ABSTRACT THE CRYSTAL STRUCTURES OF BIS(TRIPHENYLPHOSPHINE)TETRAMETHYLENEPLATINUM(II)é 2, ,6,7,7,8-HEXAMETHYL-1,S-DIPHENYLTETRACYCLO[3.3.0.02, .03,6] 3 OCT -4-0NE; AND 6,6-DIMETHYL-2,3-BENZO-2,4-CYCLOHEPTADIENONE PHOTODIMER A By Carol Greenup Biefeld The assessment of the effects of internal and external stresses on ring conformations are described gia_a comparison of the common conformations of cycloalkanes with those found from X-ray structure determinations of the title compounds. Precession camera techniques have been used to gain space group information and lattice parameters. Three-dimensional, single-crystal intensity data have been collected with a four—circle, computer- controlled diffractometer at 23(2)°. The crystal structure of bis(triphenylphosphine)tetramethylene- platinum(II), Pt[P(C6HS)3]2C4H8, is triclinic, space group 22; with a_= 9.78(l), b_= l7.7S(2) and g_= 9.66(l) X; 2_= 94.06(4), §_= 102.74(7) and 1_= 98.S4(6)°; with §.= 2. The structure has been solved by conventional Patterson and Fourier techniques with 3504 independent reflections and refined to a discrepancy index, based on ‘5, of 0.074. The phosphine ligands and terminal carbon atoms of the tetrahydroplatinole ring comprise a distorted square-planar configuration around the platinum atom in which the coordinated carbon atoms are G8)8#é—_ Carol Greenup Biefeld 2.12(2) and 2.05(2) X from the metal. The angle between the tetrahydro— platinole ring and the plane defined by the platinum and phosphorus atoms is l75(1)°. The tetrahydrOplatinole ring is in an envelope .configuration. The compound 2,3,6,7,7,8-hexamethy1-l,S-diphenyltetracyclo- 2,8003,6 [3.3.0.0 ]octan-4-one, C26H280’ crystallizes in the monoclinic 0 space group P21/c with g_= 9.155(3), 9_= l4.635(9), g_= 15.425(4) A and §_= 100.7(2)°, with §_= 4. The structure has been solved by direct methods and refined (1577 independent reflections) by full-matrix, least-squares techniques to a final R-value of 0.082. The cyclobutane ring is nonplanar with a dihedral angle of 133(1)° and contains two exceptionally long C-C bonds of 1.608(8) and 1.602(10) X which reflect the internal strain of the cage system. The molecule, disregarding substituents, exhibits near mirror symmetry. The three five-membered rings are in distorted enve10pe configurations. The crystal structure of 6,6-dimethy1-2,3-benzo—2,4-cycloheptadienone, photodimer A, C26H2802’ is monoclinic, space group 9312! with a_= 30.141(l6), b_= 8.536(4), g_= 15.979(6) Z and 8': 103.1(2)° with §_= 8. The structure has been solved by direct methods and refined (1761 independent reflections) by block diagonal, least-squares techniques to a final Brvalue of 0.050. The five- to six-membered ring juncture has been found to be gig, while the six- to seven-membered ring juncture is trans; a long C-C bond length, 1.580(4) X, at the latter juncture is indicative of strain at this site in the molecule. The five-membered ring assumes a half-chair conformation, and the seven- membered ring, a pseudo half-boat configuration. The cyclohexene is Carol Greenup Biefeld substantially flattened. Comparison of this structure is made with that of its stereoisomer, dimer B. THE CRYSTAL STRUCTURES OF BIS(TRIPHENYLPHOSPHINE)TETRAMETHYLENEPLATINUM(II); 2,3,6,7,7,8-HEXAMETHYL-l,5-DIPHENYLTETRACYCLO[3.3.0.02:8.03,6] OCTAN-4-ONE; AND 6,6-DIMETHYL—2,3-BENZO-2,4-CYCLOHEPTADIENONE PHOTODIMER A By Carol Greenup Biefeld A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1973 ACKNOWLEDGMENTS There have been many people whose assistance has contributed to the completion of this work and I would like to thank each of them with special appreciation to the following: I wish to extend my sincere gratitude to Dr. Harry A. Eick for his guidance, encouragement, understanding and patience without which this work would not have been finished. My special thanks to my parents and especially my '“husband Bob for their understanding, encouragement and self—denial which made attainment of this goal possible. Thanks are also due to my colleagues, past and present members of the high temperature research group, for their concern and vital dialogue; to Dr. Robert Grubbs and Dr. Harold Hart for their contribution of the compounds studied and their discussions concerning the chemistry of the systems; and finally to Dr. Bobby Barnett. Dr. Melvin Neuman and Dr. Richard Vandlen for thtir willingness to always answer one more question about crystallography. The financial support of the National Science Foundation is acknowledged gratefu11y. ii TABLE OF CONTENTS CHAPTER 1. Introduction 2. The Crystal Structure of Bis(triphenylphOSphine)tetra- 5. methyleneplatinum(II) Introduction Experimental Solution and Refinement of the Structure Discussion The Crystal Structure of 2,366,7,7,8-Hexamethy1-l,5- diphenyltetracyclo[3.3.0.02» .0326]octan-4-one Introduction Experimental Phase Determination Refinement of the Structure Discussion The Crystal Structure of 6,6-Dimethy1-2,3—benzo- 2,4-cycloheptadienone Photodimer A Introduction Experimental Phase Determination Refinement of the Structure Discussion Summary and Conclusions REFERENCES In Text General iii Page 11 11 12 16 26 39 42 44 SO 57 79 81 84 86 100 130 135 135 139 TABLE 10. 11. 12. 13. 14. 15. 16. 17. 18. LIST OF TABLES Crystal Data for PLAT Fractional Coordinates and Thermal Parameters for PLAT Observed and Calculated Structure Factor Magnitudes for PLAT Bond Distances Within PLAT Bond Angles Within PLAT Crystal Data for HDTO Statistical Distribution of E's Calculated from the Wilson Plot for HDTO Starting Set of Signs for HDTO Positions and Relative Heights of Assigned Peaks in the E-Map for HDTO Positions and Relative Heights of the Hydrogen Atom Peaks for HDTO Fractional Coordinates (X 104) of Nonhydrogen Atoms in HDTO Anisotropic Thermal Parameters of Nonhydrogen Atoms in HDTO Fractional Coordinates (X 103) and Isotropic Temperature Factors for Hydrogen Atoms in HDTO Observed and Calculated Structure Factor Magnitudes for HDTO Bond Distances Within HDTO Bond Angles Within HDTO Crystal Data for Dimer A Statistical Distribution of E's Calculated from the Wilson Plot for Dimer A iv Page 14 43 47 51 52 55 58 6O 63 65 68 69 83 85 LIST OF TABLES (Continued) 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. Hand-Determined Phases for Dimer A Positions and Relative Heights of Assigned Peaks in the E-Map for Dimer A Positions and Electron Density (X 103) of the Hydrogen Atom Peaks for Dimer A Fractional Coordinates (X 104) of Nonhydrogen Atoms in Dimer A Anisotropic Thermal Parameters (X 104) of Nonhydrogen Atoms in Dimer A Fractional Coordinates (X 104) and Isotropic Temperature Factors of Hydrogen Atoms in Dimer A Observed and Calculated Structure Factor Magnitudes for Dimer A Bond Distances Involving Nonhydrogen Atoms Within Dimer A Bond Distances Involving Hydrogen Atoms Within Dimer A Bond Angles Involving Nonhydrogen Atoms Within Dimer A Bond Angles Involving Hydrogen Atoms Within Dimer A Dihedral Angles in Dimer A Comparison of the Dihedral Angles in Dimers A and B 87 89 92 96 98 101 107 108 109 111 116 128 LIST OF FIGURES FIGURE Page in 1;: 1. Stereoscopic View of PLAT 2. Stereosc0pic View of the Packing of Four Molecules of PLAT in the Front Half of Four Unit Cells 33 3. Dihedral Angles Calculated for the Ideal Half—Chair and Envelope Conformations and Observed for the Tetrahydroplatinole Ring in PLAT 37 4. Stereoscopic View of HDTO 67 O 5. (a) Bond Lengths (A) in HDTO. E.s.d.'s Lie in the Range 0.008 to 0.013 A. (b) Bond Angles (°) in HDTO. E.s.d.'s Lie in the Range 0.4 to 0.8° 67 6. Comparison of the Dihedral Angles in Norbornane47 and HDTO 7S 7. Projection of HDTO Along C(6)...C(8) 77 8. Conformation of Cyclopentane III in HDTO 77 9. Stereoscopic View of Dimer A 102 O 10. Bond Lengths (A) in Dimer A. E.s.d.'s Lie in the Range 0.004 to 0.005 A 103 11. Bond Angles (°) in Dimer A. E.s.d.'s Lie in the Range 0.2 to 0.3° 105 O 12. Bond Distance (A) in Dimer B 121 13. Bond Angles (°) in Dimer B 123 vi CHAPTER 1 INTRODUCTION Since 1885 when Baeyer's strain theory for cyclic compounds appeared, chemists have been increasingly concerned with the conformation of molecules. Conformational analysis has aided in the prediction of molecular stability and reactivity, and in the discovery of synthetic routes for the preparation of natural products and the elucidation of their structures. The conformation of cyclic systems is still a major area of both experimental and theoretical interest. In 1885 Baeyer predicted that the strain (angle or Baeyer strain) present in cyclic systems could be defined as l/2[109°28' - (actual bond angle)°]. The factor of 1/2 results from the strain being spread over two bonds and the actual bond angle in this case is taken to be that of the planar polygon. Thus, the strain present in a planar cyclic system would decrease to a minimum for cyclopentane and then increase indefinitely. Even though heats of combustion--which later proved conclusively that Baeyer's strain theory broke down for rings of more than five members-~were not yet available, there were indications that six-membered rings were more stable than the five-membered ones. Sachse in 1890 resolved this contradiction with the postulation of a puckered rather than planar conformation for cyclohexane, and postulated furthermore, that this puckered form could exist in two configurations--the chair and boat conformations. It wasn't until 1918, however, that Mohr realized that substituted cyclohexane in the chair form could interconvert with the concomitant absence of 2 diastereomers. In 1928 X—ray diffraction studies verified the existence of the chair form of cyclohexane, and in 1936 Kohlrausch demonstrated the existence of two types of bonds in cyclohexane--axial and equatorial; however, only in 1950 did Barton demonstrate the chemical consequences of these two types of bonds. After the chemical implications of axial and equatorial bonds were established, the scope of the field of conformational analysis expanded tremendously, and in 1969 Barton and Hassel were awarded a Nobel Prize for their work in this field. Conformational analysis began with a concern for an explanation of the relative energies of small— to medium-sized rings. Through theoretical, physical, and chemical means the configurations of these cyclic systems have become well-established. The conformation assumed by a ring has been found to be that which affords the best compromise in the minimization of Baeyer or angle strain, torsional strain due to bond eclipsing of substituents, and van der Waal inter- action of substituent atoms. A cyclopropane ring must be planar; however, cyclobutane has been found to assume a puckered conformation, I, by electron diffraction1 and spectroscopic and thermodynamic measurements.2 The puckered form is apparently favored slightly since puckcring 3 relieves torsional strain at the expense of a slight increase in angle strain. Even though planar cyc10pentane would exhibit bond angles of 108°, bond eclipsing causes the ring to assume a puckered configuration. There are two puckered forms of higher symmetry than the other possible ones--the envelope (CS), II, and the half-chair (C2), III. Substituted II III cyc10pentanes seem to prefer one of these two conformations. The principal conformations of cyclohexane are the rigid form or chair, IV, the flexible form or boat, V, and the twist form, VI. The chair form IV is the one of lowest energy since it is free of both angle and torsional strain. The flexible form, V, is that of highest energy due to torsional strain and van der Waal interaction of the hydrogen atoms shown. The twist form is of slightly lower energy than the boat due to a small decrease in torsional strain and the absence of the van der Waal interaction of the aforementioned hydrogen atoms. The last cycloalkane which is relevant to the compounds to be considered is cycloheptane, which has two main conformations, the chair, VII, and the boat, VIII, configurations which are similar to those assumed by cyclohexane. VII VIII The conformations discussed thus far are the common ones associated with the particular alkane. Substitution on the ring can greatly alter the relative energy of a particular conformer because strain is induced by the alteration of the valence angle which influences Baeyer strain, by the eclipsing of bulky substituents, or by their interaction. The environment in which a cycloalkane is found should have an effect on its configuration; the magnitude of this effect depends on the complexity of the ring's surroundings. The simple replacement of one carbon atom by a heteroatom may or may not have a noticeable effect dependent upon how much the valence angles are altered. If two or more cycloalkanes are joined to form either fused S or bridged ring systems, conformational analysis becomes more complicated due to the fact that ring juncture, particularly of small cyclic compounds, forces the rings to assume certain shapes in order that they be joined. If the effect of ring juncture is coupled with that of substitution, in particular by bulky groups or by carbonyl groups which cause part of the ring to be planar, the configurational changes could become somewhat complicated. To assess the actual conformational changes in such situations, a method which will determine the configuration of the rings unambiguously must be used. X-Ray diffraction is such a method and was chosen for this study. Very little conformational information on heterocycles of less than six atoms is available; but of that available the most seems to exist for five-membered heterocycles. Recent electron diffraction studies on tetrahydrofuran,3 (THF), tetrahydrothiOphene,4 (THS), and tetrahydroselenophane,S (THSe), suggest that the latter two compounds exist primarily in the C2 conformation while THF exists as a mixture of conformers. The angle C-heteroatom-C decreases from SE: 107.5° for THF to 93.4(5)° for THS to 89.1(5)° for THSe, while the bond lengths C-heteroatom are 1.428(3), 1.839(2) and 1.975(3) A, respectively. From this information it can be postulated that as the bond angle decreases and bond length increases in this series, the half-chair conformation is favored. In order to test this hypothesis a compound which could have a smaller bond angle and larger bond length is needed. Bis(triphenylphosphine)tetramethyleneplatinum(lI), IX, could fit these requirements; however, in interpreting the results of an X-ray structural investigation, the packing forces between molecules t’\ ./ / 20(1) where I = P - B and 02(1) = P + CB + [D(I)]2. In these equations P = 10(Ic) + 5, (Ic = integrated peak count), B = C[10(IBl + IBZ + 1)], (I81 and 132 are integrated background counts) [factors of 10 arise because of truncation in the data collection program], C the ratio of total peak count time to total background count time and D a 2% instrumental drift factor. An absorption correction was not attempted because the irregular shape of the crystal with possible reentrant angles made definition of the bounding planes virtually impossible. Further- more, examination of 33 Friedel pairs in the inner-sphere data revealed only five whose intensities were not within one standard deviation of each other. The program INCORl7 altered to include a perpendicular monochromator correction, was used to correct the data for Lorentz and polarization effects. Solution and Refinement of the Structure Solution of the structure was effected by the heavy-atom method. A Patterson synthesis was computed17 with the structure factors derived from the inner sphere data. The function used in this +++ calculation can be represented by (2—5), in which A(uvw) is the . + + + A(K‘A’m = lTZZZIFOIZethU + kv + 11w) (2-5) V h k 2 17 average electron density product at points at the ends of a vector whose components are (3,3,3), V is the volume of the unit cell, and F0 is the observed structure factor. Peaks in the Patterson map correspond to interatomic vectors with the heights of the peaks proportional to the product of the number of electrons associated with the atoms located at the endpoints of the vector. Since the equivalent positions in space group PT are (x,y,z) and(§,y32), a peak which corresponds to an intermetallic vector should appear at (2x,2y,22) and (2§,2§,2E). The two strongest peaks, excluding the origin peak, were found at (0.7,0.s,o.7) and (0.3,0.s,o.3). Because there are two symmetry-related molecules of PLAT in the unit cell, the atomic positions derived from only one Patterson peak are needed to define the positional parameters of the metal atoms. The platinum atom was placed at (0.35,0.25,0.35). After two cycles of full—matrix, least-squares refinement,17 the reliability factor, which was the function minimized, decreased to 0.377. This factor is defined as [2w(AF)2/£w(FO)2], where AF is the difference between the observed structure factors (F0) and those calculated from the known structural fragment (Fc)’ and w is the weight associated with F0. With unit weights, 133,, w = l, the reliability factor is represented by R, and if w f l, R". The weights used in this structure are based on counting statistics and are defined in equation 2-6. w = l/ozp, OF = o(I)F/ZI (2-6) 18 Once the positions of the heavy atoms are known, there are two methods commonly used to determine the remaining light atom structure. The first of these is the FO Fourier synthesis, which is calculated from (2-7) where p(x,y,z) is the electron density at (x,y,z). Since 1 -2ni(hx + ky + £2) o(x.y.z) =V12; 12. 2 F e 'l 0 (2-7) both the magnitude of F0 and its associated phase angle are required in the Fourier calculation and since only the magnitude is observable, the heavy-atom structural fragment is used to calculate a second set of structure factors, Fc' The phase angles of the Fc's and magnitudes of the Fo's are then combined to calculate the F0 Fourier map from (2-7). If there is a large discrepancy between the number of electrons possessed by the heavy atoms and that by the light atoms, the heavy- atom peaks overshadow those of the lighter atoms. However, if the large peaks are subtracted out, the peaks which correspond to the missing atoms become more distinct. This subtraction process corresponds to the computation of a difference Fourier synthesis, (2-8), which is e-2ni(hx + ky + £2) Ao(X.y.Z) = % (2-8) the other method used to determine light-atom structures. But, since spurious peaks appear in difference syntheses due both to the incompleteness of the model and to series termination effects in the Fourier summation (effects due to the restriction of the data to a finite rather than an infinite set), the two techniques are best used in tandem, with the Fo Fourier maps used to verify the peak positions in the difference maps. Since the heavy-atom model of the PLAT 19 structure consisted only of two platinum atoms, both PC and difference Fourier maps were computed to determine the light-atom structure. Several cycles of Fourier calculations followed by least-squares refinement of the accumulated atomic coordinates (and isotropic thermal parameters) were necessary to effect the solution of the light-atom structure. Before much of the light-atom structure had been determined, the graphite monochromator was found to have been set to diffract from the (004) rather than the (002) plane. The net result of this error is that instead of monochromatic radiation of wavelength A, there will be radiation of two wavelengths, A and X/Z. This second wavelength arises from the combination of the substantial white streak in molybdenum radiation with the strongly diffracting (002) plane of graphite, since when the (004) is in position to diffract Mo Ka radiation, the (002) will diffract a white radiation component. 1 The presence of the two wavelengths causes a special type of multiple reflection, such that whenever a (h'k'i') plane is in the diffracting position, any (hkz) plane related to it by d 2d hkl = h'k'l' will also be in a diffracting position, and thus the intensity of the (h'k'R') plane may be in error. As a result, the intensity of any reflection with hkz all even was suspect, and 776 such reflections were deleted from the data set. Sufficient data remained (3505 unique reflections) to determine the structure (SE: 18 reflections per parameter), so the solution process was resumed after Lorentz and polarization factors had been recalculated with the proper monochromator interplanar d-value (that corresponding to the (004) reflection plane). 20 A set of the 1684 strongest reflections was selected from the data for use in the procedure outlined above, and all nonhydrogen atoms were located successfully. The structure was refined by a full-matrix, least-squares procedure17 with the molecule divided into three sections each of which included platinum and phosphorus atoms: (1) four carbon atoms in the tetrahydroplatinole ring, '(2) all the carbon atoms in one phosphine group,(3) all the carbon atoms in the other phosphine group. With only the platinum and phosphorus atoms treated anisotropically, R reduced to 0.064 and Rw to 0.065 for the 1684 strongest reflections. When all 3505 reflections were used with the same parameters, R = 0.077. Examination of the Fo's at this point revealed one reflection, T014 for which the initial intensity had been mispunched; it was deleted. The planarity of the phenyl rings was checked with the program LSQPLN18 and the greatest deviation from planarity was found to be 5%. The final step was location of the hydrogen atoms. Examination of a difference Fourier map indicated large peaks and valleys, of the order of 4-5 e A73, surrounding the platinum atom position and apparently due to series termination effects in the Fourier summation. Therefore, the hydrogen atom positions were determined by geometrical 19 considerations. The phenyl hydrogen atom positions were calculated from (2-9), where r”, rCB, and rCA coordinates of a hydrogen atom, the carbon atom to which it is bonded, represent orthogonal Angstrom C 2:8 (rC ‘ rC ) (3'9) 21 and the carbon atom para_to CB, respectively. The hydrogen atom positions on the methylene carbon atoms were calculated from tetrahedral geometry and a carbon-hydrogen bond length of 1.10 A. Refinement of the hydrogen atom positions was effected by recalculation of their parameters after each of four cycles of least-squares analysis on the corresponding carbon atoms. The final unweighted and weighted R values were 0.074 and 0.068, respectively, for the 3504 independent reflections with I > 30(1). Final shifts in all parameters were less than 1% of their estimated standard deviations; negative and positive residual peaks of the order of 1.7(1) e R-3 were arranged symmetrically around the platinum atom in the final difference Fourier map and were attributed to series termination effects in the Fourier summations. Cromer and Waber's20 scattering factors for neutral atoms were used for Pt, P, and C while that for hydrogen was taken from the International Tables.21 The real and imaginary parts of the anomalous scattering of platinum and phosphorus22 were included in the calculated structure factors. A correction for secondary extinction did not seem necessary and so was not included. The final positional and thermal parameters are given in Table 2. Since the absolute weights associated with the observed structure factors are unknown, only estimated standard deviations can be obtained for these parameters.23 These estimated standard deviations were calculated from the inverse matrix of the final least-squares cycle. The hydrogen atom numbers match those of the carbon atom to 22 oo.n vow HNH- oo.n va mm . oo.n mNH mm m N a heavee.o nomvofi.a flamvee.o nmflvee.o momvma.o fiomvww.o Hmvme.o nmvem.o Amvem.o mm mH m m NH m A nmv wmm new flmNVaN.~ Ammvefl.~ mvaw.a mmm flee: Amevwm.w fimvaom nmvoe - Ame: Amevem.e Amvamm “NSF Ame: Awmvmo.m vawNN flavme Eo u< m N % mEou< owQOHHOmH d Ammvww.~ mwNme.m fimvemfin Amvemem Ammvae.~ fihmco~.n flmeoHN fimvaema flmv~H.N flevam.m flflvmeem flfivaoem mmm “Hm N A maou< UMAOHHOmwe< momenucoumm :« co>ww one mpflmwu ucmofimficwfim unwed ecu mo m..v.m.m .mfiaxmwmm + Senflmm + xeNHQN + Namme + N xmmm + .IIdMII u N n a amid ..mv 58m 56 Anueem fimvu “Numom “HUD x aou< fievamo~ “use fievmmeN flava flavmwem ea x sop< .0905: :Hamvuamxo Show on» we m“ cfiommfiaao awakens oflmonpomfinw oak 9<4d pom muouoaeuem Hmawose use moumcfiunoou HchMHUMHm .N eflnmh 23 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 Now mmoa 0vHH 05m 0mm 000 wmo mmw woofi 0mv vow NNm mm mm 0mm 0mm 0H5 mV5 5m5 500 v0 05 NQH mwm 05m 0m~ 0am v0 00 00H 0H HOH- momH HVMH mNHH N00 HNH 5m~ wow wow V5m mvH mm 1 00m: v5~u 0v 1 HOH 0mm Ammvm flNNU: AHsz AONU: Amfivm “Adv: mefivm “mag: fiefivm “Navz “adv: AoHV: “av: hag: flog: nmvz Ammvme.m Ame0HH.e fi~mvmo.m mwmvom.e flamvaa.e “anvmm.~ mamvem.~ mmeume.m mfimvmm.e mmmvea.m mme0n~.e “Hevee.m fionvmo.n fi~e0~e.m fi~e0e5.m mem05~.m nmvoom mmVeHm Anveae Amvmme Amvmmm vafime ANVeNOH nmvman fiwueoe mmvmmw havemfi fi~0m~H fimvmnw fi~vmafl anmmH mmvemm Afiveme AHVOHH AHVmHH nflvmefi havemu havomm nfigaea Advemfi ”HUAHH AHVem “Heme mfivfifia havama Asvmm nHVeH - AHVNA - ANVHam fi~0HmH fi~0~o~ vaAmm mmvmen Amvmmm mwveem Amvwm “Nuns - fimvemfi- mmvhma- fimvem - “Nune nNVeNe fi~0eae Anumfle fimfivu mmflvu fiafivu fiemvu fimfivu heave Amavu “Nave Agave floa0o Amvu have fluvo fievo Amvo Aevo fleeeeaeeouv N edema 24 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 00.5 wmo Hmv ch 00v mmo 0vv 050 5mm 505 0mm N5H 50 00 mma 00m 5vo 0mm wvm vow v0v mvm 50v mvm mmv 0mm m5N omv H5m vmm 0mm 50v mwo mmo mmo 0H5 va omv 5HN 00d mad mm 0NH m5 0mg wwm 0mm 05v Hwoa flammvz mewmvz Amwmvx Aeamvz fieamvz flemvz mmmvz hemvm finm0m Ammvz AOMV: Ammvz fiwwvx flamvz neNU: flemvz Awevam.e Ammvom.m meevew.e Acevee.e haveem fieevmam naegwm.e namvme.m Ammvmm.m neevmm.m “unvom.~ fiem0m5.~ fimmvmm.m flamvem.e Amevem.m mamvem.e nmvaee Amvmma Amvooa Amvaem m~vaae Amvwea Amvaoa Amveofi fimvwma fimvoNN fl~0wmm Hmvmea anvmmm fimvewm nmvamefl fimvfiem Amvmwe fimvmme fi~0mem fl~0~mn fiflvemm Aflvmee 5005mm fis0omm haveom Advaee A~05~e haveme nvaHa fiHvoma fiHVeNA mflvaoa neeaeeeeeuv N Amvaefi Amvemfi AmVHHH Amvmma AmveAS Amveaa AmvaN Anvamm Amvmme nmvmoe vaOAN fi~0omoH AnymHNH fi~0nema Hmveflaa Amvmmm flmmvu flemvu Ammvu ammvu fiamvu monvu flamvu nwmvu Aawvu memvu fimmvu memvu Ammvu fiwmvu flHNVU fiomvo edema 25 00.5 00.5 00.5 5vm 05v mvm vmfi mmH 0vm . 0H 5n vofifimfiuasa ohm moumcwvuooo Hm:0fiuomum m e .voH 59 vofiamflumsa one mmumcflvhoou Meccauomumm Amevmm.m ”NVAme nfivaom fl~0mnm Aoevu Amevoe.m hmvemm navamm fianme flamed Rem neoevz mmmvoH.m Anvmem fiavmnm fimvaee fimmvu com Aeoevm Amevmm.m mmvewm fifivaem Amuome mamvo mma fieamvm “Hmvma.e “Numam “figmee nmvmma memgu meeseaeeouv N eaeme 26 which the hydrogen is bonded. Observed and calculated structure factor magnitudes are listed in Table 3. Selected bond distances and angles presented in Tables 4 and S, were calculated with the program ORFFE.24 A stereoscopic view of a single molecule (produced by the program ORTEPZS) is presented in Figure l and that of the packing of four molecules in the front half of four unit cells in Figure 2. A 20% probability ellipsoid as shown in the ORTEP drawings represents an equiprobability surface of thermal displacement and contains 20% of the probability distribution, 1:3,, 20% of the thermal motion resides within the boundaries of the ellipsoid. Discussion The molecular configuration is essentially a square plane, consisting of the platinum atom bonded to two phosphorus atoms and two carbon atoms, the latter connected by a two carbon bridge. The Pt-P bond distances of 2.279(5) and 2.285(6) A in PLAT may be compared with values of 2.29(1) and 2.30(1) A in Pt[P(C6HS)3]2(C2(CN)4),26 2.25(l) to 2.28(l) A in Pt[P(C6H5)3]3,27 and 2.24(l) and 2.35(l) A in Pt[P(C6H5)3]2CSZ.28 The Pt-P bond length in PLAT is shorter than that which would be predicted from the usual sum rules for a normal covalent bond and probably reflects slight n-interactions. The Pt-C bond distance of 2.05(2) and 2.12(2) A may be compared to values 0 of 2.10(3) and 2.11(3) A in Pt[P(C6H5)3]2C2(CN)4,26 2.105(17) in 9 and 2.04(3) A in Pt(Cl)(0Me)(1,5-C8H12)(py).30 [Pt(acac)2Cl]-,2 It is interesting to compare the Pt—C bond distance in PLAT to those 0 in o-allyl complexes: l.95(5) and 2.00(5) A in [Pt2(acac)2(ally1)2]31 O and 1.9S(8) A in PtBrSOEt(oA)232 where 0A is o-allylphenyldimethylarsine. 27 Table 3. Observed and Calculated Structure Factor Magnitudes for PLAT I '-| H‘ I I .I "in I I DI In; I I I”! 0" I I 1“ l!‘ .- III-I In. n I In "I o I I- In. . . | "q 9“ . ‘ In; '1‘ . ‘ 0.! or. "‘ ' W“ ‘ ' I‘ H ~ ' W H I ' II II I a II I u so -II I II II -o I. II -I I A II -I I II II I —I v n I -II II II 0 I II III -I I II I. .I I II I. I -. ,7 II I .4 II ~Io I II II -I -I u .I -I I I: I I II II -I -A II II Ian I H I I II II o: I I. u .I I - II I .I I. p. I I. II I II II I -I o- In -I .1 I n I. I I II I. I .. H II I 'H u I“ I I II II -I I II II 4 I II II I .e u u I. ~ .I .I I II a I -0 II n -I -I I II In I I II n I -c I. II I 'II '0 'l I I II n I I II II .I I II II I. -. n I. - II II .. i ,- II I a I. n -I I I II II I I II N -I -I II 'I ‘ 'H H I" I I II II I I II II -I I II In -I -I .I u u -. I II III I ~I II II -I I I II I I II n a -I II n I -' I’ l' -I I I! II I I II I. .0 I I. I. -I a .I .I no In -I I on I. I -0 .o \o -. -1 I u n I I a u .. -I II I- I .0 II II .. I I. II I I 00 II -I I M .0 -I -I .I II III III -I I II n I .0 I. u -I a I II II ~I I I- II -I '9 N V I -‘ \I II -I I II II I I I. II I I .I u -. -I I. II I I. \I -I I II I. a -I u .4 -I .I I u u -I I II II -I -I u u I " H II -I I III III a I II II I I .I .I -I 4 a u I. II I I III In a -I .- u .. .I 0 II II .a 0 II II I 4 II N I ~O ‘I I) In I I. .0 g I. g p g I. q. .. .g I. .0 ,1 II I ’ II I] -| 4 0‘ u I -l .c. I I A I I! II I 4 II II I 4 II II -I I III III 4 I II II I I II II I 4 II I- I. I. I I II II I .0 a u I -I -I II II - I II II I A III II ' -' I' -I ‘ III II II I II II I I «I u I 4 II II a II II I a I, a I .I II II I .. I. n .I .0 II .I -I I I: II I A n n I '0 D’ l' I I II II -I I II II 4 I II II o -9 'l a. -l .0 II o I \7 II I ~I u on ‘ .. I: u . .. n y. .I O I. .I -o I. II ’ -‘ I' 0 I II I I II II .I I I) u I .I u O| -. .I .I I I II I. I -I I. n . .. .. .. . .. u u I I II II -I -. II II I -I I II I I II II on I II II -. I II II I -I III In ~I «I II I o I. II D -0 n u .I . .. u I a .1 I. I I u so - II n ‘ " “ " I I II II -I I II N -I I I- o' I -I II II -I III III I I II II I cc to II .. I .u o. -‘ -a I. II I - I on I a II II I -I II II I I II ll -- I II II -I I II II o .q .. .o II. III -II I II II I -I II II -I g .I .1 -. .I I. n I I II II I a II II I -' I. I I II II a I II I: I I D II I A n p. I .I II a I u I. 4 .I II II I I III II I -I II In .I | I- II -' -I I. I' 0 " H I’ I I I fl 4 I a II I I .I .I -I q u I II. III -I I II II .I .I II 6. I . II n I 4 n I. -' I II '0 " n " l I? I. II II I I II -I I II II I I II OI -c -. II I III nu -I I a II -I -I II II I I II n .q .I I. II a \ I! II .- - II II I -' H II o! I II II -I I II II -I II II II a -I II I I. II -I I II II -.I -I In I I II II .- -I II II -I I II II 'II ‘I 9 'V 1' I. II I III I.) o I I! I: u. H OI 0‘ -c O. I II II 4 I II II .I \I u -I I II u .. .I h D .I I I. I. I, N ' -' II II I. I II II I I u II II II - .. II I III III - I III III I -I II I- -I I II II -I -I II II -I I II II ’I H I -I II II .. I II II I I II I! u u -l -I II II I I- II -I I I II I II 6' .g . g. I .p .I p. p -I I II II I' II '0 " H H -I I II II -I I. II II II II -I -o III II I q n I. -I I II II I - II II -. I u u o .I .I II I I I- II II II I 'I I. I! -l I III III -I II I) II a a I -I a II I -I I: n -I I II II I -I II II -I I I. II I -' u I I I II II I' I. l -I 'l 'I -I I \I III I I II II a u I -I II II ~II I II II I I II: II I H II II -I I III III I -I II II I I I- II I! v ' '9 II II I I I! II a I: II II n 0 -I III III -’ I II II I I II I I - II I» o I u. I. I -I II II -I I II II II I! ' -I I' II I I III III -I II II II I -I II III -I I III II' I I In II I -I II II I I II .I I -I I u -I I II II II N I -I II II I I I. I. III-0 II II I -I II -| I II It I I I. I. ~I a Io II . I n u I -I II II - I II II II II I A III II I I h I I II II II I -I D 07 | I III III I I II It 4 -I I. II I I II I. I -I A II -o I II I II II I 4 II II I I II II I II II I -I I; II I I II I. I I a II a -I II II o I .0 u A -I II II .I I II II II \I ‘ " " " I 0 I. H I I II a I - I- III I I I. u I I II II .I -o II II I I u u -I -I I- II -I o n II II II I A u II I I II I. I II .- I! u I .. II n I I n In 4. I II n .4 -. u u I I I. II -I -I II II -I I II M “ I A II 0. on I VI H .I )I II it D II -I I. I! I O D I: A I I. II -I 4 II u -I I a II I .. O. I. I I II or II I -I II I! 4 I II II -I II b )I II -II -I n 4 I II II c. I A II I .. ll II A I II III I -I II II I I II II I' I -I .I a -I I II II I II u II II a -I II. II a I II II A o .0 n I -o III III -I I I: II ~o A II II -I I n H 'I 'I -I II II 4 I I- II I I. II I I. o: -I a II .I I II II n I I: II I -I I. II I I I. II -I -I u u A I II II II I -I Q I! 4 I II I! I II n i II -I -I a a -I I II I. -I I .I a I 4 I. II I I In so -I A 3 II - I II II I! I -. II I. -I I I. I! I II II o: -I II II -I -I II II a I II II 4 I III III I -I III II I I II III - - II II -I I u I. V I ~ H n -I I II II I I II .. —I I. II -I -I n u .3 I II .- -| I I. I. I .. II I: .u I II - .I .g u H .I I II II III -I -I I II 00 I II II I n H I -I II II -I or III III I II II I I II I: I .. «I II -I I a II -I .4 II II -I I II n I II -I -I II II I I III III -I -o II II I -I II In -I -I I) II I I III III 0 O M II I 4 II II .I I .I .I -I A II II -I I u H O I- I -I I: II I I III III -I -I II . I 4 h II I -l I! II I I II II I I a II I a II II -I I II II I -I II II I I II '0 4 I II I -I \l I) I I II II -I -I I: II I -I 3 II I -I u N I I II II I I I: II -o -I D II -I I a II I .- II II -I I II II -I I II n ' -I II II I I I- II I -I II II I -I II II I -I I” I0- I I |II In I I u I. -I 4 I. u .g I u n I .4 u u -I I II II I I \I II I «I n I. I I II II I -I h u .I 4 II II I 0 II II I I I D I 0 H n A 4 II II .; I a I; I .4 .0 II -I I to II I I II II II -I H I! I I 0! I. I -O I- I. I I. u I! I .9 u u I I I. II I II I. -I 4 u i -I ' I! II . .q .I u -y 0 II I. -O I H N H -I II II I I II I! I A II M I .. II II I -l u I. I I II I. -II I 0. II -I 4 II II . . II II I .q p. g .I I n I. -I I H II " -0 I. II -II I II II I -I II II I -I II II I -I II II -I I \- II -I I II II -.I -I II \o I I .I a n ‘ II n u- . I»... -. I III II -I -I II II .0 I II II I .0 u I -o -I \I II I -I I- II 4 I II II «I I II I- -I -I II II I I II II A -I I. In I -o I. II MI I II II I II I! II o. I II II I II D II -I a II II I -I II II cl I II II a I II II I 4 III III I I u u .I -. I: II 0! oI II II .. I I) II ' -I II II -I I II II 4 -I II II .I I II III II -I II n -I I I! I I -I I \I II I -I \I II I I II cl -0 II 1' I '0 N N v! | ‘I ‘- 0 -I II II 4 O I! II -I -I II II I a! II II -II -I u I) I I II II -I I III III ) A II II I I I. I I -I II II I -I II II I I II II -I ~I II II -I I II II -I -I II II I -I II II -I q I. II I I II I. a I I: II I «I II I- I I II I -. I. ‘7 -I -I II n I I II II -I -I II II a I II II .I a II II I .I II M -I III II I I I: II I I II II I A I. II -I I u -I -I II II -I -I II II I I II II II -I III III 4 I II II I c. n n I -I III III -I .. H II I D u II I I II In I 4 v II -I I III III .1 .I II I. an -I OI II I I II II 'I -I II V a I II II I a II II I .1 II II -I -I II II I I II II D I II II I 4 u u -I I II -I -I II II I -I D II A I II II I -I II II -I I II II I 4 II II I a II II -I -l I" III -II I II n I I II I. .4 -I II II I I II a -o -I II II I -I .I I. -I I II N -I d I I III III I -I II II I 4 III II -I at II II -II I I: IV I I II II -I - II II I I II II -I .I a II I -' II II I I I' II V II II I I I In I I on I: II I -I II II -I -0 II II -I I II II c. I II II -I -I I! II «I I II II -I -I II I I -I u u -I I II II I -I II II I I II I «I II II A -I II II I o! III III .1 I II .0 n I \- II A «I II II 4 I u n -I -I II II I .I II II A I II II 0 -I II II I I II -I «I II II -I -. Q It I 4 "I In -I I II I! -I I II II -I -I II M -I I (I n I -I II II a -. H n .I I II II -I I .I II I I II -I o! n n I «I III III I II II A I II II A I I' I! -I -I 'I I" v I II II I -I II II -I -o I- II -I I II II 'I I II I. I I u -I -I (I II I -I II II I -0 II II -I I I! II -I I II ‘1 -l -I I- I‘ 4 I II II I -I II I. .I .g .0 .I .I I .I II I I OI I -I0 I I. H -I d II II 4 -I DI II I -o I! II o) I II I. -‘I I I. I) -l -I III III .. g u u I -I II II I -I )I I' I I II II ' I II II «I I II II o; -I III In -I -I II II I -I II II or I II II -I I II II o -I II II .3 ‘ II n I .I I u I .. \| I. I I a a H I II -I I II II -I I II II -I A II II I 4 II II I I I' II I I II II I -I V -I I II III I -I I. II a -I II II .I I II II ‘0 I II II -o I I! u I -I II II -I 4 II II I -0 II II I I III III I I II II I -I I: I I u u I -I III II a II II I II II ‘0 I I. I“ -I I II II I -I I II 4 as In I I q I. II I I I: II I I II II I -I II III , . n n .. -. u p q a .. u I \I II ‘I I III III -I I II I -I II II -I 4 II II -II -I II II I I II II I I II II I -I II II I I II II -I -I II n -I -\ II I. .I I I! II I I II II .I I u I -' II II I II II II .o -I II II I I II I. A ' II II ' -I II II o I II II a .I II II H II A I II II . I I. I! -| I u I -I l. u t .9 I" III -0 -l \l I I I I. If I. V I. I. d. -| R N u. g u n -. -I II II 4 II II -I I I. II I . g. .I . I a I -I I. I; I q I, n --I .I II It I I II II -I I III I. c. -I II II -I I II II I -I u \D I -I II II -I I n II II I I. II I I II I -I II II I 4 II II -I -I II I II N -I I II II 4 d ‘I I! 4 I I. u I -I II I- I -I II II -I I II II -) p .I a g y I. I .I g. I) Q a I. g. -1 -. DUI I I. n -I 1 I. '1 -l -I I) I! -| I H n .u . to II .I -I I. I. I I II II -I I lo. q . o I! g -l .. II . .g I! I .I .I no I n It -I I II I. .0 -I - II -I I u u -I . .. dI -O N n -I I u ‘ I I) I. I I II -I -I (I II II A u u I .I II I II I: -0 I II II -I -l I- II I I II II -I - II I ~I -I II II n- - "no. I ' II p. g I .g .l -. .. n I cl o. II D I -I II I I. II -I I N I. I I) ’0 II I I I. II -I - II I -l -I II n -I -' II II -I I n n -I I II II -I -I II II -I -I II I. I -I II I II II I I II 'I I 4 I0 H o! I D. II 4 - II II I -o II II -I II II ') I III III -I I II II o) -I III II I -I III III I -I III I II II I I II II I -I II 'I -I I II II -I . II II I -o II II -I -I I- I. ‘l I III III -e I I. II a -I I. II I -I II I. I -I II I II II I I I! I. I -) \I " a I II n u - II II —I -) II II .0 .. D II I I II II A I II II -I 4 II II I -I II II I -I II I II II -I I 30 N I 0’ 0‘ l -I I a II -I - III III -I -I a II -I -I II II I I II II -I I I: II I -I II I. I - u .- I -I II I II II -' I II N I -I II '- -I I II II I - II II -o -I II n I 4 II II I I II II -I I II I. I -I II I o. - II II -II I II II -II I In I. 4 I II II -' ~O III II I I u .I I - II II -o ~I I. II a .4 In I. I I I) II -I I II (I I -I II -I - II II d o I. I. .I I II II a I II II 4 -I II II I I I. II I - II II -I -I II I. I -I II I. ' I II II I I II II I «I III -I - II II -I I I: II -I I II n -I I I' II .9 4 'I '- I I II II I - II II II 4 I: I. .I a a In I I I! I! l I I! II I -I In —I . II II .4 I I" III -' I I u -l I V \- ol ~l a II -! I II II I - I) II I ~I II II -, 4 .I I! I I n II 1 l I: I) I -I I! II -I — III III -I I u n -I I It I. -I I In .I -I -I II II -I I .0 II .I I II II I -I II II I «I II II 'I I II II I I I. u I -I II II ol - II II -I o I. -I I III II I I II II I 4 III II -I I II III -I II II I -I II II I A II II a In In I I II a I -I I) II -I - II II 4 I III III -I I II I. I I 0‘ II I 4 II In I I II II -I II II I -I u u I 4 II II I I II II -o I I I. 4 4 II II -I - III III -I . y. p .I I II .I 4 I I. I I 4 I. II -I I I. II I II II I -I II II I a II II I I II II -I I II II oI 4 II II I - III III I I III III I I II I“ -' O F I -O I' H -I I I: II I II a I -I In I. .. a u u t I O. I. -I I I. II -I 4 I. II I - II II I I II n I I n n -I I II II I a II II -o I II I- -I I. .I .- ., I. n .I .. u .. I I II II -\ I II II a 4 II II I - II II I I III I I I: II a. I II In I 4 II II -I I II .I In Il a a II I. ~I -o II a I I II II -I I I) ID -I -I I- I. I - III III I I I” ‘ ‘ V ‘l " ' " “ ' " '° ‘° ...... -I II N -I -D II I' I -I ‘I II I I u p . g a g. .3 .5 u n I - II 0. I I II I I I' I’ 4 ' H I. ‘ '1 l' 1' I II -I I. I. I -0 II I -I II II I I II II I I I. II -I 4 II I) I — I. II I I II I I II II I I II a .o .I II B I II II a II II I -I II II I A II II I I III C I I II II I 4 II I - II II ' I II ' I I! ‘V I ' II I! ‘0 -I II ‘I -I .0 II II .I II II .I -I .I n .. -, .. p I I .0 .0 I I II III I -I II II I . II II -II I II II -I I I' N -I II V I. " -I V I' I a II II -I II II .- -I n u .. .I I. n I I a II II II I —I I" III II - II II -II I n —I I II II -'I II I- II a -I I' u I .I a In I II II .a -I II II -I -I II II I I 0. II In I. O 4 III III -I - I. v -I I II I! ~I I II I) - II I. II - -I II II I -o I. II I II a .. u I. .3 u I. I v n n I h I «I I: II -| - II II -I I II II -I I ‘I I) II II II -I -I II N -I -I II II I 0‘ II -I - II II -I II II I I .0 b I 0. I o. I. II A - II I. -. I II II I I II II “I I IIIII - I -| N 'I u .0 II ‘0 I I) I. -' - II II - I I. In I I .I I. a II I «I II II -I - II I. -I I II II I I II II -I do a II o -I II I. -. .I II II I u on . II II —I I. II I I I. II n a I A I. II -I - III III a I H II I I II II -II I- I on II a -I -. u .I I u u I - II III I -I II In I I I. II II II -I -I n I: I - II II -I I I. II -II I II I -I II I I -I II II I -I II II -I II I - II \I -I -0 II II I I II n h I? -I -I In In I - II II .p I .I In .. I I. II - II n O .I II II I -I II II 4 II II I - II II -o I I- II I o y. I. n n .- -. II III I .1 I. u g I II II .I I II a -I o. I. II I -I II II I -I I. u -I II In I - II I. -I -I .I II I . ,g g. ”on A -I I. II I .0 II II I I In In) -I I II on -o O. II I -I II II .. -I u ‘0 I II II I - II I. I) -I M II I II II n II II -o .. II In I - I: II I I III III -I I III II I -I II I- I -I - .0 vs -I a II I II II I - II II -I -I v v Io... II II -I .. II II - I - II n I I II II o) I u I: I -I II I’ I -| I. H -I -' M U I I? II II -I II II I -l I' II II II In In -I -I II U! -II - I. II . I .I I. q I u I. I -I u \I -II I II II a -I n n I u n -I I 'I II I -I II II II II II II -I A III III -I I II I I H H -I I II II I -' II V 4 I I! N -I -I II u do I II II I I II II I -I a II .. n ’y n . .. I. 4 n o. I I II II I I II II I «I u I. o. I II II -I -I II I! -I I II II I I II I. I or II II .. n q .4. I .. I. A u u I I II n I I 0’ 0‘ -' ’0 ‘I U -I I I. ‘I I -I II n or I n H I I II II -I -I II II .- p 60 u . .. I“ n. _. g. a I I II I) I I II II I -I I. II 4 I II II a -I I. II ‘ I II II .0 I yo 'I -I II II II II II II I -o It: In -I III III II I H II o I II II I -I II II -I I H II I -I II II -I I I- II -I I II .I -. -I u .I u . I. II I -I OI II -0 I W 'N I H I. ‘ ' ’9 fl " " " ‘. " . '9 '“ I -' II OI -D I II II 4 II )I -I .. M II n ., u n I .. II II -I II OI .. I II II 'I I I' II ~I -’ II II I I ‘I I -I a a .1 I .- II a a O. -I .I I. n g' g. .0 I a II R I III III -' I II I. -I I O. u A -I II I! I I II - 4 u I. I I II II —I II a I -I II u so a C. II -o or I. I II II -I I I! - I .0 II .. 7' ‘I V ’ I N - -¢ \- II I I In \I -I - u I -I .5 I. II II 0. u .- II II I II II 'I I II II -I I II I- 'l " l' 'I ' 0 ‘0 -I II II I I u u -I II n I -I II I] If h , 4 u II .I II I II II -I I III III I I I, I? I -' 'I II I I I! 4 II n I I I) v I II M h .I u u II II I -I II II -I I. II I I. II -I I II II I I II II I -I II I! I I II a II II A I II II I II a \ .I I. n I. ‘. . .. ‘. .. .‘ I. I. A u \g -| p ‘0 -I I n I -l I. V. O I I. -I I. M 0' I I! I M \I -O I II D! B I' g g. ,y u .l ‘1 .g Q \g o. I I I- II" -I I II I) I -I M II I I II -I \I ‘0 ~) I I! II I II II ~I I I. II “ u .1 .n I. -I H I I. II I p I III A I I! II I -V II II -II I II -I II II I I I. I. .I n r' o. I II II I. .n .' .. |l .) II. I” -|I O I I I I II pp I I. u I -I II I. -I I I -I I4 I! I I II -I M II .1 g I. I! H '0 ' _. n -l _‘ IO! III .I g h I! . 5 I) o. o. I u I. I «I I. I I! I II i \I I! o. I II II -| r n I: .I g \l .I n u I .I u [I -I - II -) I I" IN I D i I) I I II II A -I I: II -I I II 4 II II I II II I I \I \I I I II II N ‘I Q I. II I. I -| I“ In -. I I II- I P I! I1 I I P‘ I. -| -I I! In A I r. -I u I. o! I I. II .I l n y. I . .g u (I II I -a II a I -I III III I I III III -II I II II I I In I‘ I -. u I: .I I :2 .I n n .g I .. .y . n ,, . h v n n .. .. u .I I -I n n I I II II I I II II I I II I’ I -I I! I d I -I II II a I \I II -I I II II -‘| I u u u u ,, _, a u . ., I. u I o a II -I I II \I «I II II II -' 4 II V -| I N A II II .. I I: II -\ I I- I. a I II n y. .g -I .I I. I. I -) II II I I II -V I II -I I. II ). -I -\ I! I) I I II - II II -\ I I) II .p I II n -I I \l u .1 g. o .I II I. I -I II II .I I PI 1' -I I N I. I II II I -I A II II I I III I II II -I I II -I I II \I -I I M II .. u I 7 q .I I II II I -. I I I0 -Q l ‘ 9' II. D VII-I -I -i H W l I l‘ U \I I I II I l I: I. -I I \O u '7 I. i .9 .0 O I -| I. O. o! I II ‘0 -I I OI I. I -II I, \O -I -| h 0‘ I I II I‘ V I I I p I .I u . I N n .‘ I. . .I I; II II -I II M -I I III IN -I I a I II II I d I. 'I I I II -I II I. I I II -I I II II I I I. I. II .. q .I I. II -II -0 II II -o I I I! -I I I! II -I II I) D - II II I I \- -\ II II -I I II -I I II I. I I H II p n I .I g. ,- -o -' II n -l I II II I I II N I - II II I -I II -II I II A II n -' I II I O I. u -I I .I n n H I .v .- u -I .I u u -I I «I II I I \I II I H ‘0 I -I II " -|' l’ ‘- -I H '1 -I I II -I \ u u -I I II n r. I' .‘ .. .. u .- -, II I. o I II I. I I I! u I I. I. I -I I: II ~0 I I! -\ .' II -| I II .I I n n -I I II \I n -, _. II . .5 -I n I I I I- II D I II In I -II II so I -I n H -' ’ I’ -\ In I. I o n n \ II n -I I II In 28 Table 3 (Continued) «unnunnu nunannunnnmuunIIunnnnuuuunnuunuInuuuunnuuuqnuunu"nun“noun-«Inunumnuu”IIIuuunuununuunnuununnnunnnnnuuuunun»uunnanuInnnn-unnuunnnnuuuu.unnn nunnnuInunnnIIquInInnuununannuaInII unuunuuInnquIMnIIIunnnu”RIIIIIIIIIuIIIInMIvuInIIunnunununuuunuuuuunnuunnnn«In»unI my nuununnvnnnnuuwuu vu '011I33’3!IIIIIII‘IM‘44d44d4dd33......Nflddd..o..o. I0m44dddudd.....4qdddo.o... «Imd.....4d..... mad“. .II3333.:.333II333I 3333II33II33 3.-:.333-I33333II33 3 3:33oII3 .3333 I3.. 33II3 3.3333I333II33.III333...33333I333.-333.333 3.33.-33333..3-3. 3 3333 uuunnuunuII «IIIunIuI»auuuuunuuu«InnunnuuuuIquIIInununIIIIIIuIIquuuununn-InnquIIununu“InIquIunquuununnnuuhnuunnnu-uununnunnnunnnuuunnuI «nun-u unnunuuun-wuunuuuuhuunununumumuI I 1 IIInunnnnhnnnIIInnn III Mnnnmmmnmmunuuu IIIn-Iqunquuun nunnunnuuuuuunauu «In» an unnuuuu II "nun" IIIIIIIIIIImI daouIIIIIIIIIadaaaquuganIaanq.........~« 30(1) (see Chapter 2 for 43 Table 6. Crystal Data for HDTO C26H280, M = 356.51 a_= 9.155(3), b_= l4.635(9), 2.: 15.425(4) A 8.: 100.7(2)° Systematic absences: hpfi, &_= Zn_+ l; 050, k_= Zn_+ 1 Space Group: P21/c, No. 14 z_= 4; F(OOO) = 768 e; v_= 2030.7 A3 n = 0.75 cm’1 (Mo Km) 0 = 1.155(2), 0C = 1.166 g cm‘3 exp alc A(Mo Kc, graphite monochromator) = 0.7093 A 44 definitions). An absorption correction was considered unnecessary in view of the magnitude of u. The data were corrected for Lorentz and polarization effects (see Chapter 2 for details). After Friedel pairs and equivalent reflections had been averaged 2675 independent reflections remained with 1577 of these with intensities greater than 30(1). Phase Determination Since HDTO does not contain a heavy atom, the solution of the structure, or more precisely the determination of the phase angles associated with the observed structure factors can be obtained by direct method procedures. Since the phase angle in a centrosymmetric space group can be only 0 or n (which corresponds to structure factor signs of + or -, respectively), one might think that the phase angles could be assigned randomly. But the random assignment of signs to only ten structure factors would mean calculation and examination of 210 Fourier maps! Thus, a more systematic method is needed and is provided by the symbolic addition procedure developed by Karle and Karle.52 This method is based on the £2 equation represented in general terms in (3-2), where 5 means the "sign of", E is the E B (3-3) 0; 5E N s 5 2:3- 2 h .15. normalized structure factor-~a structure factor for a system of point atoms, and h, k, and hfk_represent Miller index triplets. The normalized structure factors, E's, needed to utilize the £2 relationship are computed from the observed structure factors through 45 (3-3), in which 6 is a number which corrects for space group extinctions, 2 [~12 = J-F-l— (3-3) 0 If; is the sum of the atomic scattering factors over all the atoms, and F is a structure factor on an absolute scale at 0 K (all thermal notion removed) derived from (3-4). In (3-4) K is an overall scale 2 e-ZBsinZB/Az 2 2 IFI = (UK) Fobs (3-4) factor, B an overall temperature factor and A the wavelength. The overall scale and temperature factors are determined from a Wilson 0 2 plot which is a plot of 1n(2/2(fi) ) versus the average of sinze (see 3-5) in the sine/A interval over which the Fobs's were 2 (IFobs|> ZBsinZO ln -———————§—' = In K - -_——7T—- 2(fi) A (3-5) averaged. The physical basis for the plot is seen more easily from a rearrangement of (3-5) to (3-6). Equation 3-6 is deduced from 2 2 e-(2Bsin20)/12 = K£(f;) (3-6) the knowledge that the structure factors are proportional to the sum of the scattering factors of all the atoms in the unit cell, (3-7). 2 2 <|F = Kzfi (3—7) obsl> However, the situation is more complicated because the scattering power of an atom is not only a function of the number of electrons associated with the atom, but also a function of their spatial distribution. Large 46 thermal vibrations are indicative of a large electron cloud, and a scattering power which falls off rapidly. Thus the actual scattering power of an atom, fi’ is represented by (3-8), in which f; is only f. = f? 6-851n0/A 1 1 (3-8) a function of number of electrons. Combination of (3-7) and (3-8) yields (3-6) on which the Wilson plot is based. A statistical distribution of the intensities of the E's is examined for an indication of whether or not the crystal is centro- symmetric since theoretically this distribution depends only on the presence of a center of symmetry. Theoretical values of a statistical intensity distribution of E's based on a random distribution of atoms in centric and acentric cells are shown in Table 7, together with values observed for HDTO. The E's calculated from (3-3) can now be subjected to a symbolic addition procedure.52 One of the computer programs available to perform this task is MULTAN,53 which consists of three main sections. In the first section all the £2 relationships--all the combinations of k_and hit for a given h_(see eq. 3-1) for as many h_reflections as needed to effect a phase solution, usually 8-10 reflections per nonhydrogen atom-~are set up, each with an associated weight, (3-9). [Zi in (3-10) is the atomic number of the ith atom in the unit cell.] The next 3/2 N n o = 22. (3-10) Table 7. Quantity <|E|> 2 <5) (IE2 .. 1|) IEI > 1 [El >2 [El > 3 Plot for HDTO Calculated HDTO _ 0.819 1.027 0.960 32.80 4.93 0.36 47 Statistical Distribution of E's Calculated from the Wilson Centric 0.798 1.000 0.968 32.00 5.00 0.30 Theoretical Acentric .886 .000 .736 .00 .80 .01 48 section of MULTAN, CONVERSE,54 has two functions: (1) to apply the £1 formula (3-11), and (2) to find the best reflections to use for s{E 2l-l} (3-11) '11 2h2k2£} “ S{|Ehk£ defining the origin. The first function of CONVERSE is accomplished by use of the Z formula and the associated probability formula, 1 (3-12) (see (3-10) for the definition of Oi)’ both of which must be C53 2 P+{E } = 1/2 + l/2tanh— 3/2 E2h2k2£(IEhk£I - 1) (3—12) 02 modified to take into account space group symmetry. The former yields indications for the signs of the centric reflections (which are structure invariant) and the latter the probability of the signs being correct. The second function--that of finding the best reflections to use for defining the origin--is performed by the definition of an for each reflection either by (3-13) (th is defined by 3-9) if “i =[fith°°S(¢k* ¢h_ k) )12 + [:thsinc¢k+ 4h_ 112 (3-13) some phase information is known or by (3-14) (where I1 and ID are modified Bessel functions) in the absence of any. Since ah gives a 11(K1315)11(Kh(h-£)) ' 3,131.: 0. [‘15 0 .01-1) measure of the reliability with which the phase eh may be determined from the tangent formula (to be defined below), the ah's for the reflection list, which is identical to that chosen for the 22 listing, are scanned, and the reflection with the lowest ah, that is, the most 49 unreliable reflection, is eliminated along with all the phase relationships in which it is involved. All ah's are then recalculated, and the least reliable reflection and all phage relationships involving it are again deleted. The process is repeated through the reflection list with the result that the last reflections eliminated are those whose phase relationships are known most reliably. The origin- defining reflections and any others needed to provide sufficient £2 relationships to give the phase determining formula a good starting set are selected from these more reliable reflections. The final section of the program, FASTAN, determines a set of phases for each set of reflections (the origin reflections plus any others needed, the signs of the latter being specified arbitrarily) chosen by CONVERGE via the weighted tangent formula (3-15), where the "i"i-8'EiEi-1'Si"‘¢l ' “ll-1) ‘1 73M F taneh = (3-15) wEwETEJEEEh_£)cos(¢E - ¢h-k) Bh WM weight associated with the phase ¢h is given in (3-16) and (3-17). w = tanh(1/2ah) (3—16) 2 2 ah = [Eb—[(Th - Bh) (3-17) Each set of phases has a number of figures of merit associated with it to help minimize the number of E-maps which must be examined. That chosen for use in this study is called the absolute figure of merit, ABS FOM, which should theoretically equal 1.0 for the most probable 50 set, but may in practice be higher due to the method of calculation. It is defined by (3-18) where Ede is the sum of the estimated a's Z -Xa Ila-11 r ABS FOM (3-18) 201 201 e r from equation (3-14) and Ear = 3(EKZBB)—- the value of Zeb with the assumption of random phases. '—'_ The phase determination for HDTO was commenced with the program FAME,SS which was used to calculate a Wilson plot of seven intervals of sinze, the 5'5, and the intensity distribution (Table 7) from the observed structure factors of HDTO. The intensity statistics of the E's reveals the centric distribution required by space group P21/c . The 272 largest E's from FAME were processed through MULTAN. Origin- defining and other reflections used to initiate the phase determination are listed in Table 8. Four sets of phases were calculated by MULTAN of which only one had an ABS FOM near 1.000 (0.992). It proved to be the correct one since the largest 27 peaks in the corresponding E-map revealed the positions of all nonhydrogen atoms. A list of these peaks with their associated peak heights relative to a maximum height of 999 is given in Table 9. Refinement of the Structure Three cycles of full-matrix least-squares refinement17 of positional and isotropic thermal parameters of the nonhydrogen atoms yielded an R-value (Chapter 2) of 0.132. A difference Fourier map (2-8) calculated17 at this point contained peaks which corresponded to all 28 hydrogen atoms, the largest peak height was equivalent to 51 Table 8. Starting Set of Signs for HDTO Origin-specifying reflections 21 results Reflections whose signs were permuted A |::r' l7: |z<> M on c> n1 n1 ea owlowlo N “4 In: 3.44 3.41 3.11 2.78 3.42 3.39 52 Table 9. Positions and Relative Heights of Assigned Peaks in the E-Map for HDTO Atom x y 2 Peak Height C(l) 0.55 0.17 0.30 899 C(2) 0.58 0.19 0.40 802 C(3) 0.69 0.12 0.45 703 C(4) 0.65 0.04 0.38 801 C(S) 0.66 0.09 0.30 880 C(6) 0.80 0.14 0.38 667 C(7) 0.80 0.25 0.36 866 C(8) 0.63 0.25 0.34 758 C(9) 0.57 0.35 0.32 635 C(10) 0.87 0.26 0.28 734 C(11) 0.87 0.31 0.42 674 C(12) 0.44 0.21 0.45 542 C(13) 0.75 0.12 0.54 425 C(14) 0.95 0.09 0.40 635 C(15) 0.69 0.04 0.23 999 C(16) 0.65 0.08 0.14 839 C(17) 0.69 0.05 0.07 676 C(18) 0.76 -0.03 0.08 782 C(19) 0.81 -0.08 0.16 623 C(20) 0.78 -0.03 0.23 787 C(21) 0.41 0.16 0.25 888 C(22) 0.35 0.22 0.18 542 C(23) 0.19 0.21 0.14 464 Table 9 (Continued) Atom C(24) C(25) C(26) 0(1) 0.11 0.19 0.32 0.61 53 0.14 0.07 0.08 -0.04 0.14 0.21 0.26 0.40 Peak Height 599 696 763 804 S4 0.6(1) e A's. The positions and peak heights (relative to 999) which were assigned as hydrogen atoms are listed in Table 10. Cycles of refinement were then carried out alternatively, first on the carbon and oxygen atom positions and their anisotropic temperature factors, then on the hydrogen atom positions with their isotropic thermal parameters fixed at 7.00 A2. The least-squares refinement of the hydrogen atom positions proved unsuccessful; thus, further refinement of these parameters was effected by recalculating the hydrogen atom positions after each 2 cycles of refinement on the carbon and oxygen atom parameters. The phenyl hydrogen atom positions were calculated from (2-9); the methyl hydrogen atom positions from tetrahedral geometry (with the hydrogen atom position associated with the highest peak height used as one reference point) and a carbon-hydrogen bond length of 1.10 A. An additional six cycles of refinement with carbon and oxygen atom positional and anisotrOpic thermal parameters varied and hydrogen atom positional parameters recalculated after each two cycles served to complete the refinement of the structure. The largest parameter shift in the final refinement cycle was less than 0.3 of one estimated standard deviation.23 A final difference Fourier map contained no features other than a randomly fluctuating background below 0.3(1) e 3-3. Weights, as defined in (2-6), were used in the least-squares, full-matrix calculations, which included only the reflections of intensity greater than 30(I). Cromer and Waber's20 scattering factors for neutral atoms were used for carbon and oxygen, while those for hydrogen were taken from the International Tables for X-Ray Crystallography.21 1,. 55 Table 10. Positions and Relative Heights of the Hydrogen Atom Peaks for HDTO Atom x y 2 Peak Height H(9A) 0.63 0.40 0.36 672 H(QB) 0.48 0.38 0.32 617 H(9C) 0.57 0.37 0.26 766 H(lOA) 0.96 0.24 0.28 580 H(10B) 0.81 0.22 0.22 707 H(lOC) 0.83 0.32 0.26 744 H(llA) 1.00 0.28 0.46 533 H(llB) 0.85 0.29 0.50 675 H(11C) 0.86 0.36 0.41 895 H(IZA) 0.43 0.15 0.48 640 H(lZB) 0.38 0.24 0.42 772 H(lZC) 0.48 0.24 0.50 779 H(13A) 0.75 0.08 0.54 599 H(l3B) 0.66 0.12 0.58 560 H(13C) 0.77 0.17 0.56 759 H(14A) 0.94 0.04 0.42 765 “(148) 1.00 0.09 0.34 597 H(14C) 1.02 0.12 0.46 764 H(l6) 0.59 0.14 0.14 933 H(17) 0.65 0.07 0.02 887 “(13) 0.76 -0.06 0.02 731 ”(19) 0.87 -0.15 0.16 525 “(20) 0.80 -0.06 0.28 999 Table 10 (Continued) Atom H(22) H(23) H(24) H(25) H(26) 0.41 0.18 0.02 0.13 0.36 56 0.29 0.27 0.14 0.00 0.04 0.18 0.08 0.10 0.22 0.32 Peak Height 638 776 380 661 857 57 Final atomic positional parameters appear in Tables 11, 12, and 13. The estimated standard deviations were calculated from the inverse matrix of the final least-squares cycle. The final R-values, weighted and unweighted, respectively, are 0.062 and 0.082 for the 1577 reflections of intensity greater than 30(1). Observed and calculated structure factor magnitudes are listed in Table 14. Discussion The structure of HDTO is illustrated in the stereoscOpic drawing of Figure 4 which shows the 20 per cent equiprobability ellipsoids (see Chapter 2), derived from the anisotropic thermal parameters. Bond lengths and angles, shown in Figure 5 and also in Tables 15 and 16, were calculated with the program ORFFE.24 The structure of HDTO is related closely to that of the norbornyl system; however, due to the strain induced by the cyclopropane and cyclobutane rings, the bond distances and angles appear to differ from those usually found for norbornyl systems. [For a summary of bond distances and angles for these systems, see reference 49.] For example, the distance C(1)-C(8) of 1.524(9) A and C(2)-C(8) of 1.507(9) A are shorter than those found for comparable bonds in either 56 O unsubstituted gaseous norbornane, l.54(1) A, or substituted 5 58 while the distances norbornane, 1.535(4) X, 7 and l.53(3) X, C(3)-C(6), 1.602(10) A, and C(5)-C(6), 1.608(8) A, are much longer. Such results are expected, however, because in this molecule these bonds comprise cyclopropane and cyclobutane rings, respectively. The bonds C(2)-C(8) and C(l)-C(8) which are in the cyclopropane ring 0 are expected to be shorter than the usual 1.537(5) A36 for a 58 Table 11. Fractional Coordinates (X 104) of Nonhydrogen Atoms in HDTO E.s.d.'s X 104 are given in parentheses x y 2 C(1) 5559(7) 1693(4) 3060(4) C(2) 5763(7) 1936(4) 4056(4) C(3) 6952(7) 1254(5) 4475(4) C(4) 6504(7) 399(6) 3915(4) C(S) 6733(6) 922(4) 3097(4) C(6) 8034(7) 1412(4) 3783(4) C(7) 8016(7) 2415(4) 3555(4) C(8) 6333(7) 2571(4) 3425(4) C(9) 5708(7) 3516(4) 3209(4) C(10) 8594(7) 2599(5) 2690(4) C(11) 8850(7) 3004(5) 4322(4) C(12) 4422(8) 2140(5) 4496(4) C(13) 7443(8) 1200(5) 5454(4) C(14) 9532(7) 913(5) 3994(4) C(15) 6985(7) 459(5) 2778(5) C(16) 6489(7) 822(5) 1448(5) C(17) 6761(8) 401(6) 692(5) C(18) 7589(9) - 396(7) 769(6) C(19) 8090(8) - 762(5) 1574(7) C(20) 7811(7) - 356(5) 2337(5) C(21) 4071(7) 1602(5) 2498(4) C(22) 3467(8) 2242(5) 1875(4) Table 11 (Continued) C(23) C(24) C(25) C(26) 0(1) X 2061(9) 1242(8) 1817(8) 3231(8) 6313(6) 59 Y 2122(6) 1350(7) 707(6) 829(5) - 385(3) Z 1354(5) 1464(6) 2080(6) 2606(4) 4091(3) 60 nmvfi.o nmvo.o mmvm.o mmvm.o mmve.o mmva.o flevm.fi anm.o flmVeLo Amvo.o- mm .Hhaxmmmm + semumm + x; nmco.m Amvm.fi Amvm.o Anya.o nmva.o nmvm.o flmV~.H fimVo.H flme.H nmvm.o Ma N nmve.o AmVo.o fimve.o flmvm.o fimve.o mmvH.o fimUH.H hmvm.o mmvm.o anvo.o NH mmve.e fleUH.e fimvm.m fimvm.e have.e ”new.m flevm.m nmve.m Anvfi.e mme.m mm fievm.m Aevfi.e mevm.m nevm.e have.e mmvm.m have.e flevo.m flevn.e fimvm.m mm memozucoumm ca ce>wm ohm m..p.m.m Hmm + ammm + N N x mm *om*lm n H he .Ildlll u m+ N Mme .OHQ: aw meou< cowouuxczoz mo muoueemumm Anahech unmoqumwc< Aeva.e mevm.e nmvm.m fieve.m mmv~.m fim36.~ fimve.N flmve.m flmva.m fimva.~ Hm .NH ofinmh momvu have hwvu fluvu Aevu mmvu have Amen huge flmvu when: :Hfimvlamxo mm: pom: coflmmohmxo honomm eunumnomsou esp 61 AeVH.H- Amvo.~- mevm.o- flme.o Amvm.o- Amvm.o- Amvm.m- mme.~- have.~- Aevm.o- Anem.c- fim3~.o flevm.fi ano.o mmvm.o- MN flavo.a nevw.o flevo.o mmvo.o Amvm.o mmve.u flevm.N mevm.m Aece.~ fimvm.a Amvm.o Amvm.o Amvo.a Anvo.m nmvm.o ma have.o- heVH.H fievm.m fimvm.o Amvm.o mmvm.o- Aevfi.o- fimve.a- “835.0- mmue.o- flmvm.o- fimvm.a fievm.o Amvm.o Ange.o- fimvm.n mmva.e nmve.e 553m.e ”mew.m Amvm.e Amvs.m nevm.e fimvfi.e Aeve.e flevfi.m flevm.m 5436.4 Aevm.m flavo.m mm mmvo.e fiove.w Amvm.e flevm.m nevo.e fieve.e Amvm.m flavo.m mmvfi.e neve.m flavo.e Heuo.e fimvm.e fleva.e nevm.o flevm.m mevm.N fimvw.e Aeva.m Ango.~ fimvm.m nevm.m fimvm.e fieve.e flavo.m Amvw.m Amvw.~ Aevm.m fieve.e mvvo.v Ham Ammvu heNVu Ammvu fimmvu AHNVU flomvu heave fimflvu neavo neflvu Amado heave “nave fimavu fiasco fleeaeaueoov NH nanae 62 Amvo.m Anvm.o- mN Amvm.m fimvm.a ma nmvm.o fimvm.o NH hmvm.e flavo.e mm mmvm.e have.m NNm flmVH.e flflvo flevm.~ mauve :m fienaeaeeouv Na 65669 63 Table 13. Fractional Coordinates (X 103) and Isotropic Temperature Factors for Hydrogen Atoms in HDTO x y z B H(9A) 638 401 365 7.0 £2 H(QB) 456 353 333 7.0 H(9C) 570 372 252 7.0 H(IOA) 973 266 310 7.0 H(10B) 868 234 204 7.0 H(lOC) 824 332 258 7.0 H(llA) 1006 289 443 7.0 H(llB) 844 288 494 7.0 H(11C) 856 370 406 7.0 H(lZA) 385 150 461 7.0 H(IZB) 364 260 408 7.0 H(12C) 490 247 513 7.0 H(13A) 837 72 563 7.0 H(l3B) 651 98 577 7.0 H(13C) 780 190 566 7.0 H(14A) 934 18 409 7.0 H(14B) 1013 100 344 7.0 H(14C) 1020 120 460 7.0 H(16) 591 139 140 7.0 H(l7) 639 67 10 7.0 H(18) 780 - 71 23 7.0 H(19) 867 -133 163 7.0 H(ZO) 819 - 63 293 7.0 Table 13 (Continued) H(22) H(23) H(24) H(ZS) H(26) 406 164 23 128 365 64 279 259 126 16 37 180 91 110 215 305 7. 7 7 7. 7 0 .0 .0 0 .0 65 CPO: HOW WOUSHHCMGZ Houumm GHSHUEHW UOHNHDUHNU mug 60>.HQWDO .vH ofinmb 66 2222242222777277727272222727777272 :7 77 777227727237577172727777277312275777::'173122272:77:557772524217127277782352777272:7':&:27: 7 {22:22:22 -277727772727227272777227277277 22722772 77 -772_2:7: 1:22:37: 2:=_rx:7177:277:= :2:- 727222777777222217727277272722727277277772272;- 5 ‘17,?O0‘0'000=:,'="7?7-00="?70.'F.'7,.~000:::::'",0~000::::"'?0~000:::=:' 070-002;:0"'?00000::=‘ "'00003:0000=,"?00000’,0.'?0.' .000m000000000;:b.900-bhh5500000000000. ..... '. . nus~§~§~QhQAnuapoo-nanflaccocoa0.000d000'Ovvvvo;;OOOI;.O.D5DDfi’OIQIOOO ¥ =0:::..:0 “,:,::.:0::..0=:"‘::‘0’0:=::.:00: 0: =2:"::0’= ‘: t:'0~‘0‘1:t.:‘0 H:::.0::'00.0::=‘:I=::::.:2 :00:0:-:t=::=::00= :=.O~:‘:0‘: 277222277727777222222777272222777727 22:: xx 272127227777727227 :77 :72 :277:27777772222277222222227727272727222277222777227777 777777777 100000.000 ' ‘v' glflh H ‘ M 0 II C O N I ”0. flu“ DQ‘0'0DO0: :::::"7770-.’00‘00:= :" 7"0,-0-§.0.0:::=:1'7"’?7000'000::0'.' :.;='"‘"7?70-~.¢0O000007:'7 'f"-0-.l000>0::=: ‘0 00.. 00000000000I000000000,000'000000'00'000000 §s~~hhhfifinhaovnnaaaaoapaavuornuuo‘ 7727777227 M77772272777 “7777277727277227:1772:2272=:72:7772277727712772777227777 7: 77 H77 -2277777272727722777227: :77 777-2722: 722222 "& 00:2..0==F::’t’: 0":‘~ 0.02:5.=0:'00‘.!0":':".:‘::0 2:000:”0:::>‘0‘“:3:2'7-20:h:000:0:0!=-.:::::-0FD.:,:0=00:: ‘-00000:00 0.50-000:. 2:2:3 ‘- a»- D ave-- {"I '2222222221? '51.?7""""'2::- :22:2$17317?7""""'22222?1t?77"""“'2:2::2?117?T""""'2222717217?T""""=21771"""11711?T 0... III. III. III OI " ' 0000000 IOcuoa..Ohthhhh...00.00.0000-550' ovorovvnlvro'ovafiv £000.00...00'000.00.00.000000011000‘0000000000000.F550,...OODDI000000 £00000‘2‘::00O0':.‘=:0F’0D.=:0:0:-: -23: 8‘=0=::0:'000:0:0“::0:00=:=000:=00--0:"00:::0000=0=:::00 :-= W :W =0:0‘00‘0::"!‘0"=“=. g:‘20.‘=‘::00:0':.':=00..D0::O:~202‘:‘:::0=:=::0000:0=05::O:0.:=:.00:=:D0fi0:‘00'-=. :. -000h00 000.0::;0;i= 50:03‘02300::‘0..0=,:":0:'=t"' 72H§22511Y1 7777777722222222227177777777777777722222777777-777722777177777227: .7777777717777777771777'7777777777: 7222271777777777777777 €000 000000000000000000000.0....‘..."’00000000000.000....5050..00-00.....00 £22777:g727222777277722322222727777222727277722722277722222772: -22777: 277222272277777272277727732277: 22:77:772272727722277778722727227 I:::‘:=‘0:0==:0.0:000::‘:":=0:0000::t000::fi:‘0:0::h002==Dr0z=z=0000. "2‘1‘::':l""‘2‘22"IIHRSKlt‘3":2‘22222223'2’: 0::.,’ 5’20.:‘:I. -.‘ =‘ - ----17.777.1. 2:2777777777777777727777777777777777' 777777777 -2222222222277717777777777777722222:227777177777777777:: 00000.000000:00.00"...D’000000000000000000000000000.;950-090000000000 ‘ v . . ‘ . I . . . . ' . . i:7:2:7an772777222222277222222777222227277727 272777:777722722:2::7272772227777227727722 722:2:2772772777277222227222777777727272772272 22‘22'Ifl"t"‘22!2:22“222’22"’2:2‘2‘l""‘ {22“222"‘22'232282'22123:222"'°“'222123283232'122‘2"‘2'1222283222’""2‘8‘2‘2‘222‘2 «2:277777777222 77777777777777777777777.777717,77772222222777171777777777777777777-7 77717 77777777777777-7777 77777777777727777-77777717 00 %%“0.0.0....“~00......§00"0..'~G"'.'F""00000000000 00"...OOOOOC‘000000000000.000.000.0000000000 .0000 {1‘2‘2'23'1‘:":: :2':"2:‘2°2"“:":' 22 '22:: "2:"" ‘ 22:82:2'22322"2‘::'“:::l=2::‘§8'2":22::':!2':t:2:'€22:222‘ 22'23212““‘22 ‘g'g.=.:.2:o=bozggggoochgo—gogooo:>~:o :gznotgooozgcuo. -‘:‘gcg‘togou:~=:ou::zclg=ro‘3221.218::.:::hoc'=:=:::~l::og':t’oooooz: :g‘:‘7oaco.:.-‘.'oocnocobov'1'0-oo‘0-nc. .09000fi0:::::::":"V’DOOQ'OODO:::::'="'120-PO'0.IO=::=::':"'.'-0-00¢.O.':o:=:‘.""70."000: [0000.00.00000000000000005Dhbbtb000.00 v—v— — . I . “““““ .000-000-§.—:. . .—-—v r .— -:;;000000000000000 '::0.0::D=:::=.:‘=‘00:00:0320:0::.000 .0:::h::€000'00.0:::0:"::=0 =3'::‘='3""=‘3't"2'2"...2'3"2‘:"°‘:°="":=':"‘:2=':'31°‘22:22 2 !.:.:0:=0:=.:=0:..‘0.:00:03:0:0212000 : 0‘=OC:=0>F0000'.:::0:“:‘:0'=:=0 0:0:0’.:0’h‘:0:0=:000000 :O0 :“.’0. ‘0..DO0:=.0:0':0=0=0::.0===g0 7777777777777777 .777777727777777777777!7-77777772:.22;271771777777777772:227777777777777777227.;277 .77 7777777777777 227277777777777777722222 ‘ ‘ ‘:: :00. . 00000000000000000.’ 1:7:13'22‘2‘22282""22222°““"2"22:222’222’2‘2'222"’2:""2‘:'22'2I:"22""'22'2‘22'2‘232'2'2"I:28'2222!’“2222'2 =8!2’2°2"22”2 522222222'2'22228’2“:2222""'2’2"22:22"212‘2‘:":2“‘:2‘"22‘:':2'2l2“22""'22"‘22'll2‘:”'="”°““‘ 3“-=‘z‘--i3 “2‘=2:2' dC-0..:‘b',.-.'0...:=‘.‘?,-.-~‘0..0".'—.."0—-'-0.. nine. :: H%;?¥Q ""-0-0000h::? -""'7?0--OOOQ0O::¥":"f’70-0000O2::g't'0'0000023 '“00000000000'00000IOOOOOOOOODO'OOOOOCOOOD~bmp~QQOO .g.............. r‘0000=0=: :0:'.:=000.0.:::=0:=::-:.02‘0.00:000‘005320D::..0‘0‘00..:0:-:0:0000 2:00'0'.=30‘00::.:.:::!"0:’fl--00 _ - _ -- -277227227722222272227: !"772:77222722227777777722272:227:7721777772722227:27722777272772727772727777 72777727727277:27:722722222272:-237727oggoogo 33:73.:7: u.=:=:'h,"?0-§'00.00-0005'tt0-000000‘"'O—0-.000",’,00¢'fi0"'fll¢" 7-0-un'7 ' 'o-QDOOOfiOO _;?;¥{f:[f1'70.“0'.O::%?;;Q7"7'70"‘0‘0:':Q': 8--aan.hQOQQQQQQQQhauapauaoaoann'anua4a000100cooooovvocv'ovoccoccoo-oubfioop... -- . AAAAAA- - ‘A 4....-- 0.. Q. 0’. Q C O O - 2- I 2 27 27 7 7 7222272777:7::7:27722777272222727:7:77227222777227777222772777777227722777777272277277 7'2t2717777727g77c72222: 5 5 :0. 3:0:D00:.:'0=:.000 ‘1'::':OII:O==O=:OO_=OOO:OO:zzo:-:.:u': -":::>..=::‘.D..3.2:...00'::CC:=0.D:..=O=:..=.. ..=:..=.=“..=.t..‘.::.:. 77777777777177777177'7 l""Ocooovvoo¢veccocu 7777777227777777777777722271777777277177777-777777777777777777777177777777777777777177'77777777: -277277717777777 A-A-‘A-A-fi'l'"'Ifl""""000000000000000.00'0'0'0'000000hFOO " «uniqunu g poo! oozooooognouoooo 00.2.:::0:00000~::=oc:-::00:00' o‘fi==C-:=:OOOD:=~===o=~o=o~oooo=voo=o 2:::':‘0-0::“00h0=O-30000‘fl-0000c300c-e géoogo ooznooooooocoooogg -~:=:::otsooooo:==...o::oo:uoo70‘0220o:::u.oo::c:==o:uoguooopcgooozogozgz o=ov00::'=o0..:0.:.o=o::oo:0:o:ooo=: 'E’T..!'.T.“.TT.T‘??°‘i‘."=1"7'.”2'1""‘""2'?"-i‘."TT""“2TTn1'o H.‘.'T' Q'T1f‘22f"'i““"“‘:;;1YTf?"""‘.:'71"""""2‘7 . .-_. ==-- -1- a — -... ---- 7.000.000. . .. — --.—< - .......— —-.....-- Table 14 67 Figure 4. Stereoscopic View of HDTO. (a) (b) 0 Figure 5. (a) Bond lengths (A) in HDTO. E.s.d.'s lie in the range 0.008 O to 0.013 A. (b) Bond angles (°) in HDTO. E.s.d.'s lie in the range 0.4 to 0.8°. 68 Table 15. Bond Distances Within HDTO E.s.d.'s are given in parentheses Endo-Cage Carbon-Carbon Bonds C(1)-C(2) 1.554(9) Z C(3)-C(6) .602(10) Z C(1)-C(S) 1.551(9) C(4)-C(S) .523(10) C(1)-C(8) 1.524(9) C(5)-C(6) 1608(8) C(2)-C(3) 1.529(9) C(6)-C(7) .509(9) C(2)-C(8) 1.507(9) C(7)-C(8) .534(9) C(3)-C(4) 1.533(10) Exo-Cage Carbon-Carbon Bonds C(1)-C(21) 1.479(8) C(6)-C(14) .535(9) C(2)-C(12) 1.539(10) C(7)-C(10) .548(10) C(3)-C(13) 1.495(9) C(7)-C(11) .547(9) C(S)-C(IS) 1.489(10) C(8)-C(9) .510(9) Carbon-Carbon Distances Within the Phenyl Rings C(15)-C(16) 1.383(10) C(21)-C(22) .380(9) C(16)-C(17) 1.382(11) C(22)-C(23) .396(10) C(17)-C(18) 1.385(13) C(23)-C(24) .384(13) C(18)-C(19) 1.352(13) C(24)-C(25) .371(12) C(19)-C(20) 1.385(13) C(25)-C(26) .406(10) C(20)-C(15) 1.406(10) C(26)-C(21) .395(10) Mean c-ca .385(15) c=o bond C(4)-0(1) 1.199(10) 3See footnote a Table 4. Table 16. E.s.d.'s C(2)-C(l)-C(S) 100. C(2)-C(l)-C(8) 58. C(2)-C(1)-C(21) 121 C(S)-C(1)-C(8) 109. C(S)-C(l)-C(21) 120. C(8)-C(l)-C(21) 127 C(1)-C(2)~C(3) 102. C(1)-C(2)-C(8) 59. C(1)-C(2)-C(12) 121 C(3)—C(2)-C(8) 111 C(3)—C(2)-C(12) 120. C(8)-C(2)-C(12) 124 C(2)-C(3)-C(4) 101 C(2)-C(3)-C(6) 96. C(2)-C(3)-C(13) 121 C(4)-C(3)-C(6) 82. C(4)-C(3)-C(13) 121 C(6)-C(3)-C(13) 125. C(3)-C(4)-C(S) 89. C(3)-C(4)-0(1) 133. C(S)-C(4)-O(1) 135. C(1)-C(5)-C(4) 101 C(l)-C(S)-C(6) 97 Bond Angles Within HDTO are given in parentheses 0(5)° 6(4) .9(6) 2(5) 9(5) .3(5) 4(5) 7(4) .5(5) .8(6) 2(6) .4(6) .5(5) 0(5) .3(6) 9(5) .7(6) 0(6) 6(5) 5(6) 7(7) .3(5) .1(5) 69 C(4)-C(S)-C(15) C(6)-C(S)-C(15) C(3)-C(6)-C(5) C(3)-C(6)-C(7) C(3)-C(6)-C(14) C(5)-C(6)-C(7) C(S)—C(6)-C(l4) C(7)-C(6)-C(l4) C(6)-C(7)-C(8) C(6)-C(7)-C(ll) C(6)-C(7)-C(10) C(8)-C(7)-C(10) C(8)-C(7)-C(ll) C(10)—C(7)-C(ll) C(1)-C(8)-C(7) C(1)-C(8)-C(9) C(2)-C(8)-C(1) C(2)-C(8)-C(7) C(2)-C(8)-C(9) C(7)-C(8)-C(9) C(S)-C(15)-C(16) C(5)-C(15)-C(20) C(1)-C(21)-C(22) 122 123. 84 108. 115 107 116. 118 98. 112. 112 110 111 111 108. 124. 61 106. 123. 119. 122 119 123. .8(6)° 3(5) .3(5) 3(5) .4(5) .8(5) 8(5) .9(6) 2(5) 5(5) .3(6) .9(5) .0(5) .3(5) 0(5) 0(5) .7(4) 5(5) 0(6) 7(6) .4(6) .8(6) 6(6) Table 16 (Continued) C(1)-C(S)-C(15) C(4)-C(S)—C(6) 121 83. Angles Within the Phenyl C(15)-C(16)-C(l7) C(16)-C(17)-C(18) C(17)-C(18)-C(19) C(18)-C(19)-C(20) C(19)—C(20)-C(15) C(l6)-C(15)-C(20) 122 119. 120. 121 119 117. .0(5) 0(5) Rings .O(7) 0(7) 0(8) .7(7) .4(7) 8(7) 70 C(1)-C(21)-C(26) C(21)-C(22)-C(23) C(22)-C(23)-C(24) C(23)-C(24)-C(25) C(24)-C(25)-C(26) C(25)-C(26)-C(21) C(22)-C(21)-C(26) a Mean 118. 121 119. 119. 120. 120. 118 120. a . E.s.d.'s were calculated from the formula in Footnote a, except x1 is now the ith bond angle and i'is the mean of equivalent bond angles. 1(6) .5(7) 7(7) 8(7) 5(8) 2(6) .3(6) 0(13) Table 4, theifl 71 . 59 Csp3-Csp3 bond because of the phenomenon of bent bonds. For example, the average carbon-carbon bond distance in the three-membered ring in O gaseous cyclopropane is 1.510(2) A,60 in cyclopropanecarboxamide, 1.50 A,61 in cis-1,2,3-tricyanocyc10propane, 1.518(3) A,62 and in 2’4]heptan-6-—y1 pfnitrobenzoate, henceforth O exo[3.l.1.02’4], 1.SO(2) A.63 The structure of this latter compound exo-anti-tricyclo[3.l.l.O is also related closely to that of HDTO, in that it is missing only the bridging carbon atom. In contrast to the C(1)-C(8) and C(2)- C(8) bond lengths, the C(1)-C(2) bond is longer than would be expected, particularly for a cyclopropane bond, 1.554(9) A. The elongation of the C(1)-C(2) bond is probably due to the strain produced in the molecule by the bonding of atom C(1) to C(2), the atoms being opposite sides of the basic norbornyl skeleton. The exocyclic bond lengths and angles are expected to be shorter and larger, respectively, than the normal values, characteristic of bent bonding. The average exocyclic Csp3-Csp3 bond length for the bonds C(2)-C(12) and C(8)-C(9) of 1.524(9) A compares to 1.487 A in bicyclopropane64 and 1.478(5) A in a pentacyclic compound.65 The average exocyclic angle is 123.4(6)°, much greater than the predicted 116°59 and a similar angle, 120.0(2)°, in bicyclopropane.64 This opening probably reflects one of the ways strain in the molecule is relieved. The carbon—carbon bonds in cyclobutane rings have been found to be somewhat longer than expected and vary from 1.547 to 1.57 A. [For a summary of dimensions of cyclobutane rings, see reference 66.] This observation explains in part the long C(3)-C(6) and C(5)-C(6) bonds observed in HDT --the remaining two bonds C(3)-C(4), 1.533(10) A, O and C(4)-C(S), 1.523(10) A, are slightly longer than the normal 72 value for a carbon-carbon bond in a C-C=0 group of 1.506(5) A.36 The average bond angle in the cyclobutane ring, 84.8(5)°, compares to 87.8° in cyclobutane,“ 84.8° in 3&[3.1.1.02’4], and 88.0° in transfbicyclo[4.2.0]octy1 1-3,5-dinitrobenzoate.68 The bond lengths and angles of those exocyclic groups which involve atoms C(5) and C(6) approximate the values eXpected for sp2- and spS-hybridized carbon atoms, while those which involve atom C(3) (sps-hybridized) do not and probably reflect an uneven distribution of strain in this part of the molecule. The bond distances C(2)-C(3), 1.529(9) A, and C(1)-C(5), 1.551(9) A, do not differ significantly from those found in either norbornyl systems (1.539(25) to 1.578(18) A) or in SEEI3'1°1'02’4]» 1.56(2) and 1.59(2) A. The distances which involve the bridgehead carbon atom, C(7), are also comparable to those found in norbornyl systems. The bridging angle of 98.2(5)° is slightly larger than those found in norbornyl derivatives which range from 92(1) to 96(l)°. The values of the remaining endo angles in the cage of HDTO are less than the normal tetrahedral ones, an observation which is consistent both with observed49 and predicted50 values in the norbornyl system. The phenyl groups are planar; the deviations from the best plane through the carbon atoms of each ring range from 0.000(8) to 0.004(6) A, while the greatest deviation of a hydrogen atom from the associated phenyl plane is 0.04(1) A. The average carbon-carbon distance and angle in the phenyl rings are 1.385 A and 120.0° with r.m.s. deviations of 0.015 A and l.3°, respectively, compared to the normal values of 0 1.394(5) A36 and 120°. The distances C(1)-C(21) and C(5)—C(15) of 73 1.479(8) and 1.489(10) A are close to the expected C-C6HS distance of 1.505(5) A.36 Finally the angles involving the cage-phenyl carbon atoms are substantially larger than the expected tetrahedral angle; C(8)-C(1)-C(21) being particularly large at 127.3(S)°, again probably due to a combination of steric strain and the observed opening of the exocyclic bonds of cyclopropane rings.62 The 0(1)-C(4) distance is 1.199(10) A, similar to the normal value 0 of 1.215(5) A.36 The angles around C(4) might be expected to be 120° since it is an spZ-hybridized carbon atom, but as it is also a member of the cyclobutane ring, one angle closes to 89.6(5)°, and the other two open to an average of 134.6(7)°. The closest intermolecular (nonhydrogen atom) contact is 3.51(l) A, indicative that the molecular structure is composed of discrete molecules. Thus, packing would not seem to be the cause of the significantly long C(3)-C(6) and C(5)-C(6) bonds. The section of the structure containing these bonds is shielded from the neighboring molecules by methyl carbon atoms C(13) and C(14), by the bridgehead carbon atom C(7) and its methyl groups C(10) and C(11), and by a phenyl group. Therefore, the lengthening of the bonds must be due to internal strain. Further proof that packing is not an influence on these bonds is the almost perfect mirror plane of symmetry exhibited by the molecule when phenyl and methyl groups are neglected. The methyl carbon atoms on one side of the molecule and the phenyl rings on the other would surely create different packing environments. In order to investigate further the strain present in the molecule, the conformations and dihedral angles of the rings which make up the 74 structure have been investigated. The cyclobutane ring is puckered, as expected, with a dihedral angle of 133°, considerably less than those found (145 to 160°) for other puckered cyclobutane rings,66 but not significantly different from that of 132° found for 2,4]. There are three five-membered rings in HDTO. The first two to exo[3.l.1.0 be discussed are those which relate this structure to that of the norbornyl system. These cyc10pentane rings are expected to assume the envelope conformation as Altona and Sundaralingam6 have calculated. In norbornane C(7)--see Figure 6(a)--is the atom out of the plane formed by the other four atoms in each ring. The five-membered rings in HDTO do assume the envelope conformation, but_the envelope is severely deformed from that in norbornane. First, the out-of—plane atom in the analogous five-membered rings in HDTO is not the tnddging carbon atom, C(7), as in norbornane (see Figure 6(a) for numbering scheme) but C(6). Furthermore, the envelope is slightly flattened. The greatest deviation from the best plane through atoms C(1), C(5), C(7) and C(8) is 0.052(6) A with C(6) 0.640(6) A below it--in the 38--while ‘ 0 ideal envelope conformation this distance would be 0.75 A that from the plane formed by C(2), C(3), C(7) and C(8) is 0.055(6) A O with C(6) 0.634(6) A above it. Comparison of the dihedral angles of the five—membered rings of norbornane and HDTO (see Figure 6) emphasizes the distortion even further. As discussed previously, the HDTO cage exhibits near mirror symmetry, thus one would expect the dihedral angles of one cyclopentane to parallel those of the other, and to within a degree they do with the exception of those around bond CB' This disparity seems to indicate an uneven distribution of strain, i.e., torsional or 75 a Bond Dihedral Angle 4K.b a SS 0 ' \ b -55 5 ' c 35 d d 0 d c c e -35 6 Norbornane Bond Dihedral Angle O . . Ring 1 Ring II b a -33 32 O\ ' b 45 -45 c -38 39 CB -39 32 d 16 -17 e 10 - 9 HDTO Figure 6. Comparison of the dihedral angles in norbornane47 and HDTO. 76 angular distrotion, in this particular region in the molecule. The presence of such distortion would correlate with the long bonds involving atom C(6). The size of the phenyl groups coupled with the extreme degree of substitution must be contributing factors. It can be speculated that since the end of the molecule closed off by the three-membered ring is relatively rigid, any steric strain involving the substituents would have to be relieved by a distortion of the more flexible cyclobutane portion of the molecule. A projection along the C(6)...C(8) vector illustrates the angles between the cyclobutane and cyclopropane rings. In unsubstituted norbornane these would, of course, be zero. In HDTO the rear bond C(2)-C(8) and C(1)-C(8) have, as expected, moved down (see Figure 7) 9° and 7°, respectively, from the front bonds C(3)-C(6) and C(5)-C(6). The near-mirror symmetry is reflected once more since these angles are not significantly different from each other. The remaining cyclopentane ring (outlined in Figure 8) is also a distorted envelope, but the distortion is opposite that of the preceding two. The greatest deviation from the best plane involving atoms C(1), C(2), C(3) and C(5) is 0.011(6) A with C(4) 0.952(7) A below the plane and the dihedral angles, shown in Figure 8, are larger than those for an ideal envelope (compare with Figure 3). In summary HDTO is very much distorted from the conformation assumed by norbornane, and this deformation can be rationalized on the basis not only of the strain induced by closure of the ends of the norbornane skeleton to small rings, but also of the minimization of the steric interaction of the substituents. 77 Figure 7. Projection of HDTO along C(6)...C(8). //1 Bond Dihedral Angle Q\ a 2 Figure 8. Conformation of cyclopentane III in HDTO. 78 The molecular parameters of HDTO are found to correlate with the chemistry of the molecule. One of the most significant features of the molecule is the distance of 2.145(16) A from C(4) to the mid-point of the C(1)-C(2) bond. The same distance is significantly larger-- 2.23 A--in 35213.1.1.02’4]. This short contact facilitates the participation of the C(1)-C(2) bond in the ionization of I to II. The exceptional length of the C(3)-C(6) and C(5)-C(6) bonds allows rationalization of why the 1,2-shift occurs at this point in the molecule in the ionization of I to IV. Thus, both ionizing paths have a strong structural basis. The path chosen by I is observed to vary with the R group, and thus it can be rationalized that the reaction path chosen depends on the electron demand at C(4). If it is large as is the case when R = H, the demand is met by the electrons of the C(1)-C(2) bond; however, if it is small as when R = CH3 rearrangement occurs via the rupture of one of the long cyclobutane bonds. CHAPTER 4 THE CRYSTAL STRUCTURE OF 6,6-DIMBTHYL—2,3-BENZO-2,4-CYCLOHEPTADIENONE PHOTODIMER A Introduction An unusual photolysis reaction has been reported69 for 6,6-dimethy1- 2,3-benzo-2,4-cycloheptadienone, I. The photolysis of this compound yields dimeric products exclusively--no monomeric compounds have been observed. An infrared spectrum established that only one of the carbonyl groups remained conjugated in the two major products, dimer A and dimer B. Thus, photodimerization could not have been the simple addition of two molecules of I to yield products such as II and III, 79 80 but must have been a more complicated process in which at some stage an aryl-carbonyl bond had been broken--an unusual type of cleavage for aryl-ketones. Investigation of the dimers via pmr and chemical means has established them to be stereoisomers with the general structure IV IV which contains four asymmetric centers. Mechanistic considerations (only two of eight possible dimers were formed, so the mechanism must be geometrically constrained) coupled with the knowledge gained from the chemical and spectroscopic investigations leads to two possible sets of structures. If a nonconcerted mechanism with diradical intermediates is postulated,69 dimers with structures V and VI would 81 result; however, if a concerted cycloaddition mechanism (g,g,, the Woodward-Hoffmann allowed n45 + «28) is considered,70 dimers of structures VII and VIII would be produced. Spectroscopic and chemical VII VIII data can not conclusively distinguish between the two sets of possibilities. To obtain a valid mechanism for this unusual photolysis reaction, the structures of the dimers have to be established unambiguously. For this reason an X-ray structural determination of dimer A has been undertaken. Experimental A crystalline sample of dimer A was supplied by Professor H. Hart. The crystals were in the form of clear, colorless, flat plates. Preliminary measurements of the lattice parameters and space group determination were effected as described previously. All subsequent measurements were made via_a computer-controlled, four-circle, Picker goniostat described in Chapter 2 at a temperature of 23(2)°. A roughly rectangular prismatic crystal (0.29 X 0.07 X 0.44 mm) was mounted with the long dimension [001] parallel to the phi-axis of 82 the goniostat. Cell parameters were obtained from least-squares refinement of 12 reflections which had been machine-centered71 on the goniostat. The density was determined by flotation in aqueous potassium bromide. Pertinent crystal data are given in Table 17. Three-dimensional, single-crystal intensity data in one quadrant (hkl and hkT) to the limit 26 = 45°, which corresponds to a minimum d-spacing of 0.93 A, were collected by the w-scan technique with a scan range of 0.7°, scan rate of 0.5°/min, and a Kol-Kaz dispersion factor of 0.692. Individual background measurements were made at the endpoints of the scan range for 10 sec each. The degree of attenuation of each of the three attenuators used was determined by counting for periods of 20 sec five strong reflections both with and without the attenuator a minimum of 20 times. The maximum of the standard deviations from the average intensities of the three periodically monitored reflections (004, 204, 131) was 1.2%, indicative that the crystal did not suffer appreciable radiation damage during the seven days of data collection. A total of 2916 reflections was collected, exclusive of standards. The data were corrected for background and considered to be of measurable intensity by the criterion I > 20(1) (see Chapter 2 for definitions). An absorption correction was not considered necessary in View of the small u. The data were corrected for Lorentz and polarization effects (see Chapter 2 for details). After Friedel pairs and equivalent reflections had been averaged 2635 independent reflections remained with 1761 of these with intensities greater than 20(1). 83 Table 17. Crystal Data for Dimer A 26H2802’ M = 372.51 §_= 30.141(16), b_= 8.536(4), 2.: 15.979(6) A C §_= 103.1(2)° Systematic Absences: hkg, h + k = 2n + l; nog, g = 2n + 1; OkO, k = 2n + 1 Space Group: 9312, No. 15 z_= 8; F(OOO) = 1600 g; v = 4003.7 13 p = 0.823 cm_1 (Mo Ka) 0 = 1.228(2); 0c = 1.236 g cm“3 exp alc —"—""" o A(Mo K0, graphite monochromator) = 0.7093 A 84 Phase Determination Normalized structure factor magnitudes were calculated from the corrected intensity data gig the program FAME.SS The statistical distribution calculated from a Wilson plot of 20 intervals with the 1761 observed reflections (shown in Table 18) was consistent with that for a centrosymmetric crystal; thus, the space group was assumed to be gglg_(No. 15). The 300 largest E's were then processed through the program MULTAN;53 however, the program chose a seminvariant as an origin- specifying reflection. Seminvariants are the linear combinations of phases whose values are determined only by the observed intensities once a space group is chosen. Thus, reflections of this type cannot be used to specify the origin. For centered space groups, the seminvariants are identified by transforming the centered cell to the corresponding primitive cell. In the space group C215! there are two classes of seminvariants: those of the even, even, even (BBB) and the odd, odd, even (OOE) reflections. Since only four of the eight classes of reflections are observed for space group £312_ (EEE, EEO, OOE, OOO), phases must be specified for one reflection of each of the non-seminvariant classes, 1,3,, EEO and 000, to define the origin. Thus in this case two reflections are needed to fix the origin uniquely in contrast to the three nonlinearly dependent reflections needed for a primitive cell. Several different sets of reflections (EEO and 000) were processed with the E's through MULTAN; however, all E-maps examined placed the molecule too near a symmetry element (intermolecular distances were unreasonable). Consequently a hand-determination of the phases was initiated. 85 Table 18. Statistical Distribution of E's Calculated from the Wilson Plot for Dimer A Quantity Calculated Theoretical Dimer A Centric Acentric 0.728 0.798 0.886 1.036 1.000 1.000 <|E2 — 1|> 1.074 0.968 0.736 |El > 1 31.88 32 00 37.00 [E] > 2 5.58 5.00 1.80 IEI > 3 0.57 0.30 0.01 86 The 200 strongest E's were used to generate a list of all the possible 2 relationships via MULTAN. With this list and the 2 probability formula (4-1) (see Chapter 3 for definition of terms) the ”3 ' 59' (5351-1: h) = 1/2 + 1/2 tanh 3/2 phases of 39 reflections were either assigned or calculated through P+(E (4-1) utilization of (3-2) with a probability minimum of 0.99. The minimum probability requirement was relaxed at some points in the determination so that the process could continue with a minimum number of symbols (Table 19). The two origin reflections, the 21 reflection, and the three reflections assigned symbols in the hand-determination (arbitrary signs were assigned to these reflections to produce the eight possible solutions) along with the 200 largest E's were processed through MULTAN. The phases from the solution with the highest ABS FOM, 1.180, (3-18) produced an E—map which contained peaks corresponding to the positions of all 28 nonhydrogen atoms. A list of these peaks with their associated peak heights relative to 1175 is given in Table 20. The phases generated by MULTAN for the correct solution (in which a_was - and b_and g were +) were compared to those determined by hand, and only one phase, that of the 021 (#171), was found to differ between the two determinations. Refinement of the Structure Four cycles of fu1l-matrix least-squares refinement17 of positional and isotropic thermal parameters followed by two cycles of refinement on positional and anisotropic thermal parameters yielded an R-value (see Chapter 2) of 0.124. The large number of parameters made the 87 Table 19. Hand—Determined Phases for Dimer A No.* h k 2 Sign E Probability 27 20 6 3 + 2.73 origin 47 13 l 11 + 2.54 origin 5 7 5 8’ + 3.42 0.95 66 20 4 3 - 2.34 0.985 157 0 2 0 - 1.94 21 4 6 6 7' a 3.52 assigned 24 19 5 4 -a 2.79 0.95 52 25 1 3' - 2.48 0.95 92 26 2 4' a 2.20 0.999 140 6 4 7' -a 1.99 0 999 138 13 1 15' a 2.00 0 999 75 19 3 4 a 2.29 0.999 40 12 2 12 a 2.58 0.985 158 25 3 3' + 1.94 0 999 8 16 2 6 b 3.21 assigned 63 22 4 1' ab 2.38 0.97 59 4 2 3 -b 2.42 0.989 80 3 3 '5 -b 2.27 0.99 130 10 4'10 ab 2.03 0.99 97 3 1 2' ab 2.17 0 999 141 10 2 13 ab 1.99 0.99 139 9 3 14 b 2.00 0.99 ‘0 N O H \H O (N .18 assigned 22 10 6 11' -ac 2.87 0.97 Table 19 (Continued) No.* 129 55 16 13 56 186 90 171 86 132 83 19 177 109 h 25 25 19 16 17 14 24 2 “I A] (3 Al “I “I “H “N a” 88 Sign -abc -c -c bc bc abc 3C bc 3C abc 2. 03 .45 .93 .07 .45 .86 .21 .92 .24 .01 .28 .25 .88 .89 .11 Probability .999 .995 .999 .995 .999 .999 .99 of be of -bc .995 of abc of -abc .999 .99 .99 .995 .99 *This number correSponds to the magnitude of the E of the reflection in relation to the rest, 1.6. the greatest E, etc. #1 corresponds to the reflection with 89 'Table 20. Positions and Relative Heights of Assigned Peaks in the E-Map for Dimer A Atom x y 2 height C(1) 0.479 -O.115 0.379 1056 C(2) 0.446 -0.215 0.400 938 C(3) 0.400 -0.200 0.350 1175 C(4) 0.388 -0.015 0.325 926 C(S) 0.338 0.000 0.283 881 C(6) 0.325 0.115 0.208 849 C(7) 0.275 0.150 0.191 715 C(8) 0.267 0.133 0.283 633 C(9) 0.304 0.067 0.341 832 C(10) 0.329 0.185 0.408 983 C(11) 0.300 0.285 0.440 1095 C(12) 0.321 0.385 0.509 815 C(13) 0.367 0.385 0.542 844 C(14) 0.396 0.300 0.500 940 C(15) 0.375 0.185 0.441 1166 C(16) 0.404 0.100 0.408 1030 C(17) 0.450 0.150 0.391 963 C(18) 0.458 0.300 0.391 909 C(19) 0.496 0.367 0.375 864 C(20) 0.530 0.285 0.359 1002 C(21) 0.525 0.115 0.359 822 C(22) 0.487 0.050 0.377 934 C(23) 0.392 -O.28S 0.267 801 Table 20 (Continued) Atom C(24) C(25) C(26) 0(1) 0(2) 0.371 0.350 0.337 0.512 0.225 90 -0.285 0.280 0.067 -0.210 0.167 0.392 0.217 0.133 0.350 0.291 height 685 635 535 911 641 91 cost of performing a full-matrix least-squares calculation prohibitive and, because of computer memory capacity, prevented simultaneous refinement of nonhydrogen and hydrogen atom parameters. Thus, block diagonal (bd) least-squares refinement procedures73 were used hereafter in the calculations. Four cycles of bd least-squares treatment on the nonhydrogen atom positional and anisotropic thermal parameters yielded an R = 0.119. A difference Fourier map74 calculated at this point revealed the positions of all 28 hydrogen atoms, the largest peak height was equivalent to 0.4(1) e 2-3. The positions and peak heights relative to the actual electron density (x 1000) assigned as hydrogen atoms are given in Table 21. Three cycles of bd refinement were carried out with the carbon and oxygen atomic parameters variable and the hydrogen atom positional and isotropic thermal (6.00 A2) parameters fixed; the R-value decreased to 0.080. Nine cycles of bd refinement with all atomic parameters varying served to complete the refinement of the structure. The largest parameter shift in the final cycle was less than 0.4 of one estimated standard deviation.23 A final difference Fourier map contained no features other than a randomly fluctuating background below 0.2(1) e A's. Weights equal to l/o(|FOI)2 were used in the least-squares calculations, which included only the observed reflections. Cromer and Waber's20 scattering factors for neutral atoms were used for carbon and oxygen, while those of Stewart, Davidson and Simpson75 were used for hydrogen. The final atomic positional and thermal parameters appear in Tables 22, 23, and 24. The estimated standard deviations23 were calculated from the inverse matrices of the final least-squares bd 92 Table 21. Positions and Electron Density (X 103) of the Hydrogen Atom Peaks for Dimer A Atom x y 2 height H(ZA) 0.454 -0.350 0.396 386 H(ZB) 0.450 -0.285 0.475 346 H(4) 0.408 0.015 0.280 445 H(S) 0.321 -0.115 0.250 374 H(7A) 0.250 0.050 0.150 351 H(7B) 0.250 0.200 0.141 309 H(9) 0.288 -0.050 0.375 415 H(ll) 0.262 0.267 0.408 361 H(lZ) 0.296 0.467 0.542 309 H(13) 0.379 0.467 0.609 412 H(14) 0.433 0.300 0.542 450 H(16) 0.421 0.015 0.475 470 H(l8) 0.429 0.385 0.391 344 H(19) 0.500 0.515 0.367 319 H(20) 0.567 0.285 0.342 435 H(21) 0.554 0.050 0.342 423 H(23A) 0.358 -0.300 0.217 321 H(23B) 0.417 -0.267 0.233 347 H(23C) 0.418 -0.415 0.283 319 H(24A) 0.329 -0.267 0.359 463 H(24B) 0.379 -0.385 0.425 392 H(24C) 0.358 -0.200 0.442 418 H(25A) 0.387 0 300 0.241 330 Table 21 (Continued) Atom H(ZSB) H(ZSC) H(26A) H(26B) H(26C) 0.342 0.350 0.371 0.333 0.308 93 0.333 0.350 0.050 0.150 0.000 0.291 0.158 0.125 0.083 0.067 height 303 262 331 303 281 94 Table 22. Fractional Coordinates (X 104) of Nonhydrogen Atoms in Dimer A E.s.d.'s appear in parentheses Atom x y 2 C(1) 4839(1) -1272(4) 3755(2) C(2) 4465(1) -216l(4) 4032(2) C(3) 3979(1) —1975(4) 3481(2) C(4) 3866(1) - 233(4) 3258(2) 0(5) 3362(1) 60(3) 2839(2) C(6) 3258(1) 1185(4) 2050(2) C(7) 2744(1) 1424(4) 1919(2) C(8) 2643(1) 1269(4) 2791(2) C(9) 3058(1) 648(4) 3429(2) C(10) 3279(1) 1860(4) 4086(2) C(11) 3002(1) 2810(4) 4465(2) C(12) 3187(1) 3833(4) 5124(2) C(13) 3652(1) 3892(4) 5421(2) C(14) 3931(1) 2959(4) 5059(2) C(15) 3751(1) 1948(4) 4370(2) C(16) 4071(1) 824(4) 4064(2) C(17) 4517(1) 1497(4) 3918(2) C(18) 4588(1) 3095(4) 3858(2) C(19) 4985(1) 3712(4) 3694(2) C(20) 5324(1) 2711(4) 3584(2) C(21) 5259(1) 1132(4) 3612(2) Table 22 (Continued) Atom C(22) C(23) C(24) C(25) C(26) 0(1) 0(2) X 4864(1) 3950(1) 3655(1) 3500(1) 3375(1) 5135(1) 2280(1) 95 Y 497(4) -2911(4) -2715(4) 2759(4) 399(5) -2022(3) 1561(4) Z 3776(2) 2651(2) 3976(2) 2230(2) 1262(2) 3528(2) 2958(2) 96 Table 23. Anisotropic Thermal Parameters (X 104) of Nonhydrogen Atoms in Dimer A The temperature factor expression used was 2 2 2 exp[-(h 311 + k 822 + 2 833 + th12 + hILB13 + k1823)] E.s.d.'s appear in parentheses Atom 8 B 8 B 11 22 33 12 13 23 C(1) 9(0) 184(7) 38(2) 10(2) -1(1) -14(3) C(2) 13(1) 121(6) 43(2) 9(2) 2(1) - 8(3) C(3) 10(0) 112(6) 33(2) 2(1) 2(1) - 9(3) C(4) 8(0) 115(6) 33(2) 2(1) 4(1) 0(2) 0(5) 8(0) 107(6) 35(2) - 1(1) 2(1) - 1(2) C(6) 10(0) 164(7) 34(2) 2(1) 2(1) 7(3) C(7) 11(0) 237(8) 44(2) 8(2) 1(1) 15(3) C(8) 8(0) 240(8) 56(2) 3(2) 2(1) - 6(3) C(9) 9(0) 163(7) 40(2) 1(1) 6(1) 4(3) C(10) 10(0) 133(6) 34(2) 2(1) 7(1) 6(3) C(11) 11(0) 177(7) 45(2) 7(2) 8(1) 5(3) C(12) 16(1) 184(7) 52(2) 10(2) 16(1) - 2(3) C(13) 17(1) 159(7) 35(2) 6(2) 10(1) — 7(3) C(14) 12(0) 141(6) 32(2) 3(1) 5(1) - 0(3) C(15) 10(0) 116(6) 33(2) 1(1) 5(1) 5(3) C(16) 9(0) 113(6) 33(2) 2(1) 2(1) - 6(3) C(17) 9(0) 142(6) 30(1) - 3(1) 2(1) -13(3) C(18) 11(0) 157(6) 46(2) - 2(1) 6(1) - 7(3) Table 23 (Continued) Atom C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) 0(1) 0(2) 811 14(1) 12(1) 9(0) 8(0) 13(1) 15(1) 16(1) 15(1) 13(0) 10(0) 822 180(7) 225(8) 221(8) 154(6) 155(7) 156(7) 178(7) 283(9) 221(5) 514(9) 97 33 56(2) 58(2) 48(2) 36(2) 50(2) 55(2) 49(2) 39(2) 82(2) 74(2) 812 - 9(2) —14(2) 1(2) 0(1) 1(2) 2(2) - 9(2) 4(2) 18(1) 24(2) 813 10(1) 11(1) . 5(1) 2(1) 3(1) 9(1) 1(1) 3(1) 9(1) 6(1) 23 -19(3) -25(3) -28(3) -15(3) -14(3) 21(3) 28(3) 10(4) -27(3) - 7(3) 98 Table 24. Fractional Coordinates (X 104) and Isotropic Temperature Factors of Hydrogen Atoms in Dimer A E.s.d.'s appear in parentheses Atom x y z 3(42) H(2A) 4549(8) -3339(30) 4041(15) 4.0(6) H(2B) 4483(9) -1859(32) 4620(17) 5.4(7) H(4) 4065(7) 22(26) 2804(14) 2.6(6) H(S) 3232(7) - 977(27) 2611(14) 3 0(6) H(7A) 2575(10) 460(37) 1612(19) 7.0(8) H(7B) 2605(10) 2460(34) 1558(18) 6.3(8) H(9) 2945(9) - 370(34) 3757(17) 5.4(7) H(ll) 2642(8) 2759(30) 4182(15) 3 9(6) H(12) 2983(9) 4538(33) 5359(17) 5 8(8) H(13) 3789(8) 4512(33) 5916(16) 5.0(7) H(14) 4281(9) 2947(33) 5348(17) 5.6(8) H(16) 4169(7) 90(28) 4615(15) 3.6(6) H(18) 4332(8) 3798(30) 3888(15) 4.2(7) H(19) 5027(10) 4893(37) 3660(18) 7.8(10) H(20) 5615(8) 3028(32) 3479(16) 4.7(7) H(Zl) 5496(8) 456(30) 3525(15) 3 7(6) H(23A) 3631(10) -2833(35) 2221(18) 6.5(8) H(ZSB) 4178(9) -2464(32) 2345(17) 5.5(8) H(23C) 4010(10) -4094(38) 2766(20) 7 9(9) H(24A) 3301(9) -2694(35) 3631(17) 6.3(8) H(24B) 3772(9) -3741(32) 4233(17) 5.6(8) Table 24 (Continued) Atom H(24C) H(25A) H(ZSB) H(ZSC) H(26A) H(268) H(26C) X 3628(8) 3847(11) 3408(12) 3401(10) 3709(9) 3288(9) 3176(13) 99 Y -2119(30) 2634(37) 3484(42) 3353(37) 344(33) 1196(35) - 680(49) Z 4468(15) 2443(20) 2728(22) 1714(19) 1356(17) 819(18) 1037(25) B(A2) 4.4(7) 8.0(9) 10.3(11) 7.4(9) 5.5(8) 6.3(8) 12.2(13) 100 cycle. Final R-values, weighted and unweighted, respectively, are 0.043 and 0.050 for the 1761 reflections with intensities greater than 20(1). Observed and calculated structure factor magnitudes are listed in Table 25. Discussion The X-ray structural analysis has established the configuration of dimer A as that of VII. The structure of dimer A is illustrated in the stereoscopic drawing25 of Figure 9 which shows 20 percent equiprobability ellipsoids (see Chapter 2) derived from the anisotropic thermal parameters. The five- to six-membered ring juncture has been found to be cis, while the six- to seven-membered juncture has been found to be traps, Bond distances and angles, shown in Figures 10 and 11 and also in Tables 26, 27, 28 and 29 were calculated with the program DAESD.76 The average lengths77 of chemically equivalent bonds compare 36 well, on the whole, with the expected values. The average of eleven C SP3- -C 5P3 bond lengths is 1.541(16) A compared to the usual value of 1. 537(5)A 36 The longest bond of this type, C(4)-C(16) is 1. 580(4) A, and is at the six- to seven-membered ring juncture. The lengthening of this bond is probably a result of strain at this ring juncture. There are two types of Cspz-C 3 bonds, one in which the spZ-hybridized 5P carbon atom is part of an aryl group and the other in which it is part of a carbonyl group. The average bond lengths of these types are 0 1.521(5) and 1.508(9) A, respectively, compared to the usual values 1. 505(5) and 1. 506(5) A. 36 The one Cspz'cspz bond length (excluding O aryl carbon atoms) C(1)-C(22) is 1.513(5) A compared to a normal value 0 of 1.47(2) A. The average of the aryl carbon atom bond lengths is Table I I I IOI~I ’ IIIEIIIII! . 3 :II 112:1;111231111115111 d 4 a q I I I I IIII nuou-u O~DIDO . IIODOOOIOOIIIIOOIOIIOIIIIIDIIIDIII-------§00.......00...IO..COCICOOOCDCCOOOOOOOOOOOI...I.IIOIOIOII.IIQQI--HIQ~Q~IOOCOOOO ...1111i%:;...1111éé%=...111 '1 -¢ 0.. fl 3::22383313333 ‘V'i QUQI 25. I . :.1..11..111::...11113....1111 1111111 1 O.nun‘ovodvdanflvii‘flv1-¢~¢1000--‘“ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII s I - .6 111111113 -- .- .éééiizz -I I 1 I : I s 3 II M n co-oao--.L&&II‘&8 4 -I 4 d -I 4 I I I o I I I I I I I II II I. II “I ‘OUCOCIUI-O - Observed v-- v—U-I.000.00.00.00C‘CIVv‘vqu‘nctcv‘s I .J 1‘ .I 1‘ l‘ ‘ OI -I -I I I I I I I II II II II II I III III III III III III III III III III III III III III III II III II iii:::.......-.1111111 coco-0LILIIIII -I I I I II -II “I -II I -II II -I II -I II -I II -I II -I II -I II .0 II I II I II I II 7 III III II III III III III III III CII III III III III II III III III III III III III II. III III II. III III III III III III III III III III III III III III III III I. III III II III III III III III III III III II? III I fisiliiit: U--- CDC-OOCOOIDQOOII IIIIIOIIII'I'IOIIIIOOI'IOIIII'IIOII.IIIIIIIQCQQQQQQQ-U.~‘-. IJILILLL 5....-.11111111 I-ail‘38 :11iié::::=:........-.111111 £3 11111%i%%:::==......-.111111 I ’~ 0‘00.-. and VIII Iiiliii III III III III II II III - 0 I - 3211.3211112.1a5311113;111:1512; IOOIOOIIIOOIIIIIOIIIIIIOIIIIIIIIIOIIIIIIOI III. I III III III? I otI III III In. "I II OI I III III II I III III III III III I" 0!: ’I) III III III II! III III III. ill! IIII I'II III II! I). II' I) II III III III II' III? III. III III It. '7! III III '1 II III I! II II It. It rt’ III II! III III III '0' so. .0. III II. III to; 71‘ III II. '00 III III to. to 10 III II‘ 9.0 III III ‘I. I.) ‘04 III II. to. \J) I) III at. 1:0 1 01 Calculated Structure Factor Magnitudes for IOOOOOOOOIOIIOIIIOIIO AA-A‘ .-.-~§~.. 333323} I I -- I éé:.......-111111 lléeilliilli 155 "I ”I ~I n I Q. I 1 -— \u IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11338388383332=::= ‘n-<1‘cfiunu‘JOOlOI‘OJO‘OIO“““‘ 111:1éi . . L I IIIG-.- -II 11155......11111111é£ IU-LIII g-IISIIou-o3451II 111é%é .DC‘OU-Iz‘:I‘I LL-- 0003. o-oao-u-ollélille I 1 II I ------ O-Uufild LI 111:1'i £é%i:::........-.111111 'III VIII 1" III -----...................‘C......C‘CCC.Q“‘.~ I V‘UOUQVVI‘VVV- -OOOOOI..C... I Etlfiiiiiifl V I i1531332553512513i! 3 I I II I II I II I II ell II oII II -I II -I II c. II OI II —I II -I II I II I II I II -II I? -I '1 -I If -I IV I I? I II I II -I I. - II -I II -I II. | I I I I I I I II II II II ell -. cl -. .g c. -I .Q 0| I I I I I I l I l I I 1 II 1 I 6 -II I OI I -I I -I I -I I -I I -I O -I o I t l O I I I I I I I O I o I I I A I o II I II I It I .II I OII I OII I «I I -l I -l I a. I -I I -I I 0| I I I I I I I I I I I I I I I I I I I II I II I -II I oII I oII I I I I I -I g .I I -I I UI I a. I -I I -I I -I I I I I I I I I I I I I I I I I I I I I a II I II I I II -IO II ~|I II oII II -II II ~10 II -I II -I g. .I II -I II -o I. -I I. o! II -I II I I. a II I I. I II I II I II I II -I) II -II up .I I'I III 33513111353! :IEEIE3311315 3333313333313)?III33333332333338IIIIIIIIIZIIIIZou...o...¢.oooooooooooooooooo.....1 1iéi:1111..111 - :3. d O i IIII III! III III III III IJOJIJO‘OJJ “ $133 7 ‘040-0‘ ‘IOI-‘LI5 11:1ééé: LIL I I I I I I I I I I o - 1ééé..-11111:1 1111iéé....-.1111 LLLI 0 - Co. .11é:..-111111 IIII .‘OOU-.-fl“ 331135131233 :-- I - C a ~ iiiliitlilii III I II I oII A ooa-o-uoilll O I O I I I I I I I O I I 0 It. I O O I O ‘1' C‘Ifil‘ n-<- :3....-:1111%ézz....11111:1::... , IlIt‘I-z I55: I .II-‘I.“.1.II."- ii:5§!iii!i! II‘OOU’.&I‘:‘ IO...- ILII“ & '11:..-.11111' I33! 111' ' I I I I -I I I I I I C I :1: III III III III III III III III III III III I" III 'EEIE I g r IIgo¢ooo-I=3::..-.‘;I5:o.oaoI 0....OI...OO§C1CGiCQQOCOOCOOJ0CUUUOU’UOCU.---‘-U- L-oo-LIISILIIou- I C 3 I C c a . dA—An A.-AI‘ A A A A ét~étit:o.-.:1111..11111....-.;11 I ‘3' 1-.-;33‘OOCIO 15‘ I .IICOO-OOOIIIIIIIIIIDIQQ.~O..I.~.OO! ‘COC-...'- —- ‘0. II o! 102 Figure 9. Stereoscopic view of dimer A. 103 .< moo.o op woo.o omen“ mg» cfi mad m..u.m.m .< umefie a“ fl