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ABSTRACT

ASYMPTOTIC CONVERGENCE 0F

NON-LINEAR, CONTINUOUS-TIME FIETERS

by

Michael Wesley Bird

Modern non-linear, continuous-time filtering theory, char-

acterized by the use of state variable techniques, is potentially

applicable to many real-world problems. However, the filters

suggested by the theory as solutions to the time-domain filtering

problem have not been sufficiently analyzed to provide confidence

in their behavior. One aspect of non-linear filter performance

which has received no attention is asymptotic behavior. This thesis

suggests a method for demonstrating the asymptotic performance of

non-linear filters and applies this method to a class of continuous-

time, non-linear filters in the scalar case.

For this investigation, the time-domain filtering problem

consists of a message process, represented as the solution to a

first-order differential equation with unknown initial condition,

and an observation process, modeled as a signal containing the

message to which white noise is added. Filters considered in this

thesis are sequential, being represented by first-order differential

equations which are identical to the model of the message process

plus a correction term. The correction term consists of a gain

function, which depends on the past of the filter output, multiplied

by the difference between an estimate of the observation and the
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observation itself. This structure is similar to the filter made

popular by Kalman and Bucy for a related linear filtering problem.

The non-linear, continuous-time filters considered here are not

postulated to have any optimal properties; however, when the message

process has a probability distribution, the gain function can be

selected to make the filter approximately-optimal, providing nearly-

minimum-variance estimates of the message.

In the discrete-time case, the stochastic approximation methods

developed for parameter estimation led to asymptotic convergence

theorems for sequential filters. These theorems show that the

difference between the output of certain filters and the message pro-

cess converges to zero, with probability one and in the mean square

sense, as time increases. This thesis applies the same strategy to

the continuous-time problem.

Stochastic approximation methods are developed for the con-

tinuous-time parameter estimation problem. The procedure developed

uses sequential algorithms for estimating a parameter of a signal

when the signal is observed in the presence of white Gaussian noise.

Two theorems are proved which show that, when the signal models and

the gain functions in theestimators satisfy certain conditions, the

estimators converge asymptotically to the true parameter value. The

proofs of these theorems rely on the properties of Ito calculus and

super-martingales.

Relying on the concepts developed for continuous-time para-

meter estimation, two asymptotic convergence theorems are proved

for a solution to the filtering problem. In these theorems, con-

ditions are placed on the message process, observation process, and
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gain functions in the filters that guarantee asymptotic convergence.

For purposes of evaluation, these results are compared to a theorem

which specifies the asymptotic behavior of the Kalman-Bucy filter

which is a solution to a linear filtering problem.

The convergence theorems developed for filtering show the

asymptotic convergence of a particular sequential filter which is an

approximately-optimal filter. A filter is thus displayed whose out-

put, under certain conditions, provides nearly-minimum-variance

estimates of the message throughout the observation time interval

and converges to the message process as time increases. Computer-

simulated results show the behavior of this filter when applied to

a non-linear filtering example.
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CHAPTER 1

INTRODUCTION

In the process of transmitting or gathering information, the

signal that contains the information frequently becomes distorted.

It is usually necessary to modify this signal in order to remove

the distortion and recover the original message. This act of

modifying the signal is called filtering. In other words, the

essential purpose of a filter is to remove the distortion or noise

from an observed signal.

The design of a filter requires mathematical models that

represent the signal and observation processes. Wiener [1] was

the first to treat these processes as random phenomena and

described them in statistical terms. His treatment allows filters

to be designed from criteria based on the statistics of these pro-

cesses; he points out that his method of developing filters com-

bines the techniques of random time-series and conventional elec-

trical filter theory. More recently, Kushner [2], Bucy [3],

Kalman [4], and Deutsch [5], still using the random descriptions,

have developed filters based on fundamental statistical methods

other than those of Wiener. The approaches of Wiener and Kalman

are the most popular methods for designing filters.

The investigations in this thesis are based on the filtering

formulation proposed by Kalman [4] and Kushner [2]. Section 1.1

outlines this formulation and discusses extensively criteria for

designing filters. A survey of many solutions to the filtering

1



problem is given in Sec. 1.2 pointing out some limitations of the

filtering results presently available and indicating the need for

studies into the asymptotic behavior of statistical filters. In

Sec. 1.3, the objectives of the thesis are discussed and a brief

summary of the main results of the thesis is given in Sec. 1.4.

1.1 Performance Criteria for Solutions of the Modern Filtering

Emblm

During the last eight years, a special form of the statistical

filtering problem has received a vast amount of attention in engi-

eering literature. This form of the problem uses modern modeling

techniques and is distinguished from the traditional by its for-

mulation, the message process being described by a stochastic

differential equation. With E. denoting the n-dimensional message

process, or signal process, the message representation is:

|
x
°

= _f.(t,z<_) + 9(t)g(t> ; 50:0) = _c_ (1.1)

where .£(t,x) is a set of n known functions of the n components

of g_ and t, RAP) is a known n X n matrix, gflt) is an n-dimen-

sional, zero-mean, Gaussian, white noise process,1 and g. is an

unknown constant vector. Equation (1.1) represents a Markov process

and completely determines the probability distribution of x(t).

This distribution determines all moments and correlation prOperties

of the process.

 

1 An r-dimensional white noise process, say wflt), is a process

with the prOperty that Ewi(t)wj(s) = 5(t-s)6ij for l s i,j, s r,

where is the Kronecker delta and 5(t-s) is the generalizedbij

delta function.



The remainder of the filtering formulation defines the m-

dimensional observation process, y(t), which is assumed to have the

conventional model:

fit) = mayo) + raffle) (1.2)

where hfit,§) is a set of m known functions of the n vector .5

and t, Rflt)% is the square root of the positive definite m X m

matrix ‘R(t), and gfit) is an m-dimensional, zero-mean, Gaussian,

white-noise process.

The problem is to utilize this formulation to develop useful

filters. At this time, no restrictions will be placed on the form

of the filter, other than that its input must be the finite past of

the observation process and its output must approximate the message

process x(t). The type of approximation provided by the output

depends on the performance criteria used in selecting the filtering

solution. The performance criteria or, stated in different words,

the requirements for a good solution,are selected according to the

requirements of each particular filtering application. A few such

applications and standards for judging the quality of a filter will

be discussed to enumerate features of useful filters.

The communication model, for example, has recently been placed

into the framework of the modern filtering formulation described

above [16]. The solutions to the filtering problem are used as

receivers at the output of noisy channels and are intended to

demodulate the message which has been contaminated by channel noise.

This modern approach to filtering is applicable to the communication

problem because the resulting filters can give reasonably accurate
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estimates during the transient phase of the filter's response. The

transient reSponse has long been a difficulty with classical Wiener

filters since they are designed from steady-state error criteria

[1]. However, even though the modern filter has this advantage,

its performance as a communication receiver is still judged on the

quality of its steady-state behavior.

A second example, the aerospace guidance problem, has been

one of the most studied applications of filtering theory [7]. The

time-varying parameters describing the position of a space vehicle

are designated as the message. Noisy measurements of these para-

meters are filtered to give estimates of the parameters from which

the vehicle's location can be established. The filter must be

analyzed in terms of three design criteria: 1) the asymptotic

behavior of the error variance; 2) the amount of time required to

converge into the asymptotic state; 3) the computational feasibility

of the algorithm used in synthesizing the filter.

Since guidance systems are Operated on a real-time basis for

extended periods, the third criteria becomes very important in the

implementation of the filter. Intuitively, it appears that the

first two criteria can be satisfied if the filter is designed to

give an accurate estimate of the message during the transient period,

in which case both the asymptotic error variance and the length of

the transient period should be reduced. However, excessively

stringent accuracy requirements increase the complexity of the

filter, so a trade-off may be necessary to satisfy all three criteria.

A final example, system identification, may be placed in the

filtering formulation [8], [9]. The typical identification problem



demands a filter which produces estimates of system parameters from

noisy measurements of the system's input and output. The unknown

parameters are either constants or varyslowly with time. For any

reasonable identification procedure, the filter's output must con-

verge in some probabilistic sense to the true parameter as time

increases. A secondary, but still important, consideration is the

amount of time required for convergence. The convergence time may

be minimized if the estimates are as accurate as possible during

the entire time interval. The identification scheme is frequently

a small segment of a very large and complicated system so constraints

must be placed on the complexity of the algorithm. Consequently, a

trade-off between complexity and accuracy may be necessary.

These three applications demonstrate the type of real-world

problems which may be formulated using the time-domain representations

defined in (1.1) and (1.2). Since the filter characteristics cited

in these examples are typical of real problems, the following three

requirements for a good and useful filter are proposed.

R.l The output of a good filter should accurately estimate the

message throughout the observation interval. For the filtering

problem in this thesis, there are a few statistically-based

methods which provide a filter satisfying this requirement. The

most commonly used method selects the filter which minimizes the

mean-square difference between the message process and filter

output for each time instant in the observation interval. The

filter minimizing this performance index is represented by the

conditional mean functional. This procedure is widely used and,

since the filter is a solution to an optimization problem, it is



commonly called the optimal filter.

R.2 Analytical results should be available that describe the

asymptotic behavior of a good filter as t a m. Examining the

solution to time-domain filtering problems can bring out the type

of analysis needed. The earlier discussion indicates that the

filter has two phases of operation, the transient-response phase

and a type of asymptotic phase. For a wide variety of real

problems, this second phase will determine the filter's useful-

ness. For these problems, a good transient response is, of course,

ideal, but not at the expense of asymptotic behavior. Any filter-

ing algorithm that guarantees the filter's large-time behavior

will place restrictions on the message and observation models.

These restrictions assure that tfmzfluctuations of the estimate

of the message will be confined by a calculable bound.

R.3 A useful filter must not be too complex, so a sequential

algorithm is required. An algorithm is sequential when the

filter's output is defined by the solution to a finite-dimen-

sional system of first order differential equations, where the

derivatives are functions of the present value of the observation

process, present value of the system solution and, possibly, a

specified functional of the past solution. This might seem to

be an unreasonable limitation for an optimal filter. However,

the time-domain approach to filtering yields Optimal or nearly-

optimal solutions which are sequential. In fact, many present-

day problems are being formulated in terms of this modern approach

in order to obtain sequential algorithms with nearly-optimal

properties. Optimal sequential filters, plus the computer



technology for efficiently implementing them, are providing use-

ful solutions to many previously-unmanageable problems.

Any filter should attempt, in some sense, to satisfy these

three criteria. However, the approaches to filtering in the

literature are concentrated on deriving approximately-optimal

filters, with little or no study of their asymptotic behavior.

Analytical investigations of asymptotic behavior are very difficult

and appear to be a major barrier in the utilization of useful filters.

Considering the difficulties inherent in the analysis of the optimal

filter, it is logical to study other filters, without stringent

specifications on transient reSponse, but which are more amenable to

mathematical treatment than the optimal algorithm. These algorithms

will be sequential and, along with well-analyzed asymptotic behavior,

attempt to satisfy the requirements enumerated in R.2 and R.3. This

thesis will be primarily concerned with initiating an investigation

into this type of filter.

1.2 Literature Review

To better understand the state of filtering theory and to

further reinforce the previous discussions, a summary of existing

results is presented in this section. This synopsis will not only

include available solutions to the filtering problem discussed in

Sec. 1.1, but will also summarize the publications on the discrete-

time filtering problem.

At this point, it is necessary to make the distinction be-

tween continuous-time and discrete-time processes. Equations (1.1)

and (1.2) define waveforms specified on the entire time axis, called

continuous-time processes. In contrast are the discrete-time



processes which are sequences of variables defined on only a countable

number of time instants.

The following continuous-time investigations are surveyed in

Secs. 1.2.1, 1.2.2, and 1.2.3: the well-established linear theory,

the optimal approach to non-linear filtering, and the completely un-

explored realm of asymptotically stable, sequential filters. A review

of the optimal and sub-optimal approaches to discrete-time filtering

are contained in Secs. 1.2.4 through 1.2.7. All these discussions

place a heavy emphasis on reporting studies, or the need for studies,

into the asymptotic behavior of filters. The discrete-time survey

will suggest exploring the method of stochastic approximation as an

approach to investigating the large-time performance of continuous-

time filtering solutions, so this section will conclude with an out-

line of the few publications on continuous-time stochastic approx-

imation.

1.2.1 Linear Filtering Theory - the Kalman-Bucy Filter

Assuming .£(t:§) = Fflt)x. and hflt,x) = Hflt)§, the filtering

formulation defined in (1.1) and (1.2) becomes linear. It is also

assumed that g_ is Gaussian with zero mean and variance 2, Kalman

and Bucy orginated this formulation in 1961, and developed a very

effective and useful solution to the filtering problem [4]. They

derived an optimal filter which produced the conditional mean, the

minimum-variance estimator. Their solution has been shown to have

the following properties:

A. The filter's output is determined from the solution to two

differential equations. Denoting xfit) as the n-dimensional

output at time t, the equations are written as:
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l
x
’
.

II

at): + 2(t)§(t)T[z(t) - sum : goo) = o (1.3)

i: = at): + no? - m<t>Tg<cflg<t>g + ggT : 20:0) = L (1.4)

This optimal algorithm is sequential.

B. The solution to (1.4), commonly called a Riccati equation, is

the error variance, since .£(t) = E(§(t) - xfit))(gfit) - xflt))T.

Equation (1.4) does not depend on observations and can be solved

prior to actual implementation of the filter.

C. Kalman and Bucy formulated observability and controllability

conditions which insure adequate asymptotic behavior of this

optimal filter [10].

The optimal solution (1.3), commonly called the Kalman-Bucy

filter, satisfies R.1, R.2, and R.3, the postulates for useful

filters. This optimal, sequential, asymptotically stable filter

found immediate use in the fields of guidance and control. More

recently, its popularity has Spread to the fields of system iden-

tification, pattern recognition, and differential encoding of

television signals [11].

1.2.2 The Optimal Non-linear Filter Solution

Significant work on optimal non-linear filtering solutions

began in 1964, with important contributions from Kushner [2], Bucy

[3], Stratonovich [12], and Kallianpur [13]. Their primary aim was

establishing the conditional mean functional and, because of the non-

linear nature of the problem, their derivations required a rigorous

treatment of detail. Initially, the mathematical model for the

Gaussian white noise disturbance was interpreted as the formal

derivative of an independent-increment process, Brownian motion,
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which requires an understanding Of Ito's stochastic differential

equations [3]. Next, the message process, observation process, and

conditional mean process were represented as elements in an abstract

functional Space. Finally, a stochastic differential equation was

derived for the conditional mean using Ito's special differentiation

rule.

The stochastic differential equation representing the solution

for the conditional mean appears initially to be neat and concise.

However, careful examination shows that the optimal filter is de-

scribed by an infinite-dimensional system of first-order stochastic

differential equations, each with the observation process as a

driving term. Furthermore, the entire system requires a simultaneous

solution. These two facts make the optimal filter impossible to

realize.

The present emphasis in optimal, non-linear filtering research

is centered upon deriving algorithms that approximate the optimal

filter. The standard approach is to represent the non-linear

functions in (1.1) and (1.2) as series expansions and to retain the

first few terms. The infinite system of differential equations de-

scribing the optimal filter then reduces tO a finite set and a

realizable algorithm is possible. The approximations made on the

non-linear functions restrict the applications of the filter so a

filtering solution must be developed for each class of problems.

Kushner [14] discusses the shortcomings of a number of such approx-

imation schemes.

Almost all approximately-optimal filters are sequential. An

examination of the system of stochastic differential equations de-

fining the Optimal filter shows that most finite approximations will
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be sequential. The demand for a filter with a sequential structure

instigated the now-prodigious amount Of research on the time-domain

approach.

While many investigators have been successful in deriving

approximately-optimal filters, analytical studies of the error char-

acteristics, or asymptotic behavior, for such filters are not avail-

able. All work devoted to the properties of such filters involve

lengthy computer simulations for very specific problems. A recent

survey paper has pointed out both this void in the literature and

the reluctance of users to apply the present non-linear filter

theory [15].

1.2.3 Sub-Optimal Sequential Filters with Known Asymptotic Behavior

Without general analysis of the behavior Of Optimal, non-linear

filters, the real-world user does not have confidence in their be-

havior. However, the demand for sequential, non-linear filters

exhibits a need for sub-optimal schemes whose performances are under-

stood and analyzed. As Sec. 1.1 indicated, there are numerous

applications where large strings of data must be processed using a

minimal amount Of equipment; these applications require filters with

little storage and good large-time behavior. The present state Of

optimal filtering theory cannot supply algorithms with satisfactory

properties for such tasks.

1.2.4 The Discrete-Time Filtering Problem

Presently, there are no published investigations Of the

asymptotic performance of continuous-time filters. Insight into

this area may be gained from a review of the discrete-time filter—

ing results. A brief outline of the discrete-time filtering
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approaches is presented next, emphasizing investigations into

asymptotic behavior.

The structure of the discrete-time filtering problem is similar

tO that of the continuous-time problem in Sec. 1.1. The n-dimensional

message process is:

k = o,1,2,... (1.5)X

—k+l = £15331.) + Qkflk’

where {2k} isan.r-dimensiona1, zero-mean noise sequence with

ij ..
E u u = ,, 1 s 1 s r f is a known n-vector Of fu 'k m 6km613’ ,J , _k(xk) nct1ons,

and 9n is an n X n matrix. The m-dimensional observation equation

is

1k = 91511.) + Rink (1.6)

where {3k} is an m-dimensional, zero-mean noise sequence,

E viVj = 6 6 1 s i j S m E viuj = 0 and R25 is the s uare root

1, k Lk ij’ ’ ’ 4, k ’ —k q

of a positive definite matrix, Bk'

The filtering problem is to determine a function of the past

Observations which will furnish a good estimate of the present message

value. The function transforming the Observed data into a sequence

of estimates represents a filter.

The discrete-time filtering problem has received a great deal

more attention than its continuous-time counterpart. This may be

attributed to the availability Of results in classical statistics

which concern random phenomenon described by sequences of random

variables and which have been applied directly to the discrete-time

problem. Investigations into the filtering problem are Split into

two groups. When the noises in (1.5) and (1.6) are Gaussian, the
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Bayes-Optimal approach concentrates on finding a function representing

a conditional mean. The other group of investigations are studies of

asymptotically-stable, recursive, but non-optimal algorithms. An

algorithm is recursive when its output is the solution to a difference

equation with the (n+l)st output depending on the nth output and nth

or (n+l)st Observation.

1.2.5 Optimum Discrete—Time Filtering Theory

Many investigators have suggested a representation for the

conditional mean of the message, given the observations, as a solution

to the discrete-time filtering problem [16], [17], [18], [19]. This

Optimal solution is only employed when the noises {2k} and {2k}

are Gaussian. As could be expected from the non-linear nature of the

problem, a closed-form solution for the general optimal filter does

not exist. The research effort has been channeled into derivations

of approximate algorithms. Aoki [16] discussed the following recursive

algorithm for an approximately-Optimal filter solution:

3n+1 = £main) + 5n+1[1n+1 ' hn(£n(fin))] (1‘7)

A

where g“ is the filter's output and [Kn], the gain sequence, is

determined from a set of recursive equations. This filter has had

numerous applications and is included here for reference.

The development of discrete-time, non-linear filters is

hindered by the lack of asymptotic (large n) results. Albert and

Gardner [20] and Pearson [21] both emphasize the need for work in

this area and indicate the necessity Of studying convergent, recur-

sive filtering schemes. These authors rely heavily on the methods

of stochastic approximation as means for generating sub-Optimum
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filtering algorithms as outlined in the next section.

1.2.6 The Method of Stochastic Approximation in Parameter Estimation

Stochastic approximation algorithms are used for estimating

parameters of Signals which are observed in the presence of noise.

Albert and Gardner [20] have applied the method of stochastic

approximation to problems where the Observations have the form

= h + .yn “(9) vn (1 8)

where e is an unknown parameter, {vn} is a zero-mean process with

E v v = 5k n and hn(e) is a known function of n and e. The

nk’

noise distribution need not be known. If e is considered a message,

the problem of estimating 9 can be considered a special case of

the filtering problem. The scalar case is treated here to simplify

the notation.

In parameter estimation, as in filtering theory, the problem

is to process the Observation sequence and estimate the value of the

unknown constant. The method of stochastic approximation attempts

to find a zero Of a regression function and results in the following

recursive algorithm which solve the estimation problem.

xn+1 = xn + an[yn - hn(xn)] : x0 15 arbitrary (1.9)

where xn is the nth estimate Of e.

The next step is the formulation Of conditions which guarantee

that ;g - e converges to zero as n a m with probability one or in

the mean-square sense. These conditions are illustrated in the state—

ment Of the following stochastic approximation convergence theorem

[20]. The hypotheses are:
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T1. hn(x) is assumed monotone in x and differentiable;

T2. For each n, the sign of an is equal to

the sign Of h (x) where h (x) = 2'"h (x)'
n n 3x n ’

m .

T3. E. b a ==m with bn = inf \hn(x)I;

n 1 n n x

m 2

T4. 2 a < an.

n

n=1

Then xn A e as n a m with probability one and in mean-square.

Stochastic approximation algorithms are traditionally associated

with parameter estimation problems where noise models are unknown, large

amounts of data are processed, and simple computations are required.

1.2.7 Recursive Filters

Generalizing on the method of stochastic approximation, Pearson

[21] and Albert and Gardner have suggested the recursive algorithms

§h+1 = fn(;h) + an[yn - hn(;h)] (1.10)

with ;g the filter output as solutions to the general filtering

problem defined in Sec. 1.2.4 with m = n = r = 1. Equation (1.10)

is similar to the approximately-optimal filter in (1.7). These

authors reported on the reSults of initial investigations into the

application of stochastic approximation methods to the determination

of recursive filters with desirable asymptotic characteristics.

Pearson considered a Special case of the problem, assuming

un = 0 and hn(x) = hx. Then, with the hypotheses

0° co
2

[f(x) ' f(Y)‘ 5 ‘x ‘ Y‘a 2 an = ”a E a < w, a Stochastic

n=1 n=1 “

approximation convergence theorem was applied showing that

E(;] - xn)2 a O as n a m. The last two hypotheses are identical

with T3 and T4 of Sec. 1.2.6. The Lipschitz condition on f(x)
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was a sufficient restriction on the message dynamics to allow use of

the convergence theorem from stochastic approximation. Recently

Wolverton [22], using the same hypotheses, proved convergence with

probability one.

Albert and Gardner [20] considered the general filtering pro-

blem. Their hypotheses are lengthy and provide no motivation for

this discussion. The important point is the complete reliance of

their convergence proofs on techniques developed in stochastic

approximation convergence proofs. Their main conclusion was:

lim sup E(;$ - Xn)2 3 known bound.

Two recent theses, one in pattern recognition, the other in

system identification, illustrate the possibilities of using stochastic

approximation theory in developing approximately-optimal convergent

algorithms. Blaydon [23] is concerned with a pattern recognition

problem in which a probability density function, specified in terms

of unknown parameters,is to be learned. He derives a recursive

estimation algorithm via a minimum—mean-Square criteria and shows

convergence to the true parameter value with a stochastic approx-

imation theorem. In system identification, Donoghue [24] attempts

to formulate an algorithm for learning unknown system parameters

from noisy observations Of the input and Output. He approaches the

estimation problem from a Bayes-Optimal point of view and eventually

derives an approximate solution. A stochastic approximation result

is applied to show convergence Of the algorithm.

1.2.8 Continuous-Time Stochastic Approximation Methods

The stochastic approximation method has proved useful in

studying the asymptotic behavior of discrete~time filters. The
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extensions of the method to continuous-time processes available in

the literature are examined in this section. Only a few investi-

gations have been made into convergent, sequential algorithms for

continuous-time parameter estimation problems. The major difference

between the formulation of the observation process in Sec. 1.1 and

the models available in the literature is that Sec. 1.1 places more’

stringent restrictions on the correlation properties of the obser-

vation noise than the models in the literature. Driml and Nedoma

[25] and others [26] only assume the noise is stationary and ergodic,

while Sakrison [27] adds a complicated condition on the spread of

the correlation function. In contrast is the white noise assumption

in (1.2).

Initially, the investigations in the literature appear appli-

cable tO the parameter estimation study needed for the continuous-

time filtering problem. However, detailed analyses of the theorems

indicate that the proposed algorithms and methods Of proof are very

specialized and not applicable to the general filtering problem.

Sakrison [27] and others [26] postulate a structure for the Obser-

vation process which does not resemble (1.2) and their entire de-

velopment requires this special structure. Only Driml and Nedoma

have a formulation compatible with (1.2). They assume very re-

strictive estimation algorithms and these Special forms fit neatly

into a convergence proof relying on the Law of Large Numbers. This

method of proof cannot be extended to the algorithms needed for

filtering.

All the continuous-time, stochastic approximation papers

mentioned above rely principally on the Law of Large Numbers for
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their convergence proofs. This appears to be the only method avail-

able for treating general, non-white, observation noise; to extend

this approach to more meaningful estimation algorithms may require

generalizations or extensions of ergodic theory.

Figure 1 summarizes approaches to discrete-time and con-

tinuous-time filtering.

1.3 Thesis Objectives

The emphasis of the research reported in this thesis is on

formulating an approach to the non-linear filtering problem of (1.2)

by which asymptotic convergence of filtering algorithms can be

exhibited and on demonstrating useful analysis techniques. In a

sense, the discrete-time approach to asymptotically-stable, recur-

sive algorithms will be generalized to the continuous-time filtering

problem.

Investigators Of discrete-time problems relied upon stochastic

approximation methods to prove their convergence results but sto-

chastic approximation methods have not been developed for the con-

tinuous-time filtering problem. The first major objective Of this

thesis will be to state and prove convergence theorems analogous to

theorems from the discrete-time stochastic approximation literature.

After developing an approach to continuous-time stochastic

approximation, the second objective will be to examine a class Of

sequential solutions for the filtering problem defined in Sec. 1.1.

Since the general problem is very difficult to study, this thesis

will concentrate on the scalar, noiseless-message case; i.e.

3(t) = O, m = n = l in (1.1) and (1.2). Under these assumptions,

the message may be considered to be a time-varying parameter
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specified by the solution to a deterministic differential equation

excited by an unknown initial condition. The ideas developed for

the stochastic approximation section will be utilized to suggest

filtering algorithms whose error variances converge to zero.

1.4 Thesis Outline

The discrete-time results for recursive filters with known

asymptotic prOperties cited in Secs. 1.2.6 and 1.2.7 were de—

veloped for problems where the noise distributions were unknown.

The analogous situation in the continuous-time filtering problem

is to assume 2211 white noise in (1.1) and (1.2). However, the

more general non-Gaussian case Of filtering cannot be treated

because the mathematical techniques available for handling non-

linear stochastic differential equations are restricted to pro-

blems involving Gaussian, white noise. This restriction has

not been effectively explained in engineering literature, so

Appendix A is devoted to representations of white noise and their

relation to stochastic differential equations.

The non-linear filtering problem treated in this thesis is

defined rigorously in Chapter 2. To supplement later discussions

in Chapters 3 and 4, an approximately-optimal filter is derived

based on a representation for an Optimum filter. The class of

sequential filters, whose asymptotic convergence will be in-

vestigated in later chapters, is also defined and discussed.

The original contributions of this thesis begin with the

statement and proof of two theorems in Chapter 3 similar to theorems

from discrete-time Stochastic approximation. The filtering problem

is attacked in Chapter 4 and the techniques develOped in Chapter 3
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are utilized to demonstrate convergence for the class of sequential

filters defined in Chapter 2. This thesis marks the first time that

stochastic approximation ideas have been applied to the problem of

estimating a time-varying parameter described by a differential

equation. Accordingly, every aspect of this work is original.

The last section of Chapter 4 specifies conditions on (1.1) and

(1.2) which guarantee the asymptotic convergence of the approx-

imately-optimal filter defined in Chapter 2. These conditions

indicate the existence, under certain conditions, of nearly-

optimal filters satisfying the requirements of good and useful

filters.

Chapter 5 examines an example Of a non-linear filtering

problem. The performance of the approximately-Optimal filter

documented in Chapter 2 is displayed by means of error pro-

files generated from a digital computer simulation.

The results of the thesis are reviewed in Chapter 6 and

conclusions are drawn concerning the application of this approach

in demonstrating asymptotic convergence. A number of extensions

of these investigations are proposed.



CHAPTER 2

A FILTERING PROBLEM AND

A CLASS OF SEQUENTIAL SOLUTIONS

Chapter 1 outlined the general time-domain filtering problem.

This chapter is devoted to rigorously defining the particular pro-

blem of concern in this thesis. In subsequent chapters, the emphasis

will be on investigations into the asymptotic convergence of a class

of sub-optimal, sequential filters; this class is defined and dis-

cussed in Sec. 2.3. Chapters 3 and 4 will indicate that this class

of sub-optimal filters satisfies two of the three goodness criteria

discussed in Chapter 1. In hopes of displaying filters meeting all

three performance criteria, Sec. 2.2 derives a nearly-optimal filter

to which the convergence results will be applicable.

2.1 The Non-linear Filtering Formulation

This thesis examines solutions for a particular case of the

general filtering problem defined in Sec. 1.1. Although the signal

and Observation processes were defined using conventional engineering

models, the type of analysis performed in later chapters necessitates

a rigorous mathematical representation for these processes. The

reason for the special care being taken to define the models of these

processes is to avoid the technical controversies which have plagued

investigations of Optimal, continuous-time, non-linear filters [31],

[32].
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The following definition of the scalar "noiseless-message-

filtering" problem is a specialization of the general definition

given in Sec. 1.1. The signal process is assumed to be the solution

to a first-order differential equation:

95351 = f(t,x<c>>dt x(to) = b, an unknown constant (2.1)

and f(-,~) is a specified function. The absence Of a noise driver

in this equation explains the "noiseless" adjective. The function

f(t,-) is assumed to satisfy all sufficient conditions which guar-

antee the existence, uniqueness, and continuity of the solution to

(2.1). A complete discussion of these conditions is given in

Coddington and Levinson [33].

The observed process y(t) retains the structure of Sec. 1.1;

y(t) = h(t.X(t)) +V(t) (2.2)

where h(°,°) is a known function and v(t) is a zero-mean,Gaussian,

white noise process with correlation function Ev(t)v(s) = 5(t-s).

The structure of (2.2) is general enough to make y(t) a model of

many physical processes. Kailath [34] discusses when (2.2) is a

reasonable representation for real-world processes.

Appendix A discusses the mathematical complications of de-

fining a white noise representation which will provide valid solu-

tions for non-linear stochastic differential equations involving

this white noise. The appendix indicates the necessity for re-

stating the observed process, (2.2), in terms of an independent-

increment, Brownian motion process B(t). Applying Ito's stochastic

integral when manipulating equations having the form (2.2) eliminates

the use of delta functions; Ito calculus provides consistent meanings
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for all equations. Specifically, z(t) is defined by (2.3) and (2.2)

is taken as equivalent to (2.4).

z(t) = f:0y(s)ds (2.3)

dz(t) = h(t,x(t))dt + dB(t) (2.4)

Equation (2.4) is equivalent to (2.2) if (2.4) is divided

formally by dt and ggiEl is interpreted as the Gaussian white

noise, v(t). Equation (2.4) is interpreted as being equivalent to

(2.5), a random integral equation.

I: t

z(t) - z(to) +~jtoh(s,x(s))ds + [todB(s) (2.5)

The first integral in (2.5) is the ordinary Riemann integral,

while the second is Ito's stochastic integral. In addition to Appendix

A, a recent paper by Wonham [35] briefly surveys the properties of (2.4).

Equations (2.1) and (2.4) define models of the signal and

observation processes. The formulation of the noiseless message pro-

blem may be completed by summarizing the discussion of filter solu-

tions in Sec. 1.1. The observed waveform is denoted by

{mpg—(il- .0....}=.ds , A filter may be defined as a

t t'
0,

functional mapping of yt t into a real variable for each t 2 to

3

o

The filtering problem is considered solved when a particular mapping

has characteristics which satisfy the three goodness criteria of

Optimality, asymptotic convergence, and sequential structure.

2.2 An Approximately-Optimal Filter
 

This section develops a filter which is approximately-Optimal

and sequential. A proper evaluation Of any approximation requires
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the optimal solution to the filtering problem. It is important to

note that, when considering an optimal solution to the filtering

problem, a probability distribution will be assigned to the initial

condition on the message process, x(to) = b. Since optimal filters

are concerned, at least in part, with accurate estimates of the

message during the transient portion of the filteré' time responses,

it is mandatory that all moments of the initial condition be known.

A precise development of an optimal filter is contained in

the papers of Kushner [2] and Kallianpur [13]. The stochastic

differential equation for the expectation of any function, g(t,x(t)),

of the message, x(t), and the time, t, conditioned on the Observed

waveform z is developed in these papers; conditioning on 2

t,t t,t

0 o

is equivalent to conditioning on y by (2.3). Letting

t,t

0

L8(t.X(t)) = f(t.X(t))é(t,X(t)), where g(t.X) = g;’8(t.X). this

stochastic differential equation is

d§<t> €§<t>dc + [éh<c) - g(t)h<t>]tdz<t> - fitt>dt1 (2.6)

where

s(t) EIg(t.x(t))\zt ,t]

0

{g(t) = E[f(t,X(t))é(t,X(t))\zt ,t]
O

éi<c> = Etgtt.x<c>)h<t.x<t>>|zt ,.1
O

B(t) Ethcc,x<t>>lzt ,.T
0

fi<t> E[x(t)|zt ’t].

0

When g(t,x) = x, (2.6) becomes

da(t) = f(t)dt + [§h(c) - R(t)h(t)][dz(t) - h(t)dt] (2.7)
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with 2(t) the conditional mean. This thesis will follow the con-

vention of calling the differential equation (2.7) the representation

of the optimal filter, even though there are other legitimate choices

for an "optimal" filter.

In general, the optimal filter (2.7) can never be realized

since an infinite-dimensional system of Stochastic differential

equations must be solved to determine the random functions f(t),

4h(t), and h(t). Appendix C displays this infinite-dimensional

system.

Approximations must be made to produce a finite set of equa-

tions. An approximation scheme is now described. The structure of

the resulting filter is very similar to that of the linear Kalman-

Bucy filter (Sec. 1.2.1). The conditional mean R(t) is assumed to

be in the neighborhood of x(t) so that

f(t.x(t)) f(t.%(t)) + f(t,%(t))[x(t) - s<t>1 (2 8)

h(t.x(t)) was» +fitt,s(t>>tx(t> - stun . (2.9)

It is also assumed that the third conditional moment,

E([R(t) - x(t)]3]zt ,t) é 0. (2.10)

0

An examination of these assumptions should provide insight

into how well the approximately-optimal filter described in (2.13)

and (2.14) will satisfy the goodness criteria R.1, optimality. This

approximate filter, to be studied in Chapter 4, is now derived using

(2.6) - (2.10). Equation (2.8) shows that f(t) é f(t,s(t)) (2.11)

so that (2.7) becomes
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dx(t) é f(t,x(t))dt + P(t)h(t,%(t))[dz(t) - h(t,x(t))dt] (2.12)

where P(t) =1: (t) - x(t)2.

The function P(t) can be approximated from (2.6) and Ito's Lemma

(Appendix B). Letting g(t,x) = x2 and using (2.6) along with (2.8) -

(2.10),

/3~ .
dx (t) E 2 R(t)f(t,x(t))dt + 2 f(t,fi(t))P(t)dt

. . /§ ’72 .
+ h(t,X(t))[X (t) - X (t)X(t)][dZ(t) - h(t,fi(t))dt].

Applying Ito's lemma, Appendix B, to (2.12) gives

dx(t)2 5 2 x(t)f(t,x(t))dt + 2 x(t)h(t,fi(t))P(t)[dz(t) - h(t,x(t))dt]

+ [h(t,x(t))P(t)]2dt.

The differential of P(t) is now approximated by

dP(t) = dE:>(t) - s(t)21 s 2 f(t.%(t))P(t>dt - [h(t,R(t))P(t)]2dt

A o
+ h(t,§(t))[x3(t) - x (t)x(t) - 2 R(t)P(t)][dz(t)-h(t,§(t))dt

The condition (2.10) can be rewritten as

x - 3 x a + 2 a = x - x a - 2 a? 5 0.

The simultaneous integration of the following stochastic differential

equations provides an approximately-optimal filter; x(t) is the

filter output.

dfi(t) = f(t,s(c>>dt + P<t>fi<t,s<c>>tdz<t> - h(t.s<t>>dt1; 5Ht.) = E<b>

(2.13)

dpgt) =
dt 2 f(t,x(t))P(t) - [h(t,x(t))P(t)]2 ; P(to) = Var (b) (2.14)
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Recalling the equivalence of (2.2) and (2.4) and dividing by

dt permits (2.13) to be interpreted as

$2451 = mam) + P<c>fi<c,s<t>>[y<t> - h(tamn

Retaining (2.13) in its special differential form will emphasis

the necessity of using Ito calculus for its solution. Equation (2.14)

does not contain any white noise terms and may be treated as an

ordinary differential equation. This development is a simplified

version of work performed by Bass, Norum, and Schwartz [29].

The approximately-optimal filter (2.13) - (2.14) was derived

from a solution which minimized the error variance at each instant

in the observation interval. Bellman obtained the same equations by

using a least-squares criteria and the theory of invariant imbedding

[30]. Friedland and Bernstein also derived this filter as an approx-

imate solution to the filtering problem analyzed from the maximum

likelihood approach [18].

This filter, besides being a common academic filtering solution,

has been applied to numerous real-world problems [19], [36]. Its

performance was analyzed in a recent paper by Stear and Schwartz;

their computer simulation compared several approximately-optimal

filters and showed no distinction between this approximation scheme

and other, more nearly optimum filters [37]. It may thus be concluded

that this approximate filter is a realistic solution to the optimal

filtering problem.

2.3 Sub-Optimal, Sequential Filters

The following sequential filters are suggested as solutions

to the filtering problem defined in Sec. 2.1:
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d§(c) = f(t,;(t))dt + a(c,§t t)[dz(t) - h(t,x(t))dt] (2.15)
0,

where x(t) is the filter output with an arbitrary initial value

x(to). The gain term, a(t,;' ), is a time-varying function of the

t ,t
o

t t = [x(s): to s s s t]. The structure of (2.15)
O,

is very similar to that of the approximately-optimal filter in (2.13) -

output waveform x

(2.14). In fact, if a(t,;£ ,t) = P(t)h(t,;(t)) and the initial con-

ditions are set equal, the filters are identical.

The filtering solutions proposed in (2.15) provide filters

which will fulfill two of the requirements for a useful filter; R.2,

asymptotic convergence, and R.3, sequential structure. These require-

ments can be met even if x(to) is not specified so no prior knowledge

is required Of the initial condition x(to) in (2.1).

The outstanding feature of (2.15) is the random gain term,

a(t,-). This gain term must satisfy conditions guaranteeing con-

vergence but, otherwise, has an arbitrary form. It may be possible,

within these convergence limitations, to Specify a gain function which

would allow the filter to fulfill the optimality requirement R.l. An

example of this idea would be to set a(t,;£ t) = P(t)h(t,;(t)). On

0’

the other hand, the discussions in Secs. 1.1 and 1.2.3 indicate that

in many applications one may prefer that a(t,-) be deterministic,

thus providing the filter with a simple, asymptotically convergent

structure .

2.4 Summary

Equation (2.15) introduces a class of sequential filters which

may include an approximately-Optimal filter. The convergence of

algorithms from this class will be the main concern of the remaining
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chapters.

This chapter also introduces the concepts of Ito calculus and

stochastic differential equations into the non-linear filtering pro-

blem. An understanding of these concepts has enabled investigators

to develop an acceptable optimal filter theory. This knowledge and

a familiarity with the discrete—time stochastic approximation methods

lead to asymptotic convergence studies.



CHAPTER 3

CONVERGENT ALGORITHMS FOR PARAMETER ESTIMATION

Many of the statistical methods which have been developed for

the classic problem of estimating unknown parameters have provided

approaches to filtering problems. The literature review in Chapter

1 showed that stochastic approximation schemes, developed for dis-

crete-time parameter estimation, suggest ideas for analyzing the

asymptotic behavior of the continuous-time filtering algorithms

prOposed in Chapter 2. This chapter concentrates on the problem

of continuous-time parameter estimation by developing two con-

vergence theorems analogous to theorems from discrete-time stochastic

approximation.

The filtering problem discussed in Sec. 1.1 may be con-

sidered equivalent to a problem in estimation theory where the

filter's output provides an estimate of the present message value.

For this reason, the problem of determining, or estimating, para-

meters is a special case of the filtering problem with f(t,x) = 0

in (2.1). Optimum solutions for both filtering and parameter

estimation problems are based on similar theorems and procedures

[12]. There is, however, a conceptual difference between the two

problems. A filter's output attempts to follow the time variations

of the message process; when the message is random, the output can

never follow the message exactly. The parameter estimation problem,

where the message is time-invariant, requires an estimation algorithm

31
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which eventually determines the SEES value of the unknown constant.

It is for this reason that any study of a practical parameter

estimation scheme must include an analysis of asymptotic behavior.

This chapter analyzes the large-time behavior of the estimator

represented by (2.15) with f(t,x) = O. This sub-Optimal estimator

is shown to converge asymptotically to the true value of the para-

meter. The chapter is broken into three parts. Section 3.1 contains

a list of assumptions regulating the behavior of the observations,

(2.4), and the gain function in (2.15). Also, two lemmas are de-

veloped for later use. In Sec. 3.2 and 3.3, the assumptions are

used as hypotheses for two convergence theorems. These theorems

show that certain estimators converge to the true parameter with

probability one and in the mean-square sense. The theorems are a

major result and indicate that the sequential estimators defined

in (2.15) behave asymptotically as practical estimators.

The convergence theorems do not require any structure for

the gain functions, so in the last part of this chapter a specific

class of gain functions is prOposed. Corollary 3.3 shows that this

class of functions satisfies the assumptions of the main conver-

gence theorems and that the approximately-optimal filter derived

in Chapter 2 and specialized in this chapter has a gain function

which is a member of this class of functions. SO, under certain

assumptions on the observation process, an approximately-optimal

algorithm is shown to converge to the true parameter value. This

is a major result since it implies an estimation scheme which

satisfies the three requirements of a useful filter.
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All aspects of this chapter are new and original. Convergence

of the estimator algorithm (2.15), in which the information supplied

by the past observations is contained in a(t,xt t), has never been

0,

proved for a continuous-time problem. The assumptions given in Sec.

3.1 are directly analogous to the discrete-time assumptions of Albert

and Gardner [20] but the proofs of the convergence theorems (NT not
,,

follow in a straight-forward manner.

3.1 Preliminary Considerations

This section provides the groundwork necessary for deriving

the convergence theorems in Sec. 3.2. This basic material includes

the formulation of the parameter estimation problem, a description

of the estimation schemes being investigated in this chapter, two

useful lemmas, and the hypotheses for the convergence theorems.

The parameter estimation problem and possible solutions con-

sidered in this chapter are defined using equations equivalent to

those in Chapter 2. The parameter to be estimates is e and if

x(t) = x(to) = e, (2.4) represents noisy observations of this un-

known parameter. This observed process is modeled by

dz(t) = h(t,e)dt +~dB(t) (2.4)

with giSEl = y(t) the observed process and B(t) a Brownian motion

process. In the first three sections of this chapter, 9 is not

assigned a prior distribution. The class of sub-optimal estimation

algorithms proposed in (2.15) with f(t,x) = 0 are considered as

the possible estimators for 9:

d;(t) = a(r,§{t t)[dz(t) - h(t,x(t))dt] : £(ro) arbitrary (3.1)
O,
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where x(t) is the estimate of e at time t.

The estimator error is denoted as e(t) = x(t) - e and,

according to (2.4) and (3.1), has the following differential re-

presentation.

de(t) = a(r,§£t ,t)[h(t,e) - h(r,§(r))]dr + a(t,;t ,t)dB(t) (3.2)

o 0

An examination of (3.2) brings out many of the difficulties

inherent in a study of theasymptotic convergence of e(t). First

of all, (3.2) is a stochastic differential equation containing the

differential of Brownian motion. Strict attention must be paid to

the properties of Ito calculus in all further derivations. Since

(3.2) is non-linear and since a(t,;;o,t), the gain function, is

unspecified, an analytical solution for e(t) is impossible. Some

description of the behavior of the gain function is mandatory and

assumptions must be placed on h(t,x) before any inferences can be

made about e(t) and/or e(t)2.

The development of convergence theorems for equations such

as (3.2) is not obvious. In a survey of the discrete-time stochastic

approximation literature, Martingale theory was often used to obtain

convergence with probability one [38], [39], [40]. Martingale theory

and Ito calculus seem very compatible and both are used in later

proofs. A survey of stochastic approximation methods does suggest

certain assumptions about h(t,x) and a(t,;[ ,t) which can be

used effectively to Specify the asymptotic behavior of the esti-

mation error. This background of discrete-time investigations pro-

vides a fruitful source of ideas for analyzing (3.2).

Before listing the assumptions sufficient for convergence,

two lemmas are stated and proved. These lemmas are applied in later
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proofs both in this chapter and in Chapter 4.

Lemma 3.1 Let w(t) be a stochastic process satisfying

t

w(t) s w(r) +'Irg(s)dB(s) for t,r 2 to _(3.3)

where B(s) is a Browian motion process. Assume that At is a

c-algebra, that w(t) is measurable on At’ and that

At(: F{[to,t], 3(5)}, the c-algebra generated by B(s), tO s s s t.

Also assume that g(t), a random function, is measurable on

F[[to,t], 3(3)]. Then w(t) is a positive super-martingale.2

Proof. Apply the expectation relative to Ar to each side of (3.3).

E{w(t)|Ar] s w(r) + E[I:g(s)dB(s)‘Ar] (3.4)

For w(t) to be a super-martingale the second term on the right side

of the inequality must be zero. A property of conditional expecta-

tions3 shows that

Eif:g(s)dB(s)|Ar] = r(r(§:g(s)do(s)|r([ro,r], B<u>11IArI

Since g(s) is measurable on F{[to,s], B(u)] the conditional

expectation satisfies property B.2; i.e.

t .

Etfrg<s>dn<s>IFttto.r1, B(u)}] = o (3.4a)

This completes Lemma 3.1.

t

Lemma 3.2 If m(t) >'0 and M(t) = c + [t m(s)ds with c < m

arbitrary and if M(t) « m as t a m then

It m(s) ds diverges if a s 1

t0 M(s)d

converges if a > 1

 

Consult Appendix B for discussion of c-algebras and martingales.

Doob [41], p. 37.
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Proof. Assume a s 1; there exists a T0 > tO such that for t > T

M(t) z 1. Now for a 2 TO and b 2 O and because of the monotone

behavior of M(t),

Ia+b m(s)ds 2 l ra+b l a+b

a m(s)” M(a-I-b)a a m(swssza m(sws

The right hand side can be integrated to obtain

a+b m(s)ds 2 M(a-I-b) - M(a) = 1 _ M(a)

fa M(s)d M(a+b) M(a+b)

The monotone property of M(t) shows that for every a 2 To, there

exists a T 2 T such that for a+b > T , 1 - EXEZ--—'> %

o M(a+b)

This contradicts the necessary Cauchy condition [42] for the con-

vergence of

I: m(s)ds

O M(S)oz

Assume a > 1, let a = l + 5 where 6 > O, examine the integral

J’EO 53—8- [M(s)]-6ds = M(t)-6 - M(tO)-6: - M(ro)’5 < co

Evaluate the derivative in the integral.

d -6 d 1

ds d8 [[c +-I: m(u)du]g]

o

. 6[c +]‘: m(o)do]5'lm(s)

O

 

 

[c +-I: m(u)du]26

O

 

_ 5 m(s) = _ 6 m(s)

[c +]‘: minnow)”6 M(s)a

O

O

3
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So

'6

f: fl§-qus~§£§3— as t-oao.

o M(s)

Lemma 3.2 is complete.

The following assumptions are made for (2.4) and the gain

function in (3.1). These assumptions are the hypotheses for the

main convergence theorems proved in Secs. 3.2 and 3.3 and are analogous

to the assumptions Albert and Gardner [20] formulated for their dis-

crete-time observation equation and gain sequences.

Assumption 1: For each value of t, h(t,x) is monotone and differ-

entiable with respect to x.

Assumption 2: The function a(t,x; t) is measurable on F[[to,t], ;(s)],

o,

the a-algebra generated by x(s), where to S s s t. The space of all

real continuous functions defined on the time interval [to,t] is

denoted by CE; h(t,x) and a(t,x[ t) are assumed to satisfy all

0 0’ _

conditions necessary to guarantee the continuity of x(t). (Appendix

D).

t

Assumption 3: For each t, the Sign of a(t,X) for all X 6 Ct is

 

 

o

constant and equal to the sign of h(t,x) = §;'h(t,x).

Assumption 4: I: b(t)inf|a(t)]dt = m where b(t) = inf]h(t,x)\

o x

and iniIa(r)\ = inf \a(r,X)I
t

XEC

to

Assumption 5: I: SUp]a(t)]2dt < m where sup‘a(t)| = supt ]a(t,X)‘

o XGCt

o

3.2 The Main Convergence Theorem

The theorem to be Stated and proved in this section shows that

the output of the estimation algorithm, x(t) in (3.1), converges, as

t increases, to the value of the unknown parameter. A basic
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martingale theorem provides both convergence with probability one and

in the mean-square sense.

Before the actual statement of Theorem 3.1, an equation is

developed for the square of the estimation error using some of the

assumptions listed in Sec. 3.1. The following simplified notation

will be used for the remainder of this chapter: a(t,;; t) = a(t)

0’

Equation (3.2) exhibits the estimation error. Assumption 2

and the development in Appendix D show that a(t) is measurable on

F[[to,t], B(s)], so, if Z(t,e) = e2, Ito's lemma (Theorem B.l) can

be applied to (3.2) producing a differential equation for e(t)2.

de(t)2 = 2 e(t)a(t)[h(t,9) - h(t,;(t))]dt + a(t)2dt + 2 e(t)a(t)dB(t)

This equation is equivalent to (3.5).

e(t)2 = e(r)2 +1]: 2 e(s)a(s)[h(s,e) - h(s,§(s))jds +-]:a(s)2ds

+‘f: 2 e(s)a(s)dB(S) ; t,r 2 t0 (3.5)

The mean value theorem [42] gives:

h(s,§'<s>) = We) +hts,o(s>)t§(s> - e]

e s ¢(s) s §(s) if §(s) 2 e

where _ _

x(s) s ¢(s) s e if x(s) s e

Assumption 3 implies that:

a(s)h<s,o<s>) = Ia<s>IIfi(s.o<s>>I >. o

Combining these results with (3.5) gives
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e(t)2 s e(r)2 - 2 j:\a(s)I|h(x,¢(s))|e(s)2ds an]: sup|a(s)|2ds

+ 2 f:e(s)a(s)d3(s) (3.6)

Equation (3.6) will be a basic equation both in the following

proof and in the proof of Theorem 3.2 in Sec. 3.3.

Theorem 3.1 Under Assumptions 1-5, the process x(t) defined by

(3.1) converges to 9 with probability one and in the mean square

sense:

lim ;(t) = e w.P.l. and 1im E(x(t) - e)2 = O.

t-co t—uan

Proof. Equation (3.6) provides an inequality for the squared error.

The second term on the right hand side of (3.6) is negative, thus

establishing a simple and very convenient inequality for e(t)2.

e(t)2 s e(r)2 +j‘t sop|a(s)|2os + 2 jte(s)a(s)d3(s) : r t 2 t (3.7)
r r ’ 0

Defining w(t) = e(t)2 +-f: sup‘a(s)]2ds (3.8)

and substituting into (3.7),

w(t) s w(r) + 2 f:e(s)a(s)d3(s) (3.9)

A review of the proof up to this point emphasizes the importance

of Assumptions 1 through 3 in obtaining a transformation of e(t)2

which satisfies an equation of the form (3.9). It has already been

pointed out that a(t) is measurable on FI[to,t], B(s)] and Since

;(t) is measurable on this o-algebra, e(t)a(t) is also. The error

squared is measurable on F{[to,t], E(s)} and it follows directly

that F{[to,t], e(s)2]<: F[[to,t], B(s)]. SO when At is defined

equal to F{[to,t], e(s)2], Lemma 3.1 indicates that w(t) is a



40

positive super-martingale.

With the process w(t) being a super-martingale, the function

Ew(t) is a non-increasing function of t and since it is bounded

below it follows that4

lim Ew(t) = Eg = K.< m (3.10)

64:

A combination of (3.8), Assumption 5, and (3.10) shows that

, 2

11m Ee(t) = EC (3-11)

t—m

Returning to (3.6) and noting that inf|a(s)]b(s) s ‘a(s)‘lh(s,¢))|

allows another weakening of the inequality on e(t)2.

e(t)2 s e(r)2 - 2 I: inf‘a(s)\b(s)e(s)2ds + [: sup|a(s)|2ds

+ 2 [Ee(s)a(s)ds(s) (3.12)

The expectation of each side of (3.12) is taken and Fubini's theorem

is applied to the second term on the right hand side.

Ee(t)2 s Ee(r)2 - 2 I: inf]a(s)]b(s)Ee(s)2ds +-f: sup‘a(s)‘2ds

+ 2 s[f:e(s)a(s)d3(s)] (3.13)

The proof Of Lemma 3.1, specifically the part deriving (3.4a),

t

can be reapplied to Show E[Ire(s)a(s)dB(s)] = 0- (3-14)

Applying (3.14), (3.13) becomes

2 2 t . 2 t 2
Ee(t) s Ee(r) - 2 fr inr|a(s)\h(s)Ee(s) ds +-jr sop\a(s)\ ds (3.15)

The application Of (3.11) and Assumption 5 to (3.15) indicates the

necessity of (3.16).

 

Doob [41], chapter 7.
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2 I: inf‘a(s)]b(s)Ee(s)2ds < m for t 2 to (3.16)

If (3.16), (3.11), and Assumption 4 are all to be satisfied, it is

necessary that

2

lim Ee(t) = 0, so the mean-square convergence is assured.

t—m

The super-martingale inequality (Theorem B.3) shows conver-

gence with probability one. The inequality gives

Prob{ sup w(u) > e] < [Ee(r)2 +‘r: sup|a(s)‘2ds]%' for each t 2 r.

t2u2r (3. 17)

The definition in (3.8) provides the following relationship

Prob[ sup e(u)2 > e} < Probf sup w(u) > e]. (3.18)

t2u2r t2u2r

Mean-square convergence and Assumption 5 are now combined with (3.17)

and (3.18). Given an e > O and 5 > 0, there exists a R > 0 such

that for every t > R

Prob[e(u)2 > e : t 2 u 2 R] < 6

thus

lim e(t) = 0 W.P.l..

t—am

This completes the proof of Theorem 3.1.

3.3 An Alternate Convergence Proof

The proof of Theorem 3.1 was structured with convergence with

probability one in mind; mean-square convergence was a by-product.

The mean-square result was unexpected since, in all known stochastic

approximation theories, demonstrations of mean-square and of prob-

ability-one convergence have required separate theorems. The theorem
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in this section demonstrates another way to prove the mean-square pro-

perty. The techniques used in its proof will be applicable to part

of the filtering investigation in Chapter 4.

Theorem 3.2 Under Assumptions 1-5 the process x(t) defined in (3.1)

converges in the mean-square sense to 6; lim E(;(t) - 9)2 = 0.

.nggf, The inequality in (3.6) is weakeneth: applying the fact that

infla(s)‘b(s) s |a(s)“h(s,¢(s))‘. The expectation of each side is

taken to give

2 2 t . 2 t 2

Be (t) g Ee (r) - 2 fr 1nf‘a(s)\b(s)Ee (s)ds + fr sup‘a(s)] ds. (3.19)

The expectation of the last term in (3.6) is zero for the

reasons given in Theorem 3.1. The remainder of this proof relys on

2 .
the construction of a function which dominates Ee (t). The funct1on

e(t) is defined as the solution to

.%§$£l = - 2 b(t)iof|a(t)|e(t) + sop|a(t)|2 : C(to) = Ee2(to) (3.20)

Equation (3.20) is a linear equation having the following solution:

e(t) = D(t t )Ee2(t ) +-It D(t s)sup|a(s)]2ds (3.21)

’ o O to ’

In (3.21), D(t,s) = exp[- 2 f:b(u)int\a(o)]doj (3.22)

Equation (3.20) is now written as an integral equation.

t t 2
= - ’ d + d ° .e(t) c(r) 2 [rb(s)1nf|a(s)]c(s) s Irsup‘a(s)] s, t,r 2 to (3 23)

Substracting (3.23) from (3.19),

[Ee2(t) - e(t)] + 2 f:b(s)infla(s)I[Eez(s) - c(s)]ds s [Ee2(r) - C<r>1.

(3.24)
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2

Equation (3.24) indicates that c(t) 2 Ee (t). To verify this, suppose

it is not true. Then there exists a time T1 such that

Ee2(T1) - c(T1) = 0. If r = T1 and t = T1 + 5 where 6 is the

amount of time Ee2(t) - e(t) is positive, then 5 > 0 since Ee2(t)

and e(t) are continuous and (3.24) provides a contradiction.

Equation (3.21) shows that

Ee2(t) s D(t,to)Ee2(to) +-I:0D(t,s)sup]a(s)\2ds (3.25)

The estimator defined in (3.1) converges to 9 in the mean-

square sense when the two terms on the right hand side of (3.25) con-

verge to zero. The first term is easily handled by an application of

Assumption 4 to D(t,to) so that

D(t,to) a O as t a m. (3.26)

Assumption 5 and (3.26) must both be used on the second term.

Arbitrarily selecting e > 0, a T > 0 can be found so that

t

IT sup‘a(s)‘2ds < 3/2 and D(t,to) s 1 for t > T. Writing the

integral term under investigation as a sum Shows that

I: D(t,S)suP‘a(S)‘2ds s fésupia(s)|2ds +-IEOD(t,s)sup‘a(s)‘2ds for t > T-

 

o

. d . d = e
The constant 32 1s ef1ne as 32 ZIT su ‘a(s)‘2ds

top

There exists a T2 > T such that D(t,s) < 32 for t > T2 and s < T.

Therefore, for every e > 0 there exists a T2 > 0 such that for

t > T2 ,

e I: sup‘a(s)|2ds

t 2 a 0 ._
D(t,s)sup a(s) ds 5 + - ,

Ito ' ' 2 2 I: Sup‘a(s)‘2ds e

o

 



44

which shows that lim Ee2(t) = O.

t-m

This completes the proof.

3.4 Particular Gain Functions

The hypotheses in Sec. 3.1 guarantee the convergence to e of

the estimator defined in (3.1). However, they are very general.

This section lists a Specific class of gain functions which satisfy

the five assumptions of Sec. 3.1. Before discussing the gains, a

few assumptions about h(t,x) are listed which are a combination of

one of the assumptions in Sec. 3.1 and two new ones. These new

assumptions can replace those of Sec. 3.1 when the gains of this

section are used in (3.1).

Assumption 81: The function h(t,x) is monotone and differentiable
 

in x for each t.

 

 

 

 

t O

Assumption 82: Sup ‘§%E% S Kt< m where B(t) = sup]h(tsx)i

Cost/w X

, , 2 , 2 t 2

Assumpt1on S3: 11m B(t) =tm Wlth B(t) = It b(s) ds

b4: 0

Qggollary 3.3 With Assumptions Sl - S3, gain functions a(t,;L t)

0’

having the form of (3.27) satisfy Assumptions 1-5 of Sec. 3.1.

_. 2 - _.

a(t,Xt ,t) sgn h(t,x(m
-' o

a(t,X ) = 3 (3'27)

t ,t - t ‘- 2
o o‘(t,xt ’t)[c +'ft y(s,xt ,5) ds]

0 o o

where the three functions g(t,xto,t), a(t,xt0,t), and y(t,xto,t)

are less than g(t), are greater than, b(t)' and are measurable

on F[[to,t], x(s)].

Proof. Assumptions 1-3 are satisfied by inspection. The integrand

of Assumption 4 is now examined.
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3 3

b(t)inf‘a(t)‘ 2 b(tlt 2 2 3 b(t) t 2

g(t)[c + ft g(s) ds] K h(t)[e'+j‘t b(s) ds]

0 O

This shows that

 

2

I: b(s)inf\a(s)|ds 2 15-]: 13(8) 8 2 ds.

0 K o [c +-It b(u) du]

0

Lemma 3.2 and Assumption S3 indicate that Assumption 4 is satisfied.

  

 

Similarily,

2 g(t)2 2 K4b(t)4
sup‘a(t)‘ S t 2 2 t 2 2

b(t)[c + ft b(s) ds] b(t) [c +J‘t b(s) ds]

0 o

which shows that

t 2 4 t b(s)2

Itosup‘a(s)‘ ds 5 K I ds .

to [c + f: b(u)2du]2

O

Assumption 5 also follows from Assumption 83 and Lemma 3.2.

One gain function which satisfies (3.27) is of unusual inter-

est. This function is

m; )= h(t,x(tn
, _ (3.28)

to" W? +j': h(s.x<s>)2ds1
0

where P = var e. For the discussion of this gain and the correspond-

ing estimator, e, the unknown constant, is assigned a prior distribu-

tion and the requirement x(to) = E(e) is made for (3.1). To better

understand the significance of (3.28) P(t) is introduced.

1

P(t) = _ . _

[P 1 +-J: h(s,x(s))2ds]

o

Differentiating,
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dP(t) _ g_ 1

dt dt [Pu1 +-I: h(s,;(s))2ds]

o

b (mignz - - 2
_ . _. = ' [h(t,x(t))P(t) - (3-29)

[P 1 +-I: h(s,x(s))2ds]2 ]

0

Now, (3.29) is the same as (2.14) when f(t,x) = 0; i.e.,when para-

meter estimation is considered as a filtering problem. The algorithm

specified when the gain function (3.28) is placed in (3.1) defines an

approximately-Optimal estimator of 9. Theorem 3.1 and Corollary 3.3

show that this estimator asymptotically converges to 9 with prob-

ability one. Thus, the algorithm provides an estimator that qualifies

as a useful algorithm by satisfying in some sense, all three perfor-

mance criteria in Chapter 1.

3.5 Summary

The continuous-time, parameter estimation problem has been

considered in this chapter. The main results, Theorems 3.1 and 3.2,

show that the sub-optimal estimators defined by (3.1) converge to the

true value Of the unknown parameter with probability one and in the

mean-square sense.

A secondary, but still Significant, result was obtained for

the class of gain functions in (3.27). Corollary 3.3 demonstrates

that this class of gains satisfies the hypotheses of Theorems 3.1

and 3.2. In an interesting result, this class is shown to contain

function (3.28). When algorithm (3.1) employs the gain in (3.28),

the algorithm is identical to the approximately-optimal scheme in

(2.13)-(2.14). In other words, the approximately-optimal filter

(2.13)-(2.14), if used for parameter estimation, qualifies as a

useful algorithm satisfying requirements R.l, R.2, and R.3.



CHAPTER 4

CONVERGENCE INVESTIGATIONS FOR THE

FILTERING PROBLEM

In Chapter 3, convergence theorems were developed for a class

of sub-optimal estimators used for solving the continuous-time para-

meter estimation problem. The techniques used to prove these theorems

can be applied in analyzing the behavior of certain sequential, sub-

optimal, continuous-time filters. The main objective of this chapter

is to formulate convergence theorems for the class of sub-optimal

filters represented mathematically by (2.15).

Section 4.1 contains a list of the assumptions which are

sufficient for convergence; basically, they allow the analytical

tools and ideas described in Chapter 3 to be applied to the task of

demonstrating the asymptotic convergence of time-domain filters.

The two convergence theorems are found in Sec. 4.2 and show that the

output of the sub-optimal filter, (2.15), converges to the message

as time becomes infinite. The convergence is both in the mean-Square

sense and with probability one.

Section 4.3 shows that, except for the most general assumptions

on the message and observation models, the convergence theorems de-

veloped for the non-linear filtering problem, can be applied to the

.1—

During the remainder of the thesis the phrases "asymptotic con-

vergence of filters," "filter is shown to converge", etc. means that

the difference between the filter output and message process converges

to zero, in some probabilistic sense, as time increases indefinitely.

47
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linear filtering problem and that the Kalman-Bucy filter is asymp-

totically convergent. This chapter concludes with Sec. 4.4 where

properties of the message and observations models which guarantee

the convergence of the approximately-optimal filtering solution

developed in Chapter 2 are listed. The convergence ideas presented

in this thesis have demonstrated that a non-linear filter presently

being applied to real-world problems [30], [37], [7] is asymptotically

convergent. This filter meets the three requirements enumerated in

Chapter 1.

The demonstration of a convergent, approximately-optimal

filter illustrates only one type of result which can be realized by

using the mathematical techniques considered in this chapter. The

convergence theorems exhibit the applicability of Ito calculus and

martingale theory to the error analysis of sequential filtering

algorithms. The approach, theoretical proofs, and conclusions have

originated with this thesis investigation.

4.1 Assumptions and Preliminagy Derivations

This section lists the assumptions for the convergence theorems

to be proved in Sec. 4.2 and makes preliminary calculations on the

error equation.

Section 3.1 dealt with the parameter estimation problem.

Assumptions 1 through 5 concerned the behavior of the non-linear

function in the observation process, h(t,x) in (2.4), and the

behavior of the gain function in the sub-optimal estimator, (3.1).

Assumptions of this type are retained in the filtering solutions

suggested in this chapter. In addition, conditions are placed on

the non-linear function defining the message process, f(t,x) in
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(2.1). Assumptions are also made involving a combination of the

gain function, (2.15), and both h(t,x) and f(t,x). All assumptions

used in Theorems 4.1 and 4.2 are listed below. The first two

assumptions are the same as 1, 2 and 3 in Chapter 3.

Assumption B.1: h(t,x) is monotone and differentiable in x for
 

every t.

Assumption B.2; a(t,x; ) has the same sign as h(t,x) for every
,t

O

t and is measurable on F{[to,t], x(s)}, the o-algebra generated by

t;(s). tO s s s t].

The remainder of the assumptions are given in terms of the

following Simplified notation.

C(t) = SUp f(t,x)

X

b(t) = in£\h(t,x)|

X

¢(t,to) = exptfioc<s>ds1

a(t) = a(t,;; )
,t

o

inf|a(t)] = inft |a(t,X)‘

XEC

to

sup‘a(t)] = supt |a(t,X)]

XECt

o

t . . .

where C 13 the space of cont1nuous functions on [to,t].

o

Assumption B.3: f(t,x) is differentiable in x for every t.

2

Assumption 3.4: a) lim sup ¢ (t,to) = K.< m

Tam tZT

b) I: b(S)inf‘a(s)‘ds = m

o

c) I: 52(to,t)sup‘a(t)\2dt < a

o
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¢(t t )2

Assumption B.4': a) 1im ‘ 9
t

t—m 8Xp[2 It

 

= 0

b(s)inf|a(s)‘ds]

o

b) f:osup‘a(t)]2dt < a

Before the two convergence theorems are stated, a basic equa-

tion involving the filter error is developed from (2.1) and (2.4).

The error at time t is denoted by e(t) = x(t) - x(t). The follow-

ing differential equation can be written from (2.1), (2.4), and (2.15).

de(t) = [f(t,;(t)) - f(t.x<t)>]dc + a(c>th(t.x(t)) - h<t§<c>>1dc

+ a(t)dB(t)

2

If Z(t,e) = e , then Ito's lemma (Appendix B) gives an equa-

tion for e(t)2:

de(t)2 = 2 e(t)[f(t,;(t)) - f(t,x(t))]dt + 2 e(t)a(t)[h(t,x(t)) - h(t,;(t))]dt

+ a(t)2dt + 2 e(t)a(t)dB(t)

The mean-value theorem gives

f(t,xm) = f(c.§<t)> + f(t,a(t))[x(t) - §<t>3

h(t.§(t>> + h(t,e<c>>[x<t> - Em)h(t,X(t))

where a(t) and e(t) are both in between x(t) and x(t). The

equation for the error Squared becomes:

2 2 ' . 2

de(t) = 2 e(t) [f(t,g(t)) - a(t)h(t,9(t))]dt + a(t) + 2e(t)a(t)dB(t)

(4.1)

Introducing a new variable y(t) = ¢(to,t)2e(t)2, (4.1) leads

to the following differential equation.
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dy(t) e(t:o.t)2de(t:)2 + e(t)2 g; e(to.t)2dt

2 e<t>2o<co.t>2[f(c.o<t>) - e(t)]dc - 2 o<t0.c>2a<t>fi<t.e<t>)e<t>2dt

+ o<t0.t>2a<c>2dt + 2 otto.c>2e(t>a<t>dB<t)

The definition of C(t) and Assumptions 8.1 and B.2 lead to

the following inequality for y(t).

y(t) s y(r) - I:Z]a(s)‘|h(s,9(s))‘y(s)ds +-f:¢(to,s)25up|a(s)‘2ds

+f:d(tois)28(8)a(8)dB(S) ; t,r 2 t0 (4.2)

Equation (4.2) is the basic inequality used in the proofs of

Theorems 4.1 and 4.2.

4.2 The Convergence Theorems,

In the previous section, (4.2) was derived under Assumptions

B.1-B.3. This equation is significant because it displays certain

Characteristics of the errors produced by the filters defined in

(2.15) and because it is in a form.which allows application of the

convergence techniques developed in Chapter 3. The way in which the

ideas of Secs. 3.2 and 3.3 provide two convergence theorems for the

filters in (2.15) is shown in this section.

The two convergence theorems indicate the potential of using

stochastic approximation ideas for analyzing continuous-time sequential

filters. Theorem 4.1 demonstrates the asymptotic convergence of the

filters in (2.15) with probability one and in the mean-square sense

when (2.1), (2.4), and the gain functions in (2.15) satisfy B.l, B.2,

B.3, and B.4. Theorem 4.2 provides mean-square convergence under

assumptions B.l, B.2, B.3, and B.4'.
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d

Theorem 4.1 Let y(t) = afiEl- be the observed process defined by
 

(2.4) and let x(t) be the message process defined by (2.1). Then,

if Assumptions B.1 through B.3 and B.4 are satisfied, the output x(t)

of the filter represented by

d;(t) = f(t,;(t))dt + a(t,§[ t)[dz(t) - h(t,x(t))dt]; E(t ) arbitrary

°’ 0 (2 15)

converges to x(t) with probability one and in the mean-square sense.

Proof. The inequality (4.2) can be weakened by noting that the second

term on the Right Hand Side is always negative.

t 2 2 t 2

y(t) s y(r) +Iro<co.s> supIa<s>I ds +fro<to.s> e<s>a(s>dB(s>

Letting w(t) = y(t) +-f:¢(to,8)zsup‘a(s)]2ds gives

t 2

w(t) s w(r) + frz ¢(to,s) e(s)a(s)dB(s) (4.3)

Equation (4.3) satisfies all of the hypotheses of Lemma 3.1,

so w(t) is a positive super-martingale. The previous chapter

stated that the expected value of a super-martingale is non-increas-

ing so that

lim Ew(t) = E; = Kl< m

t-cco

and lim Ey(t) = Eg

t—m

Returning to (4.2) and using the inequality

inf]a(t)‘b(t) s ‘a(t)“h(t,9(t))‘ provides another inequality for

y(t)-

y(t) s y(r) - 2 f:inf]a(s)|b(s)y(s)ds +-I:¢(to,s)zsup‘a(s)|2ds

+-I:¢(to,s)2e(s)a(s)dB(s) (4.4)
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The expectation operator is applied to (4.4) and the fact,

derived in Lemma 3.1, that E I:¢(to,s)2e(s)a(s)dB(s) = 0 is employed

to obtain an equation for Ey(t).

Ey(t) s Ey(r) - 2 Itinf|a(s)‘b(s)Ey(s)ds +.[t¢(t S>23up‘a(s)‘2ds

r r o’

Combining Assumption B.4(c) and the convergence of Ey(t),

fjin£|a(s)|b(s)sy(s)ds < o for every r 2 to. (4.5)

If (4.5) is to be consistent with Assumption B.4(b),

. . 2 2
11m Ey(t) = 11m ¢(t ,t) e(t) = O.

t-a t—aco o

Since,from Assumption B.4(a), lim sup ¢(t,to)2 = K.< m, the function

2

¢(to,t)2 = 1/¢(t,to) must be non-zero for large t; thus

, 2

11m E e(t) = 0.

t—uoo

The basic super-martingale inequality (Appendix B) demonstrates

probability-one convergence. The process w(t) has been shown to be

a positive super-martingale so

Prob[ sup w(u) > e}‘< EEX£2

r2u2t e

The process w(t) depends on y(t) in such a way that

Prob{ sup y(u) > e] < Prob[ sup w(u) > e]

r2u2t r2u2t

Combining Assumption B.4(c) and the mean-square convergence

result,

lim y(t) = O w.P.l.

t-too
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It has already been pointed out that ¢(to,t)2 > 0 for large

t so that

lim e(t) = 0 w.P.l.

t-Ieo

The proof of Theorem 4.1 relied on the reasonable assumption

that lim sup ¢(t,to)2 = Kw< a. In Theorem 4.2, ¢(t,to)2 is allowed

to grow large as t approaches a. This theorem differs from Theorem

4.1 both in its list of assumptions (B.4 is replaced by B.4') and

in its conclusions since only mean-square convergence is demonstrated.

Theorem 4;; Under Assumption B.l through B.3 and B.4', the output
 

x(t) of the filter represented by (2.15) converges in the mean-square

sense to x(t):

1im E(x(t) - x(t))2 = o.

t-a

Proof. The inequality inf|a(s)|b(s) s Ia(s)||h(s,e(s))\ and the

expectation of (4.2) show that

Ey(t) s Ey(r) - [:2 iana<s>Ib<s>Ey<s>ds +J§o<to,s)zsup|a(s)|2as;

r,t 2 to.

In the proof of Theorem 3.2, a function which dominates Ey(t) was

shown to exist. Following that argument, the bound for Ey(t)

becomes

Ey(t) s D(t,tO)Ey(t8)+-IEOD(t,s)¢(to,s)zsup]a(s)]zds

where

D(t,to) = exp[- j: inr|a(s)]b(s)ds].

0
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Now, from the formulation of y(t),

2 .— ._

Ee(t) s ¢(t,to)2D(t,to)Ee(to)2 + ¢(t,t0)2f: D(t,s)¢(to,s)zsup|a(s)]st.

o

 

(4.6)

Assumption B.4'(a) guarantees that

2

2_ Mute)

¢(t,to) D(t,t0) = t _. 0 as t .. as .(4.7)

exp[2 It inf|a(s)|b(s)ds]

o

Letting D(t,to) = ¢(t,tO)ZD(t,tO), (4.6) can be written as

Ee(t)2 D(t t )Ee(t )2 + t D(t s)su ]a(s)]2ds (4 8)

S ’ o o Ito ’ p ' °

Equation (4.8) is the same as (3.25). Equation (4.7) shows

that D(t,s) a 0 as t a a. Assumption B.4'(b) and the same argument

as that used on (3.25) can be applied to (4.8), giving

lim Ee(t)2 = O.

t-aoo

4.3 A Convergence Theorem for the Linear Kalman-Bucy Filter

The two convergence theorems of Sec. 4.2 are self-contained

and developed independently of any other studies into convergence of

filtering solutions, except those of discrete-time stochastic

approximation. To properly evaluate these two new theorems, other

known filtering convergence theorems should be consulted. The only

published convergence results in the area of continuous-time,

sequential filters are for the optimal solution to the linear filter-

ing problem, the problem defined in Sec. 1.2.1. For this Optimal

solution, the Kalman-Bucy filter, it is well known that the filter's

error converges to zero in the mean square sense when the signal

and observation models satisfy certain conditions.
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One way to use the established linear convergence theorem for

checking the quality of the non-linear theories of Sec. 4.2 is to see

if the linear result can be obtained from the non-linear theorems when

the non-linear functions are reduced to linear functions. This section

proceeds on this basis, checking to see if the assumptions about the

message and observation processes along with the Kalman-Bucy filter's

gain function satisfy the hypotheses of Theorems 4.1 and 4.2.

The linear filtering problem uses the following definition for

the signal and observed processes:

dxgt)

dt F(t)x(t) ; x(to) = b is an unknown constant. (4.9)

dx(t) H(t)x(t)dt + dB(t) . (4.10)

Equations (4.9) and (4.10) are the linear cases of (2.1) and

(2.4), reSpectively. When b is assumed to be Gaussian with a mean

of zero and a variance of P, the optimal, minimum-variance, filter-

ing solution, which is the Kalman-Bucy filter, is represented by

dx(t) = F(t)&(t) + P(t)H(t)[dx(t) - H(t)fi(t)] ; a(to) = O (4.11)

41::t = 2 F(t)P(t) - [H(t)P(t)]2 ; P00) = P - (“'12)

In (4.11) and (4.12), fi(t) is the filter output at time t and

P(t) = E(R(t) - x(t))z.

Theorem 4.3 describes the asymptotic behavior of the Kalman-

Bucy filter.

Theorem 4.3 Let gz'¢(t,to) = F(t)¢(t,to) with w(to’to) = 1, that

is,

y(t,to) = exp[f:0F(s)ds].
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If

“t,t )2
lim t O 2 2 = 0

tam Ito¢(s,to) H(s) ds

then lim E(2(t) - x(t))2 = O.

tam

Proof. The solution to (4.12) is

 

 
 

_ "(t’to)2

P(t) - P-1 +-f:o¢(s,to)2H(s)2ds

Since

1 l

P“1 +-I: y(s,to)2H(s)2ds S I: y(s,t0)2H(s)2ds for t > to

o o

it follows from the hypotheses that

2

Mme)

2

I:0¢(s,to)2H(s) ds

 

OsP(t)s —.0 as t-ooo-

This theorem is analogous to the multi-dimensional discrete-time

linear filtering result by Aoki [l6] and Sorenson [43].

The object of this section is to see if the non-linear con-

vergence Theorems 4.1 and 4.2 imply the convergence of the Kalman-

Bucy filter from the hypotheses of Theorem 4.3. The function

¢(t,to)2 = (y(t,to)2 (since C(t) = P(t)) may become unbounded so

Theorem 4.2 is checked to see if the gain of the Kalman-Bucy filter

satisfies its hypotheses.

Assumption 8.1 through B.3 are satisfied by inspection, so

only Assumption B.4' need be examined. The gain function for the

Kalman-Bucy filter is
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o(t.to)2H(t)

[P-1 +-I:O¢(s,to)2H(s)2ds]

 

a(t) = P(t)H(t) =

Define the function

2

e(t.to)

 

tn(t) = t

exp[2 ft b(s)inf|a(s)|ds]

o

where

H<t>2o<c,to>2
 

b(t)inf a(t) = _ .

[P 1 +‘[: ¢(s,to)2H(s)2ds]

O

Letting the denominator of m(t) be

Hts>2o<s,to>2
ds 

1 t
u(t) = - exp 2 I

P t "1 S 2 2

O[P +‘ft ¢(u,to) H(u) du]

0

produces the differential equation

duct) _ 2 o<c.to)2H<t)2u<t>

dt [P-1 +-I:o¢(s,to)2H(s)2ds]

 
. -1.. u<to> P

The function w(t) = [P-1 +‘[: ¢(S,to)2H(s)2ds]2 satisfies the

o

differential equation,

dw(t) = 2 ¢(tato)2H(t
)2w(t)

dt [P-1 +.[: ¢(s,to)2H(s)2ds]

o

  

"
O
l
r
—
I

; W(to) =

Since w(t) and u(t) satisfy the same linear differential

equation with identical initial conditions, they are equal; i.e.,

w(t) = u(t). Now, to examine Assumption B.4', this equality is used

in m(t).

2 2

o(t.to) ¢(t.to)

m(t) = = _.

exp[2 f: b(s)inf|a(s)‘ds] P[P 1 +‘[: ¢(s,to)2H(S)2ds]2

o o
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The hypothesis in Theorem 4.3 is sufficient for

o<t.to)2
lim t = O .

tam exp[2 Itob(s)inf]a(s)|ds]

 

The assumption made for (4.9) and (4.10) in Theorem 4.3 suffices

for making the gain in the Kalman-Bucy filter satisfy Assumption B.4'

(a). Since

¢(s,to)4H(s)2ds

- 2

o [P 1 +-f: ¢(u,to)2H(u)2du]

o

 

[tosup]a(s)‘2ds = I:

the hypotheses of Theorem 4.3 do not guarantee that a(t) satisfy

Assumption B.4'(b). Thus, Theorem 4.2 cannot be used to show that

the Kalman-Bucy filter converges since the gain function may not be

square-integrable.

Conclusions about convergence cannot be drawn from the non-

linear theorems if ¢(t,to)2 is unbounded for large t, so the

hypotheses of Theorem 4.3 will be broken into three separate cases

with one case containing the unbounded ¢(t,to)2 condition.

Case 1: a) lim sup os(t,to)2 = K~< m

b) lim [: ¢(s,to)2H(s)2ds = m

otda

Qase 2: a) 1im ¢(t,to)2 = 0

tan

b) limft ¢(s,t )2H(s)2ds = K. < m

t o l

tau 0

Case 3: a) lim sup ¢(t,t0)2 = m

2

o<t.to)

2

I:0¢(s,to) H(s)2ds

 

b) *0 as t-om
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If f(t,x) and h(t,x) satisfy case 1, case 2, or case 3,

then the functions satisfy the hypotheses of Theorem 4.3. Conversely,

if the non-linear functions agree with the hypotheses of Theorem 4.3,

they fit into one of the above cases. Thus, the three cases are

equivalent to the hypotheses.

Since Theorem 4.1 and 4.2 cannot handle case 3, only the other

two cases will be considered. Case 2 does satisfy the conditions of

Theorem 4.2. Assumption B.4'(a) was examined above and now Assumption

B.4'(b) is obeyed since

dt
 

ott t >4H<t>2
2 ’ O

sup]a(t)‘ dt =. _

Ito J":0 [P 1 +.[: ¢(s,to)2H(s)2ds]2

o

l 4 2

s _2 I: ¢(t,to) H(t) dt

P o

, 2

and w1th ¢(t,to) < l for t > some T > t0

2 1 2 2 1 T 4 2
I: sup\a(t)| dt s gfg‘fi;¢(t,to) H(t) dt + ;:2«fto¢(t’to) H(t) dt

0

l T 4 2
+—-——.

5 K1 P_2 Ito¢(t,to) H(t) dt.

Theorem 4.1 handles case 1. First, Assumption B.4(c) requires

I: ¢(to,s)2sup‘a(s)|2ds be integrable. This follows directly when

pazt (b) of case 1 and Lemma 3.2 are applied to the integral,

o(t.to)2H(t)2

dt.

-1 t 2 2 2

o [P +«fto¢(s’to) H(s) ds]

 

co 2 2

[to¢(to,t) sup\a(t)\ dt = f:

Furthermore, for Assumption B.4(b), part b of case 1 and Lemma 3.2

show that

2 2

m(8.t0) H(S)

o [2'1 +‘f: ¢(u,to)2H(u)2ds]

O

G)

f:Ob(s)inf|a(s)\ds =‘ft dS =mo
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Consequently, Theorem 4.1 and 4.2 Show that the optimal,

Kalman-Bucy solution to the linear filtering problem is asymptotically

convergent in the mean-square sense if (4.9) and (4.10) satisfy the

hypotheses of Theorem 4.3 and lim sup ¢(t,to)2 < m. This is the first

time that restrictions have been placed on (4.9) and (4.10) which

guarantee the convergence of the optimal linear filter with prob-

ability one.

4.4 A Class of Gain Functions Guaranteeing Convergence
 

This section returns to the filters represented by (2.15)

which were proposed as solutions to the non-linear filtering problem.

In Sec. 4.2, these sub-optimal filters were shown to converge when

the models of the message and observation processes, (2.1) and (2.4),

and the gain function, a(t,; ,t), satisfied Assumptions 13.1 - B.3

and B.4 or B.4'. The gain fugction does not have any fixed Structure

and only has to fulfill conditions such as: I: b(t)inf]a(t)‘dt = m

and I: ¢(to,t)zsup|a(t)]2dt < m. In this section, a class of gain

functiogs is formulated and more assumptions are made about (2.1)

and (2.4). The assumptions and Theorem 4.1 imply that the sub-optimal

filters converge with probability one and in the mean-square sense.

The following assumptions are made about (2.1) and (2.4):

Assumption B.l, B.2, B.3, and

Assumption C.l: sup §%%%-< m where g(t) = sup]h(t,x)‘

t x

 

Assumption C.2: Let C(t) 2 f(t,x) 2 D(t) for t 2 t0 and for

every x and define

¢(t,t0) exp[I:0G(s)ds]

w(t,to) exp[f:0D(s)ds];

‘
3
’
!

_
'
2

“
1
‘
q
u

k
.

'
"
.
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2

o(t.t0)

then sup
._______§.< m and lim sup ¢(t,t )2 = K.< m .

t N(t,to) O

Assumption C.3: I: ¢(s,to)2b(s)2ds = m

0

Corollary 4.4 If (2.1) and (2.4) satisfy Assumptions B.l - B.3 and

C.1 - C.3 and if the gain function a(t,x; t) has the form

0,

gi(t’;ro,r>°1<t’§<t>>

 ]a(t,;£ ,t)] - (4.13)_ t ._ '—

o [a +Ift g2(s,xt ,S)c2(s,x(s))ds]

o o

where

_ 2 .

,t), g2<t,xt ,t) s oct.to> _)
O O -2-

2 ._

I(t.to) s g1(t.xt

b(t) s .1(r,;(t)), cztc,§(c>> s g(t)

then a(t,;£ t), (2.1) and (2.4) satisfy Assumption B.4.

3

Proof. Assumption B.4(a) is satisfied by inspection. Examining the

integrand of the integral in Assumption B.4(b),

y(c.to>2b<t>2

[a +‘[: ¢(s,to)2g(s)2ds]

O

 

b(t)inf'a(t)] 2

By Assumption 0.2, there exists a K and K such that for

1 2

every t

¢(tt)2
’ o t

ls—jskl and lsmb(t)sx2

I<t»to>

These inequalities weaken the lower bound on the integrand to

e(t.to)2b(t)2

 b(t)iana(t)| 2 2 t 2 2
K1K2[a' +‘ft0¢(8.to) b(S) d8]

Using Assumption C.3 and Lemma 3.2,

f:0b(t)inf|a(t)]dt = a .
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Assumption B.4(c) is now investigated.

¢(to,t)2¢(t,to)4g(t)2

r t 2 2 2
a + ft ¢(s,to) b(s) ds]

0

 

¢(t,to)28up‘a(t)]2 s

K4 K: ¢(t, t o) 22b(t)

[a" +Ijt ¢(s,to) 2b(s)2ds]2

o

 

Again, Assumption C.3 and Lemma 3.2 Show that

I:O¢(to,t)zsup]a(t)‘2dt < m,

completing the proof. w

Except for the discussions of the linear Kalman-Bucy filter in

Sec. 4.3, this chapter has concentrated on demonstrating the asymptotic

convergence of general sub-optimal, sequential filters. One reason

this investigation analyzed sub-optimal filters such as (2.15) was

to obtain theorems which provide analytical properties for Optimal,

non-linear filters. With this motivation, the ideas of stochastic

approximation exhibited by Theorems 4.1 and 4.2 were specialized to

produce the corollary in this section, Corollary 4.4. This corollary

is now used to show that the approximately-optimal filter represented

by (2.13)-(2.14) is asymptotically convergent.

Define the gain term in (2.15) as

a(t,§t t) = P(t)h(t,§(t)) (4.14)
O,

with

§(xt ,t)

P(t)= °

[v—l—_ar(b) +:j‘grotto S)h(s,;(s))2ds]
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and 6(xt ,t

o

> = exp[2 I: f(s,;(s))dsj .

O

The function P(t) satisfies the differential equation (2.14)

since

#1::t = 2 i(t.§(t))P(t) - [h(t,;(t))P(t)]2 ; 150:0) = varw).

The gain term a(t,;; t) is the gain term in (2.13) and also satisfies

3

o

(4.13) in Corollary 4.4. Therefore, Theorem 4.1 combined with Corollary

4.4 Show that the approximately-optimal filter represented by (2.13)

and (2.14) converges asymptotically with probability one and in the

mean-square sense if (2.1) and (2.4) satisfy Assumptions B.l, B.3, C.1, ,J

C.2, and C.3 and if the initial condition on (2.1), x(to) = b, has a

prior distribution. The convergence theorems of this chapter have

provided the means for displaying, under certain conditions, a filter-

ing solution which meets the three requirements of a useful filter;

optimality, convergence, and sequential structure.

4.5 Summary

The first major contribution of this chapter is the statement

and proof, in Sec. 4.2, of two theorems demonstrating the asymptotic

convergence of the non-linear filters defined by (2.15). Theorem 4.1

shows that the filtering error goes to zero both with probability one

and in the mean-square sense, with limitations placed on (2.1) and

(2.4) and on the gains a(t,;£ ,t)' One prime restriction in the

hypotheses of Theorem 4.1 is that the message process is bounded;

i.e., lim sup ¢(t,to)2 < m. Theorem 4.2 places other conditions on

the gain functions and allows the message process to become unbounded

yet shows that the output of the sub-Optimal filter converges in the
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mean-square sense to the message.

To compare Theorems 4.1 and 4.2 to known convergence results,

a convergence theorem for the optimal, Kalman-Bucy solution to the

linear filtering problem is given in Sec. 4.3 as a special case of

these theorems. Theorem 4.1 and 4.2 prove the convergence of the

Kalman-Bucy filter when the message process is bounded and when the «as

functions used in the mathematical models of the message and

observation processes, (2.1) and (2.4), guarantee the divergence of

a certain integral. Thus, Theorems 4.1 and 4.2 imply convergence of

the optimal linear solution but under restricted hypotheses. Section

4.3 produces a minor original result in the linear theory; Theorem

4.1 demonstrates convergence of the Kalman-Bucy filter with probability

one, a type of convergence that has not been proved in the literature.

In Sec. 4.4, additional assumptions were made about (2.1) and

(2.4). Corollary 4.4 showed that Assumptions B.l - B.3 and C.1 - C.3,

when combined with any of the gain functions specified by (4.13),

satisfy the hypotheses of Theorem 4.1. If any of the gain functions

given in (4.13) is used in (2.15) and if (2.1) and (2.4) fulfill the

corollary's assumptions, the filter defined by (2.15) converges, as

time increases, to the message process.

The second major contribution of this chapter concerns the

convergence of an approximately-optimal non-linear filter. The gain

function given in (4.14) satisfies the conditions in Corollary 4.4 and,

when placed in (2.15), defines a filter identical to the approx-

imately-optimal filter derived in Chapter 2. The combination of

Assumptions B.1 - B.3 and C.1 - C.3, Theorem 4.1, and Corollary 4.4

shows that an approximately-Optimal filter is asymptotically con-

vergent. Under the Specified restrictions, this filter, given by
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(2.13)-(2.14), provides nearly-minimum—variance estimates of the

message throughout the period of observation and, furthermore, is

guaranteed to converge to the message after lengthy processing of

the observations. The filter satisfies all three requirements of

a useful filtering solution as discussed in Chapter 1.

This thesis provides the first study into the asymptotic

convergence of filters for the continuous-time, non-linear filter-

ing problem. The style of analysis and its associated theoretical

tools used to prove Theorems 4.1 and 4.2 appear to provide logical

means for probing deeper into the behavior of non-linear, sequential

filters.



CHAPTER 5

AN EXAMPLE OF A FILTERING PROBLEM

This chapter considers an example of the filtering problem

defined in Sec. 2.1. The filter uses the approximately-optimal

algorithm discussed in Sec. 4.4 and is shown to satisfy the hypotheses

of Corollary 4.4 so that the filter is asymptotically convergent.

This convergence is verified when the message process, observation

process, and filter are simulated on a digital computer.

5.1 The Example and Computer Simulation

The filtering problem discussed in this chapter is defined as:

 
 

x(t) = f(t,x) ; x(0) = b; to = 0 (2.1)

y(t) = h(t.X) + V(t) (2»2)

where

f(t,x) = :33??? '9 x + 3.0.: 2 (5.1)

[1 + {——-—-21 1
(t + l)

h(t,x) = 0.5 x + 5 tan-1x (5.2)

and b is a Gaussian random variable with a mean = -l.5 and a

variance = 1.0.

The approximately-optimal filter derived in Sec. 2.2 and re-

presented by (2.l3)-(2.l4) is used to process y(t). This filter is

asymptotically convergent if (5.1) and (5.2) satisfy Assumptions B.l,

B.3, C.1, C.2, and C.3. These assumptions are now examined. With
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h(t,x) being monotone in x, Assumptions 3.1 and B.3 are verified

directly. Assumption C.1 is satisfied as shown below.

Also

f(t.X) =

which implies that

and ¢(t,to) =

Mute) =

Therefore

e(t.

sup

t v(t.

 

  

h(t,x) = 0.5 + 5 2

l + x

g(t) = sup‘h(t,x)| = 5.5 and

x

b(t) = inf|h(t,x)| = 0.5

x

sin(1000 t)__ 6.0 x

100 n t (t+l)4[l + { x 2}2]2

(t+1)

 

sin(1000 t) + 3.0

 

G(t) =
100 n t (t+1)2

_ sin(1000 t) _ 3.0

D(t) ' 100 n t 2
(t+1)

t sin(1000 8) ds + t 3.0 ds
explio 100 11- s O (S+1)2 :1

 

exp[ft sin(1000 3) d3 _ I; __§,g_ ds]

0 100 n S (8+1)2

, 2

11m ¢(t,to) =K<cn ,

t-m

2

t )

O 2 = sup 6xp[2 If; 3.02] < co ,

to) t (8+1)

and f:o(s,to)2b(s)2ds = (0.5)2f:¢(s,to)2ds = m .
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Thus the non-linearities (5.1) and (5.2) also satisfy Assumption 0.2

and C.3, demonstrating the asymptotic convergence of the filter.

A digital computer has been used to simulate the performance

of this filter. Equations (2.1), (2.13), and (2.14) were approximated

on the computer by the following difference equations.

x(ti+1) = x(ti) + f(ti,x(ti))At ; x(0) = b

ft(ti+1) = a(ti) + f(ti,5‘<(ti))At + P(ti)h(ti,ft(ti))[h(ti,x(ti))-h(tiR(ti))]At

+ P(ti)h(ti,2(ti))ABi ; 2(0) = -1.5

P(tiH) = P(ti) + 2 P(ti)f(ti,x(ti))At

- [P(ti)h(ti.fi(ti))]2At ; P(O) = 1.0

Here, At = t1 - ti_1 for i 2 1 and {A31} are Gaussian random

variables with mean zero and variance At for each i 2 0.

The solution to these difference equations has been shown to

converge to the actual solutions of (2.1), (2.13), and (2.14) in the

mean-Square sense as At a 0 [44].

Using At = 10-3 sec., 200 runs were performed on the computer.

For each run, the initial condition for (2.1), b, was sampled from a

Gaussian distribution and a new sequence of observation noises {A81}

was selected. Using these 200 runs, the sample mean and variance

of the error e(t) = 2(t) - x(t) were calculated. In this simulation

the filter does converge as time increases; Figures 2 and 3 display

the results.
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5.2 Summary

An approximately-optimal filter has been applied to a non-

linear filtering problem which satisfies the conditions for asymptotic

convergence given in Sec. 4.4. A computer simulation has verified

the convergence.



CHAPTER 6

CONCLUSIONS

Section 6.1 outlines the major results of the thesis. Possible

extensions of the investigations in this thesis are outlined in Sec.

6.2.

6.1 Conclusions and Results

This thesis has proved the existence, under certain conditions,

of an approximately-optimal, asymptotically convergent, sequential,

non-linear filter. This culminates an effort devoted to developing

useful and practical filtering algorithms. The primary results are

theorems which demonstrate the asymptotic convergence of sequential,

non-linear algorithms both for filtering and parameter estimation.

After briefly describing the stochastic filtering problem and

the characteristics of useful solutions, Chapter 1 discusses the need

for analyzing the asymptotic behavior of non-linear, continuous-time

filters. A literature review suggests that the method of stochastic

approximation, a well-developed technique of classical, discrete-

time statistics, could be applied in an investigation of the asymptotic

properties of sequential filters.

In Chapter 2, a scalar version of the filtering problem is

formulated in terms of non-linear stochastic differential equations.

Modeling the problem in this manner allows a calculus developed by

Ito to be applied to the performance analysis of filters. Chapter

2 also prOposed the algorithms in (2.15) as sub-optimal solutions
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to the filtering problem. Besides possessing the general features

of presently-documented time-domain filters, these algorithms have

unstructured gain terms. This thesis marks the first time that

continuous-time filters with arbitrary gain terms have been in-

vestigated.

Before pursuing an analysis of the asymptotic behavior of if

these filters, the method of stochastic approximation is extended

to the continuous-time, parameter estimation problem in Chapter 3.

The large-time behavior of a Special version of the algorithms in

(2.15) is investigated. A parameter of a signal is estimated where .u

the signal is observed in the presence of additive, white noise.

Theorems 3.1 and 3.2 are the most important results in this thesis.

Conditions are imposed on the signal and the gains of estimators

which guarantee convergence to the true parameter as time increases.

The sequence of estimates converges with probability one and in the

mean-square sense. These theorems are original and illustrate the

use of Ito calculus and martingale theory in asymptotic convergence

studies. Section 3.4 illustrates a way of effectively exploiting

the arbitrary gain structure permitted in the theorems. A particular

gain function is selected that leads to a nearly-optimal (in a

Bayesian sense), convergent algorithm.

In Chapter 4, the filters (2.15) are considered. Two key

theorems, 4.1 and 4.2, were developed from the ideas expounded in

Chapter 3. These theorems Show that when the message process, the

observed process, and gain function in (2.15) satisfy certain

hypotheses, the outputs of the filters in ( 2.15) converge to the

message process as time grows large. Both probability-one and mean-

square convergence are demonstrated. Section 4.3 examines the
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conclusions of Theorems 4.1 and 4.2 for the special case when the

message and observation processes are generated by appropriate

linear stochastic differential equations. Conditions are specified

which guarantee that the Kalman-Bucy filter is asymptotically con-

vergent with probability one.

In Sec. 4.4, a basic goal of this study is accomplished when

Theorem 4.1 is used to demonstrate that an approximately-optimal,

non-linear filter converges asymptotically, given that the message

and observation processes satisfy certain conditions. That is, a

filter is specified which provides nearly-minimum-variance estimates

of the message process throughout the observation time interval and

which converges surely to this message as time increases. This

thesis contains the first investigation of the asymptotic convergence

of non-linear, continuous-time, sequential filters and indicates a

way in which stochastic approximation can be applied to the filter-

ing problem.

An example of a filtering problem is given in Chapter 5. The

approximately-optimal filter of Sec. 4.4 is applied as a filter and

convergence is demonstrated by use of a digital computer simulation.

6.2 Extensions

There are two different directions in which the results of

this thesis can be extended. Either the hypotheses of the conver-

gence theorems can be weakened or these theorems can be extended

to include the multi-dimensional filtering problem.

The convergence theorems in both Chapters 3 and 4 are for one-

dimensional problems. These theorems may be extended to the multi-

dimensional case, thus enabling them to be applicable to large scale
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engineering problems. Insight into this type of extension may be

gained by consulting Albert and Gardner [20] for an application of

the method of stochastic approximation to estimating, via discrete-

time observations, a vector of parameters.

The analyses of Chapters 3 and 4 may be closely examined to

see if less restrictive hypotheses can be placed on the convergence

theorems. Albert and Gardner's analysis of constrained, discrete-

time estimators offers a way of reducing the restrictions on the

observed processes. Another possibility is to interconnect the con-

cepts of Liapunov stability and the method of stochastic approximation

in continuous-time. Introducing a Liapunov function for the differ-

ential equation representing the message process into the convergence

ideas of this thesis may lead to asymptotic convergence results more

effective than those in Chapter 4.

The approach exhibited in this thesis may also be applied to

the general time-domain filtering problem defined in Sec. 1.1, i.e.

where u(t) # 0 in (1.1). An investigation into the asymptotic

behavior of filters for this type of problem should begin with an

examination of the discrete-time results of Albert and Gardner

discussed earlier in Sec. 1.2.7.
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APPENDIX A

STOCHASTIC DIFFERENTIAL EQUATIONS AND THE ITO CALCULUS

Stochastic differential equations have only recently been used

in engineering applications. The equations were initially misunder-

stood, creating a confusion about the proper analytical procedures

for handling them. The purpose of this appendix is to paraphrase

recent publications and briefly explain the available facts about

stochastic differential equations.

The following equation defines the n vector g(t):

j—fi‘t—l = g(t) + amen) (M)

where p(t) is a zero-mean, white noise vector process, i.e.,

E ui(t)uj(s) = 5(t-s)5ij, and g(t) and D(t) are, respectively,

random vector and matrix functions of t, which may depend on the

present and past values of u(t). Equation (A.1) is a general

engineering definition of a stochastic differential equation. «The

filtering error equations in this thesis are of this type.

To display the need for the strict attention necessary when

dealing with stochastic differential equations, an example from

Kailath [34] will be discussed. Consider the following system of

equations involving Gaussian white noise u(t).

B(t) ;u(t) ; B(O) = 0 (A.2)

x(t) = B(t)u(t) ; x(0) = 0 (A.3)
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The solution for x(t) is:

x(t) = jgs(s)u(s)ds (A.4)

where B(t) = Igu(s)ds (A.5)

Equation (A.4) can be written as:

x(t) = j‘SB(s)dB(s) (A.6)

and formal integration gives:

B_(e)_2 t 2
x(t) = 2 |0 =B(t) /2. (A.7)

As indicated, the integration of (A.6) was formal, following

normal calculus rules. Equation (A.6) will now be examined by apply-

ing the fundamental formula for evaluating integrals:

x(t) = lim 2 B(pi)[B(ti+1) - B(ti)] (A.8)

iti-I-l-ti "'0 ti

where [0, t1,t2,...,tn 1,t} is a partition of [0,t] and pi is

an oint in the interval t, t, .yp [1. 1+1]

Before continuing with this discussion, certain properties

of the random process B(t), which has the following characteristics,

are discussed.

EB(t) =0

E B(t)B(s) = min(t,s)

The Gaussian process with these properties, called a Brownian motion

process, has been studied extensively and has the following features:

independent increments, Markov and martingale behavior, and continuity

but non-differentiability for almost all sample functions. Related to
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this last feature, and very important in the analysis of the integral

(A.6), is the Levy oscillation property:6 If {0 = to,t1,...,tn = t}

is a partition of [0,t] then

lim 2 [B(t ) - B(ti)]2 = t (A.9)
'+1

lt:i+1'tii"0 ti 1

where the limit exists w.P.l and in the mean square sense.

To analyze (A.6), let pi = ti' Then (A.8) becomes, from

  

(A.9):

x(t) = lim 2 B(ti)[B(ti+1) - B(ti)]

2 2 2

= mm mm) - B(ti) _ z [B(tm) - B(ti)]

2 2

Bftzz t
= - _. (A.10)

2 2

The solution (A.10) disagrees with (A.7). If pi = t1+1 in

(A.8), the result also disagrees with (A.7).

 
 

x(t) = lim 2 B(ti+1)[B(ti+1) - B(ti)]

2 2 2
B(t. > - B(t.) [B(t )- B(t)]

= lim{2 1+1 2 1 +2 i+12 1

2

These conflicts indicate the need for carefully formulating

stochastic differential equations such as (A.l) and for strictly

defining the integration procedure to be utilized in the solution

of such equations.

The formulation presently being applied in the literature

and being relied upon in this thesis has a number of important

theoretical advantages (Kailath). This formulation, which applies

The Levy oscillation property is shown in Doob [41], p. 395.
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d

when g(t) is Gaussian, formally makes [g(t) = agi£l , where B(t)

is a vector Brownian motion process, and states that (A.1) is equi-

valent to (A.11).

_ t t

g(t) - _}_t_(to) + It £(S)ds + ft p(s)dp(s) (11.11)

0 o

The solution to (A.11) is symbolically represented as:

d)_(_(t) = £(t)dt + p(t)dp(t), (A.12)

The first integral in (A.11) is treated as a Reimann integral,

while the second is defined as the Ito integral, first defined by Ito

[45]. Since the Ito calculus is used throughout the thesis, its pro-

perties are listed in Appendix B. One important property of this

calculus is the chain-rule for differentiation (Theorem 3.1, Ito's

Lemma), which is used when determining the differential equation for

a function of g(t).

To illustrate Ito's lemma and to Show the difference between

Ito and non-Ito calculus, the stochastic differential equation in

(A.13), is considered.

dz(t) = % z(t)dt + z(t)dB(t) ; z(O) = l (A.13)

Theorem B.l shows that the solution in the Ito sense is:

z(t) = exp[B(t)]. (A.14)

Using the notation of Theorem B.l, let a(t) = O and b(t) = 1.

Then, x(t) = B(t). Now, let Z(t,x) = exp[x]. Theorem 8.1 says that

2

dz(t) % a-—g-exp[x(t)]dt +-§;-exp[x(t)]dB(t)

BX

35 z(t)dt + z(t)dB(t).
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Thus, when Ito calculus is used to analyze (A.13), (A.14) is

the correct solution. The solution to (A.13) when applying the rules

of ordinary calculus to (A.13) divided by dt is:

z(t) = exp[Btt) + t/2J.

Other ways of treating stochastic differential equations have

been documented. All assume (A.1) is equivalent to (A.11) and specify

different definitions for the Stieltjes-type integral in (A.11).

Stratonovich [32] has provided the most popular alternative to Ito's

t + t

1+1 i

2

solutions to (A.11) which would be obtained by formal integration, at

definition; his method selects pi = in (A.8) and provides

least in the scalar case. Unfortunately, his integral doesn't possess

analytical properties as convenient as those listed in Appendix B for

the Ito integral.

This discussion has concentrated on stochastic differential

equations containing Gaussian white noise. The remainder of this

appendix describes the available literature concerning definitions

for stochastic integrals, such as the one in (A.8), when the noise

in (A.1) is non-Gaussian. Portions of the following comments are also

found in Kailath [34] and Fisher [8].

The correct way of representing white noise is to define it as

a generalized random process, such as discussed in Gel'fand and

Vilenkin [46]. Part of Gel'fand's develOpment shows that the gen-

eralized derivative of Brownian motion has a delta function for its

correlation function. More generally, the random variables comprising

the formal derivative of any process with independent increments are

shown to be independent. In other words, the formal derivative of
 

an independent increment process is white. This fact has been used
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in formulating stochastic differential equations Since both the Ito

and the Stratonovich integral have been defined when B(t) is replaced

by any independent increment process [13], [45]. However, this more

general representation of white noise cannot be applied when analyzing

observation processes such as (1.2) and (2.2). Independent increment

processes can be shown to be either impulsive (Poisson) processes or

Brownian motion processes or a combination of the two. Kailath and

Fisher indicate that it is not possible to define a filtering problem

which has an observation process containing impulsive noise.

In summary, if the white noise in the models of the observation

processes used for the filtering problem is considered equivalent to

the formal derivative of an independent increment process, the white

noise must be Gaussian.

There is at least one other way to interpret white noise.

Assume it is equivalent to the formal derivative of any process with

orthogonal increments. Results on the derivative of independent in-
 

crement processes indicate that the random variables comprising these

processes are independent when all that is needed is orthogonality.

Thus, the derivatives of orthogonal-increment processes do seem

logical as representations for white noise. There does not seem to

be any published work on the formulation of stochastic differential

equations using this interpretation of white noise. Because of these

limitations in the theory of stochastic differential equations, this

thesis treats only Gaussian, white noise in the observed process (2.2).



APPENDIX B

O-ALGEBRAS, ITO CALCULUS, AND MARTINGALES

This Appendix defines and discusses three important concepts

in stochastic processes.

3.1 a-Algebras Generated by Stochastic Processes

Let m(t,w) be a stochastic process defined on the probability

space {Q,H,P] where w E Q and t E I, the index set; 0 is a sample

space, H is a a-algebra of measurable sets and P is a measure

assigned to the sets in H. For the remainder of this appendix, and

for the entire thesis, m(t,w) is denoted as m(t).

The G-algebra generated by the random process [m(s), t0 5 s s t]

is defined as the minimal a-algebra of events that contains all events

of the form: {w : w E Q and m(u,w) E A] where u 6 [to,t] and

A E R is any Borel set. This O-algebra is denoted by F{[to,t],m(u)].
l

Theorems from measure theory [41], [47] Show that P[[to,t],m(u)}<: H,

that P[[to,s],m(u)] c F[[to,t],m(u)] for t 2 s, and that m(t) is

measurable on F{[to,t],m(u)}.7

b.2 Properties of the Ito Integral

Let B(t) be a Brownian motion process defined on I = [tO,T].

This section lists the properties of the Ito calculus that follow

from Ito's definition of the integral I: g(s)dB(s). This integral

0

cannot be defined in the ordinary Riemann-Stietjes sense Since B(t)

is of unbounded variation with probability one.

 

For a discussion of O-algebras (O-fields) consult Loeve [47] (Chap.

1). Doob [41] (pp. 599-602) has a discussion of a-algebras generated

by random processes.
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Ito calculus is thoroughly discussed in Skorokhod [45]. The

o-algebra generated by B(s), where tO S s s t, is F{[to,t],B(s)].

Let M2 (F t) be the class of functions g(t) which are measurable on

F{[t0 ,t] ,B(s)] and satisfy Prob[IToIg(s)]2dt < a} = l. The Ito

integral I: g(s)dB(s) is defined for all g(t) 6 M2 (Ft ) and has

the following properties.

Property 3.1: E I: g(s)dB(s) = 0 t E I

0

Property B.2: E[I:g(u)dB(u)]F{[to,s],B(r)]] = O for t 2 s and

t,s 6 18

Property B.3: E]f:og(s)dB(s)]2 =IigE|g(s)|2ds for t E I

Property B.4: The process w(t) =-IE g(s)dB(s) is a martingale.

Property B.5: The process w(t) is t: continuous process with prob-

ability one.

Appendix A indicated that the Ito integral has been extremely

useful in the formulation and analysis of stochastic differential

equations. Special care must be taken when applying the chain-rule

for differentiation to these equations. Theorem B.l provides the

proper differentiation formula.

Theorem 3.1 (Ito's Lemma) Let x(t) be a process satisfying

dx(t) = a(t)dt + b(t)dB(t) w.P.1 for t e [tO,T]

where B(t) is Brownian motion and a(t), b(t) and b(t)2 belong

to M2 (F t). If Z(t,x) is continuous and has continuous derivatives

%—-Z(t,x), g—-Z(t,x), and §——'Z(t,x) for t E [to,T], then the pro-

3x2

cess z(t) = Z(t,x(t)) satisfies the relation

 

For a discussion of conditional expectations refer to Doob_[4l], p. 37.

9 All integrals not of the Ito type are treated as Riemann integrals.
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2

dz(t) = [3; Z(t,x(t)) + a(t) 51X- Z(t,x(t)) + 3sb<t>2 L5 Z(t,x(t))Jdt
3x

+ b(t) g; Z(t,x(t))dB(t).

The notation gE'Z(t,x(t)) has been substituted for g; Z(s,x(t))‘s=t.

B.3 Martingale Theory

A random process w(t) defined on a time interval I is called

a martingale if for every t E I there corresponds a O-algebra At

relative to which the random variables w(s) are measurable for s s t,

s E I, and which possesses the prOperty that for t1 S t2 where

t1,t2 E I

E[w(t2)‘At1] = w(tl) w.P.1. (3.1)

If the equality in (B.l) is replaced by S (2), a super-martingale

(sub-martingale) is defined.

Some of the martingale theorems given later require that w(t)

be a separable process. A process w(t) is separable on I if there

is a denumerable, everywhere dense subset D of I such that for

any a < b in I

sup w(t) = sup w(t) and inf w(t) = inf w(t) w.P.1.

tE(a,b) t6(a,b)flD tE(a,b) t€(a,b)nD

The separability condition is satisfied if the process w(t) is right-

continuous in t (w.P.1) on the interval I. In this thesis, all

processes are continuous (Appendix D), so separability is automatically

satisfied and need not be mentioned.

The following three theorems on martingales are used in this

thesis.

Theorem B.2: If w(t) is a non-negative, super-martingale,

1im w(t) = W
a

tam
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exists with probability one and is finite.

Theorem B.3: If w(t) is a (separable) non-negative super martingale

on any interval 1, then for any t E I and any constant c,

Prob{ sup w(u) 2 c} S EEXEl .

u2t,u€I

Theorem B.4: If w(t) is a (separable) sub-martingale on some

interval I, then for any t E I and any constant c,

Prob{ sup w(u) 2 c} s ELEXELL -

uSt,u€I

The proofs of these properties can be found in Loeve [47] (sub-

sections 29.3 and 36.1) and Doob [41] (chapter 7).



APPENDIX C

THE INFINITE DIMENSIONAL REPRESENTATION FOR THE

OPTIMAL FIETER

This short exposition develops the system of random differ-

 

ential equations which must be solved to provide the minimum-variance E

estimate of the message process x(t) in (2.1). This system re-

presents the filter which is an optimal solution to the filtering

problem discussed in Sec. 2.2.

In Sec. 2.2, the minimum-variance (conditional mean) estimator t

is represented by the following stochastic differential equation.

d$c(t) = Ema: +5310» - x(t)h(t)][dz(t) - Emu} (2.7)

In (2.7), x(t) is the conditional mean at time t. The other

functions are defined in Sec. 2.2. To solve (2.7), where the observed

process dz(t) is an input driver, the functions f(t), xh(t), h(t)

must be found.

The function h(t) is examined first. Equation (2.6) re-

presents h(t), the conditional expectation of h(t,x(t)), when

g(t,x) = h(t,x). Then

dB(t) = {Elma + [g(t) - h(t)2][;dz(t) - h(t)dt]

/\
/\

where h1 = 5X h(t,x). Now, fh1(t) and h2(t) need to be deter-

mined so (2.6) must be consulted.

/\
A /\ .. ..

dfh1(t) = @1(t)dt + [f2h2(t)dt + fhh1(t) - phl(t)h(t)][dz(t) - b(t)dt]

/\

dh (c) = 2 find)“ + [h3(t) -?(t)fi(t)][dz(t) - b(t)dtl

91



92

A AA

To continue this procedure,‘ff:h1(t), f2h2(t), fhh1(t), h3(t)

must be determined. In fact, an endless string of differential

equations need to be solved to determine all needed conditional

expectations. The same situation occurs when determining f(t)

and 4km.

This endless string of differential equations, which must be

solved simultaneously with (2.7), provides the infinite dimensional

representation for the optimal filter.



APPENDIX D

IMPORTANT PROPERTIES OF STOCHASTIC DIFFERENTIAL

EQUATIONS SIMILIAR TO EQUATION 2.15

The purpose of this appendix is to indicate conditions on

h(t,x) and a(t,;; ,t) which are sufficient for providing x(t)

in (2.15) with two important properties: (1) Continuity of x(t)

w.P.1 and (2) F{[to,t],;(s)} C:F{[t0,t],B(s)}. The following

derivations are based on Doob [41] (chapter 6) and Skorokhod [45]

(chapters 2 and 3). This appendix does not deal directly with (2.15)

but with an equation containing the same features as (2.15) and

fewer terms.

Let w(t) be the solution to

dw(t) = g(t,w(t))dt + a(t,wt t)dB(t) for t e [to,T] (C.1)

9

where B(t) is a Brownian motion process and wt t = {w(s) : t s s S t}.

s O

The following conditions on g(t,w(t)) and a(t,wt t) are postulated

9

for the remainder of this appendix. 0

H1: The function g(t,w) is a continuous function in the pair (t,w)

and a(t,wt ,t) is measurable on F{£to,t],w(s)}.

H : The fugction g(t,w) satisfies the uniform Lipschitz condition

~‘g(t’x) " g(t:Y)| 5 K‘x - y‘

for x,y s R and t 6 [tO,T]; K is a fixed constant.
1

The function a(-:-) satisfies the following function-space condition

~‘a(t’xto,t) - a(t,yto,t)\ 5 KIIE6lX(s) - y(s)|2ds]%
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where xt ,t and yt ,t E C: , the space of continuous functions on

the time interval [t:,t]. The constant K may be selected equal to

the Lipschitz constant for g(-,°) with no loss of generality.

The derivations in the remainder of this appendix are con-

centrated on demonstrating the following properties of the solution

to (C.1).

P1: The function w(t) is continuous in t with probability one.

P2: F{[to,t],w(s)} C:F{[to,t],B(s)} for every t E [tO,T].

These properties are demonstrated by a proof constructed similar to

Doob_[4l] (pp. 277-281). A by-product of this proof is the existence

of the solution to (C.1). The derivation begins with the following

lemma.

Lemma: If a process w(s) has properties P and P and if g(-,~)

1 2

and a(-,-) have properties H1 and H2 then any process y(t) defined

by

y(t) = ft g(s w(s))ds +ft a(s w )dB(s) (c.2)
t ’ t ’ t ,s
o o 0

has property P2 and the Ito interpretation of the second integral

in (0.2) provides y(t) with property P1.

Proof. According to H1, H2, and P1, the first integrand in (0.2) is

a bounded, continuous function of s for almost all sample functions.

The first integral is a continuous function of t with probability

indicates that a(t,w ) isone. Condition H1, comb1ned With P2, to’t

measurable on F{[to,t],B(s)} so the second integral may be defined

as an Ito integral (Appendix B). This integral is a martingale and,

in addition, is continuous in t with probability one. Continuity

for almost all sample functions y(t) follows. It is obvious
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that y(t) is measurable on F{[to,t],B(s)} and, since for all s S t,

y(s) is measurable on F{[t0,s],B(u)}<: F{[to,t],B(u)}, the process

[y(s) : t0 S s S t] is measurable on F{[t0,t],B(u)}. The definition

of F{[to,t],y(u)} shows that F{[to,t],y(u)}<: F{[to,t],B(u)}. This

finishes the proof of the lemma.

A solution can be found for (C.1) by successive approximations

that have the properties P1 and P2 shown above. Let wo(t) be any

process having properties P1 and P2. According to the lemma, it is

now possible to define wn(t) in such a way that every wn(t) has

properties P1 and P2.

wn(t) = I:0g(s,wn_1(s))ds +-f:oa(s,wt )dB(s) (C.3)
,s,n-l

o

with w (u) : tO S u S s}. The following derivation

t ,S,n"1 = {Wm-1

0

will show that

lim,wn(t) = w(t) w.P.1 (C.4)

n—G

uniformly in t, thus defining a process w(t) with properties P1

and P2. Also, it will be shown that

. t t
11m I g(s,w (s))ds = I g(s,w(s))ds w.P.1

t n t

nah o o

(0.5)

9

t

1im It a (8 ,wt

nHub o

S,n)dB(S) = f:0a(s,wto,s)dB(s) w P.1

uniformly in t. The process w(t) will be the solution to (C.1).

In proving these facts, the following notation will be con-

venient.

(t)AnW(t) = Wn(t) - Wn_1

Ang(t) = g(t,wn(t)) - g(t,wn_1(t))
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Ana(t) = a(t’wto,t,n) - a(t’wto,t,n-1)

From H2,

lang(t)| s K\Anw(t)l

‘AnS(t)‘2 S K.f:o‘Anw(s)‘2ds.

Then, from (C.3) and a property of the Ito integral (Appendix B),

2 t 2 t 2
E{[Anw(t)] } S 2 E{‘ft An_1g(s)ds‘ } + 2 E{|It An_1a(s)dB(s)‘ }

o o

S 2 K2(T-to) I: EEAn_IW(s)]2dS +-2 f: E‘An_la(s)‘2ds

0 0

S 2 K2(T - to) I: E[An_lw(s)]2ds +

o

t

2 t 2
+ 2 K ft Is EEAn_1w(u)] duds

0 O

s 2 K2(T - to) f:0E[An_lw(s)]2ds +

+ 2 K2 I:O(t-S)E[An-1w(s)]2ds

s 4 K2(T - to) j:oE[An_1w(s)]2ds.

Hence, for some constant c,

EEAnw(t)2] S [4 K2(T - to)]n“1 I: (£52)? E[A1w(s)]2ds

o

n

c

S “' for t S t S T.

n! 0

Using this inequality and Chebyshev's inequality gives

t -n T -n

Prob{ sup”,t Ang(s)ds| 2 2 } S Prob[K rt ‘Adw(s)‘ds 2 2 }

toStST o o

S 4n E([K.IT ‘A w(s)\ds]2}
to n ‘

n 2 cn

S 4 K (T-to) ET .
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Since the last term is the general term of a convergent series, (C.6)

holds for sufficiently large n with probability one from the Borel-

Cantelli lemma (Doob [41], p. 104).

sup [ft A g(s)dsl S 2-n (C.6)

t n

t StST o

o

The process I: Ana(s)dB(s) is a martingale for the reasons

0

given in the lemma. The square of this process is a sub-martingale

and the basic martingale inequality for sub-martingales (Theorem B.4)

shows that

Pr°b{ SUP 1f: A a(s)dB<S>| 2 2'“) s 4“ Eilff A a(s)dB<s)|2}
toStST o n

O n
:
1

s 4 I: E‘Ana(s)|2ds

O

S 4 K.IE I: EEAnW(u)]2duds

o 0

K I: (T-s)E[Anw(s)'| 2ds

0

n

K(T - s)2-- .
c

n!

Again, the last term is the general term of a convergent series so

(C.7) holds for sufficiently large n, w.P.1.

T -n

sup [ft Ana(s)dB(s>| < 2 (C.7)
t StST O

0

According to (C.6) and (C.7), the integrals on the right hand

side of (C.3) converge uniformly in t when n a a, w.P.1. Hence,

the limit in (C.4) exists uniformly in t, w.P.l and w(t) has pro-

perties P1 and P2. The validity of (C.5) follows from two facts:

(1) the integrands converge uniformly w.P.l, in the first limit

equation; (2) the sub-martingale inequality applied as above, shows
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that

Prob{ sup If: [a(s,wt S n) - a(s,wt S)1dB(s)l 2 ll
toStST O O, ) O, n

2 2 T 2

s n K It (I - s)E[wn<s) - w(s)] ds

2 - ° 3
n2K (T-to)22n 232—”—

_ on J'

where the fact that ECwn(t) - w(t)]2 S 2 n 2 ngl— for t0 S t S T

i=1 J!

was used. This last inequality is proved in Doob [41] (p. 281).

According to the Borel-Cantelli lemma

t 1
Sup |ft [a(s,wt ,S n) - a(s,wt ,S)]dB(s)‘_< n

tOStST o o 0

thus proving the second limit in (C.5).
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