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ABSTRACT

THEORY AND APPLICATION OF CHRONOPOTENTIOMETRY

FOR MEASURING HETEROGENEOUS ELECTRON

TRANSFER KINETICS

BY

Floyd Hilbert Beyerlein

A new method for measuring heterogeneous electron trans-

fer kinetics is described and developed theoretically. The

method is based on using chronopotentiometry with current

reversal to observe directly the overpotential associated

with a kinetically controlled redox reaction. A simple equa—

tion is derived which relates observed overpotential to

current density, bulk concentration of the depolarizer, and

the standard rate constant, 58. It is estimated by calcula-

tion that the method is useful for measuring rate constants

in the range 4 x 10" < 33 < 2 x 10‘2 cm/sec. An experimental

evaluation of the method for reduction of azobenzene is used

to establish that the above Upper limit for £8 is correct,

and that this limit is set by double-layer charging. These

experiments also were used to demonstrate that in practice

application of the new method is simple and straightforward.

In an attempt to extend the range of the method to

larger rate constants, the combined influence of double-layer
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Floyd Hilbert Beyerlein

charging and electrode kinetics on chronOpotentiometry also

was examined. In this case theory could only be obtained

by numerical solution of nonlinear integral equations, and

therefore results are exPressed as a family of working curves.

The working curves relate observed overpotential to current

density, concentration of depolarizer, and ks. Each working

curve depends on the value of the double-layer capacitance,

and therefore to identify the prOper working curve, double-

layer capacitance must be evaluated independently. A pro-

cedure for doing this is described in detail. Reduction of

cadmium was used to evaluate use of the working curves, and

also to compare calculated and eXperimental chronOpotentio-

grams. The agreement between theory and eXperiment is excel-

lent, and it is estimated that values of Es as large as 1.2

cm/sec can be determined with the working curves.

To perform the eXperiments two different instruments

were constructed from operational amplifiers. One of these

instruments provides for automatic current reversal at a

pre-selected Switching potential. The construction and opera-

tion of this instrument is described in detail.
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INTRODUCTION

An important part of modern electrochemistry is the

measurment of heterogeneous electron transfer kinetics.

The usefulness of such measurements in electrochemistry

exactly parallels those in classical chemical kinetics, and

therefore need not be detailed here (20). Unfortunately,

although the ultimate applications are the same, the actual

measurement of electrochemical rate constants is consider-

ably more difficult than the measurement of homogeneous

rate constants. Consider, for example, ac polarography,

which has been widely used in the past for measuring electro-

chemical rate constants (55). With this technique a small

amplitude ac perturbation is superimposed on a slow dc

potential scan. The frequency of the ac component is then

progressively increased until the rate of electron transfer

is no longer rapid enough to maintain electrochemical equi-

librium at the electrode surface. When this happens the

observed ac current begins to lag the applied ac voltage,

and the resulting phase angle and frequency are a measure of

the rate constant. Although relatively simple in principle,

ac polarography is fairly complicated from both experimental

and theoretical viewpoints. Experimentally, it requires



variable frequency ac and dc potential sources, a summing

circuit and electronic potentiostat, and sophisticated phase

angle detection circuits. To determine the rate constant

it is necessary to measure the frequency dependence of the

phase angle over a wide range of frequencies and at several

different dc potentials. These experimental data then must

be corrected for ohmic potential losses and double—layer

charging by fairly involved vector calculations (55), or

complex plane analysis (55). Diffusion coefficients and the

transfer coefficient also must be known, and therefore

evaluated independently.

Difficulties such as these in measuring heterogeneous

rate constants no doubt have contributed to the as yet rela-

tively limited number of applications of electrode kinetics.

Thus, the major objective of this research was to attempt

to develop a new method for measuring heterogeneous electron

transfer rate constants. The criteria for selecting the

method were that it be conceptually straightforward, simple

to apply experimentally, and require minimal data analysis.

Of several modern electrochemical techniques, chronopotenti-

ometry appeared at the onset capable of satisfying the

majority of these criteria. Since the reader may not be very

familiar with chronopotentiometry, the remainder of this

Introduction will consist of a brief description and review

of the subject. This also will provide a logical format for

describing the essential ideas of using chronopotentiometry



to measure electron transfer rate constants, which the re-

mainder of this thesis attempts to develOp and evaluate in

detail.

Basically, chronOpotentiometry is an experimental pro-

cedure which involves recording the potential of a stationary

electrode as a function of time during polarization by con-

stant current. The expected form of such a chronopotentio-

gram can be understood by considering the following hypo-

thetical eXperiment. Suppose that during the constant current

electrolysis it is possible to analyze the surface concentra-

tion of reactant (also called depolarizer) by removing

samples from the electrode surface at fixed times during the

electrolysis. Suppose also that it is possible to analyze

these samples by conventional polarography. The results of

this hypothetical eXperiment would be polarograms similar to

those illustrated in Figure 1a, where the dashed line,

1-const' represents the magnitude of the constant current used

for the chronopotentiometric experiment. Each curve, going

from top to bottom, represents a polarogram for the hypotheti-

cal samples taken at progressively longer times during the

constant current electrolysis. Initially, before the constant

current is imposed, the surface concentration of depolarizer

will equal its bulk value (Curve 1) and the electrode po-

tential will be at its equilibrium value (iflg., zero current

value, Point A). As soon as the constant current is imposed,

however, the electrode will be forced to assume a potential
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at which a faradaic reaction can proceed to consume the im-

posed current. Hence, as soon as the current is imposed,

the electrode potential will jump abruptly from Point A to

Point B, somewhere near the half-wave potential for the

depolarizer. As the electrolysis proceeds the concentration

of depolarizer at the electrode surface is continually de-

creased, so that at some later time the hypothetical polaro-

gram will look like Curve 2. Here, the concentration of

depolarizer is still large enough to sustain all of the con-

stant current (3,3,, there is still 100% current efficiency

with reSpect to depolarizer), and the only effect has been a

small cathodic displacement of potential (from Point B to

Point C). As the constant current electrolysis proceeds,

however, eventually a condition is reached, represented by

Curve 5, where the surface concentration of depolarizer is no

longer great enough to maintain, by itself, all of the con-

stant current. Thus, in Curve 5 the hypothetical limiting

current for depolarizer is less than i and therefore
-const.’

the electrode potential must shift to a point (Point D) where

a new faradaic reaction (Egg), decomposition of the solvent

or supporting electrolyte) can supply the additional faradaic

reaction necessary to sustain the total constant current.

Hence, at this particular time during constant current

electrolysis there is an abrupt and rather large change of

potential. It is important to note that since the new

potential (Point D) corresponds to the limiting current region



for reduction of depolarizer, it follows that the surface

concentration of depolarizer has gone to essentially zero.

If the potentials in Figure 1a (Points A, B, C and D)

are now plotted gs, the times at which they were observed,

the result is the chronOpotentiogram shown in Figure 1b.

Hence, in general a chronopotentiogram consists of an ini—

tially abrupt change of potential to a point near the polar-

ographic half-wave potential, followed by a period of time

where the potential is nearly constant. This period is then

followed by another abrupt transition of potential, at which

time the surface concentration of depolarizer also drops to

zero. The time from the beginning of the eXperiment to the

second sharp potential change is termed the transition time

which is labeled T in Figure 1b.

The first mathematical analysis of the chronOpotenti-

ometry experiment was published by Sand in 1901 (54). .Sand

derived an eXpression for the time dependence of surface con-

centration of depolarizer based on a semi-infinite linear

diffusion model. By defining T as the time at which surface

concentration of depolarizer becomes zero, Sand obtained the

following exPression for transition time (now known as the

Sand equation):

T é.= nFC*JnD /2i (1)
O O 0

There g_is the number of electrons transferred in the elec-

trode reaction, EDis the Faraday, 93 is the analytical .



concentration of depolarizer, 20 is the diffusion coefficient

for the depolarizer, and i0 is constant current density.

An interesting feature of the Sand equation is that it

is derived without assuming a model for the electron trans-

fer reaction. Thus, the transition time is the same for both

reversible and totally irreversible electrode reactions. The

shape of the entire potential-time curve does, of course,

depend on reversibility of the electrode reaction. For ex-

ample, for reversible electron transfer, the chronOpotentio-

gram is desdribed by substituting surface concentrations

derived by Sand into the Nernst equation. In this case it is

easily shown (16) that the potential at t = T/4 (the so—called

quarter-wave potential) is identical with the classical polar—

ographic half-wave potential.

Although theoretically the transition time is a well—

defined quantity, experimentally it is frequently found that

chronopotentiograms exhibit distortions which make measurement

of T ambiguous. As a result a number of empirical methods for

measuring T, usually based on some graphical construction,

have been developed over the years (48). One of these methods,

which will be referred to frequently in the remainder of this

thesis, is due to Berzins and Delahay (5), and is illustrated

in Figure 2. Their method is derived from a similar construc—

tion commonly used in the measurement of half-wave potentials

on conventional polarograms. The method is applied in the

following manner. Line AB is drawn tangent to the curve at
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11

Point A and CD is drawn tangent to the curve at Point D.

Since the polarographic half-wave‘potential is at _t_ = T/4,

Points E and F are located at one-fourth of the distance

between A and C, and B and D respectively. A line joining

Points E and F intersects the curve at the half—wave poten-

tial, and the length of the line drawn through the point of

intersection of Line EF with the curve, parallel to the time

axis and bounded by Lines AB and CD, is taken as a measure

of T.

The instrumentation required for chronopotentiometry

can be extremely simple, and is one of the virtues of the

method. For example, many literature applications of chrono-

potentiometry are based on the use of simply a battery and

large resistor as a source of the constant polarizing current.

Of course, more sophisticated circuitry can be used and is

necessary in applications such as current reversal (gig;

infra). Recording of potential-time curves is usually

accomplished with a potentiometric recorder, or oscilloscope,

depending on the time scale of the experiment.

The applications of chronopotentiometry are extensive,

ranging from purely analytical to measurement of kinetics and

transport properties (14). The analytical applications in

general are straightforward, and based on the fact that T is

proportional to depolarizer concentration. Since T varies

as the square of depolarizer concentration, the method in

principle is more sensitive than techniques like polarography.
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Analytical applications have been reviewed by Everett, Johns,

and Reilley (24).

The major applications of chronopotentiometry have been

in the study of electrolysis mechanisms and the measurement

of rates of chemical reactions coupled to the depolarizer or

product of the electrode reaction. In these applications

chronopotentiometry is especially useful diagnostically, since

it
in the absence of kinetic complications if is a constant

independent of current density (cf. discussion of Sand equa—

tion). For example, the presence of a chemical reaction

preceding the electron transfer is easily detected by a

decrease of 13% with increasing current density (28).

In this case the test is eSpecially useful because it is un-

affected by reversibility of the electron transfer (gig;

supra). This is in sharp contrast with most other electro-

chemical techniques where preceding chemical reactions and

slow electron transfer behave similarly.

Another important class of reactions where chrono-

potentiometry has been used very successfully are following

chemical reactions, i,g,, chemical reactions involving the

initially formed product of the electron transfer. The ad-

vantage of chronopotentiometry in this case derives from the

fact that a stationary electrode is used, and therefore

products of the electrolysis accumulate near the electrode

surface and can be studied by re-oxidation (in the case of an

initial reduction). The re-oxidation is accomplished by
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abruptly reversing the direction of current flow. With this

approach, known as current reversal chronOpotentiometry,

chronopotentiometric waves are observed directly for both the

reduction and oxidation processes. A typical example is

shown in Figure 5 for reversible electron transfer, with cur-

rent reversal at the first transition time. In this case the

first transition, labeled T , corresponds to reduction of
F

depolarizer, and the second transition, T corresponds toR’

oxidation of the reduced form of depolarizer. When the re—

duced form is chemically stable, it is easily shown (4) that

the ratio of transition times, TR/TF, is one-third. Clearly,

if the reduced form is chemically unstable, in general TR/TF

will be less than one-third, since less of the reduced form

will be available for oxidation. Moreover, the magnitude of

the effect will be a function of current density, since, for

example, if TR is small with reSpect to the life—time of the

reduced form, then essentially all of the reduced form will

still be oxidized. Thus, by observing the variation of TR/TF

with current density the presence of this class of reactions

is easily detected, and quantitatively correlated with the

chemical lifetime of the reactant (22,56).

Two other areas in which chronopotentiometry has been

extensively employed are adsorption studies and measurement

of diffusion coefficients. In the former area the technique

enjoyed considerable popularity in the early part of the last

decade, until the advent of chronocoulometry (2). .Since then
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the use of chronopotentiometry for adsorption studies has

been severely criticized (40), and presently has been essen-

tially replaced by chronocoulometry. .Measurement of diffusion

coefficients usually has been based on direct application of

the Sand equation, under conditions where all parameters in

Equation 1 are known except the diffusion coefficient. The

meaning of diffusion coefficients measured in this manner

recently was analyzed in detail by Laity and McIntyre (59),

who were interested primarily in measuring tranSport pr0per-

ties of fused salts.

Finally, chronOpotentiometry has been used for measuring

heterogeneous electron transfer rate constants, but these

applications always involve data analysis and interpretation

roughly as complicated (1) as those ascribed above to ac

polarography. The approach to date is based on analysis of

single cathodic (or anodic) polarization, so that the rate

constant for the reverse reaction (anodic reaction in the

case of cathodic polarization) must be estimated indirectly.

It appeared, however, that by using current reversal, a more

direct and conceptually simpler method could be devised,

which apparently would satisfy the criteria stated at the

beginning of this Introduction. .The essential ideas of this

new method for measuring standard electron transfer rate con-

stants (or exchange currents) are as follows.

With current reversal chronOpotentiometry, the potentials

at which oxidation and reduction occur are observed directly
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(cf. Figure 5). For a reversible electrode process, by

definition oxidation and reduction occur at the same

(equilibrium) potential-fii.g., there is no so-called over-

potential between the forward and reverse reactions. For

example, the curve of Figure 5 corresponds to reversible

electron transfer, since the forward and reverse quarter-wave

potentials are identical and equal to the reversible half-

wave potential. If'the reaction were not perfectly reversible

the activation energy associated with the electron transfer

would appear as a finite overpotential between the reduction

and oxidation reactions. Now consider the following hypo-

thetical experiment involving some simple redox system

characterized by its standard rate constant, ks. For some

given current density the rate of the electrochemical reaction

will be large enough that even though electrode potential

changes continually during the course of the chronOpotenti-

ometric eXperiment, essentially equilibrium conditions will

be maintained at the electrode surface. Under these condi-

tions there will be no apparent overpotential between the

forward and reverse chronopotentiograms. Now consider the

effect on this same system of progressively increasing the

current density. As current density is increased the transi-

tion time decreases (cf. Equation 1), so that the rate at

which the electrode potential changes increases. As this

happens a point should be reached where the kinetics of the

electron transfer are no longer rapid enough to maintain
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electrochemical equilibrium at the electrode surface, and

this condition should evidence itself as an overpotential

between the forward and reverse chronOpotentiograms. Thus,

as current density is increased one would eXpect the differ-

ence between forward and reverse quarter—wave potentials to

increase from zero. Hopefully, one should be able to corre-

late this directly measured overpotential with the associated

current density and the standard electron transfer rate con-

stant for the redox system. This correlation was accomplished

successfully, and a description of that theory constitutes

the next major section of this thesis.

As will be seen the theory proved to be as straight-

forward as the conceptual basis of the method. Thus, it ap—

peared that a truly simple method had been develOped which

satisfied most of the criteria stated earlier. The sc0pe and

practicability of the new approach were next evaluated ex-

perimentally with some model chemical systems. In the course

of this evaluation, the results of which are presented later

in this thesis, it was concluded that the major limitation

of the method was the interference of charging current, which

set the upper limit of rate constants that could be measured.

Charging current is a term used to indicate the fact that an

electrode in an electrolyte solution behaves like a capa-

citor, and therefore current (charging current) is required

to change the electrode potential. Thus, in an electrolyte

considerable structuring occurs at the interface of a charged
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electrode (45). For example, if the electrode is negatively

charged then the solution adjacent to the electrode consists

predominately of cations, a structure referred to as the

electrical double-layer. If the charge on the electrode is

changed by an external source, then a restructuring of the

double-layer occurs, and this movement of ions results in a

net flow of current. At high current densities with chrono-

potentiometry the relative importance of double-layer charging

increases because the rate of change of electrode potential

increases. Hence, since high current densities are required

to measure large rate constants, it is apparent why the new

method was limited by double-layer charging.

Under conditions where double-layer charging is neglig-

ible, chronopotentiometry theory is straightforward and

results can be eXpressed in closed form, as mentioned above.

Unfortunately, to include double-layer charging in the theo-

retical model makes the mathematics virtually intractable.

Thus, prior to 1968 all attempts to account for double-layer

charging in chronOpotentiometry were empirical. In 1968

three groups independently published theoretical calcula-

tions for chronopotentiometry based on a rigorous mathemati—

cal model that included double-layer charging (21,50,55).

These papers provided the first quantitative basis for evalu-

ating the influence of double-layer charging on chrono-

potentiograms. Unfortunately, none of these papers treated

the case of kinetically controlled electron transfer, and
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therefore none of the results was directly applicable to the

case being considered here. Indeed, because of the mathe-

matical complexity, it seemed unlikely that any theory could

be developed to include double-layer charging and still

satisfy the criteria of simplicity set forth above. On the

other hand, Olmstead and Nicholson (50) showed that the method

of Berzins and Delahay gives accurate values of the quarter-

wave potential even in the presence of extensive double-layer

charging. Thus, the possibility presented itself that using

the method of Berzins and Delahay, or some modification there-

of, the simple theory could be used directly, thereby con—

siderably extending the range of applicability of the new

method. Based on this possibility, and the fact that a more

detailed analysis of the influence of double-layer charging

should be useful pg£_§§J it was decided to attempt the appro-

priate theoretical calculations. The last major section of

this thesis presents this theory for a model which includes

both kinetically controlled electron transfer and double-

1ayer charging.



THEORY FOR THE CASE OF NEGLIGIBLE

DOUBLE-LAYER CHARGING

Once again, the objective is to develOp an expression

for overpotential between the cathodic and anodic parts of

a current reversal chronopotentiogram for a kinetically con-

trolled redox reaction. Based on the conceptual idea of the

prOposed method, it is anticipated that the overpotential

will be proportional to current density, and inversely pro-

portional to the rate of the redox reaction.

The redox reaction can be symbolized as follows

k

0 + ne —£~ R I

A?

where kf and Eb are the heterogeneous rate constants for

electron transfer, and hence are functions of potential.

The potential dependence of kf and Eb is given by the follow-

ing well-known equations (58):

k f ksexp[(-anF/RT)(E-EO)] (2)

k ksepr(1-a)nF/RT)(E-EO)] (5)
b

There Es is the common value of 5f and Eb at the standard

equilibrium potential (E?), and is directly proportional to

the standard exchange current density (58). d is the

21
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transfer coefficient and other terms have their usual mean-

ing.

The rate equation for Reaction I can be written in terms

of the flux and surface concentration of O and R:

FLUX = kaO(0,t) - kbCR(0,t) (4)

where the first index on concentration represents distance

from the electrode surface (zero in this case) and the second

index represents time during electrolysis.

The problem now is to substitute in this rate law ex-

pressions for the temporal dependence of surface concentra-

tions during the entire current reversal experiment, as well

as expressions for potential dependence of kf and 5b, and

from the result obtain a (hOpefully) simple expression for

overpotential. Since the chronopotentiometry experiment is

performed under conditions designed to make diffusion the

only source of mass transport, the concentrations can be

calculated by solving the apprOpriate Fick's law diffusion

equations. These results already are available in the litera-

ture (1), and could provide the starting point for the present

treatment. However, to make the discussion more lucid and

cohesive, the entire derivation starting with the Fick's law

boundary value problem will be presented.

Boundary7Value Problem

To account for concentration polarization, linear diffu-

sion is assumed to be the only source of mass transport.



25

The apprOpriate diffusion equations are

2
a C

BCO_D'JO (5)

a? ‘ 0‘5?!

for the oxidized form of the couple, 0, and

2

SEE. = DR §_:§. (5)
ct 8x

for the reduced form, R. These partial differential equa-

tions are to be solved for the concentration of 0 and R as

a function of distance from the electrode surface, x, and

time during the electrolysis, E, To obtain eXplicit solutions

the following initial and boundary conditions will be assumed.

Initially, the concentration of depolarizer at any point

in solution is given by the bulk concentration value, which

*

will be represented as CO. It will be further assumed that

substance R is generated ip_situ, and is therefore initially

absent from the solution. Thus, stated mathematically, the

initial conditions are

t=0; x20 c =c - c =0 (7)

For the first boundary condition it will be assumed that

conditions of so-called semi-infinite diffusion prevail. In

other words, it will be assumed that the thickness of the

diffusion layer developed during electrolysis is much less

than the dimensions of the entire solution. It is easily

shown that this condition is satisfied whenever the walls of
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the electrolysis cell are greater than a few millimeters from

the electrode surface (52). Stated mathematically, this

boundary condition is

*

tgo; x —+oo cO —>c0; cR—ao (8)

The second boundary condition is a statement of mass

balance for 0 and R at the electrode surface. The quantity

of electroactive Species diffusing to the electrode can be

expressed in terms of the surface flux, defined by the follow-

ing eXpression

8C
D g; xzo (9)FLUX

Thus, the final boundary condition is simply

aco = -0 5C3 (10)tZO; x==O DO

8x 8x

Since it has been assumed that only substance 0 is

initially present, the forward part of the chronopotentiogram

consists of the reduction of 0 at a constant current density,

iF' Arbitrarily, current reversal will be introduced when

the forward transition time, T is reached. The current
Fl

density after reversal will be labeled iR' and the resulting

anodic transition time will be designated TR. By convention

‘will be measured from the forward transition time, rather
TR

than from £_equal zero.
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The flux is related to current density by Fick's first

law, which for the present case takes the following form

OgthF: x=0

aco

DO W = IF/nF (11)

Tth_TR; x=0

BCR

DR —5§' = ' lR/nF (12)

or written in terms of the flux of 0

TFSthR: x=0

'acR aco

DR E - - DO $3: - RiIF/nF (‘13)

where

R1 = iR/iF (14)

The above boundary value problem must now be solved for

the surface concentration of 0 and R as a function of time.

The only potential difficulties might come from the fact that

the last boundary condition (Equations 11 and 12) is discon-

tinuous, but as shown in the next section this problem is

easily handled with the Laplace transform Operator.

Solution of the Boundary Value Problem

The discontinuous boundary condition is easily handled

by first transforming Equations 5 and 6 into integral form,

and then incorporating the boundary condition. Laplace

transformation of Equations 5 and 6 leads directly to the

following expressions (52):



 

 

Co(t) = C0 - f (15)

JNDO 0 Jt-x

f (t)dx

CR(t) = 1 ft 0 (16)

4'er 0 ~/t-x

where the symbol f0(t) is used to represent the surface flux

of substance 0. Prior to current reversal the expression

for flux is given by Equation 11, and after current reversal

by Equation 15. Thus, substituting Equations 11 and 15 in

Equations 15 and 16, and performing the indicated integrations

leads to the following expressions for surface concentration

 

 

 

ogt<xF

* 2iFt§

CO(t) = C0 - (17)

nFVnDO

ZiFyt

CR(t) = -f————- (18)

nFJnDO

Tth<TR

* ZiFtfi' ZiF(1-R.)(t~TF)§

co(t) = C0 - ———————- + $~ (19)

nFJmDO nFVnDO

ziFyt‘! 2i 7(1—3.) («t-tip?

CR(t) =.__..__. - -—§: 1 -fifi (20)

nFJWDO nFVwDO

where

y = 4D /D (21)
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By introducing the above eXpressions into the rate equation

(Equation 4) together with eXpressions for k_ and k
f b

(Equations 2 and 5), the following equations for the potential-

time curves are obtained

OithF

pexp[ag(E)] = 1 - yé'- yieXp[g(E)] (22)

T fitfiT
F R

pRieXplagIEH = 1 + (i-R.)<y—i)‘l’ - yé- +

1 (25)

[(1-Ri)(y-1)§'- yé ]eXP[9(E)]

Terms in Equations 22 and 25 not previously defined have the

following definitions

a/ a/2
2 *

/an C (Dp = iF(DR) s O) (24)

y = t/TF (25)

9(3) = (nF/RT)(E-Eé) (26)

where §§_is the conventional polarographic half-wave poten-

tial.

Calculation of Potential-Time Curves

Equations 22 and 25 describe the potential-time behavior

for the entire chronopotentiometric exPeriment. Unfortunately,

because these equations are nonlinear, in general, they cannot
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be solved eXplicitly for g(§), and therefore to calculate

g(§) as a function of y_(dimensionless time, see Equation

25) would require numerical solution of Equations 22 and 25.

Of course, if the only objective is to construct theoretical

potential-time curves, then it is simpler to consider y'as

the dependent variable, because Equations 22 and 25 can be

solved explicitly for y, Thus, prior to current reversal,

one obtains from Equation 22 the following eXpression for y:

ogtng

h"lr = 1 - peXp[ag(E)] / 1 + eXp[g(E)] (27)

The explicit solution for y'in Equation 25 is less obvious,

but can be obtained as follows. After expanding the last

term on the right hand side of Equation 25, and collecting

similar terms and factoring, the following exPression is ob-

tained

(i-ai)(y-1)§'- y§'= x<s> (28)

where

pR.eXp[ag(E)] - 1

K(E) = 1
 

1 + eXp [g (E)] (29)

it
Equation 28 is of the form of a quadratic in the y , as can

be seen by squaring both sides and tranSposing all terms to

one side of the equality. The result is

y[(1-Ri)2 — 1] - 2x<s)y§'- [(1-Ri)2 + x2<a)1 = o (30)
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t
An expression for y, is obtained directly by applying the

quadratic equation to Equation 50. Only the positive root

is retained, because the negative root does not give values

of y_which correspond to those calculated from Equation 25

for the same value of g(§). Thus, after current reversal

the eXpression for time as a function of potential is

15¢th

yé = K(E)+{K2 (E)+[(1-Ri)2-1] [(1-Ri)2+K2 (Enfl'

 

(1-Ri)2-1 (51)

Equations 27 and 51 can be used to construct theoretical

potential-time curves without performing extensive numerical

calculations. Potential-time curves calculated in this manner

for three values of p are shown in Figure 4. These potential-

time curves clearly illustrate the anticipated effect of cur-

rent density and kinetically controlled electron transfer.

Thus, from Figure 4 it is apparent that increases in current

density (increases in p) do lead to the introduction of an

overpotential between the cathodic and anodic reactions.

Curves like those of Figure 4 also depend on two other para-

meters, 0 and Bi' and therefore the influence of these para-

meters on potential-time curves also must be considered.

Effect of Ri' 31 is the ratio of reverse to forward
 

current densities and as such determines the relative size

of transition times. Most often 31 is -1--i,§,, current
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densities of equal absolute magnitude are used before and

after current reversal--and as mentioned earlier the ratio

TF/TR in this case is 5. If values of Bi less than one are

employed, then the ratio TF/TR can be made close to unity,

which has obvious advantages in terms of the precision of

eXperimental measurements. This fact, and the effect of 3i

in general, are illustrated by the curves of Figure 5.

To select optimal values of 31 for experimental pur-

poses, it would be useful to have a relationship between 31’

F' and TR. Such a relationship can be obtained by evalu-

ating Equation 20 at £.= T

T

R' and recognizing that at this

time the surface concentration of R will be zero. The result,

after rearranging to solve for TF/T is simply
RI

T /TF R = (1-Ri)2 - 1 (32)

Thus, for example, to have exactly equal transition times,

one would use a value of 31 equal - 0.414.

Effggts of p and a. Both p and a affect the potential-

time curves of Figure 4, and in general these effects cannot

be separated. However, some limiting cases exist where the

relationship between g(§), Bi’ p, and a can be stated ex-

plicitly. For example, as p approaches zero Ismall if

and/or large ks), the redox reaction always is in equilibrium,

and Equations 27 and 51 reduce to the following well-known

relationships which are independent of kinetic parameters (17)
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0$t<TF

g(E) = ln[41-y§)/Y§) (33)

TFstSTR

1 + (1-Ri) (y-1)§ - y’!
9(E) = ln (54)

y§'- (1-Ri)(y—1)§

It was found that potential—time curves are described by

Equations 55 and 54 within 2-5mV whenever p is less than 0.01.

A second limiting case arises when p is sufficiently

large (large iF and/or small ks) that the processes of oxida-

tion and reduction can be treated separately as the totally

irreversible case (large overpotentials) (15). This is equiva-

lent to neglecting the back reaction [i.é., the term kbCR(O,t)]

in the original rate expression. Results can be derived from

that formalism, or more directly by taking the limit of

Equations 27 and 51 as p becomes large. With the latter ap—

proach it also is necessary to recognize that terms like

exp[g(§)] approach zero as p increases, because of the large

overpotential. With either approach the final results take

the following form (18)

CitiTF

(19 (E) = ln[(1-y§)/p] (55)

T (tsT

F“ R '

(1411) (31-1)”: - y‘l'
‘(1-G)9(E) = ln 55Rip < )
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It was found by calculation that potential-time curves are

described within 2-5mV by Equations 55 and 56 whenever p is

greater than 2.5.

Generally a affects potential-time curves in the ex-

pected manner. Thus, for p‘<0.01, curves are independent of

a(g§, Equations 55 and 54). For§i>2.5, the effect of a is

given eXplicitly by Equations 55 and 56. For values of p

between these limits, a affects both the symmetry of potential-

time curves, and their position on the potential axis. These

effects are illustrated in Figure 6 where theoretical chrono-

potentiograms are plotted for three values of a.

OverpotentialL7AE, as a Measure ofks. With current

reversal chronopotentiometry the potentials at which oxida-

tion and reduction occur are observed directly, and it is

clear that the effect is the same as anticipated in the

Introduction. Of course, to obtain a quantitative correlation

between overpotential and the standard rate constant it is

necessary to select a fixed reference time during the forward

and reverse parts of the potential-time curves from which to

calculate overpotential. An obvious choice for this reference

point is the time at which the potential is equal to the

reversible half-wave potential in the zero overpotential

case--i,g,, the so-called quarter-wave potential defined

earlier. To do this it is necessary to determine precisely

the times relative to the respective transition times

(T and TR) where the potential is equal to the half-wave
F
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potential. Once this is known overpotential can be calculated

as the difference of potential at these two times. Although

the choice of reference is essentially arbitrary, this EQ-

reference has the advantage that overpotential will be zero

in the reversible case, so results will not be complicated by

concentration overpotential.

The times at which the potential is equal to the reversi-

ble half-wave potential can be obtained from Equations 55 and

54 for the forward and reverse parts of the potential-time

curve respectively. To evaluate these times it is necessary

to recall that g(§) is zero at the half-wave potential (see

Equation 26), which is equivalent to the argument of the

logarithmic terms being unity. Thus, by setting the argument

of the logarithm in Equation 55 equal to unity and solving

for y, it is found that the half-wave potential occurs when

y_= 0.25 (hence the name quarter-wave potential). The cor-

responding time for the reverse part of the curve is obtained

as follows. After setting the argument of the logarithm term

in Equation 54 equal to unity and collecting like terms the

following equation is obtained

1 + 2K(y-1)é - 2yé = 0 (57)

where

K = (1-Ri) (58)

Equation 57 can be written in the form of a quadratic by

transposing the (yr-1)é term to the right hand side of the
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equality and squaring both sides of the eXpression to obtain

4(K2-1)y + 4y§ — (4K2 + 1) = o (59)

After solving for y_by application of the quadratic equation,

and retaining only the positive root, the following exPres-

sion for the value of y_at which Eé occurs is obtained

-i+{1+[(1-Ri)2-1][4(i-Ri)2+1]}§' (40)

 

yg(E)=O

- 2[(1—Ri)2-1]

Thus, for example when 3i equals -1, from Equation 40 fig

occurs at y = 1.0716. Since TR is to be measured from TF

(where 2 equals 1) this corresponds to y_equal 0.0716 relative

to TF. Or, since with 51 = -1, TF/TR is 5, the time on the

reverse part of the potential-time curve corresponding to §§

is 0.215 TR. Interestingly, this time is not precisely a

"quarterdwave" potential for the reverse part of the chrono-

potentiogram. Potentials corresponding to these two times

(0.25 and xg(E)=0) hereafter are referred to as EF and ER

respectively. Ag will then be the difference between ER and

e tan-s)-

The effect of a on Ag is shown in Figure 7. Because

for the mechanism being considered here a is typically about

0.5, and rarely outside the range 0.5-0.7, these data of

Figure 7 show that for reasonable values of a, the parameter

Ag tends to be independent of a, the dependence becoming less

as p decreases. The explanation of this fact is that as a
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varies both gF and gR shift in the same direction, and these

shifts tend to cancel in terms of Ag. Nevertheless, for

extreme values of a near 0 or 1, Ag is markedly dependent

on a. The reason for this fact is that, for example, as a

approaches 1, gF tends to be independent of a (see Equation

55), whereas gR tends to vary eXponentially with a (see

Equation 56).

The fact that for small values of p and reasonable values

of a, Ag is independent of a is important for two reasons.

First, when Ag is independent of a, Ag is determined uniquely

by p, and therefore Ag is a simple measure of p, and hence 5%

(see Equation 24). Second, for the special case of a equal

0.5, Equations 27 and 51 take the form of a quadratic equa-

tion and both can be solved eXplicitly for g(§). This means

that an equation can be derived for Ag_which always is valid

when 0 equals 0.5, and which, depending on p, may be exact

for any a between 0.5 and 0.7.

Thus, by restricting the discussion of the case of a

equal 0.5, it should be possible to derive an eXplicit eXpres-

sion for overpotential. Introducing a of 0.5 into Equations

27 and 51 leads to the following equations

yfi'x2 + p x + y%'- 1 = 0 (41)

TthSTR

tummy—1)" - y‘fixa - pRix + (1-Ri) we)“r - yin-.0

(42)
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where

x = exp[0.5 g(E)] (45)

Equations 41 and 42 can be solved directly for g(§) by

use of the quadratic equation. The positive roots are re-

tained in both instances, since negative roots lead to un-

defined values of 9(g). Thus, the pertinent solutions of

Equations 41 and 42 are

 

 

OgthF

r .p +(92 + 4Y‘(1‘Y§)}§

9(E) = 21n }
(44)

2y

‘s

TFSJZSTR 'PRi+[p2Ri-4 [yfi- (1-Ri) (y-1)é] [y'lr - 1 ..

9(E) = 21n
(1‘Ri)(Y-1)é])é'

2 [yé - (1-Ri) (y-1)§]

I 
(45;

To calculate the overpotential, Ag, values of gF and gR

are first determined by evaluating Equation 44 at y_= 0.25,

and Equation 45 at xg(E)=0 given by Equation 40. The results

when combined with the definition of g(§) (9;, Equation 26)

are

0_(_t <TF

EF = (2RT/nF)ln[-p+(p2 + 1)é] (46)

TFStSTR

ER = (2RT/nF)ln[-pRi + (szi + 1)§J (47)
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Finally, the expression for overpotential is obtained as the

difference of Equation 46 and 47

-pR. + (pZR: + 1)é

AB = (2RT/nF)ln 1 (48)

-p + (p2 + 1)5

 

Equation 48 is the final result of the derivation and

represents the desired relationship between overpotential,

current density, and the standard rate constant for electron

transfer (recall definition of p, Equation 24). In view of

some of the preceding relationships, the final equation is

surprisingly simple. Ideally, of course, it would be desirable

to consider p as the independent variable and solve Equation

48 directly for p as a function of Ag, In that case eXperi-

mentally determined values of Ag could quickly be related to

corresponding values of p from which the value of ks could be

directly calculated. Although Equation 48 can be solved

explicitly for p, the resulting eXpression is cumbersome,

and therefore an alternate approach actually appears to be

more useful. This alternate approach consists of generating

a working curve by plotting Equation 48 as Ag vs. p. From

this working curve eXperimental values of Ag can quickly be

converted to the corresponding p. If concentration, current

density, etc., are known, then 58 can easily be calculated

from Equation 24. Figure 8 illustrates these working curves

for two values of Bi.
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48

The only assumption incorporated in the derivation of

the equation for Ag is that a is 0.5. For Equation 48 to be

generally useful, it is important to attempt to evaluate the

errors that will result if Equation 48 is applied to a system

where a is different from 0.5. By using the exact eXpressions

it was found that for Ag of about 95/3 mV (p2:1.0). a value of

p calculated on the basis of Equation 48 always is too small

by about 10% if a is 0.5 or 0.7. For A§_about 50/g_mV

(pG50.5) the error is reduced to about 6%. Because in terms

of rate constants an error of 10% is not large, and often

‘within experimental error, it is concluded that Equation 48

can be applied whenever Ag is less than 95/g,mV. Thus, to

apply Equation 48 eXperimentally, conditions (current density,

etc.) are selected which give Ag less than 95/p.mV, and then

from this experimental Ag, and Figure 8, p is determined.

{The method due to Berzins and Delahay can be applied to the

forward and reverse parts of the potential-time curve to

<determine the eXperimental value of Ag. If current density

and.concentration are known, he can be calculated from

IEquation 24. Actually, to apply Equation 24 rigorously,

)0/2

(QR/20 must be known, implying that a must be known.

However, except for the unusual case of very large differences

)a/Z
between 20 and D , the quantity (QR/go is very nearly

unity, regardless of 0.

Limits of Applicability of Eggation 4Q. It also is use-

ful to estimate the range of rate constants that can be
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measured by the above approach. The smallest values of 58

that are measurable will be determined by the onset of con-

vection and the fact that p must be less than 1.0 for Ag to

be independent of a. The largest measurable value of 58

presumably will be determined by interferences of double-layer

charging at high current densities and the fact that p must

be greater than 0.1 to obtain an exPerimentally measurable

Ag. The quantitative extent of these limitations is dis-

cussed next.

The smallest value of 38 that can be determined is set

by the restriction p31.0, that is (see Equation 24)

a/Z/ an c*(n )‘1/2 (49)1.0 2 1F(DR) s 0 0

Combining this inequality with the Sand equation (Equation 1)

gives

ks ngOmRW/Z/a/‘T‘F (DO)“/2 (50)

o/Z . .
QR/QO) is unity and TF cannot be

greater than 50 seconds to avoid convection, and assuming a

Assuming the ratio (

value of 1 x 10'5 cmZ/sec for D , the smallest 58 is approxi-

mately 4 x 10" cm/sec.

The maximum value of 58 that can be determined is set by

the restriction that p must be greater than about 0.1 (AE210

mV), and the fact that to fit the theoretical model it is

necessary for charging current to be less than about 1%Iof

the total constant current. The latter restriction sets the
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minimum transition time that can be measured and still have

the charging current be less than 1% of the faradaic current.

The condition p20.1 is equivalent to

kB 5 ‘JTTDO/O.2’JTF (51)

)d/Z
where (QR/20 has been set equal to one. Based on Gierst's

(19) discussion of double-layer charging, one can estimate

the minimum value of'T that can be measured experimentally
F

and still satisfy the condition that charging current be less

than 1% of the faradaic current. This can be accomplished by

calculating the number of coulombs involved in the charging

process compared to the number of coulombs consumed by the

faradaic process. The number of coulombs used for the charg-

ing process can be estimated from the following definition

of the differential double-layer capacitance

C, = -dQC/dE (52)

where g.is the electrode potential and 9c is the surface

charge density (coulombs per unit area) of electricity on the

electrode. Rewriting Equation 52 in terms of differences

and rearranging yields

QC = C1 AB (55)

The quantity of electricity involved in the electro-

chemical reaction for a current density 10 and over the time

T is simply
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Qf = i T (54)

Of course, in general Equation 54 is only approximate because

the faradaic current is less than the constant current by

the amount used for the charging process. In the present

case this error will be negligible, since it is being assumed

that double-layer charging is only 1% of the faradaic reac-

tion. The extent of double-layer charging can now be esti-

mated from the ratio QC/Qf

QC/Qf = ClAE/iOT (55)

If T is taken as the transition time, then one can replace T

in Equation 55 by the Sand equation and obtain the following

relationship

*

- - 2
Qc/Qf - 410C1AE/WDO(nFCO) (56)

From Equation 56 and the restriction that charging current

interferences are to be no more than 1% (chgf30.01) the

following inequality must be satisfied

2*2 -3.

n CO .2 1.5 x 10 10 (57)

The following representative values given by Delahay (19)

can be used to estimate the numerical constant in Equation 57:

91

above inequality substituted in the Sand equation yields

= 20 uf/bma, Ag_= 0.5 V, and 90 = 1 x 10'5 cmz/sec. The

Jt' ' g 1.5 x 10“3 N'nnO/zncg ‘ (58)
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For typical values of 2 equal 2 and 9; equal 1 x 10'6 mole/

cma, it follows from Equation 58 that transition times of

the order of 5 seconds can be measured without interference

from double—layer charging. By combining this fact with

Equation 58, it is estimated that values of 58 3.2 x 10‘2

cm/sec can be determined by direct application of the equa-

tion for Ag.

The range calculated above is based on the assumption

that essentially no double-layer charging can be tolerated

in the application of the expression for Ag. As pointed out

in the Introduction, however, it has been shown that the

method of Berzins and Delahay for locating quarter-wave

potentials is accurate even when 50% of the total charge is

used for double-layer charging. Hence, it seemed that the

estimated range may be unrealistically small, and therefore

it appeared profitable to determine unambiguously the influ-

ence of double-layer charging with kinetically controlled

electron transfer.



THEORY FOR THE CASE OF SIGNIFICANT

DOUBLE-LAYER CHARGING

The objective of this section is to attempt to determine

quantitatively the effects of double-layer charging on

kinetically controlled electron transfer. Specifically, a

relationship will be developed between observed overpotential

for the cathodic and anodic parts of a current reversal

chronopotentiogram and the rate of electron transfer. As

pointed out in the Introduction previous studies have shown

that the method of Berzins and Delahay for measuring quarter-

wave potentials gives accurate values even in cases of appreci-

able double-layer charging, and therefore this technique will

be applied to theoretical chronOpotentiograms. By determin-

ing Ag with this method for a range of electron transfer rate

constants, working curves similar to those in Figure 8, but

applicable in the presence of double-layer charging, will be

obtained. The following model was assumed as a basis for

these calculations.

Model

The basis of the present treatment is a simple model,

which consists of the following main points: (1) mass trans-

port occurs by semi-infinite linear diffusion; (2) charging

55



54

of the electrical double-layer is as though the electrode

were ideally polarized (29): (5) the differential double-

layer capacitance is independent of potential; and (4) the

potential dependence of the electron transfer rate constants

is given by Equations 2 and 5.

Each point in this model can be restated mathematically

in the form of the boundary value problem described next.

Boundary Value Problem

Based on Point 1 of the model the surface concentrations

of 0 and R as a function of time can be obtained by solving

the following equations

 

 

2
6c a c

-—12tar> O (59)
6t 0 ax2

2

6c 5 c
R R

at R ax2

The following initial and boundary conditions will be

assumed in order to solve the above differential equations

explicitly for concentration

t = 0; x20 c0 = CO; CR = cR (61)

* *

t20, x—" 00 cO _"Co; cR —* CR (62)

aco acR

1:207 X-O DO—g-X- — - DR—S; (63)

These conditions are similar to those presented and discussed
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previously (gg, the discussion of Equations 7, 8, and 10).

The only difference between the two sets of conditions is

that to preserve generality the analytical concentration of

R, C;, is assumed to be finite in the present case (see

Equations 61 and 62).

As before, it will be assumed that the forward part of

the chronopotentiogram consists of the reduction of 0 at a

constant current density, ET , and that current reversal is

F

introduced when the forward transition time, is reached.TF,

The current density after reversal will be labeled and
it};

the resulting anodic transition time will be designated TR.

Again, by convention, TR will be measured from the forward

transition time.

The major difference between the calculations presented

here and those of the previous section is that previously it

was assumed that the constant current was consumed entirely

by the faradaic reaction, whereas in the present case the

assumption will be made that the total current is partitioned

between the faradaic and double-layer charging processes.

Thus, rather than being a constant, the faradaic current dens-

ity is actually some (unknown) function of time. The total

current density, ;T(t), can be written as the algebraic sum

of the faradaic, gf(t), and charging current, ;C(t).

densities (Point 2 of model)

iT(t) = if(t) + ic(t) ‘ (64)



56

where ;T(t) is written as time dependent to account for cur-

rent reversal.

The double-layer current in Equation 64 is given by

dE(t)
ic(t) = - CL dt (65)

where El is the potential-independent differential double—

layer capacitance referred to in Point 5. The negative sign

is included so cathodic potential excursions correspond to

positive current densities according to the usual sign con-

vention. Thus, for the case of current reversal at the for-

ward transition time, ;T(£) is given by the following

expression

1T1? = 1f(t) + 1C(t) OithF

iT(t) = (66)

1T = RilT = 1f(t) + 1c(t) TthETR

R F

where

R = i /i (67)
1 TR TF

The flux is related to current density by Fick's first

law which for the present case takes the following form

OgthF: x=0

aco

DO-§;-= if(t)/nF = (iTF- iC(t))/nF (68)

TFsfijfiR' X—O

8cR

nR-§;-= if(t)/nF = (iTR- ic(t))/nF = (RiiTF- iC(t))/nF

(69)
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or written in terms of the flux of 0

- DO-§;'= (R111? - ic(t))/nF (70)

The objective, now, is to solve this boundary value

problem for the time dependence of surface concentrations of

0 and R, and then to combine these surface concentrations

with the eXpressions for the potential dependence of 5f and

Eb (Point 4 of the model), and the rate law eXpression

(Equation 4). The results will define, within the framework

of the model, the effects of double—layer charging on

kinetically controlled electron transfer.

Unfortunately, this boundary value problem cannot be

solved analytically because of the nonlinearity associated

with Equations 2, 5, 4, 68, and 69. The problem can, of

course, be solved numerically. Numerical calculations are

simplified by first transforming the problem to an integral

equation, which can be solved without loss of generality by

prOper dimensional analysis. These two tOpics are discussed

next.

Integral Equation Form of Boundary Value Problem

An approach that has proved very successful in solving

nonlinear boundary value problems is transformation to an

integral equation (22). This approach has two major ad-

vantages. First, the problem usually can be reduced to a
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single equation involving a single unknown, rather than a

set of partial differential equations and boundary conditions

that must be solved simultaneously. And second, the numerical

solution of integral equations is considerably more straight-

forward and accurate than the numerical solution of partial

differential equations.

In the present case the problem can be transformed to

two integral equations, one applicable prior to current re-

versal and the other applicable after current reversal. Of

course, these integral equations are necessarily nonlinear,

and therefore they also cannot be solved analytically. The

transformation to integral equations is readily accomplished

with the Laplace transform Operator and is developed in

Appendix A. The resulting equations are (Equations A15 and

  

A16):

Ogtng

. “/2

1T (DR) i (t)(D )‘l/2
P c R * t

-—- — = exp(-a,4D‘C /JD‘C )exp

nFC;(DO)a/2ks nrcngW/ZkS O Q R R

t .
(anF/RTleO 1C(T)dT)

*
i (T)dT

[1 — 2iT ny'nFCOflnDO + 1/nFCSJnDOft -2———--- exp(-nF/RTC1ft
F

o Jt - T O

iC(T)dT)

_( 2iTF¥EVbFCSflWDO)exp(JDBCS/VDEC;)exptnF/RTCIf: iC(T)dT)

+ (epryfiatS/JERC;)/npcanD5)exp(-nF/RTle: ic(T)dT)f: isiilgiil

.t - T

(71)
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T <t<T

  

F—'—'R

RiiT (DR)a/Z Riic(t)(DR)OL/2

*F = ex (- JD‘ *fllfi‘c*)exp
P

nFCO (n0):)“72 “Como’a/Z 8 (PO R R

t

[(anF/RTCI) (f:Fic(T)dT+1./C1f,:Fi‘C(T)dT)]{1 + (ZiTFJ—P/nFCS'J TI'DO

il- é. . it - «-

- 21,1, 41F? nrcodrrno‘) (1 - Ri) - 21,1, J'F/rmcodvrno‘ + 1/nFcOJ1rDO‘

F - F

T . .

I: 3.9231 + 1/nFCSJTrEO I: _‘cmd1r - (eXp[(—nF/RTC1)

4t - T F Jt - T

T
(foFic(T)dT + 1/C1f:F ic(T)dT£}) [1 - (eXp(JBBCO/UDRb*R)

‘I’ *

ZITFJF/DFCOPTTDO - 2iTFJE‘F/n:.a~cg~/“‘1rno>‘lr (1 - 121)) + exp(~/I_DBCO/

a» * * ‘ at it T

@cR) (ZiTFJF/nrcod wo‘) - exp (JTS‘C /~/'5RCR)/nrco~/1rno‘ff
0 0

ic(T)dT - , * * * t iC(T)dT

————t_ T exp(JBBcO/JB;cR)/nFcO~/1rno‘ fTF ———t_ T

(72)

Numerical Solution of Integral Equatggns

To solve Equations 71 and 72 numerically without loss of

generality it is essential to have the equations in dimension-

less form so that results are described by the minimum number

of independent parameters. Equations 71 and 72 can be made

dimensionless with the following changes of variable

*

t = (nFCOJ—TTDO) 2y/4iT: (75)
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‘I

r = (upchfifig)2x/4iT: <74)

and the following definitions

 

 

 

h(y) = ic(y)/iT(y) (75)

exp(b) = WOO/CR (76)

41 C

‘Y = (RT/nF) T121 (77)

(nE‘CO~/1r0‘0)2

_ . * a
p — iTF/nrcov ks (78)

. 2
4LT T

Yf = F» F 2 (79)

(nFcOJ—vrb'o)

Equations 71 and 72 now become

0_<_t_<_TF y

_ - Y -p(1 _ h(y)) _ e a(b 1/‘1’foh(x)dx)(1_e 1/‘l’fo h(x)dx)

(80)

e-a(b - 1/vgg h(x)dx)(1 + eb - 1/WJ: h(x)dx)

=_J_y-+1/2fy 1M

o J;‘:”;’

R.

-aIb—l/‘ffzf h(x)dx- Y—lfiflflmdx) [1_e—1/nyf

0

TR
Y i

b-l/‘l’f-ofh(x)dx-= 9"

Ripll-hiy) )ve

 

Yf R1 Y

e-a(b-1/on h(x)dx—~nyf h(x)dx)[1+e

R1 Y

h(X)dx - Tfyf h(x)dx

] = (y - yf)§I1 - Ri) - y§'+

fy h(x)dx

,y l y R- y
, f E'f f h(x)dx + -£-f h(x)dx (81)

06—3 2 YfF—y-x
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The only unknown in these equations is the function h(y).

Once h(y) has been calculated it can be related to potential

through the following eXpressions which are derived in

Appendix B (Equations B5 and BB):

OSISTF

n[E(y) - 3%] = RT/F [b - 1/‘1’ [Y h(x)dx] (82)

O

TthgyR

n[E(y) - 3%] = RT/F[b - 1/9 fyf h(x)dx -

O

R./Y fy h(x)dx] (85)
i Yf

Equations 80 and 81 were solved numerically by a step

functional method (47),- To make a description of this method

applicable to all of the integrals appearing in Equations 80

and 81, it is useful to employ the following general repre-

sentation for these integrals

Y

f0 h(z)K(y-z)dz (84)

where h(z) represents the unknown function, and K(y-g) is the

kernel function, which is defined eXplicitly. To approximate

this integral the range of integration from y = 0 to y = g

is first divided into g_equally ppaced subintervals by the

following change of variable

n = y/é (85)
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where 6 is the length of the subinterval (6 = g__), and g

is a serial number of the subinterval. Thus, Integral 84

becomes

[:6 h(z)K(n6 - z)dz (86)

This integral can now be replaced by a finite sum of

integrals which are integrated over each of the subintervals

“ i6
2

i=1f(i-1)6

h(i)K(n6 - z)dz (87)

At this point the unknown function can be approximated in

several ways (57). The simplest of these is to assume that

it is a constant over the i§h_subinterval. With this approxi-

mation, Integral 87 becomes

“ i6
2 h(i) f

i=1 (i-1)6

K(n6 - z)dz (88)

The notation can now be simplified by introducing the follow-

ing change of variable

w=né-z
(89)

which leads to

n o n

z h(i)f‘“’”1”x(w)dw= z h(i)A(n-i+1) (90)

i=1 (n-i)6 i=1

Thus, to approximate the integrals of Equations 80 and 81

it is simply necessary to evaluate A<Efi+1) by integration
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of the respective kernel functions, K(y).

K(w) = 4—
4w

one obtains

 

A(n-i+1) = 2 [J(n—i+1)6 - J(n-i)6]

whereas for

k(w) = 1

one obtains

A(n-i+1) = 6

Thus, Integral 91 can be approximated as

 

y n

f h X)dx 3' 2 h(i)[ J(n-i+1)6
o 0

4y - x i=1

and Integral 95 as

N

n

fY h(x)dx = éigl h(i)

O

- J(n-i)6 ]

For the kernel

(91)

(92)

(95)

(94)

(95)

(96)

Replacing the respective integrals in Equations 80 and 81 by

these finite sums yields

 

 

ogtgyp

: P “'1

9 h‘“) n_1 - 1 + epr—6h(n)/w-6/w z h(i))

exp[-a(b - 6h(n)/Y —é/Y 2 h(i))] i=1

‘ i=1

n-1

1 + eXp(b - 6h(n)/Y «Vi/oz1 h(i))

1:

n-1

= «mi + (whim) + (5)5 z h(i)[(n-—i-Iv1)‘if - (n-i)é-] (97)

i=1
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TF$t(TR

n1 n-1

1 + exp(b - 6/Y Z h(i) — Ribh(n)/W - R.6/Y Z h(i)

i=1 1 i=n1+1

n

1

{his - nimé-(l-Ri) - (nah (as)é z h(i) [(n-i+1)§- (n-:i)é']
i=1

n-1

+ Ri(é)é'.2 h(i) [(n-i+1)§? (n-i)é] + Ri(6)§'h(n)}

1=n1+1

 

 

= n1 n-1 _ l

exp[-a(b - é/Y Z h(i) - R.6h(n)/Y - R.6/Y z h(i))I

i=1 1 1 i=n1+1

n1 n-1

+ exp(-6/Y Z h(i) - Riéh(n)/Y — Rié/Y Z h(i)) (98)

i=1 i=n1+1

Equations 97 and 98 are a system of equations in the function

h(n). Unfortunately, these equations are nonlinear and

therefore cannot be solved directly for h(g), but rather must

be solved numerically. There are several methods suitable for

solving equations of this type, such as the Newton-Raphson

technique (58). The Newton-Raphson method is an iterative

procedure which is ideally handled by a digital computer.

Interations are performed according to the following equation

xp+1 = xp - f(xp)/f'(xp) (99)

where f(X ) is the function evaluated at X , f'(X ) is the

-P _P —P

I

derivative of f(g) evaluated at gb z? is an approximate

solution, and gb+1 is an improved solution. The iteration
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is continued (replaCing 5p by gb+1) to any desrred degree of

self-consistency between X and X . Equations 97 and 98

-p -p*1

written in the form of Equation 99 are

< TQ_tg,F

= _ _ 4- t) _ it _
hp+1(n) hp(n) [ (n6) + (6) hp(n) + A D(né) exp( Ehp(n))

p-php(n)

Bexp(GEhp(n))

 

+ D(6)éhp(n)exp(-Ehp(n)) + ADexp(-Ehp(n))- + 1

-cexp(-Ehp(n))1/[(a)§'+ ED(né)éeXp(-Ehp(n)) —DE(é)éhp(n)

exp(-Ehp(n)) + o<é>§txP(-nhpin)) - ADEeXp(-Ehp(n)) +

p+paE - p aEhI')(’n)

 + CEexp(-Eh (n))] (100)

Bexp(aEhp(n)) p

StSIR
TF

hp+1(n) = hp(n) - [V+GVexp(-RiEhp(n)) + g + GWexp(-RiEhp(n))

Rip — Riphp(n)

Texp(aRiEhp(n))

 + Ri(6)§hp(n) + GRi(6)§hp(n)exp(-R1Ehp(n)) -

+ 1-2exp(-Rishp(n))l/I-GVRiEexp(-Rishp(n))-RiEGwexp(-RiEhp(n))

4- 4’ i- _
+ Ri(6) - Rfsc(é) hp(n)exp(-RiEhp(n)) + GRi(6) exp( RiEhp(n))

an

Rip + “R: pE - aRiEPhp(n)

Texp(aRiEhp(n))

 + RiEZexp(-R1Ehp(n))] (101)
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where

n-1

A = ((5)5 >3 h(i) [(n—i+1)é. - (n-i)§] (102)

i=1

n-1

B = exp[ -0(b — 0/Y 3 h(i))l (105)

i=1

n-1

C = exp(-5/Y Z h(i)) (104)

i=1

n-1

D = exp(b - 0/Y E h(i)) (105)

i=1

a = 6/9 (106)

n1 n-1

G = exp(b - 0/9 2 h(i) - R.0/Y Z .h(i)) (107)

i=1 1 i=n1+1

v = (n0 - n10)§(1 - ai) - (nai’ (108)

n

1

w = (6)5 z h(i) [(n-i+1)’=" - (n-i)’<*] + aim)?

i=1

n-1 §' §_

2 h(i)[(n-i+1) -(n-i) I (109)

i=n1+1

n1 n-1

T = exp[-a(b - 0/Y 2 h(i) - Rib/w z h(i))l (110)

i=1 i=n +1

1

n1 n-1

z = 8Xp(-<5/‘i’ z h(i) - Rié/w z h(i)) (111)

i=1 i=n1f1

To start the iterative procedure an arbitrary value of

h(g) equal 0.0004 was always used as the initial guess from

which h(y) was evaluated with y equal zero. Subsequent
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calculations were performed with the most recently calculated

solution as an initial guess in the Newton-Raphson iteration.

The iteration was continued until successive answers differed

by a relative error less than 10'7. Calculations were per—

formed on the Michigan State University Control Data 5600

digital computer, and the FORTRAN program is listed in

Appendix C.

Results of Calculations

The numerical solution of Equations 80 and 81 provides

values of h(y) (ratio of faradaic current to total current,

Equation 75) as a function of y (dimensionless variable pro-

portional to real time, see Equation 75). Alternatively,

values of h(y) are directly related to potential (Equations

82 and 85) so that theoretical potential-time curves also

result from the solution of Equations 80 and 81. Both h(y)

and 2(g_- Efi) are tabulated by the computer program given in

Appendix C. Theoretical Efx curves calculated in this way

depend on several parameters, but most predominantly on W

and p. The parameter Y is directly prOportional to the

double-layer capacitance (see Equation 77) and therefore its

magnitude determines the extent to which double-layer charging

affects chronopotentiograms. The parameter p (Equation 78)

has the same definition used previously (Equation 24), and

therefore its magnitude determines the effect of electron

transfer kinetics on chronOpotentiograms. Although these two

parameters interact, their effect in general is readily
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apparent from the theoretical chronopotentiograms of

Figures 9 and 10. In Figure 9 curves were calculated for

three values of Y and fixed p, whereas the curves of Figure

10 are for three values of p and fixed W. In particular the

curves of Figure 9 illustrate the dramatic effect of in-

creased double-layer charging on chronopotentiograms. When

it is recalled that y_= 1 correSponds to the Sand equation

transition time, it is apparent that transition time becomes

ill-defined in the presence of appreciable charging current.

Among other things, this effect obviously makes unambiguous

definition of gF and gR impossible.

Although the chronopotentiograms are determined largely

by Y and p, they also depend to a lesser extent on the values

of a, 0, 2, gi, and switching potential (potential where

current reversal occurs). Thus, to interpret quantitatively

the effect of Y and p, which is the primary goal, the effect

of these other parameters also must be understood, and there-

fore they are discussed individually in the following para-

graphs.

gggect of 0. It will be recalled that 0 is the width of

the subintervals over which the unknown function is approxi-

mated in the numerical integrations. »Since this is a fairly

crude approximation, it is important to evaluate the effect

of 0, and select a value which provides satisfactory accuracy.

Obviously, as 0 approaches zero, the accuracy will improve,

but at the same time the number of calculations involved will
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increase. The Optimum value of 0 is one that provides accept-

able accuracy without requiring inordinate amounts Of computer

time. This value Of 0 was determined by varying 0 over the

range 0.1 to 0.001. The value of 0 equal 0.01 was found to

satisfy the above requirements, so that results are accurate

to.i 0.5 mV, except for very small values of Y($0.005) and

finite p. For Y§0.005, a value of 0 equal 0.001 was found to

give results to the same degree of accuracy mentioned above.

Effect of b. From its definition in Equation 76

parameter g_simply defines the initial equilibrium potential

for the experiment. Normally, in a chronopotentiometric ex-

periment only one oxidation state of the depolarizer is

present, for example the oxidized form in the case Of an

initial reduction. In this case the system is poised initial-

ly at an equilibrium potential very anodic of gfi, It is Ob-

served experimentally that under these conditions chrono-

potentiograms are essentially independent Of this initial

potential. This experimental fact was verified in the theo-

retical calculations by Observing that gfy.curves are inde-

pendent Of 2, except for very small shifts along the time axis,

provided g.is greater than 6.5, (gi more than 165 mV positive

of 2%). Thus, all calculations reported in this thesis were

calculated for p,= 7.0, and results are independent ijg

within the accuracy of the calculations.
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Effect of Ri. Bi is the ratio of forward to reverse

current densities, and its effect on gfiy curves in the present

case is identical to that discussed earlier in this thesis

(2;, discussion Of Figure 5). As pointed out in that discus-

sion, the Optimum value from an experimental point Of view is

about -0.5, and therefore, except where indicated, calculations

reported here are for gi = -0.5.

Effect Of a. The transfer coefficient, a, affects the
 

symmetry of gfiy curves as illustrated by Figure 11, where

theoretical chronopotentiograms are shown for three values of

a at fixed Y and p. The effect is essentially the same as

discussed earlier, and the limiting cases discussed there

transpose directly to the present case. As shown by Figure 11

the overall influence Of a is fairly small, the effect de-

creasing as p decreases. Since the curves become less de-

pendent on a for smaller values of p, differences of potential

(3,9,, Ag) on the forward and reverse parts of the gry_curve

tend to be independent of a. This fact will be used below in

develOping a relationship between Ag and p for the case Of

finite Y.

Effect of Switching Potential. The effect of current

reversal potentials on Efx curves is illustrated in Figure 12,

where theoretical curves are shown for two values of switch-

ing potential at fixed Y and p. The overall effect Of cur-

rent reversal potential is tO shift the anodic portion of the
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chronopotentiogram on the time axis. It was found by calcu-

lation that the shape of the reverse part of the curve be-

comes independent Of current reversal potential, except for

small differences near the anodic transition time, provided

switching potential is greater than —210 mV yg, gé,

Effect of Y and p. The effect of Y and p was considered

briefly above, and will be analyzed now in greater detail.

In particular, several limiting cases exist which can be

evaluated and quantitatively defined. The case for p equal

zero and finite Y already has been discussed in the litera—

ture by several groups (21,50,55). Similarly, the case of

zero Y and finite p was discussed in detail in the first part

of this thesis. The calculations developed above permit

conditions for which these limiting cases hold to be defined

quantitatively.

First, as Y and p both approach zero (small 91 and/Or

* *

AT , or large C , and large 58 and/or 1 , or large 90,

0

reZpectively) no kinetic or double-layechharging effects are

eXpected. This condition corresponds to uncomplicated re-

versible electron transfer, and was discussed earlier in

connection with Equations 55 and 54. It was found from the

theoretical gfy_curves that Equations 55 and 54 are obeyed

within 2-5 mV whenever Y 5.0.0005 and p'S 0.01.

A second limiting case arises when Y approaches zero,

and p is finite. This situatiOn corresponds to the case where

double-layer charging is negligible, and therefore is the case
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discussed earlier in this thesis in connection with Equations

27 and 51. It was determined from gfy_curves that Equations

27 and 51 are obeyed within 2-5 mV whenever Y {_0.0005,

regardless Of the value Of p.

A third limiting case occurs when p approaches zero, and

Y is finite. This situation corresponds to reversible elec-

tron transfer where double-layer charging is prevalent, which

is the case already discussed in the literature (21,50,55).

Theoretical gfy curves were found to agree with these litera-

ture data within 2-5 mV whenever pig 0.01, regardless Of the

value Of Y.

The final limiting case arises when p is sufficiently

*-

large (small 58 and/Or large gTF, or small go) that the pro-

cesses of oxidation and reduction can be treated separately

as the totally irreversible case (large overpotentials) (15).

For zero Y this situation is described exactly by Equations

55 and 56. It was found that these equations are applicable

in the present case within 2-5 mV whenever p.&_2.5 and

Y S 0.0005. The case Of p 2 2.5 and Y 2 0.0005 has been dis-

cussed in detail by Dracka (25), and Rodgers and Meites (55),

and therefore was not investigated further.

OverpotentiangAE, as a Measure Of ks. In the first

part of this thesis a simple relationship between Ag_and 58

in the absence of double-layer charging was developed. It

would be desirable to develOp a similar relationship for

finite Y, but in view of the strong interaction discovered
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between Y and p this possibility is not very promising.

Nevertheless, it is known that the Berzins-Delahay method

accurately locates gé, and therefore the possibility of

using this approach was investigated. TO do this a number of

gfy.curves were calculated for many values Of Y and p, and

values of gF and gR were determined by the method of Berzins

and Delahay (to eliminate human prejudice the graphical con-

structions were performed by the computer). From these values

of gF and gR, Ag_was calculated and the results are summarized

in Figure 15. The fact that a family Of curves is Obtained

proves conclusively that the method of Berzins and Delahay

does not satisfactorily compensate for double-layer charging

when electron transfer is kinetically controlled. The

reasons for this fact are apparent from the data of Figure 14.

which illustrate the effect on Ag_of the strong interaction

between Y and p. Figure 14 shows how the ratio if/iT

(faradaic current efficiency) varies for three values of Y

and a fixed value of p. Thus, as Y increases, the fraction

of the total current which is consumed by the faradaic pro-

cess decreases, as the charging current component increases

(see Equation 64). Since overpotential is determined only

by the faradaic current density, the value of Ag decreases

as Y increases. Therefore, a new value of Ag results for

each value Of Y, which in turn leads to a family of working

curves 0
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Although not as simple as hoped for, the working curves

of Figure 15 do provide a basis for estimating 58. Thus, if

Y can be determined independently, then the prOper working

curve can be identified and measured values Of Ag correlated

with p (and hence 58). Fortunately, Y can be determined

eXperimentally, and therefore this approach is feasible.

One method of estimating Y is as follows. The initial po-

tential rise for a chronopotentiogram is almost entirely due

to the charging current required to bring the working elec-

trode to the potential at which discharge of the electro-

active species occurs, as shown by the curves Of Figure 14.

Thus, during this part of the eXperiment §c(t) is nearly

equal to ET . Combining this fact with the definition of

F

;C(t) (Equation 65) gives

i = —c,s (112)

where §_is ggfit)/§£, ;,g,, the lepe of the initial linear

portion of the potential-time curve. Equation 112 combined

with the definition for Y (Equation 77) and the Sand equa-

tion yields the following expression

2

TF

Y = -(RT/nF)(i /Srsi$ ) (113)

8

To use Equation 115 to estimate Y it is necessary to per-

form two separate eXperiments on the same solution. One

experiment is performed at a current density iT where no

s
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double-layer charging or kinetic effects are detectable,

and the transition time corresponding to this current density

is T8. The second experiment is performed at a current

density iTF' where both double-layer charging and kinetic

effects are significant, and g_is taken as the initial lepe

of the resulting potential-time curve.

Conditions Of Applicability of WOrking Curves. The work-

ing curves of Figure 15 in general depend on the same para-

meters as Efx curves. Thus, the working curves of Figure 15

were calculated for gi = -0.5, a = 0.5, and current reversal

potential Of -240 mV yg, gfi, and they are rigorously applic-

able only when these conditions are met experimentally.

Additional calculations have shown, however, that for current

reversal potentials more negative than -210 mV, the effect

on Ag.is only of the order Of 2-5 mV. Thus, provided current

reversal potential is more negative than ~210 mV, the curves

of Figure 15 can be regarded as independent of current

reversal potential.

The working curves also depend on a, but for reasonable

values of a and p, the dependence is not very great, as

shown by the data Of Table I. These data also show that as

p decreases the dependence of Afl,on 0 also decreases.

Comparison Of values of p Obtained from Figure 15 with values

of p calculated rigorously for a in the range 0.5 _<_ O. _< 0.7,

show that values Of 58 accurate within about 10% can be
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Table I. Variation Of Ag,with Charge Transfer Coefficient

for Several Values of Y and pa

 

 

Y p nAE,mV a

 

0.005 0.00 -4.4

-4.4

-4.4

0.005 0.50 29.5

28.1

22.6

0.005 1.00 65.4

56.1

40.8

0.05 0.00 ~10.2

-10.2

-10.2

0.05 0.50 14.5
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11.0
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Obtained from the working curves for any a in this range,

provided Y 5 0.05 and p g 1.0.

Limits Of Applicabigity O§_Working Curves of Figure 15.

It is useful to determine how much the range of rate con-

stants which can be measured can be extended by using the

working curves of Figure 15. An estimate can be Obtained by

combining Equations 77 and 78 and solving for 38

2 2._ * C1.
k8 — n F WCODOY/4y RTpCl (114)

Evaluating the above result at 250C for p_: 2 and y (=

JD57DR ) = 1.0 gives

k8 — 1.2 x 10 CODOY/Clp (115)

By substituting the following typical values in Equation 115:

= 1 x 10'5cm2/sec, and C = 5 x 10~s

*

= 1 x 10’8mole/cm3, D 1
530 0

farads/cma, the following eXpression is Obtained

k8 = 5.9 Y/p (116)

The largest value of 58 that can be measured is set by the

restriction Y §_0.05 and p 2_0.1 to Observe kinetic effects.

Equation 116 predicts that values of 55 $_1.2 cm/sec can be

determined. This limit corresponds to extremely rapid elec-

tron transfer, and thus a significant extension of the method

has resulted, but at the cost of increased complexity of

data analysis.



OTHER POSSIBLE APPLICATIONS OF THE

THEORETICAL DATA

The main Objective of the theoretical calculations

just presented was to determine the influence of double-

1ayer charging on correlations between overpotential (Ag)

and electron transfer kinetics. There are, however, several

other areas in which the calculations could be useful. For

example, the results could be used to evaluate the several

different literature methods for measuring transition times

in a manner similar to that employed by Olmstead and

Nicholson (50). Also, the results could be used to evalu-

ate derivative chronOpotentiometry, to determine whether

recent claims by Burden and Peters (10) for advantages of

derivative chronopotentiometry are real. Finally, the re-

sults could be used to define quantitatively the effects of

linearization of the rate law. Of these possibilities the

second was examined briefly (but will not be discussed here).

and the third in some detail. Since results for this latter

case are interesting, they will be discussed briefly.

Because Of the functional dependence Of heterogeneous

rate constants on potential, the rate law is nonlinear,

which prevents analytical solutions for any boundary value

90
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problems which use this rate law as a boundary condition.

TO avoid these mathematical intractabilities it has been

common practice in the electrochemical literature to employ

a linearized form of the rate law (5,8,44,51). This approach

usually permits closed form solutions to be Obtained, but

necessarily limits the correSponding techniques to small

departures from the equilibrium potential. Thus, it is

usually estimated from the way in which the rate law is

linearized, that results are applicable only if overpoten-

tials are less than about 2-5 mV (5). The use Of such small

overpotentials has obvious experimental disadvantages.

Moreover, the way in which the limit of 2-5 mV is estimated

does not take into account the fact that there may be compen-

sating effects, and therefore the equations may actually be

valid for larger overpotentials. This possibility has only

been investigated rigorously in one case. Nicholson (46)

found that for the coulostatic relaxation method, linearized

equations were actually valid for overpotentials of about 25

mV, as compared to the 2-5 mV that had been previously claimed.

This conclusion is very important, especially if it proves to

be generally true for all electrochemical relaxation tech-

niques.

One of the popular relaxation techniques is called the

galvanostatic method (5,6,7,9,54,55,56,57,45). With this

method an electrode is initially at some equilibrium potential,

usually near the half-wave potential (;,g,, both 0 and R are

initially present at approximately equal concentrations).



92

The electrode is then perturbed by a constant current pulse,

and overpotential is recorded as a function of time as the

electrode potential is driven from its equilibrium value.

Theory for this method was first derived by Berzins and

Delahay (5), who used the linearized form of the rate law.

Thus, according to these authors only the first 2-5 mV of

overpotential on overpotential~time curves are interpretable

in terms of their equations.

On reflection it will become apparent to the reader that

from an experimental point Of view the galvanostatic method

is merely a special case of chronopotentiometry in which

different initial potentials are used, and only the very

first part of the chronOpotentiogram is recorded. When it is

recalled that the theory Of the preceding section was derived

* *

90 and QR.

see parameter p, Equation 76) it is apparent that the computer

for any arbitrary initial equilibrium potential (any

program of Appendix C can be used to calculate theoretical

galvanostatic curves, which do not encompass the assumption

of a linearized rate law. Thus, it is possible to determine

unambiguously the overpotential range for which the theory Of

Berzins and Delahay is valid, and thereby determine if the

conclusions Of Nicholson for the coulostatic method extend to

the galvanostatic method.

To make this comparison the final equation given by

Berzins and Delahay [Equation 18 Of Reference (5)] could be

used to calculate overpotential curves for the linearized
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case. Unfortunately, this is difficult because for certain

combinations of experimental variables, it requires evalua-

tion of error functions which have imaginary arguments.

Although it is possible to evaluate these functions, the

computer calculations would be complex and therefore a

simpler approach was sought.

In this alternate approach the linear boundary value

problem originally solved by Berzins and Delahay was trans-

formed directly tO the following linear integral equation,

which is equivalent to the lineariZed form of Equation 80:

pexp(ab)[1-h(y)]= -[1+exp(b)]yé¥fill+exp(b)]L¥ ELELQE-

m

+ 1/ny h(x)dx (117)

o

This integral equation was solved by the step—functional

method, and results were in agreement with those calculated

from the Berzins and Delahay equation.

Galvanostatic curves were calculated from Equations 80

and 117 for identical values of Y, p, and p, and the results

compared to determine the overpotential at which the rigorous

nonlinearized theory begins to deviate significantly from the

linearized theory. Typical results are shown in Figure 15,

where the solid curve is Obtained from the linearized equa-

tion, and the dashed curve from the nonlinearized equation.

At least for the values Of Y, p and g_used in Figure 15,

it is apparent that linearized theory is valid for consider-

ably larger overpotentials than the 2-5 mV usually assumed.
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The range Of overpotential for which the two equations

agree is, Of course, strongly dependent on the values of Y,

p and p, This fact is illustrated by the data Of Table II,

where the numerical quantities listed under various values

of p are the overpotentials at which linearized and non-

linearized results begin to differ by more than 1 mV.

The data of Table II show that in general linearized

theory can be used for overpotentials of about 50 mV, which

is nearly an order of magnitude larger than assumed in the

literature. This fact is significant in terms of the galvano-

static method, because it means that it can be used over an

experimentally more convenient range Of potentials, while

still analyzing the results with the simple closed form theory

of Berzins and Delahay. Moreover, together with the results

of Nicholson for the coulostatic method, it is likely that

linearized theories for all electrochemical techniques are

valid for much larger overpotentials than previously assumed

in the literature.
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Table II. Variation of Overpotentiala with Y and p for b

Several Values Of p for the Galvanostatic Method

 

 

 

 

b

Y 0.0 1.0 2.0 3.0 7.0

0.005 0.0 20.5a 11.9 10.3 12.4 >30.0

0.5 29.8 23.7 25.7 27.9 >30.0

1.0 >30.0C >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.01 0.0 20.8 12.2 11.3 14.0 >30.0

0.5 30.0 24.5 25.8 29.8 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.03 0.0 21.8 13.9 15.6 17.8 >30.0

0.5 >30.0 25.5 26.1 29.5 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.05 0.0 22.6 15.3 15.0 19.5 >30.0

0.5 >30.0 25.5 26.5 30.0 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.05 0.0 22.6 15.3 15.0 19.5 >30.0

0.5 >30.0 25.5 26.3 30.0 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

0.07 0.0 23.3 15.8 16.1 20.7 >30.0

0.5 >30.0 25.6 26.5 >30.0 >30.0

1.0 >30.0 >30.0 >30.0 >30.0 >30.0

5.0 >30.0 >30.0 >30.0 >30.0 >30.0

 

aNumerical values for overpotential arbitrarily defined as

the potential at which linearized and nonlinearized results

begin to differ by more than 1 mV.

a = 0.5 and 6 = 0.001.

CThe maximum departure from the equilibrium potential investi-

gated was 50 mV, which explains why some values give agree-

ment for greater than 50 mV.

b



EXPERIMENTAL

The experimental work which constitutes the last major

section Of this thesis was designed to evaluate the scope

and limitations Of the theoretical calculations already

described. To do this two different systems were studied

for which the electron transfer rate constants had been

measured by accepted methods. The first system studied was

azobenzene in water-ethanol solvent. This system was

selected because the apparent electron transfer rate is a

function of pH, and therefore the measurable rate constant

could easily be varied by changing pH. Thus, the new tech-

nique could be evaluated for a fairly large range of rate

constants without changing the depolarizer. The second sys-

tem studied was the reduction of cadmium in aqueous solvent.

This system was used primarily to evaluate the effect of

double-layer charging, since the standard rate constant is

sufficiently large to require experimental conditions for

which double-layer charging is a significant factor.

To perform the experiments a simple instrument was

assembled from commercially available components. Although

this equipment performed satisfactorily, it was found that

with current reversal adjustment of the switching time by

98
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trial and error was tedious, and also inaccurate at short

times. Thus, a more SOphisticated instrument with automatic

current reversal also was constructed. Since both of these

instruments were used to collect data, and both have indi—

vidual merits, a description of both instruments will be

presented.

instrumentation

The first instrument was simply a constant current source

which could be programmed to provide bipolar currents of

independently variable magnitude and duration. A block dia-

gram of the circuit is shown in Figure 16a.

The control amplifier, CA, is a high gain differential

amplifier (Wenking Potentiostat, Model 61RS, Brinkman Instru-

ments) provided with negative feedback to maintain zero

potential difference between the inverting (-) and noninvert-

ing (+) inputs. Since in the circuit of Figure 16a the

noninverting input is grounded, the inverting input is main-

tained at virtual ground. Thus, if a voltage gate of ampli-

tude g.is applied to the resistor, g, from the function

generator (FG), a constant current given by g/g_flows from

the output Of amplifier CA. Since the electrolysis cell is

in series with the output of CA, the constant current g/g

also passes between the counter electrode, gg, and the working

electrode, fig, The chronOpotentiogram is Obtained by record-

ing the potential of the reference electrode, ggypyg. ground
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(potential of fig) as a function of time on a suitable

recording device.

The voltage gate for programming the constant current

generator was obtained from a commercial function generator

(Exact Electronics, Inc., Model 255). This instrument is

equipped with both a main function generator, which generates

triangular, sine, and square waveforms, and a ramp generator.

Timing for the two function generator sections is independ-

ently adjustable, and a variety of different triggering modes

can be selected from a single front-panel program switch.

For the present application an external trigger was used

to start the ramp generator, which in turn was programmed to

trigger the main generator at the end of the ramp cycle. In

this mode a time delayed square wave could be Obtained from

the function generator (FG), the time delay being inversely

prOportional to the ramp frequency. When switch S1 (Figure

16a) is closed a biasing voltage, gt, is applied to the cur-

rent generator (causing a current gC[g_to flow through the

cell), and simultaneously a trigger pulse is applied to the

ramp generator. The frequency Of the ramp generator is ad-

justed to give the time delay, £1, shown in Figure 16b.

The time interval, 31, is adjusted by tFial and error to equal

the forward transition time on the chronopotentiogram. After

the interval, £1, the ramp generator internally triggers the

main generator, which provides a square wave of amplitude

gC + g3, and causes a current equal to ga/g_to flow through
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the electrolysis cell. Since gC and ga are of Opposite

polarity, current reversal occurs at this point, and elect

trolysis proceeds at the constant current ga/g, By adjust-

ing the amplitude of the main square wave, any value of gi

(iR/i , see Equation 14) can be conveniently selected. The

time interval, 32, is determined by the frequency of the

main generator, and is simply adjusted to be large enough

that the reverse transition time on the chronOpotentiogram

is observed.

Although this instrument functioned satisfactorily,

adjustment Of by trial and error was very time consuming£1

and difficult at short times. Thus, a second instrument was

designed to overcome these problems by automatic current

reversal at the forward transition time. This was accom-

plished with an electronic voltage comparator which provided

automatic current switching when the potential of the work-

ing electrode reached a preselected potential correSponding

to the potential at the transition time. A description of

this instrument is contained in the following paragraphs.

The circuit for the instrument is shown in Figure 17.

The amplifiers are solid state Operational amplifiers which

are identified in the legend of Figure 17. Power for the

Operational amplifiers was provided by a commercial power

supply (Deltron Model 08 15-.5D, 1.15 V, i 500 ma).

The circuit can be divided conceptually into three main

parts. The current generating section involves amplifier CA,
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and its operation is identical with the instrument described

above--g,g,, a voltage g_applied through g causes a constant

current g/R to flow through the electrolysis cell. Amplifier

DA is the comparator, which compares the voltage of the work-

ing electrode with a preselected transition time switching

potential. Amplifiers I and DA provide signal conditioning

described below for the comparator. The comparator is simply

an Operational amplifier Operated in an open loop configura-

tion. For example, whenever the noninverting input is at a

potential more negative than the inverting input, the output

of the amplifier is at its negative limit. Conversely, when

the potential Of the inverting input becomes more negative

than the noninverting input, the output of the amplifier

swings to its positive limit. The zener diodes on the output

of the voltage comparator clip the voltage swings Of the ampli-

fier to provide symmetrical outputs. The booster (B1) is

used to provide sufficient current to ensure prOper Operation

of the zeners. Amplifier DG biases the output of the voltage

comparator, and supplies the apprOpriate square waves to g.

for generation of the cell current.

Detailed Operation Of the circuit can be understood by

considering the following example. Suppose that initially a

reduction is to be performed requiring a cathodic current.

The potential Of the working electrode will initially be at

some equilibrium value, and then become progressively nega—

tive as electrolysis proceeds, until it reaches some negative
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potential, gc, corresponding to the forward transition time.

When the electrode reaches this potential, current reversal

should take place. Thus, the potential gC is selected and

applied to the noninverting input of the voltage comparator.

Since the potential of the reference electrode will become

increasingly positive as electrolysis proceeds, this potential

must be inverted before applying it to the other input of the

voltage comparator. This inversion is accomplished with

Amplifier I, which has a gain Of -1. Amplifier F is a voltage

follower, which is used to provide impedance matching. Since

initially gC is more negative than the inverting input of the

voltage comparator (effectively the potential of the working

electrode), the output of the voltage comparator is at its

negative limit, and the circuit remains in this state as long

as S1 is Open. When S1 is closed, amplifier DG adds the out-

put Of the comparator to an adjustable bias voltage, g_ andB’

the sum, g, is applied through g generating the constant

current g/g, As electrolysis continues the potential at the

inverting input of the comparator becomes increasingly nega-

tive until it passes the preselected transition time poten-

tial, gc. When this happens, the output Of the comparator

(amplifier DA) swings to its positive limit, and if gB is

properly adjusted, the polarity of g changes causing current

reversal. TO ensure that the circuit remains in this state

until the reverse transition time is observed, when the out-

put Of the comparator swings positive, diode D5 becomes
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forward biased, applying a positive reference to the:com-

parator through potentiometer P1. By simply adjusting gB.

any ratio Of current densities, 31, can be Obtained.

Thus, a current reversal chronopotentiogram is recorded

by setting gC to the desired transition time potential,

closing $1, and recording the potential at the output Of the

follower (Amplifier F) yg, time.

Cell and Electrodes. The electrolysis cell was a 200 ml

Pyrex weighing bottle with a 60/12 standard taper joint.

It was equipped with a tight-fitting Teflon lid, in which

holes were provided for the various electrodes, nitrogen inlet,

and a SCOOp used to transfer mercury drops. The working

electrode was a hanging mercury drop, which was constructed

according to the directions of Underkofler and Shain (59).

Normally, two drOps of mercury from a DME capillary were

collected and transferred to the working electrode. The

counter electrode was a platinum wire in the form of a Spiral

embedded in soft glass tubing, which was immersed directly

in the solution under study.

The reference electrode was a saturated calomel contained

in a separate compartment, and connected to the cell through

a double junction salt bridge ending in a Luggin capillary.

The section Of the salt bridge adjacent to the SCE compart-

ment contained 1 M sodium nitrate, while the Luggin capillary

section was filled with the solution under study.
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Chemicals. Zone refined azobenzene (Litton Chemicals,

Inc.) was used without further treatment. Other chemicals

were reagent grade with solids being dried at 1100C for

several hours.



RESULTS AND DISCUSSION OF EXPERIMENTS

ggnetics of Reduction of Azobenzene

The reduction of azobenzene in protic solvents has been

studied extensively (11,12,25,26,50,51,52,55,42,49,60). The

most detailed research is that of Lundquist (41), who investi-

gated the reduction in both aqueous and nonaqueous solvents.

In aqueous solvents he showed that the overall reaction in-

volves two electrOns and two protons per molecule of azo-

benzene. He found that the apparent reversibility Of the

reduction is a function Of pH, with reversibility increasing

as pH decreases. He used cyclic voltammetry to measure the

apparent heterogeneous rate constant for electron transfer

as a function of pH under conditions where the rate of the

reaction is pseudo first order. Thus, the heterogeneous rate

constants he Obtained are apparent 58 values with the pH

dependence predicted by several possible mechanisms for the

electrode reaction, he was able to arrive at a reasonable

mechanism for reduction of azobenzene. He obtained further

support for this mechanism from experiments in an aprotic

solvent to which varying concentrations of acid were added.

Azobenzene appeared to provide an ideal system for

evaluating the simple overpotential equation for chronopo-

tentiometry (Equation 48), since based on Lundquist's results

110
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a range Of rate constants could be measured without changing

the depolarizer (simply changing pH). Lundquist tabulated

the rate constants as a function Of pH, and therefore direct

comparisons could be made with his data. Hence, measurements

were made on azobenzene for experimental conditions identical

to those employed by Lundquist (see footnotes to Table III).

The results of these measurements at several hydrogen

ion concentrations are summarized in Table III, together with

the values reported by Lundquist. A comparison of these two

sets of data shows that at higher values Of pH, where 58 is

small, agreement is good, but at lower pH the values of 58

determined by chronOpotentiometry are always larger than those

obtained by Lundquist. It is interesting to note that these

facts are consistent with the very approximate estimates made

earlier for the upper limit Of 38 that could be determined

with Equation 48. Thus, it was estimated that double-layer

effects should prevent accurate measurement for 53 greater

than about 0.02 cm/sec. This prediction is in good agreement

with the data of Table III. Moreover, the direction Of the

deviation for larger values of 38 is consistent with the

effects predicted for double-layer charging. Thus, at low

values of pH, where 58 is larger, it is necessary to employ

higher current densities so that eXperimentally measurable

values Of Ag are obtained. At these higher current densities

charging current increases and the resulting current avail-

able for the faradaic process decreases. Since the faradaic
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current density determines overpotential, the magnitude of

Ag should decrease as the faradaic current density decreases.

Thus, if Ag decreases because of the influence of double-

layer charging, the value of p obtained from Equation 48

will be smaller than if double-layer charging effects were

negligible. Since p is inversely proportional to 58, the

value of 38 calculated would be too large, which is precisely

the trend observed in Table III.

In summary, the experiments on azobenzene confirm the

theory of the new method for measuring electron transfer

rate constants. In addition, application of the technique

proved to be as simple as anticipated, and therefore the

method meets most Of the requirements set forth in the

Introduction. The experimental results further show that

double-layer charging sets the upper limit for measurement of

58, and that this upper limit is about 0.02 cm/sec. It‘was

an attempt to extend this limit that prompted the calcula-

tions for the influence of double-layer charging, and the

eXperiments for this case, which are discussed next.

Kinetics of Reduction of Cadmium

As mentioned earlier reduction of cadmium was used to

evaluate the effects of double-layer charging. These eXperi-

ments were necessarily performed at higher current densities,

and therefore the instrument with automatic current reversal

was employed (see discussion of Figure 17). To ensure that
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this instrument functioned prOperly, experiments initially

were performed on reduction of cadmium under conditions

devoid Of both double-layer and kinetic effects. These

chronopotentiograms were diSplayed on an oscillosc0pe

(Tektronix, Type 564), and photographed with a Polaroid

camera attachment (Model C-12, and projected graticule,

Model 100). The working electrode was a hanging mercury drop

of radius 0.064 cm, and the current density was 9.99 x 10‘4

A/cmz. The'half-wave potential measured by the method Of

Berzins and Delahay was -0.582 V yg, SCE. A diffusion co-

efficient Of 2.8 x 10'5 cma/sec was calculated from the Sand

equation, after T was determined by the procedure of Laity

and McIntyre (59). These results compare with the values

of -0.585 V yg, SCE and 6.5 x 10-6 cmz/sec obtained from the

literature (27).

Next, reduction Of cadmium was investigated under condi-

tions where electron transfer is kinetically controlled, and

where double-layer effects are necessarily prevalent. To

evaluate the precision and sc0pe of the theory, experiments

were performed at several different current densities, and

the Observed values Of Ag recorded. In addition, values of

the double-layer parameter were determined experimentally by

the procedure described earlier (see discussion Of Equation

115). TheSe values Of Y were used to identify the prOper

working curve in Figure 15, from which values of p correspond-

ing to the Observed Ag_were Obtained. From these values Of p,
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the correSponding values of 58 were calculated. Results of

these experiments are summarized in Table IV, from which an

average value of 38 equal 0.16.: 0.04 cm/sec is Obtained.

The literature value Of 58 determined by ac polarography is

0.60 cm/sec, which is outside the estimated eXperimental error

for the value reported here. There are several equally

reasonable explanations for this discrepancy, and therefore

no attempt will be made to justify the difference between

the value reported above and the literature value.

Because of the discrepancy with literature values for

58, it seemed appropriate to investigate the extent to which

the theoretical model on which the calculations were based

agreed with experiment for the entire ChronOpotentiometric

curve. To do this one of the experimental chronOpotentiograms

used above in connection with Table IV was compared with a

computer generated chronOpotentiogram. The eXperimental

chronOpotentiogram was recorded with 51 = -0.5 and iTF=

2.6 x 10‘2 A/cme, and is represented by the points in Figure

18. For this curve pAg_equals 40 mV and Y = 0.015 (calcu-

lated from Equation 115 for iT = 1.0 x 10_3 A/cma, T8 =

s

0.85 sec, §.= -6.7 x 105 mV/sec). Using these data and the

working curves of Figure 15, p equal 0.85 was Obtained,

which corresponds to 58 equal 0.16 cm/sec. Next, the computer

program of Appendix C was used to calculate a theoretical

chronOpotentiogram for the same parameters as the experimental

curve--i.e., Y = 0.015, p = 0.85, R1 = -0.5, a = 0.5, and
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Table IV. 58 for Reduction Of Cadmiuma

 

 

b c

 

iTFx102,A/'cm2 nAE, mV p Y gsc' ,cm/sec

2.5 51:5 0.57-0.76 0.014 0.16-0.21

2.5d 42:5 0.78-1.00 0.015 0.15-0.17

2.6 40:5 0.74-0.95 0.015 0.14-0.18

5.6 48:5 1.01-1.50 0.019 0.14-0.18

 

a1.0 x 10‘3‘g_cadmium and 1.0 u_potassium nitrate.

bA i 5 mV reading error assumed for gAg.

C . . .

Range determined by assuming a constant error of i 5 mV in

measurement Of nAE.

dNew solution

eEach value of 58 listed is the average of 2 eXperiments.
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g_= 2. This theoretical chronopotentiogram is represented

by the solid line in Figure 18. Actually, to place the

theoretical chronOpotentiogram on the potential axis of

Figure 18, the theoretical curve was shifted to give the best

fit between eXperiment and theory. This best fit corresponds

to a half-wave potential of -0.590 V yg, SCE, which is in

excellent agreement with the literature value for cadmium.

The normalized transition time for the theoretical curve

corresponds to a diffusion coefficient of 2.7 x 10'5 cm2/sec,

which also agrees well with the value reported earlier.

The excellent agreement between theory and experiment

illustrated by Figure 18 demonstrates conclusively that the

model assumed for the theoretical calculations is a reasonable

one. Thus, it at least seems unlikely that the discrepancy

between the 58 reported here and the literature value can be

attributed to inadequacies of the theory.
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APPENDIX A

Reduction Of Boundary Valueggroblem

to Integrainogg

Equations 59 and 60 of the text can be integrated easily

with the aid of the Laplace transformation, for which the

following definition and notation will be adOpted

Cb = fzglexp(-st)][CO(x,t)]dt(CO(X.t)) = COIx.s)

(A1)

Thus, the Laplace transformation Of Equation 59 with incorpor-

ation of Equation 61 is

E

2 =sC -c (A2)
 

The general solution for Equation A2 is

CO = Aexp(-x Js/DO') + Bexp(x'Js/DO‘) + Cg/s (A5)

where A and B are integration constants. To satisfy Equa-

tion 62, B must be zero, which reduces Equation A5 to

Co = AexP(-x.Js/DO ) + Cg/s (A4)

the value of A can be determined by evaluating Equation A4

at x = 0
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- c /s (A5)

Equations A4 and A5 can be combined to give

0 = (00 x=0 - CS/s)exp(-x.Js7DO ) + CS/s (A6)

Since the remaining boundary conditions are in terms of flux

it is necessary to derive a eXpression for the flux. This

can be accomplished by differentiating Equation A6 with

respect to g_and evaluating the resulting expression at

g_= 0. The final result is

aco

5;-' = (- JS/DO )(CO - CS/s) (A7)

x=O x=0

Equation A7 can be rewritten in terms of concentration and

flux of substance 0 as follows

50 F0 = cg/s - 50:0(s)/~/‘s" (A8)

where the function f0(§) is used to represent the surface

flux of 0 (see Equation 9 Of the text)

OCO(x,t)

0 dx

 

fo(t) = D (A9)

er

The inversion of Equation A8 can be accomplished with tables

of Laplace transform pairs and the convolution theorem (15)

* t f (T)dT

CO X=0 = C0 - 1/’JWDO f0 —-:—:—: (A10)
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At this point the final boundary condition for surface flux

(Equation 68 Of the text) can be substituted in Equation A10,

which gives

* t if(T)dT.

c _ = c - 1/nF ~1er I —~———-— (A11)
0 x-O 0 0 O t _ T

Treatment Of the equation in CR(x,t) (Equation 60 Of the

text) is identical to that for CO(x,t), and the final result

is

* t if(T)dT

CR _ =c +1/nF 4775 f —— (A12)

X-0 R R o Jt—T?

Equations A11 and A12 are general expressions valid for

all times during electrolysis. In the case of current re-

versal, however, the function if(t) is discontinuous (see

Equations 68 and 69 Of the text). Therefore, in applying

Equations A11 and A12 to times greater than TF it is con-

venient to rewrite the integrals so that integration occurs

over the intervals for which if(t) is defined explicitly.

Thus, for TthfiflR Equations A11 and A12 can be written as

* TF if(T)dT

CO x=0 - C0 -1_/ nF’JTrDO f0 -—t—-—: - 1/nFV‘ITDO

i (T)dT

It 34—— (A15)

TF 4t - T

and (.)

T i T dT

CR x=0 = c; + 1/n}.=\I7rDR f F -£-—— + 1/anIerR

0 Jt - T

t if(T)dT

 

F 'Jt - T' (A14)
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At this point Equations A11 and A12, and A15 and A14,

can be combined with Equation 4 of the text to give equations

valid for‘all times during the experiment. The final results

after simplification are

  

ogtng

a/z

TFmR) ic(t) (DREW2 ( */ *)

- , r = exp -<1(JD C (JD C

nFCO(Do ) H/2 nFC6(DO)a/Zk
0 0 R R

S

exp(anF/chlf: iC(T)dT) [1 - 2iTFJ'P/nrcgJfiS6‘+ 1/nrc34'7rTD—O‘

t i (T)dT
t . , *-

f0 55:5“:— - eXPI-nF/R'I‘C.’1 f0 1C(T)d1‘) - ( ZiTFfi/nrco Juno )

exP(J‘n‘ch/J5Rc;) eXp(-nF/RTC1f: ic(t)at) + (exp(JFOCS/JDRCE)/

nFCSJ—N’Do)exp(-nF/RTC1f: iC(T)d1-)f: ic(T)dT ]

  

Jt - T (A15)

TF_<_t_{_TR

G/Z

Ri i'I‘F‘mR) R1C(t)(D) CV2 ,, *

nrc0(no) k8 nFCO(DO)a k8

T

exp[(anF/RTCl)(féFic(T)dT + 1/le: iC(T)dT)]{-1 + (2iT 757/

F F

* . * é. . -)(-

tired/7700‘ - ZITFm/DFCON/W'DO‘) (1 - R1) - ziTFJP/nrcodwno
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4 I - i -

+ 1/nFCOp/NDOI.F 1c”)dT + 1/nFCd~/TTDo I: 1c(T)dT

o J t -.T‘ E'IJt - T‘

T

- (exp[(-nF/RTC1)(I F iC(T)dT + 1/le: 16(T)dT)])[ 1 -
o F

- 21,1. JEF/nrcgd 7700‘)5(exp (JFocg/Jch‘1:) (ZiTFJF/nrcgfirfic‘) r

(1 - 31)) + exp(JDng/ngcg)(2iTéJEVhFC3JTDB) - exP(JDBCS/

T

JDEC;)/nFCSJwD6 f F 1c(T)dT - eXp (JDBCS/VDEC;)/nFCSJ;Db

O Q?T:7?

t i (T)dT

J: 5: ,_ ]
[A16]

TF '(t _ T‘



APPENDIX B

Relation of theygunction h(y) to Potential

The relation of the function h(y) (see Equation 75 of

the text) tO potential can be obtained from the following

expression (Equation 65)

iC(t) = -c1 Qfiéfl- (B1)

This equation can be integrated (g(0)=gi) and combined with

Equation 75 of the text to give

E(t) = Ei - iT(t)/le: h(T)dT (32)

The constant gi in Equation B2 can be related to the initial

bulk concentrations Of 0 and R through the Nernst equation

and the following definition of half-wave potential

5° = 8% + (RT/nF)ln ‘(D076R (B5)

to give the following relationship valid prior to current

reversal

T0_<_tg r

n[E(t) - 8%] = RT/Flb - 1M]: h(x)dx] (B4)

With the changes of variable (Equations 75 and 74 used in the
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text, the final expression becomes

ogthF

n[E(y) - 5% ] = RT/Ffb - 1M]: h(x)dx] (B5)

Similarly, using the approach discussed in Appendix A, the

expression for times after current reversal is

TthgTR

Y

n[E(y) - Efij = RT/F[b — 1/onf h(x)dx - Ri/Yfy h(x)dx]

Yf

(B6)



APPENDIX C

Computer_§rogram

The numerical solution of Equations 80 and 81 of the

text was performed on a Control Data 5600 digital computer

with a program written in FORTRAN IV. »Since this language is

compatible with most modern computers, the FORTRAN source

program is listed below. The following data are read in:

NRUN, which is the total number of sets Of Y, p, and a used;

ERROR, which is the accuracy of the Newton-Raphson iteration;

g, which is gi in the text; DELTA, which is 0 in the text;

THETA, which is g_in the text; SWITCH, which is the potential

at which the current is reversed; PSI, which is Y in the text;

and ALPHA, which is a in the text. The output involves print-

ing of the above data followed by the values Of N(E - E§)' y,

H(y), IF/IT (the faradaic current efficiency), ITERATIONS

(the number of Newton-Raphson iterations), QC/QF (ratio of the

coulombs of electricity used by the charging process to that

used in the faradaic process) and N X DERIVATIVE (derivative

of the potential-time curve at each point on the curve). In

addition, the program constructs tangents at the initial

portion of the curve, and at a point just prior to current

reversal, and it also constructs the Berzins and Delahay line
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which intersects the curve at gF. The equations of these

lines and the point on the potential-time curve where gF

occurs are printed. A similar procedure is performed for

the portion of the potential-time curve after current reversal.

Finally, from these values of gF and gR, the difference AE

(=.E - gF) is calculated and printed.
—R



1
0
0

9
0
0

1
0

1
0
5

1
0
6

P
R
O
G
R
A
M

C
Y
C
H
R
O
N

Q
U
A
S
I

W
I
T
H
D
O
U
B
L
E

L
A
Y
E
R

D
I
M
E
N
S
I
O
N

Y
(
2
0
0
0
)
,
H
(
2
0
0
0
)
,
P
O
T
(
2
0
0
0
)
,
I
T
E
R
(
2
0
0
0
)
.
S
Q
R
(
2
0
0
0
)
,

Z
S
Q
R
D
(
2
0
0
0
)
,
A
(
1
0
0
0
)
.
A
(
1
0
0
0
)
.
C
(
1
0
0
0
)
,
D
(
1
0
0
0
)
.
G
(
1
0
0
0
)
,
V
(
1
0
0
0
)
.

5
W
(
1
0
0
0
)
.
T
(
1
0
0
0
)
.
Z
(
1
0
0
0
)
.
Q
R
A
T
(
1
5
0
0
)

R
E
A
D

1
0
0
,
N
T
O
T

R
E
A
D

1
0
0
.

N
R
U
N

F
O
R
M
A
T
(
1
5
)

R
E
A
D

9
0
0
,
E
R
R
O
R

F
O
R
M
A
T
(
F
1
0
.
0
)

R
E
A
D

1
0
,
R

F
O
R
M
A
T
(
F
1
0
.
0
)

R
E
A
D

1
0
5
;
D
E
L
T
A
,
T
H
E
T
A
,
S
W
I
T
C
H

F
O
R
M
A
T
(
5
F
1
0
.
0
)

R
E
A
D

1
0
6
,
P
S
I
,
R
H
O
,
A
L
P
H
A

F
O
R
M
A
T
(
5
F
1
0
.
0
)

P
=
S
O
R
T
F
(
D
E
L
T
A
)

A
(
1
)
=
0
.

B
(
1
)
=
E
X
P
F
(
-
A
L
P
H
A
*
T
H
E
T
A
)

c
(
1
)
=
1
.

D
(
1
)
=
E
X
P
F
(
T
H
E
T
A
)

A
(
2
)
=
A
(
1
)

B
(
2
)
=
B
(
1
)

c
(
2
)
=
c
(
1
)

D
(
2
)
=
D
(
1
)

E
=
D
E
L
T
A
/
P
S
I

S
Q
R
(
1
)
=
1
.

S
Q
R
D
(
1
)
=
1
.

Q
=
1
.

Z
I
=
0
.
0
0
0
4

S
=
O
.

D
0

2
2

N
=
1
,
6
0
0

M
=
N
-
1

I
T
E
R
(
N
)
=
O

Y
(
N
)
=
S
*
D
E
L
T
A

s
=
s
+
1
.

c
o
n
t
i
n
u
e
d

155



9
9

9
7

2
9

1
7

1
8

2
2

2
5

Q
=
Q
+
1
.

L
=
N
+
1

S
Q
R
(
L
)
=
S
Q
R
T
F
(
Q
)

S
Q
R
D
(
L
)
=
S
Q
R
(
L
)
-
S
Q
R
(
N
)

I
F
(
N
-
2
)
8
1
.
9
9
.
9
9

I
F
(
N
-
5
)
8
.
9
7
.
9
7

K
=
N
-
1

A
(
N
)
=
0
.
0

D
O

9
J
=
2
,
M

A
(
N
)
=
A
(
N
)
+
P
*
H
(
J
)
*
S
Q
R
D
(
K
)

K
=
K
-
1

C
O
N
T
I
N
U
E

B
(
N
)
=
B
(
M
)
*
E
X
P
F
(
A
L
P
H
A
*
E
*
H
(
M
)
)

C
(
N
)
=
C
(
M
)
*
E
X
P
F
(
-
E
*
H
(
M
)
)

D
(
N
)
=
D
(
M
)
*
E
X
P
F
(
-
E
*
H
(
M
)
)

Z
I
=
X

I
T
E
R
(
N
)
=
I
T
E
R
(
N
)
+
1

P
N
U
M
=
-
S
Q
R
T
F
(
Y
(
N
)
)
+
P
*
Z
I
+
A
(
N
)
-
D
(
N
)
*
S
Q
R
T
F
(
Y
(
N
)
)
*
E
X
P
F
(
-
E
*
Z
I
)
+
D
(
N
)
*
P
*
Z
I

2
*
E
X
P
F
(
-
E
*
Z
I
)
+
A
(
N
)
*
D
(
N
)
*
E
X
P
F
(
-
E
*
Z
I
)
-
(
R
H
O
-
R
H
O
*
Z
I
)
/
(
B
(
N
)
*
E
X
P
F
(
A
L
P
H
A
*

5
E
*
Z
I
)
)
+
1
.
-
C
(
N
)
*
E
X
P
F
(
-
E
*
Z
I
)

D
E
N
=
P
+
E
*
D
(
N
)
*
S
Q
R
T
F
(
Y
(
N
)
)
*
E
X
P
F
(
-
E
*
Z
I
)
-
D
(
N
)
*
E
*
P
*
Z
I
*
E
X
P
F
(
-
E
*
Z
I
)
+
D
(
N
)
*

2
P
*
E
X
P
F
(
-
E
*
Z
I
)
-
A
(
N
)
*
D
(
N
)
*
E
*
E
X
P
F
(
-
E
*
Z
I
)
+
(
(
R
H
O
+
R
H
O
*
A
L
P
H
A
*
E
-
R
H
O
*
A
L
P
H
A
*

5
E
*
Z
I
)
/
(
B
(
N
)
*
E
X
P
F
(
A
L
P
H
A
*
E
*
Z
I
)
)
)
+
C
(
N
)
*
E
*
E
X
P
F
(
-
E
*
Z
I
)

X
=
Z
I
-
(
P
N
U
M
/
D
E
N
)

I
F
(
I
T
E
R
(
N
)
-
2
0
0
)
2
9
,
2
9
,
7
0

I
F
(
A
B
S
F
(
(
X
-
Z
I
)
/
Z
I
)
-
E
R
R
O
R
)
7
,
8
.
8

H
(
N
)
=
X

I
F
(
N
-
5
)
1
7
,
1
8
,
1
8

P
O
T
(
N
)
=
2
5
.
6
8
8
5
7
*
(
T
H
E
T
A
-
E
*
H
(
N
)
)

I
F
(
N
-
5
)
2
2
,
1
8
,
1
8

P
O
T
(
N
)
=
P
O
T
(
M
)
-
2
5
.
6
8
8
5
7
*
E
*
H
(
N
)

I
F
(
S
W
I
T
C
H
-
P
O
T
(
N
)
)
2
2
.
2
5
.
2
5

C
O
N
T
I
N
U
E

L
I
M
I
T
F
=
N

N
=
N
+
1

M
=
N
-
1

K
=
N
-
1

c
o
n
t
i
n
u
e
d

154



1
5

1
7
6

8
0

A
(
N
)
=
o
.
o

D
O

1
5

J
=
2
.
M

A
(
N
)
=
A
(
N
)
+
P
*
H
(
J
)
*
S
Q
R
D
(
K
)

K
=
K
-
1

C
O
N
T
I
N
U
E

B
(
N
)
=
B
(
M
)
*
E
X
P
F
(
A
L
P
H
A
*
E
*
H
(
M
)
)

C
(
N
)
=
C

(
M
)
*
E
X
P
F

(
-
E
*
.
H
(
M
)

)

D
(
N
)
=
D

(
M
)
*
E
X
P
F
(
-
E
*
H

(
M
)

)

U
=
Q
-
1
.

x
x
=
U

P
L
I
M
=
Q
-
2
.

G
(
1
)
=
D
(
N
)

V
(
1
)
=
(
S
Q
R
T
F
(
U
*
D
E
L
T
A
-
P
L
I
M
*
D
E
L
T
A
)
)
*
(
1
.
-
R
)
-
S
Q
R
T
F
(
U
*
D
E
L
T
A
)

T
(
1
)
=
B

(
N
)

z
(
1
)
=
c
(
N
)

W
(
K
)
=
0
.
0

p
p
=
1
.

0
R
A
T
(
1
)
=
0
.
0

F
S
U
M
H
=
0
.
0

D
O

1
7
6
M
=
2
,
L
I
M
I
T
F

F
S
U
M
H
=
F
S
U
M
F
+
H
(
M
)

Q
R
A
T

(
M
)
=
F
S
U
M
H
/
(
P
P
-
F
S
U
M
H
)

W
I
K
)
=
W
(
K
)
+
P
*
H
(
M
)
*
(
S
Q
R
T
F
(
U
-
P
P
+
1
.
)
-
S
Q
R
T
F
:
U
-
P
P
)
)

P
P
=
P
P
+
1
.

C
O
N
T
I
N
U
E

J
J
=
L
I
M
I
T
F
+
1

D
O

5
0

I
=
J
J
,
1
2
0
0

M
=
I
-
1

s
=
s
+
1
.

I
T
E
R
(
I
)
=
0

Y
(
I
)
=
S
*
D
E
L
T
A

Z
I
=
X

I
T
E
R
(
I
)
=
I
T
E
R
(
I
)
+
1

c
o
n
t
i
n
u
e
d

155



5
8

1
0

4
1

4
4

1
9
9

3
3

5
0

9
2

 

 

P
N
U
M
=
V
(
K
)
+
G
(
K
)
*
V
(
K
)
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
+
W
(
K
)
+
G
(
K
)
*
W
(
K
)
*
E
X
P
F
(
-
R
*
E
*
Z
I
)

2
+
R
*
P
*
Z
I
+
G
(
K
)
*
R
*
P
*
Z
I
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
-
(
(
R
*
R
H
O
-
R
*
R
H
O
*
Z
I
)
/
T
(
K
)
*

5
E
X
P
F
(
A
L
P
H
A
*
R
*
E
*
Z
I
)
)
+
1
.
-
Z
(
K
)
*
E
X
P
F
(
-
R
*
E
*
Z
I
)

D
E
N
=
-
G
(
K
)
*
V
(
K
)
*
R
*
E
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
-
R
*
E
*
G
(
K
)
*
W
(
K
)
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
+
R
*
P

2
-
R
*
P
*
E
*
G
(
K
)
*
R
*
Z
I
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
+
G
(
K
)
*
R
*
P
*
E
X
P
F
(
-
R
*
E
*
Z
I
)
+
(
(
R
*
R
H
O
+

5
A
L
P
H
A
*
R
*
R
*
R
H
O
*
E
-
A
L
E
H
A
*
R
*
R
*
E
*
R
H
O
*
Z
I
)
/
T
(
K
)
*
E
X
P
F
(
A
L
P
H
A
*
R
*
E
*
Z
I
)
)
+
R
*
E
*

4
Z
(
K
)
*
E
X
P
F
(
-
R
*
E
*
Z
I
)

X
=
Z
I
-
(
P
N
U
M
/
D
E
N
)

I
F
(
I
T
E
R
(
I
)
-
2
0
0
)
5
8
.
5
8
,
9
2

I
F
(
A
B
S
F
(
(
X
-
Z
I
)
/
Z
I
)
-
E
R
R
O
R
)
1
0
,
8
0
,
8
0

H
(
I
)
=
X

Q
=
Q
+
1
.

U
=
U
+
1
.

K
=
K
+
1

I
F
(
2
*
L
I
M
I
T
F
-
I
)
4
1
,
4
4
,
4
4

S
Q
R
I
K
)
=
S
Q
R
T
F
(
Q
)

S
Q
R
D
(
K
)
=
S
Q
R
(
K
)
-
S
Q
R
(
K
-
1
)

G
(
K
)
=
G
(
K
-
1
)
*
E
X
P
F
(
-
R
*
E
*
H
(
I
)
)

V
(
K
)
=
(
S
Q
R
T
F
(
U
*
D
E
L
T
A
-
P
L
I
M
*
D
E
L
T
A
)
)
*
(
1
.
-
R
)
-
S
Q
R
T
F
(
U
*
D
E
L
T
A
)

N
(
K
)
=
o
.
0

p
p
=
1
.

D
O

1
9
9

J
=
2
.
L
I
M
I
T
F

W
(
K
)
=
W
(
K
)
+
P
*
H
(
J
)
*
(
S
Q
R
T
F
(
U
-
P
P
+
1
.
)
-
S
Q
R
T
F
(
U
-
P
P
)
)

P
P
=
P
P
+
1
.

C
O
N
T
I
N
U
E

L
=
K

D
O

5
5

N
=
J
J
,
I

W
(
K
)
=
W
(
K
)
+
R
*
P
*
H
(
N
)
*
S
Q
R
D
(
L
)

L
=
L
-
1

C
O
N
T
I
N
U
E

T
(
K
)
=
T
(
K
-
1
)
*
E
X
P
F
(
A
L
P
H
A
*
R
*
E
*
H
(
I
)
)

Z
(
K
)
=
Z
(
K
-
1
)
*
E
X
P
F
(
-
R
*
E
*
H
(
I
)
)

P
O
T
(
I
)
=
P
O
T
(
M
)
-
2
5
.
6
8
8
5
7
*
R
*
E
*
H
(
I
)

I
F
(
P
O
T
(
I
)
-
1
8
0
.
)
5
0
,
9
2
,
9
2

C
O
N
T
I
N
U
E

L
I
M
I
T
R
=
I

c
o
n
t
i
n
u
e
d

156



S
U
M
F
L
I
M
=
F
S
U
M
H

R
S
U
M
H
=
S
U
M
F
L
I
M

D
O

8
8
2

L
=
J
J
,
L
I
M
I
T
R

P
S
U
M
H
=
R
S
U
M
H
+
R
*
H
(
L
)

Q
R
A
T
(
L
)
=
R
S
U
M
H
/
(
P
L
I
M
+
R
*
(
x
x
-
P
L
I
M
)
—
R
S
U
M
H
)

=
x
x
+
1
.

8
8
2

C
O
N
T
I
N
U
E

7
0

P
R
I
N
T

1
1
5

1
1
5

F
O
R
M
A
T
(
1
H
1
/
/
/
/
/
/
/
/
/
)

P
R
I
N
T

1
2
0

1
2
0

F
O
R
M
A
T
(
4
5
X
,
2
6
H
C
Y
C
L
I
C

C
H
R
O
N
O
P
O
T
E
N
T
I
O
M
E
T
R
Y
/
)

P
R
I
N
T

1
2
1

1
2
1

F
O
R
M
A
T
(
4
7
X
.
2
5
H
Q
U
A
S
I

W
I
T
H

D
O
U
B
L
E

L
A
Y
E
R
/
/
/
/
/
/
/
)

P
R
I
N
T

1
9
0
.
R

1
9
0

F
O
R
M
A
T
(
9
H
I
T
R
/
I
T
F
=

F
1
0
.
7
/
)

P
R
I
N
T

1
2
9
,
T
H
E
T
A

1
2
9

F
O
R
M
A
T
(
1
1
H
L
N
(
T
H
E
T
A
)
=

F
6
.
5
/
)

P
R
I
N
T

1
5
0
,
D
E
L
T
A

1
5
0

F
O
R
M
A
T
(
7
H
D
E
L
T
A
=

F
8
.
5
/
)

P
R
I
N
T

1
5
5
,
L
I
M
I
T
F
,
L
I
M
I
T
R

1
5
5

F
O
R
M
A
T
(
8
H
L
I
M
I
T
F
=

1
5
,
2
X
,
8
H
L
I
M
I
T
R
=

1
5
/
)

P
R
I
N
T

1
4
5
,
A
L
P
H
A
,
R
H
O
,
P
S
I

1
4
5

F
O
R
M
A
T
(
7
H
A
L
P
H
A
=

F
6
.
5
,
2
X
,
5
H
R
H
O
=

F
1
0
.
6
,
2
X
,
5
H
P
S
I
=

F
1
0
.
6
/
)

P
R
I
N
T

1
4
9
,
S
W
I
T
C
H

1
4
9

F
O
R
M
A
T
(
2
1
H
S
W
I
T
C
H
I
N
G
P
O
T
E
N
T
I
A
L
=

F
9
.
5
/
)

P
R
I
N
T

2
0
0
.
E
R
R
O
R

'

2
0
0

F
O
R
M
A
T
(
1
9
H
C
O
N
V
E
R
G
E
N
C
E

E
R
R
O
R
=

F
1
4
.
9
/
)

P
R
I
N
T

1
5
0

1
5
0

F
O
R
M
A
T
(
5
X
,
9
H
N
(
E
-
E
1
/
2
)
,
6
X
,
9
H
N
x

D
E
L
T
A
,

6
X
,
4
H
H
(
Y
)
,
8
X
,

2
1
2
H
I
F
/
I
T
=
1
-
H
(
Y
)
,
1
2
X
,
1
0
H
I
T
E
R
A
T
I
O
N
S
,
7
X
,
5
H
Q
C
/
Q
F
,
7
X
,
1
4
H
N
x

D
E
R
I
V
A
T
I
V
E
)

D
o

2
7

I
=
1
,
L
I
M
I
T
R

I
P
(
I
-
L
I
M
I
T
P
)
1
0
9
.
1
0
9
.
1
1
0

1
0
9

D
E
R
I
V
=
-
(
2
5
.
6
8
8
5
7
*
H
(
I
)
)
/
P
S
I

G
O

T
O

1
1
1

1
1
0
D
E
R
I
V
=
-
(
2
5
.
6
8
8
5
7
*
R
*
H
(
I
)
)
/
P
S
I

1
1
1

D
I
F
=
1
.
-
H
(
I
)

P
R
I
N
T

8
9
,
P
O
T
(
I
)
,
Y
(
I
)
,
H
(
I
)
,
D
I
F
,
I
T
E
R
(
I
)
,
Q
R
A
T
(
I
)
,
D
E
R
I
V

c
o
n
t
i
n
u
e
d

157



8
9

2
7

3
1
0

3
0
0

5
1
1

5
0
1

3
1
2

5
0
2

5
1
3

5
0
5

F
O
R
M
A
T
(
1
x
,
E
1
6
.
7
,
F
1
1
.
5
,
2
E
1
6
.
7
,
1
1
5
,
6
X
,
2
E
1
6
.
7
)

C
O
N
T
I
N
U
E

X
F
1
=
0
.
0

Y
F
1
=
2
5
.
6
8
8
5
7
*
T
H
E
T
A

S
L
O
P
E
F
1
=
(
P
O
T
(
2
)
-
Y
F
i
)
/
(
Y
(
2
)
-
X
F
1
)

F
I
N
T
E
R
1
=
Y
F
1

P
R
I
N
T

5
1
0

F
O
R
M
A
T
(
3
3
H
E
O
U
A
T
I
O
N

F
O
R

F
I
R
S
T

L
I
N
E
A
R

P
O
R
T
I
O
N
/
)

P
R
I
N
T

5
0
0
,
8
L
D
P
E
F
1
,
F
I
N
T
E
R
1

F
O
R
M
A
T
(
3
H
Y
=

F
1
0
.
4
.
1
X
,
4
H
x

+
F
1
0
.
4
/
)

x
1
=
(
P
O
T
(
L
I
M
I
T
F
)
-
F
I
N
T
E
R
1
)
/
S
L
O
P
E
F
1

S
L
O
P
E
F
2
=
(
P
O
T
(
L
I
M
I
T
F
-
1
)
—
P
O
T
(
L
I
M
I
T
F
)
)
/
(
Y
(
L
I
M
I
T
F
-
1
)
-
Y
(
L
I
M
I
T
F
)
)

F
I
N
T
E
R
2
=
P
O
T
(
L
I
M
I
T
F
)
-
S
L
O
P
E
F
2
*
Y
(
L
I
M
I
T
F
)

P
R
I
N
T

3
1
1

F
O
R
M
A
T
(
5
5
H
E
O
U
A
T
I
O
N

F
O
R

S
E
C
O
N
D

L
I
N
E
A
R

P
O
R
T
I
O
N

I
N

F
O
R
W
A
R
D

P
O
R
T
I
O
N
/
)

P
R
I
N
T

5
0
1
,
3
L
O
P
E
F
2
,
F
I
N
T
E
R
2

F
O
R
M
A
T
(
3
H
Y
=
”
F
1
0
.
4
,
1
X
,
4
H
X
‘
+

F
1
0
.
4
/
)

X
2
=
(
Y
F
1
-
F
I
N
T
E
R
2
)
/
S
L
O
P
E
F
2

S
L
O
P
E
R
1
=
(
P
O
T
(
L
I
M
I
T
F
+
1
)
—
P
O
T
(
L
I
M
I
T
F
)
)
/
(
Y
(
L
I
M
I
T
F
+
1
)
—
Y
(
L
I
M
I
T
F
)
)

R
I
N
T
E
R
1
=
P
O
T
(
L
I
M
I
T
F
)
4
S
L
O
P
E
R
1
*
Y
(
L
I
M
I
T
F
)

P
R
I
N
T

5
1
2

F
O
R
M
A
T
(
4
1
H
E
Q
U
A
T
I
O
N

F
O
R

F
I
R
S
T

P
O
R
T
I
O
N
A
F
T
E
R

R
E
V
E
R
S
A
L
/
)

P
R
I
N
T

3
0
2
,
S
L
O
P
E
R
1
,
R
I
N
T
E
R
1

F
O
R
M
A
T
(
5
H
Y
+
F
1
0
.
4
,
1
X
,
2
H
X

F
1
0
.
4
/
)

X
5
=
(
P
O
T
(
L
I
M
I
T
R
)
-
R
I
N
T
E
R
1
)
/
S
L
O
P
E
R
1

S
L
O
P
E
R
2
2
4
P
O
T
(
L
I
M
I
T
R
-
1
)
-
P
O
T
(
L
I
M
I
T
R
)
)
/
(
Y
(
L
I
M
I
T
R
—
1
)
—
Y
(
L
I
M
I
T
R
)
)

R
I
N
T
E
R
2
=
P
O
T
(
L
I
M
I
T
R
)
-
S
L
O
P
E
R
2
*
Y
(
L
I
M
I
T
R
)

P
R
I
N
T

5
1
5

F
O
R
M
A
T
(
4
9
H
E
Q
U
A
T
I
O
N

F
O
R

S
E
C
O
N
D

L
I
N
E
A
R

P
O
R
T
I
O
N
A
F
T
E
R

R
E
V
E
R
S
A
L
/
)

P
R
I
N
T

5
0
5
,
3
L
O
P
E
R
2
,
R
I
N
T
E
R
2

F
O
R
M
A
T
<
3
H
Y
=

F
I
O
.
4
,
1
X
;
2
H
X

F
1
0
.
4
/
)

X
4
=
(
P
O
T
(
L
I
M
I
T
F
)
-
R
I
N
T
E
R
2
)
/
S
L
O
P
E
R
2

D
F
U
=
Y
(
L
I
M
I
T
F
)
-
x
1

D
F
U
Q
=
D
F
U
/
4
.

D
F
L
=
X
2
-
X
F
1

D
F
L
Q
=
D
F
L
/
4
.

X
Q
F
U
=
x
1
+
D
F
U
Q

c
o
n
t
i
n
u
e
d

138



5
1
4

3
0
4

5
1
5

3
0
5

9
7
0

9
7
1

9
7
2

9
7
4

9
8
0

X
Q
F
L
=
X
F
1
+
D
F
L
Q

S
L
O
P
E
Q
F
=
(
P
O
T
(
L
I
M
I
T
P
)
-
Y
F
1
)
/
(
X
Q
F
U
-
X
Q
F
L
)

Q
I
N
T
E
R
F
=
P
O
T
(
L
I
M
I
T
F
)
-
S
L
O
P
E
Q
F
*
X
Q
F
U

P
R
I
N
T

3
1
4

F
O
R
M
A
T
(
5
8
H
E
Q
U
A
T
I
O
N

F
O
R

D
E
L
A
H
A
Y
'
S

L
I
N
E

A
T

Y
=
.
2
5
Y
F
/
)

P
R
I
N
T

5
0
4
,
5
L
O
P
E
Q
F
,
Q
I
N
T
E
R
F

F
O
R
M
A
T
(
E
H
Y
=

F
1
0
.
4
.
2
X
,
4
H
x

+
F
1
0
.
4
/
)

D
R
L
=
Y
(
L
I
M
I
T
R
)
-
x
3

D
R
L
Q
=
0
.
1
8
0
3
*
D
R
L

D
R
U
=
x
4
-
Y
(
L
I
M
I
T
F
)

D
R
U
Q
=
O
.
1
8
0
5
*
D
R
U

X
Q
R
U
=
Y
(
L
I
M
I
T
F
)
+
D
R
U
o

x
O
R
L
=
x
5
+
D
R
L
Q

S
L
O
P
E
Q
R
=
(
P
O
T
(
L
I
M
I
T
F
)
-
P
O
T
(
L
I
M
I
T
R
)
)
/
(
X
Q
R
U
-
X
Q
R
L
)

Q
I
N
T
E
R
R
=
P
O
T
(
L
I
M
I
T
F
)
-
S
L
O
P
E
Q
R
*
X
Q
R
U

P
R
I
N
T

3
1
5

F
O
R
M
A
T
(
4
O
H
E
Q
U
A
T
I
O
N

F
O
R

D
E
L
A
H
A
Y
'
S

L
I
N
E

A
T

Y
=
.
1
8
0
5
Y
R
/
)

P
R
I
N
T

3
0
5
,
5
L
O
P
E
Q
R
,
Q
I
N
T
E
R
R

F
O
R
M
A
T
(
5
H
Y
=

F
1
0
.
4
,
1
x
,
2
H
x

F
1
0
.
4
/
)

I
D
U
M
F
=
5

I
D
U
M
F
=
I
D
U
M
F
+
1

S
L
O
P
D
U
M
F
=
(
P
O
T
(
I
D
U
M
F
)
-
P
O
T
(
I
D
U
M
F
-
l
)
)
/
(
Y
(
I
D
U
M
F
)
-
Y
(
I
D
U
M
F
-
1
)
)

F
I
N
T
D
U
M
=
P
O
T
(
I
D
U
M
F
)
-
S
L
O
P
D
U
M
F
*
Y
(
I
D
U
M
F
)

Y
I
N
T
S
F
=
(
F
I
N
T
D
U
M
-
Q
I
N
T
E
R
F
)
/
(
S
L
O
P
E
Q
F
-
S
L
O
P
D
U
M
F
)

E
I
N
T
S
F
=
S
L
O
P
E
Q
F
*
Y
I
N
T
S
F
=
Q
I
N
T
E
R
F

I
F
(
I
D
U
M
F
-
L
I
M
I
T
F
)
9
7
1
,
9
7
1
,
9
7
4

I
F
(
E
I
N
T
S
F
-
P
O
T
(
I
D
U
M
F
)
)
9
7
0
,
9
7
2
,
9
7
2

I
F
(
P
O
T
(
I
D
U
M
F
-
1
)
-
E
I
N
T
S
F
)
9
7
O
,
9
7
4
,
9
7
4

C
O
N
T
I
N
U
E

I
D
U
M
R
=
L
I
M
I
T
F
-

I
D
U
M
R
=
I
D
U
M
R
+
1

S
L
O
P
D
U
M
R
=
(
P
O
T
(
I
D
U
M
R
)
-
P
O
T
(
I
D
U
M
R
-
1
)
)
/
(
Y
(
i
D
U
M
R
)
-
Y
(
I
D
U
M
R
-
1
)
)

R
I
N
T
D
U
M
=
P
O
T
(
I
D
U
M
R
)
-
S
L
O
P
D
U
M
R
*
Y
(
I
D
U
M
R
)

Y
I
N
T
S
R
=
(
R
I
N
T
D
U
M
-
Q
I
N
T
E
R
R
)
/
(
S
L
O
P
E
Q
R
-
S
L
O
P
D
U
M
R
)

E
I
N
T
S
R
=
S
L
O
P
E
Q
R
*
Y
I
N
T
S
R
+
Q
I
N
T
E
R
R

I
F
(
I
D
U
M
R
-
L
I
M
I
T
R
)
9
8
1
,
9
8
1
,
9
8
4

C
o
n
t
i
n
u
e
d

139



9
8
1

I
F
(
E
I
N
T
S
R
-
P
O
T
(
I
D
U
M
R
)
)
9
8
2
,
9
8
2
,
9
8
0

9
8
2

I
F
(
P
0
T
I
I
D
U
M
R
-
1
)
-
E
I
N
T
S
R
)
9
8
4
.
9
8
4
,
9
8
0

9
8
4
C
O
N
T
I
N
U
E

‘

D
E
L
T
A
E
=
E
I
N
T
S
R
-
E
I
N
T
S
F

P
R
I
N
T

9
8
5
,
E
I
N
T
S
F
,
Y
I
N
T
S
F

9
8
5
F
O
R
M
A
T
(
4
2
H
D
E
L
A
H
A
Y
'
S

L
I
N
E

I
N
T
E
R
S
E
C
T
S

E
-
Y

C
U
R
V
E

A
T

E
=

F
1
0
.
4
.
1
x
,

2
7
H
A
N
D

Y
=

F
1
0
.
4
/
)

P
R
I
N
T

9
8
6
,
E
I
N
T
S
R
,
Y
I
N
T
S
R

9
8
6

F
O
R
M
A
T
(
S
O
H
D
E
L
A
H
A
Y
'
S

L
I
N
E

I
N
T
E
R
S
E
C
T
S

E
-
Y
A
F
T
E
R

R
E
V
E
R
S
A
L

A
T

E
=
F
1
O
.
4
,

2
1
X
,
5
H
Y
=

F
1
O
L
4
/
)

P
R
I
N
T

9
8
7
,
D
E
L
T
A
E

9
8
7

F
O
R
M
A
T
(
7
H
E
R
-
E
F
=

F
1
0
.
4
/
)

I
F
(
E
I
N
T
S
R
+
5
0
.
)
9
8
0
,
9
8
8
.
9
8
8

9
8
8

C
O
N
T
I
N
U
E

N
R
U
N
=
N
R
U
N
-
1

I
F
(
N
R
U
N
)
7
5
.
7
5
,
1

7
5

N
T
O
T
=
N
T
O
T
-
1

I
F
(
N
T
O
T
)
7
4
,
7
4
,
2

7
4

C
O
N
T
I
N
U
E

E
N
D

140



  
"'TITI'ITIQIHILEJMWfllfliujfflfflliflflflfllfiflmfl'ES

 


