# ACCUMULATION OF OXYGEN DEBT AND CHANGES IN OTHER SELECTED VARIABLES DURING A STANDARDIZED RUN ON A MOTOR-DRIVEN TREADMILL

Thesis for the Degree of M. A.
RICHARD D. BELL
MICHIGAN STATE UNIVERSITY
1968

THESIS

LIBRAI: Y
Michigan State
University

# ACCUMULATION OF OXYGEN DEBT AND CHANGES IN OTHER SELECTED VARIABLES DURING A STANDARDIZED RUN ON A MOTOR DRIVEN TREADMILL

Ву

Richard D. Bell

AN ABSTRACT OF

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Health, Physical Education, and Recreation

| ^ <b>7</b> |      |      |      |
|------------|------|------|------|
| Approval   |      |      |      |
|            | <br> | <br> | <br> |

ACCUMULATION OF OXYGEN DEBT AND CHANGES IN OTHER SELECTED VARIABLES DURING A STANDARDIZED RUN ON A MOTOR-DRIVEN TREADMILL

## by Richard B. Bell

The purpose of this study was to determine the pattern of oxygen debt accumulation during a standardized sub-maximal run on a motor-driven treadmill. In addition to oxygen debt accumulation, the pattern of change of other selected variables was studied. These variables included heart rate, oxygen pulse, and oxygen uptake. The stand-ardized run was arbitrarily chosen to be of ten-minutes duration at a speed of ten miles per hour at zero per cent grade.

Six trained subjects were tested on a motor-driven treadmill over an eight-week period. The standardized tenminute run was divided into ten fifteen-second runs for the first two and one-half minutes, five thirty-second runs for the next two and one-half minutes, and five one-minute runs for the last five minutes. These twenty separate runs were administered in random order to each of the subjects.

A standard fifteen-minute post-exercise recovery period was used with all runs. This recovery period was divided, for purposes of gas collection and analysis, into eight fifteen-second intervals during the first two minutes of recovery, six thirty-second intervals during

the next three minutes, and one ten-minute interval during the remainder of the recovery period.

Data were collected also during three five-minute rest periods and three standard five-minute warm-up runs at six miles per hour and zero per cent grade.

During the rest periods and warm-up runs data were collected at one-minute intervals. Expired air was collected during both the runs and recovery periods and analyzed for oxygen and carbon dioxide content, volume, and temperature. Means and standard deviations were calculated for each interval in the run, recovery, warm-up, and rest periods,

The total mean oxygen debt for the ten-minute standardized run was 3.096 liters. This oxygen debt was accumulated, for the most part, during the initial stages of
the run and probably was due to a circulatory lag. Such
an oxygen debt is referred to as an alactacid debt. Mean
heart rate values reached a value of 186 beats per minute
during the tenth minute of exercise. For runs of less than
two minutes and thirty-seconds, the heart rate reached
near basal levels during the fifteen-minute recovery
period. The heart rate remained elevated after fifteen
minutes of recovery for runs of longer duration. Cxygen
uptake increased with exercise duration due to increased
metabolic demands. Oxygen pulse reached a mean value

| of  | 18.82  | mil | lili  | ters | per   | beat   | duri | lng | the | tenth | minut | e of   |
|-----|--------|-----|-------|------|-------|--------|------|-----|-----|-------|-------|--------|
| exe | ercise | , 1 | These | valu | ues 1 | pasica | ally | agr | eed | with  | other | values |
| rep | orted  | in  | the   | lite | ratui | се.    |      |     |     |       |       |        |

| Approval: |  |
|-----------|--|
|           |  |
| Date:     |  |

# ACCUMULATION OF OXYGEN DEBT AND CHANGES IN OTHER SELECTED VARIABLES DURING A STANDARDIZED RUN ON A MOTORDRIVEN TREADMILL

Ву

Richard D. Bell

### A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Health, Physical Education, and Recreation

#### ACKNOWLEDGMENTS

The author wishes to acknowledge Dr. W. W. Heusner and Dr. Wayne Van Huss for their original ideas and help. The author is especially grateful to Mr. David Anderson, Miss Ione Shadduck, and Mr. Jerry Nester for their constant help during data collection. Thanks are also due to Mr. Frank Hartman, Steve Harrington, Tony Simone and John Persons for their valuable assistance in data collection and calculation. Finally, the author wishes to thank the six subjects who faithfully kept to their testing schedule during data collection.

R. D. B.

### DEDICATION

This thesis is respectfully dedicated to my parents Mr. and Mrs. G. Bell. Their constant interest, motivation, and understanding has been gratefully appreciated. It is also dedicated to my wife Caryl for her help in making four years of graduate study an enjoyable experience.

# TABLE OF CONTENTS

|       |     |                   |                                     |                          |                   |           |           |          |     |    |     |      |     |     |    | Page |
|-------|-----|-------------------|-------------------------------------|--------------------------|-------------------|-----------|-----------|----------|-----|----|-----|------|-----|-----|----|------|
| ACKNO | WLI | EDGME             | NTS                                 | •                        | •                 |           | •         | •        | •   | •  | •   | •    | •   | •   | •  | ii   |
| LIST  | OF  | TABLE             | ES                                  | •                        | •                 | •         | •         | •        | •   | •  | •   | •    | •   | •   | •  | v    |
| LIST  | OF  | FIGUE             | RES                                 | •                        | •                 | •         | •         | •        | •   | •  | •   | •    | •   | •   | •  | viii |
| Chapt | er  |                   |                                     |                          |                   |           |           |          |     |    |     |      |     |     |    |      |
| I.    |     | INTRO             | DDUC                                | TI                       | ON                | •         | •         | •        | •   | •  | •   | •    | •   | •   | •  | 1    |
|       |     | Sco<br>Lin        | atem<br>ope<br>mita<br>fini         | of<br>ti                 | th<br>ons         | e S<br>of | tud<br>th | y<br>e S |     | У  |     |      |     |     |    |      |
| II.   |     | RELAT             | red                                 | LI'                      | rer               | ATU       | RE        | •        | •   | •  | •   | •    | •   | •   | •  | 5    |
| III.  |     | RESEA             | ARCH                                | M.                       | ЕТН               | ODS       | •         | •        | •   | •  | •   | •    | •   | •   | •  | 12   |
| IV.   |     | PRESE             | ENTA                                | TI.                      | ON                | AND       | DI        | SCU      | SSI | ON | OF  | DAT  | Α.  | •   | •  | 17   |
|       |     | 0x)<br>0x)<br>0x) | art<br>/gen<br>/gen<br>/gen<br>st a | . U <sub>1</sub><br>. De | pta<br>ebt<br>uls | е         | Up        |          |     |    |     |      |     |     |    |      |
| V.    |     | SUMMA             | ARY,                                | C                        | ONC               | LUS       | ION       | S,       | AND | RE | COM | IMEN | DAT | ION | S. | 44   |
|       |     | Cor               | nmar<br>nclu<br>comm                | si                       |                   |           | s         |          |     |    |     |      |     |     |    |      |
| BIBLI | OGF | RAPHY             | •                                   | •                        | •                 | •         | •         | •        | •   | •  | •   | •    | •   | •   | •  | 48   |
| APPEN | DIX |                   |                                     |                          |                   |           |           |          |     | •  |     |      |     |     |    | 52   |

# LIST OF TABLES

| Table |                                                          |   | Page |
|-------|----------------------------------------------------------|---|------|
| 1.    | Oxygen Debt Accumulation                                 | • | 53   |
| 2.    | Heart rate values for a five-minute rest                 | • | 54   |
| 3.    | Heart rate values for a five-minute warm up .            | • | 54   |
| 4.    | Heart rate values for a fifteen-minute run .             | • | 55   |
| 5.    | Heart rate values for a thirty-second run .              | • | 56   |
| 6.    | Heart rate values for a forty-five second run            | • | 57   |
| 7.    | Heart rate values for a one-minute run                   | • | 58   |
| 8.    | Heart rate values for a one-minute fifteen-second run    | • | 59   |
| 9.    | Heart rate values for a one-minute thirty-second run     | • | 60   |
| 10.   | Heart rate values for a one-minute forty-five second run | • | 61   |
| 11.   | Heart rate values for a two-minute run                   | • | 62   |
| 12.   | Heart rate values for a two-minute fifteen-second run    | • | 63   |
| 13.   | Heart rate values for a two-minute thirty-second run     | • | 64   |
| 14.   | Heart rate values for a three-minute run                 | • | 65   |
| 15.   | Heart rate values for a three-minute thirty-second run   | • | 66   |
| 16.   | Heart rate values for a four-minute run                  | • | 67   |
| 17.   | Heart rate values for a four-minute thirty-second run    | • | 68   |

| Table |                                                                                                               | Page             |
|-------|---------------------------------------------------------------------------------------------------------------|------------------|
| 18.   | Heart rate values for a five-minute run                                                                       | 69               |
| 19.   | Heart rate values for a six-minute run                                                                        | 70               |
| 20.   | Heart rate values for a seven-minute run                                                                      | 71               |
| 21.   | Heart rate values for an eight-minute run                                                                     | 72               |
| 22.   | Heart rate values for a nine-minute run                                                                       | 73               |
| 23.   | Heart rate values for a ten-minute run                                                                        | , 7 <sup>1</sup> |
| 24.   | Oxygen pulse values for a five-minute rest                                                                    | 75               |
| 25.   | Oxygen pulse values for a five-minute warm-up and fifteen-minute recovery period                              | . 76             |
| 26.   | Oxygen pulse values (mls/beat) for the ten-<br>minute composite run and the fifteen<br>minute recovery period | . 77             |
| 27.   | Oxygen uptake values (L/Min) for five-minute rest                                                             | . 78             |
| 28.   | Oxygen uptake (L/Min) values for a five-minute warm-up                                                        | 78               |
| 29.   | Oxygen uptake (L/Min) values for a fifteen-second run                                                         | 79               |
| 30.   | Oxygen uptake (L/Min) values for a thirty-second run                                                          | 79               |
| 31.   | Oxygen uptake values (L/Min) for a forty-five second run                                                      | 80               |
| 32.   | Oxygen uptake (L/Min) values for a one-minute run                                                             | 81               |
| 33.   | Oxygen uptake values (L/Min) for a one-minute fifteen second run                                              | 82               |
| 34.   | Oxygen uptake values (L/Min) for a one-minute thirty-second run                                               | 83               |
| 35.   | Oxygen uptake values (L/Min) for a one-minute forty-five second run                                           | 84               |

| Table |                                                       |                  | Page |
|-------|-------------------------------------------------------|------------------|------|
| 36.   | Oxygen uptake values (L/Min) minute run               | for a two-       | . 85 |
| 37.   | Oxygen uptake values (L/Min) fifteen-second run       | for a two-minute | . 86 |
| 38.   | Oxygen uptake values (L/Min) thirty-second run        | for a two-minute | . 87 |
| 39.   | Oxygen uptake values (L/Min) minute run               | for a three-     | . 88 |
| 40.   | Oxygen uptake values (L/Min) minute thirty-second run | for a three-     | . 89 |
| 41.   | Oxygen uptake values (L/Min) minute run               | for a four-      | . 90 |
| 42.   | Oxygen uptake values (L/Min) minute thirty-second run | for a four-      | . 91 |
| 43.   | Oxygen uptake values (L/Min) minute run               | for a five-      | . 92 |
| 44.   | Oxygen uptake values (L/Min) minute run               | for a six-       | . 93 |
| 45.   | Oxygen uptake values (L/Min) minute run               | for a seven-     | . 94 |
| 46.   | Oxygen uptake values (L/Min) minute run               | for an eight-    | • 95 |
| 47.   | Oxygen uptake values (L/Min) minute run               | for a nine-      | . 96 |
| 48.   | Oxygen uptake values (L/Min)                          | for a ten-       | . 97 |

# LIST OF FIGURES

| Figure |                                                                                                                                | Page           |
|--------|--------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1.     | Study by Bailey, Orban, and Marriman                                                                                           | 10             |
| 2.     | Mean heart rate for a five-minute rest, five minute warm-up, and fifteen-minute warm-up recovery period                        | 18             |
| 3.     | Mean heart rate for the actual ten-minute run, and the composite ten-minute run                                                | 19             |
| 4.     | Mean heart rate for the actual ten-minute run for all six subjects, the two worst subjects, and the two best subjects          | 20             |
| 5.     | Mean heart rate for the composite ten-minute run for all six subjects, the two worst subjects, and the two best subjects       | 21             |
| 6.     | Mean heart rate recovery values for the fifteen second run, the five-minute run, and the tenminute run                         | <b>-</b><br>22 |
| 7.     | Mean oxygen uptake for the five-minute rest, the five-minute warm-up, and the fifteen-minute warm-up recovery period           | 24             |
| 8.     | Mean oxygen uptake for the actual ten-minute run and the composite ten-minute run                                              | 25             |
| 9.     | Mean oxygen uptake for all six subjects, the two best subjects, and the two worst subjects for the actual ten-minute run       | 26             |
| 10.    | Mean oxygen uptake for all six subjects, the two best subjects, and the two worst subjects for the composite ten-minute run .  | 27             |
| 11.    | Mean recovery oxygen uptake for the fifteen-<br>second run, the five-minute run, and the<br>ten-minute run                     | 28             |
| 12.    | Mean rate of net oxygen debt accumulated for the ten-minute composite run for all six subjects, the two best subjects, and the | 23             |
|        | two worst subjects                                                                                                             | 31             |

| Figure |                                                                                                                                                   | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 13.    | Mean net oxygen debt accumulation during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects     | . 32 |
| 14.    | Mean rate of oxygen debt accumulation during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects | . 33 |
| 15.    | Mean rate of oxygen requirement during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects       | . 34 |
| 16.    | Mean oxygen pulse values for the five-minute rest, the five-minute warm-up, and the fifteen-minute warm-up recovery period .                      | . 37 |
| 17.    | Mean oxygen pulse for the actual ten-minute run and the ten-minute composite run                                                                  | . 38 |
| 18.    | Mean oxygen pulse during the actual ten-<br>minute run for all six subjects, the two<br>best subjects, and the two worst subjects                 | • 39 |
| 19.    | Mean oxygen pulse during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects                     | . 40 |
| 20.    | Mean recovery oxygen pulse for the fifteen-<br>second run, the five-minute run, and the<br>ten-minute run                                         | . 41 |

#### CHAPTER I

#### INTRODUCTION

The accumulation of oxygen debt occurs in submaximal exercise as well as in maximal exercise. The amount of oxygen debt accumulated is measured by analyzing a sample of expired air collected during a post-exercise recovery period and by calculating the amount of oxygen used in excess of basic requirements. In short bouts of strenuous exercise, the accumulation of oxygen debt makes it possible to convert stored chemical energy into usable mechanical energy. Anaerobic energy thus supplied is in addition to that supplied via the aerobic metabolic pathways. If work intensity increases beyond the individual's aerobic capacity, the subject must rely on anaerobic chemical processes for much of the energy required to accomplish the work.

The phenomenon of oxygen debt has been well documented in the literature for many years. However, most investigators have been concerned with the total oxygen debt accumulated or with the biochemical nature of oxygen debt. Few, apparently, have been interested in the pattern of accumulation of oxygen debt during a given exercise period, be it maximal or submaximal. The writer hopes this study

will add to the total knowledge of the phenomenon of oxygen debt.

# Statement of the Problem

The purpose of this investigation was to determine the pattern of oxygen debt accumulation during a stand-ardized, submaximal run on a motor-driven treadmill. In addition to oxygen debt accumulation, the pattern of change of other selected variables was also studied. These variables included heart rate, respiratory quotient, respiratory frequency, ventilation volume, true oxygen, and oxygen pulse. However only oxygen debt, oxygen uptake, oxygen pulse and heart rate are reported at this time. Raw data for the remaining variables may be obtained from the Human Energy Research Laboratory, Michigan State University.

# Scope of the Study

The sample for this study was drawn from individuals who had participated in previous studies involving tread—mill running. In addition, individuals participating, or who had previously participated, in intercollegiate athletics were selected for the study. The final sample of six individuals included three with varsity track experience, two with varsity hockey experience, and one individual with extensive treadmill experience. It was hoped that such individuals would minimize the effects of training as the study progressed.

# Limitations of the Study

The small sample size and the nonrandom selection of subjects limit the generality of the conclusions.

There was control over the diet or living habits of the six subjects invovled in the study.

Individual motivation during the testing periods was not considered.

Several Douglas Bags were in poor condition throughout the study. This resulted in a slight loss of expired air during some portions of the data collection.

A repeat of the runs was not possible because of the time involved and the laboratory schedule at the time this study was occurring.

Individual variations in height, weight, and body build were not considered.

# Definition of Terms Used in This Study

Respiratory Quotient. -- Respiratory quotient is the ratio of carbion dioxide exhaled to oxygen extracted. It generally is used for determinations of the amount of fat, carbohydrate, and/or protein utilized during a specific period of muscular work.

<u>Ventilation</u> <u>Volume</u>.--Ventilation volume refers to the corrected volume of air, in liters, expired during a specific time interval.

Oxygen Pulse. -- Oxygen pulse is the amount of oxygen removed from the blood per heart beat. It is determined by dividing the oxygen uptake by the heart rate for a specific time interval.

True Oxygen --True oxygen is the amount of oxygen extracted from the lungs during a specific time interval.

Oxygen Debt. -- Oxygen debt is the amount of oxygen required, in the post-exercise period of recovery, to reverse the anaerobic reactions of the exercise period.

Anaerobic Work. -- Anaerobic work is that work done by the organism which occurs in the absence of free oxygen.

#### CHAPTER II

#### LITERATURE REVIEW

In his book <u>Physiology of Muscular Activity</u>, Karpovich (13, p. 57) states that if work intensity increases beyond a certain optimal point, additional work must depend on anaerobic chemical processes in the muscles for the necessary energy to continue that work. When the concentration of lactic acid in the blood reaches three to four per cent, the muscles cannot continue to contract. After the work period (exercise) is completed, the oxygen consumption remains at a high level until the oxidation of the accumulated products of exercise has been completed or, in other words, until the oxygen debt has been paid.

Taylor (24, p. 151) claims that in submaximal exercise the oxygen debt is a result of a circulatory lag during which time the circulation is increased to the point at which the oxygen requirement of the work is met by the oxygen delivered to the working tissues. An oxygen debt of this type increases in a linear manner with increasing work intensity, but there comes a point when the circulatory system no longer supplies oxygen to the working tissues at a rate which will meet the metabolic requirements of the working muscles. At this point, the oxygen

debt rises rapidly as the metabolic demands of the body are being met by anaerobic chemical processes.

According to Dill and Sacktor (9, p.966), an accumulation of oxygen debt always occurs in maximal exercise of short duration. The accumulation of oxygen debt makes it possible, in short bouts of exercise, to convert stored chemical energy into mechanical energy in excess of the capacity of the respiratory and cardiovascular systems to supply oxygen to the working tissues.

Hill, Long and Upton (11, p.996) say there are two factors involved in repaying the oxygen. The first factor is a rapid component involving the removal of lactic acid from the working tissues. This is designated as the alactacid component. The second factor is a slower component involving the removal of lactic acid from the blood. designated as the lactacid component. However, moderate exercise of long duration can produce fatigue without an increase of lactic acid in the blood, and the removal of lactic acid from the system does not run parallel to the repayment of oxygen debt. Moderate exercise of short duration produces no increase of lactic acid in the blood, yet there is an oxygen debt. The evidence for no increase in lactic acid in moderate work is found in the unchanged concentration of lactic acid in the blood and its ready diffusability between the tissues and blood.

In the experiments of Margaria et al. (15), a skilled runner walked or ran for ten minutes at various speeds and grades on a motor-driven treadmill. In exercise not requiring maximal oxygen consumption, the lactic acid in the tissues and blood reached an equilibrium throughout the body. For oxygen debts of three to four liters there was no increase in lactic acid concentration, but beyond six liters of oxygen debt the concentration of lactic acid was a linear function of the extra oxygen consumption. The oxygen consumption curve during recovery was a sum of four functions:

- 1. The basal oxygen consumption,
- 2. The oxygen consumption attributable to oxidation of lactic acid,
- 3. Another exponential function of time occurring at a fast rate,
- 4. Oxygen consumption decreasing slowly during recovery.

Margaria et al. (15) also concluded that the alactacid oxygen debt was approximately a linear function of the oxygen intake during exercise while the lactacid oxygen debt began only when the work was carried on under anaerobic conditions. In moderate exercise, the oxygen debt could reach a value as high as four liters without evidence of lactic acid accumulation in the blood. In severe exercise, however, the large oxygen debt could not be explained by the accumulation of lactic acid alone.

In a similar manner, the work of Dill et al. (7) showed that the initial rapid payment of the oxygen debt in isolated muscle is not correlated with the removal of lactic acid from the blood as the oxygen debt was produced during the first minutes of recovery. In work such that no lactic acid appears in the blood, the alactacid debt may be as large as three liters. When work is of an anaerobic nature, a debt due to the formation of lactic acid is contracted. The alactacid debt may be paid off during the first five minutes of recovery but subsequent repayment of the lactacid component depends on the rate of lactic acid removal. Although the lactacid and alactacid debts are contracted concurrently, the latter is repaid twenty times more rapidly than the former.

Margaria, Edwards and Dill (15) say there is general agreement that the oxygen debt is due to delayed oxidation of a fraction of the lactic acid produced during anaerobic phases of muscular activity. However, this mechanism does not explain all the processes which occur in the repayment of the oxygen debt. In moderate work the alactacid oxygen debt accounts for most of the lag in oxygen consumption at the beginning of work before a steady state is reached. Lactacid oxygen debt is not appreciable until oxygen intake is equal to or greater than 2.5 1/02/minute. The oxygen consumption curve during recovery results from the sum of four functions, two of which are concerned with oxygen

debt. These are, of course, the lactacid and alactacid components of oxygen debt previously discussed.

Probably the most significant study in this area of interest was an unpublished study by Bailey, Orban, and Merriman (19). The purpose of the study was to compare the oxygen consumption, oxygen debt, and oxygen requirement patterns of trained and untrained subjects during a five-minute treadmill run of six miles per hour at a twenty-five per cent grade. Partial results of their data are shown in Figure 1. The oxygen requirement is equal to the total oxygen intake plus the oxygen debt.

The respiratory quotient has been defined previously as the ratio of carbon dioxide exhaled to oxygen extracted. The primary sources of fuel for muscular activity are carbohydrates, fats, and proteins with carbohydrates and fats being the main sources of energy under normal circumstances (13, p. 46). Because of their different chemical structures these sources of muscular energy have different respiratory quotients. The respiratory quotient for carbohydrates is 1.0, since for every molecule of oxygen used a molecule of carbon dioxide is released. The respiratory quotient for fat is 0.7. For protein it is approximately 0.8. However, the amount of protein oxidized during muscular exertion is usually insignificant. During exercise the respiratory quotient rises, providing the exercise is not exhaustive. During recovery, however, the

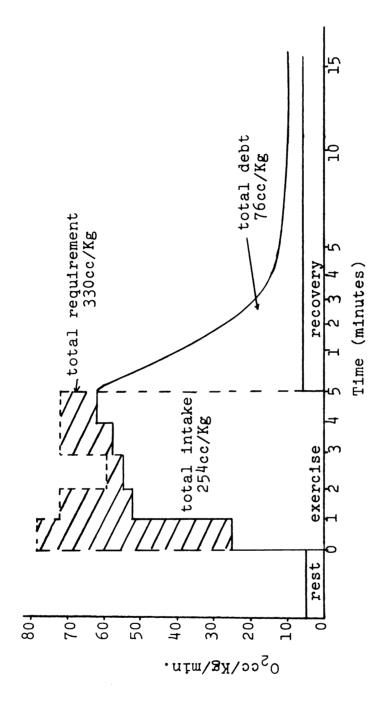



Figure 1. -- Study by Bailey, Orban, and Merriman.

respiratory quotient may be over 1.0. This is a spurious respiratory quotient due to over breathing following the cessation of exercise.

Oxygen pulse increases during exercise as the heart rate increases. Values of 11.0 ml to 17.0 ml at heart rates of 130 to 140 beats per minute have been reported (13, p. 135); but with further acceleration of the heart rate, oxygen pulse may, in fact, tend to decrease. Following cessation of exercise, the oxygen pulse value may return to the pre-exercise level faster than the heart rate. This is due to a diminished venous return which reduces the amount of blood passing through the lungs. A smaller amount of oxygen is therefore absorbed from the lungs.

When exercise begins, pulse rate increases rapidly with the largest increase occurring within the first minute. However, pulse rate changes are dependent on the individual (13, p. 167). The time required for the pulse rate to return to normal after exercise depends on two factors: (1) the intensity of the exercise, and (2) the condition of the individual. Post-exercise pulse rates may even fall below the pre-exercise level. However, the pre-exercise pulse rate level is subject to some criticism as it may be easily influenced by several psychological and environmental factors.

#### CHAPTER III

#### RESEARCH METHODS

The purpose of this investigation was to determine the pattern of accumulation of oxygen debt and the changes that occur in other selected variables during a standardized run on a motor-driven treadmill. The variables studied were oxygen debt, oxygen pulse, heart rate, and oxygen uptake. Means and standard deviations were caulculated for each part of the ten-minute run. The results were also recorded graphically.

# Sampling Procedure

Nine subjects were originally chosen for this experiment. To qualify as a subject, an individual had to be a varsity athlete and/or have had previous treadmill experience, and be in good physical condition. It was necessary to eliminate three of the subjects at the beginning of data collection because of the time required for data collection on each subject. Of the six subjects retained, five were varsity athletes with previous treadmill experience while the sixth had only previous treadmill experience but was judged to be in good physical condition. The ages of the subjects ranged from eighteen to twenty-one years.

# Experimental Design

For this experiment, the standard run was arbitrarily chosen to be of ten-minutes duration at a speed of ten miles per hour at zero per cent grade. In order to determine, as accurately as possible, the rate of oxygen debt accumulation during the run, the standardized ten-minute run was divided into ten fifteen-second runs for the first two and one-half minutes, five thirty-second runs for the next two and one-half minutes, and five one-minute runs for the last five minutes. The ten-minute run thus was divided into twenty components. Each component was administered as a separate run and each was followed by a standard fifteen-minute recovery period. In addition, three five-minute sitting rest periods, during which data were collected at one-minute intervals, were included in the testing schedule since base levels for the variables under consideration were required. Three fiveminute warm-up runs at six miles per hour, zero per cent grade, followed by a fifteen-minute warm-up recovery period also were included in the testing schedule. Thus each subject had to complete twenty-six test periods, and each testing schedule was randomized for each of the six subjects. subjects were not aware of their daily assignment until data collection was to begin for that day.

Each fifteen-minute recovery period was divided for purposes of gas collection and analysis. The recovery period consisted of eight fifteen-second intervals during

the first two minutes of recovery, six thirty-second intervals during the next three minutes of recovery, and one ten-minute interval during the remainder of the recovery.

Data were collected five days per week over a period of eight weeks. Each subject came to the laboratory at the same time every day he was to be tested in an attempt to reduce the diurnal effects on exercise.

# Testing Procedures

Each day, on reporting for testing, each subject first had the recording electrodes attached. Three zinc electrodes were used, two being chest leads and one being a ground lead placed on the lower back. These electrodes were securely attached by adhesive as well as masking tape.

If the subject was to be tested during a five-minute rest period or during the standard five-minute warm-up run (six miles per hour at zero per cent grade) followed by the fifteen-minute warm-up recovery period, he was immediately fitted with an adjustable head gear holding the triple-J, low resistance, valve. If the subject was to be tested during one of the twenty component runs, he completed the standard warm-up and warm-up recovery before being fitted with the head gear. The outlet of the triple-J valve was connected to a Franz Mueller four-way valve via a short section of non-collapsible rubber tubing. The Franz Mueller valve was manually operated and was switched to the next Douglas Bag as close to the completion of a specific time

interval as possible. All switches between Douglas Bags were made at end inspiration to provide for gas collection over a number of respiratory cycles. Expired air was collected in fifty-liter Douglas Bags during each rest period, each run, and during the first five minutes of each recovery period. A three-hundred-liter Douglas Bag was used during the last ten minutes of the recovery period. Expired air was collected only for the first twenty seconds during all one-minute intervals because of the limiting size of the fifty-liter Douglas Bags. (These twentysecond volumes were corrected to one-minute values.) Heart rate was recorded on a Sanborn model 60-1300 recorder. At the completion of each time interval, a Douglas Bag containing expired air was removed from the Franz Mueller valve, stoppered, and immediately analyzed. On completion of a run, the treadmill was stopped, and the subject sat down immediately for the fifteen-minute recovery period.

The expired air was analyzed with a Beckman Model  $\rm E_2$  oxygen analyzer and a Beckman Model 15A L/B infrared carbon dioxide analyzer. Next, each Douglas Bag was evacuated using a Kafranyi volume meter in order to determine both the volume and the temperature of the expired air. A correction factor to account for the air extracted by the oxygen and carbon dioxide analyzers was added to each volume obtained via the Kafranyi meter.

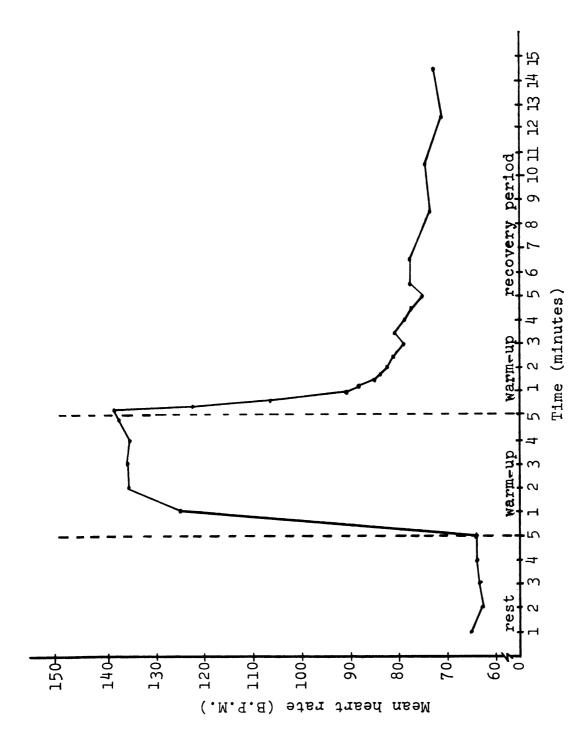
Following data collection, a chart was used to convert the carbon dioxide valves to percentage carbon dioxide. Respiratory quotient and true oxygen values were obtained from a nomogram using percentage carbon dioxide and percentage oxygen as guidelines. A typical data sheet is shown in the Appendix.

For each testing period, percentage carbon dioxide, percentage oxygen, respiratory quotient, true oxygen, corrected ventilation, and oxygen uptake (Oz/liter/minute) were calculated for each time interval of the rest, warm-up, the exercise, and recovery periods. The Bastat Cont/Data 3600 computer program was used to calculate mean values and standard deviations for each time interval for the six subjects. Thus, a mean value for each time interval of the exercise, recovery, warm up, and rest periods was obtained. These mean values were used to plot the data graphically.

Oxygen debt for each component run was calculated by subtracting the resting oxygen uptake value from the recovery oxygen uptake value. (The resting value was multiplied by fifteen as the recovery period was of fifteen minutes duration.)

<sup>&</sup>lt;sup>1</sup>Laboratory Conversion Chart.

#### CHAPTER IV


#### PRESENTATION AND DISCUSSION OF DATA

The purpose of this investigation was to determine the pattern of oxygen debt accumulation during a stand-ardized sub-maximal run on a motor-driven treadmill. In addition to oxygen debt, the pattern of heart rate, oxygen uptake and oxygen pulse were also studied. The sub-maximal run was arbitrarily selected to be of ten-minutes duration. It was divided into ten fifteen-second intervals, five thirty-second intervals, and five one-minute intervals in order to accurately determine the pattern of change for each variable. Mean values for each time interval of each variable were plotted graphically.

### Heart Rate

Mean heart rate values follow the expected pattern during the ten-minute exercise period. From a mean resting value of 64.5 beats per minute (see Fig. 2) the heart rate rises to a mean peak value of 186 beats per minute at the conclusion of the exercise (see Fig. 4). This would indicate that the exercise is of an intense nature although certainly not exhaustive.

There are two stages in cardiac acceleration during muscular exercise. These are the increase in rate which



zero per cent grade, and a fifteen-minute warm-up recovery period. Figure 2.--Mean heart rate values (beats per minute) for a five-minute rest, five-minute warm-up run at six miles per hour

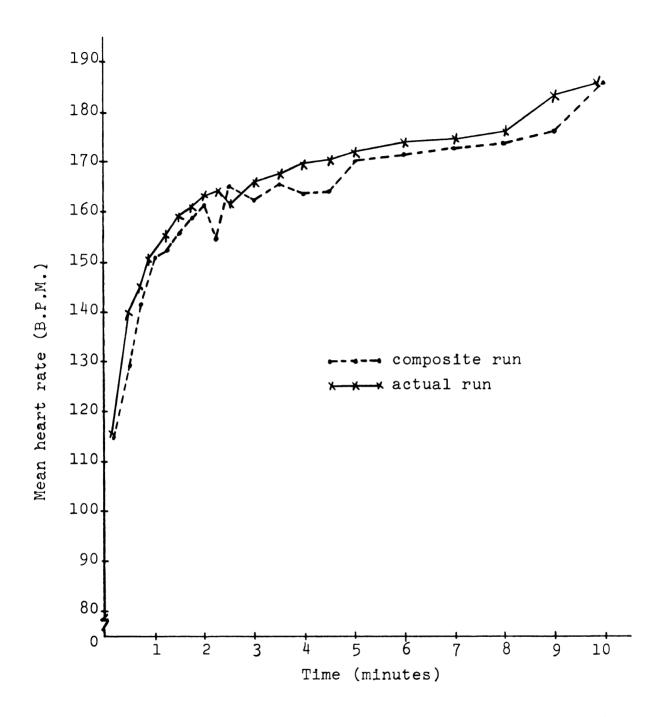



Figure 3.--Mean heart rate values (beats per minute) for the actual ten-minute run and the composite ten-minute run.

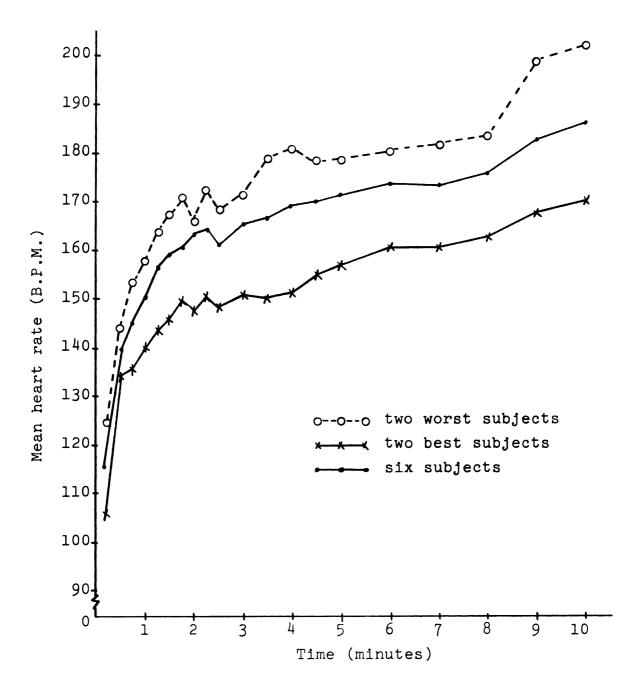



Figure 4.--Mean heart rate values (beats per minute) for an actual ten-minute run for all six subjects, the two worst subjects, and the two best subjects.

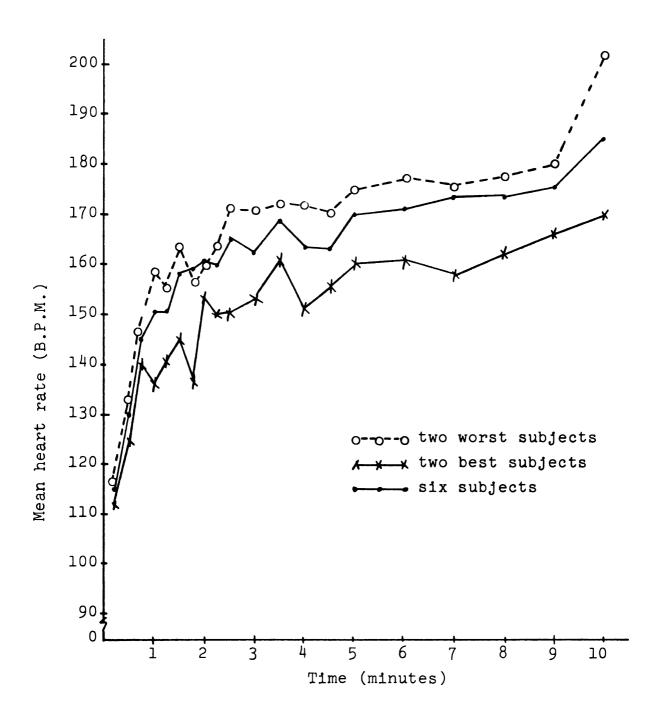



Figure 5.--Mean heart rate values (beats per minute) for the composite ten-minute run for all six subjects, the two worst subjects, and the two best subjects.

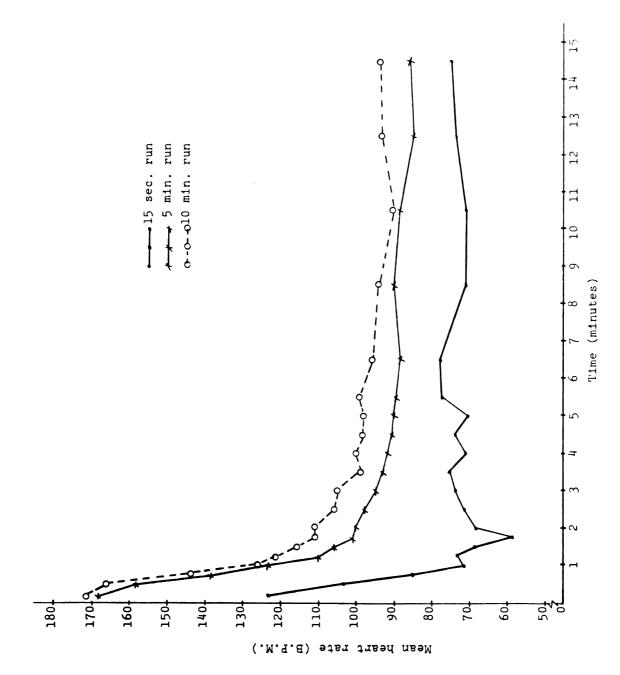



Figure 6. -- Mean recovery heart rate values (beats per minute) for the fifteen-second run, the five-minute run, and the ten-minute run.

occurs immediately upon commencement of the exercise and that which develops more gradually. The immediate acceleration of the pulse rate at the onset of exercise occurs too promptly to be a result of the Bainbridge reflex and probably is due to impulses arising in the motor areas of the cortex overflowing to the cardio-inhibitory center (1, p. 247). However, after the initial stages of work the increased acceleratory tone contributes to the increased heart rate. The important factor in the delayed heart rate increase is the rise in venous pressure and the elicitation of the Bainbridge reflex. In the athlete, however, an increased cardiac output is due to an increase in stroke volume and the heart rate increase plays a lesser role.

The recovery of the heart rate also followed a predictable pattern. For runs shorter than two minutes and thirty seconds the heart rate was returned to near basal values during the measured fifteen-minute recovery period. In fact basal levels were reached before two minutes of recovery had passed. Runs of longer duration were characterized by an elevated heart rate at the completion of the recovery period.

## Oxygen Uptake

The expected pattern for rate of oxygen consumption during a period of exercise is a steady rise after the onset of exercise followed either by a leveling off if the exercise is of moderate intensity or a secondary rise if the

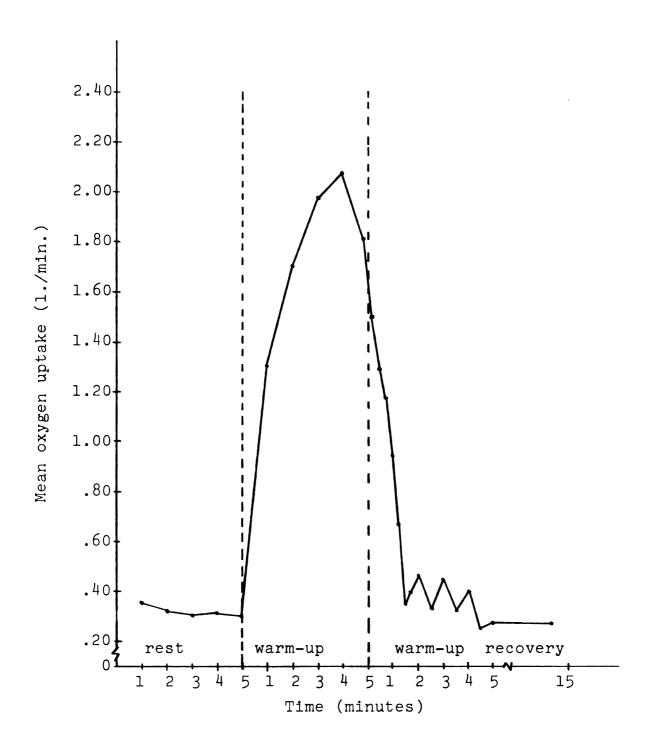



Figure 7.--Mean oxygen uptake values (liters per minute) for the five-minute rest, the five-minute warm-up run at six miles per hour zero per cent grade, and the fifteen-minute warm-up recovery period.

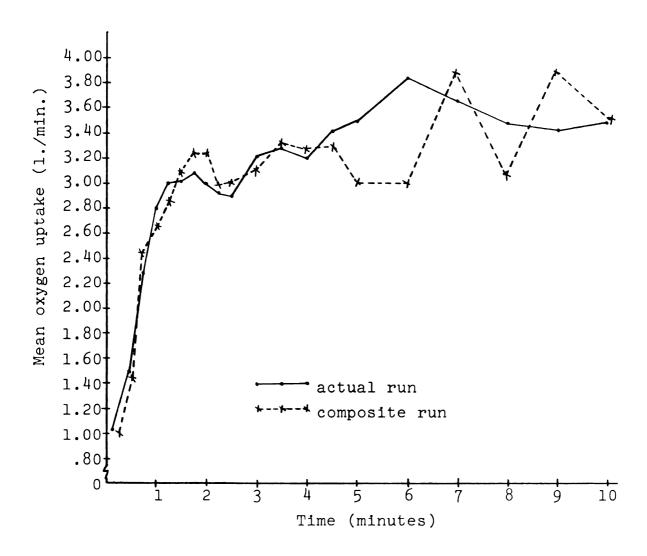



Figure 8.--Mean oxygen uptake values (liters/min.) for the composite ten-minute run and the actual ten-minute run.

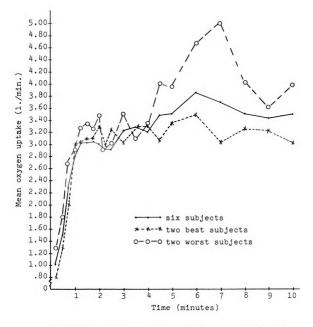



Figure 9.--Mean oxygen uptake values (liters/min.) for all six subjects, the two best subjects, and the two worst subjects for the actual ten-minute run.

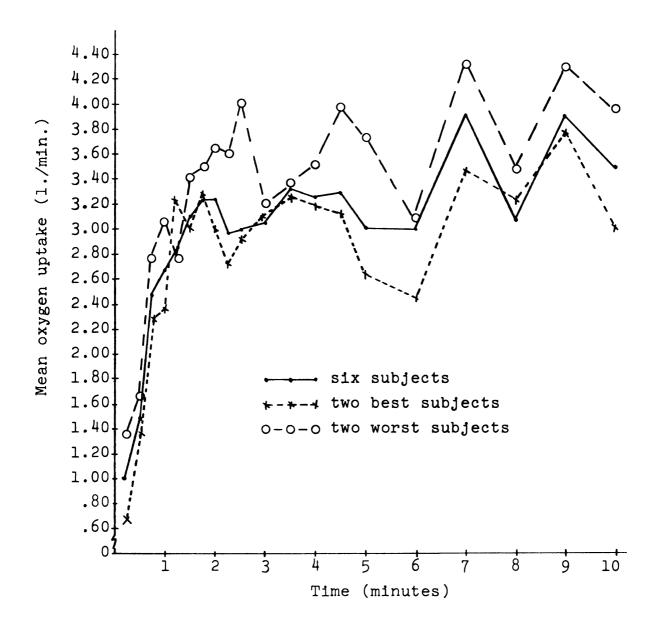



Figure. -- Mean oxygen uptake values (liters/min.) for all six subjects, the two best subjects, and the two worst subjects for the composite ten-minute run.

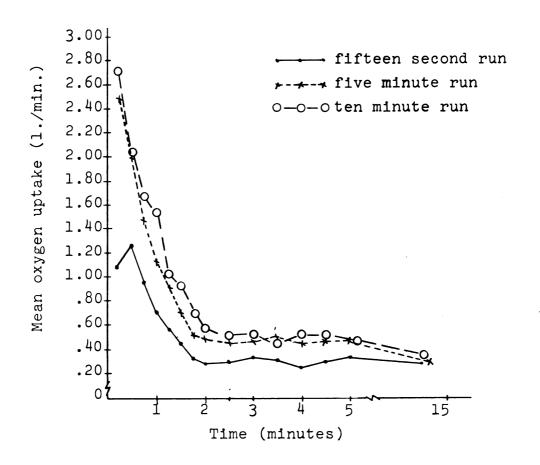



Figure 11.--Mean recovery oxygen uptake values (liters/min.) for the fifteen-second run, the five-minute run, and the ten-minute run.

exercise is moderately severe. The results of this experiment indicated an exercise priod of moderate severity. During muscular exercise oxygen consumption is increased several fold. There are only two ways by which the tissues can be supplied with the extra oxygen they require. These are an increased circulatory rate or a greater coefficient of oxygen extraction (i.e., removal of more oxygen from each unit of blood) (1, p. 246). With moderately severe exercise the coefficient of oxygen utilization is usually doubled while the cardiac output is increased up to fourfold. This would permit an eight-fold increase in oxygen consumption. This rise in oxygen utilization during muscular exercise is attributed to the diversion of a larger proportion of the total blood volume through the contracting muscles. The rate of oxygen consumption is said to represent the physiological cost of the exercise (23, p. 27).

In any given individual there is a linear relation—ship between oxygen uptake and heart rate during sub—maximal work. The slope of the line however changes with the state of physical fitness of the individual. Indi—vidual differences in oxygen consumption are explained on a basis of greater circulatory reserve. Circulatory reserve depends on the heart rate, the stroke volume, and the arterio—venous oxygen difference. The increase in stroke volume is lowest for non-athletes but it is quite pronounced for competitive athletes.

The pattern of oxygen uptake is somewhat erratic after the five-minute mark of the ten-minute run. This is probably due to the individual differences in physical conditioning of the subjects involved and/or to the small sample size. Two of our subjects were in superior condition (one was competing in cross country) and thus required less oxygen to sustain muscular effort. By way of contrast, the two individuals with varsity hockey experience were in relatively poorer physical condition.

## Oxygen Debt

Oxygen debt, as calculated from oxygen uptake values ranged from a mean value of 1.419 liters for the fifteensecond run to a mean value of 3.227 liters for the tenminute run. The mean rate of net oxygen debt accumulation (Fig. 12) was determined by dividing the mean oxygen debt for each component run by the run time. The results indicated an oxygen debt accumulation which was highest during the initial stages of the run. Such an oxygen debt would be due, primarily, to a circulatory lag which occurred at the beginning of the exercise period. In addition, the oxygen debt thus accumulated would be rapidly repaid during the recovery period and would be defined as the alactacid portion of the total oxygen debt as defined by Hill et al. (11). Oxygen debt for work loads below the point at which lactic acid would be detectable in the blood stream is paid off within four minutes after the completion of exercise.

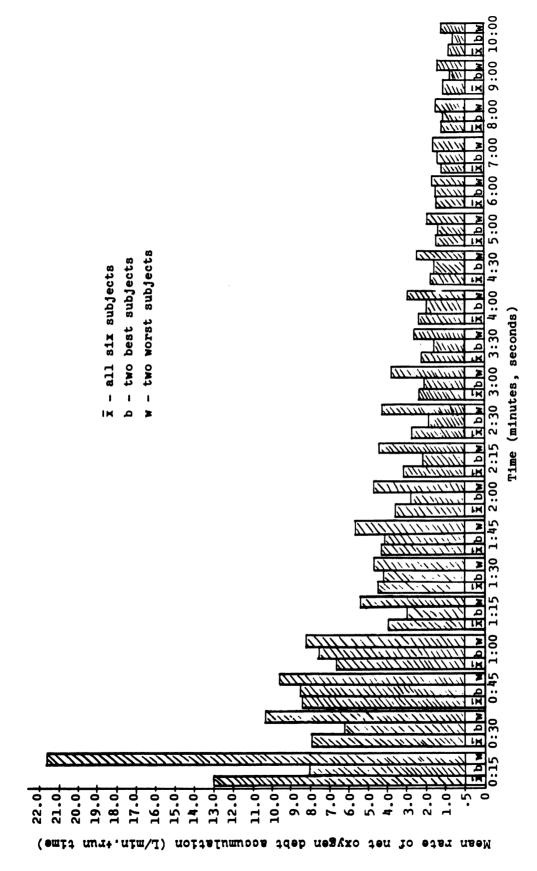



Figure 12. -- Mean rate of net oxygen debt accumulation for the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects.

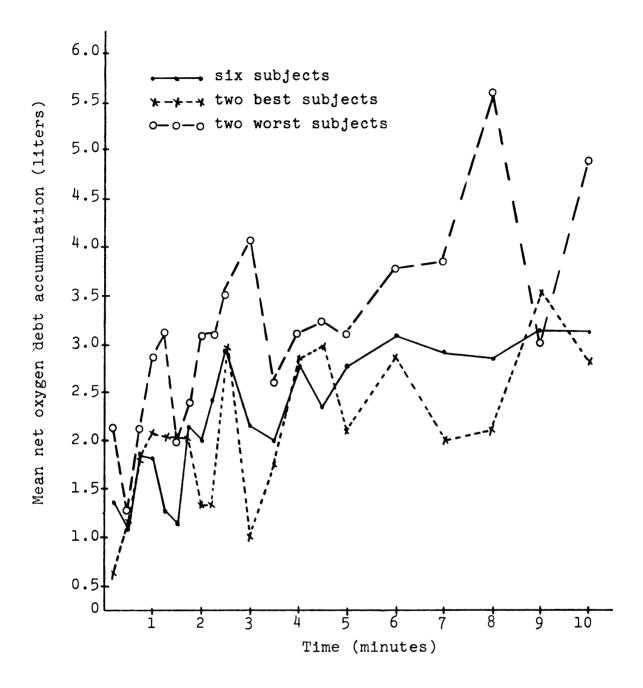



Figure 13.--Mean net oxygen debt accumulation (liters) during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects.

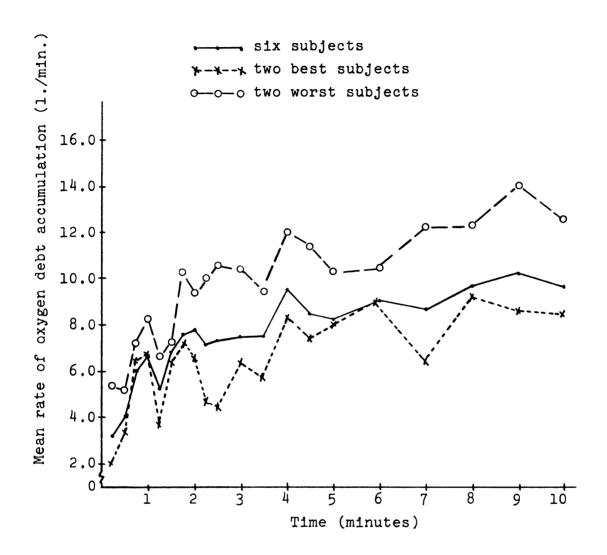



Figure 14.--Mean rate of oxygen debt accumulation (liters/min.) during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects.

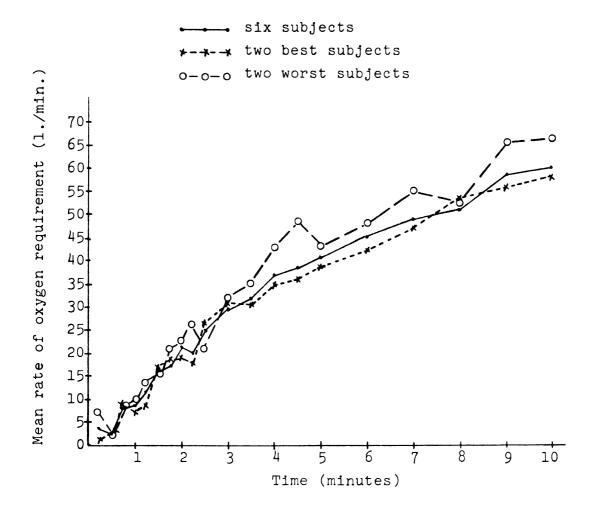



Figure 15.--Mean rate of oxygen requirement during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects.

Oxygen consumption during recovery is considered to be a sum of four functions. These functions are a basal oxygen consumption, an oxygen consumption attributable to the oxidation of lactic acid (this is a slow process and is referred to as the lactacid component of oxygen debt), a fast component referred to as the alactacid component of oxygen debt, and lastly an oxygen consumption decreasing very slowly during the recovery period.

The erratic pattern of the oxygen debt graphs may be attributed to differences in physical condition of the subjects and/or to the small number of subjects used in the experiment. This erratic pattern limits the conclusions which could be drawn regarding the possible repayment of oxygen debt during the run.

# Oxygen Pulse

Oxygen pulse is defined as the amount of oxygen removed from the blood per heart beat. In this experiment oxygen pulse rose from a mean value of 8.76 milliliters for the fifteen-second run to 18.82 milliliters for the tenminute run. These figures generally agreed with other values reported in the literature (21, p. 167). The oxygen pulse measured during the five-minute rest averaged 5.042 milliliters which also agreed with values reported in the literature. Oxygen pulse measurements are said to be a good index of the output of the heart. Oxygen pulse values rose rapidly to 20.57 milliliters during the one-minute

thirty-second component of the ten minute run and then leveled off. This was the general pattern of both the mean heart rate and the mean oxygen uptake during the run. An increased heart rate and/or a greater coefficient of oxygen utilization as work intensity is increased are the two factors involved in this increase.

The cardiopulmonary system of a healthy young adult at rest need only supply 250 milliliters of oxygen to the body tissues each minute. At rest the subjects in this experiment required an average of 325.08 milliliters of oxygen each minute. The difference is probably due to some degree of nervous anticipation prior to the exercise period or to the failure of the subjects to be in a fully rested, quiet state before data were collected during the five minute rest period. During vigorous exercise the cardiopulmonary system must supply as much as 5,500 milliliters of oxygen per minute or a twenty-two fold increase. During the tenth minute of exercise the six subjects in this experiment required an average of 3517.26 milliliters of oxygen. This increased supply of oxygen is provided by a great increase in cardiac output per minute and by an increase in alveolar ventilation.

Increased activity of skeletal muscles lowers tissue  $PO_2$ , raises tissue  $PCO_2$ , increases tissue temperature, and lowers tissue pH. This favors dissociation of  $HbO_2$  and the delivery of oxygen to the working tissue. During moderate

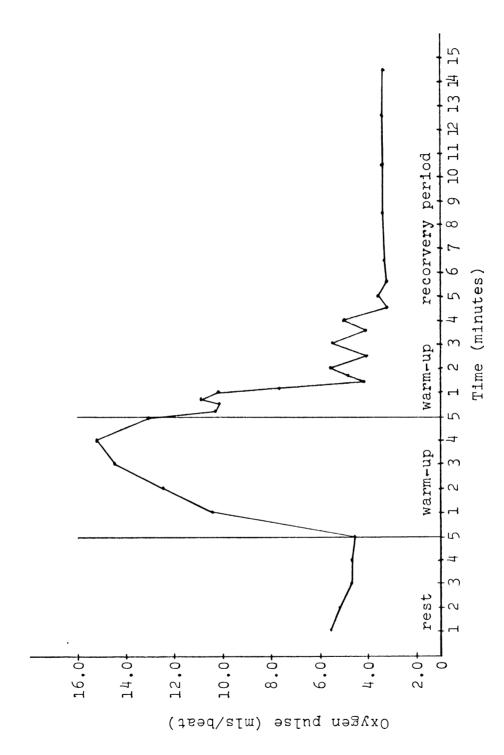



Figure 16.--Mean oxygen pulse values (mis. per heart beat) for the five-minute rest, the five-minute warm-up run at six miles per hour zero per cent grade, and the fifteen-minute warm-up recovery period.

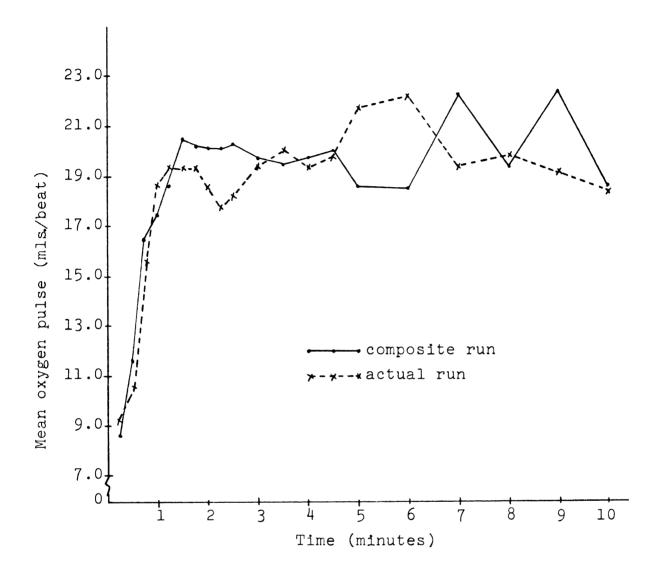



Figure 17.--Mean oxygen pulse values (mls. per heart beat) for the actual ten-minute run and the ten-minute composite run.

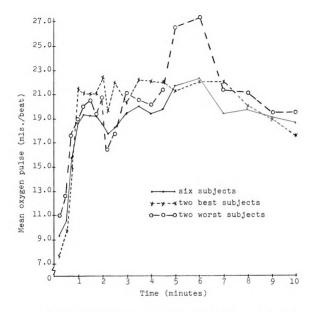



Figure 18.--Mean oxygen pulse values (mls. per heart beat) during the actual ten-minute run for all six subjects, the two best subjects, and the two worst subjects.

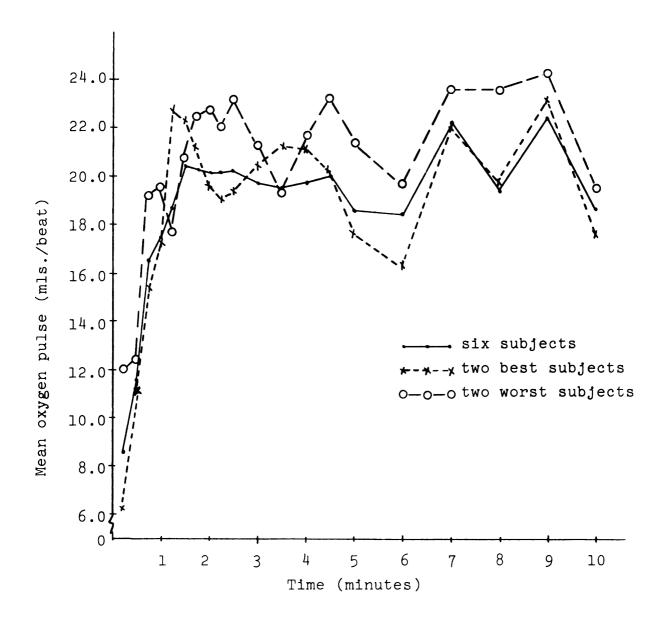
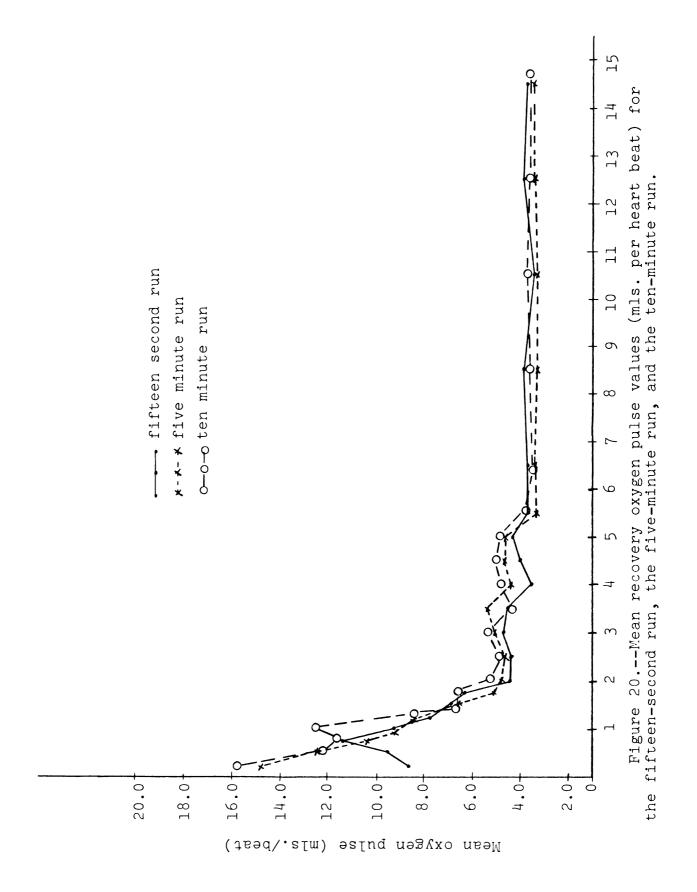




Figure 19.--Mean oxygen pulse values (mls. per heart beat) during the ten-minute composite run for all six subjects, the two best subjects, and the two worst subjects.



exercise there is no significant change in arterial  $PO_2$ ,  $PCO_2$ , or pH. The factors responsible for an increase in ventilation during moderate exercise are not known but it is likely that multiple factors are involved.

## Rest and Warm-Up Data

Three five-minute rest periods and three five-minute warm-up runs at six miles per hour and zero per cent grade were included in the experimental design. Both the rest period and the warm-up run were divided into five one-minute intervals and samples of expired air were taken during the first twenty seconds of each minute. The data indicate that no basal trend was established for heart rate, oxygen uptake, and oxygen pulse during the fiveminute rest. It would seem that either a longer resting period is necessary or the subjects be in a completely rested state before data are collected in order to achieve values as close to a basal level as possible. Oxygen pulse and oxygen uptake values returned to apparent basal values during the fifteen-minute recovery period following the five-minute warm-up run. Heart rate, however, remained slightly elevated although close to basal levels as measured by the five-minute rest.

Because of an inconsistent pattern during the fiveminute rest, basal values for all variables were determined by taking the mean of only the last three minutes of the five-minute rest period. Rest and warm-up graphs are included with graphs of each parameter studied in order to make the total picture of each parameter more meaningful.

#### CHAPTER V

### SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this study was to determine the pattern of oxygen-debt accumulation during a standardized, sub-maximal run on a motor-driven treadmill. In addition to oxygen debt, the pattern of other selected variables also was studied. These variables included heart rate, oxygen pulse, and oxygen uptake (liters/minute).

Six subjects were tested five days per week on a motor-driven treadmill for a period of eight weeks. A standardized run of ten miles per hour at zero per cent grade was divided into ten fifteen-second runs for the first two and one-half minutes, five thirty-second runs for the next two and one-half minutes, and five one-minute runs for the remaining five minutes. A fifteen-minute recovery period was also divided into eight fifteen-second intervals for the first two minutes, six thirty-second intervals for the next three minutes and one ten-minute interval for the remaining ten minutes of recovery. In addition, three five-minute rest periods, during which data were collected at one-minute intervals, were included in the testing schedule since basal levels for the variables under consideration were required. five-minute warm-up runs at six miles per hour, zero per cent grade, followed by the standard fifteen-minute

recovery period, were also included in the testing schedule. Thus each subject had to complete twenty-six test periods. Each testing schedule was completely randomized for each of the six subjects. Data were collected on heart rate, oxygen pulse, oxygen debt, and oxygen uptake (liters/minute). Means and standard deviations for each interval of each variable were calculated and plotted graphically.

### Conclusions

- 1. The mean total oxygen debt for a ten-minute standard run at ten miles per hour and zero per cent grade was 3.096 liters. The largest portion of this debt was accumulated during the initial stages of the run and may be referred to as the alactacid portion of the oxygen debt. The large initial debt was due to a circulatory lag at the beginning of the exercise period.
- 2. During this experiment, oxygen debt was not accumulated to a greater degree as the duration of work increased. Mean net oxygen debt accumulation appeared to level off after the two-minute and thirty-second run (Fig. 14).
- 3. Heart rate increased with work duration to a mean maximal value of 186 beats per minute during the tenth minute of exercise. This would seem to indicate the work was of an intense nature although certainly not exhaustive.

- 4. Oxygen consumption increased with work duration up to an optimal point. After this point, anaerobic mechanisms supplied the energy and an oxygen debt was accumulated. Oxygen requirement (Fig.15) increased with the duration of work through the ten-minute run.
- 5. Oxygen pulse values increased with work duration only during the initial stages of work (Fig. 17). Following the initial stages of exercise, oxygen pulse values tended to level off as work duration increased indicating, further, an increasing dependence on the anaerobic mechanisms for the needed energy requirements.
- 6. A five-minute rest period was not of sufficient length to establish accurate basal levels of any of the parameters considered in this experiment. The final three minutes of the five-minute rest period appeared to yield a truer indication of basal levels and was used to calculate the resting levels of all of the parameters.

## Recommendations

- 1. This study should be repeated with several modifications in the experimental design. Repeats of each run should be conducted in order to make use of more sophisticated methods of statistical analysis. This would result in better interpretations of the results.
- 2. Larger Douglas Bags should be used to collect expired air during the thirty-second and one-minute runs.

- 3. A larger, more random sample should be used.
- 4. Collection of blood samples during each run should be considered in order to determine blood lactate concentrations during both the run and the recovery periods.
- 5. A slower treadmill speed should be considered in order to clearly differentiate between an exhaustive and a sub-maximal run.
- 6. A longer rest period is needed in order to achieve more nearly basal levels.
- 7. Body temperature should be taken during the exercise periods.

BIBLIOGRAPHY

#### BIBLIOGRAPHY

- 1. Best, C. H., Taylor, N. B. "Physiological Basis of Medical Practice," Williams & Wilkins Co., Baltimore, 1950 (p. 247).
- 2. Christensen, E. H., Hogberg, P. "The Efficiency of Anaerobical Work," Arb. Physiology 14:249-250, 1950.
- 3. Christensen, E. H., Hogberg, P. "Steady State, Oxygen Deficit, and Oxygen Debt at Severe Work,"
  Arb. Physiology 14:251-254, 1950.
- 4. Comroe, J. H., Forstet, R. E., DuBois, A. B., Briscoe, W. A., Carlsen, E. The Lung, Year Book Medical Publishers Inc., 2nd edition. Chicago, Ill., 1962 (p. 58).
- 5. Courtice, F. C., Douglas, C. G. "The Effects of Prolonged Muscular Exercise on Metabolism,"

  Proceeding Royal Society of London 119:
  381-439, 1936.
- 6. Dill, D. B. "Economy of Muscular Exercise," Physiological Review 16:263-291, 1936.
- 7. Dill, D. B., Edwards, H. T., Newman, E. V. and Margaria, R. "Analysis of Recovery from Anaerobic Work," <a href="https://example.com/Arb.Physiology">Arb. Physiology</a> 9:298-307, 1936.
- 8. Dill, D. B., Talbott, J. H., Edwards, H. T. "Response of Several Individuals to a Fixed Task,"

  Journal of Physiology 69:267-305, 1930.
- 9. Dill, D. B., Sacktor, B. "Exercise and the Oxygen Debt," Journal of Sports Medicine and Physical Fitness. Vol. 2, No. 2, June, 1962, pp. 66-72.
- 10. Hill, A. V. <u>Muscular Activity</u>. Baltimore: Wilhams and Wilkins, 1926, p. 115.
- 11. Hill, A. V., Long, C. N., Lupton, H. "Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen: the Recovery Process and Exercise in Man," <a href="Proceedings Royal Society 97:96">Proceedings Royal Society 97:96</a>, 1924.

- 12. Johnson, W. R. Science and Medicine of Exercise and Sports. New York: Harper Brothers, Publishers, 1960, pp. 123, 384.
- 13. Karpovich, P. V. Physiology of Muscular Activity.
  Philadelphia and London: W. B. Saunders Co.,
  6th Edition, pp. 46, 57, 135, 167, 170.
- 14. Lythgoe, R. H., Pereirz, J. R. "Pulse Rate and Oxygen Intake during the Early Stages of Recovery from Severe Exercise," Proceedings Royal Society of London 98: pp. 468-479, 1925.
- 15. Margaria, R., Edwards, H. T., Dill, D. B. "The Possible Mechanisms of Contracting and Paying the Oxygen Debt and the Role of Lactic Acid in Muscular Contraction," American Journal of Physiology, pp. 689-715, 1933.
- 16. Lythgoe, R. H. and Pereirz, J. R. "Pulse Rate and Oxygen Intake during the Early Stages of Recovery from Severe Exercise," Proceedings Royal Society of London 98: pp. 468-479, 1925.
- 17. Margaria, R., Edwards, H. T. and Dill, D. B. "The Possible Mechanisms of Contracting and Paying the Oxygen Debt and the Role of Lactic Acid in Muscular Contraction," American Journal of Physiology, pp. 689-715, 1933.
- 18. Morehouse, L. E. and Miller, A. T. Physiology of Exercise. St. Louis: The C. V. Mosby Co., 1963, 4th Edition.
- 19. Orban, W. A. R., Bailey, D. A. and Merriman, J. E. "Oxygen Requirement Patterns with Extent of Training in Treadmill Running," unpublished data.
- 20. Rodahl, K., and Issekutz, B. Jr. <u>Muscle as a Tissue</u>. New York: McGraw Hill Book Co., Inc., 1962, p. 280.
- 21. Schneider, E. C. and Crampton, C. B. "A Comparison of Some Respiratory and Circulatory Reactions of Athletes and Non-Athletes," American

  Journal of Physiology, Vol. 129, 1940.

  pp. 165-170, 166, 167.

- 22. Taylor, Craig. "Some Properties of Maximal and Sub-Maximal Exercise with Reference to Physiological Variation and the Measurement of Exercise Tolerance," American Journal of Physiology, Vol. 142, 1944, pp. 300-312.
- 23. Taylor, Craig. "Studies in Exercise Physiology,"

  American Journal of Physiology, Vol. 135,
  pp. 27-42, 1941.
- 24. Taylor, H. L., Johnson, W. R. Exercise and Metabolism in Science and Medicine of Exercise and Sports. New York: Harper Bros., Publishers, 1960, p. 151.
- 25. Wasserman, K. and McIlroy, M. B. "Detecting the Threshold of Anaerobic Metabolism in Cardiac Patients During Exercise," American Journal of Cardiology, Dec. 1964, pp. 844-852.

APPENDIX

| Bag         Fintal Lintial Ling         Samp. Rafr. Ling         Kafronyl Cas. Diff. Ling         X Co2 Corr. Read. Corr. Ling         CC2 Corr. Read. Corr. Read. Corr. Ling         CC2 Corr. Read. Read. Ling         CC2 Corr. Read. R                                                          |                | !  | Date  | 4-29                | 65           | i              | Ten                          | <u>Labora</u><br>Temperature | tory                     |       |                         |              |     | Sub                    | Subject (name)_ |                                            | Fulcher   | ı                             |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-------|---------------------|--------------|----------------|------------------------------|------------------------------|--------------------------|-------|-------------------------|--------------|-----|------------------------|-----------------|--------------------------------------------|-----------|-------------------------------|----|
| 98         Pinial Initial         Samp. Kafr. (Cfr)         Kafronyl (Chr)         Kafronyl (Chr) </th <th></th> <th></th> <th>T1m</th> <th>1 1</th> <th>11:35a</th> <th>E</th> <th>В.</th> <th>Pressu</th> <th></th> <th>745.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> |                |    | T1m   | 1 1                 | 11:35a       | E              | В.                           | Pressu                       |                          | 745.0 |                         |              |     |                        |                 |                                            |           |                               |    |
| 95.6         89.6         .3         6.741         .880         44.0         3.17         2.80         17.40         .85         5.95         .217         2.80         17.40         .85         3.65         5.932         .2165         99.1         95.6         .2         3.7         3.959         .880         45.0         3.28         1.90         16.95         .79         4.15         3.484         .446           102.6         99.1         .2         2.4         2.568         .880         45.0         3.78         0.12         16.05         .79         4.15         3.484         .446           10.2         .2         2.4         2.568         .880         45.0         3.78         16.05         .79         4.18         2.259         1184           10.2         .2         2.4         2.568         .880         45.0         3.26         16.05         .79         4.18         1.812           10.2         .2         3.4         2.568         .880         42.5         3.05         16.03         4.38         3.21         1190           10.2         4.8         3.531         .880         42.5         3.05         17.51         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kagr.<br>Temp. |    |       | Initial<br>Kafronyi | Samp.<br>Gas | Kafr.<br>Diff. | X<br>Kafronyi<br>Cf.<br>1.07 | X<br>STPC<br>Corr.           | co <sub>2</sub><br>Read. | s; co | O <sub>2</sub><br>Read. | <b>s</b> . 0 | RQ  | True<br>O <sub>2</sub> |                 | True O <sub>2</sub><br>X<br>Corr.<br>Vent. | X<br>Time | _<br>0 <sub>2</sub><br>1/min. | į  |
| 99.1         95.6         .2         3.7         3.959         .880         45.0         3.28         1.90         16.95         77         4.15         3.484         .446           102.6         99.1         .2         3.7         3.959         .880         50.0         3.70         16.06         771         5.20         3.484         .1812           4.8         2.6         .2         2.4         2.568         .880         45.0         3.28         16.46         .67         4.80         2.25         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.0           | 7  | 92.6  | 9.68                | e.           | 6.3            | 6.741                        | .880                         | 44.0                     | 3.17  | 2.80                    | 17.40        | .85 | 9.                     | 5.932           | .2165                                      | 3.8       | .8228                         |    |
| 4.8         2.         3.7         3.959         .880         50.0         3.70         0.12         16.06         .71         5.20         3.484         1812           4.8         2.6         2.         4.8         2.568         .880         45.0         3.78         16.18         .6.06         .71         5.20         3.484         .1812           7.0         4.8         2.         2.4         2.568         .880         47.5         3.40         .6.05         16.18         .6.7         4.80         .2.259         .1055           10.2         7.0         2.         3.4         3.638         .880         42.5         3.05         1.6.8         .6.09         4.38         3.05         1.68         1.6.8         .6.09         .2.29         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60         .2.25         .1.60 <th< td=""><td></td><td>5</td><td>99.1</td><td>9.56</td><td>.2</td><td>3.7</td><td>3.959</td><td>.880</td><td>45.0</td><td>3.28</td><td>1.90</td><td>16.95</td><td>.79</td><td>4.15</td><td>3.484</td><td>944.</td><td>4.3</td><td>.6217</td><td></td></th<>                                                                                                                                                                                                                                                           |                | 5  | 99.1  | 9.56                | .2           | 3.7            | 3.959                        | .880                         | 45.0                     | 3.28  | 1.90                    | 16.95        | .79 | 4.15                   | 3.484           | 944.                                       | 4.3       | .6217                         |    |
| 4,8         2,6         2,4         2,568         880         4,5,0         3,28         16,46         6,7         4,80         2,259         1164           7,0         4,8         2,4         2,568         880         47,5         3,40         0,26         16,13         66         5,15         2,29         1164           10,2         7,0         2,2         3,4         3,638         880         47,5         3,40         16,13         66         5,15         2,29         1164           13,3         10,2         2,2         3,4         3,638         880         42,0         17,51         75         3,60         2,10         114,0           14,9         13,3         2,1         1,926         880         42,0         2,42         17,51         75         3,60         1,605         1119           20,8         13,3         2,4         2,568         880         42,0         2,42         17,51         75         3,60         1,605         3,01         1,102         2,24         2,568         3,80         2,76         3,04         17,53         3,6         1,605         3,04         1,102         4,102         3,04         1,102 <td< td=""><td></td><td>٣</td><td>102.6</td><td>99.1</td><td>.2</td><td>3.7</td><td>3.959</td><td>.880</td><td>50.0</td><td>3.70</td><td>0.12</td><td>16.06</td><td>.71</td><td>5.20</td><td>3.484</td><td>.1812</td><td>4.3</td><td>0677.</td><td></td></td<>                                                                                                                                                                                                                                                                                           |                | ٣  | 102.6 | 99.1                | .2           | 3.7            | 3.959                        | .880                         | 50.0                     | 3.70  | 0.12                    | 16.06        | .71 | 5.20                   | 3.484           | .1812                                      | 4.3       | 0677.                         |    |
| 7.0         4.8         2.5         2.4         2.568         .880         47.5         3.49         16.13         6.6         5.15         2.259         .1164           10.2         7.0         2         3.4         3.638         .880         42.5         3.05         1.68         16.18         .66         4.38         3.201         1402           13.3         10.2         3.4         3.638         .880         39.5         2.79         17.51         .75         3.60         2.107         1110           14.9         13.3         1.2         .880         .890         .820         17.51         .75         3.60         2.107         1110           20.8         13.3         .2568         .880         .820         .870         17.51         .75         3.60         1.695         .061           20.8         17.1         .26         .880         .800         .800         .880         .800         .774         .886         .755         .740         .753         .78         .760         .760         .760         .760         .760         .760         .760         .760         .760         .760         .760         .760         .760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 7  | 4.8   | 5.6                 | .2           | 2.4            | 2.568                        | .880                         | 45.0                     | 3.28  | 0.92                    | 16.46        | 19. | 4.80                   | 2.259           | .1085                                      | 3.3       | .3579                         |    |
| 13.3         10.2         3.4         3.638         .880         42.5         3.05         1.68         16.84         .69         4.38         3.05         1.49         3.05         1.68         1.68         42.5         3.05         1.68         1.68         3.05         2.79         3.05         1.75         3.06         2.107         3.119           14.9         13.3         .2         1.8         1.926         .880         42.0         3.04         17.51         7.5         3.09         1.109         3.09         3.09         17.21         7.5         3.09         1.109         3.00         3.00         17.21         7.5         3.00         1.119         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00         3.00 <td< td=""><td></td><td>5</td><td>7.0</td><td>4.8</td><td>.2</td><td>2.4</td><td>2.568</td><td>.880</td><td>47.5</td><td>3.40</td><td>0.26</td><td>16.13</td><td>99.</td><td>5.15</td><td>2.259</td><td>.1164</td><td>5</td><td>.5819</td><td></td></td<>                                                                                                                                                                                                                                                       |                | 5  | 7.0   | 4.8                 | .2           | 2.4            | 2.568                        | .880                         | 47.5                     | 3.40  | 0.26                    | 16.13        | 99. | 5.15                   | 2.259           | .1164                                      | 5         | .5819                         |    |
| 13.3         10.2         3.5         3.531         .880         42.0         3.02         17.51         75         3.60         2.107         1119           14.9         13.3         2.         1.880         42.0         3.00         2.42         17.51         75         3.90         1.695         .0061           17.1         14.9         .2         2.4         2.568         .880         42.0         3.04         17.54         77         3.60         2.259         .0814           20.8         17.1         .2         2.4         2.568         .880         39.5         2.79         3.04         17.52         77         3.60         2.259         .0814           26.3         2.0         4.173         .880         40.0         2.84         3.06         17.53         78         3.55         3.257         1305           31.9         2.2         5.8         6.206         .880         39.0         2.74         3.86         17.93         .86         3.05         3.25         3.267         3.05           31.9         31.9         3.2         3.474         .880         3.50         2.74         3.86         17.91         .78         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 9  | 10.2  | 7.0                 | .2           | 3.4            | 3.638                        | .880                         | 42.5                     | 3.05  | 1.68                    | 16.84        | 69. | 4.38                   | 3.201           | .1402                                      | 7         | .5608                         |    |
| 14.9         13.3         .2         1.8         1.926         .880         42.0         2.42         17.21         .75         3.90         1.695         .0061           17.1         14.9         .2         2.4         2.568         .880         38.0         2.65         3.08         17.54         .75         3.60         2.259         .0814           20.8         17.1         .2         3.9         4.173         .880         39.5         2.79         3.04         17.52         .76         3.60         3.672         .1322           20.8         17.1         .2         6.099         .880         40.0         2.84         3.06         17.53         .78         3.67         1362         .79         3.04         17.53         .78         3.67         1362         .18         3.67         .18         3.67         .18         3.66         3.67         3.46         3.66         3.70         3.78         3.67         3.67         3.67         3.68         3.67         3.46         3.88         3.65         3.74         3.88         3.65         3.74         3.86         3.75         3.78         3.67         3.69         3.69         3.69         3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 7  | 13.3  | 10.2                | .2           | 3.3            | 3.531                        | .880                         | 39.5                     | 2.79  | 3.02                    | 17.51        | .75 | 3.60                   | 2.107           | .1119                                      | 3.8       | .4251                         |    |
| 20.8         17.1         14.9          2.4         2.568          38.0         3.6.6         3.08         17.54         .75         3.60         2.259         .0814           20.8         17.1         .2         3.9         4.173         .880         39.5         2.79         3.04         17.52         .76         2.63         3.672         .1322           26.3         20.8         .2         6.099         .880         40.0         2.84         3.06         17.53         .78         3.55         5.267         .1905           31.9         .26.3         .2         5.8         6.206         .880         39.0         2.74         3.86         17.53         .78         3.55         5.267         .1905           34.9         .2         .2         .2         .8         .2         .7         .3         .8         .3         .4         .3         .4         .4         .3         .4         .3         .4         .4         .3         .4         .4         .3         .4         .4         .3         .4         .4         .3         .4         .4         .3         .4         .4         .4         .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 8  | 14.9  | 13.3                | .2           | 1.8            | 1.926                        | .880                         | 42.0                     | 3.00  | 2,42                    | 17.21        | .75 | 3.90                   | 1.695           | .0061                                      | 47        | .2644[.387]                   | 33 |
| 26.8         17.1         2.         3.9         4.173         .880         39.5         2.79         3.04         17.52         .76         2.63         3.67         13.22           26.3         20.8         2.         5.7         3.04         3.05         2.74         3.06         17.53         .78         3.55         5.267         .1905           31.9         26.3         2.         5.8         6.206         .880         39.0         2.74         3.86         17.93         .86         3.10         5.461         .1693           34.9         31.9         2.         3.47         3.86         2.74         3.86         17.93         .86         3.10         3.67         3.10         3.89           38.3         34.9         3.6         3.40         4.30         18.15         .86         3.03         3.82         17.91         .78         3.15         3.89         10.68           42.0         38.3         3.9         4.173         .880         37.5         2.23         4.66         18.33         .80         2.70         3.49         3.40         3.90         2.74         3.38         17.69         77         3.40         8.95         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 6  | 17.1  | 14.9                | 2            | 2.4            | 2.568                        | .880                         | 38.0                     | 5.66  | 3.08                    | 17.54        | .72 | 3.60                   | 2.259           | .0814                                      | 4.3       | 3498.                         |    |
| 26.3         20.8         20.8         3.06         17.53         7.8         3.55         5.267         1905           31.9         26.3         2.         5.8         6.206         .880         39.0         2.74         3.86         17.93         .86         3.10         5.461         .1693           34.9         31.9         .2         3.8         5.0         2.74         3.86         17.93         .86         3.10         5.461         .1693           38.3         31.9         .2         3.47         .880         35.0         2.740         4.30         18.15         .80         2.90         3.013         .0874           42.0         38.3         34.9         .2         3.45         3.85         2.54         3.85         17.91         .78         3.15         3.88         .1088         37.5         2.23         4.66         18.33         .80         2.70         3.99         2.71         3.38         17.69         7.9         3.40         2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 10 | 20.8  | 17.1                | .2           | 3.9            | 4.173                        | .830                         | 39.5                     | 2.79  | 3.04                    | 17.52        | 92. | 2.63                   | 3.672           | .1322                                      | 1.9       | .2512                         |    |
| 31.9         26.3         .2         5.8         6.206         .880         39.0         2.74         3.86         17.93         .86         3.10         5.461         .1693           34.9         31.9         .2         3.2         3.474         .880         35.0         2.40         4.30         18.15         .80         2.90         3.013         .0874           38.3         34.9         .2         3.65         2.54         3.82         17.91         .78         3.15         3.389         .1068           42.0         38.3         .2         3.9         4.173         .880         37.5         2.23         4.66         18.33         .80         2.70         3.672         .0992           134.1         042.0         .2         92.3         98.761         .880         39.0         2.74         3.38         17.69         .79         3.40         86.909         2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 11 | 26.3  | 20.8                | .2           | 5.7            | 6.00.9                       | .880                         | 40.0                     | 2.84  | 3.06                    | 17.53        | .78 | 3.55                   | 5.267           | .1905                                      | 2.2       | 1614.                         |    |
| 34.9 31.9 .2 3.2 3.424 .880 35.0 2.40 4.30 18.15 .80 2.90 3.013 .0874 38.3 34.9 .2 3.6 3.852 .880 36.5 2.54 3.82 17.91 .78 3.15 3.389 .1068 42.0 38.3 .2 3.9 4.173 .880 37.5 2.23 4.66 18.33 .80 2.70 3.672 .0992 134.1 042.0 .2 92.3 98.761 .880 39.0 2.74 3.38 17.69 .79 3.40 86.909 2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 12 | 31.9  | 26.3                | .2           | 5.8            | 902.9                        | .880                         | 39.0                     | 2.74  | 3.86                    | 17.93        | 98. | 3.10                   | 5.461           | .1693                                      | 1.8       | .3047                         |    |
| 38.3 34.9 .2 3.6 3.852 .880 36.5 2.54 3.82 17.91 .78 3.15 3.389 .1068 42.0 38.3 .2 3.9 4.173 .880 37.5 2.23 4.66 18.33 .80 2.70 3.672 .0992 134.1 042.0 .2 92.3 98.761 .880 39.0 2.774 3.38 17.69 .79 3.40 86.909 2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 13 | 34.9  | 31.9                | .2           | 3.2            | 3.424                        | .880                         | 35.0                     | 04.5  | 4.30                    | 18.15        | .80 | 2.90                   | 3.013           | .0874                                      | 2.2       | .1922                         |    |
| 42.0 38.3 .2 3.9 4.173 .880 37.5 2.23 4.66 18.33 .80 2.70 3.672 .0992 134.1 042.0 .2 92.3 98.761 .880 39.0 2.74 3.38 17.69 .79 3.40 86.909 2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 14 | 38.3  | 34.9                | .2           | 3.6            | 3.852                        | .880                         | 36.5                     | 2.54  | 3.82                    | 14.91        | .78 | 3.15                   | 3.389           | .1068                                      | 2         | .2136                         |    |
| 134.1 042.0 .2 92.3 98.761 .880 39.0 2.74 3.38 17.69 .79 3.40 86.909 2.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 15 | 42.0  | 38.3                | .2           | 3.9            | 4.173                        | .880                         | 37.5                     | 2.23  | 4.66                    | 18.33        | .80 | 2.70                   | 3.672           | 2660.                                      | 2.1       | .2362                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 16 | 134.1 | 042.0               | .2           | 92.3           | 98.761                       | .880                         | 39.0                     | 2.74  | 3.38                    | 17.69        | ٠٢. |                        |                 | 2.955                                      | ÷10       | .2955                         |    |

Name of Study Oxygen Debt Accumulation

TABLE 1.--

TABLE 2.--Heart rate values for five-minute rest.

|       | Mean   | Standard<br>Deviation |
|-------|--------|-----------------------|
| 1'00" | 65.911 | 10.598                |
| 2'00" | 73.241 | 10.170                |
| 3'00" | 63.952 | 9.265                 |
| 4'00" | 74.476 | 8.394                 |
| 5'00" | 64.447 | 9.052                 |

TABLE 3.--Heart rate values for five-minute warm up.

|                                                                                                                          | Mean                                                                                                                                                                                    | Standard<br>Deviation                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1'00" 2'00" 3'00" 4'00" 5'00" 15" 1'00" 1'15" 1'30" 1'45" 2'00" 2'30" 3'30" 4'00" 4'30" 5'30" 6'30" 12'30" 12'30" 14'30" | 125.275 136.166 137.466 .136.975 138.383 139.883 123.350 107.125 91.775 87.050 85.258 84.475 83.916 81.991 79.033 81.508 79.950 77.916 75.725 78.791 77.291 74.050 75.891 72.933 73.183 | 13.653 14.186 16.280 12,386 13.667 22.083 18.229 14.615 13.714 12.960 13.198 15.552 12.807 13.651 11.711 12.352 11.214 9.727 9.595 11.627 13.260 9.091 11.756 9.023 9.713 |

TABLE 4.--Heart rate values for a fifteen-minute run.

| Var                                                                                                            | Sum                                                                                                                                                                                                                      | Mean                                                                                                                                                                                                                                                       | Sum of<br>Squares                                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15                                                                                                           | 690.00000                                                                                                                                                                                                                | 115.0000000                                                                                                                                                                                                                                                | 79778.00000                                                                                                                                                                                                                   | 9.25203                                                                                                                                                                                                                                    |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>5:30<br>8:30<br>12:30<br>14:30 | 749.0000<br>625.00000<br>513.00000<br>434.00000<br>439.00000<br>416.00000<br>416.00000<br>431.00000<br>431.00000<br>451.00000<br>451.00000<br>429.00000<br>471.00000<br>435.00000<br>435.00000<br>444.00000<br>453.00000 | 124.8333333<br>104.1666667<br>85.5000000<br>72.3333333<br>73.1666667<br>69.3333333<br>57.8333333<br>74.1666667<br>75.1666667<br>75.1666667<br>74.8333333<br>71,5000000<br>78.3333333<br>78,5000000<br>72,5000000<br>72,5000000<br>74.0000000<br>75.5000000 | 94443.00000<br>67377.00000<br>45843.00000<br>32346.00000<br>29766.00000<br>29480.00000<br>31813.00000<br>34749.00000<br>34749.00000<br>31373.00000<br>37236.00000<br>37709.00000<br>32179.00000<br>33222.00000<br>35121.00000 | 13.73196<br>21.32057<br>19.90729<br>13.80821<br>15.07868<br>13.58921<br>27.39647<br>11.29011<br>13.06012<br>12.84394<br>13.02945<br>11.23684<br>13.12123<br>11.82793<br>9.15787<br>12.12848<br>10.38749<br>11.32696<br>8.55570<br>13.56097 |

TABLE 5.--Heart rate values for a thirty-second run.

| Var         Sum         Mean         Sum Squares         Standard Deviation           0:15         662.00000         110.33333333         73656.00000         11.09354           0:30         779.00000         129.8333333         101263.00000         4.05648           0:15         805.00000         134.1666667         109689.00000         20.18333           0:45         633.00000         105.5000000         69477.00000         23.21853           1:00         499.00000         83.1666667         42519.00000         14.27469           1:15         454.00000         75.66666667         35356.00000         14.16569           1:30         416.00000         69.3333333         29802.00000         13.85189           1:45         444.00000         74.000000         33362.00000         10.05982           2:00         447.00000         74.5000000         34021.00000         11.99583           2:30         456.00000         76.000000         36066.00000         14.31084           3:30         459.00000         76.5000000         36085.00000         12.62405           5:30         449.00000         77.33333333         34381.00000         12.62405           5:30         495.00000         76.16666 |                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:30       779.00000       129.8333333       101263.00000       4.05648         0:15       805.00000       134.1666667       109689.00000       18.35665         0:30       733.00000       122.1666667       91585.00000       20.18333         0:45       633.00000       105.5000000       69477.00000       23.21853         1:00       499.00000       83.1666667       42519.00000       14.27469         1:15       454.00000       75.66666667       35356.00000       14.16569         1:30       416.00000       69.3333333       29802.00000       13.85189         1:45       444.00000       74.000000       34021.00000       10.05982         2:00       447.00000       74.5000000       34021.00000       11.99583         2:30       456.00000       76.000000       36066.00000       16.79286         3:00       438.00000       73.0000000       32998.00000       14.31084         3:30       459.00000       76.5000000       36085.00000       12.62405         5:30       449.00000       74.83333333       34381.00000       12.62405         5:30       495.00000       76.83333333       35253.00000       12.23792         8:30       446.00000                                                                    | Var                                                                                                                            | Sum                                                                                                                                                                       | Mean                                                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                   |
| 14:30 468.00000 78.0000000 37114.00000 11.04536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0:30<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>3:30<br>5:30<br>6:30<br>6:30<br>10:30<br>12:30 | 779.00000 805.00000 733.00000 439.00000 454.00000 416.00000 444.00000 447.00000 456.00000 459.00000 459.00000 459.00000 459.00000 459.00000 457.00000 456.00000 470.00000 | 129.8333333 134.1666667 122.1666667 105.5000000 83.16666667 75.66666667 75.66666667 74.5000000 76.0000000 76.5000000 76.16666667 74.8333333 77,3333333 74.3333333 74.3333333 76.1666667 78.3333333 | 101263.00000 109689.00000 91585.00000 69477.00000 42519.00000 35356.00000 33362.00000 34021.00000 36066.00000 32998.00000 35695.00000 34381.00000 35695.00000 35253.00000 35253.00000 33942.00000 35417.00000 | 4.05648 18.35665 20.18333 23.21853 14.27469 14.16569 13.85189 10.05982 11.99583 16.79286 14.31084 13.93915 12.62405 12.49667 11.77568 10.69112 12.23792 12.56450 11.03479 8.52447 |

TABLE 6.--Heart rate values for a forty-five second run.

| Var                                                                                                                           | Sum                                                                                                                                                                                                                       | Mean                                                                                                                                                                                                                                                                                           | Sum of<br>Squares                                                                                                                                                                                                                                              | Standard<br>Deviation                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>0:35<br>0:45<br>0:45<br>1:10<br>1:10<br>1:30<br>1:30<br>1:30<br>4:30<br>4:30<br>5:30<br>8:30<br>10:30 | 681.00000<br>803.00000<br>863.00000<br>859.00000<br>635.00000<br>493.00000<br>491.00000<br>494.00000<br>494.00000<br>494.00000<br>497.00000<br>497.00000<br>486.00000<br>487.00000<br>498.00000<br>463.00000<br>461.00000 | 113.5000000<br>133.8333333<br>143.8333333<br>143.1666667<br>127.0000000<br>105.83333333<br>87.3333333<br>82.1666667<br>66.83333333<br>65.66666667<br>77.33333333<br>80.0000000<br>82.3333333<br>82.8333333<br>83.0000000<br>81.6666667<br>81.1666667<br>83.0000000<br>77.1666667<br>76.8333333 | 77647.00000 107851.00000 124645.00000 124165.00000 99258.00000 46792.00000 41169.00000 32013.00000 31050.00000 36536.00000 41052.00000 41393.00000 41393.00000 42490.00000 42490.00000 40358.00000 40358.00000 40377.00000 42084.00000 35973.00000 35825.00000 | 8.40833<br>8.75024<br>10.16694<br>15.39372<br>22.28901<br>21.47945<br>14.34805<br>11.49638<br>32.17867<br>11.51810<br>8.76356<br>8.71015<br>6.70572<br>15.20526<br>8.46168<br>8.26236<br>13.02945<br>12.24745<br>6.99762<br>8.99815 |
| 12:30<br>14:30                                                                                                                | 466.00000<br>422.00000                                                                                                                                                                                                    | 77.6666667<br>70.3333333                                                                                                                                                                                                                                                                       | 36716.00000<br>33372.00000                                                                                                                                                                                                                                     | 10.23067<br>27.17106                                                                                                                                                                                                                |

TABLE 7.--Heart rate values for a one-minute run.

| Var                                                                                                                          | Sum                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                               | Sum of<br>Squares                                                                                                                                                                                                                                                | Standard<br>Deviation                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>0:15<br>0:30<br>0:45<br>1:05<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30<br>5:30 | 691.00000<br>821.00000<br>881.00000<br>910.00000<br>890.00000<br>583.00000<br>470.00000<br>439.00000<br>460.00000<br>462.00000<br>462.00000<br>462.00000<br>463.00000<br>451.00000<br>474.00000<br>488.00000 | 115.1666667<br>136.8333333<br>146.8333333<br>151.6666667<br>148.3333333<br>134.66666667<br>97.16666667<br>78.3333333<br>73.16666667<br>76.66666667<br>77.0000000<br>79.5000000<br>79.5000000<br>77.5000000<br>76.3333333<br>75.1666667<br>79.0000000<br>81.3333333 | 82061.00000<br>113635.00000<br>130065.00000<br>139604.00000<br>139604.00000<br>109952.00000<br>47114.00000<br>37796.00000<br>33077.00000<br>36080.00000<br>36080.00000<br>36554.00000<br>36082.00000<br>36557.00000<br>36557.00000<br>37788.00000<br>40232.00000 | 22.27480<br>16.09244<br>11.87294<br>17.81759<br>9.66782<br>15.10850<br>32.81717<br>20.23528<br>13.99524<br>13.83353<br>12.75408<br>14.00000<br>10.61603<br>10.07968<br>11.14301<br>10.19313<br>7.20185<br>7.85918<br>8.27043<br>10.40513 |
| 8:30<br>10:30<br>12:30<br>14:30                                                                                              | 461.00000<br>489.00000<br>472.00000<br>459.00000                                                                                                                                                             | 76.8333333<br>81.5000000<br>78.6666667<br>76.5000000                                                                                                                                                                                                               | 36073.00000<br>40565.00000<br>37934.00000<br>35831.00000                                                                                                                                                                                                         | 11.42658<br>11.92896<br>12.67544<br>11.97915                                                                                                                                                                                             |

TABLE 8.--Heart rate values for a one-minute fifteen-second run.

| Var                                                                                                                            | Sum                                                                                                                                                             | Mean                                                                                                                                                                                    | Sum of<br>Squares                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15                                                                                           | 641.00000<br>800.00000<br>825.00000<br>883.00000<br>914,00000                                                                                                   | 106.8333333<br>133.3333333<br>137.5000000<br>147.1666667<br>152.33333333                                                                                                                | 68823.00000<br>107482.00000<br>114161.00000<br>130681.00000<br>139780.00000                                                                                                                                   | 8.28050<br>12.76976<br>12.02913<br>12.10647<br>10.46263                                                                                                                                                                                     |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>5:30<br>6:30<br>6:30<br>10:30<br>14:30 | 893.00000 778.00000 606.00000 486.00000 447.00000 427.00000 433.00000 454.00000 441.00000 441.00000 442.00000 442.00000 470.00000 428.00000 429.00000 429.00000 | 148.8333333 129.6666667 101.0000000 81.0000000 74.5000000 71.16666667 72.16666667 75.66666667 75.66666667 73.5000000 73.66666667 78.3333333 71.3333333 72.1666667 70.6666667 76.5000000 | 133569.00000 193220.00000 63422.00000 42586.00000 35345.00000 32941.00000 32986.00000 35938.00000 35938.00000 35456.00000 35456.00000 34986.00000 34986.00000 31650.00000 32485.00000 31110.00000 36757.00000 | 11.49638<br>21.63023<br>21.05232<br>25.37716<br>20.21633<br>22.59572<br>22.18483<br>20.82947<br>17.80637<br>18.45716<br>8.43208<br>12.98717<br>12.64911<br>17.66352<br>22.02423<br>17.87363<br>14.96217<br>15.72789<br>15.14816<br>18.13009 |

TABLE 9.--Heart rate values for a one-minute thirty-second run.

| Var                                                                                                                             | Sum                                                                                                                                                                                                                                                                                                                                                                      | Mean                                                                                                                                                                                                                                                                         | Sum of                                                                                                                                                                                                                                                                                                     | Standard                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15                                                                                            | 669.00000<br>772.00000<br>851.00000<br>874.00000<br>921.00000                                                                                                                                                                                                                                                                                                            | 111.5000000<br>128.6666667<br>141.833333<br>145.6666667<br>153.5000000                                                                                                                                                                                                       | 75237.00000<br>99910.00000<br>121493.00000<br>128346.00000<br>142121.00000<br>148533.00000                                                                                                                                                                                                                 | 11.34460<br>10.76414<br>12.59233<br>14.37591<br>12.22702<br>13.80459                                                                                                                                                                         |
| 1:30<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>5:30<br>8:30<br>10:30<br>12:30<br>14:30 | 941.00000<br>929.00000<br>700.00000<br>565.00000<br>479.00000<br>456.00000<br>456.00000<br>456.00000<br>446.00000<br>471.00000<br>471.00000<br>471.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000<br>472.00000 | 156.8333333<br>154.8333333<br>143.1666667<br>116.6666667<br>94.1666667<br>83.66666667<br>79.8333333<br>76.0000000<br>75.0000000<br>74.3333333<br>78.5000000<br>77.1666667<br>74.6666667<br>74.6666667<br>77.0000000<br>76.3333333<br>72.66666667<br>71.5000000<br>73.6666667 | 14841.00000<br>125081.00000<br>83310.00000<br>56585.00000<br>40781.00000<br>37246.00000<br>36378.00000<br>35930.00000<br>34666.00000<br>38065.00000<br>36819.00000<br>36819.00000<br>35241.00000<br>35241.00000<br>35241.00000<br>35241.00000<br>35241.00000<br>352590.00000<br>31635.00000<br>33428.00000 | 14.14803<br>20.49797<br>18.12917<br>26.00320<br>22.18708<br>22.54255<br>22.75961<br>18.55802<br>20.88061<br>17.39732<br>14.77047<br>16.37580<br>14.77047<br>16.37580<br>13.48580<br>13.48580<br>13.48652<br>13.47096<br>13.86723<br>13.17067 |

TABLE 10.--Heart rate values for a one-minute forty-five second run.

| Var                                                                                                                            | Sum                                                                                                                                                                                                                       | Mean                                                                                                                                                                                                                                                                                        | Sum of<br>Squares                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45                                                                           | 668.00000<br>802.00000<br>842.00000<br>888.00000<br>912.00000<br>926.00000                                                                                                                                                | 111.3333333<br>133.6666667<br>140.3333333<br>148.0000000<br>152.0000000<br>154.3333333<br>158.6666667                                                                                                                                                                                       | 74810.00000<br>107650.00000<br>118532.00000<br>131584.00000<br>138848.00000<br>143396.00000                                                                                                                   | 9.37372<br>9.47980<br>8.61781<br>5.65685<br>6.69328<br>9.83192<br>4.84424                                                                                                                                                                      |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30<br>6:30<br>6:30<br>10:30<br>14:30 | 895.00000<br>841.00000<br>701.00000<br>574.00000<br>498.00000<br>478.00000<br>498.00000<br>492.00000<br>511.00000<br>486.00000<br>488.00000<br>488.00000<br>450.00000<br>459.00000<br>476.00000<br>488.00000<br>474.00000 | 149.1666667<br>140.1666667<br>116.8333333<br>95.66666667<br>83.0000000<br>80.3333333<br>79.66666667<br>83.0000000<br>82.0000000<br>85.1666667<br>81.0000000<br>81.3333333<br>83.3333333<br>81.3333333<br>82.6666667<br>75.0000000<br>76.50000000<br>79.33333333<br>81.3333333<br>81.3333333 | 134433.00000 119359.00000 83893.00000 56494.00000 39590.00000 42918.00000 41958.00000 41958.00000 44325.00000 40280.00000 41922.00000 39968.00000 41208.00000 33836.00000 35297.00000 38154.00000 37836.00000 | 13.62962<br>17.19787<br>19.96413<br>17.78389<br>17.79888<br>13.18585<br>13.03329<br>11.17139<br>10.95445<br>12.68726<br>9.52890<br>10.85664<br>8.06639<br>7.44759<br>6.40833<br>4.14729<br>6.40833<br>4.14729<br>6.85665<br>8.89194<br>8.83176 |

TABLE 11.--Heart rate values for a two-minute run.

| Var                                                                                                                            | Sum                                                                                                                                                                                                                       | Mean                                                                                                                                                                                                                                                             | Sum of<br>Squares                                                                                                                                                                                                                                                           | Standard<br>Deviation                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00                                                                   | 666.00000<br>779.00000<br>855.00000<br>863.00000<br>926.00000<br>959.00000<br>960.00000                                                                                                                                   | 111.0000000<br>129.8333333<br>142.5000000<br>143.8333333<br>154.3333333<br>159.8333333<br>160.0000000<br>161.1666667                                                                                                                                             | 74058.00000<br>101339.00000<br>122365.00000<br>124991.00000<br>143348.00000<br>153913.00000<br>155066.00000                                                                                                                                                                 | 8.13809<br>6.30608<br>10.27132<br>13.13646<br>9.33095<br>11.25019<br>17.12308<br>16.69032                                                                                                                                            |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:30<br>1:30<br>2:30<br>3:30<br>4:30<br>4:30<br>5:33<br>6:33<br>10:33<br>14:30 | 937.00000<br>869.00000<br>751.00000<br>598.00000<br>520.00000<br>486.00000<br>485.00000<br>489.00000<br>494.00000<br>487.00000<br>484.00000<br>484.00000<br>470.00000<br>470.00000<br>446.00000<br>481.00000<br>481.00000 | 156.1666667<br>146.5000000<br>125.1666667<br>99.66666667<br>86.6666667<br>84.3333333<br>81.00000000<br>80.8333333<br>81.50000000<br>82.3333333<br>81.16666667<br>80.0000000<br>80.6666667<br>78.3333333<br>75.0000000<br>74.3333333<br>80.16666667<br>77.0000000 | 147385.00000<br>130033.00000<br>96717.00000<br>61092.00000<br>46274.00000<br>40204.00000<br>40061.00000<br>40979.00000<br>41846.00000<br>41228.00000<br>4069.00000<br>38720.00000<br>39232.00000<br>39232.00000<br>39956.00000<br>33900.00000<br>38733.00000<br>35796.00000 | 14.53845<br>15.87136<br>23.31023<br>17.27040<br>15.53920<br>13.60392<br>12.94604<br>13.09071<br>15.00333<br>10.11929<br>10.53882<br>10.40032<br>8.00000<br>6.15359<br>9.13053<br>5.27889<br>5.47723<br>6.62319<br>5.87934<br>6.66333 |

TABLE 12.--Heart rate values for a two-minute fifteen second run.

| Var                                                                                                                    | Sum                                                                                                                                                                                                                                                              | Mean                                                                                                                                                                                                                           | Sum of<br>Squares                                                                                                                                                                                                         | Standard<br>Deviation                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15                                                   | 688.00000<br>830.00000<br>860.00000<br>900.00000<br>929.00000<br>957.00000<br>969.00000<br>958.00000                                                                                                                                                             | 114.6666667<br>138.3333333<br>143.3333333<br>150.0000000<br>154.8333333<br>159.5000000<br>161.5000000<br>159.6666667<br>154.0000000                                                                                            | 78968.00000 114936.00000 124044.00000 135464.00000 144101.00000 152965.00000 157193.00000 153572.00000 144088.00000                                                                                                       | 3.93277<br>4.88535<br>12.46863<br>9.63328<br>7.22265<br>8.04363<br>11.82793<br>11.05743<br>18.93146                                                                                                                     |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30<br>8:30<br>12:30<br>14:30 | 940.00000<br>865.00000<br>715.00000<br>597.00000<br>538.00000<br>477.00000<br>492.00000<br>492.00000<br>494.00000<br>479.00000<br>475.00000<br>476.00000<br>476.00000<br>471.00000<br>469.00000<br>469.00000<br>469.00000<br>469.00000<br>469.00000<br>473.00000 | 156.6666667<br>144.1666667<br>19.1666667<br>99.5000000<br>89.6666667<br>79.5000000<br>82.0000000<br>81.3333333<br>79.8333333<br>79.1666667<br>79.3333333<br>78.1666667<br>79.3333333<br>78.1666667<br>77.0000000<br>78.1666667 | 149242.00000 126281.00000 86379.00000 49338.00000 49338.00000 43328.00000 40914.00000 40914.00000 38481.00000 37921.00000 37921.00000 37928.00000 37928.00000 37405.00000 37401.00000 35710.00000 36361.00000 37693.00000 | 19.87628<br>17.75857<br>15.32862<br>11.13104<br>14.81441<br>13.06522<br>14.08545<br>10.67708<br>12.01111<br>8.26236<br>6.79461<br>7.96032<br>7.44759<br>7.11102<br>5.75036<br>9.28978<br>12.17237<br>5.21536<br>8.99815 |

63

APLS 12.--Heart rate values for a two-minute fifteen second

TABLE 13.—Heart rate values for a two-minute thirty-second run.

| Var                                                                                                                                             | Sum                                                                                                                                                                                                                      | Mean                                                                                                                                                                                                                                                         | Sum                                                                                                                                                                                                                       | Standard<br>Deviation                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30                                                                    | 669.00000<br>797.00000<br>872.00000<br>900.00000<br>930.00000<br>940.00000<br>960.00000<br>978.00000<br>980.00000                                                                                                        | 111.5000000<br>132.8333333<br>145.3333333<br>150.0000000<br>155.0000000<br>156.6666667<br>160.0000000<br>163.0000000<br>163.3333333<br>165.1666667                                                                                                           | 75033.00000<br>106293.00000<br>127442.00000<br>135760.00000<br>144586.00000<br>147838.00000<br>153888.00000<br>160164.00000<br>160528.00000                                                                               | 9.37550<br>9.21774<br>11.93756<br>12.32883<br>9.33809<br>10.68956<br>7.58947<br>12.24745<br>9.60555<br>13.57080                                                                                                                     |
| 0:15<br>9:30<br>9:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>4:30<br>5:30<br>6:30<br>8:30<br>10:30<br>12:30<br>14:30 | 960.0000<br>875.00000<br>709.00000<br>566.00000<br>499.00000<br>477.00000<br>457.00000<br>480.00000<br>484.00000<br>484.00000<br>487.00000<br>487.00000<br>472.00000<br>472.00000<br>467.00000<br>463.00000<br>450.00000 | 160.0000000<br>145.8333333<br>118.1666667<br>94.3333333<br>83.16666667<br>74.8333333<br>79.5000000<br>76.1666667<br>80.0000000<br>82.1666667<br>80.6666667<br>82.0000000<br>81.1666667<br>77.3333333<br>78.6666667<br>77.8333333<br>77.1666667<br>75.0000000 | 154486.00000 129817.00000 85209.00000 55382.00000 43047.00000 34977.00000 39317.00000 39110.00000 41245.00000 39590.00000 40816.00000 39973.00000 37234.00000 37234.00000 37272.00000 36585.00000 36139.00000 34014.00000 | 13.31165<br>21.03727<br>16.90463<br>19.94660<br>17.58882<br>16.59418<br>16.70629<br>17.93786<br>11.91638<br>12.13947<br>10.46263<br>9.71597<br>9.43221<br>6.37704<br>4.54606<br>8.52643<br>5.31664<br>6.88234<br>9.06458<br>7.26636 |

bacces-virth stonim-own a not scuter est Trees-11 2000

TABLE 14.--Heart rate values for a three-minute run.

| Var                                                                                                                     | Sum                                                                                                                                                                                             | Mean                                                                                                                                                                                                                 | Sum of<br>Squares                                                                                                                                                                                               | Standard<br>Deviation                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:00                                    | 685.00000<br>799.00000<br>851.00000<br>908.00000<br>935.00000<br>948.00000<br>954.00000<br>963.00000<br>987.00000<br>982.00000                                                                  | 114.1666667<br>133.1666667<br>141.8333333<br>151.3333333<br>155.8333333<br>158.0000000<br>159.0000000<br>160.5000000<br>162.3333333<br>164.5000000<br>163.6666667                                                    | 78585.00000 107227.00000 121463.00000 137968.00000 146585.00000 150640.00000 152228.00000 155369.00000 158884.00000 163201.00000                                                                                | 8.72735<br>12.85950<br>12.35179<br>10.55778<br>13.27278<br>13.08434<br>10.41153<br>12.70827<br>12.42041<br>12.95762<br>11.60460                                                                                                              |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:40<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30<br>68:30<br>10:30<br>14:30 | 951.00000<br>861.00000<br>737.00000<br>618.00000<br>566.00000<br>528.00000<br>530.00000<br>511.00000<br>517.00000<br>517.00000<br>513.00000<br>597.00000<br>496.00000<br>486.00000<br>487.00000 | 158.5000000 143.5000000 122.8333333 103.0000000 94.3333333 88.0000000 87.0000000 88.3333333 85.1666667 86.5000000 84.5000000 84.5000000 84.5000000 87.0000000 87.0000000 82.6666667 77.5000000 81.6666667 81.1666667 | 151745.00000 124997.00000 91813.00000 65610.00000 455642.00000 48838.00000 45177.00000 46883.00000 44561.00000 44561.00000 445325.00000 44325.00000 44325.00000 42264.00000 42264.00000 40172.00000 40113.00000 | 14.22322<br>16.99117<br>16.03018<br>19.77878<br>21.21006<br>20.63977<br>17.93321<br>20.10638<br>18.20348<br>19194743<br>18.54454<br>17.71346<br>17.10848<br>17.22498<br>16.00000<br>15.88290<br>16.68233<br>12.69646<br>14.06651<br>10.81511 |

nur edunim-sende a tol espley plat frault-. Al Eddar

TABLE 15.--Heart rate values for a three -minute thirty-second run.

| (72,0000                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Squares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 672.00000<br>770.00000<br>845.00000<br>918.00000<br>942.00000<br>966.00000<br>973.00000<br>986.00000                                                  | 112.0000000<br>128.3333333<br>140.8333333<br>147.0000000<br>153.0000000<br>157.0000000<br>161.0000000<br>162.1666667<br>164.3333333<br>160.83333333                                                                                                                                                                                                                                                                                                     | 75782.00000<br>100410.00000<br>120561.00000<br>130724.00000<br>141268.00000<br>148596.00000<br>155972.00000<br>158309.00000<br>162260.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.17841<br>17.8512<br>17.64558<br>14.628,4<br>12.86931<br>11.84905<br>9.44458<br>10.20621<br>6.74290<br>11.53112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 997.00000 973.00000 903.00000 768.00000 657.00000 570.00000 525.00000 525.00000 520.00000 520.00000 597.00000 597.00000 597.00000 499.00000 497.00000 | 162.1666667<br>150.5000000<br>128.0000000<br>109.5000000<br>100.3333333<br>95.0000000<br>87.5000000<br>87.1666667<br>86.66666667<br>82.8333333<br>86.66666667<br>84.5000000<br>83.8333333<br>83.1666667<br>85.0000000                                                                                                                                                                                                                                   | 158877.00000<br>136533.00000<br>99690.00000<br>73029.00000<br>61302.00000<br>47225.00000<br>47217.00000<br>47026.00000<br>42293.00000<br>45976.00000<br>43553.00000<br>42585.00000<br>42279.00000<br>44234.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.70328 14.75692 11.23833 16.64932 14.74788 13.42634 14.73771 16.04681 18.04901 19.79562 14.99889 13.48579 11.92896 9.13053 12.48065 13.29662 8.49510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 497.00000<br>494.00000<br>499.00000<br>469.00000<br>488.00000                                                                                         | 82.8333333<br>83.3333333<br>83.1666667<br>78.1666667<br>81.3333333                                                                                                                                                                                                                                                                                                                                                                                      | 41529.00000<br>41068.00000<br>42135.00000<br>37469.00000<br>40126.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.49510<br>8.89194<br>11.26795<br>12.71875<br>9.33095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                       | 770.00000 845.00000 918.00000 918.00000 942.00000 973.00000 965.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 973.00000 | 770.00000       128.3333333         845.00000       140.8333333         882.00000       147.0000000         918.00000       153.0000000         942.00000       157.000000         966.00000       161.000000         973.00000       162.1666667         986.00000       160.8333333         997.00000       166.1666667         973.00000       150.5000000         768.00000       128.0000000         657.00000       109.5000000         602.00000       100.3333333         570.00000       87.5000000         523.00000       87.16666667         520.00000       82.8333333         520.00000       84.5000000         503.00000       83.8333333         499.00000       82.8333333         499.00000       82.8333333         497.00000       82.8333333         499.00000       83.1666667         497.00000       82.8333333         499.00000       83.1666667         78.1666667       78.1666667 | 770.00000       128.3333333       100410.00000         845.00000       140.83333333       120561.00000         882.00000       147.0000000       130724.00000         918.00000       153.0000000       141268.00000         942.00000       157.0000000       148596.00000         966.00000       161.0000000       155972.00000         973.00000       162.1666667       158309.00000         965.00000       160.8333333       155869.00000         973.00000       166.1666667       158877.00000         973.00000       162.1666667       158877.00000         903.00000       150.5000000       136533.00000         768.00000       128.0000000       99690.00000         657.00000       100.33333333       61302.00000         570.00000       87.5000000       73029.00000         523.00000       87.5000000       47225.00000         523.00000       87.1666667       47026.00000         497.00000       84.5000000       43553.00000         499.00000       83.1666667       42279.0000         499.00000       83.333333       41529.0000         499.00000       83.1666667       42135.00000         499.00000       83.1666667       4 |

TABLE 15.4-Hours rate values inc tarme - whomis thirty-

TABLE 16.--Heart rate values for a four-minute run.

| Var                                                                                                                    | Sum                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                                                       | Sum of<br>Squares                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:30<br>4:00                                   | 796.00000<br>841.00000<br>879.00000<br>928.00000<br>948.00000<br>960.00000<br>963.00000<br>973.00000<br>970.00000<br>986.00000                                                                               | 117.6666667<br>140.1666667<br>146.5000000<br>154.6666667<br>158.0000000<br>151.0000000<br>160.0000000<br>160.5000000<br>162.000000<br>164.3333333<br>164.0000000                                                                                                                           | 86682.00000<br>118581.00000<br>129577.00000<br>143936.00000<br>150448.00000<br>139906.00000<br>154144.00000<br>155297.00000<br>158000.00000<br>157516.00000<br>162564.00000                                   | 26.86758<br>11.83920<br>12.67675<br>9.00370<br>11.52389<br>24.89980<br>10.43072<br>12.12848<br>10.35374<br>11.82652<br>10.30857<br>11.93315                                     |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>5:30<br>6:30<br>6:30<br>10:30<br>14:30 | 962.00000<br>876.00000<br>745.00000<br>645.00000<br>582.00000<br>538.00000<br>550.00000<br>527.00000<br>516.00000<br>516.00000<br>516.00000<br>438.00000<br>438.00000<br>483.00000<br>483.00000<br>484.00000 | 160.3333333<br>145.3333333<br>124.1666667<br>107.5000000<br>101.1666667<br>97.0000000<br>89.66666667<br>91.6666667<br>89.8333333<br>87.8333333<br>92.0000000<br>86.0000000<br>86.0000000<br>87.5000000<br>87.5000000<br>87.5000000<br>85.3333333<br>84.5000000<br>80.5000000<br>80.6666667 | 155250.00000 128800.00000 94539.00000 70865.00000 57892.00000 49516.00000 49573.00000 46901.00000 45160.00000 45160.00000 44920.00000 44920.00000 44200.00000 43585.00000 43585.00000 39325.00000 39512.00000 | 14.20798 20.34371 20.17341 17.47856 17.02253 16.95877 15.97081 14.10910 15.18442 11.07098 10.80740 12.52198 10.43072 9.54463 34.70447 10.09290 12.19426 9.41807 8.39047 9.68848 |

the country rect and resident standard and aller a

TABLE 17.--Heart rate values for a four-minute thirty-second run.

| Var                                                                                                                                  | Sum                                                                                                                                                                                             | Mean                                                                                                                                                                                                                                                       | Sum of<br>Squares                                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>0:15<br>0:45<br>1:00 | 735.00000<br>810.00000<br>869.00000<br>932.00000<br>940.00000<br>951.00000<br>976.00000<br>976.00000<br>953.00000<br>964.00000<br>976.00000<br>976.00000<br>976.00000<br>976.00000<br>976.00000 | 122.5000000<br>135.0000000<br>144.8333333<br>149.5000000<br>155.3333333<br>156.6666667<br>158.5000000<br>158.333333<br>162.6666667<br>157.6666667<br>158.8333333<br>160.6666667<br>164.3333333<br>165.0000000<br>148.1666667<br>122.6666667<br>106.0000000 | 93491.00000 111314.00000 126953.00000 135093.00000 146288.00000 14617.00000 151617.00000 151204.00000 159264.00000 159264.00000 159528.00000 159528.00000 162476.00000 162476.00000 132933.00000 91618.00000 69176.00000      | 26.28117<br>19.81918<br>14.78400<br>14.08190<br>17.42029<br>13.48580<br>13.29286<br>12.54857<br>10.01332<br>16.70529<br>15.44560<br>17.18914<br>12.47201<br>9.41630<br>11.55855<br>15.57455<br>16.94304<br>18.76166 |
| 1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30<br>6:30<br>8:30<br>10:30<br>14:30               | 603.00000<br>561.00000<br>543.00000<br>548.00000<br>526.00000<br>519.00000<br>510.00000<br>513.00000<br>515.00000<br>494.00000<br>499.00000<br>494.00000<br>494.00000<br>494.00000              | 100.5000000<br>93.5000000<br>90.5000000<br>92.0000000<br>91.3333333<br>87.66666667<br>86.5000000<br>84.3333333<br>85.0000000<br>85.5000000<br>85.83333333<br>82.3333333<br>82.3333333<br>82.3333333                                                        | 62421.00000<br>53991.00000<br>50383.00000<br>51392.00000<br>51446.00000<br>46894.00000<br>45885.00000<br>43236.00000<br>43996.00000<br>44533.00000<br>44533.00000<br>44761.00000<br>45746.00000<br>45746.00000<br>40796.00000 | 19.07616<br>17.53568<br>15.75754<br>11.02724<br>16.70529<br>12.50067<br>14.08190<br>10.61446<br>11.36662<br>11.58879<br>6.17792<br>8.14043<br>7.22265<br>8.14862<br>7.65289<br>4.96655                              |

Annessa-grande anesim-ructur for Sediev essa Jabel--- NI Elek

TABLE 18.--Heart rate values for a five-minute run.

| Var       Sum       Mean       Squares       Deviate         0:15       788.00000       131.3333333       106250.00000       23.49         0:30       879.00000       146.5000000       130253.00000       17.20         0:45       907.00000       151.1666667       138005.00000       13.39         1:00       912.00000       152.0000000       139240.00000       11.09         1:15       940.00000       156.66666667       147664.00000       8.91         1:30       935.00000       155.83333333       146137.00000       9.30         1:45       988.00000       164.6666667       163376.00000       9.04         2:00       967.00000       161.1666667       156257.00000       9.04         2:15       1001.00000       166.83333333       167469.00000       9.68         2:30       993.00000       165.5000000       165161.00000       12.86         3:00       1000.00000       166.6666667       167192.00000       10.25         3:30       1005.00000       167.5000000       168723.00000       8.78                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:30       879.00000       146.5000000       130253.00000       17.20         0:45       907.00000       151.1666667       138005.00000       13.39         1:00       912.00000       152.0000000       139240.00000       11.09         1:15       940.00000       156.66666667       147664.00000       8.91         1:30       935.00000       155.8333333       146137.00000       9.30         1:45       988.00000       164.6666667       163376.00000       11.70         2:00       967.00000       161.1666667       156257.00000       9.04         2:15       1001.00000       166.8333333       167469.00000       9.68         2:30       993.00000       165.5000000       165161.00000       12.80         3:00       1000.00000       166.6666667       167192.00000       10.25         3:30       1005.00000       167.5000000       168723.00000       8.78                                                                                                                                                                                                                                                                                     | M O O D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | andard<br>iation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4:30       1011.00000       168.5000000       170837.00000       9.83         5:00       1022.00000       170.33333333       174412.00000       8.14         0:15       1016.00000       169.33333333       172754.00000       11.92         0:30       956.00000       159.33333333       153584.00000       15.88         0:45       839.00000       139.8333333       118515.00000       15.45         1:00       744.00000       124.0000000       93508.00000       15.82         1:15       667.00000       110.83333333       74541.00000       12.93         1:30       637.00000       106.16666667       68607.00000       13.99         1:45       617.00000       102.83333333       64133.00000       11.70         2:00       609.00000       101.5000000       63139.00000       16.28         2:30       588.00000       98.000000       58934.00000       16.18         3:30       564.00000       94.000000       53974.00000       12.99         4:30       559.00000       92.33333333       52028.00000       12.99         4:30       559.00000       92.33333333       50059.00000       10.53         5:30       545.00000       92.33333333 | 146.5000000 130253.00000 17.20 151.1666667 138005.00000 13.30 152.0000000 139240.00000 11.00 156.6666667 147664.00000 8.50 155.8333333 146137.00000 9.30 164.6666667 156257.00000 11.50 161.1666667 156257.00000 9.60 165.5000000 165161.00000 12.80 165.5000000 168723.00000 10.20 168.8333333 171317.00000 9.80 168.8333333 171317.00000 9.80 170.3333333 1724754.00000 15.80 169.3333333 1724754.00000 15.80 169.3333333 178915.00000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 178910.0000 15.80 10.8333333 5908.00000 15.80 10.8333333 5909.0000 16.20 10.8333333 5909.00000 16.20 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.8333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 10.83333333 5909.00000 10.50 | .491748<br>.391748<br>.3917412<br>.39994412<br>.39994412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412<br>.30914412 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .55422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

White the late of the rest and the rest of the same . St wind

TABLE 19.--Heart rate values for a six-minute run.

| Var                                                                                                                            | Sum                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                              | Sum of<br>Squares                                                                                                                                                                                                                           | Standard<br>Deviation                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>1:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>3:30<br>4:30<br>4:30<br>4:30<br>6:00                           | 712.00000<br>830.00000<br>862.00000<br>905.00000<br>930.00000<br>934.00000<br>966.00000<br>962.00000<br>1006.00000<br>997.00000<br>996.00000<br>1009.00000<br>1029.00000<br>1036.00000                        | 118.6666667<br>138.3333333<br>143.6666667<br>150.8333333<br>155.0000000<br>155.6666667<br>163.8333333<br>161.0000000<br>160.3333333<br>167.66666667<br>166.1666667<br>166.0000000<br>168.1666667<br>167.3333333<br>171.5000000<br>172.66666667                                    | 84998.00000<br>115348.00000<br>124276.00000<br>136777.00000<br>144516.00000<br>146020.00000<br>161889.00000<br>156228.00000<br>155460.00000<br>168884.00000<br>166326.00000<br>170133.00000<br>170133.00000<br>177121.00000<br>179406.00000 | 10.07307<br>10.30857<br>9.33095<br>7.38693<br>8.55570<br>11.20119<br>12.96791<br>11.84905<br>15.61623<br>6.50128<br>12.04021<br>14.07125<br>9.51660<br>11.55278<br>11.37981<br>10.23067                                   |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>5:30<br>8:30<br>6:30<br>8:30<br>10:30<br>14:30 | 1004.00000<br>920.00000<br>839.00000<br>682.00000<br>617.00000<br>612.00000<br>594.00000<br>578.00000<br>561.00000<br>553.00000<br>552.00000<br>527.00000<br>515.00000<br>517.00000<br>520.00000<br>522.00000 | 167.3333333<br>153.3333333<br>139.8333333<br>123.16666667<br>106.5000000<br>102.8333333<br>102.0000000<br>99.0000000<br>99.0000000<br>96.3333333<br>93.5000000<br>92.16666667<br>93.8333333<br>92.0000000<br>87.8333333<br>85.8333333<br>87.66666667<br>86.16666667<br>87.0000000 | 170266.00000 144424.00000 119005.00000 92687.00000 79072.00000 68943.00000 62998.00000 59270.00000 53043.00000 53525.00000 51545.00000 51545.00000 46731.00000 44791.00000 45394.00000 45384.00000 45628.00000                              | 21.27596<br>25.91267<br>18.35665<br>18.25833<br>17.61439<br>13.33792<br>16.10486<br>10.71448<br>9.63328<br>10.85818<br>10.74089<br>11.80537<br>8.78635<br>9.41099<br>10.83359<br>7.50111<br>9.53764<br>7.96660<br>6.54217 |

unrevenuation and the first bee invested fineline. Fir and in

TABLE 20.--Heart rate values for a seven-minute run.

| Var                                                                                                                                                  | Sum                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                              | Sum of<br>Squares                                                                                                                                                                                                                                                                                                  | Standard<br>Deviation                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:130<br>3:30<br>4:30<br>4:30<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:4 | 731.00000<br>851.00000<br>877.00000<br>946.00000<br>931.00000<br>954.00000<br>991.00000<br>1013.00000<br>997.00000<br>993.00000<br>993.00000<br>984.00000<br>1006.00000<br>1015.00000<br>1034.00000<br>1040.00000<br>1040.00000<br>807.00000<br>708.00000<br>634.00000<br>639.00000<br>585.00000<br>595.00000 | 121.8333333<br>141.8333333<br>146.1666667<br>157.6666667<br>157.6666667<br>159.0000000<br>165.1666667<br>169.0000000<br>168.8333333<br>166.1666667<br>165.5000000<br>164.0000000<br>167.6666667<br>172.3333333<br>173.3333333<br>173.3333333<br>173.3333333<br>173.3333333<br>168.6666667<br>153.3333333<br>134.5000000<br>118.0000000<br>105.6666667<br>97.5000000<br>99.1666667 | 91147.00000 121901.00000 129505.00000 150286.00000 145539.00000 152068.00000 164377.00000 174386.00000 166937.00000 165097.00000 162184.00000 169964.00000 172525.00000 172525.00000 179032.00000 179032.00000 171642.00000 141970.00000 110429.00000 184984.00000 68294.00000 68294.00000 57623.00000 59689.00000 | 20.42955<br>15.49731<br>16.22858<br>15.05545<br>14.68900<br>8.74071<br>11.80537<br>24.57641<br>18.82994<br>15.93006<br>12.29227<br>12.71220<br>16.07068<br>10.31019<br>12.81275<br>12.95634<br>16.03330<br>13.79372<br>13.44123<br>19.42936<br>16.13278<br>16.19156<br>10.82128<br>11.70328 |
| 2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30<br>6:30<br>8:30<br>10:30<br>12:30<br>14:30                                                      | 590.00000<br>560.00000<br>537.00000<br>534.00000<br>532.00000<br>532.00000<br>507.00000<br>523.00000<br>515.00000<br>498.00000<br>501.00000                                                                                                                                                                   | 98.3333333<br>93.3333333<br>89.5000000<br>89.0000000<br>88.6666667<br>88.8333333<br>88.6666667<br>84.5000000<br>87.1666667<br>85.8333333<br>83.0000000<br>83.5000000                                                                                                                                                                                                              | 58926.00000<br>58926.00000<br>49205.00000<br>48732.00000<br>48160.00000<br>47940.00000<br>43769.00000<br>46141.00000<br>44961.00000<br>42122.00000<br>42329.00000                                                                                                                                                  | 13.48579<br>13.48579<br>15.12283<br>15.53061<br>14.06651<br>12.78150<br>12.40430<br>13.61984<br>10.51507<br>12.30312<br>12.55388<br>9.95490                                                                                                                                                 |

car espain-have being course yes; manh- of Back

|  | 00000.0001 |  |
|--|------------|--|
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |
|  |            |  |

TABLE 21.--Heart rate values for an eight-minute run.

| Var                                                                                                                          | Sum                                                                                                                                                                                              | Mean                                                                                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                                                             | Standard<br>Deviation                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:30<br>4:30<br>5:00<br>6:00<br>7:00<br>8:00 | 741.00000<br>818.00000<br>840.00000<br>915.00000<br>932.00000<br>936.00000<br>962.00000<br>955.00000<br>986.00000<br>967.00000<br>967.00000<br>1010.00000<br>1019.00000<br>1044.00000            | 123.5000000<br>136.3333333<br>140.0000000<br>152.5000000<br>155.3333333<br>156.0000000<br>152.66666667<br>160.3333333<br>155.5000000<br>159.1666667<br>164.3333333<br>161.16666667<br>172.0000000<br>168.3333333<br>169.8333333<br>174.0000000<br>173.66666667  | 94445.00000 112130.00000 117990.00000 140313.00000 145552.00000 146880.00000 149336.00000 155282.00000 145833.00000 153381.00000 153381.00000 156685.00000 178424.00000 17886.00000 173805.00000 182414.00000 | 24.21363<br>11.03932<br>8.83176<br>12.45392<br>12.50067<br>13.14534<br>9.93311<br>14.43145<br>12.25969<br>16.59418<br>18.73677<br>12.93703<br>16.37580<br>13.56466<br>11.57008<br>12.20519<br>12.31260<br>10.70825                        |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>6:30<br>6:30<br>6:30<br>10:30<br>14:30       | 1033.00000<br>943.00000<br>845.00000<br>669.00000<br>645.00000<br>613.00000<br>584.00000<br>587.00000<br>579.00000<br>567.00000<br>562.00000<br>539.00000<br>539.00000<br>519.00000<br>508.00000 | 172.1666667<br>157.1666667<br>140.8333333<br>120.1666667<br>111.5000000<br>196,5000000<br>97.3333333<br>97.8333333<br>96.5000000<br>94.5000000<br>93.66666667<br>88.8333333<br>85.0000000<br>89.8333333<br>82.6666667<br>86.5000000<br>84.6666667<br>83.3333333 | 178321.00000 149837.00000 120629.00000 88179.00000 75797.00000 63581.00000 47768.00000 57041.00000 54597.00000 43772.00000 43772.00000 49757.00000 41432.00000 45769.00000 44280.00000                        | 9.72454<br>18.04901<br>18.02683<br>17.54328<br>15.51451<br>12.70827<br>13.80459<br>14.13860<br>13.60392<br>12.43248<br>15.28071<br>14.25132<br>15.78185<br>14.99889<br>9.18695<br>16.35135<br>9.26643<br>13.23254<br>15.93319<br>11.77568 |

our strainedagle or hot sholey eler taxes -- If helds

TABLE 22.--Heart rate values for a nine-minute run.

| Var                                                                                                                   | Sum                                                                                                                                                                                                                        | Mean                                                                                                                                                                                                                                                                                           | Sum of<br>Squares                                                                                                                                                                                              | Standard<br>Deviation                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>0:40<br>1:30<br>1:40<br>1:30<br>2:130<br>3:30<br>4:30<br>4:30<br>6:00<br>7:00<br>9:00         | 640.00000<br>814.00000<br>879.00000<br>913.00000<br>962.00000<br>976.00000<br>986.00000<br>1012.00000<br>109.00000<br>1011.00000<br>1031.00000<br>1036.00000<br>1049.00000<br>1058.00000                                   | 106.6666667<br>135.6666667<br>146.5000000<br>152.1666667<br>160.3333333<br>159.8333333<br>162.6666667<br>164.3333333<br>168.6666667<br>164.3333333<br>168.1666667<br>168.5000000<br>171.8333333<br>172.66666667<br>174.8333333<br>177.66666667<br>176.3333333                                  | 78808.00000 111042.00000 129417.00000 139691.00000 154898.00000 159296.00000 171906.00000 171906.00000 170953.00000 177757.00000 179422.00000 179578.00000 179578.00000 183871.00000 187300.00000              | 10.40513<br>11.03932<br>11.34460<br>12.35179<br>11.46589<br>11.53112<br>10.32796<br>13.92360<br>15.59060<br>13.82269<br>12.00694<br>10.94989<br>10.92551<br>10.38589<br>11.79265<br>9.70395<br>11.02119<br>12.16004                          |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:30<br>2:30<br>3:00<br>4:30<br>4:30<br>5:30<br>6:30<br>8:30<br>10:30 | 1011.00000<br>986.00000<br>878.00000<br>793.00000<br>715.00000<br>661.00000<br>617.00000<br>517.00000<br>584.00000<br>599.00000<br>580.00000<br>589.00000<br>589.00000<br>583.00000<br>563.00000<br>536.00000<br>536.00000 | 168.5000000<br>164.3333333<br>146.3333333<br>132.1666667<br>119.1666667<br>117.5000000<br>110.1666667<br>102.8333333<br>97.3333333<br>97.3333333<br>99.16666667<br>96.6666667<br>94.6666667<br>97.1666667<br>97.1666667<br>97.1666667<br>97.1666667<br>93.8333333<br>92.0000000<br>89.33333333 | 172403.00000 163554.00000 130996.00000 86619.00000 84411.00000 74131.00000 64175.00000 57432.00000 57432.00000 59797.00000 59797.00000 54718.00000 54718.00000 53497.00000 53497.00000 48566.00000 48672.00000 | 20.24599<br>17.44324<br>22.42915<br>19.98416<br>16.82161<br>17.73979<br>16.19156<br>12.05681.<br>13.02945<br>10.85664<br>11.63472<br>12.59233<br>13.70645<br>13.76469<br>9.51665<br>14.66174<br>11.56575<br>13.44619<br>11.69045<br>12.56450 |

The 22. - wheart rate values for a mine- rute-run.

TABLE 23.--Heart rate values for a ten-minute run.

| Var                                                                                                                                   | Sum                                                                                                                                                                                                                                                  | Mean                                                                                                                                                                                                                                                                                                    | Sum of<br>Squares                                                                                                                                                                                                                                                  | Standard<br>Deviation                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:30<br>4:30<br>5:00<br>7:00<br>8:00<br>9:00<br>10:00 | 593.00000<br>837.00000<br>971.00000<br>940.00000<br>940.00000<br>952.00000<br>966.00000<br>978.00000<br>972.00000<br>1000.00000<br>1016.00000<br>1018.00000<br>1042.00000<br>1043.00000<br>1055.00000<br>1116.00000                                  | 115.5000000<br>139.5000000<br>145.1666667<br>150.5000000<br>156.6666667<br>158.6666667<br>161.0000000<br>163.0000000<br>163.833333<br>162.0000000<br>165.8333333<br>166.6666667<br>169.3333333<br>169.6666667<br>172.3333333<br>173.6666667<br>173.8333333<br>175.8333333<br>183.5000000<br>186.0000000 | 80719.00000 117123.00000 126969.00000 136567.00000 148048.00000 151520.00000 156356.00000 160356.00000 161649.00000 158128.00000 165773.00000 167688.00000 173086.00000 173086.00000 173086.00000 173452.00000 179002.00000 181578.00000 186077.00000 203627.00000 | 11.64045<br>8.50294<br>10.28429<br>11.53690<br>12.50067<br>9.68848<br>12.88410<br>13.72589<br>10.96206<br>11.52389<br>12.40027<br>14.29219<br>14.44530<br>13.09408<br>12.72268<br>11.11156<br>10.70358<br>17.85217<br>20.14944            |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>4:30<br>5:30<br>6:30<br>6:30<br>10:30<br>12:30        | 1035.00000<br>996.00000<br>760.00000<br>734.00000<br>697.00000<br>672.00000<br>638.00000<br>634.00000<br>634.00000<br>599.00000<br>599.00000<br>591.00000<br>581.00000<br>581.00000<br>543.00000<br>543.00000<br>565.00000<br>566.00000<br>567.00000 | 172.5000000<br>166.0000000<br>144.5000000<br>126.6666667<br>122.333333<br>116.1666667<br>112.0000000<br>111.0000000<br>106.3333333<br>105.6666667<br>99.8333333<br>100.3333333<br>99.6666667<br>97.8333333<br>98.5000000<br>96.8333333<br>94.1666667<br>90.5000000<br>94.3333333<br>94.5000000          | 179681.00000 166498.00000 127181.00000 97156.00000 90662.00000 75744.00000 74558.00000 68174.00000 67406.00000 60711.00000 61158.00000 6380.00000 58289.00000 58289.00000 57087.00000 54019.00000 53898.00000 53898.00000                                          | 15.12283<br>15.24467<br>19.49102<br>13.33667<br>13.18585<br>13.80459<br>9.79796<br>11.24278<br>8.16497<br>9.09212<br>13.49691<br>12.30718<br>12.48466<br>13.12123<br>12.22702<br>12.85950<br>12.76584<br>11.51955<br>10.05319<br>13.11106 |

TABLE 24.---Oxygen pulse values for five-minute rest.

|      | F | ive-minute | restMean | oxygen | pulse-mls. |
|------|---|------------|----------|--------|------------|
| 1:00 |   | 5.57       |          |        |            |
| 2:00 |   | 5.25       |          |        |            |
| 3:00 |   | 4.83       |          |        |            |
| 4:00 |   | 4.82       |          |        |            |
| 5:00 |   | 4.74       |          |        |            |

TABLE 25.--Oxygen pulse values for a five-minute warm up and fifteen-minute recovery period.

|       | Fj | veminute | warm | upMean | oxygen | pulse-mls. |
|-------|----|----------|------|--------|--------|------------|
| 1:00  |    | 10.53    |      |        |        |            |
| 2:00  |    | 12.51    |      |        |        |            |
| 3:00  |    | 14.44    |      |        |        |            |
| 4:00  |    | 15.30    |      |        |        |            |
| 5:00  |    | 13.16    |      |        |        |            |
|       |    |          |      |        |        |            |
| 0:15  |    | 10.79    |      |        |        |            |
| 0:30  |    | 10.44    |      |        |        |            |
| 0:45  |    | 10.99    |      |        |        |            |
| 1:00  |    | 10.47    |      |        |        |            |
| 1:15  |    | 7.74     |      |        |        |            |
| 1:30  |    | 4.20     |      |        |        |            |
| 1:45  |    | 4.78     |      |        |        |            |
| 2:00  |    | 5.67     |      |        |        |            |
| 2:30  |    | 4.00     |      |        |        |            |
| 3:00  |    | 5.62     |      |        |        |            |
| 3:30  |    | 4.01     |      |        |        |            |
| 4:00  |    | 5.06     |      |        |        |            |
| 4:30  |    | 3.39     |      |        |        |            |
| 5:00  |    | 3:61     |      |        |        |            |
| 5:30  |    | 3:24     |      |        |        |            |
| 6:30  |    | 3.30     |      |        |        |            |
| 8:30  |    | 3.44     |      |        |        |            |
| 10:30 |    | 3.36     |      |        |        |            |
| 12:30 |    | 3.50     |      | ,      |        |            |
| 14:30 |    | 3.48     |      |        |        |            |

|       |       |                     |              |       |       |       |      |      | Recovery | ry   |      |      |       |      |      |      |      |      |       |       |       |
|-------|-------|---------------------|--------------|-------|-------|-------|------|------|----------|------|------|------|-------|------|------|------|------|------|-------|-------|-------|
| Run   |       | 0:15                | 0:30         | 0:45  | 1:00  | 1:15  | 1:30 | 1:45 | 2:00     | 2:30 | 3:00 | 3:30 | 4:00  | 4:30 | 5:00 | 5:30 | 6:30 | 8:30 | 10:30 | 12:30 | 14:30 |
| 0:15  | 8.77  | 8.79                | 9.80         | 11.53 | 9.28  | 7.88  | 46.9 | 6.31 | 04.4     | 4.35 | 4.78 | 4.65 | 3.67  | 40.4 | 4.38 | 3.69 | 3.68 | 3.99 | 3.49  | 3.91  | 3.83  |
| 0:30  | 11.76 | 11.274              | 11.274 12.55 | 11.04 | 7.10  | 8.15  | 7.81 | 5.72 | 5.15     | 3.07 | 3.84 | 40.4 | 3.50  | 3.90 | 3.91 | 2.76 | 3.01 | 3.06 | 2.99  | 2.91  | 2.92  |
| 0:45  | 16.66 | 15.03               | 13.82        | 13.70 | 11.75 | 9.04  | 7.51 | 7.58 | 5.21     | 5.16 | 4.28 | 4.34 | 4.54  | 3.90 | 4.15 | 3.94 | 3.86 | 4.15 | 4.17  | 4.12  | 4.55  |
| 1:00  | 17.68 | 15.44               | 13.85        | 14.25 | 11.88 | 8.63  | 99.9 | 5.38 | 5.22     | 4.69 | 4.43 | 4.63 | 4.22  | 4.93 | 4.11 | 3.66 | 3.55 | 3.76 | 3.55  | 3.67  | 3.78  |
| 1:15  | 18.88 | 16.01               | 13.10        | 12.38 | 9.21  | 7.63  | 5.69 | 5.14 | 96.4     | 3.95 | 3.94 | 94.4 | 40.4  | 3.50 | 3.41 | 2.94 | 2.77 | 3.04 | 3.01  | 3.07  | 2.84  |
| 1:30  | 20.57 | 16.32               | 14.32        | 9.19  | 8.80  | 8.67  | 7.64 | 5.99 | 5.01     | 5.92 | 4.70 | 5.21 | 4.42  | 4.39 | 3.52 | 3.41 | 3.48 | 3.51 | 3.69  | 3.75  | 3.64  |
| 1:45  | 20.33 | 17.65               | 14.65        | 14.68 | 9.32  | 8.93  | 7.25 | 5.21 | 19.4     | 5.76 | 5.38 | 64.4 | 4.22  | 4.53 | 96.4 | 3.17 | 3.49 | 3.42 | 3.30  | 3.22  | 3.32  |
| 2:00  | 20.23 | 14.80               | 13.60        | 12.52 | 11.34 | 9.10  | 8.20 | 6.95 | 5.87     | 5.15 | 5.35 | 4.28 | 4.53  | 3.78 | 24.4 | 5.69 | 3.87 | 4.04 | 4.08  | 3.78  | 3.94  |
| 2:15  | 20.23 | $13.\underline{6}6$ | 12.89        | 14.31 | 10.17 | 60.6  | 7.79 | 5.68 | 6.41     | 90.5 | 4.58 | 4.79 | 4.85  | 4.89 | 4.82 | 4.26 | 4.31 | 4.32 | 4.39  | 4.36  | 4.29  |
| 2:30  | 20.33 | 13.91               | 13.20        | 12.06 | 10.77 | 10.26 | 29.6 | 7.33 | 44.9     | 5.38 | 4.95 | 5.15 | 99.4  | 4.33 | 4.36 | 4.59 | 4.38 | 4.59 | 49.4  | 4.68  | 4.81  |
| 3:00  | 19.93 | 15.03               | 13.39        | 11.09 | 10.81 | 9.87  | 8.24 | 7.10 | 5.15     | 5.21 | 4.54 | 4.32 | 4.97  | 4.37 | 4.08 | 3.23 | 3.40 | 3.63 | 3.47  | 3.44  | 3.46  |
| 3:30  | 19.79 | 15.68               | 12.58        | 11.92 | 9.76  | 7.35  | 5.86 | 00.9 | 6.15     | 5.03 | 4.32 | 94.4 | 4.73  | 4.72 | 4.42 | 3.62 | 3.72 | 3.72 | 3.70  | 3.94  | 3.79  |
| 4:00  | 19.97 | 16.77               | 15.75        | 13.13 | 11.11 | 10.85 | 8.31 | 8.03 | 6.27     | 5.59 | 5.15 | 4.86 | 5.07  | 4.43 | 4.54 | 3.99 | 3.41 | 3.44 | 3.61  | 3.55  | 3.61  |
| 4:30  | 20.08 | 17.40               | 16.48        | 13.07 | 10.10 | 8.37  | 7.00 | 68.9 | 5.86     | 48.4 | 4.22 | 5.53 | 4.27  | 4.35 | 04.4 | 3.45 | 3.60 | 3.56 | 3.40  | 3.80  | 3.60  |
| 5:00  | 18.79 | 14.84               | 12.69        | 10.55 | 9.23  | 8.61  | 61.9 | 5.18 | 46.4     | 4.88 | 5.10 | 5.48 | 69.4  | 4.82 | 4.81 | 3.55 | 3.61 | 3.53 | 3.65  | 3.72  | 3.70  |
| 00:9  | 18.66 | 16.15               | 14.13        | .2138 | 9.50  | 7.82  | 7.16 | 8.04 | 5.85     | 49.9 | 5.19 | 4.50 | 4.47  | 3.69 | 3.97 | 3.23 | 3.31 | 3.24 | 3.29  | 3.28  | 3.26  |
| 7:00  | 22.34 | 14.64               | 14.59        | 11.43 | 10.90 | 8.75  | 7.20 | 6.85 | 6.80     | 2.67 | 4.60 | 64.4 | ħ9° ħ | 4.27 | 4.25 | 2.94 | 3.09 | 2.88 | 3.04  | 3.14  | 3.13  |
| 8:00  | 19.47 | 15.90               | 15.38        | 14.10 | 10.20 | 8.02  | 89.9 | 6.92 | 5.05     | 5.11 | 5.31 | 99.6 | 5.12  | 4.42 | 4.01 | 3.99 | 3.78 | 4.10 | 3.92  | 4.00  | 4.07  |
| 9:00  | 22.34 | 15.06               | 13.15        | 11.50 | 12.19 | 13.05 | 7.93 | 6.62 | 5.84     | 5.59 | 5.79 | 4.89 | 4.69  | 4.74 | 4.63 | 3.13 | 3.16 | 3.29 | 3.36  | 3.46  | 3.46  |
| 10:00 | 18.82 | 15.95               | 12.22        | 11.62 | 12.51 | 8.38  | 6.81 | 6.59 | 5.27     | 4.91 | 5.21 | 4.52 | 4.90  | 4.59 | 44.4 | 3.61 | 3.68 | 3.78 | 3.93  | 3.78  | 3.77  |

TABLE 27.--Oxygen uptake values (L/Min) for five minute rest.

|                | Mean  | Standard<br>Deviation |
|----------------|-------|-----------------------|
| 1,00,          | 0.367 | 0.135                 |
| 2 1 00 "       | 0.332 | 0.097                 |
| 31001          | 0.309 | 0.046                 |
| 4 * 00 **      | 0.311 | 0.035                 |
| 5 <b>'</b> 00" | 0.305 | 0.043                 |
|                |       |                       |

TABLE 28.--Oxygen uptake (L/Min) values for a five minute warm-up.

| Mean                                                                                                                                                                                                                          | Standard<br>Deviation                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1'00" 2'00" 1.704 3'00" 1.985 4'00" 2.094 5'00" 1.821 15" 1.510 30" 1.288 45" 1.178 1'00" 0.961 1'15" 0.674 1'30" 0.358 1'45" 0.404 2'00" 0.476 2'30" 0.328 3'00" 0.328 3'00" 0.444 3'30" 0.327 4'00" 0.405 4'30" 0.264 5'00" | 0.514<br>0.577<br>0.467<br>0.613<br>0.748<br>0.668<br>0.647<br>0.625<br>0.597<br>0.147<br>0.208<br>0.1208<br>0.120<br>0.124 |

ANLE 27 .-- Caygen uptake values () "Wind for five

evil a riv mula, sulla, salva mente mente -- Ba, diere

TABLE 29.--Oxygen uptake (L/Min) values for a fifteen second run.

| Var                                                                                                                  | Sum                                                                                                                                                    | Mean                                                                                                                                                            | Sum of<br>Squares                                                                                                               | Standard<br>Deviation                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>5:30 | 6.03700<br>6.53800<br>7.39700<br>5.91700<br>4.02800<br>3.45900<br>2.88600<br>2.19000<br>1.82900<br>1.87300<br>2.09900<br>1.59900<br>1.59900<br>1.73400 | 1.0061667 1.0895556 1.2328333 0.9861667 0.6713333 1.5765000 0.4810000 0.3650000 0.3048333 0.3121667 0.3553333 0.3498333 0.2665000 0.3018333 0.3431667 0.2890000 | 6.68770 7.98857 9.62818 6.55030 3.04767 2.15448 1.42861 1.42861 0.59411 0.68557 0.82679 0.77683 0.44894 0.58623 0.63923 0.55248 | 0.35028<br>0.41577<br>0.31904<br>0.37819<br>0.26212<br>0.17909<br>0.08994<br>0.05784<br>0.08553<br>0.14205<br>0.11766<br>0.09223<br>0.06754<br>0.08901<br>0.08081<br>0.10134 |

TABLE 30.--Oxygen uptake (L/Min) values for a thirty-second run.

| Var                                                                                                          | Sum                                                                                                                                                                                     | Mean                                                                                                                                                                                                                      | Sum of<br>Squares                                                                                                                          | Standard<br>Deviation                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:00<br>3:30<br>4:30<br>5:30 | 6.21400<br>9.16100<br>9.07500<br>9.20400<br>6.98900<br>3.54800<br>3.70000<br>3.24700<br>2.53700<br>2.30100<br>1.39800<br>1.67900<br>1.85500<br>1.60100<br>1.75300<br>1.81400<br>1.36500 | 1.0356667<br>1.5268333<br>1.5125000<br>1.5340000<br>1.1648333<br>0.5913333<br>0.6166667<br>0.5411667<br>0.4228333<br>0.3835000<br>0.2330000<br>0.2798333<br>0.3091667<br>0.2668333<br>0.2921667<br>0.3023333<br>0.2275000 | 6.59876 14.19961 14.41667 14.38968 8.65673 2.15685 2.39471 1.81784 1.12585 0.90055 0.34550 0.48606 0.59301 0.43680 0.52656 0.56380 0.37895 | 0.18062<br>0.20605<br>0.37168<br>0.23270<br>0.32116<br>0.10844<br>0.15036<br>0.11016<br>0.10308<br>0.06020<br>0.06287<br>0.05696<br>0.06247<br>0.04383<br>0.05366<br>0.05543<br>0.11698 |

svia not (mb/vi) asu zv sandou newgad- To asua

ANIE 28. -- Cayen manual land and an allegation of the

TABLE 29.--Oxygen uptake (L/Min) values for a fifteen second run.

| Var                                                                                                                  | Sum                                                                                                                                                               | Mean                                                                                                                                                            | Sum of<br>Squares                                                                                                               | Standard<br>Deviation                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30 | 6.03700<br>6.53800<br>7.39700<br>5.91700<br>4.02800<br>3.45900<br>2.88600<br>2.19000<br>1.82900<br>1.87300<br>2.13200<br>2.09900<br>1.59900<br>1.59900<br>1.73400 | 1.0061667 1.0895556 1.2328333 0.9861667 0.6713333 1.5765000 0.4810000 0.3650000 0.3048333 0.3121667 0.3553333 0.3498333 0.2665000 0.3018333 0.3431667 0.2890000 | 6.68770 7.98857 9.62818 6.55030 3.04767 2.15448 1.42861 1.42861 0.59411 0.68557 0.82679 0.77683 0.44894 0.58623 0.63923 0.55248 | 0.35028<br>0.41577<br>0.31904<br>0.37819<br>0.26212<br>0.17909<br>0.08994<br>0.05784<br>0.08553<br>0.14205<br>0.11766<br>0.09223<br>0.06754<br>0.08901<br>0.08081<br>0.10134 |

TABLE 30.--Oxygen uptake (L/Min) values for a thirty-second run.

| Var                                                                                                                  | Sum                                                                                                                                                                                     | Mean                                                                                                                                                                                                                      | Sum of<br>Squares                                                                                                                          | Standard<br>Deviation                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:30<br>5:30 | 6.21400<br>9.16100<br>9.07500<br>9.20400<br>6.98900<br>3.54800<br>3.70000<br>3.24700<br>2.53700<br>2.30100<br>1.39800<br>1.67900<br>1.85500<br>1.60100<br>1.75300<br>1.81400<br>1.36500 | 1.0356667<br>1.5268333<br>1.5125000<br>1.5340000<br>1.1648333<br>0.5913333<br>0.6166667<br>0.5411667<br>0.4228333<br>0.3835000<br>0.2330000<br>0.2798333<br>0.3091667<br>0.2668333<br>0.2921667<br>0.3023333<br>0.2275000 | 6.59876 14.19961 14.41667 14.38968 8.65673 2.15685 2.39471 1.81784 1.12585 0.90055 0.34550 0.48606 0.59301 0.43680 0.52656 0.56380 0.37895 | 0.18062<br>0.20605<br>0.37168<br>0.23270<br>0.32116<br>0.10844<br>0.15036<br>0.11016<br>0.10308<br>0.06020<br>0.06287<br>0.05696<br>0.06247<br>0.04383<br>0.05366<br>0.05543<br>0.11698 |

north: a mn semicu (n.M.) emand magyaber. 25 2324

and the state of t

TABLE 31.--Oxygen uptake values (L/Min) for a firty-five second run.

| Var                                                                                                  | Sum                                                                                                                                                     | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                    | Standard<br>Deviation                                                                                                                                  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45                                                                                 | 5.22000<br>10.72700<br>14.74000                                                                                                                         | 0.8700000<br>1.7878333<br>2.4566667                                                                                                                                                             | 4.96768<br>19.45178<br>36.67765                                                                                                                                      | 0.29199<br>0.23396<br>0.30541                                                                                                                          |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>4:30<br>5:30 | 12.92000<br>10.53200<br>8.69500<br>6.15700<br>4.45600<br>3.01000<br>2.99000<br>2.41600<br>2.1600<br>2.15300<br>2.26300<br>1.89700<br>2.03300<br>1.91900 | 2.1533333<br>1.7553333<br>1.4491667<br>1.0261667<br>0.7426667<br>0.5016667<br>0.4983333<br>0.4026667<br>0.4126667<br>0.3515000<br>0.3588333<br>0.3771667<br>0.3161667<br>0.3388333<br>0.3198333 | 27.91537<br>19.19764<br>13.38002<br>6.65795<br>3.33803<br>1.57435<br>1.67510<br>1.00771<br>1.03986<br>0.75815<br>0.78052<br>0.88245<br>0.61586<br>0.70048<br>0.62625 | 0.13734<br>0.37695<br>0.39485<br>0.26071<br>0.07578<br>0.11343<br>0.19240<br>0.08351<br>0.06016<br>0.05803<br>0.03989<br>0.07605<br>0.04823<br>0.04998 |

avilaviati s not (ali)li sollav ednigs seavo-- is and

TABLE 32.--Oxygen uptake (L/Min) values for a one-minute run.

| Var                                                                                          | Sum                                                                                                                                                                 | Mean                                                                                                                                        | Sum of<br>Squares                                                                                                                                                    | Standard<br>De <b>viati</b> on                                                                                                                                    |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00                                                                 | 5.62500<br>8.96300<br>14.29100<br>16.14400                                                                                                                          | 0.9375000<br>1.4938333<br>2.3818333<br>2.6906667                                                                                            | 5.71494<br>14.11901<br>34.53282<br>44.52791                                                                                                                          | 0.29715<br>0.38204<br>0.31434<br>0.46886                                                                                                                          |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30 | 13.74000<br>11.19300<br>8.31000<br>6.18000<br>4.05600<br>3.41200<br>2.47600<br>2.41500<br>2.23800<br>2.40600<br>2.00400<br>1.96100<br>2.25300<br>1.85400<br>1.73600 | 2.2900000 1.8655000 1.3850000 1.0300000 0.6760000 1.5686667 0.4126667 0.4025000 0.3730000 0.3740000 0.3268333 0.3755000 0.3090000 0.2893333 | 32.38745<br>21.19858<br>12.15479<br>6.74565<br>2.92201<br>1.99612<br>1.11952<br>1.03591<br>0.93369<br>0.72014<br>0.71911<br>0.74313<br>0.89726<br>0.61596<br>0.54328 | 0.42962<br>0.24221<br>0.35929<br>0.27577<br>0.18982<br>0.10566<br>0.13983<br>0.11302<br>0.14065<br>0.06701<br>0.09977<br>0.14298<br>0.10125<br>0.09282<br>0.09055 |

Sold 32 .-- Oxygen uptake (D/Min) values for a one-staube run

TABLE 33.--Oxygen uptake values (L/Min) for a one-minute fifteen-secong run.

| Var                                                                                                  | Sum                                                                                                                                                                 | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                   | Standard<br>Deviation                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00                                                                         | 6.03100<br>10.13600<br>14.35600<br>16.79400<br>17.13000                                                                                                             | 1.0051667<br>1.6893333<br>2.3926667<br>2.7990000<br>2.8550000                                                                                                                                   | 6.93349<br>17.44838<br>35.15729<br>47.70688<br>49.68568                                                                                                             | 0.41745<br>0.25507<br>0.40204<br>0.37429<br>0.39485                                                                                                               |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:30<br>5:30 | 14.29400<br>10.19700<br>7.50100<br>4.47400<br>3.41000<br>2.42800<br>2.22400<br>2.13700<br>1.79600<br>1.81200<br>1.97000<br>1.77300<br>1.59500<br>1.43400<br>1.30000 | 2.3823333<br>1.6995000<br>1.2501667<br>0.7456667<br>0.5683333<br>0.4046667<br>0.3706667<br>0.3561667<br>0.2993333<br>0.3020000<br>0.3283333<br>0.2955000<br>0.2658333<br>0.2390000<br>0.2166667 | 34.90245<br>17.96867<br>9.90846<br>4.15448<br>2.19030<br>1.18466<br>0.92689<br>0.86835<br>0.63764<br>0.60714<br>0.71496<br>0.68182<br>0.48866<br>0.43269<br>0.37026 | 0.41216<br>0.35746<br>0.32587<br>0.40456<br>0.22463<br>0.20106<br>0.14320<br>0.14644<br>0.14145<br>0.10947<br>0.11674<br>0.17771<br>0.11372<br>0.13414<br>0.13311 |

feld. 33 -- Oxygen uptake values (L.Min) for a one-windute

TABLE 34.--Oxygen uptake values (L/Min) for a one-minute thirty-second run.

| Var                                                                                                  | Sum                                                                                                                       | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                   | Standard<br>Deviation                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30                                                         | 7.26800<br>9.85000<br>15.22300<br>17.26500<br>18.32100<br>18.68200                                                        | 9.2113333<br>1.6416667<br>2.5371667<br>2.8775000<br>3.0535000<br>3.1136667                                                                                                                      | 8.94438<br>16.57229<br>39.02251<br>50.24879<br>56.15702<br>58.60376                                                                                                 | 0.16758<br>0.28350<br>0.28257<br>0.33727<br>0.20681<br>0.29470                                                                                                    |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>4:30<br>4:30<br>5:30 | 15.16200 12.30300 6.43300 4.97100 4.35300 3.65800 2.73000 2.28700 2.66200 2.09200 2.44700 2.04800 1.97800 1.57900 1.60500 | 2.5270000<br>2.0505000<br>1.0721667<br>0.8285000<br>0.7255000<br>0.6096667<br>0.4550000<br>0.3811667<br>0.4436667<br>0.4436667<br>0.4078333<br>0.3413333<br>0.3296667<br>0.2631667<br>0.2675000 | 38.61995<br>25.62839<br>7.73838<br>4.30411<br>3.31050<br>2.43339<br>1.30105<br>0.92445<br>1.22850<br>0.74831<br>1.06716<br>0.72441<br>0.68182<br>0.45820<br>0.46652 | 0.24722<br>0.28323<br>0.41015<br>0.19268<br>0.17459<br>0.20161<br>0.10854<br>0.10269<br>0.09743<br>0.06148<br>0.11764<br>0.07121<br>0.07712<br>0.09237<br>0.08624 |

ANDE 14. -- Oxygen upters velocity to a consendut

TABLE 35.--Oxygen uptake values (L/Min) for a one-minute forty-five second run.

| Var                                                                                          | Sum                                                                                                                                                                             | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                    | Standard<br>Deviation                                                                                                                       |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30                                                 | 6.93300<br>9.51700<br>14.32900<br>17.13900<br>16.68300<br>18.59600<br>19.39100                                                                                                  | 1.1555000<br>1.5861667<br>2.3881667<br>2.8565000<br>2.7805000<br>3.0993333<br>3.2318333                                                                                                         | 8.43390<br>15.42949<br>34.45169<br>49.59848<br>46.82346<br>58.20690<br>63.17629                                                                                      | 0.29080<br>0.25843<br>0.21525<br>9.35803<br>0.29542<br>0.33814<br>0.31869                                                                   |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:00<br>3:30<br>4:30<br>5:30 | 15.80000<br>12.32200<br>10.29000<br>5.35200<br>4.44500<br>3.49200<br>2.49100<br>2.33000<br>2.83300<br>2.83300<br>2.74800<br>2.18500<br>2.18500<br>2.26000<br>2.41700<br>1.57100 | 2.6333333<br>2.0536667<br>1.7150000<br>0.8920000<br>0.7408333<br>0.5820000<br>0.4151667<br>0.3883333<br>0.4721667<br>0.4580000<br>0.3641667<br>0.3430000<br>0.3766667<br>0.4028333<br>0.2618333 | 42.89321<br>26.45270<br>18.50576<br>5.41899<br>3.46123<br>2.18979<br>1.14549<br>0.97395<br>1.41432<br>1.33973<br>0.82307<br>0.74932<br>0.89110<br>1.03704<br>0.44654 | 0.50726<br>0.47905<br>0.41435<br>0.35917<br>0.18342<br>0.17745<br>0.14921<br>0.11758<br>0.12383<br>0.12740<br>0.07398<br>0.09319<br>0.08391 |

MARK 35. -- Copper Hotels value (LAMITS for a con-minute for the for the law line.

TABLE 36.--Oxygen uptake values (L/Min) for a two-minute run.

| Var                                                                                                  | Sum                                                                                                                                                                 | Mean                                                                                                                                                                               | Sum of<br>Squares                                                                                                                                                    | Standard<br>De <b>viati</b> on                                                                                                                         |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00                                         | 5.31400<br>8.86200<br>13.00000<br>16.33400<br>17.19900<br>18.30400<br>19.87300<br>19.37300                                                                          | 0.8856667<br>1.4770000<br>2.1666667<br>2.7223333<br>2.8665000<br>3.0506667<br>3.3121667<br>3.2288333                                                                               | 5.45928<br>13.95670<br>29.00843<br>45.23100<br>49.79203<br>56.45194<br>66.67494<br>63.13073                                                                          | 0.38803<br>0.41654<br>0.41031<br>0.39100<br>0.31340<br>0.35001<br>0.41286<br>0.34016                                                                   |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>4:30<br>5:30 | 13.87300<br>11.95100<br>9.41000<br>6.78700<br>4.73100<br>4.14700<br>3.37500<br>2.84400<br>2.51800<br>2.66400<br>2.11300<br>2.21000<br>1.81300<br>2.16800<br>1.81800 | 2.3121667<br>1.9918333<br>1.5683333<br>1.1311667<br>0.7885000<br>0.6911667<br>0.5625000<br>0.4740000<br>0.4196667<br>0.4440000<br>0.3521667<br>0.3683333<br>0.3021667<br>0.3613333 | 33.85159<br>25.62391<br>15.45596<br>7.96997<br>4.05448<br>3.94889<br>1.97615<br>1.39395<br>1.14719<br>1.29224<br>0.76703<br>0.85207<br>0.57160<br>0.80082<br>0.56579 | 0.59580<br>0.60324<br>0.37362<br>0.24197<br>0.25459<br>0.19111<br>0.12467<br>0.09580<br>0.13451<br>0.14794<br>0.06768<br>0.08724<br>0.06895<br>0.05907 |

MELE 35 .-- Oxygen uptake values (L.Win) for a two-minute run.

TABLE 37.--Oxygen uptake values (L/Min) for a two-minute fifteen-second run.

| Var                                                                                                                          | Sum                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                | Sum of<br>Squares                                                                                                                                                                                            | Standard<br>Deviation                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00 | 6.06500<br>7.55900<br>11.72700<br>14.56400<br>17.21900<br>15.80200<br>17.54800<br>17.40300<br>17.94400<br>12.84100<br>11.15400<br>10.23600<br>6.07400<br>4.89200<br>3.71500<br>2.86100<br>3.15500<br>2.46500 | 1.0108333<br>1.2598333<br>1.9545000<br>2.4273333<br>2.8698333<br>2.6336667<br>2.9246667<br>2.9005000<br>2.9906667<br>2.1401667<br>1.8590000<br>1.6070000<br>1.0123333<br>0.8153333<br>0.8153333<br>0.6191667<br>0.4768333<br>0.5258333<br>0.4108333 | 6.58686<br>9.97499<br>24.74247<br>38.06435<br>50.63399<br>45.04189<br>55.40828<br>54.06122<br>55.17836<br>30.02752<br>22.24261<br>19.68271<br>6.55418<br>4.26114<br>2.31570<br>1.42877<br>1.80451<br>1.16405 | 0.30205<br>0.30063<br>0.60366<br>0.73657<br>0.49363<br>0.82761<br>0.90402<br>0.84662<br>0.55024<br>0.71353<br>0.54906<br>0.66635<br>0.28470<br>0.23347<br>0.05566<br>0.11362<br>0.17059<br>0.17398 |
| 3:00<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30                                                                                 | 2.25900<br>2.29400<br>2.30100<br>2.33000<br>2.26200<br>2.02600                                                                                                                                               | 0.3765000<br>0.3823333<br>0.3835000<br>0.3883333<br>0.3770000<br>0.3376667                                                                                                                                                                          | 0.90533<br>0.91499<br>0.94042<br>0.94869<br>0.88594<br>0.69216                                                                                                                                               | 0.10471<br>0.08709<br>0.10769<br>0.09368<br>0.08144<br>0.04012                                                                                                                                     |
| J • J •                                                                                                                      | 2,02000                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     | 0.07210                                                                                                                                                                                                      | 0.01012                                                                                                                                                                                            |

INUE 57, -- Oxygen uptake valies (LOMA) for a for-minure fullescope one

TABLE 38.--Oxygen uptake values (L/Min) for a two-minute thirty-second run.

| Var                                                                                  | Sum                                                                                                                                                                 | Mean                                                                                                                                                                               | Sum of<br>Squares                                                                                                                                        | Standard<br>Deviation                                                                                                                                             |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30         | 5.51200<br>8.72200<br>13.16100<br>15.62100<br>16.29.00<br>16.38800<br>17.20200<br>19.37700<br>19.47500<br>18.00100                                                  | 0.9186667<br>1.4536667<br>2.1935000<br>2.6035000<br>2.7151667<br>2.7313333<br>2.8670000<br>3.2295000<br>3.2458333<br>3.0001667                                                     | 5.85123<br>14.12028<br>31.29498<br>43.69704<br>47.03789<br>47.92454<br>52.40811<br>64.25189<br>65.30315<br>58.88461<br>31.97911                          | 0.39687<br>0.53692<br>0.69661<br>0.77817<br>0.74901<br>0.79542<br>0.78613<br>0.57860<br>0.64661<br>0.98779                                                        |
| 0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30 | 13.35000<br>11.54600<br>8.55300<br>6.09500<br>5.12600<br>4.33600<br>3.49700<br>2.94300<br>2.58100<br>2.44000<br>2.49500<br>2.29000<br>2.11300<br>2.02300<br>2.16400 | 1.9243333<br>1.4255000<br>1.0158333<br>0.8543333<br>0.7226667<br>0.5828333<br>0.4905000<br>0.4301667<br>0.4066667<br>0.4158333<br>0.3816667<br>0.3521667<br>0.3521667<br>0.3606667 | 23.01797<br>13.77125<br>6.66918<br>5.02112<br>3.90368<br>2.14223<br>1.53540<br>1.18044<br>1.09065<br>1.08547<br>0.96883<br>0.78890<br>0.72544<br>0.88596 | 0.39990<br>0.39990<br>0.56195<br>0.30909<br>0.35828<br>0.38992<br>0.14427<br>0.13554<br>0.13554<br>0.14028<br>0.09794<br>0.13770<br>0.09463<br>0.09311<br>0.14525 |

remaining a real facilities which were a solidation of the second range of the second

TABLE 39.--Oxygen uptake values (L/Min) for a three-minute run.

| Var                                                                                                                                                                  | Sum                                                                                                                                                                                                                                                        | Mean                                                                                                                                                                                                                                                                                        | Sum of<br>Squares                                                                                                                                                                                                                                           | Standard<br>Deviation                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:15<br>0:30<br>0:45<br>0:30<br>0:45<br>1:30<br>1:45<br>2:30<br>3:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30 | 5.95000<br>10.26400<br>14.61900<br>16.41500<br>17.85200<br>18.69300<br>19.49200<br>17.84800<br>18.08300<br>18.71100<br>18.69200<br>14.29400<br>11.53200<br>8.16900<br>6.67900<br>5.58400<br>4.34700<br>3.70800<br>2.73200<br>2.66100<br>2.32500<br>2.18800 | 0.9916667<br>1.7106667<br>2.4365000<br>2.7358333<br>2.9753333<br>3.1155000<br>3.2486667<br>2.9746667<br>3.0138333<br>3.1185000<br>3.1153333<br>2.38233333<br>1.9220000<br>1.3615000<br>1.3615000<br>1.3615000<br>0.7245000<br>0.6180000<br>0.4553333<br>0.4435000<br>0.3875000<br>0.3646667 | 6.10216<br>17.75482<br>36.19400<br>45.77235<br>54.31778<br>58.78503<br>63.72179<br>53.73543<br>56.25715<br>60.20436<br>58.33950<br>35.59385<br>23.34548<br>11.21794<br>8.07725<br>5.59653<br>3.44747<br>2.51519<br>1.32583<br>1.29977<br>1.03528<br>0.90826 | 0.20087<br>0.19826<br>0.33906<br>0.41561<br>0.49033<br>0.33075<br>0.28241<br>0.35877<br>0.59296<br>0.60912<br>0.14676<br>0.13846<br>0.13846<br>0.138847<br>0.21149<br>0.12795<br>0.15467<br>0.16392<br>0.14858 |
| 4:00<br>4:30<br>5:00<br>5:30                                                                                                                                         | 2.10400<br>2.24200<br>2.06300<br>1.68400                                                                                                                                                                                                                   | 0.3506667<br>0.3736667<br>0.3438333<br>0.2806667                                                                                                                                                                                                                                            | 0.79021<br>0.90216<br>0.74224<br>0.54782                                                                                                                                                                                                                    | 0.10238<br>0.11349<br>0.08114<br>0.12262                                                                                                                                                                       |

88

AMES 39. -- Oxygen uptake raines (Lydina Tor a Pares-minus

TABLE 40.--Oxygen uptake values (L/Min) for a three-minute thirty-second run.

| Var                                                                                                          | Sum                                                                                                                                                                            | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                           | Standard<br>Deviation                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:00<br>3:30                 | 6.78300<br>11.07300<br>15.20400<br>17.78700<br>17.43600<br>17.91300<br>19.89000<br>19.41400<br>17.73600<br>18.42200<br>19.89200<br>19.14700                                    | 1.1305000<br>1.8455000<br>2.5340000<br>2.9645000<br>2.9060000<br>2.9855000<br>3.3150000<br>3.2356667<br>2.9560000<br>3.0703333<br>3.3153333<br>2.1911667                                        | 7.77560<br>20.93609<br>39.04180<br>52.8955;<br>50.86540<br>54.49218<br>66.38470<br>63.11432<br>52.72310<br>57.65147<br>66.84908<br>61.94471 | 0.14658<br>0.31650<br>0.32089<br>0.18218<br>0.19818<br>0.45009<br>0.29978<br>0.24376<br>0.24310<br>0.46686<br>0.42437                                             |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30 | 15.26000<br>11.36100<br>9.15400<br>6.41300<br>4.78300<br>3.34400<br>3.14800<br>3.21700<br>2.61500<br>2.14500<br>2.32400<br>2.32400<br>2.32400<br>2.35500<br>2.21000<br>1.85000 | 2.5433333<br>1.8935000<br>1.5256667<br>1.0688333<br>0.7971667<br>0.5573333<br>0.5246667<br>0.5361667<br>0.4358333<br>0.3575000<br>0.3873333<br>0.4003333<br>0.3925000<br>0.3683333<br>0.3083333 | 40.61959 22.34208 14.61812 7.01683 4.03828 2.09227 1.77959 1.85553 1.25667 0.80940 9.03627 1.00354 0.94651 0.84760 0.57733                  | 0.60139<br>0.40744<br>0.36115<br>0.18022<br>0.21234<br>0.21380<br>0.15996<br>0.16167<br>0.15295<br>0.09226<br>0.08498<br>0.09159<br>0.06659<br>0.08196<br>0.03719 |

Figure 40. -- Oxygon uptake values (1 Win) for a three-minute tolly-second run.

TABLE 41.--Oxygen uptake values (L/Min) for a four-minute run.

| Var                                                                                                                                                                                                                                       | Sum                                                                                                                                                                                                                                                                                                                                         | Mean                                                                                                                                                                                                                                                                                                                               | Sum of<br>Squares                                                                                                                                                                                                        | Standard<br>Deviation                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:35<br>1:35<br>2:15<br>0:35<br>3:30<br>0:15<br>0:35<br>1:45<br>0:35<br>1:45<br>0:35<br>1:45<br>0:35<br>1:45<br>0:35<br>1:45<br>0:35<br>1:35<br>1:35<br>1:35<br>1:35<br>1:35<br>1:35<br>1:35<br>1 | 6.63300<br>9.82500<br>13.42400<br>16.98100<br>16.61100<br>18.97100<br>18.78000<br>19.33900<br>18.88800<br>18.02600<br>17.51300<br>19.57800<br>19.57800<br>19.57800<br>19.57800<br>19.62400<br>16.13400<br>13.73300<br>9.78400<br>7.16500<br>6.58700<br>4.83300<br>4.31800<br>3.45200<br>3.01000<br>2.69700<br>2.68400<br>2.61400<br>2.28500 | 1.1036667<br>1.6375000<br>2.2373333<br>2.8301667<br>2.7685000<br>3.1618333<br>3.1300000<br>3.2231667<br>3.1480000<br>3.0043333<br>2.9188333<br>3.2630000<br>3.2706667<br>2.6890000<br>2.2888333<br>1.6306667<br>1.1941667<br>1.0978333<br>0.8055000<br>0.7196667<br>0.57533333<br>0.8055000<br>0.7196667<br>0.5753333<br>0.8055000 | 7.95569 16.88306 31.71363 48.95245 46.94093 60.58609 59.41927 63.37456 60.63403 55.56296 64.55317 65.06739 45.12018 32.95853 17.15398 3.78768 4.27058 3.78768 4.27058 3.78768 1.266822 1.2668622 1.27483 1.16620 0.95017 | 0.35978<br>0.39865<br>0.39860<br>0.572270<br>0.43666<br>0.34717<br>0.436649<br>0.356469<br>0.59084<br>0.59084<br>0.59984<br>0.58921<br>0.58921<br>0.42450<br>0.42450<br>0.42450<br>0.42450<br>0.42450<br>0.42450<br>0.12181<br>0.12181<br>0.12181<br>0.12181<br>0.12398<br>0.12646 |
| 5:00<br>5:30                                                                                                                                                                                                                              | 2.37900                                                                                                                                                                                                                                                                                                                                     | 0.3965000<br>0.2911667                                                                                                                                                                                                                                                                                                             | 0.96499<br>0.57059                                                                                                                                                                                                       | 0.06590<br>0.11128                                                                                                                                                                                                                                                                 |

Matt 11 -- Oxygen uptake salues (hillin) for a four-minute ron

TABLE 42.--Oxygen uptake values (L/Min) for a four-minute thirty-second run.

| Var                                                                                                          | Sum                                                                                                                                                                            | Mean                                                                                                                                                                                            | Sum of<br>Squares                                                                                                                                                    | Standard<br>Deviation                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30 | 6.96200 10.18000 13.58600 15.80700 17.04100 17.93300 20.15500 20.43000 19.87500 20.58900 17.46100 20.36600 20.32700 19.83600                                                   | 1.1603333<br>1.6966667<br>2.2643333<br>2.6345000<br>2.8401667<br>2.9888333<br>3.3591667<br>3.4050000<br>3.3125000<br>3.4315000<br>2.9101667<br>3.3943333<br>3.3878333                           | 8.59040<br>21.05246<br>33.47178<br>42.97357<br>49.50849<br>55.32276<br>69.04056<br>71.86775<br>68.91945<br>72.95126<br>53.97447<br>73.10697<br>70.55852<br>67.35989  | 0.32005<br>0.86953<br>0.73601<br>0.51576<br>0.47100<br>0.58720<br>0.51702<br>0.67876<br>0.78530<br>0.67825<br>0.79499<br>0.89196<br>0.58207<br>0.59701            |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:30<br>4:30<br>5:30         | 17.22400<br>14.66000<br>9.62500<br>6.42700<br>5.32200<br>4.22300<br>3.86500<br>3.18200<br>2.64900<br>2.21900<br>2.86800<br>2.16200<br>2.22100<br>2.22100<br>2.25300<br>1.77800 | 2.8706667<br>2.4433333<br>1.6041667<br>1.0711667<br>0.8870000<br>0.7038333<br>0.6441667<br>0.5303333<br>0.4415000<br>0.3698333<br>0.4780000<br>0.3603333<br>0.3701667<br>0.3755000<br>0.2963333 | 54.44806<br>40.07324<br>17.02512<br>7.72779<br>5.30217<br>3.65985<br>2.60979<br>1.82315<br>1.30011<br>0.92714<br>1.49411<br>0.81850<br>0.84315<br>0.88551<br>0.53995 | 1.00037<br>0.92239<br>0.56303<br>0.41071<br>0.34104<br>0.37083<br>0.15498<br>0.16470<br>0.16160<br>0.14593<br>0.15698<br>0.08884<br>0.06483<br>0.08889<br>0.05113 |

ARE AS .- Oxygen-uptas - village (11/12) or a four-either

TABLE 43.—Oxygen uptake values (L/Min) for a five-minute run.

| Var                                                                                                                                                                                                           | Sum                                                                                                                                                                                                    | Mean                                                                                                                                                                                                                                                                                                                 | Sum of<br>Squares                                                                                                                                                                                                                                                         | Standard<br>Deviation                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:130<br>3:30<br>3:30<br>4:30<br>0:345<br>0:35<br>1:45<br>0:30<br>0:45<br>0:45<br>0:30<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:45<br>0:4 | 6.82400 10.34200 14.41900 15.64800 17.62700 17.75500 18.41300 17.88900 17.88900 17.99600 17.14400 19.10500 18.36500 18.74800 15.07600 12.13300 8.84800 6.86400 5.72400 4.32500 3.19000 3.00500 2.87000 | 1.1373333<br>1.7236667<br>2.4031667<br>2.6080000<br>2.8060000<br>2.9378333<br>2.9591667<br>3.0688333<br>2.9815000<br>3.1381667<br>2.9993333<br>2.8573333<br>3.1841667<br>3.0608333<br>3.1246667<br>2.5126667<br>2.5126667<br>1.4746667<br>1.1440000<br>0.9540000<br>0.7208333<br>0.5316667<br>0.5008333<br>0.4783333 | 8.12537<br>17.93336<br>35.08428<br>41.17050<br>47.87025<br>52.39234<br>53.25207<br>57.02489<br>54.94585<br>59.90979<br>54.75029<br>50.81556<br>61.69773<br>57.00350<br>59.89094<br>39.2527<br>25.41304<br>14.29202<br>8.49751<br>5.85693<br>3.29246<br>1.70036<br>1.49216 | 0.26989<br>0.14642<br>0.29429<br>0.26852<br>0.35452<br>0.37738<br>0.37738<br>0.32201<br>0.56742<br>0.40528<br>0.40528<br>0.40575<br>0.41575<br>0.39782<br>0.51180<br>0.52370<br>0.41907<br>0.49883<br>0.35919<br>0.28151<br>0.18701<br>0.20305<br>0.19767<br>0.15449 |
| 3:00<br>3:30<br>4:00<br>4:30<br>5:00<br>5:30                                                                                                                                                                  | 2.91400<br>3.09200<br>2.62400<br>2.66600<br>2.66400<br>1.93100                                                                                                                                         | 0.4856667<br>0.5153333<br>0.4373333<br>0.4443333<br>0.4440000<br>0.3218333                                                                                                                                                                                                                                           | 1.43935<br>1.83191<br>1.22578<br>1.31231<br>1.27921<br>0.65318                                                                                                                                                                                                            | 0.96945<br>0.21840<br>0.12508<br>0.15982<br>0.13885<br>0.08966                                                                                                                                                                                                       |

the As. a-Oxygen appeals, values (L.Can. 16) a fave-classe can

TABLE 44.--Oxygen uptake values (L/Min) for a six-minute run.

| Var                                                                                                          | Sum                                                                                                                                                                                         | Mean                                                                                                                                                                                                                      | Sum of<br>Squares                                                                                                                                                                           | Standard<br>Deviation                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:05<br>1:30<br>1:45<br>2:15<br>2:15<br>2:30<br>3:30<br>4:30<br>4:30<br>5:00         | 6.39400<br>10.14800<br>13.37400<br>16.05900<br>15.71500<br>17.04600<br>18.57500<br>19.15400<br>15.30800<br>18.25700<br>18.64200<br>19.75500<br>19.24400<br>19.38400<br>20.40800<br>18.16600 | 1.0658333<br>1.6913333<br>2.2290000<br>2.6765000<br>2.6191667<br>2.8410000<br>3.0958333<br>3.1923333<br>2.5513333<br>3.9428333<br>3.9428333<br>3.1070000<br>3.2925000<br>3.2925000<br>3.2073333<br>3.2306667<br>3.4013333 | 6.93349<br>17.40000<br>30.80753<br>43.10705<br>42.91391<br>49.94119<br>57.83696<br>61.80307<br>41.49480<br>56.58666<br>58.11737<br>65.81944<br>63.28080<br>63.43517<br>70.28793<br>56.26385 | 0.15329<br>0.21741<br>0.44652<br>0.15820<br>0.59223<br>0.55018<br>0.25763<br>0.36252<br>0.69843<br>0.45468<br>0.19833<br>0.39398<br>0.55837<br>0.41797<br>0.41797            |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>5:00 | 16.21000<br>12.99400<br>10.38700<br>7.02400<br>5.33400<br>4.57700<br>4.95500<br>3.58300<br>3.93900<br>2.99700<br>2.52400<br>2.47000<br>2.07600<br>2.19100<br>1.70100                        | 2.7016667<br>2.1656667<br>1.7311667<br>1.1706667<br>0.8890000<br>0.7628333<br>0.8258333<br>0.5971167<br>0.6565000<br>0.4995000<br>0.4206667<br>0.4116667<br>0.3460000<br>0.3651667<br>0.2835000                           | 44.92591<br>29.28172<br>18.68928<br>9.28269<br>5.22629<br>3.72382<br>4.76211<br>2.85006<br>2.86009<br>1.57474<br>1.11465<br>1.11538<br>0.85096<br>0.83841<br>0.55357                        | 0.47579<br>0.47771<br>0.37620<br>0.46042<br>0.31124<br>0.21556<br>0.36609<br>0.37694<br>0.23415<br>0.12469<br>0.10285<br>0.10285<br>0.14040<br>0.16289<br>0.08755<br>0.11944 |

and Harricaygon, uppose values ([b/850) for a saveninuse - na.

TABLE 45.--Oxygen uptake values (L/Min) for a seven-minute run.

| Var                                                                                                                  | Sum                                                                                                                                                                                                    | Mean                                                                                                                                                                               | Sum of<br>Squares                                                                                                                                                                                       | Standard<br>Deviation                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:30<br>4:00<br>4:30<br>5:00<br>7:00 | 6.63600<br>9.10500<br>14.87000<br>15.35600<br>15.82500<br>18.43500<br>18.17200<br>18.99600<br>16.25900<br>17.43900<br>19.34500<br>20.08500<br>18.02500<br>19.67100<br>20.89000<br>19.35800<br>23.49200 | 1.1060000 1.5175000 2.4783333 2.5593333 2.6375000 3.0725000 3.0286667 3.1660000 2.7098333 2.9065000 3.2241667 3.3475000 3.0241667 3.2785000 3.4816667 3.2263333 3.9153333          | 7.43836<br>14.22651<br>37.20593<br>41.79319<br>43.10532<br>56.82339<br>55.94613<br>60.81772<br>46.21251<br>52.89975<br>62.79244<br>67.72632<br>55.35018<br>64.85536<br>73.19218<br>63.00988<br>92.82905 | 0.14067<br>0.28624<br>0.26575<br>0.70598<br>0.52285<br>0.19071<br>0.42643<br>0.36780<br>0.65625<br>0.66533<br>0.29015<br>0.31362<br>0.48991<br>0.26981<br>0.26981<br>0.30337<br>0.33302<br>0.41232 |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:30<br>5:30                         | 14.81500<br>13.42300<br>9.22600<br>7.71400<br>5.54900<br>4.45500<br>4.01000<br>4.05100<br>3.34000<br>2.57500<br>2.41000<br>2.48000<br>2.27400<br>2.26000<br>1.56300                                    | 2.4691667<br>2.2371667<br>1.5376667<br>1.2856667<br>0.9248333<br>0.7425000<br>0.6683333<br>0.6751667<br>0.5566667<br>0.4291667<br>0.4133333<br>0.3791667<br>0.3766667<br>0.2605000 | 37.40203<br>30.86893<br>15.85892<br>11.27346<br>5.55502<br>3.54371<br>3.92635<br>3.10016<br>1.90793<br>1.26017<br>1.04749<br>1.13151<br>0.89553<br>0.94225<br>0.49678                                   | 0.40530<br>0.40974<br>0.57834<br>0.52074<br>0.29090<br>0.21720<br>0.26319<br>0.27021<br>0.09866<br>0.17610<br>0.12608<br>0.14591<br>0.08115<br>0.13490<br>0.13388                                  |

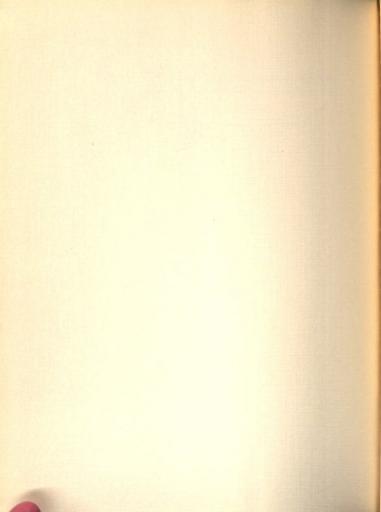
non counti-meres a cot (AIMA) souley existe negrico- al alam

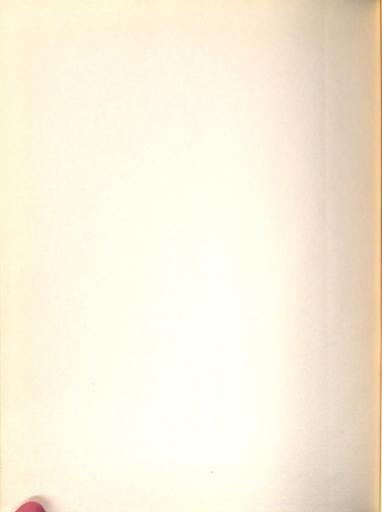
TABLE 46.--Oxygen uptake values (L/Min) for an eight-minute run.

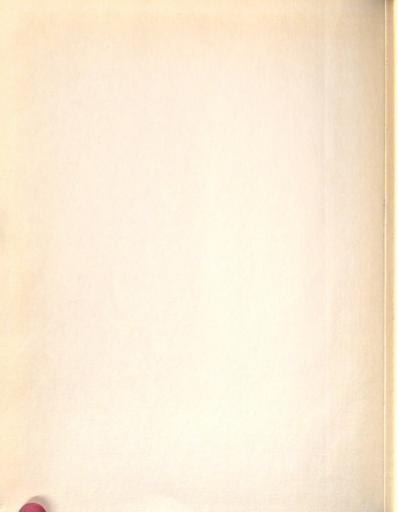
| Var                                                                                                                  | Sum                                                                                                                                                                                                    | Mean                                                                                                                                                                                                                                                                           | Sum of<br>Squares                                                                                                                                                               | Standard<br>Deviation                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:30<br>3:30<br>4:30<br>4:30<br>4:30<br>6:00<br>7:00<br>8:00 | 6.49800<br>9.29600<br>13.88200<br>16.54700<br>18.97600<br>18.00800<br>17.97600<br>16.88900<br>18.06000<br>18.09900<br>18.77400<br>19173800<br>18.99000<br>18.80700<br>21.09500<br>22.16700<br>18.87900 | 1.0830000<br>1.5493333<br>2.3136667<br>2.7578333<br>3.0126667<br>3.0013333<br>3.9888333<br>2.9960000<br>2.8148333<br>3.0100000<br>3.0165000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1290000<br>3.1450000<br>3.14650000 | 7.19407<br>15.13385<br>32.52983<br>45.94295<br>54.93875<br>54.76513<br>57.76513<br>54.90443<br>48.33600<br>55.49122<br>59.72726<br>61.05285<br>60.16141<br>75.94735<br>61.58573 | 0.17705<br>0.38243<br>0.28688<br>0.24863<br>0.31041<br>0.38588<br>0.32242<br>0.45570<br>0.39909<br>0.44978<br>0.42322<br>0.443349<br>0.45155<br>0.43578<br>0.49211<br>0.41309<br>0.64053<br>0.66075 |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:30<br>4:30<br>5:30                         | 16.43000<br>14.50400<br>11.91100<br>7.35800<br>5.36300<br>4.30600<br>4.24100<br>3.97600<br>2.81800<br>3.27400<br>2.90200<br>2.48400<br>2.13800<br>2.03200                                              | 2.7383333<br>2.4173333<br>1.9851667<br>1.2263333<br>0.8938333<br>0.7176667<br>0.7068333<br>0.5126667<br>0.4696667<br>0.4696667<br>0.4836667<br>0.4836667<br>0.4140000<br>0.3563333<br>0.3386667                                                                                | 46.68309 38.67229 25.20570 10.40480 5.35798 3.25000 3.17993 1.83957 1.51275 1.84909 1.55842 1.20775 0.91548 0.79627                                                             | 0.58177<br>0.84986<br>0.55864<br>0.52563<br>0.33596<br>0.17873<br>0.19092<br>0.22918<br>0.19454<br>0.11187<br>0.17596<br>0.18941<br>0.17529<br>0.14704                                              |

narradurin-broken na rol (nil) i caular alasan meann-- da Alas

TABLE 47.--Oxygen uptake values (L/Min) for a nine-minute run.


| Var                                                                                                                          | Sum                                                                                                                                                                                                                 | Mean                                                                                                                                                                                                                                                | Sum of<br>Squares                                                                                                                                                                                                   | Standard<br>Deviation                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:15<br>2:30<br>3:00<br>3:30<br>4:30<br>5:00<br>7:00<br>8:00 | 6.35500<br>10.41600<br>14.83100<br>17.22600<br>17.51700<br>19.55000<br>19.42800<br>20.15400<br>17.71700<br>18.43900<br>19.37100<br>21.45200<br>20.04100<br>19.69000<br>21.65000<br>20.53100<br>22.13900<br>21.96600 | 1.0573333<br>1.7360000<br>2.4718333<br>2.8710000<br>2.9195000<br>3.2583333<br>3.2380000<br>3.3590000<br>2.9528333<br>3.9731667<br>3.2285000<br>3.5753333<br>3.3401667<br>3.2816667<br>3.2816667<br>3.6083333<br>3.4218333<br>3.6898333<br>3.6610000 | 6.85034<br>18.75075<br>37.09209<br>49.98496<br>51.64851<br>64.60908<br>63.47031<br>67.81257<br>52.63443<br>56.80071<br>64.69892<br>77.23087<br>67.05126<br>66.17928<br>79.37591<br>70.68911<br>83.28445<br>81.95145 | 0.16889<br>0.36567<br>0.29405<br>0.32530<br>0.31876<br>0.42630<br>0.33539<br>0.15185<br>0.25262<br>0.16407<br>0.65721<br>0.32644<br>0.14899<br>0.56094<br>0.50110<br>0.56484<br>0.55388 |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:30<br>5:30                         | 15.22000<br>12.96200<br>10.09300<br>9.67200<br>9.32900<br>5.59000<br>4.38100<br>3.59900<br>3.45200<br>3.38000<br>2.92600<br>2.78900<br>2.74800<br>2.62800<br>1.84100                                                | 2.5366667<br>2.1603333<br>1.6821667<br>1.6120000<br>1.5548333<br>0.9316667<br>0.7301667<br>0.5998333<br>0.5753333<br>0.5753333<br>0.4876667<br>0.4648333<br>0.4580000<br>0.4380000<br>0.3068333                                                     | 39.51432<br>31.56381<br>19.18395<br>18.81088<br>17.50839<br>5.54625<br>3.48486<br>2.31171<br>2.10514<br>2.97318<br>1.62676<br>1.47241<br>1.37841<br>1.21215<br>0.67509                                              | 0.42573<br>0.84399<br>0.66421<br>0.80245<br>0.77503<br>0.26009<br>0.23916<br>0.17488<br>0.15433<br>0.18391<br>0.19992<br>0.18761<br>0.15480<br>0.11053<br>0.14846                       |


mun stonements o not (nik) seniev exacto page 0--14 3 Mil


TABLE 48.--Oxygen uptake values (L/Min) for a ten-minute run.

| Var                                                                                                                            | Sum                                                                                                                                                                                                                            | Mean                                                                                                                                                                                                                                                                                       | Sum of<br>Squares                                                                                                                                                         | Standard<br>Deviation                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:130<br>3:30<br>4:00<br>4:30<br>5:00<br>7:00<br>9:00<br>10:00 | 6.41800<br>9.00500<br>13.87600<br>16.93600<br>18.15900<br>18.35200<br>18.65100<br>17.71200<br>17.68800<br>19.38200<br>19.85000<br>19.22600<br>20.64800<br>21.94200<br>23.17700<br>22.46000<br>21.37400<br>20.63500<br>21.10300 | 1.0696667<br>1.5008333<br>2.3126667<br>2.8226667<br>3.0265000<br>3.0586667<br>3.1085000<br>3.0281667<br>2.9520000<br>2.9480000<br>3.2303333<br>3.3083333<br>3.3083333<br>3.4413333<br>3.4413333<br>3.5070000<br>3.8628333<br>3.7433333<br>3.5623333<br>3.5623333<br>3.4391667<br>3.5171667 | 7.29259 14.21323 32.74742 48.19195 55.46723 57.09686 58.33965 57.65961 53.42032 62.96255 66.17207 62.78572 62.45814 74.56983 94.69397 93.32242 77.10554 72.10159 66.02728 | 0.25979<br>0.37369<br>0.36245<br>0.27830<br>0.27830<br>0.31907<br>0.43914<br>0.26945<br>0.72675<br>0.50519<br>0.50519<br>0.26542<br>0.31675<br>0.48563<br>0.59943<br>0.39384<br>1.01637<br>1.35994<br>0.47632<br>0.60075 |
| 0:15<br>0:30<br>0:45<br>1:00<br>1:15<br>1:30<br>1:45<br>2:00<br>2:30<br>3:00<br>3:30<br>4:00<br>4:30<br>5:30                   | 16.51300 12.16600 10.08000 9.50700 6.15000 4.74500 4.42700 3.50900 3.13400 2.70600 2.94500 2.74700 2.60200 2.13300                                                                                                             | 2.7521667<br>2.0287778<br>1.7800000<br>1.5845000<br>0.7908333<br>0.7378333<br>0.5848333<br>0.5223333<br>0.5506667<br>0.4510000<br>0.4908333<br>0.4578333<br>0.4336667<br>0.3555000                                                                                                         | 46.27642<br>26.82679<br>17.51088<br>16.60616<br>6.76146<br>4.28458<br>4.75849<br>2.10134<br>1.67938<br>1.87345<br>1.27996<br>1.64455<br>1.32289<br>1.20544<br>0.80387     | 0.40741<br>0.65699<br>0.33955<br>0.55539<br>0.30256<br>0.32621<br>0.54628<br>0.09916<br>0.09208<br>0.10397<br>0.10914<br>0.19952<br>0.11421<br>0.12413<br>0.09549                                                        |

USE 48 .-- Oxygen uptake velues (1991a) the artes-minute run.







