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ABSTRACT

ANALYSIS OF FRAME STRUCTURES MADE OF

LINEAR VISCOELASTIC MATERIALS

BY

Mark M. Berrio

A matrix formulation method is presented for the

analysis of plane frame structures made of linear Visco-

elastic materials. The study will follow the isothermal

quasi-static linear theory of homogeneous viscoelastic

solids. Geometric non-linearity and effect of axial

forces on the flexural stiffness of the members is taken

into consideration.

A computer program written in FORTRAN is prepared

for the implementation of the analysis. Three numerical

examples are considered, and the results are compared

with those obtained from experimental work.

The method is based on the calculation of a

fictitious load vector, obtained from the structure's

deformation history and added to the actual external load

vector as time increases. The computation of the

fictitious load vector is carried out by a finite dif-

ference method scheme.



Mark M. Berrio

Creep tests are run to establish the viscoelastic

properties of the material experimentally, rather than

using spring dashpot models. A direct numerical inversion

is then carried out, yielding the relaxation modulus

values without resorting to the use of the Laplace

transform.
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CHAPTER I

INTRODUCTION

1.1 Viscoelastic Materials
 

Although the origins of the theory of viscoelasticity

can be traced to isolated cases during the second half of

the nineteenth century, it has not been until recent years

that the subject has received close attention.

Time dependent deformation or creep, as it is

commonly named, arises in a number of modern structural

situations. High temperatures induce material inelasticity,

loss of strength and stiffness, creep, etc. Asphalt pave-

ments and solid fuel in rockets offer two more instances of

engineering applications of viscoelastic materials.

However, it is due largely to the recent advances in

highpolymer technology that the theory of viscoelasticity

has attracted an ever-growing interest.

1.2 Previous Work
 

Recent investigations in linear viscoelasticity may

be divided into two general groups. The first group is

concerned with the basic constitutive equations, and deals

with the subject from the viewpoint of continuum mechanics.

The second group is concerned with the solution of



boundary value problems, with a number of solutions to

particular problems.

In 1954, Hoff (ll)* proved that, for a body subject

to stationary creep under the action of constant forces,

it is always possible to use an elastic analogue. Here

by state of stationary creep is meant one where the space

distribution of stress in the body remains constant. The

elastic analogy has been used by Hult (12), Patel and

Venkatraman (15), Odqvist (l4), and others, in the analysis

of trusses, beams and plates. Williams (19) carried out

a structural analysis using spring dashpot mechanical

models to represent the viscoelastic materials. Flfigge

(5) solves the beam problem by means of the correspondence

principle, which links the linear theories of visco-

elasticity and elasticity.

The correspondence principle can be stated in a

general form saying that, if the solution of an elastic

problem is known, the Laplace transform of the solution

of the corresponding viscoelastic problem may be found

by an appropriate replacement of the elastic constants by

viscoelastic Operator polynomials, and the actual loads

by their Laplace transforms (5).

The writer recognizes that this is hardly a com-

prehensive review of the recent work on viscoelasticity.

 

*

Numerals with no punctuation in parentheses refer

to entries in the list of references.



The list of papers could go on showing a number of

solutions to beam, bars, plates and columns, based on

spring dashpot models, differential Operators, Laplace

transform, etc. As it has been pointed out, most of the

investigation on linear viscoelasticity has been done

from a continuum mechanics or applied mathematics point

of View, and, therefore, somewhat different from the

framed structure analysis in which we are interested

in this study.

1.3 Objective and Outline of This Work

LaPalm (13) developed a numerical integration

scheme which allowed him to write lower and upper bounds

to the solution of the governing equation of a linear

viscoelastic beam-column. The objective of this study

will be the development of a practical computer matrix

method for the analysis of linear viscoelastic frames,

using LaPalm's results as a basis and point of departure.

Creep tests will be conducted to establish the

material's properties experimentally, rather than using

spring dashpot mechanical models. In Chapter II an

inversion of the creep compliance values will be performed,

yielding the relaxation modulus values. A computer pro-

gram will be written for this purpose, again making use

of results obtained by LaPalm (13).

Chapter III will provide the results needed to write

a computer program to carry out the analysis of framed



structures made of viscoelastic materials. This will

constitute the main goal of this study.

The laboratory investigation will be presented in

Chapter IV. Several creep tests will be run to establish

the viscoelastic properties of the material. Rigid two-

dimensional frames will be tested under constant joint loads.

The theoretical and laboratory results will be

presented and compared in Chapter V.

Finally, a brief summary with conclusions will be

given in Chapter VI.

Notation and listing of computer programs will be

included in Appendices A and B, respectively.

1.4 Assumptions and Limitations
 

Effects of changes in temperature, and temperature

gradient will be excluded from this study, i.e., the

structure will be considered at a uniform constant

temperature, free of thermal stresses.* The inertia

term is considered small, and therefore drOpped from the

equation of motion (quasi-static case).

The study will be restricted to the viscoelastic

linear range of the material. For the creep tests, the

space distribution of stress in the body will be considered

to remain constant, giving rise to a state of stationary

creep.

 

*

The test room was kept at all times at a virtually

constant temperature of 80.5°F.



The assumption of plane sections remaining plane

after bending will be used here. Equilibrium will be

enforced in accordance with the geometry of the deformed

structure. Finally, the effect of axial forces on the

flexural stiffness of the members will be taken into

consideration.



CHAPTER II

CREEP COMPLIANCE INVERSION

2.1 Some Definitions
 

The creep compliance, D(t), of a viscoelastic

material can be defined as the strain, varying with time,

due to a unit constant stress. If E(t) represents the

strain as a function of time, and Co the constant unit

stress, we can write

e(t) = D(t)OO (2.1)

The creep compliance is a property of the material

related to its internal constitution. In the case of

high polymers the orientation of crystals will have its

effect in the creep compliance of the material (1) (3).

The creep compliance is a monotonically increasing

function for all t>O (4). For high polymers, the rate

at which D(t) increases diminishes with time, approaching

zero as time approaches infinity (3).

Equation (2.1) shows that discrete values of D(t)

can be obtained readily by measuring the deformations,

A(t), that will occur when the material is kept under

constant load. See Chapter IV for a full description of



the way in which values of D(t) were obtained for the

models used in this work.

Some numerical formulations of problem solutions

are more easily handled using the so-called relaxation

modulus, E(t), which can be defined as the stress varying

with time due to a constant unit strain. Letting o(t)

be the stress as a function of time, and so be the

constant unit strain, we can write

0(t) = E(t) 60 (2.2)

The relaxation modulus is monotonically decreasing (4).

For details about the relaxation modulus and the internal

constitution of materials such as high polymers, the

reader is referred again to references (1) and (3).

It will be shown in Chapter III that correspondence

can be established between the role of the relaxation

modulus in the analysis of viscoelastic structures, and

that of the modulus of elasticity in the analysis of

elastic structures. Due to this circumstance, it will be

preferable to work with the relaxation modulus, rather than

with the creep compliance. This resolves, in some way,

the viscoelastic problem into a succession of elastic

solutions.

It can be seen from Equation (2.2), that by inducing a

constant unit strain, 60, and measuring the resulting stress



o(t), as a function of time, a direct numerical evaluation

of E(t) is possible. This is known as the relaxation test.

In a relaxation test, a displacement is induced and kept

constant. Then the force is measured as it varies with

time. The crux of the problem lies in the fact that forces

are read by measuring displacements. In essence, one is

supposed to measure the displacements which are occurring

while holding the displacement constant. This would

require more time and more sophisticated equipment than

were available for the present study.

This is why creep tests were run, as will be seen in

Chapter IV. From the creep compliance values, the sought

relaxation modulus values were obtained, as will be shown

later in this chapter.

2.2 Relation Between Creep Compliance

and ReIaxation Modqus

 

 

The Laplace transforms of the creep compliance,

5(5), and relaxation modulus, E(s), are related by the

simple expression

D(s) E(s) = 4% (2.3)
s

A rigorous proof of Equation (2.3) is offered by Gurtin

and Sternberg (9) in the form of a theorem. The same

relation is derived in a simpler way by a number of

writers, e.g., Fung (7). Equation (2.3) is well known in



viscoelasticity, and what we propose to do is to carry

out an actual numerical inversion, i.e., given a set of

values of D(t), find the corresponding numerical values

of E(t).

The usefulness of a direct application of Equation

(2.3) will depend on the forms of E(s) and 5(5). For a

simple spring-dash model the inversion will be readily

performed. When a set of laboratory data for a real

viscoelastic material is the only information available,

a direct application of Equation (2.3) is impossible, and

a numerical scheme has been devised to make the inversion

practical.

2.3 Upper and Lower Bounds for the

RelaxatIBn Modqus

 

 

In reference (13) it is formally shown that an

approximation as to what might be considered as upper and

lower bounds to the true values of E(t) are given by the

following two expressions

 

 

k

1 - z E(tk - ti-l) [D(ti) — D(ti_l)]

i=2

E(tk) i D(tl) (2'4)

k

1 - ; E(tk - ti) [D(ti) - D(ti_l)]

E(tk) > 1:1 (2.5)

D(O)
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where E(t) refers to the value of E(t) at time t Thek.

tf1n1te 1ntervals of t1me t k_lr k1' t2,..., ti'°'°’ t

need not be equal.

For the sake of completeness, and in order to

establish a more objective basis for the value to be

assigned to the expressions (2.4) and (2.5), a development

of such expressions follows. This deduction parallels a

similar one in reference (13), Appendix B.

Applying the convolution theorem to Equation (2.3),

the following expressions are formally obtained:

t

E(t) D(O) + [E(t-T) %? D(T) d1 = 1 (2.6)

O

t d
D(t) E(O) + [D(t-T) a? E(T) d1 = 1 (2.7)

O

The same results are stated and proved by Gurtin and

Sternberg (9).

Except at time equal to zero where the relaxation

modulus E(t) has a singularity (7), E(t) is a well

behaved smooth function, so that one can write:

t t.
k d k 1 d

I E(tk'T) a"? D(T) dT = i=1 J E(tk-T) d—{f D(T) (11' (2.8)

O t1-1

where tO < tl < t2 <...< ti-l < ti <...< tk-l < tk.
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Also the following expression can be written

t.

l E(t -T) C—1—-D(T) dT - 1'm g E(t - ') d D( ') A
k d1 ‘ nix j=l k T3' at Tj Tj

ti-l (A1.) +0
3 max

(2.9)

where (see Figure 2.1):

ti-l = To < Tl < 11,..., Tn_l < Tn < In = ti

AT. = T. - T.

3 J 3-1

If E(t) decreases monotonically, then

I

E(tk-Tj-l) : E(tk-Tj) : E(tk-Tj) (2.10)

I

E(tk-ti_l) i E(tk-Tj) : E(tk-ti) (2.11)

. . . d . _

If, 1n add1t1on, d? D(T) : 0, letting A _ (ATj)maX,

one can write

n
. d u

E(tk-ti_l) 11m 2. d? D(Tj) Arj :

n+w j—l

A+0

< lim 2 E(t.T') (i I)(T') AT <

— n+oo j=l J a"? J —

A+O

n d .
< E(t -t.) lim 2 -—-D(T.) AT.

— k n+oo j=l dT J J

A+O



 

 

 ___5‘————— ubP
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13

Combining Equations (2.9) and (2.12), one gets

t. t.

1 d 1 d
E(tk-ti_l) J 5? D(T) dT : J E(tk-T) a? D(T) dT

ti-l ti-l

t.

1 d
< E(tk-ti) J E? D(T) d1 (2.13)

ti-l

Integrating first and third integrals

t.

1 d
E(tk-ti_l)[D(ti) - D(ti_l)] : J E(tk-T) a; D(T) dT

ti-l

Taking a summation from 1 to k of each member

k k ti

2 E(t -t )[D(t )-D(t )] < Z J E(t -T) Q_ D(T) dT
._ k -1 i i-l — _ k dT
1—1 1—1

t
1-1

k

i i=lE(tk-ti)[D(ti)-D(ti_l)] (2.15)

Substituting Equation (2.8) in the middle member
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t
k k d

E_ E(tk t _l)[D(ti)-D(ti_l)] J E(tk-T) a?-D(T) d1

1—1 0

k

i i=lE(tk-ti)[D(ti)-D(ti_l)] (2.16)

Adding E(t)D(o) to the three members of the above

inequality, and substituting the value of Equation (2.6),

we get the following two inequalities:

k

E(tk)D(O) + Z E(t

i=1 ‘ti-1)[D(ti)‘D(ti_1>1
1 1 (2.17)

k

k

E(tk)D(O) + Z E(t -ti)[D(ti)-D(ti_l)] : 1 (2.18)

i=1
k

Taking the first term out of the summation, and transposing,

one gets from the Equation (2.17)

E(tk)D(O) + E(tk)[D(tl)-D(O)]

k

1 - i=2E(tk-ti_l)[D(ti)-D(ti_l)] (2.19)

|
A

E(tk)D(o) + E(tk)D(tl) - E(tk)D(O)

—ti_l)[D(ti)—D(ti_l)] (2.20)

[
A H I

P
°
M m ‘
3
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Finally, cancelling and transposing, Equations

(2.4) and (2.5) are obtained. This development, although

somewhat detailed, should be considered heuristic, rather

than as a rigorous establishment of Equations (2.4) and

(2.5). Therefore, a test of the validity of these two

equations as upper and lower bounds, respectively,

follows.

At time t = tk 1’ Equation (2.4) may be written as

1

EU(tl) — BTEIT‘ (2.21)

Here the subscript U has been introduced to identify

EU(tl) as the supposed upper bound to the exact value

E(tl) obtained from Equation (2.6) for t = t1, as follows

t
1

d
E(tl) D(O) = l -[ E(t1 - T) E1711”) dT . (2.22)

0

Let eU(tl) be defined so that

EU(tl) = E(tl) + eU(tl). (2.23)

Equation (2.21) becomes

eU(tl) D(tl) = l - E(tl) D(tl) (2.24)

Subtracting Equation (2.22) from Equation (2.24) yields
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t1

t Dt = EteU(l) (1) J) <

O

l-T) 3% D(T) dT - E(tl)[D(tl) - D(0)1.

(2.25)

From Equation (2.16) one can write

t1 d
J E(tl-T) a?-D(T) dr 3 E(tl) [D(tl) - D(0)].

o

(2.26)

Thus

eU(tl) D(tl) 1 0 (2.27)

and, therefore

eU(tl) 1 0 (2.28)

which means that EU(tl), as given by Equation (2.21), is

the upper bound to E(tl).

At time tk = tn’ Equation (2.4) may be written as

n

EU(tn) D(tl) = 1 - i=2 EU(tn-ti_l) [D(ti) — D(ti_l)].

(2.29)

Let eU(tn) be defined so that

EU(tn) = E(tn) + eU(tn). (2.30)
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From Equations (2.29) and (2.30) it follows that

n

eU(tn)D(tl) = 1 - E(tn)D(ti)-§:2EU(tn-ti_l)[D(ti)-D(ti_l)]

(2.31)

Equation (2.6) at time t = tn becomes

tn d

E(tn) D(O) = l — J E(tn -T) d? D(T) dT. (2.32)

O

Subtracting Equation (2.32) from Equation (2.31) yields

t
n

eU(tn) D(tl) = J E(tn -T) 5% D(T) dr - E(tn) [D(tl)—D(O)]

O

n

- i=2 EU(tn — ti-l) [D(ti) - D(ti_l)]. (2.33)

Since D(t) is monotonically increasing, it follows that

E(tn) [D(tl) - D(0)]> 0 (2.34)

and

n

1:2 EU(tn — ti-l) [D(ti) - D(ti_l)] > 0 (2.35)

Also from Equation (2.16) one has
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t

o dT i=1

n
n

d

J E(tn-T) —— D(T) d1 _>_ z E(tn-ti_l) [D(ti) - D(ti_l)].

(2.36)

Now Equation (2.33) can be transformed into the following

inequality

n

eU(tn) D(tl) 11:1 E(tn - ti-l) [D(ti) - D(ti_l)]

- E(tn) [D(tl) — D(0)J

n

— I EU(tn - 11-1) [D(ti) - D(ti-l)]

(2.37)

which can be written in the following form

n

eU(tn) D(tl) 3 I: [E(tn‘ti—l) - EU(tn—ti_1)][D(ti)-D(ti_l)].

2

(2.38)

If EU(t) is greater than E(t) in the above eXpression,

the right-hand side of the inequality will be the product

of negative and positive values, and, hence, negative.

Therefore no conclusion can be drawn with respect to the

sign of eU(tn). Hence, the test fails to prove whether or

not EU(tn) provides the upper bound to E(tn).
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Similarly, at time t = tk 1' Equation (2.5) can be

written as

EL(tl) D(O) = 1 - E(O) [D(tl) - 0(0)] (2.39)

where the subscript L has been introduced to identify

EL(tl) as the supposed lower bound to the exact value

of E(tl).

Let eL(tl) be defined so that

EL(tl) + eL(tl) = E(tl) (2.40)

Now Equation (2.39) can be rewritten as follows

eL(tl) D(O) = -1 + E(O) [D(tl) - 0(0)] + E(tl) D(O).

(2.41)

Adding Equation (2.22) to Equation (2.40) yields

t

1
d

eL(t1) D(O) = E(O) [D(tl) — D(O)] — J E(tl-T) a?D(T) dT.

o

(2.42)

From Equation (2.16) one has

t

1 d
J E(tl-T) a—FDH) dT :E(0) [D(tl) - D(O)]. (2.43)

0

Thus
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eL(tl) 0(0) 3 0 (2.44)

and, therefore,

eL(tl) Z 0 (2.45)

which means that EL(tl) is the lower bound to E(tl).

At time tk = tn, Equation (2.5) can be written as

n

EL(tn) D(O) = l - i=1 EL(tn-ti) [D(ti) - D(ti_l)].

(2.46)

Let eL(tn) be defined so that

EL(tn) + eL(tn) = E(tn) . (2.47)

From Equations (2.46) and (2.47) it follows that

eL(tn) D(O) = - l + E(tn) D(O)

n

+ 1:1 EL(tn - ti) [D(ti) - D(ti_l)]. (2.48)

Adding Equation (2.32) to Equation (2.48) yields

n

eL(tn) 0(0) = I=1 EL(tn-ti) [D(ti) - D(ti_l)]

tn d

- J E(tn - T) a? D(T) dr. (2.49)

O
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Since D(t) is monotonically increasing, it follows that

P
-
M
'
J

=1 EL(tn-ti) [D(ti) - D(ti_l)] > 0 (2.50)

Also from Equation (2.16) one has

tn d n

J E(tn’T) a? D(t) dr 3 ;_l E(tn—ti) [D(ti) - D(ti_l)].

o l-

(2.51)

Now Equation (2.49) can be transformed into the

following inequality

n

eL(tn) 0(0) 3 £31 EL(tn-ti) [D(ti) - D(ti_l)1

n

- i=1 E(tn-ti) [D(ti) - D(ti_l)] (2.52)

which can be rewritten in the following form

n

eL(tn) D(O) 1 i=1 [EL(tn—ti) — E(tn-ti)][D(ti) - D(ti_l)1.

(2.53)

If EL(t) is smaller than E(t) in the above

expression, the right hand side of the inequality will

be the product of negative and positive values, and hence,
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negative. Therefore here again the test fails, and

nothing can be concluded about the conditions under

which eL(tn) Z 0.

Although no rigorous conclusions have been drawn

about the validity of Equations (2.4) and (2.5), these

equations provide a valid numerical approximation, as it

is shown later in this chapter. Furthermore, the agreement

of experimental and analytical results, shown in Chapter V,

provides a strong verification of the good approximation

obtained as an upper bound for the values of E(t) using

Equation (2.4). Also it has been shown that for one

interval of time, Equations (2.4) and (2.5) provide upper

and lower bounds in the form

 

EU(tl) D(t (2.54)

and

1 — E(O) [D(tl) - 0(0)]

D(O)
(2.55)

 

EL(tl)

2.4 Inversion of Discrete

ExperImental Data

 

 

The writer has tested both Equations (2.4) and (2.5),

assuming for the values of D(t) those given by the

eXpression prOposed by Williams (19)
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D(t) = Dg + —e——.—-9- , (2.56)
T n

O

(14'E—)

where D9 is the compliance at short time, or glassy com-

pliance, D(O). De is the compliance at long time, or

equilibrium compliance D(m). And To and n are parameters

chosen to best fit the particular set of experimental data.

The numerical values adOpted for D9, De’ I and n
0!

were found for the material studied in reference (13).

With these values, the actual expression for the values of

D(t) was

4 8.0 -6
D(t) + 2.0 + (1 + 13850000 0.2 x 10 (2.57)

t )

 

 

The results obtained for (2.4) and (2.5) converged

smoothly toward each other when the intervals of time were

small (see Tables 2.1 and 2.2).* For time intervals of one

hour or longer, the supposed lower bound solution showed

some oscillations that would cross the upper bound for the

first few steps, as can be seen in Tables 2.3 and 2.4.

A method for obtaining smooth solutions without

oscillations for the lower bound will now be shown.

 

*

The discrepancy shown in Tables 2.1 through 2.6

was calculated according to the formula:

upper bound - lower bound

lower’bound X 100'
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In order to establish the time interval, two

aspects of the problem must be taken into consideration.

Use of large intervals results in undesirable oscillations

of the lower bound. On the other hand, use of very small

intervals would be impractical to span a reasonably long

period of time.

The following procedure was adopted and used with

satisfactory results on both counts. The method consisted

essentially of redefining periodically the length of the

intervals to be used. In this way, through the use of

small intervals at the beginning of the inversion,

oscillations were avoided. The use of larger and larger

intervals as the experiment progressed made the method

suitable to cover any practical period of time. There is

no limit to the ways of redefining the time intervals to

be used, and only practical considerations of the case

involved will serve as a guide in this respect. Although

a logarithmic increment of time is feasible, this would

require some modifications in the computer program, which

is written for equal intervals of time.

Tables 2.5 and 2.6 show the solutions obtained for

two different redefinitions of the time intervals. In

the case of Table 2.5, the inversion was stated with

intervals equal to one second, and this was carried out
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for a period of 180 seconds. Then the first redefinition

was made in the following way:

E ( 60 seconds) becomes E (1 minute)

E (120 seconds) becomes E (2 minutes)

E (180 seconds) becomes E (3 minutes)

In this way, the values for one, two, and three minutes

were obtained without any oscillations, and the inversion

carried out again up to one hundred and eighty minutes.

A similar redefinition was then made:

E ( 60 minutes) becomes E (1 hour)

E (120 minutes) becomes E (2 hours)

B (180 minutes) becomes E (3 hours).

After rerunning the inversion for thirty-six hours, a

third redefinition took place:

E (12 hours) becomes E (1 half day)

E (24 hours) becomes E (2 half days)

E (36 hours) becomes E (3 half days).

The sequence of half-days was run for 360 steps,

covering a period of time equal to six months.

Neither the upper nor the lower bound solutions

showed any kind of oscillations. The greatest discrepancy

between upper and lower bounds was of the order of 4% of

the magnitude of the upper bound, and occurred in the

fourth step of the inversion with intervals equal to

half day. This figure dropped to 0.97% in the 13th step,

and it was 0.06% at the end of the sixth-month period

tested.
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The redefinitions used in the solutions shown in

Table 2.6 were similar to the ones just described, but

the intervals were chosen so as to be compatible with

those that can be obtained in the laboratory, using simple

equipment: a dial gauge and a timer. This means that

the closest that the readings can be spaced would be from

.06 to .10 minutes apart, when the help of a second

operator is used.

In this second example, the first 30 steps of the

inversion were run with intervals equal to six seconds.

The following redefinition was used

E (10th interval) becomes E (1 minute)

E (20th interval) becomes E (2 minutes)

E (30th interval) becomes E (3 minutes).

This was the only redefinition used, and the inversion

was then carried out for 768 minutes.

Although the last example took the values of D(t) to

be inverted from Equation (2.57), it is obvious that those

same values could have been taken from a set of discrete

values obtained from lab observations. The only condition

imposed upon the set of D(t) values is that an entry

should exist for every time interval considered in the

inversion. This condition does not present any practical

difficulty, since the time intervals considered in the

inversion not only are compatible with those readily

obtainable in the laboratory, but also happened to provide a

set of points well-spaced to plot a time-deflection curve
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during the course of the laboratory test, as will be

shown in Chapter IV.

Finally, Table 2.7 shows the results of an inversion

when actual discrete laboratory data are used for the creep

compliance values. The time interval redefinition used in

the frame analysis, explained in Section 3.5 and Figure

3.6, was the one used in this example. Furthermore, the

values of E(t) shown in Table 2.7, which are the upper

bounds given by Equation (2.4) were the ones adOpted as

true values of E(t) in the theoretical analysis of framed

structures of Chapter III.



TABLE 2.l.--Upper and lower bounds for E(t).

intervals equal to one second.
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to three minutes.

Time

Total period covered equal

 

 

Time Upper Bound Lower Bound Discrepancy

(seconds) (psi) (psi) (%)

0 500000 500000 .00

1 469140 467110 .43

2 464830 464380 .10

3 462060 461690 .08

4 459980 459680 .07

5 458290 458030 .06

6 456860 456630 .05

7 455620 455420 .04

8 454520 454330 .04

9 453530 453360 .04

10 452620 452460 .04

15 449000 448880 .03

20 446290 446190 .02

40 439220 439150 .01

60 434720 434670 .01

80 431360 431320 .01

100 428660 428620 .01

120 426380 426350 .01

140 424410 424380 .01

160 422660 422640 .01

180 421100 421080 .01

 



TABLE 2.2.--Upper and lower bounds for E(t).

equal to one minute. Total period covered equal to three

29

hours.

Time intervals

 

 

Time Upper Bound Lower Bound Discrepancy

(minutes) (psi) (pSi) (%)

0 500000 500000 .00

1 435090 425400 2.28

2 426690 425440 .29

3 421370 419850 .36

4 417410 416260 .28

5 414230 413250 .24

6 411560 410700 .21

7 409260 408490 .19

8 407230 406530 .17

9 405410 404760 .16

10 403750 403160 .15

15 397200 396750 .11

20 392350 391990 .09

40 380010 379790 .06

60 372350 372190 .04

80 366740 366610 .04

100 362270 362160 .03

120 358550 358460 .03

140 355360 355280 .02

160 352570 352490 .02

180 358070 350000 .02

 



TABLE 2.3.--Upper and lower bounds for E(t).

equal to one hour. Total period covered equal to 30 days.
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Time intervals

 

 

Time Upper Bound Lower Bound Discrepancy

(hours) (psi) (psi) (%)

0 500000 500000 .00

1 373590 330810 12.93

2 359540 362900 -.93

3 350910 344140 1.97

4 344610 341950 .78

5 339630 336620 .90

6 335510 333120 .72

7 331980 329810 .66

8 328900 326970 .59

9 326170 324410 .54

10 323700 322090 .50

11 321460 319970 .47

12 319410 318010 .44

13 317510 316200 .41

14 315750 314510 .39

16 312550 311450 .35

18 309710 308710 .32

20 307170 306250 .30

24 302730 301940 .26

28 298950 298260 .23

32 295660 295040 .21

36 292750 292190 .19
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TABLE 2.4.--Upper and lower bounds for E(t). Time intervals

equal to twelve hours. Total period covered equal to six

months.

 

 

Time Upper Bound Lower Bound Discrepancy

(half days) (psi) (psi) (%)

0 500000 500000 .00

1 321300 221900 44.79

2 304220 335230 -9.25

3 293990 268210 9.61

4 286650 290610 -1.36

5 280930 272250 3.19

6 276250 274640 .58

7 272280 268040 1.58

8 268840 266430 .90

9 265800 262960 1.08

10 364080 260810 .87

15 252630 250960 .66

20 245230 243940 .53

30 234840 233950 .38

40 227530 226850 .30

60 217320 216850 .22

120 200200 199960 .12

180 190460 190300 .09

240 183690 183570 .07

300 178530 178430 .06

360 174380 174300 .05

 



TABLE 2.5.-«Upper and lower bounds for E(t).

redefined as the inversion proceeds.

1 minute,1 second, 1 hour,
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12 hours.

equal to six months.

Time interval

Intervals used:

Total period covered

 

 

Time Upper Bound Lower Bound Discrepancy

(hours) (psi) (psi) (%)

1 372360 372190 .05

2 358550 358450 .03

3 350070 350000 .02

4 344680 338830 1.73

5 339680 336490 .95

6 335550 332400 .95

7 332020 239390 .80

8 328930 326560 .73

36 292760 292110 .22

(half days)

1 319430 317760 .42

2 302740 391820 .31

3 292760 292110 .22

4 286820 274910 4.33

5 281050 276870 1.51

6 276330 270240 2.26

7 272350 268360 1.49

8 268900 264770 1.56

50 221900 221200 .31

100 204660 204300 .17

220 185730 185560 .09

360 174390 174290 .06

 



TABLE 2.6.--Upper and lower bounds for E(t).

redefined as the inversion proceeds.

6 seconds, 1 minute.
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Time interval

Intervals used:

Total period covered equal to 768

minutes.

 

 

Time Upper Bounds Lower Bounds Discrepancy

(minutes) (psi) (psi) (%)

1 434781 434489 .07

2 426422 426241 .04

3 421134 420998 .03

4 417418 415936 .36

5 414238 413156 .26

6 411569 410616 .23

8 407231 406468 .19

10 403757 403112 .16

12 400847 400285 .14

16 396124 395670 .11

20 392350 391965 .10

24 389194 388858 .09

32 384083 383812 .07

40 380007 379778 .06

48 376605 376405 .05

64 371108 370947 .04

96 363094 362976 .03

160 352566 352486 .02

256 342473 342418 .02

384 333471 333431 .01

768 317509 317486 .01
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TABLE 2.7.--Upper bound of E(t) obtained from discrete

values of D(t). Time interval redefined as explained in

Section 3.5. Total period covered, 768 minutes.

 

 

Time D(t) E(t)

(minutes) (sq. in./lb.) (1bs./sq. in.)

1 2.275 x 10"6 4.394 x 105

2 2.312 x 10'6 4.323 x 105

3 2.337 x 10'6 4.276 x 105

4 2.356 x 10‘6 4.242 x 105

5 2.372 x 10'6 4.213 x 105

6 2.386 x 10'6 4.187 x 105

8 2.408 x 10'6 4.149 x 105

10 2.427 x 10"6 4.116 x 105

12 2.444 x 10'6 4.087 x 105

16 2.472 x 10'6 4.040 x 105

20 2.495 x 10'6 4.002 x 105

24 2.516 x 10"6 3.968 x 105

32 2.550 x 10’6 3.915 x 105

40 2.581 x 10"6 3.866 x 105

48 2.612 x 10'6 3.817 x 105

64 2.662 x 10'6 3.745 x 105

96 2.739 x 10‘6 3.634 x 105

160 2.847 x 10'6 3.494 x 105

256 2.954 x 10‘6 3.368 x 105

384 3.048 x 10'6 3.260 x 105

768 3.208 x 10"6 3.099 x 105

 



CHAPTER III

FRAME ANALYSIS

3.1 Elastic Analysis
 

The governing equation for elastic beam-columns is (17)

d4 d2

EI —-1- y(x) + N——2- y(x) = q(x) (3.1)

dx dx

where EI represents the flexural rigidity of the beam in

the plane of bending, N is the axial load, and q is the

load distributed along the member length.

In the theory of matrix structural analysis, the

expression

-1
{x} = [K] {P} (3.2)

is well known, where the column matrix {X} represents the

structure joint displacement vector, [K] is the structure

stiffness matrix, and {P} is the load vector. Brackets {}

will be used throughout this work to indicate a column

matrix.

The elements of the load vector {P} act only at the

joints of the structure. In general, however, a structure

will also have loads acting on the members. When this

is the case, in order to use Equation (3.2), the loads

35
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acting on the members must be transformed to equivalent

joint loads. Then the vector {P} may be considered as

made up of two parts

{P} = {w} + {Q} (3.3)

where {W} represents the actual loads acting at the joints,

and {Q} is the equivalent joint loads. {P} is then called

the combined joint load vector.

The vector {Q} is evaluated in such a manner that

the resulting joint displacements of the structure cal-

culated from Equation (3.2), when using the combined joint

load vector {P}, are the same as the displacements pro-

duced by the actual loads. Furthermore, the support

reactions for the structure subjected to the combined

loads are the same as the support reactions caused by the

actual loads. The evaluation of {Q} and its properties

can be found in any standard matrix structural analysis

textbook, for example, reference (8).

Unfortunately the substitution of loads acting on

the members by the equivalent joint load vector (0) will

not preserve the actual transversal deflections, y(x),

along those members which originally were loaded. When

the actual force acting on the member is replaced by the

equivalent joint load, and included in the combined joint

load vector {P}, although the end displacements remain

unchanged, the transversal displacements along the member



37

are no longer equal to y(x). We call these displacements,

caused by the combined joint load vector {P}, u(x). To

find the actual deflections y(x), a correction v(x) has to

be added to u(x). The deflections v(x) are obtained by

loading the member with its original load system, while

keeping the ends clamped (10). It can then be written

y(x) = u(x) + v(x). (3.4)

3.2 Viscoelastic Analysis
 

For viscoelastic beam-columns LaPalm (13) shows that

Equation (3.1) takes the form

4 t
4

IE(t) 3‘4 y(x,0) + J IE(t-T) %; [a—z-y(X.T)lar

3x 8x

0

82

+ N(t) ——7 y(x,t) = q(x,t) (3.5)

EX

with an upper bound given by the solution of

4 2
3 a

IE(t -t _ ) ———-y(x t ) + N(t ) —-— y(x,t )
k k 1 8x4 ' k k ax2 k

k-l a4

= q(x,tk) - I 1:1 [E(tk-ti_l) - E(tk-ti)] ;;4'Y(x'ti)

(3.6)
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and a lower bound given by the solution of

4 2

8 3

k-l 4_ _ _ a
_ q(x,tk) I 1:0 [E(tk ti) - E(tk-ti+l)] 3;; (x,ti)

(3.7)

subject to boundary conditions given in terms of trans-

versal displacements and rotations at the ends of the

member, as shown in section 3.3.

The left-hand sides of both Equation (3.6) and (3.7)

have the same form as Equation (3.1), while the right-

hand sides, representing the forcing function, are made

up of the actual load q(x,tk) at time tk’ plus a fictitious

load derived from the history of the solution.

Now the writer proposes to parallel the relation

between Equation (3.1) and (3.2), with that between

Equation (3.6) or (3.7) and

1

{xm} = [K(t)1' {P(t)} (3.8)

Equation (3.8) produces the joint displacement

history of framed structures made of linear viscoelastic

materials, as the writer intends to show. At a given time,

t Equation (3.8) becomes
kl
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-1
{X(tk)} = [K(tk)] {P(tk)} (3.9)

which could be identified with Equation (3.2), except for

the vector {P(tk)} that has a peculiarity of its own.

The vector {P} in Equation (3.2) has two parts, given

by Equation (3.3), where {Q} represents the equivalent

joint load, taking the place of the actual distributed

loading, q(x), as appears in the governing Equation (3.1).

Likewise, it follows that the vector (P(tk)} in

Equation (3.9) is given by

{P(tk)} = {W(tk)} + {Q(tk)} + {F(tk)} (3.10)

where the new term {F(tk)} is a fictitious equivalent

joint load vector taking the place of the forcing term

-1 4
a

-1 4

8

[E(tk-ti) - E(tk-ti+1)] ;;[ Y(Xrti)

of the governing Equation (3.7). This means that the

vector (P) is a function of all previous deformed con-

figurations of the structure. This could be rephrased,

saying that the deflections to be obtained at a given
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time, tk, will depend not only on the actual loading at

that moment, but also on the whole previous deflection

history.

Before an evaluation of {F(tk)} can be attempted,

the set of previous solutions y(x,tl), y(x,t2), ... ,

y(x,tk_l) must be available.

3.3 Transversal Deflections
 

At a given time, tk' y(x,tk) can be written as yk(x),

and considered as a function of x alone. The Equation (3.6)

may be written as

d4 2
d

IE(t -t._ ) ——-y (x) + N y (x)
k 1 1 dx4 k k dx2 k

k-l d4

= qk(x) - 11-1 [E(tk-ti_l) - E(tk-ti)] 3;; yi(x) (3.11)

The handling of the distributed load q(x) is a well-

established procedure in the analysis of elastic structures.

The reader is referred to reference (8). Therefore, since

its consideration at this point would only make the study

more cumbersome, without producing new results, we will

drop it now, and consider loading applied at structure

joints alone. Equation (3.11) becomes, finally

2 II

ykIV + kk yk = fk (3.12)



where
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d2

“‘2 Yk(x)
dx

Nk

IE(tk-ti_

 

l)

-1

H
4
5
3
‘

=1

4
d

[E(tk-ti_1) - E(tk-ti)] E;z-yk(x)

 

The solution of Equation (3.12) is subject to the

boundary conditions

{y} = {Y*}

where

{10:4

  

Y

ll.

91'
dx x=o

Yl x=L

g1|dx x=L  

y(O)

y'(0)

y(L)

y'(L)  

(3.13)

(3.14)
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and {Y*} represents the member end displacements

obtained from the structure joint displacements, {X}, in

Equation (3.9), see Figure 3.1.

The value of fk in Equation (3.12) is a function

of the solutions yl(x), y2(x), ... , yk_1(x), obtained at

times t1, t2, ... , tk-l' Therefore, at time t1, f1 = 0,

and the initial solution yl(x) is obtained from the

homogeneous case of Equation (3.12). Instead of solving

equation (3.12) directly, the value of y(x) will be

obtained in a manner similar to the procedure followed

for the elastic case with equation (3.4).

Let uk(x) be the transversal displacements obtained

for a member at a given time tk' when the actual loading

acting on this member has been substituted by equivalent

joint loads and incorporated in the combined joint load

vector {P(tk)} in Equation (3.9). The displacements uk(x)

are not equal to the displacements yk(x) obtained from the

actual load system. A correction vk(x), defined later in

this section, will be needed. Let u E uk(x). Then the

deflections u, shown in Figure 3.2, are given by the

equation

uIV + kZuII = o (3.15)

under the boundary conditions
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{U} = {Y*} (3.16a)

where {U} is defined in a manner similar to the way {Y}

was defined for boundary condition (3.13), i.e., by the

column matrix

{U} = {u(o) u'(o) u(L) u'(L)} (3.16b)

and {Y*} is obtained from the structure joint deflections.

In order to obtain the member deflections y for the

actual loads, a correction, v, must be added to the

deflections, n. In order to obtain this correction, we

clamp the ends A' and B', in Figure 3.2 and apply the

distributed load, f, as shown in Figure 3.3.

The deflections, v, are given by the equation

v1V + k2v11 = f (3.17)

subjected to the homogeneous boundary conditions

{v} = {O} (3.18)

where, as before,

{V} = {v(O) v'(o) V(L) V'(L)} (3.19)

and {Y*} is obtained from the structure joint displace-

ments.

Finally, because of linearity of the governing

equation, the member deflections due to the actual loads

are given by
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Likewise, the fourth derivations of the deflections will

be given by

yIV = uIV + VIV (3.21)

3.3.1 Deflection Due to

Combined JoInt Loads

 

 

Three different cases will be considered for

Equation (3.15), corresponding to a member under tension,

compression or no axial load.

For no axial load, the deflections u will be given

by equation

uIV = 0 (3.22)

with boundary conditions

{0} = {Y*} (3.23)

yielding the solution

x3 + A x2 + A x + A4 (3.24)

where
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_ 3 * 2 * 3 * 1 *

12‘ {2‘6 5‘6 ”'st LY4

*

A3 ‘ Y2

*

A4"Y1 (3.25)

and the fourth derivative is obviously given by Equation

(3.22).

For members under compression, the governing

equation will be

uIV + kZuII = 0 (3.26)

with boundary conditions (3.23), yielding the solution

u = Bl cos kx + B2 s1n kx + B3x + B4 (3.27)

with the fourth derivative given by

uIV = B k4 cos kx + B k41 2 Sln kx (3.28)

where
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'k *1: *94‘

(-Yl LY2+Y3)(k cos kL-k)-(-Y2+Y4)(sin kL-kL)

l I (cos kL-1)(k cos kL-k) - (-k sInIkL)(sin kL-kL)

 

* * ' Y* Y* 1(*(cos kL-l)(-Y2+Y4) - (—k s1n kL)(- l-L 2+ 3)

2 _ (cos kL-l)(k cos kL-k)5- (-k sIn kL)(sin kL-kL)

 

(3.29)

Finally, for members under tension the governing

equation becomes

0 .

- k“u" = 0 (3.30)

with boundary conditions (3.23), yielding the solution

u = Cl cosh kx + C2 Slnh kx + C3x + C4 (3.31)

with the fourth derivative given by

uIV = Clk4 cosh kx + C2k4 sinh kx (3.32)

where
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* * 'k * *

(-Y -Y L+Y )(k cosh kL-k) - (-Y +y )(sinh kL-kL)

C = 1 2 3 2 4

1, (cosh kL-l)(k cosh kL-k) - (k sinh kL)(sinh kL-kL)

* * _ * * *

C = (cosh kL-1)(-Y2+Y4) - (k Slnh kL)(-yl-Y2L+Y3)

2 (cosh kL-l)(k cosh kL-k) - (k sinh kL)(sinh kL-kL)

= *—
c3 Y2 Czk

*

C4 — Yl - Cl (3.33)

3.3.2 Deflection Corrections

Due to Distributed Loads

The value of k in Equation (3.17) changes with time,

and so will the form of the solution, whiCh would become

complex and awkward to handle in a general algebraic

formulation. More desirable and practical, when

digital computers are to be used, would be a numerical

solution.

A finite difference method will be used to approxi-

mate the second and fourth derivatives, with an error of

the order of hz, as follows, see reference (16):

v. - 2v. + v.

.II 1-1 1 1+1 (3.34)

Iv _ Vi-z ‘ 4Vi-1 + 6V1 ' 4V1+1 + v1+2
vi - 4 (3.35)

h
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Dividing the member under analysis in n-l equal

parts with n nodes (see Figure 3.4), by substitution of

relations (3.34) and (3.35) into Equation (3.17), we can

write

2 22 2
vi_2 + (h k -4)vi_l + (-2h k +6)vi

+ v. = h4f. (3.37)
2 2

+ (h k -4)vi+ 1+2 1

1

From Equation (3.37) and boundary conditions (3.18), the

following system of equations is obtained:

v1 = 0

(-2h2k2+7)v2 + (h2k2-4)v3 + v4 = h4f2

(h2k2-4)v2 + (-2h2k2+6)v3 + (h2k2-4)v4 + v5 = h4f3

v2 + (h2k2-4)v3 + (—2h2k2+6)v4 + (h2k2-4)v5 + v6 = h4f4

v3 + (h2k2-4)v4 + (-2h2k2+6)v5 + (h2k2-4)v6 + v7 = h4f5

22 2 2 2 2
v + (h k -4)vn + (-2h k +6)vn + (h k 4)vn

n-5 -4 -3 -2
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vn_4 + (h2k2-4)vn_3 + (-2h2k2+6)vn_2 + (h2k2-4)vn_l

= h4fn-2

vn_3 + (h2k2-4)vn_2 + (-2h2k2+7)vn_l = h4fn_l

vn = 0 (3.38)

This system of linear algebraic simultaneous

equations is readily solved for v. In the present case,

the Gauss elimination method (6) was used. The listing of

the computer program appears in Appendix B.

Knowing the values of v, the fourth derivative, vIV,

is obtained by numerical differentiation. The derivatives

corresponding to the nodes 1 and n were obtained by

forward and backward differences, respectively, using the

following expressions (16), with an error of the order of

h2:

- 24vi+3 + llvi+4 - 2v

 

 

V IV = 3V1 ' 14V1+1 + 26v1+2 1+5

1 h47

(3.39)

v IV = -2vi_5 + llvi_4 - 24Vi-3 + 26Vi-2 - 14Vi-l + 3vi

i h4

(3.40)



54

while for the nodes 2, 3, ... , n—l, Equation (3.35)

was used.

Applying Equations (3.20) and (3.21), one is now in

a position to evaluate the deflections and their fourth

derivatives for each member of the structure. The deflec-

tions y obtained at times tk, k = 1, 2, ... , will give

the deformation history of the structure, while the

fourth derivatives, yIV, at times t1, t2, ... tk' will

provide the forcing function, f, for time tk+1' according

to Equation (3.12).

3.4 Equivalent Joint Loads
 

As it was pointed out earlier in this chapter, the

forcing function, f, in Equation (3.12) acts as a dis-

tributed load, and in order to take into consideration

its effect on the structural analysis, an equivalent joint

load, F, must be formed, to be added to the structural

loading, as shown in Equation (3.10).

The evaluation of F will parallel that of Q, with f

playing the role of q. The distributed load q can, in

many practical cases, be approximated by a simple function

of x, for which the reactions are often found tabulated,

or easily calculated. In the case of f, all one has is a

set of discrete values, as many as thought necessary, and

a general algebraic solution is not readily available.

Therefore a numerical procedure will be used.
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Loading the member with the function f, as shown in

Figure 3.4, Equation (3.37) will give the values of the

deflections v. Then, neglecting the effects of shearing

deformations and shortening of the beam axis, one has, for

an elastic material (17)
Q
.
) N

EI = -M (3.41)

D
.

X

Applying the correspondence principle (5), Equation (3.41)

becomes, for a linear viscoelastic material, at time tk'

_ _ II

From Equation (3.42), one has

I

3 ll - E(tk) I yI (0) (3.43)

I
M = - E(tk) I yI (L) (3.44)

where ML and MR represent the end moment reactions for

x = 0 and x = L, respectively. The subscripts L and R

stand for left and right, not to be confused with L which

represents the length of the member (see Figure 3.5).

Taking moments about point n and 1, one obtains

-1

 

5
0 II I

1
"
t
h

P
‘
P
1
U

l h .

E(fi+fi+l)h[L - 5 - (1-l)h] (3.45)
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 %(fi+fi+l)h[% + (i-l)hl (3.46)

where h represents the length of the n-l equal segments,

in which each member of the structure is divided.

R’ RL

and RR for each member of the structure, are applied as

loads at the structure joints, and the set of these loads

The negative of the values obtained for ML' M

forms the vector F.

3.5 Numerical Computer Solution
 

The numerical solution of Equation (3.12) by means

of digital computers faces the problem of storage, since

the forcing function at a given time, tk, will be a

function of all previous deformed configurations. If the

structure has m members, each divided in n-l parts, and

the period of time to be analyzed has k time units, the

required storage space would be m(n-l) k. In this way,

the length of the period of time for which the structure

can be analyzed is limited considerably, even if

auxiliary storage space, such as tapes, drums, etc., is

used.

In order to avoid this difficulty, a redefinition

of the time interval is used in this work. Figure 3.6

represents schematically this redefinition. The t-axis

serves as basic time reference, and it will give the

structure's age in minutes. The r-axis represents the
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cycle or iteration, i.e., it tells how many times the

time intervals have been redefined. The numbers on the

tr-plane are the time interval labels, which will be

represented by the letter 1.

Every cycle goes from 1 to 6, and is defined in

such a manner that the age of the structure during

iteration r at interval 1 will be given by

t = i - 2r minutes (3.47)

In this way, the storage required of past deformed

configurations to produce the forcing function f, will

reduce to 6m(n-l). The choice of 6 intervals in each

cycle was arbitrary to a great extent, and a different

number might be shown to produce better results. Six

was chosen because it is a small number, offers three

points to overlap with the past known data, and advances

an equal amount toward new data.

At this point, one has all the necessary means

to produce a numerical solution by programming a high-

speed digital computer. A concise general flow chart of

such a program appears on Chart 3.1. Double-lined boxes

indicate that the step is obtained by means of a sub-

routine subprogram.

The Chart 3.1 starts with the label DATA, under

which are included the general information about the

structure properties, loads, member subdivision, time



 

 

READ DATA

 
 

  

 

COUNTERS

t=1, i=1, 'r=o
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LOAD VECTOR

P=W  

FORM FICTITIOUS

EQUIVALENT

JOINT LOADS

F

    
 

 

  

 

STRUCT, JOINT

DISPLACEMENTS

 

 
 

 

 

LOAD VECTOR

P=W+F
 
 

    
 

 l  
 

 

PRINT X

 

 
 

1 t=i-2r
 

 
  

 

   
 

 

MEMBER

BOUNDARY VALUES

X+Y*

  

REDEFINE

TIME

INTERVALS

 
 

 

 
 

 

DEFLECTIONS

U

  

 

r=r+1

 
 

     
 

V
   

 

DEFLECTIONS

V

 

MEMBER

TOTAL DEFLECTIONS
 

Y=U+V

     
 

 

  
 

 
 

i=i+1

  
 

NO

YES

 

IV

-—+l Y + Y

  
 

Chart 3.1.--Concise general flow chart.



61

limit, etc. If the relaxation modulus, E(t), is not given

as an algebraic function, its tabulated set of values will

be also read at this moment.

To define time, three counters will be used. Basic

time, in minutes is represented by t, the time interval by

i, and the cycle number, or iteration, by r. So the program

starts by setting t=1, i=1, and r=0.

The actual loads applied at the joints are given by

the vector W. So, at time t=1, since the structure was

previously undeformed, the load vector P will equal W.

Now keeping the time fixed, an elastic analysis is

run, by means of a subroutine. The analysis follows the

procedure outlined by Wang (18) in a second order

structural analysis, taking into consideration the effect

of axial forces on the flexural stiffness of the members,

and enforcing equilibrium in accordance with the deformed

geometry of the structure. The listing of this sub-

routine is not given in Appendix B, and the reader is

referred to reference (18).

The deflections u and v were defined previously, and

are calculated by two separate subroutines, whose listing

appears in Appendix B.

Finally, the fictitious equivalent joint loads are

obtained by the finite difference method described in

paragraph 3.4, and the program listing can also be found

in Appendix B.
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3.6 Quasi-Elastic Solution

If the effect of axial force on the flexural stiff-

ness of the structure is neglected, the solution can be

obtained by application of the super-position principle

(7), i.e.,

t

X(t) = S(t) P(O) + J S(t-T) %?-P(T) d1 (3.48)

o

where S(t) is the time—dependent solution for a unit step

loading, and P(t) is the time-dependent load.

If the structure is subjected to a constant load,

P = P(O), as in the case being considered, the integral

of equation (3.48) will vanish, and for any given time tk,

one obtains

X(tk) = S(tk) P (3.49)

The difference between Equation (3.40) and Equation

(3.2), is that while for the elastic case the flexibility

‘ matrix is kept fixed, for the quasi-elastic case at every

time, tk’ the modulus of elasticity, E, is replaced by

the corresponding value of the relaxation modulus. Of

course, as it has been pointed out above, the flexibility

matrix S(tk), unlike K-1(tk) in Equation (3.9), does not

include the effect of the axial force in the members'

stiffness. The solution of Equation (3.49) provides an
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alternative approximation to the viscoelastic deflection

history of the structure, called the quasi-elastic solution.



CHAPTER IV

LABORATORY WORK

4.1 Materials

The materials, equipment, and laboratory tests are

similar to those used by LaPalm (13). At risk of

being repetitious, a brief description of the laboratory

work will be given in this chapter.

The material used was epoxy resin ARALDITE 502 in

combination with ARALDITE Hardener 951, both manufactured

by CIBA Products Company, Summit, New Jersey. This

mixture cures in a short time at room temperature, has a

wide linear range, and can be reproduced. Also,

individual pieces can be welded together, making possible

models of different shapes. These properties are claimed

by the manufacturer, and confirmed in reference (13),

and by tests conducted in this work.

4.2 Casting

Several prOportions of resin and hardener were tried,

and a final mixture of ten parts of hardener per hundred

parts of resin (in weight) was adopted for all lab tests.

The casting procedure and environmental conditions were

always duplicated as closely as possible to ensure maximum

consistency of results.

64
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All mixtures were prepared in a room whose tempera-

ture was held at 75°F 1 1°F. The amount of ARALDITE and

hardener mixed was always the same, and followed the same

sequence: 160 grams of ARALDITE were placed in a con-

tainer whose total capacity was twice as much, while 16

grams of hardener were measured in a different smaller

container. The reason for placing the resin and the

hardener in two different containers, rather than adding

the hardener directly to the resin (or vice versa), was

to avoid partial curing of the mixture during the process,

which actually happened the first time the mixture was

made. Two different containers allowed enough time for

a careful and accurate measurement of both resin and

hardener. The disadvantage of this procedure is that

part of the hardener will remain on the walls of the

container, producing a proportion of ingredients other

than expected. This remainder was measured repeatedly,

giving an average of 0.63 grams. An extra amount of

hardener equal to this average was added to the theoretical

16 grams, and a check of the actual waste was subsequently

carried out, giving the real proportion used for every

particular case. These values fluctuated from 9.97 to

10.03%, when a proportion of 10% was desired.

Once the hardener was poured into the resin, the

mixture was stirred vigorously for one minute, and then

centrifuged for two minutes at about 1500 rpm.



 

 
 

 
 
 
 
 
 
 

 

 
 

 

F
V
W
M
W
I
W
M
W
W
W
W
J
/
fl
/
I
/
fl
/
I
/
W
I
I
W
(
.
.
-

F
v
fl
m
fl
m
m
l
/
I
/
W
W
M
W
W
W
/
fl

,
‘

 

 

F
i
g
u
r
e

4
.
l
.
-
A
r
r
a
n
g
e
m
e
n
t

o
f

m
o
l
d
s

t
o

c
a
s
t

t
h
r
e
e

s
p
e
c
i
m
e
n
s

a
t

a
t
i
m
e
.

66



67

Both the casting and the curing of the samples were

done in the same room where all the tests were run. This

room was kept at constant temperature of 80.5°F, with a

fluctuation of i 0.5°F. The relative humidity fluctuated

from 40 to 60 per cent.

The molds were made of aluminum, and consisted of

machined, prismatic bars resting on a heavier base, and

arranged in such a way as to produce specimens 3/4" x l"

x 22" in size (Figure 4.1).

As mold release, three different products were used

with no apparent difference: Silicone Release Agent,

manufactured by Dow Corning Corporation, Midland, Michigan;

FreKote 33 Release Agent, FreKote, Incorporated, Boca

Raton, Florida; and Johnson Paste Wax, Johnson and Son,

Incorporated, Racine, Wisconsin.

Before pouring the mixture, the mold was levelled

to obtain a bar with uniform height, and clamped to

avoid any leakage. Once the mixture was poured, the

mold was covered to protect the sample from dust. The

sample was kept in the mold for seven days, at the end

of which the different pieces of the mold were released.

An effort was made not to cause any disturbance of the

sample.

If the sample was to be used in a creep test, end-

pieces (Figure 4.3) were attached to its ends to provide

supports, and to enable the application of end moments.
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In order to prOperly center the and pieces, and place

them in a plane normal to the sample axis, a holding

fixture (Figure 4.3) was used. The final beam model

ready to be used in a creep test can be seen in Figure 4.4.

For frame models, the triple mold of Figure 4.1 was

used. After one week of curing, the ends of the three

bars were mitered and welded together. For this purpose,

the pieces of Figure 4.1 and Figure 4.4 were combined

to support the frame, while the joints were welded, as

shown in Figure 4.5.

4.3 Creep Tests

The creep tests consisted of measuring the middle

span deflections of a simple supported beam under equal

constant bending moments, applied at the supports.

The following equipment was used:

1. Beam mounted on end-piece (Figure 4.5), with two

inch diameter pulleys, from which a given weight could be

hanged, producing the desired end bending moment.

2. Containers with lead pellets were used as loads.

In this way, any arbitrary weight could be chosen,

including the effect of hangers.

3. A Starret dial indicator was used to measure the

middle span deflections. Some of the dial characteristics

are as follows: range 0.4"; graduation 0.0001"; minimum

load to overcome internal resistance 0.062 pounds; spring

constant 0.0063 pounds per inch.
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4. To measure time, use was made of an ordinary

electric clock (Westclox), and a digital electric timer

(model T-lOl), manufactured by Nuclear Instrument and

Chemical Corporation, Chicago, Illinois. This timer

measured hundredths of a minute, and had a range of

999.99 minutes. After this number was reached, the

counting would start from zero again.

5. Finally, a hydraulic jack was used to apply the

loads. A 2" x 6" x 30" piece of lumber was attached to

the head of the jack. Before starting the test, the head

of the jack was raised, and two weights, resting on the

piece of lumber, were centered under the points of appli-

cation and hung from the pulleys. A slow uniform downward

motion of the jack was obtained by means of a control

valve. A ballast of 56 pounds (two lead bricks) helped

to further stabilize the motion and reduce the change of

velocity while the load was transferred from the jack to

the test model. In this way the load was applied at

both ends uniformly and without significant impact effect.

Figure 4.6 shows the general set-up of a specimen

under a creep test.

The help of a second laboratory operator was used to

better synchronize the zero time with the application of

the load, and it proved to be especially useful in the

reading of the deflections at intervals of time as short

as 0.06 minutes. It was pointed out in Chapter III that
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to facilitate the evaluation of the relaxation modulus,

very small intervals of time were to be taken for the

first few minutes of the creep test.

Tests were run at different specimen ages. Finally,

35 days from the day of casting was adopted as the

specimen age for all tests. This age was adOpted

partially arbitrarily, and partially influenced by the

aging tests (see section 4.5).

To ensure that the values for the creep compliance

were obtained within the linear range of the material,

several tests were run under different loads. In fact,

the maximum stress reached was 305 psi, a figure well

below the 2500 psi claimed by the manufacturer* as linear

range.

A better understanding of the results plotted in

Figure 4.7 will follow from an estimate of the uncertainty

involved in the tests. The effective beam length, from

center to center of supports, was 19.25 i 0.001", and the

depth 0.75" i 0.01". The effective length (pulley's

radius plus hanging wire's radius) was 0.953" 1 0.001".

The weights were measured in a scale with sensitivity of

0.01 lb. The prOportion of hardener to resin varied

from 9.97% to 10.03%, which, according to the

 

*

Technical Service Note, A/24UX-l, Structural Resins

Department, CIBA Products Corporation, Kimberton,

Pennsylvania, 1969.
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Figure 4.7.--Middle span deflections on creep tests.
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manufacturer's literature, would mean a fluctuation of

i 1% of the mixture's stiffness.

Now an estimate of the uncertainty is readily

available. The middle span deflection of a simply

supported beam under equal concentrated end moments is

 

given by

2

A = 551 (4'1)

or else

2

A = 3WRL3 (4.2)

2Ebh

where W is the hanging weight; R, the lever length; E, the

Young's modulus; b, the beam width, and h, the beam depth.

Taking logarithms of both sides of Equation (4.2),

changing the negative signs to positive (2), and dif-

ferentiating, one obtains

dA _ aw dR dL 68 db dh

where each quotient gives the relative uncertainty.

Assigning numerical values to the right-hand side,

Equation (4.3) becomes

—— = 0.061 (4.4)
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This means that the uncertainty of the values for the

deflections is i 6%, which more or less fits the results

shown in Figure 4.8.

4.4 Creep Compliance Values

The deflections plotted on Figure 4.7 gave rise to

different sets of values for the creep compliance. These

values were averaged, and plotted on a semilogarithmic

paper. A curve was drawn to best fit the tendency of the

points plotted, and the values read from the curve were

adopted as the "true" values of the creep compliance

(see Figure 4.8).

The justification of this procedure lies, first of

all, on the fact that in any measurement, the average of

the different observations is the best estimate of the

true value (2). Then, in this case, the scale selected

in the semi-logarithmic paper to plot the mean values

obtained for the creep compliance, had the same sensitivity

as the dial gauge used to read the deflections, i.e.,

four significant figures.

The values read from the curve of Figure 4.8 appear

tabulated on Table 2.7 together with the corresponding

values of the relaxation modulus used in the numerical

examples of frame analysis presented in Chapter V.
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4.5 Aging Tests
 

Two samples were tested a number of times at dif-

ferent ages to determine the curing process, the aging or

the strengthening of the samples as they grow older.

Although different results were obtained in the different

tests, as can be seen in Figures 4.9 and 4.10, the tests

cannot be considered conclusive, since there could be a

number of factors, other than age, affecting the stiffness

of the material.

An aging test, isolating age from all other possible

causes, may prove useful, but in the present case would be

beyond the sc0pe of this study.

4.6 Frame Tests

Three different plane portal frames were made and

tested. All were made up of rectangular bars with cross

section of l" x 3/4". They will be referred to as Frame 1,

Frame 2 and Frame 3. Frame 1 was a rigid frame fully

clamped at both supports, and tested under loads of 2 and

10 pounds. A sketch of the general set-up is shown in

Figure 4.11. Frame 2 was essentially like Frame 1, with

the beam two inches longer, and loads of 5 and 15 pounds,

instead of 2 and 10, respectively. Frame 3 had one support

clamped, and the other hinged, and was tested for 2 and

10 pounds as sketched in Figure 4.12.
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Figure 4.9.--Aging test. Simply supported beam.
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The vertical load was hung directly from the top

middle point of the beam, while for the horizontal load

two pulleys mounted on ball bearings were used. The

loads, as in all other tests, were applied with the help

of a hydraulic jack to avoid impact, and reduce to a

minimum the effects of acceleration.

The tests were conducted when the frames were 35

days old, and the readings were spread to follow the

pattern shown in the t-axis of Figure 3.6. As before, the

help Of a second Operator was used to synchronize the

zero time with the application of the loads.

 



CHAPTER V

RESULTS AND DISCUSSION

5.1 Introduction
 

In the first part of this chapter, results from the

various methods used in this study will be presented and

compared. The second part will consist of a general dis-

cussion, together with some conclusions.

5.2 Comparison of Relaxation

Modulus vaIues

 

 

Figure 5.1 shows two curves Obtained for the

relaxation modulus values for the epoxy resin used in the

lab tests of this work.

Curve 1 was Obtained by inverting the creep compliance

values given by the Equation (2.56), using for the

parameters the values obtained by LaPalm (13). Curve 2

was obtained by direct inversion of the laboratory results

obtained in this work. More exactly, curve 2 is the

inverse Of the creep compliance curve of Figure 4.8, which

is the average of the different laboratory results.

The discrepancy of both curves is of the order of

2%. This confirms the reproducibility of the material used

87
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Figure 5.l.--Comparison of relaxation modulus curves.
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for the tests, and adds support to the values obtained

thus far for the relaxation modulus Of such material.

5.3 Frame 1 Joint Displacements
 

Frame 1 is sketched in Figure 4.11. The vertical

deflection of the middle span point, A, and the horizontal

displacement of the right-hand corner, B, are plotted in

Figures 5.2a and 5.2b, respectively.

Figure 5.2 shows the vertical deflections of midspan

point A, and horizontal displacements of joint B of Frame 1.

Each one of them is represented by three curves. Curve 1

represents results Obtained from Equation (3.8) by means

of the program VIELANAL, developed in Chapter III and

listed in Appendix B. Curve 2 represents the quasielastic

solution, i.e., at every time, t, an1 elastic solution is

carried out by simply substituting the modulus of

elasticity by the relaxation modulus E(t). Finally,

curve 3 represents the displacements measured in the

laboratory using models, as described in Chapter IV.

5.4 Frame 2 Joint Displacements
 

It was pointed out in Chapter IV that Frame 2 was

like Frame 1, except for the horizontal member, which was

two inches longer. Thus, Figure 4.11 can also serve as a

sketch for Frame 2 if we read 10 1/2" instead of the 9 1/2"

shown as the length for half Of the horizontal member

referred to.
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Figure 5.3 shows the joint displacements for Frame 2.

The comments made in section 5.3 about curves 1, 2 and 3

can be applied here to Figure 5.3.

5.5 Frame 3 Joint Displacements
 

Frame 3 is sketched in Figure 4.12. Unlike Frames 1

and 2, it is unsymmetric. Also, one of the supports is

hinged, while the other remains clamped.

Figure 5.4 represents the vertical deflection of the

midspan point A, and the horizontal displacement of joint B.

The comments about curves 1, 2 and 3 can also apply here.

At this point, a remark about frame stresses seems

to be in order, since so far, nothing has been said about

the range within which the frame tests have been conducted.

For Frames 1 and 2 the maximum normal stresses occurred

in the midspan point, A (see Figure 4.11), in both cases,

and they were 335 psi and 364 psi, respectively. For

Frame 3, the maximum normal stress occurred at the joint

C (see Figure 4.12), and it was equal to 406 psi.

Although these figures exceed the maximum stress value

for which the material was tested in this study (305 psi,

see Figure 4.7), the agreement of laboratory results with

the numerical linear analysis causes the writer to feel

that it is plausible to assume that the frame tests were

run within the linear range of the material.
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5.6 Epoxy Resin Used for the

Laboratory Models

 

 

The epoxy resin used for laboratory models has a

wide range for which the strains are prOportional to the

stresses. Also, Figure 5.1 shows that, within this linear

range, the behavior of the resin is viscoelastic.

The material does not have a fixed stiffness in its

early age. This means that, when comparing test results

from different samples, attention should be given to the

age of such samples. Figure 5.5 shows the tendency with

which the resin stiffness increases with age. The curve

was obtained from the values corresponding to 120 minutes

shown in Figures 4.9 and 4.10. This is 120 minutes after

application of load. The inverse of these deflections was

multiplied by a reducing factor. This curve, based only on

two different tests, does not pretend to be conclusive,

but, as stated above, it shows the general tendency of the

material stiffness increasing with age.

In the present work, the aging of the material during

the test period was disregarded, since all loads were

applied to the material at the same material age.

5.7 Laboratory Equipment
 

The laboratory equipment was simple but adequate.

Still, a redesign of molds and end-pieces is recommended.

The end-pieces should be designed as an integral part of the

molds. This would avoid disturbances of the Specimen
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while attaching the end-pieces, and, in addition, would

provide more accuracy in the attachment of such pieces.

Furthermore, the molds should be designed in such a way

to allow the test to be set up before the molds are

released. Finally, a set of screws could be used to

allow the molds to be removed smoothly, leaving the

specimen undisturbed and ready for the desired test

without requiring any further handling.

5.8 Relaxation Modulus
 

The presence Of oscillations of the lower bound for

the values of the relaxation modulus (see Tables 2.3 and

2.4) still remains open to further study.

However, it has been shown that, by means of an

adequate redefinition of time intervals, this difficulty

can be overcome. In this way, we can invert creep com-

pliance values to obtain the corresponding relaxation

modulus without recourse to the Laplace transform.

Furthermore, this method is applicable to creep values

obtained from an algebraic formulation, as well as those

obtained from discrete laboratory data.

A relaxation test is still desirable and recommended

to prove the accuracy of both Equation (2.4) and Equation

(2.5).
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5.9 Matrix Analysis Formulation
 

In Chapter III a matrix analysis for framed

structures was developed, and a digital computer program,

VIELANAL (see Appendix B), was written. The results of

this numerical solution differed from those Obtained by

models tested in the laboratory by discrepancies of the

order of 10%.

In section 4.3 the uncertainty of the measurement

of midspan deflections of a simple beam model was esti-

mated to be of the order of 6%. In the case of a frame

with three members, it seems reasonable to assume that this

uncertainty will increase. Additional sources of error

can be stated, such as imprOper set up, friction in the

pulleys used for transmission of horizontal load, and,

for Frame 3, friction in the hinged support. Finally,

part of the 10% of discrepancy between the theoretical

and experimental results has to be accounted for by the

fact that the numerical analysis was an upper bound of

the solution.

This program was based on Equation (3.3), which

provides an upper bound to the governing Equation (3.2).

By a simple change in indices, using E(O) instead of E(l)

and (1+1) instead of (i), the program can be run for the

lower bound given by Equation (3.4). However, this

requires knowing the value of E(O), which is not readily

available.
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E(O) can be approximated from Equation (2.5),

yielding

E(O) = $7, (5.1)

where the value of D(O) would have to be obtained from

extrapolation in the semilogarithmic curve of Figure 4.8.

In the present work, however, the extrapolation from

the curve of Figure 4.8 is not well determined, due to

lack of enough data near time equal to zero, producing

little more than meaningless results.

The difficulty of obtaining the glassy properties

of the material increases when we keep in mind that, while

on the one hand, a step load at time zero is desired, on

the other hand, the application of such load has to be

smooth and gradual to avoid impact effect.

When the nonlinear geometry and the axial force

effects were omitted (see Table 5.1), the joint displace-

ments dropped about one per cent. It must be kept in

mind, however, that the samples run in this study were

kept under practically linear geometry conditions, to

ensure linear behavior in the material. Under a heavier

loading system, the discrepancy between linear and non-

linear geometry and thrust effects may be of relevant

importance, and, therefore, further research in this area

is recommended.
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Figures 5.2 through 5.7 show that the matrix formula-

tion developed in Chapter III, based on LaPalm's Equation

(3.3), produces satisfactory results.

5.10 Number of Finite Parts per Member
 

To calculate the fictitious joint loading, a finite

difference method was used. Table 5.2 shows the accuracy

obtained and the computer time needed for a given number

of equal parts into which a member is divided.

From Table 5.2 we can conclude that a choice Of 10

or 15 parts per member may be considered economical and

still accurate enough for most practical considerations.
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TABLE 5.l.-—Axial force effect on joint displacements.

 

I. Vertical deflection of midspan point A (see Figures

4.11 and 4.12) at time t

Axial Force Effect

Axial Force Effect

= l.

 

Frame taken into Neglected Discrepancy

Con51deration

in in %

1 0.0461 0.0459 0.5

2 0.0600 0.0597 0.5

3 0.0762 0.0755 1.0

 

II. Horizontal displacement of joint B (see Figures 4.11

and 4.12) at time t = 1.

Axial Force Effect

Axial Force Effect

 

Frame taken into Neglected D1screpancy

Cons1deration

in in %

1 0.0318 0.0315 1.0

2 0.0327 0.0324 1.0

3 0.0717 0.0710 1.0
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TABLE 5.2.--Number of finite parts taken per member, versus

accuracy and computer time.

 

 

Number of Equal Computer Time* Accuracy**

Parts (seconds) (%)

6 0.14 85.4

10 0.16 92.7

15 0.19 95.4

20 0.25 95.9

40 0.78 97.2

50 1.33 97.7

 

*

CDC 3600 Digital Computer

**

A fixed-end beam under a load equal to cos x was

considered. The values obtained from the numerical

analysis were compared with the exact solution.



CHAPTER VI

SUMMARY AND CONCLUSIONS

A matrix method for numerical analysis of framed

structures made of linear viscoelastic materials has been

presented. The solution method has been embodied in a

computer program written in Fortran. This program has

been tested for plane frames, with different supports

conditions, in a CDC 3600 and in a CDC 6500 digital

computer.

The analysis uses constant loads concentrated at

the joints, as the actual external loading system. Then,

as time increases, fictitious joint loads are computed

and added to the actual external joint loads. The

fictitious joint loads were derived from the deformation

history of the structure. This was carried out by means

of a finite difference method scheme.

In order to store the information needed from the

past deformed configurations of the structure, a redefini-

tion of time interval was used as many times as needed

to cover any desired time Span. This time interval

redefinition is flexible, and can be modified and adapted

to particular cases, according to the structure size, and

computer store capacity.

105
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In the examples worked in this study, small loads

were used. The purpose of using small loads was two-fold.

First, this assured working within the linear range of

the material. Second, the joint displacements were kept

small, reducing to a minimum the reaction of the internal

spring of the dial indicator. This resulted in a case

with small axial thrust and practically linear geometry.

As a result, the nonlinear geometry and axial forces

included in this study had negligible effects on the

joint displacements and stresses of the frames. When the

nonlinear geometry and axial forces effects were omitted,

the lateral sway dropped only by 2%. Of course, for

heavier loading, this discrepancy may increase considerably.

Laboratory tests were run with symmetric and

asymmetric frames made of a linear viscoelastic material.

The laboratory results were compared with those obtained

from the numerical analysis with satisfactory agreement.

A computer program to evaluate the creep-relaxation

inversion has also been presented. In this program, a

redefinition of time interval was also needed. However,

this redefinition differs in nature and purpose from the

one used in the frame analysis.

The relaxation modulus values are obtained from the

creep-compliance values without recourse to the Laplace

transform. The creep compliance can be given either as a

"I
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general algebraic expression or as a set of discrete

values, obtained from laboratory tests.

In conclusion, a matrix method of analysis for

frames made of linear viscoelastic materials has been

developed. This analysis is carried out without expressing

the viscoelastic material prOperties in terms of spring

and dashpot models. Furthermore, this method is general,

and parallels those existing for elastic structures under

static constant loadings.

Future extensions of this study could include:

1. Effect of nonlinear geometry and axial thrust

for structures under large deflections.

2. Nonlinear viscoelastic materials.

3. Loading that changes with time.

4. Dynamic analysis.
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A1,...’ A4

B1,..., B4

b

C1,..., C4

D(t)

e

[
—
0
.

W
W

7
1

constants

APPENDIX A

NOTATION

of integration

constants of integration

member width

constants of integration

creep compliance

compliance

compliance

modulus of

relaxation

fictitious

fictitious

at long time

at short time

elasticity

modulus

equivalent joint load vector

distributed load at time tk

length of each element when the member is

divided in n-l equal parts

member depth

moment of inertia

index

stiffness matrix

constant

index

member length

bending moment
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bending moment at time tk

bending moment at left support

bending moment at right support

number of members in a structure

axial force

axial force at a time tk

number of nodes when a member is divided in

n-l equal parts

combined joint load vector

combined joint load vector at time tk

equivalent joint load vector

equivalent joint load vector at time tk

distributed load

distributed load at time tk

pulley's radius

transversal reaction at left support

transversal reaction at right support

index

time dependent solution

time

a given time

member end displacements caused by the

combined joint load vector

member transversal deflection caused by

the combined joint load vector



II

v

III
u

III
v

III

IV

u

IV
V

W(tk)

X(tk)

Y*

IV

Y
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u at time tk

first, second, third and fourth

derivatives, respectively, of u with

respect to the spacial variable x

transversal deflection of a member with

clamped supports.

v at time tk

first, second, third and fourth

derivatives, respectively, of v with

respect to the spacial variable x

actual joint load vector

actual joint load vector at time tk

joint displacement vector

joint displacement vector at time tk

coordinate along the member axis

member end displacements

boundary values

member transversal deflections under

actual loading

y at time tk

first, second, third and fourth

derivatives respectively of y with

respect to the spacial variable x
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middle Span deflection

strain as a function of time

constant strain

stress as a function of time

constant stress

time
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APPENDIX B

COMPUTER PROGRAMS

Two computer programs have been written and used

for the present study. Program CREEPINV computes Equations

(2.21) and (2.22) yielding the values of the relaxation

modulus, when the values of the creep compliance are given.

Program VIELANAL solves Equation (3.8), giving the

deformation history of a plane structure made of linear

viscoelastic material. This program uses the subroutine

ELASTAN to make an elastic analysis at every fixed time tk.

The listing of this subroutine is omitted, and the reader

is referred to reference (18) for a complete description

and listing of it.

The important FORTRAN names used in these programs

are defined below in alphabetical order. Any name which

appears in more than one routine but maintains the same

meaning is defined only once.

A(I,J) = coefficients of systems of simultaneous

equations

AREA(M) = area of cross section of member M

AXF(M) axial force in member M

A1(M),..., A4(M) constants of integration corresponding

to member M
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B1(M),..., B4(M)

C1(M),..., C4(M)

D(KE)

DEL(M)

E(KE)

EAOL(M)

EIOL(M)

F(M)

FICT(IX,M,KY)

FML(M)

FMR(M)

FSL(M)

FSR(M)

HO(M)

119

constants of integration corresponding

to member M

constants of integration corresponding

to member M

value of creep compliance at time KE

length of each element into which the

member M is divided

value of relaxation modulus at time KE

modulus of elasticity times cross

section area of member M

modulus of elasticity times moment of

inertia of cross section of member M

axial force in member M

fictitious load at point IX of member M

at cycle KY.

fictitious moment at left end of member

M

fictitious moment at right end of

member M

fictitious shear at left end of

member M

fictitious shear at right end of

member M

initial horizontal coordinate of end

of member M.



INERT(M)

K(M)

K2(M)

K4(M)

KE

KELIMIT

KI

KY

L(M)

NM

NP

NPE(M,J)

NPR

NPS

P(I)

PFICT(I)

PP(I)

u(x)

U4(X)

UU(X)

UU4(X)
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moment of inertia of member M

square root of K2(M)

axial force/fluxural rigidity of member M

square of K2(M)

time

time limit

iteration number

cycle number

length of member M

number of nodes on a member divided in N—l

equal parts.

number of members in the structure

total degree of freedom

global degree of freedom of coordinate J of

member M

degree of freedom in rotation

degree of freedom in linear displacement

load at coordinate I of the structure

fictitious load at coordinate I of the structure

load at coordinate I of the structure

transversal deflection at point x of a member

under compression

fourth derivative of U(X)

transversal deflection at point x of a member

under tension

fourth derivative of UU(X)



UUU(X)

V(IX)

V4(IX)

VO(M)

W(I)

X(I)

XJ(I)

XLO(M)

Y(IX)

Y4(IX)

Y14(IX,M)

Y24(IX,M)

Y34(IX,M)
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transversal deflection at point x of a member

under no axial load

transversal deflection at a point IX of a

member with clamped ends

fourth derivative of V(IX)

initial vertical coordinate of end of

member M

load applied at coordinate I of the structure

joint displacement along coordinate I of the

structure

joint displacement along coordinate I of the

structure

initial length of member M

total transversal displacement at point IX

of a member

fourth derivative of Y(IX)

storage of Y4(IX) for use in member M during

cycle 1 of new iteration

storage of Y4(IX) for use in member M during

cycle 2 of new iteration

storage of Y4(IX) for use in member M during

cycle 3 of new iteration.



LISTING 0: COMPUTcp PROGRAMS

PQOGPAM VIELANAL

C:=::::::===:==:::=::===================C

C ANALYSIS OF VISCOELASTIC STRUCTURES C

C==::==:::==:::=:=::::==:::::=::=:=::==:C

QFAL K9K20K4vLoINFQT

DIMFNSION F(76P)

DIMFNSION PD(pn)

DIMENSION NPEI706)9HO(7)oVO(7)oXLO(7)oFAOLI7)oEIOL(7)

DIMENSION AQFAI7)QINFDTI7)

DIMFNSION AXF(7I

DIMFNSION XJI’I)

DIMFNSION X(éq?)

DIMFNSION KI7)qK?I7)oK4(7)9L(7)

DIMENSION W(?O)

DIMENSION Y(IO)

DIMENSION Y4(10)

DIMENSION l:ICT(109706)

DIMENSION DEL(7IOFI7)

DIMENSION A1(7)oA?(7)0A3(7)0A4(7)

DIMFNSION 91(7)09?(7)OR?I7)094(7I

DIMFNSION C1(7)oC?(7)oC3(7)oC4(7)

DyMFNQION PFIPT(?1)oADUM(?00?“)'V°“M(7")

DIMFNSIDN FMLI7)QFMD(7)quLI7IOFSQI7)

DIMFNSION V(?O)0V4(Ph)

DIMFNSION Y14(?007)¢Y?4(?Oo7)oY34IPOo7)

COMMON/STRUCT/NPQNPPQNPSqNM

COMMON/LOAD/Pp

COMMON/MEMBER/MEMN01NPEOHOOVOOEAOLCEIOLQXLOQL

COMMON/AXIAL/AXF

COMMON/JDISPL/XJ

COMMON/QFLAX/FoKpLIMIT

COMMON/TIME/KF

SINHIX) = 009*(FXDIX) - FXPI’X)I

COSHIX) 2 0.G*(¢XD(X) + pXPI-XII

U(X): A1(M)*COS(K(M)*X) + APIM)*SIN(K(M)*X) +A3(M)*x +

AQIM)

U4(X) = AI(M)*K4(M)*POSIK(M)*X) + A?(M)*K4(M)*SIN(K(M)*X)

UU(X) = PIIM)*COSH(K(M)*X) + R?(M)*QINHIK(M)*X) +

B3(M)*X + 94(M)

UU4(X) = BIIM)*K4(M)*COSH(K(M)*X) + BPIM)*K4(M)*SINH(K(M)*X)

UUU(X) = C1(M)*x**3/6.o + c2(M)*X*x*o.= + C3<M)*X+C4(M)

DFAD InoKELIMIT

10 FOQMATIIF)

C

CALL QFLAX

C
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mm

I!”

14?

1am

eon

7m

90"!

on?

??0

n

?30

P41

pop

743

I
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DO 100 IX=10N

FICT(IXQMQJ) = (F(J?*?**KII’F(JI*2**KII)*Y4(IX)

/ F(I)

IF(KYOLT06) GO TO POO

KI = KI + I

on ISO M=IQNM

50 I4? IX=ION

YI4IIX9M) = YPQIIYQM)

CONTINUV

KY = 4

GO TO POI

KY = KY + I

KF KY*?**KI

EF = E(KE)

DO 203 I=19NM

FACLII) = EF*AQEA(I)/XLOII)

FIOLII) = FP*INFQTII)/XLO(I)

DDINT SQQKF

NDOW : N-?

NCOL = N~I

ITED = D

'30 770 M‘-=I QNM

CALL EOJTLD (FICT(1¢M0KY)vNoNROWcNCOLoDEL(M)oFIM)9K2(M)o

FMLIM)OFMQ(M)OFSL(M)QFSP‘M)QEFQINERT‘M)OL(M)Q

ADUMOYDUV)

pFICTII) = +FMQ(I) -FML(?)

pFICTI?) = FSQII)

pFICTI3I = -FSL(?)

DFICTI4) = +FMQI?) +FMLI3)

DFICTIQI = no“

pFICT(6) = +FQDI?) +FSL(1)

PFICTIT) = +FMPIS) ~FMLI4)

ppICTIR) = FqL(4)

PFICT(Q) = —FQP(1)

DO 230 I=IoNP

PP(I) = W(I) + DFICTII)

CALL ELASTAN

DO ?40 M=IvNM

IF( ARSI ARQIFIM)) - AQSIAXF(M)I ) 0LT. ARSIO.OI*AXF(M))

GO TO ?4n

on P4! I=IONM

F(I) = AXFIII

ITFR = [TFO + l

IFIITEQ - 50)?4?07610?41

GO TO ?D?

POINT ?440M
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