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ABSTRACT

A NEW CHARACTERIZATION OF CESRRO-PERRON
INTEGRALS USING PEANO DERIVATES

By

Joseph Anthony Bergin

Using the methods of O. Perron the Zn-integral
is defined. A majorant of a function f on an
interval [a,b] is, by definition, the n-th exact
Peano derivative of a function P which satisfies
-o < 6n+lP(x) > f(x) (x € [a,b]), where 6n+lP
is the (n+l)th lower generalized derivate of P.

Using a modification of a theorem of James it is
shown that such majorants lead to a reasonable defini-

tion of integration. Some of the useful properties

of this integral follow.

1. Every n-th exact Peano derivative is
Zn_l—integrable.

2. The Zn—integral is a positive linear
functional defined on certain of the
Lebesgue classes.

3. The indefinite Zn-integral is itself
an n-th exact Peano derivative.

4. The Zo-integral is equivalent to the
Perron integral and the Zn+l—integra1

properly generalizes the Zn-integral.
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5. A non-negative function is Zn—integrable
if and only if it is Lebesgue integrable.

6. The Zn—integral of a product may be
computed using an integration by parts
formula if certain natural restrictions
are fulfilled.

7. The Zn-integral is exactly equivalent

to the CnP—integral of Burkill,

The need to correct and simplify Burkill's work
motivated this study. This approach brings to light
some interesting relationships between Cesaro derivatives

and Peano derivatives. Namely:

8. A function is C_-continuous on [a,b]
if and only if it is an exact Peano
derivative.

9. The (n+l)th Peano derivative of f is
the Cn-derivative of the n-th Peano

derivative of f.
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INTRODUCTION

In a paper published in 1914, O. Perron, [1l1],
attempted to give a new characterization of the
Lebesgue integral but in the process defined a new
and more general integral. He apparently was only
trying to simplify Lebesgue's definition, and indeed
it was easily seen that for the class of bounded
measurable functions thé ideas of Perron and Lebesgue
were the same. Perron realized however that the
integral did not depend upon the boundedness of the
integrand. A year later H. Bauer, [6], developed
some of the properties of the integral of Perron and
in so doing established that the new integral is more
general than Lebesgue's. In fact, he showed that
Perron's integral is capable of reconstructing a
function from its finite derivative, while the Lebesgue
integral is not capable of this without using extra

assumptions.

Perron's idea was very similar to what we
know today as the theorem of Vitali—Carathe6dory (not

completed until 1918). That is, if f 1is Lebesgue



integrable on [a,b] and ¢ > O then there is a
function u which is lower semi-continuous and bounded
below and a function v, upper-semicontinuous and
bounded above such that v { £ < u on [a,b] and

fb (u-v) < €. If we define U(x) = j: u and

V?x) = j: v then U 1is an example of what Perron
called an Oberfunktion (majorant or superfunction)
for £ and V is an example of an Unterfunktion
(minorant or subfunction) for f on [a,b]. That is,
the upper derivate of V is << f on [a,b] and the
lower derivate of U is > £ on [a,b] (also, the
upper derivate of V 1is bounded above and the lower
derivate of U 1is bounded below). The idea of using
these functions to define the integral comes from the

formulas
U(b) < j’: f <Vv(b) and U(b) - v(b) < e.

For full details the reader should consult the excellent

account given in [4;II, p.l157f].

More recently the idea of using majorants and
minorants to define integrals has been adapted to
derivatives other than the ordinary derivatives. 1In
1931, J.C. Burkill, [8], applied the method to approximate
derivatives and thus defined the AP integral, and in

1932-33 ([1] and [2]) he defined a new derivative, the



Ceéaro derivative and then developed the corresponding
integral. Unfortunately there were serious errors.
Still more recently R.D. James [3] and L. Gordon [9]
have used the method in dealing with still other types

of derivatives.

Our purpose here is to define yet another
integral, one which is naturally associated, according
to Perron's method, with the Peano derivatives. We
show that the integral has several desirable properties,
among which is a certain "Fundamental Theorem," a
form of "continuity" for the integral and an integration
by parts theorem. We shall show that the integral
we give is identical to that of Burkill (thus correcting
his errors) and also give some interesting relationships

N
between the Peano derivatives and the Cesaro derivatives.



CHAPTER 1

BURKILL'S CnP - INTEGRAL

Burkill ([1] and [2]) attempted to define a
notion of differentiation, continuity and integration

inductively. We present his definitions.

Let the COP-integral denote the usual Perron

integral (see [4,II p.157f] or [5, p.201f]). Then

CO-continuity is the ordinary continuity and the C

derivative is the ordinary first derivative. Suppose

0]

that the notions of Cn_l—continuity, differentiation

and the C P-integral are defined. If f is

n-1
Cn_lP—integrable on [a,b] then the number

(Cn—l

Definition 1.1. For a positive integer n,

the n-th Cessro mean of a C P-integrable function

n-1
in (x,x+h) 1is defined to be

n +h zyn-1
CalEim) = 2 (Cpq® [ (xen-8)" e (g at.

The number h may be positive or negative. Note that

the existence of the integral is being assumed.

P) fb f(x)dx denotes the value of this integral.
a

f



Definition 1.2. A function f 1is called

Cn-continuous at X provided

lim Cc_(f,x_,h) = f(x.).
hao B (o) o

Thus in particular f is C P-integrable in some

n-1

neighborhood of Xg.

Definition 1.3. Define the (two-sided) upper

n-th Cesaro derivate of f£ at X by

Cn(f,xo,h) - f(xo)
h/(n+1)

*
C.D f(x ) = limsup
n o a0

The lower derivate, CnD*f(xo)' is defined using the
lower limit of the same ratio. If the upper and lower
derivates agree we call the common value the n-th
Cesaro derivative and write it as Can(xo). Right
and left derivates may be defined with the usual
conventions. Burkill uses this notion of continuity
and differentiation to define an integral according

to the method of Perron. For this we need

Definition 1.4. Let f,M be defined on [a,b].

M is called a Cn—majorant of £ on [a,b] provided
a) M is Cn—continuous on [a,b],
b) CnD*M(x) > f(x) for each x ¢ [a,b],
c) CnD*M(x) > - for each x ¢ [a,b],

d) M(a) = O.

Then



Then Cn—minorants are defined by replacing b) and c)

by
*
b') CnD M(x) < f£f(x) for each x ¢ [a,b],
*
c') CnD M(x) < +eo for each x ¢ [a,b].
Definition 1.5. The upper CnP-integral of
f is

*
(Cc_P )[ f = inf{M(b):M is a C_-majorant of
n a n

f on [a,b]].
The lower CnP—integral of f is

(C P*)J;b f = sup{m(b):m is a C_-minorant of
n a n

f on [a,b]}.

Suppose now that we have a proof of the following theorem.

Theorem. Let M be defined on [a,b]. Let

C,DiM > O on [a,b]. Then M is non-decreasing on [a,b].

Then if £ 1is any function and M is a C,h-
majorant and m 1is a Cn-minorant of £ on [a,b], we
*
see that CnD*(Mrm) 2CDM-CDm>0 and so M-m
is non-decreasing. But M(a) = m(a) = O, so that

. *
M(b) > m(b). Thus it follows that (cnP*)j: f < (CnP )j: £.

When these are equal and finite we say f 1is CnP—integrable
and put (CnP)f: f for the common value. Moreover, if
f 1is CnP-integrable then for each ¢ > O there is a

majorant M and a minorant m such that



M(®) - m(b) < €. And so O < M(x) - m(x) < € for
each x ¢ [a,b]. From this it easily follows that

if £ is CnP-integrable on [a,b] then it is also
CnP-integrable on any sub-interval, and in particular

on [a,x], a < x {b. (We make the usual convention
that f: f = 0 always). If we define F(x) = (CnP)J: £,
then we see easily that F is the uniform limit of a
sequence of majorants of f. For these reasons and
others the theorem stated above is central to the

development of these integrals and will be called the

"Validity Theorem."

The first and most fundamental problem with
Burkill's paper is that his proof of the validity
theorem is in error. Moreover, because of the way in
which the n-th Cesaro mean is defined an integration
by parts theorem is essential to the development.

The induction by which Burkill defined the CnP—integral
depends essentially on integration by parts to

transform a CnP—integral to one of lower order. However
Burkill gives only the briefest sketch of a proof of
this theorem and although we believe that the details

can be supplied the complete proof is very long.



We will take a different approach. We first
define an integral, the Zn-integral, which at first
does not seem to be related to the CnP—integral.

The definition does not use an induction and so is
technically much simpler. The notion of derivation
on which it is based is also much neater than the
notion of Cn—derivatives. On the other hand we shall
show that the Zn-integral is equivalent to the

CnP—integral.



CHAPTER II

PEANO DERIVATIVES

Definition 2.1. Let F(x) be defined on an interval
la,b]. Let X € (a,b). Let n be a natural number. If
there are constants QpreeerQp depending on X but not on

h such that
n h n
(2.1) F(x +h) - F(x) - 2 a, = =o0o(h") as h-0
o o k=1 k k!
then a, is called the generalized derivative or Peano
derivative of F at X - This is denoted by F(n)(xo)' It is
easily seen that if F(n)(xo) exists then so do F(k)(xo)
(1 <k < n) and then
n hk n

F(x_+h) - F(x)) - kzi T F(k)(xo) = o(h’) as ha0.
In particular F(l)(xo) = F(l)(xo), the ordinary derivative.
We also say that F(O)(xo) = F(xo) when F is continuous. By
restricting h, say h > 0, we may also define one-sided

generalized derivatives, denoted F (xo) etc.

(n) +

A function f defined and finite on an interval I
will be called an n-th exact Peano derivative (e. P. d.) on
I provided that there is a (continuous) function F on I

such that F(n)(xo) = f(xo) for each point X, in the interior
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of I and, in case I contains its end points, that the
corresponding one-sided n-th derivatives of F at these
points equal f there. Similarly if we say that F has
an n-th Peano derivative in I we mean that F(n) exists
in the interior and the one-sided derivatives exist at

the end points when these are in I.

Definition 2.2. Let n Dbe a natural number.
Let F Dbe defined in the interval [a,b]. Let X, € [a,b].
If n =0 we assume F 1is continuous at X If n >0
we assume F(n—l)(xo) exists. Define en(F,xo,h) for h

such that X+ h ¢ (a,b) by

e n-1 .k
(2.2) or ﬂn (F,Xo,h) = F(Xo+h) - o T F(k) (Xo) .
Note that in case X is a or Db we agree that all these
generalized derivatives are "one-sided." Define
AnF(xo) = F(n)(xo) = l;fgup en(F,xo,h)
(203) .
6nF(xo) = E(n)(xo) = liminf en(F,xo,h).

h-0

Then AnF(xO) is called the n-th upper generalized derivate
of f at X and 6nF(xO) is called the n-th lower gener-
alized derivate of f at X e It is clear that F(n)(xo)
exists if and only if AnF(xo) = 5nF(xo) and both are finite.

In this case F(n)(xo) is the common value. But as

AnF, 5§, F need not be finite we can say that F(n)(xo)
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exists (in the finite or infinite sense) whenever
AnF(xo) = 5nF(xo). Again the "one-sided" derivates
are easy modifications of (2.3) and, as above, when
we speak about AnF(xo) , etc., on a closed interval

we shall mean it in the one-sided sense at end points.

These derivatives have been extensively studied.
(For example see [10]). We would like to note that these
derivatives are more general than the ordinary derivatives.
For example if f£f(x) is the characteristic function of
the rationals then x3f(x) has a second generalized
derivative at O but no second ordinary derivative there.
-2

The same is true of the function g(x) = x3 sin x ,

x #0 , g(0) = 0.

Definition 2.3. Let F Dbe defined in the interval
[a,b]. Then F will be called 1l-convex in [a,b], if it

is non-decreasing there. It will be called 2-convex 1if

it is convex and continuous in [a,b]. If n > 2 then
F will be called n-convex if F(®7?) exists in [a,b]
and is 2-convex there. We also define n-convexity in

an open interval (a,b) by simply dropping the restrictions

at a and at b.

Proposition 2.1. 1If f(n)(x) exists then f(n)(x)

does as well, and they are equal.
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Proof. Apply Taylor's theorem. C

Proposition 2.2 Assume f(n)(x) (n > 1)

exists on [a,b] and F(t) = ft f where ¢ ¢ (a,b).
c
Then
F(k)(x) = f(k—l)(x) (k =1,...,n+l; x € (a,b)).
+h
Proof. F(x+h) - Fx) = IX f(t)dt =
X

o ¥ o ¥

f(x+s)ds =

n k
[£(x) + kZi %T £y (%) + o(s™) ]ds

n hk+1 n+l
= hf(x) + kza TE:TTT f(k)(x) + o(h ). O

Notation. Let 6n +f(x) signify

liminf 6 (£,%,h),
h-0+

the lower right hand generalized derivate of f

at x. We similarly define the symbols 5, f(x), An +f(x),
[ ’

and An _f(x).

’

Corollary 2.3. Under the conditions of proposition

F(x) > 6  f(x).

h+2 n+1

Proof. Let M < 6n+lf(x). Then for all

sufficiently small positive h,



n k n+l
f: [f(x+s)-f(x)—k§§ %T (k)(x) ds>jh'THITTT Mds.
That is,
n+1l hk hn+2
F(x+h) - F(x) - kza T F(k)(x) > )N

M,

thus § F(x) > M, and so

n+2,+

& F(x) > & f(x).

n+2,+ n+1l

If h <O and n 1is even then

k

+1
£ ) -f )-Zs (x) ]ds > [ S—=++ Mds,
f: [ £(x+s (x < %k) S fh IS S

while if n 1is odd

k

n s h Sn+l
f: [f(x+s)-f(x)—kZﬁ T ﬁk)(x)]d8<

W Mds.

@)

Thus in either case we have

, k
iﬁ;éL [F(x+h)-F(x)— Z }}—:— F k) (x)) > M,

for h sufficiently small and negative. Thus

6n+2'_F(x) > M whence
6n+2'_F(x) > 6n+lf(x).
The rest is obvious. C

Corollary 2.4. If f is defined in [a,b]

and if f exists there and if

(m)
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g g
F(x) = JZ d%lj‘al az, ... jak'lf(gk)dgk

for x ¢ [a,b], then

fj(x) = Fk+j(x) (0 < j<m x € |a,b])
and
Sk +1F 2 6m+lf‘
Proof. This follows by iteration from proposition
2.2 and corollary 2.3. O

We need the next three propositions in the

next chapter.

Lemma 2.5. Let £  be finite in (a,b) and
let £ (a+) exist (finite or infinite). Then f£f(a+)

exXists.

Proof. If f’(a+) is finite then £’ is
bounded in some interval (a,xo) so that f is uniformly

continuous there and so f(a+) exists.

If f'(a+) = +» then f° is positive in some
interval (a,xo) and so, by the mean value theorenm,
f is monotone in (a,xo). Thus f(a+) exists. The

case f (a+) = -» is similar. O



Lemma 2.6.

and let f have a finite derivative on

f’(a+) exist. Then

15

Let f Dbe continuous in

.+

[a,b]

(a,b). Let

£°7 (a) exists and equals f“(a+).

Proof. Apply L'H@pital's rule to the limit

fla+x) - f(a)

lim . O
x-0 X
Proposition 2.7. Let n be a natural number.

Let f Dbe defined i
in (a,b), £™ (a4)

f(n)+(a) is finite.
)+

Proof. As

n [a,b] so that f(n)

is finite

exists (finite or infinite) and

Then

(a) = £M+a) = £(M (44

f(n)+(a) is finite, f£

continuous at a and hence, in some interval

By lemma 2.5, f(n-l)(a+),...,f'(a+) exist,

s+

£ (a) = £ °(a+) and since £°Y @) = ¢

(l)+(

is finite, we see that f° 1is continuous at

lemma 2.6 applies also to f£°. Thus

f(z)(a+) = f(2)+

which is finite so that f£

(a) = f(2)+(a)
(2)

Finitely many such steps finish the proof.

is
[a,bl].
By lemma 2.6,
a) which

a. Then

is continuous at a.

O



CHAPTER III

THE THEOREM OF R.D. JAMES

In this section we prove a theorem that is
very important to the development of what follows. It

is merely a modification of a theorem of James [3].

Theorem 3.1. If £ is defined in [a,b]
and if 6§, F 20 in [a,b] then F is n-convex in

(a,b) .

The proof of this theorem requires some

additional definitions and lemmas.

Let n be a natural number. Let £f be
defined on an interval J and let X o XqreeosX be
distinct points of J. Then there is a unique polynomial
P of degree < n such that P(xj) = f(xj)(j = 0,ee.,N).
We write P(x) = P(xo,xl,...,xn;x) to express the

. n .
dependence on XgreeerX o Since P( ) is a constant,

we define

= . = p(n) .
Vn(f’xk) - Vn(f,XO,Xl,..-,Xn) - P /n. .

16
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It is easily seen that

n (X=X Jeee (x-xk 1) (x-xk l) oo (X=-%_)
P(x) = T £(x) 2 = - 2 ,
k=0 kD e=xg) e ee ryemxy) Ogemxy ) eee (g-x))

since this is clearly a polynomial of degree < n having
the required properties. If we expand this expression

we see that

n f(xk)

Vn(f;xo,...,xn) , where

) k§o “_’.'(xk)
n
wix) = I (x-x.).
k=0 k

It is also easily verified that

(x-xo)P(xl,...,xn;x)-(x-xn)P(xo,...,x l;x)

n-

P(x ’.."x ;X) =
o X_ - X
n n o

since this polynomial also has the required values at
the points X seeesX . From this we see that

v (f.x % ) _ Vn"l(f;xl'...’xn) - Vn-l(f;xo"”'xn—]_)
n ’ ol 0 0o, n xn — Xo .

Another property easily seen from the definition
is the fact that a permutation of the points Xgo oo X

leaves P and Vn(frxo,...,xn) unchanged.

Definition 3.1. The function f is called n-
convex (d) in J provided Vn(f;xo,...,xn) > 0 for all

choices of n+l distinct points XopeeesX, from J.
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We note that "2-convex (d)" means "convex"

and "l-convex (d)" means "non-decreasing."

Proposition 3.2. Let £ be n-convex (d)

on (a,b). Let XoreesorX be distinct points of (a,b)

and X1 < X Then )
Vn_l(f;xo,...,xn_z,xn_l) g_Vn_l(f;xo,...,xn_z,xn).
Proof. We see that
Ve (EiXgreeenx 50X ) = V) (£5XseeesX 50X q)
= Vn_l(f;xo,...,xn_z,xn) - Vn_l(f;xn_l,xo,...,xn_z) =
= (xn—xn_l)vn(f;xn_l,xo,...,xn_z,xn) > 0. a

Remark. We see from proposition 3.2 (and the
remarks above it) that Vn_l(f;xl,...,xn) is a monotone
function in each of the variables XyreeosX, when f

is n-convex (4).

Proposition 3.3. Let n > 2. Let £ be
n-convex (d) on (a,b). Then £’ and £°7  exist

and are finite in (a,b).

*
Proof. Let x ¢ (a,b), x € (a,x). If n > 2

choose Xy,...,%X _, such that

*
a < xl < x2 Co ool Xn—2 < x .
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Set

F(t) =V 1 (fiXg,eeerx 50X t) (x < t < D).

By proposition 3.2, F is non-decreasing on (x,b) and

* *
F(t) > Vn_l(f;xl, ....xn_z.x,t) > Vn_l(f;xl,...,xn_z,x »X)
here. Thus F(x+) exists and is finite. Let

n-2
g(t) = 1 (t-x), h(t) = £(t)/g(t), for t e (x",b).

Let
n-2 £(x.)

Fi(t) = T

j=1

570y (x50 (550 for

x R D (Thus g =1 and F) =0 if n = 2).

- £(x) £(t)
F(t) = F1(8) + 5oy ety * 500 (050

]

Fy(e) + RUEERED (o oy oy,

It follows that h°’7 (x) = F(x+) - Fl(x). Since f = hg
and g is a polynomial we see that £ (x) exists

and is finite. To finish we treat £ ~  similarly. [m}

Corollary 3.4. If n >2 and f is n-convex (d)

then f 1is continuous.

Proof. It is evidently both right and left

continuous by the above. [m]
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Proposition 3.5. Let n > 2 and f be

.+

n-convex (d) in (a,b). Then f and f°~ are

(n-1)-convex (d) in (a,b).

Proof. Let a < Xq < X, <ol X, < b. Let
h ¢ (o,b-xn). Let vy = xj + h(j=1,...,n). Let
wx(t) = H(t-xj), wy(t) = H(t—yj). Then it is easily

seen that wé(xj) = w;(yj). Then from proposition 3.2,

Vn_l(f;xl'ooo,xn) S Vn-l(f7yl'..°'yn)

so that
n f(y.) - £(x.)
j=1 x 7
Thus
.+
.t n f (x.)

Proposition 3.6. Let f be continuous in (a,b)

and £t =0 in (a,b). Then f 1is constant.

Proof. We first show that if g is continuous

,+

in (a,b) and g > O there, then g is non-decreasing.

To see this let o,B be in (a,b) and o < B. Let

x, = sup(t € [a,B]: g(t) > g(a)}.

It follows easily from the continuity of g that
g(xo) > g(a). Moreover, we claim that X, = B. If this
is not the case then, since g'-ﬁ(xo) > 0, there is a

point t in (xo,B] such that g(t) > g(xo) > g(a),
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and this contradicts the definition of X e Thus

X, = B so that g(B) > g(a).

From this one sees easily that if g is
continuous and g,4-‘2 O in (a,b) then g is non-
decreasing. The proposition at hand is immediate
from this and the corresponding statement about a

function g such that g'i' < O. a

Proposition 3.7. Let £ Dbe continuous on (a,b)
such that f'4' is also continuous. Then f is

differentiable.

b4

Proof. Let g be such that g' =", Then

(f-g)'+' =0 so f-g 1is constant. O

Proposition 3.8. Let n > 2. Let £f Dbe
n-convex (d) in (a,b). Then f  is (n-1)-convex (d)

there.

Proof. As £’ 1 s (n-1) -convex (d4)
(proposition 3.5), and continuous (corollary 3.4), we
see by proposition 3.7 that f° exists, and so f£° = £°°

is (n-1)-convex (4). C

Corollary 3.9. If f 1is n-convex (d) in (a,b)

then f 1is n-convex in (a,b). That is: for n > 2,
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f(n-2)

if f is n-convex (d) in (a,b) then exists

and is convex.

Proof. This follows trivially from proposition

3.8 by iteration. O

In fact n-convexity (d) is equivalent to
n-convexity, but we do not need this result and so
omit the proof. (A proof may be found in [7], however
this paper is quite complicated. We have included the
proof of corollary 3.9 for completeness and because of

its simplicity. The proof is due to J. Marik.)

Definition 3.2. The generalized symmetric
derivative, Dan(xo), of order 2n of a function F

at xg is defined by the relation

h2k

(2k) !

%(F(xo+h)+F(xo—h)} - Dsz(xo) = o(n®?)

§ e

k
as h + 0, in a manner analogous to the definition of

the Peano derivatives. The generalized symmetric

derivative, D2n+lF(xo), of order 2n+l is defined by
n 2k+1
1 h 2k+1
5 (F(x_+h) -F (x_-h) } - kZ BT O Ex) = o (n2"+1)
=0 *

as h + 0. These derivatives are generalizations of the

Peano derivatives in the sense that if Fk(xo) exists
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then so does DkF(xo) but not necessarily conversely.

We can proceed as in Chapter II to define upper and

lower symmetric derivates.

Thus we define Yh(f,xo,h) for n = 2m by
2m m-1 , 2k
h -1 - R < W)
(2m) ¢ Y2m(f'xo'h) - i[f(xo+h)+f(xo h) ] kia (2k) : D f(xo)

(provided Dzkf(xo) (k =0,...,m-1) exist) and, for

n = 2m+l, by

h2m+1 1
DT Yamel (Fr%o M) = F(E(xg#h) -£(x-h) )

m—; h2k+l D2k+lf(x )
k=0 (2k+1) ! (o)
2k

(provided D -lf(xo) (k = 1,eee,m) exist). The k-th

generalized upper symmetric derivate of f at X is
vf(x ) = limsup Y, (f,x _,h).
k o h0 k o)

The function F 1is said to satisfy conditions

Aon in (a,b) if it is continuous in [a,b] and

if, for 1 < k { m-1, each D2kF(X) exists and is

finite in (a,b), and if

lim hyY, (F,x ,h) =0
h-0 2m (o)

for all X in (a,b)\E, where E 1is a countable set.
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The conditions Apn+l are defined analogously. This
condition can be thought of as a sort of "n-th order

smoothness."

We say that the finite function £ has a
discontinuity of the first kind at ¢ € (a,b) or an
ordinary discontinuity, provided that f(c+), f(c-)
both exist in the finite or infinite sense but that at

least one of these is different from f(c).

The function F 1is said to satisfy conditions

B2m—2 in (a,b) if it is continuous in (a,b), 1if,

for 1 < k { m-1, each DZkF(x) exists and is finite

in [a,b] and if no DZkF(x) has an ordinary discontinuity
in (a,b). A similar definition is given for conditions
Bom-1°

Proposition 3.10. If F satisfies conditions
Al and Bn-2 in (a,b) and if ynF(x) >0 in (a,b)
then F(x) is n-convex (d) in (a,b).

Proof. This is theorem 4.2 of James [3]. O

We shall see that theorem 3.1 follows from
proposition 3.10. In the first place, it is easily seen
that akF(x) < AkF(x) < ku(x) whenever the left hand
side has a meaning, so that if GkF(X) >0 on [a,b]

then also vy, F(x) >0 on [a,b]. To finish we need
k e
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only note that conditions Al and Bn-2 are automatically
satisfied in case énF(x) > 0. The proof of this fact
is in Section 8 of James' paper. Thus theorem 3.1

is proved.

Proposition 3.11. Let F be defined in
[a,b] and let 6nF(x) >0 in [a,b]. Then F is

n-convex in [a,b].

Proof. By theorem 3.1 we need only show that

F(n—2)+ (n-2)

exists at a and that F is continuous

at a. (Similarly for b.) But as r("2)  §5 convex

in (a,b) we know that F(n_z)(a+) exists. Thus

by proposition 2.7, p(n-2)+

F(n-2)

_ _ o(n=2)
(a) = F(n_2)+(a) = F (a+) .
Thus exists and is continuous in [a,b] so

that F 1is n-convex there. O



CHAPTER 1V

THE CENTRAL THEOREM

In this section we shall state and prove the
validity theorem for the Zn-integral which we define

in the next section.

Theorem 4.1. Let f be defined on [a,b] and

f(n—l)

suppose énf(x) >0 on [a,b]. Then exists

and is non-decreasing on [a,b].

Proof. We know f(n—l) must exist at each

(n-2)

point of [a,b]. By theorem 3.11 f exists and is

f(n-2)' +

2-convex in f[a,b]. Moreover exists in

(n-2) * -

[a,b) and f£ exists in (a,b]. Applying a

one-sided version of Taylor's theorem we see that

£(n-2) " + f(n-2) " -

= f and Thus

(n-1) + = fn-1) -

f(n—l) exists in [a,b] and is the derivative of a

convex function and hence is non-decreasing (and in

fact continuous). C

We shall need the following simple consequence

of theorem 4.1.

26
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Theorem 4.2. Let f and g be defined on
an interval I such that f(n) = g(n) on I. Then

f and g differ by a polynomial of degree no more

than n-1.

Proof. As (f—g)(n) = 0 we have (f—g)(n—l)

is a constant by theorem 4.1. The rest is easy. O



CHAPTER V

THE Zn"INTEGRAL

Definition 5.1. Let n be a natural number.
Let M,f Dbe defined in [a,b]. Then M is called
an n-majorant of f£ in [a,b] if there is a function

P on [a,b] such that

1) M= P(n) on [a,b],
2) 6n+lP(x) > £(x) for each x € [a,b],
3) 6n+lP(x) > —o for each x ¢ [a,b].

The function P will be called a pre-majorant. Then

n-minorants are defined similarly, replacing 2),3) by

2') An+lP(x) < f(x) for each x ¢ [a,b],
3') An+lP(x) < 4o for each x ¢ [a,b],

and then P 1is called a pre-minorant.

Remark. For n=0 we have exactly the definition

of majorant for the Perron integral.

Definition 5.2. Let f be defined on [a,b].

The upper Zn—integral of £ on [a,b] 1is

(Zn*)fb f = inf(M(b) - M(a):M 1is an n-majorant
a

of £ on [a,b]}.

28
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The lower Zn-integral of £ on [a,b] is

(z )fb f = sup{m(b) - m(a):m is a n-minorant
N% a

of £ on [a,b]]}.

(The infimum of an empty set is of course +=, etc.)
If the upper and lower Zn—integrals are finite and equal
then we write (Zn)fb f for the common value and say

a

that f is Zn—integrable on [a,b].

The Zo—integral is then exactly the Perron

integral.

Remark. If M 1is an n-majorant of f and

m 1is an n-minorant and if P and p are an associated
pre-majorant and pre-minorant respectively, then

6,41 (P-P) > 0 and so (P-p)(n) = M-m is non-decreasing
by theorem 4.1. Thus M(b) - M(a) > m(b) - m(a). From

*
this it follows that (2 )fb £f > (2 )fb f for every
n a h N a

function f£f.

We can now prove a simple theorem which can

be taken as the motivation for this integral.

Theorem 5.1. If F exists and is finite

(n+1)

on [a,b] then Zn-integrable there and

F(n+l) is

b
(Zn)f: F(n+l) = [F(n)]a )
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Proof. F(n) is“at the same time an n-majorant

and an n-minorant of F Thus

(n+l1) °

* b
(z, )jz Fn+l) g_[F(n)]a and

) b
(Zn*)jz F(n+l) 4;[F(n)]a :

But as we have remarked above,

*
(z, )f: F(n+1) > (zn*)fb F(n+l) and so

(2) 7 F 1) = [Fn )

We will frequently make use of the following simple result

in the later proofs.

Proposition 5.2. A function f defined on [a,b]
is Zn-integrable there if and only if for each € > O

there is an n-majorant M and an n-minorant m such that

M(b) - M(a) - (m(b) - m(a)) < €.

Proposition 5.3. Let M be an n-majorant of
f on [a,b]. Let ¢ be any constant. Then M(x) + c

is an n-majorant.

Proof. Let P(n) =M on [a,b]. Let

Q(x) = P(x) + cx'/n!.

Then Q(n)(x) = M(x) + ¢ and 6n+1Q(x) = 6n+lP(x). O
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Proposition 5.4. If f g on [a,b] then
* *
(2, )j: £z, g

Proof. Clearly any n-majorant of g 1is also

an n-majorant of f. The rest is clear. O

Occasionally we shall use the more classical

notation jb f(t)dt or (Zn)fb f(t)dt instead of
a a
(zn)j‘z f.



CHAPTER VI

PROPERTIES OF THE Zn-INTEGRAL

Proposition 6.1. A Zn-integrable function f£

on [a,b] 1is finite almost everywhere on [a,b].

Proof. Let M be an n-majorant and m an
n-minorant of f on [a,b]. We may assume M(a) = m(a)
Define R(x) = M(x) - m(x). Then R 1is non-decreasing
by theorem 4.1. Let P,p be defined on [a,b] so
that P(n) = M, p(n) = m. Then P-p 1is (n+l)-convex
y ()

by theorem 3.11 and so (P-p = (P—p)(n) = R

(proposition 2.1). Suppose f£f(x) = +«. Then 6n+lP(x)

and, as An+lp(x) <{ +», we have (P-p)(n+l)(x) = 4o,
Similarly, if f(x) = -, then An+lp(x) = -» and since
6n+lP(x) > -o we have (P—p)(n+1)(x) = +o, But

R’ = (P-p)(n) = (P—p)(n+l) exists and is finite a.e.

in [a,b] and so f is finite a.e. in [a,b]. O

Proposition 6.2. If f 1is Zn—integrable on
[a,b] and if c¢ ¢ (a,b) then £ is Zn—integrable on

each of [a,c] and [c,b]. Moreover

(zn)faD £ = (zn)j‘: £+ (zn)fz £.

32
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Proof. Let ¢ > O be given. Let M,m be
respectively an n-majorant and an n-minorant for f
on |a,b] such that [M—m]g < €. It follows immediately
from the definitions that M is an n-majorant on [a,c]
and on ([c,b] and that m is an n-minorant on each of

these. Then, by the remark following definition 5.2

we have
c . b
[M—m]a > 0 and [M—m]c > 0.
c b b
But then O < [M—m]a + [M—m]c = [M—m]a < €. Thus
0 < [M—m]g < € and O < [M—m]g < € so that f |is
Zn-integrable on each of [a,c] and [c,b]. Moreover
b c b C
m)? = (m]S + (m2 < (z) S £+ (z) [0 £ <
c b _ b
<+ 2= mP

Since the first and last terms differ by less than ¢

the formula is proved as well. O

Proposition 6.3. If f£f(x) is Zn—integrable
on [a,c] and on |[c,b], a < c <b, then it is

Zn—integrable on [a,b] and the usual formula holds.

Proof. Let Ml , M2 be n-majorants of £ on
[a,c] and [c,b] respectively. By proposition 5.3 we
may assume that Ml(a) = 0 and M2(c) = Ml(c). Let M

be defined by
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M, (x) x € |a,c]
M(x) =
M, (x) x € [c,b].

Then M is an n-majorant of £ on [a,b]. To see this

let P(n) = M1 and Q(n) = M2. Then

P(x) x € [a,c]
R(x) =
Q(x) - Q(c) + P(c) x € [c,b],

is a pre-majorant on [a,b] since

R =M and § +R(c) = § P(c) > f(c)

(n) n+1 n+1l,+

and also > -», and 6§ R(c) = & _Q(c) > f(c) and

n+1, - n+1,

also > -,

If my and m are n-minorants on [a,c] and

2
on [c,b] then we construct an n-minorant m on [a,b]
in an analogous way. Moreover, if [Ml—ml]: < § and
b ¢
[M2 m2]C < 5 then
b _ c b
[M—m]a = [Ml-—ml]a + [Mz-mz]c < €.
Furthermore,
b b
[m]) < (zn)jzl £+ (zn)fz £< (M) .
Thus (Zn)fz f exists and equals (Zn)f: f + (Zn)ji f.

Definition 6.1. Let f be Zn—integrable in
(a,b]. Then, if x ¢ (a,b], we see from proposition 6.2

that £ is Zn—integrable over [a,x]. We put
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(Zn)fz f = 0 for any function. Then (Zn)jz f is
defined for each x ¢ [a,b]. An indefinite Zn—integral
of f is any function of the form F(x) = c + (Zn)j: f

where ¢ 1is constant.

Proposition 6.4. Let £ Dbe Zn—integrable on
[a,b]. Let F be any indefinite Zn-integral of £ on
[a,b]. Then F 1is the uniform limit of a sequence of

n-majorants on [a,b] (similarly for n-minorants).

Proof. Let € > 0. Let M,m be respectively
an n-majorant and an n-minorant of f on [a,b] such
that M(a) = m(a) = F(a) and M() - m(b) < €. As
M-m 1is non-decreasing on [a,b] (by the remark after
definition 5.2), we have O < M(x) - m(x) < € for each
x € [a,b]. Since M,m are respectively an n-majorant

and an n-minorant on every sub-interval of [a,b]

we have
m(x) - m(a) < (zn)j: £ < M(x) - M(a).
Thus
0 < M(x) - M(a) - (zn)j: £ = M(x) - F(x) < €
The rest is obvious. O

Proposition 6.5. Let F Dbe an indefinite

Zn—integral of £ on [a,b]. Let M be an n-majorant
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of £ on [a,b] such that F(a) = M(a). Then M-F

is non-decreasing.

Proof. Let a { x; <X < b. Then M is an

2
n-majorant of f on [xl,xz] and so

X
F(x,) - F(xq) = (zn)jxi £ < M(x,) - M(x) -

Thus M(xl) - F(xl) < M(x2) - F(x2). O

Remark. Similarly, if m 1is an n-majorant

than F-m is non-decreasing.

Proposition 6.6. Let F be an indefinite
Zn-integral of a function f on [a,b]. Let M be
an n-majorant of f on [a,b]. Then M-F is

continuous.

Proof. Let m be an n-minorant of f on [a,b].

Then M-m 1is an n-th e.P.d. of some function G on

[a,b]. As & ,.G >0 on [a,b] we see that g1 4

n+1l
convex and continuous in [a,b] by theorem 3.11.

o) - (n) +

Moreover exists in (a,b] and G exists in

[a,b). But then it follows from Taylor's theorem that

G(n)+ = G(n)+ (a?d G(n)- = G(n)—’ Since G(n) exists
n

we see that G = G( , so that G

= g

is an ordinary

(n)

is non-decreasing,

n)

derivative. Thus, since G(n)
we see by the intermediate value property for derivatives

that it is continuous. But M-F 1is the uniform limit of
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functions of the form M-m so that M-F 1is also

continuous. O

Theorem 6.7. Let F Dbe an indefinite Zn—integral
of a function f on [a,b]. Then F 1is an n-th e.P.d.

on [a,b].

Proof. Let M be an n-majorant of £ on [a,b]
and let P(n) = M there. Then as M-F is continuous
we see that there is a function G on [a,b] such that

(n)

G = M-F there. But then

(P=G) () = Proy - c™ _p. o

Corollary 6.8. Let F Dbe an indefinite Zn—integral

of £ on [a,b]. Then F is Z -integrable.

n-1

Proof. This is immediate from theorem 6.7 and

theorem 5.1. O

According to corollary 6.8, we can form the
iterated integral
g€ g€
o n-1
(6.1) Io ag, [[0agy - [PTheEas,
whenever f 1is Zn—integrable, where the innermost
integral is a Zn—integral, the next is a Zn_l—integral, etc.,

and the outermost is a Zo—integral. We shall use the symbol
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[ £(8)da(e,n)
a

for the (n+l)-fold iterated integral in (6.1l). Note

also that Ix f(£)d(€,n) 1is a continuous function of x.
a

Theorem 6.9. Let F(x) be an indefinite
zn—integral of a function £ on [a,b]. Let G(n) = F
on [a,b]. Then G(n+l)(X) = f(x) for almost every

x € [a,b].

Proof. Let € > O. Let m(+) denote Lebesgue
*
measure and let m () denote Lebesgue outer measure.

Let M be an n-majorant of f on [a,b] such that

2

M(a) = F(a) and M(b) - F(b) < €. Let P = M.

(n)
Let R(x) = M(x) - F(x). Then R 1is continuous
(proposition 6.6) and non-decreasing (proposition 6.5)

and so

(L)j: R’ < R(b) - R(a) < .

Moreover (P—G)(n) =R on [a,b].

Let
A(e) = (x:6n+1G(x) < £(x) - €.
Let
B = (x:R* = (P—G)(n+1) exists and is finite]}.
If x €A(e¢) then 6n+lG(x) < 6n+lP(x) - € and so

6n+lP(x) - 6n+lG(x) > €. (Note that 6n+lP(x) > —-» and
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8 416(x) < +»). If x €B NA(€) then & P(x)

8, ,16(x) = R°(x). To see this, write P = (P-G) + G
so 6n+lp 2R+ 6 4G while G = P - (P-G) and
so 8 1G> 6 (P - R°. Thus B N A(¢) is a subset
of the set

B(e) = (x:R7(x) > €}.

We now see, em(B(¢€)) < (L)IB(G)R' < (L)Jz R’ < €2‘

It follows that m(B(e)) < € and so m*(A(e)) < e.
So in particular, for each positive r, m*(A(r)) {r.

*
So letting r = —%— we see m (A(—%ﬁ) < J% . From this
2 2 2

*
we see that m (A(O)) < ¢ and as € 1is arbitrary this
implies that 6,416 2 £ a.e. in [a,b]. In the same
way we can show that An+lG < £ a.e. and so

G(n+l) = f a.e. on [a,b]. O

Proposition 6.10. Every Zn—integrable function

is measurable.

Proof. Let £ Dbe Zn—integrable. Applying

theorem 6.9 let G(n+1) = f a.e. Then
. n+l , 1 4 m_,
£(x) = lim (k7 (n+l) {{G(x + ) - 2 G )(x)/k m!})
k4o m=0 (m

for almost every x. Thus f 1is the limit a.e. of a
sequence of continuous functions (as G 1is continuous)

and so is measurable. )
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Theorem 6.11. The Zo-integral is identical to
the Perron integral. If £ is zn-integrable on [a,b]

then f 1is also -integrable there and

Zn+l

(Zn)j: f = (Zn+l)JZ f.

Proof. The first statement is obvious. Let
f Dbe Zn—integrable on [a,b]. Let € > 0. Let Mnm
be respectively an n-majorant and an n-minorant of f

on [a,b] such that [M—m]g < €

Let P = M, p(n) =m on [a,b].

(n)
Let Q(x) = IZ P, q(x) = f: P.

Then by proposition 2.2, Q(n+l) = M, I(n+l) = m and

by corollary 2.3 and its analogue for upper derivates,

6n+2Q(x) > 6n+lP(x) > f(x) on [a,b]

and

6n+2Q(x) > -= on [a,b].
Also
and

An+2q(x) < 4o on [a,b].

Thus M is an (n+l)-majorant and m is an (n+l)-minorant

and so f 1is Z

X
-integrable and O < [M - (z ) f < e.
n+l 9 < ]a ( n+l I: S

Hence

(zn)j: £ = (zn+1)j‘: £, O
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Recall also that the Perron integral is an

extension of the finite Lebesgue integral.

Proposition 6.12. Let f be a non-negative

measurable function on [a,b]. Then

(zn*)jla’ £ = ‘Zn*)J: £ = (L)j‘: £.

(The last integral is the finite or infinite Lebesgue
integral). In particular if f > O and if f 1is

Zn—integrable then f 1is Lebesgue integrable and
Z.) f = (L) £.
(z)]; £ = @[

Proof. 1If (L)fb f 1is finite then all follows
a
immediately from theorem 6.11. If (L)fb f = +o let
a
£, = min{f,k}. Then f

it is easy to see that

(zn*)j‘: £ > (zn*)j: £, = (zn)f: £, = (L)jJ: £y

(k =1,2,...).

" is Lebesgue integrable and

Then since lim(L)fb fk = +o, we also have (2 )fb f = +o.
a N% a

The rest follows at once. r

Proposition 6.13. Let f,g,h be functions on
* *
[a,b]. Suppose that (2 )Ib f + (2 )Ib g has a meaning,
n a n a
and that £(x) + g(x) > h(x) whenever the left hand

side has meaning. Then
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* * *
(6.2) (zn )jz h < (zn )IZ f + (zn )f: g.

Proof. Let M1 be an n-majorant of f
and M2 an n-majorant of g. (If one or the other
of these does not exist then the right hand side of
formula (6.2) is +o 1in which case the result is
obvious). Then Ml + M2 is an n-majorant for h.
To see this let P(n) = Ml' Q(n) = M2. Then

(P+Q)(n) = M, + M,. Also

6n+l(P+Q) 2 6n+1P + 6n+lQ i
and

6n+l(P+Q) >f+g >h

whenever the middle term has meaning. If £ + g has
no meaning then we see that 6n+1(P+Q) = +o, Namely,
one of f(x), g(x) 1is +o so that one of 6n+1P(x),
6n+lQ(x) is +o and the other is not -« whence

6n+l(P+Q)(x) = 4o,

Thus 6n+l(P+Q) 2h on [a,b] and M + M, is an

n-majorant. The result follows. O

Remark. We of course have a similar theorem

for lower integrals.

Corollary 6.14. Let f£ and g be Zn~integrable
in [a,b]. Let h(x) = f£(x) + g(x) whenever the right

side has meaning. Then h is Zn-integrable in [a,b] and

(zn)f: h = (zn)f: f + (zn)j: g.
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Proof.

(zn*)j: £+ (z)] 9< (zn*)_]‘: h <

h < (zn*)f: £+ (zn*)f: g.

But the terms on the extremities are equal. i

*

< (7,

oY o ®

Proposition 6.15. If £ is Zn—integrable
in [a,b] and if f =g a.e. in [a,b] then g is also

zn—lntegrable there and (Zn)fz = (Zn)I: g.

Proof. Let h(x) = O whenever f(x) = g(x)

and h(x) = +» otherwise. Then

0 = (L)J: h = (zn)j': h,

and by corollary 6.14

(zn)jla)f=(zn)jl; (h+f£) .
Moreover g < h+f whenever the right side has a meaning
and so
o [P e
(zn)agg(zn E e
Similarly considering the function defined by

k(x) = -h(x) we see that

Z a2yl o

Remark. According to proposition 6.15 the

Zn—integral may be defined naturally on certain of the
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Lebesgue classes (those which contain a Zn-integrable
function). Combining propositions 6.15 and 6.14 we
see that the Zn—integral, considered as a functional
on these classes, is additive. Again proposition 5.4
and 6.12 can be used to show that the Zn—integral is

a positive functional.

Theorem 6.16. Let f and P Dbe defined in

[a,b] so that P exists and so that

(n)

a) 6n+lP(x) > f£(x) a.e. 1in [a,b],

b) 6n+lP(x) > —o in [a,b].
Then
* b
(2, )_[2 f < [P(n)]a .
Proof. Let h(x) = f(x) when 6n+1P(x) > f£(x),
h(x) = -» otherwise. Then P(n) is an n-majorant

for h and so
* b
(Z, )jz h < [p(n)]a .
Define k(x) = O when 6n+lP(x) > f(x), k(x) = +o
otherwise. Then £(x) < h(x) + k(x) whenever the right

side has meaning and so

* * b
(zn)j‘:fg(zn)j':h+og[9(n)]a. O

From this theorem we see that we may enlarge

the class of majorants to include those functions which
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satisfy property 2) of definition 5.1, only
almost everywhere. A similar result holds of course

for minorants.

Proposition 6.17. Let f Dbe Zn—integrable
on [a,b]. Let ¢ be any finite number. Then cf

is Zn—integrable on [a,b] and
(Zn)jz (cf) = c(Zn)fz f.

The proof of this proposition is easy when the
cases ¢ > 0 and c¢ < O are considered separately.

We omit the details.

Combining this result with our previous results
we see that the Zn—integral is a positive linear
functional on the set of those Lebesgue classes for

which it makes sense.

Proposition 6.18. Suppose g and h are
Zn—integrable functions and f is any measurable
function on [a,b]. Suppose g < £ <h on [a,b].

Then £ 1is Zn—integrable as well.

Proof. Since we have, for almost every x,
that 0 < f(x) - g(x) < h(x) - g(x) and since h-g
is Lebesgue integrable we see that f-g is Lebesgue

and hence Zn—integrable. We now simply apply linearity.
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Remark. In the same way we can show that if
f is Zn—integrable and bounded below (or above) by
a Lebesgue integrable function, then f is already

Lebesgue integrable.

Proposition 6.19, Dominated convergence theorem.
Suppose g and h are Zn-integrable functions on [a,b].
Let {fk] be any sequence of measurable functions on
[a,b] such that g < £ < h on [a,b]. Suppose
is

lim fk = f a.e. in [a,b]. Then f and each £

Zn—integrable and

ii: (Zn)fz fk = (Zn)f: f.

k

Proof. The integrability is obvious from proposition
6.18. To see the last formula simply apply the usual

Lebesgue theorem to the sequence h-f and the limit

k
h-f. Then apply linearity. O

Proposition 6.20. Let {fk} be a sequence
of Zn-integrable functions on [a,b] which converge

uniformly there to a function f. Then f 1is Zn—integrable

in [a,b] and (Zn)jb f = lin (Zn)fb £ -
a a

Proof. Let ¢ > O. Let K Dbe chosen so that

fp — €S ESE + o€ for all k > K. Then f is

Zn—integrable. Moreover as =-€ L f - fi < € we see that
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lim(zn)fb (f—fk) =0
a

by the dominated convergence theorem. Now apply

linearity. O

Note also that [(Zn)fz fk] converges uniformly
to (Zn)j: f in [a,b]. Namely, £ - fk is Lebesgue
integrable and so (L)IZ (f—fk) converges uniformly

to zero on [a,b].

Proposition 6.21. Let f Dbe Zn—integrable on

[a,b] and M an n-majorant. Let P(n) = M. Then

P(n+l) exists a.e. on [a,b] and is zn—lntegrable

there.

X

Proof. Let F(x) = () [ f. Let Q. =F
on [a,b]. (Such a Q exists by theorem 6.7). Then
(P-Q)(n) is a continuous, non-decreasing function by

propositions 6.6 and 6.5. But then (P—Q)(n) = (P—Q)(n).
(n)

Namely, there is a function R such that R = (P-Q)(n)

which implies (R—(P-Q))(n) = 0. Then R and P-Q
y (n)

differ by a polynomial so that (P-Q exists. Since

(P-Q)(n) is increasing and continuous we see that

)(n+l)

(P-Q exists a.e. in [a,b]. Thus

Pint1) = (B = Q+ Q) )
(P_Q)(n+l)

I

+ Q(n+l)
(P-Q)(n+l)

+ f (a.e. in [a,b]).
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. +1 .
(We have applied theorem 6.9.) Since (P—Q)(n ) is
Lebesgue integrable we see that P(n+l) must be

zn—integrable. C

To finish this section we would like to present

a theorem of Oliver [1l0]. We need some preliminaries.

Lemma 6.22. Let f be differentiable on
J = la,b]. Let a >O0. Let |f°| >a on J. Then
there is an interval Jo c J such that m(JO) > % m(J)

. a
and that |f| >z ™3 on J_.

Proof. By the intermediate value property for

. . L
derivatives we may assume f > a. Let

= 232 , d = b-a.
If £ .0 on (c,b), then f£f(x) > a(x-c) for x € [c,b]
and we may choose J, = (b - g, b]. If f(y) <O for
some y € (c,b), then f(x) < a(x-c) for x € |a,c]
and we may choose Jo = [a,a + %]. O

Lemma 6.23. Let n be a natural number. Set
g = 1l+...+n = n(n+l) /2. Let J Dbe a compact interval.
Let a > O and \F(n)\ >a on J. Then there is an

n

interval K < J such that m(K) > 4 m(J) and that

IF| > am(H® - 47 on K.
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Proof. For n=1 this is exactly lemma 6.22.
Assume that n > 1 and that the assertion is true for

n-1. Set p = l+...+n-1. Then we have an interval

n+

K, ©J such that m(KO) > 4 lm(J) and that

. n-1 ,-p
|F7| > am(J) 4% on K.

By lemma 6.22 we have an interval K c KO such that

1

m(K) >z m(K)) > 4™

m(J) and that

n-1 -p 1
|F| 2 em(@ ™" 7a7Pe 2 m(k) >

-n

am(J)n-l-4_p-4 -m(J) = am(J)n4—q on K. O

(%

Theorem 6.24. Let F be a p-th indefinite
integral of a function which is bounded below on some
neighborhood of O (p > 0). Let F(p)(o) = 0. Then

r(P) (o) = o.

Proof. Let o >0, 8§ > 0. Let f > -a on

(-6,8) and let F be a p-th indefinite integral of f.

Let g(x) = £: f. We may assume F(0) =...= F(p—l)(o) = 0.
Then
(6.3) F(x) = o(xp) as x - O.

Assume that D'g(0) > O. Then there is an ¢, O < € < 2a,

and numbers a, > 0 such that

g(an) > € a, (n =1,2,...), a -~ 0.
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For a_ < x < a + an€/2a we have

g(x) = g(an) + f:nf > €a - (x-ada >

NI =

> € a, - aan€/2a = a_ €.

g (P-1)

Since = g we have, by lemma 6.23, an X, in

(an,an + ane/2a) such that

N 1 . £ p—l . -r _ P
|[Fx )| 25 a €@ 52 4™" = (a )"0

where

_ p(p-1) _ al
o Q= p-1 ,r
2P.oP7 g

Since ¢€/2a < 1, we have x < 2a, whence

p. Q =
\F(xn)\ 2 X B (n 1,2,...)
which contradicts (6.3). Thus D+g(O) < 0. We may

show similarly that D+g(0) > 0 so that g'+

(n)

(0) = 0.

Analogously g’ (0) = O so that g (0) = F (0) = o.

Corollary 6.25. Suppose M(n) exists on [a,b]
and is bounded below there. Then it is an ordinary

derivative.

Proof. According to theorem 5.1, M(n) is
Z(n_l)—integrable on [a,b]. By proposition 6.12, it is
thus Lebesgue integrable. Thus M 1is an n-th indefinite
integral of M(n)' It follows easily from theorem 6.24

that M(n)(x) = M(n)(x) for any x € [a,b]. m






CHAPTER VII
INTEGRATION BY PARTS FOR
THE Zn-INTEGRAL
Notation. In what follows let BV[a,b]
signify the class of functions which have finite
variation on the interval [a,b]. Let (R)J: fdg,
for g € Bv[a,b] and f continuous, be the Riemann-
Stieltjes integral of f with respect to g in the
sense that the infimum of the upper sums associated
with f and the positive (negative) variation of

g 1is the same as the supremum of the lower sums.

Fundamental to all that follows is the next

theorem.

Theorem 7.1, Integration by Parts.
a) Let f Dbe Perron integrable in [a,b],
F(x) = (zo)jl‘ £. Let G ¢ BV[a,b].

Then
b
(zo)fz fG + (R)fz FdG = [FG]_ -
b) Let n > 1. Let £f be Zn-integrable
on [a,b]. Let F(x) = (zn)J:: £. Let
G and vy be defined on [a,b] such
(n-1)

that vy € Bv[a,b] and G is an

51
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indefinite integral of y. Then

£fG is Zn—integrable and
(z)~|'b £G + (2 )j'b Fe’ = [Fe]°
n’ Jy n-1’J5 a

The proof is quite long and involves a chain
of lemmas. Later we shall show that the strong
conditions put on the function G are really necessary.

This proof is due to J. Marik.

We assume that a) is well known but for

completeness we present a proof.

Proof of Theorem 7.1, a). Assume G is positive
and non-decreasing. (This is sufficient by the linearity
of the integrals). Let a = X <& Xy ChTe i X = b
be a partition of [a,b]. Let

Y = mln(F(x):xk_1 L% g_xk].
If M is a O-majorant of f on [a,b] then one easily
sees that G(M—Yk) is a O-majorant of £fG on

[xk_l,xk]. Thus
* *x
(z.) £fG < [G(F-v,) ]
(o] Ix -1 k Xp_1

X,
(2,17 g6 < 101} - Ziyelk
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for each such partition, and so
*
(2 )jb fG < [GF]b - (R)jJD F4dG.
o a = a a

Now replacing F and f by -F and -f we see

(zo*)j‘: fG > [GF]]Z - Rj: FAG. O

Lemma 7.2. Let ¢,y be functions on [a,b].
Let g be a natural number. Let m(q) be continuous
on [a,b] and let w(q—l) be absolutely continuous
on [a,b]. Let R be an indefinite integral of

ww(q). Set

g-1 . . .
V= 2 (_1)3 cp(q-J—l) w(]) + (—l)qR.
j=0
Then Vv’ = w(q)w.
Proof.
(@ = (@1 1% _ (@-1) , - _ _
f: Y = [o vl j: ® v e

a

= V(x) - v(a). O

Definition 7.1. Let n > 1 Dbe an integer. Let

M be a continuous function on [a,b]. Let Yy € BV[a,b].

(n-2)

Let g be an indefinite integral of vy. Let

Ko,...,Kn be functions on [a,b] with the following

properties:

o [0l @ V) @) gy )T (e Xy (-1)qj: L
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a) k™ = mg ®)  x =o0,1,...,n-2),

b) K(n—2)

ne1 is an indefinite integral of My,

c) there is a number c such that Kén—Z),

is an indefinite integral of c + f: Mdy (x € [a,b]).
Then we say that Koseoos K have property w with

respect to M,g on [a,b].

Lemma 7.3. Let a,b,n,g,y be as above. Let
M be a function on [a,b] such that M(n) is
continuous on [a,b]. Let Ko""'Kn have property w

with respect to M,g. Set
n
k
s= Z (-1 QK.

(n)

n)

Then S = M( g.

Proof. We first show that

r s N
(7.1) s¥) = v (opI (n+J;r-l)M(r—J)g(J)+
j=0

n . )
+ ¥ (-1IMklr
j=r+1 )

for r =0,...,n-2., The relation (7.1l) is obvious for

r=0. If it is true for some r (0 { r < n-2), then
s(t*) Ay B+ C+ D+ E where
S j n+j-r-1, (r+l-3) _(3)
A= 2 (-1)7¢ 3 ) M g ,
j=0
rol j n+jor-1, y(r-3) _(3+1)
B= 2 (-1)7¢( 3 ) M g ’

j=0
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c = (_l)r(n l)M (r+l)'
_ r+l, n (r+1)
D = (-1) (r+l)Kr+1 ’
n
E= » (- 1)3( )K(”l).
j=r+2

We can re-write B and D as

B = — Z) (- l)J(n+J r- 2) M(r+l—-3) (3) )
j=1 )=
— r+l (r+1)
D= (-1T( L) Mg :

Then, applying the relation (p+l) - (g) = (q+l)' we get

r

a+B = 3 (-1)3(""37T2) y(TH-3)503)
j=0 ]
and
_ r+l ,n-1 (r+1)
C+D = (-1)" "7 (., 7) Mg '

which completes the induction and proves (7.1). If we

put r = n-2 into (7.1l) we see

(7.2)  s(®2) fii <13 ey ®-2-3 (), pn
+ i 1k (n2)
Set
R = Kr(lr_liz) ;T = Zji(_l) Iy(=2-3) (), _qyn-1 g

(p = Olllooo'n_Z).

Set

z = R - k(P72

(n 2)






Then

n-2
2
p=0 P

so that

(7.3)
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We also have

T
p

= > (_l)i+P M(n‘z'i-P)g(i+p) + (-l)n—lR

n-2 . . .
= T 0IGruP I Lty
j=0
n-2
s(=2) _ "5y ¢ 4 (-1 1z,
p=0 P
n-2-p

i=0

If we put o = (-1)Pm, v = g(p), g = n-1-p then we

get from lemma 7.2 that

(7.4)
Further

zZ(x) =

Thus

(705)
Now from (7

(7.6)

T, = (-DP m(n-1-P) g (P}

a
'—I
+
0 %

t
My)- c, - fZ(c3 + Ia Mdvy)dt

a
N
+

o K

(~cy + M(t) ¥(0) - [~ Mayat

3

Q
N
+

o &

t ’
(c. + f M y)dt (the c.'s are constant).
5 a J

rd - X p
2°(x) = ¢ + fa My.

.3) and (7.4) we get

n-2
S(n-l) -5 (_l)pM(n—l-p)g(p)+ (_1)n—lz,

p=0

4

and, from (7.5), 2 ° is an indefinite integral of M’y.

If we put ©=M", gqg=n-1, =g we have

(g-1) _ ;(n-2)
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on [a,b] and W(q) = y a.e. so the formula

S(n) = M(n)g follows at once from (7.6) and lemma 7.2. C

Lemma 7.4. Let n > 1 be an integer. Let

M,g,Y be functions defined on I = [a,b]. Let M
(n-2)

(n)
exist on I and let vy € BV(I). Let g be an
indefinite integral of y. Then there is a function S
such that

(7.7) S(n) = M(n)g on I.

For any such function S and for any x € I for which

g°(x) 1is finite we have

(7.8) an+l(s,x,h)=m(n)(x)g‘(x) + g (x) 6 .1 (Mx,h) +0(1).

Note. If n > 2 then g’(x) is finite for
every x. If n=2 then g’ is finite except possibly
on a countable set and even here we have, for h > O
(respectively h < 0), that formula (7.8) holds if we

+

replace g’(x) by g’ 7 (x) (g°” (x)), the right (left)

hand derivative.

Proof. Let Ko""'Kn have property w with
n

respect to M,g. Let S = 2 (—l)k(i)Kk. Let x ¢ I.
k=0

We may assume x=0. Let P be a polynomial of degree

< n such that the function M = M-P fulfills

(7.9) M(t) = o(t?) as t = 0.
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Let Rk be functions such that Rék) = ﬁg(k) (k =0,...,n=2),
=(n-2) _ ot < =(n-2) _ rt,ps
K 17 (¢) = jo MY, K (t) = jo(jo MdY) ds,
and Rﬁj)(o) = O whenever O < j < k-1 and k < n-1
or O ¢ jJ < n-3 and k=n. Obviously Rk(t) = o(tn+k)
(k = 0,...,n-1) and Rn(t) = o(tzn-l). If we put
n
- k.n, =
s= Z (-7
k=0 K fx
we have
(7.10) S(t) = M(t)g(t) + o(t™h).
Set H_ = K_ - Rk' It is easy to see that H_,...,H

have property w with respect to P,g. Define

L k ,n =
vV = kzg (-1) 7 (JH = s - s.
By lemma 7.3 we have V(n) = P(n)g. Let G satisfy
c™ g, Let a-= M) (0). Obviously p(M) - <o
that V(n) = ag = aG(n). Thus there is a polynomial Q

of degree < n such that S - S =V =aG + Q or

(7.11) S =Q + aG + S.
There is a polynomial Q1 of degree < n such that

n
(7.12) G(t) = Q () + ET g(0) + o(th).

It follows from (7.9)-(7.12) that

tn n
s(t) = Qz(t) + T ag(0) + o(t),
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where 02 = Q + an is a polynomial of degree < n.

Thus s(n)(o) = ag(0). If g’(0) is finite we have

g(t) = g(0) + O(t)
and it follows from (7.9) and (7.10) that

tn+1

n+1l, -
(n+1) !

(7.13) S(t) = g(0)M(t) + o(t™ )= g(0) n+ly

Gn+l(M,O,t)+o(t

Further,

n n+l

G(t) = Q(8) + 7 9(0) + gyt 9 '(0) + o(t™h),

so that from (7.11) and (7.13)

D tn+1 N
S(t) = Q2(t) + T ag (0) + Tn_+i)—!_ (ag "(0) +g (0) 6n+l(M,O,t)) +
+ o(tn+l)
which completes the proof. C

Theorem 7.5. Let n be an integer, n > 1.
Let £,G,Y be functions on [a,b] such that £ 1is
zn-integrable on [a,b], Y e€Bv[a,b] and G(n-Z) is
an indefinite integral of Y. Then for any indefinite

Zn-integral F of f we have

, b
(zn)j: (FG~ + £fG) = [FG]a .
Proof. Assume first that G,G° ' and G’  are
positive functions. (If n > 2 there is no need to
consider G°t and G’~ separately as G’ exists in this

case.) Let U be an n-majorant of f such that

U(a) = F(a). By lemma 7.4 there is a function S such that
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S =P G = UG.

(n) (n)

Moreover, by formula (7.8) and the note following

lemma 7.4
8,,15(x) > min[U(x)G'*’(x)+G(x)6n+lP(x),U(x)G'-'(X)-+

+ G(x)5n+lp(x)}.

Then 6n+ls(x) > -o for every x € [a,b] and

brp1S(X) 2 F(X)67(x) + G(x) £(x)
whenever G (x) exists (that is, except for a countable
set when n=2, and everywhere if n > 2). Applying

theorem 6.16 we see that

(zn*)fz (FG* + £G) < [UG]
and so

(zn*)j: (FG° + £6) < [FG]g .

A similar consideration for n-minorants shows that

b
a

(zn*)f: (FG* + £G) > [FG]

and so the theorem is proved for this case.

Returning to the general case we see easily
that G¢°% is bounded on [a,b) and G’  is bounded
on (a,b]. Namely, if n > 2 then G’ 1is continuous
and if n=2 then G 1is an indefinite integral of a

function of bounded variation. Thus we can find a linear
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function G, on [a,b] such that G, >0 on [a,b],

G£ >0 on [a,b] and that the function G; =G + G,

satisfies the conditions of the special case considered

above. Let

- g(n-1) =
Y, = G2 and Yp = ¥ + Yo »
Then Yj € BV[a,b] and Gén_2) is an indefinite integral
of v. (j =1,2). Then we may apply the first part of

J
the proof to each Gj' SO

. _ b
(zn)fz (FGj + ij) = [FG.]

j’la (J=1f2)l

from which the assertion follows at once by linearity. C

The analogues of theorems 7.4 and 7.5 for the

case n=1 are slightly different.

Lemma 7.6. Let M, g be functions on [O,1].
Let M Dbe Zo-integrable, let g € BV[O,1] and let
var(g,[0,h]) = O(h). Let P be an indefinite Zo—integral
of M and let S be an indefinite Zo—integral of

Mg. Assume P’ (0) is finite. Set

T (h)

2 _
. [ g - g)at,

limsup nt var (g, [0,h]).
h-0

>
I
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Then X < o and

-\ < 8;9(0) < liminf T(h),
h-0

(7.14)
limsup T(h) < 4,9(0) < A,
ha0

and
. h2
(7.15)  s(h) = s(0) + hg(0)P'(0) + -

+ o(h?).

Proof. The inequalities Alg(o) < A< +» are
obvious. Let B > Alg(o). Then for sufficiently small
h we have g(h) - g(0) < h8 and T (h) 5_3% x: tdt = B
so that "

limsup T(h) < Alg(O).
h-0

This proves (7.14).

If M = then P°(0) = 1 and 8,(P,0,h) =0,

1
2
S(h) - s(0) = J’Z g = hg(0) + J‘E(g(t)-g(O))dt = hg(0) + 132— T (h)
so that (7.15) holds in this case. If g =1 then
2
0, Sth) - S(0) = P(h) - P(O) = hP’(0) + %— 6, (2,0, h)

so that (7.15) holds in this case also. If we hold either

M

T (h)

M or g fixed in formula (7.15) it is easy to see that

the formula is linear with respect to the other so that

we may assume P (0) = g(0) = 0. Let K(x) = P(x) - P(0).
Then K(t) = o(t), g(t) = O(t) and since var(g,[O,h]) = O(h)

we have fz Kdg = o(h2) so that

(T(h)P°(0) + g(0) 6, (P,0,h)) +
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h
S() - s(0) = [T M5 = Kg() - [ kg = o(n?)

which completes the proof. "

Theorem 7.7. Let £,G be functions on [a,b].
Let f Dbe Zl-integrable on [a,b]. Let G be continuous
and in BV[a,b]. Suppose var(G,[x-h,x+h]) = 0(h) for
each x € (a,b). Let F be an indefinite Zl—integral

of f. Then
(zl)fz (FG* + £G) = [FG]g .

Proof. If G 1is constant the conclusion is
obvious so applying a simple linearity argument we may
assume that G > 0. Let € > 0. Let M be a l-majorant
of £ on [a,b] such that M(a) = F(a) and
M(b) < F(b) + €. Let S be an indefinite Zo-integral
of MG and let P =M on [a,b]. Using theorem 7.1
a) and the well known mean value theorem for the Riemann-
Stieltjes integral we see that S“ = MG on [a,b].
Moreover, from lemma 7.6 we have that 628(x) > —-o for

every x and that

628(x) = G (x)M(x) + G(x)62P(x)

whenever G (x) exists. Thus
8,5 (x) > G (x)M(x) + G(x)£f(x) >

> G (xX)F(x) + G(x)f(x) - e|G'(x)\ a.e. in [a,b].
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Thus
. * .
- G G fG
ejJ:\ \+<zl)Jz(F + £0)
= (zl*)fb(—e\G'\ + FG’ + £G) <
a

b
a

< Irel® + efa]? .

».b

< [s712 = [M6]

It follows that
* fb ’
(24 ) o (FG™ + £G) < [FG]
We can show similarly that
(zl*)fz (FG* + £fG) > [FG]

so that the theorem is proved. O

Proof of Theorem 7.1, b). Let n=l, and
suppose that F,f,G and y satisfy the conditions of the
theorem. Then F,f and G satisfy the conditions of

theorem 7.7, so that
(z,) (FG* + fG) = [FG]b
1745 - a ’

Moreover, by corollary 6.8, F 1is Zo—integrable and

y € Bv[a,b] so that Fy is Zo—integrable and

(zo)fz Fy = (zo)f: FG ',
by proposition 6.15, which in turn is (Zl)fb FG’ by
a

theorem 6.11. Thus






b _ Ib ’ B jb . fb
|FG] | =(2;) . (FG" + £6) = (2) | FG™ + (2) £G
a a
as was to be shown.

Let n > 1. Let F,f,G and y satisfy the
conditions of the theorem. Then by theorem 6.7 there
is a function P such that P(n) = F. Moreover

(G o) (n—2)

is the indefinite integral of a function in

Bvfa,b] so, by lemma 7.4, there is a function S such

that

S = P
(n)

But then, by theorem 5.1, FG is Zn_l—integrable.

Thus, since F,f,G,y satisfy theorem 7.5, we see that

[FG]Z = (zn)j: (FG’ + fG) =

(zn)fz fG + (zn)jz FG~ =

I

(zn)f: £G + (zn_l)f: FG°. C






CHAPTER VIII

RELATION BETWEEN THE Zn—INTEGRAL
AND THE CnP-INTEGRAL

Theorem 8.1. The Zn~integral is identical to

the Cnp-integral (n = O, 1'2' . o.) .

The proof is by induction. For n=0 it is
certainly true as both the Zo-integral and the COP—
integral are precisely the Perron integral. We

assume that, for O < k { n-1, the C, P-integral is

= k

identical to the Zk—integral. We need some lemmas

(which will also be useful later).

Lemma 8.2. If P(n) is finite in [a,b]
then for every x ¢ [a,b] and for every h such that
x+h ¢ [a,b] we have

n-1 hk D
(8.1) P(x+h) = P(x) + kz& T P(k)(x) + =~ Cn(P(n)'x’h)'

.

Proof. According to the definition and the

induction assumption

n"

1
n! Cn(P(n)

+h n-1
,X,h) = (T——l)—.' (Zn_l) Ji (x+h-§) P(n) (§)de.
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Applying theorem 7.1 and theorem 5.1 we see that this is

1

(n-1) ! [P(n_l)(g)(x+h_§)n-l X+h N

Ix

1 +h n-2
* o) T (Zn_z)f:: (x+h-§) Pn-1) (€)dg
n-1
= - D Pta-n) 0+ T T a0 Gene8)" PR, (00
=...= (repeating the first step)
hn—l hn—2
= - DT Pn-1) ) T w7 Pla-z) ) et
1 +h
t oy () [ g (F)ag
n-1 hk
= - = Py (x) + P(x+h)- P(x) as was to be shown. C
k=1 k: (k)
Lemma 8.3. Suppose P(n) is finite in [a,b].
Then (a) an*P(n) = 6n+lp’
*
(b) CnD P(n) = An+lP and
(c) CnDP(n) = p(n+l) provided one side exists.

Proof. We prove (a) ((b) is similar and (c) follows

from (a) and (b)). According to lemma 8.2,
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P(x+h) - % h—]?P (%) n" h) - ip (%)
-0 k! (k) _ ‘rT",— Cn(P(n):XI n! (n)

W+ (ne1) L/ (n+1)

Cn(Pig)'x'h) - P(n)(x)
h/(n+1) ’

Now simply take the lower limit of both sides to see (a). O

Lemma 8.4. Let M be defined on [a,b]. Then
M is Cn-continuous on [a,b] if and only if there is
a function G on [a,b] such that G(n) = M. That is,

only n-th exact Peano derivatives are Cn—continuous on

an interval.

Proof. Suppose G = M. Then according to

(n)

lemma 8.2,

n-1 hk
G(x+h) - — G (x)
k=0 k! T (k)
lim Cn(M,x,h) = lim n
h-0 h-0 h* k!

= G(n)(x) = M(x) so that M

is Cn—continuous.

Conversely suppose M 1is Cn-continuous on [a,b].
Then it is cn_lP-integrable and thus Zn_l-integrable by

the induction hypothesis. Let

9,1 (x) = (zn_l)f: M.
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By corollary 6.8, Ih-1 is Zn_2—integrable and so

we may define successively

gk(x) = (Zk)J:( 9k+l (o <k < n-2).

Put G = g. Then applying theorem 7.1 n-2 times we

have
+h -
oo 2 [ =) M hu(eras =
nil hk
= G(xh) - 6(x) - I g (0.
k=1 K+ 7k
Then, as M 1is C -continuous, we see that G(n)(x) = M(x)

for each x. (Also G(k)(x) = gk(x) (k =0,...,n=1).) C

Thus from lemmas 8.3 and 8.4 we see that the
class of (n+l)th e.P.d.'s is exactly the same as the

class of exact Cn—derivatives.

We now finish the proof of theorem 8.1 by showing

that the CnP—integral is identical to the Zn-integral.

Let f be any function defined on [a,b]. Let
M be a Cn—majorant of £f on [a,b]. Then M is C,-
continuous so, by lemma 8.4, there is a function P such

that P = M and, by lemma 8.3,

(n)

81 P (X) = C DyP ) (x) = C D M(x)

n+1 n

so that -« < P(x) > f(x). Thus M 1is an n-majorant

6n+l
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as well and so
* b
(2,7 )7 € < (03

for each such M. It follows that

(zn*)j: £ < (cnp*)f: £.

If we consider Cn-minorants we see that

(zn*)jz £ > (CnP*)Jz £

as well, so that the Zn-integral extends the CnP—integral.

On the other hand, if M 1is an n-majorant of
f on [a,b] then there is a function P such that

P = M so that M is Cn—continuous. Moreover

(n)

CnD*M(x) = § P(x) Dby lemma 8.3 and so M 1is a

n+1
Cn-majorant of f. But then

(c P*)fb f < [M]b for each such M
n a - a

and so

(cnp*)fz £ e

a

Similarly considering n-minorants we see that
(cnP*)J: f > (zn*)j: f.

Thus we see that if £ 1is integrable in the sense
of either 2z, or CnP then it is also integrable in

the other sense and

(cnp)i f = (zn)f: f. a






CHAPTER IX

EXAMPLES

In this section we would like to give a few
examples to illustrate the extent of generalization
of the Zn—integral and also the necessity of the strong

assumptions in the integration by parts theorem.

Example 9.1. Let n > 1. Let g(x) = ¥ lgin 0
(x # 0), g(0) = 0. Then g(t) = o(tn) as t -0 so
that g (0) = g(z)(o) =...= g(n)(o) = 0. Thus, as g
is certainly n-times differentiable away from x=0,
we see that g(n)(x) exists for every x. Thus, by
theorem 5.1, g(n) is Zn_l—integrable in [-1,1]. But
if n > 1,

g(n) is not z, -integrable there. Since

-2

_z—integrable, its indefinite integral,

would then be z, _

if g(n) were Zn
g(n—l)’ 3—integrable, etc. Continuing
this we see that an n-1 times iterated integral of
g(n) would be continuous (since the last integral is

a Perron integral) and also equal to g  plus a polynomial.

But this is impossible as

71
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, -n cos x 1 4+ (+l)x"” sin x ™, x # 0
g (x) =
(o] x =0

which is not continuous.

It also follows from this that g(n) is not
an (n-1)th e.P.d. of any function, for if it were it
would be Z _,-integrable. Thus the Z -integral is a
proper generalization of the Zn_l-integral and, for
any n there is an n-th generalized derivative on [-1,1]

which is not z, integrable on [-1,1].

-2

Example 9.2. Let n be a natural number. There
is a function G which is n times differentiable in
a neighborhood of zero, and a function f which is an
n-th exact Peano derivative and yet £G is not

Zm-integrable for any m in any neighborhood of O.

Remark. Such a function f is of course
Zn_l—integrable. Thus it is essential to assume more
then the n-fold differentiability of G to obtain an

integration by parts theorem for the Zn_l-integral.

We will show that G and F may be taken to be

n2+3n—2 1

X
cos n+3
X

X # 0,
G(x) =
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cos X #0
n243n-1 n+3
f(x) =
(0] X = 0.
To establish this we shall need some lemmas.
Lemma 9.1. Let
1 i
M(x) = = exp(—;ﬁ where x > 0, r real,
X X
s >o0, i%=-1.
Let F(x) = fl M(t)dt (x > 0). Then
X
F(x) = O(——;——ﬁ + constant
r-s-1 *
X
Proof. If r = l+s this is trivial, so assume

otherwise. We integrate F by parts to see

1 1 1 i
F(x) = f . exp(—) dt
X ¢ ts+l ts

_ 1 i 11 4
= A +tAy —--—7 eXp —; + By Jx - exp(—) dt,
X X X t

where A sA,,B; are constants. Repeating this for the

last term we see that

i 1
F(x) = A_+A, r:;—l exp J; + A, TTooTT OXP —g5 t...+
x X x
+ A L X +
k _r-ks-1 &P Tg Feeo
+ A 1 T exp — + B . exp JL-dt
n _r-ns- s niy r-ns S
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and if we choose n such that r-ns < O we see that

each term but the last is

1
O(HF=%=71 - O
x

Lemma 9.2. If r < ns and if

1 1
H(x) = dg d€.... M(t)dt
Ix ' Igl ? jgn—l
then
1
HEx) = O(<Zpsmn) + P()
X

where P 1is a polynomial of degree < n. Thus
n
H(x) = o(x ) + P(x),
and so H(n)(o) exists and is zero.

Proof. This is a trivial induction using

lemma 9.1. O

Lemma 9.3. We get exactly the same results as

lemmas 9.1 and 9.2 if we replace M by one of

1 ~i

3l Fexp
X X

1 . 1

b) —IT sSin _S—
X X

r S
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Proof. a) is obvious and b) and c) follow
from a) and the above and well known trigonometric

relations. O

We now show that the functions f and G of
example 9.2 have the desired properties. Let

r = n2 + 3n-1, s = n+3.

Then r - ns < 0O and so by lemma 9.2 (for cosine),
f 1is an n-th exact Peano derivative in any neighborhood
of 0. Moreover it is easily seen that G(k)(O) =0

(n-l)(x) = O(x2) so that

(k =1,...,n-1) and G
G(n)(o) exists. Thus G(n)(x) exists for all x.

But

X n+3 x # 0,
X

(fG) (x) =
O x = 0,
and this function cannot be Zm-integrable for any m.
Namely, £G has constant sign in [O0,1] and in [-1,0]
so if it were Zm—integrable there it would be Lebesgue

integrable there. But it is not Lebesgue integrable in

any interval of the form [O,a] or [-a,0].

Remark. Even though G(n) exists, G(n—l) is

not of finite variation. 1In fact it cannot be, according

to theorem 7.1.






CHAPTER X
AN IMPROVEMENT IN THE
DEFINITION OF THE Zn—INTEGRAL
In this section we would like to show that it
is possible to relax somewhat the requirement 3) in

definition 5.1, the definition of an n-majorant.

Lemma 10.1. Let Ay >a; 2a, 2 .. 22, *0.

Let B_=1>8, >B, > >p_+0 and B <B"‘l
o 1 2 cc n n 2

Then for each k =1,2,..., there is a function Fk

on [0,1] such that

1) Fk has a non-negative continuous (k+1)th

derivative on (O,1],

2) FX) = F¢ * k (k) +
Fk(k)-(ﬁo) =qa_,

[®)
) P 2 8E a2

n=1,2,...7k=1,2,...).

(0) =...= F (0) = O,

(x € [Bn:Bn_l}:

Proof. Let ¢ Dbe a continuous, non-decreasing
function on [O,1] with a continuous derivative in (0,1]

such that o(x) = a ~for Bn/Q <x <B,. Let
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g€ €
f:) ag, [tas, ... jok 1 (5,) a8,

(o)

Fk(x)

[© @(5)d(g,k-1), a k-fold indefinite
o

integral of .
Then for x € [Bn,Bn_l], we have

1 n n p
F (x) = > Iﬁ jp = "n
ezl e2lpe=ta.

Suppose we have established the formula of 3) for the

case k-1l. Then for x ¢ [Bn,ﬁn_l] we have

K, \ k-1 fn k-1 n  _k+l
F(x)—j:F 205‘ ijn/zF >

k-1
B -a B
n n n k k+1
2——2]?___. . .2_-_- Bn . an/2
The rest is obvious. O

Lemma 10.2. Let k > 1 Dbe an integer. Let M
be a finite function on [-1,1] such that M(k)(o) is
finite. Let € > O Dbe given. Then there is a function

F with the properties

0) F(0) =F’(0) =...= F(k) (0) = O,
1) F(k) is continuous and non-decreasing on [-1,1],
2) (rMl <

3) &, (WHF) (0) > O.

Proof. Let £ be a polynomial of degree < k

(%)

such that £(0) = M(0), 4°(0) = M’(0),..., (0) = My (0).
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Let Q = M—%. Then o(t) = o(tX). Let p = 37"

(n = 0,1,2,...). Define' for n = 1,2,...,

_ t K+l
c, = sup{lQ-t%;)—l . 2 : t € [o,B ;1)

Then <h is a sequence decreasing to zero. Let
k

dn =c, 37. Then for t ¢ [Bn,Bn_l],
k k k
c_t c B dp
oW | < S5y <TRT T T
2 2 2
€ ; _
Let dno < 5 and define a (n =1,2,...) by
dno n < nJ
a, =
dn n > no .

Now define F on [O,1] as in lemma 10.1 for this

choice of k, {an}. [Bn}. Then for some £ > O,

(k) + €
2

this construction in [-1,0] and thus define F on

F(x) > |e(x)| in [0,B] and F (1) < Repeat

all of [-1,1] so that

F(0) = F'(0) =...= F®) (0) = o,
so that F has a continuous, non-decreasing k-th
g (k) +

€
(-1) > - 5 and

derivative in [-1,1],
F(x) > |Q(x)| on [-B,0] (k odd) or
F(x) < -la(x) | on [-B,0] (k even), for some
Then 6k+l(M+F) (0) = 6k+l(Q+F)(O) > 0. The rest is

obvious. O

g > 0.
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Corollary 10.3. A simple argument shows that
we may replace [-1,1] with any compact interval
[a,b], and instead of O we may take any point ¢
in the interior. Moreover, if we allow for one-sided

derivatives we may take ¢ to be any point in [a,b]. O

Theorem 10.4. Let M be a finite function
on [a,b]. Let k be a natural number. Let ¢ > O.
Let T be a countable set in ([a,b]. Let M(k) be
finite for points in T. Then there is a function F

satisfying

k)

1) F( is continuous and non-decreasing

in [a,b],
(k) -b

Ja
3) 5k+1(M+F)(x) >0 (x € T).

2) |[F < &

Proof. Let T = [an]; . Then, by lemma 10.2,
for each n=1,2,..., there is a function Fn such that
(k)
Fn

a) is continuous and non-decreasing,

(k) b £
p) [F. V1. <&,
2
c) 6k+l(M+Fn)(an) > O.
We may also suppose without loss of generality that

F_(a) = F/(a) =...= Fék)(a) =0 (n=1,2,...),

or else we simply add to F,. 2 polynomial of degree < k

and this leaves a),b) and c¢) unaffected. Then
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FX 60| <& (= 1,2,..0% € [a,b]),
2

and so if we define

ék)(x)

f(x) = 2 F
n=1

we see that f 1is continuous and non-decreasing on [a,b],

and [f]g < €. Let

F(x) = [ £(£)d(g,k-1),

a

a k-fold indefinite integral of f. Then it is easily

seen by the uniform convergence of the series defining

f that
Fx) = = [ rFM(oaEx-1n = T F_(x.
n=1l © n=1
Moreover F(k) = f and so 1) and 2) are obvious. To

see 3) we let x = a € T. Then

841 (MHF) (%) = & ) (MHF + Z F)(x) >
m#n

> 8 (MHF ) (x) > O.

The first inequality follows from the fact that

M -z )™

m#n m#n

is non-decreasing, whence

6k+l(m§' Fm) 2 0. C
n
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Theorem 10.5. Let £,M be finite functions on
[a,b]. Let T be a countable set in [a,b]. Assume

M is finite on [a,b] and that

(x)
- <& g M(x) > £(x) (x £T).

Then
* b
(Zy )j: f < [M(k)]a .

Proof. Let ¢ > O. According to theorem 10.4
there is a function F on [a,b] such that

(M) To < LO8E) 12 < (Mg T2 + €

and
6k+l(M+F)(t) > -o» everywhere and

6k+1(M+F) > f except on T.

Then applying theorem 6.16 we see that

b

() [0 £ < L) ()12 < DM 18 + e

As € 1s arbitrary the result is immediate. O

Applying theorem 6.16 to this case we easily

obtain

Theorem 10.6. Let f£,P be finite functions on
[a,b]. Let T Dbe a countable set in [a,b]. Assume

P(k) is finite on [a,b] and that
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a) 8 ,,P(X¥) >-= (x € [a,b]\T),

b) 641 2 £ a.e. on [a,b].
Then
* b
(Zk)J‘:fSlP(k)]a- O

This result shows that if we take the following
definition for n-majorant and the corresponding one

for n-minorant, then the Zn—integral is left unaffected.

Definition 10.1. Let M and f be defined
in [a,b]. Then M 1is called an n-majorant of £
in [a,b] if there is a function P on [a,b] such
that

1) M=P on [a,b],

(n)

2) § ,.P > f a.e. on [a,b],

n+1l

3) P(x) > -» for all but at most countably

6n+l
many X € [a,b].

To finish we illustrate how such a definition

may be useful.
Theorem 10.7. Suppose f 1is Zn—integrable on
[a,B] for each B < b and suppose lim (2 )fx f
X-4b- N “a

exists and is finite. Then £ 1is Zn—integrable on [a,b]

and
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Proof. Let ¢ > 0. Let a = bo < bl Coo ol bk -+ b.
Let Ml'ml be respectively an n-majorant and an n-minorant
for £ on [a,bl] such that Ml(a) = ml(a) = 0 and
by
[M,l—ml]a < €/2. Suppose M _, and m_; have been
chosen. Let Mk'mk be respectively an n-majorant and

an n-minorant of f on [bk_l,bk] such that

M by 1) =M 1By 1) mdy 4) =m (b )
and
by ok
(M - < e/27 .
Mo T M, o
Let
M(x) = Mk(x) when x € [bk_l,bk],
mk(x) when x € [bk_l,bk].

m (x)

b
Then [M—m]ak < € for every k. It is easy to see that

M and m are respectively an n-majorant and an n-minorant
on each interval [a,B] (B < b). Thus there is a

function P such that P(n)(x) = M(x) (x € [a,b)), and

- < b P(X) > £(x) (x € [a,b)).

We shall now define M(b) and P(b) in such
a way that P(n)(b) = M(). Let F(x) = fx f (x <Db),
a
F(b) = F(b-). Then it is easily seen that M-F is

bounded and non-decreasing in [a,b) so that M(b-) = P )(b—)

(n

exists and is finite. We may prove analogously that m(b-)

is finite. Define M(b) = M(b-), m(b) = m(b-). Moreover
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= M is bounded in some interval (a,b) so it is

P (n)
an ordinary derivative there by corollary 6.25. Thus
P(n) = P(n) and, since P(n)(b-) exists and is finite

we must also have that
p ) b) (k =0,1,...,n)

exist and are finite. Now we define P(b) = P(b-).

(k) k)

It follows from L'Hopital's rule that X~ (b) = p(&) (b
(k =0,...,n), so that P™ (b) = M(b). Thus M is

an n-majorant of f on [a,b] wusing definition 10.1.
Similarly m is an n-minorant of £ on [a,b] and

[M—m]g < €. Thus f |is Zn—integrable on [a,b] and

ce<m) - M) < (2) [ £ - F®) <
a

< M(®) - m(b) < ¢

so that

(zn)f: f = lim (zn)j: £. M

X-b-
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