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ABSTRACT

ROBUSTNESS AND POWER OF MULTIVARIATE TESTS

FOR TRENDS IN REPEATED MEASURES DATA

UNDER VARIANCE-COVARIANCE HETEROGENEITY

BY

Gabriella M. Belli

Multivariate statistics are subject to the assumption

of homoscedasticity (iAL, equal covariace matrices across

groups). In a repeated measures (RM) design with time

ordered data, three hypotheses are tested: (1) between-

group differences, (2) within-group trends over occasions,

and (3) group by occasion interactions. Although the

effects of assumption violation on tests of the between-

group hypothesis have been investigated, the effects on

tests of within-group and interaction hypotheses have not.

An argument is presented indicating that multivariate tests

for interactions should behave like between-group tests,

but that tests for within-group trends should not.

The primary purpose of this Monte Carlo investigation

was to determine whether heteroscedasticity has a

differential effect on the robustness of multivariate tests

of main effects in a RM case. A secondary purpose was to

evaluate the robustness and power of multivariate tests of

two within-group hypotheses: (1) overall tests of trends,

and (2) subsequent tests of trends higher than linear,
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Gabriella M. Belli

under various combinations of number of groups and equal

sample sizes.

The test statistics were: Roy's largest root, R,

Hotelling-Lawley trace, T, Pillai-Bartlett trace, V, and

Wilks' likelihood ratio, W.

The following are the major conclusions drawn from the

investigation. (1) Multivariate tests of within-group

trends are considerably more robust to heteroscedasticity

than are multivariate tests of between-group differences.

(2) Within-group tests of trends higher than linear are

slightly more robust than overall tests of trends.

(3) Departures of empirical Type I error from nominal alpha

for within-group tests increase as heterogeneity, sample

size, or alpha increase, but not as dramatically as for

between-group tests. (4) Increasing the number of equal

groups does not have a consistent detrimental effect on

robustness of within-group tests. (5) For low and moderate

heterogeneity (i.eu, covariance matrices differing by

factors of two or four), power of within-group tests

increases as total sample size, N, increases. (6) For high

heterogeneity (i.e., covariance matrices differing by a

factor of nine), power of within-group tests increases with

a decrease in the number of discrepant score vectors,

rather than with an increase in N.
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CHAPTER I

STATEMENT OF THE PROBLEM

Classical experimental research involves investigating

the effect of manipulating one or more independent

variables on a single dependent variable. This involves

either testing the null hypothesis of equal group means

against a general alternative or testing for specific

planned comparisons among the group means. The test

statistic used is the F-test (or t-test for two groups).

Given parametric assumptions, this is the uniformly most

powerful test that is invariant with respect to linear

transformations (Scheffé. 1959).

Generalizing to the multivariate case, where there are

two or more dependent variables (say, p). the corresponding

null hypothesis is that of no differences among the I: group

vectors. where each vector consists of the group means on

the p dependent measures. The F-test is a univariate test

statistic, and several generalizations of it have been

proposed for significance testing in the multivariate case.

Among those tests that are invariant under linear

transformation of the dependent variables, Hotelling's T2

statistic is the uniformly most powerful for one-sample

tests of means and two-sample tests of mean differences

(Anderson. 1958).



Four other commonly used test statistics are Roy's

largest root. R. Hotelling-Lawley trace. T. Pillai-Bartlett

trace. V. and Wilks' likelihood ratio. W. However. for

situations where there are multiple dependent variables or

more than two groups. no test has emerged that is both

invariant with respect to linear transformations and

uniformly most powerful.

A specialized case of the multivariate analysis of

variance (MANOVA) deals with situations where the same

measure is repeatedly taken over the same individuals. The

design on the measures. or occasions of testing. may

reflect the passage of time. with the same measure taken at

equally spaced intervals. or it may represent a factorial

structure. with the same measure taken after various

treatment interventions. In addition to the usual

multivariate hypothesis of group differences. hypotheses

about the occasions and. if there are multiple groups.

about group by occasion interaction may be tested. The

null hypothesis for occasions is that of no differences

among the p occasion vectors. where each vector consists of

the occasion means for the k groups. ‘When there is only

one group or when no group by occasion interaction exists.

of even greater interest is the testing of hypotheses about

the trend the data follow. assuming equally spaced time

points. or about contrasts among the various measures.

assuming a factorial design. Tests for these hypotheses
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are all within-group tests as opposed to between-group

tests in the usual MANOVA sense.

In both the univariate and the multivariate cases. the

test statistics used are based on certain distributional

assumptions. These are that the random errors or error

vectors for the p measures are: (1) independently and

(2) normally or multivariate normally distributed (3) with

a common variance or variance-covariance matrix.

Violations of these assumtions may lead to erroneous

conclusions. However. if a particular test is insensitive

to violation of one or more of the assumptions when the

null hypothesis is true (i.eu. if it leads to conclusions

similar to what would be expected given the assumptions).

then the test is said to be "robust" with respect to the

violation.

The assumption of independence is critical and no test

can favorably withstand its violation. Non-independence of

the observartions or of observational vectors due to faulty

operationalization of experimental design is a serious

threat to nominal alpha levels. In univariate situations.

the F-test for fixed effects has been shown to be fairly

robust with respect to violation of normality and. for

balanced designs. of homogeneity (see Glass. Peckham. and

Sanders. 1972). However. severe departure from nominal

significance level may occur under heterogeneity conditions

when samples are small and unequal (Scheffé. 1959).
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Regarding between-group differences in multivariate

situations. the several tests respond differently to

violations of the assumptions (for a review. see Ito.

1980). Generalizing. it may be said that robustness

results for fixed effects of at least some of these tests

are similar to those in the univariate case. They are

robust to non-normality and also fairly robust to

heteroscedasticity (i.e.. violation of homogeneity of

variance and covariance) in balanced. two-group designs.

but are not so for unbalance designs. However. even with

two groups. the tests become liberal with increases in

number of dependent variables or amount of heterogeneity.

With more than two groups. tests are robust only if samples

are equal and extremely large. If they are unequal. even

moderate heterogeneity has large effects on significance

level and power (Ito and Schull. 1964).

To date. no studies have considered the robustness to

violation of multivariate test assumptions for tests of

within-group differences in a repeated measures (RM)

situation. Due to the nature of RM studies. Morrison

(1976) states that I'many experimental conditions which lead

to higher mean values may also produce responses with

larger variances" (p. 141). Different populations are

likely to respond differently to successive measurements or

treatment conditions. thereby also causing correlations

between measures to differ from group to group. This is



particularly true in studies of naturally occurring groups

(e.g.. a comparison of learning disabled and normal

children on learning retention rates over time). Subjects

within a classification group may be expected to respond in

a similar fashion. but it is unrealistic to expect that

scores for the two groups come from the same multivariate

normal population. Hence. it is important to determine the

validity of the multivariate tests of RM in the presence of

heterogeneity conditions.

Just as findings from robustness studies for tests of

between group differences have parallels in the univariate

and multivariate cases. it may be presumed that similar

parallels would hold for tests of within-group differences

when homogeneity is violated. However. results from mixed-

model RM studies would not apply to multivariate tests

since the univariate tests are based on the assumptions of

equal variances and equal pairwise correlations across the

measures. which are unnecessary for multivariate tests to

be valid. 'The effect on within-group tests when using a

covariance matrix that is pooled from heterogeneous

population covariance matrices is not known.

The robustness of a parametric test is idiosyncratic

rather than general with respect to any violation and

changes in one parameter may produce different levels of

departures from nominal significance level. Tests of

within-group differences are based on transformations of



the dependent variables and the assumptions are made on the

transformed scores. It will be shown in Chapter II that

multivariate tests of between-group and within-group

differences are based on sums of squares and cross products

(SSCP) matrices that are different in both form and size.

and that the relationship between the eigenvalues needed

for calculating the test statistics for the two tests is

not obvious. Hence. it is not possible to predict the

behavior of one type of test from that of the other. Since

the current robustness results from studies of multivariate

between-group tests may not apply directly to within-group

tests. separate investigations need to be made.

Furthermore. subtests of particular trends for RM data

make use of subcomponents of the appropriate SSCP matrices

for hypothesis and error. Since it is known that between-

group tests become more robust with lower dimensionality of

variables. it is expected that tests of successively higher

order trends should show greater robustness than tests of

lower order trends.

The present research was an investigation of the

robustness and power of multivariate within-group tests for

a repeated measures design with the same measure taken over

a series of equally spaced time points. Non-normality does

not seem to cause serious problems under any circumstances

thus far investigated. whereas heterogeneity may be a

serious problem in certain cases. Therefore. given that
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heterogeneity is typically a violation of greater concern.

the focus of this study was limited to the effect that

violation of the assumption of a common covariance matrix

has on the sampling distributions of four multivariate test

statistics.

The purpose of the first part of the investigation was

to determine whether tests of between-group and within-

group hypotheses differ in their reactions to heterogeneous

covariance matrices across groups. The second part was to

examine whether covariance matrix heterogeneity produces

differential effects on within-group tests when the number

of groups or of subjects within groups are varied. Third.

comparisons were made between overall tests of trends and

tests of non-linearity. In all cases. actual significance

levels obtained under a true null hypothesis and a given

amount of heterogeneity were compared to nominal values.

Also. actual powers for within-group tests obtained under a

true alternative and a given amount of heterogeneity were

compared to expected nominal powers if no violation was

present.

The following chapters will present the general

multivariate and repeated measures models. along with their

hypotheses and test statistics. a review of the robustness

literature. the method used for investigating robustness

and power of multivariate within-group tests. results and

discussion of results.



CHAPTER II

MULTIVARIATE ANALYSIS OF VARIANCE

In this chapter. the mathematical models for the

general multivariate analysis of variance (MANOVA) and for

the multivariate generalization to repeated measures (RM)

are described. These are followed by a description of the

hypothesis testing procedures through the separation of the

total source of variation into component parts. the tests

of significance used in multivariate analyses. and the

assumptions on which they are based. The final section

deals with a comparison of the sums of squares and cross

products (SSCP) matrices used to test between-group and

within-group differences.

General_nultixariare_Linear_nodel

Assuming there are nj (3' = l.....k) independent

observations in each of k groups. the ith observation in

the jth group is a pxl vector consisting of a constant term

A. a group effect 21. and a random error component iij

Yij ' E|+ Ej + Eij'

The Y13 and the sij are distributed in the population of

subjects as No.1,. 2) and N(D_. 2). respectively. where 2 is

any pxp symmetric positive definite matrix.

The null hypothesis tested in MANOVA is that the pxl

mean vectors of all groups are equal.



Ho: £1 I 2,2 I ... 3 11-k-

By letting Ej - g,+ gj. this hypothesis is equivalent to

testing that all the 221 - 0 (i.e.. that all the treatment

or group effects are equal) (Bock. 1975).

The general MANOVA model for k group means may be

expressed in matrix terms as

Y. 8 A3 + E.

where:

Y. - a kxp data matrix of k group means on p measures

A I a kxm known design matrix

. an mxp matrix of unknown paramenters

E. - a kxp matrix of random errors

The error matrix B. is distributed N(Q5D‘10£) where

D a diag(n1.n2.....nk)-

Since A typically is not of full rank. A'1 does not

exist. and therefore solving for the unknown parameters is

not possible. One solution is to reparameterize the model.

which may be done by factoring A into the product of two

matrices. K and L.

A 8 KL

where L is an lxm contrast matrix that describes a set of

1 linear combinations of the paramenters in : and K is the!

corresponding kxl column basis for the design matrix A.

Then.

E(Y.) =- A5 = KLE = K9

where e is an lxp matrix of new paramenters describing the



resulting linear combinations that reflect the research

interest regarding differences among the groups (Bock.

1975. pp. 239-240).

WWW

Multivariate analysis of variance of repeated measures

(MANOVA of RM) is a variation of MANOVA that includes a

test for the occasions or repeated measures. What

distinguishes these data from general multivariate data is

that in RM the multiple dependent scores are assumed to be

in the same metric (i.e.. having the same origin and unit).

whereas in general the scores are qualitatively distinct

(i.eu. having different origin and unit).

The underlying model for the ith observation in the

jth group is a pxl vector that contains a component for

occasions 1. for groups gj. and for random subject error

Eij'

lij - l + Ej + 513.

As before. the gij are distributed N(.0,. 2 ). But. unlike

the general MANOVA model. where the common term a does not

provide any additional information. the common term in this

model. 1. represents a pxl vector of constants and general

means for the p occasions. The second term. fljr is a 931

vector of effects for the jth group that incorporates both

group and group by occasion interaction effects. The model

allows for a design on the occasions and a design on the

subjects (Bock. 1975).
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In the one-sample case or. assuming no interactions.

in the k-sample case. the objective is to characterize the

occasion vector 1. The appropriate characterization

depends on the structure of the repeated measures

dimension. If the measures correspond to points along a

continuum. a polynomial representation is used.

.1; - X f

where x is a regression model matrix and 8, is a vector of

unknown regression coefficients. If the measures

correspond to a factorial classification. then a treatment

contrasts and interaction representation is used.

1 = A.§

where A is a design matrix for the occasions and g is a

vector of unknown occasion effects. In the former case. x

is of full rank while. in the latter case. A is not and the

model may be reparamenterized a second time. While this

reparamenterization follows the same pattern as before.

with A .. KL. A is now the design matrix for the occasions

and not for the groups.

Under the usual MANOVA model. the general occasion

effect 1 is not estimable and hypotheses on it are not

testable in the presence of group effects. Bock (1963) and

Potthoff and Roy (1964) have suggested a variation of

MANOVA that involves transforming the dependent variables

to within-subject differences. A new set of measured

variables is formed as linear combinations of the original

11



measures.

Yij" 3 P'yij

where P is a matrix representation of the design over the

measures. In terms of the previous discussion of the

characterization of 1. P is either: (1) the regression

model matrix x, if the measures are taken at ordered time

points or (2) the orthonormalization of K. where K is the

basis for the reparameterization of A. the design matrix

for the occasions.

Assuming a full rank model for group means. the

transformation in matrix terms consists of postmultiplying

the components of the MANOVA model by a known matrix P.

which may be any pxq matrix. Preferably. P should be an

orthogonal matrix and this is now assumed. Then.

Y.P 8 K9 P + E.P

or equivalently.

Y.* = KO P + E.*

where:

Y.*= a kxp matrix of transformed scores

K = a kxl basis matrix for transformations on groups

9 a an lxp matrix of parameters

P = a pxp basis matrix for transformations on occasions

E.*- a kxp matrix of transformed errors

Analysis now proceeds as usual with the transformed

scores in Y.* replacing the original dependent measures.

The fact that the standard procedures apply can be seen

12



since the transformation

2. - Y.*P'1

reduces the RM model to a standard MANOVA.mode1 (Timm.

1980. p. 76). Furthermore. if P is orthogonal (i.e..

P'P - I). so that P‘1 s P”. each vector of scores may be

transformed using P'. as was shown previously. When P is

either non-singular or has rank p. the transformation has

nice properties with respect to the distributional

assumptions. Given that the yij are independent and

distributed N(£.2). then the Yij* are also independent and

are distributed N(P'u. P'XP) (Bock. 1975. p. 140).

Three basic hypotheses are of interest with k-sample

RM data. These deal with comparisons among the mean curves

or profiles of the groups. and may be phrased in terms of

the following questions: (1) Are the curves or profiles of

the k groups parallel? (2) If parallel. are they also

coincident? and (3) If coincident. are they also constant?

(Bock. 1975). The first question is asking about the

presence of any group by occasion interactions. The second

relates to group differences and the third to occasion

differences.

Subhypotheses to assess the effect of the treatment

structure or the trend over the occasions may also be

tested. Assuming a polynomial representation for the RM

dimension. this involves partitioning the sources of

variation for occasion and for group by occasion into

13



constant. linear. quadratic. etc. terms. Then a

hypothesized trend may be tested by a multivariate test

that all higher order trends are zero. The interpretation

for these tests on occasions is straightforward and relates

information about the type of trend the RM follow over

time. However. a q-degree trend among the interactions

implies that “any contrast among the groups can presumably

be described as a polynomial of this degree. For example.

a degree-2 interaction would imply that differences between

groups. in addition to a possible linear trend. are

accelerating or decelerating with respect to occasions"

(Bock. 1975. p. 474).

H I] . T l'

The multivariate hypothesis testing stage involves

partitioning the sums of squares and cross products (SSCP)

matrix for total variation into a constant. a between-

groups. and a within-groups part. The MANOVA table for the

general multivariate analysis is given in Table 2-1

(adapted from Book. 1975).

The SSCP matrices for RM may be calculated directly by

substituting Y* for Y in Table 2-1. The same results may

be obtained by transforming the MANOVA SSCP matrices as

shown in Table 2-2 (Bock. 1975).

14



Table 2-1

Multivariate Analysis of Variance (k-sample case)

 

 

Source of df SSCP (pxp)*

Variation Equal n's General

Constant 1 0c - (n/k)Y.'ll'Y. (1/N)Y.'Dll'DY.

(occasion effect)

Between groups k-l Qb a ny.'y. - Qc Y.'DY. - Qc

(group effect)

Within groups N-k Qw = Y'Y - nY.'Y Y'Y - Y.'DY.

error

Total N Qt a Y'Y Y'Y

 

* where D = diag(n1.....nk) and l a a unit vector.

Table 2-2

Multivariate Analysis of Variance for Repeated Measures

 

 

Source of Variation df SSCP (pxp)

Constant 1 QC* 8 P'QCP

Between groups k-l Qb* = P'QbP

Within groups error N-k Qw" = P'QwP

Total N Qt* = P'QtP
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The multivariate test statistics are functions of the

appropriate SSCP for hypothesis and error (say. H and B.

respectively). The MANOVA hypothesis of equal group means

may be tested by setting H - Qb and B - Qw' For RM. the

matrices in Table 2-2 may be partitioned in the following

manner:

Qc* ‘ PC 1 1 Qb* ’ Pb : 1 Qw* 8 'w : 1

--T---- --T......F"“
I I I

:c :3 :w

L.‘ J b. . L'J      

Assuming a polynomial decomposition. the scalars c. b. and

w represent the sums of squares for constant. group effect.

and error terms that would be used in a univariate

analysis. The (p-1)x(p-l) matrices C. B. and W are the

SSCP for occasion effects. group by occasion effects. and

subject within group by occasion error. The diagonal

elements of these submatrices are the univariate sums of

squares for the respective linear. quadratic. etc. trends.

Table 2-3 shows how these matrices are used for the three

omnibus tests in a RM situation.

With no group by occasion interaction. the full

matrices 0b* and Qw* are the H and E matrices for group

effect and corresponding error for a multivariate test of

group differences. When P is orthogonal. a test using

these transformed matrices gives the identical results as

with Oh and Qwr because test statistics based on either

determinants or trace functions remain invariant under

16



orthogonal transformation (Anderson. 1958. p. 277).

Table 2-3

SSCP Matrices for RM Tests

 

 

Hypothesis H B Dimension

parallelism (interaction) 3 w (p-1)x(p-1)

Coincidence (group effect) Qb* Qw* pxp

Constancy (occasion effect) C W (pP1)x(p-l)

 

The submatrices C. B. and W may be partitioned further

to provide tests for particular trends. To test for any

q<p degree trend in the data. H and E are submatrices V

corresponding to the lower right (p—qu)x(p—q-1) corners of

the appropriate matrices (Bock. 1975. p. 480). The

required submatrices would be of rank p-q-l and may be

represented by another transformation. R. such that

39* - R'H*R and Eq* - R'E*R

where.

R = 0 (q+1) rows

I (p-q-l) rows

(p-q-l) columns

For example. let p = 5 and a linear trend (q = 1) be

hypothesized. Then RF. with rank p-q-l = 3. is

R' . o o :1 o o

o o .o 1 o

o o :o o 1

17



yielding the lower right 3x3 corners of the 5x5 SSCP

matrices to test if trends higher than linear are zero.

W

The multivariate tests of significance are derived

under the assumptions of multivariate normality and

independence between pairs of subjects. The observed data

vectors are independent random samples from a population in

which any linear combination of variables in the observed

vector is normally distributed (Harris. 1975. p. 231). In

terms of the error components. the distributional

assumptions are that the errors for the p measures for each

subject are independently distributed and follow a p-

variate normal distribution with expectation zero and a

common pxp covariance matrix. )3. Whenever more than one

group is involved. it is assumed that the sampled data for

all groups come from populations that have identical

covariance matrices (Harris. 1975. 5x 231).

Numerous criteria are available to test multivariate

hypotheses. However. they are all functions of the non-

zero characteristic roots. or eigenvalues ii, of HE'lr

where H and E are SSCP matrices due to hypothesis and

error. respectively. These roots may be obtained by

solving the determinental equation

[3 - ml = o.

For this equation to have real-valued solutions. it is

necessary for E to be positive definite (i.e.. that the

18



quadratic form x'Ex > 0 for all x =- 0) (Anderson. 1958.

p. 337). This will usually be the case if the number of

dependent variables (p) is less than the degrees of freedom

for error (dfe).

Let 11 z 12 2 ...z 13 > 0 where s - min(dfh. u) with

dfh 8 degrees of freedom for hypothesis and u - the number

of variables after any transformation. Then. four commonly

used multivariate test criteria are defined in Table 2-4

(Timm. 1975). These are exact tests. with known central

and noncentral distributions. When 3 - l (i.e.. if p a l

or k - 2). they are equivalent and may be represented as an

exact P distribution. There also are P approximations for

the multivariate tests (see e.g.. Tatsuoka. 1971).

The only parameters necessary to define the

distribution of the statistics under valid assumptions and

true null hypothesis are number of variates. degrees of

freedom for hypothesis. and degrees of freedom for error

(Ito. 1962). .Additionally. noncentrality parameters are

needed under true alternatives. Based on these parameters.

Timm (1975) provides tables for the upper percentile points

of R. T. and V and for the lower percentile points of W.

The null hypothesis is rejected at significance level a if

the obtained value of W is less than the 100a-centile of

the null distribution. For the other tests. the null is

rejected if the obtained value of a statistic exceeds the

100(1-o)-centile of the corresponding distribution.
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Table 2-4

Multivariate Test Statistics

 

Roy's largest root R 3 _il_

1+1l

s

Hotelling-Lawley trace T = 2 xi = tr(HE"1)

181

s

Pillai-Bartlett trace v - 2 _’)j_ . tr(H(H+E)'1)

1+Ai

i=1

8

Wilks' likelihood ratio w . H_1_ = lsl-(|H+E|)'1

i=1ini
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.Thenretica1_£nmnaxison_of_Tests

Although the multivariate test statistics for tests of

between-group and within-group differences are identical.

they operate on different.SSCP matrices. The question of

interest. then. is whether these matrices. whose expected

values are functions of the common covariance matrix. are

equally subject to violations of homoscedasticity. The

following discussion outlines the relationship between the

matrices used for the two tests.

Multivariate test criteria are functions of the

eigenvalues of HE'l. where H and E are the SSCP matrices

for hypothesis and error. respectively. For a within-group

test HE'1 is the lower (p-1)x(p-l) submatrix of the

appropriately transformed

QcQw'l (1)

and for a between-group test. it is the pxp matrix

chow-1 (2)

where QC. 0b! and Qw are defined in Table 2-1.

From the robustness literature. which is reviewed in

Chapter III. we have general conclusions about the effects

of particular types of homogeneity violations in the

population covariance matrices when (2) is used to test for

group differences. These results are based on

distributions of the p eigenvalues of (2).

Tests for group by occasion interactions are based on

the eigenvalues of the order-(p—l) submatrices of (2).

21



Since the same SSCP matrices are used for both interaction

and between-group tests. the lower dimensionality in the

portion of those matrices used for interaction tests should

tend to make them slightly more robust than the between-

group tests.

Tests of occasion differences with RM data are based

on the p-l eigenvalues of the order-(p—l) submatrix of (1).

By substitution.

QcQw-l = (Y.'DY. - Qb)Qw'l

. (Y.'DY.)Qw'1 - obow'l.

Even though a relationship exists between matrices (1) and

(2). knowledge about the distributions of eigenvalues of

(2) does not provide direct information about the

distribution of eigenvalues of (1). Since within-group

tests are actually based on a submatrix of (1). it would

further be necessary to establish the relationship between

the p eigenvalues of the full matrix (1) and the (p-l)

eigenvalues of the submatrix used for these tests in order

to fully specify the relationship between the matrices for

the two types of tests.

Bach subsequent within-group test of successively

higher order trends is based on submatrices of (l). which

decrease in dimension. Therefore. each test of a higher

order trend should result in slight increases in robustness

over the previous within-group test.

22



It is not obvious whether heterogeneity in the

population covariance matrices would differentially effect

the robustness of between-group and within-group tests and

the mathematics needed to demonstrate the necessary

relationships are intractable. Therefore. an empirical

study was conducted to determine if the distributions for

any of the four multivariate test statistics presented

earlier are comparable for testing the two types of

hypotheses. In this way. it could be determined if the

tests respond similarly to the same violation to

homogeneity; .A further comparison of the robustness

between within-group tests for any trend across time and

the subsequent tests for trends higher than linear was also

conducted. The study involved the simulation of a large

number of experiments so that the actual significance

levels could be compared to nominal levels with minimal

standard error.

The second part of the study was an investigation of

the effects on robustness and power of within-group tests

when sample size and number of groups are varied.
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CHAPTER III

REVIEW OF THE LITERATURE

Consequences of assumption violations have been

thoroughly investigated for univariate test statistics from

both the large sample and small sample points of view.

Only recently have similar studies been undertaken for

multivariate test statistics. While some of this work has

been theoretical. involving large sample theory and

asymptotic approximations. most of it has been empirical.

Since the mathematics involved in a theoretical study of

multivariate statistics are quite complex. Ito and Schull

(1964) remarked that ”the small sample treatment of the

problem ... is very difficult if not impossible” (p. 72).

Researchers in the multivariate area have focused on a

one-way fixed effects classification for the independent

factor and have considered tests of between-group

differences on multiple dependent measures. Robustness

studies of within-group tests have dealt only with

violations of the univariate mixed-model assumptions of

equal variances and covariances across the repeated

measures (RM). Typically. comparisons have been made

between the usual F-test and the I? adjusted by a correction

factor (e.g.. Collier. Baker. Mandeville. and Hayes. 1967)

or between univariate and multivariate analyses (e.g..
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Scheifley. 1974). However. in all cases with more than one

group. groups were assumed to have a common covariance

matrix.

The following review will briefly summarize the fixed

and mixed model univariate results and then present the

multivariate results in greater detail. As a preliminary.

an overview of a common strategy used to model

heterogeneity will be presented.

. . -; .- .. :.. : .-:; . :- - ..-.-

Variance heterogeneity in univariate studies is easily

portrayed by a ratio of population variances. For

multivariate problems. modeling is more complicated since

there are many ways of introducing heterogeneity in

population covariance matrices. Two single-valued

multivariate analogs to a variance are the trace and

determinant of the covariance matrix. The trace represents

the total variation and the determinant represents a

generalized variance (Tatsuoka. 1971). Ratios of

covariance matrix determinants parallel the univariate

case. forming a convenient index of multivariate

heterogeneity.

A typical tactic used in empirical studies of

robustness of multivariate test statistics against

violation of the assumption of homoscedasticity is to

reduce the problem to canonical form. This procedure.

which was used in all but two of the multivariate studies
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reviewed. produces diagonal covariance matrices. thereby

reducing the number of parameters that need to be

considered by p(p-1)/2.

The procedure is based on theorems for matrix

transformations (see Tatsuoka. 1971. pp. 125-129). It

consists of applying a linear transformation. say C (where

C is orthogonal. i.e.. C'C = I and ICI - l). to the matrix

of observations x. thus producing a new set of uncorrelated

variables Y - XC. The matrix C represents a rigid (or

angle-preserving) rotation from the original variates to

the principal axes and consists of columns of eigenvectors

of the original covariance matrix 2. Using the same

transformation matrix. 2 is transformed into a diagonal

matrix C'XC " diag(11,12,,,,,ls), with the variances of the

canonical or transformed variates (eigenvalues) as diagonal

elements. This is called 'diagonalizing the matrix“

(Tatsuoka. 1971. r» 128). The trace and determinant of the

original covariance matrix are equal to the trace and

determinant of the transformed matrix. A multivariate

analysis on the canonical variates produces the same

results as those obtained with the original ones since the

MANOVA test criteria are invariant under any linear

transformation (Anderson. 1958. r» 277).

The operationalization of this procedure in MANOVA

robustness studies of heterogeneity relies on the fact that

two population covariance matrices. say V1 and v2, may be
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' linearly transformed to the identity matrix. I. and to a

diagonal matrix. D. whose diagonal elements are the

eigenvalues of V2V1'1 (Holloway and Dunn. 1967). o is

called the diagonal matrix of latent roots.

MANOVA test criteria for a given test based on any

mixture Of N(D..V1) and N(.Q.V2) are equivalent to a mixture

of N(Q.I) and N(Q.D) (Olson. 1973). To model situations

with non-zero mean vectors. a mixture of N(u1,1) and

N(g2.D) may be used to represent the canonical forms of

N(C"'1.21.V1) and N(C"'1P.2.V2). This applies to both the

central case. with equal population means. and the

noncentral case. with unequal population means.

Heterogeneity is typically introduced either equally in

all of the canonical dimensions. with D - 61. or in only

one dimension. with D - diag(d.1.....l). Variations on

this theme allow for heterogeneity to vary across canonical

dimensions. with some di a 1 while other d1 = d. In this

way. a researcher need only vary values of d to simulate a

variety of heterogeneous conditions. For more than two

groups. either one or more groups are sampled from a

population with covariance matrix D and the rest from a

pOpulation with covariance matrix I. An alternative is to

sample groups from populations with covariance matrices I.

D. and multiples of D.
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Violation of the independence assumption is quite

serious. For analysis of variance (ANOVA). positive

correlations among the errors yield a liberal test (i.e..

too many significant results) and negative correlations

yield a conservative test (i.e.. too few significant

results). This is true for both equal and unequal sample

sizes and the discrepancy between nominal and actual levels

of significance increases as the absolute value of the

correlations increase (see Scheffé. 1959).

For a two-group matched-subjects design in univariate

situations. use of the correlated or dependent t-test is an

appropriate technique to handle the problem. For

correlated observations that arise from a RM situation. the

problem is identical to that of a mixed-model analysis and

two avenues are open. One is to use the correction factors

of Box (1954) or Greenhouse and Geisser (1959). These

adjust the degrees of freedom for the F-test and the latter

produces conservative results. The other method is to use

exact multivariate tests. which do not make the ANOVA

assumption of independence of errors across measures taken

on the same subject. However. independence of errors

between subjects must still be maintained.

Glass. Peckham. and Sanders (1972) provided a thorough

review of the univariate literature for fixed-effects

designs. General conclusions were that violation of the
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normality assumption does not present a problem for either

the t-test or the F-test in an analysis of mean

differences. For both equal and unequal sample sizes.

discrepancies between actual and nominal significance

levels are slight and. with equal n's. the F-test proves to

be robust even in the extreme case of dichotomous data.

However. non-normality does effect inferences about

variances. such as in tests of random-effects or equality

of variances (Scheffe. 1959).

Considering six multivariate tests and using equal

rfls. Olson (1973. 1974) found that departures from

normality in the direction of positive kurtosis (occasional

extreme observations) had only minor conservative effects

on Type I error rates. From the asymptotic expressions for

central and non-central distributions of Hotelling‘s T2 and

T02 (a generalized T2 for more than two groups). which were

obtained by Ito (1969). approximate values for actual

significance and power may be found. In a recent review.

Ito (1980) mathematically demonstrated that. for

sufficiently large sample sizes. non-normality did not

appreciably effect either the significance level or the

power of these test statistics. The question of what

sample size is to be considered "sufficiently large” was

left open. since this is difficult to demonstrate

theoretically. Ito (1980) further stated that. from Monte

Carlo studies. the T2 test in the two-sample case has been
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found to be particularly robust against non-normality for

tests about means. However. as in the univariate case.

non-normality has serious consequences for tests of

equality of covariance matrices.

WW

Studies of both univariate and multivariate cases

indicate that violation of the homogeneity assumption may

cause serious discrepancy between actual and nominal

significance levels and that this is typically a more

serious problem than non-normality. Since this violation

is more serious. as well as being the focus of the present

research. greater attention will be given to studies of

robustness in the face of heterogeneity. Consequences in

both the univariate and multivariate cases will be

reviewed.

£1xed:mndel.ANQ!A

Extensive work has been done to examine the

consequences of departures from homogeneity of variance for

univariate test procedures (for reviews. see Scheffé. 1959.

Chapter 10 and Glass. Peckham. and Sanders. 1972). In the

univariate two-sample case. inequality of population

variances has little effect on either significance level or

power of the t-test if sample sizes are about equal.

However. if sample sizes are markedly disparate. large

deviations from the nominal error rate occur for both large

and small sample cases. The test is conservative if the
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larger group has the larger variance and is liberal if the

larger group has the smaller variance (Scheffé. 1959).

For more than two groups. heterogeneity does have a

slight effect on the Type I error rate of the F-test even

when groups are of about equal size. in which case the test

is liberal (Scheffé. 1959). However. general conclusions

from both theoretical and empirical work have been that the

ANOVA F-test is robust to heterogeneity of variance. A

major exception is in the case of small and unequal sample

sizes. where the effects are serious. Results for unequal

rfls follow the same pattern as for the t-test. with either

conservative or liberal results.

It should be noted. however. that these general

conclusions have boundary conditions. which depend on

sample size or ratio of sample sizes. on the amount of

heterogeneity. and on the value of nominal alpha. Ramsey

(1980) found that even for the equal sample t-test.

robustness depends on certain conditions. For example.

with n's greater than 15. the t-test will not exceed a

significance level of .06 at a nominal level of .05

regardless of the amount of heterogeneity. but robustness

may be achieved with n's as small as five if the ratio of

variances in the two populations is 1:4 or less. Also.

there is an inverse relationship between nominal alpha

level used and sample size needed for robustness.
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Mixed:model.8eneated_Measures

I In univariate mixed-model analysis. the RM dimensions

are treated as additional design factors. Two assumptions

are made for a valid univariate test: (1) equality of

covariance matrices across levels of the between-group

factor. and (2) uniformity of the common covariance matrix

(i.e.. equality of the variances of the RM and of the

pairwise correlations between these measures). In a RM

situation. variances might change between observations.

possibly due to treatment effects on each occasion. Also.

there is potential for lack of independence between error

components of the observations. particularly if the RM

factor reflects time.

Huynh and Feldt (1970) demonstrated that uniformity is

merely a sufficient and not a necessary condition for

validity of within-group F-tests. What is required is that

the assumptions stated above be met by the covariance

matrices of orthonormalized variates rather than of the

original variates. Nevertheless. the majority of the

robustness literature in the mixed-model case has focused

on violation of the uniformity assumption with the original

variates. Some of these studies are reviewed below.

While the studies in this section have a different

focus from the rest of this paper. since variances and

covariances are equal across groups. they are included as

backgound to a study of consequences of assumption
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violations in a RM study. Also. they provide another

indication of the idiosyncratic nature of the behavior of

test statistics under different forms of violations.

In a theoretical study. Box (1954) assessed the

approximate effects of unequal variances and serial

correlations in one factor of a two-way design with one

observation per cell. He showed that these conditions

reduced the apparent number of degrees of freedom in both

the numerator and denominator of the F-ratio and that the

effect was to produce a slightly liberal test.

Empirical results for a k-sample RM study (with k = 3

and p a 4) were obtained by Collier. Baker. Mandeville. and

Hayes (1967). They compared Type I error rates for three

ANOVA F-tests: unadjusted. adjusted by Box's correction

factor. and by Greenhouse and Geisser's conservative lower

bound for the correction factor. They considered 15

different patterns of covariance matrices. where both

variances and pairwise correlations were varied. although

covariance matrices were common across groups.

As expected. their results showed that the P-test for

group differences had a close agreement between empirical

and nominal alpha. but that the F-test for occasions and

group by occasions effects did not. In both cases the

unadjusted P was liberal and the adjusted R was fairly

robust with Box's correction factor but conservative with

the lower bound test. .An unexpected finding was that
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departures from nominal alpha did not significantly

decrease. and in some cases actually increased. when sample

sizes increased from five to 15. A similar. but smaller

study conducted by Mendoza. Toothaker. and Nicewander

(1974) upheld the above conclusions.

In an empirical study comparing the mixed-model ANOVA.

MANOVA of RM. and analysis of covariance structures

(ANCOVST). Scheifley (1974; Scheifley and Schmidt. 1978)

considered a one-group RM case with a 2x2 design on the

measures. Three covariance matrices were used. where one

matrix conformed to the assumptions of each analysis. When

the ANOVA assumption of uniformity was not met. all three

tests were generally conservative. ANCOVST had the

greatest power when a significant difference in means was

present in only one of the RM factors and MANOVA of RM had

the greatest power when the null for both RM factors and

the interaction were false.

Significance level results for the univariate test

under violation of uniformity in the above study were not

consistent with the previous two empirical studies in this

section. where results tended to be liberal. This may be

partly due to the fact that the two covariance matrices

used to model univariate assumption violation in

Scheifley"s (1974) study had variances that were fairly

close to being equal. while the other two studies had

larger discrepancies between variances. Another
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possibility is that the opposite results were due to the

different patterns for the covariance matrices. The first

two studies considered successive trials on one RM factor

and the covariance matrices had simplex patterns (i.e..

successive diagonals had lower values). Due to the two-way

factorial structure on the RM in the third study. those

covariance matrices had circumplex patterns (i.e.. values

in successive diagonals first increased and then

decreased).

W2

Unlike the mixed-model case. in multivariate analysis

the separate repeated measurements are considered as

multiple criterion variables. They may have unequal

variances and a general pattern of correlations. The

assumption is that this general covariance matrix is common

across groups. To test for differences among the dependent

variables. the original variables are transformed into

contrasts of interest. Hotelling's T2 statistic is the

multivariate analog to the t-test. and is the uniformly

most powerful test for comparing two groups on p variables

(Anderson. 1958. pp. 115-118). Several researchers have

found it to behave in a fashion similar to the t-test under

heterogeneity conditions.

In an empirical study using Monte Carlo methods with

relatively small samples (N = n1+n2 ranging from 10 t0 40).

Hopkins and Clay (1963) examined the Type I error rates of
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Hotelling's T2 statistic for testing the equality of two

independent mean vectors in the p - 2 case. The two

populations studied were N(Q.0121) and N(Q.0221). where

heterogeneity between covariance matrices was present

equally in both canonical dimensions and of the form

022/012 - 1.6 and 3.2. Under these circumstances. they

found that with n1 . n2 > 10. heterogeneity had little

effect on test results. but that. as in the univariate

case. this robustness does not extend to unequal sample

sizes. Everything else being equal. the greater the

heterogeneity. the greater the departure of the observed

significance level from the nominal alpha level.

Furthermore. regardless of the amount of heterogeneity. the

T2 test was conservative if the larger group had more

variability and liberal if it had less variability.

Another empirical study of the effect of inequality of

covariance matrices and of sample size on the distribution

of Hotelling's T2 statistic was conducted by Holloway and.

Dunn (1967). They considered both level of significance

and power with number of variables ranging from one to 10

and total sample sizes from five to 100. In canonical

form. the covariance matrix for one population was equal to

the identity. I. and for the other it was either dI or

diag(d.1.....1). with d - l. 1.5. 3. 10. and 100. They

confirmed the robustness of T:2 for p :- 2 as found by

Hopkins and Clay and concluded that the actual level of
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significance increases when any of the following occur:

(1) number of variables increases. (2) total sample size

with equal groups decreases. or (3) number of heterogeneous

dimensions increases (i.e.. all di . d). They also stated

that.'equal sample sizes help in keeping the level of

significance close to the supposed level. but have little

effect in maintaining the power of the test“ (p. 125). In

general. power was often considerably reduced by departures

that left the significance level satisfactory.

In a third empirical study of the robustness of T2.

with p - 2. 6. or 10. Hakstian. Roed. and Lind (1979) did

not use covariance matrices in canonical form. However.

all variances in one population were equal to one and

covariances had an irregular pattern. Two distinct

matrices were used for a second population. where all

elements were greater than in the first by a factor of 1.44

or 2.25. For two variates. robustness was evident with

equal sample sizes as small as six. For unequal sample

sizes. their results paralleled the previous studies.

Additionally. they found that increasing the total sample

size while keeping the ratio of sample sizes constant does

not help. and may actually hurt. the situation.

In summary. while the T2 test is robust to covariance

matrix heterogeneity with equal n's. it is not robust with

unequal n's. The latter is true even for relatively mild

departures from equality of the covariance matrices and of
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sample sizes.

5eneLa1_HANQ¥A_TEEL_SLAIIELIGE

The MANOVA tests discussed in this section are all

functions of the eigenvalues of HE'l. where H and E are the

hypothesis and error SSCP matrices. For two groups. the

tests are equivalent. Hotelling's T02 is a generalization

of the T2 test. which may be used with more than two

groups. The T statistic is often used in place of T02.

since they are directly related (i.e.. T02 - dfe'r).

Robustness studies of multivariate test statistics for more

than two groups have shown that. in general. these test

statistics behave in a manner comparable to the univariate

F-test.

One of the earliest and most cited theoretical studies

of multivariate robustness to heterogeneity of covariance

matrices was conducted by Ito and Schull (1964). They

investigated the asymptotic distribution of Hotelling's T02

statistic. with one to four variables and two to five

groups. For the case of two large samples of equal size.

they showed analytically that the test is fairly well

behaved. with respect to both significance level and power.

in the presence of heterogeneity. Also. for samples of

nearly equal size. robustness holds as long as the

characteristic roots of 2221'1 fall in the range (.5.2).

For two large samples of unequal size. the departure from a

nominal alpha level of .05 increased as: (l) the ratio of

38



     

sampl

of he

depa1

incr«

the:

effe

Howe

even

effe«

test.

signj

the a

had t



sample sizes (I 3 n1/n2) departed from one. (2) the degree

of heterogeneity (d - the characteristic roots of 2221'1)

departed from one. or (3) the number of dependent variables

increased. For more than two groups and equal samples.

there was a tendency to overestimate significance. but the

effect was not serious with moderate heterogeneity.

However. if one or some of the groups were of unequal size.

even moderate heterogeneity conditions produced large

effects on the significance level and the power of the

test. In all cases with unequal sample sizes. actual

significance was greater than .05 if the larger group had

the smaller variance and less than .05 if the larger group

had the larger variance.

In an empirical study of the robustness properties of

Hotelling's T. Wilks' likelihood ratio criterion W. and

Roy's largest root R with small equal samples (n =- 5 or

10). Korin (1972) specified departure from equality of

covariance matrices in two ways. symbolized by A(d) and

Bid) with d a 1.5 or 10. A(d) represents cases where only

one population covariance matrix differed (i.e.. (I.I.dI)

for k 8 3 and (I.I.I.I.I.dI) for k = 6). while B(d)

represents cases where two differed (i.e.. (I.dI.2dI) for

k - 3 and (I.I.I.I.dI.2dI) for k - 6). Results showed that

the three tests were somewhat comparable and that. although

they were all liberal. R tended to be more so than did the

other two. The discrepancy between nominal and actual
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values was slight with small violations of covariance

homogeneity (d all:1.5). but was pronounced with larger

violations (d = 10). This indicates that. unlike the large

sample case. with small n even equal samples do not

guarantee robustness.

A very extensive Monte Carlo investigation of the

performance of six multivariate test criteria under

heterogeneity conditions was conducted by Olson (1973.

1974). He considered groups of equal sizes (n - 5. 10. and

50) with both number of variables and of groups equal to 2.

3. 6. and 10. With populations having distributions N(Q.I)

or N(Q.D). he used two types of contaminating covariance

matrices (i.e.. where all canonical dimensions varied

equally. D18 61. or where only one dimension varied.

D =- diag(pd-p+1.l.....1)). with d . 4. 9. or 36. For a

given value of d. total variability in both matrices. as

measured by the trace of D. were equal. Therefore. only

the manner in which variability is allocated was varied for

a given d. and not the total variability. The latter being

varied by different choices of d.

Under various combinations of these factors. Olson

examined Type I error rates and power of Roy‘s largest

root. R. two trace-type tests (Hotelling-Lawley‘s T and

Pillai-BartlettIs V). and three determinental tests (Wilks'

likelihood ratio. W. Gnanadesikan's criterion. U. and

Olson's alternative criterion. S). The U and S tests
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tended to be quite conservative and did not respond

favorably to violations and so will not be discussed

further.

Olson concluded that. although the remaining four

tests all tended to be liberal. the R test was far too

liberal and should be rejected if any heterogeneity is

suspected. For large samples. the V. W. and T tests are

asymtotically equivalent and he suggests as a rule of thumb

that they may be so considered whenever degrees of freedom

error are at least 10p times larger than degrees of freedom

hypothesis. For smaller samples. the T. W. and V tests

were robust against mild heterogeneity. but in general. T

and W did not fare as well. Findings showed that even

though it tended to be liberal. the V test was the most

robust under the conditions examined. These results with

equal samples uphold Korin's (1972) conclusions of

overestimation of significance level for small samples and

extend them to even moderately large samples (n - 50).

Although departures from assumptions have

substantially different effects on the distributions of the

four test statistics to be considered in this study (see

Chapter IV). general conclusions for equal samples are that

exceedance of nominal alpha may be decreased by reducing

dimensionality. p. or number of groups. k. However.

increasing sample size with equal n's does not always help.

Also. even though the percentage exceedance tended to be
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greater at larger nominal alpha. Olson (1974) found that

”different proportions of contamination showed their

effects in much the same way at all three significance

levels" (i.e.. for .01. .05. and .10) (p. 898). In

general. exceedance rates increased with greater

heterogeneity. but they "tended to increase more as d

increased from 1 to 4 and from 4 to 9 than as it increased

from 9 to 36" (p. 898). Furthermore. regardless of p and

k. effects were relatively minor when only one canonical

dimension varied (D - Ch”) but severe when they all did

(D - d1).

For situations where D = CH. larger n's corresponded

to lower exceedance rates for R. T. and W whereas for V.

rates either decreased or increased as necessary to

converge to T and W for large n. This is due to the fact

that. for small n. V was significantly better than the

other tests in many of the cases. It should be noted that.

for equal samples. when D a dI ”effects of kurtosis and

heterogeneity tend to be in opposite directions. the former

yielding conservative rates and the latter producing too

many significant results“ (Olson. 1974. p» 901).

With respect to power. differences among the R. T. V.

and W statistics were typically small. However. the R

statistic tended to have slightly higher power if

differences in the population mean vectors were confined to

one of the 8 dimensions. while the V statistic had a slight
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advantage if the differences were equally pronounced in all

the 3 dimensions. Furthermore. holding the noncentrality

parameter constant. increasing the number of groups tended

to decrease power. while increasing group size had no

consistent effect on power.

Another Monte Carlo study on the significance levels

of -R. T. W. and V test criteria with equal n's. but where

heterogenetity was modeled on the original covariance

matrices and not on the canonical dimensions. was conducted

by Ceurvorst (1980). He considered a variety of situations

that included varying the number of dependent variables (2

and 3). number of groups (2. 3. and 6). degrees of freedom

error (18. 60. and 180). and both type and degree of

heterogeneity. For differences of type. he considered

inequality of variance alone. of correlations alone. and of

both together. with combinations of three variances (l. 4.

and 9) and three correlations (.2. .5. and .8).

For heterogeneity of correlation he found only mild

liberal exceedance rates for the four test statistics using

a .05 nominal alpha. The observed significance levels were

always less than..09 and proved to be fairly robust in most

cases. Results for heterogeneity of variance confirmed

previous results for canonical forms. plus indicated that

the effects did not depend on the magnitude of the common

within-group correlation(s) for any of the cases

considered. Comparisons among the test criteria showed
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that they were consistently ordered R-T-W-V from highest to

lowest exceedance rate of the nominal alpha. The most

serious discrepancies occured when k = 6 and five groups

had variances equal to unity. while the sixth had variances

equal to nine.

When both heterogeneity of variance and of correlation

were present. results differed depending on the relative

size of variances and correlations. If groups with the

largest variances had the largest correlations (LVLC).

violations became increasingly more serious than for

heterogeneity of variance (HV) alone. If groups with the

largest variances had the smallest correlations (LVSC). the

reverse was true. with violations being less serious.

Comparisons of the criteria under LVSC conditions were

similar to the HV situations with the V test being

uniformly most robust. followed in order by W. T. and R.

Under the LVLC conditions. no criteria was uniformly best.

When only one variance differed. R was often the best

choice. but it was the worst when all variances differed.

Also. when R was best. the other tests generally had

exceedance rates that were .07 or less.

Pillai and Sudjana (1975) studied the effects of

unequal covariance matrices on the R. T. V. and W

statistics in the exact case by deriving central and

noncentral distributions and applying them in a numerical

study with n - 5. 15. and 40. Considering p = 2. they
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stated that low heterogeneity produces modest changes in

the powers of the test statistics. but that changes become

pronounced as heterogeneity increases. None of the four

statistics showed an advantage over the rest.

In summary. the discrepancy between actual and nominal

alpha tends to decrease with lower degrees of

heterogeneity. and with smaller number of variables and of

groups. It appears that. for two equal samples. neither

the significance level nor the power of Hotelling's T2 is

seriously affected by heterogeneity. but that this is not

necessarily true for unequal n's. For more than two groups

of large equal samples. robustness may be achieved with

moderate departures from homogeneity. but even moderate

heterogeneity produces large effects on both significance

level and power when samples are unequal. For several

small or moderately large groups. even equal samples do not

protect against departure from nominal significance levels.

with test criteria tending to be liberal. Consequences of

violation of the homogeneity assumption through a

contaminating covariance matrix is generally worse if all

canonical variances differ by an equal amount than when

only one differs. The case of only some equally discrepant

variances falls between the two extremes. In general.

Roy's largest root. R. appears to be the worst of the

invariant tests and Pillai-Bartlettls trace. V. the best.

with respect to both robustness and power.
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CHAPTER IV

METHOD

Previous work exploring the robustness of MANOVA test

criteria to violation of homogeneous covariance matrices

across groups has dealt only with fixed-effects between-

group tests in a one-way classification. In the present

research. the effect of violating the assumption of

homoscedasticity was considered in a repeated measures (RM)

situation with data from ordered time points and a fixed-

effects. one-way design over the subjects. The purpose of

the study was twofold: (l) to compare the robustness of

multivariate test statistics for between-group and within-

group tests. and (2) to analyze the behavior of within-

groups tests under various conditions with respect to both

robustness and power.

When data in the p-variate response measures reflect

the passage of time. and assuming no group by measures

interaction. overall within-group tests encompass all p-l

degrees of freedom (df) for trend. thereby testing the null

hypothesis of no trend in the data or. equivalently. of

equality of occasion means. Subsequent tests may be

confined to any p-q-l degrees of freedom (df) remaining

after a q s p degree trend is hypothesized.
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In this chapter. details are presented about the use

of covariance matrices in canonical form for RM analyses.

the parameters and procedures for the study. and the Monte

Carlo techniques that were used.

W

The assumption of homoscedastisity for tests of

between-group differences relates to population covariance

matrices for the original score vectors. For simplicity.

canonical forms of the covariance matrices are typically

used in MANOVA robustness studies (see Chapter III).

For MANOVA of RM. the score vectors are linearly

transformed to reflect the design on the measures. The

transformed vectors remain multivariate normal if the

original vectors are multivariate normal (Finn. 1974.

p. 62) and the assumption now relates to the transformed

covariance matrices.

With time ordered data. the transformation consists of

a matrix of normalized orthogonal polynomial coefficients.

When such a matrix is applied to populations with

covariance matrices reduced to the canonical forms I . dI.

or C(d) - diag(d.1.....1). the transformation does not

alter I or dI. Although C(d) becomes a general matrix. it

is reduced to C(d) when diagonalized. Therefore. the same

underlying violation is modeled for both between-group and

within-group tests when the original covariance matrices

are in canonical form.
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W

A major problem in any study of robustness of

multivariate test statistics comes from the seemingly vast

number of ways in which the assumption of covariance

homogeneity can be violated and the many factors that have

some bearing on levels of robustness. Therefore. it

becomes necessary to specify these factors and

nonconforming populations in terms of some relevant

parameters and to choose particular levels of each in order

to have a systematic coverage of different forms of

violations under various conditions. The parameters

considered in this study are described in this section.

Tests_nf_unltiyariatg_Hypgtheses. For each simulated data

set. tests of a between-group hypothesis and two within-

group hypotheses were conducted. The hypotheses tested

were: (1) the null of no between-group differences on

p-variate mean vectors. using k-l df. (2) the null of no

trends across the p-variate data. using p-l df. for an

overall test on occasions. and (3) the null of no trend

higher than linear. using p-2 df. Rejection of the second

null hypothesis. but not of the third implies the existence

of a linear trend across time.

Test_£riteria. For each hypothesis. four multivariate test

statistics. defined in Table 2-4. were calculated: Roy's

largest root. R. Hotelling-Lawley trace. T. Pillai-Bartlett

trace. V. and Wilks' likelihood ratio. W.

48



W. Experiments were simulated with

p - 4 or 5 response measures. This enabled both within-

group tests to be multivariate. Since a multivariate test

for linearity uses SSCP matrices of order p-2. the smallest

value for p that allows for such a test is four. The SSCP

matrices for hypothesis and error were: (1) of order-4 or 5

for between-group tests. (2) of order-3 or 4 for overall

occasion tests of no trends. and (3) of order-2 or 3 for

tests of no trends higher than linear.

.Numher_gf_fironps._k. The simulated experiments had simple

one-way fixed designs on the independent factor with k I 2.

3. or 6 groups.

Group_§ize._n. Small to moderately large experiments were

simulated. with n a 10. 20. or 50 in each group. In all

cases. groups of equal size were considered.

T¥2e_nf_Heferngeneity. The identity matrix. I. was used to

model homogeneous populations. For heterogeneity

conditions. two populations with covariance matrices equal

to I and d1 were used. This type of diffuse structure was

chosen for the contaminating matrix because it is the kind

of violation that typically produces the most severe

departures from nominal significance levels.

Degree_of_fleterggeneity._d. This factor relates to the

size of the violation (i.e.. to how much more variable one

distribution is relative to another). Small to large

violations were modeled. with d a 2. 4. or 9. For
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homogeneity conditions. d I l.

fiignifigange_neygl‘_2. The probablity of making a Type I

error was considered at the .01. .05. and .10 nominal alpha

levels. For a given nominal level. (100a)% of the values

in a test statistic's distribution will exceed the

appropriate critical value under a true null with no

assumption violation. Hence. a dependent variable in the

Monte Carlo experiments was the empirical estimate of a

statistic's percentage exceedance of its critical value at

significance level alpha. given a true null and

heterogeneous covariance matrices. (The phrase percentage

exceedance is used throughout the thesis to refer to the

percentage of replications of a statistic that exceed a

critical value).

Pager. This is equal to l - PWType II error). Nominal

power relates to the percent of values in a test

statisticfls distribution that will exceed the critical

value under a true alternative with no assumption

violation. A second dependent variable in the Monte Carlo

experiments was the empirical estimate of actual power

(i.e.. the percentage exceedance given a true alternative

and heterogeneous covariance matrices). This was conducted

at all three nominal alpha levels.

Power is a function of the discrepancy between central

and noncentral distributions for a test statistic. The

MANOVA noncentrality parameter (ncp) is a standardized
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measure of the distance between group means in the

population (Olson. 1974) and may be defined as the sum of

the eigenvalues, gj (j - 1.....p). or trace of a matrix G.

where

G - FV'l.

V is the population covariance matrix and

k

F = 1E1n1(£i - l)(£i “.Ei'.

where 11.1 is the population mean vector for the ith Of k

groups and u is the grand mean vector in the population.

When data are ordered according to time. the ncp for tests

of within-group hypotheses incorporates the time dimension.

This is done by representing the elements of the covariance

matrix and the means in the above equations as functions of

time (Morrison. 1972).

Since power depends on the common covariance matrix V.

no theoretical power values exist under heterogeneous

conditions. and the choice for V is open. Therefore. the

noncontaminated covariance matrix (I in canonical form) is

typically used for V in order to calculate the ncp. In

this way. a comparison can be made between a test's ability

to detect differences when assumptions are violated to its

ability to do so when they they are met.

Procedures

Monte Carlo techniques were used to generate either

10.000 or 2.000 replications of multivariate data sets
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distributed N(.Q.I). Each data set represented a particular

combination of k and n with p - 5 measures across time.

Using these data. critical values were calculated for tests

of three multivariate hypotheses using four test statistics

at three nominal alpha levels. The data in each set were

then transformed seven times to calculate: (1) actual

significance levels in three central heterogeneous cases

for between-group and within-group tests. (2) nominal power

in a noncentral homogeneous case for within-group tests. and

(3) actual power in three noncentral heterogeneous cases

for within-group tests. All calculations were performed a

second time on the same data sets using only the first four

measures to simulate conditions with p - 4. Since

noncentral situations refer only to tests of within-group

differences. in these cases. the null hypotheses of no

group by occasion interaction and of no group differences

remained true.

A FORTRAN V program was written to generate.

transform. and analyze the data. A detailed description of

the computational procedures appears in Appendix A. These

procedures guided the creation of the computer program.

which also appears in Appendix A. The remainder of this

section describes the determination of critical values. the

design for the study. the analysis procedures. and the

interpretation of computed significance levels and power

values.
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Critical values for the multivariate test criteria and

the combinations of p. k. n. and alpha levels used in the

study were not all available in published tables. Also.

tabled values have generally been obtained analytically

rather than empirically. Therefore. values used in the

study were empirically determined via Monte Carlo

techniques.

Using three nominal significance levels. critical

values were calculated such that (1000)% of the N

noncontaminated replications (where N - 10.000 or 2.000)

under a true null would be judged significant using that

critical value. This was accomplished by taking the

arithmetic average of the (Na)th and (Na+1)th smallest of

the N values for W and the corresponding largest of the N

values for R. T. and V. Values thus obtained will be

referred to as Monte Carlo critical values to distinguish

them from tabled values.

War

The design for the study is given in Table 4-1. where

combinations of k and n used for all levels of p and d are

denoted by an x in part (a). Hypotheses tested under

central and noncentral conditions with four statistics at

three nominal levels are indicated in part an. The matrix

in part (c) shows how the two types of conditions from (a)

and (b) were combined to create the necessary statistics.
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Table 4-1

Design for the Study

 

a)

b)

umber of measures (p). of groups (k). and equal sample sizes (n)

under heterogeneity conditions (d) . *

 

 

k: 2 3 6

n: 10 20 50 10 20 50 10 20 50

Condition d p

Hanogeneity 1 5 x x x x X

4 X X x X X

Heterogeneity 2 5 x x x x x

4 X X X X X

4 5 X X X X X

4 X X X X X

9 5 X X X X X

4 x x x x x     
* x indicates conditions replicated 2.000 times.

Conditions replicated 10.000 were with k -- 3 and n = 20.

Statistics calculated under central and noncentral conditions for

various hypotheses at three nominal alpha levels and for every

combination of factors indicated in (a). *

Alpha: .01 i .05 .10

Statistic: RTVW RTVW RTVW

Condition Hypothesis

 

Central

 

B

C

L

Noncentral C

I.      
* Hypotheses tested were: bebveen-group differences. B. within-

group test of trends. C. within-group test of trends higher

than linear. L; using test statistics: Roy's largest root. R.

Hotelling—Lawley trace. T. Pillai-Bartlett trace. V. and

Wilks' likelihood ratio. W.
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Tuflce4€l(Canu)

c) Empirical values derived from each replicated data set by

crossing elements from conditions on covariance matrices in (a)

and cmifltflauson hnxnheafisin a».

(Axflutflu:on<2warhmxmaMNUflces

 

 

Hanxpneuy' Hehumgmudty

Central Monte Carlo Actual significance

Condition critical values levels

on

ngmhaum lkmcanxal Nmunalrnwm: AcUrfl.pmnm

induce \HUues

   
 

 

For the first part of the study. five-variate vector

scores from a population distributed N(Q.I) were generated

for 10.000 replications of one situation with three equal

groups of size 20. Four-variate situations were simulated

by using the same data and dropping the fifth measure in

each vector score.

For the second part of the study. new sets of 2.000

replications from the same population were generated for

each of the five combinations of k and :1 indicated in Table

4-l(a). Equal cell sizes were used throughout the study

and the same procedures followed for every combination of

p. k. and n. regardless of the number of replications.

Calculated statistics from the data in each set of N

replications under homogeneous conditions were used to
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determine Monte Carlo critical values for all combinations

of multivariate tests. test statistics. and nominal alpha

levels shown under the central case of Table 4-1(b).

Regardless of the number of groups represented. score

vectors for only one group in each case were transformed to

simulate data that might arise from populations distributed

N(Q.dI). The data sets represented central heterogeneous

conditions. and all test statistics were recalculated.

Each resulting value was then compared to the

corresponding Monte Carlo critical value for the three

alpha levels considered. Actual significance levels (i.e..

empirical Type I errors under heterogeneity) were

determined by counting the number of values in each

replication that were: (1) greater than the corresponding

critical value for R. T. and V statistics. and (2) less

than the corresponding critical value for W statistic. and

then dividing by N. the number of replications.

To investigate the power of multivariate within-group

tests under true alternatives for the occasions. the

original noncontaminated data sets (with d - 1) were

transformed to reflect a given curvilinear trend across

time. Under homogeneity and an alternative condition for

within-group tests only. the above calculations were again

performed to determine Monte Carlo nominal power values for

tests of within-group differences.
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The final step in the process was to add the

curvilinear trend to the heterogeneous data sets and repeat

the calculations to determine actual powers for within-

group tests under noncentral heterogeneous conditions. By

comparing these values to those for nominal power. the

effects of heterogeneity on the power of within-group tests

under an alternative hypothesis could be evaluated.

CW

In order to empirically determine whether between-

group and within-group test statistics respond

differentially to identical heterogeneity conditions under

true null hypotheses. one experimental situation with k - 3

and n - 20 was replicated 10.000 times. The large number

of replications was used in order to insure relatively

small standard errors.

The main interest in a comparison between actual

significance levels for the group and occasion tests was

examined from two perspectives. First. tests were compared

within a given p to simulate practical analyses where tests

of both hypotheses are performed on the same data set.

However. discrepancies between actual significance levels

evidenced here might occur because group and occasion tests

are based on SSCP matrices of order-p and p-l.

respectively. Therefore. a second comparison was made

between the group tests with p = 4 and the occasion tests

with p - 5. so that both would be based on order-4 SSCP
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matrices.

W

Using the same 10.000 replications. comparisons of

actual significance levels were made between the two sets

of within-group tests for general trends and for trends

higher than linear. With the data modified to reflect true

alternatives for within-group hypotheses. the power to

reject the null under heterogeneity was also evaluated.

The second stage of the research was an attempt to

examine the effects of heterogeneity on within-group tests

when the number of groups and of equal sample sizes are

varied. Both robustness and power were considered with

2.000 replications each for five combinations of k and n.

Tests of between-group differences in the central case were

also made in order to determine if discrepancies between

these tests and within-group tests were sensitive to

changes in number of groups and sample size.

W

The critical values and probability levels for

significance (Type I error) and power were obtained via

Monte Carlo methods and are therefore subject to sampling

error. To take this error into account. the standard error

(S.E.) of a proportion for a sample size equal to the

number of replications was employed.

The S.E. for a proportion depends on the true value of

the proportion. P. and is equal to (P(l-P)/N)l/2. where N
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equals the number of replications. Since the true value of

P (i.e.. nominal alpha) is known. this formula may be used

to calculate the S.E. at the three nominal alpha levels

considered. These are given in Table 4-2.

Table 4-2

Standard Errors for Nominal Alpha Levels

and Number of Replications Used in the Study

 

 

 

Alpha N . 2.000 N . 10.000

.01 .0022 .0010

.05 .0049 .0022

.10 .0067 .0030

.Monte_£arln_Technisues

The methods for exploring the issues of robustness in

this study involved the use of simulated data generated by

computer algorithms. Through the analysis of a large

number of samples under known population parameters. one

can investigate the properties of statistics by observing

their resulting distributions. These empirical

distributions obtained under heterogeneity are then

compared to the nominal distributions obtained under

homogeneity for the statistics in question. The FORTRAN

program was used to generate either 10.000 or 2.000 samples

of vector observations for each experimental condition and
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to perform the required data transformations and analyses.

The procedures followed are specified in this section.

The required data were 5x1 vector observations.

normally distributed with known mean vector and covariance

matrix. The generation and transformation procedures

consisted of three steps:

1) Generate a set of independent random observations

uniformly distributed on the interval 0 to 1.

2) Combine the uniform variates to create a set of

observations normally distributed with mean vector

zero and covariance matrix equal to the identity.

3) Transform these observations to obtain the desired

structure with mean A and covariance matrix V.

Each step will be considered separately.

.Randnm_Numhex_Generation

Hammersley and Handscomb (1964) stated that “the

essential feature common to all Monte Carlo computations is

that at some point we have to substitute for a random

variable a corresponding set of actual values. having the

statistical properties of the random variable" (p. 25).

These values are called random numbers. In practice. what

is actually produced via computer programs are a set of

pseudo-random numbers calculated sequentialy from a

completely specified algorithm. This algorithm is devised

in such a way that a statistical test should not detect any

significant departure from randomness.

The subroutine GGUBS from the International

Mathematical and Statistical Library was used to obtain a
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sequence of uniform random numbers U1.....Un distributed

EHO.1). This routine uses a congruential generator based

on the following relation

Xi - aXi-1 (mod m)

where a - 75 and m - 2+31 - 1. Once the procedure is

started by an initial seed value. each Xi is determined

from the previous value. The constant terms a and m are

chosen so as to maximize the period of the generator. since

a sequence repeats itself when a value for X1 reappears.

The numbers 01 - x1/231 are a pseudo-random sequence

in the interval 0 to 1. They are independent of each other

and behave as if they were random.

We

Several approaches are available to create independent

normal deviates from uniform random numbers. A simple

approach to program is based on the Central Limit Theorem

(CLT) and uses a summation of a fixed number of values.

where this number may be as low as 12 for reasonable

approximations. However. the procedure ”is very slow and

it does not adequately sample in the extreme tails of the

normal distribution“ (Lehman. 1977. r» 148).

The method used in this study for generating normal

deviates from independent random numbers. which was devised

to be reliable in the tails. was suggested by Box and

Muller (1958). They cite a detailed comparison with

several other methods. including the Central Limit
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summation. and state that their approach gives higher

accuracy and compares favorably in terms of speed. The

procedure uses a pair of random numbers U1 and 02 from the

same distribution on the interval (0.1) to generate a pair

of normal deviates from the same normal distribution.

N(0.1). The following transformations are used:

21 - (-21ogeUl)1/2cos2nU2

22 a (-2logeul)1/Zsin2u02

The resulting values are a pair of independent random

variables. normally distributed with zero mean and unit

variance.

Vectors of five such variables taken together

represent 5x1 observational vectors. which are multivariate

normal and distributed N(Q.I) (Anderson. 1958. pp. 19-27).

Observations of this form were used to simulate the central

case with homogeneous covariance matrices.

W

The first step to determine a vector with specified

variances and intercorrelations among the variables is to

factor a known covariance matrix V into a lower triangular

matrix T such that

V =- TT'

This is the square root method or Cholesky factorization of

a symmetric positive-definite matrix. V (Bock. 1975. p. 85).

Then. a transformation of a vector of normal deviates 1.

Y a T1 + E
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produces a normally distributed vector y with the desired

characteristics. since

Var(y) I T(Var(z))T' I TT' I V

when var(z) I I. The only effect due to adding a known

vector of means 1; is to change the point of central

tendency for the distribution of y.

In the present study. where V I dI.

T 3 51/21

and therefore.

2 I (61/21); +.u

. 51/21 ... 11

was the transformation used for one group to simulate data

from heterogeneous populations in the noncentral case.

Other transformations used the above equation with

(l) u I Q for the central heterogeneous case. and (2) d I l

for the noncentral homogeneous case.

After generating the data. the program performed the

required multivariate tests. calculated the critical

values. and tabulated the proportion of times the values of

each statistic exceeded its critical value for a given

nominal significance level when: (l) a null hypothesis was

true. and (2) an alternative hypothesis was true. Obtained

proportions were the actual Type I error rates and powers.

respectively. for the statistics. Multiplying these

obtained values by 100 produces percentage exceedance rates

under heterogeneity.
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CHAPTER V

RESULTS

The results of the study are presented in this chapter

in four sections. The first two sections are based on

10.000 replications of experiments with k I 3 and n I 20

and deal first with comparisons-of multivariate between-

group and within-group tests with respect to robustness and

then with the power of within-group tests under

heterogeneity of group covariance matrices. The latter two

sections present the effects of varying sample size and

number of groups first on the robustness and then on the

power of within-group tests under heterogeneity conditions.

Results in these latter sections are based on 2.000

replications for each of five combinations of k and n.

Critical values for each set of N replications (where

N I 10.000 or 2.000) under central homogeneous conditions

were obtained empirically through Monte Carlo methods and

are tabled in Appendix B. Actual significance levels under

central heterogeneous conditions and powers under

noncentral conditions were calculated by determining the

number of times obtained test statistics exceeded the

corresponding critical values and then dividing by the

number of replications. These empirical values were

multiplied by 100 and are reported in this chapter in terms
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of percentage exceedance rates of the Monte Carlo critical

values.

W

The objective for this portion of the study was to

determine whether heterogeneity of group covariance

matrices produces differential effects for multivariate

tests of between-group and within-group differences. 'The

question could be phrased: Given no interaction effects

and no main effects for either group or occasions in the

populations from which the data are sampled. are there

differences in the frequency with which rival test

statistics indicate a significant effect for tests of

between-group and within-group hypotheses under

heteroscedastic conditions? A secondary question relates

to differences between two within-group hypotheses (i.e. of

no trends in the occasion means and of no trends higher

than linear).

The situation considered was that of three equal

groups of size 20 with either five or four measures across

occasions. The procedures for central conditions. which

were detailed in Chapter IV. were followed.

Since the data were randomly generated using computer

algorithms. random error in the data must be considered.

To insure that this error be small. 10.000 replications

were used. Given known parameters (i.e.. nominal alpha

levels). the standard error of a proportion with 10.000
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replications (see Chapter IV) may be used to calculate 95%

probability intervals around the known parameters instead

of confidence intervals around the sample estimates. This

produces the following intervals for the three nominal

levels considered:

.01 i .0020

.05.: .0043

.10 1 .0059

Expressed in terms of percentages. to correspond with

tabled values. the 95% probability intervals are:

(0.80. 1.20) at ..01

(4.57. 5.43) at .05

(9.41.10.59) at .10

Thus. obtained percentage values within these intervals may

be considered to be within sampling error of nominal

percentages. ‘

Critical values were estimated with Monte Carlo

methods and. therefore. are subject to error. Since

exceedance rates were derived from the same data sets

transformed to heterogeneous conditions. the deviations

from nominal levels in the following tables reflect only

added error due to heterogeneity.

As far as possible. parameters used in this part of

the study will be discussed separately in terms of their

effects on the percentage exceedance of Monte Carlo

critical values for the three hypotheses under

investigation (i.e.. of no between-group differences. B. of

no trend over occasions. C. and of no trend higher than

66



linear. L). Table 5-1 contains the actual percentage

exceedance rates (i.e.. empirical Type I error times 100)

for central heterogeneous situations.

.Significance_negel‘;1. Percentage exceedance rates for all

three hypotheses tested increased with larger nominal alpha

levels. except where obtained values were within 95%

probability intervals of the nominals. Although the

patterns were similar. increases in exceedance rates were

greatest for the between-group tests. B. and lowest for the

within-group tests of no trends higher than linear. L.

However. when tests for a given hypothesis are

considered with respect to standard errors. which also

increase with alpha level. different amounts of

heterogeneity showed consistent effects regardless of

significance level. For example. at all three alpha

levels. departures from the nominal for tests of B ranged

from about one standard error with the V statistic at d I 2

to over 50 times the standard error with the R statistic

at d I 9. Departures for the within-group tests were

typically around one standard error with all test

statistics at d I 2. and never exceeded 13 standard errors

for tests of C and eight standard errors for tests of L at

d I 9. The larger numerical values for exceedance rates as

alpha increases is apparantly a function of corresponding

larger standard errors.
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MW“. Percentage exceedance rates were

generally larger with five dependent variates than with

four. Whenever this was not the case. discrepancies

between corresponding exceedance rates at p I 4 and 5 were

less than twice the standard error for a difference of two

proportions. The smallest differences between exceedance

rates for corresponding tests at the two levels of p

occurred for the L tests. This may be due to the

relatively small departures from nominal levels for tests

of L. regardless of the number of variates.

.DeHxee_n£_fietexngeneit¥i_d. In general. tabled values

tended to be within 95% probability intervals of nominal

values with low heterogeneity and. in all cases. the

percentage exceedance rates increased with d. The effects

of greater heterogeneity were the most pronounced for the B

tests. where actual Type I error departed by as much as .16

from a nominal..10 level. However. discrepancies between

actual and nominal values were less than .04 for the C

tests and .02 for the L tests at a nominal .10 level.

‘Test_Statistig. Considering low heterogeneity. percentage

exceedance rates tended to fall within 95% probability

intervals of nominal values with the V or W statistics when

testing the between-group hypothesis. while they did so

with all four statistics when testing either within-group

hypothesis. As expected from previous research on the

robustness of between-group tests (e.g.. Olson. 1973). the
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four tests statistics were ordered V-W-T-R from best to

worst when testing B. Differences between actual Type I

errors for the V and R statistics for B were always greater

than twice the standard error of a difference. reaching as

high as .13 with high heterogeneity and five variates.

While results for tests of C generally followed the

same ordering from best to worst statistic. those for tests

of L did not. However. differences in departures from

nominal levels among the statistics for tests of both

within-group hypotheses were negligible. generally being

less than twice the standard error of a difference and only

once reaching a .01 difference. Except for tests of L. the

effect of greater heterogeneity increased the differences

between the best and worst statistic. This increase was

considerably more pronounced for tests of between-group

differences than for within-group tests of trends.

Testa_nfi_Mn1tixariate_flypgtheses. Exceedance rates for

within-group tests tended to be within 95% probability

intervals of nominal levels only under low heterogeneity.

For between-group tests. this tended to be true only when

the V or W statistics were used. ‘To evaluate robustness in

terms of acceptable Type I error. results were considered

too liberal if they exceeded .015. .06. and .12 at nominal

levels of .01. .05. and .10. respectively. Using these

criteria when k I 3 and n I 20. only the between-group

tests with T. V. and W statistics would be considered
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robust under low heterogeneity. For within-group tests.

robustness would extend to all four statistics and to

moderate heterogeneity (d I 4).

To summarize the differential effects of heterogeneity

on tests of the three hypotheses and to examine more

explicitly the differences among them. Table 5-2 provides

differences in the actual percentage exceedance rates. The

first two sets of rows relate to tests with a given p to

simulate practical analyses with tests for both B and C

performed on the same data sets. In the third set of rows

the comparisons between B and C control for the size of the

SSCP matrices from which the tests are derived. so that

both sets of tests are based on matrices of order-4.

In the lower half of the table are presented similar

comparisons for the two within-group tests. As before. the

first two sets of rows relate to within-group tests with

the same initial p. while the third set compares the tests

with equal SSCP matrices of order-3.

The differences portray the extent to which departure

from nominal levels were typically greater for tests on B

than on C. Regardless of which set of comparisons was

considered. the differences followed similar general

patterns. The discrepancies in exceedance rates between

tests on B and C tended to be less than two standard errors

of a difference of two proportions when d I 2 or when the V

statistic was used.
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For a given statistic. differences in percentage

exceedance rates decreased as either nominal alpha or

heterogeneity decreased. Consistently the smallest

differences between B and C tests occurred with the V

statistic. typically being less than two percentage points.

The largest occurred with the R statistic. where

differences were as high a 12 percentage points. These

patterns reflect that betweenIgroup tests tend toward

robustness when homogeneity is low or when the V test

statistic is used and that actual significance levels for

the B tests increase considerably from V to R. while they

remain relatively stable across the four statistics for the

C tests.

Differences between the two within-group tests did not

follow the patterns of the B and C differences. The

discrepancies in percentage exceedance rates between tests

on C and L were less than two standard errors of a

difference with both d I 2 and 4. as well as in over half

the cases with d I 9. Regardless of the alpha level. these

differences were typically negligible and rarely exceeded

one percentage point.

.Poner_of_Hithinzsrnun_Tests_nf_Trends

The power of the tests to reject the null was

evaluated under a homogeneous (d I 1) and three

heterogeneous conditions. The original 10.000 data sets

for three equal groups of size 20 were transformed to
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reflect the same quadratic trend over the five time points

for each vector score. Since all the groups were equally

transformed. this provides a situation with neither

interaction nor between-group main effects. but with a

within-group main effect. The percentage of rejections for

the null hypotheses of no trend (C) and of no trend higher

than linear (L) were determined.

As shown in Table 5-3. power values were quite stable

across the four statistics within a given heterogeneity

condition and alpha level. This is fairly consistent with

previous findings for power of between-group tests under

heterogeneity (e.g.. Olson. 1973). where differences across

the test statistics. although sometimes present. were

relatively minor.

Regardless of heterogeneity. power was always larger

at larger nominal levels. This trend follows what is

expected under general homogeneity conditions. since

“u.setting alpha larger makes for relatively more powerful

tests 0f 30" (Hays. 1973. p. 359).

Within each nominal alpha level. power decreased as

heterogeneity increased. For example. with p I 5. power of

the C test at nominal .01 went from over 90% under

homogeneity to around 30% with a high degree of

heterogeneity (d I 9). At .05 and .10. power dropped from

98% and 99% to slightly over 50% and 65%. respectively.

This downward trend was remarkably consistent among all
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test statistics for both hypotheses using both values of p.

The only difference among the four conditions was one of

magnitude.

With five variates. power for the subsequent L tests

tended to be slightly better than for the corresponding C

tests. However. with four variates. the reverse was true.

with a dramatic loss in power occurring between the C and

corresponding L tests (e.g.. going from 86% to 48% under

homogeneity at the .01 nominal level). Comparing p I 5 to

p I 4. power dropped only slightly for the C test. but

significantly for the L test.

The reason for the substantial reduction in power for

the L test with four variates seems to be due to the nature

of the transformation used to create an alternative

hypothesis condition. While the curve was strongly

curvilinear with five measures. a linear trend serves as a

reasonable approximation of the data when only the first

four measures were used in the analyses (see Figure 5-1).

To test the above hypothesis and further explore

effects of heterogeneity on power. a second trend

transformation was used that resulted in more pronounced

curvilinearity at four time points (see Figure 5-2).

Power results for this second curve are presented in

Table 5-4. Comparing tables 5-3 and 5-4 shows that both

Monte Carlo nominal values and obtained values under

homogeneity were quite similar in all cases when p I 5. as

76



     

12345 1254

occasions occasions

 

Figure 5-1. Trend transformation for power results of

Table 5-3 with mean vectors:

(0 .4 .8 .5 .1) for pI 5

(0 .4 .8 .5) for p I 4

Means Means

    
 ; : : . 0 . ; f :
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Figure 5-2. Second trend transformation for power results

of Table 5-4 with mean vectors:

(0 .6 .7 .2 .05) for p I 5

(0 .6 .7 .2) for pI 4
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well as for tests of C when p I 4. However. exceedance

rates for the L test were considerably higher with the

second trend transformation than with the first when p I 4.

These results were consistent with those for five variates

using the first transformation. There was a slight gain in

power from the C to the L test regardless of size of p.

Also. as in the first case for the C test. there were

slight reductions in power when going from p I 5 to 4 with

both tests.

B l | n i y . C i'l'

Having shown that multivariate tests of between-group

and within-group differences respond differently to

violations of homogeneity. the second stage of this

research was an attempt to evaluate the effects of

heterogeneity on within-group tests based on different

levels of k and n. The design for this part of the study

allows for an assessment of robustness and power under

heterogeneity when: (1) sample size is varied (with equal

groups of 10. 20. and 50). while holding the number of

groups constant at three. and (2) the number of groups is

varied (k I 2. 3. and 6). while holding sample size

constant at 20 per group. Results tabled in this section

deal with tests of the hypothesis of no within-group

trends. C.

The data in this and the following section are based

on 2.000 replications each of five combinations of k and n.
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With a reduction in the number of generated data sets comes

an increase in standard errors. Therefore. using the same

procedure as before. 95% probability intervals for the

three nominal levels considered now become:

.01 i .0044

.05 i .0096

.10 i .0131

In terms of the tabled values. which are expressed in

percentage form. these intervals are:

(0.56. 1.44) at .01

(4.04. 5.96) at .05

(8.69.11.31) at .10

W

Table 5-5 gives the percentage exceedance rates of

within-group tests of trends over occasions. C. for

experimental conditions with k I 3 and equal groups of size

10. 20. and 50. ‘With samples of size 10. actual

significance levels were within the 95% probability

intervals of nominal values only if heterogeneity was low

(d I 2). Increasing the sample size to 20 brought improved

results (e.g.. exceedance rates were also within 95%

probability intervals with d I 4 in all cases with four

variates and about half the time with five variates). For

large samples of 50. values were additionally within these

intervals about half the time with d I 9.

When outside the confidence intervals. empirical

significance levels were all liberal. However. excluding

results with d I 9. Type I errors did not exceed .02. .08.
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and .14 at nominal levels of .01. .05. and .10.

respectively. and were typically much lower. 'With d I 9.

they never exceeded .04. .11. and .18 at the three nominal

levels.

Considering the results in terms of acceptable

robustness limits (i.e.. .015. .06. and .12). cases with 10

subjects per group would be robust only with d I 2. while

cases with 20 subjects-per group would be robust with both

d I 2 and 4. With sample sizes of 50. robustness extends

to conditions with high heterogeneity (d I 9) when only

four variates were analyzed.

For a given sample size. the other factors in this

study behaved in the same manner as previously described

for 10.000 replications where k I 3 and n I 20. In

general. departure from the nominal significance level

increased as heterogeneity. number of variates. or nominal

significance level increased. The main difference across

conditions with different sample sizes was one of degree.

With respect to the multivariate test statistics. in

only about half the cases did the R statistic produce the

greatest exceedance rates and the V statistic the smallest.

But. where this was not the case. the two values were

typically within sampling error of the nominals and their

difference was within one standard error of a difference of

two proportions. Even when the R statistic had larger

exceedance rates than the V statistic. the differences

82



among the four statistics were considerably less pronounced

than is typical for between-group tests.

W.For

tests of the second within-group hypothesis of no trends

higher than linear. L. percentage exceedance rates followed

the patterns of the overall within-group tests. Obtained

values were either within 95% probability intervals of

nominal values or liberal. In most cases. significance

levels for the L tests were lower than those for the C

tests. However. differences between them were typically

negligible. Values for tests of L are tabled in

Appendix D.

WW3. Percentage exceedance

rates obtained in this study under a true null for between-

group tests were consistent with previously established

results. These values are tabled in Appendix C. The

differences between the B and C tests followed the patterns

described earlier in this chapter regardless of sample

size. The only difference was one of degree.

Discrepancies between the tests were generally smallest

with large samples and low heterogeneity. or with the V and

W statistics. They were greatest with small samples and

high heterogeneity. or with the R and T statistics.

W

Table 5-6 gives the percentage exceedance rates of

within-group tests of trends over occasions when sample
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size is held constant at 20 and the number of groups

varied. with k I 2. 3. or 6. The values tended to be

within 95% probability intervals of the nominal alpha with

both low and moderate heterogeneity regardless of number of

groups. The major exception was with five variates at .10

alpha. where values tended to fall outside the probability

intervals with moderate heterogeneity.

When d I 9 values were all liberal. However. Type I

errors were .02. .08. and .15 for corresponding .01. .05.

and .10 nominal levels. Results would be considered robust

with low and moderate heterogeneity in all cases. as well

as in almost half the cases with high heterogeneity.

An unexpected finding from this set of results was

that the impact of heterogeneity did not appear to be

greatest with the larger number of groups. In about half

the cases. the largest exceedance rates occurred with

k I 3. The remaining cases were split with the largest

departures occurring about equally with either k I 2 or 6.

It might be assumed that this result was due to the high

level of robustness of the C tests. since over half of the

values in Table 5-6 were within 95% confidence intervals of

the nominal value. However. even when only considering

values for d I 9. which were outside these intervals. in

more than half of the cases the largest departures still

occurred with k I 3. while the rest tended to occur with

k I 6.
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It appears that the impact of heterogeneity on within-

group tests of trends is lessened by increasing the size of

equal samples but that. for a given n. decreasing the

number of groups may not help.

With a given number of groups. the effects of the

other factors being examined were not always evident. This

is probably due to the fact that actual values tended to be

within sampling error of nominal alpha except for high

heterogeneity. Still. some patterns emerged. In general.

differences among the four statistics were still relatively

minor. never exceeding two percentage points. Departure

from nominal alpha typically increased as heterogeneity and

alpha levels increased. although the latter reflects larger

standard errors at higher alpha levels. The effect of

decreasing p was evident only when d I 9. where lower

exceedance rates were associated with the smaller number of

variates.

MWWW As was

evident when sample size was varied. differences in actual

significance levels between the two within-group tests were

minimal. The discrepancies between most of the

corresponding exceedance rates rarely exceeded one

percentage point. Percentage exceedance rates for tests of

non-linearity when number of groups was varied are tabled

in Appendix D.
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.QQmparisQn_1ith_Betueen:grgnp_Tests. ‘Unlike the results

for different sample sizes. when number of groups was

varied. the B and C tests responded differently not only in

terms of degree but also in kind. For the B tests.

departures from nominal alpha consistently increased when

there were more groups (except if heterogeneity was low).

It appears that. for this situation with equal groups of

size 20. within-group tests under any level of

heterogeneity were similar in robustness to between-group

tests under low heterogeneity.

W

The effects of sample size and number of groups on the

power of within-group tests of trends under heterogeneity

conditions were assessed with the same 2.000 replications

used to study robustness. The data were transformed to

model the alternative hypothesis situation in Figure 5-1.

Power trends for both within-group tests were similar

to those previously defined for the same transformation

with 10.000 replications. The tests for non-linearity had

slightly better power than the overall tests for trends

with five variates but had considerably lower power with

four variates. Since this was consistent across the

experimental conditions considered. only the results for

the test of trends will be discussed. Holding other

factors constant. power values were extremely stable across

the four test statistics for a given condition. With
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samples of size 10. there was slightly more variability

among the test statistics but. even here. the discrepancies

were not noteworthy. Therefore. results presented in this

section are percentage exceedance rates for tests of trends

averaged over the four statistics. Complete tables for

both sets of within-group tests are included in Appendix E.

W

Table 5-7 gives the average percentage exceedance

rates for three groups of size 10. 20. and 50 under

noncentral conditions. For a given sample size. the results

were consistent with those from the first part of the

study. With respect to varying the size of equal samples.

n had a considerable effect on power. which decreased as n

did even under homogeneity (d I 1). This effect was

compounded as heterogeneity was introduced.

With n I 50. where within-group tests were robust. the

effect of heterogeneity was negligible. particularly if

alpha was greater than or equal to .05. in which case

exceedance rates were still over 90% with d I 9. Although

lower. power values with n I 20 were reasonable under low

and moderate heterogeneity. where robustness was achieved.

However. with only 10 subjects per group. power tended to

be poor even with low heterogeneity. where tests were

robust. This was particularly so at a .01 nominal level.

where power was low even under homogeneity.

88



'hble 5-7

Average Percentage Exceedance Rates Under True Alternatives

for Tests of Trends with k I 3*

 

p.5 9'4

alpha: .01 .05 .10 .01 .05 .10

n d

10 1 45.04 70.38 81.61 38.19 64.65 78.01

2 33.10 58.21 71.16 27.69 51.64 67.25

4 21.85 44.53 58.19 18.81 38.89 52.39

9 14.98 30.93 43.00 12.05 26.69 38.95

20 l 91.33 98.26 99.51 85.10 95.75 98.14

2 77.93 92.31 96.46 69.24 87.96 93.86

4 55.71 77.65 86.63 45.81 70.53 82.16

9 28.84 52.58 65.04 23.40 44.61 58.99

50 1 100.00 100.00 100.00 100.00 100.00 100.00

2 99.95 100.00 100.00 99.53 100.00 100.00

4 97.95 99.74 99.94 95.61 99.26 99.65

9 76.15 93.06 96.34 67.25 88.64 93.88

 

* From 2.000 replications of k I 3 equal groups of size n

with p measures under d degrees of heterogeneity «i=sl

reflects homogeneity). Hypothesis tested was of no within-

group trends. C. Tabled values were averaged over four test

statistics: Roy's largest root. R: Hotelling—Lawley trace.

T; Pillai-Bartlett trace. V. and Wilks' likelihood ratio. W.
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W

Table 5-8 gives the average percentage exceedance

rates for equal groups of size 20 with two. three. and six

group designs under noncentral conditions. Effects within

a given condition were again consistent with results from

the first part of this study. With respect to number of

groups. power was best with k I 6 and worst with k I 2.

For six groups. empirical power was above 90% in all

cases except for d I 9 at .01 alpha with four variates.

The powers with six groups and high heterogeneity were

consistently higher than those for three groups with low

heterogeneity.

The effect of heterogeneity was considerable with both

two and three groups. particularly at .01 alpha. However.

in both these cases. power was reasonable with d I 2 and 4.

where tests achieved robustness. as long as a nominal level

of.01 is not considered.

MW

Considering all five combinations of k and n together.

power under low and moderate heterogeneity seems to be a

function of total sample size. N. .As shown in Figure 5-3

(power curves of values in Tables 5-7 and 5-8. which were

averaged over four test statistics). for d I 2 and 4 power

increases as total N increases until. with N I 120 and 150.

the curves are indistinguishable. However. with d I 9.

heterogeneity appears to have a greater impact on power
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Table 5-8

Average Percentage Exceedance Rates Under True Alternatives

for Tests of Trends with n I 20*

 

P's pI4

alpha: .01 .05 .10 .01 .05 .10

d

2 1 70.65 87.19 93.01 63.14 82.00 90.04

2 47.31 70.46 80.89 40.58 63.60 75.19

4 26.10 47.96 61.86 22.45 41.84 54.88

9 13.55 27.99 39.78 10.96 24.14 35.03

3 1 91.33 98.26 99.50 85.10 95.75 98.15

2 77.93 92.31 96.46 69.24 87.96 93.86

4 55.71 77.65 86.63 45.81 70.53 82.16

9 28.84 52.58 65.04 23.40 44.61 58.99

6 1 100.00 100.00 100.00 99.88 100.00 100.00

2 99.81 100.00 100.00 99.44 99.90 100.00

4 99.31 99.83 99.94 98.11 99.29 99.75

9 93.04 97.34 98.86 86.84 94.81 97.51

 

* From 2.000 replications of k equal groups of size n I 20

with p measures under d degrees of heterogeneity (d I 1

reflects homogeneity). Hypothesis tested was of no within-

group trends. C. Tabled values were averaged over four test

statistics: Roy's largest root. R: Hotelling-Lawley trace.

T; Pillai-Bartlett trace. V. and Wilks' likelihood ratio. W.
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Figure 5-3. Power curves averaged over four test

statistics for different total sample sizes N.
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when a larger percentage of vector scores were

heterogeneous. even though the group sizes were larger.

This latter result is most likely due to the manner in

which heterogeneity was allocated across the groups.

coupled with the analysis being performed. The test for

within-group main effects assumes that the curves of the k

groups are parallel (i.e.. that no group by occasion

interaction exists). The test then is used to evaluate

whether the curves are constant (i.e.. if there is any

trend across the occasions). Hence. this test compares the

means of each measure over the total number of subjects. N.

In all cases. only one group was drawn from a

heterogeneous population. Therefore. since the 120 vector

scores came from six groups of size 20. only 20 vectors

(17%) were heterogeneous. The 150 vector scores were from

three groups of size 50. so that 50 vectors (33%) were

heterogeneous. The higher proportion of discrepant vectors

in the latter situation may have produced the reverse

effect at d I 9 than would be expected based on N. This

result was consistent across all four test statistics and

three alpha levels (see Appendix E).

The identicalphenomenon occurred with small total

samples. When N I 30 (k I 3 and n I 10). only 10 (33%) of

the vector scores were heterogeneous. while half of the

vectors were heterogeneous when N I 40 (k I 2 and n I 20).

This reversal of power levels was consistently evidenced
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across all but the V statistic. where power was slightly

higher with N I 40 at the .01 and .05 nominal levels.

When the percentage of heterogeneous vectors was held

constant at 33% (three situations with k I 3). power

decreased steadily as N decreased. Unfortunately. given

the present data. the effects on power if total N is held

constant while varying the percentage of heterogeneous

vectors could not be evaluated. For the conditions

examined. the results indicate that. for low or moderate

heterogeneity. total N dictates the level of power but

that. for high heterogeneity. the percent of discrepant

vector scores has the greater impact.
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CHAPTER VI

DISCUSSION

The results presented in the previous chapter provide

an indication that multivariate tests of between-group and

within-group differences are not equally subject to the

effects of heterogeneity of covariance matrices.

Conclusions based on these results will be presented in

this chapter. followed by guidelines for the researcher

analyzing repeated measures studies with time ordered data

and suggestions for future research.

Conclusions

Under the conditions considered in this study. it

appears that multivariate tests for trends over occasions

in repeated measures designs with equal groups are not as

sensitive to violations of the assumption of

homoscedasticity across groups as are tests for between-

group differences. In most cases. within-group tests are

extremely well behaved. while between-group tests tend to

be robust when two groups are involved or if heterogeneity

is low.

This difference is most likely due to the manner in

which the mean square hypothesis (HE‘l) is formed for the

tests of the two hypotheses. The elements of the

hypothesis matrix. H. for between-group tests consists of
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sums of squares and cross products. while for within-group

tests. these elements consist of squared sums of means and

products of means. It is likely that this difference

produced the differential effect that heterogeneity had on

multivariate tests of the two hypotheses.

Within-group tests for general trends tended to be

robust even with heterogeneity of d I 4. Although such a

level of heterogeneity was considered moderate in this

thesis. covariance matrices that differ by a factor of four

would indicate a dramatic discrepancy from a practical

perspective. Hence. in most practical situations. where

groups are equal and heterogeneity is present. multivariate

within-group tests should be robust. Conclusions for

between-group tests with equal samples uphold previous

findings that these tests tend to be robust when covariance

matrices differ only by a factor of two. ‘

Differences among the four test statistics considered

were evident. with Pillai-Bartlettis trace. V. typically

showing the least departure from nominal levels and Royus

largest root. R. the most. However. discrepancies between

the V and R statistics were relatively minor for within-

group tests but pronounced for between-group tests. Even

under low heterogeneity (d I 2). the R statistic on

between-group tests tended to be liberal unless sample size

was at least 50 per group. However. for within-group

tests. R was robust at d I 2. as well as in over half the

96



cases at d I 4.

For within-group tests. increasing the number of

groups did not produce a consistent effect on actual

significance level. but changes in the sample size and. to

a small degree. the number of occasions did. ‘With four

variates the tests were robust even under high

heterogeneity'(d I 9) with equal samples of at least 50.

With equal samples of 20. robustness was achieved with all

four statistics under moderate heterogeneity (d I 2) when

p I 4. and also when p I 5 except for Roy's largest root.

This remained true for a constant group size of 20

regardless of whether there were three or six groups. Only

with two groups of size 20 and four variates did robustness

tend to extend to high heterogeneity.

Actual significance levels for the within-group tests

of trends higher than linear were typically closer to

nominal alpha levels than for general tests of trends.

although differences were minor. It is expected that.

given a larger number of time points. a slight increase in

robustness would be achieved with each succeeding

multivariate test for higher order trends. However. given

the fact that departures from nominal levels were typically

more severe with five variates than with four. a word of

caution is in order. It is likely that. with a significant

increase in the number of time points. the overall test of

trends would produce a too liberal test. Therefore. if the
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initial departure from nominal levels is large enough. no

worthwhile gains in robustness may result with successive

tests for higher order trends. Also. tests of between-

group differences become increasingly more liberal with

increases in the number of variates. The combined effect

on both tests would therefore need to be considered.

The four multivariate test statistics evaluated in

this study behaved almost as one with respect to their

power to reject a null of no trend in the data.

Heterogeneity affected them equally (i.e.. power was

reduced as heterogeneity increased). At a given

heterogeneity level. power of the second test for trends

higher than linear was slightly greater than that of the

overall test for trends when a fairly strong curvilinear

trend was present. As would be expected. the subsequent

test lost power dramatically when the trend tended toward

linearity.

Decreasing the number of subjects per group compounded

the effect of heterogeneity on the power of within-group

tests (i.e.. the smaller the group. the lower the power.

even under homogeneity). However. power was still

reasonable with equal groups of 20 or more. where the

within-group tests were robust.

W

The analysis of RM data may be undertaken with either

univariate or multivariate statistical tests. It is known
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(e.g.. Davidson. 1972) that. as long as there are more

subjects per group then there are groups. multivariate

tests are the preferred choice when the univariate

assumption of uniformity is violated. ‘With RM data from

equally spaced time points. this assumption is generally

violated. since autocorrelation is typically present.

If more than one group is involved and the researcher

further suspects that the assumption of a common covariance

matrix across groups may be violated. the results from this

study would indicate that the problem may not be too

serious for within-group tests. even for violations as

large as variances differing by a multiple of four.

However. previous research has shown that this is not the

case for between-group tests.

Given this discrepancy. the question arises about how

to analyze and interpret repeated measures data when

heterogeneity across groups is suspected. Of particular

concern are situations where group by occasion interactions

exist. Since a test of this hypothesis must precede tests

of both main effects hypotheses. the problem may be

considerable. The mean square hypothesis for interaction

consists of the (p-1)x(p-1) submatrices of the hypothesis

and error matrices used for the between-group test. It may

therefore be presumed that violations would cause effects

similar to the between-group tests and results from

between-group robustness studies should apply.
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Hence. for tests of interactions. Pillai-BartlettIs V

statistic should be employed and results interpreted with

caution. If the number of measures is relatively small and

equal groups have been maintained. then results may be

considered valid. However. if this is not the case. an

assessment of whether greater heterogeneity was present in

a smaller or larger group should be attempted. In the

former case. results would be liberal and. in the latter

case. conservative.

If it can be assumed that there are no group by

occasion interactions. then a two-stage analysis would be

recommended. The RM dimension may be tested through a

multivariate test of within-group trends without excessive

concern. An appropriate approach for testing between-group

effects would be to use the mean of the RM as the dependent

variable in a univariate analysis of group differences.

This would eliminate concern for heterogeneity since it has

been demonstrated repeatedly that. except when samples are

small and unequal. the univariate F-test is robust against

this violation. '

W

An aspect that needs to be considered is unequal

sample sizes. .Although it is quite likely that this would

not produce any radical departures from nominal

significance levels for within-group tests. it might do so

for interaction tests. since the latter are based on
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submatrices of hypothesis and error matrices of between-

group tests. Also. with equal samples. consideration

should be given to a study of the effects of varying number

of groups while holding total N constant. thereby varying

the n/N ratio. This would be particularly useful in

further exploring the effects of heterogeneity on the power

of within-group tests.

Additionally. noncentrality structure would be a

relevant factor for inclusion in a study of the power of

within-group tests of trends. Different results in terms

of power are likely to occur depending on whether

noncentrality is concentrated in the first canonical

variate. or spread equally over all canonical variates.

Since the RM dimension in the present study

represented the same measure repeatedly taken over time. a

polynomial representation was used to transform the data

for within-group tests. This transformation uses the

regression model matrix (see Chapter II). which is a matrix

of normalized orthogonal polynomial coefficients. If the

measures are taken to correspond to a factorial

classification. a treatment contrasts and interaction

representation would be used. Since the various

transformations each partition the source of variation for

occasions in a different manner. it is possible that they

may react differently to violation of homoscedasticity

across groups.
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The regression model matrix is orthogonal. Design

matrices may be orthogonal. such as a Helmert contrast

matrix used with hierarchical designs over the measures. or

they may be nonorthogonal. such as a paired differences

matrix used in profile analyses. It might be assumed that

all orthogonal transformations would behave in like manner

but that nonorthogonal ones would not. However. this

assumption needs to be tested.

Although findings from this study are of a preliminary

nature. they provide strong evidence that. at least for

equal samples. within-group tests of trends in a repeated

measures design are fairly robust to violations of

homoscedasticity that might occur in practical situations.

Furthermore. these tests maintain reasonable power under

heterogeneity. except for small sample sizes.
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APPENDIX A

COMPUTATIONAL DETAILS AND COMPUTER PROGRAM

The data generation and analysis were performed on a

CDC (Control Data Corporation) Cyber 750 computer at

Michigan State University. This 60 bit word machine uses

the Scope/Hustler operating system. The program. which was

coded in FORTRAN V by Jeff Glass. uses some Compass

assembly language to decrease field lengths and thereby

reduce costs. .All computation was done in double

precision.

In this appendix. the following are listed or

described: (1) the subroutines used from package programs.

(2) the actual values input by the user. (3) the steps

followed in the computer program. (4) the procedures

performed to check the operation of the computer program.

and (5) the complete listing of the computer program.

W

a) Subroutines taken from the International Mathematical

and Statistical Library (IMSL. 1979):

GGUBS To generate uniform pseudo-random numbers.

VMULFF For matrix multiplication.
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VMULFM For matrix multiplication of the transpose

of a matrix A by a matrix B.

VMULFP For matrix multiplication of a matrix A by

the transpose of a matrix B.

LINVZF To compute the inverse of a matrix.

b) Subroutines taken from the EISPACK library (The Argonne

eigensystem package. 1972):

TREDZ To determine eigenvalues of a symmetric

tridiagonal matrix.

IMTQLZ To reduce a positive-definite matrix to a

triadiagonal matrix for input into TREDZ.

W

a) Seed values for data generation. A different value was

used for each combination of k and n. These are listed

in the Checking Procedures section in this appendix.

b) Defining parameters for N. k. n. and p.

c) Matrices of normalized othogonal polynomial coefficients

for calculations using P(pxp). where p = S or 4.

p1 . ".44721 -.63246 .53452 -.31623 .11952‘

.44721 -.31623 -.26726 .63246 -.47809

.44721 0 -.53452 0 .71714

.44721 .31623 -.26726 -.63246 -.47809

L-44721 .63246 .53452 .31623 .119524  
P2 8 .5 -.67082 .5 -.22361

.5 -.22361 -.5 .67082

.5 .22361 -.5 -.67082

.5 .67082 .5 .22361

d) A vector of constants to be added to the second through

fifth measures for use in power calculations. For the

transformation used in all cases. this was:

POWER g (.4 .8 .5 .1)
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For the modified transformation used only with 10.000

replications. this was:

POWER 8 (.6 .7 .2 .05)

Rrogram_5tsna

The program consists of five main components (RM.

DATA. SORT. NTABLE. and OTABLE). Rm is the central part of

the program and consists of seven subroutines.

Additionally. a sixth component STATS was used to output

the mean and variance of the generated data and to test the

data for normality. Comments throughout the program

explain the steps and provide information for its use at

other installations.

The actual steps used in the computer program are

described below. Variable names are the same as those used

in the program. except for the following:

N - COUNT number of replications

K s GROUP number of groups

n SUBJECT number of subjects per group

p a MEASURE number of repeated measures

2. - ZBAR matrix of group means

A. Waugh

1. Use IMSL subroutine GGUBS to generate N replications

of nkp uniform (0.1) pseudo-random numbers using

double precision (where p = 5 and N - 2.000 or

10.000).

2. Transform these values to normal deviates N(O.l) using

105



3.

Box-Muller transformation (see Chapter IV).

Array resulting values in N matrices z of dimension

(nk x p) such that

FflT
q. N(Q.I) with Zj (n x p)

  2k

13.9an

1.

2.

3.

4.

£or_p_:_5. compute for each data set:

(k x p) matrix of means

’201'.‘

Z. = .

  
...

where z.j' = (z.j(1) z.j(2) z.j(3) 2'1”) z.j(5))

Preliminary SSCP matrices for:

Total T = Z'Z

Groups G = nz.'z.

SSCP for calculations of test statistics for:

Constant C = (n/k)z.'UU'z. .

where U a unit vector

Between B a G - C

Error E a T - G

Transform C and E matrices by P(pxp). a matrix of

normalized orthogonal polynomial coefficients with

resulting elements xij (i.j " lno-rP)- The

transformed matrices are:
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7.

CTRAN = P'CP ETRAN ' P'EP

Take the lower right (p~1)x(p-l) submatrices from

(3-4) to be used for tests of occasion trends

(elements at”. i.j - 2.....p). and label:

CRM ERM

Take the lower right (p-l)x(p-l) submatrices of (8-4)

to be used for tests of non-linearity (elements xij'

i.j - 3.uu.p). and label:‘

CL EL

Compute HE'l for tests of:

group differences HE - BE-l

occasion trends HC - (CRMHERMV1

non-linearity an - (CL)(EL)'1

Compute the eigenvalues for each test in (B-7) and

label:

EIGB (p values)

EIGC (p-l values)

EIGL (p-Z values)

Using the formulas for the R. T. V. and W test

statistics (see Chapter II) and the eigenvalues from

(B-8). compute each statistic for the C. B. and L

tests. Each resulting list of either 10.000 or 2.000

values is labeled according to the combination of test

and test statistic used:
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RB TB VB WB

RC TC VC WC

RL TL VL WL

EDI—2.2.1:

10. Drop the last row and column of the B. C. and E

matrices in (B-3) and repeat steps (8.1-9).

C.W

1. Sort the 24 113:3 of test statistics in (B-9) (12 for

p - S and 12 for p - 4). placing the values in rank

order.

2. Using a =- .01. .05. and .10 and N a COUNT. calculate

for each list:

a) the average of the (Na)th and (Na+l)th largest

values to be the critical values for the R. T.

and V statistics (result - S4 critical values).

b) the average of the (Na)th and (Na+l) smallest

values to be the critical values for the W

statistics (result - 18 critical values).

D.W

Repeat this step three times for d - 2. 4.. and 9.

l. Transform the 2 matrix from (A-3) so that one group

has larger variances. with resulting (pxl) score

vectors:

113 3 61,221). N N(Q'dI) i. g 1.....n

] = 1.....p

21' ‘ 21. N N(QII) 1}: n+1'ooo’nk

J J J 8 1.....p
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2. Repeat (B.l-10) to get 24 lists of test statistics

under a true null and a given heterogeneity condition.

Compare each value in each list to the corresponding

critical values from (C-2) at each alpha level and

count the number of times each value is:

a) greater than its corresponding critical value for

R. T. and V statistics.

b) less than its corresponding critical value for W

statistic.

For each list and alpha level. divide the resulting

values from (D-3) by the number of repetitions (COUNT)

to get actual Type I error rates.

S.ELeminniomLMnteJarlLNominameers

1. Transform the 2 matrix from (A-3) so that all groups

reflect a polynomial trend across the time points by

adding a constant to each measure. The resulting

(pxl) score vectors are:

zij a Zij + 1 N N(1.I) § : 1:::::Bk

Repeat (8.1-10) to get 24 lists of test statistics

under a true alternative and no violation to

homogeneity.

Repeat.(D.3-4) to get Monte Carlo nominal power

values.
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KW

Repeat this step three times for d s 2. 4. and 9:

1.

of the generated data. the following results were obtained

for 1.000 replications of 300 data points with six randomly

Transform the 2 matrix from (A-3) so that one group

has larger variances and all groups reflect a

polynomial trend across timepoints. The resulting

(pxl) score vectors are:

113 . dl/zzij + g 6: N(LdI) 1 - 1.....n

J . lpooo'p

Zij . Zij + 11 N N(E'I) i 3 n+1.....nk

j . lpoooyp

Repeat (8.1-10) to get 24 lists of test statistics

under a true alternative and a given heterogeneity

condition.

Repeat (D-3.4) to get actual powers under

heterogeneity conditions.

W

Using the IMSL subroutine GTNOR to test for normality

choses initial seeds:

of the generated N(0.1) data points were calculated.

Seed Chi-square Probability

444.852.461 5.78 .76

9.458.577.882 6.20 .72

11.261.152.461 14.68 .10

2.344.743.849 5.18 .82

2.341 5.08 .83

112.623.455 9.06 .43

For each experimental condition. the mean and variance
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initial seed used to generate the data for the study with

the corresponding means and variances were as follows:

COUNT k n Seed Mean Variance

10,000 3 20 739.604.919 1.1x10-4 .99901

2,000 3 10 740.848.519 -3.0x10'3 .99707

2 20 837.616.087 -1.6x10-3 .99395

3 20 739.604.919 -1.5x1073 .99870

6 20 344,148,214 -1.4x10-4 1.00005

3 50 203,577,315 -9.8x10-6 1.00000

A final check on the calculation of the SSCP matrices

was performed by outputing the B. C. E, CTRAN. ETRAN. CRM:

ERM. CL and EL matrices from one replication with k - 3 and

n a 20. The results were hand checked to ascertain that

the program was correctly calculating these matrices.

To check the results of the Monte Carlo critical

values. the parameters needed to find tabled values were

determined. Tabled values were found in 92 cases (21.3%L.

These were in fairly close agreement with the calculated

values.
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IDENT RM ASSEMBLY'LANGUAGE DRIVER PROGRAM

ENTRY RM

RM DSS 0

RJ -XXRM

ENDRUN

ENTRY ABORT ERROR TERMINATION -

ABORT 855 I

RJ -XENDOUT CLOSE OUTPUT FILES IN 0ASE OF ERROR

ABORT

END RM

SUBROUTINE XRM

CW

0* RM - REPEATED MEASURES TESTING.

CA

0* THIS PROGRAM IS THE HEART OF THE RM PROGRAM SET. IT CALCULATES TEST

0* STATISTICS R. T. V. AND W. WRITING THE RESULTS TO FILES FOR FURTHER

0* PROCESSING BY OTHER PROGRAMS.‘

Ct

CW

0* TRANSPORTABILITY NOTE:

0* THESE PROGRAMS WERE WRITTEN AS CLOSE TO STANDARD FTNS THAT ACTUAL

0* CONSIDERATIONS OF COST WOULD ALLOW.

0* I) SEVERAL PROGRAMS (THE DATA GENERATION AND STATISTICS PROGRAMS.

0* THE SORT PROGRAM. AND THIS ONE) HAVE ASSEMBLY-LANGUAGE MAIN

0* PROCRAHS TO REDUCE EXECUTION COST. THESE ASSEMBLY-LANGUAGE

ca ROUTINES MAY OE REPLACED BY FTNS PROORARS IF NEED BE.

0* 2) STANDARD PTNs I/O WAS JUOCED TO BE TOO EXPENSIVE FOR MULTIPLE

0* RUNS 0F IOOOO CASES. SO A NON-STANDARD I/O PACKAGE CALLED FASTIO

0* WAS USED IN THE AFOREMENTIONED PROCRAHS.

0* CONVERSION TO STANDARD PTN5 I/O NOULO BE STRAICHTEORNARD. FOR

0* THIS PROCRAH. ROUTINES SETOUT. OUTPUT. ENDOUT. AND CETDATA HANDLE

0* ALL THE I/O. AND ONLY THOSE ROUTINES NOULD NEED MODIFICATION.

0* 3) THE OETREC SUOROUTINE AND THE CCL RECISTERS RI AND R2

ca (USED IN ROUTINE CETOATA) ARE HSU SYSTEM FUNCTIONS NHICH ALLOW

0* FTNS PROORAHS TO COHNUNICATE WITH THE USER (AND OTHER PROCRANS)

0* BY A NEANS OTHER THAN THROUGH FILES. SHOULD THESE PROCRANS NEED

0* T0 OE TRANSPORTEO. THE USER COULD PROVIDE HIS OWN SUBROUTINE

0* CETREC WHICH NOULO RETURN THE SAME VALUES. av SOME OTHER (FTNS

0* STANDARD) DEVICE.

CW

0* INPUT CONDITIONS:

0* I) THE TEST DATA RESIDES ON LOCAL FILE DFILE .

0* 2) 00L REGISTER RI IS SET TO THE VALUE OF 0 FOR AN ACTUAL-VALUE RUN:

0* OR TO I FOR A NOMINAL-VALUE RUN.

0* 3) 00L REGISTER R2 IS NON-ZERO FOR A POWERS RUN: ZERO OTHERWISE.

CR

0* OUTPUT CONDITIONS:

0* I) DFILE. RI. AND R2 ARE UNCHANGED.

0* 2) LOCAL FILES TAPEI THROUGH TAPEZA CONTAIN THE TEST STATISTICS:

CA

0* R T V W

0* P-5 B TAPEI TAPEZ TAPE} TAPEh

0* 0 TAPES TAPES TAPE7 TAPEU

0* L TAPES TAPEIO TAPEII TAPEIZ

0* P'A B TAPEI3 TAPEIA TAPEIS TAPEI6

0* 0 TAPEI7 TAPEID TAPEI9 TAPEZO

0* L TAPEZI TAPE22 TAPEZ} TAPEZA

CW

0* OPERATION OF RM PROGRAMS:

0* I) THE DATA-GENERATION PROGRAM DATA IS RUN.

0* 2) THE DATA-STATISTICS PROGRAM STATS IS RUN.

0* 3) 00L REGISTER RI IS SET TO I: R2 IS SET TO 0.

0* A) THIS PROGRAM RM IS RUN.
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0* 5) FILES TAPEI THROUCH TAPEzb ARE SORTEO: THE SORTEO FILES ARE

0* PLACED ON FILES TAPEzs THROUCH TAPEAB IN THE SAHE ORDER

0* ( TAPEI Is SORTED ONTO TAPE25: TAPEI7 IS SORTEO ONTO TAPEAI:

0* TAPE<N> IS SORTED ONTO TAPE<N+2A> ).

0* 6) OUTPUT PROORAH NTADLE IS RUN.

0* 7) RI Is SET TO 0.

0* 8) THIS PROGRAM RM Is RUN.

0* 9) OUTPUT PROCRAH OTADLE IS RUN.

0* I0) STEPS 7.8.9 ARE REPEATEO FOR AS MANY VALUES OF 0 AS ARE DESIRED.

0* II) RI IS SET TO I: R2 Is SET NON-zERO.

0* I2) THIS PROCRAH RN IS RUN.

0* 13) OUTPUT PROORAH OTADLE IS RUN.

0* IA) STEPS 7.8.9 ARE REPEATED FOR AS MANY VALUES OF 0 AS ARE DESIRED.

ca

0* MISCELLANEOUS INFORHATION:

0* I) LOCAL FILES DFILE AND NVALUE SHOULD *NEVER* BE RETURNED.

0* 2) LOCAL FILE STATFIL MAY BE RETURNED AFTER STEP 2. -~

0* 3) LOCAL FILES TAPEI THROUCH TAPEzh ARE NOT NEEDED AFTER STEP 5.

0* AND MAY OE RETURNED.

0* A) LOCAL FILES TAPEzs THROUCH TAPEba ARE NOT NEEDED AFTER STEP 6.

0* AND MAY DE RETURNED.

0* s) TAPEIOO IS USED FOR DEDUC PURPOSES.

CW

0* PARAHETERS COMMON AHONC THE RM PROCRAHS:

CA

0* COUNT - THE NUHDER OF CASES IN THE TEST

0* CROUP - THE NUHDER OF CROUPS PER CASE

0* SUBJECT - THE NUHOER OF SUBJECTS PER CROUP

0* HEASURE - THE NUHOER OF TESTS OR HEASURES PER SUOJECT

anew

0* COOINO CONVENTIONS:

0* COHNENT LINES DECINNINC WITH '0*' DENOTE INFORHATIONAL COHNENTS.

0* THIS. COHHENT LINES EECINNINC HITH '0 ' DENOTE DEDUCCINO CODE THAT

0* MAY BE USEFUL IN THE FUTURE. ETC.

cmm

0* ROUTINES USED:

0* VMULFF. VHULFH. VHULFP. LINV2F - FROM IMSL.

0* TRED2. IHT0L2 - FROH EISPACK.

CW

IMPLICIT REALIA-z)

INTECER COUNT. HEASURE. SUEJECT. CROUP

PARAHETER ( COUNT-IOOOO. MEASURE-5. SUBJECT-20. GROUP-3 )

LOCICAL FIRST.SECOND

PARAMETER ( FIRST-.TRUE.. SECOND-.FALSE. )

INTEGER ITERATE. I. J. K. IERR

COHHON /DATA/ Z(GROUP*SUBJECT.MEASURE). ZBARIGROUP.MEASURE).

T(HEASURE.HEASURE). C(HEASURE.HEASURE)..

c(HEASURE.HEASURE). B(MEASURE.MEASURE). EIMEASDRE.MEASURE).

0TRAN(MEASURE.MEASURE). ETRAN(HEASURE.NEASURE).

CRH(HEASURE-I.HEASURE-I). ERH(HEASURE-I.HEASURE-I).

CLIN(HEASURE-2.HEASURE-2). ELIN(HEASURE-2.HEASURE-2).

HB(MEASURE.MEASURE). HC(HEASURE-I.HEASURE-I).

SCRI(NEASURE.HEASURE). SCRZ(MEASURE*MEASURE+3*MEASURE).

EICD(HEASURE). EICC(HEASURE-I). EICLIHEASURE-z) _

REAL PI(HEASURE.HEASURE). P2(MEASDRE-I.MEA$URE-I). U(CROUP.I)

COMMON /ITERATE/ ITERATE '

DATA (PI(I.I).I-I.HEASURE)

+ /.bb721. -.632h6. .53A52. -.3I623. .11952/

DATA (PI(2.I).I-I.MEASURE)

+ [.4572]. -.31623. -.26726. .63256. -.A7809/

DATA (PI(3.I).I-I.HEASURE)

+
+
+
+
+
+
+
+
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+ /.bb72I. 0.0. -.53552. 0.0. .7IJIA/

DATA (PI(5.I).I-I.MEASURE)

+ /.bh72I. .3I623. -.25726. '.632h6. -.h7809/

DATA (PI(5.I).I-I.MEASURE)

+ /.BA72I. .632b6. .53h52. .3I623. .II952/

DATA (P2(I.|).I-I.MEASURE-I)/.S. -.67082. .5. -.2236I/

DATA (P2(2.I).I-I.MEASURE-I)/.5. -.2236I. -.S. .67082/

DATA (P2(3.I).I-I.MEASURE-I)/.5. .2236I. -.5. -.67082/

DATA (P2(A.I).I-I.MEASURE-I)/.5. .67082. .5. .2236I/

0* SET THE UNIT VECTOR.

DO 5 I-I.GROUP

5 U(I.I)-I.O

0* INITIALIZE OUTPUT FILES

CALL SETOUT

0* OECINI

00 I00 ITERATE-I.COUNT

CALL CETDATA( z )

0* COMPUTE ZBAR -- THE MEAN OF MEASURES ACROSS GROUPS

00 IO K-I.MEASURE '

DO 2O l-I.GROUP

sun-0.0

DO 30 J-I.SUOJECT

30 SUH-SUH+z( (I-I)*SUBJECT+J. K )

23AR(I.N)-SUH/SUEJECT

20 CONTINUE

IO CONTINUE

0* DEBUG PRINT...

0 WRITEIIOO.*) ' ZBARI'

0 WRITEIIOO.'(IX.5FI5.5)') ((ZBAR(I.J).J-I.MEASURE).I-I.GROUP)

c: T - z'z

CALL VHULFH( z. z. GROUP*SUBJECT. NEASURE. HEASURE.

+ GROUP*SUBJEOT. GROUPisuaJECT. T. HEASURE. IERR )

IF (IERR .NE. 0) THEN

C PRINTA. 'ERROR - IN z"z - IERR-‘. IERR

C PRINT*.'0N ITERATION '. ITERATE

CALL ADORT

ENDIF

0* G I ZBAR'ZBAR (MULTIPLICATION BY SUBJECT TO FOLLOW)

CALL VMULFM( ZBAR. ZBAR. GROUP. MEASURE. MEASURE. GROUP.

+ GROUP. 0. MEASURE. IERR )

IF (IERR .NE. 0) THEN

C PRINT*. 'ERROR - IN zDAR"zDAR - IERR-'. IERR

C PRINT*.'0N ITERATION '. ITERATE

CALL AOORT

ENDIF

0* 0 I ZBAR'U (MORE TO FOLLOW)

CALL VMULFM( ZBAR. U. GROUP. MEASURE. I. GROUP. GROUP. SCRZ.

+ NEASURE. IERR )

IF (IERR .NE. 0) THEN -

C PRINT*. ‘ERROR - IN ZBAR"U - IERR-'. IERR

C PRINT*.'0N ITERATION '. ITERATE

CALL ABORT
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ENDIF

(ZBAR'U)U' (MORE TO FOLLOW)

CALL VMULFP( SCRz. U. MEASURE. I. GROUP. MEASURE. GROUP. SCRI.

+ MEASURE. IERR )

IF (IERR .NE. 0) THEN

c PRINT*. 'ERROR - IN (ZBAR"U)U" - IERR-'. IERR

C PRINT*.'0N ITERATION '. ITERATE

CALL AOORT

ENDIF

0* 0

0* C IZBAR'U'U)ZBAR (MULTIPLICATION av SUEJECT/GROUP TO FOLLONn

CALL VHULFFI SCRI. ZDAR. MEASURE. GROUP. MEASURE. MEASURE.

+ GROUP. C. MEASURE. IERR )

IF (IERR .NE. 0) THEN

C PRINT*. 'ERROR - IN (ZBAR"JJ")ZBAR - IERR-'. IERR

C PRINT*.'0N ITERATION '. ITERATE

CALL ABORT

ENDIF

0* G SUBJECT*0 : C - SUBJECT/GROUP*C : a - G-C : E - T-G

00 to J-I.MEASURE

DO 1.0 I-I.MEASURE

G(I.J)-FLOAT(SUOJECT) . G(I.J)

G(I.J)-FLOAT(SUDJECT)/GROUP * 0(I.J)

G(I.J)-G(I.J) - C(I.J)

E(IOJ)-T(IDJ) ' G(I.J)

ho CONTINUE

0* DEBUG PRINT...

HRITE(IOO.*) ' 0"

WRITEII00.'(IX.SFI5-5)') (ICII.J).J'I.5).I'I.5)

HRITE‘IOO.*) ' O-' '

RITE “ODD. ('xOSFISPS) ') ((3“ DJ) OJ-IOS) D I"05)

WRITE(IOO.*) ' E"

HRITE('OOO.('x05FIS'5).) ((E(IOJ)DJ.‘DS)OI-IOS)n
n
n
n
n
n

CALL COMPUTE( PI. HEASURE )

CALL RESULT( EIGO. MEASURE. RD. TO. VB. HO )

CALL RESULT( EIGC. MEASURE-I. RC. TC. VC. W0 )

CALL RESULT( EIGL. MEASURE-2. RL. TL. VL. WL )

0* WRITE THE EIGENVALUES TO THE (UNSORTED) OUTPUT FILES.

CALL OUTPUT(FIRST.RB.TB.VB.WB.RC.TC.V0.WC.RL.TL.VL.WL)

CALL COMPUTE( P2. MEASURE-I )

CALL RESULT( EIGO. MEASURE-I. RD. TD. VB. VB )

CALL RESULT( EIGC. MEASURE—2. RC. TC. VC. W0 )

CALL RESULT( EIGL. MEASURE-3. RL. TL..VL. WL )

0* WRITE THE EIGENVALUES TO THE (UNSORTED) OUTPUT FILES.

CALL OUTPUT(SECOND.RB.TD.VB.WD.RC.T0.VC.NC.RL.TL.VL.WL)

IOO CONTINUE

0* CLOSE OUTPUT FILES.

CALL ENDOUT

0* MAKE SURE RM HASN'T UVERWRITTEN ITSELF: CLOSE DEBUG OUTPUT FILE.

0 HRITE(IOO.*) ' PI"

c WITE(IOOO. (IxostS-S) .) ((P| (I OJ) OJ-‘OS’ O I-IOS)
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c WRITE(100.*) ' P2-'

C HRITEIIOO.'(Ix.5FI5.5)') ((P2(I.J).J-I.h).I-I.h)

C WRITE(I00.*) ' u-'

C HRITEIIOO.'(Ix.5F15.5)') U

C REHIND(IOO)

RETURN

END

SUEROUTINE COMPUTE( P. LENGTH )

CW

0* COMPUTE PERFORMS SEVERAL REPETITIVE COMPUTATIONS. THE ONLY

0* DIFFERENCE AMONG THE REPETITIONS IS THE VALUE OF THE ARRAY

0* P AND THE VALUE OF LENGTH. RESULTS ARE RETURNED THROUGH /OATA/ .

CWW

0* COMPUTATIONAL NOTE:

0* IF AN ERROR IS DETECTED IN INVERTING A MATRIX. THE INVERSE

0* Is SET TO 0. THIS FORCES ALL THE EIGENVALUES COMPUTED LATER

0* TO BE 0 ALSO.

CW

IMPLICIT REAL(A-z)

INTEGER MEASURE. SUSJECT. GROUP

PARAMETER ( MEASURE-5. SUDJECT-zo. GROUP-3 )

INTEGER ITERATE. I. J. K. IERR. LENGTH. OPT. IOIGIT

COMMON /DATA/ Z(0RO0P*$UBJECT.MEASURE). zDARIGROUP.MEASURE).

T(MEASURE.MEASURE). G(MEASURE.MEASURE).

C(MEASURE.MEASURE). B(MEASURE.MEASURE). E(MEASURE.MEASURE).

CTRAN(MEASURE.MEASURE). ETRAN(MEASURE.MEASURE).

CRM(MEASURE-I.MEASURE-I). ERMIMEASURE-I.MEASURE-I).

CLIN(MEASURE-2.MEASURE-2). ELIN(MEASURE-2.MEASURE-2).

HD(MEASURE.MEASURE). HC(MEASURE-I.MEASURE-I).

SCRI(MEASURE.MEASURE). SCRZ(MEASURE*MEASURE+3*MEASURE).

EIGO(MEASURE). EIGCIMEASURE-I). EIGL(MEASURE—z)

REAL F(LENGTH.LENGTH)

0HARACTER*I0 CI.C2

COMMON /ITERATE/ ITERATE

+
+
+
+
+
+
+
+

0* CTRAN - P'C (MORE TO FOLLOW)

CALL VMULFM( P. C. LENGTH. LENGTH. LENGTH. LENGTH. MEASURE.

+ SCRI. MEASURE. IERR )

IF (IERR .NE. 0) THEN

0 PRINT*. 'ERROR - IN P"0 - LENGTH-'. LENGTH. ' IERRO'. IERR

0 PRINT*.'ON ITERATION '. ITERATE

CALL ABORT

ENDIF

0* CTRAN - (P'0)P

CALL VMULFF( SCRI. P. LENGTH. LENGTH. LENGTH. MEASURE. LENGTH.

+ CTRAN. MEASURE. IERR )

IF (IERR .NE. 0) THEN

0 PRINT*. 'ERROR - IN (P"C)P - LENGTH-'. LENGTH. ' IERR-'. IERR

C PRINT*.‘ON ITERATION '. ITERATE

CALL ABORT

ENDIF

0* ETRAN - P'E'IMORE TO FOLLOH)

CALL VMULFM( P. E. LENGTH. LENGTH. LENGTH. LENGTH. MEASURE.

+ SCRI. MEASURE. IERR )

IF (IERR .NE. 0) THEN

C PRINT*. 'ERROR - IN P"E - LENGTH-'. LENGTH. . IERR-I. IERR

C PRINT*.‘ON ITERATION I. ITERATE
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CALL ABORT

ENDIF

ca ETRAN - (P'E)P

CALL VMULFF( SCRI. P. LENGTH. LENGTH. LENGTH. MEASURE. LENGTH.

+ ETRAN. MEASURE. IERR )

IF (IERR .NE. 0) THEN

C PRINT*. 'ERROR - IN (P"E)P - LENGTH-'. LENGTH. ' IERR-'. IERR

0 PRINT*.‘ON ITERATION '. ITERATE

CALL ABORT

ENDIF

0* DEBUG PRINT...

c WRITE(100.*) . CTRAN-'

C HRITE(IOO.'(Ix.5FIS.5)') ((CTRAN(I.J).J-I.LENGTH).I-I.LENGTH)

C HRITE (IOO.*) ' ETRAN-'

C NRITE(IOO.'(Ix.5FIs.5)') ((ETRAN(I.J).J-I.LENGTH).I-I.LENGTH)

DO 20 J-2.LENGTH

DO 20 I-2.LENGTH

CRM(I-I.J-I)-0TRAN(I.J)

ERM(I-I.J-I)-ETRAN(I.J)

20 CONTINUE

0* HO - D E-INVERSE - SCRI CONTAINS E-INVERSE

IOIGIT-O

CALL LINV2F( E. LENGTH. MEASURE. SCRI. IOIGIT. SCRz. IERR )

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. C2 )

CALL INT2CHR( IERR. CI )

CALL REMARN('ERROR - E-INV - IERR-'//0I//' ITERATE-'l/Cz)

C CALL ADORT

DO 50 J-I.MEASURE

4 DO 50 I-I.MEASURE

50 SCRI(I.J)-O.O

ENDIF

CALL VMULFF( a. SCRI. LENGTH. LENGTH. LENGTH. MEASURE. MEASURE.

+ NO. MEASURE. IERR )

IF (IERR .NE. 0) THEN

0 PRINT*. 'ERROR - IN B"E - LENGTH-'. LENGTH. ' lERR-‘. IERR

0 PRINT*.‘ON ITERATION '. ITERATE

CALL ABORT

ENDIF

0* HC - CRM ERM-INVERSE - SCRI CONTAINS ERM-INVERSE

IOIGIT-O .

CALL LINV2F( ERM. LENGTH-I. MEASURE-I. SCRI. IOIGIT. SCR2. IERR )

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. CI )

CALL INT2CHR( IERR. C2 )

CALL REMARM('ERROR - ERM -INv - IERR-'llczll' ITERATE-'//CI)

C CALL ABORT

00 A0 J-I.MEASURE

00 no I-I.MEASURE

IO SCRI(I.J)-O.O

ENDIF

CALL VMULFF( CRM. SCRI. LENGTH-I. LENGTH-I. LENGTH-I. MEASURE-I.

+ MEASURE-I. H0. MEASURE-I. IERR )
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IF (IERR .NE. 0) THEN

0 PRINT*.‘ERROR - IN CRM ERM-INV - LENGTH-'.LENGTH.' IERR-'.IERR

0 PRINT*.‘ON ITERATION '. ITERATE

CALL ABORT

ENDIF

0* CALL EISPACM ROUTINES TRE02 AND IMTQL2 TO DO EIGENVALUES.

0* AFTER TRED2. SCRI HILL CONTAIN z

0* EIGO HILL CONTAIN D

0* SCR2 HILL CONTAIN E

CALL TRE02( MEASURE. LENGTH. NB. EIGC. SCR2. SCRI )

CALL IMTQL2( MEASURE. LENGTH. EIGE. SCR2. SCRI. IERR )

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. CI )

CALL INT2CHR( IERR. C2 )

CALL REMARM('ERROR - HO IMTQL2_- IERR-'//C2//' ITERATE-'I/CI)

CALL ADORT

ENDIF

CALL TRE02( MEASURE-I. LENGTH-I. HC. EIGC. SCR2. SCRI )

CALL IMTOL2(MEASURE-I. LENGTH-I. EIGC. SCR2. SCRI. IERR)

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. CI )

CALL INT2CHR( IERR. C2 )

CALL REMARN('ERROR - HC IMTQL2 - IERR-'l/02/l' ITERATE-'//CI)

CALL AOORT

ENDIF

0* DEBUG PRINT...

0 WRITE(IOO.*) ' EIGCO'

0 WRITEIIOO.*) (EIGC(I).I-I.LENGTH-I)

CR

0* PERFORM LINEAR TRENDS STATISTICS.

CR

DO IO J-3oLENGTH

DO IO I-3.LENGTH

CLIN (I'ZDJ-2) 'CTRAN (I OJ)

ELIN(|'Z.J-2)'ETRAN(I.J)

IO CONTINUE

0* HLIN - CLIN ELIN-INVERSE - SCRI CONTAINS ELIN-INVERSE

0* STORE HLIN IN THE HC ARRAY. SINCE THE DATA IN HC HILL NOT

0* BE REUSED.

CA

0* DEOUG PRINT...

C HRITEIIOO.*) ' CLIN-'

C HRITE(IOO.'(Ix.3FIs.5)') ((CLIN(I.J).J-I.LENGTH-2).I-I.LENGTH-2)

C WRITE(IOO.*) ' ELIN-' -

C WRITE(IOO.'(IX.3FIS.5)') ((ELIN(I.J).J-I.LENGTH-2).I-I.LENGTH-2)

IOIGIT-O

CALL LINV2F( ELIN. LENGTH-2. MEASURE-2. SCRI. IOIGIT. SCR2. IERR )

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. CI )

CALL INT2CHR( IERR. C2 )

CALL REMARK('ERROR - ELIN -INV - IERR-'l/CZ/l' ITERATE-'//CI)

C CALL AOORT

DO 30 I-I.MEASURE

DO 30 J-I.MEASURE

30 SCRI(J.I)-O.0
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ENDIF

CALL VMULFF( CLIN. SCRI. LENGTH-2. LENGTH-2. LENGTH-2. MEASURE-2.

+ MEASURE-2. NC. MEASURE-2. IERR )

IF (IERR .NE. 0) THEN

0 PRINT*.‘ERROR-IN CLIN ELIN-INV. LENGTH-'.LENGTH.' IERR-'.IERR

0 PRINT*.‘ON ITERATION '. ITERATE '

CALL ABORT

ENDIF

CALL TRE02( MEASURE-2. LENGTH-2. HC. EIGL. SCR2. SCRI )

CALL IMTQL2(MEASURE-2. LENGTH-2. EIGL. SCR2. SCRI. IERR)

IF (IERR .NE. 0) THEN

CALL INT2CHR( ITERATE. CI )

CALL INT2CHR( IERR. C2 )

CALL REMARK('ERROR — HL IMTOL2 - IERR-'//02//' ITERATE-'l/CI)

CALL ADORT

ENDIF

0* DEBUG PRINT...

0 WRITE(IOO.*) ' EIGL-'

C WRITE(IOO.*) (EIGL(|).I-I.LENGTH-2)

RETURN

END

SUDROUTINE RESULT( EIGEN. LENGTH. R. T. V. H )

CW

0* RESULT CALCULATES SEVERAL STATISTICS (R. T. V. AND N) DASED

0* ON THE EIGENVALUES IN ARRAY EIGEN .

CW

IMPLICIT REAL(A-Z)

INTEGER LENGTH. I. ITERATE

DIMENSION EIGENILENGTH)

COMMON /ITERATE/ ITERATE

C INTEGER DEDUG

C DATA DEDUG/IO/

VIT-O.O

W-I.O

DO IO I-I. LENGTH

VALUE-EIGEN(I)

T-T + VALUE

v-V + VALUE/(1.0 + VALUE)

H-H/(I.O + VALUE)

IO CONTINUE

R-EIGEN(LENGTH)/(I.O + EIGEN(LENGTH))

0 IF (DEBUG .GT. 0) THEN

C DEBUG-DEBUG-I

0 HRITE(IOO.*) 'EIGENVALUE5-'.EIGEN

0 NRITE(IOO.*) 'STATSO'.R.T.V.W

C ENDIF

RETURN

END

SUDROUTINE GETDATA( z )

(:qu

0* GETDATA RETURNS THE NEXT SET OF VALUES TO BE ANALYZED BY RM.

Ct
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CA THE DATA Is READ FROM LOCAL FILE DFILE. HHICH Is INITIALLY

0* REHOUNO.

CMAW

IMPLICIT REAL(A-z)

INTEGER MEASURE. SUBJECT. GROUP

PARAMETER ( MEASURE-5. SUBJECT-20. GROUP-3 I

REAL 2(0ROUP*SUBJECT.MEA$URE). POHER(2:MEASURE)

INTEGER FET(8). BUF(2OA9). EDP

INTEGER I. J. D. POHERON

LOGICAL FIRST

CHARACTER 00*3

DATA FIRST/.TRUE./. POHER/.4. .8. .5. .I/

0* IF THIS IS THE FIRST CALL TO GETDATA. INITIALIZE THE DATA FILE..

0* CHECN CCL REGISTER I FOR THE D PARAMETER. AND CHECK R2 FOR THE

0* POHER PARAMETER.

IF (FIRST) THEN

CALL FILEC( 'DFILE'. FET. 8. BUF. 20kg )

CALL REHINDFI FET )

c::

0* FTN5 STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED.

0* DELETE THE PRECEDING FILEC AND REHINDF CALLS. AND USE

0* THE FDLLOHING CODE:

Ct

C OPEN(999.FILE-'DFILE')

C REHIND(999)

CA

FIRST-.FALSE.

CALL GETREG( 'RI'. 0 )

IF (0 .NE. I) THEN

DSORT-SORT(FLOAT(D))

CALL INT2CHR( 0. DC )

CALL REMARN( 'RM CALLED HITH D-'//DC )

ENDIF

CALL GETREG( 'Rz'. POHERON )

IF (POHERON .NE. 0) THEN

CALL REMARN( ' CALCULATING POHERS' )

ENDIF

ENDIF

CALL READH( FET. z. CRO0P*MEASURE*SUBJECT. EDP )

c1:

0* FTNs STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED.

0* DELETE THE PRECEDING READH CALL. AND USE

0* THE FDLLOHING CODE:

at

C READ(999.*.I0$TAT-EOP) 2

CA

IF (EOP .EQ. 0) THEN

0* MULTIPLY ONLY THE FIRST GROUP OF 2 BY THE SQUARE ROOT OF 0.

IF (D .NE. I) THEN

00 IO J-I.MEASURE

00 IO I-I.SUBJECT

IO Z(|.J)-DSQRT * Z(I.J)

ENDIF

0* ADD CONSTANTS TO ALL GROUPS.
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IF (POHERON .NE. 0) THEN

DO 20 J-2.MEASURE

DO 20 I-I.SUBJECT*GROUP

20 Z(I.J)'Z(I.J) + POWER(J)

ENDIF

ELSE

CALL REMARK( 'UNEXPECTED *EOP ON READING DATA.‘ )

CALL ABORT

ENDIF

C WRITE(I00.*) I DATA-I

c ‘URITE(I00.'(IX.5FI5-S)') ((Z(I.J).J-I.MEASURE).I-I.GROUP*SUBJECT)

RETURN .

END

SUBRDUTINE SETOUT

CW

0* SETOUT INITIALIZES THE OUTPUT FILES THAT THE UNSORTED TEST

0* STATISTICS HILL BE HRITTEN TD.

0* FILES USED ARE ITAPEII THROUGH ITAPE21:I .

CW

IMPLICIT INTEGER(A-z)

COMMON IIO/ FET( 8. 25 )

DIMENSION BUF( 5I3. 2A )

CHARACTER UNITLFN*7

UNITLFN-‘TAPE’

0* RETURN EACH FILE BEFORE ANY FURTHER PROCESSING.

00 IO I-I.2A

CALL INT2CHR( I. UNITLFN(s:) )

CALL FILEC( UNITLFN. FET(I.I). 8. BUF(I.I). 5I3 )

CALL RETF( FET(I.I) )

CALL FILEC( UNITLFN. FET(I.I). 8. BUF(I.I). 5I3 )

IO CONTINUE

CA

0* FTNs STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED.

0* DELETE THE DO LOOP. AND USE THE FDLLOHING CODE:

:2

C 00 IO I-I.2A

c OPEN( I )

C CLOSE( I. STATus-IDELETE' )

C OPEN( I )

C IO CONTINUE

ca

RETURN

END

SUBRDUTINE OUTPUT( FIRST. RB. TB. VB. VB. RC. TC. VC. HC.

+ RL. TL. VL. HL )

“mm:

0* OUTPUT HRITES THE EIGENVALUES TO THE OUTPUT FILES.

0* HILL BE HRITTEN TO.

0* FILES USED ARE ITAPEII THROUGH ITAPEsz .

CA

0* FIRST - .TRUE. IFF THIS SET OF EIGENVALUES HAS OBTAINED HITH

0* LENGTH - MEASURE: FIRST - .FALSE. IFF LENGTH - MEASURE-I .

cmm

IMPLICIT REAL(A-z)

INTEGER BEGIN
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LOGICAL FIRST

COMMON /IO/ FET( 8. 2h )

IF (FIRST) THEN

BEGIN-0

ELSE

BEGIN-I2

ENDIF

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CA

HRITEH( FET(I.I+BEGIN). RB.

HRITEH( FET(I.2+BEGIN). TB.

HRITEH( FET(I.3+BEGIN). VB.

HRITEH( FET(I.h+8EGIN). HB.

HRITEH( FET(I.5+BEGIN). RC.

HRITEH( FET(I,6+BEGIN). TC.

HRITEH( FET(I.7+BEGIN). V0.’

HRITEH( FET(I.8+BEGIH). HC.

HRITEH( FET(I.9+BEGIN). RL.

HRITEH( FET(I.I0+BEGIN). TL. I )

HRITEH( FET(I.II+BEGIN). VL. I )

HRITEH( FET(I.12+BEGIN). HL. I )

d
d
‘
d
d
d
d
d
d

v
v
v
v
v
v
v
v
v

0* FTNS STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED.

0* DELETE THE NRITEW CALLS ABOVE. AND USE THE FOLLOWING CODE:

ca

C HRITE( BEGIN+I. A ) RB

C HRITE( BEGIN+2. * ) TB

C HRITE( BEGIN+3. a ) VB

C HRITE( BEGIN+A. * ) ND

C HRITE( BEGIN+5. a ) RC

C HRITE( BEGIN+6. * ) TC

C HRITE( BEGIN+7. . ) VC

C HRITE( BEGIN+8. * ) HC

C HRITE( BEGIN+9. : ) RL

C HRITE( BEGIN+IO.* ) TL

C HRITE( BEGIN+II.* ) VL

C HRITE( BEGIN+IZ.* ) HL

Ct

RETURN

END

SUBRDUTINE ENDOUT

cmm

0* ENDOUT CLOSES THE FILES THAT THE EIGENVALUES HERE HRITTEN TO.

cmm

IMPLICIT INTEGERIA-z)

COMMON /IO/ FET( 8. 2h )

IO CALL HRITEDR( FET(I.I) )

CA

0* FTNS STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED.

0* DELETE THE 00 LOOP CALL ABOVE. AND USE THE FOLLOWING CODE:

CA

0 DO IO I-I.2h

0 IO 'REWIND( I )

CR

RETURN

END

*EOSOO LINE-672 SEC-I
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IDENT DATA

MAW!“

DATA-GENERATION PROGRAM. CREATES COUNT COLLECTIONS OF DATA. EACH WITH

MEASURE*GROUP*SUBJECT ITEMS. USING THE BOX-MUELLER (SP?) METHOD.

SEE THE COMMENT SECTION FOR PROGRAM RM FOR DETAILED INFORMATION

R

t

A

A DATA IS HRITTEN TO LOCAL FILE DFILE .

R

A

A ABOUT THE OPERATION OF THESE PROGRAMS.

AAAAAAAAAAAAAA

ENTRY DATA

DATA 85$ 0

RJ -XXDATA

ENDRUN

END DATA

SUBRDUTINE XDATA

cAAAAAAAAAAAA

0* ROUTINES USED:

ca

0* 00085 - FROM IMSL.

cAAAAAAAAAAAA

IMPLICIT INTEGER(A-z)

PARAMETER (COUNT-IOOOO. MEASURE-5. GROUP-3. SUBJECT-20)

REAL ARRAY(MEASUREAGROUPASUBJECT)

REAL R. THETA. AVERAGE. PIx2

DIMENSION FET(8). BUF(2OA9)

DOUBLE PRECISION DSEED

DATA DSEED/73960b919.OD0/

PIx2-8.OAATAN (I .0)

CALL FILEC( IDFILEI. FET. 8. BUF. 20A9 )

CALL RETF( FET )

CALL FILEC( IDFILEI. FET. 8. BUF. 2059 )

ca

CA FTNs STANDARD CODE - DELETE THE PRECEDING FILEC AND RETF CALLS.

CA AND USE THE FDLLOHING CODE:

CA

C OPEN(I.FILE-IDFILE')

C CLOSE(1.STATus-IDELETE')

C DPEN(I.FILE-IDFILEI)

CA

AVERAGE-0.0

DO I0 J-I. COUNT

CALL GGUBS( DSEED. MEASUREAGROUPASUBJECT. ARRAY )

DO 20 I-I.MEASUREAGROUPASUBJECT/z

R-SORT( -2.0 A L00(ARRAY(2*l-I)) )

THETA-PIxz A ARRAY(2AI)

ARRAY(2AI-I)-R A COS( THETA )

ARRAY(2*l)-R A SIN( THETA )

AVERAGE-AVERAGE+ARRAY(2AI)+ARRAY(2AI-I)

20 CONTINUE

CALL HRITEH( FET. ARRAY. MEASUREAGROUPASUBJECT )

ca

0* FTNS STANDARD CODE - DELETE THE PRECEDING HRITEW CALL.
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.3

ca

c1:

)0

CA

CA

CA

CR

Ct

CA

CA

Ct

Ct

C*

C.

Ck

Ct

n
n
n
n
n
n

*EOSOO

AND USE THE FDLLOHING CODE:

HRITE().A) ARRAY

CONTINUE

AVERAGE-AVERAGE/(GROUPAMEASUREASUBJECTACDUNT)

CALL HRITEDR( FET )

FTN5 STANDARD CODE - DELETE THE PRECEDING HRITEOR CALL.

AND USE THE FOLLOWING CODE:

REWIND I

WRITE THE AVERAGE OF THE DATA GENERATED TO LOCAL FILE

STATFIL . THIS AVERAGE WILL BE NEEDED IN ORDER TO COMPUTE

THE VARIANCE OF THE DATA.

CALL HNBF( FET )

CALL FILEC( 'STATFILI. FET. 8. BUF. 65 )

CALL RETF( FET )

CALL HRITEH( FET. AVERAGE. I )

CALL HRITEDR( FET )

FTNS STANDARD CODE - DELETE THE PRECEDING FILEC AND RETF CALLS.

AND USE THE FDLLOHING CODE:

OPEN(2.FILE-ISTATFIL')

CLOSE(2.STATus-IDELETE')

OPEN(2.FILE-ISTATFIL')

WRITE(I.*) AVERAGE

REHINO I

RETURN

END

LINE-I03 SEC-I
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IDENT STATS

AAAAAAAAAAAAAA

A DATA-STATISTICS PROGRAM. COMPUTES THE VARIANCE OF THE DATA. USING

A THE AVERAGE ALREADY CALCULATED BY THE DATA-GENERATION PROGRAM.

A BOTH THE AVERAGE AND THE VARIANCE ARE HRITTEN T0 LOCAL FILE STATFIL .

t

A INPUT CONDITIONS:

A DATA IS ON FILE DFILE : THE AVERAGE Is ON LOCAL FILE STATFIL .

A

A SEE THE COMMENT SECTION OF PROGRAM RM FOR MORE DETAILED EXPLANATION

A OF THE FUNCTIDNING OF THESE PROGRAMS.

WWI

ENTRY STATS

STATS ass 0

RJ -xx5TATS

ENDRUN

END STATS

SUBRDUTINE XSTATS

IMPLICIT INTEGERIA-Z) ,

PARAMETER (COUNT-IOOOO. MEASURE-5. GROUP-3. SUBJECT-20)

REAL ARRAY(MEASUREAGRDUPASUBJECT). AVERAGE. VAR

DIMENSION FET(8). BUF(2OA9)

C REAL OBSC(IOO). STAT(3). CSOBS(IOO)

CA READ THE DATA AVERAGE ALREADY COMPUTED.

CALL FILEC( ISTATFILI. FET. 8. BUF. 65 )

CALL REHINDF( FET )

CALL READH( FET. AVERAGE. I. EDP )

CALL HNBF( FET ) ‘

CALL REHINDF( FET )

C 0PEN(I.FILE-IRAHDATA')

C REHIND I

c 00 s I-I.IOO

C 5 CSOBS(I)-OBSC(I)-0.0

VAR-0.0

00 IO J-I. COUNT

CALL READH( FET. ARRAY. MEASUREAGRDUPASUBJECT. EDP )

IF (EDP .LT. 0) THEN

CALL REMARK( 'UNEXPECTED AEDP ON DATA FILE.’ )

RETURN

ENDIF

DO 20 I-I.MEASUREAGROUPASUBJECT

20 VAR-VAR + (ARRAY(I)-AVERAGE)A(ARRAY(II-AVERAGE)

C IF (J .NE. COUNT) THEN

C STAT(3)-0

c ELSE

C STAT(3)-I

C ENDIF

C K-IOO

C CALL GTNOR(ARRAY.GROUPAMEASUREASUBJECT.M.STAT.OBSC.CSOBS.IERR)

C IF (IERR .NE. 0) WRITE(I.*) . IERR-'.IERR

IO CONTINUE

VAR-VAR/(COUNT*GROUP*MEASURE*SUBJECT)

C NRITE(I.*) STAT
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0 REWIND I

CA

CA HRITE THE AVERAGE AND VARIANCE OF THE DATA GENERATED T0 LOCAL

CA FILE STATFIL .

(:1:

CALL HNBF( FET )

CALL FILEC( ISTATFILI. FET. 8. BUF. 65 )

CALL RETF( FET )

CALL HRITEH( FET. AVERAGE. I )

CALL HRITEH( FET. VAR. I )

CALL HRITEDR( FET )

RETURN

END

*EOSOO LINE-78 SEC-I
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IDENT SORT

AAAAAAAAAAAAAAA

SORT - SHELL-METZNER SORT 0F TEST STATISTICS.

SORT.INLFN.OUTLFN.

A

A

* CALLING SEQUENCE:

A

A

A

* SEE THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION

A OF THE FUNCTIONING OF THESE PROGRAMS AND THEIR INTERACTION.

“Wt

ENTRY SORT

SORT ass 0

SAI PLIST PLIST CONTAINS INLFN AND OUTLFN

RJ -XXSORT

ENDRUN

PLIST ass 0

CON 2

COM 3

DATA 0

END SORT

SUBRDUTINE XSORTI INLFN. OUTLFN )

IMPLICIT INTEGER(A-z)

PARAMETER (COUNT-IOOOO)

REAL ARRAY(COUNT). T

DIMENSION FET(8). BUF(5I3)

CALL FILEC( INLFN. FET. 8. BUF. 5I3 )

CALL REHINDF( FET )

CALL READH( FET. ARRAY. COUNT. EOP. LEVEL. NGET )

CALL HNBF( FET )

0* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC. REHINDF. READH.

0* AND WNBF CALLS. CHANGE INLFN AND OUTLFN TO CHARACTER VARIABLES.

0* AND USE THE FOLLOWING CODE:

IO

OPEN(I.FILE-INLFN)

REHIND I

READ(I.*.IOSTAT-EOP) ARRAY

IF (EOP .NE. 0) THEN

CALL REMARKI 'UNEXPECTED *EOP 0N READING.‘ )

ENDIF

M-NGET

CONTINUE

M-M/Z

IF (M .EQ. 0) THEN

CALL FILEC( OUTLFN. FET. 8. BUF. 513 )

CALL RETF( FET )

CALL FILEC( OUTLFN. FET. 8. BUF. 5I3 )

CALL HRITEH( FET. ARRAY. NGET )

CALL HRITEDR( FET ) I

0* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC. RETF. HRITEW.

0* AND WRITEOR CALLS. AND USE THE FOLLOWING CODE:

OPEN(2.FILE-OUTLFN)

REHIND 2

HRITE(2.*) ARRAY

REHIND 2
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cA

RETURN

ENDIF

0* ELSE...

KINGET-M

J-I

20 CONTINUE

I-J

30 CONTINUE

LII+M

IF (ARRAY(I) .GT. ARRAY(L)) THEN

T-ARRAY(I)

ARRAY (I) «mm (L)

ARRAY(L)-T

III-M

IF (I .GE. I) GOTD 3O

ENDIF

J-J+I

IF (J .GT. K) GOTO IO

GOTO 20

END

*EOSOO LINE-93 SEC-I
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PROGRAM NTABLE( OUTPUT )

cAAAAAAAAAAAAAAAAAA

0* TABLE READS THE SORTED LISTS OF TEST STATISTICS. AND CALCULATES

0* THE VALUES FOR ALPHA I 0.0I. 0.05. AND O.IO .

cA

0* FOR THE EXPECTED SIZE OF I0.000 . THESE VALUES ARE CALCULATED

0* BY AVERAGING THE IOOTH AND IOIST. THE SOOTH AND THE SOIST. AND

0* THE IOOOTH AND THE IOOIST ELEMENTS. RESPECTIVELY. FOR W. AND

0* THE 99OOTH AND 990IST. 9500TH AND SSOIST. AND SOOOTH AND SOOIST

0* ELEMENTS FOR THE R. T. AND V TESTS.

cA

0* CALLING SEQUENCE:

cA

0* NTABLE.OUTLFN.

cA

0* WHERE OUTLFN IS THE FILE TO WHICH THE TABLED OUTPUT IS TO BE WRITTEN.

0* DEFAULT: OUTPUT

cA

0* TAPE25 THROUGH TAPEAB CONTAIN THE SORTED TEST STATISTICS:

cA

0* R T V W

cA

0* PIS B TAPE25 TAPE26 TAPE27 TAPEZD

0* C TAPE29 TAPEBO TAPE3I TAPE32

0* L TAPE33 TAPEBA TAPE35 TAPE36

0* PIA B TAPE37 TAPE38 TAPE39 TAPEAO

0* C TAPEbI TAPEA2 TAPEA} TAPEhb

0* L TAPEAS TAPENS TAPEA] TAPEAD

cA

cAAAAAAAAAAAAAAAAAA ,

0* NTABLE IS USED TO PRODUCE THE OUTPUT FOR THE NOMINAL-VALUE RUN.

0* IT ALSO WRITES THE NOMINAL VALUES TO FILE NVALUE FOR USE BY THE

0* OBSERVED-VALUE TABLE'GENERATION PROGRAM.

cAAAAAAAAAAAAAAAAAA

0* SEE THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION OF

0* THE INTERACTION OF THESE PROGRAMS.

CWW

CR

CR

CR

CR

CR

5

IMPLICIT INTEGERIA-Z)

PARAMETER (COUNT-IOOOO) _ .

PARAMETER (AI-COUNT/IOO. A2-COUNT/20. A3-COUNT/IO)

PARAMETER (BI-COUNT-AI.,Bz-COUNT-Az. B3-COUNT-A3)

REAL ARRAY(CDUNT)

DIMENSION FET(8). BUF(SI3)

CHARACTER UNITLFNA7. TITLE*80

REAL NI(2A). N2(2A). N3(zh)

CALL NOMSG

CALL FILEC( ’ZZZZIN'. FET. 8. BUF. 65 )

CALL CONNECF( FET. O )

CALL HRITEH( FET. I NTABLE - PLEASE ENTER A TITLE -I. A )

CALL READH( FET. TITLE. 8. EOP )

FTNS STANDARD CODE - DELETE THE PRECEDING FILEC. CONNECF. WRITEH.

AND READH CALLS. AND SUBSTITUTE SOME OTHER METHOD OF READING IN

A TITLE FROM THE USER.

L-LNB (TITLE)

DO 5 I-L.I.-I

P-(BO-L)/2+I

TITLE(P:P)ITITLE(I:I)

CONTINUE

1J29



TITLE(:(BO-L)/2)" '

UNITLFNI'TAPE'

00 IO III.2k

UNITII+ZA

CALL lNT20HR( UNIT. UNITLFN(5:) )

CALL FILEC( UNITLFN. FET. 8. BUF. 5I3 )

CALL REHINDF( FET )

CALL READH( FET. ARRAY. COUNT. EDP )

CALL HNBF( FET )

0* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC. REWINDF. READH.

0* AND WNBF CALLS. AND USE THE FOLLOWING CODE:

cA

C OPEN( I.FILE-UNITLFN )

C REHIND I

C READII.A.IOSTAT-EDP) ARRAY

cA

IF (EOP .Eq. 0) THEN

CA

CA I MOD A - 0 INDICATES A H TEST:

CA OTHERHISE IT IS AN R. T. 0R V TEST.

(:9:

IF (MOD(I.A) .EQ. 0) THEN

NI(I)-( ARRAY(AI)+ARRAY(AI+I) )/2

N2 (I)-( ARRAY (A2) +ARRAY (A244) ) I2

N3(I)-( ARRAY(A3)+ARRAY(A3+I) )/2

ELSE

NI(I)-( ARRAY(BI)+ARRAY(BI+I) )/2

N2(I)-( ARRAY(82)+ARRAY(82+I) )lz

N3(I)-( ARRAY(BB)+ARRAY(BJ+I) )l2

ENDIF

ELSE

CALL REMARK( 'UNEXPECTED *EOP ON READ OF '//UNITLFN I

NI(I)IN2(I)IN3(I)IO.O

ENDIF

IO CONTINUE

WRITE(*.'(A)') 'I'

WRITE(*.'(IX.A)') TITLE

HRITE(A.A) I I

HRITE(A.I(T6.A.TI5.A.2x.A.T3I.AIA.I3X)')

... 'ALPHA'. IPI. ITESTI. 8R8. 8T8. IVI' I":

WRITE(*.*) ' '

HRITE(..IDO)

* 'O-OI'. '5'. '3'. (NI(I).|'I.3). 'C'. (NI(|).I'5.3).

T 'L'. (NI(I):"9:I2)

HRITE(P.IID)

T '~.D '3': ("‘(l)0'-‘30I6)0 'c.o (N‘(I)OI-I7OZO)O

+ 'L'. (NI(I).II2I.25)

WRITE(*.IOO)

* '0-05'. '5'. ‘3'. (N2(|).III.A). '0'. (N2(|).II5.3).

+ 'L'. (N2(|).|'9.12)
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WRITE(*.IIO)

+ IAI. IBI. (N2(I).I-13.16). 'CI. (NZII).I-17.20).

+ ILI. (N2(I).I-21.2A)

WRITE(*.IOO)

+ '0.IO'. '5'. '8'. (H3(I).I-I.A). 'C'. (NBII).I-5.8).

+ 'L'. (N3(I).I-9.12)

WRITE(*.IIO)

+ 'II'. '8'. (NBII).I-I3.16). 'C'. (N3(I).l-I7.20).

+ 'L'. (N3(I).I-21.2A)

CA

CA HRITE THE NOMINAL VALUES T0 NVALUE.

Ct

CALL FILEC( INVALUEI. FET. 8. BUF. 513 )

CALL RETF( FET ) ,

CALL FILEC( INVALUEI. FET. 8. BUF. 513 )

CALL HRITEH( FET. NI. 2A )

CALL HRITEH( FET. N2. 2A )

CALL HRITEH( FET. N3. 2A )

CALL HRITEDR( FET )

c::

0* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC. RETF. WRITEW.

0* AND WRITEOR CALLS. AND USE THE FOLLOWING CODE:

In

C OPEN( 2.FILE-INVALUEI )

C REHIND 2

C WRITE(2.*) N1

C WRITE(2.*) N2

C WRITE(2.*) N3

C REHIND 2

cA

STOP

IOO FORMAT( T6.A.T15.A.3(T19.A.T20.AFIA.5./) )

110 FORMAT( T15.A.3(T19.A.T20.AF1A.5./) )

END

AEOSOO LINE-161 SEc-I
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PROGRAM OTABLEI OUTPUT I

C******************

cA OTABLE READS THE LISTS OF TEST STATISTICS AND CALCULATES THE

0* ACTUAL VALUES FOR ALPHA I 0.0I. 0.05. AND O.IO BY EMPIRICALLY

0* FINDING THE PROPORTION OF STATISTICS EXCEEDING THE NOMINAL VALUES.

0* .

0* FOR THE EXPECTED SIZE OF I0.000 . THESE VALUES ARE CALCULATED

0* BY AVERAGING THE IOOTH AND IOIST. THE SOOTH AND THE SOIST. AND

0* THE IOOOTH AND THE IOOIST ELEMENTS. RESPECTIVELY.

cA

0* CALLING SEQUENCE:

cA

0* OTABLE.OUTLFN.

cA

0* WHERE OUTLFN IS THE FILE TO WHICH THE TABLED OUTPUT IS TO BE WRITTEN.

0* DEFAULT: OUTPUT

cAAAAAAAAAAAAAAAAAA

0* REFER TO THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION

cA

cA

cA

OF THE INTERACTION OF THESE PROGRAMS: REFER TO THE COMMENT SECTION

OF PROGRAM NTABLE FOR INFORMATION ON MAKING THIS PROGRAM TRANSPORT-

ABLE (THE PROCEDURE IS ALMOST EXACTLY THE SAME AS FOR NTABLE).

C******************

IMPLICIT INTEGER(A-z)

PARAMETER (COUNT-10000)

REAL ARRAY(CDUNT)

DIMENSION FET(8). BUF(20A9)

CHARACTER UNITLFNA7. T1TLEA8O. ANSHER

REAL NI(2A). N2(2A). N3(2A). OI(2A). 02(2A). 03(2A)

LOGICAL SHOHB

CALL NOMSG

CALL FILEC( 'ZZZZIN'. FET. 8. BUF. 65 )

CALL CONNECF( FET. O )

CALL HRITEH( FET. ' OTABLE - PLEASE ENTER A TITLE -I. A )

CALL READH( FET. TITLE. 8. EOP ) '

L-LNBITITLE)

DO 5 l.LO'O-I

P-(BO-L)/2+I

TITLE(P:P)-TITLE(I:I)

CONTINUE

TITLE(:(8O-L)/2)-' '

CALL HRITEH( FET. I OTABLE - PRINT B TEST7I. 3 )

CALL READH( FET. ANSHER. I. EDP )

SHONE-ANSHER(:I) .EQ. IYI

CALL FILEC( 'NVALUE'. FET. 8. BUF. 20A9 )

CALL REHINDF( FET )

CALL READH( FET. NI. 2A. EDP )

CALL READH( FET. N2. 2A. EDP )

CALL READH( FET. N3. 2A. EDP )

IF (EDP .LT. 0) THEN

CALL REMARKI'UNEXPECTED AEDP ON NVALUE FILE.‘ )

CALL ABORT

ENDIF

UNITLFNI'TAPE'

OPEN(I.FILEI'RAWDATA')

REWIND I

00 IO III.2H
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CALL INT20HR( I. UNITLFN(5:) )

CALL FILEC( UNITLFN. FET. 8. BUF. 513 )

CALL REHINDF( FET )

CALL READH( FET. ARRAY. COUNT. EOP )

CALL HNBF( FET )

IF (EOP .Eq. 0) THEN

WRITE(I.*) UNITLFN. ARRAY(I)

IIII2II3IO

CA .

CA I MOD A - O INDICATES THAT THE FILE CONTAINS VALUES FROM THE

CA H TEST. SO THE TEST IS REVERSED: OTABLE MUST CHECK FOR VALUES

CA THAT ARE LESS THAN THE NOMINAL VALUE. NOT GREATER THAN.

Ct

IF (MOD(1.A) .EQ. 0) THEN

DO 20 J-1.COUNT

IF ( ARRAY(J) .LT. N3(I) ) THEN

13-13+1

IF ( ARRAY(J) .LT. N2(I) ) THEN

12-12+1

IF ( ARRAY(J) .LT. NI(I) ) THEN

IIIII+I

ENDIF

ENDIF

ENDIF

ZO CONTINUE

0* '

0* ELSE THE FILE CONTAINS VALUES FROM A R. T. OR V TEST.

cA

ELSE

DO 30 JII.COUNT

IF ( ARRAY(J) .GT. N3(I) ) THEN

I 3II 3+I

IF ( ARRAY(J) .GT. N2(I) ) THEN

I2-I2+I

IF I ARRAY(J) .GT. NI(I) ) THEN

II-II+1

ENDIF

ENDIF

ENDIF

30 CONTINUE

ENDIF

OI(1)-II/FLOAT(COUNT)

02(I)-12/FLOAT(COUNT)

O3(I)-13/FLOAT(COUNT)

ELSE

CALL REMARK( 'UNExPECTED AEDP ON READ 0F '//UNITLFN )

OI (I)-02(I)-O3(I)-0.0

ENDIF
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IO CONTINUE

NRITE(I.*) 'DI-'.DI

WRITE(I.*) '02-..02

WRITE(I.*) 'D3".03

WRITE (*.' (A) ') 'I'

WRITE(*.'(IX.A)') TITLE

WRITE(*.*) ' '

NRITE(*.'(T5.A.TIS.A.2X.A.T31.N(A.I3X)')

+ IALPH‘I. 8P8. ITESTI’ IR). ITI' IVI’ I".

WRITE(*.*) ' ' .

IF (SHOWB) THEN

WRITE(*.IOO)

... 'O-OI'. '5‘. '8'. (OI(I).I-I.II). ’C'. (CHILI-5.8).

+ 'A'. (OI(I).I-9.Iz)

HRITE(A.110)

4' 'A'. 'B'. (DINA-13.16). 'C'. (CHILI-17.20).

+ 'L‘. (OI(I).I-21.2A)

WRITE(*.IOO)

+ '0-05'. '5'. '8'. (OZII).I-I.Io). 'C'. (CHILI-5.8).

+ ILI. (02(1).I- 9.12)

WRITE(*.IIO)

+ .“.O ...O (02(l)9'-‘3016)0 'C'. (02")...I7DZO)O

+ 'L'. (OZ(I).1-2I.2A)

WRITE(*.IOO)

+ 'O.IO'. '5'. 'B'. (03(I).|-I.h). 'C'. (03(I).I-5.8).

+ 'L'. (03(IIOI' 9912)

WRITE(*.IIO)

+ 'A'. '8'. (03(I).I-I3.16). 'C'. (03(I).I-I7.20).

+ 'L'. (03(I).1-21.2A)

ELSE

HRITE(A.IOO)

A '0.0I'. '5'. 'C'. (CHILI-5.3)-

+ 'L'. (OI(I).I-9.I2)

HRITE(A.IIO)

+ 'II'. 'C'. (OI(I).I-17.ZO).

+ 'L'. (OI(I).I-21.2A)

HRITE(A.100)

+ IO.OsI. I5I. '0'. (02(1).1-5.8).

+ 'L'. (OZII).I- 9.12)

WRITE(*.IIO)

+ 'A'. 'C'. (02(1).I-I7.20).

+ ILI. (02(1).1-2I.2A)

WRITE(*.IOO)

+ .0010.9 .5.! .c.0 (03(')||-508)I

+ 'L'. (03(I).I- 9.I2)

WRITE(*.IIO)

+ 'A'. 'C'. (03(I).|-I7.20).

+ 'L'. (03(I).I-21.2A)

ENDIF

STOP

IOO FORMAT( T6.A.TIS.A.3(TI9.A.T20.AFIA.S./) )
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IIO FORMAT( TI5.A.3(TI9.A.T20.IIFIII.S./) ) '

END

*EOSOO LINEII87 SECII
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APPENDIX B

MONTE CARLO CRITICAL VALUES

The values in the following tables were determined

under conditions of homogeneity and true null hypotheses.

The tables were generated by the computer program written

for this study. Values in the first table were used in

determining actual significance levels and powers for

10,000 replications with k = 3 equal groups of size n s 20

and p measures. Values in the remaining tables were used

in determining actual significance levels for 2.000

replications of the corresponding five combinations of k

equal groups of size n. The hypotheses tested at three

nominal alpha levels were:

B = between-group differences

C - within—group trends

L a within-group trends higher than linear

The test statistics used were:

Roy's largest root

Hotelling-Lawley trace

Pillai-Bartlett trace

Wilks' likelihood ratioS
<
H
w
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Table B-1

Monte Carlo Critical Values for 10.000 Replications

with k - 3 and n I 20

 

ALPHA

0.0I

0.05

P TEST

r
-
n
c
n

P
O
W

P
O
W

I
‘
O
W

P
O
W

.297h8

.2I5IS

.I8695

.2609A

~13757

.I5A33

.23765

.I6293

.I3508

.20652

oIBSIS

.I0385

.20872

.I3h28

.IOBHZ

.IUIHO

.IO952

.08007

.A93OA

.26976

.22A51

.H035h

.22685

.I807b

-37667

.18695

-I5335

.307h3

.I52I3

.IIHGA

~32239

.ISIAB

.II927

.2636}

.I2I56

.08620

137

~359I7

.20988

.I8255

.SIHOI

.18358

.ISZBO

.29602

.I562h

.I3I80

.25208

.I3I27

.I0222

.26275

.I3076

oIOSSS

.22I07

.IO77H

.07930

.65905

.78932

.81699

.7OI92

.815h8

.8h69]

.7I652

.8h298

.86760

.75682

.8679)

~39770

.7h786

.86893

.89380

.78567

.892I2

.92066



Table B-2

Monte Carlo Critical Values for 2.000 Replications

with k I 3 and n - 10

 

ALPHA

0.0I

0.05

p
TEST

V
O
W

r
-
n
m

I
-
n
u
:

I
-
n
w

r
-
n
w

O
W

.535A5

.A216O

.36360

.h83h6

.3666)

.309h8

.hh937

.32701

.2721A

-3933h

.27732

.2I232

~39952

.27756

.22555

.35537

.22A39

.I6391

I.25236

.6682I

-53917

I.OI626

.56A67

.AA76A

.92h70

.h53Ih

.35IIH

.7h21h

.37I56

.265A3

-76h59

.3578)

.27932

.62687

.27599

.I9I07

138

.66298

.387I0

~33503

~59320

.3h922

.30053

.530AA

.29353

.25202

.h69II

.256IS

.20792

.h8227

.2h8Ih

.2I205

.A2039

.20772

.I57H8

.AIGOI

.61309

-6577h

.H7OII

.6h663

.696h8

.5059)

.69039

.7h533

.5627A

.735A2

.79097

.5A870

.7HOIA

.78A85

.60098

.78702

.8A065



Table B-3

Monte Carlo Critical Values for 2.000 Replications

with k a 2 and n - 20

 

ALPHA

0.0]

0.05

p
TEST

r
-
r
1
u
:

C
I
D
:

r
-
r
I
D
I

r
-
r
1
u
:

r
-
r
1
u
1

t
-
n
w

.3A3Ao

.3020A

.2638A

.30278

.25855

.2I30I

.27026

.23358

.I925]

.232H8

.19I83

.Ih905

.2328h

-13995

.15A78

-I9325

.15692

.IIIIZ

.5093]

.AI337

-35155

.A2565

.3A089

.27535

.3562“

.29027

.23I59

.288AA

.23A53

.I7A55

.28805

.2305I

.I7803

.23hh5

.18h89

.I2h95
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.32607

.28295

oZSBSI

.3000I

.25086

.2I32I

.2h630

.2I786

.I8389

.2I309

.I88h9

.IA793

.2I639

.I828I

.Ih927

.I866A

.ISHO}

.IIOSH

.6677h

.7Ih66

.7H3SI

.70I05

.7A7I6

.78518

.7H7OI

.77303

.8IA25

.77825

.81033

.85I73

.77896

.81A96

.8A981

.3IIIO

.3AA57

.8892A



Table B-4

Monte Carlo Critical Values for 2.000 Replications

with k - 3 and n - 20

 

ALPHA

0.0I

0.05

9
TEST

P
O
W

O
W
a
n

O
W

n
u
:

I
-
n
m

.298H2

~21377

.I9239

.256I8

.18758

.I572I

.23578

.16182

.I3092

.20725

.I3667

.I0207

.2096I

.I3I9I

.I057I

.IBAZO

.I069I

-07937

.A8918

.27H22

.23I79

.hOIhO

.23h00

.I9I99

.372I2

.I8500

.Ih98I

.30725

.I5228

.II3I3

.32782

.Ih62I

.II603

.26972

.II629

.08576

140

.35070

.2II7I

.1876A

.31066

.I8623

.16227

.29I58

.ISHII

.I3025

.25319

.13055

.IOIAI

.26555

.12685

.I0365

.22h69

.IOAIZ

.07868

.6623h

.7870I

.81258

.70302

.8I193

.83836

.72I23

.8AA75

.87023

.75580

.86852

.898hl

.7AA99

.87265

.89588

.78222

.89607

.92I09



Table B-5

Monte Carlo Critical Values for 2.000 Replications

with k - 6 and n . 20

 

ALPHA

0.0I

0.05

p TEST

P
O
W

I
-
n
W

n
u

r
-
n
u
:

r
a
n
)

a
n

.2I560

.I05h0

.09IOI

.20003

.09068

.0735}

-17965

.08016

.0660A

.I6Ih8

.067I2

.05085

.I6269

.06783

.05502

.Ih390

.05AI8

.039h8

.A3AAO

.1172A

.099Ih

.366I8

.09890

.0790H

.36608

.0873h

.070A0

.3000}

.0722I

-05370

.3280?

.072II

.05795

.2657I

~05770

.OHO63

141

.36A68

.10383

.08992

.3056]

.090I7

.073hh

.3I655

.080I7

.0658A

.26AA5

.06732

.05087

.28637

.06702

.05h86

.23559

.05A57

.03905

.67156

.89558

.90983

.71746

.SIOOI

.92666

.7II38

.91975

.93h22

.75h57

.93250

.9h905

.73667

.93288

.9A5I9

.779A1

.9A5h3

.96096



Table B-6

Monte Carlo Critical Values for 2.000 Replications

with k - 3 and n - 50

 

ALPHA

0.0I

0.05

p
TEST

T
-
n
a
:

V
O
W

I
-
n
m

P
O
W

r
-
n
m

I
-
n
m

.II607

.09285

.07806

.IO709

.082I5

.O706I

.09R63

.0622H

'.05I02

.08505

.052I3

.OAO89

.08161

.05IhI

.OHOBH

.07037

.OAZHI

.03125

.16125

.I0090

.08A67

.IHIO6

.08669

.07582

.I2903

.0657h

.05hI3

.IIOHO

.0555A

.ONBOO

.II256

~05339

.0h238

.093I8

.0hh28

.03213

142

.Ihh73

.09130

.07806

.I280h

-07970

.07030

.II86O

.06Ih5

.05I3h

.10205

.052H2

.OAIZB

.I0367

.05066

.0h065

.08718

.OA235

.03112

.85858

.9086I

.92I9h

.87h00

.92028

.9297I

.883h6

-93839

.9A861

.89938

.947A6

-9587S

.897A0

.9A929

-95936

.91392

.9576!

.96888



APPENDIX C

SIGNIFICANCE LEVELS FOR BETWEEN-GROUP TESTS

The following tables are actual significance levels

expressed as percentage exceedance rates of Monte Carlo

critical values for multivariate tests of between-group

differences, 8. calculated under heterogeneity levels. d.

Values are based on 2.000 replications of five combinations

of k equal groups of size n with p a 4 or 5 measures. In

the first table k a 3 and sample size varies while in the

second table n a 20 and the number of groups varies. The

test statistics used were:

Roy's largest root

Hotelling-Lawley trace

Pillai-Bartlett trace

Wilks' likelihood ratioz
<
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u

N
A
1
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P
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=
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APPENDIX D

SIGNIFICANCE LEVELS FOR WITHIN-GROUP TESTS

OF NON-LINEARITY

The following tables are actual significance levels

expressed as percentage exceedance rates of Monte Carlo

critical values for multivariate within-group tests of the

null hypothesis of no trends higher than linear. L.

calculated under heterogeneity levels. d. values are based

on 2,000 replications of five combinations of k equal

groups of size n with p - 4 or 5 measures. In the first

table I: =- 3 and sample size varies while in the second

table n a 20 and the number of groups varies. The test

statistics used were:

R = Roy's largest root

T a Eotelling-Lawley trace

V - Pillai-Bartlett trace

W - Wilks' likelihood ratio
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APPENDIX E

POWER VALUES FOR WITHIN-GROUP TESTS

The following tables include nominal powers under

homogeneity (where d - l) and actual powers under three

heterogeneous conditions (where d s 2. 4. or 9). Values

are expressed as percentage exceedance rates of Monte Carlo

critical values for tests of two multivariate within-group

hypotheses: (l) of no trends over the occasions. C. and

(2) of no trends higher than linear, L. These values are

based on 2,000 replications of five combinations of k equal

groups of size n with p = 4 or 5 measures. The mean

vectors used to transform the RM data to reflect a

polynomial trend were (0 .4 .8 .5 .l) for p a S and

(0 .4 .8 .5) for p = 4. The test statistics used were:

Roy's largest root

Hotelling-Lawley trace

Pillai-Bartlett trace

Wilks' likelihood ratioZ
A
C
H
!
”

N
I
N
N

The averages in Tables 5-7 and 5-8 were calculated

from the corresponding values in these tables.
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