (1966).
6. Hocking, J. G. and Young, G. S., Topology, AddisonWesley Pub. Co. (1961).
7. Huntington, E. V., The Continuum, and other types of serial orders, Harvard Univ. Press (1917).
8. Hurewicz, W. and Wallman, H., Dimension Theory, Princeton Univ. Press (1941).
9. Jones, F. B., and Young, G. S., "Product spaces in n-manifords," Proc. Amer. Math. Soc. 10(1959) 307-308.
10. Kapoor, S. F., "Inverting and monotone properties of complexes," Thesis, Mich. State Univ. (1967).
11. Kwun, K. W., "Open manifolds with monotone union property," Proc. Amer. Math. Soc. 17 (1966) 1091-1093.
12. Whitehead, J.H.C., "A certain open manifold whose group is unity," Quart., J. of Math (Oxford), 6(1935) 268-279.

