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ABSTRACT

A NEW CHARACTERIZATION OF CESARo-PERRON

INTEGRALS USING PEANO DERIVATES

BY

Joseph Anthony Bergin

Using the methods of O. Perron the Zn-integral

is defined. A majorant of a function f on an

interval [a,b] is, by definition, the n-th exact

Peano derivative of a function P which satisfies

-w < 5n+1P(X) 2_f(x) (X e [a,b]). where 6n+lP

is the (n+1)th lower generalized derivate of P.

Using a modification of a theorem of James it is

shown that such majorants lead to a reasonable defini-

tion of integration. Some of the useful properties

of this integral follow.

1. Every n-th exact Peano derivative is

Z -integrable.
n-l

2. The Zn-integral is a positive linear

functional defined on certain of the

Lebesgue classes.

3. The indefinite Zn-integral is itself

an n-th exact Peano derivative.

4. The Zo-integral is equivalent to the

Perron integral and the Zn+l-integral

properly generalizes the Zn-integral.
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5. A non-negative function is Zn-integrable

if and only if it is Lebesgue integrable.

6. The Zn-integral of a product may be

computed using an integration by parts

formula if certain natural restrictions

are fulfilled.

7. The Zn-integral is exactly equivalent

to the CnP-integral of Burkill.

The need to correct and simplify Burkill's work

motivated this study. This approach brings to light

some interesting relationships between Cesaro derivatives

and Peano derivatives. Namely:

8. A function is Cn—continuous on [a,b]

if and only if it is an exact Peano

derivative.

9. The (n+l)th Peano derivative of f is

the Cn-derivative of the n—th Peano

derivative of f.
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INTRODUCTION

In a paper published in 1914, O. Perron, [ll],

attempted to give a new characterization of the

Lebesgue integral but in the process defined a new

and more general integral. He apparently was only

trying to simplify Lebesgue’s definition, and indeed

it.was easily seen that for the class of bounded

measurable functions the ideas of Perron and Lebesgue

were the same. Perron realized however that the

integral did not depend upon the boundedness of the

integrand. A year later H. Bauer, [6], developed

some of the properties of the integral of Perron and

in so doing established that the new integral is more

general than Lebesgue's. In fact, he showed that

Perron's integral is capable of reconstructing a

function from its finite derivative, while the Lebesgue

integral is not capable of this without using extra

assumptions.

Perron's idea was very similar to what we

know today as the theorem of Vitali-Carathebdory (not

completed until 1918). That is, if f is Lebesgue



integrable on [a,b] and G > 0 then there is a

function u which is lower semi-continuous and bounded

below and a function v, upper—semicontinuous and

bounded above such that v g.f g_u on [a,b] and

fb (u-v) < E- If we define U(x) = I: u and

VTX) = I: v then U is an example of what Perron

called an Oberfunktion (majorant or superfunction)

for f and V is an example of an Unterfunktion

(minorant or subfunction) for f on [a,b]. That is,

the upper derivate of V is g_f on [a,b] and the

lower derivate of U is 2_f on [a,b] (also, the

upper derivate of V is bounded above and the lower

derivate of U is bounded below). The idea of using

these functions to define the integral comes from the

formulas

U(b) g_J: f g_V(b) and U(b) - V(b) < e.

For full details the reader should consult the excellent

account given in [4:11, p.157f].

Mbre recently the idea of using majorants and

minorants to define integrals has been adapted to

derivatives other than the ordinary derivatives. In

1931, J.C. Burkill, [8], applied the method to approximate

derivatives and thus defined the AP integral, and in

1932-33 ([1] and [2]) he defined a new derivative, the



Cesaro derivative and then developed the corresponding

integral. Unfortunately there were serious errors.

Still more recently R.D. James [3] and L. Gordon [9]

have used the method in dealing with still other types

of derivatives.

Our purpose here is to define yet another

integral, one which is naturally associated, according

to Perron's method, with the Peano derivatives. We

show that the integral has several desirable pr0perties,

among which is a certain "Fundamental Theorem," a

form of "continuity" for the integral and an integration

by parts theorem. We shall show that the integral

we give is identical to that of Burkill (thus correcting

his errors) and also give some interesting relationships

\

between the Peano derivatives and the Cesaro derivatives.



CHAPTER I

BURKILL ' S CnP - INTEGRAL

Burkill ([1] and [2]) attempted to define a

notion of differentiation, continuity and integration

inductively. We present his definitions.

Let the C P-integral denote the usual Perron
O

integral (see [4,II p.157f] or [5, p.201f]). Then

CO-continuity is the ordinary continuity and the CO

derivative is the ordinary first derivative. Suppose

that the notions of Cn -continuity, differentiation
-1

and the C P-integral are defined. If f is
n-l

Cn_1P-integrable on [a,b] then the number

(Cn_1P) [b f(x)dx denotes the value of this integral.

a

Definition 1.1. For a positive integer n,

the n—th Cesaro mean of a C P-integrable function
n-l

in (x,x+h) is defined to be

+h _

cn<f.x.h) = :9; (cn_lp)j: (x+h-§)n lemme.

The number h may be positive or negative. Note that

the existence of the integral is being assumed.

f



Definition 1.2. A function f is called

Cn-continuous at xO provided

lim C (f,x .h) = f(x ).
h40 n o 0

Thus in particular f is C P—integrable in some
n-l

neighborhood of XO.

Definition 1.3. Define the (two-sided) upper

n—th Cesaro derivate of f at xO by

CnD*f(Xo) = limsup Cn(f':3}::l; f(xo)

h40

 

The lower derivate, CnD*f(Xo)' is defined using the

lower limit of the same ratio. If the upper and lower

derivates agree we call the common value the n-th

Cesaro derivative and write it as Can(xO). Right

and left derivates may be defined with the usual

conventions. Burkill uses this notion of continuity

and differentiation to define an integral according

to the method of Perron. For this we need

Definition 1.4. Let f,M ‘be defined on [a,b]. Then

M is called a Cn-majorant of f on [a,b] provided

a) M is Cn-continuous on [a,b],

b) CnD*M(x).2 f(x) for each x 9 [a,b],

c) CnD*M(x) > -m for each x 6 [a,b],

d) M(a) = O.



Then Cn—minorants are defined by replacing b) and c)

by

*

b') CnD M(x) g_f(x) for each x 6 [a,b],

*

c') CnD M(x) < +m for each x c [a,b].

Definition 1.5. The upper CnP-integral of

f is

*

(CnP )[b f = inf{M(b):M is a C -majorant of
a n

f on [a,b]}.

The lower CnP-integral of f is

(C P*)J';b f = sup[m(b):m is a C -minorant of
n a n

f on [a,b]}-

Suppose now that we have a proof of the following theorem.

Theorem. Let M be defined on [a,b]. Let

CnD*M 2.0 on [a,b]. Then M is non—decreasing on [a,b].

Then if f is any function and M is a Cn-

majorant and m is a Cn-minorant of f on [a,b], we

*

see that CnD*(Mrm) 2.CnD*M - CnD m 2.0 and so M—m

is non—decreasing. But M(a) = m(a) = 0, so that

I _ *

M(b) 2 m(b). Thus it follows that (CnP*)[: f g_(CnP )I: f.

When these are equal and finite we say f is CnP-integrable

and put (CnP)f: f for the common value. Moreover, if

f is CnP-integrable then for each g > 0 there is a

majorant M and a minorant m such that



MCb) - m(b) < 6. And so 0 g M(x) - m(x) < E for

each x 6 [a,b]. From this it easily follows that

if f is CnP—integrable on [a,b] then it is also

CnP-integrable on any sub-interval, and in particular

on [a,x], a 3.x g_b. (We make the usual convention

that I: f = 0 always). If we define F(x) = (CnP)f: f,

then we see easily that F is the uniform limit of a

sequence of majorants of f. For these reasons and

others the theorem stated above is central to the

development of these integrals and will be called the

"Validity Theorem."

The first and most fundamental problem with

Burkill's paper is that his proof of the validity

theorem is in error. Mbreover, because of the way in

which the n—th Cesaro mean is defined an integration

by parts theorem is essential to the develOpment.

The induction by which Burkill defined the CnP—integral

depends essentially on integration by parts to

transform a CnP-integral to one of lower order. However

Burkill gives only the briefest sketch of a proof of

this theorem and although we believe that the details

can be supplied the complete proof is very long.



We will take a different approach. We first

define an integral, the Zn-integral, which at first

does not seem to be related to the CnP-integral.

The definition does not use an induction and so is

technically much simpler. The notion of derivation

on which it is based is also much neater than the

notion of Cn-derivatives. On the other hand we shall

show that the Zn—integral is equivalent to the

CnP-integral.



CHAPTER II

PEANO DERIVATIVES

Definition 2.1. Let F(x) be defined on an interval

[a,b]. Let XO 6 (a,b). Let n be a natural number. If

there are constants dl,...,dn depending on xO but not on

h such that

k k: = o(hn) as haO(2.1) F(x +h) — F(x ) — d
o o k=l

then an is called the generalized derivative or Peano

derivative of F at x0. This is denoted by F(n)(xo)' It is

eaSIly seen that If F(n)(xo) eX1StS then so do F(k)(xo)

(l g_k 3.“) and then

n k
~ h # n

F(xo+h) - F(xO) - k:: k: F(k)(xo) — o(h ) as haO.

In particular F(l)(xo) = F(l)(xo), the ordinary derivative.

‘We also say that F(O)(Xo) = F(xo) when F is continuous. By

restricting h, say h > O, we may also define one-sided

generalized derivatives, denoted F(n) +(X0) etc.

A function f defined and finite on an interval I

will be called an n-th exact Peano derivative (e. P. d.) on

I provided that there is a (continuous) function F on I

such that F(n)(xo) = f(xo) for each p01nt xO In the interior
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of I and, in case I contains its end points, that the

corresponding one-sided n-th derivatives of F at these

points equal f there. Similarly if we say that F has

an n—th Peano derivative in I we mean that F(n) exists

in the interior and the one—sided derivatives exist at

the end points when these are in I.

Definition 2.2. Let n be a natural number.

Let F be defined in the interval [a,b]. Let x0 6 [a,b].

If n = O we assume F is continuous at x0. If n > O

we assume F(n-l)(xo) eXlStS. Define en(F,xO,h) for h

such that xo+ h 6 (a,b) by

hn n—l k

(2.2) B? 9n(F,xO,h) = F(xo+h) - kg) fi- F(k) (x0).

Note that in case x0 is a or b we agree that all these

generalized derivatives are "one—sided." Define

AnF(xo) = F(n)(xo) = limgup 9n(F,xO,h)

(2.3)

6nF(xO) = E(n)(xo) = limgnf 9n(F,xo,h).

Then AnF(XO) is called the n-th upper generalized derivate

of f at x0 and 6nF(XO) is called the n-th lower gener—

alized derivate of f at x0. It is clear that F(n)(xo)

exists if and only if AnF(xO) = 6nF(xO) and both are finite.

In this case F(n)(xo) is the common value. But as

AnF, énF need not be finite we can say that F(n)(xo)
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exists (in the finite or infinite sense) whenever

AnF(xO) = 5nF(xo). Again the one-Sided derivates

are easy modifications of (2.3) and, as above, when

we speak about AnF(xO) , etc., on a closed interval

we shall mean it in the one-sided sense at end points.

These derivatives have been extensively studied.

(For example see [10]). We would like to note that these

derivatives are more general than the ordinary derivatives.

For example if f(x) is the characteristic function of

the rationals then x3f(x) has a second generalized

derivative at 0 but no second ordinary derivative there.

The same is true of the function g(x) = x3 sin x ,

x # O , g(O) = 0.

Definition 2.3. Let F be defined in the interval

[a,b]. Then F will be called l—convex iJI [a,b], if it

is non-decreasing there. It will be called 2-convex :if

it is convex and continuous in [a,b]. If n > 2 then

(n—2)
F will be called n-convex if F exists in [a,b]

and is 2-convex there. We also define n—convexity in

an open interval (a,b) by simply drOpping the restrictions

at a and at 'b.

Proposition 2.1. If f(n)(x) exists then f(n)(x)

does as well, and they are equal.
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Proof. Apply Taylor's theorem. F

Proposition 2.2 Assume f(n)(x) (n 2_l)

. t

ex1sts on [a,b] and F(t) = I f where c 6 (a,b).

c

Then

F(k)(x) = f(k_1)(x) (k = l,...,n+l; x 6 (a,b)).

+h

Proof. F(x+h) - F(x) = [X f(t)dt =

x

= fh f(x+s)ds =

o

n k

[f(x) + '2 §—.— f (x) + 0(sn) ds
1: k=1 k. (k) I

n hk+l n+1

hf(X) + kElW f(k) (X) + 0(h ). [3

Notation. Let em +f(x) signify

liminf en (f: X! h) I

h40+

the lower right hand generalized derivate of f

at x. We similarly define the symbols 6n _f(x), An +f(x),

I

and An _f(x).

I

Corollary 2.3. Under the conditions of prOposition

NM _>_ 6 f(X)-
5n+2 n+1

Proof. Let M < 6n+lf(x). Then for all

sufficiently small positive h,
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I [f( ) f() En 5k f ( ) d >| Sn” Md+ — — _r _— .

o x s x k=1 k. (k) x ] s o s
(n+1) :

That is,

n+1 hk hn+2

F(X+h) — F(X) - k§1 El— F(k) (X) 2W M:

thus 6n+2,+F(X) > M, and so

6n+2’+F(x) 2_6n+lf(x).

If h < O and n is even then

n kS J‘h Sn+l

El E1- f(k) (X) ]ds > O W MdS.[h [f(x+s)-f(x)-

O k:

while if n is odd

n k h Sn+1

I: [f(x+s)-f(x)-k:: ET fik)(X)]dS<< o THIITT Mds.

Thus in either case we have

I n k

%§LL {F(X+h) “F(X)— Z '13—.- F(k) (X)] > MI

h k=l °

for h sufficiently small and negative. Thus

6n+2’_F(X) > M whence

6n+2'_F(x) 2_5n+lf(x).

The rest is obvious. B

Corollary 2.4. If f is defined in [a,b]

and if f(m) exists there and if
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§ 5
[X l k—l

for x 6 [a,b], then

f a X " F

5 F261“ f.
m+k+1 +1

Proof. This follows by iteration from proposition

2.2 and corollary 2.3. D

We need the next three prOpositions in the

next chapter.

Lemma 2.5. Let f’ be finite in (a,b) and

let f’(a+) exist (finite or infinite). Then f(a+)

exists.

Proof. If f’(a+) is finite then f’ is

bounded in some interval (a,x0) so that f is uniformly

continuous there and so f(a+) exists.

If f’(a+) = +m then f’ is positive in some

interval (a,xo) and so, by the mean value theorem,

f is monotone in (a,xO). Thus f(a+) exists. The

case f’(a+) = —w is similar. U
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Lemma 2.6. Let f be continuous in [a,b]

and let f have a finite derivative on (a,b). Let

f’(a+) exist. Then f“l (a) exists and equals f’(a+).

Proof. Apply L'Hdpital's rule to the limit

f (a+x) - f (a)

x
lim

an

D

Preposition 2.7. Let n be a natural number.

Let f be defined in [a,b] so that f(n) is finite

in (a,b), f(n) (a+) exists (finite or infinite) and

f(n)+(a) Is finite. Then

(n)+
f(n)+(a) = f (a) = f(n)(a+).

Proof. As f(n)+(a) lS finite, f is

continuous at a and hence, in some interval [a,bl].

By lemma 2.5, f(n-l)(a+),...,f'(a+) existo By lemma 2.6,

f’i-(a) = f’(a+) and since f’4 (a) = f(1)+(a) which

is finite, we see that f' is continuous at a. Then

lemma 2.6 applies also to f’. Thus

f(z) (a+) = f(2)+(a) = f(2)+(a)

(2)
which is finite so that f is continuous at a.

Finitely many such steps finish the proof. D



CHAPTER III

THE THEOREM OF R.D. JAMES

In this section we prove a theorem that is

very important to the deve10pment of what follows. It

is merely a modification of a theorem of James [3].

Theorem 3.1. If f is defined in [a,b]

and if 5nF.2 O in [a,b] then F is n-convex in

(a,b).

The proof of this theorem requires some

additional definitions and lemmas.

Let n be a natural number. Let f be

defined on an interval J and let xo,xl,...,xn be

distinct points of J. Then there is a unique polynomial

P of degree g.n such that P(xj) = f(xj)(j = O,...,n).

We write P(x) = P(xo,xl,...,xn;x) to express the

. n .

dependence on Xo’°°"Xn' Since P( ) IS a constant,

we define

_ . _ (n).
Vn(f,xk) — Vn(f,xo,xl,...,xn) — P /n. .

l6
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It is easily seen that

 

n (x-x )...(x-xk )(x-x )...(x-x )
o -1 k+l n

F(X) = kEg f(Xk) (xk-x )...(x -x )(x -x )...(xk-x )'
— o k k—l k k+l n

since this is clearly a polynomial of degree g'n having

the required prOperties. If we expand this eXpression

we see that

n f(xk)

Vn(f;xo,...,xn) = Z) WjTE—TI' where

k=0 k

n

w(x) = II (x-xk).

k=O

It is also easily verified that

(X-X )P(X pooo'X :X)-(X-X )P(X pooopx 7X)

P(x ,...,x :x) = O l n n O n-l
O n X - X

n 0

since this polynomial also has the required values at

the points xo,...,xn. From this we see that

Vn_l(f;Xl,...,Xn) "' Vn_l(f7Xo,...,Xn_l)

 

V (f;x,...,x) =
X —n o n n xo

Another property easily seen from the definition

is the fact that a permutation of the points xo,...,xn

leaves P and Vn(f;xo,...,xn) unchanged.

Definition 3.1. The function f is called n—

convex (d) in J provided Vn(f;xo,...,xn) 2_O for all

choices of n+1 distinct points Xo""'xn from J.
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We note that "2-convex (d)" means "convex"

and "l—convex (d)" means "non-decreasing."

Preposition 3.2. Let f be n—convex (d)

on (a,b). Let Xo""’Xn be distinct points of (a,b)

and Xn-l < Xn. Then

Vn_l(f;xo,...,xn_2,xn_l) S-Vn-l(f;xo’°°"Xn—2'Xn)°

Proof. We see that

Vn 1(f7xo,...,x -2’Xn) - Vn—l(f7xo"°°'Xn—2’Xn—l)

= Vn_l(f;xo,...,xn_2,xn) — Vn_l(f;xn_l,xo,...,xn_2) =

= (Xn“Xn-l)Vn(f7Xn_lIXOI0°°ixn_2:Xn) _>_ 00 C]

Remark. We see from prOposition 3.2 (and the

remarks above it) that Vn_l(f;xl,...,xn) is a monotone

function in each of the variables Xl'°°°’Xn when f

is n—convex (d).

Proposition 3.3. Let n.2 2. Let f be

n—convex (d) on (a,b). Then f’+ and f'-' exist

and are finite in (a,b).

*

Proof. Let x 6 (a,b), x e (a,x). If n > 2

choose X1"°°'xn-2 such that

1-

a < xl < x2 <...< Xn—2 < x .
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F(t) = Vn_1(f;xl,...,xn_2,x,t)(X < t < b).

By proposition 3.2, F is non—decreasing on (x,b) and

* *

F(t) 2 Vn_l(f;xl,...,x ,x,t) 2 Vn_l(f;x1,...,xn_2,x ,x)

 

n—2

here. Thus F(x+) exists and is finite. Let

n—2

g(t) = n (t—xk), h(t) = f(t)/g(t). for t e (x*.b).

Let

ni? f(xj)

F1”) = ._ g’(x.)(X.-X)(x.—t) ' for
— 3 J J

x* < t < b . (Thus 9 E l and Fl 5 0 if n = 2).

Then

 

_ f(x) f(t)
F(t) -— Fl(t) + g(X) (X-t) + g(t) (t-X)

—Fl(t)+D-Q%%(}—{L(X<t<b).

It follows that hH (x) = F(x+) — Fl(x). Since f = hg

and g is a polynomial we see that f’4 (x) exists

and is finite. To finish we treat f’_ similarly. D

Corollary 3.4. If n 2 2 and f is n-convex (d)

then f is continuous.

Proof. It is evidently both right and left

continuous by the above. D
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Proposition 3.5. Let nIZ 2 and f be

.+
n-convex (d) in (a,b). Then f and f’-. are

(n—l)-convex (d) in (a,b).

Proof. Let a < xl < x2 <...< xn < b. Let

h E (o,b-xn). Let yj = xj + h(j = l,...,n). Let

wX(t) = U(t—xj), wy(t) = H(t«yj). Then it is easily

seen that w£(xj) = w;(yj). Then from prOposition 3.2,

Vn_l(f;xl,...,xn) S-Vn-l(f7yl'°’°'yn)

 

so that

It f(y.) - f(X-)

j=1 X 3'

Thus

I-I-
n f’+(X.)

vn1<fM>Z-—l-Ixj) 20 a

Proposition 3.6. Let f be continuous in (a,b)

and f’I- = O in (a,b). Then f is constant.

Proof. We first show that if g is continuous

+

in (a,b) and g' > 0 there, then g is non-decreasing.

To see this let d,B be in (a,b) and d < B. Let

x0 = supIt 6 [m6]: g(t) 29(001.

It follows easily from the continuity of g that

g(xo) 2_g(d). Moreover, we claim that x0 = B. If this

is not the case then, since g"“+(xo) > 0, there is a

point t in (XO,B] such that g(t) 2.g(x0) 2_g(d),
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and this contradicts the definition of XO. Thus

x0 = B so that g(B) 2Ig(a).

From this one sees easily that if g is

continuous and g'i'lz O in (a,b) then g is non-

decreasing. The prOposition at hand is immediate

from this and the corresponding statement about a

function g such that g'4"g_0. D

Proposition 3.7. Let f be continuous on (a,b)

such that f'+ is also continuous. Then f is

differentiable.

Proof. Let g be such that g' = f . Then

(f—g)'4- = 0 so f—g is constant. B

PrOposition 3.8. Let n > 2. Let f be

n-convex (d) in (a,b). Then f’ is (n—l)—convex (d)

there.

Proof. As f"+ is (n-l)-convex (d)

(prOposition 3.5), and continuous (corollary 3.4), we

see by proposition 3.7 that f’ exists, and so f’ = f’4-

is (n-l)-convex (d). C

Corollary 3.9. If f is n—convex (d) in (a,b)

then f is n-convex in (a,b). That is: for n > 2,
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f(n-2)
if f is n-convex (d) in (a,b) then exists

and is convex.

Proof. This follows trivially from proposition

3.8 by iteration. D

In fact n—convexity (d) is equivalent to

n-convexity, but we do not need this result and so

omit the proof. (A proof may be found in [7], however

this paper is quite complicated. We have included the

proof of corollary 3.9 for completeness and because of

its simplicity. The proof is due to J. Marik.)

Definition 3.2. The generalized symmetric

derivative, Dan(xO), of order 2n of a function F

at x0 is defined by the relation

n 2k

%{F(x0+h)+F(XO—h)} — k2; ?2k)1
 

D2kF(XO) = 0(h2n)

as h 4.0, in a manner anaLDgous to the definition of

the Peano derivatives. The generalized symmetric

derivative, D2n+lF(xO), of order 2n+l is defined by

n 2k+1
l h 2k+l l

2 { F (Xo+h) *F (XO-h) } -- k2 W D F (X0) = O (h2n+ )

=0 .

as h 4'0. These derivatives are generalizations of the

Peano derivatives in the sense that if Fk(xo) exists
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then so does DkF(xo) but not necessarily conversely.

We can proceed as in Chapter II to define upper and

lower symmetric derivates.

Thus we define ¥h(f,xo,h) for n —— 2m by

2m m—l 2k

hl___. _ l _ _ -« 1;____ 2k
(2m): Y2m(f,xo,h) — §[f(xo+h)+f(xO h)] kib (2k): D f(xo)

2
(provided D kf(xo) (k = O,...,m-l) exist) and, for

n = 2m+l, by

h2m+l
l

(2m+1): Y2m+1(f'x0'h) = §(f(x0+h)-f(xO-h)}

m—l 2k+l

h 2k+1

k=0 (2k+1): D f(Xe)

(provided D2k—1f(xo) (k.= l,...,m) exist). The k-th

generalized upper symmetric derivate of f at x0 is

ka(xo) = limsup Yk(f,xo,h).

The function F is said to satisfy conditions

A2m in (a,b) if it is continuous in [a,b] and

if, for l g_k g_m-l, each D2kF(x) exists and is

finite in (a,b), and if

lim hY (F,x ,h) = O
hao 2m 0

for all x6 in (a,b)\E, where E is a countable set.
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The conditions are defined analogously. This
A2m+1

condition can be thought of as a sort of "n-th order

smoothness."

We say that the finite function f has a

discontinuity of the first kind at c 6 (a,b) or an

ordinary discontinuity, provided that f(c+), f(c—)

both exist in the finite or infinite sense but that at

least one of these is different from f(c).

The function F is said to satisfy conditions

BZm—Z in (a,b) if it is continuous in (a,b), if,

for l g_k g_m—l, each D2kF(x) exists and is finite

in [a,b] and if no D2kF(x) has an ordinary discontinuity

in (a,b). A similar definition is given for conditions

B2m-l'

PrOposition 3.10. If F satisfies conditions

An and Bn-2 1n (a,b) and 1f ynF(x) 2_O in (a,b)

then F(X) is n—convex (d) in (a,b).

Proof. This is theorem 4.2 of James [3]. D

We shall see that theorem 3.1 follows from

proposition 3.10. In the first place, it is easily seen

that 6kF(x) g_AkF(x) g ka(x) whenever the left hand

side has a meaning, so that if 6kF(x) > O on [a,b]

then also ku(x) 2_O on [a,b]. To finish we need
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only note that conditions An and Bn are automatically
-2

satisfied in case 6nF(x) 2_O. The proof of this fact

is in Section 8 of James' paper. Thus theorem 3.1

is proved.

Proposition 3.11. Let F be defined in

[a,b] and let 6nF(x) 2_O in [a,b]. Then F is

n-convex in [a,b].

Proof. By theorem 3.1 we need only show that

F(n—2)+ (n—2)
is continuous

F(n-2)

exists at aa and that F

at a. (Similarly for b.) But as is convex

in (a,b) we know that F(n_2)(a+) exists. Thus

by proposition 2.7, F(n'2)+
(n-2)

F(n-2)

(a) = F(n_2)+(a) = F (a+).

Thus exists and is continuous in [a,b] so

that F is n-convex there. C



CHAPTER IV

THE CENTRAL THEOREM

In this section we shall state and prove the

validity theorem for the Zn—integral which we define

in the next section.

Theorem 4.1. Let f be defined on [a,b] and

f(n_l) existssuppose 6nf(x) > O on [a,b]. Then

and is non-decreasing on [a,b].

Proof. We know f(n—l) must exist at each

point of [a,b]. By theorem 3.11 f(n_2) exists and is

2—convex in [a,b]. MOreover f(n-Z) + exists in

(n-2) ' —
[a,b) and f exists in (a,b]. Applying a

one—sided version of Taylor's theorem we see that

(n-2)’ + _ (n—2)’ -_
f — f(n-l) + and f — f(n-l) _.

exists in [a,b] and is the derivative of a

Thus

f (fl-l)

convex function and hence is non-decreasing (and in

fact continuous). C

We shall need the following simple consequence

of theorem 4.1.

26
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Theorem 4.2. Let f and g be defined on

an interval I such that f = g on I. Then

(n) (n)

f and g differ by a polynomial of degree no more

than n-l.

Proof. As (f-g)(n) = O we have (f-g)(n_l)

is a constant by theorem 4.1. The rest is easy. D



CHAPTER V

THE Zn "' INTEGRAL

Definition 5.1. Let n be a natural number.

Let M,f be defined in [a,b]. Then M is called

an n—majorant of f in [a,b] if there is a function

P on [a,b] such that

1) M = F(n) on [a,b],

2) 6n+lP(x) 2 f(x) for each x C [a,b],

3) 6n+1P(X) > —w for each x e [a,b].

The function P will be called a pre—majorant. Then

n—minorants are defined similarly, replacing 2),3) by

2 ) An+lP(x) g_f(x) for each x 6 [a,b],

3') An+lP(x) < +m for each x c [a,b],

and then P is called a pre—minorant.

Remark. For n=O we have exactly the definition

of majorant for the Perron integral.

Definition 5.2. Let f be defined on [a,b].

The upper ZnQintegral of f on [a,b] is

(Zn*)fb f = inf{M(b) - M(a):M is an n-majorant

a

of f on [a,b]}.

28
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The lower Zn-integral of f on [a,b] is

(Zn*)fb f = sup{m(b) - m(a):m is a n-minorant

a

of f on [a,b]].

(The infflnum of an empty set is of course +w, etc.)

If the upper and lower Zn-integrals are finite and equal

then we write (Zn)fb f for the common value and say

a

that f is Zn—integrable on [a,b].

The ZO-integral is then exactly the Perron

integral.

Remark. If M is an n—majorant of f and

m is an n-minorant and if P and p are an associated

pre-majorant and pre-minorant respectively, then

6n+l(P-p) 2'0 and so (P-p)(n) = M—m ls non-decreaSing

by theorem 4.1. Thus M(b) - M(a) 2 m(b) — m(a). From

* _

this it follows that (Z )fb f > (Z )fb f for every
n a — {1* a

function f.

We can now prove a simple theorem which can

be taken as the motivation for this integral.

Theorem 5.1. If F exists and is finite

(n+1)

on [a,b] then is Zn-integrable there and
F(n+1)

b

a
(Zn)j: F(n+1) = [F(n)]
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Proof. F(n) is’at the same time an n—majorant

and an n-minorant of F Thus

(n+l)°

* fb b

(Zn ) a Fm”) g [F(n)]a and

y b

(Zn*)j: F(n+1) 4;[F(n)]a

But as we have remarked above,

*

(Zn )C F(n+1) 2 (Zn*)j: F(n+l) and so

b
(Zn)j: Fm”) = [F(n)]a . [3

We will frequently make use of the following simple result

in the later proofs.

Proposition 5.2. A function f defined on [a,b]

is Zn-integrable there if and only if for each 6 > 0

there is an n-majorant M and an n—minorant m such that

M(b) - M(a) - (m(b) - m(a)) < 6-

Proposition 5.3. Let M be an n-majorant of

f on [a,b]. Let c be any constant. Then M(x) + c

is an n—majorant.

Proof. Let P(n) = M on [a,b]. Let

Q(X) = P(X) + cxn/hi .

Then Q(n)(X) = M(x) + c and 6n+lQ(x) = 6 P(x). [:1
n+1
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PrOposition 5.4. If f g_g on [a,b] then

* *

(zn)j:f_\_(zn)j:g.

Proof. Clearly any n-majorant of g is also

an n-majorant of f. The rest is clear. D

Occasionally we shall use the more classical

notation fb f(t)dt or (Zn)jb f(t)dt instead of

a a

(Zn) j: f.



CHAPTER VI

PROPERTIES OF THE Zn-INTEGRAL

PrOposition 6.1. A Zn-integrable function f

on [a,b] is finite almost everywhere on [a,b].

Proof. Let M be an n—majorant and m an

n-minorant of f on [a,b]. We may assume M(a) = m(a) = 0.

Define R(x) = M(x) — m(x). Then R is non-decreasing

by theorem 4.1. Let P,p be defined on [a,b] so

that P(n) = M, p(n) = m. Then P-p is (n+1)—convex

by theorem 3.11 and so (P-p = (P—p)(n) = R

(prOposition 2.1). Suppose f(x) = +w. Then 6n+lP(x) = +m

and, as An+lp(x) < +m, we have (P-p)(n+l)(x) = +m.

Similarly, if f(x) = -m, then An+lp(x) = -m and since

6n+1P(x) > -m we have (P-p)(n+l)(x) = +m. But

(n) ’ ___ ) (n+1)

R' = (P-p) (P—p exists and is finite a.e.

in [a,b] and so f is finite a.e. in [a,b]. D

Proposition 6.2. If f is Zn-integrable on

[a,b] and if c 6 (a,b) then f is Zn—integrable on

each of [a,c] and [c,b]. Mbreover

an”: f = (an):l f + (Zn)j: f.

32
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Proof. Let g > 0 be given. Let M,m be

respectively an n-majorant and an n—minorant for f

on [a,b] such that [Memlg < 6. It follows immediately

from the definitions that M is an n-majorant on [a,c]

and on [c,b] and that m is an n-minorant on each of

these. Then, by the remark following definition 5.2

we have

c \ b
[M—m]a‘4 O and [M—m]c 2.0.

But then 0 g_[Mrm]: + [Mrm]: = [Mrm]: < €. Thus

0 g_[M+m]: g G and 0 g [M—m]: < 6 so that f is

Zn—integrable on each of [a,c] and [c,b]. Moreover

b _ c b C

[m]a — [m]a + [m]C g_(zn)fé f + (Zn)f: f‘g

b b

_<_ [M]: + [M]c [ma .

Since the first and last terms differ by less than 6

the formula is proved as well. D

Proposition 6.3. If f(x) is Zn-integrable

on [a,c] and on [c,b], a < c < b, then it is

Zn~integrable on [a,b] and the usual formula holds.

Proof. Let Ml , M2 be n-majorants of f on

[a,c] and [c,b] respectively. By proposition 5.3 we

may assume that Ml(a) = O and M2(c) = M1(c). Let M

be defined by
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M1(X) x c. lam]

M(x) =

M2(X) x 6 [c,b].

Then M is an n-majorant of f on [a,b].

let P(n) = M1 and Q(n) = M2. Then

P(x) x 6 [a.C]

R(x) =

Q(X) - Q(C) + P(C) x 6 [c,b].

is a pre-majorant on [a,b] since

Rm) = M and 5n+l,+R(c) = 6n+1,+P(C) _>_ f(c)

and also > -m, and 6n+1,—R(c) = 5n+l,-Q(C) 2_f(c)

also > -m.

If m1 and m2 are n-minorants on [a,c] and

on [c,b] then we construct an n—minorant m on [a,b]

in an analogous way. Moreover, if [Ml-ml]: < g and

b 6
[M2 m2]C < 2 then

b _ c b
[M—m]a — [Ml—m1]a + [Mz-mz]C < 6.

Furthermore,

b fb b
[m]a _<_ (zn)j: f + (Zn) c f g_[M]<_:1 .

Thus (Zn)f: f ex1sts and equals (Zn)I: f + (Zn)‘j’;b f.

To see this

C

Definition 6.1. Let f be Zn-integrable in

[a,b]. Then, if x 6 (a,b], we see from proposition 6.2

that f is Zn—integrable over [a,x]. We put

and

[3
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(Zn)f: f = O for any function. Then (Zn)f: f is

defined for each x 5 [a,b]. An indefinite Zn-integral

of f is any function of the form F(X) = c + (Zn)f: f

where c is constant.

Proposition 6.4. Let f be Zn-integrable on

[a,b]. Let F be any indefinite Zn-integral of f on

[a,b]. Then F is the uniform limit of a sequence of

n-majorants on [a,b] (similarly for n-minorants).

Proof. Let G > 0. Let M,m be respectively

an n—majorant and an n-minorant of f on [a,b] such

that M(a) = m(a) = F(a) and M(b) - m(b) < e. As

Mrm is non-decreasing on [a,b] (by the remark after

definition 5.2), we have 0 g M(x) — m(x) < e for each

x 6 [a,b]. Since M,m are respectively an n—majorant

and an n—minorant on every sub—interval of [a,b]

we have

m(x) - m(a) _<_ (Zn) f _<_ M(x) — M(a) .

p
f
?

Thus

0 _<_ M(x) — M(a) - (zn)j‘: f = M(x) — F(X) < e.

The rest is obvious. D

Proposition 6.5. Let F be an indefinite

Zn-integral of f on [a,b]. Let M be an n—majorant
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of f on [a,b] such that F(a) = M(a). Then M—F

is non-decreasing.

Proof. Let a g_xl < x2 g_b. Then M is an

n—majorant of f on [xl,x2] and so

X2
F(X2) — F(xl) = (znfiX1 f g M(x2) - M(xl).

Thus M(xl) - F(Xl) g M(x2) - F(xz). D

Remark. Similarly, if m is an n—majorant

than F—m is non-decreasing.

PrOposition 6.6. Let F be an indefinite

Zn-integral of a function f on [a,b]. Let M be

an n—majorant of f on [a,b]. Then M—F is

continuous.

Proof. Let m be an n—minorant of f on [a,b].

Then Mrm is an n—th e.I%d. of some function G on

[a,b]. As 5 G.2 O on [a,b] we see that G(n-l) is
n+1

convex and continuous in [a,b] by theorem 3.11.

G(n)- (n)+
Mbreover exists in (a,b] and G exists in

[a,b). But then it follows from Taylor's theorem that

(n)+ _ (n)- _ . .
G — Gm)+ and G — G(n)-' Since G(n) eXists

we see that g(n) = G(n) , so that G(n) is an ordinary

derivative. Thus, since G(n) = G(n) is non-decreasing,

we see by the intermediate value property for derivatives

that it is continuous. But M-F is the uniform limit of
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functions of the form M—m so that M—F is also

continuous. D

Theorem 6.7. Let F be an indefinite Zn-integral

of a function f on [a,b]. Then F is an n—th e.P.d.

on [a,b].

Proof. Let M be an n—majorant of f on [a,b]

and let P(n) = M there. Then as M—F is continuous

we see that there is a function G on [a,b] such that

(n)
G = MrF there. But then

(P—G)(n) = P(n) - G(n) = F. D

Corollary 6.8. Let F be an indefinite Zn-integral

of f on [a,b]. Then F is Z —integrable.
n—l

Proof. This is immediate from theorem 6.7 and

theorem 5.1. U

According to corollary 6.8, we can form the

iterated integral

5

(6.1) f: d§o fa

E
o n—l

dgl ... fa f(gnmgn

whenever f is Zn-integrable, where the innermost

integral is a Zn—integral, the next is a Zn_l—integral, etc.,

and the outermost is a ZO—integral. We shall use the symbol
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j“ f(§)d(§.n)
a

for the (n+1)—fold iterated integral in (6.1). Note

also that IX f(§)d(§.n) is a continuous function of x.

a

Theorem 6.9. Let F(X) be an indefinite

Zn—integral of a function f on [a,b]. Let G(n) = F

on [a,b]. Then G(n+l)(X) = f(x) for almost every

x € [a,b].

Proof. Let E > 0. Let m(o) denote Lebesgue

*

measure and let m (-) denote Lebesgue outer measure.

Let M. be an n—majorant of f on [a,b] such that

M(a) = F(a) and M(b) - F(b) < 62. Let P(n) = M.

Let R(x) = M(x) - F(x). Then R is continuous

(proposition 6.6) and non-decreasing (proposition 6.5)

and so

(DJ: R’_<_R(b> - R(a) < 62.

(n)
MCreover (P-G) = R on [a,b].

Let

A(E) = [xz6n+lG(x) < f(x) — e}.

Let

B = [sz' = (P-G)(n+1) exists and is finite}.

If x €A(€) then 6n+lG(x) < as P(x) — c and so
n+1

6 P(x) - 6n+1G(x) > 6. (Note that 6n+lP(x) > —a> and
n+1
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6n+lG(x) < +m). If x e B H A(E) then 6n+lP(x)

6n+1G(x) = R’(x) . To see this, write P = (P-G) + G

so 6n+lP-2 R + 6n+lG’ while G = P — (P—G) and

so 5n+lG 2-6n+lP - R . Thus B D A(E) ls a subset

of the set

3(6) = [X=R'(X) > 6}-

We now see, EHMB(6)) 3-(L)IB(€)R'.: (L)I: R’ < 62'

It follows that m(B(€)) < E and so m*(A(e)) < 6.

So in particular, for each positive r, m*(A(r)) < r.

*

So letting r = —%- we see m (A(J%)) < J%'. From this

2 2 2

'k

we see that m (A(O)) < E and as G is arbitrary this

implies that 6n+lG'2 f a.e. in [a,b]. In the same

way we can show that An+1G g f a.e. and so

G(n+l) = f a.e. on [a,b]. C

PrOposition 6.10. Every Zn—integrable function

is measurable.

Proof. Let f be Zn—integrable. Applying

theorem 6.9 let G = f a.e. Then

(n+1)

n+1 l n m
f(x) = lim (k (n+1):{G(x + k) — 23G )(x)/k m1])

k4m m=O (m

for almost every x. Thus f is the limit a.e. of a

sequence of continuous functions (as G is continuous)

and so is measurable. D
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Theorem 6.11. The ZO-integral is identical to

the Perron integral. If f is Zn-integrable on [a,b]

then f is also Z -integrable there and
n+1

(zn)f: f = (zn+l)f: f.

Proof. The first statement is obvious. Let

f be Zn-integrable on [a,b]. Let E > 0. Let M,m

be respectively an n—majorant and an n—minorant of f

on [a,b] such that [Mem]: < 6.

Let P = M, p(n) = m on [a,b].

(n)

Let o(x) = I: P. q(x) = I: p.

Then by proposition 2.2, Q(n+l) = M, q(n+l) = m and

by corollary 2.3 and its analogue for upper derivates,

6n+zQ(x) 2-5n+lP(X)-2 f(x) on [a,b]

and

6n+ZQ(X) > -w on [avblo

Also

An+2q<x> s. 4.1900 _<_ fix)

and

An+2q(x) < +m on [a,b].

Thus M is an (n+1)-majorant and m is an (n+1)-minorant

. . x

and so f 18 Zn+l-1ntegrable and O g_[M]a — (Zn+l)I: f.g 6.

Hence

(ZN): f = (Zn+1)j: f. a
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Recall also that the Perron integral is an

extension of the finite Lebesgue integral.

Proposition 6.12. Let f be a non-negative

measurable function on [a,b]. Then

(zn*)f: f = (zn*)f: f = (L)f: f.

(The last integral is the finite or infinite Lebesgue

integral). In particular if f 2.0 and if f is

Zn—integrable then f is Lebesgue integrable and

z ) f = (L) f.

m: J:

Proof. If (L)fb f is finite then all follows

a

immediately from theorem 6.11. If (L)fb f = +m let

a

fk = min{f,k}. Then fk is Lebesgue integrable and

it is easy to see that

b

(zn*)f: f 2,(zn*)fé fk = (Zn)f: fk = (L)I: fk

(k = 1,2,...).

Then since lim(L)fb fk = +m, we also have (Z )fb f = +m.
a 11* a

The rest follows at once. F

Proposition 6.13. Let f,g,h be functions on

* *

[a,b]. Suppose that (Z )fb f + (Z )Ib g has a meaning,

and that f(x) + g(x) 2_h(x) whenever the left hand

side has meaning. Then
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(6.2) (2;): h _<_ (zn*)j: f + (23)]b g.

a

Proof. Let M1

and M2 an n-majorant of g. (If one or the other

be an n—majorant of f

of these does not exist then the right hand side of

formula (6.2) is +m in which case the result is

Obvious). Then M1 + M2 is an n~majorant for h.

To see this let P(n) = M1' Q(n) = M2. Then

6n+l(P+Q) 2-5n+1P + 6n+1Q > _m

and

6n+l(P+Q) 2 f + g _>_ h

whenever the middle term has meaning. If f + g has

no meaning then we see that 6n+1(P+Q) = +w. Namely,

one of f(x), g(x) is +m so that one of 6n+1P(x),

6n+lQ(x) is +m and the other is not —m whence

5n+l(P+Q)(x) = +m.

Thus 5n+l(P+Q) 2_h on [a,b] and M1 + M2 is an

n—majorant. The result follows. E

Remark. We of course have a similar theorem

for lower integrals.

Corollary 6.14. Let f and g be Zn-integrable

in [a,b]. Let h(x) = f(x) + g(x) whenever the right

side has meaning. Then h is Zn-integrable in [a,b] and

(211)): h= (Zn)~J: f+ (zn>):g.



 



43

Proof.

b

(Zn*)f: f + (Zn*) 9 i (Zn*)fa h S

*

g(zn)

a
)
?

{
‘
6
'

h g (zn*)j': f + (zn*)j: g.

But the terms on the extremities are equal. F

Proposition 6.15. If f is Zn—integrable

in [a,b] and if f = g a.e. in [a,b] then g is also

zn—integrable there and (Zn)f: f = (Zn)J: g.

Proof. Let h(x) = 0 whenever f(x) = g(x)

and h(x) = +w otherwise. Then

0 = (L)J: h = (zn)j: h.

and by corollary 6.14

(Zn)f: f = (Zn)f: (h+f).

Moreover g g_h+f whenever the right side has a meaning

and so

*

(Zn )I: g g (Zn)f: f.

Similarly considering the function defined by

k(x) = -h(x) we see that

(Zn*)f: g 2 (Zn)f: f. D

Remark. According to proposition 6.15 the

Zn-integral may be defined naturally on certain of the
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Lebesgue classes (those which contain a Zn—integrable

function). Combining propositions 6.15 and 6.14 we

see that the Zn-integral, considered as a functional

on these classes, is additive. Again prOposition 5.4

and 6.12 can be used to show that the Zn-integral is

a positive functional.

Theorem 6.16. Let f and P be defined in

[a,b] so that P exists and so that

(n)

a) 5n+1P(x) 2.f(x) a.e. in [a,b],

b) 6n+1P(x) > -m in [a,b].

Then

* b

(2n )f: f g [1901)]a .

Proof. Let h(x) = f(x) when 6n+lP(x) 2 f(x),

h(x) = -m otherwise. Then P(n) is an n—majorant

for h and so

.. b
(2n )j: h g [P(n)]a

Define k(x) = 0 when 6n+lP(x) 2_f(x), k(x) = +m

otherwise. Then f(x) g_h(x) + k(x) whenever the right

side has meaning and so

* * b

(Zn,):fg(zn)):h.og[wa.

From this theorem we see that we may enlarge

the class of majorants to include those functions which
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satisfy pr0perty 2) of definition 5.1, only

almost everywhere. A similar result holds of course

for minorants.

PrOposition 6.17. Let f be Zn—integrable

on [a,b]. Let c be any finite number. Then cf

is Zn-integrable on [a,b] and

(211)]: (cf) = c(zn)j: f.

The proof of this prOposition is easy when the

cases c.2 O and c < O are considered separately.

We omit the details.

Combining this result with our previous results

we see that the Zn-integral is a positive linear

functional on the set of those Lebesgue classes for

which it makes sense.

PrOposition 6.18. Suppose g and h are

Zn-integrable functions and f is any measurable

function on [a,b]. Suppose g g_f g.h on [a,b].

Then f is Zn-integrable as well.

Proof. Since we have, for almost every x,

that O g_f(x) — g(x) g h(x) — g(x) and since h-g

is Lebesgue integrable we see that f-g is Lebesgue

and hence Zn—integrable. We now simply apply linearity. C
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Remark. In the same way we can show that if

f is Zn-integrable and bounded below (or above) by

a Lebesgue integrable function, then f is already

Lebesgue integrable.

Proposition 6.19, Dominated convergence theorem.

Suppose g and h are Zn-integrable functions on [a,b].

Let {fk] be any sequence of measurable functions on

[a,b] such that g g'fk g_h on [a,b]. Suppose

lim fk = f a.e. in [a,b]. Then f and each f is

Zn-integrable and

k

113:: (znw: fk = (2.1)): f.

Proof. The integrability is obvious from proposition

6.18. To see the last formula simply apply the usual

Lebesgue theorem to the sequence h-f and the limit
k

h-f. Then apply linearity. D

Proposition 6.20. Let [fk} be a sequence

of Zn-integrable functions on [a,b] which converge

uniformly there to a function f. Then f is Zn—integrable

in [a,b] and (Zn)jb f = lim (Zn)fb fk'

a a

Proof. Let E > 0. Let K be chosen so that

fk - 6'3 flg fk + E for all k.2 K. Then f is

Zn-integrable. Moreover as -e.g f - f _g e we see that
k
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lim(Zn)f: (f—fk) = 0

by the dominated convergence theorem. Now apply

linearity. U

Note also that [(Zn)f: fk} converges uniformly

to (Zn)f: f in [a,b]. Namely, f — fk is Lebesgue

integrable and so (L)f: (f—fk) converges uniformly

to zero on [a,b].

Proposition 6.21. Let f be Zn—integrable on

[a,b] and M an n-majorant. Let P = M. Then

(n)

P(n+l) eXists a.e. on [a,b] and is Zn-integrable

there.

x

Proof. Let F(X) — (zn)fé f. Let Q(n) — F

on [a,b]. (Such a Q exists by theorem 6.7). Then

(P-Q)(n) is a continuous, non—decreasing function by

prOpositions 6.6 and 6.5. But then (P—Q)(n) = (P-Q)(n).

)
Namely, there is a function R such that R(n = (P-Q)(n)

which implies (R—(P-Q))(n) = 0. Then R and P—Q

differ by a polynomial so that (P~Q)(n) exists. Since

(P-Q)(n) is increasing and continuous we see that

(P-Q)(n+l) exists a.e. in [a,b]. Thus

P(n+1) : (P - Q + Q)(n+l)

)(n+l)

(P—Q + Q(n+1)

(n+1)
(P—Q) + f (a.e. in [a,b]).
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. +1 .

(we have applied theorem 6.9.) Since (P-Q)(n ) is

Lebesgue integrable we see that P(n+l) must be

Zn—integrable. C

To finish this section we would like to present

a theorem of Oliver [10]. We need some preliminaries.

Lemma 6.22. Let f be differentiable on

J = [a,b]. Let a > 0. Let \f’\ 2_a on J. Then

there is an interval JO c J such that m(JO) 2.; m(J)

\ a
and that \f‘ 3-4 m(J) on JO.

Proof. By the intermediate value prOperty for

derivatives we may assume f’ > a. Let

.2110._2,

If f 2 0 on (c,b), then f(x) 2,a(X—c) for x E [c,b]

and we may choose JO = [b — g, b]. If f(y) 3.0 for

some y G (c,b), then f(x) < g(x—c) for x e [a,c]

and we may choose JO = [a,a + 41° C

Lemma 6.23. Let n be a natural number. Set

q = l+...+n = n(n+l)/2. Let J be a compact interval.

Let a > 0 and ‘F(n)\ 2'a on J. Then there is an

n

interval K C J such that m(K) 2_4- m(J) and that

‘F‘ 26mm)n - 4‘q on K.
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Proof. For n=l this is exactly lemma 6.22.

Assume that n > 1 and that the assertion is true for

n-l. Set p = l+...+n-1. Then we have an interval

n+

No C J such that m(KO) 2.4— 1m(J) and that

I n—l -p

)F \ 2_am(J) 4 on KO.

By lemma 6.22 we have an interval K C KO such that

l
m(K) 2 Z m(KO) _>_ 4‘nm(J) and that

\F‘ 2.am(J)n-l-4—po % m(K ).2

—n

am(J)n-l-4_p-4 -m(J) = am(J)n4—q on K. E

h
/

Theorem 6.24. Let F be a p-th indefinite

integral of a function which is bounded below on some

neighborhood of O (p > 0). Let F(p)(0) = 0. Then

F(p)(0) = 0.

Proof. Let a > 0, 6 > 0. Let f > —a on

(-6,6) and let F be a p-th indefinite integral of f.

Let g(x) = IX f. We may assume F(O) =...= F(p-1)(0) = 0.

0

Then

(6.3) F(X) = o(xp) as x 4 0.

Assume that D+g(0) > 0. Then there is an e. o < e < 2a,

and numbers an > 0 such that

g(an) > e an (n = 1,2,...), a 4 0.
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For a < x < an + ane/2d we have

g(x) = g(an) + onf > e an— (x-an)a >

1

> c an - dang/2a — 2 a E-

F(p-l)
Since = g we have, by lemma 6.23, an xn in

(an,an + ane/Qa) such that

 

\ l oi p_l . -r _ p

)F(Xn)‘ 4_§ an€(an 20L) 4 —-(an) Q

where

_ 21221 = 6p
r — 2 . Q p—l r

2p-o -4

Since 6/2a < l, we have xn < 2an whence

P . £L , =
\F(xn)\ Z-Xn p (n 1,2,...)

2

which contradicts (6.3). Thus D+g(0) g.o. We may

+

show similarly that D+g(0) 2_0 so that g' (0) = 0.

Analogously g, (0) = 0 so that g’(0) = F(n)(0) = 0.

Corollary 6.25. Suppose M(n) exists on [a,b]

and is bounded below there. Then it is an ordinary

derivative.

Proof. According to theorem 5.1, M(n) is

Z(n_l)-integrable on [a,b]. By prOposition 6.12, it is

thus Lebesgue integrable. Thus M is an n-th indefinite

integral of M(n)’ It follows easily from theorem 6.24

n)(
that M(n)(x) = M( x) for any x 5 [a,b]. [’1



 



CHAPTER VII

INTEGRATION BY PARTS FOR

THE Zn-INTEGRAL

Notation. In what follows let BV[a,b]

signify the class of functions which have finite

variation on the interval [a,b]. Let (R)f: fdg,

for g e BV[a,b] and f continuous, be the Riemann—

Stieltjes integral of f with respect to g in the

sense that the infimum of the upper sums associated

with f and the positive (negative) variation of

g is the same as the supremum of the lower sums.

Fundamental to all that follows is the next

theorem.

Theorem 7.1, Integration by Parts.

a) Let f be Perron integrable in [a,b],

F(X) = (Zo)f: f. Let G 6 BV[a,b].

Then

b
(2 )fb £6 + (R)fb FdG = [FG] .
o a a a

b) Let n 2.1. Let f be Zn-integrable

on [a,b]. Let F(X) = (Zn)j: f. Let

G and y be defined on [a,b] such

(n—l)
that y e BV[a,b] and G is an

51
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indefinite integral of y. Then

fG is Zn—integrable and

(Zn)f: fG + (zn_l)f: FG’ = [FG]:

The proof is quite long and involves a chain

of lemmas. Later we shall show that the strong

conditions put on the function G are really necessary.

This proof is due to J. Marik.

We assume that a) is well known but for

completeness we present a proof.

Proof of Theorem 7.1, a). Assume G is positive

and non-decreasing. (This is sufficient by the linearity

of the integrals). Let a = x0 < xl < ... < xm = b

be a partition of [a,b]. Let

Yk = min[F(x):xk_l g_x g_xk].

If M is a O—majorant of f on [a,b] then one easily

sees that G(M—yk) is a O-majorant of fG on

[xk_l,xk]. Thus

Xk
* Xk

(z ) fG < [G(F—Y )]
o IXk-l — k x

k—l

Thus

* b Xk

(20 >1: f6 3 [GFla - i3 [(521ka
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for each such partition, and so

*

(z )jb fG < [GF]b - (R)Jb FdG.

0 a " a a

Now replacing F and f by —F and —f we see

my”: fG _>_ [GP]: - R]: FdG. [3

Lemma 7.2. Let m,¢ be functions on [a,b].

Let q be a natural number. Let m(q) be continuous

on [a,b] and let w(q—l) be absolutely continuous

on [a,b]. Let R be an indefinite integral of

w¢(q). Set

q-l . . .

v = Z (—1)3 m(q‘3‘1)¢(3) + (-1)qR.

i=0

Then V' = @(q)w.

Proof.

(q) __ (q-l) X _ (q-l) ’___ =
j:cp 41- [co Ma J: cp 1)

= [cp‘q‘l’w-cp(q‘2)w’ +...+(-1)q‘1cpw(q'l’]: + (-l)qf: cpw‘q’ =

: V(X) - V(a). D

Definition 7.1. Let n > 1 be an integer. Let

M be a continuous function on [a,b]. Let Y e BV[a,b].

(n-2) be an indefinite integral of y. LetLet g

K0,...,Kh be functions on [a,b] with the following

properties:
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(k)
Kk

= Mg (k) (k = 0,1,...,n-2),

Kéfiz) is an indefinite integral of My,

there is a number c such that Kén-Z),

is an indefinite integral of c + I: Mdy (x 6 [a,b]).

Then we say that Ko""’Kn have property u) with

respect to M,g on [a,b].

Lemma 7.3. Let a,b,n,g,y be as above. Let

(n)
M be a function on [a,b] such that M is

continuous on [a,b]. Let K0,...,K.n have property w

with respec

Then S(n)

t to M,g. Set

n k n

n)
= M( 9.

Proof. We first show that

(7.1)

for r = 0,

r=0. If it

S (r+l)

5 II

(
D II

r . . . .

S(r) = Z (_1)3 (n+er-1)M(r-3)g(3)+

i=0 3
n - ( )

+ Z (-1)3(r.1)K.r

j=r+l 3 J

...,n-2. The relation (7.1) is obvious for

is true for some r (0 g_r < n—2), then

= A + B + C + D + E where

r . . . .

Z (_1)J(n+33r'1) M(r+l-J)g(3),

i=0

2 (_l)j(n+jfr“l) M(r-j)g(j+l)'

° 3
J:
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C = (-l)r(n_1)Mg (r+l)’

_ r+l (r+l)

D I (-l) (r+1)Kr+l '

n

E: Z (-1)3(§)Kj‘r+1’.
j=r+2

We can re—write B and D as

B = _ Z) (_ l)j(n+j—r—2) M;(r+l-j)g (j) ’

j=—1 3

_ r+1 (r+l)

D - (-l) (r+1) M'g °

Then, applying the relation (p+l) - (g) = (qpl)' we get

r

A+B = Z (_l)j(n‘j-r-2) M(r+l-j)g(j)

i=0 3’
and

_ r+l n-l (r+l)

C+D ‘ (_l) (r+l) ME! I

which completes the induction and proves (7.1). If we

put r = n—2 into (7.1) we see

n-2

(7.2) s‘“‘2) = Z; (—1)j(j+1)M(n‘2‘j)g(j) + (-1)n

i=0

+(-—1)“K‘“2’.

Set

n-2 . . .

R = K§212) , Tp = .Zj(_1)JM(n-2-J)g(j)+
(_l)n—l R

J=P

(p = Ollloooon-Z).

Set

2 = R (“’2’

K(n-2)



 



Then

n—2

Z) =

p=0 p

so that

(7.3)

We also have

T :

P

If we put m
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11-2 - n n

E (—1)3(j+1)M‘n‘2'3’g‘3’ + (-1)“‘1(n-1)R.

j=0

n—2

= Z) T + (-l)n_lz.

p=0 p

S(n-2)

.23 (_l)i+p M(n—Z—i-p)g(i+p) + (-l)n_lR.

1:0

= (—l)pM, w = g(p), q = n—l-p then we

get from lemma 7.2 that

(7.4)

Further

t

Z(x) =(cl + 1: My)— 62 - f:(e3 + fa Mdy)dt

Thus

(7.5)

T, = (_l)p M(n-l-p)g(p).

t

4 + f: (--c3 + M(t)v(t) — I; Mdv)dt

(c

a

+

N
I
R t ’

+ f M y)dt (the c.'s are constant).

a5 3

I - X;

Z(X)—c5+faMy.

Now from (7.3) and (7.4) we get

(7.6)

and, from (7.

If we put m = M', q = n-l, w = g we have w

n-2
S(n—l) _ Z: (_l)pM(n—1-p)g(p)+ (_1)n—1Z,

I

P=0

5), Z’ is an indefinite integral of M’y.

-l) n—2)(q = g(
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on [a,b] and w(q) = y a.e. so the formula

S(n) = M(n)g follows at once from (7.6) and lemma 7.2. C

Lemma 7.4. Let n > 1 be an integer. Let

M,g,y be functions defined on I = [a,b]. Let M

(n—2)

(n)

exist on I and let y e BV(I). Let g be an

indefinite integral of y. Then there is a function S

such that

(7.7) Sm) =M(n)g on I.

For any such function S and for any x 6 I for which

g'(x) is finite we have

(7'8) Qn+l(S:Xoh)=M(n)(X)g’(X) + g(X) 9n+l(M,X,h) +O(l).

Note. If n > 2 then g’(x) is finite for

every. x. If n=2 then g' is finite except possibly

on a countable set and even here we have, for h > 0

(respectively h < 0), that formula (7.8) holds if we

+

replace g'(x) ‘by g' (x) (g'-(x)), the right (left)

hand derivative.

Proof. Let Ko’°°°'Kn have property w ‘with

n

respect to M,g. Let S = Z) (-l)k(£)Kk. Let x 6 I.

k=0

We may assume x=0. Let P be a polynomial of degree

g_n such that the function M = M-P fulfills

(7.9) M(t) = o(tn) as t +0.
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Let Rk be functions such that Rék) = Mg(k) (k = O,...,n-2),

-(n-2) _ t — -(n-2)
K (t) _ (0 MY, Knn_1 (t) = f:(f: MdY)ds,

n+k)

and Rfi3)(0) = 0 whenever O g_j g_k-l and k : n—l

or o‘g j g_n-3 and k=n. Obviously Rk(t) = o(t

2n-l

(k = O,...,n—l) and Rn(t) = o(t ). If we put

_ n k n -

k=

we have

M(t)g(t) + o(tn+l).(7.10) S(t)

Set Hk = Kk — Rk. It is easy to see that Ho"°°'H

have property m with respect to P,g. Define

V = E} (-1)k(}’:)Hk = s - é.

k=O

By lemma 7.3 we have V(n) = P(n)g. Let G satisfy

G(n) = g. Let a = M(n)(0). Obviously P(n) = a so

) (n).
that V(n = ag = aG Thus there is a polynomial Q

of degree < n such that S - S = V = aG + Q or

(7.11) s = Q + as + §.

There is a polynomial Q1 of degree < n such that

n

(7.12) G(t) = Ql(t) + $7 g(O) + o(tn).

It follows from (7.9)—(7.12) that

tn n

S(t) = Q2(t) + ET-ag(0) + o(t ),
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where Q2 = Q + dQl is a polynomial of degree < n.

Thus S(n)(0) = dg(0). If g'(0) is finite we have

g(t) = 9(0) + 0(t)

and it follows from (7.9) and (7.10) that

).(7.13) S(t) = g(O)M(t) + o(tn+l)= g(O) (figgéT'9n+1(M“3't)+°(tn+l

Further,

tn n+1 o n+1

G(t) = Q1(t) + Ej'9(0) + 7;;377'9 (O) + o(t ).

so that from (7.11) and (7.13)

tn tn+1 ’

+ o(tn+l)

which completes the proof. D

Theorem 7.5. Let n be an integer, n > 1.

Let f,G,Y be functions on [a,b] such that f is

Zn—integrable on [a,b], Y e BV[a,b] and G(n_2) is

an indefinite integral of Y. Then for any indefinite

Zn-integral F of f we have

. b

(2 )fb (FG + fG) = [FG]
n a a

Proof. Assume first that G,G’+ and G'-' are

positive functions. (If n > 2 there is no need to

consider G’+ and G'-' separately as 6’ exists in this

case.) Let U be an n-majorant of f such that

U(a) = F(a). By lemma 7.4 there is a function S such that
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S = P G = UG.

(n) (n)

Moreover, by formula (7.8) and the note following

lemma 7.4

6 S(x) 2_min[U(x)G’4—(x)+G(x)6n+lP(x),U(x)G’-(X)-t
n+1

-+ G(x)6n+1P(x)].

Then 6n+ls(x) > —m for every x 6 [a,b] and

6n+lS(x) 2.F(x)G'(x) + G(x)f(x)

whenever G'(x) exists (that is, except for a countable

set when n=2, and everywhere if n > 2). Applying

theorem 6.16 we see that

* , b

(2n )j: (FG + fG) g [UG]a

and so

(zni'yfi:1 (FG’ + fG) _<_ [FG]: .

A similar consideration for n—minorants shows that

(Zn*): (196’ + fG) 2 [PG]:

and so the theorem is proved for this case.

Returning to the general case we see easily

that G'i- is bounded on [a,b) and G'- is bounded

on (a,b]. Namely, if n > 2 then G’ is continuous

and if n=2 then G is an indefinite integral of a

function of bounded variation. Thus we can find a linear
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function G2 on [a,b] such that G2 > O on [a,b],

G; > 0 on [a,b] and that the function G1 = G + G2

satisfies the conditions of the special case considered

above. Let

Y2 ‘ 2 and Y1 = y + y2.

Then Yj E BV[a,b] and Gj - is an indefinite integral

of y. (j = 1,2). Then we may apply the first part of

J

the proof to each Gj’ so

, b .

z )fb FG. + £6. = FG. = 1,2 ,( n a ( J J) [ 31a (3 )

from which the assertion follows at once by linearity. C)

The analogues of theorems 7.4 and 7.5 for the

case n=l are slightly different.

Lemma 7.6. Let M, g be functions on [0,1].

Let M ‘be ZO-integrable, let g E BV[O,1] and let

var(g,[0,h]) = 0(h). Let P be an indefinite ZO—integral

of M and let S be an indefinite ZO-integral of

Mg. Assume P'(0) is finite. Set

T(h)
.2. _h2 )2 (g(t) 9(0))dt.

l = limsup h"l var(g,[0,h]).

h40
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Then l < w and

-X g_6lg(0) g_liminf T(h),

h4O

(7.14)

limsup T(h) g_Alg(o) g_1.

h40

and

:13.
2

(7.15) S(h) S(O) + hg(0)P’(0) +

+ o(h2).

Proof. The inequalities 419(0) 3.1 < +m are

obvious. Let B > Alg(0). Then for sufficiently small

h ‘we have g(h) — g(O) < hB and 'T(h) g_3%-£: tht = B

so that h

limsup T(h) g Alg(0).

h4O

This proves (7.14).

If M s 1 then P’(o) = 1 and 92(P,O,h) a o, 2

SM - 8(0) = J: g = 119(0) + J:<<3(t)-g(0))dt = hg(0) + 1’2- T(h)

so that (7.15) holds in this case. If g E 1 then

2

o. S(h) - 3(0) = P(h) — p(0) = hp’(o) + gr-92(PJ),h)

so that (7.15) holds in this case also. If we hold either

H
I

T(h)

M or g fixed in formula (7.15) it is easy to see that

the formula is linear with respect to the other so that

we may assume P'(0) = g(O) = 0. Let K(x) = P(x) — P(O).

Then K(t) = o(t), g(t) = 0(t) and since var(g,[0,h]) = 0(h)

we have I: Kdg = o(h2) so that

(T(h>P’(0) + 9(0) 92(P.o. 11)) +
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h

s(h) - 3(0) = )2 Mg = K(h)g(h) - f6 Kdg = o(hz)

which completes the proof. F

Theorem 7.7. Let f,G be functions on [a,b].

Let f be Zl—integrable on [a,b]. Let G be continuous

and in BV[a,b]. Suppose var(G,[x-h,x+h]) = 0(h) for

each x 6 (a,b). Let F be an indefinite Zl—integral

of f. Then

a b
(21)];b (FG + fG) = [FG] .

a a

Proof. If G is constant the conclusion is

obvious so applying a simple linearity argument we may

assume that G > 0. Let G > 0. Let M be a l-majorant

of f on [a,b] such that M(a) = F(a) and

MJb) < F(b) + e. Let S be an indefinite ZO-integral

of MG and let P' = M on [a,b]. Using theorem 7.1

a) and the well known mean value theorem for the Riemann—

Stieltjes integral we see that S' = MG on [a,b].

Moreover, from lemma 7.6 we have that 628(x) > —m for

every x and that

623(X) = G'(X)M(X) + G(X)62P(X)

whenever G'(x) exists. Thus

628(x) 2 G’(X)M(X) + G(x)f(x) 2

.2 G’(X)F(x) + G(x)f(x) - €|G'(x)\ a.e. in [a,b].
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Thus

.6 fb \G’| + (21*)fb (FG’ + fG)

a a

= (21*)jb(-61G’\ + FG’ + fG) g

a

_<_ [s’]: = [M6123 [Fe]: + as]:

It follows that

* i

(Zl )fb (FG + fG) 3 [FG]

a

We can show similarly that

(z )j'b (FG’ + fG) > [F6]
1* a —

so that the theorem is proved. C

Proof of Theorem 7.1, b). Let n=1, and

suppose that F,f,G and y satisfy the conditions of the

theorem. Then F,f and G satisfy the conditions of

theorem 7.7, so that

(z ) I (FG’ + fG) = [FG]b
l a a

Moreover, by corollary 6.8, F is ZO-integrable and

y E BV[a,b] so that FY is ZO—integrable and

(20)): FY = (20)): FG ,

by proposition 6.15, which in turn is (Zl)fb FG' ‘by

a

theorem 6.11. Thus



 
 



b- (b ' - 1b ' f"lFG]a —(zl) (FG + fG) — (20) FG + (21) £6

a a a

as was to be shown.

Let n > 1. Let F,f,G and y satisfy the

conditions of the theorem. Then by theorem 6.7 there

is a function P such that P(n) = F. Moreover

(G o) (fl-2)

is the indefinite integral of a function in

BV[a,b] so, by lemma 7.4, there is a function S such

that

S(n) = P

But then, by theorem 5.1, FG is Z -integrable.
n—l

Thus, since F,f,G,y satisfy theorem 7.5, we see that

[F6]: (211)]: (FG’ + fG) =

(211)}: fG + (Zn)J: FG’ =

(Zn): fG + (Zn-1)): FG’. E



 



CHAPTER VIII

RELATION BETWEEN THE Zn-INTEGRAL

AND THE CnP-INTEGRAL

Theorem 8.1. The Zn-integral is identical to

the CnP—integral (n = O,l,2,...).

The proof is by induction. For n=O it is

certainly true as both the ZO-integral and the COP-

integral are precisely the Perron integral. We

assume that, for 0 g_k g_n-l, the Ck

k-integral. We need some lemmas

P-integral is

identical to the Z

(which will also be useful later).

Lemma 8.2. If P(n) is finite in [a,b]

then for every x 6 [a,b] and for every h such that

x+h c [a,b] we have

n h
k: P(k)(x) + HT-Cn(P(n),x,h).

—1

(8.1) F(X+h) = P(X) +

k=l

Proof. According to the definition and the

induction assumption

hn 1 +h n—l

66
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Applying theorem 7.1 and theorem 5.1 we see that this is

n—l x+hl ]X

(n_1);'[P(n_l)
(§)(x+h—§)

l
+h n—2

+ (nLETT'(Zn_2)f: (x+h-é) P(n_1)(s>dg

n—l

[:1

h l x+h n—2

= — 73:I7'P(n_1)(X)‘+ 73:377-(zn_2)jx (x+h—5) P(n_l)(§)d§

= .= (repeating the first step)

hn—l hn-2

= ' (n—1): P(n-1)(X) ‘ (n-2): P(n-2)(X) "°°+

1 +h

+ 5:- (20)]: PH) (€)d§

n-l hk

= _ "T p k (x) + P(x+h)- P(x) as was to be shown.

k=1 k. ( )

Lemma 8.3. Suppose P(n) is finite in [a,b].

Then (a) CnD*P(n) 6n+lP'

*

(b) (CnD P(n) = An+lp and

(c) CnDP(n) = P(n+l) prov1ded one Side eXists.

Proof. We prove (a)((b) is similar and (c) follows

from (a) and (b)). According to lemma 8.2,
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en+l(P'X'h) —

n hk n n

F(X+h) — kEO E7111.) (X) :0 cM(P(),xh) - Ll- P(n) (x)

«n+1/(n+1)' _ n+1/(n+1)

= Cn(PL)IXIh) ‘ P(n) (X)

h/(n+1)

 

Now simply take the lower limit of both sides to see (a). C

Lemma 8.4. Let M ‘be defined on [a,b]. Then

M is Cn—continuous on [a,b] if and only if there is

a function G on [a,b] such that G(n) = M. That is,

only n-th exact Peano derivatives are Cn—continuous on

an interval.

Proof. Suppose G = M. Then according to

(n)

lemma 8.2,

n-l k

G(x+h) -kZO;-1-G(k)(x)

 

lim Cn (M, x, h) = lim

h40 h40 hk/k!

G(n)(x) = M(x) so that M.

is Cn—continuous.

Conversely suppose M is Cn-continuous on [a,b].

Then it is Cn_1P-integrab1e and thus Z -integrable by
n-l

the induction hypothesis. Let

gn-1(X) = (Zn_l)fx M.

a
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By corollary 6.8, gn_1 is Zn_2-integrable and so

we may define successively

gk(x) = (zk)f: gk+l (o g.k g_n—2).

Put G = g0. Then applying theorem 7.1 n—2 times we

have

“1‘1"? (2 )f‘+h(x+h-§)n‘1M(§)d§ =
(n- ). n x

n—l hk

= G(x+h) - G(x) — 23 ng(x).

k=1 '

Then, as M is Cn-continuous, we see that G(n)(x) = M(x)

for each x. (Also G(k)(X) = gk(x) (k = O,...,n-l).) C

Thus from lemmas 8.3 and 8.4 we see that the

class of (n+l)th e.P.d.'s is exactly the same as the

class of exact Cn—derivatives.

We now finish the proof of theorem 8.1 by showing

that the CnP—integral is identical to the Zn-integral.

Let f be any function defined on [a,b]. Let

M be a Cn-majorant of f on [a,b]. Then M is Cn—

continuous so, by lemma 8.4, there is a function P such

that P(n) = M and, by lemma 8.3,

6n+lP(x) = CnD*P(n)(x) = CnD*M(x)

so that -w < 6n+lP(x) 2 f(x). Thus M is an n—majorant
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as well and so

* b

(2,1)): f 3 [ma

for each such M. It follows that

(zn*)f: f g (cnp*)f: f.

If we consider Cn-minorants we see that

(2“): f 2 (CnP*)_[: f

as well, so that the Zn-integral extends the CnP-integral.

0n the other hand, if M is an n-majorant of

f on [a,b] then there is a function P such that

P(n) = M so that M is Cn-continuous. Moreover

CnD*M(x) = 5n+lP(x) by lemma 8.3 and so M is a

Cn-majorant of f. But then

‘1'

(C P )fb f < [M1b for each such M
n a — a.

and so

(cnp*)j: f _<_ (25)]b f.
a

Similarly considering n-minorants we see that

(CnP*)J: f 2 (Zn*)~[: f.

Thus we see that if f is integrable in the sense

of either Zn or CnP then it is also integrable in

the other sense and

(CnP): f = (zn)j: f. C)



 



CHAPTER IX

EXAMPLES

In this section we would like to give a few

examples to illustrate the extent of generalization

of the Zn—integral and also the necessity of the strong

assumptions in the integration by parts theorem.

Example 9.1. Let n 2.1. Let g(x) = xn+lsin x“n

(x # O), g(O) = 0. Then g(t) = o(tn) as t 4 0 so

that g'(0) = 9(2) (0) =...= gm) (0) = 0. Thus, as g

is certainly n—times differentiable away from x=0,

we see that g(n)(x) exists for every x. Thus, by

theorem 5.1, g(n) is Zn_l-integrable in [-l,1]. But

if n > 1, g(n) is not Zn -integrable there. Since
-2

_2-integrable, its indefinite integral.

would then be Zn-

if g(n) were Zn

g(n—l)’ 3-integrable, etc. Continuing

this we see that an n-l times iterated integral of

g(n) would be continuous (since the last integral is

a Perron integral) and also equal to 9' plus a polynomial.

But this is impossible as
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’ -n cos x—n + (n+l)xn sin x—n, x # 0

g (X) =

0 x = O

which is not continuous.

It also follows from this that g(n) is not

an (n—l)th e.P.d. of any function, for if it were it

would be Zn_2—integrab1e. Thus the Zn-integral is a

proper generalization of the Zn_l-integral and, for

any n there is an n-th generalized derivative on L—l,1]

which is not Zn integrable on L—l,l].
—2

Example 9.2. Let n be a natural number. There

is a function G ‘which is n times differentiable in

a neighborhood of zero, and a function f which is an

n—th exact Peano derivative and yet fG is not

Zm—integrable for any m in any neighborhood of 0.

Remark. Such a function f is of course

Zn_l—integrable. Thus it is essential to assume more

then the n-fold differentiability of G to obtain an

integration by parts theorem for the Zn_l—integral.

We will show that.G and F may be taken to be

n2+3n-2 1
x cos

n+3

x

 

x # O,

G(x) =
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cos x # 0

n +3n-l n+3

f(x) =

0 x = 0.

To establish this we shall need some lemmas.

Lemma 9.1. Let

1 i
M(x) = -E-exp(—E) where x > 0, r real,

x x

s>0, i2=-—l.

Let F(x) = fl M(t)dt (x > 0). Then

x

F(x) = O(——l——fi +-constant
r-s-l °

x

Proof. If r = l+s this is trivial, so assume

otherwise. We integrate F by parts to see

F(X) = Il—Eit'i' $14.1 exp“? dt
Xt t t

—A+A——-l-—-X-i-+B fl 1 (loot
- o l r-s-l e p s l x r-s exp s ’

x x X t

where AO,A1,Bl are constants. Repeating this for the

last term we see that

l i l i

F(X) = AO+Al r-s—l exp —§-+ A2 r-Zs-l exp —§-+...+

x x x x

i 1

+ A exp —— + B exp —— dt
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and if we choose n such that r-ns < O we see that

each term but the last is

l

O(*r-s—l)° D
x

Lemma 9.2. If r < ns and if

1 1

H x = d5() (X1)

then

1

Eras—:5) + W)
H(x) = 0(

where P is a polynomial of degree < n. Thus

n
H(x) = o(x ) + P(x),

and so H(n)(0) exists and is zero.

Proof. This is a trivial induction using

lemma 9.1. E

Lemma 9.3. We get exactly the same results as

lemmas 9.1 and 9.2 if we replace M by one of

a) -3L ex -:i
r p S

X X

1 . 1

b) 'IF Sin-j;

X X

r S
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Proof. a) is obvious and b) and c) follow

from a) and the above and well known trigonometric

relations. D

We now show that the functions f and G of

example 9.2 have the desired properties. Let

r = n2 + 3n—l, s = n+3.

Then r - ns < O and so by lemma 9.2 (for cosine),

f is an n-th exact Peano derivative in any neighborhood

of O. MOreover it is easily seen that G(k)(0) = O

(“'1)(x) = 0(x2) so that(k = l,...,n—l) and G

G(n)(0) exists. Thus G(n)(x) exists for all x.

But

 

(fG) (X) =

and this function cannot be Zm—integrable for any m.

Namely, fG has constant sign in [0,1] and in [-l,0]

so if it were Zm-integrable there it would be Lebesgue

integrable there. But it is not Lebesgue integrable in

any interval of the form [O,d] or [—d,0].

Remark. Even though G(n) exists, G(n_l) is

not of finite variation. In fact it cannot be, according

to theorem 7.1.



 



CHAPTER X

AN IMPROVEMENT IN THE

DEFINITION OF THE Zn-INTEGRAL

In this section we would like to show that it

is possible to relax somewhat the requirement 3) in

definition 5.1, the definition of an n-majorant.

 

Lemma 10.1. Let do > al 2.a2 2.°-~.2 an 4 O.

L t B - 1 > B > B > > B 4 O and B < Bn_l
e o" 1 2 n n 2 °

Then for each k = 1,2,..., there is a function Fk

on [0,1] such that

1) FR has a non-negative continuous (k+l)th

derivative on (O,l],

2) Fk(0) = pk '* kwho) = o.

Fk(k)—

(O) =...= F

(60) = a0!

3) Fk(x) 2,6: an/zk+l

n = 1,2,...; k = 1,2,...).

(X E [Bn'Bn—l];

Proof. Let m ibe a continuous, non—decreasing

function on [0,1] with a continuous derivative in (0,1]

such that m(x) = an for Bn/2 < x < 8n. Let
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5

Fk(X) = [x dil I l

E
k-l

O O d§2 ... [O o(gk)d§k

[X o(§)d(§,k—1), a k—fold indefinite
O

integral of 6.

Then for x E [Bn’Bn-11’ we have

n

l n ffin B
F = =

m) .%<v2JO 42 E/2m _§%1

Suppose we have established the formula of 3) for the

case k-l. Then for x E [Bn'En—l] ‘we have

k k—l ffin k-l n k+l
F = F F F

(X) J: 2 O ->— fin/z 2

k—l

B -a B
n n n k k+l

The rest is obvious. D

Lemma 10.2. Let k‘Z 1 be an integer. Let M

be a finite function on [-l,l] such that M(k)(0) is

finite. Let E > 0 be given. Then there is a function

F with the prOperties

0) F(O) = F’(0) =...= F(k)(0) = 0,

(k)
1) F is continuous and non—decreasing on [—l,l],

2) [F(k)]11 < 6.

3) 6k+l(M+F)(O) 20.

Proof. Let £ be a polynomial of degree g_k

(k)
such that 1(0) = M(O), £’(0) = M’(0),...,z (0) = M(k)(0).
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Let Q = M—z. Then Q(t) = o(tk). Let 6n = 3"In

(n = O,l,2,...). Define, for n = 1,2,...,

on = sup[JQ':':-:Ll ° 2k+1 3 t E [O'Bn_1]}o

Then cn is a sequence decreasing to zero. Let

k
dn = cn . 3 . Then for t e [Bn'Bn-lJ'

k k k
t

‘Q (t) ‘ < :13...— S Can-1 = 3135!}.

— 2k+1 2)E+1 2k+1 '

f - _
Let dno < 2 and define an (n — 1,2,...) by

dno n g.n0

an =

(1n n > nO .

Now define F on [0,1] as in lemma 10.1 for this

choice of k, {an}. {5n}. Then for some 8 > O,

(k)+- 6

(l)<§

this construction in [-l,0] and thus define F on

F(x) 2_‘Q(x)| in [0.3] and F Repeat

all of [—1,1] so that

F(O) = F’(0) =...= F(k)(0) = 0,

so that F has a continuous, non-decreasing k-th

derivative in [-l,l], F(k)+(-l) > — g and

F(x) 2_\Q(x)[ on [~B,O] (k odd) or

F(X) g —‘Q(x)‘ on [-B.O] (k even), for some

Then 6k+1(M+F)(O) = 5k+l(Q+F)(O) 2.0. The rest is

obvious. E]

> O.
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Corollary 10.3. A simple argument shows that

we may replace [-l,l] with any compact interval

[a,b], and instead of O we may take any point c

in the interior. Moreover, if we allow for one-sided

derivatives we may take c to be any point in [a,b]. D

Theorem 10.4. Let M ‘be a finite function

on [a,b]. Let k be a natural number. Let 6 > 0.

Let T be a countable set in [a,b]. Let M be
(k)

finite for points in T. Then there is a function F

satisfying

1) F(k) is continuous and non-decreasing

in [a,b],

(k) ]b
2) [F a<e.

3) 6k+l(M+F) (x) _>_ O (x E T).

Proof. Let T = [an]: . Then, by lemma 10.2,

for each n = 1,2,..., there is a function Fn such that

F(k)
n

a) is continuous and non-decreasing,

b) [1951”]: < 3% .

c) 6k+1(M+Fn)(an) 2_O.

We may also suppose without loss of generality that

_ . _ _ (k) _ _
Fn(a) — Fn(a) —...— Fn (a) —— O (n — 1,2,...),

or else we simply add to En a polynomial of degree g.k

and this leaves a),b) and c) unaffected. Then
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\ng)(x)\ < €1- (n = l,2,...;x 6 [a,b]),

2

and so if we define

co

f(x) = Z Frgk)(x)

n=1

we see that f is continuous and non—decreasing on [a,b],

and [f]: < 6- Let

F(x) = [x f(§)d(§.k-1).
a

a k-fold indefinite integral of f. Then it is easily

seen by the uniform convergence of the series defining

f that

F(X) = ‘2: ijrEk)(§)d(§,k-l) = )3 Fn(x).
n=1 0 n=1

Moreover F(k) = f and so 1) and 2) are Obvious. To

see 3) we let x = an e T. Then

0k+l(M+F)(X) = 6k+l(M+Fn+ Z Fm)(x) _>_

m#n

.2 6k+1(M+Fn)(x) 2_0.

The first inequality follows from the fact that

23 F(k) = ('2: Fm)(k)
mfin m m n

is non-decreasing, whence

6k+l(}3 Fm) 20. E3

mfin
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Theorem 10.5. Let f,M. be finite functions on

[a,b]. Let T be a countable set in [a,b]. Assume

M(k) is finite on [a,b] and that

~00 < 6k+lM(x) _>_ f(x) (x A T).

Then

* b

(2k )1: f _<_[Mm1a .

Proof. Let e > 0. According to theorem 10.4

there is a function F on [a,b] such that

[M(k) 1: S. [(M+F) (k) 1: S. [M(k) ]: + 6

and

6k+l(M+F)(t) > -w everywhere and

6k+l(M+F) 2_f except on T.

Then applying theorem 6.16 we see that

(zk*) f: f _<_ [(M+F) (10]: _<_ [MW 1: + e.

As 6 is arbitrary the result is immediate. D

Applying theorem 6.16 to this case we easily

obtain

Theorem 10.6. Let f,P be finite functions on

[a,b]. Let T be a countable set in [a,b]. Assume

P(k) is finite on [a,b] and that
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a) 6k+1P(x) > —m (x E [a,b]‘\T),

b) 6k+1P 2.f a.e. on [a,b].

Then

* b
(Zk)]:f_<_[P(k)]a. C)

This result shows that if we take the following

definition for n-majorant and the corresponding one

for n-minorant, then the Zn—integral is left unaffected.

Definition 10.1. Let M and f be defined

in [a,b]. Then M is called an n—majorant of f

in [a,b] if there is a function P on [a,b] such

that

l) M = P(n) on [a,b],

2) 5n+lP 2_f a.e. on [a,b],

3) 6n+1P(x) > —m for all but at most countably

many x 6 [a,b].

To finish we illustrate how such a definition

may be useful.

Theorem 10.7. Suppose f is Zn—integrable on

[a.fi] for each 6 < b and suppose lim (Z )IX f

xab— n a

exists and is finite. Then f is Zn—integrable on [a,b]

and
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Proof. Let 6 > 0. Let a = bO < bl <...< bk 41b.

Let Ml,ml be respectively an n-majorant and an n-minorant

for f on [a,bl] such that Ml(a) = m1(a) = O and

l
[Ml—m1]a < 6/2- Suppose Mk—l and mk—l have been

chosen. Let Mk’mk be respectively an n-majorant and

an n—minorant of f on [bk-1'bk] such that

Mk(bk—1) = Mk-l(bk-l)’ mk(bk-l) = mk—l(bk—l)

and b

[Mk - kab:_l < 6/2k .

Let

M(x) = Mk(x) when x e [bk_l,bk],

m(x) = mk(x) when x e [bk_l,bk].

bk
Then [M—m]a < E for every k. It is easy to see that

M and m are respectively an n-majorant and an n-minorant

on each interval [a,B] (B < b). Thus there is a

function P such that P n)(x) = M(x) (x 6 [a,b)), and

(

-m < 0k+lP(x) 2 f(x) (x 6 [a,b)).

We shall now define M(b) and P(b) in such

a way that P(n)(b) = M(b). Let F(X) = f: f (x < b),

F(b) = F(b-). Then it is easily seen that MrF is

bounded and non-decreasing in [a,b) so that M(b—) = P(n)(b—)

exists and is finite. We may prove analogously that m(b-)

is finite. Define M(b) = M(b—), m(b) = m(b—). Mbreover
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P = M is bounded in some interval (a,b) so it is

(n)

an ordinary derivative there by corollary 6.25. Thus

P(n) = P(n) and, since P(n)(b-) exists and is finite

we must also have that

p‘k) (b-) (k = 0,1,...,n)

exist and are finite. Now we define P(b) = P(b—).

(k) k)
It follows from L'Hopital's rule that P -(b) = P( (b-)

(k = 0,...,n), so that P(n)(b) = M(b). Thus M is 7

an n—majorant of f on [a,b] using definition 10.1.

Similarly m is an n-minorant of f on [a,b] and

[Mem]: < 6. Thus f is Zn—integrable on [a,b] and

-e < m(b) - M(b) 3 (2,1)]: f - F(b—) _<_

_<_ M(b) - m(b) < 6.

so that

(Zn)]: f 2 11m (Zn)J: f. F]

x+h-
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