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ABSTRACT

TOPOLOGICAL PROPERTIES OF

COMPACTIFICATIONS OF A HALF-OPEN INTERVAL

by David Parham Bellamy

We make the following definitions: Let A = [1,”). A

Hausdorff compactification (S,h) of A is a pseudocone, where

h: A H S is the natural embedding. S-h(A) is the base of S;

h(l) is the vertex of S; and if the base of S is homemorphic

to a topological space X, S is a pseudocone 2333 g, Unless

explicitly stated otherwise, both A and the base of a pseudocone

S will be considered identified with their images in So When

it is convenient to specify that X is the base of a pseudocone,

the pseudocone will be denoted by P(X)g This is not meant to

imply any sort of functorial relationship“

The broad questions considered are: ”Under what conditions

does there exist a pseudocone over X?" and ”What is the relation—

ship between the properties of P(X) and those of X?”

An outline of principal results follows" The numbering

of results below does not correspond to the numbering in the

thesis.

Chapter Ia Existence and general properties

Theorem 1: Let P(X) be a pseudocone: Then P(X) is a

continuum irreducible between its vertex and any point on X0

Theorem 2: The base of a psuedocone is a compact Hausdorff
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continuum.

Theorem 3: Let X be a compact Hausdorff continuum which

is irreducible about some separable subset of itself and such that

there exists a connected, locally path connected, locally compact

Hausdorff space Y and an embedding f: X a Y such that f(X)

is a G6 subset of Y° Then there exists a pseudocone over X0

Corollary 1: If X is a compact metric continuum, there

exists a pseudocone over X0

Corollary 2: If X is a compact Hausdorff continuum with

 

a separable dense path component, there exists a pseudocone over X,

Chapter 110 Retracts of pseudocones

Theorem: Let X be a compact Hausdorff space“ The follow-

ing are equivalent:

10 X has a separable dense path component,

2. There exists a pseudocone P(X) and an embedding

f; P(X) e x x I such that f(X) = x X {0}.

39 There exists a pseudocone P(X) such that X is a

retract of P(X).

Chapter III" Pseudocones over metric spaces

Proposition: Every pseudocone over a metric Space is

metrizablea

 
Theorem: A Peano continuum X is a retract of every

pseudocone P(X),
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Chapter IV° A generalization of Peano continua

Peano continua are characterized in terms of pseudocones

as are compact metric continua X with the property that

2 W,°

a)

X = U W. where each W. is a Peano continuum and W.

. 1 1 1+1 1

1=l

Chapter V. The Stone-CEch compactification of A

e

The base of B(A) is called A30

Proposition 1: Every metric continuum and every pseudo-

cone is a continuous image of every nondegenerate subcontinuum

 

*

of A

7%

Corollary: Every nondegenerate subcontinuum of A has

. c

cardinal number 2

‘9“:

Proposition 2: A is an indecomposable continuum.
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INTRODUCTION

In this thesis, A will always denote the half-open inter-

val [l,w). Let (S,h) be a Hausdorff compactification of A

where h: A v S is the natural embedding and let X = S-h(A).

It is the purpose of this thesis to give partial answers to the

following questions: What properties must X possess? What

relationships exist between the topological properties of X

and those of S? This point of view motivates the following

definitions:

A compactification (S,h) of A is a pseudocone: S-h(A)

is the base of S; h(l) is the vertex of S; and if the base of

a pseudocone S is homeomorphic to a topological space X, S is

a pseudocone over X. The notation P(X) will be used to denote
 

a pseudocone over X whenever it is useful. This is not meant to

imply any sort of functorial relationship. Unless explicitly

stated otherwise, both A and X will be considered identified

with their images in a pseudocone P(X).

The first chapter is devoted to general properties of

pseudocones and proofs of the existence of pseudocones over

certain classes of compact Hausdorff continua: In the second

chapter the question of when X is a retract of P(X) is inves-

tigated. The third chapter discusses pseudocones over metric

spaces; it is shown that every pseudocone over a metric space is

metrizable, and machinery is developed to prove a stronger result

 

 





about retractions in this case° In chapter four, a character-

ization of Peano continua in terms of pseudocones is given, and

a class of metric continua more general than Peano continua is

investigated in some detail: The fifth and final chapter is

devoted to an examination of some of the continua-theoretic

properties of the Stone-CEch compactification of A,

 



CHAPTER I

EXISTENCE AND GENERAL PROPERTIES

The following two lemmas give the most important pro-

perties shared by all pseudocones.

Lemma 1: A pseudocone P(X) isflg continuum irreducible be-
  

tween two points a and b, where a is its vertex and b
 

is any element of X.
 

Proof: Let U be any Open Subset of P(X) missing a

and b: A is dense in P(X), so U H A # ¢° Let y E U O A.

Since A is locally compact, A is open in P(X). Therefore,

[1,y) is open in P(X)° Also, [1,y] is closed in P(X). Let

B = [1,y) fl (S-U)a

Since y E U,

B = [1,y] O (S-U)

B # ¢ since 1 = a E B. B # S-U since b E B: Thus B is a

nonvoid proper closed and open subset of S-U° Hence S-U is

not connected and the proof is complete:

Lemma g: The base 2£.§ pseudocone is.a compact Hausdorff continuum.
 

Proof: Let P(X) be a pseudocone: For each positive

integer n, let An = [n,®) and set

Pn(X) = An U X.

 



Then

>
< u 3
8

1 Pn(X)

n

But Pn(X) = Ag, so that each Pn(X) is a compact Hausdorff

continuum. The intersection is monotone, so X is also a com-

pact Hausdorff continuum.

The principal results concerning the existence of pseudo-

cones follow:

 

Theorem I: Let X 23.3 compact Hausdorff continuum which is

irreducible about some separable subset B pf itself and such

that there exists a locally path connected locally compact

Hausdorff space Y and a3 embedding f: X r Y such that f(X)
 

is a G5 subset g: Y. Then there exists 3 pseudocone over X

 
 

which embeds 12 Y X I with base f(X) X {0}.
 

Proof: Let X be identified with its image in Y and

GD

let <Ui>i-l be a sequence of open sets in Y such that:

1) U1 is compact

' Q2) for each 1, Ui+1 Ui

3) O U = X

4) each Ui is path connected:

Let D be a countable dense subset of B and let <ai>:=1

be a sequence from D such that for each x E D, the set

NX = {izai = x} is nonvoid and Nx is infinite if x is an

isolated point of Do Note that every neighborhood of any point



in B contains elements from <ai> of arbitrarily large index.

For each i, let wi: [i,i+l] * Ui be a path from ai to

CD

a, : Set w = U w,: Then w is a continuous map from A into

1+1 i-l 1

_ * — _

U1. Define w : A a U1 X I (where I = [0,1]) by:

* 1

w (t) = (0302),?

*

Then w is an embedding of A into U1 X I: Identify

Ul with 'U1 X {0}. Since U1 X I is a compact Hausdorff Space,

 

*

w (A) is a pseudocone: It remains to be shown that X is the

  

* 2

base of w (A). Let X be the base of w7(A): Let p be any

0

element of (U1 X I) - (X U w*(A)). If p Q U1, p = (x,t) and

(‘61 x (5,11) - «3(th

is an open neighborhood of p in U1 X I which misses w*(A).

If p 6 U1, let V be an open neighborhood of p in U1 such

that V O X = ¢- Then {(Ui - Ui)}:=2 is an open covering of

V and by compactness there is an n such that VIC U1 - Un“

Thus, V 0 Un = ¢: V X [O,%) is an open neighborhood of p in

U1 X I. Suppose

* l

x 6 w (A) n (v x [0,?)

< , t > n. Therefore w(t) E Un

(
'
l
e

I
’
l
l
-
4

Then x = (w(t),%). Since

e

and w(t) i V, a contradiction. Thus, w7(A) m (V X [O,%)) = ¢

Qand X0 X.

Now suppose p 6 Bo Let V be any open neighborhood of



p in Ul X I. V contains a neighborhood of p of the form

W X [0,6) where W is open in U1 and 5 > 0. By the choice

. l
of the sequence <ai>, there eXists an n >'— such that a E W.

E n

* *

Then w (n) = (an,%) and w (n) E W X [0,5) E V. Therefore,

B Q X0. By Lemma g, X0 is a continuum, and since X is irre-

ducible about B, X0 = X. This completes the proof.

Corollary 1: _£’ M i§.a compact metric continuum, there exists
 

a pseudocone over M.
 

Proof: M is itself separable, and embeds in the Hilbert

Cube as a G set.

6

Corollary 2: If X .l§.E compact Hausdorff continuum which con-
 

tains a separable dense path component D, there exists a pseudo-
 

 

cone over X.

Proof: Let {a1}:=1 be a countable dense subset of D

and let w: A r X be a continuous map such that for each positive

integer i, w(i) = ai. This is possible Since D is path con-

nected.

*

Define w : A r X X I by

7': 1

w (t) = 0002),?)

Then w*(A) U X X {0} is the desired pseudocone.

Since a pseudocone is separable and completely regular, it

embeds in IC. This implies that the base of a pseudocone has

cardinality at most 2C. Corollary 2' implies that there exists

C . . . .
pseudocone over I , showing that this cardinality can be realized.



CHAPTER II.

RETRACTS OF PSEUDOCONES

The question of what properties a continuum must possess

to be a retract of every pseudocone over itself appears to be

difficult. A simple result is given here and a more general

result is established for the metric case in Chapter III.

Proposition 1: ‘Ap absolute neighborhood retract X lg §_£g-
 

tract pf every pseudocone P(X).
 

lgpppfz Let P(X) be a pseudocone. Since X is an

absolute neighborhood retract, there is an open neighborhood

U of X in P(X) such that X is a retract of U. P(X) - U

is a compact subset of A and hence there is a real number x

such that P(X) - U C [1,x). Let r: U r X be a retraction

and define g: P(X) * U by:

g(t) X if t E [1,x]

t if t E [1,x)

Then rag: P(X) e X is the desired retraction.

The question of whether, given X, there exists a pseudo-

cone P(X) such that X is a retract of P(X); and whether,

given P(X), X is a retract of P(X) are simpler, and char-

acterizations are given for these cases.

Lemma 1: Given a pseudocone P(X), X .l§.§ retract pf P(X) if
 

.gpg,gply if there l§.§E embedding f: P(X) m X X I such that



f(X) = x X {o}.

2392:: If P(X) can be embedded in X X I in the pre-

scribed fashion, then f-lopof is the desired retraction, where

p: X X I m X X {0} is the projection.

Conversely suppose X is a retract of P(X). Let

r: P(X) H X be a retraction and define P(X) r I by:f0:

f (x) .l if x e A
O x

= 0 if x E X

Let f: P(X) * X X I be defined by:

f(x) =<r<x> .f0<x>>

Since r and f0 are both continuous, so is f. To show f

is one to one, suppose f(x) = f(y). Then fO(X) = fO(y) so

that x = y if either x E A or y E A. Thus suppose x,y E X.

Then r(x) = r(y) and x = y since r is the identity on X.

The compactness of P(X) and the Hausdorff property of X X I

make f an embedding, and the proof is complete.

Corollary 1: Let P(X) pg 3 pseudocone. There exists pp em-

bedding f: P(X) a x x I such that f(X) = x x {0} ii and only

if there exists a topological space Y, a point y E Y, and an
  

embedding g: P(X) m X X Y such that g(X) = X X {y}.

Proof: Let r: X X Y r X X {y} be the projection. Then

-1

g orog is a retraction from P(X) to X. Thus, by Lemma 1,



there is an embedding f: P(X) r X X I with the desired pro-

perty. The converse is clear.

Lemma 2: Let X 23.3 topological space with a_dense path com-
 

ponent D and f: X r Y 3 continuous surjection. Then Y has

a dense path component C, and C lg separable if D is.
 

Proof: It is clear that the path component of Y con-

taining f(D) is dense and is separable if D is.

Theorem I: Let X 22.3 compact Hausdorff space. Then the follow-

ing three conditions are equivalent.

1) X has 3 separable dense path component.

2) There exists 3 pseudocone P(X) and £3 embedding
 

f: P(X) a x X I such that f(X) = x X {0}.

3) There exists a pseudocone P(X) such that X i§.a
 

retract pf P(X).

Prpgfi: 1) implies 2) by the construction used in proving

Corollary 2, Chapter I.

2) implies 3) by Lgmma l.

3) implies l) by Lemma 3 and the separability

of A.

Corollary 3: Let X pg 3 compact metric Space. Then the following

three conditions are equivalent.

1) X has a dense path component.

2) There exists a pseudocone P(X) and 33 embedding
 

f: P(X) e x X i such that f(X) = x X {0}.



lO

3) There exists 3 pseudocone P(X) such that X is a
 
 

retract pf P(X).

It seems natural to ask whether the hypothesis f(X) = X X {0}

is necessary to prove that X is a retract of P(X) in LEEEE.A°

Can this hypothesis be eliminated or perhaps weakened to

f(X) C X X {0}. The following example shows that this is not possible.

Example 1. In E3, Euclidean 3-space set:

x={<x.y.0): x2+y2S 1}

Y = {(1)},2O)- -1 S y S 1}

Z={(xyO)-l<xSl+l y=sin—l‘—}
3 3 . 1.1., X-l

and let W = X U Y U Z.

By Theorem 1, Chapter I, there exists a pseudocone S with

base W in the set

R = [(x,y,z) E E3: x2 + y2 S 4, O S z S 1}

Define f0: R r W X I by:

= E X
f0<x.y.z> (2.2.2).

and let f be the restriction of f0 to S. Then f is an em-

bedding and f(W) C W, but by Corollary 2, W is not a retract of

S since W has no dense path component.

In view of the above result concerning dense path components

of continua, it may be reasonable to ask whether path connectedness
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of X is sufficient to imply that every P(X) retracts onto X.

This is not the case, for it is fairly easy to construct a pseudo-

cone over a Warsaw circle which cannot retract onto its base as

follows:

Example 2: In E3 let:

B = {(x,y,0): y = sinl and O < x S l}
x n

c = {(0.y.0>: -2 s y s 1}

l

D = {(x,-2,0); 0 s x <T—r

l

E= {(;,y,0>: -2Sys0}

Set X = B U C U D U E. Then X is a Warsaw circle.

Construct a pseudocone over X as follows:

For each positive integer i, let:

1 l 1

Di be the segment from (U’-2’i) to (O,-2,i+1)

l
= — ° - S S

l l
= _ . g 3—

Ni {(X’O’i+1)° O x in}

R={(xy——1):(xyO)EB and xz—l}

i ’ ’i+l ’ ’ in

l l

= — _ ‘ - S S

E1 {(n’y’i+l ' 2 y 0}“

Set B, = R, U N, for each i. Then

i i 1

co

P(X) = X U I U (Bi U Ci U Di U Ei)] is a pseudocone over X,

i=1

and, roughly speaking, each Di is over D running from the

H
d
h
a

level to the z = Tl— level, each Bi’ Ci’ and Bi is

z = 1+1
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over, B, C, and E, respectively, at the z = Til level.

To show that X is not a retract of P(X), let:

U = {(X.y.0) E X: y > ~2}

5

V: {(033730) EX- '_<y<-£}

3 3

l

W = {(x,y,0) E X: x >‘EE and y > -Z}

For each ositive inte er n let = (—l —l- and

p g ’ pn n’ ’n+1

3 l
= _ _.___ glet qn (O, 2’n+l)° Let IH CH U Bn be the are from qn

to pH and let

— (l O O) - l'
P TT, 9 " 1m pn

n—m

a d - (O - 2'0) - l'n q — , 2, — im qn

n—m

Now suppose r: P(X) * X is a retraction. Then:

lim r(pn) = p and lim r(qn) = q.

new new

Thus for some sufficiently large integer k, r(pk) E W;

C r-1(U). Thus r I is a path in U fromr(qk) E V; and I k

k

r(qk) to r(pk), which is impossible since r(qk) and r(pk)

lie in different path components of U.





CHAPTER III

PSEUDOCONES OVER METRIC SPACES

In this chapter, certain relationships between pseudocones

and compactifications of closed subsets of A are studied. Many

of the techniques used rely upon the metric structure, but some

of the questions involved are applicable to the non-metric case.

These are treated briefly in Chapter V.

Definition 1: Let B be a closed noncompact subset of A
 

and let B' be a compactification of B. Identify B with its

image in B'. Let P(X) be a pseudocone. B' extends £9. P(X)

if and only if there exists an embedding f: B' r P(X) such that

f(B' - B) = x and le: B e A is the inclusion map. If such a

pseudocone exists but is not specified, B' will be said merely

to extend £9 a pseudocone. If B' extends to P(X), then P(X)
 

naturally contains B'.
 

The following result will be of use in some of the develop-

ment .

Lemma I: Let B .pg 3 closed unbounded subset pf A and let
 

B' = B U Y where both B' and Y are compact and B O Y = ¢.
 

Then B' 13 metrizable if and only if Y l§°
 

Proof: If B' is metrizable, Y is since Y Q B'.

If Y is metrizable, Y is separable since it is compact.

Thus there exists an embedding fO of Y into the Hilbert Cube

l3
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C. Since C is an absolute retract, f extends to a map

0

f1: B' r C. Define f2: B' r I by:

f2(x) = i if x E B

x

0 if x E Y

Let f: B' r C X I be defined by

f(x) = (f1(x). f2<x>>.

Then f is an embedding and B' is metrizable since

C X I is.

. . . + . .
Of particular interest is the case B = Z , the pOSitive

integers. The principal questions investigated are:

. . . . +
1) Given a compactification X of Z , when does X

extend to a pseudocone?

2) Given a pseudocone S, when does S naturally contain

. . . +
a compactification of a copy of Z ?

The first question is answered as follows:

+

Theorem I: Let X RENE metric compactification pf Z and let
 

i: 2+.“ X 23 the natural embedding. A necessary and sufficient
  

+

condition that X extend Ep‘a pseudocone ii that X - i(Z ) pg
  

connected.

Proof: The necessity is clear from Lemma_2, Chapter I.

. . . . + . . +
To prove the SuffiCiency, identify Z With 1(Z ), let

+

Y = X - Z , and suppose Y is connected. Let f: X r C be an
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embedding where C denotes the Hilbert Cube. Let d be the usual

d(f(n),f(Y))-metric on C as a subset of Hilbert space, and let an

Then lim an = 0. Set

n—m

Un = {P E C: d(P,f(Y)) < 2 max(an,an+1)l

+

For each n E Z , let wn: [n,n+l] r Un be a map such that

wn(n) = f(n) and wn(n+l) = f(n+l). This is possible since the

convexity of C and the connectedness of Y imply that each Un

is path connected. Let

Then w: A r C is a continuous map. Define g: A U Y r C X I

g(x) <w<x>.;l> if xeA

(f(x),O) if x E Y

Then gIX is an embedding since w and f agree on 2+. It

is also clear that gIA is an embedding and that the complement

of g(A) in the closure of g(A) lies in C X {0}. But if

p E C X {0} and p E f(Y) X {0} there is an n such that

p E Uk X {0} for every k 2 n. Let j 2 n be an integer such

that aj 2 ak for every k 2 n. Such a j exists since the

ai's tend to zero. Then p E Uj and

— l

(c - UJ.) X [0.3)
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is a neighborhood of p missing g(A). But Y is contained in

+

the closure of g(Z ) and hence in that of g(A). Therefore

g(A U Y) is the desired pseudocone.

The central role of connectedness in the preceeding theorem

makes the following result of some interest.

Proposition 1: Let <M,d> ‘pg a compact metric space and let
 

 

a)
< >

C C .
=

ai i=1 BE E.§ESESEEE.2£.221E£§.IE M- If 1:: d (ai’ai+l) 0’

then the set F pf cluster points pf <ai> 13 connected.
  

Proof: Suppose not. Let F = K.U L sep. Since F is

closed, K and L are compact and d(K,L) > 0. Let d(K,L) = 38.

Set

(
2
‘

II {x E M: d(x,K) < e}

{x E M: d(x,L) < e}.
< ll

Then U U V contains all but finitely many of the a1 and each

of U and V contain infinitely many of the ai. Choose L

such that, for each integer r 2 L, d(ar,a ) < E and ar E U U V.

r+l

Without loss of generality assume a E U. Then there exists a

E

smallest integer n greater than L such that an E V. Thus,

d( an) > 5, contradicting the choice of &. Hence F isa

n-l’

connected and the proof is complete.

+

Corollary 1: Let Z+IU Y 23.3 metric compactification pf Z

+

with metric d, where Z O Y ¢. Suppose d(n,n+l) tends £2
 

zero as n tends to infinity. Then Y is.a compact metric continuum.
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Proposition 1 also has the following peripheral corollary:
 

Corollary 2: Let <M,d? ,2£.§ totally disconnected compact metric

co

space and let <ai>,
 

 

1 1 be a sequence from M. Then <a,> con-
: —"_’ _— 1 —-

verges LE and only if lim d (ai,ai+1) = O.

i—m

The second question if also readily answered.

Theorem 2: Let X pgna compact metric continuum and P(X) ‘3

pseudocone over X. Then P(X) naturally contains a compacti -
 

. . +

ication of'a copy pf Z .

Proof: Let {ai}:_l be a countable dense subset of X.

For each i E Z+ let <b:5:_1 be a sequence of points from A

such that:

. i _ .
1) 11m bk — ai in P(X)

k—m

2) For each i, b: > i

3) For each i the sequence <b:? is monotone increasing.

1 . + . + . .
Then {1} U {bkz k,i E Z I is a copy of Z in A With

the desired properties.

The metric structure of the pseudocones in question allows

. . +
an even stronger condition to be placed on the copy of Z con-

sidered.

Lemma 2: Let Y 22.3 compact metric continuum and let P(Y)

22.3 pseudocone over Y. Let d pe_a_metric pp P(Y). Then
 

co

P(Y) naturally contains a compactification of.a copy {ai}i-l
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+

f 2 with the prpperty that
 

11m dia ([an,an+1]) = O,

n—@

where, dia ([an,an+1]) denotes the diameter 9; the interval
  

  

a a with res ect to the metric d.

Proof: By Theorem 2, there exists a copy

m

C _ {Ci}i=l

+ .
of Z in A such that

l c = 1

) l

2) Ci > Cj if and only if i > j

3) C = C U Y, where 6' denotes the closure of

C in P(Y).

Parameterize A so that Cn = n for each n E Z

00

The set {aili—l is constructed as follows:

Define a1 = 1.

Suppose an_1 has been defined. Define kn to be the

largest element of the set

+

- s{L E Z . L an-l}

Set

_ . 1_
Dn _ {y E A- d(Y>an_l) S n}

= . Spn sup{t. [an_1.t] Dn}
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Now define a = min(p ,k + l).

n n n

on

Then <ai>i is an increasing sequence of elements of A.
=l

To show that <ai> is unbounded, suppose not. Let r be the

Smallest integer greater than every ai. Let a = sup{ai}. Then

a E (r-l,r] and a = lim a,

ism 1

By the definition of convergence and the Cauchy criterion,

there exists an integer nO such that for every n > n , both

an > r-l and d(an,an+l) < ;%I° But an+1 = pn+l’ andO kn+1 = r-l,

and if d(pn+1,an) < ;%I’ there is a closed neighborhood

8 = [pn+l ' 8’ pn+1 + a]

such that S C Dn+l° Then

[an’pn+l +.€] ; Dn+l’

contradictin the choice of .

g pn+1

00

Therefore <ai> is an unbounded sequence. Let B = {ai}i-l°

+ .

Since B contains Z , B contains Y. Since B is closed in

A, E = B U Y, It is clear from the construction that

lim dia ([a

11—“

n’an+l]) = 0, so the proof is complete.

The preceeding results will now be applied to the proof

of the following Theorem.

Theorem 2: Let X EE.E Peano continuum, P(Y) a pseudocone, and
  

f: Y r X ‘3 continuous map. Then X ig’a retract pf P(Y) Uf X.
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Proof: Let P(Y) Uf X = R. Then R is metrizable by

Lemma 1. Let d be a metric on R. The closure of A in R

is a pseudocone, and by Lemma 2, A contains a set {3i}:-l

such that:

l) a = l

2) ai > aj if and only if i > j

3) {ai} is unbounded

4) lim dia ([an,an+l]) = 0.

11—00

, +

Parameterize A so that an = n for each n E Z .

Now let {bn}:-1 be a set of points in X such that for

each n E Z+,

d(n,bn) = d(n,X).

This is possible since X is compact.

Note that:

O I
/
\

’ d11m (bn,bn+

n-’°°

1),

I
A

11m d(bn,n) + 11m d(n,n+l) + lim d(bn+ ,n+l)

n—@ 11—“ 11—0)

1

= 0

And thus lim d(bn,b

n-'°°

n+1) = 0°

Now X is uniformly locally arcwise connected, and thus,

given 8 > 0, there exists a 5 > 0 such that if x,y E X and

d(x,y) < 6, then there exists a path w: I r X from x to y
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such that dia (w(I)) < E. (For brevity this will henceforth be

written "a path of diameter < 3”.)

+

For each n E Z let

= > . 3RH {t 0. whenever x,y E X and d(x,y) d(bn’bn+1)’

there exists a path from x to y of diameter less than t},

and define En = 2 inf Rn. Then from uniform local arcwise con-

nectedness and the fact that d(bn,bn+ ) tends to zero it follows

1

that

lim 6 = 0

n
n—OCD

+

Now, for each n E Z , let rn: [n,n+1] r X be a path of

diameter less than e such that r (n) = b and r (n+1) = b

n n n n n+1'

00

Let r = U r.. Then r is a continuous map from A

O . i 0
1:1

to X

Define r: R r X by

r(x) = r0(x) if x E A

= x if x E X

Since r A and r X are continuous, to prove the con—

00

tinuity of r it suffices to prove that if <pi>i=1 is a

sequence of points from A converging to p E X, then

lim r(pi) = p also. To show this, for each positive integer

i—m

n let qn be the largest integer less than or equal to pm. Then
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lim d(qi,pi) = O

1"“

and lim d(qi,bq ) = 0

1*@ 1

But pi E [qi,qi+l] and lim dia (r[q1,qi+l]) = 0. Therefore

l—bm

11m d(r(pi),r(qi)) = lim d(r(pi,bq ) = 0 since r(qi) = bq,’

l—m l—m 1 1

Thus

0 S lim d(p..r(p.))
ifim i i

s . . .
11m d(pi,qi) + 11m d(qi’bq,) + 11m d(bq',r(pi))

1am 1mm 1 I‘m 1

= O

or

l—>oo

and thus

lim r(pi) = lim p, = p

l—aoo i—ico 1'

and the proof is complete.

Corollary 3: Let X pg‘g Peano continuum and P(X) a pseudocone

over X. Then X i§.a retract pf P(X).

Proof: Let f be the identity map on X.

Corollary 4; Let X 22.3 Peano continuum and P(X) ‘3 pseudocone

over X. Then there exists 33 embedding f: P(X) r X X I Such
 

that f(X) = x x {0}.

Proof: Clear from Lemma 1, Chapter II.

 





CHAPTER IV

A GENERALIZATION OF PEANO CONTINUA

In view of the above results on dense path components of

bases of pseudocones, it is natural to ask what other properties

of continua related to path connectedness can be examined in terms

of pseudocones.

Definition 1: A pseudocone P(X) is said to be even if and only

if there exists a retraction r: P(X) r X and a continuous map

 

h: A r A such that, for each t E A, h(t) > t and r(t) = roh(t).

Lemma 1: Let h: A r A 23.3 continuous map such that, for each
 

t E A, h(t) > t. Then h(A) = fps”) for some p E A.

Proof: It is clear that h(A) is an unbounded interval.

Let p = inf h(A) and let q > p. Then if t > q, h(t) > q, so

that p = inf h[1,q]. Since [1,q] is compact, p E h[1,q] C h(A),

and the proof is complete.

The Hahn-Mazurkiewicz Theorem now yields a characterization

of Peano continua in terms of pseudocones.

Theorem 1: Let X 23.3 topological space. X l§.3 Peano continuum
  

if and only if there exists an even pseudocone over X.
 

Proof: Suppose X is a Peano continuum. Let f0: I r X

be a continuous surjection such that fO(O) = f0(l). Such a map

exists by the Hahn-Mazurkiewicz Theorem. Define f: A r X X I by

23
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f(t) = (f (t-Itl) 1)
O ’t

where [t] denotes the greatest integer function of t. Set

P(X) X X {0} U f(A). To see that P(X) is an even pseudocone,

let r: P(X) r X be the restriction to P(X) of the projection

Xp: x I a x X {0} and define h: A a A by h(t) = l+t.

Conversely, suppose P(X) is an even pseudocone. Let

r: P(X) m X and h: A r A be the given maps. r(A) is dense

in X since A is dense in P(X). Let h(A) = [p,m). Suppose

x E r(A) and let y = inf (rIA)-l(x). Since (rIA)-1(x) is

closed in A, y E (rIA)-1(x). It follows that y E [1,p], for

if not, there exists t E A such that h(t) = y. Then

r(t) = roh(t) = r(y).

This is a contradiction to the choice of y, since t < y.

Thus,

x E r([1.pl).

and r([l,p]) = r(A). Therefore r([l,p]) is dense in X. But

r([l,p]) is compact and hence closed. Thus r([l,p]) = X, and

X is a Peano continuum by the Hahn-Mazurkiewicz Theorem.

The preceeding proof rests heavily upon the fact that a

Hausdorff space is a Peano continuum if and only if it is a con-

tinuous image of a closed interval. A generalization of this

notion is the following:

 





 

25

Definition 2: A compact metric space X is an almost-Peano con-
 

 

tinuum if there is a continuous surjection f: A m X.

This is a proper generalization of Peano continua since

the Warsaw circle is a continuous image of A.

A concept related to this is that of almost local con-

2

nectedness. A topological Space is almost locally connected
 

if and only if every open set contains a connected open set.

This property is investigated below in some detail and leads to

a characterization of almost-Peano continua.

Lemma 3: A pseudocone is almost locally connected.
  

Proof: Every open set in a pseudocone meets A and

hence contains an open interval.

If X is an almost-Peano continuum and f: X r Y is a

continuous surjection where Y is a compact Hausdorff space, then

clearly Y is an almost-Peano continuum. However, the property

of being almost locally connected is not preserved by continuous

maps in general.

Example 1: Let X be the cone over the Cantor set. By Corollary

2, Chapter II, there exists a pseudocone S over X such that X

is a retract of S. Let r: S r X be a retraction. Then r is

a continuous surjection, and S is almost locally connected by

Lgmma.2. However, X is not almost locally connected since X

with its vertex deleted contains no connected open set.
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The following two results establish some conditions under

which almost local connectedness is preserved.

Proposition 1: Let X and Y _pe topological spaces and let

f:.X r Y ,p; a continuous ppen surjection. __f X .ip almost

locally connected, pp lg Y.

Proof: Let U be an open subset of Y. f (U) is open

in X and hence contains a connected open set V. Then f(V)

is an open connected subset of U in Y.

Proposition 2: Let S pglg locally compact Hausdorff space and

suppose S .l§.é countable union_gf closed, almost locally con-
 

nected subsets. Then S lg almost locally connected.

Iggppf: Suppose S = .81 Wi where Wi are closed and al-

most locally connected. Letl_U C S be open. Since S is locally

compact, U contains an open set V with compact closure.

Then

l(V n wi)<
l

n

n
C
:
8

i

and thus there exists some j such that the interior with respect

to V of V O Wj is nonvoid. Let this interior be denoted by Y.

Then Y is open in V and hence there exists a set YO open in

s such that Y = V'n YO. Set Y1 = YO n v. Y1 is open in s

and Y : V'n wj. Thus Y
1

is open in W,, and since W. is

1 J J

almost locally connected, Yl contains a connected set Y2 which

is open in Y1 and hence in S. Then Y2 C U and the proof is

complete.
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Proposition 2 suggests the following concept.
 

Definition 3: A locally compact Hausdorff Space X is completely
  

almost locally connected, or completely alc, if and only if X is
  

a countable union of compact locally connected subsets.

Lemma 2: A locally compact Hausdorff Space X 1g completely alc
 

if and only if X is g countable union pf compact connected
 

locally connected subsets.

00

Proof: Let X = U Wi° Since each Wi is locally con-

i=1

nected, its components are both open and closed in Wi. Since the

set of components of Wi cover W1 and no proper subcollection

does, Wi has at most finitely many components. Since the com-

ponents of W are closed they are compact and since they are

i

open they are locally connected. Then the set of components of

the W1 is the desired countable collection of continua. The

converse is clear.

In particular, then, a locally compact metric Space is

completely alc if and only if it is a countable union of Peano

continua. This fact leads to the desired characterization of

almost-Peano continua.

Lemma 3: Let X and Y pg locally compact Hausdorff spaces
 

and suppose f: X r Y lg'g continuous surjection. Then if_ X
  

lg completely alc, s _i_s_Y~ 

00

Proof: If X = U Wi, where each W1 is a compact

i=1
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a:

locally connected continuum, then Y = U f(Wi) and each f(Wi)

i=1

is a compact locally connected continuum.

Theorem 2: Let X .pg g compact metric spgce. Then the follow-
  

ing four conditions are eqpivalent.
 

l) X lg_gp almost-Peano continuum.
 

2) X lg completely alc and path connected.
 

 

m

3) X = U Wi where each Wi is g Peano continuum and

W. C W, for each i.

4) There exists g_pseudocone P(X) and g_retraction
  

r: P(X) r X such that rIA: A r X lg_g surjection.

‘ngglz 1) implies 2) Since path connectedness is pre-

served by continuous maps and A = U [1,1], X is completely

alc and path connected by LEEE§.§- 1:1

2) implies 3) Let X = .81 M where each Mi

is a Peano continuum. For each i, let lei E M1 and let

fi: I m X be a path from ai to ai+1. Set

1

Wi = IJ (Mj U fj(I)).

i=1
00

Then each W, is a Peano continuum, X = U W., and W, C W.

i . 1 1 1+1

1:1

for each i.

00

3) implies 4) Let X = U Wi where for each i,

i=1

W, is a Peano continuum and W, C W, . Let p E W . For each

1 1 1+1 1

i, let fi: [i,i+l] e Wi be a continuous surjection such that

f,(i) = f (i+1) = p. Set

1 i



    



Then fO maps A

Identify X with

Let p: X X I r X

be p|P(X). Then

quired.

4)

onto X. Define f: A m X X I by:

1

id) = (f0<t>.-t->.

XX {0} and A with f(A) and set P(X)

be the projection and define r: P(X) r X

rIA = f so that rIA is a surjection as

0

implies 1) This is clear since r A: A a X

is the required map.

= X U A.

re-



CHAPTER V

THE STONE-CECH COMPACTIFICATION OF A

Let X be a completely regular topological space. The

following notation will be used: B(X) is the Stone-Céch com-

pactification of X and X is considered to be a subset of

B(X). If Y is a compact Hausdorff space and f: X r Y is a

continuous map, fl is the unique extension of f to B(X).

B(X) - X is denoted X*.

The following lemmas will be useful in some of the develop-

ment.

Lemma 1: Let P(X) pg_g pseudocone and let U pg gp open set
 

which meets X. Then U O A _lg unbounded.
 

Proof: Suppose not. Then U O A C [1,X] for some x E A.

Thus,

is a nonempty open subset of P(X) which misses A. This is

impossible Since A is dense in P(X).

Lemma 2: Let P(X) pg.g pseudocone and let i: A m P(X) pg the
 

inclusion map. ll f: A r A 13.3 continuous map such that
  

7‘: 7"“

f(t) see, as t -+ CD, then iof (A) = x.

*

Proof: (iof) (B(A)) is a closed subset of P(X) con-

taining (iof)(A). Since

30
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(iof><A) = iEp.w)

for some p E A and X is contained in the closure of iEp,w),

it follows that

*

X C (i°f) (B(A)).

But

X D ifp.”) = ¢

and

* >‘c 3%

(iof) (B(A)) = (i°f)(A) U (i°f) (A )

A A

= iip.°°> U (iof) (A >.

Thus

x : (iof)*(A*).

A ' e

To prove (iof) (Ax) C X, suppose x E A7 and

7':

(iOf) (x) E i(A). Let U be an open set in B(A) such that:

— 7‘s-l

x e U C U ; (iof) (i(A))

_ e _

Then i 1((iOf)7(U)) is a compact subset of A and hence bounded.

Therefore there exists a y E A such that for every t > y,

.1 7‘:

f(t) > SUP i ((i°f) (U))~

But for t E A,

f(t) = i'l<(iof>(t>>

-1 A

i ((i°f) (t))
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and thus for t > y,

-1 '2': -1 7%

i ((i°f) (t)) > SUP i ((iof) (U))

A

Therefore U O (y,m) = ¢, and by Lemma l, U O A = ¢. But

A

x E U O A , a contradiction, and the proof is complete.

The importance of the Stone-CEch compactification of A

to the study of pseudocones stems from the following result.

Proposition l: Let X .pg_g Hausdorff space. Then there exists
  

0
.
.

g pseudocone over X if an only ll X is 3 continuous image
  

 

of A

Proof: Suppose P(X) is a pseudocone over X. Let

, 7': 7': A

i: A m P(X) be the inclu31on map. Then (ioLA) IA maps A

onto X by Lemma 3.

7's“

Conversely, if f: A r X is a continuous surjection, then

B(A) Uf X

is the desired pseudocone.

An examination of continuous images of other spaces asso-

ciated with B(A) may also be of interest. In what follows, a

simple characterization of continuous images of B(A) is given,

and some information is obtained concerning continuous images of

7':

nondegenerate subcontinua of A . A complete characterization in

the latter case appears to be difficult.
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Proposition.2: Let X .22 g compact Hausdorff Space. Then t e
 

following three conditions are equivglent:

l) X islg continuous image of B(A).

2)“ There exists g pseudocone S ._f which >
<

(
D

I
s

0 o n u

  

tinuous image.

3) X has g separable dense path component.

‘nggfiz 1) implies 2) This is clear since B(A) is a

pseudocone.

2) implies 3) S has a separable dense path com-

ponent. Thus by lgmmg‘l, Chapter II, so does X.

3) implies 1) Let D be a separable dense path

component of X and let {ai}:=l be a countable dense subset of

D. Since D is path connected, there exists a map f: A m D

such that for each positive integer n, f(n) = an. Then f(A)

is dense in D and hence in X. Thus f*(B(A)) is dense in X,

and Since f*(B(A)) is compact, f*(B(A)) = X, and the proof is

complete.

Lemma 3: Suppose X lg g separable compact Hausdorff continuum.
 

Then there exists g subcontinuum M ‘gl X X I such that M .lg
  

irreducible between two points and X X {0} C M.
 

co

Proof: Let <ai>i be a sequence of points in X such

=1

on

that the range of <ai> is dense in X. Let {Lili-l be a

collection of subcontinua of X such that for each i, Li is

co

irreducible between a, and a, . In X X I define {W,},

1 1+1 1 i=1
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co

and {b,}, as follows:

1 i=1

W2k-l = Lk X If}

W2k ={arm} [Ti—1'51

b2k-l = (akfi)

b2k = (ak+l"i)

for each positive integer R. Then for each i, Wi is irreducible

between bi and bi+ and Wi O Wi+l = {bi+l}° Set
1)

oo

M= U w.U (XX{0})

i=1 1

co

Then M is the closure in X X I of U Wi and hence a continuum.

i=1

To prove that M is irreducible between two points, let

x E X X {0} and suppose F is a proper closed subset of M con-

taining both b1 and x. It remains to be shown that F is not

connected. There are two cases to be considered:

1) If for some i > 1, b1 E F, then

i-l

U (W. O F)

i=1 3

is a nonvoid proper closed and open subset of F.

co

2) If each bi E F, then since U W1 is dense in M,

i=1

there exists some Wi which meets M - F. Then F O Wi can be

expressed as the disjoint union of two closed sets, B and C, such

that b. E B and b, E C. Then

1 1+1
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i-l

U (w. n F) U B

i=1 J

is a proper nonvoid closed and open subset of F.

Thus F is not connected and the proof is complete.

Corollary_l: Suppose X is_g separable compact Hausdorff con-

tinuum. There exists g compact Hausdorff continuum M containing
 

X such that X is g retract pl M and M _lg irreducible pp-

tween two points.
 

Proof: Identify x with x X {0} in x X I, and let M

be as in Lemma 3. A retraction is obtained by restriction to M

of the projection p: X X I r X.

Corollary 2: Let X pg‘g compact metric continuum. Then there

exists g compgct metric continuum M containing X Such that X

lg_g retract pl M and M .lg irreducible between two points.

Proof: Let M be as in Corollary l. M is metric since

X X I is.

 

Lemma 4; Let U and V pp unbounded open subsets pl A such
 

that U O VI= ¢ and inf U < inf V. Then there exist seguences
 

Q co (1) co

<p > , <q > , <r > and <s > such that:
n n=l n n=l n n=l -——— n n=l

  

or each ositi e inte e n < < r < s < .

1) F p V g r ’ pn qn n n pn+1 

w m

g Q2) U U [pn,qn] and V U [rn,sn].

n=l n=l

Indication pl_proof: Define
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p1 = inf U

q1 = sup {t E U: [p13t] O V = ¢l

r1 = inf V

31 = sup {1: E V: [r1,t] n U = d}

Then pn, qn, rm, and SH are defined inductively, replacing

U and V with U O [Sn-1,“) and V O [s respectively,

n-l’m)

in the definition of pH and rn and replacing p1 and r1

by pH and rn respectively in the definition of qn and Sn

Verification of the properties 1) and 2) is then an elementary

 

exercise in real analysis.

Lemma 5: Suppose M is a metric continuum irreducible between
 

A

two points, a and b, and suppose W is a subcontinuum of A
   

and x and y are distinct elements of W. Then there exists
  

a continuous surjection g: W e M such that g(x) = a and
 

S0?) = b.

Proof: By Corollary 1, Chapter I, there exists a pseudo-

 

cone P(M). Let i: A m P(M) denote the inclusion map. By

Lemma 1, Chapter III, P(M) is metrizable. Thus there exist

and <bn>:- of elements of A such that:

00

se uences <a >

q n —1n=1

' ' ' < < .1) For each pOSitive integer n, an bn an+1

2) lim i(an) = a and lim i(bn) = b.

11"” I‘l"’°°

Now let U and V be open sets in B(A) Such that

1) x E U and y E V
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2) finV=¢.

3) inf (U O A) < inf (V O A).

By Lemma 1, U O A and V O A are unbounded, and by Lemma

. m m m m

4 there eXists sequences <pn> <q > <r > and <Sn>
n=l’ n n=l’ n n=l’ n=l

SUCh that:

1 For each ositive inte er n < < r < S < p .

on Q

2) unA: U[p,,q,] and VOAC UEr,,s,].

i=1 1 1 i=1 1 1

Define f: A v A as follows:

 

Set f(1) = l

f(t) = an for t E [pn’qn]

f(t) = bn for t E [rn,sn]

and extend f linearly to each of the intervals [1,p1], [qn,rn],

and [s Then since the sequences <pn>’ <qn>’ <rn>, and

n’pn+l]°

<Sn> are unbounded, f(t) is defined for each C E A and f(t) H m

k A A

as t a w. Therefore, by Lemma 2, (iof) (A ) = M, and (iof) (W)

is a subcontinuum of M.

A-1 m

Now (iof) ({i(aj)}j_1 U {a}) is a closed set containing

U O A, and hence containing the closure in B(A) of U O A. Let

K be any open set in B(A) containing x. Then K O U is an

open set containing x, and since A is dense in B(A), K O A O U = ¢°

Therefore, x belongs to the closure of U O A in B(A), and hence

(iof>*<x> 6 {i<aj>}?=1 U {a}
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But (iof)*(x) E M and {i(aj)}:=l O M = ¢° Thus (10f)*(x) = a.

By a parallel argument, (iof)*(y) = b. Then (iof)*(W) is a sub-

continuum of M containing both a and b, and Since M is

irreducible between a and b, (iOf)*(W) = M. Setting

A

g = (iOf) IW completes the proof.

Lemma p: Suppose 8 .lg g pseudocone and W lg.g nondegenerate
 

7':

subcontinuum of A . Then there exists g continuous surjection
  

h: W m S.

 

Proof: Let x and y be distinct elements of W and let

U and V be open sets in B(A) such that:

l) x E U and y E V.

2) ‘U n V = e.

3) inf (U n A) < inf v n A.

co co co co

> > > <>Then let <pk k=l’ <qk k=l’ <rk k=l’ and sk k=l be sequences

from A such that for each positive integer k, pk_< qk'< rk < Sk,< pk+19

and

00

U O A C U [p ,q ]
k=1 k k

m

V O A C U [r .s ]
k=1 k k

Define f: A = A as follows:

set f(t) = l for t S p1

f(t) = 1 for t E [pk,qk]

f(t) = k for t E [rk,sk]
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and extend f linearly to each of the intervals [qn’rn] and

[s
n’pn+l]'

Now let j: A m S be the inclusion map, and for simplicity

of notation, set g = (jof)*. Then g-l(j(l)) is a closed set

containing U O A and hence g(x) = j(l). Let B denote the

closure of j(Z+) in S. Then g-1(B) is a closed set contain-

ing V O A and hence g(y) E B. But if g(y) = j(n) for some

n E 2+, g-1(j[l,n+l)) O V is an open subset of B(A) containing

y, and by LEEEE.A: g-1(j[l,n+l)) O V O A is unbounded, which is

impossible since

g'1(j[1.n+1>> n v n A c [1,sn].

Therefore g(y) belongs to the base of S, and by Lemma l, Chapter

I, S is irreducible between g(x) and g(y). Since g(W) is a

subcontinuum of S containing both g(x) and g(y), g(W) = S and

g W is the desired map.

Theorem l: Let X pg g.compact Hausdorff continuum and let W
 

A

pp p nondegenerate subcontinuum pl A . f~ X lg metrizable pl
 

ll, X has g separable dense path component, then X lgng con—
 

tinuous image of W.
 

Proof: If X is metrizable, by Corollary 2, there exists

a metric continuum M irreducible between two points and a con-

tinuous surjection h: M m X. By Lemma 2 there exists a continuous

surjection g: W H M. Thus hog is a continuous map of W onto X.
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If X has a separable dense path component, berroposition

3 there exists a pseudocone S and a continuous surjection

h: S m X. By Lemma p, there exists a continuous surjection

g: W m S. Then hog is the desired map.

A

Corollary g: _l_ W lg.g nondegenerate subcontinuum pl A , the

cardinal number pl W lg 2C.
 

Proof: Since B(A) embeds in IC, the cardinal number of

W is at most 2C. Since IC is separable and path connected, by

Theorem l there exists a continuous surjection f: W m IC. Thus

the cardinal number of W is at least 2C

7‘

Corollary 3: Let X pg.g compact metric continuum and f: X r A

g continuous map. Then f lg‘g constant map.
 

A

Proof: f(X) is a subcontinuum of A and has cardinal

number at most c. By Corollary 2, such a continuum is a single

point.

The remainder of this chapter is devoted to two miscellaneous

topics related to B(A). The notion of natural containment was

introduced in Chapter III and discussed there for metric pseudocones.

In the following two results, B(A) is contrasted with certain

pseudocones over continua with separable dense path components with

reSpect to this property.

Proposition 2: Let B pg_g closed subset pl A. Then B(A)
  

naturally contains E .ll and only ll A - B lg bounded.
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Proof: Suppose A - B is bounded. Then let t E A Such

that:

[t,oo) C B.

7': _

Now A lies in the closure of [t,m) and hence in B. But since

_ A — A

B is closed in A, B - B C A . Hence B - B = A

no

Conversely, suppose A - B is unbounded. Let <an>n=1

be a sequence of points in A - B such that for each positive

CO

integer n, an > n. Then {an}n-l is closed in A. Hence by

normality there exists a function

f: A r I

Such that

f(x) 1 for x E B

a:

O for x E {an}n=l

7'c -

Then f 1([0,1)) is an open set in B(A) missing B but meet-

A A _

ing A . Therefore A is not contained in B, and the proof is

complete.

Proposition i: Let X pgig compact Hausdorff gpace with g
 

separable dense path component. Then there exists g pseudocone
  

+

P(X) which naturally contains g compactification pl Z .
 

Proof: Let D be a dense path component of X with a

co

countable dense subset {ai}i-l“ Let f: A r X be a continuous

function such that f(n) = an for each positive integer n.
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Define g: A a X X I by

1

g(t) = (f(t) .-—t->

and set P(X) = g(A) U (x X {0}).

Now let (x,0) E X X {0}, and let U be any open set in

X X I containing (x,0). Then U contains an open set of the

form V X [0,5) for some 5 > O and some open set V containing

x. Then

m

is an open set and hence meets {a l 1.

n n=

<e and g(i) = (aiql) belongs to w X [0,e)

Suppose ai E W. Then

, l

i > E and hence

H
'
I
H

+

and hence to U. Thus X is contained in the closure of g(Z )

and the proof is complete.

There appear to be no known examples of non-metric inde—

composable continua. The following result provides such an example.

7'€

Theorem 2: A lg an indecomposable continuum.

A

Proof: Suppose A = X U Y where X and Y are proper

A

closed subsets of A . It will be shown that X is not connected.

Let x E X - Y and y E Y — X and let U and V be open sets

in B(A) such that:

l) x E U and y E V
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co m

Choose sequences <pi> <q.>

co

- a . a and (r ,>, from A as

i=1 1 i=1 i 1=1

follows:

Let pi E U O A. Then choose ql > pl Such that q1 E V.

This is possible since V O A is unbounded. Then choose

r > q1 such that (q1,r1)C V. This is possible since V is

open and hence ql lies in some open interval in V.

Proceeding inductively, suppose pk, qk’ and rk have

been chosen for k.< n such that for each k:

1) pk E U.

2) The interval (qk’rk) is contained in V.

3) and if k.< n-l, then r < p< <

qk r kpk k’ k+l‘

Then since U O A is unbounded, it is possible to choose pn > rn_1

such that pn E U. Since V O A is unbounded, there exists a

> h th t E V. S' V ' , a be h seqn pn sue a qn ince is open rn m y c o n

;
greater than qn such that (qn’rn) V.

Then the sequences <pn>, <qn>’ and <rn> are unbounded,

for if not they have a common supremum t, and it follows

t E U'O V, a contradiction. Define f: A a I as follows:

First set f(t) = 0 if t 3 p1

f(pi) = 0 if i is odd

= 1 if i is even

f(qi) = 1/3 if i is odd

= 2/3 if i is even

f(ri) = 1/3 if i is even

2/3 if i is odd
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Then extend if linearly to each of the intervals [p1,qi],

].
[qi’riJ’ and [ri’pi+l

*-1

Then f (O) is a closed subset of B(A) containing

{ }CO H f*-1 * l' ' ' fp2k+1 k=l° ence (O) meets A . But any imit pOint o

{ }°° 1' . — d . *‘1

p2k+1 k=1 ies in U an hence not in Y. Thus f (O)

A A

meets X, or O E f (X). Similarly, l E f (X).

e-

But let a E f7 1(l/3,2/3). Then a is a limit point of

-1

f (1/3,2/3), and

-1 a

f (l/3,2/3) = (q ,r ) C V

k k

k=1

_ e

Thus a e v and hence a e x. Therefore, f°(X) n (l/3,2/3) = o,

and hence X is not connected. This completes the proof.

t

Observe, however, that X7 is a decomposable continuum

if X is a half Euclidean space of dimension greater than one.

Let

X = {(x1,.oe,xn) E En: x 2 0}

1

>
4 l

l - {(x1,...,xn) E X : xn 2 O}

X = {(xl,...,xn) E X : xn S 0}

For each positive integer k, let R be that set of points in

k

A w _

X with norm greater than or equal to R. Then X = O Rk’

k=1
7':

where the closure is taken in B(X). Thus X is a continuum.

Similar arguments Show that X1 - X1 and X2 - X2 are continua,

and the reader can easily Show that these are proper subcontinua

r A _. _

of X7. But X = (X1 - X1) U (X2 - X2), completing the argument.

 



APPENDIX

UNSOLVED PROBLEMS SUGGESTED BY THIS THESIS

This investigation raises several questions which are as

yet unanswered. Following is a brief discussion of some of these

which the author considers most important to the further develop-

ment of the theory.

I. Existence of pseudocones

Except in the metric case and the case of spaces with

separable dense path components the results on existence of

pseudocones are not particularly useful. A characterization of

those continua over which there exist pseudocones in terms of

intrinsic topological properties without the hypothesis of the

existence of an embedding space would be most enlightening.

Lacking this, more readily verified sufficient conditions would

be useful. For example, does separability of X imply the

existence of a pseudocone over X?

Another type of problem in this connection is the follow-

ing: If a collection {XaiaEJ of continua is Specified such that

for each a there exists a pseudocone P(Xa)’ under what con-

ditions is there a pseudocone over H (X )? A similar question

aEJ

can be asked about inverse limits of continua.

II. Retractions

Even for the metric case, the problem of when a continuum

45
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X is a retract of every pseudocone over itself is unsolved except

for Peano continua. It is also not clear whether this property is

preserved by continuous surjections or even by continuous monotone

surjections.

III. Metric pseudocones

The following problem originally motivated this study:

Given a totally bounded metric p on A, let S denote the

completion by Cauchy sequences of the metric space <A,p>. What

is the relationship between the properties of p as a real-

valued function and the topological properties of the base of S?

A satisfactory answer to this question Still seems difficult. In

view of the concept of natural containment, the same problem may

be of interest for metrics on positive integers.

IV. Extension of maps on pseudocones

The map h: A H A, in the definition of an even pseudocone,

has an extension to the entire pseudocone, and its restriction to

the base must be the identity function. In a more general setting

it may be asked under what conditions a map from. A to A extends

to a map from an entire pseudocone P(X) to itself, and under what

conditions such a map induces a self homeomorphism of X. This

homeomorphism question may be of special interest in case the

pseudocone under consideration is B(A).

V. The Stone-Céch compactification of A

One question of interest here is whether B(A) is the only
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pseudocone over A* up to homeomorphism, and if so whether

B(A) and the one-point compactification of A are the only

pseudocones which are topologically determined by their bases.

The proper subcontinua of A* seem to share many of the

properties of A*. Is A* hereditarily indecomposable, or

possibly even homeomorphic to each nondegenerate subcontinuum

of itself? If not, do there exist pseudocones over all, or any,

of the nondegenerate proper subcontinua of A*? Other Questions

about A*, such as whether it has the fixed point property and

whether its CSch homology groups are trivial may also be of interest.

 

3‘:

Aside from the study of pseudocones, A also raises the

question of whether a non-metric indecomposable continuum must

have uncountably many composants, or even more than one composant,

since the proof for the metric case depends upon the second axiom

of countability. Also, if X is a locally compact metric space

7" - u n

such that X is connected, what are necessary and suffic1ent

7':

conditions that X be an indecompos
able

continuum?
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