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ABSTRACT

A GENERALIZED FRATTINI SUBGROUP

OF A FINITE GROUP

BY

Hasso Chellaram Bhatia

The Frattini Subgroup and its influence on a group

have been the objects of study by group theorists for many

years. In recent years several mathematicians have inves-

tigated various generalized Frattini subgroups. w. Gaschfitz

and more recently J. Rose and H. Bechtellhave studied the

family of non normal maximal subgroups of a finite group.

w. Deskins has considered the family of maximal subgroups

whose indices in the finite group are not divisible by a

given preassigned prime.

In the present investigation we consider another

family of maximal subgroups of a finite group. Let 3(6) be

the family of maximal subgroups of nonprime index of the group

G. Let L(G) denote the intersection of the members of the

family 3(6). In case 3(6) is empty, define L(G) = C.

By a well-known theorem of B. Huppert, a finite group

is supersolvable iff each of its maximal subgroups has prime

index. It follows that L(G) = G iff G is supersolvable.

Let {(6) be the family of all the non normal maximal

subgroups of G and let A(G) denote the intersection of the
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members of 1K6). Since a group is nilpotent iff all its

maximal subgroups are normal, it follows that A(G) = 6 iff

6 is nilpotent. The Subgroup A(G) and its generalizations

have also been studied by, among others, J. Beidleman, T. Seo

[Pacific Jour. of Math. 23 (1967)] and D. Dykes [Pacific Jour.

of Math. 31 (1969)].

Our investigations show that the two families iKG)

and 3(6) act in many respects as natural analogues of each

other, the former with respect to the nilpotent structure and

the latter with reSpect to the supersolvable structure of a

group.

We also show that L(G) is related to the hyperquasi-

center [N. Mukherjee, Ph.D. Thesis, Michigan State University,

1968] in the same manner as A(G) is to the hypercenter. In

Chapter I we also study the influence of 8(6) on the solv-

ability of G improving some results of J. Rose. The main

results of Chapter I are: (l) L(G) is supersolvable, (2)

If G is solvable, L(G) n 6' is nilpotent, (3) The hyper-

quasicenter of 6 is contained in 146), and (4) If every

maximal subgroup of G of nonprime index is nilpotent, then

G is solvable.

In Chapter 11 some results of Beidleman, Seo and Dykes

are generalized. It is shown that L(G) satisfies some

Frattini-like properties described below. Definition (a).
 

Let n be the set of primes dividing ‘6‘. Let n c n
1

such that for all elements p and q of n1 and n ~ n1

reSpectively, p > q. Then n1 is an upper set (UP-set) for
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6. Definition (b). A proper normal subgroup is a special

L-Subgroup of G if for every normal Subgroup N of 6 and

A a Hall n-subgroup for n an arbitrary UP-set for N,

G = HNG(A) implies 6 = NG(A). Definition (c). A proper

normal subgroup H of G has property (9) in G if for
 

every N A c with H _<. N, N/H n-closed for n a UP-set for

N implies N is n-closed. Following R. Baer we also define

the concept of a weakly hyperquasicentral subgroup. The main

results of Chapter II are: (l) L(G) has property 0?) in

G, (2) If H is a Special L-subgroup of G, then G/H has

the Sylow tower prOperty if? G has that property, (3) For a

nilpotent normal subgroup H, the definitions (b) and (c) are

equivalent to each other and also to the concept of weakly hyper-

quasicentral subgroups. So far we have not been able to confirm

the necessity of the 'nilpotency' condition on the subgroup H

above. We conjecture that this condition can be replaced by

'the Sylow tower property'.

In Chapter III we conclude the present investigation by

obtaining some conditions for the group G to be supersolvable;

and for A(6) and L(G) to coincide. Following Bechtell

[Pacific Jour. of Math. 14 (1964)], we define L-series and

relative L-series (relative to the commutator subgroup) of the

group G. The latter series turn out to be far more interesting

for our consideration. Two of the results of this chapter are:

(1) A(6) = L(G) if an L-series of 6 terminates in <1>.

(2) 6 is supersolvable if and only if the upper relative L-

series of G coincides with the descending central series

of 6'.
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INTRODUCTION

In recent years a number of mathematicians have

studied various generalized Frattini subgroups. W. Gaschfitz

[1] and more recently J. Rose [16, 17] and H. Bechtell[7]

have considered in detail the family of non-normal maximal

subgroups and their intersection. W. Deskins [8] has con-

sidered the family of maximal subgroups whose index in the

group is not divisible by a given preassigned prime p, and

studied the Structure of the subgroup ¢p which is the inter-

section of the members of this family of maximal subgroups.

More recently, J. Beidleman and T. Seo [5, 6] have generalized

the work of H. Bechtell.

In the present work we investigate another family of

maximal subgroups of a finite group 6, namely that consisting

of those maximal subgroups whose index in G is BEE a prime.

Denote by L(G) the intersection of all the maximal subgroups

of 6 whose index in G is not a prime. In case 6 has no

maximal subgroup of non-prime index, then as is customary, we

set L(G) = 6. It is well-known [13] that a finite group is

supersolvable if and only if all its maximal subgroups have

prime index. Thus L(G) = G if and only if G is super-

solvable. In a natural way therefore, L(G) is a measure of

how far 6 is from being supersolvable.



Since for a finite group G a normal maximal subgroup

has a prime index, the family of non-normal maximal subgroups

considered by Gaschfitz contains all the maximal subgroups with

non-prime index in G. If A(G) denotes the intersection of

all the non-normal maximal subgroups, then A(G) is contained

in L(G). Thus in part our work is a direct extension of the

ideas of Gaschfitz.

It is well-known (see for example Gaschfitz [11] and

Deskins [8]) that A(G) is nilpotent. At the outset it is

easy to see that L(G) in general need not be nilpotent.

This is so because for any Supersolvable group G, L(G) and

G coincide and there are finite Supersolvable groups which

are not nilpotent as for example 83, the symmetric group on

three symbols. It seems reasonable however, to conjecture

that L(G) is Supersolvable. The verification of this con-

jecture is one of the main results in Chapter I. It has been

proved by, among others, Beidleman [6] that G is nilpotent

if 6/A(G) is nilpotent. In Chapter I we have been able to

Show that this result is still true when A(G) is replaced

by L(G) and 'nilpotent' by 'supersolvable'. Incidentally

our result also generalizes a well-known result, namely:

6 is Supersolvable iff G/§(6) is Supersolvable. Note that

Q(G), the Frattini subgroup of a group G, is contained in

L(G).

The concept of the quasicenter as a generalization of

the center was introduced by 0. Ore [15] in the following

manner:



An element x E 6 is quasicentral in G if for every

element g G 6, the cyclic subgroups <x> and <g> permute.

In other words <x><g> = <g><x> forms a subgroup.

The subgroup generated by all the quasicentral elements

of the group G is the quasicenter of G and is denoted by

Q(6). Ore proved that the quasicenter of the group is a char-

acteristic Subgroup. He studied the quasicenter as a quasi-

normal subgroup for the symmetric and alternating groups.

The structure of the quasicenter has been investigated

in some detail by N. Mukherjee [14] who showed that the quasi-

center of a group is nilpotent and that each of its Sylow sub-

groups is generated by quasicentral elements of the group.

Since every element in the center of a group commutes

with every element of the group, it is in particular quasi-

central in 6. Thus the center of a group is part of the quasi-

center. This leads to the definition of the hyperquasicenter

[14] which is a generalization of the concept of the hypercenter

and is defined in an analogous manner. The hyperquasicenter,

denoted by Q*(G), is a normal Supersolvable subgroup of C

and contains every supersolvably embedded subgroup of G [14].

Also C is Supersolvable iff G = Q*(G).

It is known [7, Theorem 2.2] that the hypercenter 2*(6)

of a group is contained in A(6). In general A(G) does not

contain the hyperquasicenter of 6. However the analogy between

A(6) and L(G) suggests a relationship between the hyperquasi—

center and L(G). We are able to establish this in Chapter I

by proving that the hyperquasicenter of a group 6 is contained



in L(G).

J. Rose [16] proved that a group is solvable if all

its non normal maximal subgroups are nilpotent. As a last

result in Chapter I, we show that this theorem of Rose can

be improved by replacing 'non normal maximal Subgroups' by

only those 'maximal subgroups whose index in G is non—prime'.

We have an example to show that our result is false if

'nilpotency' is replaced by 'supersolvability'.

J. Rose extended his result by proving that a finite

group is solvable if each of its non normal maximal subgroups

is Supersolvable and has prime power index. Our example shows

that this result of Rose is not true if 'non normal maximal

subgroup' is replaced by 'maximal subgroup with non prime

index'. This is not too surprising since maximal subgroups

with non prime index may in general, form a very 'small'

portion of all the non normal maximal subgroups of the group.

However, we have so far not been able to obtain suitable con-

ditions under which a finite group, with every maximal subgroup

of non prime index Supersolvable, is solvable.

In Chapter II we generalize the work of Beidleman and

Seo [5, 6] and D. Dykes [10] and Show that the subgroup L(G)

of a finite group 6 belongs to a class of normal subgroups

called Special L-subgroups of 6. Following Beidleman and Seo,

a prOper normal subgroup H of a finite group G is called

a generalized Frattini subgroup of 6 if for every normal sub-

group N of G and a Sylow subgroup P of N, G = HoNG(P)

implies that G = NG(P). Generalized Frattini subgroups are



normal, nilpotent subgroups of 6. Also A(C) is a gen-

eralized Frattini Subgroup of 6. Furthermore, if H is a

generalized Frattini subgroup of 6 such that G/H is nil-

potent then 6 is nilpotent.

Generalizing the above definition we call a normal

subgroup H of 6 an L-subgroup of G if H satisfies the
 

above definition only for the Sylow subgroups of N correSpond-

ing to the largest prime divisor of the order of N.

We show that an L-subgroup is p-closed, for p the

largest prime divisor of its order. Moreover if p is the

largest prime divisor of the order of G, then G/H p-closed

implies 6 is p-closed. Also L(G) is an L-subgroup of 6.

Some of the results of [5, 6] we have not been able to generalize.

The main difficulties in this reSpect seem to be the following:

(a) The concept of an L-subgroup seems to be too

general to sufficiently restrict the behavior of Sylow subgroups

for the various prime divisors.

(b) It is known (see for instance Gaschfitz [11] and

Deskins [8]) that A(G)/§(G) = Z(G/§(G)). An analogous relation

connecting Q(C) and L(G) however, does not hold.

A considerably restricted sub-class of the class of

generalized Frattini subgroups, called Special generalized

Frattini subgroups was considered by Dykes [10]. He proved

that A(C) is a special generalized Frattini subgroup of the

group 6. Moreover the concepts of Special generalized Frattini

subgroups and the weakly hypercentral subgroups defined by R.

Baer [4] are equivalent.



Following these ideas we define special L-subgroups of

the group 6; and prove that L(G) is one such Subgroup of G.

In Chapter II we also define weakly hyperquasicentral subgroups

and a certain property 6?).

One of the main reSults we prove in this direction states

that:

For a normal nilpotent subgroup H of a group 6, the

following are equivalent:

(a) H is a special L-subgroup of G.

(b) H is weakly hyperquasicentral in G.

(c) H has property G?) in G.

We also Show that if H is a Special L-Subgroup of

G, then G has the Sylow tower property if G/H has that

property.

Our results on the above concepts are partial in the

following two respects:

(1) The equivalence of the definitions of Special

L-subgroups and weakly hyperquasicentral Subgroups is shown

only for nilpotent normal subgroups. However we believe this

to be true for any normal subgroup satisfying the Sylow tower

prOperty. '

(2) We have not been able to justify the term 'weakly

hyperquasicentral' as we cannot yet prove that a hyperquasi-

central Subgroup [14] is also weakly hyperquasicentral. How-

ever we have shown this to be true for the nilpotent case.

In Chapter III we conclude the present investigation

by considering some conditions under which A(G) and L(G)



coincide. FollowingBechtell[7] we define an L-series and the

upper and lower L-series. It is shown that if the upper L-series

of the group 6 terminates in <1>, then A(G) = L(G).

We also define a relative L-series of 6 (relative to

the commutator subgroup of 6). These series yield some inter-

esting information about the group 6. Some of the results

here are:

(1) The upper relative L-Series coincides with the

descending central series of 6' iff G is supersolvable.

(2) The following are equivalent for a group G:

(i) L*(G) = <1>, where L*(G) is the terminal

member of the upper relative L-series.

(ii) L(G) n c" = 2*(c') n c".

(iii) If S is any subgroup of 6 generated by

3 elements one of which belongs to L(G),

then L(G) n s' s 2*(3').

(3) If H is a solvable normal subgroup of G, then

L*(G) = <1> implies 1*(H) = <1>.

We have not been able to decide whether the solvability

condition on H in (3) is necessary.



CHAPTER I

Let 8(6) be the family of those maximal subgroups

of the finite group 6 which have nonprime index in 6. Let

L(G) denote the Subgroup which is the intersection of all

the members of 8(6). As is customary, define L(G) = G in

case the set 8(6) is empty. It is obvious that L(G) is a

characteristic subgroup of G. In this chapter we investigate

the structure of the subgroup L(G) and study its influence

on the structure of the group G. The main results proved

here are the following:

(1) The subgroup L(G) is supersolvable.

(2) If G/L(G) is supersolvable, then 6 is super-

solvable.

(3) The hyperquasicenter of the group G is contained

in L(G).

(4) If every maximal subgroup of 6 of nonprime index

is nilpotent, then G is solvable.

For the sake of completeness and easy reference we

include here some known results. Proofs or references are also

given.

Throughout, only finite groups will be considered. An

index of notations and special symbols appears on a previous

page C



1.1 Basic Concepts and Preliminary Results.
 

We begin with the definition of the Frattini subgroup

of a group and a lemma due to Frattini of which we shall make

frequent use.

Definition 1.1.1: Let Q(G) =11{MIM is a maximal sub-

group of 6]. 6(6) is called the Frattini subgroup of 6.
 

@(6) is a nilpotent characteristic Subgroup of 6.

The argument used in the following lemma is due to

Frattini.

Lemma 1.1.2: Let H be a normal Subgroup of a group

G. If P is a Sylow subgroup of H, then G = HNG(P).

Proof: Since H is normal in G, for every g E 6,

g-ng S H. Therefore P and g-1 Pg are both Sylow p-sub-

groups of H, for the prime p. Consequently both P and

g-ng are conjugate in H. Let x be an element of H such

that x'lPx = g'1 -1) -1
Pg. Then (gx '1P(gx-1) = P, so that gx

belongs to the normalizer of P in G. The element g there-

fore belongs to the set NG(P)x of NG(P)H. This proves that

6 = HNG(P).

We shall refer to the above result as 'Frattini's lemma'.

Definition 1.1.3: A group 6 is p-closed if G has

a normal Sylow p-subgroup.

Definition 1.1.4 (Baer): If the group G is p-closed,

and if G/P is abelian of exponent dividing p-l, where P is

the Sylow p-subgroup of G, then G is strictly p-closed.
 

It is easy to verify (see for example [1]) that 6 is

Strictly p-closed if, and only if 6' and 6p.1 are p-subgroups
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of 6.

Definition 1.1.5: A group G has the Sylow tower pro-
 

 

perty of supersolvableggroups, if for every homomorphic image

H of G and p the maximal prime divisor of the order of H,

H is p-closed.

Note: We shall throughout refer to the above property

as the Sylow tower prOperty.

The above definition is easily seen to be equivalent

to the following:

Let p1 > p >...> pn be the natural ordering of prime

2

divisors of the order of 6, and let Pi be a Sylow pi-sub-

group of G. Then for each k, P1P2'°°Pk is a normal sub-

group of C.

A group having the Sylow tower property is solvable.

Subgroups and homomorphic images of 6 have the Sylow

tower property if 6 has that property.

Definition 1.1.6: A group 6 is supersolvable if every
 

homomorphic image of G has a nontrivial normal Subgroup which

is cyclic.

It is well-known and easily verified that subgroups,

homomorphic images and direct products of supersolvable groups

are again supersolvable. An extension of a supersolvable group

by a supersolvable group in general is not Supersolvable. How-

ever, an extension of a cyclic group by a supersolvable group

iS Supersolvable.

By a well-known theorem of B. Huppert [13], we have,
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Theorem 1.1.7: The following properties of a group G
 

are equivalent:

(1) G is supersolvable.

(ii) 6/§(6) is supersolvable.

(iii) Every maximal subgroup of G has index a prime.

By a result of Baer [1, Theorem 2.1], the above conditions are

also equivalent to,

(iv) G has the Sylow tower prOperty; and NG(P)/CG(P)

is, for every Sylow p-subgroup P of G, strictly

p-closed.

If 6 is supersolvable, then its commutator subgroup

6' is nilpotent; and 6 has the Sylow tower prOperty [13,

p. 415].

Definition 1.1.8: A subgroup M of 6 is supersolvably
 

eededded (SSE) in 6 if for each homomorphism of 6, the image

of M contains a cyclic subgroup which is normal in the homo-

morphic image of G.

Remark 1. A supersolvably embedded subgroup is Super-

solvable. A proof of this may be found in [14].

Remark 2. Every SSE subgroup M of 6 is normal in 6.

This can be easily proved by induction on the order of

Remark 3. If M is SSE in G and G/M is super-

solvable, then G is supersolvable.

This is true because there is a normal series of 6

up to M with cyclic factor groups. By the supersolvability

of G/M, this chain can be extended to a normal series of G
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with cyclic factor groups, which implies the supersolvability

of 6.

Next we state a result of Baer [1, Theorem 4.1] that

we shall need.

Theorem 1.1.9: The following properties of a normal

subgroup K of a group 6 are equivalent:

(i) K is SSE in 6.

(ii) K/QCK) is sss in G/e(K).

(iii) K has the Sylow tower prOperty; and if P is a

Sylow p-subgroup of K, then NG(P)/CG(P) is

strictly p-closed.

1.2 The Supgroupd L(G).

Definition 1.2.1: Let 6 be a group. Define

L(G) 0{M\M is a maximal Subgroup of 6 and [6:M] is not a prime}

R(G) n[MIM is a maximal subgroup of 6 and [6:M] is a prime}.

In case 6 has no maximal subgroup of nonprime index,

we set L(G) = 6. Similarly R(6) = 6 if G has no maximal

Subgroup of prime index.

It is obvious that both L(G) and R(6) are characteristic

subgroups of 6. Moreover R(6) n L(G) = 6(6), where @(G) is

the Frattini subgroup of 6.

By Theorem 1.1.7, a group is supersolvable if and only

if each of its maximal subgroups has prime index. It follows

therefore that G is supersolvable if and only if L(G) = 6.

Proposition 1.2.2: If K is a normal subgroup of 6,

then
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(i) L(G)K/K s L(G/K).

(ii) R(c)K/K s R(6/K).

(iii) e(G)K/K s Q(G/K).

In particular, if K A c and K s L(G), then L(G/K) = L(G)/K.

Proof: (i) Let M; be a maximal Subgroup of G/K

of nonprime index. There exists a maximal subgroup Mi of 6

containing K such that Mi = Mi/K° Also [G/K: Mi/K] = [6:Mi],

so that Mi has nonprime index in 6. Then n(Mi/K) = L(G/K).

Let J be the intersection of all the Mi's correSponding to

M]; then J contains L(G) as well as K. Hence L(6)K/K s J/K.

But now it is easy to Show that J/K S Q(Mi/K) = L(G/K). For

if not, suppose there exists xK e J/K such that xK é n(Mi/K),

where x E J. Then there exists some M; = Mi/K such that

xK (Mi/K. This implies that X 6 Mi' But this is a contradic-

tion since x 6 J 3 Mi. Thus L(G)K/K S J/K S L(G/K) and (i)

is proved.

(ii) This is proved in the same manner as (i). Let

Mi be any maximal subgroup of G/K of prime index. There

exists a maximal subgroup Mi of 6 containing K Such that

Mi = Mi/K’ and [6/K: Mi/K] = [6:Mi]. Consequently R(6) 5 M1

and therefore R(6)K/K s T/K, where T is the intersection of

all those maximal subgroups of G that correSpond to Mi's.

Then as in (i) we can show that R(6)K/K s T/K sr1(Mi/K).

(iii) Duplicating the argument of (i), let J be the

intersection of all those maximal subgroups of 6 that contain

K5 Then since 6(6) is contained in every maximal subgroup

Of' G, Q(6)K/K S J/K. The maximal Subgroups of G/K are the
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images under the homomorphism 9: G a G/K, of those maximal

subgroups of 6 which contain K. Consequently,

J/K s(.flMi)/K s n(Mi/K) = e(G/K). The proof of (i), (ii) and

(iii) is thus complete.

In the particular case, suppose K s L(G). By (i)

L(G)/K s L(G/K). It only remains to show that L(G/K) s L(G)/K.

For this assume that xK is an element of L(G/K) which does

not belong to L(G)/K. Then x G L(G) and so there exists a

maximal subgroup M of 6 of nonprime index such that x 4 M.

Since by hypothesis K S L(G) < M, XK é M/K. But M/K is a

maximal subgroup of G/K with LG/K: M/K] = [6:M] = nonprime.

We thus arrive at a contradiction since xK is an element of

L(G/K). Therefore L(G/K) = L(G)/K.

Corollary 1.2.3: (a) L(G/e(c)) = L(G)/Q(6).

(b) L(G/L(G)) = <1>.

Remark: In general L(6)K/K < L(G/K). To confirm this

consider 6 = A4. The 4-group V4 is a normal subgroup of 6.

The maximal subgroups of 6 of nonprime index are cyclic of

order 3. Since these maximal subgroups are non normal, their

intersection is the identity subgroup. Thus L(G) = <1>.

Hence L(CQVa/Va = <15. On the other hand since G/V4 E 63,

we have L(G/Va) 9 C3.

In general L(G) is not nilpotent. For example let

6 = 83. Since 8 is Supersolvable, L(G) = 8 As is well-
3 3'

known S3 is not nilpotent. We also know that a supersolvable

gzxmip has nilpotent commutator subgroup. Furthermore L(G) = 6

itif 6 is supersolvable. From these considerations it seems
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natural to ask what the nature of the common Subgroup of L(G)

and 6' would be. We answer this in the following result.

Theorem 1.2.4: If G is solvable, then G' n L(G)

is nilpotent.

Proof: Let T be any maximal subgroup of G of

prime index, say p. Then 6 has p cosets, say

alT,azT,...,a T. Denote by S the set of these p cosets

P

of G. If g Q 6, then g(aiT) = gaiT E 3. Thus elements of

6 act as permutations of the set S. If aiT and ajT are

any two arbitrary members of S, we can find an element g E G

such that ai = gaj and hence aiT = ga T = g(ajT). Thus we

J

see that G acts as a transitive permutation group of degree

p, on the set S. Also by hypothesis 6 is solvable. By

[13, Satz 8], a solvable transitive permutation group of prime

degree is metabelian. Let TG be the core of T in 6, which

is the intersection of all the conjugates of T in G. If

g 6 TG’ then g belongs to every c0njugate of T and con-

sequently induces the identity permutation on the set S.

Thus the group of permutations representing 6 is isomorphic

with G/TG, which as remarked earlier is metabolism. This

implies that 6" S TG S T. Since T was chosen arbitrarily,

we see that G" S R(G).

Now 6" S R(G) implies that G" n L(G) S R(G) n L(G) = Q(G).

Also [6' n L(G), 6'] s [c',c'] = 6". Since G' n L(G) and

6' are both normal in 6, we have [6' n L(G), 6'] S L(G) fl 6".

Thus, [0' n L(G), 6'] s L(G) n 6" 5 MG).
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Now consider the following two cases:

Case (1): Suppose 6(6) = <1>, Then [6' O L(G), G'] = <1>,

which implies that G' n L(G) commutes with every element of

6'. Since G' n L(G) s 6', we have 6' n L(G) s 2(6'). Hence

6' n L(G) is abelian and therefore nilpotent.

Case (2): Suppose Q(G) # <1> and let Gl= G/®(G).

Obviously s(c/e(c)) = <13. Then by Case (1), (E)' o L(E) is

nilpotent. By Corollary 1.2.3, L(G) = L(G). Moreover by [12,

p. 18], [c/e(G). G/¢(G)] = G :(:)G

(E)' = (c/i(c))' = c'i(G)/e(c). Then we have that

and so

6'<I>(6)n L(G) = G'Mc) n L(G)

e(c) Q(G) Q(G)

GIQ(G) fl L(G) is a normal subgroup of 6 containing @(G)

G'MG) n L(g)
and (I) (C)

H. Wielandt (see for instance [7, Corollary 2.3.23), we conclude

is nilpotent. Now since

is nilpotent, by a well-known theorem of

that G'e(c) n L(G) and hence c' n L(G) is nilpotent. The

proof is thus complete.

Remark: As mentioned before, for any supersolvable

group G the commutator subgroup G' is nilpotent. This re-

sult can be easily deduced from the above theorem. For when

6 is supersolvable, it is solvable and L(G) = 6. Thus

6' n L(G) = 6', which is nilpotent by Theorem 1.2.4.

One of our aims in this chapter is to prove that L(G)

is supersolvable. Our next result is a step in this direction.

It also shows that L(G) is solvable.

Prqposition 1.2.5: In any group 6, L(G) has the

Syrlow tower property.
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Proof: We proceed by induction on the order of 6.

Let p be the largest prime dividing the order of L(G) and

P a Sylow p-subgroup of L = L(G). We claim that P is

normal in 6. For this, suppose NG(P) # G and let S be a

maximal subgroup of 6 containing NG(P). By Frattini's lemma,

6 = LNG(P) = LS. Since S is a proper subgroup of G, L S S.

So S has prime index in 6, say q. Since q = [6:8] = [L:L{] S],

we note that q divides [L(G)]. Moreover Since NL(P) S L n S,

by the Sylow theorems and a result in Scott [18, 6.2.3] we have

[LzL n S] = 1 + kp, where k is some integer. It follows that

q = 1 + kp and hence p divides q-l. But this is impossible

since both q,p divide [L(G)] and p is the largest such

divisor. Hence we conclude that P A 6.

Now by Proposition 1.2.2, L(G)/P = L(G/P) and by the

induction hypothesis, L(G)/P has the Sylow tower property.

It is now easy to see that L(G) itself has the Sylow tower

preperty.

Corollary 1.2.6: L(G) is solvable.

This is true since the Sylow tower property implies

solvability.

Corollary 1.2.7: If 6/L(G) is solvable and (G/L(G))"
 

is nilpotent, then 6" is nilpotent.

Proof: (a) Obviously 6 is solvable. (b) By Theorem

1.2.4, 6" n L(G) S Q(6).. Then (6/L(6)" = E§§é%l'3 6"/6" n L(G)

implies that 6" is nilpotent.

Before proceeding to prove the supersolvability of L(G),

we digress a bit to consider some generalizations and study the

influence of L(G) on the group 6.
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It is known that if 6/Q(G) has the Sylow tower pro-

perty, then 6 has that property. In the following proposi-

tion we improve this result.

Proposition 1.2.8: If 6/L(6) has the Sylow tower
 

prOperty, then G has the same property.

Proof: We use induction on the order of 6.

First let K be any normal subgroup of 6. We Show that G/K

satisfies the hypothesis. By Proposition 1.2.2, L(6)K/K S L(6/K)

and hence G/K/L(6/K) is isomorphic to a homomorphic image of

G/K/L(G)K/K 5 G/L(G)K (by the isomorphism theorems). Since

6/L(6) and hence 6/L(6)K has the Sylow tower property,

6/K/L(6/K) has that property. Hence for any K A G, G/K

satisfies the hypothesis.

Now let p be the largest prime divisor of ‘6‘ and

P be a Sylow p-Subgroup of 6. If P S L(G), then p is also

the largest prime divisor of [L(G)] and P its Sylow p-sub-

group. By PrOposition 1.2.5, P is normal in L(G) and hence

normal in G.

If P i L(G), then p/‘G/L(6)| and p is its largest

prime divisor. By [18, 6.1.16], PL(6)/L(6) =IP is a Sylow

p-Subgroup of 6/L(G). Since by hypothesis G/L(G) has the

Sylow tower prOperty, P is normal in 6/L(6) and hence

PL(6) A 6. Now P is also a Sylow p-subgroup of PL(6) and

using Frattini's lemma, we have C = L(G)PNG(P) = L(6)NG(P).

If P K 6, then 6 * NC(P). Let S be a maximal subgroup of

6 containing NG(P). So 6 = L(6)S and L(G) S S. Therefore

S has prime index in 6, say q. Since NG(P) S S and P
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is a Sylow subgroup of G, by the Sylow theorems as in Proposi—

tion 1.2.5, q = [6:3] = 1 + kp, where k is some integer.

This is impossible since p is the largest prime divisor of

\6‘. Thus we conclude that P is normal in 6.

By the first part of the proof, 6/P satisfies the

hypothesis. This means that 6/P/L(6/P) has the Sylow tower

property. By the induction hypothesis it follows that G/P

has the same prOperty. Consequently G itself enjoys the

Sylow tower property. This completes the proof.

In the same vein we improve another well-known result.

As remarked earlier (Theorem 1.1.7), a group 6 is Supersolv-

able if and only if G/®(6) is supersolvable. We shall Show

that this result still holds when Q(G) is replaced by L(G).

The fact that L(G) is solvable (Corollary 1.2.6) will be used

in the next theorem.

Theorem 1.2.9: A group G is supersolvable if and only

if G/L(6) is supersolvable.

Proof: (a) Since every homomorphic image of a super-

solvable group is supersolvable, clearly 6/L(6) is supersolv-

able if 6 is supersolvable. (b) Conversely, assume that

6/L(C) is Supersolvable. Since L(G) and G/L(G) are

solvable, 6 is solvable. Moreover, since G/L(6) and 6/6'§(6)

are Supersolvable, G/L(G) x G/G'Q(G) is supersolvable. It

follows that 6/L(6) n G'e(c) which is isomorphic to a subgroup

of G/L(G) X G/G'§(G) is also supersolvable. Note that

MG) s L(G) n G'MG). If Q(c) = L(G) n c'uc), then from the

previous remark, 6/§(G) is supersolvable. This by Theorem 1.1.7
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implies the supersolvability of 6. We may thus assume that

 

Q(G) < L(G) n G'@(G). Next we Show that L(G) 2(2;¢§Gl is

SSE in 6/§(G). Hereafter in the proof let 6 = 6(6) and

L = L(G).

As shown in the proof of Theorem 1.2.4 using the

solvability of 6, LJ%-§:2 is nilpotent. Let P be the Sylow

p-subgroup of 1.n G's/Q. Then P is normal in G/@. Let

N/Q be a minimal normal subgroup of G/Q contained in P.

Since Q(G/Q) = <1>, there exists a maximal subgroup S/Q of

6/6 such that N/é S 8/6. Also S is a maximal subgroup of

9, Then c/g = N/Q . 8/6 and since N/Q is solvable minimal

normal in 6/6, we have N/é n S/Q = <15 [2, p. 118]. So

6 = NS, N n S = i and N i 3. Since N s L(G), it is contained

in every maximal Subgroup of 6 of nonprime index. It follows

that S has prime index in G and hence S/Q has prime index

in G/i. Therefore IN/iI = [G/s: s/i] is a prime and hence

N/Q is a subgroup of order p. Furthermore, since Q(G/Q) = <15

and P A G/T, it follows [11] that P is elementary abelian.

From this it follows that P = C
1

are cyclic subgroups of order p and each 61 is normal in

X C X... C , where the C,'s

r l2

6/Q(G). Thus there is a normal series of G/§(G) up to P

with cyclic factor groups. By definition this implies that P

is SSE in G/T. Hence every Sylow Subgroup of LJZEELS is SSE

in G/Q. It can be easily shown that Product of two SSE sub-

groups is again SSE. Since ILDEEIQ. is the product of its Sylow

I

Subgroups, we conclude that lLQE§_2 is SSE in G/T.
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Now since G/Q/LIW G'Q/Q 5 G/1.n G'Q is supersolvable

and 1.0 G'é/é is SSE in G/Q, it follows that G/é is super-

solvable (Remark 3, Definition 1.1.8). Consequently G is

supersolvable and the proof is complete.

Corollary 1.2.10: If N A G and N s L(G), then G/N

supersolvable implies that G is supersolvable.

Proof: Since G/L(G) is isomorphic to a homomorphic

image of G/N, it is Supersolvable. Hence by the theorem, G

is supersolvable.

Corollary 1.2.11: Let D(G) =n{N A G‘G/N is super-

solvable}. Then either D(G) = <1> or D(G) £ L(G).

Proof: Suppose D(G) # <l> is part of L(G). By

definition, G/D(G) is supersolvable and by Corollary 1.2.10,

G is supersolvable. But this implies that D(G) = <l> be-

cause G/<1> is supersolvable. This contradiction proves the

Corollary.

1.3 L(G) Expressed as a Direct Product.

Next we study the relationship of L(G) with L(H)

where H S G.

Let H be a Subgroup of G. Gaschfitz [11] showed that

if H §_G, then @(H) s Q(G). We see that no such relation

holds in the case of L(G). For example, let G = A AS shown4.

earlier (Proposition 1.2.2), L(G) =<1>. But L(Va) = V4,

where V4 is the normal Sylow 2-subgroup of G.

In the case of R(C) however, we do have such a re-

lat: ion ,
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Proposition 1.3.1: If H A_G, then Q(H) S R(H) S R(G).
 

Proof: If R(G) = G, we have nothing to prove. So

let Esbe aumximal subgroup of G of prime index. If H s S,

then R(H) s H s s. If H i s, then G = HS and so

[CzS] = [HSzS] = [H:H n S]. Therefore H n S is a subgroup

of H of prime index, hence it is also a maximal subgroup of

H. Thus R(H) s H n S s S. We see that in any case R(H) S 8.

Since 8 is arbitrary, R(H) s R(G). Since @(H) s R(H), the

assertion is proved.

The next two results concern L(G) when the group G

is the direct product of two groups.

If G = AB is an extension of a group A by a group

B, it is not true in general that L(G) = L(A)-L(B). This is

easily seen from the example of A However in case G is4.

a direct product we have,

Proposition 1.3.2: If G = A x B and (|A|,\B\) = 1,

then L(G) = L(A) X L(B).

Proof: First we show that L(A) X L(B) s L(G). Suppose

x E L(A) but x i L(G). Then there exists S, a maximal sub-

group of nonprime index in G Such that x d S. Since G is

the direct product of two groups of relatively prime orders,

any subgroup of G has that property. Thus S = A1 X Bl’

where A1 S A, B1 S B. Since x E A and x Z S, A1 < A.

Moreover if B1 < B, then S = A1 X B1 < A1 X B < C. This

contradicts the maximality of 8. Hence B1 = B and S = A1 X B.

Then S/B = A1 X B/B 5 A1 implies that A1 is a maximal sub-

group of A of nonprime index. But x 6 A1 S S. This is a
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contradiction. Therefore L(A) S L(G). Similarly L(B) S L(G).

Next to Show that L(G) S L(A) X L(B), let x = ab 6 L(G),

where a,b are unique elements of A,B reSpectively. We claim

that a 6 L(A) and b E L(B). First Suppose a d L(A). Then

there exists a maximal subgroup A1 of A of nonprime index

such that a f A1. If S = A1 X B, then S is a maximal sub-

group of G of nonprime index. For suppose S is not maximal

in G and let T be a maximal Subgroup of G containing 3.

Then T = A2 X B, which implies that A1 < A2 < A. This con-

tradicts the maximality of A1. Therefore S is maximal and

of nonprime index in G. Since x = ab 6 L(G), a 6 A1. There-

fore a E L(A) and similarly b E l‘B). The result is thus

proved completely.

Remark: We have as yet, not been able to confirm that

the condition (‘A\,‘B|) = 1 is necessary.

The following is another useful condition for deter-

mining L(G) when G is a direct product.

Proposition 1.3.3: If G = A X B and A or B is
 

supersolvable, then L(G) = L(A) X L(B).

Proof: We proceed by induction on the order of G.

Thus by the induction hypothesis if a group has order less

than ‘6‘ and is the direct product of two groups one of

them supersolvable, then the conclusion holds for that group.

WIDG we may assume that A is supersolvable. Then

there exists a minimal normal Subgroup M of A which is

cyclic of prime order. Since A,B centralize each other, in

particular M is normalized by B. Hence M is normal in
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G and being of prime order it is a minimal normal subgroup

of C. Now if S is a maximal Subgroup of G of nonprime

index, then M S S. For otherwise M S S implies that

G = MS and hence [G:S] = ‘M‘ is a prime. It follows there-

fore that M S L(G). Now by Proposition 1.2.2, L(G/M) = L(G)/M

and also L(A/M) = L(A)/M. Note that L(A) = A, since A is

supersolvable. By the induction hypothesis, since

G/M = A/M x B/<1>, we have L(G/M) = L(A/M) x L(B/<1>) and

so L(G)/M = L(A)/M x L(B)/<1>. This implies that

L(G) -- L(A) x L(B),

1.4 L(G): A generalization of A(Gl.

In this section we show that our work is a generalization

of some of the ideas of Gaschfitz. In [11] he considered the

family 1K6) of all the non normal maximal Subgroups of a group

G. Since in a nilpotent group all the maximal subgroups are

normal, {(6) is empty for such a group. The family £(G) has

also been studied from essentially two different standpoints

by H. Bechte11[7] and J. Rose [16, 17]. Betchel has considered

the basic Structure of A(C) and its relation to other subgroups

of G; and Rose has studied the influence of the family iKG)

on the group G, in particular on the solvability of G.

We begin with a mention of some of the basic notions

.and known results.

Definition 1.4.1: For a group G define

A(G) = n{M\M is a non normal maximal Subgroup of G}.

IMefine A(G) = G is case G has no non normal maximal subgroup.
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It is obvious that A(G) is a characteristic subgroup of G

and contains the Frattini subgroup Q(G). Also notice that

A(G) is contained in L(G) since the maximal subgroups of

G with nonprime index are non normal and hence are in the

family £(G). The following theorem gives some of the results

on A(G), due to Gaschiitz [ll], Deskins [8] and Bechtell[7].

Theorem 1.4.2: In a group G,

(a) A(G) is nilpotent.

(b) The hypercenter Z*(G) is contained in A(G).

(c) A(G)/Q(G) = Z(G/Q(G)).

To these we also add some results due to Beidleman

and Seo [S] and Rose [16],

(d) If G/A(G) is nilpotent, then G is nilpotent.

(e) If all the non normal maximal subgroups of G

are nilpotent, then G is solvable.

(f) If all the non normal maximal subgroups of G

are Supersolvable and have prime power indices

in G, then G is solvable.

From the definitions and some of the results we have

obtained so far, it is apparent that there is a similarity in

the nature and behaviour of the two families 8(6) and iKG);

the former with respect to the supersolvable Structure of G

and the latter with reSpect to the nilpotent structure of G.

Thus L(G) acts in a natural way as a generalization of A(G).

These considerations also motivate us to search for some suit-

able form of 'generalized hypercenter' - one that is relevant

to our family 8(6). We show that this role is effectively
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played by the hyperquasicenter of the group G defined in the

following pages.

It is now natural to ask: Can all the results of

Theorem 1.4.2 be generalized? We successfully answer this ques-

tion before closing Chapter I.

To begin in the chronological order then, we first prove

the Supersolvability of L(G). For this we need the following

lemma whose proof is analogous to that of Theorem 1.2.4, and

uses the solvability of L(G).

Lemma 1.4.3: In a group G, L'(G) is nilpotent.

Proof: Since L'(G) S L(G), it is contained in every

maximal subgroup of G of nonprime index. If L'(G) is also

contained in every maximal Subgroup of G of prime index, then

clearly L'(G) is contained in every maximal subgroup of G.

This implies that L'(C) S Q(G), hence it is nilpotent. We

may therefore assume that there exists a maximal subgroup S

of G of prime index not containing L'(G). Observe that if

S is normal in G, then G/S is a cyclic group and hence

L'(G) s G' s s, which is a contradiction. Therefore 5 is

not normal in C.

Now since S is maximal in G and L'(G) S S, we have

c = L'(G)S = L(G)S. Then, p = [G:S] = [L(G)S:S] = [L(G):L(G) n s],

for p some prime. It follows that L(G) n S is a subgroup

of L(G) of prime index and consequently it is maximal in

L(G). Moreover by Corollary 1.2.6 L(G) is solvable. Now by

the same argument as in Theorem 1.2.4, it follows that L(G)

acting as a group of permutations on the cosets of L(G) n S
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is represented by a metabelian group, and the kernel of the

representation is the core of L(G) n S in L(G). Note: L(G)

is not necessarily metabelian. The permutation representation

of L(G) is metabelian. Hence L"(G) S Core (L(G) n S) S
L(G)

L(G) n S < 8. Thus we conclude that L"(G) is contained in

every maximal subgroup of G. Note that L"(G) = <l> implies

that L'(C) is abelian and we are done. So L"(G) is non

trivial normal subgroup of G contained in @(G). Also

L'(G)/L"(G) is abelian. By a theorem of Wielandt (see

Betchel [7]) we conclude that L'(G) is nilpotent.

We are now ready to prove our main theorem.

Theorem 1.4.4: L(G) is supersolvable, for any group
 

Proof: (By induction on the order of G). Let p

be the largest prime dividing ‘L(G)‘. Since L(G) has the

Sylow tower prOperty (Proposition 1.2.5), the Sylow p-subgroup

P of L(G) is characteristic in L(G) and hence normal in

G. Since L(G)/P = L(G/P), by the induction hypothesis L(G)/P

is supersolvable. Moreover, if G has a non trivial normal

q-subgroup Q (q ¢ p) contained in L(G), then once again by

the induction hypothesis L(G)/Q is supersolvable. This

implies that L(G) E L(G)/P n Q is isomorphic to a subgroup

of L(G)/P X L(G)flQ and hence L(G) is Supersolvable. Thus

we can assume that G has no non trivial normal q-subgroup

contained in L(G). Furthermore if Q(L(G)) f <1>, then by

the induction hypothesis L(G)/@(L(G)) is supersolvable and

hence by Huppert's theorem (Theorem 1.1.7) L(G) is Supersolvable.
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Therefore we may also assume that Q(L(G)) = <l> and this in

turn implies that Q(P) = <1>, Hence P is elementary abelian.

By a theorem of Gaschfitz [11, Satz 7] since P is an abelian

normal subgroup of L(G) and Q(L(G))¢1 P =<1>, it follows

that P is completely reducible in L(G). This means that

every normal subgroup of L(G) in P has a complement in P

which is normal in L(G). Since L'(G) is a normal nilpotent

subgroup of G, by an earlier remark L'(G) S P. Hence L(G)/P

is abelian. Also by the SchUr-Zassenhaus theorem [18, 9.3.6],

L(G) = PD where D is a p-complement in L(G); and D is

abelian.

Now let Q be a Sylow q-subgroup of L(G), for q # p.

WlDG we may take Q S D. Since G has no normal q-subgroup

in L(G), NG(Q) # G. However since D is abelian, D S NG(Q).

By Frattini's lemma, G = L(G)NG(Q). If s is a maximal Sub-

group of G containing NG(Q) we have, C = L(G)S and

L(G) S 3. Since D S S, P S S. Therefore G = PS. Also in

G, S has a prime index which is p (observe that q/p-l).

Let K = L(G) n s. Then p = [6:8] = [L(G):L(G) n s] =

[L(G):K]. Since K has prime index in L(G), it is a

maximal Subgroup of L(G) not containing P. Therefore

L(G) = PK and [L(G):K] - [PzP n K] = p. Therefore

P0 = Prfi K is normal in P and K and hence normal in L(G).

Also the index of P0 in P is p. Since P is completely

reducible in L(G), there exists P1 A L(G) such that P
l

is cyclic of order p.
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* x x , ,

Now let P = H P = P P ...P . Each P 18 cyclic
l 1 2 n l

xEG *

of order p and is contained in P. Therefore P is a normal

subgroup of G contained in L(G). Moreover each Pi is

normal in L(G), since P1 is normal in L(G) and L(G) A G.

For let Pi = Pi, then for every g E L(G), xgx"1 6 L(G). So

-1
X

P1gx = P1 and hence Pig = Pi. Since P is elementary

* .

abelian, we have P = P1 X P2 X...X Pn. Consequently there

*

exists a normal series of L(G) up to P with cyclic factor

* *

groups. Also by the induction hypothesis L(G)/P = L(G/P )

is supersolvable. Hence L(G) is supersolvable and the

theorem is proved.

Corollary 1.4.5: If [L(G)] does not contain prime

divisors p,q such that q/p-l, then L(G) is nilpotent.

Proof: We use induction on ‘G‘ and then essentially

the method of the theorem can be duplicated to Show that q/p-l

for some p, whenever a Sylow q-subgroup of L(G) is not normal.

Thus under the hypothesis, every Sylow subgroup of L(G) is

normal and hence it is nilpotent.

Remark: As mentioned before, in general L(G) is not

nilpotent. For example, in S3 L(SB) = 83 is not nilpotent.

However the hypotheses of the Corollary 1.4.5 are clearly not

satisfied.

1.5 Relationship of L(G), with the Hyperquasicenter of G.

Next we consider a generalization of the hypercenter

and investigate its relationship with the subgroup L(G).
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The concept of the quasicenter as a generalization of

the center of a group was introduced by O. Ore [15] as follows:

Definition 1.5.1: Let G be a group. An element
 

x 6 G is called a 9pasicentral element (QC-element) in G if
 

<x> permutes with <y> for every element y E G.

The subgroup generated by all the quasicentral elements

in G is the qgasicenter of G, denoted by Q(G).
 

The quasicenter is a characteristic subgroup of G.

Since every element in the center of a group permutes with

every element in the group, it follows that the center is con-

tained in the quasicenter of the grOup. Note that if x is a

QC-element in G, then <x> permutes with every subgroup of G.

The structure of the quasicenter and its generalizations

has been investigated in more detail by N. Mukherjee [14]. In

the next few theorems we list some of the results obtained by

him. On occasions we shall use some of these.

Theorem 1.5.2: In a group G,
 

(a) If x is a Qc-element of G, then Xr is a QC-element

of G, for every integer r.

(b) The quasicenter of G is nilpotent and each of its

Sylow subgroups is generated by QC-elements of G.

Proof: [14, Theorem.l.7, Lemma 1.9, Theorem 1.10].

Analogous to the ascending-central series we also have,

Definition 1.5.3 [14]: For a group G let,
 

*

<1> S Q(G) "' Q1 S Q2 S...S Qn - Q (G) be a normal series of

6 Such that Q(G/Qi) =Qi+1/Qi.
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This series is the ascendingequasicentral series of G.

The terminal member Q*(G) of the series is the hyperquasicenter

of G.

Some properties of the hyperquasicenter are listed in

the following:

Theorem 1.5.4 [14]: For a group G,
 

(a) The hyperquasicenter is Supersolvable.

(b) If T is a normal subgroup of G contained in

Q*(G). then Q*(G/T) =Q*(c)/T.

(c) If G/Q*(G) is supersolvable, then G is super-

solvable.

Proof: [14, Theorems 2.5, 2.3]

Remark: Mukherjee [14] has shown that the hyperquasi-

center of a group G contains the largest SSE subgroup of G.

However, during a communication he pointed out that the hyper-

quasicenter is itself SSE in G and hence is the largest SSE

subgroup of G.

In the following we shall prove that the hyperquasi-

center of G is contained in L(G) and thus slightly improve

Theorem 1.5.4 in view of the fact that conclusions of that

theorem have already been proved for L(G) in place of Q*(G).

Also by the remark above, we observe that in general the hyper-

quasicenter is not equal to L(G). For this we argue as follows.

It can be shown that in general the Frattini subgroup Q(G) is

not SSE in C. It is also easy to Show that a normal Subgroup

of G contained in a SSE subgroup of G is SSE in G. Now

*

if L(G) =tQ (G), then L(G) is SSE in G and hence by the
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previous comment ¢(G) is SSE in G. This, as we remarked

*

earlier is not in general true. Therefore L(G) #‘Q (G) in

general.

We now turn to the proof of our theorem. First we show

the following:

Proposition 1.5.5: The quasicenter of a group G is

contained in L(G).

Proof: Assume Q(G) is not contained in L(G). Since

Q(G) is nilpotent (Theorem 1.5.2), there is a Sylow p-subgroup

P of Q(G) which is not contained in L(G). Since P is

generated by QC-elements of G, there is a QC-element x of

G Such that x i L(G). Therefore there exists a maximal sub-

group S of G of nonprime index such that x 4 S. Since x

is a.QC-element, <x> and S permute. Consequently

G = <x>S. Also [x] = pa, for some integer a. Let

r

T = S n <x> and ‘TI = p . Then T is contained in the unique

a-r-l a-r-l r+l

subgroup <xp > of <x> and ‘<xp >\ = p . Since

a-r-l

T is the intersection of S with <x>, <xp > S S. More-

a-r-l

over by Theorem 1.5.2(a), x is again a QC-element of G.

a-r-l

Therefore G = <xp >5 and the index of S in G is equal

a-r a-r-l

to the index of T = <xp > in <x > which is p. But

this is a contradiction since 3 was assumed to have nonprime

index in G. Therefore we conclude that Q(G) S L(G).

From the above result we now immediately deduce,

Theorem 1.5.6: The hyperquasicenter of the group G

is contained in L(G).
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Proof: Lat <1> S Q(G) = Q1 S Q2 S...S Qn = Q*(G) be

the ascending-quasicentral series of C. By Pr0position 1.5.5,

Q(G) s L(G) and Q(G/Ql) s L(G)/Q1. By definition,

QZ/Ql = Q(G/Ql) hence Q2 S L(G). Continuing in this manner

we see that the terminal member of the series namely Q*(G),

is contained in L(G).

As mentioned earlier (Theorem 1.4.2) in the case of

A(G), we have A(G)/Q(G) = Z(G/§(G)). But no Such relation

holds between L(G) and the quasicenter of G.

Example 1.5.7: Let G = 83. Then L(G) = S3 and

Q(G) = <1>. But the quasicenter of S3 is the cyclic sub-

group of order 3.

The above example leads to the following observation:

Proposition 1.5.8: If a group G is solvable and

Q(G) = <1>, then L(G)flQ*(G) is abelian.

Proof: As shown in Theorem 1.2.9 the solvability of

G implies that L(G) n G' is SSE in G. Since Q*(G) the

hyperquasicenter of G contains every SSE subgroup,

L(G) n G' S Q*(G). Thus L(G)flQ*(G) is isomorphic to a homo-

morphic image of L(G)/L(G) n G' g L£§l§:.3 G/G'. This implies
GI

*

that L(G)/Q (o) is abelian.

1.6 A Condition for Solvabilipy of a Group.

J. Rose [16] has proved that if every non normal maximal

subgroup of a group is nilpotent, then the group is solvable.

In this section we shall improve this result slightly by showing

that 'every non normal maximal subgroup' can be replaced by
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'every maximal subgroup of nonprime index'. We begin with

some well-known definitions and preliminary results that we

shall need.

Definition 1.6.1: A group G is called pwsolvable,

for a prime p if there exists a series

<1> = G S G S... 6n = G such that 61 A 6 and each factor

0 1

Gi/Gi-l is either a p-group or a p'-group.

The p-length LP(G) of the p-solvable group G is

the least number of p-factors appearing in the series of the

kind Specified above.

Definition 1.6.2: A group G is p-nilpotent, for a

prime p if G has a normal p-complement.

Theorem 1.6.3 (Thompson [19]): Lat p be an odd prime

and P a Sylow p-subgroup of a group G. If for every non

trivial characteristic subgroup P of P, 6 induces in P

0 O

a p-group of automorphisms, then G has a normal p-complement.

Lemma 1.6.4 (Rose [16, Cor: Lemma 1]): A group G

can have at most one conjugacy class of nilpotent non normal

maximal subgroups.

Lemma 1.6.5 (Baer [2, p. 181]): If S is a maximal

subgroup of a group 6 whose Core SG = <1> and whose index

[6:3] is a prime p, then q < p for every prime divisor q

of ‘8‘.

Definition 1.6.6: A subgroup N of G is Subnormal

in G if there exists a series N =‘N0 A N1 A...A 6.

We are now ready to prove our theorem.
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Theorem 1.6.7: Suppose every'uaximal subgroup of a

group 6 of nonprime index is nilpotent. Then

(i) G is solvable.

(ii) If p is the largest prime divisor of ‘6‘, then

either 6 is p-nilpotent or G has a normal p-sub-

group P such that G/PO is p-nilpotent. More-
0

over, Lp(6) S 2.

Proof: Let G be a minimal counter-example. Observe

that if K A G, then G/K satisfies the hypothesis.

(i) Let p be the largest prime divisor of ‘6‘ and

P a Sylow p-subgroup of G. If P A G, then P and G/P are

both solvable which implies that G is solvable. This con-

tradicts,the assumption that G is a minimal counter-example.

Therefore P A G. Let N(P) be the normalizer of P in G

and let S be a maximal Subgroup of 6 containing N(P). The

index of S in G is not a prime. For if q = [6:8] for

some prime q, then by the Sylow theorems q = 1 + kp. This is

impossible since q < p. Hence 8 has nonprime index in G

and by hypothesis S is nilpotent. Since P is a Sylow Sub-

group of S, N(P) = 8. Let PO be any non trivial char-

acteristic Subgroup of P. By the same argument used for P,

it follows that PO A 6. Consequently N(P) S N(PO) < 6.

Since N(P) = S is maximal in 6, N(PO) = N(P). In a nil-

potent group the elements of relatively prime order centralize each

other. Hence N(Pb) induces only p-automorphisms in P0.

Moreover, p is an odd prime. By Theorem 1J6.3, G has a

normal p-complement D. Now 8 is a maximal subgroup of G
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and is nilpotent of nonprime index. By Lemma 1.6.4, all the

nilpotent non normal maximal subgroups of G are conjugate.

Therefore all the maximal subgroups of G of nonprime index

are conjugate to S.

Since 6 is not simple, let M be a minimal normal

subgroup of G. Since G/M is solvable, M cannot be solvable.

Also M is the unique minimal normal subgroup of G. This

is true because if N is another minimal normal subgroup of

G distinct from M, then Mr] N = <1>» Since G/M and G/N

are solvable, G/M n N‘E G/M X G/N is solvable. This contradicts

the assumption that G is nonsolvable. Therefore M is unique.

If M S S, then M is nilpotent. So M S S and hence

G = MS. Let q be a prime divisor of [MzM n S] = [6:3] and

Q a Sylow q-subgroup of M. Obviously Q < M since M is

nonsolvable. Since M is minimal normal in 6, Q A G. Let

T be a maximal subgroup of 6 containing NG(Q). Since D,

the p-complement of G is normal in G, M is contained in D.

This is so because of the uniqueness of M. Now by Frattini's

lemma, (; = mam) = MT. So M at T and hence D at T. It

follows that [6:T] = [DzD n T] is prime to p, since D is

a p'-group.

Suppose CoreGT # <1>. Since M S T, Mr] CoreGT < M.

But this contradicts the minimality of M. Therefore

CoreGT I“<1>. Again if [6:T] = r, a prime, then by Lemma 1.6.5,

the prime divisors of ‘T‘ are smaller than r. But p/‘T‘

and it is the largest prime divisor of ‘6‘. This contradiction

shows that T cannot have prime index. Consequently by an
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earlier remark, T is conjugate to S. But this leads to a

contradiction. To see this notice that

[6:8] = [M:M n S] is a multiple of q and

[6:T] = [M:M.n T] is prime to q since Q S M n T. But two

conjugate Subgroups must have the same index in the group.

Thus we arrive at a contradiction. Therefore 6 is solvable.

(ii) If 6 does not possess a normal p-subgroup,

then as in (i) by the application of Thompson's theorem, 6

has a normal p-complement and (ii) is proved. Assume therefore

that G has a normal p-Subgroup and let P be the largest
0

such subgroup. Then consider G/PO. We note that G/P0 does

not have a normal p-subgroup. For suppose there exists P,

a non trivial normal p-subgroup of G/PO. Then there exists

a p-subgroup P1 A G such that ‘P = Pl/PO. This contradicts

the maximality of PO-

Now since G/P0 satisfies the hypothesis and has no

normal p-Subgroup, by the induction hypothesis G/P0 is p-nil-

potent.

Also if T/PO is the normal p-complement of G/PO’

then there is a normal series <1> S PO S T S 6. Hence the

p ~1ength Lp(G) S 2. The theorem is thus proved.

To continue further with the above theorem, let

G’= G/P0 and let D. be the normal p-complement of Gl Let

IE be a maximal subgroup of 6' containing D: Then 875' is

maximal in 675.5 P. Since maximal subgroups of a nilpotent

group are normal, S’A G. and [GT8] = p.
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(a) Suppose now that every normal maximal subgroup of

G of index p has nilpotent commutator subgroup. Consider

P a Sylow p-subgroup of G. If ‘P‘ = p, then P is cyclic

of order p. In the other case let P1 be any maximal sub-

group of P. Since D A 6, 3,3' is a subgroup of 61 Moreover it

is a maximal Subgroup in 6 containing D: By previous dis-

cussion it follows that 1311? A E and is of index p. By

hypothesis (a), ($15). is nilpotent. Now by [13, Satz 4] it

follows that Pi A Fifi and hence is Subnormal in G. But it

is easy to show (see for instance [16, Lemma 3]) that a group

possessing a non trivial subnormal p-subgroup also possesses

a non trivial normal p-subgroup. This is a contradiction since

6 has no non trivial normal p-subgroup.‘ Hence ‘Pi =<ai>and

therefore every proper subgroup of P is abelian. Thus we

see that under the hypothesis (a), P is either cyclic of order

p or is minimal nonabelian.

(b) Finally, suppose that every normal maximal subgroup

of 6 of index p has the Sylow tower prOperty. Let P1 be

a maximal Subgroup of P, where ‘P is a Sylow p-subgroup of G:

Then as before, 5‘6' is a normal maximal Subgroup of G. of

index p. Since p is the largest prime divisor of ‘PiD‘,

by (b), Pi A Fifi. This implies that P1 is Subnormal p-sub-

group of 6. As in (a) this is again a contradiction. There-

fore we conclude that P' has no proper maximal subgroup and

consequently it is cyclic of order p.

The foregoing discussion can be summed up in the

following proposition:
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Proposition 1.6.8: Under the hypothesis of Theorem
 

1.6.7, if p is the largest prime divisor of ‘6‘ and PO

the largest normal p-subgroup of G, then either PO is the

Sylow p-subgroup of 6 or,

(a) If every normal maximal subgroup of 6 of index p has

nilpotent commutator subgroup, then a Sylow p-subgroup

of G/PO is cyclic of order p or minimal nonabelian.

(b) If every normal maximal subgroup of 6 of index p has

the Sylow tower property, then a Sylow p-subgroup of G/PO

is cyclic of order p.

Rose [16, Theorem 4] extended his result by proving that

if every non normal maximal subgroup of a group is supersolvable

and has prime power index, then the group is solvable.

By way of an example, we show that this result cannot

be improved by replacing 'non normal maximal subgroups' by

'maximal subgroups with nonprime index'.

Example 1.6.9: Let G B PSL (2,7), the simple group

of order 168. It is well-known (see Scott [18, p. 336]) that

the maximal subgroups of 6 have index 7 or 8. A maximal sub-

group H of 6 of index 8 has order 21. Since H has two

prime divisors, it is solvable and clearly it is supersolvable.

H is not nilpotent since it can be shown [18, p. 336] that

the normalizer of a Sylow 3-subgroup of C does not contain

H. Thus the maximal subgroups of nonprime index are Super-

solvable and have prime power index.

To see how good a generalization of the family 1X6)

is the family 3(6), we compare our results so far with
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Theorem 1.4.2. We find that (a), (b) and (d) of that theorem

have analogues for 3(6); (e) is slightly improved; while we

have examples to Show that (c) has no counterpart and (f) can-

not be improved in our context. This is the conclusion of

Chapter I.



CHAPTER II

In this chapter we investigate some additional pro-

perties of the subgroup L(G). It is Shown that L(G) belongs

to a class of normal Subgroups we call the Special L-subgroups

of the group 6. Following Beer [4] we define weakly hyperquasi-

central subgroups of 6 and also a certain prOperty (9).

Some of the work of Beidleman and Seo [5, 6] and Dykes [10]

has also been generalized in this chapter. The main results

here are:

(l) L(G) is a Special L-Subgroup of the group 6.

(2) If H A G is a Special L-subgroup of G and

6/H has the Sylow tower property, then 6 has

the Sylow tower property.

(3) The following statements are equivalent for a

nilpotent normal subgroup H of the group 6:

(a) H is a special L-subgroup of 6.

(b) H has property (9) in 6.

(c) H is weakly hyperquasicentral in G.

2.1 L-SUbgroups of the Group G.

We begin with the following definition.

Definition 2.1.1 [5]: Let H be a proper normal sub-

group of a group 6. Then H is a generalized Frattini sub-

gppgp of G if the following holds for every normal subgroup

41
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N of 6:

If P is any Sylow Subgroup of N, then G = HNG(P) implies

6 = NG(P).

It is well-known that if G = Q(G)K for any K S G,

then 6 = K. It follows therefore that the Frattini Subgroup

of a group is a generalized Frattini subgroup.

Some of the results on generalized Frattini subgroups

are given in the next theorem.

Theorem 2.1.2 [5, 6]: Let H be a generalized Frattini

subgroup of 6. Then:

(a) H is nilpotent.

(b) If K is a normal subgroup of 6 containing H

such that K/H is nilpotent, then K is nilpotent.

(c) A(G) is a generalized Frattini subgroup of 6

if 6 is not nilpotent.

As our investigations in Chapter I showed, the structure

of L(G) and its related prOperties are very much influenced

by the largest prime divisor of the order of the relevant sub-

group. This leads naturally to the following generalization

of Definition 2.1.1.

Definition 2.1.3: Let H be a proper normal subgroup

of a group G. Then H is an L-subgroup of G if the follow-

ing holds for every normal subgroup N of 6:

If p is the largest prime divisor of ‘N‘ and P is a

Sylow p-subgroup of N, then G = HNG(P) implies G = NG(P)

(i.e. P A 6).

First we obtain some elementary properties of L-subgroups.
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Proposition 2.1.4: Let G be a finite group.
 

(i) If H is an L-subgroup of G, then

(a) H is p-closed, where p is the largest prime

divisor of ‘H‘, and

S H, then H is also an L-(b) If H1 A G, H 1
l

subgroup of 6.

(ii) L(G) is an L-subgroup of 6.

Proof: (i) (a) Let P be a Sylow p-subgroup of H

for p the largest prime divisor of ‘H‘. Since H A G, by

Frattini's lemma 6 = HNG(P). Since H is an L-subgroup of

G, we have 6 = NG(P). Hence P A 6 and H is p-closed.

(b) Let H1 S H and H1 A G. Let N be a normal

subgroup of G and p the largest prime divisor of ‘N‘.

Suppose G = HlNG(P)’ where P is a Sylow p-subgroup of N.

Since H1 S H, 6 = HNG(P). Now since H is an L-subgroup of

6, 6 = NG(P). Hence H1 is an L-subgroup of 6.

(ii) Let N A_6 and P a Sylow p-subgroup of N,

where p is the largest prime divisor of ‘N‘. Suppose

6 = L(6)NG(P). Then we must Show that G = NG(P). Assume

6 # NG(P) and let M be a maximal subgroup of 6 containing

NG(P). Then G = L(6)M and hence L(G) i M. It follows that

M has prime index in 6. Let q = [6:M]. Now by Frattini's

lemma since N A 6, 6 = NNG(P) and hence G = NM. This implies

that q = [6:M] = [N: N n M]. Since NG(P) s M, by the Sylow

theorems we have [6:M] = l + kp, where k is some integer.

This means that p divides q - l, which is a contradiction

since both p and q divide ‘N‘ and p is the largest such
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divisor. Therefore 6 = NG(P) and L(G) satisfies the

definition of an L-subgroup of 6.

Corollapy 2.1.5: Q(G) and Q*(G) are L-Subgroups

of 6.

Remark: From the definition it is obvious that a

generalized Frattini subgroup of a group is an L-subgroup. The

converse of this however is not true, as the following example

shows.

Example 2.1.6: Let 6 = A4 X 83. By Proposition 1.3.3

since L(A4) = <1> and 83 is Supersolvable, L(G) = 83. By

Theorem 2.1.2 however, a generalized Frattini Subgroup is nil-

potent. Hence L(G) is not a generalized Frattini subgroup

of 6 though it is an L-Subgroup of G by Proposition 2.1.4(ii).

The next result shows the influence of L-subgroups

on the group.

Proposition 2.1.7: If H is an L-subgroup of 6 and

p is the largest prime divisor of ‘6‘, then G/H is p-closed

if and only if 6 is p-closed.

Proof: If 6 is p-closed, then G/H being a homomorphic

image of G is also p-closed.

Conversely, assume G/H is p-closed. If p / ‘6/H‘,

then a Sylow p-subgroup of G is also a Sylow p-subgroup of H.

By 2.1.4, H is p-closed and since H A 6, 6 is p-closed.

Suppose now that p/‘G/H‘ and let P1 be the normal Sylow

p-subgroup of G/H. Then there exists P a Sylow p-subgroup

of G such that P =PH/H. Since P AG/H, PHAG. More-

1 1

over, P is also a Sylow p-subgroup of PH. By Frattini's



45

lemma, 6 = PH.NG(P) = HNG(P). Now since H is an L-subgroup

of G, we have 6 = NC(P). Thus 6 is p-closed.

Unfortunately the concept of L-subgroup seems to be

too general in that it does not sufficiently restrict the be-

havior of the Sylow Subgroups for the various prime divisors.

So in order to attain great control we Specialize the above

concept to a certain degree.

2.2 Special L-subgroups of a Group, 6.
 

We begin with a well-known definition.

Definition 2.2.1: A subgroup H of a group G is
 

called a Hall-subgroup if (‘H‘, [6:H]) = l.

The Sylow subgroups of a group are well-known examples

of Hall-subgroups.

H is a Hall-subgroup of G and a n-subgroup for a set

n of primes, then H is a Hall n-subgroup. Similarly a Hall

subgroup which is also a n'-subgroup is a Hall n'-8ubgroup.

Definition 2.2.2: Let n be the set of primes dividing
 

the order of a group 6. Let n1 be a subset of n such that

every element in the set n ~ n1 is smaller than every element

in the set n1. Then we call the set a set of upperpprimes

T‘1 

for the group 6.

As a notational convenience we denote by p(n) the

set of prime divisors of the number n. Finally, we Shall call

a set of upper primes for G a UP-set for 6.

Now we are ready to make the following definition.
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Definition 2.2.3: Let H be a prOper normal subgroup

of a group 6. Then H is a Special L-subgroup of 6 (Sp-L-

subgroup) if the following holds for every normal subgroup N

of 6:

If n is any UP-set for N and A any Hall n-subgroup

of N, then G = H.NG(A) implies A A 6 (i.e., 6 = NG(A)).

We note that every normal subgroup N of a group has

at least one Hall n-Subgroup for n a UP-set; namely when

n = {p}, where p is the largest prime divisor of ‘N‘.

It is obvious that Q(G) is a sp-L-subgroup of 6.

Moreover, every Sp-L-subgroup of G is also an L-subgroup of

6.- The converse of this, however, is not true as the follow-

ing example shows:

Example 2.2.4: Let 6 be the group with the follow-

ing properties:

(i) M = 22-3-7

(ii) 6 has a normal Sylow 7-subgroup P7.

(iii) 6 has a normal Sylow 2-Subgroup V4, isomorphic

to the 4-group.

(iv) 6 has a Sylow 3-subgroup C which is self-

3

normalizing in 6.

By Scott [18, 9.2.14] such a group 6 exists.

Now 6 has a normal subgroup H = P7 X V4 of order

28. The only other normal subgroups K of G are: K = G,P7,V4.

It is easy to verify that for each of these normal subgroups

K, and P a Sylow p-subgroup of K correSponding to the largest

prime divisor of ‘K‘, G = HNG(P) implies c = NG(P). In
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other words H satisfies the definition of an L-subgroup of

6. However H is not a Sp-L-Subgroup of 6. To see this let

N = G and A = P7°C3. Then A is a Hall {7,3}-subgroup of

6 and {7,3} is a UP-set for G. A is a.uaximal self-

normalizing subgroup of 6 not containing H. Consequently,

6 = H-NG(A) = HA. But 6 # NG(A). Therefore H is an L-sub-

group but not a sp-L-subgroup of 6.

Remark: In case the group G has the Sylow tower pro-

perty then every prOper normal subgroup of G is a Sp-L-Sub-

group of 6.

Next we have the following basic result on the structure

of sp-L-subgroups.

Proposition 2.2.5: Let H be a Sp-L-subgroup of a

group 6. Then:

(a) H has the Sylow tower property.

(b) If H A G and H S H, then H

l 1

group G.

1 is a sp-L-sub-

Proof: (a) We prove by induction on n, where n is

the number of distinct prime divisors of ‘H‘.

> >00. .00

.
Let p1 p2 pk > > pn be the natural ordering

of the prime divisors of ‘H‘. Let Pi denote a Sylow pi-sub-

group of H. Since H is a sp-L-subgroup, it is also an L-

subgroup of 6. Therefore by Proposition 2.1.4, H is pl-Closed.

80 P1 A H and hence P1 A 6. Suppose now that A = P P ...P

1 2 k

is a normal Hall subgroup of H. Consider H/A A G/A. Let

m
l

k+l be a Sylow Pk+1-8ubgroup of H/A. Then there exists

_ - =P AA.Pk+1 a Sylow pk+1 subgroup of H such that Pk+1 k+1 /
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Now by Frattini's lemma, G/A = H/A-NG/A(Pk+IA/A). We show that

G = HNG(Pk+1A). For this let x be an arbitrary element of

G. Then xA (hA)(yA), where h E H and y 6 G such that

yA normalizes Pk+1A/A. So (hy)-1x E A. If (hy)-1x = t E A,

-1 _ -l -1

then x - hyt. Also (yt) (Pk+1A)(yt) — t (y Pk+lAy)t. Now

yA normalizes +1A/A hence y normalizes P A. Since

Pk k+l

t E A, it is clear that x E HNG(Pk+1A). Thus 6 = HNG(Pk+1A).

Note that nk+1 = [p1,p2,...,pk+1] 18 a UP-set for H and

A ‘ - , ' ' - - -Pk+1 is a Hall nk+1 subgroup of H Since H is a Sp L Sub

group of 6 it follows that A A 6. Thus H has normal

Pk+l

Hall n-Subgroup for every UP-set n. Hence H has the Sylow

tower prOperty.

(b) Let N A_6, n a UP-set for N and A a Hall

n-subgroup of N. Suppose 6 = HING(A)' Since H1 S H,

6 = HNG(A). Since H is a sp-L-subgroup of 6, 6 = NG(A).

Thus H1 is a Sp-L-subgroup of 6.

Corollary 2.2.6: If H is a Sp-L-subgroup of 6,

then H¢(6) and HZ(G) are also Sp-Ldsubgroups of 6.

Proof: Since G = Q(G)K implies G = K for any

K S 6, it is clear that Q(G)H is a sp-L-subgroup when H

is a sp-L-subgroup of 6. Next, let N be a normal subgroup

of G, n a UP-set for N and A a Hall n-subgroup of N.

Suppose G = HZ(G).NG(A). Since 2(6) commutes with every

element of 6, it normalizes A. Hence 6 = HNG(A) and since

H is a sp-L-Subgroup, G = NG(A).

Remark: In general a Sp-L-subgroup need not be super-

solvable. This is so because there are groups with the Sylow
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tower preperty which are not supersolvable (see for example

[18, 9.2.13]). Let H be Such a group and let 6 = H X K,

where K is any group having the Sylow tower prOperty. Then

6 has the Sylow tower property. By an earlier remark, every

prOper normal subgroup of G is a sp-L-subgroup of 6. Con-

sequently H is a Sp-L-Subgroup of 6 but H is not super-

solvable.

The next result gives a condition for a group 6 to

have the Sylow tower prOperty.

Proposition 2.2.7: Let H be a Sp-L-subgroup of G.

Then G has the Sylow tower property if and only if G/H has

the Sylow tower property.

Proof: If 6 has the Sylow tower property, then G/H,

being a homomorphic image of 6, has that property.

Conversely, assume that G/H has the Sylow tower pro-

perty. We shall use induction on ‘6‘. Let p be the largest

prime divisor of ‘6‘ and P be a Sylow p-subgroup of G.

If P S H, then H is p-closed since H has the Sylow tower

prOperty (Proposition 2.2.5). Hence P A 6.

Suppose P S H. Then p/‘G/H‘ and by hypothesis G/H

is p-closed. By Proposition 2.1.7 since H is an L-Subgroup,

6 is p-closed. Thus in any case P A 6.

Now we Show that HP/P is a Sp-L-subgroup of G/P.

Suppose that N/P A_G/P and A/P is a Hall n-subgroup of

N/P, where n is an arbitrary UP-set for N/P. Let

n1 3 n U [p]. Then A/P is also a Hall nl-subgroup of N/P.

HP. Q = __.Moreover n1 18 a UP-set for N. Suppose P P NG/P(A/P).
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Then as shown in Proposition 2.2.5, 6 = HP.NG(A) = H'NG(A)'.

Now [NzA] = [N/PzA/P] is a ni-number (because p does not

divide ‘N/P‘). Also A is a nl-number. Therefore A is

a Hall nl-subgroup of N and n is a UP-set for N. Since

1

H is a Sp-L-subgroup of 6, it follows that 6 = NG(A). 80

A A G and hence A/P A G/P. Thus we have shown that HP/P

is a Sp-L-subgroup of G/P. Furthermore, G/P/HP/P 5 G/HP

has the Sylow tower property. By the induction hypothesis

we conclude that G/P has the Sylow tower property. It is

now clear that 6 itself has that property.

The above result does not hold if instead of being a

sp-L-subgroup, H is merely an L-subgroup of 6. To see this

consider the following:

Example 2.2.8: Let 6 be the group defined in Example

2.2.4. Then H = P X V is an L-subgroup of 6 but not a

7 4

sp-L-subgroup. However, G/H E C has the Sylow tower property.
3

But 6 does not have that property since we have seen that

P7-C3 is not normal in 6.

Our objective in the following pages is to Show that

L(G) is a sp-L-subgroup of G and also to attempt to char-

acterize the sp-L—subgroups of the group. In order to achieve

our purpose we shall proceed by first considering some defini-

tions and intermediate results which are also of some independent

interest.

2.3 Subgroups with Property 0?).

Definition 2.3.1: Let n be a set of primes. A group

6 is n-closed if G has normal Hall n-subgroup.
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If the primes in the set u do not divide ‘6‘, then

6 is trivially n-closed.

It is well-known and easily verified that every Subgroup

and homomorphic image of a n-closed group is again n-closed.

A n-group is obviously n-closed.

If H is a normal n-subgroup of 6 such that G/H

is n-closed, then G is n-closed. If however, H and G/H

are both n-closed then G is not necessarily n-closed. Even

in the particular case when n is a UP-set for G and H is

an L-subgroup of 6 Such that both H and G/H are n-closed,

6 is not always n-closed. An example to illustrate this is

the following:

Example 2.3.2: Let G be the group defined in Example

2.2.4. Let H = P7 X V4 A G, which is an L-Subgroup of 6.

Hence V4 is also an L-Subgroup of 6. Let n = [7,3], which

is a UP-set for 6. Now G/VA is a n-group, hence n-closed.

Also V4 is trivially n-closed (note that V is not a n-group).
4

But 6 is not n-closed as we have shown before.

The above example leads us to make the following definition.

Definition 2.3.3: Let H be a proper normal subgroup

of a group G. Then H has pr0per§y_ (9), in 6 if the follow-
 

ing holds for every normal subgroup K of 6 containing H:

If n is a UP-set for K, then K/H n-closed implies

K is n-closed.

The next two results establish the relationship between

Sp-L-subgroups of G and the Subgroups with property 0?) in

G.
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Proposition 2.3.4: If H A G has property (9) in
 

G, then H is a sp-L-subgroup of 6.

Proof: Let N be a normal subgroup of 6, n be an

arbitrary UP-set for N and A a Hall n-subgroup of N.

Suppose G = HNG(A). We must Show that G = NG(A). First

observe that HA A 6. Next, HA/H 5 A/A.n H is a n-group

since A is a n-group. Also [N:A] is a n'-number. Now

let HI = n U {all primes dividing ‘HA‘ larger than n}.

Then in particular, HA/H is a nl-group and hence it is

nl-closed. Since n is a UP-set for HA and H has the

l

prOperty G?) in 6, HA is n -closed. Hence HA.n N is

l

nl-closed. But n is a UP-set for N and the primes in

n1 ~ n are larger than the primes in n. This means that

HA.n N is n-closed. Since A is a Hall n-Subgroup of N

and hence a Hall n-subgroup of HA.n N, it follows that

A A HA.n N. So A is normal in 6 as we wanted to Show.

The following is a partial converse of the above.

Proposition 2.3.5: If H is a nilpotent Sp-L-sub-

group of G, then H has the property (9) in 6.

Proof: Let K be a normal Subgroup of 6 containing

H and n be an arbitrary UP-set for K. Suppose that K/H

is n-closed and let L/H be the Hall n-subgroup of K/H.

Then L/HAG/H and LAG. If H is arr-subgroup, then L

is a n-subgroup. Also [K:L] = [K/HzL/H] is a n'-number.

Thus L is a normal Hall n-subgroup of K and this implies

the n-closure of K.
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Assume therefore that H is not a n-subgroup. By

hypothesis H is nilpotent and hence it has normal Hall

n'-Subgroup A. Consider [L:A] = [L:H][H:A]. Since [L:H]

and [HzA] are both n-numbers, [L:A] is a n—number. There-

fore L has normal Hall n'-subgroup A. By the Schfir-

Zassenhaus theorem [18, 9.3.6], L has a n'-complement 6.

Moreover since A is solvable, any two such complements are

conjugate in L. Now since L A G, for any x E G if

x 6 NG(C)’ then X-ICX S L. This means that all conjugates

of C in G are also conjugates in L. Therefore

6 = ING(C) AC.NG(C) = ANG(C). Since A A G and A S H,

A is also a sp-L-subgroup of 6. Moreover, C is a Hall

n-subgroup of L and n is a UP-set for L A 6. So

6 = NG(C) i.e., c A c. Now [K:C] = [K:L][L:C]

= [K/H:L/H][L:C]

= (n'-number)(n'-number).

Therefore C is normal Hall n-subgroup of K. Thus K is

n-closed as we were required to Show.

Rpmggk: We are as yet unable to decide whether the

condition that H be nilpotent in the above proposition is

necessary. We know however, that 'nilpotent Sp-L-subgroup'

cannot be replaced by 'nilpotent L-subgroup'. Once again

Example 2.3.2 confirms this.

The next two results will be useful in the sequel.

Proposition 2.3.6: Let K be a normal subgroup of

6 having prOperty 09) in G and H be a normal subgroup

of 6 contained in K. Then,
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(i) H has property 6?) in 6.

(ii) K/H has property (9) in G/H.

Proof: (i) Let N be a normal subgroup of 6 con-

taining H. Let n be an arbitrary UP-set for N and suppose

N/H is n-closed. Since H S N n K, N/N n K is isomorphic to

a homomorphic image of N/H and hence it is n-closed. Con-

sequently NK/K E N/N n K. is n-closed. Let n* = n U {811

primes dividing ‘K‘ larger than n}. Since n is a UP-set

for N, there are no primes dividing ‘N‘ and larger than the

primes in the set w. Hence n*-closure of NK/K is essentially

n-closure of NK/K. Now K has property (9) in G, n* is

a UP-Set for NK A G and NK/K is n*-closed. It follows that

NK is n*-closed. In particular N is n*-closed, which in

effect means that N is n-closed. Hence H has the property

G?) in 6.

(ii) Let L/H be a normal subgroup of G/H such that

K/H S L/H. Suppose L/H/K/H is n-closed, for n any UP-set

for L/H. ‘We must show that L/H is “-closed. Notice that

L/H/K/H i=- L/K implies that L/K is n-closed. Moreover the

primes dividing ‘L/H‘ also divide ‘L‘. As before, let

n1 = n U {all the primes dividing ‘L‘ and larger than n}.

Clearly n1 is a UP-set for L. Also, L/K being isomorphic

to a homomorphic image of L/H implies that the primes dividing

‘L/K‘ are not larger than the primes dividing ‘L/H‘ hence no

larger than the elements in n. This means that L/K n-closed

implies it is n -closed. Now by hypothesis, K has property

1

G?) in 6. Hence L is nl-closed. Therefore L/H is
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nl-closed, which means it is n-closed. Thus we Show that

K/H has the property (9) in G/H.

The following is a converse of the above.

Proposition 2.3.7: If H has property (9), in 6

and K/H has property (9) in G/H, then K has prOperty

Q?) in 6.

Proof: Let L be a normal subgroup of 6 containing

K. Suppose L/K is n-closed, n any UP-Set for L. Then

L/K 5 L/H/K/H is also n-closed and n is a UP-set for L/H.

By hypothesis, it follows that L/H is n-closed. Again H

too has the property 6?) in G and therefore L is n-closed.

This proves that K has the property 69) in 6.

We now show that the hyperquasicenter of a group 6

has the property (9) in G and hence by Proposition 2.3.4

is a Sp-L-subgroup of 6. This will eventually enable us to

prove that L(G) is a sp-L-subgroup of G - our main objective

in this section. We begin with the following:

Theorem 2.3.8: The quasicenter of a group G has pro-

perty (9) in 6.

Proof: Let N be a normal subgroup 6 containing

Q = Q(6). Let n be an arbitrary UP-set for N and suppose

N/Q is n-closed. let AflQ be the normal Hall n-subgroup of

NAQ. We must Show that N has normal Hall n-subgroup. Note

that A A G. In case Q is a n-Subgroup then A is a n-Sub-

group. Moreover, [NzA] - [NflQ:AflQ] is a n'-number. Thus A

is normal Hall n-subgroup and we are done. Assume therefore

that Q is not a n-subgroup. Since the quasicenter of a group
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is nilpotent (Theorem 1.5.2), Q has normal Hall n'-Subgroup

Q1. Consider [AJQI] = [AJQ][Q:Q1] = (n-number)(n-number).

Thus O1 is a normal Hall n'-subgroup of A. By the Schfir-

Zassenhaus theorem, A has a n'-complement B. So A ==Q1B.

Since Q1 is solvable and A A 6, all the conjugates of B

in 6 are actually conjugates by elements of A. This implies

that 6 = ANG(B) ==Q1NG(B). Note that Q1? is a n'-subgroup

and B is a n-subgroup. Both Q1, B lie in N and hence the

prime divisors of ‘Q1‘ are smaller than the prime divisors

of ‘B‘. In the following discussion we show that Q1 S NG(B).

Suppose Q1 S NG(B). Since Q is nilpotent and all

its Sylow subgroups are generated by QC-elements of 6

(Theorem 1.5.2), we can choose an element x E 6 satisfying

the following:

(a) x is a p-element for some p dividing ‘6‘.

(b) x is a.QC-element of 6.

(c) x i NGCB), and

(d) x 6 Q1 and therefore p is smaller than the

elements in n.

Let y be an arbitrary element in B. Then y is a n-element.

Since x is a quasicentral element of 6, it permutes with y.

Hence T = <x><y> = <y><x> is a subgroup. By Scott [18, 13.3.1],

T is supersolvable. Also <x> is a Sylow p-subgroup of T

and is contained in Q(T), the quasicenter of T. Therefore

i<x> is a Sylow subgroup of Q(T). Consequently by Theorem

1.5.2, <x> A T. On the other hand <y> is a Hall n-subgroup

Of T and is in fact a p-complement of T. Since p is the
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smallest prime divisor of ‘T‘, T is penilpotent. Thus we

conclude that <y> A T. Consequently we see that x,y

centralize each other.

Since y was an arbitrary element of B, it follows

in particular that x E NG(B). But this is a contradiction

since x was chosen such that x é NG(B). Therefore we conclude

that Q1 S NG(B). This implies that B A 6. Further,

[NzB] = [NzA][A:B] = (n'-number)(n'-number). So B is a normal

Hall n-Subgroup of N and hence N is n-closed. We have thus

Shown that Q(G) has the property 6?).

Corollary 2.3.9: The hyperquasicenter Q*(G) has pro-

perty 09) in 6.

Proof: Let <1> S Q(G) = Q1 S Q2 S...S Qr = Q*(G) be

the ascending-quasicentral series of 6. By definition

QZ/Ql = Q(G/Ql). Since Q1 has property (0) in G and

02/01 =‘Q(6/Q1) has property 69) in G/lQ1 by Proposition

2.3.7, Q2 has property 09) in 6. By repeating this argu-

ment we eventually see that Q*(G), the terminal member of the

above series has property (9) in 6. This proves the

corollary.

A hyperquasicentral subgroup of a group is defined by

Mukherjee [14] as follows:

Definition 2.3.10: A normal subgroup H of 6 is

hyperqoasicentral in 6 if for every M A G and M_$_H,

H/M n Q(G/M) f <1>.

It is shown in [14, Theorem 2.18] that every hyperquasi-

central subgroup of 6 is contained in the hyperquasicenter
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Q*(G). This leads to the following rather obvious corollary.

Corollary 2.3.11: A hyperquasicentral subgroup of a

group G has the property (9) in 6. Moreover every SSE

subgroup of G has property 6?) in G.

We are now in a position to derive the main result of

this section.

Theorem 2.3.12: In a group G, L(G) has the property

6?).

Proof: Case (1). Suppose L'(G) ¥ <1>, i.e. L(G)

is not abelian. We show that L'(G/s(c)) is SSE in c/s(c).

Notice that if G is solvable, then as in Theorem 1.2.9

L(Gis(c)) o (G/o(c))' is SSE in c/s(c). This implies that

L'(6/§(6)) is SSE in 6/§(6). In the general case, we know

L'(G) is nilpotent. Suppose Q(G) = Q = <1>. Then

@(L'(6)) S 6(6) = <1>. Let P be the Sylow p-subgroup of

L'(G), where p is an arbitrary prime divisor of ‘L'(G)‘.

Then P A 6 and P is elementary abelian. Let N S P be a

minimal normal subgroup of G. Since Q(G) = <1>, there exists

a maximal Subgroup M of 6 not containing N. Since N S P

is solvable, c = MN and ‘N‘ = [6:M]. But N s P s L'(G) s L(G).

Therefore M must have a prime index in 6. Consequently

‘N‘ = p. Since P is abelian normal in G and Q(G) =<1>,

by [11, Satz 7] P is completely reducible in G. This means

that P = C1 X C2 x... Cr, where the Ci's are minimal normal

subgroups of 6 of order p. Therefore 6 induces in P a

Strictly p-closed group of automorphisms. By Theorem 1.1.9 we

conclude that L'(G) is SSE in G.
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If 6(6) ¢.<1>, then Q(G/Q) = <1} and from above,

L'(C/Q) is SSE in G/Q. By Corollary 2.3.11 every SSE Sub-

L'(G) gs)
L' (clap) = Q has

Q(G)

preperty (9) in 6/§(6). Since Q(G) has property 0?)

group has property 6?). Hence

in G, by Proposition 2.3.7 L'(6)@(G) has property (9)

in 6. Now L'(G) A G and L(6/L'(6)) = L(G)/L'(G). By the

induction hypothesis L(G)/L'(G) has property (9) in G/L'(6).

Application of Proposition 2.3.7 now Shows that L(G)

has the property (9) in 6.

Case (2). Suppose L'(G) = <1>, i.e. L(G) is abelian.

As in Case (1) it is not difficult to Show that L(G)/Q(G) is

SSE in 6/Q(6) and hence has the property G?) in 6/¢(G).

This by Proposition 2.3.7 implies that L(G) has property

09) in 6. The theorem is now completely proved.

Corollary 2.3.13: L(G) is a sp-L-subgroup of 6.

In an earlier remark we mentioned that if a group 6

has the Sylow tower property, then each of its proper normal

subgroups is a Sp-L-subgroup of G. The following result con-

siders the case when 6 does not have the Sylow tower pro-

perty but every proper subgroup of 6 has that property. It

is seen that in such a group G the sp-L-subgroups are severely

restricted.

Proposition 2.3.14: If a group 6 does not have the

Sylow tower property but each of its proper subgroups has that

pr0perty, then Q(G) is the largest sp-L-subgroup of 6.

Moreover Q(G) = L(G).
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Proof: Let K be a maximal sp-L-subgroup of 6 (i.e.,

K is not properly contained in any sp-L-Subgroup of 6). By

Corollary 2.2.6, K§(G) is a sp-L-subgroup of 6. From the

maximality of K, we have Q(G) S K. Suppose on the other hand

that K S Q(6). Then there exists M, a maximal subgroup of 6

such that K S M. Hence 6 = KM. By hypothesis M has the

Sylow tower property. Hence G/K E MIMI] K has the Sylow tower

property. Since K is a sp-L-subgroup of 6, by Proposition

2.2.7 6 has the Sylow tower property. This contradicts the

hypothesis. So 6(6) = K. Finally Since L(G) is a sp-L-sub-

group of G, we have Q(G) = L(G).

We continue our investigation of Special L-subgroups

and give one more characterization of nilpotent sp-L-subgroups.

2.4 Weakly Hyperqpasicentral Subgpoups.

In [4] Beer introduced the concept of a weakly hyper-

central subgroup as follows:

Definition 2.4.1: Let H be auproper normal subgroup of a
 

group G. Then H is weakly hypercentral in G if the follow-
 

ing holds for every normal Subgroup K of 6 containing H:

For every pair of elements x,y belonging to H,K

reSpectively if (‘x‘,‘y‘) = l and (‘x‘,[K:H]) = 1, then

x and y commutes

Since a group is nilpotent if and only if elements of

relatively prime orders permute, it follows by setting K = H

above that a weakly hypercentral subgroup is nilpotent.
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Two characterizations of weakly hypercentral Subgroups

based on the concepts of generalized Frattini subgroups are given

by D. Dykes [10]. We shall begin by first stating these.

Definition 2.4.2 [10]; ,AprOper normal subgroup H of a group

6 is a Special generalized Frattini subgroup of 6 provided

that for every N A'G and A any Hall subgroup of N,

6 = HNG(A) implies G = NG(A).

It is obvious that a Sp-generalized Frattini Subgroup

is already a generalized Frattini subgroup and hence is nil-

potent. Moreover a Sp-generalized Frattini Subgroup is also

a sp-L-Subgroup of the group. The converse Of this however,

is not necessarily true. This can be easily seen from the

fact that Sp-generalized Frattini Subgroups are nilpotent;

while sp-L-Subgroups in general are not. For instance L(G)

is a Sp-L-subgroup of the group G which in general is not'

nilpotent (see Example 2.1.6).

Definition 2.4.3 [10]: Let H be a proper normal sub-
 

group of a group 6. Then H satisfies property (NU) in 6

if the following holds for every normal Subgroup K of 6

containing H:

If n is any set of primes, then K/H n-closed implies

K is n-closed.

The following theorem shows the equivalence of the con-

cepts defined above.

Theorem 2.4.4 [10]: The following statements for a
 

normal subgroup H of the group 6 are equivalent:

(i) H is a Special generalized Frattini subgroup of G.
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(ii) H satisfies the property (Np) in 6, for any

set of primes n.

(iii) H is a weakly hypercentral Subgroup of 6.

We shall attempt to generalize the above theorem in

the present section. For this we consider the following gen-

eralization of the Definition 2.4.1:

Definition 2.4.5: A proper normal Subgroup H of a
 

group G is weakly hyperquasicentral (WHQC) in 6 if the follow-
 

ing holds for every normal subgroup K of 6 containing H:

Forevery pair of elements x,y belonging to ‘H and K

reSpectively if (‘x‘,‘y‘) = 1. and p(‘x‘) < p([KzH]), then

<x> and <y>. permute.

It is obvious from the definition that every weakly

hypercentral subgroup of 6 is already weakly hyperquasicentral

in 6.

Next, we list some of the elementary properties of weakly

hyperquasicentral subgroups. The proofs of these are rather

straightforward and therefore will be omitted.

Proposition 2.4.6: Let H be a.WHQC subgroup of 6.

If H1 A 6 and H S H, then H1 1 is WHQC 1n 6 and h/H1

is WHQC in 6/H1-

Proposition 2.4.7: Let K be a WHQC subgroup of G.
 

If H A G and p(‘K‘) < p(‘H‘), then KH/H is WHQC in G/H.

It seems unlikely that in general the product of two

WHQC subgroups of G is again WHQC in 6. So let T* be the

intersection of all the maximal.WHQC subgroups of G. Then

*

T satisfies the following property.
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Proposition 2.4.8: The following are equivalent for a

normal Subgroup N of a group G:

(a) N ST*.

(b) If M is WHQC in c, then MN is WHQC in 6.

We now turn to our main objective in this section and

establish the relationship of WHQC Subgroups with Sp-L-Subgroups

and the subgroups satisfying property 6?).

Proposition 2.4.9: Let H be a normal subgroup of G

such that,

(i) H has the Sylow tower property, and

(ii) H is WHQC in 6. Then H is a Sp-L-subgroup

of 6.

Proof: Let N be a normal Subgroup of 6 and n a

UP-set for N. Let A be any Hall n-subgroup of G such that

6 = HNG(A). Then we must Show that A A 6. It is obvious that

HA A 6. Let n1 = n U [all prime divisors of ‘H‘ larger than

primes in n}. Then n1 is a UP-set in HA. Since H has

the Sylow tower property, it has normal Hall nl-subgroup H1.

Moreover by the Schfir-Zassenhaus theorem, H has a n -complement

1

H2 and H = Hl'HZ. Now let x E H2 and y E A S HA A 6.

Then (‘x‘,‘y‘) = 1. Also p(‘x‘) E "1 and p([HAzH] E n g ml.

Since n1 is a UP-set for HA, it follows that

p(‘x‘) < p([HA:H]). Since x E H, y E HA and H is WHQC in 6,

we conclude that x,y permute. Thus <x><y> =.<y><x> = T.

Since T is a product of two cyclic subgroups, it is Super-

solvable. Hence T has the Sylow tower property. Since
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<y> is a Hall nl-subgroup of T and n1 is a UP-set for T,

<y> A T. Furthermore if y1 E <y> S HA, then y1 is a n1-

element. So <x>, <y > permute. Thus x permutes with every

1

element of T. This implies that x belongs to Q(T), the quasi-

center of T. Since Q(T) is normal nilpotent and <x> is

a Sylow subgroup of T, it follows that <x> A T. Hence x

and y centralize each other. Since y is an arbitrary

element of A, we see that x E NG(A). 80 H S NG(A). Then

2

G(A) = H1N6(A)' Therefore HlA A 6. Also

H1 is a nl-group and HlA/H1 is a nl-group. Hence HlA is

G = HNG(A) = HIHZN

nl-closed. In particular HlA n N is fll-closed. But n is

a UP-set for N and hence for HlA.n N. This means that A

is the characteristic Hall n-subgroup of H A n N. 80 A A G,

l

as we were required to Show.

Proposition 2.4.10: If H is a nilpotent sp-L-subgroup

of 6, then H is WHQC in 6.

Proof: Since H is a nilpotent Sp-L-subgroup of 6,

by PrOposition 2.3.5 H has the property 0?) in G. Let K

be a normal subgroup of 6 containing H and let n be the

set of primes dividing [K:H]. Then K/H is a n-group. Let

HI = n U {all the primes dividing ‘K‘ larger than the smallest

prime in n}. It is evident that n1 is a UP-set for K.

By the prOperty 0?) it follows that K is nl-closed. Let

A be the normal Hall nl-subgroup of K. Since H is by

hypothesis nilpotent, H = H 1 X H2, where H1, H2 are n and

l

ni Hall subgroups of H. Since A contains every n1 hence

n-element of K, we have K = AH = A.(H1 X H2) = A X H2. Now
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let x e H, y e x such that (‘x‘,‘y‘) = 1 and

P(‘X‘) < P(1K=H])- Then p(‘x‘) < n C n1 . So x is a

ni-element of H, hence belongs to H Also y = ah = has2.

where h E H2, a E A. Notice that (‘h‘,‘x‘) = 1. For if

some prime q divides (‘h‘,‘x‘), then since ‘ha‘ = ‘al-‘h‘:

it follows that q divides ‘ha‘ = ‘y‘. But this is a con-

tradiction since (‘x‘,‘y‘) = 1. Thus (‘h‘,‘x‘) = 1. Now

since h,x are elements of H2 which is nilpotent, they

commute. Thus xy = xah = xha = (hx)a = ahx = yx. So x,y

commute. Therefore H is WHQC in G.

We derive from above one of our main results of this

chapter.

Theorem 2.4.11: The following statements are equi-
 

valent for a nilpotent normal subgroup H of the group G:

(i) H is an sp-L-Subgroup of 6.

(ii) H has property (9) in 6.

(iii) H is weakly hyperquasicentral in 6.

Moreover, every nilpotent hyperquasicentral Subgroup of G

is weakly hyperquasicentral in G.



CHAPTER III

In this chapter we investigate the conditions under

which the subgroups L(G) and A(G) coincide. Following

Bechtell[7] we define an L-series of the group G and also

the upper and the lower L-series of G. We also define the

relative L-series (relative to the commutator subgroup of G)

and study some properties of this series and also its relation

to the group 6. Some of the results obtained here are the follow-

ing:

Let G be a group.

(1) If L*(6), the terminal member of the upper L-series, is

the identity subgroup, then L(G) = A(G).

(2) The upper relative L-series of G coincides with the

lower central series of 6' if and only if 6 is super-

solvable.

(3) The following are equivalent:

(i) 1*(6) = <1>, where 1*(6) is the terminal member

of the upper-relative L-series of 6 .

(ii) L(G) n 6" = 2*(0') n 6".

(iii) If S is any subgroup of 6 generated by 3

elements one of which belongs to L(G), then

L(G) n S' S 2*(3')-

(4) If H A G and H is solvable, then 1*(6) = <1> implies

15(H) = <1>.

66
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3.1 The L-series of the Grogp 6.

Definition 3.1.1: For a group G,

(i) an L-Series of G is a series

L(G) = c0 2 c1 2..., where Ci/Ci+1 s 2(G/ci+1>

or [01.0] s c1+1

(ii) the upper L-series (UL-series) is the series

L(G) = LO 2 L1 2 L2 2..., where L1+1 = [L1,6]

(iii) the lower L-Series is defined as the ascending

central series of G, i.e.

<l>=z SZ0 s2 S...,where z, /zi=2(c/zi).
l 2 1+1

A

Let L (6) denote the terminal member of the UL-series. The

terminal member of the lower L-series is the hypercenter of

*

G, Z (G).

Some elementary properties of the above series are the

following:

PrOposition 3.1.2: For a group 6:

(i) An L-series is a normal series of 6.

(ii) The upper and lower L-series are characteristic.

(iii) If G is solvable, L.'s are all nilpotent, for
l

i 2 1.

(iv) There is no normal subgroup H of 6 contained

* *

in L (6) such that L (G)/H s Z(6/H).

* 7':

(v) If 9 is a homomorphism of 6, then L (6)9 S L (69).

Proof: (i) and (ii) are obvious by definition.

(iii). If 6 is solvable, by 1.2.4 L(G) n 6' is nil—

potent. Now L1 = [L(6),6] s L(G) n 6', since L(G) A G. So
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L is nilpotent. Thus L1 is nilpotent for every i 2 l.

1

(iv). Suppose there exists H A G and H S L*(6)

such that L*(6)/HSZ(6/H). Then [L*(6),6] SH. But L*((;)

is the terminal member of the UL-series hence

[L*(G),G] = L*(c). Thus L*(c) s H and this implies that

*

H = L (6).

(v). Let 9 be a homomorphism of 6. By PrOposition

1.2.3, L(G)9 S L(Ge). Moreover, [L(6),6]e = [L(6)9,Ge]. From

this it follows that L19 S [L(Ge),69] = L1(Ge). By the same

argument it is easy to see that Li(66) S Li(66)r V i.

As with many series, it is the terminal member of the

series which yields some information about the group. We shall

say that the group 6 possesses an L-series if the terminal

member of the L-series is the identity subgroup. For such a

group we have the following:

Proposition 3.1.3: In a group possessing an L-series, i.e.

L(G) = C 2 C 2 C 2... C

0 1 2 k

i = O,l,...,k, and Ck-j S Zj’ j = O,l,...,k-l.

= <1> we have Li S 61 for

Remark: The proof of the above is analogous to the

proof of similar results for the ascending and descending

central series of the group (see for example Scott [18, 6.4.1]).

However for completeness we outline the proof here.

Proof: (i) Obviously L S C = L(G). By the induc-
0 0

tion hypotheSLS we can assume that Li S Ci. Since [61.6] 5 Ci+1’

we have [L1,G] S Ci+1° Thus L1+1 = [L1,G] S Ci+1° 80

Li S Ci’ V i.
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(ii) To Show 6 S Z Show that when j = 0,

k'j J

Ck = <1> S ZO = <1>. Now assume that for j = r, the assertion

holds. Then C S Z . Let T = G/Z ; then T is a homo-

k-r r r

morphic image of G/Ck r’ and the kernel Of this homOmorphism

S Z and in particularZ .

Ck-r-i r r+1 Ck-(r+1) S Zr+1

Corollary 3.1.4: If there exist integers j and k
 

*

such that Lj S Zk, then L S 2 (G).

0

Proof: By exactly the same method as in the Proposi-

tion 3.1.3 we see that Lj S Zk implies that Lj-l S zk+l°

Now if j < k, then by repeating the above process, we get

* *

L S 2 S Z (6). If j > k, then L, S 2 (6) and repeat-

0 k+l j-k

*

ing the process we have LO S 2 (6).

Corollary 3.1.5: In a group G possessing an L-series,
 

*

L(G) = Z (6).

Proof: By 3.1.3, Li S Ci; and in particular

* *

C S Z = Z (G). Then L S C S Z = Z (G). On the other

0 k 0 0 k

* *

hand we know 2 (G) S A(G) S L(G). Thus Z (G) = L(G).

Proposition 3.1.6: In a group possessing an L-series,
 

A(G) = L(G).

Proof: First we Show that the existence of L-series

implies the existence of A-series (defined by replacing L(G)

by A(G)). Also if Ar s Lr’ then Ar.” = [Ar,6] a [Lr,6] = Lr+1.

Since the terminal member of L-series is the identity Subgroup

*

of 6, A (6) = 1. Now by the same argument as used for L(G),
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it is easily seen that A*(6) = <1> implies A(G) = 2*(6).

Therefore when 6 possesses the L-series, it also possesses

the A—series and A(G) = L(G). Also note that since

2*(c) s 0*(6) s L(G), it follows that Q*(G) = L(G).

The above result is false if 6 does not possess an

L-Series. This can be easily confirmed from the following

example.

Example 3.1.7: Let G be the group of order 84 des-

cribed in Example 2.2.4. Then 6 has,

(i) 28 Sylow 3-Subgroups

(ii) 1 Sylow 7-subgroup P7

(iii) 1 Sylow 2-subgroup, V4.

Obviously G is solvable. G has maximal subgroups of

order 21 and hence index 4. Every such maximal Subgroup has

a normal Sylow 7-subgroup which must be P Hence P7 S L(G).7.

Since L(G) is normal in 6 and P7-C3 is not normal in

6, it follows that L(G) = P . It is not difficult to verify

7

that 6(6) = A(G) = <1>. But 6 does not possess an L-series.

To see this first notice that if L1 = [L(G),6] = <1>, then

L(G) S 2(6) = <1>, which is a contradiction. So L1 # <1>,

hence L1 S L(G) implies L1 = P7 = 1&6). Thus we see that

an L-series of 6 does not terminate in <1>.

The example also shows that A*(G) = <1> does not

guarantee that Lf(G) =<1>.

Proposition 3.1.8: If every proper subgroup of a

group G has the Sylow tower property (but not the group 6

itself), then G has an L-series.
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Proof: By Proposition 2.3.14, Q(G) = L(G). Since

Ma) s 13(6) S Ma). A(G) -= L(G),

By J. Rose [17, p. 588], under the above hypothesis

6 is an SRI-group. An SRI-group has the form 6 = R3, P A G

and Q is a cyclic Sylow q-subgroup of 6. Moreover 663) S 2(6),

so it is normal in 6. By [7, Theorem 4.1], A(G) = 2*(6) and

so ¢(6) S Z*(6). Since Q(G) = L(G) and 2*(6) = A(G) S L(G),

it follows that 2*(6) = A(G) = L(G). By Proposition 3.1.6, 6

possesses an L-series.

The converse of above is not true. This is easily seen

by considering any simple group G. 6 cannot satisfy the

hypothesis of Proposition 3.1.8, otherwise 6 is solvable.

Moreover for a simple group, L(G) = 2*(6) = <1> and an L-series

exists trivially.

More interesting however, from our viewpoint is the concept

of relative L-series of 6 defined in the following.

3.2 Relative L-series of the Group G.

We have noticed in Chapter I that the structure of the

group 6 depends in large measure on the relation between 6'

and L(G). For example we know that 6 is supersolvable if

and only if 6' S L(G). Also when G is solvable 6' n L(G)

is nilpotent. This leads to the study of an L-series of

6 relative to the commutator Subgroup of 6.

Definition 3.2.1: For a group 6 define

B0 = L(G) n 6' 2 B1 2 B2 2..., such that Bi/Bi+1 s Z(6'/Bi+1)

i = 0,1,... . This is a relative L-series (RL-series) of G.
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The upper relative L-series (URL-series) of 6 is the series

0

The lower relative L-Series (IRIrseries) of 6 is the ascending

'=A It A =A '

L(G) n G L 2 L1 2..., where L1+1 [L1,G ].

central series of 6', i.e.

1>= sz S...SZ S... wh = ' .< 20 1 r , ere zi/zi_1 Z(6 /zi_ )

The terminal members of URL-series and URL-series are denoted

A* *

respectively, by L (G) and Z (6').

The following is easily verified.

Proposition 3.2.2: In a group 6,
 

(i) RL-series are normal series of 6';

(ii) the URL-series and LRL-series are characteristic

series of 6';

(iii) the URL-series coincides with the upper central

series of 6' if and only if 6 is supersolvable.

(iv) If 6 is solvable, then Lt S Q(G), for every

r 2 1. Moreover Lf(6) S Q(6).

(v) For any homomorphism e of 6, 1%(6)9 S L*(69).

Proof: (i) and (ii) are obvious from the definitions of

these series.

(iii) If 6 is supersolvable, then L(G) = G and

L(G) n 6' = 6' is nilpotent. Hence in this case URL-series

defines precisely the upper central series for 6' which

terminates in <1>, Since 6' is nilpotent.

Conversely, suppose URL-series coincides with the upper

central series of 6'. This implies that L(G) n G' = 6' and

so 6' S L(G). By Theorem 1.2.5 it follows that 6 is Super-

solvable.
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(iv) L1 = [L(G) n c',c'] S L(G) n [c',c']. Since G

is solvable, 6" is contained in every maximal subgroup of prime

index (Proposition 1.2.4). Then L(G) n 6" S 6(6) and con-

sequently L S Q(6). Since Lt S L V'r 2 1, we have Lr S Q(G),
l l

.* , , ,

V r 2 1. Now to Show that L (C) is 1n Q(G) first notice

A* A 5* A

that if L (6) # L0, then L (c) S L

A

1 S Q(6). In case L (G) = LO’

we have LO = L(G) n c' = L, = [L(G) n c',c'] s L(G) n c" s s(c).

Thus in any case L*(G) is contained in Q(6).

(v) Let 9 be any homomorphism of 6, then (L(G) n 6')e S

L(G)e n 6'9. Since L(6)e S L(ce) and G'e = (ce)', we have

Lo(c)e S io(ce). Similarly, Ll(G)e = [ib,c'je = [LO(G)S,G'9] s

[10(69),6'e] = 11(69). This argument leads to (v).

We shall say that a group possesses a relative L-series

if the series terminates in the identity subgroup. For such a

group we have the following.

Proposition 3.2.3: In a group G possessing a RL-series,
 

' ' = ... = a
1,9, L(g) n 6 BO 2 B1 2 2 Bk <1>' we have (a) Li S Bi’

i = 0,1,...,k and (b) B zj, j = O,l,...,k-l.
k-J 5

Proof: The method of proof is essentially a duplication

of the correSponding results for the L-series. Therefore we

only outline the proof here.

(a) Notice that In S B0 = L(G) n 6'. Suppose now that

L, S B, for a fixed i < R. Then by definition B,/B.
l l 1 1+

S Z(G'/Bi+ ).

l l

. . . I “ = “ I
This implies that [B1,6 ] S Bi+1° Hence Li+l [L1,6 ] S

[B.,G'] S B. So we conclude that L S B. for i = O,l,...,k.
l 1 1+1' 1

(b) Now to show that Bk-j 5 zj’ observe that when j = 0,

Bk = <1> = 20. Again assume that Bk-i S Zi for a flxed
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integer i. Let T = 6'/Zi be the homomorphic image of

' o

6 /BK-i With kernel zi/Bk-i°

By definition, B /B S Z(G'/BK_i). Hence under
K-i-l K-i

the homomorphism the image of BK-i-llBK-i must lie in the

center of T. But this image is BK-izi/Zi which lies in

Z(T) = 2(c'/zi) = zi+1/zi. From this it follows that

z.
1

This proves (b).
BK-(i+1) S +1“

As a consequence of the above results we have the

following.

Proposition 3.2.4: In a group G, the following are

equivalent:

(a) 1*(c) = <1>.

(b) 10(6) S 2*(0').

(c) L(G) n c" = z*<c'> n 6".

Proof: (a) ='(b). Let Lt = LT(G) = Z0 = <1>. By

definition and the hypothesis, ir = [Lr_1,6'] = <1>. So

1. If Z1 = <1>, then 2*(6') = <1> and hence

r-l’ir-2"'°’10 are all equal to <1> and (b) is proved. 80

A ' =

Lr_1 SZ(G) Z

t
i
)

assume ir-l S Z1 # <1> and let T = G'IZl. T is a homomorphic

. g " . A

image of c /Lr_1 Wlth kernel 21/Lr_1. Also

Lr_1 = [Lr_2,6'], so Lr_2/Lr_1 S Z(6'/Lr_1) [12, p. 18].

Consequently, the image of ir-Zlir-l lies in the center of

A ' = A

T. Thus Lr_zzl/z1 S 2(c /zl) 22/21 and hence Lr_2 S 22.

a *

By repeating this process we eventually have LO S Zt S Z (6'),

if r < t (t is the length of LRL-series). On the other

a *

hand if Lr-t S Z (6'), then by repeating the above process

A *

we reach L0 S Z (6').
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. *

(b) a (c). Suppose L0 S Z (6'). By [7, Theorem 2.2],

2*(6') n 6" S Q(G'). Therefore 2*(6') n 6” S Q(G') S 6(6) 0 6" S

L(G) n 6". Also by hypothesis LO = L(G) n 6' S 2*(6') and

so L(G) n G" S 2*(6') n 6". Thus, L(G) n G" = 2*(6') n G"

and this is (c). Finally assume (c). Then since

[L(G) o 6',6'] S L(G) n G", Ll s 1(a) n c" = 2*(6') n c".

Thus L S Z*(G') = Zt’ where t is the length of LRL-series.
1

a *
O ' = '_1 < zt, we have L1 zt_1/zt_1 S 2 (c )/zt_1 2(c /zt_1).

This implies that [Llozt_1,c'] S zt_1. Hence

Since Zt

.*

This argument leads to L (G) S 2 = <l>.

A = A '

L2 [L1,G ] S Z 0
t-l'

Thus (a), (b) and (c) are equivalent.

Remark: In the above proposition 10(6) may actually

be smaller than 2*(6'). For example consider 6 = A4. As

we know already, L(G) e <1> and so 10(6) = L(G) n 6' = <1>.

However 6' 5 V4, the 4-group and 2*(6') 3 V4. Notice that

"3(a) = <1>.

Corollary 3.2.5: The conditions in Proposition 3.2.4

are also equivalent to the following: If S is any Subgroup

of 6 generated by 3 elements one of which belongs to L(G),

then L(G) n 8' S Z*(8'), where 2*(8') is the hypercenter

of 8'.

Proof: This can be immediately deduced from a result

of R. Baer [3, p. 177] which states that any normal subgroup

N of 6 satisfies the hypothesis of the corollary (in place

of L(G)) if and only if G' n N S 2*(6').

Remark: The above may have some interesting consequences,

and we hope to return to its investigation on a later occasion.
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a* * a

Corollary 3.2.6: If L (G) = <1>, then Z (6')/LO =

U

2(0 /LO).

*

Proof: By Proposition 3.2.4, L(G) n 6" = Z (6') n G".

* * A

Then [2 (c'),c'] S 2 (6') n c" = L(G) n c" S L(G) n 6' = LO.

. A * * A ' A

Moreover Since Lo S Z 63') we have, Z (6')/LO S 2(6 /Lo).

A * *

0n the other hand since LO S Z (6'), G'/Z (6') is a homo-

A * A

morphic image of 6'/L0 with kernel 2 (6')/L0. Under this

homomorphism e, Z(G'/LD) is mapped into the center of

‘k * — A

c‘lz (6'). But Z(G/Z (6')) = <1>. Therefore Z(6-'/LO) is

in the kernel of the homomorphism 6. Consequently,

I " * I " " * I "
Z(6 /L0) S 2 (6 )/LO. Thus we conclude that Z(6'/L0) = z (6 )/L0.

We close the chapter and the present investigation with

the following.

Proposition 3.2.7: If H is a solvable normal sub-

a* ..-k

group of 6 and L (G) = <1>, then L (H) B<1>.

Proof: If H is Supersolvable, then by Pr0position

3.2.2 the URL-series of H coincides with the descending

5*

central series of H' and hence L (H) "<1>w We may assume

therefore, that H and hence 6 is not supersolvable. Since

.* A *

L (6) = <1>, by Proposition 3.2.4, L0(G) = L(G) n 6' S Z (6').

Also since H A 0, MN) S Q(G). Then H' 0 6(6) s c' n L(G) S

*

Z (6'). Suppose H' n Q(H) = <1>. Since H is solvable, by

.*

Proposition 3.2.2 (iv), L (H) S H' n §(H) -.<1>s Therefore

assume that H' n Q(H) # <1>, in particular Q(H) # <1>. It

is known that the hypercenter of a group is the intersection

of the normalizers of all the Sylow Subgroups of the group.

In the following discussion we shall make use of this definition.
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If P1 is the Sylow p-subgroup of H' n Q(H), then

*

P1 A 6'. Furthermore from above P S H' n Q(H) S Z (6').

1

Therefore P1 S NG,(Q), where Q is any Sylow q-subgroup of

6'. Now if p i q, then Pf} = P1 X Q and hence every p-

element of H' n Q(H) centralizes every p'-element of 6'.

In particular, every p-element of H' n Q(H) centralizes every

p'-element of H'. Let ‘P be a Sylow p-Subgroup of H' and

P a Sylow p-subgroup of 6' containing P. Since H' A 6',

P=PnH'. If xEP1,then Px=(PnH')x=Pan'=

P 0 H' = P' since x E NG.(P). This shows that x normalizes

every Sylow p-subgroup of H'. Hence x E 2*(H') and so

P1 S 2*(H'). Since H' n Q(H) is nilpotent, we conclude that

H' n @(H) S Z*(H'). Since H is solvable, L(H) n H" S Q(H).

Thus L(H) n H" S Q(H) n H' S 2*(H'). Also by [7, Theorem 2.2],

2*(H') n H" S Q(H') S §(H) n H". 80 we conclude that

2*(H') n H” = L(H) n H". By Proposition 3.2.4 it follows that

.*

L (H) = <1>.

Remark: We are not able to decide whether the solv-

ability condition in the above prOposition is necessary.
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