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ABSTRACT

ROBUSTNESS AND POWER OF MULTIVARIATE TESTS
FOR TRENDS IN REPEATED MEASURES DATA
UNDER VARIANCE-COVARIANCE HETEROGENEITY

By
Gabriella M. Belli

Multivariate statistics are subject to the assumption
of homoscedasticity (i.e., equal covariace matrices across
groups). In a repeated measures (RM) design with time
ordered data, three hypotheses are tested: (1) between-
group differences, (2) within-group trends over occasions,
and (3) group by occasion interactions. Although the
effects of assumption violation on tests of the between-
group hypothesis have been investigated, the effects on
tests of within-group and interaction hypotheses have not.
An argument is presented indicating that multivariate tests
for interactions should behave like between-group tests,
but that tests for within-group trends should not.

The primary purpose of this Monte Carlo investigation
was to determine whether heteroscedasticity has a
differential effect on the robustness of multivariate tests
of main effects in a RM case. A secondary purpose was to
evaluate the robustness and power of multivariate tests of
two within-group hypotheses: (1) overall tests of trends,

and (2) subsequent tests of trends higher than linear,
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Gabriella M. Belli

under various combinations of number of groups and equal
sample sizes.

The test statistics were: Roy's largest root, R,
Hotelling-Lawley trace, T, Pillai-Bartlett trace, V, and
Wilks' likelihood ratio, W.

The following are the major conclusions drawn from the
investigation. (1) Multivariate tests of within-group
trends are considerably more robust to heteroscedasticity
than are multivariate tests of between-group differences.
(2) Within-group tests of trends higher than linear are
slightly more robust than overall tests of trends.

(3) Departures of empirical Type I error from nominal alpha
for within-group tests increase as heterogeneity, sample
size, or alpha increase, but not as dramatically as for
between-group tests. (4) Increasing the number of equal
groups does not have a consistent detrimental effect on
robustness of within-group tests. (5) For low and moderate
heterogeneity (i.e., covariance matrices differing by
factors of two or four), power of within-group tests
increases as total sample size, N, increases. (6) For high
heterogeneity (i.e., covariance matrices differing by a
factor of nine), power of within-group tests increases with
a decrease in the number of discrepant score vectors,

rather than with an increase in N.
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CHAPTER I
STATEMENT OF THE PROBLEM

Classical experimental research involves investigating
the effect of manipulating one or more independent
variables on a single dependent variable. This involves
either testing the null hypothesis of equal group means
against a general alternative or testing for specific
planned comparisons among the group means. The test
statistic used is the F-test (or t-test for two groups).
Given parametric assumptions, this is the uniformly most
powerful test that is invariant with respect to linear
transformations (Scheffé, 1959).

Generalizing to the multivariate case, where there are
two or more dependent variables (say, p). the.corresponding
null hypothesis is that of no differences among the k group
vectors, where each vector consists of the group means on
the p dependent measures. The F-test is a univariate test
statistic, and several generalizations of it have been
proposed for significance testing in the multivariate case.
Among those tests that are invariant under linear
transformation of the dependent variables, Hotelling's T2
statistic is the uniformly most powerful for one-sample
tests of means and two-sample tests of mean differences

(Anderson, 1958).



Four other commonly used test statistics are Roy's
largest root, R, Hotelling-Lawley trace, T, Pillai-Bartlett
trace, V, and Wilks' likelihood ratio, W. However, for
situations where there are multiple dependent variables or
more than two groups, no test has emerged that is both
invariant with respect to linear transformations and
uniformly most powerful.

A specialized case of the multivariate analysis of
variance (MANOVA) deals with situations where the same
measure is repeatedly taken over the same individuals. The
design on the measures, or occasions of testing, may
reflect the passage of time, with the same measure taken at
equally spaced intervals, or it may represent a factorial
structure, with the same measure taken after various
treatment interventions. 1In addition to the usual
multivariate hypothesis of group differences, hypotheses
about the occasions and, if there are multiple groups,
about group by occasion interaction may be tested. The
null hypothesis for occasions is that of no differences
among the p occasion vectors, where each vector consists of
the occasion means for the k groups. When there is only
one group or when no group by occasion interaction exists,
of even greater interest is the testing of hypotheses about
the trend the data follow, assuming equally spaced time
points, or about contrasts among the various measures,

assuming a factorial design. Tests for these hypotheses
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are all within-group tests as opposed to between-group
tests in the usual MANOVA sense.

In both the univariate and the multivariate cases, the
test statistics used are based on certain distributional
assumptions. These are that the random errors or error
vectors for the p measures are: (1) independently and
(2) normally or multivariate normally distributed (3) with
a common variance or variance-covariance matrix.

Violations of these assumtions may lead to erroneous
conclusions. However, if a particular test is insensitive
to violation of one or more of the assumptions when the
null hypothesis is true (i.e., if it leads to conclusions
similar to what would be expected given the assumptions),
then the test is said to be "robust” with respect to the
violation.

The assumption of independence is critical and no test
can favorably withstand its violation. Non-independence of
the observartions or of observational vectors due to faulty
operationalization of experimental design is a serious
threat to nominal alpha levels. 1In univariate situations,
the F-test for fixed effects has been shown to be fairly
robust with respect to violation of normality and, for
balanced designs, of homogeneity (see Glass, Peckham, and
Sanders, 1972). However, severe departure from nominal
significance level may occur under heterogeneity conditions

when samples are small and unequal (Scheffé, 1959).
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Regarding between-group differences in multivariate
situations, the several tests respond differently to
violations of the assumptions (for a review, see Ito,
1980). Generalizing, it may be said that robustness
results for fixed effects of at least some of these tests
are similar to those in the univariate case. They are
robust to non-normality and also fairly robust to
heteroscedasticity (i.e., violation of homogeneity of
variance and covariance) in balanced, two-group designs,
but are not so for unbalance designs. However, even with
two groups, the tests become liberal with increases in
number of dependent variables or amount of heterogeneity.
With more than two groups, tests are robust only if samples
are equal and extremely large. If they are unequal, even
moderate heterogeneity has large effects on significance
level and power (Ito and Schull, 1964).

To date, no studies have considered the robustness to
violation of multivariate test assumptions for tests of
within-group differences in a repeated measures (RM)
situation. Due to the nature of RM studies, Morrison
(1976) states that "many experimental conditions which lead
to higher mean values may also produce responses with
larger variances" (p. 141). Different populations are
likely to respond differently to successive measurements or
treatment conditions, thereby also causing correlations

between measures to differ from group to group. This is



particularly true in studies of naturally occurring groups
(e.g., a comparison of learning disabled and normal
children on learning retention rates over time). Subjects
within a classification group may be expected to respond in
a similar fashion, but it is unrealistic to expect that
gscores for the two groups come from the same multivariate
normal population. Hence, it is important to determine the
validity of the multivariate tests of RM in the presence of
heterogeneity conditions.

Just as findings from robustness studies for tests of
between group differences have parallels in the univariate
and multivariate cases, it may be presumed that similar
parallels would hold for tests of within-group differences
when homogeneity is violated. However, results from mixed-
model RM studies would not apply to multivariate tests
since the univariate tests are based on the assumptions of
equal variances and equal pairwise correlations across the
measures, which are unnecessary for multivariate tests to
be valid. The effect on within-group tests when using a
covariance matrix that is pooled from heterogeneous
population covariance matrices is not known.

The robustness of a parametric test is idiosyncratic
rather than general with respect to any violation and
changes in one parameter may produce different levels of
departures from nominal significance level. Tests of

within-group differences are based on transformations of



the dependent variables and the assumptions are made on the
transformed scores. It will be shown in Chapter II that
multivariate tests of between-group and within-group
differences are based on sums of squares and cross products
(SSCP) matrices that are different in both form and size,
and that the relationship between the eigenvalues needed
for calculating the test statistics for the two tests is
not obvious. Hence, it is not possible to predict the
behavior of one type of test from that of the other. Since
the current robustness results from studies of multivariate
between-group tests may not apply directly to within-group
tests, separate investigations need to be made.

Furthermore, subtests of particular trends for RM data
make use of subcomponents of the appropriate SSCP matrices
for hypothesis and error. Since it is known that between-
group tests become more robust with lower dimensionality of
variables, it is expected that tests of successively higher
order trends should show greater robustness than tests of
lower order trends.

The present research was an investigation of the
robustness and power of multivariate within-group tests for
a repeated measures design with the same measure taken over
a series of equally spaced time points. Non-normality does
not seem to cause serious problems under any circumstances
thus far investigated, whereas heterogeneity may be a

serious problem in certain cases. Therefore, given that



he

tt

vi

ha

st

to

are

Cox

ex:

dit

of

con

tes

ley

amc

Als

try

Cor

Pre

my)

hyp

lit

ang

dis



heterogeneity is typically a violation of greater concern,
the focus of this study was limited to the effect that
violation of the assumption of a common covariance matrix
has on the sampling distributions of four multivariate test
statistics.

The purpose of the first part of the investigation was
to determine whether tests of between-group and within-
group hypotheses differ in their reactions to heterogeneous
covariance matrices across groups. The second part was to
examine whether covariance matrix heterogeneity produces
differential effects on within-group tests when the number
of groups or of subjects within groups are varied. Third,
comparisons were made between overall tests of trends and
tests of non-linearity. 1In all cases, actual significance
levels obtained under a true null hypothesis and a given
amount of heterogeneity were compared to nominal values.
Also, actual powers for within-group tests obtained under a
true alternative and a given amount of heterogeneity were
compared to expected nominal powers if no violation was
present.

The following chapters will present the general
multivariate and repeated measures models, along with their
hypotheses and test statistics, a review of the robustness
literature, the method used for investigating robustness
and power of multivariate within-group tests, results and

discussion of results.



CHAPTER 1II
MULTIVARIATE ANALYSIS OF VARIANCE

In this chapter, the mathematical models for the
general multivariate analysis of variance (MANOVA) and for
the multivariate generalization to repeated measures (RM)
are described. These are followed by a description of the
hypothesis testing procedures through the separation of the
total source of variation into component parts, the tests
of significance used in multivariate analyses, and the
assumptions on which they are based. The final section
deals with a comparison of the sums of squares and cross
products (SSCP) matrices used to test between-group and
within-group differences.

General Multivarijate Linear Model

Assuming there are ny (j = 1,...,k) independent
observations in each of k groups, the ith observation in
the jth group is a pxl vector consisting of a constant term
L, a group effect 24, and a random error component Ej j

Yij = L + 249 + E£55
The yj4 and the £j4 are distributed in the population of
subjects as N(y, I) and N(Q, L), respectively, where I is
any pxp symmetric positive definite matrix.

The null hypothesis tested in MANOVA is that the pxl

mean vectors of all groups are equal,



Ho: ¥ = My = ., = M,
By letting Ly = L + ajr this hypothesis is equivalent to
testing that all the 24 = 0 (i.e., that all the treatment
or group effects are equal) (Bock, 1975).

The general MANOVA model for k group means may be

expressed in matrix terms as
Y. = AE + E.
where:
Y. = a kxp data matrix of k group means on p measures
A = a kxm known design matrix
& = an mxp matrix of unknown paramenters
E. = a kxp matrix of random errors
The error matrix E. is distributed N(Q,D-leI) where
D = diag(ny,nz,...,ng)-

Since A typically is not of full rank, A~l does not
exist, and therefore solving for the unknown parameters is
not possible. One solution is to reparameterize the model,
which may be done by factoring A into the product of two
matrices, K and L,

A = KL
where L is an 1xm contrast matrix that describes a set of

1l linear combinations of the paramenters in = and K is the

corresponding kxl column basis for the design matrix A.

Then,
E(Y.) = Az = KL= = KO

where © is an lxp matrix of new paramenters describing the



resulting linear combinations that reflect the research
interest regarding differences among the groups (Bock,
1975, pp. 239-240).

Multivariate Generalization for Repeated Measures

Multivariate analysis of variance of repeated measures
(MANOVA of RM) is a variation of MANOVA that includes a
test for the occasions or repeated measures. What
distinguishes these data from general multivariate data is
that in RM the multiple dependent scores are assumed to be
in the same metric (i.e., having the same origin and unit),
whereas in general the scores are qualitatively distinct
(i.e., having different origin and unit).

The underlying model for the ith observation in the
jth group is a pxl vector that contains a component for
occasions 1, for groups 84, and for random subject error
Eij'

¥ig =T + 85 + £44.

As before, the gj4 are distributed N(Q, £). But, unlike
the general MANOVA model, where the common term KX does not
provide any additional information, the common term in this
model, I, represents a pxl vector of constants and general
means for the p occasions. The second term, 854, is a pxl
vector of effects for the jth group that incorporates both
group and group by occasion interaction effects. The model
allows for a design on the occasions and a design on the

subjects (Bock, 1975).

10



In the one-sample case or, assuming no interactions,
in the k-sample case, the objective is to characterize the
occasion vector I. The appropriate characterization
depends on the structure of the repeated measures
dimension. If the measures correspond to points along a
continuum, a polynomial representation is used,

I=XE§8
where X is a regression model matrix and 8 is a vector of
unknown regression coefficients. If the measures
correspond to a factorial classification, then a treatment'
contrasts and interaction representation is used,

I=AZ%
where A is a design matrix for the occasions and £ is a
vector of unknown occasion effects. 1In the former case, X
is of full rank while, in the latter case, A is not and the
model may be reparamenterized a second time. While this
reparamenterization follows the same pattern as before,
with A = KL, A is now the design matrix for the occasions
and not for the groups.

Under the usual MANOVA model, the general occasion
effect T is not estimable and hypotheses on it are not
testable in the presence of group effects. Bock (1963) and
Potthoff and Roy (1964) have suggested a variation of
MANOVA that involves transforming the dependent variables
to within-subject differences. A new set of measured

variables is formed as linear combinations of the original

11



measures,

Yij* = P'yiy
where P is a matrix representation of the design over the
measures. In terms of the previous discussion of the
characterization of 1, P is either: (1) the regression
model matrix X, if the measures are taken at ordered time
points or (2) the orthonormalization of K, where K is the
basis for the reparameterization of A, the design matrix
for the occasions.

Assuming a full rank model for group means, the
transformation in matrix terms consists of postmultiplying
the components of the MANOVA model by a known matrix P,
which may be any pxq matrix. Preferably, P should be an
orthogonal matrix and this is now assumed. Then,

Y.P = KO P + E.P
or equivalently,
Y.* = RoP + E.*
where:
Y.*= a kxp matrix of transformed scores
K = a kxl basis matrix for transformations on groups
© = an lxp matrix of parameters
P = a pxp basis matrix for transformations on occasions
E.*= a kxp matrix of transformed errors

Analysis now proceeds as usual with the transformed

scores in Y.* replacing the original dependent measures.

The fact that the standard procedures apply can be seen

12



since the transformation

Y. = y,*p-1
reduces the RM model to a standard MANOVA model (Timm,
1980, p. 76). Furthermore, if P is orthogonal (i.e.,
P'P = I), so that P~1 = p', each vector of scores may be
transformed using P', as was shown previously. When P is
either non-singular or has rank p, the transformation has
nice properties with respect to the distributional
assumptions. Given that the yj4 are independent and
distributed N(X,I), then the Yij* are also independent and
are distributed N(P'y, P'tP) (Bock, 1975, p. 140).

Three basic hypotheses are of interest with k-sample
RM data. These deal with comparisons among the mean curves
or profiles of the groups, and may be phrased in terms of
the following questions: (1) Are the curves or profiles of
the k groups parallel? (2) If parallel, are they also
coincident? and (3) If coincident, are they also constant?
(Bock, 1975). The first question is asking about the
presence of any group by occasion interactions. The second
relates to group differences and the third to occasion
differences.

Subhypotheses to assess the effect of the treatment
structure or the trend over the occasions may also be
tested. Assuming a polynomial representation for the RM
dimension, this involves partitioning the sources of

variation for occasion and for group by occasion into

13



constant, linear, quadratic, etc. terms. Then a
hypothesized trend may be tested by a multivariate test
that all higher order trends are zero. The interpretation
for these tests on occasions is straightforward and relates
information about the type of trend the RM follow over
time. However, a g-degree trend among the interactions
implies that "any contrast among the groups can presumably
be described as a polynomial of this degree. For example,
a degree-2 interaction would imply that differences between
groups, in addition to a possible linear trend, are
accelerating or decelerating with respect to occasions"
(Bock, 1975, p. 474).

Hypothesis Testi

The multivariate hypothesis testing stage involves
partitioning the sums of squares and cross products (SSCP)
matrix for total variation ihto a constant, a between-
groups, and a within-groups part. The MANOVA table for the
general multivariate analysis is given in Table 2-1
(adapted from Bock, 1975).

The SSCP matrices for RM may be calculated directly by
substituting Y* for Y in Table 2-1. The same results may
be obtained by transforming the MANOVA SSCP matrices as
shown in Table 2-2 (Bock, 1975).

14



Table 2-1

Multivariate Analysis of Variance (k-sample case)

Source of at SSCP (pxp) *

Variation Equal n's General

Constant 1 Qc = (n/k)Y.'11'Y. (1/N)Y.'Dll'DY.

(occasion effect)

Between groups k-1 Qp = n¥.'Y. - Q¢ Y.'DY. - Q¢

(group effect)

Within groups N-k Q, = Y'Y - nY.'Y Y'Yy - Y.'DY.
error

Total N Q¢ =yY'Y Y'Y

* where D = diag(ny,...,ng) and 1 = a unit vector.

Table 2-2

Multivariate Analysis of Variance for Repeated Measures

Source of Variation daf SSCP (pxp)
Constant 1 Qc* = P'QCP
Between groups k-1 Qp* = P'QpP
Within groups error N-k Qu* = P'QuP
Total N Qg* = P'Q¢P

15



The multivariate test statistics are functions of the
appropriate SSCP for hypothesis and error (say, H and E,
respectively). The MANOVA hypothesis of equal group means
may be tested by setting H = Q, and E = Q,. For RM, the
matrices in Table 2-2 may be partitioned in the following

manner:

Q" = [c | Q = (b Qp = |V

| |
C | B ! W

! I
Assuming a polynomial decomposition, the scalars ¢, b, and
w represent the sums of squares for constant, group effect,
and error terms that would be used in a univariate
analysis. The (p-1)x(p-l1) matrices C, B, and W are the
SSCP for occasion effects, group by occasion effects, and
subject within group by occasion error. The diagonal
elements of these submatrices are the univariate sums of
squares for the respective linear, quadratic, etc. trends.
Table 2-3 shows how these matrices are used for the three
omnibus tests in a RM situation.

With no group by occasion interaction, the full
matrices Qp* and Qu* are the H and E matrices for group
effect and corresponding error for a multivariate test of
group differences. When P is orthogonal, a test using
these transformed matrices gives the identical results as

with Qp and Qwrs because test statistics based on either

determinants or trace functions remain invariant under
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orthogonal transformation (Anderson, 1958, p. 277).

Table 2-3
SSCP Matrices for RM Tests

Hypothesis H E Dimension
Parallelism (interaction) B ﬁ (p-1) x(p-1)
Coincidence (group effect) Qb* Qw* pxXp
Constancy (occasion effect) Cc W (p-1)x(p-1)

The submatrices C, B, and W may be partitioned further
to provide tests for particular trends. To test for any
g<p degree trend in the data, H and E are submatrices
corresponding to the lower right (p-g-1)x(p-g-1) corners of
the appropriate matrices (Bock., 1975, p. 480). The
required submatrices would be of rank p-g-1 and may be

represented by another transformation, R, such that

Hq* = R'H*R and Eq* = R'E*R

R = 0 (g+l) rows
I (p-q-1) rows

where,

(p-g-1) columns
Por example, let p =5 and a linear trend (g = 1) be
hypothesized. Then R', with rank p-g-1 = 3, is

R'"=[0 0!1 0 0
0 010 1 O
0 00 0 1
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yielding the lower right 3x3 corners of the 5x5 SSCP
matrices to test if trends higher than linear are zero.
Tests of Significance

The multivariate tests of significance are derived
under the assumptions of multivariate normality and
independence between pairs of subjects. The observed data
vectors are independent random samples from a population in
which any linear combination of variables in the observed
vector is normally distributed (BHarris, 1975, p. 231). In
terms of the error components, the distributional
assumptions are that the errors for the p measures for each
subject are independently distributed and follow a p-
variate normal distribution with expectation zero and a
common pxp covariance matrix, I. Whenever more than one
group is involved, it is assumed that the sampled data for
all groups come from populations that have identical
covariance matrices (Harris, 1975, p. 231).

Numerous criteria are available to test multivariate
hypotheses. However, they are all functions of the non-
zero characteristic roots, or eigenvalues Aj, of HE~L,
where H and E are SSCP matrices due to hypothesis and
error, respectively. These roots may be obtained by
solving the determinental equation

| - AE| = 0.
For this equation to have real-valued solutions, it is

necessary for E to be positive definite (i.e., that the
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quadratic form x'Ex > 0 for all x = 0) (Anderson, 1958,

p. 337). This will usually be the case if the number of
dependent variables (p) is less than the degrees of freedom
for error (df,).

Let 1y > 25 > .2 A5 > 0 where s = min(dfy, u) with
df, = degrees of freedom for hypothesis and u = the number
of variables after any transformation. Then, four commonly
used multivariate test criteria are defined in Table 2-4
(Timm, 1975). These are exact tests, with known central
and noncentral distributions. When 8 = 1 (i.e., if p =1
or k = 2), they are equivalent and may be represented as an
exact F distribution. There also are F approximations for
the multivariate tests (see e.g., Tatsuoka, 1971).

The only parameters necessary to define the
distribution of the statistics under valid assumptions and
true null hypothesis are number of variates, degrees of
freedom for hypothesis, and degrees of freedom for error
(Ito, 1962). Additionally, noncentrality parameters are
needed under true alternatives. Based on these parameters,
Timm (1975) provides tables for the upper percentile points
of R, T, and V and for the lower percentile points of W.
The null hypothesis is rejected at significance level a if
the obtained value of W is less than the 100a-centile of
the null distribution. For the other tests, the null is
rejected if the obtained value of a statistic exceeds the

100(1-a)-centile of the corresponding distribution.
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Table 2-4

Multivariate Test Statistics

Roy's largest root

Hotelling-Lawley trace

Pillai-Bartlett trace

Wilks'

likelihood ratio

= tr(HE™1)

= tr(H(B+E)~1)

=lE

20
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Iheoretical Comparison of Tests

Although the multivariate test statistics for tests of
between-group and within-group differences are identical,
they operate on different SSCP matrices. The question of
interest, then, is whether these matrices, whose expected
values are functions of the common covariance matrix, are
equally subject to violations of homoscedasticity. The
following discussion outlines the relationship between the
matrices used for the two tests.

Multivariate test criteria are functions of the
eigenvalues of HE~1l, where H and E are the SSCP matrices
for hypothesis and error, respectively. For a within-group
test HE~l is the lower (p-1)x(p-1) submatrix of the

appropriately transformed

Qc0y, "t (1)
and for a between-group test, it is the pxp matrix
Qwa-l (2)

where Q., Qp, and Qy are defined in Table 2-1.

Prom the robustness literature, which is reviewed in
Chapter III, we have general conclusions about the effects
of particular types of homogeneity violations in the
population covariance matrices when (2) is used to test for
group differences. These results are based on
distributions of the p eigenvalues of (2).

Tests for group by occasion interactions are based on

the eigenvalues of the order-(p-1) submatrices of (2).
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Since the same SSCP matrices are used for both interaction
and between-group tests, the lower dimensionality in the
portion of those matrices used for interaction tests should
tend to make them slightly more robust than the between-
group tests.

Tests of occasion differences with RM data are based
on the p-1 eigenvalues of the order-(p-1) submatrix of (1).
By substitution,

0.0, 1 = (Y.'DY. - QgL

= (¥.'pY.) Q.Y - opo, 7t

Even though a relationship exists between matrices (1) and
(2), knowledge about the distributions of eigenvalues of
(2) does not provide direct information about the
distribution of eigenvalues of (l). Since within-group
tests are actually based on a submatrix of (1), it would
further be necessary to establish the relationship between
the p eigenvalues of the full matrix (1) and the (p-1l)
eigenvalues of the submatrix used for these tests in order
to fully specify the relationship between the matrices for
the two types of tests.

Each subsequent within-group test of successively
higher order trends is based on submatrices of (1), which
decrease in dimension. Therefore, each test of a higher
order trend should result in slight increases in robustness

over the previous within-group test.
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It is not obvious whether heterogeneity in the
population covariance matrices would differentially effect
the robustness of between-group and within-group tests and
the mathematics needed to demonstrate the necessary
relationships are intractable. Therefore, an empirical
study was conducted to determine if the distributions for
any of the four multivariate test statistics presented
earlier are comparable for testing the two types of
hypotheses. In this way, it could be determined if the
tests respond similarly to the same violation to
homogeneity. A further comparison of the robustness
between within-group tests for any trend across time and
the subsequent tests for trends higher than linear was also
conducted. The study involved the simulation of a large
number of experiments so that the actual significance
levels could be compared to nominal levels with minimal
standard error.

The second part of the study was an investigation of
the effects on robustness and power of within-group tests

when sample size and number of groups are varied.
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CHAPTER III
REVIEW OF THE LITERATURE

Consequences of assumption violations have been
thoroughly investigated for univariate test statistics from
both the large sample and small sample points of view.

Only recently have similaf studies been undertaken for
multivariate test statistics. While some of this work has
been theoretical, involving large sample theory and
asymptotic approximations, most of it has been empirical.
Since the mathematics involved in a theoretical study of
multivariate statistics are quite complex, Ito and Schull
(1964) remarked that "the small sample treatment of the
problem ... is very difficult if not impossible"™ (p. 72).

Researchers in the multivariate area have focused on a
one-way fixed effects classification for the independent
factor and have considered tests of between-group
differences on multiple dependent measures. Robustness
studies of within-group tests have dealt only with
violations of the univariate mixed-model assumptions of
equal variances and covariances across the repeated
measures (RM). Typically, comparisons have been made
between the usual F-test and the F adjusted by a correction
factor (e.g., Collier, Baker, Mandeville, and Hayes, 1967)

or between univariate and multivariate analyses (e.g.,
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Scheifley, 1974). However, in all cases with more than one
group, groups were assumed to have a common covariance
matrix.

The following review will briefly summarize the fixed
and mixed model univariate results and then present the
multivariate results in greater detail. As a preliminary,
an overview of a common strategy used to model
heterogeneity will be presented.

Strategieg for Investigating Robustness to Heterogeneity

Variance heterogeneity in univariate studies is easily
portrayed by a ratio of population variances. For
multivariate problems, modeling is more complicated since
there are many ways of introducing heterogeneity in
population covariance matrices. Tw§ single-valued
multivariate analogs to a variance are the trace and
determinant of the covariance matrix. The trace represents
the total variation and the determinant represents a
generalized variance (Tatsuoka, 1971). Ratios of
covariance matrix determinants parallel the univariate
case, forming a convenient index of multivariate
heterogeneity.

A typical tactic used in empirical studies of
robustness of multivariate test statistics against
violation of the assumption of homoscedasticity is to
reduce the problem to canonical form. This procedure,

which was used in all but two of the multivariate studies
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reviewed, produces diagonal covariance matrices, thereby
reducing the number of parameters that need to be
considered by p(p-1)/2.

The procedure is based on theorems for matrix
transformations (see Tatsuoka, 1971, pp. 125-129). It
consists of applying a linear transformation, say C (where
C is orthogonal, i.e., C'C = I and |C| = 1), to the matrix
of observations X, thus producing a new set of uncorrelated
variables Y = XC. The matrix C represents a rigid (or
angle-preserving) rotation from the original variates to
the principal axes and consists of columns of eigenvectors
of the original covariance matrix I. Using the same
transformation matrix, I is transformed into a diagonal
matrix C'tC = diag(r;,X5,...,Ag), with the variances of the
canonical or transformed variates (eigenvalues) as diagonal
elements. This is called "diagonalizing the matrix"
(Tatsuoka, 1971, p. 128). The trace and determinant of the
original covariance matrix are equal to the trace and
determinant of the transformed matrix. A multivariate
analysis on the canonical variates produces the same
results as those obtained with the original ones since the
MANOVA test criteria are invariant under any linear
transformation (Anderson, 1958, p. 277).

The operationalization of this procedure in MANOVA
robustness studies of heterogeneity relies on the fact that

two population covariance matrices, say V; and Vj, may be

26



~ linearly transformed to the identity matrix, I, and to a
diagonal matrix, D, whose diagonal elements are the
eigenvalues of V,v;~l (Holloway and Dunn, 1967). D is
called the diagonal matrix of latent roots.

MANOVA test criteria for a given test based on any
mixture of N(Q,V;) and N(Q,V;) are equivalent to a mixture
of N(0,I) and N(Q,D) (Olson, 1973). To model situations
with non-zero mean vectors, a mixture of N(i;,I) and
N(ky,D) may be used to represent the canonical forms of
N(C'"lyy,v;) and N(c'"l,,V5). This applies to both the
central case, with equal population means, and the
noncentral case, with unequal population means.

Heterogeneity is typically introduced either equally in
all of the canonical dimensions, with D = dI, or in only
one dimension, with D = diag(d,1,...,1). Variations on
this theme allow for heterogeneity to vary across canonical
dimensions, with some d; = 1 while other d; = d. 1In this
way, a researcher need only vary values of d to simulate a
variety of heterogeneous conditions. For more than two
groups, either one or more groups are sampled from a
population with covariance matrix D and the rest from a
population with covariance matrix I. An alternative is to
sample groups from populations with covariance matrices I,

D, and multiples of D.
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Consequences of Non-independence and Non-normality

Violation of the independence assumption is quite
serious. For analysis of variance (ANOVA), positive
correlations among the errors yield a liberal test (i.e.,
too many significant results) and negative correlations
yYield a conservative test (i.e., too few significant
results). This is true for both equal and unequal sample
sizes and the discrepancy between nominal and actual levels
of significance increases as the absolute value of the
correlations increase (see Scheffe, 1959).

For a two-group matched-subjects design in univariate
situations, use of the correlated or dependent t-test is an
appropriate technique to handle the problem. For
correlated observations that arise from a RM situation, the
problem is identical to that of a mixed-model analysis and
two avenues are open. One is to use the correction factors
of Box (1954) or Greenhouse and Geisser (1959). These
adjust the degrees of freedom for the F-test and the latter
produces conservative results. The other method is to use
exact multivariate tests, which do not make the ANOVA
assumption of independence of errors across measures taken
on the same subject. However, independence of errors
between subjects must still be maintained.

Glass, Peckham, and Sanders (1972) provided a thorough
review of the univariate literature for fixed-effects

designs. General conclusions were that violation of the
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normality assumption does not present a problem for either
the t-test or the F-test in an analysis of mean
differences. For both equal and unequal sample sizes,
discrepancies between actual and nominal significance
levels are slight and, with equal n's, the F-test proves to
be robust even in the extreme case of dichotomous data.
However, non-normality does effect inferences about
variances, such as in tests of random-effects or equality
of variances (Scheffé, 1959).

Considering six multivariate tests and using equal
n's, Olson (1973, 1974) found that departures from
normality in the direction of positive kurtosis (occasional
extreme observations) had only minor conservative effects
on Type I error rates. From the asymptotic expressions for
central and non-central distributions of Hotelling's T2 and
Tc,2 (a generalized T2 for more than two groups), which were
obtained by Ito (1969), approximate values for actual
significance and power may be found. In a recent review,
Ito (1980) mathematically demonstrated that, for
sufficiently large sample sizes, non-normality did not
appreciably effect either the significance level or the
power of these test statistics. The question of what
sample size is to be considered "sufficiently large” was
left open, since this is difficult to demonstrate
theoretically. 1Ito (1980) further stated that, from Monte

Carlo studies, the T2 test in the two-sample case has been
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found to be particularly robust against non-normality for
tests about means. However, as in the univariate case,
non-normality has serious consequences for tests of
equality of covariance matrices.
Consequences of Heterogeneity

Studies of both univariate and multivariate cases
indicate that violation of the homogeneity assumption may
cause serious discrepancy between actual and nominal
significance levels and that this is typically a more
serious problem than non-normality. Since this violation
is more serious, as well as being the focus of the present
research, greater attention will be given to studies of
robustness in the face of heterogeneity. Consequences in
both the univariate and multivariate cases will be
reviewed.
Eixed-model ANQVA

Extensive work has been done to examine the
consequences of departures from homogeneity of variance for
univariate test procedures (for reviews, see Scheffé, 1959,
Chapter 10 and Glass, Peckham, and Sanders, 1972). 1In the
univariate two-sample case, inequality of population
variances has little effect on either significance level or
power of the t-test if sample sizes are about equal.
However, if sample sizes are markedly disparate, large
deviations from the nominal error rate occur for both large

and small sample cases. The test is conservative if the
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larger group has the larger variance and is liberal if the
larger group has the smaller variance (Scheffé, 1959).

For more than two groups, heterogeneity does have a
slight effect on the Type 1 error rate of the F-test even
when groups are of about equal size, in which case the test
is liberal (Scheffé, 1959). However, general conclusions
from both theoretical and empirical work have been that the
ANOVA F-test is robust to heterogeneity of variance. A
major exception is in the case of small and unequal sample
sizes, where the effects are serious. Results for unequal
n's follow the same pattern as for the t-test, with either
conservative or liberal results.

It should be noted, however, that these general
conclusions have boundary conditions, which depend on
sample size or ratio of sample sizes, on the amount of
heterogeneity, and on the value of nominal alpha. Ramsey
(1980) found that even for the equal sample t-test,
robustness depends on certain conditions. For example,
with n's greater than 15, the t-test will not exceed a
significance level of .06 at a nominal level of .05
regardless of the amount of heterogeneity, but robustness
may be achieved with n's as small as five if the ratio of
variances in the two populations is 1:4 or less. Also,
there is an inverse relationship between nominal alpha

level used and sample size needed for robustness.
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Mixed-model Repeated Measures

 In univariate mixed-model analysis, the RM dimensions
are treated as additional design factors. Two assumptions
are made for a valid univariate test: (1) equality of
covariance matrices across levels of the between-group
factor, and (2) uniformity of the common covariance matrix
(i.e., equality of the variances of the RM and of the
pairwise correlations between these measures). In a RM
situation, variances might change between observations,
possibly due to treatment effects on each occasion. Also,
there is potential for lack of independence between error
components of the observations, particularly if the RM
factor reflects time.

Huynh and Feldt (1970) demonstrated that uniformity is
merely a sufficient and not a necessary condition for
validity of within-group F-tests. What is required is that
the assumptions stated above be met by the covariance
matrices of orthonormalized variates rather than of the
original variates. Nevertheless, the majority of the
robustness literature in the mixed-model case has focused
on violation of the uniformity assumption with the original
variates. Some of these studies are reviewed below.

While the studies in this section have a different
focus from the rest of this paper, since variances and
covariances are equal across groups, they are included as

backgound to a study of consequences of assumption
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violations in a RM study. Also, they provide another
indication of the idiosyncratic nature of the behavior of
test statistics under different forms of violations.

In a theoretical study, Box (1954) assessed the
approximate effects of unequal variances and serial
correlations in one factor of a two-way design with one
observation per cell. He showed that these conditions
reduced the apparent number of degrees of freedom in both
the numerator and denominator of the F-ratio and that the
effect was to produce a slightly liberal test.

Empirical results for a k-sample RM study (with k = 3
and p = 4) were obtained by Collier, Baker, Mandeville, and
Hayes (1967). They compared Type I error rates for three
ANOVA F-tests: unadjusted, adjusted by Box's correction
factor, and by Greenhouse and Geisser's conservative lower
bound for the correction factor. They considered 15
different patterns of covariance matrices, where both
variances and pairwise correlations were varied, although
covariance matrices were common across groups.

As expected, their results showed that the F-test for
group differences had a close agreement between empirical
and nominal alpha, but that the F-test for occasions and
group by occasions effects did not. 1In both cases the
unadjusted F was liberal and the adjusted F was fairly
robust with Box's correction factor but conservative with

the lower bound test. An unexpected finding was that
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departures from nominal alpha did not significantly
decrease, and in some cases actually increased, when sample
sizes increased from five to 15. A similar, but smaller
study conducted by Mendoza, Toothaker, and Nicewander
(1974) upheld the above conclusions.

In an empirical study comparing the mixed-model ANOVA,
MANOVA of RM, and analysis of covariance structures
(ANCOVST), Scheifley (1974; Scheifley and Schmidt, 1978)
considered a one-group RM case with a 2x2 design on the
measures. Three covariance matrices were used, where one
matrix conformed to the assumptions of each analysis. When
the ANOVA assumption of uniformity was not met, all three
tests were generally conservative. ANCOVST had the
greatest power when a significant difference in means was
present in only one of the RM factors and MANOVA of RM had
the greatest power when the null for both RM factors and
the interaction were false.

Significance level results for the univariate test
under violation of uniformity in the above study were not
consistent with the previous two empirical studies in this
section, where results tended to be liberal. This may be
partly due to the fact that the two covariance matrices
used to model univariate assumption violation in
Scheifley's (1974) study had variances that were fairly
close to being equal, while the other two studies had

larger discrepancies between variances. Another
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possibility is that the opposite results were due to the
different patterns for the covariance matrices. The first
two studies considered successive trials on one RM factor
and the covariance matrices had simplex patterns (i.e.,
successive diagonals had lower values). Due to the two-way
factorial structure on the RM in the third study, those
covariance matrices had circumplex patterns (i.e., values
in successive diagonals first increased and then
decreased) .
Two-gample MANOVA - Hotelling's T2

Unlike the mixed-model case, in multivariate analysis
the separate repeated measurements are considered as
multiple criterion variables. They may have unequal
variances and a general pattern of correlations. The
assumption is that this general covariance matrix is common
across groups. To test for differences among the dependent
variables, the original variables are transformed into
contrasts of interest. Hotelling's T2 statistic is the
multivariate analog to the t-test, and is the uniformly
most powerful test for comparing two groups on p variables
(Anderson, 1958, pp. 115-118). Several researchers have
found it to behave in a fashion similar to the t-test under
heterogeneity conditions.

In an empirical study using Monte Carlo methods with

relatively small samples (N = nj+nj ranging from 10 to 40),
Hopkins and Clay (1963) examined the Type I error rates of
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Hotelling's T2 statistic for testing the equality of two
independent mean vectors in the p = 2 case. The two
populations studied were N(Q,olzl) and N(n,czzl)n where
heterogeneity between covariance matrices was present
equally in both canonical dimensions apd of the form
0,2/072 = 1.6 and 3.2. Under these circumstances, they
found that with n; = np, > 10, heterogeneity had little
effect on test results, but that, as in the univariate
case, this robustness does not extend to unequal sample
sizes. Everything else being equal, the greater the
heterogeneity, the greater the departure of the observed
significance level from the nominal alpha level.
Furthermore, regardless of the amount of heterogeneity, the
T2 test was conservative if the larger group had more
variability and liberal if it had less variability.

Another empirical study of the effect of inequality of
covariance matrices and of sample size on the distribution
of Hotelling's T2 statistic was conducted by Holloway and
Dunn (1967). They considered both level of significance
and power with number of variables ranging from one to 10
and total sample sizes from five to 100. In canonical
form, the covariance matrix for one population was equal to
the identity, I, and for the other it was either dI or
diag(d,1l,¢..,1), with d = 1, 1.5, 3, 10, and 100. They
confirmed the robustness of T2 for p = 2 as found by

Hopkins and Clay and concluded that the actual level of
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significance increases when any of the following occur:
(1) number of variables increases, (2) total sample size
with equal groups decreases, or (3) number of heterogeneous
dimensions increases (i.e., all d; = d). They also stated
that "equal sample sizes help in keeping the level of
significance close to the supposed level, but have little
effect in maintaining the power of the test" (p. 125). 1In
general, power was often cohsiderably reduced by departures
that left the significance level satisfactory.

In a third empirical study of the robustness of T2,
with p = 2, 6, or 10, Hakstian, Roed, and Lind (1979) did
not use covariance matrices in canonical form. However,
all variances in one population were equal to one and
covariances had an irregular pattern. Two distinct
matrices were used for a second population, where all
elements were greater than in the first by a féctor of 1.44
or 2.25. For two variates, robustness was evident with
equal sample sizes as small as six. For unequal sample
sizes, their results paralleled the previous studies.
Additionally, they found that increasing the total sample
size while keeping the ratio of sample sizes constant does
not help, and may actually hurt, the situation.

In summary, while the T2 test is robust to covariance
matrix heterogeneity with equal n's, it is not robust with
unequal n's. The latter is true even for relatively mild

departures from equality of the covariance matrices and of
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sample sizes.
General MANOVA Test Statistics

The MANOVA tests discussed in this section are all
functions of the eigenvalues of HE~1l, where H and E are the
hypothesis and error SSCP matrices. For two groups, the
tests are equivalent. Hotelling's Toz is a generalization
of the T2 test, which may be used with more than two
groups. The T statistic is often used in place of Tozp
since they are directly related (i.e., T2 = df.T).
Robustness studies of multivariate test statistics for more
than two groups have shown that, in general, these test
statistics behave in a manner comparable to the univariate
F-test.

One of the earliest and most cited theoretical studies
of multivariate robustness to heterogeneity of covariance
matrices was conducted by Ito and Schull (1964). They
investigated the asymptotic distribution of Hotelling's Toz
statistic, with one to four variables and two to five
groups. For the case of two large samples of equal size,
they showed analytically that the test is fairly well
behaved, with respect to both significance level and power,
in the presence of heterogeneity. Also, for samples of
nearly equal size, robustness holds as long as the
characteristic roots of I,Z;~l fall in the range (.5,2).
For two large samples of unequal size, the departure from a

nominal alpha level of .05 increased as: (1) the ratio of
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sample sizes (r = nj;/njy) departed from one, (2) the degree
of heterogeneity (d = the characteristic roots of 2221'1)
departed from one, or (3) the number of dependent variables
increased. For more than two groups and equal samples,
there was a tendency to overestimate significance, but the
effect was not serious with moderate heterogeneity.
However, if one or some of the groups were of unequal size,
even moderate heterogeneity conditions produced large
effects on the significance level and the power of the
test. In all cases with unequal sample sizes, actual
significance was greater than .05 if the larger group had
the smaller variance and less than .05 if the larger group
had the larger variance.

In an empirical study of the robustness properties of
Hotelling's T, Wilks' likelihood ratio criterion W, and
Roy's largest root R with small equal samples (n = 5 or
10), Korin (1972) specified departure from equality of
covariance matrices in two ways, symbolized by A(d) and
B(d) with @ = 1.5 or 10. A(d) represents cases where only
one population covariance matrix differed (i.e., (I,I,dI)
for k = 3 and (1,I1,1,1,I,dI) for k = 6), while B(d)
represents cases where two differed (i.e., (I,dI,2dI) for
k =3 and (1,I1,1,I,d1,2dI) for k = 6). Results showed that
the three tests were somewhat comparable and that, although
they were all liberal, R tended to be more so than did the

other two. The discrepancy between nominal and actual
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values was slight with small violations of covariance
homogeneity (d = 1.5), but was pronounced with larger
violations (d = 10). This indicates that, unlike the large
sample case, with small n even equal samples do not
guarantee robustness.

A very extensive Monte Carlo investigation of the
performance of six multivariate test criteria under
heterogeneity conditions was conducted by Olson (1973,
1974). He considered groups of equal sizes (n = 5, 10, and
50) with both number of variables and of groups equal to 2,
3, 6, and 10. With populations having distributions N(Q,I)
or N(Q,D), he used two types of contaminating covariance
matrices (i.e., where all canonical dimensions varied
equally, D = dI, or where only one dimension varied,

D = diag(pd-p+1,1,¢¢.,1)), with d = 4, 9, or 36. For a
given value of d, total variability in both matrices, as
measured by the trace of D, were equal. Therefore, only
the manner in which variability is allocated was varied for
a given d, and not the total variability. The latter being
varied by different choices of d.

Under various combinations of these factors, Olson
examined Type I error rates and power of Roy's largest
root, R, two trace-type tests (Hotelling-Lawley's T and
Pillai-Bartlett's V), and three determinental tests (Wilks'
likelihood ratio, W, Gnanadesikan's criterion, U, and

Olson's alternative criterion, S). The U and S tests
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tended to be quite conservative and did not respond
favorably to violations and so will not be discussed
further.

Olson concluded that, although the remaining four
tests all tended to be liberal, the R test was far too
liberal and should be rejected if any heterogeneity is
suspected. For large samples, the V, W, and T tests are
asymtotically equivalent and he suggests as a rule of thumb
that they may be so considered whenever degrees of freedom
error are at least 10p times larger than degrees of freedom
hypothesis. For smaller samples, the T, W, and V tests
were robust against mild heterogeneity, but in general, T
and W did not fare as well. Findings showed that even
though it tended to be liberal, the V test was the most
robust under the conditions examined. These results with
equal samples uphold Korin's (1972) conclusions of
overestimation of significance level for small samples and
extend them to even moderately large samples (n = 50).

Although departures from assumptions have
substantially different effects on the distributions of the
four test statistics to be considered in this study (see
Chapter 1IV), general conclusions for equal samples are that
exceedance of nominal alpha may be decreased by reducing
dimensionality, p, or number of groups, k. However,
increasing sample size with equal n's does not always help.

Also, even though the percentage exceedance tended to be
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greater at larger nominal alpha, Olson (1974) found that
*different proportions of contamination showed their
effects in much the same way at all three significance
levels” (i.e., for .01, .05, and .10) (p. 898). 1In
general, exceedance rates increased with greater
heterogeneity, but they "tended to increase more as d
increased from1l to 4 and from 4 to 9 than as it increased
from 9 to 36" (p. 898). Furthermore, regardless of p and
k, effects were relatively minor when only one canonical
dimension varied (D = C(d)) but severe when they all did
(D = dI).

For situations where D = dI, larger n's corresponded
to lower exceedance rates for R, T, and W whereas for V,
rates either decreased or increased as necessary to
converge to T and W for large n. This is due to the fact
that, for small n, V was significantly better than the
other tests in many of the cases. It should be noted that,
for equal samples, when D = dI "effects of kurtosis and
heterogeneity tend to be in opposite directions, the former
yielding conservative rates and the latter producing too
many significant results" (Olson, 1974, p. 901).

With respect to power, differences among the R, T, V,
and W statistics were typically small. However, the R
statistic tended to have slightly higher power if
differences in the population mean vectors were confined to

one of the s dimensions, while the V statistic had a slight
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advantage if the differences were equally pronounced in all
the 8 dimensions. Furthermore, holding the noncentrality
parameter constant, increasing the number of groups tended
to decrease power, while increasing group size had no
consistent effect on power.

Another Monte Carlo study on the significance levels
of R, T, W, and V test criteria with equal n's, but where
heterogenetity was modeled on the original covariance
matrices and not on the canonical dimensions, was conducted
by Ceurvorst (1980). He considered a variety of situations
that included varying the number of dependent variables (2
and 3), number of groups (2, 3, and 6), degrees of freedom
error (18, 60, and 180), and both type and degree of
heterogeneity. Por differences of type, he considered
inequality of variance alone, of correlations alone, and of
both together, with combinations of three variances (1, 4,
and 9) and three correlations (.2, .5, and .8).

For heterogeneity of correlation he found only mild
liberal exceedance rates for the four test statistics using
a .05 nominal alpha. The observed significance levels were
always less than .09 and proved to be fairly robust in most
cases. Results for heterogeneity of variance confirmed
previous results for canonical forms, plus indicated that
the effects did not depend on the magnitude of the common
within-group correlation(s) for any of the cases

considered. Comparisons among the test criteria showed
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that they were consistently ordered R-T-W-V from highest to
lowest exceedance rate of the nominal alpha. The most
serious discrepancies occured when k = 6 and five groups
had variances equal to unity, while the sixth had variances
equal to nine.

When both heterogeneity of variance and of correlation
were present, results differed depending on the relative
size of variances and correlations. If groups with the
largest variances had the largest correlations (LVLC),
violations became increasingly more serious than for
heterogeneity of variance (HV) alone. If groups with the
largest variances had the smallest correlations (LVSC), the
reverse was true, with violations being less serious.
Comparisons of the criteria under LVSC conditions were
similar to the HV situations with the V test being
uniformly most robust, followed in order by W, T, and R.
Under the LVLC conditions, no criteria was uniformly best.
When only one variance differed, R was often the best
choice, but it was the worst when all variances differed.
Also, when R was best, the other tests generally had
exceedance rates that were .07 or less.

Pillai and Sudjana (1975) studied the effects of
unequal covariance matrices on the R, T, V, and W
statistics in the exact case by deriving central and
noncentral distributions and applying them in a numerical

study with n = 5, 15, and 40. Considering p = 2, they
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stated that low heterogeneity produces modest changes in
the powers of the test statistics, but that changes become
pronounced as heterogeneity increases. None of the four
statistics showed an advantage over the rest.

In summary, the discrepancy between actual and nominal
alpha tends to decrease with lower degrees of
heterogeneity, and with smaller number of variables and of
groups. It appears that, for two equal samples, neither
the significance level nor the power of Hotelling's T2 is
seriously affected by heterogeneity, but that this is not
necessarily true for unequal n's. For more than two groups
of large equal samples, robustness may be achieved with
moderate departures from homogeneity, but even moderate
heterogeneity produces large effects on both significance
level and power when samples are unequal. For several
small or moderately large groups, even equal samples do not
protect against departure from nominal significance levels,
with test criteria tending to be liberal. Consequences of
violation of the homogeneity assumption through a
contaminating covariance matrix is generally worse if all
canonical variances differ by an equal amount than when
only one differs. The case of only some equally discrepant
variances falls between the two extremes. In general,
Roy's largest root, R, appears to be the worst of the
invariant tests and Pillai-Bartlett's trace, V, the best,

with respect to both robustness and power.
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CHAPTER IV
METHOD

Previous work exploring the robustness of MANOVA test
criteria to violation of homogeneous covariance matrices
across groups has dealt only with fixed-effects between-
group tests in a one-way classification. In the present
research, the effect of violating the assumption of
homoscedasticity was considered in a repeated measures (RM)
situation with data from ordered time points and a fixed-
effects, one-way design over the subjects. The purpose of
the study was twofold: (1) to compare the robustness of
multivariate test statistics for between-group and within-
group tests, and (2) to analyze the behavior of within-
groups tests under various conditions with respect to both
robustness and power.

When data in the p-variate response measures reflect
the passage of time, and assuming no group by measures
interaction, overall within-group tests encompass all p-1
degrees of freedom (df) for trend, thereby testing the null
hypothesis of no trend in the data or, equivalently, of
equality of occasion means. Subsequent tests may be
confined to any p-g-1 degrees of freedom (df) remaining

after a q < p degree trend is hypothesized.
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In this chapter, details are presented about the use
of covariance matrices in canonical form for kn analyses,
the parameters and procedures for the study, and the Monte
Carlo techniques that were used.

Reduction to Canonical Form

The assumption of homoscedastisity for tests of
between-group differences relates to population covariance
matrices for the original score vectors. For simplicity,
canonical forms of the covariance matrices are typically
used in MANOVA robustness studies (see Chapter III).

For MANOVA of RM, the score vectors are linearly
transformed to reflect the design on the measures. The
transformed vectors remain multivariate normal if the
original vectors are multivariate normal (Finn, 1974,

P. 62) and the assumption now relates to the transformed
covariance matrices.

With time ordered data, the transformation consists of
a matrix of normalized orthogonal polynomial coefficients.
When such a matrix is applied to populations with
covariance matrices reduced to the canonical forms I , dI,
or C(d) = diag(d,l,...,1), the transformation does not
alter I or dI. Although C(d) becomes a general matrix, it
is reduced to C(d) when diagonalized. Therefore, the same
underlying violation is modeled for both between-group and
within-group tests when the original covariance matrices

are in canonical form.
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Parameters of the Study

A major problem in any study of robustness of
multivariate test statistics comes from the seemingly vast
number of ways in which the assumption of covariance
homogeneity can be violated and the many factors that have
some bearing on levels of robustness. Therefore, it
becomes necessary to specify these factors and
nonconforming populations in terms of some relevant
parameters and to choose particular levels of each in order
to have a systematic coverage of different forms of
violations under various conditions. The parameters
considered in this study are described in this section.
Tests of Multivariate Hypotheses. For each simulated data
set, tests of a between-group hypothesis and two within-
group hypotheses were conducted. The hypotheses tested
were: (1) the null of no between-group differences on
p-variate mean vectors, using k-1 df, (2) the null of no
trends across the p-variate data, using p-1 df, for an
overall test on occasions, and (3) the null of no trend
higher than linear, using p-2 df. Rejection of the second
null hypothesis, but not of the third implies the existence
of a linear trend across time.

Test Criteria. For each hypothesis, four multivariate test
statistics, defined in Table 2-4, were calculated: Roy's
largest root, R, Hotelling-Lawley trace, T, Pillai-Bartlett

trace. V, and Wilks' likelihood ratio, W.
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Number of Measures, p. Experiments were simulated with
P = 4 or 5 response measures. This enabled both within-

group tests to be multivariate. Since a multivariate test
for linearity uses SSCP matrices of order p-2, the smallest
value for p that allows for such a test is four. The SSCP
matrices for hypothesis and error were: (1) of order-4 or 5
for between-group tests, (2) of order-3 or 4 for overall
occasion tests of no trends, and (3) of order-2 or 3 for
tests of no trends higher than linear.

Number of Groups, k. The simulated experiments had simple
one-way fixed designs on the independent factor with k = 2,
3, or 6 groups.

Group Size, n. Small to moderately large experiments were
simulated, with n = 10, 20, or 50 in each group. In all
cases, groups of equal size were considered.

Type of Heterogeneity. The identity matrix, I, was used to
model homogeneous populations. For heterogeneity
conditions, two populations with covariance matrices equal
to I and dI were used. This type of diffuse structure was
chosen for the contaminating matrix because it is the kind
of violation that typically produces the most severe
departures from nominal significance levels.

Degree of Heterogeneity. d. This factor relates to the
size of the violation (i.e., to how much more variable one
distribution is relative to another). Small to large

violations were modeled, with d = 2, 4, or 9. For
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homogeneity conditions, 4 = 1.
Significance Level, @. The probablity of making a Type I
error was considered at the .01, .05, and .10 nominal alpha
levels. For a given nominal level, (100a)% of the values
in a test statistic's distribution will exceed the
appropriate critical value under a true null with no
assumption violation. Hence, a dependent variable in the
Monte Carlo experiments was the empirical estimate of a
statistic's percentage exceedance of its critical value at
significance level alpha, given a true null and
heterogeneous covariance matrices. (The phrase percentage
exceedance is used throughout the thesis to refer to the
percentage of replications of a statistic that exceed a
critical value).
Power. This is equal to 1 - P(Type II error). Nominal
power relates to the percent 6f values in a test
statistic's distribution that will exceed the critical
value under a true alternative with no assumption
violation. A second dependent variable in the Monte Carlo
experiments was the empirical estimate of actual power
(i.e., the percentage exceedance given a true alternative
and heterogeneous covariance matrices). This was conducted
at all three nominal alpha levels.

Power is a function of the discrepancy between central
and noncentral distributions for a test statistic. The

MANOVA noncentrality parameter (ncp) is a standardized
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measure of the distance between group means in the
population (Olson, 1974) and may be defined as the sum of
the eigenvalues, gj (j =1,...,p), or trace of a matrix G,
where
G = FVv-1,

V is the population covariance matrix and

k

F = i§1ni(£i = B((E; =B,

where 1 is the population mean vector for the ith of k
groups and i is the grand mean vector in the population.
When data are ordered according to time, the ncp for tests
of within-group hypotheses incorporates the time dimension.
This is done by representing the elements of the covariance
matrix and the means in the above equations as functions of
time (Morrison, 1972).

Since power depends on the common covariance matrix V,
no theoretical power values exist under heterogeneous
conditions, and the choice for V is open. Therefore, the
noncontaminated covariance matrix (I in canonical form) is
typically used for V in order to calculate the ncp. 1In
this way, a comparison can be made between a test's ability
to detect differences when assumptions are violated to its
ability to do so when they they are met.

Procedures
Monte Carlo techniques were used to generate either

10,000 or 2,000 replications of multivariate data sets
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distributed N(Q,I). Each data set represented a particular
combination of k and n with p = 5 measures across time.
Using these data, critical values were calculated for tests
of three multivariate hypotheses using four test statistics
at three nominal alpha levels. The data in each set were
then transformed seven times to calculate: (1) actual
significance levels in three central heterogeneous cases
for between-group and within-group tests, (2) nominal power
in a noncentral homogeneous case for within-group tests, and
(3) actual power in three noncentral heterogeneous cases
for within-group tests. All calculations were performed a
second time on the same data sets using only the first four
measures to simulate conditions with p = 4. Since
noncentral situations refer only to tests of within-group
differences, in these cases, the null hypotheses of no
group by occasion interaction and of no group differences
remained true.

A FORTRAN V program was written to generate,
transform, and analyze the data. A detailed description of
the computational procedures appears in Appendix A. These
procedures guided the creation of the computer program,
which also appears in Appendix A. The remainder of this
section describes the determination of critical values, the
design for the study, the analysis procedures, and the
interpretation of computed significance levels and power

values.
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Determination of Critical Values

Critical values for the multivariate test criteria and
the combinations of p, k, n, and alpha levels used in the
study were not all available in published tables. Also,
tabled values have generally been obtained analytically
rather than empirically. Therefore, values used in the
study were empirically determined via Monte Carlo
techniques.

Using three nominal significance levels, critical
values were calculated such that (100a)$ of the N
noncontaminated replications (where N = 10,000 or 2,000)
under a true null would be judged significant using that
critical value. This was accomplished by taking the
arithmetic average of the (Na)th and (Na+l)th smallest of
the N values for W and the corresponding largest of the N
values for R, T, and V. Values thus obtained will be
referred to as Monte Carlo critical values to distinguish
them from tabled values.

Design for the Study

The design for the study is given in Table 4-1, where
combinations of k and n used for all levels of p and 4 are
denoted by an X in part (a). Hypotheses tested under
central and noncentral conditions with four statistics at
three nominal levels are indicated in part (b). The matrix
in part (c) shows how the two types of conditions from (a)

and (b) were combined to create the necessary statistics.
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Table 4-1
Design for the Study

a)

b)

Number of measures (p), of groups (k), and equal sample sizes (n)
under heterogeneity conditions (d). *

ks 2 3 6
n:{10 20 50|10 20 50 |10 20 50
Condition d p
Hamogeneity 1l 5 X X X X X
4 X X X X X
Heterogeneity 2 5 X X X X X
4 X X X X X
4 5 X X X X X
4 X X X X X
9 5 X X X X X
4 X X X X X

* X indicates conditions replicated 2,000 times.
Conditions replicated 10,000 were with k = 3 and n = 20.

Statistics calculated under central and noncentral conditions for
various hypotheses at three nominal alpha levels and for every
combination of factors indicated in (a). *

Alpha: .01 .05 .10
Statistic: |RTVW|RTVW|RTVW
Condition Hypothesis

Central

B
C
L
Noncentral C
L

* Hypotheses tested were: betweem—group differences, B, within-
group test of trends, C, within—group test of trends higher
than linear, L; using test statistics: Roy's largest root, R,
Hotelling-Lawley trace, T, Pillai-Bartlett trace, V, and
Wilks' likelihood ratio, W.
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Table 4-1 (con't.)

c) Empirical values derived from each replicated data set by

crossing elements from conditions on covariance matrices in (a)
and conditions on hypotheses in (b).

Condition on Covariance Matrices

Hamogenei ty Heterogeneity
Central Monte Carlo Actual significance
Condition critical values levels
on
Hypotheses Noncentral | Nominal power Actual power
values values

For the first part of the study, five-variate vector
scores from a population distributed N(Q,I) were generated
for 10,000 replications of one situation with three equal
groups of size 20. Four-variate situations were simulated
by using the same data and dropping the £fifth measure in
each vector score.

For the second part of the study, new sets of 2,000
replications from the same population were generated for
each of the five combinations of k and n indicated in Table
4-1(a). Equal cell sizes were used throughout the study
and the same procedures followed for every combination of
Pr k, and n, regardless of the number of replications.

Calculated statistics from the data in each set of N

replications under homogeneous conditions were used to
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determine Monte Carlo critical values for all combinations
of multivariate tests, test statistics, and nominal alpha
levels shown under the central case of Table 4-1(b).
Regardless of the number of groups represented, score
vectors for only one group in each case were transformed to
simulate data that might arise from populations distributed
N(Q,dI). The data sets represented central heterogeneous
conditions, and all test statistics were recalculated.

Each resulting value was then compared to the
corresponding Monte Carlo critical value for the three
alpha levels considered. Actual significance levels (i.e.,
empirical Type I errors under heterogeneity) were
determined by counting the number of values in each
replication that were: (1) greater than the corresponding
critical value for R, T, and V statistics, and (2) less
than the corresponding critical value for W statistic, and
then dividing by N, the number of replications.

To investigate the power of multivariate within-group
tests under true alternatives for the occasions, the
original noncontaminated data sets (with d = 1) were
transformed to reflect a given curvilinear trend across
time. Under homogeneity and an alternative condition for
within-group tests only, the above calculations were again
performed to determine Monte Carlo nominal power values for

tests of within-group differences.
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The final step in the process was to add the
curvilinear trend to the heterogeneous data sets and repeat
the calculations to determine actual powers for within-
group tests under noncentral heterogeneous conditions. By
comparing these values to those for nominal power, the
effects of heterogeneity on the power of within-group tests
under an alternative hypothesis could be evaluated.
Comparison of Tests

In order to empirically determine whether between-
group and within-group test statistics respond
differentially to identical heterogeneity conditions under
true null hypotheses, one experimental situation with k = 3
and n = 20 was replicated 10,000 times. The large number
of replications was used in order to insure relatively
small standard errors.

The main interest in a comparison between actual
significance levels for the group and occasion tests was
examined from two perspectives. First, tests were compared
within a given p to simulate practical analyses where tests
of both hypotheses are performed on the same data set.
However, discrepancies between actual significance levels
evidenced here might occur because group and occasion tests
are based on SSCP matrices of order-p and p-1,
respectively. Therefore, a second comparison was made
between the group tests with p = 4 and the occasion tests

with p = 5, so that both would be based on order-4 SSCP
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matrices.
Analysis of Within-group Tests

Using the same 10,000 replications, comparisons of
actual significance levels were made between the two sets
of within-group tests for general trends and for trends
higher than linear. With the data modified to reflect true
alternatives for within-group hypotheses, the power to
reject the null under heterogeneity was also evaluated.

The second stage of the research was an attempt to
examine the effects of heterogeneity on within-group tests
when the number of groups and of equal sample sizes are
varied. Both robustness and power were considered with
2,000 replications each for five combinations of k and n.
Tests of between-group differences in the central case were
also made in order to determine if discrepancies between
these tests and within-group tests were sensitive to
changes in number of groups and sample size.
Interpretation of Obtained Probability Values

The critical values and probability levels for
significance (Type I error) and power were obtained via
Monte Carlo methods and are therefore subject to sampling
error. To take this error into account, the standard error
(S.E.) of a proportion for a sample size equal to the
number of replications was employed.

The S.E. for a proportion depends on the true value of

the proportion, P, and is equal to (P(1-P)/N)1/2, where N
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equals the number of replications. Since the true value of
P (i.e., nominal alpha) is known, this formula may be used
to calculate the S.E. at the three nominal alpha levels

considered. These are given in Table 4-2.

Table 4-2

Standard Errors for Nominal Alpha Levels
and Number of Replications Used in the Study

Alpha N = 2,000 N = 10,000
.01 .0022 .0010
.05 .0049 .0022
.10 .0067 .0030

Monte Carlo Techniqgues

The methods for exploring the issues of robustness in
this study involved the use of simulated data generated by
computer algorithms. Through the analysis of a large
number of samples under known population parameters, one
can investigate the properties of statistics by observing
their resulting distributions. These empirical
distributions obtained under heterogeneity are then
compared to the nominal distributions obtained under
homogeneity for the statistics in question. The FORTRAN
program was used to generate either 10,000 or 2,000 samples

of vector observations for each experimental condition and
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to perform the required data transformations and analyses.
The procedures followed are specified in this section.

The required data were 5x1 vector observations,
normally distributed with known mean vector and covariance
matrix. The generation and transformation procedures
consisted of three steps:

1) Generate a set of independent random observations
uniformly distributed on the interval 0 to 1.

2) Combine the uniform variates to create a set of
observations normally distributed with mean vector
zero and covariance matrix equal to the identity.

3) Transform these observations to obtain the desired
structure with mean ¥ and covariance matrix V.

Each step will be considered separately.
Random Number Generation

Hammersley and Handscomb (1964) stated that "the
essential feature common to all Monte Carlo computations is
that at some point we have to substitute for a random
variable a corresponding set of actual values, having the
statistical properties of the random variable" (p. 25).
These values are called random numbers. In practice, what
is actually produced via computer programs are a set of
pseudo-random numbers calculated sequentialy from a
completely specified algorithm. This algorithm is devised
in such a way that a statistical test should not detect any
significant departure from randomness.

The subroutine GGUBS from the International

Mathematical and Statistical Library was used to obtain a
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sequence of uniform random numbers Uj,...,Up distributed
U(0,1). This routine uses a congruential generator based
on the following relation

Xj = aXj-1 (mod m)
where a = 75 and m = 2+31 - 1, oOnce the procedure is
started by an initial seed value, each X; is determined
from the previous value. The constant terms a and m are
chosen 8o as to maximize the period of the generator, since
a sequence repeats itself when a value for X; reappears.

The numbers U; = xi/23l are a pseudo-random sequence
in the interval 0 to 1. They are independent of each other
and behave as if they were random.
Creation of Normal Deviates

Several approaches are available to create independent
normal deviates from uniform random numbers. A simple
approach to program is based on the Central Limit Theorem
(CLT) and uses a summation of a fixed number of values,
where this number may be as 1ow as 12 for reasonable
approximations. However, the procedure "is very slow and
it does not adequately sample in the extreme tails of the
normal distribution" (Lehman, 1977, p. 148).

The method used in this study for generating normal
deviates from independent random numbers, which was devised
to be reliable in the tails, was suggested by Box and
Muller (1958). They cite a detailed comparison with

several other methods, including the Central Limit
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summation, and state that their approach gives higher
accuracy and compares favorably in terms of speed. The
procedure uses a pair of random numbers Uj and Uy from the
same distribution on the interval (0,1) to generate a pair
of normal deviates from the same normal distribution,
N(0,1). The following transformations are used:

z] = (-2loge01)1/2cosznuz

29 = (-2loge01)’1/281n2n02
The resulting values are a pair of independent random
variables, normally distributed with zero mean and unit
variance.

Vectors of five such variables taken together
represent 5xl1 observational vectors, which are multivariate
normal and distributed N(Q,I) (Anderson, 1958, pp. 19-27).
Observations of this form were used to simulate the central
case with homogeneous covariance matrices.
Iransformation to Desired Structure

The first step to determine a vector with specified
variances and intercorrelations among the variables is to
factor a known covariance matrix V into a lower triangular
matrix T such that

V = TT'
This is the square root method or Cholesky factorization of
a symmetric positive-definite matrix, V (Bock, 1975, p. 85).
Then, a transformation of a vector of normal deviates z,

y=Tz + ¥
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produces a normally distributed vector y with the desired
characteristics, since
Var(y) = T(Var(z))T' = TT' = V
when Var(z) = I. The only effect due to adding a known
vector of means u is to change the point of central
tendency for the distribution of y.
In the present study, where V = d4I,
T = 317271
and therefore,
y = (al/21)z + u

= dl/2z 4+ y
was the transformation used for one group to simulate data
from heterogeneous populations in the noncentral case.
Other transformations used the above equation with
(1) u = Q for the central heterogeneous case, and (2) 4d = 1
for the noncentral homogeneous case.

After generating the data, the program performed the
required multivariate tests, calculated the critical
values, and tabulated the proportion of times the values of
each statistic exceeded its critical value for a given
nominal significance level when: (1) a null hypothesis was
true, and (2) an alternative hypothesis was true. Obtained
proportions were the actual Type I error rates and powers,
respectively, for the statistics. Multiplying these
obtained values by 100 produces percentage exceedance rates

under heterogeneity.
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CHAPTER V
RESULTS

The results of the study are presented in this chapter
in four sections. The first two sections are based on
10,000 replications of experiments with k = 3 and n = 20
and deal first with comparisons of multivariate between-
group and within-group tests with respect to robustness and
then with the power of within-group tests under
heterogeneity of group covariance matrices. The latter two
sections present the effects of varying sample size and
number of groups first on the robustness and then on the
power of within-group tests under heterogeneity conditions.
Results in these latter sections are based on 2,000
replications for each of five combinations of k and n.

Critical values for each set of N replications (where
N = 10,000 or 2,000) under central homogeneous conditions
were obtained empirically through Monte Carlo methods and
are tabled in Appendix B. Actual significance levels under
central heteiogeneous conditions and powers under
noncentral conditions were calculated by determining the
number of times obtained test statistics exceeded the
corresponding critical values and then dividing by the
number of replications. These empirical values were

multiplied by 100 and are reported in this chapter in terms
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of percentage exceedance rates of the Monte Carlo critical
values.
Comparison of Tests on Robustness

The objective for this portion of the study was to
determine whether heterogeneity of group covariance
matrices produces differential effects for multivariate
tests of between-group and within-group differences. The
question could be phrased: Given no interaction effects
and no main effects for either group or occasions in the
populations from which the data are sampled, are there
differences in the frequency with which rival test
statistics indicate a significant effect for tests of
between-group and within-group hypotheses under
heteroscedastic conditions? A secondary question relates
to differences between two within-group hypotheses (i.e, of
no trends in the occasion means and of no trends higher
than linear).

The situation considered was that of three equal
groups of size 20 with either five or four measures across
occasions. The procedures for central conditions, which
were detailed in Chapter 1V, were followed.

Since the data were randomly generated using computer
algorithms, random error in the data must be considered.
To insure that this error be small, 10,000 replications
were used. Given known parameters (i.e., nominal alpha

levels), the standard error of a proportion with 10,000
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replications (see Chapter IV) may be used to calculate 95%
probability intervals around the known parameters instead
of confidence intervals around the sample estimates. This
produces the following intervals for the three nominal
levels considered:
.01 + .0020
.05 + .0043
.10 £ .0059
Expressed in terms of percentages, to correspond with
tabled values, the 95% probability intervals are:
(0.80, 1.20) at .01
(4.57, 5.43) at .05
(9.41,10.59) at .10
Thus, obtained percentage values within these intervals may
be considered to be within sampling error of nominal
percentages. |

Critical values were estimated with Monte Carlo
methods and, therefore, are subject to error. Since
exceedance rates were derived from the same data sets
transformed to heterogeneous conditions, the deviations
from nominal levels in the following tables reflect only
added error due to heterogeneity.

As far as possible, parameters used in this part of
the study will be discussed separately in terms of their
effects on the percentage exceedance of Monte Carlo
critical values for the three hypotheses under

investigation (i.e., of no between-group differences, B, of

no trend over occasions, C, and of no trend higher than
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linear, L). Table 5-1 contains the actual percentage
exceedance rates (i.e., empirical Type I error times 100)
for central heterogeneous situations.
Significance Level, . Percentage exceedance rates for all
three hypotheses tested increased with larger nominal alpha
levels, except where obtained values were within 95%
probability intervals of the nominals. Although the
patterns were similar, increases in exceedance rates were
greatest for the between-group tests, B, and lowest for the
within-group tests of no trends higher than linear, L.
However, when tests for a given hypothesis are
considered with respect to standard errors, which also
increase with alpha level, different amounts of
heterogeneity showed consistent effects regardless of
significance level. For example, at all three alpha
levels, departures from the nominal for tests of B ranged
from about one standard error with the V statisticat d =2
to over 50 times the standard error with the R statistic
at 4d = 9. Departures for the within-group tests were
typiCally around one standard error with all test
statistics at 4 = 2, and never exceeded 13 standard errors
for tests of C and eight standard errors for tests of L at
d = 9. The larger numerical values for exceedance rates as
alpha increases is apparantly a function of corresponding

larger standard errors.
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Number of Measures, p. Percentage exceedance rates were
generally larger with five dependent variates than with
four. Whenever this was not the case, discrepancies
between corresponding exceedance rates at p = 4 and 5 were
less than twice the standard error for a difference of two
proportions. The smallest differences between exceedance
rates for corresponding tests at the two levels of p
occurred for the L tests. This may be due to the
relatively small departures from nominal levels for tests
of L, regardless of the number of variates.

Degree of Heterogeneity. d. In general, tabled values
tended to be within 95% probability intervals of nominal
values with low heterogeneity and, in all cases, the
percentage exceedance rates increased with d. The effects
of greater heterogeneity were the most pronounced for the B
tests, where actual Type I error departed by as much as .16
from a nominal .10 level. However, discrepancies between
actual and nominal values were less than .04 for the C
tests and .02 for the L tests at a nominal .10 level.

Test Statistic. Considering low heterogeneity, percentage
exceedance rates tended to fall within 95% probability
intervals of nominal values with the V or W statistics when
testing the between-group hypothesis, while they did so
with all four statistics when testing either within-group
hypothesis. As expected from previous research on the

robustness of between-group tests (e.g., Olson, 1973), the
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four tests statistics were ordered V-W-T-R from best to
worst when testing B. Differences between actual Type I
errors for the Vand R statistics for B were always greater
than twice the standard error of a difference, reaching as
high as .13 with high heterogeneity and five variates.
While results for tests of C generally followed the
same ordering from best to worst statistic, those for tests
of L did not. However, differences in departures from
nominal levels among the statistics for tests of both
within-group hypotheses were negligible, generally being
less than twice the standard error of a difference and only
once reaching a .01 difference. Except for tests of L, the
effect of greater heterogeneity increased the differences
between the best and worst statistic. This increase was
considerably more pronounced for tests of between-group
differences than for within-group tests of trends.
Tests of Multivariate Hypotheses. Exceedance rates for
within-group tests tended to be within 95% probability
intervals of nominal levels only under low heterogeneity.
For between-group tests, this tended to be true only when
the V or W statistics were used. To evaluate robustness in
terms of acceptable Type I error, results were considered
too liberal if they exceeded .015, .06, and .12 at nominal
levels of .01, .05, and .10, respectively. Using these
criteria when k =3 and n = 20, only the between-group

tests with T, V, and W statistics would be considered
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robust under low heterogeneity. For within-group tests,
robustness would extend to all four statistics and to
moderate heterogeneity (d = 4).

To summarize the differential effects of heterogeneity
on tests of the three hypotheses and to examine more
explicitly the differences among them, Table 5-2 provides
differences in the actual percentage exceedance rates. The
first two sets of rows relate to tests with a given p to
simulate practical analyses with tests for both B and C
performed on the same data sets. In the third set of rows
the comparisons between B and C control for the size of the
SSCP matrices from which the tests are derived, so that
both sets of tests are based on matrices of order-4.

In the lower half of the table are presented similar
comparisons for the two within-group tests. As before, the
first two sets of rows relate to within-group tests with
the same initial p, while the third set compares the tests
with equal SSCP matrices of order-3.

The differences portray the extent to which departure
from nominal levels were typically greater for tests on B
than on C. Regardless of which set of comparisons was
considered, the differences followed similar general
patterns. The discrepancies in exceedance rates between
tests on B and C tended to be less than two standard errors
of a difference of two proportions whend =2 or when the V

statistic was used.
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For a given statistic, differences in percentage
exceedance rates decreased as either nominal alpha or
heterogeneity decreased. Consistently the smallest
differences between B and C tests occurred with the V
statistic, typically being less than two percentage points.
The largest occurred with the R statistic, where
differences were as high a 12 percentage points. These
patterns reflect that betweeanroup tests tend toward
robustness when homogeneity is low or when the V test
statistic is used and that actual significance levels for
the B tests increase considerably from V to R, while they
remain relatively stable across the four statistics for the
C tests.

Differences between the two within-group tests did not
follow the patterns of the B and C differences. The
discrepancies in percentage exceedance rates between tests
on C and L were less than two standard errors of a
difference with both d = 2 and 4, as well as in over half
the cases with d = 9. Regardless of the alpha level, these
differences were typically negligible and rarely exceeded
one percentage point.

Power of Within-group Tests of Trends

The power of the tests to reject the null was
evaluated under a homogeneous (d = 1) and three
heterogeneous conditions. The original 10,000 data sets

for three equal groups of size 20 were transformed to
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reflect the same quadratic trend over the five time points
for each vector score. Since all the groups were equally
transformed, this provides a situation with neither
interaction nor between-group main effects, but with a
within-group main effect. The percentage of rejections for
the null hypotheses of no trend (C) and of no trend higher
than linear (L) were determined.

As shown in Table 5-3, power values were quite stable
across the four statistics within a given heterogeneity
condition and alpha level. This is fairly consistent with
previous findings for power of between-group tests under
heterogeneity (e.g., Olson, 1973), where differences across
the test statistics, although sometimes present, were
relatively minor.

Regardless of heterogeneity, power was always larger
at larger nominal levels. This trend follows what is
expected under general homogeneity conditions, since
"...setting alpha larger makes for relatively more powerful
tests of H," (Hays, 1973, p. 359).

Within each nominal alpha level, power decreased as
heterogeneity increased. For example, with p = 5, power of
the C test at nominal .01 went from over 90% under
homogeneity to around 30% with a high degree of
heterogeneity (d = 9). At .05 and .10, power dropped from
98% and 99% to slightly over 50% and 65%, respectively.

This downward trend was remarkably consistent among all
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test statistics for both hypotheses using both values of p.
The only difference among the four conditions was one of
magnitude.

With five variates, power for the subsequent L tests
tended to be slightly better than for the corresponding C
tests. However, with four variates, the reverse was true,
with a dramatic loss in power occurring between the C and
corresponding L tests (e.g., going from 86% to 48% under
homogeneity at the .01 nominal level). Comparing p = 5 to
p = 4, power dropped only slightly for the C test, but
significantly for the L test.

The reason for the substantial reduction in power for
the L test with four variates seems to be due to the nature
of the transformation used to create an alternative
hypothesis condition. While the curve was strongly
curvilinear with five measures, a linear trend serves as a
reasonable approximation of the data when only the first
four measures were used in the analyses (see Figure 5-1).

To test the above hypothesis and further explore
effects of heterogeneity on power, a second trend
transformation was used that resulted in more pronounced
curvilinearity at four time points (see Figure 5-2).

Power results for this second curve are presented in
Table 5-4. Comparing tables 5-3 and 5-4 shows that both
Monte Carlo nominal values and obtained values under

homogeneity were quite similar in all cases whenp =15, as
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Means Means

-

1 2 3 4 5 1 2 3 4
occasions occasions

Pigure 5-1. Trend transformation for power results of
Table 5-3 with mean vectors:
(0O .4 .8 .5 .1) for p=>5
(0 .4 .8 .5 for p =4

.
-}
PPN
g gu—
.
<)}

1 2 3 4 5 1 2 3 4
occasions occasions

Figure 5-2. Second trend transformation for power results
of Table 5-4 with mean vectors:
(0O .6 .7 .2 .05) for p=5
(0 .6 .7 .2) for p= 4
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well as for tests of C when p = 4. However, exceedance
rates for the L test were considerably higher with the
second trend transformation than with the first when p = 4.
These results were consistent with those for five variates
using the first transformation. There was a slight gain in
power from the C to the L test regardless of size of p.
Also, as in the first case for the C test, there were
slight reductions in power when going from p = 5 to 4 with
both tests.
Robust Under Vari conditi

Having shown that multivariate tests of between-group
and within-group differences respond differently to
violations of homogeneity, the second stage of this
research was an attempt to evaluate the effects of
heterogeneity on within-group tests based on different
levels of k and n. The design for this part of the study
allows for an assessment of robustness and power under
heterogeneity when: (1) sample size is varied (with equal
groups of 10, 20, and 50), while holding the number of
groups constant at three, and (2) the number of groups is
varied (k = 2, 3, and 6), while holding sample size
constant at 20 per group. Results tabled in this section
deal with tests of the hypothesis of no within-group
trends, C.

The data in this and the following section are based

on 2,000 replications each of five combinations of k and n.
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With a reduction in the number of generated data sets comes
an increase in standard errors. Therefore, using the same
procedure as before, 95% probability intervals for the
three nominal levels considered now become:
.01 + .0044
.05 + .0096
.10 + .0131
In terms of the tabled values, which are expressed in
percentage form, these intervals are:
(0.56, 1.44) at .01
(4.04, 5.96) at .05
(8.69,11.31) at .10
Sample Size and Robustness
Table 5-5 gives the percentage exceedance rates of
within-group tests of trends over occasions, C, for
experimental conditions with k = 3 and equal groups of size
10, 20, and 50. With samples of size 10, actual
significance levels were within the 95% probability
intervals of nominal values only if heterogeneity was low
(d = 2). Increasing the sample size to 20 brought improved
results (e.g., exceedance rates were also within 95%
probability intervals with d =4 in all cases with four
variates and about half the time with five variates). For
large samples of 50, values were additionally within these
intervals about half the time with d = 9.
When outside the confidence intervals, empirical

significance levels were all liberal. However, excluding

results with 4 = 9, Type I errors did not exceed .02, .08,

80



°*M ‘OT3el1 pOOUTTINTT SYTTM pue A ‘sde1) 338T3red-TeTTd 4L ‘soexrl Asymel-buyiraioH
£y ‘3001 3sobrer s,hoy :8073STIRIS 3893 bBuysn ‘D ‘spusil dnoab-urylTM ou Jo sem palsa] sysayjzodAiy
*k31ausboiajay jo aa1bsp p 1spun sainsesu d y3rm u azys jo sdnoib tenbs ¢ = ) Jo suoyjeoridax (QQ’‘z WOiJ 4

08°0T 08°0T G8°0T GE°TT 08°S 68°S 08°S GZ°9 oT°'T O0T'T OT'T 0TI 6

GL°0T SL°0T OL°0T &8°0T 02°S 0Z°S 0Z°S 0v°S 0T°T O0T°T OT°T 00°T v

09°6 G9°6 09°6 06°6 08y G8'F 08'F GZ°S oT°Tt OT°'T OT°'T 6G6° Z 0§

OT°€T G6°CT SZ°tT 06°ZT 00°L G6°9 OT°L 02°L G9°T OL°T OL'T 06°T 6

ST°TIT SO°TT O€°IT 00°TT 66°S Gp°S G6S°S 69°S GZ°T Ov°T SZ°T Of°'I1 12

G0°0T G66°6 SI'OT SZ°0T G0°G 0Z2°S S0°S G6°F% G0°T S0°T SO°T GE'T z oz

G6°ET GL°ET SV'¥T S6°¥T G6°L O0L°L SI'8 69°8 69°Z SI°T SL°T S9°C 6

09°TT OL°TT S8°IT OL°TT G¥°9 O0L°9 0Z°9 0S°9 GL°T S9°T S9°T 69°T v

0L°0T 08°0T OL°OT SS°OT G9°S 68°S S¥°S 06°S 0€°'T O0E'T 02°'T 62T T o1 ¥

OL°€T G9°€T OL°ET OV°€T - SI°9 SZ'9 0OT'9 08°9 0T°T OT°'T SO0°T OT'T 6

OL°TT SL°TT 08°TIT GS°TT G9°S G9°G G9°S  OL°S 00°T 00°T S6° S6° v

SP°0T 0S°0T OV°0T 06°6 GZ°S GZ°S 0E°S S¥°S G6* 00°T G6° G6° z oS

G9°€T OV°€T GT°¥T GS°¥I GG°L 0S°L G8°L S0°8 G9°T 09°T GSL°T GSE°C 6

09°TT O0S°TT O06°TT 06°IT GL°S 69°G 68°S 0T‘9 GE'T O0€°T SP'T 6S9°T 14

G9°0T 0L°0T SL°O0T 06°0T 06°v 08°F G0°S GL°V 0T°'T S0°T OT'T o02°'T z oz

06°ST STI°¥T ST"LT OL°LT GI°'6 09°8 00°IT SE°TT GT°€ O0P°T 66°C 09°¢ 6

0E°ZT 09°ZT OE°ET OV €Y 0L°9 09°9 SS°L 06°L 08°T 0S°'T OL°'T 0S°'T 14

GS°0T O¥°0T SO°TT 08°0T GZ°S 0S°S S9°S Ov°S oT'tT 06 SO'T  00°T Z ot S
M A h A ¥ M A h A | M A R : p u d

0or° = ® G0° = 10° = ©

«€ = ¥ YITM Spud1], JO 5383, 103
TINN aniL e I139pun S93BY 30UepPadOxd abejuaoiag

S-G atqerL

81



and .14 at nominal levels of .01, .05, and .10,
respectively, and were typically much lower. With d =9,
they never exceeded .04, .11, and .18 at the three nominal
levels.

Considering the results in terms of acceptable
robustness limits (i.e., .015, .06, and .12), cases with 10
subjects per group would be robust only withd =2, while
cases with 20 subjects per group would be robust with both
d = 2 and 4. With sample sizes of 50, robustness extends
to conditions with high heterogeneity (d = 9) when only
four variates were analyzed.

For a given sample size, the other factors in this
study behaved in the same manner as previously described
for 10,000 replications where k = 3 and n = 20. 1In
general, departure from the nominal significance level
increased as heterogeneity, number of variates, or nominal
significance level increased. The main difference across
conditions with different sample sizes was one of degree.

With respect to the multivariate test statistics, in
only about half the cases did the R statistic produce the
greatest exceedance rates and the V statistic the smallest.
But, where this was not the case, the two values were
typically within sampling error of the nominals and their
difference was within one standard error of a difference of
two proportions. Even when the R statistic had larger

exceedance rates than the V statistic, the differences
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among the four statistics were considerably less pronounced
than is typical for between-group tests.
Comparison with Tests of Trends Higher than Linear. For
tests of the second within-group hypothesis of no trends
higher than linear, L, percentage exceedance rates followed
the patterns of the overall within-group tests. Obtained
values were either within 95% probability intervals of
nominal values or liberal. In most cases, significance
levels for the L tests were lower than those for the C
tests. However, differences between them were typically
negligible. Values for tests of L are tabled in
Appendix D.
Comparison with Between-group Tests. Percentage exceedance
rates obtained in this study under a true null for between-
group tests were consistent with previously established
results. These values are tabled in Appendix C. The
differences between the B and C tests followed the patterns
described earlier in this chapter regardless of sample
size. The only difference was one of degree.
Discrepancies between the tests were generally smallest
with large samples and low heterogeneity, or with the V and
W statistics. They were greatest with small samples and
high heterogeneity, or with the R and T statistics.
Number of Groups and Robustness

Table 5-6 gives the percentage exceedance rates of

within-group tests of trends over occasions when sample
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size is held constant at 20 and the number of groups
varied, with k = 2, 3, or 6. The values tended to be
within 95% probability intervals of the nominal alpha with
both low and moderate heterogeneity regardless of number of
groups. The major exception was with five variates at .10
alpha, where values tended to fall outside the probability
intervals with moderate heterogeneity.

When 4 = 9 values were all liberal. However, Type I
errors were .02, .08, and .15 for corresponding .01, .05,
and .10 nominal levels. Results would be considered robust
with low and moderate heterogeneity in all cases, as well
as in almost half the cases with high heterogeneity.

An unexpected finding from this set of results was
that the impact of heterogeneity did not appear to be
greatest with the larger number of groups. In about half
the cases, the.largest exceedance rates occurred with
k = 3. The remaining cases were split with the largest
departures occurring about equally with either k = 2 or 6.
It might be assumed that this result was due to the high
level of robustness of the C tests, since over half of the
values in Table 5-6 were within 95% confidence intervals of
the nominal value. However, even when only considering
values for 4 = 9, which were outside these intervals, in
more than half of the cases the largest departures still
occurred with k = 3, while the rest tended to occur with

k = 6.
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It appears that the impact of heterogeneity on within-
group tests of trends is lessened by increasing the size of
equal samples but that, for a given n, decreasing the
number of groups may not help.

With a given number of groups, the effects of the
other factors being examined were not always evident. This
is probably due to the fact that actual values tended to be
within sampling error of nominal alpha except for high
heterogeneity. Still, some patterns emerged. In general,
differences among the four statistics were still relatively
minor, never exceeding two percentage points. Departure
from nominal alpha typically increased as heterogeneity and
alpha levels increased, although the latter reflects larger
standard errors at higher alpha levels. The effect of
decreasing p was evident only when d = 9, where lower
exceedance rates were associated with the smaller number of
variates.

Comparison with Tests of Trends Higher than Linear. As was
evident when sample size was varied, differences in actual
significance levels between the two within-group tests were
minimal. The discrepancies between most of the
corresponding exceedance rates rarely exceeded one
percentage point. Percentage exceedance rates for tests of
non-linearity when number of groups was varied are tabled

in Appendix D.
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Comparison with Between—-group Tests. Unlike the results
for different sample sizes, when number of groups was
varied, the B and C tests responded differently not only in
terms of degree but also in kind. For the B tests,
departures from nominal alpha consistently increased when
there were more groups (except if heterogeneity was low).
It appears that, for this situation with equal groups of
size 20, within-group tests under any level of
heterogeneity were similar in robustness to between-group
tests under low heterogeneity.
Power Under Various Conditions

The effects of sample size and number of groups on the
power of within-group tests of trends under heterogeneity
conditions were assessed with the same 2,000 replications
used to study robustness. The data were transformed to
model the alternative hypothesis situation in Figure 5-1.

Power trends for both within-group tests were similar
to those previously defined for the same transformation
with 10,000 replications. The tests for non-linearity had
slightly better power than the overall tests for trends
with five variates but had considerably lower power with
four variates. Since this was consistent across the
experimental conditions considered, only the results for
the test of trends will be discussed. Holding other
factors constant, power values were extremely stable across

the four test statistics for a given condition. With
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samples of size 10, there was slightly more variability
among the test statistics but, even here, the discrepancies
were not noteworthy. Therefore, results presented in this
section are percentage exceedance rates for tests of trends
averaged over the four statistics. Complete tables for
both sets of within-group tests are included in Appendix E.
Sample Size and Power

Table 5-7 gives the average percentage exceedance
rates for three groups of size 10, 20, and 50 under
noncentral conditions. For a given sample size, the results
were consistent with those from the first part of the
study. With respect to varying the size of equal samples,
n had a considerable effect on power, which decreased as n
did even under homogeneity (d = 1). This éffect was
compounded as heterogeneity was introduced.

With n = 50, where within-group tests were robust, the
effect of heterogeneity was negligible, particularly if
alpha was greater than or equal to .05, in which case
exceedance rates were still over 90% with 4@ = 9. Although
lower, power values with n = 20 were reasonable under low
and moderate heterogeneity, where robustness was achieved.
However, with only 10 subjects per group, power tended to
be poor even with low heterogeneity, where tests were
robust. This was particularly so at a .01 nominal level,

where power was low even under homogeneity.
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Table 5-7

Average Percentage Exceedance Rates Under True Alternatives
for Tests of Trends with k = 3*

p=5 p=4
alpha: .01 .05 .10 .01 .05 .10
n d
10 1 45.04 70.38 8l.61 38.19 64.65 78.01
2 33.10 58.21 71.16 27.69 51.64 67.25
4 21.85 44.53 58.19 18.81 38.89 52.39
9 14.98 30.93 43.00 12.05 26.69 38.95
20 1 91.33 98.26 99.51 85.10 95.75 98.14
2 77.93 92.31 96.46 69.24 87.96 93.86
4 55.71 77.65 86.63 45.81 70.53 82.16
9 28.84 52.58 65.04 23.40 44.61 58.99
50 1 100.00 100.00 100.00 100.00 100.00 100.00
2 99.95 100.00 100.00 99.53 100.00 100.00
4 97.95 99.74 99.94 95.61 99.26 99.65
9 76.15 93.06 96.34 67.25 88.64 93.88

* From 2,000 replications of k = 3 equal groups of size n
with p measures under d degrees of heterogeneity (d =1
reflects homogeneity). Bypothesis tested was of no within-
group trends, C. Tabled values were averaged over four test
statistics: Roy's largest root, R; Hotelling-Lawley trace,
T; Pillai-Bartlett trace, V, and Wilks' likelihood ratio, W.
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Number of Groups and Power

Table 5-8 gives the average percentage exceedance
rates for equal groups of size 20 with two, three, and six
group designs under noncentral conditions. Effects within
a given condition were again consistent with results from
the first part of this study. With respect to number of
groups, power was best with k = 6 and worst with k = 2.

For six groups, empirical power was above 90% in all
cases except for d = 9 at .01 alpha with four variates.

The powers with six groups and high heterogeneity were
consistently higher than those for three groups with low
heterogeneity.

The effect of heterogeneity was considerable with both
two and three groups, particularly at .0l alpha. However,
in both these cases, power was reasonable with d = 2 and 4,
where tests achieved robustness, as long as a nominal level
of .01 is not considered.

Iotal Sample Size and Power

Considering all five combinations of k and n together,
power under low and moderate heterogeneity seems to be a
function of total sample size, N. As shown in Figure 5-3
(power curves of values in Tables 5-7 and 5-8, which were
averaged over four test statistics), for d = 2 and 4 power
increases as total N increases until, with N = 120 and 150,
the curves are indistinguishable. However, with d = 9,

heterogeneity appears to have a greater impact on power
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Table 5-8

Average Percentage Exceedance Rates Under True Alternatives
for Tests of Trends with n = 20*

alpha: .01

70.65
47.31
26.10
13.55

91.33
77.93
55.71
28.84

100.00
99.81
99.31

e OaNMH oD+ O

P=35
.05

87.19
70.46
47.96
27.99

98.26
92.31
77.65
52.58

100.00
100.00
99.83

.10

93.01
80.89
61.86
39.78

99.50
96.46
86.63
65.04

100.00
100.00
99.94

93.04 97.34 98.86

.01

63.14
40.58
22.45
10.96

85.10
69.24
45.81
23.40

99.88
99.44
98.11
86.84

p=4
.05 .10

82.00 90.04
63.60 75.19
41.84 54.88
24.14 35.03

95.75 98.15
87.96 93.86
70.53 82.16
44.61 58.99

100.00 100.00
99.90 100.00
99.29 99.75
94.81 97.51

* From 2,000 replications of k ejqual groups of size n = 20
with p measures under d degrees of heterogeneity (d =1
reflects homogeneity). Hypothesis tested was of no withim
group trends, C. Tabled values were averaged over four test
statistics: Roy's largest root, R; Hotelling-Lawley trace,
T; Pillai-Bartlett trace, V, and Wilks' likelihood ratio, W.
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when a larger percentage of vector scores were
heterogeneous, even though the group sizes were larger.

This latter result is most likely due to the manner in
which heterogeneity was allocated across the groups,
coupled with the analysis being performed. The test for
within-group main effects assumes that the curves of the k
groups are parallel (i.e., that no group by occasion
interaction exists). The test then is used to evaluate
whether the curves are constant (i.e., if there is any
trend across the occasions). Hence, this test compares the
means of each measure over the total number of subjects, N.

In all cases, only one group was drawn from a
heterogeneous population. Therefore, since the 120 vector
scores came from six groups of size 20, only 20 vectors
(17%) were heterogeneous. The 150 vector scores were from
three groups of size 50, so that 50 vectors (33%) were
heterogeneous. The higher proportion of discrepant vectors
in the latter situation may have produced the reverse
effect at 4 = 9 than would be expected based on N. This
result was consistent across all four test statistics and
three alpha levels (see Appendix E).

The identical phenomenon occurred with small total
samples. When N = 30 (k = 3 and n = 10), only 10 (33%) of
the vector scores were heterogeneous, while half of the
vectors were heterogeneous when N = 40 (k = 2 and n = 20).

This reversal of power levels was consistently evidenced
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across all but the V statistic, where power was slightly
higher with N = 40 at the .01 and .05 nominal levels.
When the percentage of heterogeneous vectors was held
constant at 33% (three situations with k = 3), power
decreased steadily as N decreased. Unfortunately, given
the present data, the effects on power if total N is held
constant while varying the percentage of heterogeneous
vectors could not be evaluated. For the conditions
examined, the results indicate that, for low or moderate
heterogeneity, total N dictates the level of power but
that, for high heterogeneity, the percent of discrepant

vector scores has the greater impact.
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CHAPTER VI
DISCUSSION

The results presented in the previous chapter provide
an indication that multivariate tests of between-group and
within-group differences are not equally subject to the
effects of heterogeneity of covariance matrices.
Conclusions based on these results will be presented in
this chapter, followed by guidelines for the researcher
analyzing repeated measures studies with time ordered data
and suggestions for future research.

Conclusions

Under the conditions considered in this study, it
appears that multivariate tests for trends over occasions
in repeated measures designs with equal groups are not as
sensitive to violations of the assumption of
homoscedasticity across groups as are tests for between-
group differences. In most cases, within-group tests are
extremely well behaved, while between-group tests tend to
be robust when two groups are involved or if heterogeneity
is low.

This difference is most likely due to the manner in
which the mean square hypothesis (HE~1l) is formed for the
tests of the two hypotheses. The elements of the

hypothesis matrix, H, for between-group tests consists of
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sums of squares and cross products, while for within-group
tests, these elements consist of squared sums of means and
products of means. It is likely that this difference
produced the differential effect that heterogeneity had on
multivariate tests of the two hypotheses.

Within-group tests for general trends tended to be
robust even with heterogeneity of 4 = 4. Although such a
level of heterogeneity was considered moderate in this
thesis, covariance matrices that differ by a factor of four
would indicate a dramatic discrepancy from a practical
perspective. Hence, in most practical situations, where
groups are equal and heterogeneity is present, multivariate
within-group tests should be robust. Conclusions for
between-group tests with equal samples uphold previous
findings that these tests tend to be robust when covariance
matrices differ only by a factor of two. |

Differences among the four test statistics considered
were evident, with Pillai-Bartlett's trace, V, typically
showing the least departure from nominal levels and Roy's
largest root, R, the most. However, discrepancies between
the V and R statistics were relatively minor for within-
group tests but pronounced for between-group tests. Even
under low heterogeneity (d = 2), the R statistic on
between-group tests tended to be liberal unless sample size
was at least 50 per group. However, for within-group

tests, R was robust at d = 2, as well as in over half the
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cases at d = 4.

For within-group tests, increasing the number of
groups did not produce a consistent effect on actual
significance level, but changes in the sample size and, to
a small degree, the number of occasions did. With four
variates the tests were robust even under high
heterogeneity (d = 9) with equal samples of at least 50.
With equal samples of 20, robustness was achieved with all
four statistics under moderate heterogeneity (d = 2) when
p = 4, and also when p = 5 except for Roy's largest root.
This remained true for a constant group size of 20
regardless of whether there were three or six groups. Only
with two groups of size 20 and four variates did robustness
tend to extend to high heterogeneity.

Actual significance levels for the within-group tests
of trends higher than linear were typically closer to
nominal alpha levels than for general tests of trends,
although differences were minor. It is expected that,
given a larger number of time points, a slight increase in
robustness would be achieved with each succeeding
multivariate test for higher order trends. However, given
the fact that departures from nominal levels were typically
more severe with five variates than with four, a word of
caution is in order. It is likely that, with a significant
increase in the number of time points, the overall test of

trends would produce a too liberal test. Therefore, if the
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initial departure from nominal levels is large enough, no
worthwhile gains in robustness may result with successive
tests for higher order trends. Also, tests of between-
group differences become increasingly more liberal with
increases in the number of variates. The combined effect
on both tests would therefore need to be considered.

The four multivariate test statistics evaluated in
this study behaved almost as one with respect to their
power to reject a null of no trend in the data.
Heterogeneity affected them equally (i.e., power was
reduced as heterogeneity increased). At a given
heterogeneity level, power of the second test for trends
higher than linear was slightly greater than that of the
overall test for trends when a fairly strong curvilinear
trend was present. As would be expected, the subsequent
test lost power dramatically when the trend tended toward
linearity.

Decreasing the number of subjects per group compounded
the effect of heterogeneity on the power of within-group
tests (i.e., the smaller the group, the lower the power,
even under homogeneity). However, power was still
reasonable with equal groups of 20 or more, where the
within-group tests were robust.

Guidelines for the Researcher
The analysis of RM data may be undertaken with either

univariate or multivariate statistical tests. It is known
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(e.g., Davidson, 1972) that, as long as there are more
subjects per group then there are groups, multivariate
tests are the preferred choice when the univariate
assumption of uniformity is violated. With RM data from
equally spaced time points, this assumption is generally
violated, since autocorrelation is typically present.

If more than one group is involved and the researcher
further suspects that the assumption of a common covariance
matrix across groups may be violated, the results from this
study would indicate that the problem may not be too
serious for within-group tests, even for violations as
large as variances differing by a multiple of four.
However, previous research has shown that this is not the
case for between-group tests.

Given this discrepancy, the question arises about how
to analyze and interpret repeated measures data when
heterogeneity across groups is suspected. Of particular
concern are situations where group by occasion interactions
exist. Since a test of this hypothesis must precede tests
of both main effects hypotheses, the problem may be
considerable. The mean square hypothesis for interaction
consists of the (p-l)x(p-1l) submatrices of the hypothesis
and error matrices used for the between-group test. It may
therefore be presumed that violations would cause effects
similar to the between-group tests and results from

between-group robustness studies should apply.
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Hence, for tests of interactions, Pillai-Bartlett's V
statistic should be employed and results interpreted with
caution. If the number of measures is relatively small and
equal groups have been maintained, then results may be
considered valid. However, if this is not the case, an
assessment of whether greater heterogeneity was present in
a smaller or larger group should be attempted. 1In the
former case, results would be liberal and, in the latter
case, conservative.

If it can be assumed that there are no group by
occasion interactions, then a two-stage analysis would be
recommended. The RM dimension may be tested through a
multivariate test of within-group trends without excessive
concern. An appropriate approach for testing between-group
effects would be to use the mean of the RM as the dependent
variable in a univariate analysis of group differences.
This would eliminate concern for heterogeneity since it has
been demonstrated repeatedly that, except when samples are
small and unequal, the univariate F-test is robust against
this violation.

Suggestions for Future Research

An aspect that needs to be considered is unequal
sample sizes. Although it is quite likely that this would
not produce any radical departures from nominal
significance levels for within-group tests, it might do so

for interaction tests, since the latter are based on
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submatrices of hypothesis and error matrices of between-
group tests. Also, with equal samples, consideration
should be given to a study of the effects of varying number
of groups while holding total N constant, thereby varying
the n/N ratio. This would be particularly useful in
further exploring the effects of heterogeneity on the power
of within-group tests.

Additionally, noncentrality structure would be a
relevant factor for inclusion in a study of the power of
within-group tests of trends. Different results in terms
of power are likely to occur depending on whether
noncentrality is concentrated in the first canonical
variate, or spread equally over all canonical variates.

Since the RM dimension in the present study
represented the same measure repeatedly taken over time, a
polynomial representation was used to transform the data
for within-group tests. This transformation uses the
regression model matrix (see Chapter II), which is a matrix
of normalized orthogonal polynomial coefficients. 1If the
measures are taken to correspond to a factorial
classification, a treatment contrasts and interaction
representation would be used. Since the various
transformations each partition the source of variation for
occasions in a different manner, it is possible that they
may react differently to violation of homoscedasticity

across dgroups.
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The regression model matrix is orthogonal. Design
matrices may be orthogonal, such as a Helmert contrast
matrix used with hierarchical designs over the measures, or
they may be nonorthogonal, such as a paired differences
matrix used in profile analyses. It might be assumed that
all orthogonal transformations would behave in like manner
but that nonorthogonal ones would not. However, this
assumption needs to be tested.

Although findings from this study are of a preliminary
nature, they provide strong evidence that, at least for
equal samples, within-group tests of trends in a repeated
measures design are fairly robust to violations of
homoscedasticity that might occur in practical situations.
Furthermore, these tests maintain reasonable power under

heterogeneity, except for small sample sizes.
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APPENDIX A

COMPUTATIONAL DETAILS AND COMPUTER PROGRAM

The data generation and analysis were performed on a
CDC (Control Data Corporation) Cyber 750 computer at
Michigan State University. This 60 bit word machine uses
the Scope/Hustler operating system. The program, which was
coded in FORTRAN V by Jeff Glass, uses some Compass
assembly language to decrease field lengths and thereby
reduce costs. All computation was done in double
precision.

In this appendix, the following are listed or
described: (1) the subroutines used from package programs,
(2) the actual values input by the user, (3) the steps
followed in the computer program, (4) the procedures
performed to check the operation of the computer program,
and (5) the complete listing of the computer program.

Subroutines from Published Sources
a) Subroutines taken from the International Mathematical
and Statistical Library (IMSL, 1979):
GGUBS To generate uniform pseudo-random numbers.

VMULFF For matrix multiplication.
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VMULFM For matrix multiplication of the transpose
of a matrix A by a matrix B.

VMULFP For matrix multiplication of a matrix A by
the transpose of a matrix B.

LINV2F To compute the inverse of a matrix.
b) Subroutines taken from the EISPACK library (The Argonne
eigensystem package, 1972):

TRED2 To determine eigenvalues of a symmetric
tridiagonal matrix.

IMTQL2 To reduce a positive-definite matrix to a
triadiagonal matrix for input into TRED2.

User Input Values
a) Seed values for data generation. A different value was
used for each combination of k and n. These are listed
in the Checking Procedures section in this appendix.
b) Defining parameters for N, k, n, and p.
c) Matrices of normalized othogonal polynomial coefficients
for calculations using P(pxp), where p = 5 or 4.
Pl = |[.44721 -.63246 .53452 -.31623 .11952
.44721 -.31623 -.26726 .63246 -.47809
.44721 0 -.53452 ] .71714

.44721 «31623 -.26726 -.63246 -.47809
-44721 .63246 53452 .31623 .11952

P2 = 5 -.67082 «5 -.22361
«5 -.22361 =<5 .67082
05 022361 -.5 -067082
.5 .67082 «S5 «22361

d) A vector of constants to be added to the second through
fifth measures for use in power calculations. For the
transformation used in all cases, this was:

POWER = (.4 .8 .5 .l)
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For the modified transformation used only with 10,000
replications, this was:
POWER = (.6 .7 .2 .05)
Program Steps

The program consists of five main components (RM,
DATA, SORT, NTABLE, and OTABLE). Rm is the central part of
the program and consists of seven subroutines.
Additionally, a sixth component STATS was used to output
the mean and variance of the generated data and to test the
data for normality. Comments throughout the program
explain the steps and provide information for its use at
other installations.

The actual steps used in the computer program are
described below. Variable names are the same as those used
in the program, except for the following:

N = COUNT number of replications
K = GROUP number of groups
n = SUBJECT number of subjects per group
p = MEASURE number of repeated measures
Z. = ZBAR matrix of group means
A. Data Generation
1. Use IMSL subroutine GGUBS to generate N replications
of nkp uniform (0,1) pseudo-random numbers using
double precision (where p =5 and N = 2,000 or
10,000).

2. Transform these values to normal deviates N(0,1) using
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Box-Muller transformation (see Chapter 1IV).
3. Array resulting values in N matrices Z of dimension

(nk x p) such that

zZ = . a N(Q,I) with Zj (n x p)

For p = 5, compute for each data set:

l. (k x p) matrix of means

where z.4' = (z.j(l) z.j(z) z.j(3’ z.j(4) z.j(S))
2. Preliminary SSCP matrices for:
Total T = 2'Z
Groups G = nz.'s.
3. SSCP for calculations of test statistics for:
Constant C = (n/k)Z.'UU'Z. .
where U= unit vector
Between B = G-C
Error E = T-G
4. Transform C and E matrices by P(pxp), a matrix of

normalized orthogonal polynomial coefficients with

resulting elements xj§ (i,3 = 1,...,p). The

transformed matrices are:
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9.

CTRAN = P'CP ETRAN = P'EP
Take the lower right (p-1)x(p-1l) submatrices from
(B-4) to be used for tests of occasion trends
(elements Xige i,y = 2,...,p), and 1label:
CRM ERM
Take the lower right (p-1)x(p-1) submatrices of (B-4)
to be used for tests of non-linearity (elements x; -
i,j = 3,...,p), and label:
CL EL
Compute HE~1l for tests of:
group differences HB = BE-1
occasion trends HC = (CRM) (ERM) 1
non-linearity HL = (CL) (EL)-1

Compute the eigenvalues for each test in (B-7) and

label:
EIGB (p values)
EIGC (p-1 values)
EIGL (p-2 values)

Using the formulas for the R, T, V, and W test
statistics (see Chapter II) and the eigenvalues from
(B-8), compute each statistic for the C, B, and L
tests. Each resulting list of either 10,000 or 2,000
values is labeled according to the combination of test

and test statistic used:
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RB TB VB WB
RC TC VC WC

For p = 4:
10. Drop the last row and column of the B, C, and E
matrices in (B-3) and repeat steps (B,1-9).
C. Determination of Monte Carlo Critical Values
1. Sort the 24 lists of test statistics in (B-9) (12 for
p =5 and 12 for p = 4), placing the values in rank
order.
2. Using a = .01, .05, and .10 and N = COUNT, calculate
for each list:
a) the average of the (Na)th and (Na+l)th largest
values to be the critical values for the R, T,
and V statistics (result - 54 critical values).
b) the average of the (Na)fh and (Na+l) smallest
values to be the critical values for the W
statistics (result - 18 critical values).
D. Determination of Actual Significance Levels
Repeat this step three times for d = 2, 4, and 9.
l. Transform the Z matrix from (A-3) so that one group

has larger variances, with resulting (pxl) score

vectors:
Zjy = al/2z35 &~ NQ,AD) i =1,....n
J = l'ooo'p
Zij = zij ~ N(Q,I) i = n+l,...,nk

J = lfooolp
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2.

Repeat (B,1-10) to get 24 lists of test statistics
under a true null and a given heterogeneity condition.
Compare each value in each list to the corresponding
critical values from (C~-2) at each alpha level and
count the number of times each value is:
a) greater than its corresponding critical value for
R, T, and V statistics.
b) less than its corresponding critical value for W
statistic.
For each list and alpha level, divide the resulting
values from (D-3) by the number of repetitions (COUNT)

to get actual Type I error rates.

E. Determination of Monte Carlo Nominal Powers

1.

Transform the 2 matrix from (A-3) so that all groups
reflect a polynomial trend across the time points by
adding a constant to each measure. The resulting

(pxl) score vectors are:

Repeat (B,1-10) to get 24 lists of test statistics
under a true alternative and no violation to
homogeneity.

Repeat (D,3-4) to get Monte Carlo nominal power

values.
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F. Determination of Actual Powers
Repeat this step three times for d = 2, 4, and 9:

1.

of the generated data, the following results were obtained

for 1,000 replications of 300 data points with six randomly

Transform the 2 matrix from (A-3) so that one group
has larger variances and all groups reflect a
polynomial trend across timepoints. The resulting
(pxl) score vectors are:

245 = @225y 42 v NQED L=l
= gecey

Zij = Zij +u A~ N(u,I) ji: riﬂ'";.:'nk
AKX KN

Repeat (B,1-10) to get 24 lists of test statistics
under a true alternative and a given heterogeneity
condition.

Repeat (D-3,4) to get actual powers under

heterogeneity conditions.

Checking Procedures

Using the IMSL subroutine GTNOR to test for normality

choses initial seeds:

of the generated N(0,1) data points were calculated.

Seed Chi-square Probability

444,852,461 5.78 .76
9,458,577,882 6.20 .72
11,261,152,461 14.68 .10
2,344,743,849 5.18 .82
2,341 5.08 .83
112,623,455 9.06 .43

For each experimental condition, the mean and variance
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initial seed used to generate the data for the study with

the corresponding means and variances were as follows:

COUNT k n Seed Mean Variance
10,000 3 20 739,604,919 1.1x10-4 .99901
2,000 3 10 740,848,519 -3.0x10-3 .99707
2 20 837,616,087 -1.6x10"3 .99895
3 20 739,604,919 -1.5x10-3 .99870
6 20 344,148,214 -1.4x1074 1.00005
3 s0 208,577,315 -9.8x10~6 1.00000

A final check on the calculation of the SSCP matrices
was performed by outputing the B, C, E, CTRAN, ETRAN, CRM,
ERM, CL and EL matrices from one replicationwith k =3 and
n = 20. The results were hand checked to ascertain that
the program was correctly calculating these matrices.

To check the results of the Monte Carlo critical
values, the parameters needed to find tabled values were
determined. Tabled values were found in 92 cases (21.3%).
These were in fairly close agreement with the calculated

values.
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IDENT RM ASSEMBLY-LANGUAGE ORIVER PROGRAM

ENTRY RM
RN 8SS 0
RJ sXXRM
ENDRUN
ENTRY ABORT ERROR TERMINATION -
ABORT 8ss 1
RJ =XENDOUT CLOSE OUTPUT FILES IN CASE OF ERROR
ABORT
END RM
SUBROUTINE XRM
CRARRRRARARRAR
Cx RN - REPEATED MEASURES TESTING.

Cx

Cx THIS PROGRAM IS THE HEART OF THE RM PROGRAM SET. IT CALCULATES TEST
Cx STATISTICS R, T, V, AND W, WRITING THE RESULTS TO FILES FOR FURTHER
Cx PROCESSING B8Y OTHER PROGRAMS.

Cx

CRARARARRRRRR

C* TRANSPORTABILITY NOTE:

C* THESE PROGRAMS WERE WRITTEN AS CLOSE TO STANDARD FTNS THAT ACTUAL
C% CONSIDERATIONS OF COST WOULD ALLOW.

C% 1) SEVERAL PROGRAMS (THE DATA GENERATION AND STATISTICS PROGRAMS,
Cs THE SORT PROGRAM, AND TH!S ONE) HAVE ASSEMBLY-LANGUAGE MAIN

Cx PROGRAMS TO REDUCE EXECUTION COST. THESE ASSEMBLY-LANGUAGE

C* ROUTINES MAY BE REPLACED B8Y FTNS PROGRAMS !F NEED BE.

Cx 2) STANDARD FTN5 1/0 WAS JUDGED TO BE TOO EXPENSIVE FOR MULTIPLE

Cx RUNS OF 10000 CASES, SO A NON-STANDARD |/0 PACKAGE CALLED FASTIO
Cx WAS USED IN THE AFOREMENTIONED PROGRAMS.

Cs CONVERSION TO STANDARD FTN5 1/0 WOULD BE STRAIGHTFORWARD. FOR
Cx THIS PROGRAM, ROUTINES SETOUT, OUTPUT, ENDOUT, AND GETDATA HANDLE
Cx ALL THE 1/0, AND ONLY THOSE ROUTINES WOULD NEED MODIFICATION.

Cx 3) THE GETREG SUBROUTINE AND THE CCL REGISTERS R1 AND R2

Cx (USED IN ROUTINE GETDATA) ARE MSU SYSTEM FUNCTIONS WHICH ALLOW
Cx FTNS PROGRAMS TO COMMUNICATE WITH THE USER (AND OTHER PROGRAMS)
Cx BY A MEANS OTHER THAN THROUGH FILES. SHOULD THESE PROGRAMS NEED
Cs TO BE TRANSPORTED, THE USER COULD PROVIDE HIS OWN SUBROUTINE

Cx GETREG WHICH WOULD RETURN THE SAME VALUES, BY SOME OTHER (FTNS
Cx STANDARD) DEVICE.

CARRRAARARRAR

C% INPUT CONDITIONS:

C* 1) THE TEST DATA RESIDES ON LOCAL FILE OFILE .

Cx 2) CCL REGISTER R1 IS SET TO THE VALUE OF D FOR AN ACTUAL-VALUE RUN;
Cx OR TO 1 FOR A NOMINAL-VALUE RUN.

Cx 3) CCL REGISTER R2 IS NON-ZERO FOR A POWERS RUN; ZERO OTHERWISE.

Cx

Cx QUTPUT CONDITIONS:

Cx 1) DFILE, R1, AND R2 ARE UNCHANGED.

C* 2) LOCAL FILES TAPE1 THROUGH TAPE2h CONTAIN THE TEST STATISTICS:

Ca

Cx R T v W

Cx P=5 B TAPE! TAPE2 TAPE3 TAPEM

Ca C TAPES TAPE6 TAPE]7 TAPES

Cx L TAPEY TAPEIO TAPEIl TAPE12

Cx P=b B TAPE13 TAPEIL TAPEIS TAPEI6

Ca C TAPE17 TAPEI8 TAPEI9 TAPE20

Ce L TAPE21 TAPE22 TAPE23 TAPE2A

CARRRRRRRRARR

C* OPERATION OF RM PROGRAMS:

C® 1) THE DATA-GENERATION PROGRAM DATA IS RUN.

C* 2) THE DATA-STATISTICS PROGRAM STATS IS RUN.

Cx 3) CCL REGISTER R1 1S SET TO 1; R2 IS SET TO O.

Cx L) THIS PROGRAM RM IS RUN.
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C* 5) FILES TAPE! THROUGH TAPE24 ARE SORTED; THE SORTED FILES ARE
(] PLACED ON FILES TAPE25 THROUGH TAPELS8 IN THE SAME ORDER
Cx ( TAPE1 1S SORTED ONTO TAPE25; TAPE17 1S SORTED ONTO TAPEL!;
(3] TAPE<N> IS SORTED ONTO TAPE<N+2k> ).
C* 6) OUTPUT PROGRAM NTABLE 1S RUN.
Cx 7) R1 IS SET TO D.
Cx 8) TH!IS PROGRAM RM IS RUN.
C* 9) OUTPUT PROGRAM OTABLE 1S RUN.
C* 10) STEPS 7,8.9 ARE REPEATED FOR AS MANY VALUES OF D AS ARE DESIRED.
Cx 11) R1 1S SET TO 1; R2 1S SET NON-ZERO.
C* 12) THIS PROGRAM RM IS RUN.
C% 13) OUTPUT PROGRAM OTABLE IS RUN.
Cx 14) STEPS 7,8,9 ARE REPEATED FOR AS MANY VALUES OF D AS ARE DESIRED.
Cx
C% MISCELLANEOUS INFORMATION:
C* 1) LOCAL FILES DFILE AND NVALUE SHOULD *NEVER* BE RETURNED.
C% 2) LOCAL FILE STATFIL MAY BE RETURNED AFTER STEP 2. -~
C* 3) LOCAL FILES TAPE! THROUGH TAPE24 ARE NOT NEEDED AFTER STEP §5,
cx AND MAY BE RETURNED.
Cx b) LOCAL FILES TAPE25 THROUGH TAPEAM8 ARE NOT NEEDED AFTER STEP 6,
(< AND MAY BE RETURNED.
Cx 5) TAPE100 IS USED FOR DEBUG PURPOSES.
CRARARARRRRAR
C* PARAMETERS COMMON AMONG THE RM PROGRAMS:
C%
C* COUNT - THE NUMBER OF CASES IN THE TEST
C* GROUP - THE NUMBER OF GROUPS PER CASE
C* SUBJECT - THE NUMBER OF SUBJECTS PER GROUP
C* MEASURE - THE NUMBER OF TESTS OR MEASURES PER SUBJECT
CRRRARARRARAR
C* CODING CONVENTIONS:
Cx COMMENT LINES BEGINNING WITH ‘C#' DENOTE INFORMATIONAL COMMENTS,
C* THIS. COMMENT LINES BEGINNING WITH 'C ' DENOTE DEBUGGING CODE THAT
C* MAY BE USEFUL IN THE FUTURE, ETC.
CRARRRARRRARAR
C* ROUTINES USED:
C® VMULFF, VMULFM, VMULFP, LINV2F - FROM IMSL.
Cx TRED2, IMTQL2 - FROM EISPACK.
CRRARRRRRARRR
IMPLICIT REAL (A-2)
INTEGER COUNT, MEASURE, SUBJECT, GROUP
PARAMETER ( COUNT=10000, MEASURE=5, SUBJECT=20, GROUP=3 )
LOGICAL FIRST,SECOND
PARAMETER ( FIRST=.TRUE., SECOND=.FALSE. )
INTEGER ITERATE, I, J, K, IERR
COMMON /DATA/ Z (GROUPASUBJECT,MEASURE) , ZBAR (GROUP,MEASURE) ,
T (MEASURE ,MEASURE) , G (MEASURE ,MEASURE) , .
C (MEASURE ,MEASURE) , B (MEASURE,MEASURE) , E (MEASURE,MEASURE) ,
CTRAN (MEASURE ,MEASURE) , ETRAN (MEASURE ,MEASURE) ,
CRM (MEASURE-1,MEASURE-1) , ERM (MEASURE-1,MEASURE-1),
CLIN(MEASURE=-2,MEASURE-2), ELIN(MEASURE=~2,MEASURE-2),
HB (MEASURE ,MEASURE) , HC (MEASURE=-1,MEASURE-1),
SCR1 (MEASURE ,MEASURE) , SCR2 (MEASUREAMEASURE+3%#MEASURE) ,
EIGB (MEASURE) , EIGC (MEASURE-1), EIGL (MEASURE-2)
REAL P (MEASURE,MEASURE) , P2 (MEASURE-1,MEASURE-1), U(GROUP,1)
COMMON /ITERATE/ ITERATE :
DATA (P1(1,1),!=1,MEASURE)
+ /0“721. -0632“6' -53“52. -03‘623. 01‘952/
DATA (P1(2,1),)=1,MEASURE)
+ /.5572‘. -03'623' -026726’ 0632“. --k7809/
DATA (P1(3,1),1=1,MEASURE)

+++4+4+++ 4
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+ /.W721, 0.0, -.53452, 0.0, N ANATY)
DATA (P1 (b, 1), =1, MEASURE)

+ /.b4721, .31623, -.26726, -.63246, -.L7809/
DATA (PV1(5,1),1=1,MEASURE)

+ /.bb721, (63246, .53452, .31623, .11952/
DATA (P2(1,1),I=1,MEASURE~1)/.5, -.67082, .5, -.22361/
DATA (P2(2,1),!=1,MEASURE-1)/.5, -.22361, -.5, .67082/
DATA (P2(3,!1),!=1,MEASURE-1)/.5, .22361, -.5, -.67082/
DATA (P2(h,!),i=1,MEASURE-1)/.5, .67082, .5, .22361/

Cx SET THE UNIT VECTOR.
00 5 I=1,GROUP
5 u(t,1)=1.0

Cx INITIALIZE OUTPUT FILES
CALL SETOUT

Cx BEGIN!
DO 100 ITERATE=1,COUNT
CALL GETDATA( Z)

Cx COMPUTE ZBAR == THE MEAN OF MEASURES ACROSS GROUPS
00 10 K=1,MEASURE
D0 20 I=1,GROUP

SUM=0.0
D0 30 J=1,SUBJECT

30 SUM=SUM+Z ( (1=1) ASUBJECT+J, K )
ZBAR (1 ,K) =SUM/SUBJECT

20 CONT INUE

10 CONT I NUE

C# DEBUG PRINT...
c WRITE (100,%) ' ZBAR='
c WRITE (100, (1X,5F15.5) ') ((ZBAR(!1,J) ,J=1,MEASURE) , I=1,GROUP)

Cx T =2'2
CALL VMULFM( Z, Z, GROUPASUBJECT, MEASURE, MEASURE,
+ GROUP*SUBJECT, GROUP#SUBJECT, T, MEASURE, IERR )
IF (IERR .NE. O) THEN
c PRINT®, 'ERROR - IN Z''Z - |ERR=', [ERR
c PRINT#,'ON ITERATION ', ITERATE
CALL ABORT
ENDIF

Cx G = ZBAR'ZBAR (MULTIPLICATION BY SUBJECT TO FOLLOW)
CALL VMULFM( ZBAR, ZBAR, GROUP, MEASURE, MEASURE, GROUP,

+ GROUP, G, MEASURE, IERR )
IF (IERR .NE. O) THEN
c PRINT*, 'ERROR - IN ZBAR''ZBAR - I|ERR=', IERR
c PRINT#®,'ON ITERATION ', ITERATE
CALL ABORT
ENOIF

Cx C = ZBAR'U (MORE TO FOLLOW)
CALL VMULFM( ZBAR, U, GROUP, MEASURE, 1, GROUP, GROUP, SCR2,

+ MEASURE, IERR )
IF (IERR .NE. O) THEN
c PRINT#, 'ERROR - IN ZBAR"U - IERR=', |ERR
c PRINT®,'ON ITERATION ', ITERATE
CALL ABORT
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ENDIF

(ZBAR'U) U' (MORE TO FOLLOW)
CALL VMULFP( SCR2, U, MEASURE, 1, GROUP, MEASURE, GROUP, SCR1,
+ MEASURE, IERR )
IF (JERR .NE. 0) THEN
(o PRINT%, 'ERROR - IN (ZBAR''U)U'' - |ERR=', [|ERR
c PRINT®,'ON ITERATION ', ITERATE
CALL ABORT
ENDIF

Cx C

Cx C

(ZBAR'U'U) ZBAR (MULTIPLICATION BY SUBJECT/GROUP TO FOLLOW)
CALL VMULFF( SCR1, ZBAR, MEASURE, GROUP, MEASURE, MEASURE,
+ GROUP, C, MEASURE, IERR )
IF (IERR .NE. 0) THEN
c PRINT®, 'ERROR - IN (ZBAR''JJ'')ZBAR - IERR=', [|ERR
( PRINT®,'ON ITERATION ', ITERATE
CALL ABORT
ENDIF

Cx G = SUBJECTAG ; C = SUBJECT/GROUPXC ; B = G-C ; E = T-G
00 40 J=1,MEASURE
D0 LO I=},MEASURE
G (1,J) =FLOAT (SUBJECT) * G(I,Jd)
€ (1,J) =FLOAT (SUBJECT) /GROUP # C(I,J)
B(1,J)=6(1,J) = C(1,J)
E(I-J).T“'J) - G(1,d)
40 CONTINUE

Cx DEBUG PRINT...

WRITE (100,%) ' C='

WRITE (100, (IX.SF‘5-5) ) ((c(1,d) J=1,5), "'05’
WRITE (100,%) ' B=' :

WRITE (100, ' (lxo5”5-5) ') ((B(1,J) 'J.‘.s) ’ '.‘05)
WRITE (100,%) ' Ee'

WRITE (100, (‘x-5"5-5) ) ((E(1,J) DJ."S) o I= nS)

(s NaNaNsNalal

CALL COMPUTE ( P1, MEASURE )

CALL RESULT( EIGB, MEASURE, RB, TB, VB, WB )
CALL RESULT( EI1GC, MEASURE-1, RC, TC, VC, WC )
CALL RESULT( EIGL, MEASURE-2, RL, TL, VL, WL )

C* WRITE THE EIGENVALUES TO THE (UNSORTED) OUTPUT FILES.
CALL OUTPUT (FIRST,RB,TB,VB,WB,RC,TC,VC,WC,RL,TL,VL,WL)

CALL COMPUTE ( P2, MEASURE-! )

CALL RESULT( EIGB, MEASURE-1, RB, TB, VB, WB )
CALL RESULT( EIGC, MEASURE-2, RC, TC, VC, WC )
CALL RESULT( EIGL, MEASURE-3, RL, TL, VL, WL )

C* WRITE THE EIGENVALUES TO THE (UNSORTED) OUTPUT FILES.
CALL OUTPUT (SECOND,RB,TB,VB,W8,RC,TC,VC,WC,RL,TL,VL,WL)

100 CONTINUE

Cx CLOSE OUTPUT FILES.
CALL ENDOUT

Cx MAKE SURE RM HASN'T OVERWRITTEN ITSELF; CLOSE DEBUG OUTPUT FILE.
c WRITE (100,%) ' Pl=’
c WRITE (100, (lX.5F‘5-5) ') (P1(1,J) OJ.IDS) ’ '-105)
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c WRITE (100,%) ' P2='
c WRITE (100, ' (1X,5F15.5) ') ((P2(1,Jd) ,J=1,4),1=1,k)
c WRITE (100,%) ' us!
c WRITE (100, ' (1X,5F15.5) ') U
c REWIND (100)
RETURN
END

SUBROUTINE COMPUTE ( P, LENGTH )
CARRRARRARRAR
C* COMPUTE PERFORMS SEVERAL REPETITIVE COMPUTATIONS. THE ONLY
Cx DIFFERENCE AMONG THE REPETITIONS IS THE VALUE OF THE ARRAY
Cx P AND THE VALUE OF LENGTH. RESULTS ARE RETURNED THROUGH /DATA/ .
CRARARRRRRARRR
C* COMPUTATIONAL NOTE:
C* IF AN ERROR IS DETECTED IN INVERTING A MATRIX, THE INVERSE
Cx IS SET TO O. THIS FORCES ALL THE EIGENVALUES COMPUTED LATER
C* TO BE O ALSO.
CRARRARARAREAAR
IMPLICIT REAL (A-2)
INTEGER MEASURE, SUBJECT, GROUP
PARAMETER ( MEASURE=5, SUBJECT=20, GROUP=3 )
INTEGER ITERATE, I, J, K, IERR, LENGTH, OPT, IDIGIT
COMMON /DATA/ Z (GROUP#SUBJECT,MEASURE) , ZBAR (GROUP,MEASURE),
T (MEASURE ,MEASURE) , G (MEASURE ,MEASURE) ,
C (MEASURE ,MEASURE) , B (MEASURE ,MEASURE) , E (MEASURE,MEASURE),
CTRAN (MEASURE ,MEASURE) , ETRAN (MEASURE ,MEASURE) ,
CRM (MEASURE~1,MEASURE~-1) , ERM(MEASURE=-1,MEASURE-1),
CLIN (MEASURE=-2,MEASURE-2) , ELIN (MEASURE-2,MEASURE-2),
HB (WEASURE ,MEASURE) , HC (MEASURE=-1,MEASURE-1),
SCR1 (MEASURE ,MEASURE) , SCR2 (MEASURE*MEASURE+3%*MEASURE) ,
EIGB (MEASURE) , EIGC (MEASURE-1), EIGL (MEASURE-2)
REAL P (LENGTH,LENGTH)
CHARACTER#10 C1,C2
COMMON /ITERATE/ ITERATE

+++++++ 4

Cx CTRAN = P'C (MORE TO FOLLOW)
CALL VAULFM( P, C, LENGTH, LENGTH, LENGTH, LENGTH, MEASURE,
+ SCR1, MEASURE, IERR )
If (1ERR .NE. 0) THEN

c PRINT%#, 'ERROR - IN P''C - LENGTH=', LENGTH, ' I1ERR=', IERR
c PRINT®,'ON ITERATION ', ITERATE

CALL ABORT

ENDIF

Cx CTRAN = (P'C)P
CALL VMULFF ( SCR1, P, LENGTH, LENGTH, LENGTH, MEASURE, LENGTH,
+ CTRAN, MEASURE, IERR )
IF (IERR .NE. O) THEN

c PRINT%#, 'ERROR - IN (P''C)P - LENGTH=', LENGTH, ' IERR=', |ERR
c PRINT%#,'ON ITERATION ', ITERATE

CALL ABORT

ENDIF

Cx ETRAN = P'E "(MORE TO FOLLOW)
CALL VMULFM( P, E, LENGTH, LENGTH, LENGTH, LENGTH, MEASURE,
+ SCR1, MEASURE, IERR )
IF (1ERR .NE. 0) THEN
c PRINT%, 'ERROR - IN P''E - LENGTH=', LENGTH, ' IERR=', |ERR
c PRINT%®,'ON ITERATION ‘', ITERATE
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CALL ABORT
ENDIF

Cx ETRAN = (P'E)P
CALL VMULFF( SCR1, P, LENGTH, LENGTH, LENGTH, MEASURE, LENGTH,
+ ETRAN, MEASURE, IERR )
IF (1ERR .NE. O) TMEN

c PRINT%, 'ERROR - [N (P''E)P - LENGTH=', LENGTH, ' IERR=', [ERR
c PRINT%,'ON ITERATION ', ITERATE

CALL ABORT

ENDIF

C* DEBUG PRINT...
c WRITE (100,%) ' CTRAN='
c WRITE (100, ' (1X,5F15.5) ') ((CTRAN(!,J),J=1,LENGTH),!=1,LENGTH)
c WRITE (100,%) ' ETRAN='
c WRITE (100, ' (1X,5F15.5) ') ((ETRAN(i,J) ,J=1,LENGTH) , I=1,LENGTH)

D0 20 J=2,LENGTH
DO 20 I=2,LENGTH
CRM(1=1,J=1)=CTRAN(1,J)
ERM(1=1,J=1)=ETRAN(I,J)
20 CONT INUE

Cx HB = B E-INVERSE - SCR1 CONTAINS E~INVERSE
IDIGIT=0
CALL LINV2F( E, LENGTH, MEASURE, SCR1, IDIGIT, SCR2, IERR )
IF (IERR .NE. O) THEN
CALL INT2CHR( ITERATE, C2 )
CALL INT2CHR( IERR, C1 )
CALL REMARK ('ERROR - E-INV - IERR='//C1//' ITERATE='//C2)
c CALL ABORT.
00 50 J=1,MEASURE
: DO 50 I=1,MEASURE
50 SCR1(1,J)=0.0
ENDIF

CALL VMULFF( B, SCR1, LENGTH, LENGTH, LENGTH, MEASURE, MEASURE,
+ HB, MEASURE, IERR )
IF (IERR .NE. 0) THEN

c PRINT%, 'ERROR - IN B''E - LENGTH=', LENGTH, ' IERR=', |ERR
c PRINT®,'ON ITERATION ', ITERATE

CALL ABORT

ENDIF

Cx HC = CRM ERM-INVERSE - SCR1 CONTAINS ERM-INVERSE
101GIT=0 4
CALL LINV2F( ERM, LENGTH-1, MEASURE-1, SCR!, IDIGIT, SCR2, IERR )
IF (1ERR .NE. 0) THEN
CALL INT2CHR( ITERATE, C1 )
CALL INT2CHR( IERR, C2 )
CALL REMARK (*ERROR - ERM =INV - |ERR='//C2//' ITERATE='//C1)
c CALL ABORT
DO 4O J=1,MEASURE
DO 40 I=},MEASURE
4o SCR1(1,J)=0.0
ENDIF

CALL VMULFF( CRM, SCR1, LENGTH-1, LENGTH-1, LENGTH-1, MEASURE-1,
+  MEASURE-1, HC, MEASURE-1, IERR )
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IF (IERR .NE. 0) THEN

c PRINT%,'ERROR = IN CRM ERM-INV = LENGTH=',LENGTH,' IERR=',|ERR
c PRINT%,'ON ITERATION ', ITERATE

CALL ABORT

ENDIF

Cx CALL EISPACK ROUTINES TRED2 AND IMTQL2 TO DO EIGENVALUES.
C* AFTER TRED2, SCR1 WILL CONTAIN Z
() EIGB WILL CONTAIN D
C SCR2 WILL CONTAIN E
CALL TRED2( MEASURE, LENGTH, HB, EIGB, SCR2, SCR! )
CALL IMTQL2( MEASURE, LENGTH, EIGB, SCR2, SCR1, IERR )
IF (1ERR .NE. 0) THEN
CALL INT2CHR( ITERATE, C1 )
CALL INT2CHR( IERR, C2 )
CALL REMARK ('ERROR - HB IMTQL2 - IERR='//C2//' ITERATE='//C1)
CALL ABORT
ENDIF

CALL TRED2( MEASURE-1, LENGTH-1, HC, EIGC, SCR2, SCR1 )
CALL IMTQL2 (MEASURE-1, LENGTH-1, EIGC, SCR2, SCR1, IERR)
IF (IERR .NE. O) THEN
CALL INT2CHR( ITERATE, C1)
CALL INT2CHR( IERR, C2 )
CALL REMARK (‘ERROR - HC IMTQL2 - IERR='//C2//' ITERATE='//C1)
CALL ABORT
ENDIF

Cx DEBUG PRINT...
c WRITE (100,%) ' EIGC='
c WRITE (100,#) (EIGC(I1),!=1,LENGTH-1)

Cs
Cx PERFORM LINEAR TRENDS STATISTICS.
Cx
D0 10 J=3,LENGTH
DO 10 1=3,LENGTH
CLIN(1-2,J-2) =CTRAN (1,J)
ELIN(1-2,J~2)=ETRAN(1,J)
10 CONTINUE

C* HLIN = CLIN ELIN-INVERSE - SCR1 CONTAINS ELIN-INVERSE

C* STORE HLIN IN THE HC ARRAY, SINCE THE DATA IN HC WILL NOT

C* BE REUSED.

Ca

C* DEBUG PRINT...

WRITE (100,%) * CLIN='

WRITE (100, ' (1X,3F15.5) ') ((CLIN(1,J) ,J=1,LENGTH=2), |=1,LENGTH-2)
WRITE (100,%) ' ELIiN=' :
WRITE (100, ' (1X,3F15.5) ') ((ELIN(1,Jd),J=1,LENGTH-2),I=1,LENGTH-2)

o000

IDIGIT=0
CALL LINV2F( ELIN, LENGTH-2, MEASURE-2, SCR!, IDIGIT, SCR2, IERR )
IF (IERR .NE. 0) THEN
CALL INT2CHR( ITERATE, C1 )
CALL INT2CHR( !ERR, C2 )
CALL REMARK (‘ERROR - ELIN -INV - IERR='//C2//' ITERATE='//C1)
(o CALL ABORT
00 30 I=1,MEASURE
D0 30 J=1,MEASURE
30 SCR1(J,1)=0.0
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ENDIF

CALL VMULFF( CLIN, SCR1, LENGTH-2, LENGTH-2, LENGTH-2, MEASURE-2,
MEASURE-2, HC, MEASURE-2, IERR )
IF (IERR .NE. 0) THEN

+

¢ PRINT%, 'ERROR=IN CLIN ELIN-INV. LENGTH=',LENGTH,' IERR=',I|ERR
c PRINT%,'ON ITERATION ', ITERATE '

CALL ABORT

ENDIF

CALL TRED2( MEASURE-2, LENGTH-2, HC, EIGL, SCR2, SCR1 )
CALL IMTQL2 (MEASURE-2, LENGTH-2, EIGL, SCR2, SCR1, IERR)
I# (IERR .NE. 0) THEN
CALL INT2CHR( ITERATE, C1 )
CALL INT2CHR( IERR, C2 )
CALL REMARK ('ERROR - HL INTQL2 - IERR='//C2//' ITERATE='//C1)
CALL ABORT
ENDIF

Cx DEBUG PRINT...

c WRITE (100,%) ' EIGL='

c WRITE (100,#) (EIGL(1),I=1,LENGTH-2)
RETURN
END

SUBROUTINE RESULT( EIGEN, LENGTH, R, T, V, W)
CARRARRRARERR
C%* RESULT CALCULATES SEVERAL STATISTICS (R, T, V., AND W) BASED
C* ON THE EIGENVALUES IN ARRAY EIGEN .
CRRARRRARARRRR

IMPLICIT REAL (A-2)

INTEGER LENGTH, |, ITERATE

DIMENSION EIGEN (LENGTH)

COMMON /ITERATE/ ITERATE
c INTEGER DEBUG
c DATA DEBUG/10/

V=T=0.0
W=1.0

DO 10 =1, LENGTH
VALUE=E IGEN (1)
T=T + VALUE
V=V 4+ VALUE/ (1.0 + VALUE)
Wek/ (1.0 + VALUE)
10 CONT INUE

R=E IGEN (LENGTH) / (1.0 + EIGEN (LENGTH))

c IF (DEBUG .GT. O) THEN
c DEBUG=DEBUG-1
c WRITE (100,#) 'EIGENVALUES=',EIGEN
¢ WRITE (100,#) 'STATS=',R,T,V,W
c ENDIF
RETURN
END

SUBROUTINE GETDATA( Z )
CARRARRRARANR
C%x GETDATA RETURNS THE NEXT SET OF VALUES TO BE ANALYZED BY RM.
Ca
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Cx THE DATA IS READ FROM LOCAL FILE DFILE, WHICH IS INITIALLY
C* REWOUND.
CRARRRRRAARAR
IMPLICIT REAL (A-2)
INTEGER MEASURE, SUBJECT, GROUP
PARAMETER ( MEASURE=S5, SUBJECT=20, GROUP=3 Y
REAL Z (GROUP#SUBJECT,MEASURE), POWER (2:MEASURE)
INTEGER FET(8), BUF (2049), EOP
INTEGER I, J, D, POWERON
LOGICAL FIRST
CHARACTER DC#3
D‘TA Flm/.TRUE./. PMR/.“. 08. 05D -‘/

Cx IF THIS IS THE FIRST CALL TO GETDATA, INITIALIZE THE DATA FILE,
C* CHECK CCL REGISTER 1 FOR THE D PARAMETER, AND CHECK R2 FOR THE
Cx POWER PARAMETER.
IF (FIRST) THEN

CALL FILEC( 'OFILE', FET, 8, BUF, 2049 )

CALL REWINDF ( FET )
Ca
C* FTN5 STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED,
Cx DELETE THE PRECEDING FILEC AND REWINDF CALLS, AND USE
C*# THE FOLLOWING COOE:
Ca
c OPEN (999,FILE='DFILE"')
c REWIND (999)
Ca

FIRST= . FALSE.

CALL GETREG( °'R1', D)
IF (D .NE. 1) THEN
DSQRT=SQRT (FLOAT (D))
CALL INT2CHR( D, OC )
CALL REMARK( 'RM CALLED WITH D=*'//DC )
ENDIF

CALL GETREG( 'R2', POWERON )

IF (POWERON .NE. O) THEN
CALL REMARK( ' CALCULATING POWERS' )
ENDIF

ENDIF

CALL REAOW( FET, Z, GROUP*MEASUREASUBJECT, EOP )
Cx
Cx FTN5 STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED,
Cx DELETE - THE PRECEDING READW CALL, AND USE
C* THE FOLLOWING CODE:
Ch
c READ (999,%, I0STAT=EOP) Z
C*

IF (EOP .EQ. O) THMEN
C* MULTIPLY ONLY THE FIRST GROUP OF Z BY THE SQUARE ROOT OF D.
IF (D .NE. 1) THEN
DO 10 J=1,MEASURE
00 10 I=1,SUBJECT
10 Z(1,J)=DSQRT * Z2(1,J)
ENDIF

Cx ADD CONSTANTS TO ALL GROUPS.
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IF (POWERON .NE. 0) THEN
00 20 J=2,MEASURE
DO 20 t=1,SUBJECTRGROUP

20 Z(1,9)=2(1,J) + POWER (J)
ENDIF
ELSE
CALL REMARK ( 'UNEXPECTED %EOP ON READING DATA.' )
CALL ABORT
ENDIF

c WRITE (100,%) ' DATA='

¢ "WRITE (100, (1X,5F15.5) ') ((Z(1,J) ,J=1,MEASURE) , I=1,GROUP*SUBJECT)
RETURN .
END

SUBROUTINE SETOUT
CRRRARARRARRR
C%x SETOUT INITIALIZES THE OUTPUT FILES THAT THE UNSORTED TEST
C% STATISTICS WILL BE WRITTEN TO.
C* FILES USED ARE 'TAPE1' THROUGH ‘'TAPE24' .
CRARRARRRRRRARR
IMPLICIT INTEGER(A-2)
COMMON /10/ FET( 8, 24 )
DIMENSION BUF ( 513, 24 )
CHARACTER UNITLFNA7

UNITLFN='TAPE'

Cx RETURN EACH FILE BEFORE ANY FURTHER PROCESSING.
DO 10 I=),24
CALL INT2CHR( I, UNITLFN(5:) )
CALL FILEC( UNITLFN, FET(1,1), 8, BUF(1,1), 513)
CALL RETF( FET(1,1) )
CALL FILEC( UNITLFN, FET(1,1), 8, BUF(1,1), 513)
10 CONT I NUE
Ck
C* FTNS STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED,
C* DELETE THE DO LOOP, AND USE THE FOLLOWING CODE:

C*
c 00 10 I=1,24
c OPEN( 1 )
c CLOSE( |, STATUS='DELETE' )
c OPEN( I )
c 10 CONTINUE
Ca
RETURN
END

SUBROUTINE OUTPUT( FIRST, RB, TB, VB, WB, RC, TC, VC, WC,
+ RL, TL, VL, WL )
CRARRARRARRAARR
C* OUTPUT WRITES THE EIGENVALUES TO THE OUTPUT FILES.
C* WILL BE WRITTEN TO.
C® FILES USED ARE 'TAPE1' THROUGH 'TAPE2A' .
Cs
C* FIRST = .TRUE. IFF THIS SET OF EIGENVALUES WAS OBTAINED WITH
CA LENGTH = MEASURE; FIRST = .FALSE. IFF LENGTH = MEASURE-] .
CRARRRRRRARRR
IMPLICIT REAL (A-2)
INTEGER BEGIN
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LOGICAL FIRST
COMMON /10/ FET( 8, 24 )

IF (FIRST) THEN
BEGIN=0

ELSE
BEGIN=12
ENDIF

CALL WRITEW( FET(1,1+BEGIN), RB,
CALL WRITEW( FET(1,2+BEGIN), TB,
CALL WRITEW( FET(1,3+BEGIN), VB,
CALL WRITEW( FET(1,4+BEGIN), WB,
CALL WRITEW( FET(1,5+BEGIN), RC,
CALL WRITEW( FET(1,6+BEGIN), TC,
CALL WRITEW( FET(1,7+BEGIN), VC,
CALL WRITEW( FET(1,8+BEGIN), WC,
CALL WRITEW( FET(1,9+BEGIN), RL,
CALL WRITEW( FET(1,10+BEGIN), TL, 1)
CALL WRITEW( FET(1,11+BEGIN), VL, 1))
CALL WRITEW( FET(1,12+BEGIN), WL, 1)

-t ) bt bt ot ot b —
N N N N P P P

C*

Cx FTNS STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED,

Cx DELETE THE WRITEW CALLS ABOVE, AND USE THE FOLLOWING CODE:
Cx

c WRITE( BEGIN+1, # ) RB
c WRITE ( BEGIN+2, ® ) TB
c WRITE ( BEGIN+3, 2 ) VB
c WRITE ( BEGIN+4, ® ) WB
c WRITE ( BEGIN®5, % ) RC
c WRITE( BEGIN®6, ®# ) TC
c WRITE ( BEGIN+7, ® ) VC
c WRITE ( BEGIN+8, *# ) WC
c WRITE ( BEGIN+9, * ) RL
c WRITE ( BEGIN+10,% ) TL
c WRITE( BEGIN+11,%) VL
c WRITE( BEGIN+12,% ) WL
Cx

RETURN

END

SUBROUTINE ENDOUT
CRARRARRARARARAR
C* ENDOUT CLOSES THE FILES THAT THE EIGENVALUES WERE WRITTEN TO.
CRRARRRARRRRR

IMPLICIT INTEGER(A-2)

COMMON /10/ FET( 8, 24 )

DO 10 I=1,24
10 CALL WRITEOR( FET(1,1) )
C»

Cx FTNS STANDARD CODE - IF RM NEEDS TO BE TRANSPORTED,
Cx DELETE THE DO LOOP CALL ABOVE, AND USE THE FOLLOWING CODE:

(]
c DO 10 I=1,24
c 10 REWIND( 1 )
(% ]

RETURN

END

*E0SO0 LINE=672 SEC=1
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IDENT DATA
RRRARARARRRARR
DATA-GENERATION PROGRAM. CREATES COUNT COLLECTIONS OF DATA, EACH WITH
MEASUREAGROUPASUBJECT ITEMS, USING THE BOX-MUELLER (SP?) METHOD.

SEE THE COMMENT SECTION FOR PROGRAM RM FOR DETAILED INFORMATION

]

®

®

% DATA IS WRITTEN TO LOCAL FILE DFILE .
®

*

® ABOUT THE OPERATION OF THESE PROGRAMS.

RARRANARARRARR
ENTRY DATA
DATA ass 0
RJ =XXDATA
ENDRUN
END DATA
SUBROUTINE XDATA
CRRRRRARRRRAR
C# ROUTINES USED:
(o
C* GGUBS - FROM IMSL.
CRRRRRARARARR

IMPLICIT INTEGER (A-2)

PARAMETER (COUNT=10000, MEASURE=5, GROUP=3, SUBJECT=20)
REAL ARRAY (MEASUREAGROUP%SUBJECT)

REAL R, THETA, AVERAGE, PIX2

DIMENSION FET(B), BUF (2049)

DOUBLE PRECISION DSEED

DATA DSEED/73960k919.000/

Pi1X2=8.0%ATAN (1.0)

CALL FILEC( 'DFILE', FET, 8, BUF, 2049 )

CALL RETF( FET )

CALL FILEC( 'OFILE', FET, 8, BUF, 20k9 )
Ce
C* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC AND RETF CALLS,
Cx AND USE THE FOLLOWING CODE:

[« ]
c OPEN(1,FILE='DFILE')
c CLOSE (1,STATUS='DELETE")
c OPEN(1,FILE='DFILE')
Cx
AVERAGE=0.0
DO 10 J=1, COUNT
CALL GGUBS ( DSEED, MEASURE*GROUP#SUBJECT, ARRAY )
DO 20 I=1,MEASURE*GROUPASUBJECT/2
R=SQRT( =2.0 * LOG (ARRAY (2%1-1)) )
THETA=P1X2 * ARRAY (2#1)
ARRAY (2%1-1)=R % COS( THETA )
ARRAY (2%1)=R & SIN( THETA )
AVERAGE=AVERAGE+ARRAY (2#1) +ARRAY (2%i~1)
20 CONTINUE
CALL WRITEW( FET, ARRAY, MEASUREAGROUPASUBJECT )
(2 ]

C*# FTNS STANDARD CODE - DELETE THE PRECEDING WRITEW CALL,
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Cx AND USE THE FOLLOWING CODE:

Cx

c WRITE (1,%) ARRAY

Cx

10 CONTINUE
AVERAGE=AVERAGE/ (GROUPAMEASUREASUBJECTACOUNT)
CALL WRITEOR( FET )

Cx

Cx FTNS STANDARD CODE - DELETE THE PRECEDING WRITEOR CALL,
C* AND USE THE FOLLOWING CODE:

(]

c REWIND 1

Cx

ca

Cx WRITE THE AVERAGE OF THE DATA GENERATED TO LOCAL FILE

Cx STATFIL . THIS AVERAGE WILL BE NEEDED IN ORDER TO COMPUTE
C* THE VARIANCE OF THE DATA.

Cx
CALL WNBF ( FET )
CALL FILEC( 'STATFIL', FET, 8, BUF, 65 )
CALL RETF( FET )
CALL WRITEW( FET, AVERAGE, 1)
CALL WRITEOR( FET )
Cs

Cx FTNS STANDARD CODE - DELETE THE PRECEDING FILEC AND RETF CALLS,
Cx AND USE THE FOLLOWING CODE:

OPEN (2,FILE='STATFIL')
CLOSE (2,STATUS="DELETE")
OPEN (2,FILE='STATFIL')
WRITE (1,%) AVERAGE
REWIND 1

OO0

RETURN
END
*EQ0SO0 LINE=103 SEC=1
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IDENT STATS
RRARRARRRRRARR
% DATA-STATISTICS PROGRAM. COMPUTES THE VARIANCE OF THE DATA, USING
% THE AVERAGE ALREADY CALCULATED BY THE DATA-GENERATION PROGRAM.
% BOTH THE AVERAGE AND THE VARIANCE ARE WRITTEN TO LOCAL FILE STATFIL .
&
® INPUT CONDITIONS:
* DATA IS ON FILE DFILE ; THE AVERAGE IS ON LOCAL FILE STATFIL .
®
® SEE THE COMMENT SECTION OF PROGRAM RM FOR MORE DETAILED EXPLANATION
% OF THE FUNCTIONING OF THESE PROGRAMS.

RRARRRRRRRRRRRR -
ENTRY STATS
STATS 8ss 0
RJ =XXSTATS
ENDRUN
END STATS

SUBROUTINE XSTATS
IMPLICIT INTEGER (A=2)
PARAMETER (COUNT=10000, MEASURE=5, GROUP=3, SUBJECT=20)
REAL ARRAY (MEASUREAGROUP*SUBJECT) , AVERAGE, VAR
DIMENSION FET (8), BUF (2049)

c REAL 0BSC(100), STAT(3), CSOBS (100)

C* READ THE DATA AVERAGE ALREADY COMPUTED.
CALL FILEC( *STATFIL', FET, 8, BUF, 65 )
CALL REWINDF ( FET )
CALL READW( FET, AVERAGE, 1, EOP )
CALL WNBF ( FET ) ‘

CALL FILEC( 'DFILE',- FET, 8, BUF, 2049 )
CALL REWINOF ( FET )

c OPEN (1,FILE="RAWDATA')
c REWIND 1
c D0 5 1=1,100
c 5 €S08S (1) =0BSC (1) =0.0
VAR=0.0
DO 10 J=1, COUNT
CALL READW( FET, ARRAY, MEASUREAGROUP*SUBJECT, EOP )
IF (EOP .LT. O) THEN
CALL REMARK ( 'UNEXPECTED *EOP ON DATA FILE.' )
RETURN
ENDIF
DO 20 I=1,MEASUREAGROUP*SUBJECT
20 VAR=VAR + (ARRAY (1) =AVERAGE) * (ARRAY (1) ~AVERAGE)
c IF (J .NE. COUNT) THEN
c STAT (3) =0
c ELSE
c STAT (3) =1
c ENDIF
c K=100
c CALL GTNOR (ARRAY,GROUP*MEASUREASUBJECT,K,STAT,08SC,CSOBS, | ERR)
c IF (1ERR .NE. 0) WRITE(1,%) ' IERR=',|ERR
10 CONTINUE

VAR=VAR/ (COUNT*GROUP*MEASURE #SUBJECT)

c WRITE (1,%) STAT
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c REWIND 1

Cx
C* WRITE THE AVERAGE AND VARIANCE OF THE DATA GENERATED TO LOCAL
C* FILE STATFIL .
Ck
CALL WNBF ( FET )
CALL FILEC( 'STATFIL', FET, 8, BUF, 65 )
CALL RETF( FET )
CALL WRITEW( FET, AVERAGE, 1)
CALL WRITEW( FET, VAR, 1)
CALL WRITEOR( FET )

RETURN

END
*E0SOO LINE=78 SECe)
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IDENT SORT

RRRRRRRRRRARRRR
% SORT =~ SHELL-METZNER SORT OF TEST STATISTICS.
*
% CALLING SEQUENCE:
]
®  SORT, INLFN,OUTLFN.
®
® SEE THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION
® OF THE FUNCTIONING OF THESE PROGRAMS AND THEIR INTERACTION.
RRRRRRARXRRRAARR
ENTRY SORT
SORT 8ss 0
SAl PLIST PLIST CONTAINS INLFN AND OUTLFN
RJ =XXSORT
ENDRUN
PLIST Bss 0
CON 2
CON 3
DATA 0
END SORT

SUBROUTINE XSORT( INLFN, OUTLFN )
IMPLICIT INTEGER (A-2)

PARAMETER (COUNT=10000)

REAL ARRAY (COUNT), T

DIMENSION FET(8), BUF (513)

CALL FILEC( INLFN, FET, 8, BUF, 513)

CALL REWINDF ( FET )

CALL READW( FET, ARRAY, COUNT, EOP, LEVEL, NGET )
CALL WNBF ( FET )

C* FTN5 STANDARD CODE - DELETE THE PRECEDING FILEC, REWINOF, READW,
C* AND WNBF CALLS, CHANGE INLFN AND OUTLFN TO CHARACTER VARIABLES,
Cx AND USE THE FOLLOWING CODE:

10

C*

OPEN (1,FILE=INLFN)
REWIND 1
READ (1,%, 10STAT=EOP) ARRAY

IF (EOP .NE. O) THEN
CALL REMARK ( 'UNEXPECTED *EOP ON READING.' )
ENDIF

M=NGET

CONT INUE
M=N/2

IF (M .EQ. O) THEN
CALL FILEC( OUTLFN, FET, 8, BUF, 513 )
CALL RETF( FET )
CALL FILEC( OUTLFN, FET, 8, BUF, 513)
CALL WRITEW( FET, ARRAY, NGET
CALL WRITEOR( FET ) :

C* FTN5 STANDARD CODE - DELETE THE PRECEDING FILEC, RETF, WRITEW,
C® AND WRITEOR CALLS, AND USE THE FOLLOWING CODE:

(2N aNaNalyl
»

OPEN (2, F | LE=OUTLFN)
REWIND 2

WRITE (2,%) ARRAY
REWIND 2
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Cs

RETURN
ENDIF

Cx ELSE...
K=NGET-M
Jm=]

20 CONTINUE
I=J

30 CONTINUE
L=i+M

IF (ARRAY (1) .GT. ARRAY (L)) THEN
T=ARRAY (1)
ARRAY (1) =ARRAY (L)
ARRAY (L) =T

Isl=N

IF (I .GE. 1) GOTO 30
ENDIF

Juj+l
IfF (J .GT. X) GOTO 10
G070 20

END
#E0SO0 LINE=93 SEC=1
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PROGRAM NTABLE ( OUTPUT )
CRRRRRRRRARRRRR AR AR
C* TABLE READS THE SORTED LISTS OF TEST STATISTICS, AND CALCULATES
C* THE VALUES FOR ALPHA = 0.01, 0.05, AND 0.10 .
Cx
C* FOR THE EXPECTED SIZE OF 10,000 , THESE VALUES ARE CALCULATED
C* BY AVERAGING THE 100TH AND 101ST, THE 500TH AND THE 501ST, AND
C* THE 1000TH AND THE 1001ST ELEMENTS, RESPECTIVELY, FOR W, AND
C* THE 9900TH AND 9901ST, 9500TH AND 9501ST, AND 9000TH AND 9001ST
C* ELEMENTS FOR THE R, T, AND V TESTS.

ct

Cx CALLING SEQUENCE:
Ch

C# NTABLE,OUTLFN.
Ck

C* WHERE OUTLFN IS THE FILE TO WHICH THE TABLED OQUTPUT IS TO BE WRITTEN.
Cx DEFAULT: OUTPUT

Ck

C* TAPE25 THROUGH TAPEA8 CONTAIN THE SORTED TEST STATISTICS:

Ca

C# R T v w
Cs

Cx P=5 B8 TAPE25S TAPE26 TAPE27 TAPE28
Cx c TAPE29 TAPE30 TAPE31 TAPE32
Cs L TAPE33 TAPE3M TAPE3S TAPE36
Ck P=k B TAPE3? TAPE38 TAPE39 TAPELO
1] c TAPEMI TAPEL2 TAPEM3 TAPEbb
Cs L TAPEAS TAPEMG TAPEL] TAPELS
C®

CRRARRRARARRARKRAAR

C% NTABLE IS USED TO PRODUCE THE OUTPUT FOR THE NOMINAL-VALUE RUN.
C* IT ALSO WRITES THE NOMINAL VALUES TO FILE NVALUE FOR USE BY THE
C* OBSERVED-VALUE TABLE-GENERATION PROGRAM.
CARRRRRRRRRRRRRARER
Cx SEE THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION OF
C* THE INTERACTION OF THESE PROGRAMS.
CRRARRRREARRRARARAR

IMPLICIT INTEGER(A-2)

PARAMETER (COUNT=10000) ) _

PARAMETER (A1=COUNT/100, A2=COUNT/20, A3=COUNT/10)

PARAMETER (B1=COUNT-A1, B2=COUNT-A2, B3=COUNT-A3)

REAL ARRAY (COUNT)

DIMENSION FET(8), BUF (513)

CHARACTER UNITLFN%7, TITLE%80

REAL N1(2h), N2(2k), N3(24)

CALL NOMSG

CALL FILEC( 'ZZZZIN', FET, 8, BUF, 65 )

CALL CONNECF ( FET, 0)

CALL WRITEH( FET, ' NTABLE - PLEASE ENTER A TITLE -', &)

CALL READH( FET, TITLE, 8, EOP )
C®
C* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC, CONNECF, WRITEN,
C*x AND READH CALLS, AND SUBSTITUTE SOME OTHER METHOD OF READING IN
C* A TITLE FROM THE USER.

Ce
L=LNB (TITLE)
DO 5 I=L,},-1
P= (80-L) /2+1
TITLE (P:P)=TITLE(1:1)
5 CONTINUE
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TITLE (: (80-L)/2)=' '

UNITLFN='TAPE'
DO 10 I=1,2k
UNIT={+2b
CALL INT2CHR( UNIT, UNITLFN(5:) )

CALL FILEC( UNITLFN, FET, 8, BUF, 513 )
CALL REWINDF ( FET )

CALL READW( FET, ARRAY, COUNT, EOP )
CALL WNBF( FET )

Cx FTN5 STANDARD CODE - DELETE THE PRECEDING FILEC, REWINDF, READW,
C* AND WNBF CALLS, AND USE THE FOLLOWING CODE:

c OPEN( 1,FILESUNITLFN )
c REWIND 1
c READ (1,%, |0STAT=EOP) ARRAY
(% ]
IF (EOP .EQ. O) THEN
Ca

Cx | MOD & = O INDICATES A W TEST;
Cx OTHERWISE IT IS AN R, T, OR V TEST.
Cx
IF (mOD(I,&) .EQ. O) THEN
N1 (1)=( ARRAY (A1) +ARRAY (A1+1) ) /2
N2 (1) = ( ARRAY (A2) +ARRAY (A2+1) ) /2
N3 (1) = ( ARRAY (A3)+ARRAY (A3+1) )/2

ELSE
N1 (1)=( ARRAY (B1) +ARRAY (B1+1) ) /2
N2 (1)=( ARRAY (B2) +ARRAY (B2+1) ) /2
N3 (1) = ( ARRAY (B3) +ARRAY (83+1) ) /2
ENDIF

ELSE
CALL REMARK ( 'UNEXPECTED *EOP ON READ OF '//UNITLFN )
N1 (1)=N2(1)=N3(1)=0.0
ENDIF

10 CONT INUE

WRITE(%,' (A)') "1
WRITE (%,' (1X,A) ') TITLE

WRITE (& %) * !
WRITE (#,' (T6,A,T15,A,2X,A,T31,k(A,13X) ")
+  'ALPHA', 'P', 'TEST', 'R', 'T', 'V', 'W'

WRITE (n,%) '
WRITE (=, 100)
+ ‘o.01', '5', 'B', mN1(1),I=1,8), 'c', (M (l).l-Sna)o
+ 'Ly (N1(1),1=9,12)
WRITE (%,110)
+ ‘M, 'S, (“1“)0'-‘3"6)' 'c', (NI(1),1=17,20),
+ 'L, (N1(1),1m21,24)

WRITE (%, 100)
+ '0.05', '5', 'B', (N2(1),1=1,8), 'C', (N2(1),I=5,8),
+ 'L, (N2(1),1=9,12)
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WRITE (*,110)
+ 'k, 'B', (N2(1),1=13,16), 'C', (N2(1),1=17,20),
+ 'L', (N2(1),1=21,20b)

WRITE (*, 100)

+ '0.10', '5', 'B', (N3(1),I=1,4), 'C', (N3(1),1=5,8),
+ 'L', (N3(1),1=9,12)

WRITE (*,110)

+ ‘b, 'B', (N3(|)o|"3ol6)n ‘c’, (N3(|)9|.'7-2°)o

+ e, (N3(1),1e21,24)

Cx
Cx WRITE THE NOMINAL VALUES TO NVALUE.
Cx
CALL FILEC( 'NVALUE', FET, 8, BUF, 513 )
CALL RETF( FET )
CALL FILEC( °NVALUE', FET, 8, BUF, 513)
CALL WRITEW( FET, N1, 2b )
CALL WRITEW( FET, N2, 24 )
CALL WRITEW( FET, N3, 24 )
CALL WRITEOR( FET )
Ca

C* FTNS STANDARD CODE - DELETE THE PRECEDING FILEC, RETF, WRITEW,
C* AND WRITEOR CALLS, AND USE THE FOLLOWING CODE:

Ca

c OPEN( 2,FILE='NVALUE® )

REWIND 2

WRITE (2,%) NI

WRITE (2,%) N2

WRITE (2,%) N3

REWIND 2

OO0

sToP
110  FORMAT( T15,A,3(T19,A,T20,4F14.5,/) )
END
*EQ0SO0 LINE=161 SEC=!
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PROGRAM OTABLE ( OUTPUT )

CRARRARARRRARRARALR
Cx OTABLE READS THE LISTS OF TEST STATISTICS AND CALCULATES THE

C* ACTUAL VALUES FOR ALPHA = 0.01, 0.05, AND 0.10 BY EMPIRICALLY

Cx FINDING THE PROPORTION OF STATISTICS EXCEEDING THE NOMINAL VALUES.

Cn :

Cx FOR THE EXPECTED SIZE OF 10,000 , THESE VALUES ARE CALCULATED

C%x BY AVERAGING THE 100TH AND 101ST, THE 500TH AND THE 501ST, AND

C*# THE 1000TH AND THE 1001ST ELEMENTS, RESPECTIVELY.

Ck

Cx CALLING SEQUENCE:

C

Cx OTABLE,OUTLFN.

Ck

C* WHERE OUTLFN IS THE FILE TO WHICH THE TABLED OUTPUT IS TO BE WRITTEN.

C

DEFAULT: OUTPUT

CRRRARARRAARREARRARE

Cx REFER TO THE COMMENT SECTION OF PROGRAM RM FOR A DETAILED EXPLANATION
Cx OF THE INTERACTION OF THMESE PROGRAMS; REFER TO THE COMMENT SECTION

C* OF PROGRAM NTABLE FOR INFORMATION ON MAKING THIS PROGRAM TRANSPORT-
C* ABLE (THE PROCEDURE IS ALMOST EXACTLY THE SAME AS FOR NTABLE) .

CARARRRARRAARARARAR

IMPLICIT INTEGER (A-2)

PARAMETER (COUNT=10000)

REAL ARRAY (COUNT)

DIMENSION FET(8), BUF (2049)

CHARACTER UNITLFN®7, TITLE*80, ANSWER

REAL N1(24), N2(2k), N3(24), O1(2k), 02(24), 03 (24)
LOGICAL SHOWS

CALL NOMSG

CALL FILEC( 'ZZZZIN', FET, 8, BUF, 65 )
CALL CONNECF ( FET, 0 )

CALL WRITEH( FET, ' OTABLE - PLEASE ENTER A TITLE -', &)

CALL READH( FET, TITLE, 8, EOP )

L=LNB (TITLE)

00 5 IsL,1,-1
P=(80-L) /2+!
TITLE(P:P)=TITLE (i:1)
CONTINUE

TITLE (: (80-L) /2)=*

CALL WRITEH( FET, ' OTABLE - PRINT B TEST?', 3)
CALL READH( FET, ANSWER, 1, EOP )
SHOWB=ANSWER (:1) .EQ. 'Y'

CALL FILEC( 'NVALUE', FET, 8, BUF, 2049 )

CALL REWINDF( FET )

CALL READW( FET, N1, 24, EOP )

CALL READW( FET, N2, 24, EOP )

CALL READW( FET, N3, 24, EOP )

IF (EOP .LT. 0) THEN
CALL REMARK ('UNEXPECTED *EOP ON NVALUE FILE.' )
CALL ABORT
ENDIF

UNITLFN='TAPE'

OPEN(1,FILE='RAWDATA')
REWIND 1

D0 10 I=1,24
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CALL INT2CHR( 1, UNITLFN(5:) )

CALL FILEC( UNITLFN, FET, 8, BUF, 513 )
CALL REWINDF( FET )

CALL READW( FET, ARRAY, COUNT, EOP )
CALL WNBF( FET )
IF (EOP .EQ. O) THEN

WRITE (1,%) UNITLFN, ARRAY (1)
| 1= 2=| 3=0

[ ,
C* | MOD b = O INDICATES THAT THE FILE CONTAINS VALUES FROM THE
C* W TEST, SO THE TEST IS REVERSED: OTABLE MUST CHECK FOR VALUES
C* THAT ARE LESS THAN THE NOMINAL VALUE, NOT GREATER THAN.
Ce
IF (MOD(1,4) .EQ. O) THEN
00 20 J=1,COUNT
IF ( ARRAY (J) .LT. N3(1) ) THEN
I3 3+1

IF ( ARRAY (J) .LT. N2(1) ) THEN
12241

IF ( ARRAY (J) .LT. N1(1) ) THEN
(ALJREJ]
ENDIF
ENDIF
ENDIF
20 CONTINUE

Ch
Cx ELSE THE FILE CONTAINS VALUES FROM A R, T, OR V TEST.
C#
ELSE
DO 30 J=1,COUNT
IF ( ARRAY (J) .GT. N3(1) ) THEN
|3=i 3+1

IF ( ARRAY (J) .GT. N2(1) ) THEN
12=1 241

IF ( ARRAY(J) .GT. N1(1) ) THEN
(RLTREY
ENDIF
ENDIF
ENDIF
30 CONTINUE
ENDIF

01 (1) =11/FLOAT (COUNT)
02(1)=12/FLOAT (COUNT)
03 (1) =13/FLOAT (COUNT)

ELSE
CALL REMARK ( 'UNEXPECTED *EOP ON READ OF '//UNITLFN )

01(1)=02(1)=03(1)=0.0
ENDIF
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10

CONT INUE

WRITE(1,%) '01=',01
WRITE (1,%) '02=',02
WRITE(1,%) '0O3=',03

WRITE(%,' (A)') 'V

WRITE (%, (1X,A)') TITLE

WRITE (%,%) *
WRITE (%,' (T6,A,T15,A,2X,A,T31,4(A,13X) ")

+

‘ALPHA', 'P', 'TEST', 'R', 'T', 'V', 'W

WRITE (%,%) ' '

IF (SHOWB) THEN

WRITE (%, 100)
+ '0.01', '5', 'B8', (01(1),I=1,4), 'C', (01(1),1=5,8),
+ ‘LY, (01(1),1=9,12)
WRITE (%,110)
+ ‘A, 'B', (01(1),1=13,16), ‘C', (01(i),I=17,20),
+ 'L, (01(1),1m21,24)
WRITE (%, 100)
+ '0.05', '5', 'B', (02(1),I=1,4), *C', (02(1),1=5,8),
+ LY, (02(1),1= 9,12)
WRITE (»,110)
+ ""t ‘s, (02(”.'-‘3.'6). 'c’, (02(”.'-'7.20).
+ LY, (02(1),1m21,24)
WRITE (*, 100)
+ ‘0.10', '5', 'B', (03(1),I=1,k), 'C', (03(1),1=5,8),
+ ‘L', (03(1),1=9,12)
WRITE (*,110)
+ ‘', '8, (03(1),I1=13,16), 'C', (03(1),!=17,20),
+ 'L, (03(1),1=21,24)
ELSE
WRITE (», 100)
+ ‘0.01', 's5', 'c', (01(1),1=5,8),
+ w', (Ol“)o'-golz)
WRITE (%,110)
+ ‘', 'C', (01(1),1=17,20),
+ ', (01(1),1m21,24)
WRITE (*, 100)
+ '0.05', '5', 'C', (02(1),1=5,8),
+ "', (02(1),1= 9,12)
WRITE (»,110)
+ 'K, 'C', (02(1),1=17,20),
+ LY, (02(1),1%21,24)
WRITE (%, 100)
+ '‘o.10', '5', 'C', (03(')-"5-8)|
+ ', (03(1),1=9,12)
WRITE (%, 110)
+ .h'. 'C'. (03(')-"‘7.20).
+ "', (03(1),1=21,24)
ENDIF
STOP

100  FORMAT( T6,A,T15,A,3(T19,A,T20,4F14.5,/) )
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110 FORMAT( T15,A,3(T19,A,T20,4F14.5,/) ) -
END
*EQSO0 LINE=187 SEC=!
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APPENDIX B

MONTE CARLO CRITICAL VALUES

The values in the following tables were determined
under conditions of homogeneity and true null hypotheses.
The tables were generated by the computer program written
for this study. Values in the first table were used in
determining actual significance levels and powers for
10,000 replications with k = 3 equal groups of size n = 20
and p measures. Values in the remaining tables were used
in determining actual significance levels for 2,000
replications of the corresponding five combinations of k
equal groups of size n. The hypotheses tested at three
nominal alpha levels were:

B = between-group differences
C = within-group trends
L = within-group trends higher than linear

The test statistics used were:

R = Roy's largest root

T = Hotelling-Lawley trace
V = Pillai-Bartlett trace
W = Wilks' likelihood ratio
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Table B-1

Monte Carlo Critical Values for 10,000 Replications

with k = 3 and n = 20

ALPHA

0.01

0.05

P

TEST

—row oW row — O W ~roOom

—row

.29748
.21515
.18695

. 26094
. 18757
- 15433

-23765
.16293
.13508

. 20652
13515
.10385

.20872
.13428
. 10842

.18140
.10952
.08007

.49304
.26976
.22451

.40354
.22685
. 18074

-37667
. 18695

- 15335

.30743
.15213
11464

32239
.15148

. 11927
.26363

.12156
.08620

137

-35917
.20988
.18255

31401
.18358
.15280

.29602
.15624
.13180

.25208
13127
.10222

.26275
.13076
.10559

.22107
10774
.07930

-65905
.78932
.81699

.70192
.81548
.84691

.71652
.8L298
.86760

.75682
.86791
.89770

74786
.86893
.89380

.78567
.89212
.92066



Table B-2

Monte Carlo Critical Values for 2,000 Replications

with k = 3 and n = 10

ALPHA

0.01

0.05

P

TEST

roOow —roOow row oW —row

roOow

-53545
42160
.36360

L8346
.36661
. 30948

-bh937
.32701
.27214

39334
.27732
.21232

-39952
.27756
.22555

-355317
.22k39

.16391

1.25236
.66821
-53917

1.01626
.56467
.LL76k

.92470
L5314
.35114

214
.37156
.26543

.76459
.35781
.27932

.62687

-27599
.19107

138

.66298
.38710
-33503

-59320
.34922
.30053

.530Lb

29353
.25202

69N
.25615
.20792

L8227
L2481k
.21205

.42039
.20772
.15748

.41601
.61309
65774

L7011
64663
.69648

.50591
-69039
-74533

.56274
.73542
79097

.54870
74014
. 78485

.60098
.78702
.8L065



Table B-3

Monte Carlo Critical Values for 2,000 Replications

with k = 2 and n = 20

ALPHA

0.01

0.05

P

TEST

roow

row row

row

.34340
.30204
.26384

.30278
.25855
.21301

.27026
-23348
. 19251

.23248

.19183
. 14905

.23284

- 18995
15478

-19325
. 15692
L1112

-50937
41337
.35165

.b2565
.34089
-27535

34624
.29027
.23149

.288Lk4
-23453
. 17455

. 28805
.23051
.17803

. 23445

. 18489
. 12495

139

.32607
.28295
-25351

.30001
.25086
21321

.2k630
.21786
.18389

.21809
. 18849
14793

.21639
.18281
. 14927

. 18664
. 15403
.11054

66774
71466
74351

.70105
LJk716
.78518

.74701
.77803
81425

.77825
.81033
.85173

.77896
.81496
.84981

.81110
.8L457
.88924



Table B-4

Monte Carlo Critical Values for 2,000 Replications

with k = 3 and n = 20

ALPHA

0.01

0.05

P

TEST

~roow O w romw O @ O @

~roOom

.29842
21377
.19239

.25618
.18758
15721

.23578
16182

. 13092

.20725
. 13667
. 10207

.20961
L3191
. 10571

. 18420
.10691
07937

.48918
27422
.23179

ko140
.23Lk00
19199

.37212
. 18500
. 14981

.30725
.15228
11313

.32782
14621
.11603

.26972

.11629
.08576

140

.35070
L2171
.18764

.31066
.18623
.16227

.29158
L1541
.13025

-25319
.13055
10141

. 26555
.12685
.10365

.22L469
10412
.07868

.66234
.78701
.81258

.70302
.81193
.83836

.72123
.8L475
.87023

.75580
.86852
.89841

.744L99
.87265
.89588

.78222
.89607
«92109



Table B-5

Monte Carlo Critical Values for 2,000 Replications

with k = 6 and n = 20

ALPHA

0.01

0.05

P

TEST

—roOow row — —roOom ~—oOow

romw

.21560
. 10540
.09101

.20003
.09068
.07343

-17965
.08016
.06604

.16148
.06712
.05084

. 16269
.06783
.05502

. 14390
.05418
.03948

k3440
11724
.09914

.36618
.09890
.07904

.36608
.08734
.07040

. 30003
.07221
.05370

.32807
.07211
05795

26571

.05770
.0L063

141

.36468
.10383
.08992

.30561
.09017
L0734k

.31655
.08017
.06584

.26L45
.06732
.05087

.28637
.06702
.05486

-23559
05457
-03905

.67156
-89558
.90983

.71746
.91001
.92666

.71138
-91975
.93422

- 715457
.93250
-94905

.73667
.93288
.94519

77941
-9h543
.96096



Table B-6

Monte Carlo Critical Values for 2,000 Replications

with k = 3 and n = 50

ALPHA

0.01

0.05

[

TEST

—roow

row

roOow

.11607
.09285
.07806

.10709
.08215
.07061

.09L463
.06224
© .05102

.08505
.05213
.0k089

.08161
05141
.0L0o84

.07087
.oh2h
.03125

.16125
.10090
.08467

.14106
.08669
.07582

.12903
.06574
.05413

.11040

-05554
.04300

.11256

-05339
.0L238

.09318

.0LL28
.03213

142

\

14473
.09130
.07806

. 12804

07970
.07030

.11860
.06145
.05134

. 10205
.05242
.0L128

.10367
.05066
.0L065

.08718
.0L235
.03112

.85858
.90861
.92194

.87L00
.92028
.92971

.88346

-93839
.94861

.89938
.94746
95875

.89740
.94929
-95936

.91392
-95761
.96888



APPENDIX C

SIGNIFICANCE LEVELS FOR BETWEEN-GROUP TESTS

The following tables are actual significance levels
expressed as percentage exceedance rates of Monte Carlo
critical values for multivariate tests of between-group
differences, B, calculated under heterogeneity levels, d.
Values are based on 2,000 replications of five combinations
of k equal groups of size n with p = 4 or 5 measures. 1In
the first table k = 3 and sample size varies while in the
second table n = 20 and the number of groups varies. The
test statistics used were:

Roy's largest root
Hotelling-Lawley trace

Pillai-Bartlett trace
Wilks' likelihood ratio

E<nAx
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APPENDIX D

SIGNIFICANCE LEVELS FOR WITHIN-GROUP TESTS
OF NON-LINEARITY

The following tables are actual significance levels
expressed as percentage exceedance rates of Monte Carlo
critical values for multivariate within-group tests of the
null hypothesis of no trends higher than linear, L,
calculated under heterogeneity levels, 4. Values are based
on 2,000 replications of five combinations of k equal
groups of size n with p = 4 or 5 measures. In the first
table k = 3 and sample size varies while in the second
table n = 20 and the number of groups varies. The test
statistics used were:

R = Roy's largest root
T = Hotelling-Lawley trace

V = Pillai-Bartlett trace
W = Wilks' likelihood ratio
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APPENDIX E

POWER VALUES FOR WITHIN-GROUP TESTS

The following tables include nominal powers under
homogeneity (where 4 = 1) and actual powers under three
heterogeneous conditions (where d = 2, 4, or 9). Values
are expressed as percentage exceedance rates of Monte Carlo
critical values for tests of two multivariate within-group
hypotheses: (1) of no trends over the occasions, C, and
(2) of no trends higher than linear, L. These values are
based on 2,000 replications of five combinations of k equal
groups of size nwith p=4 or 5 measures. The mean
vectors used to transform the RM data to reflect a
polynomial trend were (0 .4 .8 .5 .l) for p =5 and
(0 .4 .8 .5) for p = 4. The test statistics used were:
= Roy's largest root
Hotelling-Lawley trace

Pillai-Bartlett trace
= Wilks' likelihood ratio

E<HAX
"

The averages in Tables 5-7 and 5-8 were calculated

from the corresponding values in these tables.

149



6¥T °d uo 1vadde syaeuna Li1ojeuerdxdy

00°¥6 OT°¥6 00°v6 O¥V°€6

59°66
00°00T
00°00T

ST° 6S
56°78
00°v6
ST°86

SZ° 6t
68°7S
09°89
ov°8L

St° 96
56°66
00°00T
00° 00T

S€°S9
00° L8
§S°96
0S°66

00°tV
ST°8S
ov° 1L
00°28

M

59°66
00°00T
00°00T

S0° 6S
0z°28
00°¥6
S1°86

S8°LE
ov°2s
S8°L9
06°8L

SE°96
56°66
00°00T
00°00T

S1°S9
SL°98
0L°96
S6°66
G9°8¢t
§6°SS
0S°0L
S6°08
A

ot*

59°66
00°00T
00°00T

0€° 65
GE°T8
S6°€6
01°86

Sb°6¢
0L°TS
Sv°L9
ST 8L

SE° 96
56°66
00°00T
00°00T

02°S9
08°98
09° 96
05°66
00°S¥
00°09
S6°TL
0s°28

&

G9°88 09°88 09°88 0L °88

59°66 ST°66
00°00T 00°00T
00°00T 00°00T
SE°8S 06°¥¥
55°18 S0°TL
05°£6 SE°88
ST°86 58°56
SC°6¢ $9°9¢
09°1S ST°6E
01°59 Sy°tS
0S°9L GG6°99
0€° 96 50°t6
06°66 SL°66
00°00T 00° 00T
00°00T 00°00T
Sv°v9 §6°TS
56°58 S0°8L
00°96 . 09°Z6
0S°66 GE°86
SE°Sh Sp°6¢C
56°8S 144
08°0L 09°8S
00°18 0t°0L
. ¢ M

SZ°66
00°00T
00°00T

S8° vy
0C°TL
sv 88
0T1°96

08°S¢
0S°8¢
SE° TS
06°S9

00°£6
SL°66
00°00T
00° 00T

11 AKA]
SL°LL
06°C6
0v°86
00°LZ
ot-zy
ST°9S
00°0L
A

S0°

ST°66
00°00T
00°001

oc°sv
0T°TL
01°88
06°S6

ST°LT
ST 6€
SL°TS
ST°¥9

0T1°t6
SL°66
00°00T
00°00T

68°TS
ST°8L
0S°Z6
0€°86
ST°LE
SS° 9
50°09
SS°TL

&€

0€°66
00°00T
00°00T

ov°t¥
SL°89
56°98
ST°S6

ST° LT
§9°8¢t
00°0S
00°€9

0T° €6
0L°66
00°00T
00°00T

Sv°TS
SS°9L
SC° 16
00°86

00°¥€
00°S¥
56°LS
5§9°69

. |

59°L9
08°56
§5°66
00°00T

ST°€¢
oy sb
06°89
S0°S8

50°2t
SL°61
§9°8¢
GZ°6E

SC°9L
00°86
56°66
00°00T

Sv°8¢C
0Z°SS
06°LL
SE°16

oy ST
T4 X4
S0°9¢
SL°8Y

M

0L°L9
58°56
5S°66
00°001

ST° €T
ST 9
o¥° 69
0T°S8

SE°0T
0Z°L1
§5°9C
SL°9¢

0T°9L
00°86
S6°66
00°00T

oL° LT
06°vS
S§9°LL
(113 ()
08°01
Sy°LT
0T°6C
SL°6€
A

10°

0L L9
08°S6
G5° 66
00°00T

0C°tC
00°SY
06°89
06°v8

Syt
ST°61
0Z°8¢
0S°8¢€

0C°9L
56°L6
56°66
00°00T

0€° 8¢
ST°SS
SG°LL
S0°16

00°LT
56° €T
SE°st
oL°LY

L

§6°S9
00°56
Sv° 66
00°00T

ot ¥z
09° 9%
GL° 69
GE°S8

SE €l
S0°6T
SE° LT
ST 8t

S0°9L
G8°L6
56° 66
00° 00T

06°0¢t
05°LS
09°8L
09°16

0L°9T
SL°tt
06° 1t
S6°th

-

T NN ~ANTAA ~SONTO

HNYO NI SN

0s

(114

0T

0s

(114

0t

«£ = ) UITM spud1] Jo S383], dnoib-uyylTM 103
S9ATIRUISJTY 3N1J, I9pU[] 8338 I0UPPIDXY omuu=00umm

1-a

atqerL

150



6vT °d uo 1eadde syieuL1 K1ojeuerdxdy

GG°L6 GS°L6 0S°L6 S¥°L6 OL°¥6 OL°¥6 OL°¥6 SI°S6 G6°98 G9°98 00°L8 SL°98 6

GL°66 SL°66 GL°66 SL°66 0£°66 0£°66 O0E°66 SZ°66 GI°86 G0°86 SI°86 O0T1°86 v

00°00T 00°00T 00°00T 00°00T 06°66 06°66 06°66 06°66 SV°66 SV°66 S¥°66 OF°66 z

00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T GB8°66 G8°66 06°66 06°66 I 9

GZ°65 G0°6S O0F£°65 GE'8S 06°¥y G8°PY OE°Sh OV €V GI°€Z SI'€C 0Z°€Z 01°¥Z 6

GS°Z8 0Z°78 GE°Z8 GS°18 G0°TL 0Z°TL OT°TL GL°89 ov°Sh SZ°9% 00°Sy 09°9F v

00°%¥6 00°¥6 G6°€E6 0G°€E6 GE'88 Gb°88 0T°88 G6°98 06°89 OV°69 06°89 GL°69 4

GI'86 GT°86 SI°86 SI°'86  G8°G6 O01°96 06°S6 SI°G6 G0°S8 O0T°S8 06°¥8 GE°S8 I ¢

OL°VE 0S°VE S6°VE G6°SE 00°¥Z 08°€Z S¥P°'¥Z 0€°¥C G8°0T O0L°0T SO°IT GZ°TT 6

GL°VS 00°SS 06°¥S GB8°bS G9°T¥ OF°IV S6°TV GE°ZV 06°ZZ 0S°ZZ 69°ZT SI°Te v

GE°GL Ob°SL GZ°SL SL°¥L 09°€9 GL°€9 GL°€9 O0E°€9 0G°Tv GV°OF GB8°0F 0G°6€ 4

GI°06 SE°06 S0°06 09°68 §Z°Z8 00°Z8 0€°Z8 SP'18  08°€9 G8°T9 0S°€9 0¥°T9 I Z v

08°86 08°86 68°86 00°66 GZ°L6 STI°L6 SZ°L6 OL°L6 00°€6 00°€6 S8°Z6 0F£°€6 6

G6°66 56°66 56°66 06°66 G8°66 G8°66 08°66 08°66 GZ°66 SZ°66 SZ°66 0S°66 v

00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T 08°66 08°66 08°66 S8°66 z

00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T T 9

GE°G9 GI°S9 0Z°S9 S¥'¥9 GS°ZS 6b°ZS 68°ZS S¥°ZS Gb°8Z O0L°LZ O0£°8Z 06°0F 6

00°L8 GL°98 08°98 S6°G8 G0°8L GL°LL SZT°8L GS°9L 0Z°SS 06°¥S SZ°SS 06°LS v

G5°96 0L°96 09°96 00°96 09°26 06°26 06°Z6 GZ°'16 06°LL S9°LL GS°LL 09°8L r4

05°66 06°66 05°66 0S°66 GE°86 O0OV°86 0€°86 00°86 GE'T6 O0£°T6 SO°16 09°16 1 €

Gb°6E 0S°8E G8°6E OF°TI¥ G6°LZ OT°LZ ST°8C GL°8C 08°€T S9°ZT OL°€T SO°¥T 6

00°Z9 S9°T9 OL°T9 0T°Z9 G9°8y G9°LV 0Z°8Fy GE°LV 06°9Z 0€°SZ SZ°9C S6°SC v

G8°08 69°08 0L°08 GE°I8 0Z°TL 06°0L 08°0L 56°89 00°6V OE°9% OL°LY GZ°9¥ 4

02°€6 OT°€6 OT°€6 S9°Z6 G9°[8 O0€°L8 S¥°L8 GE°98 G9°ZL GS°69 00°TL 0¥°69 1 ¢ S
M A b A o M A h A | M A h A | p ¥ d

or* S0° 10° '

«0Z = U Y3TM spuai], Jo 8383, dnoab-uyy3yM 103
S9ATIRUII]TV SNIL I3pu(] S33¥Y 30Uepasoxd abejuadiad

¢-3 91qeL

151



6vT °d uo 1eadde

s)Ieaun1 K1ojeuerdxi,

SL° 69

0L°69 0L°69 68°69 08°LS SL°LS 08°LS 00°8S SE°LZ GE°LZ 06°9C 08°8Z 6
0v°16 SV°'16 OV°16 S8°06 G9°€8 09°€8 0L°€8 SO°¥8 00°LS G6°9S GS°9S SE°95 v
G0°86 S0°86 S0°86 S6°L6 09°S6 09°S6 09°S6 0S°S6 GL°08 G9°08 09°08 SZ°08 z
0L°66 0L°66 0L°66 S9°66 G6°86 G6°86 G6°86 00°66 G8°Z6 06°Z6 G8°C6 0S°Z6 1 oS
Ob°9€ S¥°9€ S¥°9¢ 08°9€ 0S°SZ 0€°ST SS°ST 0L°ST 68°8 99°8 GSI°6 0T1°0T 6
G0°GS ST°SS 00°SS 08°PS 06°0v 06°0Y SL°OF 09°0¥ 0€°LT SO°LT SS°LT ST°61 v
Ov°TL 0S°TL SP°TIL 0T TL 69°8S 09°8S GL°8S 0T°8S 05°8Z S0°8Z G8°8Z 00°0€ r4
G8°Z8 ST°'€8 G8°Z8 09°Z8 GL°TL SL°TL SL°TL 09°TL 08Ty 0S°TF 06°T¥ OL ¥V I oz
GG°LZ SB°LT Sh° LT ST LT ST°LT OT°LT SZ°LI 08°LI G9°S 0€°S SL°S 09°9 6
GT°9€ GST°9€ 00°9€ OL°SE ST°#C STI°¥Z 00°¥Z 08°€T ov°8 SI°8 0v°8 68°8 v
0Z°9% 0€°9% S8°Sk OT°S¥ Ob°TE 0ZT°TE O0€°TE SO°TE 0v°ZT 0Z°ZT 08°1T 00°ZT (4
08°¥S SZ°GS 06°¥S GG°€S GL°6E GV°6E 0S°6E GZT°6E 06°9T 00°LT S0°9T GE€°9T T o1
06°96 06°96 S6°96 SL°96 00°¥6 00°¥6 00°%6 0Z°¥6 SL°08 0.°08 0L°08 S¥°08 6
G6°66 S6°66 S6°66 S6°66 06°66 06°66 06°66 S8°66 0v°86 S¥°86 O0¥°86 S¥°86 v
00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T S6°66 S6°66 S6°66 S6°66 (4
00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T T 0S
GS°L9 09°L9 G6°L9 O0T°L9 G9°¥S 0T°¥S OV°¥S OF°¥S GZ°0E O0¥°6Z OI°0E 00°6Z 6
02°68 ST°68 ST°68 0T1°88 0,°08 0S°08 05°08 09°08 G0°8S G9°LS 06°LS SZ°9S v
G6°L6 00°86 00°86 O0L°L6 0L°¥6 09°¥6 09°¥6 0T°¥6 0T°T8 00°18 06°08 OL°6L 4
09°66 09°66 09°66 S9°66 08°86 08°86 08°86 S6°86 GI°€6 06°C6 S6°26 01°Z6 1 o2
06°¥y OL°EV SZT°Sy GS° ¥V Ov°¥E 0Z°TE 0T°¥E ST°CE G6°9T G¥°ST G6°9T 06°ST 6
0Z°T9 SE°T9 0S°19 S¥°09 G9°TS S¥°0S 00°1S 09°8¥ 0£°LZ S9°9Z S¥°9Z 09°¥T v
G6°SL G6°SL SY°SL 0T°¥L S0°99 0L°S9 SL°¥9 O0€°T9 0€°Ty O0E°Ty TI°TF G6°LE (4
05°98 0€°98 06°G8 GL°¥8 0£°8L GO0°8L SL°LL OfE°bL 08°6S G9°VS G6°€S 09°0S T o1

M A L b M A b4 a M A hA y p u

ot* S0° 10°
«£ = Y UYITA L97IeaurT-UoN JO 83835 dnoib—uyITM 103

S9ATIPUI3][Y aN1], I3pun S33vy aoUepaaoxd abejusoiag

€-d

arqeL

152



6¢T °d uo i1eadde syreud1 Krojeuetdxdy

02°08 S2°08 0Z°08 GSL°6L 68°89 G0°69 G8°89 S8°89 oT°8y S0°8Y 0Z°8V G6°LY 6

09°Z6 09°Z6 S9°Z6 G9°C6 GE°L8 OFP°L8 O0f°L8 OV°L8 0€°TL ST°TL GSE'TL ST°TL v

GE°L6 GE°L6 SE°L6 OT°L6 ST°¥6 SZ°¥6 SI'¥6 SZ°¥6 GZ°S8 O01°S8 0€°S8 O0v°S8 4

0L°86 0L°86 0L°86 09°86 0T°L6 OT°L6 STI°L6 GO0°L6 G6°06 06°06 S0°I6 00°16 I 9

OV°9€ SP°9€ G¥°9€ 08°9¢ 06°SZ 0€°SZ GS°SZ 0L°ST G8°8 G69°8 SGI'6 OT°0T 6

G0°GS STI°SS 00°SS 08°PS 06°0F 06°0y SL°OF 09°0% 0€°LT GO°LT GS°LT ST°6T v

Ov°TL SS°TL SV'IL OT°TL G9°8S 09°8S SL°8S 0Z°8S 06°8C S0°8Z 68°8Z 00°0E z

G8°Z8 GI°€8 G8°Z8 09°Z8 GL°TL SL°ZL SL°IL 09°ZL 08°Tv 0S°Tv 06°T¢ OL°b¥ I ¢

09°€C 09°€Z S9°€Z SV ¥e 0Z°€T SZ°E€T OF°€T GB8°€T GE'V GE'V SZT°F G9°V 6

0G°9€ GL°9€ 09°9€ G9°9¢ Sy ZZ S¥°ZZ 0L°ZZ OL°2T 09°8 06°8 GZ°8 SI°6 v

G6°€S G6°€S 00°¥S OV €S 00°9€ 00°9€ GO0°9€ OT°9€ GE'9T 02°9T ST°9T GL°9T z

09°89 G9°89 GS°89 0L°89 0L°€S SI'VS GL°ES O0Z°€S G¥°8Z S8°8Z 01°8Z G6°8C 1 Z ¥

00°66 00°66 00°66 OT°66 G8°L6 08°L6 S8°L6 GSL°L6 G0°€6 0Z°€6 GO0°€6 GL°T6 6

G6°66 S6°66 G6°66 S6°66 G6°66 S6°66 S6°66 S6°66 0¥°66 05°66 066 SV 66 v

00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T G6°66 G6°66 G6°66 S6°66 14

00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T  00°00T 00°00T 00°00T 00°00T T 9

GS°L9 09°L9 S6°L9 OT°L9 G9°¥S 0Z°¥S OV°¥S OV°¥S GZ°0E 0vV°6Z OT°0E 00°6Z 6

0Z°68 SI°68 SI°68 01°88 0L°08 0S°08 0S5°08 09°08 G0°8S G9°LS 06°LS 62°9S v

66°L6 00°86 00°86 O0L°L6 0L°¥6 09°%6 09°¥6 OTI°V6 O0T°'T8 00°T8 06°08 OL°6L 4

09°66 09°66 09°66 S9°66 08°86 08°86 08°86 56°86 GI°€6 06°Z6 S6°Z6 O0T°Z6 I ¢

Gh°TY OE°ZV SE°ZY 00°T¥ 68°8Z 00°6Z S8°8Z 06°8Z SV €T GS°ET SZ°E€T O00°€T 6

09°G69 G6°S9 GE°S9 G9°€9 0L°2S OF°€S O0T°ZS 0£°0S 02°LZ SL°lZ SL°9C SE°9Z v

09°¥8 G¥°¥8 GS°¥8 GS°€8 G0°SL OV°SL OL°¥L SS°EL GZ°TS G9°TS O0€°0S 06°8¥ 4

GZ°G6 G¥°S6 SI°S6 OFP°¥6 GE°06 09°06 S0°06 O0T1°68 0Z°SL O¥°SL SO°¥L ST°EL 1 ¢ S
M A h 4 o M A h A a3 M A h A | p % d

ot* G0° 10°

x0C = U U3TM A3TI0UTT-UON JO 83891 dnoib-UTUITM 103
S9ATIRUII]TY AN1], 13puU SIILY 30UepPadOXy abejuadiag

¥-d 31qelL

153



BIBLIOGRAPHY



BIBLIOGRAPHY

Anderson, T.W. (1958) An Introduction fo Multivariate
Statistical Analysis. New York: John Wiley and Sons.

Bock, R.D. (1963) Multivariate analysis of repeated
measures. In C.W. Harris (ed.) Problems in Measuring
Change (pp. 85-103). Madison, Wisconsin: University
of Wisconsin Press.

Bock, R.D. (1975) Multivariate Statistical Methods in

Behavioral Sciences. New York: McGraw-Hill Book
Company .

Box, G.E.P. (1954) Some theorems on quadratic forms
applied in the study of analysis of variance
problems, II. Effects of inequality of variance and
of correlation between errors in the two-way

classification. Annals of Mathematical Statistics,
2.5' 484-498.

Box, G.E.P. and Muller, M.E. (1958) A note on the

generation of random normal deviates. Annals of
Mathematical Statistics, 29, 610-611.

Ceurvorst, R.W. (1980) Robustness of MANOVA under

heterogeneity of variance and correlation.
Unpublished doctoral dissertation. Arizona State
University.

Collier, R.O., Baker, F.B., Mandeville, G.K., and Hayes,
T.F. (1967) Estimates of test size for several test
procedures based on conventional variance ratio in the
repeated measures design. Psychometrika, 32, 339-353.

Davidson, M.L. (1972) Univariate versus multivariate tests
in repeated measures experiments. Psychologocal
Bulletin, 717, 446-452.

Finn, J.D. (1974) A General Model for Multivariate
Analysis. New York: Holt, Rinehart and Winston, Inc.

154



Glass, G.V., Peckham, P.D., and Sanders, J.R. (1972)

Consequences of failure to meet assumptions underlying
the fixed-effects analysis of variance and covariance.

Review of Educational Research, 42, 237-288.

Greenhouse, S.W., and Geisser, S. (1959) On methods in the
analysis of profile data. Psychometrika, 24, 95-112.

Hakstian, A.R 57 Roed. J.C. and Lind, J.C. (1979) Two-
sample T procedure and the assumption of homogeneous

covariance matrices. Psychological Bulletin, 86,
1255-1263.

Hammersley, J.M. and Handscomb, D.C. (1964) Monte Carlo
Methods. New York: Barnes and Noble, Inc.

Harris, R.J. (1975) A Primer of Multivariate Statistics.
New York: Academic Press.

Hays, W.L. (1973) gStatistics for the Social Sciences.
New York: Holt, Rinehart, and Winston, 1973.

Holloway, L.N. and Dunn, 0.J. (1967) The robustness of

Hotelling's T2. Journal of the American Statistical
Association, 62, 124-136.

Hopkins, J.W. and Clay, P.P.F. (1963) Some empirical
distributions of bivariate T2 and homoscedasticity
criterion M under unequal variance and leptokurtosis.

Journal of the Americal Statistical Association, 38,
1048-1053.

Huynh, H. and Feldt, L.S. (1970) Conditions under which
mean square ratios in repeated measuresments designs
have exact F-distributions. Journal of the American
Statistical Association, 63, 1582-1589.

Ito, K. (1962) A comparison of the powers of two
multivariate analysis of variance tests. Biometrika,
49, 455-462.

Ito, K. (1969) On the effect of heteroscedasticity and

nonnormality upon some multivariate test procedures.

In P.R. Krishnaiah (ed.), Multivariate Analysis II
(pp.87-120) New York: Academic Press.

Ito, P.K. (1980) Robustness of ANOVA and MANOVA test
procedures. In P.R. Krishnaiah (ed.) Handbook of
Statistics, Vol. I (pp. 199-236) North Holland

Publishing Company.

155



Ito, K. and Schull, W.J. (1964) On the robustness of the
T°2 test in multivariate analysis of variance when
variance-covariance matrices are not equal.
Biometrika, 351, 71-82.

Korin, B.P. (1972) Some comments on the homoscedasticity
crlterign M and the multivariate analysis of variance
tests + W, and R. Biometrika, 59, 215-216.

Lehman, R.S. (1977) Computer Simulation and Modeling.
Hillsdale, New Jersey.

Mendoza, J.L., Toothaker, L.E. and Nicewander, W.A. (1974)
A Monte Carlo comparison of the univariate and
multivariate methods for the groups by trials repeated

measures design. Multivariate Behavioral Resgearch,
9, 165-177.

Morrison, D.F. (1972) The analysis of a single sample of
repeated measurements. Biometrics, 28, 55-71.

Morrison, D.F. (1976) Multivariate Statistical Methods.
New York: McGraw Hill Book Company, 1976.

Olson, C.L. (1973) A Monte Carlo investigation of the
robustness of multivariate analysis of variance.
Unpublished doctoral dissertation, University of
Toronto.

Olson, C,L. (1974) Comparative robustness of six tests in
multivariate analysis of variance. Journal of the
American Statistical Assiciation, 69, 894-908.

Pillai, K.C.S. and Sudjana. (1975) Exact robustness of
tests of two multivariate hypotheses based on four
criteria and their distribution problems under

violations. The Annals of Statistic, 3, 617-636.

Potthoff, R.F. and Roy, S.N. (1964) A generalized

multivariate analysis of variance model useful
especially for growth curve problems. Biometrika,
2l, 313-326.

Ramsey, P.H. (1980) Exact Type I error rates for
robustness of Student's t test with unequal variances.
Journal of Educational Statistics, 3, 337-349.

Scheifley, V. (1974) Analysis of repeated measures data: A

simulation study. Unpublished doctoral dissertation,
Michigan State University.

156



Scheifley, V. and Schmidt, W. (1978) Analysis of repeated
measures data: A simulation study. Multivariate
Behavioral Research, 13, 347-362.

Scheffé, H. (1959) <The Analysis of Variance. New York:
John Wiley and Sons.

Tatsuoka, M.M. (1971) Multivariate Analysis:

Iechnigues
for Educational and Psychological Research. New York:
John Wiley and Sons.

Timm, N.H. (1975) Multivariate Analxsia with Applications
in Education and Psychology Research. Monteray,
California: Brooks Cole Publishing Company.

Timm, N.H. (1980) Multivariate analysis of variance of

repeated measures. In P.R. Krishnaiah (ed.) Handbook
of Statistics, Vol I (pp. 41-87). New York: North
Holland Publishing Company.

157



