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ABSTRACT
THEORY AND APPLICATION OF CHRONOPOTENTIOMETRY

FOR MEASURING HETEROGENEOUS ELECTRON
TRANSFER KINETICS

By

Floyd Hilbert Beyerlein

A new method for measuring heterogeneous electron trans-
fer kinetics is described and developed theoretically. The
method is based on using chronopotentiometry with current
reversal to observe directly the overpotential associated
with a kinetically controlled redox reaction. A simple equa-
tion is derived which relates observed overpotential to
current density, bulk concentration of the depolarizer, and
the standard rate constant, Es. It is estimated by calcula-
tion that the method is useful for measuring rate constants
in the range 4 x 107™* < gs < 2 x 1072 cm/sec. An experimental
evaluation of the method for reduction of azobenzene is used
to establish that the above upper limit for gs is correct,
and that this limit is set by double-layer charging. These
experiments also were used to demonstrate that in practice
application of the new method is simple and straightforward.

In an attempt to extend the range of the method to

larger rate constants, the combined influence of double-layer
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charging and electrode kinetics on chronopotentiometry also
was examined. In this case theory could only be obtained

by numerical solution of nonlinear integral equations, and
therefore results are expressed as a family of working curves.
The working curves relate observed overpotential to current
density, concentration of depolarizer, and gs. Each working
curve depends on the value of the double-layer capacitance,
and therefore to identify the proper working curve, double-
layer capacitance must be evaluated independently. A pro-
cedure for doing this is described in detail. Reduction of
cadmium was used to é€valuate use of the working curves, and
also to compare calculated and experimental chronopotentio-
grams. The agreement between theory and experiment is excel-
lent, and it is estimated that values of Ks as large as 1.2
cm/sec can be determined with the working curves.

To perform the experiments two different instruments
were constructed from operational amplifiers. One of these
instruments pfovides for automatic current reversal at a
pre-selected Switching potential. The construction and opera-

tion of this instrument is described in detail.
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INTRODUCTION

An important part of modern electrochemistry is the
measurment of heterogeneous electron transfer kinetics.
The usefulness of such measurements in electrochemistry
exactly parallels those in classical chemical kinetics, and
therefore need not be detailed here (20). Unfortunately,
although the ultimate applications are the same, the actual
measurement of electrochemical rate constants is consider-
ably more difficult than the measurement of homogeneous
rate constants. Consider, for example, ac polarography,
which has been widely used in the past for measuring electro-
chemical rate constants (55). With this technique a small
amplitude ac perturbation is superimposed on a slow dc
potential scan. The frequency of the ac component is then
progressively increased until the rate of electron transfer
is no longer rapid enough to maintain electrochemical equi-
librium at the electrode surface. When this happens the
observed ac current begins to lag the applied ac voltage,
and the resulting phase angle and frequency are a measure of
the rate constant. Although relatively simple in principle,
ac polarography is fairly complicated from both experimental

and theoretical viewpoints. Experimentally, it requires



variable frequency ac and dc potential sources, a summing
circuit and electronic potentiostat, and sophisticated phase
angle detection circuits. To determine the rate constant

it is necessary to measure the frequency dependence of the
phase angle over a wide range of frequencies and at several
different dc potentials. These experimental data then must
be corrected for ohmic potential losses and double-layer
charging by fairly involved vector calculations (55), or
complex plane analysis (55). Diffusion coefficients and the
transfer coefficient also must be known, and therefore
evaluated independently.

Difficulties such as these in measuring heterogeneous
rate constants no doubt have contributed to the as yet rela-
tively limited number of applications of electrode kinetics.
Thus, the major objective of this research was to attempt
to develop a new method for measuring heterogeneous electron
transfer rate constants. The criteria for selecting the
method were that it be conceptually straightforward, simple
to apply experimentally, and require minimal data analysis.
Of several modern electrochemical techniques, chronopotenti-
ometry appeared at the onset capable of satisfying the
majority of these criteria. Since the reader may not be very
familiar with chronopotentiometry, the remainder of this
Introduction will consist of a brief description and review
of the subject. This also will provide a logical format for

describing the essential ideas of using chronopotentiometry



to measure electron transfer rate constants, which the re-
mainder of this thesis attempts to develop and evaluate in
detail.

Basically, chronopotentiometry is an experimental pro-
cedure which involves recording the potential of a stationary
electrode as a function of time during polarization by con-
stant current. The expected form of such a chronopotentio-
gram can be understood by considering the following hypo-
thetical experiment. Suppose that during the constant current
electrolysis it is possible to analyze the surface concentra-
tion of reactant (also called depolarizer) by removing
samples from the electrode surface at fixed times during the
electrolysis. Suppose also that it is possible to analyze
these samples by conventional polarography. The results of
this hypothetical experiment would be polarograms similar to
those illustrated in Figure la, where the dashed line,

1

1 onst’ represents the magnitude of the constant current used

for the chronopotentiometric experiment. Each curve, going
from top to bottom, represents a polarogram for the hypotheti-
cal samples taken at progressively longer times during the
constant current electrolysis. 1Initially, before the constant
current is imposed, the surface concentration of depolarizer
will equal its bulk value (Curve 1) and the electrode po-
tential will be at its equilibrium value (i.e., zero current
value, Point A). As soon as the constant current is imposed,

however, the electrode will be forced to assume a potential
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at which a faradaic reaction can proceed to consume the im-
posed current. Hence, as soon as the current is imposed,
the electrode potential will jump abruptly from Point A to
Point B, somewhere near the half-wave potential for the
depolarizer. As the electrolysis proceeds the concentration
of depolarizer at the electrode surface is continually de-
creased, so that at some later time the hypothetical polaro-
gram will look like Curve 2. Here, the concentration of
depolarizer is still large enough to sustain all of the con-
stant current (i.e., there is still 100% current efficiency
with respect to depolarizer), and the only effect has been a
small cathodic displacement of potential (from Point B to
Point C). As the constant current electrolysis proceeds,
however, eventually a condition is reached, represented by
Curve 3, where the surface concentration of depolarizer is no
longer great enough to maintain, by itself, all of the con-
stant current. Thus, in Curve 3 the hypothetical limiting

current for depolarizer is less than i . and therefore

=const.
the electrode potential must shift to a point (Point D) where
a new faradaic reaction (E.g., decomposition of the solvent
or supporting electrolyte) can supply the additional faradaic
reaction necessary to sustain the total constant current.
Hence, at this particular time during constant current
electrolysis there is an abrupt and rather large change of

potential. It is important to note that since the new

potential (Point D) corresponds to the limiting current region



for reduction of depolarizer, it follows that the. surface
concentration of depolarizer has gone to essentially zero.

If the potentials in Figure l1a (Points A, B, C and D)
are now plotted vs. the times at which they were observed,
the result is the chronopotentiogram shown in Figure 1b.
Hence, in general a chronopotentiogram eonsists of an ini-
tially abrupt change of potential to a point near the polar-
ographic half-wave potential, followed by a period of time
where the potential is nearly constant. This period is then
followed by another abrupt transition of potential, at which
time the surface concentration of depolarizer also drops to
zero. The time from the beginning of the experiment to the
second sharp potential change is termed the transition time
which is labeled 7 in Figure 1b.

The first mathematical analysis of the chronopotenti-
ometry experiment was published by Sand in 1901 (54). .Sand
derived an expression for the time dependence of surface con-
centration of depolarizer based on a semi-infinite linear
diffusion model. By defining T as the time at which surface
concentration of depolarizer becomes zero, Sand obtained the
following expression for transition time (now known as the

Sand equation):
v ¥ - nreTD/2i (1)
o) 0 0

There n is the number of electrons transferred in the elec-

trode reaction, F is the Faraday, gg is the analytical



concentration of depolarizer, 20 is the diffusion coefficient
for the depolarizer, and iO is constant current density.

An interesting feature of the Sand equation is that it
is derived without assuming a model for the electron trans-
fer reaction. Thus, the transition time is the same for both
reversible and totally irreversible electrode reactions. The
shape of the entire potential-time curve does, of course,
depend on reversibility of the ele¢trode reaction. For ex-
ample, for reversible electron transfer, the chronopotentio-
gram is descéribed by substituting surface concentrations
derived by Sand into the Nernst equation. 1In this case it is
easily shown (16) that the potential at t = 7/4 (the so-called
quarter-wave potential) is identical with the classical poiar-
ographic half-wave potential.

Although theoretically the transition time is a well-
defined quantity, experimentally it is frequently found that
chronopotentiograms exhibit distortions which make measurement
of T ambiguous. As a result a number of empirical methods for
measuring T, usually based on some graphical construction,
have been developed over the years (48). One of these methods,
which will be referred to frequently in the remainder of this
thesis, is due to Berzins and Delahay (3), and is illustrated
in Figure 2. Their method is derived from a similar construc-
tion commonly used in the measurement of half-wave potentials
on conventional polarograms. The method is applied in the

following manner. Line AB is drawn tangent to the curve at
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Point A and CD is drawn tangent to the curve at Point D.
Since the polarographic half-wave potential is at t = T1/4,
Points E and F are located at one-fourth of the distance
between A and C, and B and D respectively. A line joining
Points E and F intersects the curve at the half-wave poten-
tial, and the length of the line drawn through the point of
intersection of Line EF with the curve, parallel to the time
axis and bounded by Lines AB and CD, is taken as a measure
of T.

The instrumentation required for chronopotentiometry
can be extremely simple, and is one of the virtues of the
method. For example, many literature applications of chrono-
potentiometry are based on the use of simply a battery and
large resistor as a source of the constant polarizing current.
Of course, more sophisticated circuitry can be used and is
necessary in applications such as current reversal ‘gigg
infra). Recording of potential-time curves is usually
accomplished with a potentiometric recorder, or oscilloscope,
depending on the time scale of the experiment.

The applications of chronopotentiometry are extensive,
ranging from purely analytical to measurement of kinetics and
transport properties (14). The analytical applications in
general are straightforward, and based on the fact that T is
proportional to depolarizer concentration. Since 7T varies
as the square of depolarizer concentration, the method in

principle is more sensitive than techniques like polarography.
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Analytical applications have been reviewed by Everett, Johns,
and Reilley (24).

The major applications of chronopotentiometry have been
in the study of electrolysis mechanisms and the measurement
of rates of chemical reactions coupled to the depolarizer or
product of the electrode reaction. 1In these applications
chronopotentiometry is especially useful diagnostically, since

-4

in the absence of kinetic complications it“ is a constant
independent of current density (cf. discussion of Sand equa-
tion) . For example, the presence of a chemical reaction
preceding the electron transfer is easily detected by a
decrease of lré with increasing current density (28).

In this case the test is especially useful because it is un-
affected by reversibility of the electron transfer (vide
supra). This is in sharp contrast with most other electro-
chemical techniques where preceding chemical reactions and
slow electron transfer behave similarly.

Another important class of reactions where chrono-
potentiometry has been used very successfully are fodlowing
chemical reactions, i.e., chemical reactions involving the
initially formed product of the electron transfer. The ad-
vantage of chronopotentiometry in this case derives from the
fact that a stationary electrode is used, and therefore
products of the electrolysis accumulate near the electrode

surface and can be studied by re-oxidation (in the case of an

initial reduction). The re-oxidation is accomplished by
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abruptly reversing the direction of current flow. With this
approach, known as current reversal chronopotentiometry,
chronopotentiometric waves are observed directly for both the
reduction and oxidation processes. A typical example is
shown in Figure 3 for reversible electron transfer, with cur-
rent reversal at the first transition time. 1In this case the

first transition, labeled T corresponds to reduction of

FI

depolarizer, and the second transition, = corresponds to

R
oxidation of the reduced form of depolarizer. When the re-
duced form is chemically stable, it is easily shown (4) that
the ratio of transition times, TR/TF, is one-third. Clearly,
if the reduced form is chemically unstable, in general TR/TF
will be less than one-third, since less of the reduced form
will be available for oxidation. Moreover, the magnitude of
the effect will be a function of current density, since, for
example, if TR is small with respect to the life-time of the
reduced form, then essentially all of the reduced form will
still be oxidized. Thus, by observing the variation of TR/TF
with current density the presence of this class of reactions
is easily detected, and quantitatively correlated with the
chemical lifetime of the reactant (22,56).

Two other areas in which chronopotentiometry has been
extensively employed are adsorption studies and measurement
of diffusion coefficients. In the former area the technique

enjoyed considerable popularity in the early part of the last

decade, until the advent of chronocoulometry (2). Since then
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the use of chronopotentiometry for adsorption studies has
been severely criticized (40), and presently has been essen-
tially replaced by chronocoulometry. Measurement of diffusion
coefficients usually has been based on direct application of
the Sand equation, under conditions where all parameters in
Equation 1 are known except the diffusion coefficient. The
meaning of diffusion coefficients measured in this manner
recently was analyzed in detail by Laity and McIntyre (39),
who were interested primarily in measuring transport proper-
ties of fused salts.

Finally, chronopotentiometry has been used for measuring
heterogeneous electron transfer rate constants, but these
applications always involve data analysis and interpretation
roughly as complicated (1) as those ascribed above to ac
polarography. The approach to date is based on analysis of
single cathodic (or anodic) polarization, so that the rate
constant for the reverse reaction (anodic reaction in the
case of cathodic polarization) must be estimated indirectly.
It appeared, however, that by using current reversal, a more
direct and conceptually simpler method could be devised,
which apparently would satisfy the criteria stated at the
beginning of this Introduction. The essential ideas of this
new method for measuring standard electron transfer rate con-
stants (or exchange currents) are as follows.

With current reversal chronopotentiometry, the potentials

at which oxidation and reduction occur are observed directly
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(cf. Figure 3). For a reversible electrode process, by
definition oxidation and reduction occur at the same
(equilibrium) potential--i.e., there is no so-called over-
potential between the forward and reverse reactions. For
example, the curve of Figure 3 corresponds to reversible
electron transfer, since the forward and reverse quarter-wave
potentials are identical and equal to the reversible half-
wave potential. If the reaction were not perfectly reversible
the activation energy associated with the electron transfer
would appear as a finite overpotential between the reduction
and oxidation reactions. Now consider the following hypo-
thetical experiment involving some simple redox system
characterized by its standard rate constant, gs. For some
given current density the rate of the electrochemical reaction
will be large enough that even though electrode potential
changes continually during the course of the chronopotenti-
ometric experiment, essentially equilibrium conditions will
be maintained at the electrode surface. Under these condi-
tions there will be no apparent overpotential between the
forward and reverse chronopotentiograms. Now consider the
effect on this same system of progressively increasing the
current density. As current density is increased the transi-
tion time decreases (cf. Equation 1), so that the rate at
which the electrode potential changes increases. As this
happens a point should be reached where the kinetics of the

electron transfer are no longer rapid enough to maintain
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electrochemical equilibrium at the electrode surface, and
this condition should evidence itself as an overpotential
between the forward and reverse chronopotentiograms. Thus,
as current density is increased one would expect the differ-
ence between forward and reverse quarter-wave potentials to
increase from zero. Hopefully, one should be able to corre-
late this directly measured overpotential with the associated
current density and the standard electron transfer rate con-
stant for the redox system. This correlation was accomplished
successfully, and a description of that theory constitutes
the next major section of this thesis.

As will be seen the theory proved to be as straight-
forward as the conceptual basis of the method. Thus, it ap-
peared that a truly simple method had been developed which
satisfied most of the criteria stated earlier. The scope and
practicability of the new approach were next evaluated ex-
perimentally with some model chemical systems. In the course
of this evaluation, the results of which are presented later
in this thesis, it was concluded that the major limitation
of the method was the interference of charging current, which
set the upper limit of rate constants that could be measured.
Charging current is a term used to indicate the fact that an
electrode in an electrolyte solution behaves like a capa-
citor, and therefore current (charging current) is required
to change the electrode potential. Thus, in an electrolyte

considerable structuring occurs at the interface of a charged
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electrode (45). For example, if the electrode is negatively
charged then the solution adjacent to the electrode consists
predominately of cations, a structure referred to as the
electrical double-layer. If the charge on the electrode is
changed by an external source, then a restructuring of the
double-layer occurs, and this movement of ions results in a
net flow of current. At high current densities with chrono-
potentiometry the relative importance of double-layer charging
increases because the rate of change of electrode potential
increases. Hence, since high current densities are required
to measure large rate constants, it is apparent why the new
method was limited by double-layer charging.

Under conditions where double-layer charging is neglig-
ible, chronopotentiometry theory is straight forward and
results can be expressed in closed form, as mentioned above.
Unfortunately, to include double-layer charging in the theo-
retical model makes the mathematics virtually intractable.
Thus, prior to 1968 all attempts to account for double-layer
charging in chronopotentiometry were empirical. In 1968
three groups independently published theoretical calcula-
tions for chronopotentiometry based on a rigorous mathemati-
cal model that included double-layer charging (21,50,53).
These papers provided the first quantitative basis for evalu-
ating the influence of double-layer charging on chrono-
potentiograms. Unfortunately, none of these papers treated

the case of kinetically controlled electron transfer, and
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therefore none of the results was directly applicable to the
case being considered here. 1Indeed, because of the mathe-
matical complexity, it seemed unlikely that any theory could
be developed to include double-layer charging and still
satisfy the criteria of simplicity set forth above. On the
other hand, Olmstead and Nicholson (50) showed that the method
of Berzins and Delahay gives accurate values of the quarter-
wave potential even in the presence of extensive double-layer
charging. Thus, the possibility presented itself that using
the method of Berzins and Delahay, or some modification there-
of, the simple theory could be used directly, thereby con-
siderably extending the range of applicability of the new
method. Based on this possibility, and the fact that a more
detailed analysis of the influence of double-layer charging
should be useful per se, it was decided to attempt the appro-
priate theoretical calculations. The last major section of
this thesis presents this theory for a model which includes
both kinetically controlled electron transfer and double-

layer charging.



THEORY FOR THE CASE OF NEGLIGIBLE
DOUBLE-LAYER CHARGING

Once again, the objective is to develop an expression
for overpotential between the cathodic and anodic parts of
a current reversal chronopotentiogram for a kinetically con-
trolled redox reaction. Based on the conceptual idea of the
proposed method, it is anticipated that the overpotential
will be proportional to current density, and inversely pro-
portional to the rate of the redox reaction.

The redox reaction can be symbolized as follows
k
O + ne X R I
LY
where Ef and Eb are the heterogeneous rate constants for
electron transfer, and hence are functions of potential.

The potential dependence of ke and k is given by the follow-

ing well-known equations (38):

ke = k exp [(-anF/RT) (E-E°) ] (2)

f

k

b ksexp[(i-a)nF/RT)(E-Eo)] (3)

There Ks is the common value of Ef and Eb at the standard
equilibrium potential (§?), and is directly proportional to

the standard exchange current density (38). a is the

21



22

transfer coefficient and other terms have their usual mean-
ing.
The rate equation for Reaction I can be written in terms

of the flux and surface concentration of O and R:
FLUX = kaO(O,t) - kbCR(O,t) (4)

where the first index on concentration represents distance
from the electrode surface (zero in this case) and the second
index represents time during electrolysis.

The problem now is to substitute in this rate law ex-
pressions for the temporal dependence of surface concentra-
tions during the entire current reversal experiment, as well
as expressions for potential dependence of Ef and gb, and
from the result obtain a (hopefully) simple expression for
overpotential. Since the chronopotentiometry experiment is
performed under conditions designed to make diffusion the
only source of mass transport, the concentrations can be
calculated by solving the appropriate Fick's law diffusion
equations. These results already are available in the litera-
ture (1), and could provide the starting point for the present
treatment. However, to make the discussion more lucid and
cohesive, the entire derivation starting with the Fick's law

boundary value problem will be presented.

Boundary Value Problem

To account for concentration polarization, linear diffu-

sion is assumed to be the only source of mass transport.
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The appropriate diffusion equations are

2

d C
€, _p o0 (5)
st T 0%E

for the oxidized form of the couple, 0, and

2
ocC o-cC
R _D. Y “R
fo,t - R axz (6)

for the reduced form, R. These partial differential equa-

tions are to be solved for the concentration of O and R as

a function of distance from the electrode surface, x, and

time during the electrolysis, t. To obtﬂin explicit solutions

the following initial and boundary conditions will be assumed.
Initially, the concentration of depolarizer at any point

in solution is given by the bulk concentration value, which

*
will be represented as CO. It will be further assumed that
substance R is generated in situ, and is therefore initially
absent from the solution. Thus, stated mathematically, the

initial conditions are
t=0; x)0 c.=C.; C_=0 (7)

For the first boundary condition it will be assumed that
conditions of so-called semi-infinite diffusion prevail. 1In
other words, it will be assumed that the thickness of the
diffusion layer developed during electrolysis is much less
than the dimensions of the entire solution. It is easily

shown that this condition is satisfied whenever the walls of
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the electrolysis cell are greater than a few millimeters from
the electrode surface (52). Stated mathematically, this
boundary condition is

*

—» C.; C.—~» 0 (8)

0]

The second boundary condition is a statement of mass
balance for O and R at the electrode surface. The quantity
of electroactive species diffusing to the electrode can be
expressed in terms of the surface flux, defined by the follow-

ing expression

(1

FLUX =D g%] o (9)
x:

Thus, the final boundary condition is simply

t30; x =0 DOaCO = -DRBCR (10)
X ox

Since it has been assumed that only substance O is
initially present, the forward part of the chronopotentiogram
consists of the reduction of O at a constant current density,

ip. Arbitrarily, current reversal will be introduced when

the forward transition time, T is reached. The current

Fl
density after reversal will be labeled i_, and the resulting

anodic transition time will be designated = By convention

R.
TR will be measured from the forward transition time, rather

than from t equal zero.
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The flux is related to current density by Fick's first

law, which for the present case takes the following form

O<t<tLi x=0
aco
Do =% = 1F/nF (12)
TpStLTpi x=0
acR
Dp 5x = ~ ig/nF (12)

or written in terms of the flux of O

TpltLip;: x=0

acR aco
DR =Sx - - Do =« - RilF/nF (13)
where
R, = iR/iF (14)

The above boundary value problem must now be solved for
the surface concentration of O and R as a function of time.
The only potential difficulties might come from the fact that
the last boundary condition (Equations 11 and 12) is discon-
tinuous, but as shown in the next section this problem is

easily handled with the Laplace transform operator.

Solution of the Boundary Value Problem

The discontinuous boundary condition is easily handled
by first transforming Equations 5§ and 6 into integral form,
and then incorporating the boundary condition. Laplace
transformation of Equations 5 and 6 leads directly to the

following expressions (52):



Colt) =¢4 - f (15)
JﬂDo 0 ~Nt-x
f.(t)dax
cglty = ==~ & 2 (16)
VWDR 0 Nt-x

where the symbol fo(t) is used to represent the surface flux
of substance 0. Prior to current reversal the expression

for flux is given by Equation 11, and after current reversal
by Equation 13. Thus, substituting Equations 11 and 13 in
Equations 15 and 16, and performing the indicated integrations

leads to the following expressions for surface concentration

oty
) = cg 2igt? (17)
c.(t) =Cc, - —m— 17
0 0 nEJwDO
ZiFyté
Cplt) = ——— (18)
nFJvDO
TSty
M 2iFt§‘ Z‘i.F(i—R.)(t-ﬂF)é-
Colt) =cy - + — (19)
nFVnDO nFVnDO
ZiFyti ZiFy(i—R.)(t-TF)i
CR(t) = ——— - = L —= (20)
nEJnDO nFVnDo
where
vy =~ND./D (21)
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By introducing the above expressions into the rate equation
(Equation 4) together with expressions for k. and kg
(Equations 2 and 3), the following equations for the potential-

time curves are obtained

OﬁﬁjﬁF

pexp [ag(E)] =1 - yé - yééxp[g(E)] (22)

T.<t<t

F R

pRiexp[ag(E)] =1 + (1-R.)(y—1)é - yﬁ +
* (23)
[(1-R) (y-1F = y¥ Jexplg(E)]

Terms in Equations 22 and 23 not previously defined have the

following definitions

p = iy (bg)* % /mrx ) (D) %2 (24)
y = t/TF (25)
g(E) = (nF/RT) (E-E}) (26)

where gﬁ is the conventional polarographic half-wave poten-

tial.

Calculation of Potential-Time Curves

Equations 22 and 23 describe the potential-time behavior
for the entire chronopotentiometric experiment. Unfortunately,

because these equations are nonlinear, in general, they cannot
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be solved explicitly for g(E), and therefore to calculate
g(E) as a function of y (dimensionless time, see Equation
25) would require numerical solution of Equations 22 and 23.
Of course, if the only objective is to construct theoretical
potential-time curves, then it is simpler to consider y as
the dependent variable, because Equations 22 and 23 can be
solved explicitly for y. Thus, prior to current reversal,

one obtains from Equation 22 thé following expression for y:

og;ng

yé =1 - pexp[ag(E)] /1 + exp[g(E)] (27)

The explicit solution for y in Equation 23 is less obvious,
but can be obtained as follows. After expanding the last
term on the right hand side of Equation 23, and collecting

similar terms and factoring, the following expression is ob-

tained
(1R (y-0F - ¥ = k@) (28)
where
PR, exp [ag (E)] - 1
K(E) = 1 ¥ explg (E)] (29)
*>

Equation 28 is of the form of a quadratic in the y<, as can
be seen by squaring both sides and transposing all terms to

one side of the equality. The result is

y[(L-R)Z - 1] - 2K(E)y® - [(1-R,)2 + K2(E)] = O  (30)
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-

An expression for y“ is obtained directly by applying the
quadratic equation to Equation 30. Only the positive root
is retained, because the negative root does not give values
of y which correspond to those calculated from Equation 23
for the same value of g(E). Thus, after current reversal

the expression for time as a function of potential is

TpLtLTy

y} _ K(E)+[K2(E)+[(1-Ri)2-1][(1-Ri)2+K2(E)]}§

(1-R;)2-1 (51)
Equations 27 and 31 can be used to construct theoretical
potential-time curves without performing extensive numerical
calculations. Potential-time curves calculated in this manner
for three values of p are shown in Figure 4. These potential-
time curves clearly illustrate the anticipated effect of cur-
rent density and kinetically controlled electron transfer.
Thus, from Figure 4 it is apparent that increases in current
density (increases in p) do lead to the introduction of an
overpotential between the cathodic and anodic reactions.
Curves like those of Figure 4 also depend on two other para-
meters, a and Bi' and therefore the influence of these para-

meters on potential-time curves also must be considered.

Effect of R. . gi is the ratio of reverse to forward
e §
current densities and as such determines the relative size

of transition times. Most often R, is -1--i.e., current
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densities of equal absolute magnitude are used before and
after current reversal--and as mentioned earlier the ratio
TF/TR in this case is 3. If values of gi less than one are
employed, then the ratio TF/TR can be made close to unity,
which has obvious advantages in terms of the precision of
experimental measurements. This fact, and the effect of Bi
in general, are illustrated by the curves of Figure 5.

To select optimal values of Bi for experimental pur-
poses, it would be useful to have a relationship between R,
P’ and TR* Such a relationship can be obtained by evalu-
ating Equation 20 at t = 71

T
R’ and recognizing that at this
time the surface concentration of R will be zero. The result,

after rearranging to solve for TF/TR, is simply
o/Tp = (1-R.)Z -1 (32)

Thus, for example, to have exactly equal transition times,

one would use a value of R, equal - 0.414.

Effects of p and g. Both p and o affect the potential-

time curves of Figure 4, and in general these effects cannot
be separated. However, some limiting cases exist where the
relationship between g (E), R/ p. and o can be stated ex-
plicitly. For example, as p approaches zero (small iF

and/or large Es)’ the redox reaction always is in equilibrium,
and Equations 27 and 31 reduce to the following well-known

relationships which are independent of kinetic parameters (17)
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0£;<TF
g(E) = 1n[(1-y®) ¥ (33)
Tpst<Tp
1+ (R (y-1)F - 42
g(E) = 1n (34)

y¥ - @-R,) (y-1)?

It was found that potential-time curves are described by
Equations 33 and 34 within 2-3mV whenever p is less than 0.01.
A second limiting case arises when p is sufficiently

large (large and/or small Es) that the processes of oxida-

ig
tion and reduction can be treated separately as the totally
irreversible case (large overpotentials) (15). This is equiva-
lent to neglecting the back reaction [i,é., the term KbCR(O,t)]
in the original rate expression. Results can be derived from
that formalism, or more directly by taking the limit of
Equations 27 and 31 as b becomes large. With the latter ap-
proach it also is necessary to recognize that terms like

exp [g(E) ) approach zero as p increases, because of the large

overpotential. With either approach the final results take

the following form (18)

OﬁpiTF

ag (E) = ln[(i-y})/p] (35)

T <tLT

F R

(1-R,) (y-1) ¥ - ¥
Rip

-(1-a)g(E) = 1n (36)
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It was found by calculation that potential-time curves are
described within 2-3mV by Equations 35 and 36 whenever p is
greater than 2.5.

Generally a affects potential-time curves in the ex-
pected manner. Thus, for p<0.01, curves are independent of
a(cf. Equations 33 and 34). Forp>2.5, the effect of a is
given explicitly by Equations 35 and 36. For values of p
between these limits, a affects both the symmetry of potential-
time curves, and their position on the potential axis. These
effects are illustrated in Figure 6 where theoretical chrono-

potentiograms are plotted for three values of a.

Overpotential, AE, as a Measure of k. . With current
-~

reversal chronopotentiometry the potentials at which oxida-
tion and reduction occur are observed directly, and it is
clear that the effect is the same as anticipated in the
Introduction. Of course, to obtain a quantitative correlation
between overpotential and the standard rate constant it is
necessary to select a fixed reference time during the forward
and reverse parts of the potential-time curves from which to
calculate overpotential. An obvious choice for this reference
point is the time at which the potential is equal to the
reversible half-wave potential in the zero overpotential
case--i.e., the so-called quarter-wave potential defined
earlier. To do this it is necessary to determine precisely
the times relative to the respective transition times

(TF and TR) where the potential is equal to the half-wave
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potential. Once this is known overpotential can be calculated
as the difference of potential at these two times. Although
the choice of reference is essentially arbitrary, this gé
reference has the advantage that overpotential will be zero

in the reversible case, so results will not be complicated by
concentration overpotential.

The times at which the potential is equal to the reversi-
ble half-wave potential can be obtained from Equations 33 and
34 for the forward and reverse parts of the potential-time
curve respectively. To evaluate these times it is necessary
to recall that g(E) is zero at the half-wave potential (see
Equation 26), which is equivalent to the argument of the
logarithmic terms being unity. Thus, by setting the argument
of the logarithm in Equation 33 equal to unity and solving
for y, it is found that the half-wave potential occurs when
y = 0.25 (hence the name quarter-wave potential). The cor-
responding time for the reverse part of the curve is obtained
as follows. After setting the argument of the logarithm term
in Equation 34 equal to uniéy and collecting like terms the

following equation is obtained
1+ 2k(y-1)% - 2y = 0 (37)

where

K = (1—Ri) (38)

Equation 37 can be written in the form of a quadratic by

transposing the (xfl)é term to the right hand side of the
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equality and squaring both sides of the expression to obtain
2_ & _ 2 _
4(K-1)y + 4y (4kK= + 1) =0 (39)

After solving for y by application of the quadratic equation,
and retaining only the positive root, the following expres-

sion for the value of y at which gﬁ occurs is obtained

—1+[1+[(1-Ri)2—1][4(1—Ri)2+1]]} (40)

Yg(E)=0
: 2[(1—Ri)2-1]

Thus, for example when R. equals -1, from Equation 40 gé
occurs at y = 1.0716. Since TR is to be measured from Tp
(where y equals 1) this corresponds to y equal 0.0716 relative
to Tp- Or, since with Bi = -1, TF/TR is 3, the time on the
reverse part of the potential-time curve corresponding to gﬁ
is 0.215 TR* Interestingly, this time is not precisely a
"quarter-wave" potential for the reverse part of the chrono-
potentiogram. Potentials corresponding to these two times
(0.25 and zg(E)=O) hereafter are referred to as E; and Ep
respectively. AE will then be the difference between Eqx and
By (~Eg-Eg) -

The effect of a on AE is shown in Figure 7. Because
for the mechanism being considered here a is typically about
0.5, and rarely outside the range 0.3-0.7, these data of
Figure 7 show that for reasonable values of a, the parameter
AE tends to be independent of a, the dependence becoming less

as p decreases. The explanation of this fact is that as a
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varies both §F and Eq shift in the same direction, and these
shifts tend to cancel in terms of AE. Nevertheless, for
extreme values of a near O or 1, AE is markedly dependent

on a. The reason for this fact is that, for example, as a
approaches 1, gF tends to be independent of a (see Equation
35), whereas E; tends to vary exponentially with a (see
Equation 36).

The fact that for small values of p and reasonable values
of a, AE is independent of a is important for two reasons.
First, when AE is independent of a, AE is determined uniquely
by p, and therefore AE is a simple measure of p, and hence gs
(see Equation 24). Second, for the special case of a equal
0.5, Equations 27 and 31 take the form of a quadratic equa-
tion and both can be solved explicitly for g(E). This means
that an equation can be derived for AE which always is valid
when a equals 0.5, and which, depending on p, may be exact
for any a between 0.3 and 0.7.

Thus, by restricting the discussion of the case of a
equal 0.5, it should be possible to derive an explicit expres-

sion for overpotential. Introducing a of 0.5 into Equations

27 and 31 leads to the following equations

OitSTF

Y}x2+pX+y§-1=0 (41)

TpiﬁSTR
[(1-Ri)(y-1)§ - yJ"']x2 - PR;x + (1-Ri)(y—1)é - yé41==0
(42)
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where

x = exp[0.5 g(E)] (43)

Equations 41 and 42 can be solved directly for g(E) by
use of the quadratic equation. The positive roots are re-
tained in both instances, since negative roots lead to un-
defined values of g(E). Thus, the pertinent solutions of

Equations 41 and 42 are

05;$TF
- p +[ p2 + 4yi (1 _yé.) }é’
98 = & -3 (44)
2y
r N . -
Tty ‘pRi+[p2R§-4[Y -(-R) (y-1)F vy - 1 -
g(E) = 21n| (1—Ri)(y-1)§])§
21y - (1-R,) (y-1)2]
“ (45)

To calculate the overpotential, AE, values of EP and Ex
are first determined by evaluating Equation 44 at y = 0.25,
and Equation 45 at xg(E)=0 given by Equation 40. The results

when combined with the definition of g(E) (cf. Equation 26)

are
Oitgxp
Ep = (2RT/nF) 1n [-p+ (pZ + 1)5] (46)
TF5;5ﬁR
Ep = (ZRT/nF)ln[-pRi + (szi + 1)§] (47)
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Finally, the expression for overpotential is obtained as the
difference of Equation 46 and 47

-pR. + (p32R? + 1)é
Py P i (48)

AE = (2RT/nF)1n > s
-p + (p% + 1)
Equation 48 is the final result of the derivation and
represents the desired relationship between overpotential,
current density, and the standard rate constant for electron
transfer (recall definition of p, Equation 24). 1In view of
some of the preceding relationships, the final equation is
surprisingly simple. Ideally, of course, it would be desirable
to consider p as the independent variable and solve Equation
48 directly for p as a function of AE. 1In that case experi-
mentally determined values of AE could quickly be related to
corresponding values of p from which the value of gs could be
directly calculated. Although Equation 48 can be solved
explicitly for p, the resulting expression is cumbersome,
and therefore an alternate approach actually appears to be
more useful. This alternate approach consists of generating
a working curve by plotting Equation 48 as AE vs. p. From
this working curve experimental values of AE can quickly be
converted to the corresponding p. If concentration, current
density, etc., are known, then 53 can easily be calculated
from Equation 24. Figure 8 illustrates these working curves

for two values of R, .
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The only assumption incorporated in the derivation of
the equation for AE is that a is 0.5. For Equation 48 to be
generally useful, it is important to attempt to evaluate the
errors that will result if Equation 48 is applied to a system
where a is different from 0.5. By using the exact expressions
it was found that for AE of about 95/n mV (p=~1.0), a value of
p calculated on the basis of Equation 48 always is too small
by about 10% if a is 0.3 or 0.7. For AE about 50/n mV
(p~0.5) the error is reduced to about 6%. Because in terms
of rate constants an error of 10% is not large, and often
within experimental error, it is concluded that Equation 48
can be applied whenever AE is less than 95/n mV. Thus, to
apply Equation 48 experimentally, conditions (current density,
etc.) are selected which give AE less than 95/n mV, and then
from this experimental AE, and Figure 8, p is determined.
The method due to Berzins and Delahay can be applied to the
forward and reverse parts of the potential-time curve to
determine the experimental value of AE. If current density
and concentration are known, 53 can be calculated from
Equation 24. Actually, to apply Equation 24 rigorously,

)0./2

(QR/QO must be known, implying that a must be known.

However, except for the unusual case of very large differences

)a/2

between D, and D, the quantity (QR/QO is very nearly

unity, regardless of a.

Limits of Applicability of Equation 48. It also is use-

ful to estimate the range of rate constantk that can be
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measured by the above approach. The smallest values of 58
that are measurable will be determined by the onset of con-
vection and the fact that p must be less than 1.0 for AE to
be independent of a. The largest measurable value of Es
presumably will be determined by interferences of double-layer
charging at high current densities and the fact that p must
be greater than 0.1 to obtain an experimentally measurable
AE. The quantitative extent of these limitations is dis-
cussed next.

The smallest value of 53 that can be determined is set

by the restriction p<1.0, that is (see Equation 24)

a/2/ nFk Cq(D yar/2 (49)

1.0 > i (Dp) s 0

Combining this inequality with the Sand equation (Equation 1)

gives

kg > N7 (D) /2 o T g (Do)"‘/2 (50)

)a/2 is unity and 7 cannot be

greater than 50 seconds to avoid convection, and assuming a

Assuming the ratio (QR/QO

value of 1 x 107° cm2/sec for D,, the smallest k_ is approxi-
mately 4 x 10™* cm/sec.

The maximum value of 59 that can be determined is set by
the restriction that p must be greater than about 0.1 (AE>10
mV), and the fact that to fit the theoretical model it is
necessary for charging current to be less than about 1% of

the total constant current. The latter restriction sets the
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minimum transition time that can be measured and still have
the charging current be less than 1% of the faradaic current.

The condition p>0.1 is equivalent to

k, < NDy/0.2T, (51)

)a/Z

where (QR/QO has been set equal to one. Based on Gierst's
(19) discussion of double-layer charging, one can estimate

the minimum value of T, that can be measured experimentally

F
and still satisfy the condition that charging current be less
than 1% of the faradaic current. This can be accomplished by
calculating the number of coulombs involved in the charging
process compared to the number of coulombs consumed by the
faradaic process. The number of coulombs used for the charg-

ing process can be estimated from the following definition

of the differential double-layer capacitance
Ci = -dQ_/dE (52)

where E is the electrode potential and gc is the surface
charge density (coulombs per unit area) of electricity on the
electrode. Rewriting Equation 52 in terms of differences

and rearranging yields
Qc = C, AE (53)

The quantity of electricity involved in the electro-
chemical reaction for a current density iO and over the time

T is simply
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Qf = ioT (54)

Of course, in general Equation 54 is only approximate because
the faradaic current is less than the constant current by

the amount used for the charging process. In the present
case this error will be negligible, since it is being assumed
that double-layer charging is only 1% of the faradaic reac-
tion. The extent of double-layer charging can now be esti-

mated from the ratio gc/gf
Q./Q; = C 0E/ijT (55)

If v is taken as the transition time, then one can replace T
in Equation 55 by the Sand equation and obtain the following

relationship

*
— : 2
QC/Qf = 410C1AE/WDO(nFCO) (s6)

From Equation 56 and the restriction that charging current
interferences are to be no more than 1% (Qc49f30.01) the

following inequality must be satisfied

2*2 -8
nCy® > 1.3 x 107° i, (57)

The following representative values given by Delahay (19)

can be used to estimate the numerical constant in Equation 57:
S
above inequality substituted in the Sand equation yields

= 20 uf/cm?, AE = 0.5V, and D. =1 x 10~°5 cm®/sec. The
E Dy

NT > 1.3 x 1078 EJWDO/ZnCS . (58)
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For typical values of n equal 2 and g; equal 1 x 10-° mole/
cm3®, it follows from Equation 58 that transition times of
the order of 3 seconds can be measured without interference
from double-layer charging. By combining this fact with
Equation 58, it is estimated that values of k_ £ 2 x 1072
cm/sec can be determined by direct application of the equa-
tion for AE.

The range calculated above is based on the assumption
that essentially no double-layer charging can be tolerated
in the application of the expression for AE. As pointed out
in the Introduction, however, it has been shown that the
method of Berzins and Delahay for locating quarter-wave
potentials is accurate even when S0% of the total charge is
used for double-layer charging. Hence, it seemed that the
estimated range may be unrealistically small, and therefore
it appeared profitable to determine unambiguously the influ-

ence of double-layer charging with kinetically controlled

electron transfer.



THEORY FOR THE CASE OF SIGNIFICANT
DOUBLE-LAYER CHARGING

The objective of this section is to attempt to determine
quantitatively the effects of double-layer charging on
kinetically controlled electron transfer. Specifically, a
relationship will be developed between observed overpotential
for the cathodic and anodic parts of a current reversal
chronopotentiogram and the rate of electron transfer. As
pointed out in the Introduction previous studies have shown
that the method of Berzins and Delahay for measuring quarter-
wave potentials gives accurate values even in cases of appreci-
able double-layer charging, and therefore this technique will
be applied to theoretical chronopotentiograms. By determin-
ing AE with this method for a range of electron transfer rate
constants, working curves similar to those in Figure 8, but
applicable in the presence of double-layer charging, will be
obtained. The following model was assumed as a basis for

these calculations.

Model
The basis of the present treatment is a simple model,
which consists of the following main points: (1) mass trans-

port occurs by semi-infinite linear diffusion; (2) charging

53
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of the electrical double-layer is as though the electrode
were ideally polarized (29); (3) the differential double-
layer capacitance is independent of potential; and (4) the
potential dependence of the electron transfer rate constants
is given by Equations 2 and 3.

Each point in this model can be restated mathematically

in the form of the boundary value problem described next.

Boundary Value Problem

Based on Point 1 of the model the surface concentrations
of 0 and R as a function of time can be obtained by solving

the following equations

2
oC d-C
—2zp 0 (59)
ot 0 axz
2
oC d°C
R R
ot R axz

The following initial and boundary conditions will be
assumed in order to solve the above differential equations

explicitly for concentration

t = 0; xX0 Co = Coi Cgr = Cy (61)
* *
t>0; x—% o© Cy —>Cy, Cg > Cq (62)
oC, oCp
t20:; x=0 Do—a-;' = - DR-S; (63)

These conditions are similar to those presented and discussed
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previously (cf. the discussion of Equations 7, 8, and 10).
The only difference between the two sets of conditions is
that to preserve generality the analytical concentration of
R, é;, is assumed to be finite in the present case (see
Equations 61 and 62).

As before, it will be assumed that the forward part of
the chronopotentiogram consists of the reduction of O at a

constant current density, i and that current reversal is

_T ’

F
introduced when the forward transition time, TF' is reached.
The current density after reversal will be labeled iT , and
R

the resulting anodic transition time will be designated R*
Again, by convention, TR will be measured from the forward
transition time.

The major difference between the calculations presented
here and those of the previous section is that previously it
was assumed that the constant current was consumed entirely
by the faradaic reaction, whereas in the present case the
assumption will be made that the total current is partitioned
between the faradaic and double-layer charging processes.
Thus, rather than being a constant, the faradaic current dens-
ity is actually some (unknown) function of time. The total
current density, iT(t)' can be written as the algebraic sum

of the faradaic, Lf(t), and charging current, ;t(t),

densities (Point 2 of model)

ig(t) = i (£) +i_(t) | (64)
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where lT(t) is written as time dependent to account for cur-

rent reversal.

The double-layer current in Equation 64 is given by

i(t) = - ch—E?(‘E—)- (65)

where gl is the potential-independent differential double-
layer capacitance referred to in Point 3. The negative sign
is included so cathodic potential excursions correspond to
positive current densities according to the usual sign con-
vention. Thus, for the case of current reversal at the for-

ward transition time, iT(g) is given by the following

expression
lTF = ig(t) +i (t) Ogt<ty,
in(t) = (66)
iT = Rji, = if(t) + 1c(t) Tplt<Tp
R F
where
R, =i /i (67)
1 'I'R TF

The flux is related to current density by Fick's first

law which for the present case takes the following form

Ogtng: x=0
aco . . .
Do Sx = 1f(t)/nF = (1TF- 1C(t))/nF (68)
Tstng, x=0
acR
DpSx = if(t)/nF = (iTR- ic(t))/nF = (RiiTF- ic(t))/nF

(69)
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or written in terms of the flux of O

(@]

tiIR: X=

aco . _
- Dy Sx = (Ri lTF - 1c(t))/nF (70)

TF_‘_

The objective, now, is to solve this boundary value
problem for the time dependence of surface concentrations of
0 and R, and then to combine these surface concentrations

with the expressions for the potential dependence of Ef and

Ky

(Equation 4). The results will define, within the framework

(Point 4 of the model), and the rate law expression

of the model, the effects of double~layer charging on
kinetically controlled electron transfer.

Unfortunately, this boundary value problem cannot be
solved analytically because of the nonlinearity associated
with Equations 2, 3, 4, 68, and 69. The problem can, of
course, be solved numerically. Numerical calculations are
simplified by first transforming the problem to an integral
equation, which can be solved without loss of generality by
proper dimensional analysis. These two topics are discussed

next.

Inteqral Equation Form of Boundary Value Problem

An approach that has proved very successful in solving

nonlinear boundary value problems is transformation to an
integral equation (22). This approach has two major ad-

vantages. First, the problem usually can be reduced to a
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single equation involving a single unknown, rather than a

set of partial differential equations and boundary conditions
that must be solved simultaneously. And second, the numerical
solution of integral equations is considerably more straight-
forward and accurate than the numerical solution of partial
differential equations.

In the present case the problem can be transformed to
two integral equations, one applicable prior to current re-
versal and the other applicable after current reversal. Of
course, these integral equations are necessarily nonlinear,
and therefore they also cannot be solved analytically. The
transformation to integral equations is readily accomplished
with the Laplace transform operator and is developed in
Appendix A. The resulting equations are (Equations A15 and
Al16):

OSFSTF

. a/2
1'1'1,“’1:.) i (t) (DR)"‘/2

_—* a/z = *
nFCO(DO) kg nFCO(DO)

* *
“/2k = exp(-a JBBCQ/JEkCR)exp

t .
(anF/RTleO i (1)an)

i (7m)ar
(1 - 2i, Nt/ nFCS-J T, + 1/nFcS~/TrDo‘ft < —— - exp(-nF/RTC, [*
F oNt - 1 ©
i(mam

* * *
- ziTFJ?/nFcOJvDO‘)exP(JF(;cO/JB;cR) exp(—nF/RTle:; i (1)dr)

+ (exp(JDdt;/JBRC;)/nFC;JvDé)exp(-nF/RTleZ iC(T)dT)fZ ic(T)dT:l
t -1
(71)
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TPty
R, i, (Dg)%/2 Ryi_(t) (D) %2
_E = exp(- VDL ADLC) exp
- p -
nFC (D, )&/ 2y . n!'c:)(no)"‘/2 . ¢Fo’NPRR

t
Eanr/m'cl) (foFic(1)d1+1./clf,[Fi‘c(T)dT)] {1 + (21TF~/?/nFc;~/ TrDO‘

» é. . * - *
- 21TF~ITF/‘_ nFckorDO‘) (1 - R,) --ZLTFJ-E/IYFCO'JWDO\ + 1/nFcO~/7rDO‘

To .
foF i(nar Q/nFCéJ;Eb f: ]‘c(T)CIT - (exp[?-nF/kTCl)
Nt - 7T F Nt

T
(foFic(T)dT + 1/le:F ic(T)dra [1 - (exp(J“C D t R

leFJ?/nchFno - ziTFJ?;,/nFc;J_‘mO)*‘ (1 - R))) + expWBCe/

»* * T
VDpCp) (21TF~/‘£‘/nchProo) - exp(f‘c AD. CR)/nFC PO foF

i (t)dr . * * * t i (mdr
— - exp (WD C,/ADpCp) /nFC VD fTF r—

(72)

Numerical Solution of Integral Equations

To solve Equations 71 and 72 numerically without loss of
generality it is essential to have the equations in dimension-
less form so that results are described by the minimum number
of independent parameters. Equations 71 and 72 can be made

dimensionless with the following changes of variable

= (nFc;J'wTﬁo) 2y/4i,r§ (73)
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T = (nchJnoé)zx/uiTz (74)
F

and the following definitions

hiy) = i_(y)/ig(y) (75)
exp(b) = yCJ/Cp (76)
4i_ C
Y = (RT/nF) TF*I (77)
(nFCdJnDB)z
o *.a
p = 1TF/nFCOY kg (78)
. 2
41TF TF
Yf = T 2 (79)
(nchJ?Bb)

Equations 71 and 72 now become

0Lt

p(1 - h(y)) -
eo(b - 1/4f] nax); , b - 1Y hixax

y
ea(d = 1/¥ [Tn(x)ax) (4 _ -1/¥[) h(x)ax,

(80)

= -y + 1,2y hlxidx
o Ny - x

R,
~a(b-1/4 [Y£ h(x) ax- Y—lfth(x)dx) (1e-2/¥[E

R, p{1-h(y)) -e o)

-

Yf R, ¥ Y§ it
o~ (b-1/¥[ "h(x)ax- Tfyf h(x)ax) p, , b-1/¥[ “h(x)dx= g—

R,
h(x)dx - ﬁfﬂgf h(x)dx

] .,

= (y - yf)éll -R) -y

J¥ n(x)ax
Y ] Yf R, ¥y h dx

£ 3| hix)dx EL / hix)dx (81)
°© Jy - x YE Ny - x
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The only unknown in these equations is the function h(y) .
Oonce h(y) has been calculated it can be related to potential
through the following expressions which are derived in

Appendix B (Equations BS and B6):

0<t<r

F
nlE(y) - Ej) = RT/Flb - 1/¥ /¥ h(x)dx] (82)
(o]
TESELT

n[E(y) - E§] = RT/F[b - 1/Y¥ fyf h(x)dx -
o

R./¢ [¥ hix)dx] (83)

Equations 80 and 81 were solved numerically by a step
functional method {47) .- To make a description of this method
applicable to all of the integrals appearing in EqQuations 80
and 81, it is useful to employ the following general repre-

sentation for these integrals

Y
/o h(2)K(y-2z)az (84)

where h(g) represents the unknown function, and K(Y-g) is the
kernel function, which is defined explicitly. To approximate
this integral the range of integration from y = 0 to y =M

is first divided into N equally spaced subintervals by the
following change of variable

n =y/é (85)
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where 6 is the length of the subinterval (6 = M/N), and n

is a serial number of the subinterval. Thus, Integral 84

becomes

fzé h(z)K(né - z)dz (86)

This integral can now be replaced by a finite sum of

integrals which are integrated over each of the subintervals

n .
s flé

i=1 (i-1)¢

h(i)K(nd - z)dz (87)

At this point the unknown function can be approximated in
several ways (57). The simplest of these is to assume that
it is a constant over the ith subinterval. With this approxi-

mation, Integral 87 becomes

- i6
Z h(i) | K(né - z)dz (88)
i=1 (i-1) 6

The notation can now be simplified by introducing the follow-

ing change of variable
w=nd - z (89)

which leads to

n . n
= h(i) f0TiH)8 phaw = = h(i)A(n-i+1)  (90)
i=1 (n-i) 6 i=1

Thus, to approximate the integrals of Equations 80 and 81

it is simply necessary to evaluate A(p-i+l) by integration
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of the respective kernel functions, K(w). For the kernel

1
Kw) = — (91)
Nw

one obtains

A(n-i+l) = 2 [N (n-i+1)6 - ~N(n-i)s] (92)

whereas for

k(w) =1 (93)

one obtains

A(n-i+1) = 06 (94)

Thus, Integral 91 can be approximated as

Y n
j0oXaX = 5 3 (i) (NI 8 - V(a6 1 (95)

o Yy - X i=1

and Integral 93 as

~

n
/¥ h(x)dax = 6,2 h(i) (96)
(o]

Replacing the respective integrals in Equations 80 and 81 by

these finite sums yields

ngng
- n-1
= Pn(n) — - 1 + exp(-6h(n) /¥-6/% £ h(i))
exp[-a(b - S6h(n) ¥ -6/¥ § h(i))] i=1
' i=1
n-1
1 + exp(b - 4h(n)/Y -6/Y.21 h(i))
1=

n-1
= - + (52 + (52 2 h(i) [(n-i40)F - (a-D)F)  (97)
Z
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n
1 n-1
1 +explb - 6% 2 h(i) - R;6h(n)/¥ - R,0/¥ 2 h(i)

i=1 i=n1+1

—

i=1

n
1
{(né -0, 02(1-R) - e F+ (2 2 h(i) [n-i4) 2 (n-n) P

n-1
+R (07 2 n) (- end) 4R (0 h(n)}

1=n1+1

= ny n-1 -1
exp(-a(b - 6/¥ 2 h(i) - R;éh(n)/¥ - R, 6/¥ Z h(i))]
i=1 i=n,+1
1
n1 n-1
+ exp(-6/%¥ 2 h(i) - R;éh(n)/¥ - R;6/¥ Z h(i)) (98)
i=1 i=n,+1

Equations 97 and 98 are a system of equations in the function
h(p) . Unfortunately, these equations are nonlinear and
therefore cannot be solved directly for h(n), but rather must
be solved numerically. There are several methods suitable for
solving equations of this type, such as the Newton-Raphson
technique (58), The Newton-Raphson method is an iterative
procedure which is ideally handled by a digital computer.

Interations are performed according to the following equation

xp+1 = xp - f(xp)/f'(xp) (99)

where £f(X ) is the function evaluated at X , £'(X ) is the
P -P -P

derivative of f(X) evaluated at gp gp is an approximate

’

solution, and £p+1 is an improved solution. The iteration
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is continued (replacing Kp by §b+1) to any desired degree of
self-consistency between X and X . Equations 97 and 98
“p “pHl

written in the form of Equation 99 are

<
0Lt<Ty

- * g >
hp+1(n) = hp(n) - [-(n&)= + (&) hp(n) + A - D(nd) exp(-Ehp(n))

p-pEp(n)
Bexp(aEhp(n))

+ D(é)éhp(n)exp(-Ehp(n)) + ADexp(-En_(n)) - +1

-Cexp(-Ehp(n))]/[(é)é + ED(né)ééxp(-Ehp(n)) -DE(é)éhp(n)
exp(-Ehp(n)) + D(é)ééxp(—Ehp(n)) - ADEexp(-Ehp(n)) +

ptpaE - p aEhb(h)

+ CEexp(-Eh_(n))]) (100)
Bexp(aEhp(n)) P

T Fs.t.S.TR

h .(n) = bp(n) - [V+GVexp(-RiEhp(n)) + W+ GWexp(-RiEhp(n))

p+l

R.P - R, Ph (n)
Texp(aRiEhp(n))

+ Ri(é)éhp(n) + GRi(6)éhp(n)exp(-RiEhp(n)) -

+ 1-Zexp(-RiEhp(n))1/[-GVRiEexp(-RiEhp(n))—RiEGWEXp(-RiEhp(n))

¥ % -
+ R, (8)=- RiEG(é) hp(n)exp(-RiEhp(n)) + GR, (6) “exp( RiEhp(n))

-

Rip + aRi PE - aRiEPhp(n)
Texp(aRiEhp(n))

+ RiEZexp(—RiEhp(n))] (101)



where

A =

w
N

("]
i

N
I
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n-1
()% T ni) [n-i+1)% - (n-0)¥ ]

i=1
n-1
expl -a(b - 6/¥ 2 h(i))]
i=1
n-1
exp(-6/Y Z h(i))
i=1
n-1
exp(b - 6/¢Y 2 h(i))
i=1
d/Y
" n-1
exp(b - /¥ = h(i) - R,6/¥ 2  h(i))
i=1 1 i=n,+1

1

2 s
(né - n,6)%(1 - R,) - (nd)

n
1
= (0% 2 (i) [(n-i+1)F - (n-0)F) 4+ R (8T

i=1

n-1
5 h(i) [(n-i+1)®-(n-0) )

i=h1+1

nq n-1
exp[-a(b - &6/y = h(i) - Rié/w T  h(i))]
i=1 i=n, +1
1
Ny n-1
exp(-6/y £ h(i) - Rié/w 2z h(i))

i=1 i=n1+1

(102)

(103)

(104)

(105)

(106)

(207)

(108)

(109)

(1120)

(111)

To start the iterative procedure an arbitxary value of

h(n) equal 0.0004 was always used as the initial guess from

which h(z) was evaluated with y equal zero. Subsequent
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calculations were performed with the most recently calculated
solution as an initial guess in the Newton-Raphson iteration.
The iteration was continued until successive answers differed
by a relative error less than 10~7. Calculations were per-
formed on the Michigan State University Control Data 3600
digital computer, and the FORTRAN program is listed in

Appendix C.

Results of Calculations

The numerical solution of Equations 80 and 81 provides
values of h(y) (ratio of faradaic current to total current,
Equation 75) as a function of y (dimensionless variable pro-
portional to real time, see Equation 73). Alternatively,
values of h(y) are directly related to potential (Equations
82 and 83) so that theoretical potential-time curves also
result from the solution of Equations 80 and 81. Both h(y)
and n(E - gé) are tabulated by the computer program given in
Appendix C. Theoretical E-y curves calculated in this way
depend on several parameters, but most predominantly on ¥
and p. The parameter ¥ is directly proportional to the
double-layer capacitance (see Equation 77) and therefore its
magnitude determines the extent to which double-layer charging
affects chronopotentiograms. The parameter p (Equation 78)
has the same definition used previously (Equation 24), and
therefore its magnitude determines the effect of electron
transfer kinetics on chronopotentiograms. Although these two

parameters interact, their effect in general is readily
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apparent from the theoretical chronopotentiograms of

Figures 9 and 10. 1In Figure 9 curves were calculated for
three values of ¥ and fixed p, whereas the curves of Figure
10 are for three values of p and fixed Y. In particular the
curves of Figure 9 illustrate the dramatic effect of in-
creased double-layer charging on chronopotentiograms. When
it is recalled that y = 1 corresponds to the Sand equation
transition time, it is apparent that transition time becomes
ill-defined in the presence of appreciable charging current.
Among other things, this effect obviously makes unambiguous
definition of gF and Eq impossible.

Although the chronopotentiograms are determined largely
by ¥ and p, they also depend to a lesser extent on the values
of a, &, b, R,, and switching potential (potential where
current reversal occurs). Thus, to interpret quantitatively
the effect of ¥ and p, which is the primary goal, the effect
of these other parameters also must be understood, and there-
fore they are discussed individually in the following para-
graphs.

Effect of 6. It will be recalled that 6 is the width of

the subintervals over which the unknown function is approxi-
mated in the numerical integrations. Since this is a fairly
crude approximation, it is important to evaluate the effect
of 6, and select a value which provides satisfactory accuracy.
Obviously, as 6 approaches zero, the accuracy will improve,

but at the same time the number of calculations involved will
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increase. The optimum value of 6 is one that provides accept-
able accuracy without requiring inordinate amounts of computer
time. This value of & was determined by varying & over the
range 0.1 to 0.001. The value of 6 equal 0.01 was found to
satisfy the above requirements, so that results are accurate
to £ 0.5 mV, except for very small values of ¥(<0.005) and
finite p. For ¥4€0.005, a value of 6 equal 0.001 was found to

give results to the same degree of accuracy mentioned above.

Effect of b. From its definition in Equation 76

parameter b simply defines the initial equilibrium potential
for the experiment. Normally, in a chronopotentiometric ex-
periment only one oxidation state of the depolarizer is
present, for example the oxidized form in the case of an
initial reduction. 1In this case the system is poised initial-
ly at an equilibrium potential very anodic of §§. It is ob-
served experimentally that under these conditions chrono-
potentiograms are essentially independent of this initial
potential. This experimental fact was verified in the theo-
retical calculations by observing that E-y curves are inde-
pendent of b, except for very small shifts along the time axis,
provided b is greater than 6.5, (§i more than 165 mV positive
of gé). Thus, all calculations reported in this thesis were
calculated for b = 7.0, and results are independent of b

within the accuracy of the calculations.
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Effect of Rj. Bi is the ratio of forward to reverse
current densities, and its effect on E-y curves in the present
case is identical to that discussed earlier in this thesis
(cf£. discussion of Figure 5). As pointed out in that discus-
sion, the optimum value from an experimental point of view is
about -0.5, and therefore, except where indicated, calculations

reported here are for R, = -0.5.

Effect of a. The transfer coefficient, a, affects the
symmetry of E-y curves as illustrated by Figure 11, where
theoretical chronopotentiograms are shown for three values of
a at fixed ¥ and p. The effect is essentially the same as
discussed earlier, and the limiting cases discussed there
transpose directly to the present case. As shown by Figure 11
the overall influence of a is fairly small, the effect de-
creasing as p decreases. Since the curves become less de-
pendent on a for smaller values of p, differences of potential
(e.g., AE) on the forward and reverse parts of the E-y curve
tend to be independent of a. This fact will be used below in
developing a relationship between AE and p for the case of

finite v.

Effect of Switching Potential. The effect of current

reversal potentials on E-y curves is illustrated in Figure 12,
where theoretical curves are shown for two values of switch-
ing potential at fixed ¥ and p. The overall effect of cur-

rent reversal potential is to shift the anodic portion of the
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chronopotentiogram on the time axis. It was found by calcu-
lation that the shape of the reverse part of the curve be-
comes independent of current reversal potential, except for
small differences near the anodic transition time, provided

switching potential is greater than -210 mV vs. gé.

Effect of ¥ and p. The effect of ¥ and p was considered

briefly above, and will be analyzed now in greater detail.

In particular, several limiting cases exist which can be
evaluated and quantitatively defined. The case for p equal
zero and finite Y already has been discussed in the litera-
ture by several groups (21,50,53). Similarly, the case of
zero Y and finite p was discussed in detail in the first part
of this thesis. The calculations developed above permit
conditions for which these limiting cases hold to be defined
quantitatively.

First, as ¥ and p both approach zero (small C;, and/or

*
T 0* “Tp’
respectively) no kinetic or double-layer charging effects are

or large C and large Es and/or i or large g;,
expected. This condition corresponds to uncomplicated re-
versible electron transfer, and was discussed earlier in
connection with Equations 33 and 34. It was found from the
theoretical E-y curves that Equations 33 and 34 are obeyed
within 2-3 mV whenever ¥ < 0.0005 and p £ 0.01.

A second limiting case arises when Y approaches zero,
and p is finite. This situatién corresponds to the case where

double-layer charging is negligible, and therefore is the case
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discussed earlier in this thesis in connection with Equations
27 and 31. It was determined from E-y curves that Equations
27 and 31 are obeyed within 2-3 mV whenever ¥ < 0.0005,
regardless of the value of p.

A third limiting case occurs when p approaches zero, and
Y is finite. This situation corresponds to reversible elec-
tron transfer where double-layer charging is prevalent, which
is the case already discussed in the literature (21,50,53).
Theoretical E-y curves were found to agree with these litera-
ture data within 2-3 mV whenever p < 0.01, regardless of the
value of Y.

The final limiting case arises when p is sufficiently

*

large (small gs and/or large i F' or small go) that the pro-
cesses of oxidation and reduction can be treated separately
as the totally irreversible case (large overpotentials) (15).
For zero Y this situation is described exactly by Equations
35 and 36. It was found that these equations are applicable
in the present case within 2-3 mV whenever p 2 2.5 and

¥ € 0.0005. The case of p > 2.5 and ¥ 2 0.0005 has been dis-
cussed in detail by Dracka (23), and Rodgers and Meites (53),

and therefore was not investigated further.

Overpotential, AE, as a Measure of kg, In the first

part of this thesis a simple relationship between AE and Ks
in the absence of double-layer charging was developed. It
would be desirable to develop a similar relationship for

finite ¥, but in view of the strong interaction discovered
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between ¥ and p this possibility is not very promising.
Nevertheless, it is known that the Berzins-Delahay method
accurately locates gﬁ, and therefore the possibility of

using this approach was investigated. To do this a number of
E-y curves were calculated for many values of ¥ and p, and
values of gF and §R were determined by the method of Berzins
and Delahay (to eliminate human prejudice the graphical con-
structions were performed by the computer). From these values
of §P and ER'
in Figure 13. The fact that a family of curves is obtained

AE was calculated and the results are summarized

proves conclusively that the method of Berzins and Delahay
does not satisfactorily compensate for double-layer charging
when electron transfer is kinetically controlled. The
reasons for this fact are apparent from the data of Figure 14,
which illustrate the effect on Ag of the strong interaction
between ¥ and p. Figure 14 shows how the ratio ie/in
(faradaic current efficiency) varies for three values of ¥
and a fixed value of p. Thus, as Y increases, the fraction
of the total current which is consumed by the faradaic pro-
cess decreases, as the charging current component increases
(see Equation 64). Since overpotential is determined only
by the faradaic current density, the value of Ag decreases
as ¥ increases. Therefore, a new value of Ag results for
each value of ¥, which in turn leads to a family of working

curves.
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Although not as simple as hoped for, the working curves
of Figure 13 do provide a basis for estimating Es’ Thus, if
¥ can be determined independently, then the proper working
curve can be identified and measured values of Aé correlated
with p (and hence k_ ). Fortunately, ¥ can be determined
experimentally, and therefore this approach is feasible.

One method of estimating Y is as follows. The initial po-
tential rise for a chronopotentiogram is almost entirely due
to the charging current required to bring the working elec-
trode to the potential at which discharge of the electro-
active species occurs, as shown by the curves of Figure 14.
Thus, during this part of the experiment ;c(t) is nearly

equal to iT . Combining this fact with the definition of
F

;c(t) (Equation 65) gives

i = -C,S (1122)

where S is dE(t)/dt, i.e., the slope of the initial linear
portion of the potential-time curve. Equation 112 combined
with the definition for ¥ (Equation 77) and the Sand equa-

tion yields the following expression

y = -(RT/nF)(ig /St i% ) (113)

2

r °7Ts

To use Equation 113 to estimate Y it is necessary to per-
form two separate experiments on the same solution. One

experiment is performed at a current density iT where no
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double-layer charging or kinetic effects are detectable,

and the transition time corresponding to this current density
is Tg* The second experiment is performed at a current
density ;TF, where both double-layer charging and kinetic

effects are significant, and S is taken as the initial slope

of the resulting potential-time curve.

Conditions of Applicability of Working Curves. The work-

ing curves of Figure 13 in general depend on the same para-
meters as E-y curves. Thus, the working curves of Figure 13
ware calculated for gi = -0.5, a = 0.5, and current reversal
potential of -240 mV vs. §}' and they are rigorously applic-
able only when these conditions are met experimentally.
Additional calculations have shown, however, that for current
reversal potentials more negative than -210 mV, the effect
on AE is only of the order of 2-3 mV. Thus, provided current
reversal potential is more negative than -210 mV, the curves
of Figure 13 can be regarded as independent of current
reversal potential.

The working curves also depend on a, but for reasonable
values of a and p, the dependence is not very great, as
shown by the data of Table I. These data also show that as
p decreases the dependence of AE on o also decreases.
Comparison of values of p obtained from Figure 13 with values
of p calculated rigorously for a in the range 0.3 < o £0.7,

show that values of Es accurate within about 10% can be
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Table I. Variation of AE with Charge Transfer Coefficient
for Several Values of ¥ and p2

b4 p nAE, mV a
0.005 0.00 -4 .4 0.3
-4.4 0.5

-4.4 0.7

0.005 0.50 29.5 0.3
28.1 0.5

22.6 0.7

0.005 1.00 65.4 0.3
56.1 0.5

40.8 0.7

0.03 0.00 -10.2 0.3
-10.2 0.5

-10.2 0.7

0.03 0.50 14.3 0.3
15.2 0.5

11.0 0.7

0.03 1.00 33.4 0.3
35.0 0.5

20.7 0.7




89

obtained from the working curves for any a in this range,

provided ¥ < 0.03 and p £ 1.0.

Limits of Applicability of Working Curves of Fiqure 13.

It is useful to determine how much the range of rate con-
stants which can be measured can be extended by using the
working curves of Figure 13. An estimate can be obtained by
combining Equations 77 and 78 and solving for gs

2.2

*
k = nF 1C.D

a
s oPo¥/4Y RTpC, f114)

Evaluating the above result at 25°C for n = 2 and v (=
JDB?DR ) = 1.0 gives

kg = 1.2 x 1Q7C D ¥/C, p (115)

By substituting the following typical values in Equation 115:

=1 x 10~ %cm®/sec, and ¢, = 3 x 10~5

*
=1 x 10" %mole/cm3, D \

Lo 0
farads/cm®, the following expression is obtained

k, = 3.9 ¥/p (116)

The largest value of 53 that can be measured is set by the
restriction ¥ € 0.03 and p > 0.1 to observe kinetic effects.
Equation 116 predicts that values of k < 1.2 cm/sec can be
determined. This limit corresponds to extremely rapid elec-
tron transfer, and thus a significant extension of the method
has resulted, but at the cost of increased complexity of

data analysis.



OTHER POSSIBLE APPLICATIONS OF THE
THEORETICAL DATA

The main objective of the theoretical calculations
just presented was to determine the influence of double-
layer charging on correlations between overpotential (AE)
and electron transfer kinetics. There are, however, several
other areas in which the calculations could be useful. For
example, the results could be used to evaluate the several
different literature methods for measuring transition times
in a manner similar to that employed by Olmstead and
Nicholson (50). Also, the results could be used to evalu-
ate derivative chronopotentiometry, to determine whether
recent claims by Burden and Peters (10) for advantages of
derivative chronopotentiometry are real. Finally, the re-
sults could be used to define quantitatively the effects of
linearization of the rate law. Of these possibilities the
second was examined briefly (but will not be discussed here),
and the third in some detail. Since results for this latter
case are interesting, they will be discussed briefly.

Because of the functional dependence of heterogeneous
rate constants on potential, the rate law is nonlinear,

which prevents analytical solutions for any boundary value

90



91

problems which use this rate law as a boundary condition.

To avoid these mathematical intractabilities it has been
common practice in the electrochemical literature to employ

a linearized form of the rate law (5,8,44,51). This approach
usually permits closed form solutions to be obtained, but
necessarily limits the corresponding techniques to small
departures from the equilibrium potential., Thus, it is
usually estimated from the way in which the rate law is
linearized, that results are applicable only if overpoten-
tials are less than about 2-3 mV (5). The use of such small
overpotentials has obvious experimental disadvantages.
Moreover, the way in which the limit of 2-3 mV is estimated
does not take into account the fact that there may be compen-
sating effects, and therefore the equations may actually be
valid for larger overpotentials. This possibility has only
been investigated rigorously in one case. Nicholson (46)
found that for the coulostatic relaxation method, linearized
equations were actually valid for overpotentials of about 25
mV, as compared to the 2-3 mV that had been previously claimed.
This conclusion is very important, especially if it proves to
be generally true for all electrochemical relaxation tech-
niques.

One of the popular relaxation techniques is called the
galvanostatic method (5,6,7,9,34,35,36,37,43). With this
method an electrode is initially at some equilibrium potential,
usually near the half-wave potential (i.e., both O and R are

initially present at approximately equal concentrations).
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The electrode is then perturbed by a constant current pulse,
and overpotential is recorded as a function of time as the
electrode potential is driven from its equilibrium value.
Theory for this method was first derived by Berzins and
Delahay (5S), who used the linearized form of the rate law.
Thus, according to these authors only the first 2-3 mV of
overpotential on overpotential-time curves are interpretable
in terms of their equations.

On reflection it will become apparent to the reader that
from an experimental point of view the galvanostatic method
is merely a special case of chronopotentiometry in which
different initial potentials are used, and only the very
first part of the chronopotentiogram is recorded. When it is
recalled that the theory of the preceding section was derived

*

*
90 and QR,

see parameter b, Equation 76) it is apparent that the computer

for any arbitrary initial equilibrium potential (any

program of Appendix C can be used to calculate theoretical
galvanostatic curves, which do not encompass the assumption
of a linearized rate law. Thus, it is possible to determine
unambiguously the overpotential range for which the theory of
Berzins and Delahay is valid, and thereby determine if the
conclusions of Nicholson for the coulostatic method extend to
the galvanostatic method.

To make this comparison the final equation given by
Berzins and Delahay [Equation 18 of Reference (5)] could be

used to calculate overpotential curves for the linearized
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case. Unfortunately, this is difficult because for certain
combinations of experimental variables, it requires evalua-
tion of error functions which have imaginary arguments.
Although it is possible to evaluate these functions, the
computer calculations would be complex and therefore a
simpler approach was sought.

In this alternate approach the linear boundary value
problem originally solved by Berzins and Delahay was trans-
formed directly to the following linear integral equation,
which is equivalent to the linearized form of Equation 80:
pexp(ab) [1-h(y) ]= -[1+exp(b)]yé¥§[1+exp(b)]L¥ h(x)dx

y - x
+ 1/¥ /Y h(x)ax (117)
o
This integral equation was solved by the step-functional
method, and results were in agreement with those calculated
from the Berzins and Delahay equation.

Galvanostatic curves were calculated from Equations 80
and 117 for identical values of ¥, p, and b, and the results
compared to determine the overpotential at which the rigorous
nonlinearized theory begins to deviate significantly from the
linearized theory. Typical results are shown in Figure 15,
where the solid curve is obtained from the linearized equa-
tion, and the dashed curve from the nonlinearized equation.
At least for the values of ¥, p and b used in Figure 15,
it is apparent that linearized theory is valid for consider-

ably larger overpotentials than the 2-3 mV usually assumed.
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The range of overpotential for which the two equations
agree is, of course, strongly dependent on the values of VY,
p and b. This fact is illustrated by the data of Table II,
where the numerical quantities listed under various values
of b are the overpotentials at which linearized and non-
linearized results begin to differ by more than 1 mV.

The data of Table II show that in general linearized
theory can be used for overpotentials of about 30 mV, which
is nearly an order of magnitude larger than assumed in the
literature. This fact is significant in terms of the galvano-
static method, because it means that it can be used over an
experimentally more convenient range of potentials, while
still analyzing the results with the simple closed form theory
of Berzins and Delahay. Moreover, together with the results
of Nicholson for the coulostatic method, it is likely that
linearized theories for all electrochemical techniques are
valid for much larger overpotentials than previously assumed

in the literature.
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Table II. Variation of Overpotential® with ¥ and p for b
Several Values of b for the Galvanostatic Method

b
¥ P 0.0 1.0 2.0 3.0 7.0
0.005 0.0 20.52 11.9 10.3 12.4 30.0
0.5 29.8 23.7 25.7 27.9 >30.0

1.0 >30.0S  >30.0 >30.0 >30.0 330.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.01 0.0 20.8 12.2 11.3 14.0 >30.0
0.5 30.0 24.5 25.8 29.8 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.03 0.0 21.8 13.9 13.6 17.8 >30.0
0.5 >30.0 25.5 26.1 29.5 >30.0

1.0 $30.0 $30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.05 0.0 22.6 15.3 15.0 19.5 $30.0
0.5 >30.0 25.5 26.3 30.0 >30.0

1.0 >30.0 $30.0 >30.0 >30.0 >30.0

5.0 $30.0 >30.0 >30.0 >30.0 >30.0

0.05 0.0 22.6 15.3 15.0 19.5 >30.0
0.5 >30.0 25.5 26.3 30.0 $30.0

1.0 >30.0 $30.0 >30.0 >30.0 $30.0

5.0 >30.0 $30.0 >30.0 >30.0 >30.0

0.07 0.0 23.3 15.8 16.1 20.7 >30.0
0.5 >30.0 25.6 26.3 >30.0 $30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

aNumerical values for overpotential arbitrarily defined as
the potential at which linearized and nonlinearized results
begin to differ by more than 1 mv.

Py = 0.5 and 6 = 0.001.

CThe maximum departure from the equilibrium potential investi-
gated was 30 mV, which explains why some values give agree-
ment for greater than 30 mV.



EXPERIMENTAL

The experimental work which constitutes the last major
section of this thesis was designed to evaluate the scope
and limitations of the theoretical calculations already
described. To do this two different systems were studied
for which the electron transfer rate constants had been
measured by accepted methods. The first system studied was
azobenzene in water-ethanol solvent. This system was
selected because the apparent electron transfer rate is a
function of pH, and therefore the measurable rate constant
could easily be varied by changing pH. Thus, the new tech-
nique could be evaluated for a fairly large range of rate
constants without changing the depolarizer. The second sys-
tem studied was the reduction of cadmium in aqueous solvent.
This system was used primarily to evaluate the effect of
double-layer charging, since the standard rate constant is
sufficiently large to require experimental conditions for
which double~layer charging is a significant factor.

To perform the experiments a simple instrument was
assembled from commercially available components. Although
this equipment performed satisfactorily, it was found that

with current reversal adjustment of the switching time by

98
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trial and error was tedious, and also inaccurate at short
times. Thus, a more sophisticated instrument with automatic
current reversal also was constructed. Since both of these
instruments were used to collect data, and both have indi-
vidual merits, a description of both instruments will be

presented.

Instrumentation

The first instrument was simply a constant current source
which could be programmed to provide bipolar currents of
independently variable magnitude and duration. A block dia-
gram of the circuit is shown in Figure 16a.

The control amplifier, CA, is a high gain differential
amplifier (Wenking Potentiostat, Model 61RS, Brinkman Instru-
ments) provided with negative feedback to maintain zero
potential difference between the inverting (-) and noninvert-
ing (+) inputs. Since in the circuit of Figure 16a the
noninverting input is grounded, the inverting input is main-
tained at virtual ground. Thus, if a voltage gate of ampli-
tude E is applied to the resistor, R, from the function
generator (FG), a constant current given by E/R flows from
the output of amplifier CA. Since the electrolysis cell is
in series with the output of CA, the constant current E/R
also passes between the counter electrode, CE, and the working
electrode, WE, The chronopotentiogram is obtained by record-

ing the potential of the reference electrode, RE, vs. ground
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(potential of WE) as a function of time on a suitable
recording device.

The voltage gate for programming the constant current
generator was obtained from a commercial function generator
(Exact Electronics, Inc., Model 255). This instrument is
equipped with both a main function generator, which generates
triangular, sine, and square waveforms, and a ramp generator.
Timing for the two function generator sections is independ-
ently adjustable, and a variety of different triggering modes
can be selected from a single front-panel program switch.

For the present application an external trigger was used
to start the ramp generator, which in turn was programmed to
trigger the main generator at the end of the ramp cycle. 1In
this mode a time delayed square wave could be obtained from
the function generator (FG), the time delay being inversely
proportional to the ramp frequency. When switch Sl (Figure
16a) is closed a biasing voltage, Ec' is applied to the cur-
rent generator (causing a current §C/§ to flow through the
cell), and simultaneously a trigger pulse is applied to the
ramp generator. The frequency of the ramp generator is ad-
justed to give the time delay, . shown in Figure 16b.

The time interval, . is adjusted by t;ial and error to equal
the forward transition time on the chronopotentiogram. After
the interval, 31, the ramp generator internally triggers the
main generator, which provides a square wave of amplitude

§c + §a' and causes a current equal to §a/§ to flow through
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the electrolysis cell. Since Ec and ga are of opposite
polarity, current reversal occurs at this point, and elecr
trolysis proceeds at the constant current ga/g. By adjust-
ing the amplitude of the main square wave, any value of R,
(ip/ip, see Equation 14) can be conveniently selected. The
time interval, 52, is determined by the frequency of the
main generator, and is simply adjusted to be large enough
that the reverse transition time on the chronopotentiogram
is observed.

Although this instrument functioned satisfactorily,

adjustment of by trial and error was very time consuming

31
and difficult at short times. Thus, a second instrument was
designed to overcome these problems by automatic current
reversal at the forward transition time. This was accom-
plished with an electronic voltage comparator which provided
automatic current switching when the potential of the work-
ing electrode reached a preselected potential corresponding
to the potential at the transition time. A description of
this instrument is contained in the following paragraphs.

The circuit for the instrument is shown in Figure 17.
The amplifiers are solid state operational amplifiers which
are identified in the legend of Figure 17. Power for the
operational amplifiers was provided by a commercial power
supply (Deltron Model 0S 15-.3D, %+ 15 Vv, + 300 ma).

The circuit can be divided conceptually into three main

parts. The current generating section involves amplifier CA,
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and its operation is identical with the instrument described
above--i.e., a voltage E applied through R causes a constant
current B/R to flow through the electrolysis cell. Amplifier
DA is the comparator, which compares the voltage of the work-
ing electrode with a preselected transition time switching
potential. Amplifiers I and DA provide signal conditioning
described below for the comparator. The comparator is simply
an operational amplifier operated in an open loop configura-
tion. For example, whenever the noninverting input is at a
potential more negative than the inverting input, the output
of the amplifier is at its negative limit. Conversely, when
the potential of the inverting input becomes more negative
than the noninverting input, the output of the amplifier
swings to its positive limit. The zener diodes on the output
of the voltage comparator clip the voltage swings of the ampli-
fier to provide symmetrical outputs. The booster (Bi) is
used to provide sufficient current to ensure proper operation
of the zeners. Amplifier DG biases the output of the voltage
comparator, and supplies the appropriate square waves to R
for generation of the cell current.

Detailed operation of the circuit cam be understood by
congidering the following example. Suppose that initially a
reduction is to be performed requiring a cathodic current.
The potential of the working electrode will initially be at
some equilibrium value, and then become progressively nega-

tive as electrolysis proceeds, until it reaches some negative
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potential, §c' corresponding to the forward transition time.
When the electrode reaches this potential, current reversal
should take place. Thus, the potential gc is selected and
applied to the noninverting input of the voltage comparator.
Since the potential of the reference electrode will become
increasingly positive as electrolysis proceeds, this potential
must be inverted before applying it to the other input of the
voltage comparator. This inversion is accomplished with
Amplifier I, which has a gain of -1. Amplifier F is a voltage
follower, which is used to provide impedance matching. Since
initially §c is more negative than the inverting input of the
voltage comparator (effectively the potential of the working
electrode), the output of the voltage comparator is at its
negative limit, and the circuit remains in this state as long
as S, is open. When S1 is closed, amplifier DG adds the out-

put of the comparator to an adjustable bias voltage, E and

=B’
the sum, E, is applied through R generating the consgtant
current E/R. As electrolysis continues the potential at the
inverting input of the comparator becomes increasingly nega-
tive until it passes the preselected transition time poten-
tial, E_. When this happens, the output of the comparator
(amplifier DA) swings to its positive limit, and if E, is
properly adjusted, the polarity of E changes causing current
reversal. To ensure that the circuit remains in this state

until the reverse transition time is observed, when the out-

put of the comparator swings positive, diode D3 becomes



108

forward biased, applying a positive reference to the com-
parator through potentiometer P,. By simply adjusting Eq
any ratio of current densities, gi, can be obtained.

Thus, a current reversal chronopotentiogram is recorded
by setting gc to the desired transition time potential,
closing Sl, and recording the potential at the output of the

follower (Amplifier F) vs. time.

Cell and Electrodes. The elactrolysis cell was a 200 ml

Pyrex weighing bottle with a 60/12 standard taper joint.
It was equipped with a tight-fitting Teflon 1lid, in which
holes were provided for the various electrodes, nitrogen inlet,
and a scoop used to transfer mercury drops. The working
electrode was a hanging mercury drop, which was constructed
according to the directions of Underkofler and Shain (59).
Normally, two drops of mercury from a DME capillary were
collected and transferred to the working electrode. The
counter electrode was a platinum wire in the form of a spiral
embedded in soft glass tubing, which was immersed directly
in the solution under study.

The reference electrode was a saturated calomel contained
in a separate compartment, and connected to the cell through
a double junction salt bridge ending in a Luggin capillarye.
The section of the salt bridge adjacent to the SCE compart-
ment contained 1 M sodium nitrate, while the Luggin capillary

section was filled with the solution under study.
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Chemicals. 2Zone refined azobenzene (Litton Chemicals,
Inc.) was used without further treatment. Other chemicals
were reagent grade with solids being dried at 110°¢c for

several hours.



RESULTS AND DISCUSSION OF EXPERIMENTS

Kinetics of Reduction of Azobenzene

The reduction of azobenzene in protic solvents has been
studied extensively (11,12,25,26,30,31,32,33,42,49,60). The
most detailed research is that of Lundquist (41), who investi-
gated the reduction in both aqueous and nonaqueous solvents.
In aqueous solvents he showed that the overall reaction in-
volves two electrons and two protons per molecule of azo-
benzene. He found that the apparent reversibility of the
reduction is a function of pH, with reversibility increasing
as pH decreases. He used cyclic voltammetry to measure the
apparent heterogeneous rate constant for electron transfer
as a function of pH under conditions where the rate of the
reaction is pseudo first order. Thus, the heterogeneous rate
constants he obtained are apparent Es values with the pH
dependence predicted by several possible mechanisms for the
electrode reaction, he was able to arrive at a reasonable
mechanism for reduction of azobenzene. He obtained further
support for this mechanism from experiments in an aprotic
solvent to which varying concentrations of acid were added.

Azobenzene appeared to provide an ideal system for
evaluating the simple overpotential equation for chronopo-

tentiometry (Equation 48), since based on Lundquist's results
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a range of rate constants could be measured without changing
the depolarizer (simply changing pH) . Lundquist tabulated
the rate constants as a function of pH, and therefore direct
comparisons could be made with his data. Hence, measurements
were made on azobenzene for experimental conditions identical
to those employed by Lundquist (see footnotes to Table III).
The results of these measurements at several hydrogen
ion concentrations are summarized in Table III, together with
the values reported by Lundquist. A comparison of these two
sets of data shows that at higher values of pH, where Es is
small, agreement is good, but at lower pH the values of Es
determined by chronopotentiometry are always larger than those
obtained by Lundquist. It is interesting to note that these
facts are consistent with the very approximate estimates made
earlier for the upper limit of gs that could be determined
with Equation 48. Thus, it was estimated that double-layer
effects should prevent accurate measurement for 53 greater
than about 0.02 cm/sec. This prediction is in good agreement
with the data of Table III. Moreover, the direction of the
deviation for larger values of Es is consistent with the
effects predicted for double-layer charging. Thus, at low
values of pH, where Es is larger, it is necessary to employ
higher current densities so that experimentally measurable
values of AE are obtained. At these higher current densities
charging current increases and the resulting current avail-

able for the faradaic process decreases. Since the faradaic
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current density determines overpotential, the magnitude of
AE should decrease as the faradaic current density decreases.
Thus, if AE decreases because of the influence of double-
layer charging, the value of p obtained from Equation 48
will be smaller than if double-layer charging effects were
negligible. Since p is inversely proportional to Es' the
value of Es calculated would be too large, which is precisely
the trend observed in Table III.

In summary, the experiments on azobenzene confirm the
theory of the new method for measuring electron transfer
rate constants. In addition, application of the technique
proved to be as simple as anticipated, and therefore the
method meets most of the requirements set forth in the
Introduction. The experimental results further show that
double-layer charging sets the upper limit for measurement of
k . and that this upper limit is about 0.02 cm/sec. It was
an attempt to extend this limit that prompted the calcula-
tions for the influence of double-layer charging, and the

experiments for this case, which are discussed next.

Kinetics of Reduction of Cadmium

As mentioned earlier reduction of cadmium was used to
evaluate the effects of double-layer charging. These experi-
ments were necessarfily performed at higher current densities,
and therefore the instrument with automatic current reversal

was employed (see discussion of Figure 17). To ensure that
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this instrument functioned properly, experiments initially
were performed on reduction of cadmium under conditions
devoid of both double-layer and kinetic effects. These
chronopotentiograms were displayed on an oscilloscope
(Tektronix, Type 564), and photographed with a Polaroid
camera attachment (Model C-12, and projected graticule,
Model 100). The working electrode was a hanging mercury drop
of radius 0.064 cm, and the current density was 9.99 x 10~*
A/cm®. The ‘half-wave potential measured by the method of
Berzins and Delahay was -0.582 V vs. SCE. A diffusion co-
efficient of 2.8 x 10”° cm?/sec was calculated from the Sand
equation, after 7 was determined by the procedure of Laity
and McIntyre (39). These results compare with the values

of -0.585 V vs. SCE and 6.5 x 10~% cm®/sec obtained from the
literature (27).

Next, reduction of cadmium was investigated under condi-
tions where electron transfer is kinetically controlled, and
where double-layer effects are necessarily prevalent. To
evaluate the precision and scope of the theory, experiments
were performed at several different current densities, and
the observed values of AE recorded. 1In addition, values of
the double-layer parameter were determined experimentally by
the procedure described earlier (see discussion of Equation
113) . These values of Y were used to identify the proper
working curve in Figure 13, from which values of p correspond-

ing to the observed AE were obtained. From these values of p,
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the corresponding values of 58 were calculated. Results of
these experiments are summarized in Table IV, from which an
average value of ks equal 0.16 + 0.04 cm/sec is obtained.
The literature value of 53 determined by ac polarography is
0.60 cm/sec, which is outside the estimated experimental error
for the value reported here. There are several equally
reasonable explanations for this discrepancy, and therefore
no attempt will be made to justify the difference between
the value reported above and the literature value.

Because of the discrepancy with literature values for
Es' it seemed appropriate to investigate the extent to which
the theoretical model on which the calculations were based
agreed with experiment for the entire chronopotentiometric
curve. To do this one of the experimental chronopotentiograms
used above in connection with Table IV was compared with a
computer generated chronopotentiogram. The experimental
chronopotentiogram was recorded with R, = -0.5 and iTF=
2.6 x 10”2 A/cm®, and is represented by the points in Figure

18. For this curve nAE equals 40 mV and ¥ = 0.015 (calcu-

lated from Equation 113 for i, = 1.0 x 1073 A/cm?, T, =
s
0.83 sec, S = -6.7 x 105 mV/sec). Using these data and the

working curves of Figure 13, p equal 0.85 was obtained,

which corresponds to 59 equal 0.16 cm/sec. Next, the computer
program of Appendix C was used to calculate a theoretical
chronopotentiogram for the same parameters as the experimental

curve--i.e., ¥ = 0.015, p = 0.85, R; = -0.5, a = 0.5, and
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Table 1V. Es for Reduction of Cadmiuma

iTinoz,A/cm2 nAE,me pc Y Esc’e,cm/sec
2.3 315 0.57-0.76 0.014 0.16-0.21
2.6 4215 0.78-1.00 0.015 0.13-0.17
2.6 4015 0.74-0.95 0.015 0.14-0.18
3.6 4815 1.01-1.30 0.019 0.14-0.18

%1.0 x 10‘3'§ cadmium and 1.0 M potassium nitrate.

b

A * 5 mV reading error assumed for pAE.

Cc . . .
Range determined by assuming a constant error of £ 5 mV in
measurement of pAE.

dNew solution

®Each value of gs listed is the average of 2 experiments.
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n = 2. This theoretical chronopotentiogram is represented
by the solid line in Figure 18. Actually, to place the
theoretical chronopotentiogram on the potential axis of
Figure 18, the theoretical curve was shifted to give the best
fit between experiment and theory. This best fit corresponds
to a half-wave potential of -0.590 V vs. SCE, which is in
excellent agreement with the literature value for cadmium.
The normalized transition time for the theoretical curve
corresponds to a diffusion coefficient of 2.7 x 10~° cm®/sec,
which also agrees well with the value reported earlier.

The excellent agreement between theory and experiment
illustrated by Figure 18 demonstrates conclusively that the
model assumed for the theoretical calculations is a reasonable
one. Thus, it at least seems unlikely that the discrepancy
between the gs reported here and the literature value can be

attributed to inadequacies of the theory.
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APPENDIX A

Reduction of Boundary Value Problem
to Integral Form

Equations 59 and 60 of the text can be integrated easily
with the aid of the Laplace transformation, for which the

following definition and notation will be adopted

— _ m _
[Co(x,t)] = Co(x,s) Co = fo [exp(-st) ] [Cy(x,t)]dt
(A1)
Thus, the Laplace transformation of Equation 59 with incorpor-

ation of Equation 61 is

2...
D % sC. -c. (a2)

The general solution for Equation AZ is

50 = Aexp(-x Js/bo') + Bexp(x Js/bo‘) + C;/s (A3)

where A and B are integration constants. To satisfy Equa-

tion 62, B must be zero, which reduces Equation A3 to

50 = Aexp(-x Js/bo ) + CS/s (A4)

the value of A can be determined by evaluating Equation A4

at x =0
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A=¢C. - C;/s (A5)

0

x=0

Equations A4 and A5 can be combined to give

C - Cg/s)exp(-x 48750 ) + C;/s (a6)

o~ (60 x=0
Since the remaining boundary conditions are in terms of flux
it is necessary to derive a expression for the flux. This
can be accomplished by differentiating Equation A6 with
respect to x and evaluating the resulting expression at

X = 0. The final result is

aco

3% | x=0 " ('W)(éox - Cy/s) (A7)

=0
Equation A7 can be rewritten in terms of concentration and

flux of substance 0 as follows
- *
Cy x=0 = S8 - Dyfgls) As (a8)

where the function fo(g) is used to represent the surface
flux of O (see Equation 9 of the text)
oCy (x,t)
fo(t) =D, BT =0 (A9)

The inversion of Equation A8 can be accomplished with tables

of Laplace transform pairs and the convolution theorem (13)

" ¢ fglmlar
CO x=0 = CO - 1/'JWDO fo ——:—:—: (A10)
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At this point the final boundary condition for surface flux
(BEquation 68 of the text) can be substituted in Equation A10,
which gives

if(r)dr

Co x=0 ~ %o 1/nF ~/7rDO fo —:—:—: (a11)

Treatment of the equation in CR(x,t) (Equation 60 of the

text) is identical to that for Co(x,t), and the final result

is
i (t)ar
ot t _f
Cr x=0 = Cg *+ 1/nF NmDy fo — (A12)

Equations All and AlZ2 are general expressions valid for
all times during electrolysis. In the case of current re-

versal, however, the function if(t) is discontinuous (see

Equations 68 and 69 of the text). Therefore, in applying

Equations All and A12 to times greater than Tp it is con-

venient to rewrite the integrals so that integration occurs
over the intervals for which ;f(t) is defined explicitly.

Thus, for T.,Ct«4T

F Equations All and A1l2 can be written as

R

" 'F ig(r)dr

Co x=0 ~ CO -1/ nE\/TrDO fo —t—-—'; - 1/nEV‘erO
i (1)dr

e (a13)
F vt - 1
and (.)

T i (7)dT

Cq xeo = Cp *+ t/nNmy [ F E—— + 1/nmVaD,
°© WVt -1
t if(T)dT

fTF Ne - 70 (A14)



127

At this point Equations A1l and A12, and A13 and Al4,
can be combined with Equation 4 of the text to give equations
valid for-all times during the experiment. The final results

after simplification are

F
. a/2
1TF(DR) i_(¢) (D) %/ . .

¥ a2 - .o/~ exp(-aa/DOCo/ 'JDRbR)
nFCO(Do) kg nFCO(DO) kg
exp(apF/RTclf: i(mann - 21TFJEVhFc§fﬁ§;4-1/hrc§fﬁi;
t ic('r)dr . e gy
Jo — exp(-nF/RIC) [~ i (1)d7) - ZLTF £/nFCy VD )

exp (VDo ADyCy) exp (-nE/RTC) [~ i (1)dr) + (expWByCoADRCR) /

*

nFCOmO)exp(-nF/RTclfz ic(T)dT) ft ic('r)d'r ']

° Jt -1 (A15)
TFS_t_{TR
R; i (Dg) R,i_(t) (D) /% .
< 573 - = a3 exp ( -GJB-E)CO/'JB;ICR)
nFCo(DO) k nFCO(DO) kg

T
exp [(anF/RTC,) (f Fi (r)ar + /e, 18 ic(T)dT)]{fL + (2ig NT /
F F

» . » & ) *
nchJn06 - leéJFE/nFcannb) (1 - R,) - leéJEVhchJwDO
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f.T'F i (mar 1/nFc;~/'1rT>‘° th i (T)ar
° J¢t-1m FJe -

*
+ 1/nFCO~/ nDO

T
- (expl(-nF/RTC)) (J F i _(T)at + 1/c fs i (ManD 1 -
o F

(exp (JFOCS/JDRC;) (ZiTFJ?/nFc;JTD'C‘) - ZiTFJTr‘F/nFc;J mo‘)é

(1 - R)) + exp (JFOp;/J'ﬁ‘Rc;) (ziTFft‘/nchJ_‘wo) - exp(WDyCy/

T
* * F i (T)dT * . * *
VDgCp) /mEc Ny [ =< - exp (JF()CO/JDR‘CR) /nECN N
'Jt - T
t i (T)ar
) [A16)
FNt - T



APPENDIX B

Relation of the Function h(y) to Potential

The relation of the function h(y) (see Equation 75 of
the text) to potential can be obtained from the following

expression (Equation 65)

. - _~ GdE(t)
lc(t) = C1 dt (B1)

This equation can be integrated (E(0)=E,) and combined with

Equation 75 of the text to give
_ o t
E(t) = E; - ij(t)/c, [ hlr)ar (B2)

The constant E; in Equation B2 can be related to the initial
bulk concentrations of O and R through the Nernst equation

and the following definition of half-wave potential

EC = E; + (RT/nF)1n JDO7SR (B3)

to give the following relationship valid prior to current
reversal

T
04t< T,

nlE(t) - Ej] =RT/F[b - 1/~wf§ h(x)dx] (B4)

With the changes of variable (Equations 76 and 74 used in the
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text, the final expression becomes

Ogtng

n(E(y) - E, ] = RI/F[b - 1/‘i’fZ h(x) dx] (B5)

Similarly, using the approach discussed in Appendix A, the

expressioh for times after current reversal is

TpltLTp

Y
n[E(y) - B3] = RT/F[b - 1/¥[ F nix)ax - R/¥[Y h(x)ax]
Yg

(BB)



APPENDIX C

Computer Program

The numerical solution of Equations 80 and 81 of the
text was performed on a Control Data 3600 digital computer
with a program written in FORTRAN IV. Since this language is
compatible with most modern computers, the FORTRAN source
program is listed below. The following data are read in:
NRUN, which is the total number of sets of ¥, p, and a used;
ERROR, which is the accuracy of the Newton-Raphson iteration:
R, which is R, in the text; DELTA, which is 6 in the text;
THETA, which is b in the text; SWITCH, which is the potential
at which the current is reversed; PSI, which is ¥ in the text;
and ALPHA, which is a in the text. The output involves print-
ing of the above data followed by the values of N(E - Eé), Y,
H(y), IF/IT (the faradaic current efficiency), ITERATIONS
(the number of Newton-Raphson iterations), QC/QF (ratio of the
coulombs of electricity used by the charging process to that
used in the faradaic process) and N X DERIVATIVE (derivative
of the potential-time curve at each point on the curve). 1In
addition, the program constructs tangents at the initial
portion of the curve, and at a point just prior to current

reversal, and it also constructs the Berzins and Delahay line
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which intersects the curve at EF' The equations of these

lines and the point on the potential-time curve where EF

occurs are printed. A similar procedure is performed for

the portion of the potential-time curve after current reversal.
Finally, from these values of EF
(= Eg - EZ) is calculated and printed.

and §R' the difference AE
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