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ABSTRACT
SOME STABILITY GROUPS OF FINITE GROUPS
By

Allen Lee Bertelsen

A topic of study in finite group theory is the group of auto-
morphisms of a finite group. One method for studying automorphisms
is to look at their effect on chains of subgroups, rather than
individual elements.

Given a chain of subgroups s: G = GO 2 G1 2...2 Gn =1, we
define Stab(s) by

Stab(s) = {a € Aut c\(gici+1)“ =g6,,, forall g €6, i=0,1,2,...

P. Hall has shown that Stab(s) is a nilpotent group of class less
than or equal to (2).

If A < Stab(s), there is a canonical chain
s: G 2[G,A] 2 [G,A,A]=2...21 in G and we define the closure of

A, written X; by
A = Stab(s)

A 1is said to be a closed stability group if A =A.
In Chapter I we have:
() A=K
(2) The prime divisors of A are the same as the prime

divisors of A.

,n-1}.
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(3) NAut G(A) = {B € Aut G|B leaves each group in s invariant].

(4) If A <qAut G, then A < Aut G.

Two questions arise
(1) Which nilpotent groups are stability groups?
(2) Which stability groups are closed?

Using the following

If A <2Z(G), the center of G, then
Hom(G/A, A) =~ Stab(G 2 A 2 1)
f
ferasrg-88
we showed that

Any abelian group is a closed stability group.

The search for stability groups may be simplified by

A £ Aut G 1is a closed stability group if and only if for every

p dividing |A|, a p-Sylow of A 1is a closed stability group.

Let G =H X K and

s: HXK=2H, XxXKz2...2H XK=1xK=2K_ 2...2K =1
1 s 1 n

then Stab(s) is the semidirect product of Stab(H X K 2K 2 1)

and a subgroup isomorphic to Stab(H 2 Hl 2...2 1) x Stab(K 2 Klz...z 1).
Let G be nilpotent and § the isomorphism from Aut G

onto the direct product of the automorphism groups of the p-Sylows

of G. A £ Aut G 1is a stability group if and only if

A - 1 Stab(s ) where s is a chain from the p-Sylow of G to 1.

pl|Al
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This last theorem leads us to Chapter II and stability groups
of p-groups which must be p-groups.
If G 1is a p-group then:
(1) Any p-Sylow of Aut G 1is a closed stability group.
(2) Op(Aut G) 1is a closed stability group.
If G 1is a p-group with G' £ Z(G) or |Z(G)| = p, then
Stab(G 2 Z 2 1) 1is the group of central automorphisms.
If G 1is a p-group and A € Aut G 1is of the form
(i) A 1is a p-group-
(ii) A is normal in every p-Sylow of Aut G that
containsb A.
(iii) A 1is the intersection of all p-Sylows of Aut G
that contain A.
then A 1is said to be of K-type.
If G 1is a p-group and A < Aut G is of K-type then A
is a closed stability group.
Let G be an elementary abelian p-group. Then
(1) (Kaloujnine) A 1is a stability group if and only if
A 1is of K-type.
(2) A is a minimal stability group if and only if
A =Stab(G =2 H 21) for a subgroup H of G. A
minimal stability group is one that contains no other
nontrivial stability groups.
(3) If A and B are two stability groups in the same
p-Sylow of Aut G, then <A,B> = AB 1is a stability group.
(4) Stab(G 2 G1 2...2 Gn = 1) 1is the product of the minimal

stability groups Stab(G 2 Gi 21,1i=1,2,...,n-1.
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If G 1is a p-group for which every stability group is
Kaloujnine, then G 1is elementary abelian or cyclic of order p2.

In Chapter 111 we examine Fitt(Hol G), the Fitting sub-
group of the holomorph of G, and Fitt(Aut G), the Fitting sub-
group of Aut G.

If A 1is the product of all stability groups of characteristic
series of G then Fitt(Hol G) = A-Fitt G.

If G 1is a p-group, not o(2) X o(2) or o(3) x o(3), then:

-
Op(Aut G) when G 1is nonabelian or

Fitt (Aut G) =
Op(Aut G) x B where B 1is a cyclic subgroup of

\the center of Aut G and |B| = p-1.

If Fitt G is purely nonabelian or if Exp Z(G) divides
Exp(G/ZG') then Fitt(Aut G) is a closed stability group.

In Chapter IV we have:

The quaternion group of order eight is a closed stability
group but is not a closed stability group for a normal series in a

2-group.
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INDEX OF NOTATION

I. Relations:
< Is a subgroup of
< Is a proper subgroup of
q Is a normal subgroup of
= Is isomorphic to
c Is isomorphically contained in
€ Is an element of

II. Operations:

< > The subgroup generated by

Xf The image of X under the mapping f.

s* x-ISx

[x.y] x Ty Iy

[x,a] x "L

(H,A) Subgroup generated by all [h,a], h € H, o € A.
n n-1

(HA,....A] [(HA,...,A)A]

(H:K] The index of K in H.

H/K The factor group, H mod K.

H\K The elements of H not in K.

H XK The direct product of H and K.

|h| The order of the element h.

| 1| The number of elements in H.
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III. Groups:
Aut G
Cu(K)
Caut ¢ H/B)

Fitt G

G'

Hol G

Hom(H, K)

Inn G

¢(G)

o(n)

Sym(n)

Z(G)

The

The

The

The

The

The

The

Product, not necessarily direct product.

set of prime divisors of |H|.
exponent of H.

inner automorphism induced by h.
set of all ﬂh, h € H.

mapping h - h for all h € H.
mapping sending everything to 1.

mapping o restricted to H.

Direct sum

n

The

The

divides m

automorphism group of G.

centralizer in H of K.

{0 € Aut Glh™1h™ € K for all h € H].

The

The

The

The

.The

The

The

The

The

Fitting subgroup of G.

commutator group, [G,G].

Holomorph of G.

set of homomorphisms from H into
inner automorphisms of G.
Frattini subgroup of G.

cyclic group of order n.
symmetric group on n symbols.

center of G.

K.



INTRODUCTION

This dissertation arose from an effort to characterize the
stability groups of finite groups. In [10], Kaloujnine defined
stability groups for normal chains and showed that they are nil-
potent. Later, in [5], Hall defined stability groups for arbitrary
chains and showed that they too are nilpotent. Thus the question,
of which nilpotent subgroups of the automorphism group of a group
can be stability groups, arises naturally. In [6], Hall and
Hartley investigated what groups may be subgroups of stability groups
of infinite length chains.

In Chapter I, we define the stability group of a chain s
and state some of its elementary properties., If A 1is a subgroup
of a stability group, we define X, the closure of A, and develop
some properties of those automorphism groups for which A=A
Using a method of Schmid [14], we give some examples of stability
groups. As a partial answer to the question, '"What nilpotent
groups may be stability groups?", we see that any abelian group may
be a closed stability group.

Stability groups of p-groups are also p-groups. Hence,
Chapter II deals with p-groups of automorphisms of a p-group that
are stability groups. The beginning of the chapter contains a
condition under which the centralizer in Aut G of a normal sub-

group H of G 1is a stability group and two instances when the



group of central automorphisms is a stability group. 1In [117,
Kaloujnine characterized the stability groups of elementary abelian
p-groups as those automorphism groups A such that

(i) A 1is a p-group.

(ii) A is normal in every p-Sylow of Aut G that contains

A.
(iii) A 1is the intersection of all p-Sylows of Aut G
that contain A.

We refer to those automorphism groups of p-groups which satisfy i,
ii, and iii as K-type automorphism groups. A proof of Kaloujnine's
characterization is given and it is shown that for a p-group those
automorphism groups of K-type are stability groups. 1In general a
p-group has stability groups that are not of K-type because if G
is a p-group, all of whose stability groups are of K-type, then G
is elementary abelian or cyclic of order pz.

In Chapter III, we consider the Fitting subgroup of Hol G
and of Aut G. Fitt(Hol G) 1is shown to be the product of Fitt G
and the product of all stability groups of characteristic chains.
Fitt (Aut G) 1is characterized when G 1is a p-group and we‘determine
two conditions under which Fitt(Aut G) 1is a closed stability group.

Chapter IV begins with two examples, one of which is a 2-
group G and a normal chain s such that Stab(s) 1is isomorphic
to the quaternion group of order eight. The bulk of Chapter IV
consists of a proof that the quaternion group of order eight is not

a closed stability group for a normal chain in a 2-group.

Several examples are listed in the Appendix.



CHAPTER I

DEFINITIONS AND ELEMENTARY PROPERTIES
OF STABILITY GROUPS AND CLOSED STABILITY GROUPS

In this chapter we introduce some elementary properties which
will be used in later chapters. All groups considered are assumed to
be finite.

Definition 1.1. Let 8: G = G0 2 G1 2...2 Gn =1 be a chain
of subgroups for an arbitrary group G. We define the stability group

of s, written Stab(s) by:

Stab(s) = {a € Aut G](giGi+1)d = giGt+1 for all 8 € Gi’

i=0,1,...,n-1} .

The process of finding stability groups may be simplified by:
Theorem 1.2. Let A = Stab(s) with s as above, and

0 € Aut G. If s% signifies the chain

9 e

st G = G0 °

2G; 2...26" =1
n

5]
1
then

Ae = Stab(se)

Proof: Let o ¢ Stab(s), B = Stab(s®), and g €6,

i=0,1,... n-1.



-1
8.0 .8 ab _ T
(86 141) = (8;C41)
o
= (864

-1
since o &€ Stab(s). Thus (ggcg_‘_l)B @® _ ggcg+1, and Ae < Stab(se) =B.

The same argument gives that

-1

9 6 0!

1
>

B € Stab(s ) = Stab(s)

® and A% =B = stab(s?).

Operating on the containment by ¢ gives B s A
Using 1.2, we are able to simplify the process of finding all
the stability groups of a group G. Any series is a subseries of at
least one nonrefinable chain in G. Aut G 1induces a permutation
group on the chains of G. By 1.2, the stability groups of any two
chains in the same permutation orbit are conjugate in Aut G. We
first pick a chain from each orbit of nonrefinable chains. Then, we
find the stability groups of all their subchains. Conjugation of
those stability groups gives all possible stability groups, because

any chain s 1is a subseries of some nonrefinable chain s We may

1
permute s, to ome of the nonrefinable chains sy for which we have

computed the stability groups of its subchains, i.e. s%¥ is a sub-

chain of 8, for some g € Aut G so we know Stab(sa). By 1.2,
-1
Stab(s) = (Stab(sa))a is one of the specified conjugates.

Definition 1.3. Let s be the series s: G = G0 2 G1 2...2

§(s) = {a € Aut G\G? =Gy for all i =0,1,...,n}

Theorem 1.4. S(8) < NAut G(Stab(s)).



Proof: Let A = Stab(s) and B € S(s). By 1.2, AP - Stab(sa).
sa =3 since B fixes each subgroup of the chain. Thus As = Stab(s)
and g € N, ot G(A)-

In Example 1 of the Appendix with s: D, 2 <x2,y> > <x2> 21

4
we see that §(s) < NAut G(Stab(s)). Thus we do not in general have

equality in 1.4,

Corollary 1.5. If each Gi is characteristic in G then

Stab(s) <« Aut G.
Proof: If each Gi is characteristic, then Aut G = §(s).

Thus, by 1.4 Aut G €N (Stab(s)), and Aut G normalizes Stab(s).

Aut G
Definition 1.6. Let A < Aut G. Set

Y G AO =G, and

i+ .
Y G A” 1 (v G Al, A] for i=20.

For a group H, m(H) will denote the prime divisors of H.

Theorem 1.7. Using the notation of 1.1 and A g Stab(s),
we see:

. i .

(i) YGA < Gi , 1 =0,1,...,n

(ii) [G, A] € Fitt G

(iii) The prime divisors of A are the same as the prime

divisors of [G, A], i.e. n(A) = n([G, A)).

Proof: See Schmid [13].

Definition 1.8. Let A < Aut G. A stabilizes a series s

if A < Stab(s). Following Schmid [13], A € Jo 1if and only if A

stabilizes a chain. Hence Ib denotes the set of all subgroups of

the stability groups of G.



Definition 1.9. For A € T., define s by 8 = {yGA }n(A)
where n(A) 1is the first integer such that vy G An(A) = 1. Define
K, the closure of A, by

A = Stab(s)
We say a stability group A 1is closed if A = A.

We record the following properties of closure in:

Lemma 1.10. Let A € TG. Then

(i) A <A

(ii) If A<B <A, then y GB = yG A" for all i.

(1ii) A = A

(iv) If BEN (A) then (y G Ah3 =y al

Aut G Y Y .

(v) If A g Aut G then A g Aut G.

(vi) A and A have the same prime divisors.

(vii) 8(s) =N, (&) =N, . .(Stab(s)).

Proof: (i) Let x € y G Ai, and o € A.

x¥ = x x.1 x
+
=x[x,a]€xyGA1 and
(G, A,...,A7% = [6%, A%,...,A%
= [G, A, .,A] so
i+1 i+
(xyGA1 )a=x[x, @] YG A 1
=xvyG Ai+1 .
Thus o € Stab(s).
(ii) Since B < A= Stab(s), 1.7 says vy G B' is contained

in the iﬂ‘- term of

the chain which is v G A,



Induct on i for the other inclusion.

Yy G B0 =G =v6G AO .

A generator of vy G Al, i >0, is of the form [x, a] with

i-1 and o € A. By induction x € y G Bi-1 and since

i-1

x €EyGA
wcA%B, [x,a)] €[ycB'™!, B) = ycB’. By induction yGA' =
Yy G Bi for i 2 0, and consequently A= Stab(y G Ai) =

Stab(y G BY) = B.

=B and B =A by (ii).

>

(iii) Let B = A. Then

o

(iv) Induct on i. yGA =G so for B8 € Aut G,
(y G AO)B = GB =G =vy6G AO.

For i >0, take a generator [x, o] of YG Ai with
X €vyG Ai-l, o €A. [x, a]a = [xa, aﬁ] and by induction

xB €yYG Alnl. Since B normalizes A, we have

1

(vc AHP cycal™l a1 =ycal as required.

n(A)
i=1 °

. i i
Since B8 € Nt G(A), part iv says (y G A )B =y GA". We now have

(v) Let B € Aut G. By 1.2, (&)% = stab((y ¢ aH)P)

)P = stav(y G Ai)‘;ffi‘) =A .

Hence X.q Aut G.

(vi) By ii, [G, A]

(G, Z]. Since A, A € Té, 1.7 gives

"

n(A) = m([G, A)) and mn(A) = n([G, A]). Thus m(A) = m(A).

(vii) By iv, N (X) 5§(§). The opposite inclusion is

Aut G
1.4,
We record the following important theorems for future re-

ference.



Theorem 1.11. (P. Hall [5]). If s is defined by

s: G = G0 2 G1 2...2 Gn =1 then Stab(s) 1is nilpotent of class

less than or equal to (;).

Theorem 1.12. (Kaloujnine [107). If each Gi QG and

Gn =1 then the class of Stab(s) 1is less than or equal to n-1l.
The following lemma and method were introduced by Schmid in
[147].
Lemma 1.13. Let H and K be normal subgroups of G. If

K<€H and C = CG(H/K) then C (H/K) <C (G/c).

Aut G Aut G
Schmid notes that if H « G, CG(H) €£H and L 2H then

CAut c(L) = Stab(G 2L 2 1). To see this let K =1 1in the above

lemma. Then C (H) €C

Aut G (G/H). Since L 2 H,

Aut G

(L) €C (H) €C G(c/n)scAu Gmn).

CAut G Aut G Aut t

Thus (L) = Stab(G 2L 21) as stated.

CAut G
If G 1is solvable, by Gorenstein [9, 6.1.37, CG(Fitt G)
Fitt G. Thus if H =Fitt G and L 2 H = Fitt G , the above method

gives that C (L) =Stab(G 2L 21).

Aut G
For G a p-group, Thompson has proved (see Gorenstein [9,
5.3.11]) the existence of a characteristic subgroup C, called the
critical subgroup, such that
(1) class of C £2 and C/Z(C) is elementary abelian
(ii) [G, €] = 2(Cc)
(iii) CG(C) < 2(C).

With L =C 1in Schmid's method, C (C) =Stab(G =2C = 1).

Aut G

When G 1is supersolvable with a maximal abelian normal sub-

group M, CG(M) =M. If not, CG(M) 3 M, because CG(M) 2M. We



could refine the normal series G 2 CG(M) 2M=21 toa chief series.
Then there would be a normal subgroup N with CG(M) 2N z M.
Supersolvability forces the chief factor N/M to have order a prime
p. Thus N = <M, x> where x € CG(M) and xM generates N/M.
Since x commutes with M, we get G BN M and N 1is abelian, a
contradiction to the choice of M.

Thus if G 1is supersolvable and H 1is a maximal abelian

normal subgroup CG(H) = H. Schmid's method says that

CAut G(L) = Stab(G 2L =21)
for L = H.

Definition 1.14. For H 2K,

1

f ¢\ = {0 € Aut G|HY =1, K* =k, h" b ¢ K for all h € H} .

cAu

The next theorem gives us our first example of a closed
stability group.

Theorem 1.15. Let H < $(G), the Frattini subgroup of G.

If B = CAut G(G\H) then B 1is a closed stability group.

Proof: 1In [14], Schmid has shown that if A =C, . (G/%)
then vy G A" =1 for some n. Since [G, B] <H < 3, we see that
n -
B<A andthus yGB =1. B<BsC, (G/[G, B]). Since

(G, B] < H, we have C G/[G, B]) <C (G\H) =B and B =B

Aut G
is a closed stability group.

Aut G

In 1.15 B may be the identity subgroupswhich is always a
closed stability group for the trivial series G 2 1.
We will see in 1.21 that the question 'Which nilpotent groups

may be closed stability groups?'" may be reduced to '"Which p-groups



10

may be closed stability groups?'" First we must develop a few lemmas.

Lemma 1.16. Let A ¢ Té and 7 be the prime divisors of
A. If K 1is an A-admissible m'-subgroup of G, then A fixes K
pointwise.

Proof: yKA <yGAl forall i,and ycaA® =1 for
some n, SO A\K € TK. By 1.7, n(A\K) = n([K, A\K]). [k, A\K] is
contained in the mw' -group K, and n(A\K) < n(A) = n. Thus A|K =1
since it is botha mw and w' group.

Lemma 1.17. If A € Ié then vy G Ai =y G(Aﬂ)i Xy G(Aﬂ.)i
for i =1,2,...,n. Here n and n' are any two disjoint sets of
primes with mUn' =n(A) and A, = 1 S ,A ,= 1 S with

pen P T qen’
St the t-Sylow subgroup of A.

Proof: Induct on i. [G, A] = [G, An]-[G, Aﬂ.] since
Aﬂ, Aﬂ, < A. Theorem 1.7 says = = n([G, A]) and n([G, Aﬂ,]) =n'.
The two normal subgroups [G, A_] and [G, Aﬂ.] must now have trivia
intersection so the subgroup generated by the two is a direct product.

8

A generator of [G, A] must have the form g'lga with g € G,

a € Aﬂ and g ¢ Aﬂ. as A 1is nilpotent and thus the direct product

of A and A ,.
ut n

g e = g e @B e, A - 6, AT

Hence [G, A] = (G, Aﬁ] x [G, Aﬂ,].

1

For the case i+l 2 2 we again have vy G At 2y G(An)i+1 X

i+1 i+1
Y G(Aﬂ,) , because A 2 A_ X Aﬂ,. Since vy G(Aﬂ) < (G, Aﬂ]

i+1

and vy G(Aﬂ.) < (G, Aﬂ.] we again have that the subgroup generated

by the two is a direct product.

K’

1
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Take an arbitrary element (x,y) € vy G(Aﬂ)1 X ¥y G(Aﬂ.)i ,
a € A, and B € Ay Since [G, An,} is a nw' group that is A

admissible, we use 1.16 to see (xy)-l(xy)aa = (xy)-l(xdy)B

1 -1, a )B, <

%y € [6, An]"‘ = [¢%, A1°’1] =[G, A_] wvhich by 1.16 is

fixed pointwise by B so (xy)-l(xy)a'B =y Ly- 1xayB Since

1 x> € [G, A ] and y~ E (G, Aﬂ,] they must centralize each other

and  (xy) " xy)*® = 1x°’y Y8 ¢ yemy™t -

Y G(Aﬂ.)iﬂ. Thus
i+1 i+1 . .
Y G(An) Xy G(Aﬂ.) =yGA and by induction the theorem is

proved.

Definition 1.18. If p 1is a prime then OP(G) or just 0p
is the largest normal p-subgroup of G. If x 1is a set of primes

then OK(G) is the product of O (G) for every p € x«.

Theorem 1.19. If A 1is a closed stability group with A

i n(A )
and A , as in 1.17 then A = Stab(y G(A ) ) and
RLICEO I
A, = Stab(y 64 Y "
{ n(An)
Proof: We know from 1.10.i that A < Stab(y G(A ) )

1 MAD -1«
If o &« B = Stab(y G(An) )1=o then g g% ¢ [G, Aﬂ]. By 1.16

a fixes the characteristic subgroup Oﬂ.(G) pointwise and the normal
nilpotent n'-group [G, A ] is contained in 0“.(G). Let

(x,y) € yG Al =y G(An)i X y G(Aﬂ.)i, i21.

y-lx-lxaya

‘1 -1«
Yy x xYy

xy ™1y (xey) @

- x—lxa

because x-lxa c (G, An]’ y < [G, An.] and the two groups centralize
each other. Thus B < Stab(y G Ai) = Aﬂ X Aﬂ,. Since n(B) =

n([G, B)) € (G, A ] =1 B sA . We now have that A_ = Stab y(G Ari')
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' i
and since 7u was an arbitrary set of primes, An' = Stab(y G(Aﬂ.) ).

Theorem 1.20. If A and B are closed stability groups

with nw(A) and w(B) disjoint, thenm A and B commute and
<A,B>=A X B 1is a closed stability group.

Proof: In [137, Schmid proves that C = <A,B>=A x B
stabilizes a series and thus v G c" =1 for some n. Lemma 1.17
says \(GCi=YGAi )(YGBi for all 1 < i €£n. Let
C = Stab(y G ci)"fg).

m(C) = n([G, C]).

By 1.7, w(A) = n([G, A]), m(B) = n([G, B]) and

We calculate the prime divisors »f C by:

rr((-l—)

n(C)

= n([c, ¢

= n([Gc, A] x [G, B))

= n([G, A]) U n([G, BY)

= m(A) U n(B).

C stabilizes a series and is therefore nilpotent. We have

C = E where C is the n(A) (n(B)) -Hall sub-
(A) ﬁ(B) n(A)( n(B) (&) (n(B))

group of C. For a €C .,y and 120, [yGA', an) s

[\(GA (A)] £YG el because yGAi S'YGCi and En(A)

stabilizes (y G C )“(C). By 1.7 and 1.17, [y G AL, <a>]
i+1 i+1

(yGA XYGB )no(A)(c) which is Yy G A . Thus
c < Stab(y G A “(A) . S C 2 d C i
1(A) (y ) = A ince C 2 A an Cn(A) is the
mw(A)-Hall subgroup of C C = A. Likewise C = B, and

n(A) 1(B)
AXB=C =Stab(y G C )“(C).

Corollary 1.21. A 1is a closed stability group if and only

if for every p € m(A) a p-Sylow of A 1is a closed stability group.
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's" This direction is 1.19 with = = {p]}.
"<" By 1.20, A is a closed stability group.

Theorem 1.22. Let G be the semidirect product of H a4 G

and K, A = Stab(H > H1 >...2 Hn =1), and

B = Stab(G = HK 2 G1 2...2 Gs =H 2 Hl 2...2 Hn =1). 1f the auto-

morphisms of H induced by K are contained in C (A), then

Aut H

B 1is the semidirect product of Stab(G = G, =...2 Gs =H=>1) @B

1
by {p i kh — kh"|a € A} > A,

First note the following lemma:

Lemma 1.23. With the notation and conditions of 1.22, ﬁa
is an automorphism of G = HK.

Proof: g is well defined since every element of G is a

unique product of the form kh with k ¢ K and h € H.

Sy is a homormophism. Let k. h., and k,h, be elements of

K 11 22
_ 2
K-H. klhlkzh2 = k1k2h1 h2 so
) kz
a _ a
(k1h1k2h2) = k1k2(h1 hz)
k2 a, o
= kyky(hy ) hy
ak,
_ 2. o
= kykohy hy

because A commutes with automorphisms of H that are induced by

¢ @ ®
o _ o, o _ o o
K. Thus (k1h1k2h2) k1h1k2h2 (klhl) (k2h2) .

By is one-to-one and since G 1is finite % is an auto-

* 1
2 . = h o = ha [e 4 = - =
morphism. If 1 (k1 1) k1 1 then h1 k1 EHNK=1 and
klhl = 1.

Proof of 1.22: Llet ¢,8 € A. Since ¢GB = ¢a¢a, o~ ¢

"
a

is a homomorphism from A into Aut G. If 1.G =, then

1 = = . "o, " e.
H (¢a)|H a- Thus "o #, 1is an isomorphism, i.e
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A > {4, |o < A}
Let y € B and Y\H = q. Since y € B, o €A. ¢a'l fixes
K pointwise so it centralizes G/H. ¢ _, Wwas defined to have the
o

action of a-l on H so ¢ 4 € Stab(G 2 H 2 H1
Yo _q is an element of B ihat centralizes H so

Y¢a-1 € Stab(G =2 G1 z...2H21) and vy = (yg _1)¢a has the required
fo:m. All that remains to show is that {¢a\ad€ A}l N

2...2H =1) €B.
n

Stab(G = Gy 2...2H = 1) 1is trivial. For ¢ in the intersection
o

= d =
(q’a) \H L an ¢(1H) 1c‘
Theorem 1.24. If C = Stab(H X K =2 H X K1 2...2H X KS =

o

(ha,k) for every

]
"

¢01
HzH 2...2H =1), A = {g |(h,k

n

o € Stab(H 2 H, 2...2H =1)} and B

1 n

every B ¢ Stab(K 2 Kl 2...2 Ks = 1)}, then C 1is the semidirect

product of Stab(H X K=2H 21) qC by A x B.

{¢B|(h,k)* = (h,k%) for

i

Proof: By 1.22, C = Stab(H XK 2 H X K1 2...2H=>21) - A.

Let D =Stab(H X K =2H XK

1 2002 H X Ks =H=21), y€D and

Y the automorphism induced by y-l on HXK/H = K. The auto-

morphism Ly fixes H pointwise and induces y-l on HXK/H

so y—_7¢€ g. Examine the action of vy ¥~ oo the cosets kH,
Y Y
k € K.
W1 -
ay Y= 'm Y =,

Y¥—_7 centralizes KxH/H and H, so Yy~ € Stab(H X K 2 H 2 1)
Y Y
and vy = \N—_f v-'Y— € Stab(H X K2 H=2 1) - B. Thus
Y
C =Stab(H X K2 H=21) - B - A.

B‘A =B XA since ¢a¢e = $a¢ and A NB = 1.
o
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Let We¢a € B-A N Stab(H X K= H 2 1). Then for every h € H,

V.0 V.o

¢
h=h®%=n®_- ¥ and o = 1H' For every k € K, ke =k P = khk

for some hk € H, since v3¢a € Stab(H x K2H 21). 8 € Aut K so
ka =k and B = IK. Thus $B¢a =1 and C 1is the appropriate
semidirect product.

The next theorem could possibly be used to build up arbitrary

stability groups rather than just closed stability groups.

Theorem 1.25. Let G be nilpotent and § the isomorphism

Aut G L M Aut(S ) where Sp is the p-Sylow of G. A <€ Aut G
p||G|
is a stability group if and only if A* = I Stab(s ) where s
p|lc| P ’
is a series from the p-Sylow to the identity.

Proof: Since the theorem is trivial for p-groups, we induct

on the number of primes dividing |G|. Let s: G = G, 2 G1 2...2 Gn =1

be the series and Gi = Hi X Ki where Hi is the p-Sylow of Gi

and K, the p'-Hall subgroup of G, - We use the isomorphism

Aut G = Aut HO X Aut KO. For (91’62) € Aut “0 X Aut KO’ hi € Hi
and k, € K,
i i
-1 (91,62)
(91,92) € Stab(s) & (hi’ki) (hi’ki) € Hi+1 X Ki+1
9 5
-1.%1 -1 72
@ (hy byt kg k) € HLy XKy
) e1 € Stab(Ho 2 Hl >...2 Hn =1),
92 € Stab(l(0 >...2 Kn = 1)
By induction Stab(K0 2...2K =1)= 1 Stab(s ). Thus
n q
ql | %!
(01,92) € Stab(s) (91,92) € Stab(sp) X q\i‘[‘G\Stab(sq).

q#p
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The following theorem is very useful for producing auto-
morphisms and stability groups.

Theorem 1.26. Let A <€ Z(G) the center of G, g = gA and

a € Stab(s) then

Stab(G = A 2 1) = Hom(G/A, A)

by the mapping o + fa: é - g-lga.

Proof: (i) fa is well-defined. Let g = ga € G/A.

fa(§;) = (ga)'l(ga)a = a-lg-lgda, since o fixes A pointwise.
Because a € Z(G), fa(EZ) = g-lga = fa(é).
(ii) fa is a homomorphism. Let é1’é2 € G/A.

= 2y = -1 o
_ - l-laa
- 32 gl glgz

“la -1« -la .
g1 glgz gy since gl g1 € Z(G).

Thus £ (8) &) = £ (g))f (8,)-

(1ii) The mapping o - fa is a homomorphism. Theorem 1.11
says Stab(G 2 A 2 1) 1is abelian. For o,B € Stab(G 2 A 2 1) and
g € G/A,

R | aB
fa (8) =8

g(g)l‘"a
o Bo

g g (g )

lgogm1g8)
1o -1
g gdg g?

because g—lgB - A, which is fixed pointwise by . Hence
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fae(g) = fa(g)fa(g)

= (fafs)(s)

(iv) o - fa is a one-to-one mapping. When we use a multi-
plicative notation for G/A, A, and Hom(G/A, A), the identity of
Hom(G/A, A) is c,» the constant map to 1. If fa = c, then
1 = fa(g) = 8-1ga for every g € G. Thus g = ga for every g € G,
and ker(g - fa) is the identity of Aut G.

W o - fd is onto Hom(G/A, A). For @ € Hom(G/A, A),

define y: G - G by

g¢ = ggB
for every g € G, where B is the composition of G - G/A | A.
vo_ B 8
(8,82) " = 8,8,818)
B3 LN}

81818282 = 818

because g? « A £2(G). To show that § is an automorphism, take
x €G such that 1 =x' = xx®. This implies x ! =xP and is in
the image of B. The image of @ is in A and thus x-1 is in

the kernel of B. Since x 1€ ker B, 1 =xx® =x:1=x. Thus y
is a monomorphism and since G is finite, § 1is an automorphism.

-lg¢ = g-lgge = gB €A. If g =a € A, the equation

For g €G, g
becomes a-la* = ae =1 and a* = a. These calculations show

y € Stab(G 2 A =21).

£ (g) =g gt

g lge® = @°,

so § maps onto & as required.
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It might be noted that Hom(G/A, A) = Hom(G/G'A, A) in 1.26
because A is abelian and thus any homomorphism from G/A 1into A
will have G' 1in its kernel.

Corollary 1.27. Let A < Z(G) with A = ®.zl<yi> where

m 1=

each <y.> is a cyclic group, and G/G'A =ad % c_cj> where each
j=1

<x.,> is a cyclic group. Then

i

Stab{G 2 A 2 1} ~®Z £ o((|x,|, |y.]))-
yi

Here (\:-c \yi\) is the greatest common divisor of the

il

orders \).c , and \yi\ , and og(n) denotes a cyclic group of order n.

il
Proof: By 1.26, Stab{G = A = 1} >~ Hom(G/G'A, A),

Hom(® £ O-tj>, DL <Yi>) =® g ¥ Hom(<x,>, <yi>) since

. ]
h| i ji
Hom(H ® K, L) =~ Hom(H, L) ® Hom(K, L) and Hom(S, T ® U) =~
Hom(S,T) ® Hom(S,U). Let ‘;(j\ =n, \yi\ =m and k = (n,m). A

homomorphism f € Hom(<§j>, <yi>) is determined by its action on

the generator ;(j. xj = y’i' is a homomorphism if and only if
AD n\ .
(Yi) =y, = 1. This in turn is equivalent to m\nx. Since

(m,n) = k there are integers a,b such that am + bn = k. Thus
am), + bn) = k), and since m|nx, we have m|n) 1is equivalent to

k
m\k)‘ or (y:‘) = 1., Since there is only one such set of elements,

name ly <ym/l$, we have: f € Hom(cz >, <yi>) if and only if

h|
f(ij) € <ym/k>. If f£(x,)= ym/k we see that f°(x

i ] ]
=ysm/k. f has order m and generates Hom(c-cj>, <yi>)'

) = f(ij)... £(x,)

3

Lemma 1.28. Let A be an abelian p-group and X = <x>
a cyclic group of order pk >BEpA. If G =A XX then
B =Stab(G 2 A X {1} = 1) 1is a closed stability group isomorphic

to A.
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Proof: Let A =@ };".1<y1> where each <y1> is a cyclic
group and B = Stab(G 2 A )i( {1} 21). By 1.27, B >® g o(|x|, ‘yi‘)°
Since |X| >Exp A 2 \yi\, and both |x| and \yi\ ati'e powers of p
(x|, \yi‘) = \yi\. Thus Stab(G > A X {1} 2 1) ‘-“@)1: a(\yi\) >~ A.
In 1.26 one notices that [G, B] = <Image of f|f € Hom(G/A, A)>.
Since |X| > \yi\ then [G, B] = A x {1} and B must be a closed
stability group.

Theorem 1.29. Any abelian group A 1is a closed stability

group for some abelian group G.

Proof: Let Ap be a p=Sylow of the abelian group A. By
the previous lemma, Ap is a closed stability group for a p-group
Gp. Theorem 1.25 gives that T[] AP is a stability group for
G = ﬂGp, so ¥y G(Ap)n =1 forpsome n. Let D = Stab(y G A:) for

i=0,1,...,n. By1l.7,
n(d) = n(lG, 1] < w([G, Ap]) = ﬂ(Ap) = {p} .

Since the q-Sylows of an abelian group are characteristic, 1.16 says

that both D and Ap fix all q-8ylows pointwise for q # p. Thus
i

Y G(Ap) =y Gp(Ap)i and y G p! - Y chi for all 1 2 1. Since

D -Stab(YcA;),
i 1 i 1
GD =yGD =vGA) =+vGC (A)".
Y% Y YCAY) =y 6 (A)

Thus the restriction of D to GP, D\G is contained in

Ap = Stab(y Gp(Ap) i). If d€D fixesp Gp pointwise, d = 1 be-
cause D fixes the other Sylows pointwise. By definition, D is
the closure of Ap in Aut G so D=2 Ap and we have Ap 2 D‘G >
D2 Ap. Since every Sylow of A 1is now a closed stability group

1.21 says A 1is a closed stability group.



CHAPTER II1

STABILITY GROUPS OF p-GROUPS

This chapter deals with stability groups of p-groups, which
we have seen must aléo be p-groups (1.7). By applying 1.25, we will
know all possible stability groups for a nilpotent group G provided
we know the stability groups for each p-Sylow subgroup of G.

Theorem 2.1. Let G be a p-group, p a prime. If P is
a p-Sylow of Aut G then P 1is the stability group of a chief series.

gggggz The semidirect product GP is a p-group and there-
fore has a lower central series, GP = Fo 2 Fl 2...2 Pn =1 for some
integer n. By intersecting this with G we obtain
s:GzI‘lﬂGZFzﬂGz...zI‘nﬂG=1. Since FiQGP we have
Fi NG Q4G for all i and s 1is a normal series. Since (Fi)
is the lower central series of GP, Fr+1 2 [Fi, GP] 2 [Fi, P] for
all i. Because [g, P]1 <G for any g € G, we see that P
stabilizes s and consequently any refinement of 8. In particular,
if 8 1is a chief series that refines s, by 1.7, Stab(8) 1is a
p-group containing P. Thus P = Stab(8).

Corollary 2.2, Let G be a p-group of order pn, and P

a p-Sylow of Aut G. If c 1is the class of P then c¢ £ n-1.
Proof: The previous theorem says that P is the stability
group of a chief series which has length n, because \G\ = pn.
By 1.12, ¢ < n-1.
20
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Aut G induces a permutation group on the chief series of
G by 9: 8 - se for every 0 € Aut G, where se is defined in 1.2.
By 2.1, a p-Sylow, P, of the automorphism group of a p-group G 1is
the stability group of some chief series 8. Let Ps be the set of
chief series in the permutation orbit that contains s.

Theorem 2.3. Let G be a p-group. If k is the number of
pP-Sylow subgroups of Aut G, then k is less than or equal to the
number of chief series in any Ps’ where Ps is defined above.

Proof: Let P be a p-Sylow of Aut G and
s: G2G, 2...2 Gn = ] be a chief series with P = Stab(s). Since

1
all p-Sylows of Aut G are conjugate and pd - Stab(G 2 Ge 2002 G: = 1)

1

for @ € Aut G, we see that each p-Sylow is the stability group for
a chief series in Ps' Thus the number of p-Sylows of Aut G 1is
less than or equal to the number of elements (chief series) in the
orbit P .

8

The following definition was motivated by Kaloujnine's char-
acterization of the stability groups for an elementary abelian p-

group (See 2.20).

Definition 2.4. Let G be a p-group, and A < Aut G. A

is said to be of K-type if
(1) A is a p=group.
(2) A is normal in every p-Sylow of Aut G that contains A.
(3) A 1is the intersection of all p-Sylows of Aut G that
contain A.
Theorem 2.5. If G 1is a p-group and A 1is of K-type then

A 1is a closed stability group.
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Proof: Since A £ P for some p-Sylow of Aut G,
i
YvyGA syGP" for all i. By 2.1,yGPn=1 for some n and

n —
thus y GA 1. 1 for some n, < n. A =Stab(y G Ai) is a p-group

1
since n(Xj = n([G, A]) = {p}. We now have A < A< P, where Po
is a p-Sylow of Aut G. Let B = <P1\Pi > A and P, is a p-Sylow
of Aut G, 0 < i €£r>. Since A 1is normal in each Pi’ A QB.

By 1.10.iv (y G Ai)B =vG Ai for every 8 &€ B. According to 1.2,

A

Stab(y G Ai)

stab((y ¢ A1) ®)

= P,
Since each P1 that contains A is a p-Sylow of B, there exists
B - _B B
B, € B such that P 1. P, for each 1. Hence A = (A) 1 g P i . P,.
i r 0 i 0 i
This forces A < NP, =A. Thus A = A, which is equivalent to
i=0

saying that A 1is a closed stability group.

Corollary 2.6. If P is a p-Sylow of Aut G and G a

p-group, then P 1is a closed stability group.
Proof: P 1is trivially of K-type.

Corollary 2.7. Let |G| = pn, and A < Aut G be of K-type

and of nilpotence class k. 1If the class of G 1is c¢ then
c-1 < k < n-1.

Proof: Since A is an intersection of p-Sylows of Aut G,
and every p-Sylow contains Inn G, A » Inn G. The lower bound comes
from the fact that Inn G has class c-1, and the upper bound from
the containment of A in a p-Sylow of Aut G which by 2.2 has
class bounded by n-1.

By intersecting all p-Sylows of Aut G, we are led to the

smallest possible K-type stability group, OP(Aut G), which is
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contained in every K-type stability group.

Corollary 2.8. If G is a p-group and A = Op(Aut G),
then A 1is a K-type stability group for a characteristic series.

Proof: Op(Aut G) = N{P|P is a p-Sylow of Aut G} 4is normal
in Aht G. By 2.5, A = Stab(y G Ai). Since A q Aut G, 1.10.iv
gives (y G Ai)e =yG Ai for every 8 £« Aut G, i = 0,1,...,n.

Thus each vy G Ai is characteristic in G.

Let us note that if G 'is a p-group and A 1is a p-group
contained in Aut G, then y G A" =1 for some n. If A 1is also
the set of automorphisms fixing pointwise some normal subgroup H,
then A centralizes H-y G Ai/H-y G Ar+1, i=0,1,2,...,n. This

gives A < Stab(G 2 [G, A]'H 2 [G, A, A]J'-H=2...2H=21) <C G(H) = A,

Aut
and A 1is a stability group. In particular, if G is a p-group

and cAut G(H) is p-group for some H q G, then C

stability group.

Aut ¢ 1s @

i
Definition 2.9. If G 1is a p-group, Qi(G) =<x € G\xp = 1>.

When G 1is understood ai(c) may be indicated by Qi.
If G is an abelian p-group for an arbitrary prime p or
if G 1is a nonabelian p-group with p an odd prime then (See

Gorenstein [9, pages 178, 184]) C (ﬂl(G)) is a p-group and

Aut G
thus a stability group.

If G 1is a p-group and E 1is maximal with respect to being
a normal abelian subgroup of exponent pn >2,n=1,2,..., then

(See Blackburn [37) C is a p-group and thus a stability

Aut G(E)

group.

In [27], Adney and Yen investigated C (G/Z(G)) which

Aut G
they called Ac. There one may find the following definition and theorem.
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Definition 2.10. G is purely nonabelian if it does not have

an abelian direct factor.

Theorem 2.11. For a purely nonabelian group the correspondence

o~ f (sze 1.26) is a one-to-one map of A. onto Hom(G, Z).
o
Theorem 2.12. Let G be a p-group and Z be the center of

G. If G' 22 then
Ac = Stab(G 22 2 1) = Hom(G/G', Z).

Proof: G 1is purely nonabelian for otherwise its abelian
direct factor would be inside the center of G but not in the
commutator G'. By 2.11, \Ac\ = |Hom(G, 2)| = |Hom(G/G', 2Z)|.
A= Crut G(GIZ) > Stab(G 2 Z 2 1) >~ Hom(G/Z, 2) by 1.26. Since
G' 22, Hom(G/Z, Z) = Hom(G/G', Z). Thus A  2Stab(G 22 21) ~
Hom(G/G', Z) and since the orders of both ends are equal,

Ac = Stab(G 2Z 21).

Corollary 2.13. Let G be a p-group, and Z be the center

of G. If |2| =p and |G| > p, then Ac = Stab(G 2Z 2 1).
Proof: Since |G| > |2|, G is nonabelian. Thus
14#G'aG and G'NZ 3 1. Since |Z| =p, G' 2Z and the pre-

vious theorem gives the desired result.

Notice that if G 1is cyclic of order p then Ac = Aut G
but Stab(G 2 Z 2 1) = Stab(G 21) = 1.

Now we will calculate the stability groups for cyclic p-
groups.

Let G = <x> be a cyclic group of order pt, where p is
an odd prime. It is known (See Scott [15, page 117]) that Aut G

1+p

is cyclic of order pt-l(p-l) where q: x - x generates the
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p-Sylow of Aut G. The subgroups of G are
2

G "O(>2<xp>2 <xP

K a+p*
tX - X and any stability group is contained in <uo>.

> 2...2 1. The reader should note that
a
Lemma 2.14. With the notation above, and 0 € 1 < 1 + k,

i an integer, i + k =1,2,...,¢t,

p pk-l
<X > _
C<:a> i+k < >
<!p >
Proof:
3 o>t ot bt
o« €l T X T)T mx
<X >
i 3 i+k
= P LA -1 . e
wplla+p)d - 1120 mod p'*K
o (l-l-p)j -1=0 mod pk
® (1+p)j =1 mod pk
Since the multiplicative order of 1+p in the integers
mod pk is pk-l, this last statement is equivalent to pk-1 divides
k-1

j or aj € <ap > .

Theorem 2.15. For an odd prime p, let G = <x> be a cyclic

group of order pt, and o: x - x1+p. If pk is the largest index

of two consecutive groups in a series s: G = G0 2G, 2...2G_ =1,
k-1 . 1 n

t
then Stab(s) <ap > 1is cyclic of order p

G . [G.:6_,.]
+1
Proof: By the above lemma, C (—L——) =<nm(1)\m(i)="l'—l——‘>
—_— <> G P
i+1
n-1 G1
Thus Stab(s) = N C )
i=1 7 Gy
[6;:C 4]

n
n = max|-—————|>
<o:L1 { > }

‘<ap > .
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Let G = <x> be cyclic of order 2t > 4. 1t is known (See

Scott [15, page 121]) that Aut G = <5I> X «-I> where 5I: x - xs,

- h|
-I: x - x 1. The reader should note that (SI)j: X - xS .

Lemma 2.16. With the above notation and i = 0,1,...,t-k,

21
<X > _ Aut G if k=1
,itk ) = 2
<x > (51) if k>1

CAut G(

Proof: Case k =1.
Since there is only one subgroup of any given order, all subgroups

are characteristic. Thus Aut G induces automorphisms on

21 Aut G
X > o 5(2), and 2 C Aut o(2) = 1. Thus
21+1 21 ~
<x > c &2
Aut G 21'.+1
<x >
21
= X >
Aut G CAut G 21+1
<x >
Case k > 1.
i
2 i i 3 i,1.] i,6] i+k
j . <X > -2 2(51)_-225=2(5-1) 2
(51). €C,ue G(—21+k Y o x  (x ) =x x x € < >
<x >
02853 1) 20  moa 2K
@ 5j -1=0 mod 2k
esd = mod 2% .
Since the multiplicative order of 5 in the integers mod 2k
is 2k'2, this last statement is equivalent to 2k02|j or
j 21(-2
(51)- € <(51) >
,K-2 <x2">
* = x_ >
(*) Thus «<(5I) > CAut G( zi-i-k) N <5I> .

<X >
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C(Zi>
The following shows that -1 ¢ cAut G(—j;;;i—), k>1.
<x >
_21 21 -1 _2f+1 21+k
x (x ) = x ¢ < >
<xzi> <x21>
Since <5I> < CAut G ——;;;7— and -I ¢ CAut G ——;I;E— ,
<x > <
0!21> 0(21> 0(21>
B> = Cpue ¢ iz 0 M RT D Cpue o T R S Cpue ¢ 2 ) T O
<x > <x > <x >
2t k-2
<X > 2
* . = > 5 -
From (*) we have: CAut G( Zi+k ) = <(51) >.
<x &

Theorem 2.17. Let G = <x> be a cyclic group of order

2t >4, 1f 2k is the largest index of 2 consecutive groups in a

series 8: G =G, =2G, 2...2 Gn =1 then

<5I> X «-1I> = Aut G if k=1

Stab(s) = 2k-2 .
<(51) > if k>1
Proof: By lemma 2.16,
n-1 Gi
Stab(s) = N C ( )
j=0 AU GGy,
Gio
= CAUt G(G. +1)
i
0
Aut G if k=1
2k“2

<51 > if k>1

_ ok
where [Gio. Gi 1] = 27,

Of course when G 1is cyclic of order 2, Aut G = 1 and there

are no nontrivial stability groups. When G 1is cyclic of order 4
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x xs" is the identity mapping. In this case

Aut G = <-I> = Stab(<x> 2 <xz> 2 1.

The rest of this chapter deals with stability groups of
elementary abelian p-groups.

Kaloujnine, in [11], found a very nice characterization for
stability groups of elementary abelian p-groups. The proof given
here is mine since his was unavailable. By examples we see that
almost none of the interesting characteristics may be generalized
to stability groups of arbitrary p-groups.

In [(17], Suprunenko also deals with nilpotent subgroups of
GL(n,p) which is the automorphism group of an elementary abelian
p-group of order pn.

Before proceeding to Kaloujnine's theorem it is necessary
to fix the notation to be used and to prove several technical facts.

Let G be elementary abelian and

=1 be a series of subspaces. Con-

1 1
2,...,vj(1)] for

s: G=G 26 2...2G, =2G
n n 1

-1 0
struct a basis for G by picking a basis {vi,v

G Extend this set to a basis of G2 where the new vectors added

1
2 2 2 Conti thi ha

are {vl,vz,...,vj(z)]. ontinue 8 process so that

{vi,...,v;(i)} are the vectors used to extend the basis of Gi-

to a basis of Gi'

Definition 2.18. For A < Aut G, let

1

F(A) = {g € G\ga =g for all o € A} .

Lemma 2.19. Let G be elementary abelian with the above

notation. If A = Stab(s) then:
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i i
(1) A=(TE l-lomzp(G,G)\va -V, € ci_l]
1 veal=c

(111) G, = F(A).

Proof: (i) Every automorphism of Stab(s) must have the
required form. The matrix afforded sucha T by the basis {V;}i I
9

1 1 1 2 2 3 n
under the ordering vl’v2""’vj(1)’ vl""’vj(Z)’ v1""’vj(n)

has
the form i) (2)

Aoy

1@ { k O

j(3>}(o1

J(n){ : * 0

Since det T =1, T 1is an automorphism. T induces an automorphism

Gi+1

i

on each which fixes the generators. T therefore centralizes

Gt+1

i
(i1) A stabilizes s so Yy G Ai < Gn

each and T € A as required.

e We prove the

opposite containment by induction on 1{.

0 =
YG A G Gn-O'

Let 0 # w€G

n-i’
Define T: vn_1+1 - vn-i'+1 + w
1 1
v; - v; for all other 1i,j

s s w if s =n-i+1l and 7
(V)T - v_ = €G
T T
0 otherwise

[}
-

s-1 "



30

By (i) TEA and wE€ [Gn-(i~1)’ Al which by induction equals
(ye Ai-l, Al = yG Al and ve nave G _,<YG Al as required.
(iii) The last nontrivial term of a series s 1is always

fixed pointwise by Stab(s).

For u, v, 2$p€n,1<vsj(). Define 'r'"\" by:

i v1 + v} if i=p and j =v
(vOT = J
v i
vj otherwise
By (i) every ™ € Stab(s). If T a%v1 is fixed by Stab(s), then:
v i,j 9 ]
T a1 v1 =(z alvl)Tu

i,) j 3 i,j J ity

(¢ ai i 1

= v,) +a'v, .
i,3 1 v
Thus atvi = 0, forcing at = 0. Since p was an arbitrary integer
with 2 €, € n, the fixed point § alv; has nonzero coefficients
i,]
only when i =1. Thus I aivi © G, and G is the set of fixed
1,5 i 1 1

points of A.

Theorem 2.20 (Kaloujnine [11]). Let G be an elementary

abelian p-group and A £ Aut G. A is a stability group if and only
if A 1is of K-type.

Proof: By 1.7.iii, A must be a p-group.

We next prove by induction on |G| that A = Stab(s) P
for every p-Sylow P of Aut G that contains A.

If |G| = p, then |Aut G| = p - 1. Since every stability
group of a p-group is a p-group the only possible stability group

is {13.
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If P is a p-Sylow containing A, we may assume that P

fixes v1 Since A £ P, the points fixed by P are also fixed

1.
by A. P must fix a nontrivial vector because P is a stability
group by 2.1. Remember that v; was an arbitrary nontrivial point

fixed by A, so we could just as well have chosen v1 as a vector

1
fixed by P.
Since <Vi> is P and A-admissible, P and A induce auto-
* *
morphism groups P and A on G/<Ni>. Let
* ~
B = Scab(G/<v1> 2 G /<vl> 2...2 G /<vl> 2 1) and ~ indicate
1 n-1 1 1 1
an image in G/<v}>. Since G = G/<vi> ® <vi>, any automorphism

*
in B may be extended to an automorphism of G in A. Con-

* * * * * *
sequently A maps onto B , i.e. A =B . By induction A =B gP

* *
because A 1is normal in the p-Sylow containing P . By lemma 1.10.iv,
* *
Gi/<v}>, 0s1i<n is P admissible. Since A is a closed
~ . * .
stability group S(sl = NAut C(A ), i.e. for y € P,

1 - 1 .y ] 1 1 v
Gi/<vl> (Gi/<vl>) (Gi + <vl>)/<vl>. This forces G, = G + <v1
Gi and G: have the same dimension so G: = Gi and y ¢ S(s).

By lemma 1.10.vi, §(s) = N (A) so P normalizes A.
Aut G

Now we show that A = N{P|P 2 A, P a p-Sylow of Aut G}.

Let P be the p-Sylow of Aut G of the form

P = {T € GL(G) |matrix of T =1+ g aijeij for the basis
i>}

{v R ,...,v} ,vz,...,vz, ,v3,...,vn }
1772 im’1 i@ j(n)

Note that P 2 A. For 1 €£1i<n,1 <j < j(i) 1let
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i i i
*j: V1 -'Vj
1 i
Vj - V1
v: - vi (s,t) # (1,j) or (i,1)
We see that (*;)'1 - v; and ¢} €8(s) =N, . A).
*1
1% _ 1 i
(vy)P vy Y
i
= v;:P 'j
i i
= (v + Gy )Y,
i
= vj + Gi-l .
v i1
If g€ NP 3 then g: v, =v, +G , for all 1i,j. Thus
i, j j i-1
1 i i i
] ‘Vj ]
nPjsA. Since A = A st we have that A=ﬂPj.

i,j i,)
If we intersect more p-Sylows containing A then we still have

A = N{P|P is a p-Sylow containing A}.

The characterization of stability groups of p-groups as
all those automorphism groups of K-type cannot be extended to abelian
p-groups. In Example 3 of the Appendix, Aut G is a 2-group for an
abelian 2-group G and thus the only stability group of K-type.
There is a closed stability group, namely <T@>, that is a proper
nonnormal subgroup of Aut G, which is its own 2-Sylow.

If G 1is an elementary abelian p-group, any series is
formed by adding a direct summand to the previous term in the series.
The following theorem deals with similar series for groups which

aren't necessarily even p-groups. For related results see Shoda

[16].
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Theorem 2.21. Let G = H1 ®...® Hn with H, arbitrary

i
groups, Gi = H,y ®...®0 Hi for 1 £ i £n, and

A, = Stab{G 2G; 2 1}. If A =Stab{G =G =26 _, 2...2G, 2 1}

-1 1

then,

(1) A1<1A and

(ii) A = A1A2 .o An-l .

Proof: (i) Each Gi is A-admissible so

S S Stab(G 2 .

A SS(G 2 Gi 21). By 1.4, A £S5 = Gi 21 < NAut G( ab(G Gi 2 1))

(ii) To prove part (ii), induct on n, the length of the
series. For the case n = 2, we have the trivial statement
A = Stab(G 2 G1 21) = Al' Let y € A. By induction on n,
*‘Gn-l =a) e, where o, € Stab(Gn_1 26, = 1) <€ Aut G i

& = : - .o i
Extend each oy to o, aix lﬁn. (gl,...,gn_l,gn) ((gl,. ,gn_l) ’gn)'
The following calculations show that &i € Stab(G 2 Gi =2 1) for
i=1,...,n-2,
&1 a

(gl""’gi’l""’l) = ((gl"'°’gi’1"°"1) 1) = (gl""’gi’l""’l)'

Any g € G is of the form g = (x,gn) where x € Gn-l and
n € Hn

@ 1 -1 @ L,
g 8 i (x 8 ) (x i,gn) = (x 1x 1,1) € G, since

o € Stab(G__; 2 Gi z21).

(*) Let ¢ = ay e &g € Al ‘e An-z. le = @y cee @9 = W‘G .
n-1 n-1
The previous calculation shows that (;)-lv fixes Gn-l pointwise.
- -1
Since each &, €C, . (G/G) sC, (/G ), &, €Cy. cg6/6, -
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¥y centralizes G/Gn-l’ therefore (@)-1* centralizes G/Gn-l'

(;)-1* must now be in Stab(G 2 Gn 2 1) and

-1
V= o e Ay -+ A ,(A ) as required.

Corollary 2.22. If G 1is elementary abelian and

Ai = Stab(G 2 Gi 2 1) then Stab(G = Gn 2...2G_,. 21) =A, ... A

-1 1 1 n-1"

5
Examination of <x>, a cyclic group of order 3 , reveals
that Stab(s) need not be the product of stability groups of proper

subseries of s. For, if qg: x - xa, by 2.15

3
3 3 3 3
Stab(<x> 2 <x > §A<x > Q 1) = <a >

2 2 3 2

Stab (<x> g <x3 > g 1) = <a3 >
3 3 2 2

Stab (<> g <x3 > g 1) = <a3 > and
2 2

3 3 3
< >t<a ><a > .

Definition 2.23. A = Stab(s) is a minimal stability group

if A contains no other nontrivial stability groups.

Since the stability group of a series contains the stability
group of a subseries one might expect any Stab(G 2 H 2 1) to be a
minimal stability group. 1In this direction, we have

Theorem 2.24, 1f G 1is an elementary abelian p-group and

H 1is a proper subgroup, then Stab(G =2 H 2 1) 1is a minimal stability

group.

Proof: Let A =Stab@G =z H 2 1) and B be some other
stability group, 1 # B £ A, which by 2.22 may be assumed to have the
form B = Stab(G = K 2 1). By 2.19.ii, H = [G, A] and K = [G, B].

Then B <A implies K = [G, B] £ [G, A]

H. 2.19.1ii gives

]

F(A) = H and F(B) =K. Since B £ A, K=F(B) 2 F(A) =H and

K=H, i.e. B =Stab(G =2H 21) A.
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In Example 4 of the Appendix, Inn G = Stab(G 2 <a3> 2 1)
is not a minimal stability group.

There is an interesting relationship between the winimal
stability groups contained in the same p-Sylow of Aut G when G
is elementary abelian.

Lemma 2.25. Let G be an elementary abelian p-group,

A =Stab(G2H=1) and B =Stab(G 2K =21). If A and B are
both in the same p-Sylow of Aut G them K 2H or K <H.

Proof: <A,B> is contained in some p-Sylow P of Aut G,
which by 2.20 must normalize A and B. Again by 2.20 every
stability group is closed and according to 1.10.vii
§(s) = Npue ¢(Stab(s)). Thus AsN,  .(B) =8G=2k=1).
Assume that there exist 0 # vy € H\K and 0 # v: € K\H. Extend
{vi} to a basis of G by adding a basis of H and extending that

to a basis of G. Define T by T: vi - vi + H

vavh, dn #a.
] ]
ii ii 1
The computation (£ a,v,)T - T a,v, = a_v_ shows that T centralizes
i,] i) 1,3 i3 1 H
G/H. Also, if % a;v; € H then a: =0 and T fixes H pointwise.
i,]

Thus by 2.19.i, T € Stab(G 2H =1) =A. T ¢ 8(G 2K 2 1) since

i - vi + V4 ¢ K. This contradicts A < §(G 2K 21), so either

K<H or K=z2H.

v

In Example 3 of the Appendix, <TPB> = Stab(G 2 <x2y> 21)
and <Tp> = Stab(G 2 <y> 2 1) are closed stability groups in the
same 2-Sylow of Aut G but <x2y> N<y>=1.

Theorem 2.26. If G 1is elementary abelian, the product of

any two stability groups in the same p-Sylow of Aut G is again a

stability group.
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Proof: Let A = Stab(G = Gn 2 Gn-l 2...2 Gl 21) and
B = Stab(G = Km 2 Km 1 2...2 Kl =2 1) be contained in some p-Sylow
of Aut G. By Corollary 2.22, A = Al ces An-l and B = B1 .o Bm-l
where Ai = Stab(G = G1 2 1) and Bj = Stab(G 2 Kj 21). By 2.25

Ks 2 Gt or Ks < Gt for all s,t, 0 s s €m, 0 €t <n. We insert

the sets Kj into the series (Gi)' Let (Hi) be the series after

some of the K's have been inserted. If H, <K, and H £K ,

i j i+l j
then by 2.25 Hi+l 2 Kj. We insert this Kj, relabel the new series,
and continue the process until we obtain a series s: (Hi) made up
of all the G's and K's. By 2.22,

Stab(s) = Stab(G 2 H, 2 1) ... Stab(G =2 Hs 21) ... . Each

1

Stab(G 2 H, 2 1) normalizes the others because they are all in the

i
same p-Sylow. We may, therefore, rearrange the product and repeat

the same group if necessary to get Stab(s) = Al"'An ‘B,...B A-B.

-1 71 m-1
In 2.29 we will show that the characterization of stability
groups as those automorphism groups of K-type cannot be extended
from elementary abelian p-groups to arbitrary p-groups.

Lemma 2.27. Let G be a p-group with H § G. If H con-

tains a nontrivial subgroup normal in G, then
Stab(Gz2H=21) 31.

Proof: H 1is contained in a maximal subgroup M which is
therefore normal of index p. HNZ(G) X1 since H contains a sub-
group K @G which m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>