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ABSTRACT

INFERENCE OF ARRAY GRAMMARS

UNDER NOISE AND DISTORTION

By

Gautam Biswas

This thesis research deals with learning of the syntactic structure

of two dimensional binary patterns that occur in image processing and

pattern recognition. The development of a two dimensional inference

scheme using a probabilistic array grammar that incorporates noise and

distortion models is the primary contribution of this thesis. A two

level inference scheme is proposed based on a block structured array

grammar. The ideal pattern must be known, which implies knowledge of

the nonterminal rewriting rules. The key step is the inference of

intermediate grammars from probabilistic samples.

Complexity and discrepancy measures are the criteria for selecting

a simple and 'best-fitting' grammar. A number of complexity and dis-

crepancy measures for string grammars are reviewed and a new, computat-

ionally feasible discrepancy measure that involves both probabilistic

and structural factors, is defined. The new measure is shown to

possess a number of intuitively desirable properties. The discrepancy

measure is extended to two dimensions to quantify the suitability of an

inferred array language.



The inference scheme uses noise and distortion models to accommo-

date deviations from the ideal structure among observed patterns. An

independent noise model and two intuitive distortion models are analy-

zed along with a powerful and comprehensive model based on Markov ran-

dom fields. The problems of generating patterns and estimating para-

meters are studied. Robustness tests and parsing experiments demonstr-

ate the versatility of the Markov random field inferential model. Not

only is it applicable with a number of noise and distortion models, but

it also allows small deviations from the ideal structure, thus

providing a flexible inference scheme.

The inference scheme and the computation of the discrepancy

measures require large amounts of computer time in the sequential mode

of operation. SIMD and pipeline architectures are suggested to speedup

computation significantly. lmplementation of the proposed scheme with

these architectures should open up a number of real time practical

applications in industrial vision and robotics.
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CHAPTER I

INTRODUCTION

Pattern Recognition techniques are major contributors to the field

of machine intelligence and perception. They involve the description

and analysis of data, including their categorization into identifiable

classes by the extraction of significant features or attributes that

are relevant to the problem being studied. The mathematical techniques

available to solve pattern recognition problems can be broadly

classified into the statistical, or decision-theoretic

approach [31,A3], and the structural, or syntactic approach [A1,A6,83].

The first involves measuring characteristic features on the input data

and then classifying the resulting patterns by partitioning the feature

space according to categories or pattern classes. An example is the

use of Fourier descriptors [85,120] to describe the shape of objects

Afrom their outer boundaries. The structural approach involves the des-

cription of objects, or patterns, in terms of their parts (subpatt-

erns), and the connectivity relations among these parts. An example is

the use of primitive symbols (simple curves) and a formal grammar to

describe different types of chromosomes [62,63].

Decision theoretic methods are based on the use of discriminant

functions and are well suited for patterns that can be meaningfully



represented in vector form. However, there are applications, such as

scene analysis and image segmentation, where the relationships among

the various component parts (subunits) are nonnumerical in nature, but

can be expressed in terms of discrete mathematical models such as

formal grammars [18]. In such situations, the structural approach

seems to be more appropriate for understanding and analyzing complex

patterns than the statistical approach. Structural and syntactic patt-

ern recognition techniques have been applied to a number of application

areas including chromosome identification [62,63] character recogni-

tion [3], shape analysis [8A], classification of speech [27,57], data

compression [5], biomedical waveform analysis [2.12.107], fingerprint

identification [75,90], image understanding [108], texture

analysis [56,68], defect location [77,87], component recognition and

placement [111,112], and testing of integrated circuits [82,121].

This thesis is primarily concerned with the description and

analysis of two dimensional patterns using syntactic techniques. This

involves two main steps - (i) the selection and extraction of

primitives, and (ii) the inference or learning of connectivity

relations among primitives in terms of formal grammars. In particular,

we infer two dimensional formal grammar models with applications to the

generation, description and recognition of two dimensional objects in

mind. The patterns of interest here are binary images or pictures, so

we choose pixel values 0 and 1 as our two basic picture primitives.

Our main emphasis will be on the learning of a formal grammar to



describe a class of patterns. The study of the primitive selection

problem is not covered here.

Two dimensional grammar models present many advantages in

representing two dimensional patterns [98]. The relationship among the

components (subpatterns) of a pattern can be directly represented in

terms of two dimensional ”concatenation” relations. A one dimensional

scheme may require a number of preprocessing operations to reduce the

two dimensional pattern to a one dimensional form. Traditional one

dimensional schemes suffer inherent difficulties in modelling objects

with disconnected parts or objects with holes. Two dimensional

grammars are easily amenable to parallel processing [72,91,101].

Parallel forms simplify mathematical models for pattern represent-

ation [72] and significantly reduce parsing time, which can be

exploited in developing very efficient classification schemes.

After proposing a formal mathematical model for describing two

dimensional patterns based on array grammars, we will concentrate on

the problems of learning or inferring a formal grammar for a class of

patterns or pictures from a finite set of samples. Inference schemes

generate a number of 'candidate' grammars from a set of training

patterns. Complexity and discrepancy measures are criteria for select-

ing the simplest and 'best-fitting' grammar and are therefore studied

in some detail.



A strong emphasis is placed on the learning of the structures of

noisy and distorted patterns. Patterns observed in the sample set are

different from ideal structures because of inherent limitations in the

recording and digitization processes. Changes in the ideal represent-

ations of the pattern that are caused by phenomena independent of the

underlying ideal structures are termed 'noise' processes, whereas those

that depend on the underlying structure are called 'distortion'

processes. A number of noise and distortion models are discussed, in-

cluding one based on Markov random fields. We compare the robustness

of the inference procedure under various noise models.

The grammatical scheme proposed in this thesis has several

advantages. Automated industrial inspection and robot applications

require well designed and very precise lighting systems to avoid

problems like low contrast, shadows and extraneous detail, which

increase the complexity of vision algorithms [A7]. The use of a noise

or distortion model in conjunction with an inference scheme when the

lighting system is inadequate would incorporate some of these problems

in the model description and keep the recognition scheme

computationally feasible. Also, integrating the noise or distortion

process with the learning scheme allows setting up discrimination or

classification procedures which distinguish between patterns that have

the same ideal structures, but have been subjected to different noise

or distortion processes. Array grammars can generate patterns of



different sizes, but with the same proportion of length to width. This

property can be used to advantage when an imaging device for robot

vision does not maintain a fixed distance from the objects of interest.

Conventional schemes, such as template matching, require an extra dis-

tance dependent scaling operation before recognition. Moreover, the

integration of the noise and distortion processes into the array gram-

mar model allows small deviations in the orientation of the pattern

thus simplifying the registration problem. It may also help differen-

tiate among two sets of parts such as two types of bolts that have

similar shapes, but different proportions of length to width.

The remainder of this chapter briefly presents the grammatical

inference problem and reviews techniques that have been used for two

dimensional pattern representation. Lastly, the organization of this

thesis is described and its main contributions are summarized.

1.1 Grammatical Inference

Grammatical inference algorithms obtain a formal grammar [28,52,95]

from a finite set of training patterns, expressed as strings or arrays

of primitives. The finite set of training patterns is generally re-

ferred to as the sample set, and consists of two disjoint subsets - the

positive sample set, 5+, which contains patterns from the language gen-

erated by the grammar to be inferred, and the negative sample set, 5’,

of patterns which do not belong to that language. The grammars {Gi}’



created by an inference algorithm should necessarily satisfy the

following conditions :

S+CZ L(Gi) and S-CS L(Gi).

where L(Gi) is the language generated by grammar Gi and L(Gi) is the

the complement of L(Gi)' Our inference schemes utilize only a positive

sample set, S+

The sample set S+ can be probabilistic. Each pattern in the

training set has a probability and patterns with higher probability are

observed more frequently [A2]. The corresponding inferred probabilis-

tic grammar associates a probability with each of its production rules

to reflect the probability of occurrence.

Grammatical inference algorithms in the literature apply only to

strings of symbols and are therefore one dimensional in nature.

Inference of finite-state string grammars have been attacked analyti-

cally [9,A2]. Many properties of context-free grammars are undecid-

able, so inference algorithms for such grammars require heuristic

techniques, which are applicable to restricted subsets of that class of

grammars. An example is the Crespi-Reghizzi algorithm for operator

precedence grammars [2A]. Inference algorithms for string grammars

have been extended to other constructs, such as trees and webs, with

the idea that they naturally represent higher dimensional

patterns [1A,A6,65].



Enumerative and constructive methods of inference have been pro-

posed in the literature. Enumerative techniques usually involve an

exhaustive search through a large, specified class of grammars, such as

finite-state grammmars, for ‘candidate' grammars that best describe the

samples [53.69.81.118]. Tree searching and state space methods. in

conjunction with a cost function, are used to direct the search.

Constructive techniques derive grammars from similarities among the

syntactic structures in the sample set. Restriction to a particular

class of grammars enables one to define specific rules to convert

observed syntactic structures into production rules for the grammar.

Rules can also be defined for adding, merging. and deleting productions

based on some criterion. to obtain a more acceptable grammar. An.

example of a constructive inference technique is Cook's [22] 'hill

climbing' approach to the inference of context free grammars.

Both methods require a criterion. or cost function. to determine

the 'best' grammar from a set of candidate grammars. The two

properties that are used to define a good grammar are its structural

complexity, and its discrepancy or fit to the given sample set. It is

trivial to infer a grammar whose language is identical to the given

sample set. To be useful, an inference algorithm must infer a grammar

which is a natural generalization of the training set, yet has minimal

complexity.



Syntactic Pattern Recognition schemes are often used to

discriminate among classes whose sample strings contain random errors,

or when languages are not disjoint. The quality of recognition can be

improved by inferring probabilistic or stochastic grammars (p-gram-

mars) [A2,llO], where each production rule of the grammar has an asso-

ciated probability. These probabilities indicate that some patterns

occur more frequently than others. or certain substructures within the

pattern are more favoured than other possible ones.

The general inference problem for string grammars has not been

solved completely. and there are still a number of open questions, both

in formal language theory and in the capability of general grammatical

inference schemes. However. several techniques exist for inferring

limited classes of grammars and we shall be using some of them to

develop our two dimensional inference scheme.

1.2 Two Dimensional Picture Representation

Regarding a class of two dimensional pictures as a two dimensional

language has led to the use of formal linguistics for picture descrip-

tion and generation. Pictures are seen as a concatenation of subpic-

tures. which are in turn built up of still smaller parts. called the

picture primitives. Some models express the relations among picture



primitives, either by string concatenation or by algebraic operators.

whereas others generalize one dimensional string grammars to two dimen-

sional forms.

l.2.l Picture Description Languages

One of the first attempts to represent two dimensional objects in

terms of primitive substructures was the Freeman [38] chain code.

Among its drawbacks are extremely long and unwieldy strings for object

description, susceptibility to noise, and difficulties encountered with

the representation of disconnected curves. Narasimhan [78.79] used a

syntactic description model for classes of pictures composed of line

like elements, but his method does not seem very easily generalizable

to complex pattern descriptions and inference schemes. Shaw [97]

extended Freeman's simple left-right string concatenation to four

different binary relations among primitives in his Picture Description

Language (PDL). resulting in two dimensional properties being

expressible in string form. This technique looks quite elegant, but

certain simple geometric operations like reflection and rotation are

difficult to describe and pictures are often not easily expressed in

terms of primitives of the form required by PDL.

These methods reduce two dimensional objects to one dimensional

string representations which makes it quite clumsy to describe

disconnected parts, or configurations with embedded objects. or even
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objects with holes. These limitations are overcome by structures such

as trees [13,A0,A5] and graphs [20.86.92]. While trees can represent

high dimensional patterns more naturally than strings. and can provide

simpler parsing schemes. it can be shown that there is a direct corres-

pondence between tree representations and context free grammars [A6].

Therefore, they have the same difficulties as strings in complex

pattern descriptions. and do not seem to present a very natural scheme

for general two dimensional structures. Graph or web representations

are the most general schemes available for the description of two

dimensional patterns. but require extremely complicated parsing tech-

niques which are presently not well developed [15]. The development of

automatic learning and decision making procedures is extremely

difficult for general two dimensional schemes. There are. however,

proper subsets of web grammars called matrix and array grammars, that

have well developed formal structures, are relatively easy to parse.

and also seem to be well suited to picture generation and description.

This thesis will concentrate on these structures.

1.2.2 Two Dimensional Grammars

Kirsh [58] gave the first example of a two dimensional array

grammar for generating a class of labelled A5-degree right triangles.

His technique is not easily generalizable to other classes of pictures.

Yodokawa et. al. [119] attempted to construct an appropriate mathemati-

cal model for two dimensional grammars. These authors also demon-
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strated the existence of two dimensional Turing-type acceptor automata.

Siromoney et al. [99] proposed a model of a two dimensional matrix

grammar (GI’GZ)’ which is essentially a two level string grammar. The

horizontal string grammar, G], generates a string of length n from k

possible (intermediate) symbols. Each symbol in this string serves as

a start symbol for a vertical right-linear (regular) string grammar.

Grammar G2 is the union of disjoint grammars which generate string

columns of size m. consisting of terminal symbols which are picture

primitives. This two step process generates an mxn picture. (Details

are presented in Appendix C). Wang [11A] proposed a variation on

Siromoney matrix grammars as a three tuple (G],GZ,M), where G is a
1

horizontal grammar defined as before. but G2 is the union of k disjoint

grammars which need not be right linear; M - {m],m2, ------ ,mp}. where

each mi is a kxl matrix consisting of k production rules, one from each

one of the grammars that make up G2. In the matrices generated by

these grammar forms, it is not possible to maintain a fixed ratio of

length to breadth, since the column expressions are independent of the

row expressions.

Rosenfeld and Milgram [7A] defined another form of array grammar

and acceptor automaton based on a Turing machine with a two dimensional

tape. This scheme starts with an array of blank symbols and fills it

with picture primitives using production rules which map subarrays into

subarrays. The main problem with these grammars is the number of
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restrictions placed on the production rules to obtain patterns in their

desired shape, as explained in Chapter 2.

Siromoney et al. [100] described a theoretical array grammar model

which is more powerful than the matrix grammar models. since it can

generate picture models not representable by matrix grammars. Its

rewriting rules use a two step block structured approach, and describe

a picture model in a clear step by step procedure. These array

grammars are also very natural generalizations of one dimensional

string grammars and possess several properties of one dimensional

grammars. We have based our structural model on the Siromoney array

grammars. Its two step block structured approach has been exploited to

describe a simple model that incorporates noisy and distorted patterns.

A detailed formal description of array grammars is presented in the

next chapter.

1.3 Organization and Contributions of the Thesis

Chapter 2 contains both a theoretical review of array grammars and

a critical discussion of properties required by the learning procedures

to be developed. This chapter provides a comprehensive review of

grammatical inference literature. and the models that have been

developed for the structural description of two dimensional patterns.

The concept of a probabilistic array grammar is defined for the first

time in Chapter 2.
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Chapter 3 introduces the picture description model and the main

inference scheme. Several problem areas. including the role of com-

plexity and discrepancy measures, and the need for probabilistic noise

and distortion models, are examined. The main contribution of this

chapter is the development of a two dimensional learning scheme. and

the integration of noise and distortion models into this scheme.

Chapter A describes complexity and discrepancy measures for string

grammars. The emphasis is on the properties of these measures, and

their significance in the grammatical inference framework. An im-

portant contribution of this chapter. is the definition of a new struc-

tural discrepancy measure that overcomes some of the limitations of the

presently available measures. The concept of structural discrepancy

for string languages is also extended to define a discrepancy measure

for array languages.

Chapter 5 describes the theoretical background and the

computational schemes used for three noise and distortion models. The

computational aspects of the generation of patterns and the estimation

of parameters for the proposed schemes are then studied. The main

contribution of this chapter is the development of a general distortion

model based on Markov random fields. This is the first application and

implementation of nonhomogeneous Markov random fields to image

processing.
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Chapter 6 presents the results of several experiments applying the

inference scheme in conjunction with the noise and distortion models to

two different pattern classes. The two dimensional discrepancy measure

is employed to assess the robustness of the inference scheme. Another

contribution of this chapter is the discussion of computational matters

and potential speedup using parallel schemes. Finally, Chapter 7

presents the conclusions of our study and suggests future research.

The original contributions of this thesis can be summarized as -

1) Development and study of a two dimensional model description and

inference scheme that incorporates the description of noisy and

distortedipatterns.

2) The definition and use of a new discrepancy measure for string

grammars that incorporates both probabilistic and structural differen-

ces.

3) The extension of the discrepancy measure for string gramars to a

measure of suitability for array languages.

A) The adaptation of nonhomogeneous Markov random fields in defining

a distortion process that is very general, and covers a number of other

noise and distortion models.



CHAPTER II

ARRAY GRAMMARS

This chapter establishes the mathematical basis for the inference

procedures proposed in this thesis. There are two different structural

forms for array grammars, the Rosenfeld array grammars and the

Siromoney array grammars. We first discuss the Rosenfeld form of array

grammars and its limitations. Then we present a formal description of

the Siromoney array grammar (AG), review definitions and notation and

briefly describe array automata. Examples and illustrations clarify

definitions and notation.

2.1 Rosenfeld Array Grammars

A Rosenfeld array grammar [7A.9l] contains production rules that

replace one subarray of symbols, with at least one nonterminal symbol,

by another subarray of symbols. which need not be of the same shape and

size. These grammars produce arrays which are accepted by Turing

machines with two dimensional tapes, where the primitive symbols are

never rewritten. The initial array consists of a start symbol on one

location of the tape and blank symbols on all others. The terminal

array is made up of pattern primitives and blank symbols. Simpler

15
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forms of these grammars could be defined by requiring the grammar to be

monotonic. i.e., make the number of non blank symbols in the derivation

sequences monotonically non decreasing. Rosenfeld [93] defined normal

forms for these grammars and showed the equivalence of different types

of array grammars. He also showed [91] that some of these grammars

have parallel forms that are essentially the same as local digital

picture processing functions.

Individual rows and columns of the host array in Rosenfeld array

grammars must be shrunk or stretched by varying amounts to accommodate

different rewriting rules. The implication of replacing one subarray

by another of a different size and shape extends beyond the immediate

vicinity of the subarray and causes relative displacements among rows

and columns, and also overall changes in the outer boundary of the

representation (Fig. I). This effect. known as the shearing effect,

makes it difficult to generalize properties of one dimensional grammars

to two dimensions and causes difficulties in object description.

Rosenfeld [91] circumvented this problem by introducing isotonic array

grammars. which require the left and right sides of the productions to

have the same shape. Cook and Wang [23,116,117] defined normal forms

for these grammars and established the Chomsky hierarchy.

The shearing effect. and the steps taken to remedy it. make

Rosenfeld array grammars rather cumbersome. These array grammars are

not natural extensions of one dimensional grammars. The Siromoney and
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8

Production rule: 5 -> S A

applied to result

#

##II‘ #B#

#5# #SA#

### ###

FIG. 1: Shearing Effect

Wang matrix grammars discussed in Chapter I, though simple extensions

of one dimensional grammars. lack the power to generate pictures of

different sizes having the same proportion. For example, one cannot

generate objects of size mxn such that m and n have a fixed ratio. The

fact that the column grammars are all independent makes it difficult to

express any relation between columns. as one goes down the rows.‘ The

Siromoney array grammars(AG) overcome the above difficulty and are free

from the shearing effect. We base our structural model on the

Siromoney array grammar form.

2.2 Siromoney Array Grammars

Structural models based on array grammars lend themselves very

naturally to the generation of two dimensional patterns. Each cell

represents a primitive structure of the pattern, and therefore a
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terminal symbol of the array grammar. For example, if one considers a

class of binary digitized pictures. the simplest set of primitives is

{0.1}. An mxn rectangular picture array consists of mn samples from

this set. As the number of primitives and the sizes of the arrays to

be processed increase. one must resort to primitive selection

techniques. We shall not be concerned with this problem. and assume we

have two primitives. or terminal symbols for our array grammar.

The rewriting rules of Siromoney array grammars generalize the

notion of string rewriting rules to array rewriting rules. with arrays

of terminals replacing strings of terminals. In place of the conven-

tional left to right concatenation. row and column catenation are

defined, which establish two dimensional structure. Derivations are

restricted by the conditions of row and column catenation; i.e. two

matrices can be 'row catenated' only if they have the same number of

columns and two matrices can be 'column catenated' only if they have

the same number of rows. Rewriting rules can be regular(R),

context-free(CF), or context-sensitive(CS). Appendix A clarifies the

concept of row and column catenation of arrays, and defines some of the

notation used in the formal definition of array grammars [60,100].

Probabilistic array grammars are introduced at the end of this section.
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2.2.1 Formal Definition of Siromoney Array Grammars

The Siromoney array grammar AG is a four tuple,

AG g (V, I ’P’S)

where V is the union of V], a finite set of nonterminal symbols. and

V2, a finite set of intermediate symbols;

I is a finite set of terminal symbols; V(\I = 0

S E VI is the start symbol.

P = P] U P2 U P3; P1 is a finite set of nonterminal rules, P2 is a

finite set of intermediate rules and P3 is a finite set of terminal

rules.

PI can be described as a finite set of ordered pairs, (u,v) written as

+

(u -> v). where u,v 6 (VI U V2) , or (VI U V2)+.

I: u = ulslvl and v = u}a v],

+

a E (V] U V2) or (VI U V2)+.

PI is context-sensitive if 3 (u,v) E P

where SI 6 V]. u]. v],

1

(VI U V2)+.

P is context-free if V (u,v) E P]. u E V v 6 (VI U V2)+. or
1!

Lastly. PI is regular if V (u,v) E P]. u E V . v E X G Y (B is 0 or B).
1

X 6 VI and Y 6 V2 or vice versa.

P2 is a set of ordered pairs (u,v), such that
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+

u,v 6 (V2 U {x].x2. ----- ,xp}) . or

U.v 6 (V2 U {xl.x2. ----- .xp})+i

++ . . . .

where x].x2, ----- ,xp 6 I are arrays of prImItIves with conformable

rows and columns. The implication is that the intermediate rules in-

volve only intermediates and a fixed and finite set of arrays in I++.

Further. each intermediate in V2 generates a language. called the

intermediate matrix language (IML), whose terminals are arrays with

either the same number of rows or the same number of columns.

P3 is a finite set of ordered pairs (U.V). U 6 (V1 U V2) and V E 1++°

An array grammar is called an (XX:YY) array grammar, where XX

denotes context-sensitive. context-free, or regular depending on

whether PI is context-sensitive. context-free, or regular, and YY

denotes context-sensitive, context-free, or regular if at least one

intermediate language is context-sensitive. context-free, or regular.

and all other languages are either the same or below it in the Chomsky

hierarchy.

For convenience of notation we write the IML generated by

A 6 V2 as.

LA - {x I A X E (x1,x ----.xp)+, xi 6 I++ and all xi have the
2’

same number of rows}. or

H

LA {X I A X E (x].x2.----,xp)+. xi 6 l and all xi have the
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same number of columns}.

Beginning with the start symbol 3, derivations proceed by applying

the rules from P1 successively until all nonterminals are replaced.

This may involve the use of a P3 rule if the symbol in the innermost

parenthesis belongs to V]. The operators 0 and B are not mutually

associative. so proper parenthesization is required. Step two involves

replacing each intermediate A 6 V2 by elements from LA’ subject to the

conditions imposed by row and column catenation. The replacement

starts from the innermost parenthesis and proceeds outward.

Since P3 by itself does not play an important role in the

derivation scheme, we modify the above definition of P and incorporate

P3 into PI and P2. Therefore, Pl can also have productions u -> v,

where u E V] and v E I++. An important fact to be noted is that

derivations would come to a dead end if conditions for row and column

catenation were not satisfied. Examples of array grammars are shown in

Figs. 2 and 3.

This generation procedure requires that the nonterminal rules

generate a set of blocks. catenated horizontally and vertically. This

we call the block structure description of the picture. Filling in

each block with primitive symbols using the intermediate rules

P2 creates rectangular arrays of primitive symbols. The set of arrays

generated by an array grammar is called the array language. and the
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NONTERMINAL = { S I: INTERMEDIATES - {A.B}; PRIMITIVES = {x,.}

NDNTERMINAL REWRITING RULES: 3 -> ( A e s ) g B.

S -> X

INTERMEDIATE LANGUAGES: LA a { (.)n | n>=1 }

LB - { Ix)n l n>=2 }

A REALIZATION or SIZE A:

(I) APPLY NONTERMINAL RULES -

S -> I A e S ) G B -> ( A e (( A e S ) A B )) ¢ 8

->(Ae((Ae(IAes)¢9))¢a))¢a

->(A6((Ae((Ae((AeS)¢B))¢B))¢B))¢B

(2) FILL INTO BLOCKS WITH INTERMEDIATE LANGUAGES '-

..L‘ I

I7 T

 

 

 

 

X

X X

X X X

. X X X X

X X X X X      

fig; _2_: 5.15.1! Grammar - Isosceles Triangle
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NONTERMINALS = I 5 .TI; INTERMEDIATES = {A.B}: PRIMITIVES = {x,.}

NONTERMINAL RULES. P S -> ( A t T ) e B

I. T -> ( A i T ) e B

T -> X X

X X

INTERMEDIATE LANGUAGES:

n

. . . . X X

LA 8 X X X n >= 0 LB = . X X n >= 1

X X X X X .  
(. . .)

n

A REALIZATION: (1) BLOCK STRUCTURE FROM NONTERMINAL RULES

i—L
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A T A T A I T

3 -> i —+ ——4 -> A 4 +7 -4 -> A s. 4

B B A B

B B

B

(2) APPLY INTERMEDIATE RULES -

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

C O C O O O O x x C

. . . . X X .

. . X X .

O O O O x x O O

O O O I x x O O O O

O O O O x x O O O O

O O I C x x O O O

O O x x O O O O O

O C O x x O C O

O O x x O O O O

X X .

x x O O O O O O I O O O 0

FIG. 3: Array Grammar or Numeral '7'
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individual arrays are called patterns. In image processing

applications these arrays represent digitized images.

2.2.2 Some useful properties

We now state some useful properties of array grammars which are

stated as theorems and proved in Siromoney et al. [100].

I) The relations between various classes of matrix grammar languages

(Siromoney) and array languages (Siromoney) is summarized in the

following two dimensional scheme.

RMLC (R:R)AL c (R:CF)AL c (R:CS)AL

C: C: C: i C:

CFMLC (CF:R)ALC (CF:CF)ALC (CF:CS)AL

C: C3 (3 <3

CSMLC (cs:R)ALc (CS:CF)AL c (CS:CS)AL

For example, all regular matrix languages (RML) are (regular,regular)

(RiR) array languages and are also context free matrix languages

(CFML).

This establishes the Chomsky hierarchy and implies that array

grammars are more powerful than their corresponding matrix grammars.

Since we are interested in developing inference schemes. we require

that models use only regular and context-free grammars, both of which

have well developed parsing techniques. Subsequent properties will be
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stated only for regular and context-free grammars.

II) Let {Mn | n >= 1} be an infinite sequence of matrices.

(1) For n > 1, if Mn is in one of the following forms-

Mn = (x 6 Mn_]) i Y. or Y ¢(x 6 Mn_]).

or Y 0 (Mn_ 6 X), or (Mn_ 6 X) D Y,
1 1

where X and Y are matrices from IML's Lx and LY and satisfy row and

column catenation requirements. then {Mn} can be generated by regular

nonterminal rules.

(2) For n >= 1. if

or x] e (YI ¢ Mn_] ¢ Y2) 9 x2,

where X X2, Y1 and Y are chosen from IML's L L and L ,

2 x,’ xz' y, Yz

subject to row and column catenation restrictions, and X

I,

l and X2. or

Y1 and Y2 are nonempty then {Mn} can be generated by context-free

nonterminal rules.

Property II illustrates the self embedding structure of (CF:XX)AG's

analogous to the self embedding property of string context-free

grammars. These two properties indicate the approach one may have to

follow to develop a two dimensional inference scheme for the

nonterminal rewriting rules.
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It can be shown that all the (CF:XX)AL's are closed under row and

column catenation. However, none of the (R:XX)AL's are closed under

row or column catenation. All the (R:XX)AL's and the (CF:XX)AL's are

closed under transpose, quarter- and half- turns, and reflections about

both the base and rightmost verticals. indicating that there are

relationships that one may use to parse patterns that are in the

different configurations mentioned above. using the array grammar for

the original pattern structure.

2.2.3 Probabilistic Array Grammars

A probabilistic array grammar is similar to a probabilistic string

grammar [11,39]. The probabilistic array grammar (p-AG) is defined as

a 5-tuple

p-AG - {v,I,P.R.3}

where V, I, P and S are defined as in Section 2.3.1 with P = P1 U P2.

R 3 R] U R2; RI is a finite set of probabilities that are assigned in

sequence to the nonterminal production rules in P] so that there is a

probability associated with each production rule; similarly R2 is a

finite set of probabilities that are assigned in sequence to the set of

intermediate rules.
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The sum of the probabilities of all productions with the same left

hand side must be 1. Assuming that all nonterminal and intermediate

grammars are unambiguous, i.e., they have unique left most derivations,

the probability function for an array language is defined as

f(x) . TT Irk‘TTrl2 ifxEL(AG)

kEK IEL

where r1 signifies probabilities of nonterminal production rules and

r2. probabilities of intermediate production rules; K and L are sets

that represent the sequence of nonterminal and intermediate

productions, respectively, that were used in deriving the element x.

The p-AG is consistent if

XE: f(x) = l

xELIAG)

2.3 Array Automata

Krithivasan and Siromoney [60] have defined array acceptors to

accept languages generated by two dimensional array grammars as

(AA:BB) array automata for (XX:YY)AG's; where AA and BB can be linear

bounded. pushdown. or finite state depending on whether XX and YY are

context-sensitive. context-free. or regular, respectively. The
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automaton illustrates a generation scheme for array patterns and a two

step parsing scheme that can be used for recognizing array languages.

Step one consists of imposing the appropriate block structure on the

pattern being tested, and step two checks if the contents of individual

blocks are members of the corresponding intermediate matrix language.

This approach is also exploited in the inference scheme described in

the next chapter.

A formal definition of an array automaton and its implementation is

given in Appendix B. We note that the automaton uses the sequen-

tial-parallel approach to processing. The first step is a sequential

step by step process to subdivide the picture into blocks, and the

second step is a parallel procedure where the automaton can work on

each block independently and simultaneously.

2.A Definition of Type and Block Number

In this section, we define the type of an array pattern. and block

numbers, which label samples from particular intermediate languages.

Type: The pattern type is defined to be the number of times

nonterminal production rules have to be applied to generate the

required block structure for the pattern.

Block number: Block numbers are defined for the blocks that make up

an intermediate language. All the blocks from an intermediate language
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either have the same number of rows. or the same number of columns;

therefore. they can be arranged in order of increasing number of rows

if the number of columns is fixed, or in order of increasing number of

columns, if the number of rows is fixed. Integer labels are assigned

in sequence to the blocks of an intermediate language in order of their

increasing size determined by their variable dimension. These labels

are individually defined for each intermediate language of an array

grammar.

For example, consider the nonterminal rule

S->(A¢S)es

Applying the nonterminal rule four times we obtain the block structure

shown in Fig. A.

For the pattern of size A, the four blocks of intermediate languages A

and B have been labelled 1. 2, 3 and A.

2.5 Summary

In this chapter we have formally defined array grammars. stated

some of their useful properties and also described a type of

sequential-parallel array automaton for accepting array languages. The

examples suggest that these grammars provide a more powerful generative

model than matrix grammars in terms of generating patterns of fixed
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Fl . A: Pattern Type and Block Number

proportions without the inconvenient shearing effects of Rosenfeld

array grammars. The block structure approach to array grammars is

exploited in defining a model for pattern description.
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MODEL DESCRIPTION AND INFERENCE

This chapter develops the concept of two dimensional pattern

description and learning based on the array grammar model and describes

a scheme for inferring intermediate matrix grammars. Some interesting

research questions that arise in the inference scheme are discussed.

Techniques for computing block probabilities appears with the noise and

distortion models in Chapter 5.

3.1 Pattern Description and Learning

The general inference problem can be stated as follows: Given a

number of samples of rectangular arrays of various sizes from a class

of patterns or images, infer an array grammar that describes the

structure of this class of patterns. Section 2.3 suggests that this is

a two step process. The first step is the inference of nonterminal

rules. and the second is the inference of intermediate rules.

Prior information is required to set up the block structure, or the

nonterminal rewriting rules, for the class of patterns. This leaves

the learning problem to the inference of the intermediate matrix

31
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grammars. Looking at this in another perspective. we are presented

with a set of patterns for which ideal structures are known. The

observable representations are distorted from the ideal structure

primarily because of inherent limitations of the recording and

digitization process. These pictures would not be accepted by an array

automaton trained to recognize only the ideal structures of the class.

Uncertainty in string grammars has been modelled by probabilistic

or stochastic grammars and error correcting parsing techniques. In

probabilistic grammars [ll,Al,69]. probabilities are assigned to each

production rule and a sample is accepted in a particular class only if

it is generated by the grammar representing the class with a high

enough probability. Methods have been developed to infer p-grammars

from a stochastic sample set. where a probability is given for each

pattern in the sample set. or assigned according to a probabilistic

model [A2,53].

Another approach to handling uncertainty in one dimension has been

to apply error correction to noisy strings and transform them to a form

that belongs to the class of patterns being described. Three common

types of corrupting errors are defined; insertion of extra symbols.

deletion of existing symbols. and the change of one symbol to another.

These are analogous to the three edit operations adopted to define

distance measures between strings, such as the string edit or Weighted

Levenshtein Distance (WLD) [6A,80,ll3]. Error correcting parsing
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techniques [l.AA,67] develop proximity measures between a sample and a

language. Acceptance in a particular class involves finding the string

of minimum distance using a parsing algorithm (e.g. the Earley

parser [33]). Lu and Fu [67] define a stochastic deformation model for

patterns by extending a stochastic context-free grammar to a stochastic

context-free error induced grammar. Liou [66] developed another type

of heuristic inference procedure for regular and context-free grammars.

3.2 The Inference Scheme

One objective of this thesis is to incorporate distortions into the

array grammar model. so that the automaton derived from the grammar

accepts not only the ideal structure but also distored versions of the

ideal structure. Section 2.2.3 defines probabilistic array grammars,

and this concept is used to infer probabilistic grammars at the inter-

mediate level.

The proposed inference scheme is outlined in Fig. 5. The first

step is to impose a block structure on sample arrays using the

nonterminal rewriting rules. which are assumed known. using an array

automaton. as described in Sec. 2.3 and Appendix B. When the

underlying noise or distortion model is also assumed to be known. Step

2 computes the probabilities of blocks extracted from the sample set.

The inference problem is now reduced to the inference of p-grammars for

each intermediate language from training sets made up of blocks with
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+-----------------------------------------------+

I I

I 1) Using prior information I

I break up pattern into blocks. I

I Form sample sets for each IML I

I I

I ----------------------------------------------- I

I I

I 2) Using noise/distortion model, assign I

I probabilities to each block in sample set I

I I

I -----------------------------------------------+

I I

I For each IML I

I I

I +------------------------------------------+

I I I

I I 3) Convert matrix samples into I

I I string form using vector primitives !

I I I

I +------------------------------------------+

I I - . I

I I A) Using p-string samples infer I

I I p-grammar for above strings I

I I I

+----+------------------------------------------+

I I

I 5) Compute discrepancy measure for I

I array grammar I

I I

+-----------------------+-----------------------+

associated probabilities.

Step 3 codes each block into a string form using the property that

all matrices of an intermediate language either have the same number of

rows or the same number of columns. For example. the blocks of IML LA’
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for the digit '7' in Fig. 6 have three columns whereas IML LB has a

fixed number of rows. When the number of columns is fixed. each row is

coded as a single symbol. Thus rows represented by the pattern 'xxx'

are coded as 'u' and the rows represented by '...' are coded as 'v'.

Then

2 n
LA = {vu v | n >= 0}.

IML LA is thus reduced to a string form. with u and v as primitive

symbols. The terminology 'vector primitive' for u and v means that

they represent a row or column of primitive picture elements.

Similarly. each column of a IML with a fixed number of rows is replaced

by a coded vector primitive to reduce the elements of the language to a

string form. As shown in Fig. 6,

LB: {pqrstnI n >; I}.

If the number of rows or columns is k, the total number of possible

vectors is 2k.

Step A applies a standard grammatical inference algorithm to obtain

a p-grammar. When a regular intermediate grammar model is used, the

k-tail method of Biermann and Feldman [9] along with a maximum likeli-

hood estimation scheme [A2] will infer the probabilistic intermediate

matrix grammars. The k-tail method produces a number of candidate

grammars as the length of the tail. k. increases. The 'best' candidate

grammar is selected with a criterion based on the complexity of the

grammar and the discrepancy between the language of the grammar and the

given sample set in Step 5. These complexity and discrepancy measures
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/ 1

L = X X X n >= 0

A Ixxx I

L(XXX)n

/

Code X X X as u and . . . as v.

Then

2 n

LA = vu v | n >= 0 }

..xx “

L = X X . n >- I

3 xx .iI

Code

0 O x X 0

. as p. X as q, X as r, . as s and . as t.

X X .

Then

L8 = { pqrstn | n>=l }

Fig. 6: Coding Intermediate Languages 9i L1;

into String form.

are a key step in the inference scheme. Properties of different

complexity and discrepancy measures are discussed in the next chapter.

The inference scheme poses a number of interesting research

questions. The first involves the selection of mathematical noise and

distortion models to describe the deviations in the observed patterns

from the ideal pattern structures. Step 3 requires a moderate number



37

of vector primitives, so as to keep the inferred grammar simple. This

gives rise to the question of how vector primitives may be optimally

defined. Another research question is the establishment of a criterion

for the suitability of the inferred array grammar.

A major contribution of this thesis is the development of

mathematical noise and distortion models that describe deviations from

the ideal pattern structure. These models are used to compute

probabilities of individual blocks. A simple random noise model, two

independent distortion models. and a distortion model based on Markov

random fields are presented in Chapter 5 along with techniques for

estimating the parameters of these models and computing the block

probabilities. In Chapter 6. we study the robustness of the inference

scheme to different noise and distortion models.

Once all the intermediate matrix grammars are inferred. we have an

array grammar representation for the pattern class being considered.

It is important to establish the suitability of this grammar to the

pattern class. or how well it fits the training patterns. A

discrepancy measure which compares the 'fit' between two array

languages is developed in the next chapter.
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3.2 Summary

This chapter describes a model for two dimensional patterns in

terms of array grammars and proposes a learning scheme that infers pro-

babilistic intermediate matrix grammars from noisy and distorted

patterns. once the block structure description of the pattern class is

known. The development of the two dimensional learning scheme and its

use in conjunction with probabilistic noise and distortion models is a

unique contribution of this thesis.
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COMPLEXITY AND DISCREPANCY MEASURES

A large number of grammars exist which generate languages that

contain a given finite training set. A cost function is needed to

evaluate the 'goodness' of candidate grammars generated by an inference

scheme. This function is either intrinsic to the scheme or imposed on

its outcome. At one extreme. the language of a candidate grammar could

be the finite sample set itself. At the other extreme, the language

includes all possible strings. The grammar that generates exactly the

finite sample set tends to be more complex in structure than grammars

that generate larger languages. Therefore, it seems natural that the

'goodness' of an inferred grammar be based on two measures - the

grammatical complexity, which refers to the structural complexity of

the inferred grammar, and the discrepancy. which measures fit between

the language generated by the grammar and the given sample set.

On one hand, the inference scheme should pick the structurally

simplest grammar as the solution grammar, but on the other hand, the

language generated by the grammar should closely fit the given sample

set and contain only strings that are logically implied by the training

samples. The choice of the 'best' grammar will then depend on how much

discrepancy one may allow in light of the complexity of the grammar.

39
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Complexity and discrepancy measures have been defined for string

grammars, but have not been generalized to other constructs such as

tree or array grammars. In this chapter. we review the complexity and

discrepancy measures cited in the literature, and pick a simple comp-

lexity measure that suits our inference scheme. A new discrepancy

measure is defined based on dissimilarity measures among strings and

its key properties are presented. The concept of the discrepancy meas-

ure for string languages is extended to array languages by defining a

measure of fit between two arrays. This measure is then used to define

the suitability of an inferred array grammar to the particular class of

two dimensional patterns under consideration.

A.l Complexity Measures

Complexity measures in one dimension are based on the size of a

grammar or on information theory. Size complexity measures count the

number of nonterminals. terminals and productions of a grammar, while

information theoretic measures are based on probabilistic models. In

the first two parts of this section we briefly review size and

information theoretic complexity measures. In the last part, we

compare these measures and select one for our inference scheme. based

on 'its adequacy to effectively order inferred grammars by their

complexity, and its computational complexity.
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A.l.l Size Complexity Measures

Size complexity for string grammars can be dynamic or static.

Dynamic measures [51] deal with the notion of the 'speed' with which a

grammar generates its language. and are therefore directly tied to the

number of steps an automaton would take to recognize a string. This

concept has been used for language parsing in compiler theory. Static

measures [10,35] have been more widely used in the grammatical

inference framework, because they are relatively easy to compute. They

are usually based on the number of nonterminals. production rules

and/or the sizes of production rules.

Gruska [A8]. Blum [10] and Wharton [118] defined complexity

measures by mapping a class of grammars G, into the nonnegative inte-

gers. Gruska's definition allows intuitively unacceptable mappings.

such as constant mappings [118]. Blum's measure. defined on Q. and a

fixed terminal set. I. is based on two important axioms; (i) there are

a finite number of equivalence classes of grammars of any given com-

plexity, and (ii) there is an effective procedure which determines for

any positive integer. c. which grammars are of complexity c. For

example. a complexity measure C. for the class of context free grammars

in Chomsky normal form is.

C(G) = n(V) + n(P) + n(I)

where. n(V) is the number of nonterminals, n(I) is the number of
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terminal symbols and n(P) is the number of production rules. A

complexity measure valid for one class of grammars may not be valid for

a larger class of grammars. The complexity measure defined above

cannot apply to the general class of context free grammars, because the

finiteness of the complexity classes depends on the fact that the

maximum length of the right hand side of a production in the Chomsky

normal form is two.

Wharton [118] remedied the above problem by introducing the maximum

length of the right hand side of a production into the complexity

measure. Feldman [35] also defined a general complexity measure to be

expressible in terms of an intrinsic complexity which is EAO

(effectively approximately ordered) by the number of symbols required

to write the grammar, and a derivational complexity. This complexity

function is a computable. unbounded. increasing function of each of its

two arguments. Feldman's measure is quite restrictive in the sense

that one measure. length. is used as a cannonical measure, in terms of

which all other measures are defined. Blum's definition of complexity

is more general. because it does not require a specific cannonical

measure. All the size complexity measures discussed above. are based

on intuitively simple concepts. and are directly linked to the

structural size of grammars.
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A.l.2 Information Theoretic Complexity Measures

Information theoretic complexity measures are based on

probabilistic grammar models. The term 'information' comes from Infor-

mation Theory. and represents the decrease in uncertainty that comes

about with the occurrence of an event in a stochastic process.

Cook [21] defined a complexity measure for grammars as the

information required to specify the grammar, or the sum of the complex-

ities of its productions. The complexity of a production is determined

by its right hand side and the complexity of a string is computed in

terms of a grammar-grammar. This measure assumes that the elements of

productions are statistically independent, which may not be realistic.

For example. context free grammars exhibit similarity among product-

ions. A way around this is to introduce conditional formulation.

Other approaches have been suggested by Morning [53]. who derived a

complexity measure from Bayesian theory, and Feldman et al. [3A] who

defined the derivational complexity of the sample set relative to the

grammar G. The derivational complexity is closely related to the

probability of the string being generated by the grammar. The less

probable the string, the higher its derivational complexity.

Therefore, this measure is similar to Horning's because it maximizes

the probability of occurrence of the sample set by the grammar.
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Complexity measures have also been defined [19.61] in terms of the

generative capacity of grammars, called the entropy or channel capacity

of the grammar, and depend directly on the number of words generated by

the grammar. Chomsky and Miller [19] formulated the information

capacity of regular grammars in a manner similar to the channel

capacity concept of Shannon [96]. Kuich [61] developed similar results

for context free grammars and defined entropy in terms of the structure

generating function for a grammar.

All the information theoretic measures relate the complexity of a

grammar to the information required to specify the grammar. in terms of

the number of production rules and the number of symbols used. Whereas

size measures are directly based on counts and are computationally much

simpler. these measures use probabilistic concepts to derive

information theoretic quantities. resulting in measures that are

computationally more complex. The choice of a complexity measure is

highly dependent on the problem at hand. Therefore, it is not possible

to define general criteria for a best complexity measure.

A.l.3 Choice of Complexity Measure

This section describes our choice for the complexity measure to be

used in conjunction with the inference scheme for intermediate string
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grammars. The measure is easy to compute, but permits quantification

of the differences in complexity among grammars generated by the k-tail

inference scheme described in the last chapter.

Size complexity measures. such as Blum's and Wharton's. are very

easy to compute. as opposed to those based on information theory.

Moreover, Cook's and Feldman's measures are tailored towards context

free grammars and are quite redundant for regular grammars. Horning's

measure requires the specification of the intrinsic probability of a

grammar. which is actually the a priori probability of that grammar in

the given class of grammars. This parameter is very difficult to

define in our application.

For these reasons, we choose the size complexity measure defined by

Blum. We define the set 9 (Sec. A.l.l). as the set of regular grammars

generated by the k-tail inference scheme for different tail lengths. A

complexity measure for regular grammars requires only the number of

production rules. The complexity of the inferred grammars then

increases monotonically with increasing tail lengths.

A.2 Discrepancy Measures

Discrepancy measures for string grammars evaluate the match between

the language generated by a grammar and the given training set of

patterns. These measures can use the differences in the probability
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distributions of the elements in the sample set and those generated by

the grammar or they can be based on structural differences between the

sample set and the language.

The discrepancy between two probabilistic languages LI and L2, can

be made up of three parts corresponding to the subsets. L‘(\ L2.

Ll-LZ and L2-L]. Languages L1 and L2 are said to fit closely if the

strings in L but not in L2, are structurally similar to the strings
1’

in L2; so also for strings in L which are not present in L Various
2 1'

measures have been proposed to quantify these ideas. such as the

Weighted Levenshtein Distance (WLD) [80,113] and the similarity

measures of Findler [36]. Liou [66] has defined variations of the WLD

and studied their properties. We use the WLD as the measure of

dissimilarity among strings.

In the inference framework. language L2 is the finite sample set.

S. The discrepancy measure should reflect how closely the language of

an inferred grammar fits S. and whether it is a natural generalization

of 5. Since L(G):> S, the discrepancy measure should depend on

probabilistic differences for strings belonging to S. and structural

differences on the set L(G)-S. The discrepancy or difference of fit,

is a form of proximity measure between two sets of strings. Therefore.

it would be desirable that they satisfy the metric properties,

analogous to distance measures in metric space. Measures of fit should

be bounded and convergent; otherwise the discrepancy might increase



A7

without bound for languages L(G) that are infinite generalizations of

S. Convergence of the measure also allows a comparison of individual

discrepancy values against an upper bound and makes the discrepancy

measure computationally feasible. In this section, we review existing

probabilistic and structural discrepancy measures and motivate

discussion for a new discrepancy measure.

A.2.l Probabilistic Discrepancy Measures

Maryanski [69] defined several discrepancy measures for probabilis-

tic languages based on the absolute difference or the square difference

between probabilities. Given two probabilistic languages L and

1

L2 with word probabilities p(x) and q(x) respectively, he defined six

difference measures which are not metrics. An example is the absolute

difference measure

oaIL,.L2) ~23 |p(x) - q(xll + naIL2.L,I
xELl

One difficulty of these measures is that as LI increases monotonically

in size, the distance between LI and L2 increases monotonically. so a

'best' grammar is not easily selected. Generalizations resulting in

infinite languages would be rejected in favour of finite

generalizations.
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Cook [21] defined a discrepancy measure between a finite training

set of samples and a language, which he interpreted as the information

lost or gained in going from the string probabilities in the sample set

to those in L(G). even though this measure has no basis in information

theory. Another problem with this measure is that there is no

guarantee that it will converge for infinite languages. Liou [66]

defined a procedure for limiting the number of strings to be considered

in computing the sum for Cook's discrepancy measure, while trying to

keep the information loss as low as possible. This procedure is still

computationally expensive, and does not directly reflect structural

differences among strings.

A.2.2 Structural Discrepancy Measures

Structural differences between the training set and an inferred

language can be evaluated in terms of a distance measure between two

strings. such as the string-edit, or the Weighted Levenshtein Distance

(WLD) [6A,80,ll3]. A string that belongs to both the sample set and

the language of the grammar being evaluated, would not contribute to

the discrepancy measure. Otherwise if x E L(G) but x C S. then d(x) 8

min {dist(x.Y)}. A general discrepancy measure could be defined as,

DELIG).S] ‘ XE: WXX) d(X). 'T-(l)

xEL(G)
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where {w(x)} is a sequence of weights that corresponds to the strings

of the language L(G).

This idea was used by Wharton [118] to define metrics on a class of

languages over a finite terminal vocabulary to measure the difference

between two strings. He defined a discrete metric, which is used in

exact language identification but is not useful for inference.

The set L(G)-S is countably infinite, so evaluation of (1) may not

be computationally feasible. There is no guarantee that the sum

converges. Therefore, this measure. too, is not very useful for our

purposes.

A.2.3 Choice of Discrepancy Measure

Maryanski's discrepancy measures, though computationally simple,

ignore structural differences and Wharton's weight measure ignores

probabilistic differences. Cook's measure incorporates both to some

extent but has the drawbacks discussed above. Therefore, we have

decided to define a new discrepancy measure. which takes into

consideration both structural and probabilistic differences.
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A.3 New Discrepancy Measure

In this section, we propose a new discrepancy measure for string

grammars that possesses a number of desirable properties. We begin

with a formal definition of the measure, study its properties in

relation to the inference scheme, and also discuss computational

matters. A probabilistic difference measure. such as the absolute

difference measure in Section A.2.l, adequately measures the

discrepancy for S. In Section A.3.1 we define a new discrepancy

measure for L(G)-S. D(L(G).S), which is a special case of the general

structural discrepancy measure (I) used by Wharton. The overall

discrepancy between L(G) and S is defined as the following linear

combination of the above two measures.

where bl and b2 are positive real numbers which determine the relative

importance of each discrepancy in the total discrepancy measure. The

choice of bl and b2 depends on the application at hand. and will be

discussed in greater detail in Chapter 6.

A.3.l Definition

The structural discrepancy measure, D(L(G).S), is based on struct-

ural differences between probabilistic languages. Two languages L‘ and

L2 are defined to be structurally equivalent, iff
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V x :x E L1¢=>x 6 L2.

The structural difference between L1 and L2 is expressed as,

0“],in -ELZp(x) «10:.in + g q(y) d(y.L,) -—(3)

1 Y 2

where p(x) is the probability of x G L1 and q(y) is the probability of

y 6 L2; d(z,L) is some measure of proximity between string 2 and lan-

guage L. Equation (3) can be rewritten as

D(L].L2) = ELdIXiL2)] + ELdIY.L])]

where E denotes the expected value implied in (3). and X and Y are ran-

dom variables representing strings from languages LI and L2 respect-

ively.

The discrepancy measure D(L].L2) is a proximity or dissimilarity

measure between the two languages L1 and L2. Anderberg [A] provides a

thorough review of such measures. They are normally required to

satisfy the following properties :

(I) D(L].L2) >- 0. with equality if and only if, L1 and L2 are struc-

turally equivalent,

(II) D(L].L2) - D(L2.L]).

A third condition. the triangle inequality, i.e.
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would result in the discrepancy measure having metric properties.

However. we have not found a convenient and useful way of defining

D(L],L2) to make it satisfy the triangle inequality. Condition (II) is

always satisfied irrespective of the way we define d(x,L). To satisfy

condition (I) d(x.L) must satisfy the property

d(x.L) - o, if x E L. --(A)

From (3) and (A) it follows that

D(L .L) = p(X) d(x.L) + q(y) d(y.L ).

' 2 xELZ-L 2 ye; -L I
I 2 2 1

In general, we will define d(x.L) in the following form.

d (X.L) = X f (X.y.WLD(x.y)) .

yEL

where WLD(x,y) is the Weighted Levenshtein Distance between the two

strings x and y. An example is

d(x.L) - Za(x.yl g(WLD(x.y)). --<5)

yEL

Here a(x.y) is a weight factor. called the window function. As L can

be an infinite language, the weight factor limits the sum to only a

finite number of terms. We make a(x.y) depend on the length of string

x. denoted by £(x). to bound the magnitude of d(x.L). Therefore, there

exists a constant c, for which

0 <- d(x.L) <- c, Vx E L].

Thus for any arbitrary language, L,

p(x) d(x.L) <= p(x) c <= c --(6)

PIX) d(x.L) >= 0 "(7)
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Equations (6) and (7) show that (3) is bounded and therefore,

convergent .

Equation (2) reduces to

D(L(G).Sl = p(x) d(x,S) --(8)

L G)-S

where d(x,S) = 0, if x E S. The above is usually an infinite sum, but

because of its bounded and convergence properties. only a finite number

of terms have to be computed to produce D(L(G),S) for a specified

accuracy.

A.3.2 Particular Proximity Measures

In this section we develop particular proximity measures defined in

(2) that reflect the difference in structure between a string x and the

set of strings in the language L. Three different discrepancy measures

are proposed below.

The minimum discrepancy measure is defined as.

Dmin(L].L2) ‘xEZLIpOO dmin(X.L2) +YéEjL2q(y) dmin(y’Ll)°

where

dmin(x’L) = a(x) minIWLD(X.Y)} --(9)

yEL

and a(x) = l / £(x). Since

WLD(x,y) <= £(x) + [(Y)
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we have

minIWLD(X.y)} <‘ L(x) + b

yEL

where b <= min{ £(y)}, which shows that dmin is bounded. which implies

that Dmin(Ll’L2) Is convergent.

The minimum discrepancy measure can be looked upon as an optimistic

estimate of the proximity between two languages. Another estimate may

be an average distance between string. x, and the set, L. A reasonable

way to define the distance would be to compute a weighted average

distance between x and all strings from a finite subset of L. Such

discrepancy measures are called window discrepancy measures. Finite

subsets are identified by placing windows on the set L which assigns

'weights' to all strings whose lengths are between £(x)-c and £(x)+c,

where c >. 0. The general definition of window discrepancy measures

d*(x.L), appears below. Let

Lc(x) = {yEL| £(x)-c<= £(y)<- £(x)+c}, where c >. 0

If x E L, d*(x,L) = 0.

If x G L and Lc(x) 8 O. define d*(x,L) - 2 + c/ £(x).

If x E L and Lc(x) f O. d*(x,L) =YELa*(x,y) WLD(x,y).

where a*(x,y) - 0, if y E Lc(x).

Let Kc(x) denote the cardinality of Lc(x). For some fixed c >= 0. the

rectangular window function is.
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l / ( £(XI KCIX)). if Y 5 L (x)
c

arect(x’y) a
O , otherwise.

The corresponding discrepancy is

f

0, if x E L --(10)

drect(x’L) =<2 + c/ £(x). if Lc(x) - O. x G L

[l/ £(x)] WLD(x.c) otherwise, 
\

wherem denotes the average distance between x and strings in

Lc(x). Similarly a triangulgr window function is defined as

( £(Y)- £(x)+c)/Ci £(y)<' £(x). Y 5 Lc(x)

atri (My) = l/( £(x) .Kc(x))

< ( £(x)- £(y)+c)/c; £(yl> CIXI. y E Lc(x)

0 . Y i Lc(x) 
Strings in Lc(x) with lengths close to £(x) influence the triangular

proximity most. The corresponding discrepancy function is defined as

f

0, if x E L

dtri(x’L) g

A

2 + c/£(x). if Lc(x) = O. X¢ L --(11)

 \atri(x,y) WLD(x,y). if x EL.

From a comparison of the three discrepancy measures it is apparent

that

dmin(x’L) <- d (X.L):
rect

dmin(x.L) <= dtri(x.L).

Therefore it follows that

D . (L].L2) <= 0
mIn (Ll’L

2)i

Dmin(Ll’L2) <. Dtri(Ll’L2)°

FCCt
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For a fixed window size. c >= 1, we have

Dtri(LI’L2) <- D (L L
rect l’ 2)'

This confirms the fact that the minimum discrepancy measure is an

optimistic estimate of the proximity. The triangular and rectangular

measures fall into the category of weighted average estimates. The

next section shows that all three discrepancy measures behave similarly

when used with an inference scheme. The choice of a particular measure

depends on the application being considered.

A.3.3 Properties of Structural Discrepancy Measure

We now look into properties of a structural discrepancy measure

D(L(G),S) in the grammatical inference problem. The greater the

probability or the smaller the length of a string, the larger is its

contribution to the discrepancy measure. This conforms to intuitive

notions [A2] that small strings are more important than large ones.

Simple examples are used to illustrate some of the desired properties.

We assume

SCL(G) and D(L(G).S) =Zp(x) d(x,S).

xE{L(G)-S}

Property: Given a probabilistic language, L, and two finite sample sets

SI and $2. such that

SIC: SZCZ L. Then,

Dmin(L’Sl) >' Dmin(L'52)'
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The proof is simple.

The same conclusion cannot be made for Drect (and D .) as demonstrated

below.

Example I: Let L = {abc, bac. cba, acb. bca. cab}. with probabilities

(l/S-I. 1/51. 1/5-1. 1/5-1. 1/5-1. I/S-I).

S]8 {abc. cba} with probabilities, (l/2, 1/2) and

$2: {abc. bac. cba} with probabilities. (1/3. 1/3, l/3).

With wIndow Size = O, Drect(L’sl) 8 1.2156 and Drec (L.Sz) =

1.3072.

Therefore, Drect(L’ S2)> Drect(L' SI) though S‘CISZ.

For a language. L, and and a finite sample set SC: L, we can write

our three different discrepancy measures as.

 

 

 

(L.S) = p(x) l minIWLD(x,y)} _ --(12)

n Z [M yes

(L. S) -= p(x) l W) "(13)Z w,

Dtri(L'S) =Zplx) 2m ——)WLD(X.c --(III)

where WLD(x.c) - at i(x.y) WLD(x,y)

yEL

The contribution of a string x 6 L to the discrepancy meaéure is a

product of three factors - its probability, the inverse of its length

and its proximity measure to the set. S. This shows that the
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discrepancy measures increase in direct proportion to the probability

and the WLD function of the strings in L(G)-S. and shorter strings have

a greater contribution to the discrepancy measure. An example below

illustrates the convergence property of the discrepancy measure for

infinite languages.

Example 2: Consider S = {a, a2. ----- , an} with

probabilities (l/n. l/n, ----, l/n).

Let G: X -> aX I a (p.1-p),

so L(G) - {an | n >. I} with probability(anEL(G)) = pn-](l-p).

oo ._1

Then. Dmin(L(G).S) {go-pipJ (j-n)/j =
j=n+1

n

1/9 - (I-p") - n(l-pl/pLIOQII/(l-pll - EZIpJ/III

1-1

This shows that as n increases. Dmin(L(G)’S) decreases. As n ->cz>,

Dmin(L(G)’S) -> O.

A.3.A Computation of the Discrepancy Measure

In this section we discuss the computational complexity of the

discrepancy measure in terms of the number of steps required in the

computation. This discussion pertains to sequential algorithms for

computing the WLD. Recently [17] parallel algorithms have been

proposed that reduce the order of the time complexity. They are

discussed in detail in Chapter 6.
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The sum in D(L(G).S) usually involves an infinite number of terms,

because L(G) is generally an infinite language. Following Liou [66].

there are two ways in which we can make the computation finite. One

way is to use the fact that any grammar generates only a finite number

of strings of length <8 m. where m is a positive integer. By choosing

a subset.

Am 8 {x E L(G) | £(x) <8 m}. we can approximate

D(L(G).S)z D(Am,S) .. [22:20 d(x,S)

m

One intuitive choice for m is max{£(y)}. but then the computed discre-

pancy measure may fail to verify whether L(G) is a natural generaliza-

tion of S.

A second approach is to use string probabilities to limit the

number of strings used in the computation. Select a real number. q,

O<q<l, and demand that (lOOq)% of the probability of strings from L(G)

be used in the discrepancy computation. This requires choosing strings

from L(G) in a prescribed order, until the sum of the probabilities

equals or just exceeds q. A reasonable way to do this is to generate

strings from L(G) in lexicographic order and accumulate these strings

in a set Bq, till p(x) >8 q. Then the discrepancy measure can be

approximated as

D(L(G).S) 0(8 .5) = p(x) d(X.S).

q geq
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Distance computations are based on the WLD [80]. The conventional

WLD algorithm has computational complexity of order nm, where n and m

are string lengths. Masek et al. [71] have proposed a faster algorithm

of order (n max(l,n/log m)), where n >8 m. If the sample set, S, has M

strings and we restrict ourselves to N strings from L(G), the worst

case computation time for (L(G).S) becomes O(MNmn) (or O(NMnD .
min

max(l,n/log m)), n>8m). For rectangular and triangular windows the

order of computations is similar, except that for x E S. the actual

computation time may be less than required for Dmin(L(G)’S)°

The computation time for Dmin(L(G)’S) can be reduced by use of a

search algorithm. The algorithm is summarized as follows -

Arrange the strings in S in order of their lengths.

For each x E L(G) chosen in the computation first compare x with

y E S : [(Y) = [(x).

If 3 y : WLD(x,y) 8 0. exit and pick the next x.

Otherwise, find a number a : a 8 minIWLD(x,y)}.

yES such that

C (x) 8E (Y)

The search can then be restricted to the set

{y 6 S : L(XI-a <8 L(y) <8 £(XI+a }.

For every new length of strings being searched, the bound a is updated.

if a < anew old’ and correspondingly the search space Is mInImIzed.
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All the discrepancy measures defined above are of the same order of

complexity; the computation time for rectangular and triangular window

measures depends on the window size. All three measures have identical

properties in relation to a string grammar inference scheme. We chose

the minimum discrepancy measure as our proximity measure for structural

discrepancies, but test runs for the experiments we conducted in Chap-

ter 6 showed that the other two measures would have produced almost

identical results.

A.A Discrepancy Measure for Array Languages

The fifth step in our inference scheme described in Section 3.2

requires the establishment of a measure of suitability to determine how

well the language of the inferred array grammar fits the training set

of patterns. We now extend the concept of the structural discrepancy

measure for string languages to a structural difference measure between

two array languages. This requires the definition of a proximity

measure between two arrays. The string edit or the WLD distances has

been extended to measure the distance between two finite arrays of

symbols [76.109] and is called the two dimensional WLD. or WLD2. We

use the concept of WLDZ to define the discrepancy measure between two

array languages. The computational aspects of this measure are

investigated, and then approximations to the actual measure are
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developed to reduce the computational effort in our inference scheme.

The discrepancy measure between an inferred array language L and

the training set of array patterns S is defined as

D(L.S) 8 p(x) d(x,S) --(15)

xEL-S

where x is an array pattern and p(x) is the probability that x E L;

d(x,S) is a proximity measure that has the same properties as the

proximity measures of Section A.3.l and

d(X.S) 8 Z a(x.y) g(WLDZIX.y))

yES

where a(x.y) is the weight factor, or the window function. As in

Section A.3.2 we can define the minimum measure and the two window

measures .

The language L, as a generalization of S. is often an infinite

language, so we need to adopt techniques to make the computation

finite. The algorithm to compute WL02 between two arrays of sizes IxJ

2L+IJ2KL2) [109]: if I - J - K - L = N. weand KxL. is of order (l2+JK

have O(N6) and this makes the computation formidable even for moderate

N. We approximate D(L.S) by computing only a few terms from L-S.

1’ "IT"

---, N2 (the definition of type is introduced in Section 2.A), with

Suppose the training set S. contains array patterns of types N

nN , nN +1. ----, nN array patterns of each type respectively. We

1 1 z

defIne a new set LSC: L. such that L5 contaIns an,’ 2nN£+], ---.

2nN2 patterns of types N], N]+l, ---, up to N2. respectively. For each
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size Nk’ Ls contains the 2nNk patterns of highest probability from L;

D(LS.S) is then used as an approximation for D(L.S). For our inference

scheme, we chose the triangular window proximity measure to compute

d(x,S), x E LS; the window is defined as

Lc(x) 8 {yES | size(x)-c <8 size(y) <8 size(x)+c}, with C81.

where size(x) denotes the size of array x. This estimate is a rough

approximation to the actual discrepancy measure D(L.S), but it does

estimate the fit for comparison of array grammars inferred by applying

different noise and distortion models to the same training set without

making the computations unduly lengthy. These experiments are

explained in detail in Chapter 6. Much better approximations can be

obtained. however, by the use of parallel systems and parallel

algorithms, which greatly reduce the time complexity of the algorithm.

They too are discussed in Chapter 6.

A.5 Summary

This chapter discusses the role of discrepancy and complexity

measures in the inference of string grammars. A number of the existing

measures are reviewed. A complexity measure is adopted that satisfies

Blum's and Wharton's criteria. is computationally very simple. and

quite adequate for regular grammars. A new structural discrepancy

measure is defined; the total discrepancy between the language of an

inferred grammar and the sample set is defined as a linear combination

of the structural discrepancy measure between the two sets and the
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absolute discrepancy measure between strings common to the two sets.

Lastly, a new discrepancy criterion for the fit between two array

languages is proposed. Computational aspects of these algorithms are

investigated.



CHAPTER V

MODELS FOR NOISE AND DISTORTION

The inference of probabilistic grammars involves estimating

probabilities for production rules from probabilities assigned to the

samples in the training set. In the string grammar inference problem,

probabilities are assigned to strings either by frequency

counts [11.A2]. or from a probabilistic model. A probability model on

strings defines conditional probabilities of the type p(x|y), where x.y

E T+. An example is the error correcting parsing model described in

Section 3.1, where probabilities assigned to each of the three edit

operations can be used to compute the probabilities of strings.

Pattern description and learning based on array grammars involves

inferring the structure of a given class of patterns from images that

may be corrupted by some physical phenomenon. The ideal image is

changed by random fluctuations in the digitizing unit. or during

transmission. This phenomenon, which is independent of the underlying

pattern structure. is called a noise process. In other situations, the

corrupting phenomenon may depend on the underlying pattern structure.

Such effects are observed during photographing or digitizing objects

when the intensity differences between light and dark areas is low.

causing diffraction effects. This effect becomes more pronounced when

65
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the aperture of the camera lens is small. resulting in blurred edges

separating the object from the background [88]. Points near the

boundaries of objects experience more distortion than internal regions.

We term such processes distortion processes.

This chapter investigates some noise and distortion models. We

begin with a simple. independent noise model, and then extend it to

define two intuitive distortion models and a comprehensive distortion

model using Markov random field theory. We study the mathematical

formulation of each model. and techniques for generating sample

patterns. based on an ideal structure along with the estimation of the

parameters of a model. The estimated parameters are used to compute

individual block probabilities as outlined in Section 3.2.

5.1 The Independence Noise Model

The independent noise model assumes that the probability of a pixel

changing value is independent of all other pixel values in the pattern.

This is equivalent to considering an ideal image. which is a digitized

mxn pattern, being degraded with independent. additive, stationary

noise.

The noise process is modelled as a Bernoulli process. The number

of changes in a block is assumed to have a binomial distribution. with

parameters b, the number of pixels in the block, and p. the probability
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that a pixel value is switched.

The scheme for generating patterns from this noise process is

described in Procedure 1 below. We assume that all pattern types

(random variable N) occur with equal probability. so N has a discrete

uniform distribution over [N],N2].

 

(

1 , if Nl<= n <8 N2

P[N=n] = a Nz-N]+I

O , otherwise.

\

Procedure 1:

Input: G. the rewriting rules for the ideal structure, p,

N N
. l’ 2'

Begin:

(1) Generate n..~.. U[N].N2]

(2) Using the nonterminal rewriting rules, create an

ideal pattern structure of size n.

(3) For each pixel in pattern,

(a) generate x:: U[0,l]

(b) if x<8 p. flip pixel value

otherwise. retain pixel value

End loop.

End

The result of applying this procedure to a set of isosceles triangles

and the numeral '7' are illustrated in Figures 7 and 8 respectively.

The parameter p was set at 0.05.



likelihood estimate of the parameter p. is

imposing the noise model on the ideal pattern structure, the maximum

Given that the patterns in the training set are obtained by

 Independent Noise Model. p 8 0.05.

Eta-  1: Triangles Generated from
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fig. _8_: Noisy ]_'_s_. p = 0.05.
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8 8 total number of pixels that are flipped

total number of pixels in the sample set

The ideal structure must be known. Our inference scheme requires that

the patterns be broken down into blocks. which can then be grouped into

sample patterns for the different intermediate languages. Treating

each intermediate language separately. we can compute the probability

of occurrence of each block from the noise model. The probability of

observing a block with b pixels of which c are flipped is:

p° (I-plb'c --<I)

This model for noise is computationally very simple. both in terms

of generating patterns, and computing the block probabilities required

by the inference scheme. It represents random fluctuations in a

digitizing unit or a transmission channel that are independent of the

underlying pattern structure.

5.2 Intuitive Distortion Models

The corrupting process in distortion models depends on the

structure of the ideal image. Deviations from the ideal are seen more

along the boundary than in the interior of the object or in the

background. Boundary and interior points are illustrated in Fig. 9.

This type of corruption can be attributed to diffraction effects that

occur when digitizing an object or by image preprocessing and

segmentation operations that extract a binary image from a background



distortion models based on Markov random fields.

section. We discuss their shortcomings and motivate the study of the

extensions of the independent noise model are presented in this

of irrelevant detail. Two simple intuitive distortion models that are

:19. 2:  Interior and Boundary Points

(b) Arbitrary Figure
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5.2.1 Independence Distortion Model

Instead of looking upon an image or pattern as a homogeneous

region, with the same probability of change at each pixel, we define a

nonhomogeneous model with two parameters; pi is the probability of

change for interior points, and pb is the probability of change for

boundary points. If pb > pi boundary changes are more likely than

changes in the interior and background regions.

The scheme to generate distorted patterns using this model

(Procedure 2) is similar to that for the independent noise model. The

pattern type is assumed to have a U[N].N2] distribution.

Procedure 2:

Input: G, B. pi. pb, N1 and N2

Begin:

(1) Generate n=: U[N],N2]

(2) From rewriting rules create ideal structure

of size n

(3) For each pixel in pattern.

(a) Generate x 2: U[0, l]

(b) if interior pixel then

if x <8 pi flip pixel value

otherwise retain

otherwise (boundary point)

if x <8 pb flip pixel value
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otherwise retain

End loop.

End

An example in Figure 10 illustrates this procedure with the class of

triangular patterns. The parameters pi and pb were set to 0.05 and

0.15. respectively.

Estimation of the parameters pi and pb. from a finite set of

training patterns using maximum likelihood estimates, again involves

counting procedures,

8i 8 total number of interior pixels flipped

total number of interior pixels

and 8b 8 total number of boundary pixels flipped

total number of boundary pixels

Once 8i and ‘hb are estimated. a probability can be assigned to any

block by assuming the patterns are acted upon by two independent

binomial processes. The probability that a block b pixels experiences

ci internal changes and c boundary changes is
b

c b -c c b -c

RE (I pi) pb (1 pb)

iswhere bi is the total number of internal points in the block. and bb

the total number of boundary points in the block; bi+bb 8 b.



ideal pattern. The surrounding pixels determine the extent of

pixel to be a function of the values at neighboring pixels in the

atThe neighborhood distortion model allows the distortion process

5.2.2 Neighborhood Distortion Models
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nonhomogeneity in that region. If a majority of the neighboring pixels

have the same value, we assign a smaller probability of change than

when the surrounding neighborhood is nonhomogeneous.

We now formally define the concept of neighborhood for a two

dimensional array of pixels. The distance between pixels or points in

the array assumes discrete values. Figure ll(a) depicts some of the

squared distances from point x in the array. These squared distances

form a sequence of numbers I, 2. A, 5, --- called {e(k)}, k 8 l, 2,

----. Following usual image processing conventions. pixel (m,n) is a

kth order neighbor of pixel (i.j) iff the squared distance between

(m,n) and (i.j) is the kth term in {e(k)}. Figure ll(b) shows the

ordering of the neighboring pixels from the one marked x.

A neighborhood distortion model of order k requires that the

probability of change for each pixel (i.j) depends on all its neighbors

up to order k in the ideal pattern. In general, if the number of pixel

neighbors of order k or less is c, we define a discrete neighborhood

function W(i.j) for each pixel (i.j) that can assume at most

2c different values. We assume. for a kth order neighborhood function,

that the pattern is surrounded by k rows and columns of 0's at each

edge. so that W(i.j) is then well defined for all pixels of the

pattern. Corresponding to this neighborhood function we have at most

2c different probability of change values. (p]. p2. ---. p2 ). as

parameters for the model. For example. consider a first order model
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+----------------------------------+

I I l I I I l I
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+--------------------------------- +

FIG. ll(a): Squared Distances 39 Point x.

where each pixel has four neighbors. The neighborhood function can

have a maximum of 16 different values. and the model can have a maximum

of 16 different probability of change values as parameters. Simpler

functions can be used to describe the type of distortion we desire,

such as,
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For k = l, the above function can have five values. 0 through b, so

we can define a maximum of five different probabilities of change,

p0 through p“. As a snmple example, we set po - ph and p1 - p2 = p3.

Then a value of 0 or b for the neighborhood function indicates a

homogeneous region and the other values represent nonhomogeneous

regions. Setting p1 > po produces more likely distortion along edges

than in interior regions.

The value of the neighborhood function for each pixel is determined

entirely from the ideal structure of the pattern, which is pre-

determined. Therefore, the probability of change for any pixel (i,j)

is independent of the probability of change for any other pixel (i',j')

in the same pattern. We define an indicator function z(i,j) for an

observed pattern, as

I if the pixel value is flipped,

z(i._i) =

0 otherwise.

Assuming that N, the type of the pattern, comes from a U[N‘,N2]

distribution, the probability of a block sample belonging to an

intermediate language is

Nz-N]+l J 6block

This model is uniquely defined by the neighborhood function W(i.j), the
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size of the neighborhood k, and the different probability of change

values that are used. The generation procedure for samples from this

model is given in Procedure 3.

Procedure 3:

NInput: G. W(i.j). {pi}. N]. 2

Begin:

(l) Generate n z U[N],N2]

(2) Using rewriting rules create ideal structure of

type n

(3) For each pixel (i.j)

(a) compute W(i.j) from ideal pattern

(b) generate x z U[0,l]

(c) if x <- pw(i,j)’ flip pixel value

in observed pattern

otherwise, retain ideal pixel value

End loop.

End

Maximum likelihood estimation of the parameters, given the

neighborhood function and size of neighborhood, again involves a

counting procedure. The pixels in the observed patterns are grouped in

terms of their neighborhood function values, and for each distinct

functional value, we count the number of pixels flipped as well as the

total number of pixels in that group. Therefore, for a particular

value of W(i.j) = x,

 



80

A . .
p = number of x-group pixels flipped

total number of x-group pixels

The complexity of this model depends on the size of the

neighborhood and the neighborhood function H. We chose the w function

as defined in (2), and used the model for first order neighbors with

two different probability of change values. The computational

complexity is the same order as in the previous two models, except that

we now compute the neighborhood function for each pixel (i.j). The

results of applying this model to the triangular patterns are

illustrated in Fig. l2.

5.2.3 Applications and Limitations

The two models described above satisfy the requirements for simple

distortion processes in that the corrupting phenomenon depends on the

underlying pattern structures. The neighborhood model is

computationally more complex than the independence model. However, it

is a richer model in the sense that it can model a variety of

distortions. Both models are limited by the fact that they are static

in nature. The pixel values in the observed patterns depend only on

the ideal pattern structure, but are independent of each other and do

not allow the propagation of distortion effects.



 Distortion Process. po = p“ = 0.05; pI - p2 = p3 - 0.15
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5.3 Markov Random Field Distortion Model

In this section we define a distortion model in which the

probability that a pixel changes value depends on whether neighboring

pixel values have also undergone a change. The mathematical

formulation of this dependence is expressed as a Markov random field

process [7,8,55]. The success of MRF's in modelling texture [25]

suggests they are appropriate for distortion models.

Our two dimensional patterns are binary mxn arrays which, in Markov

random field terminology are finite lattices whose sites are labelled O

or l. We begin this section with a brief review of the mathematical

background of Markov random fields on finite lattices. Techniques for

generating distorted samples using this model and the estimation of the

parameters of this model from finite training sets are also studied.

5.3.l Background

We follow the notations and definitions of Besag [8] and

Isham [55]. The set of all possible realizations on a binary mxn

lattice is denoted by T. A particular assignment of 0's and l's to a

lattice, called a configuration, is denoted X E T. Since T is finite,

the process can be described by a discrete probability distribution, u,

on the power set of T. Suppose u(X) > 0, V X E T. Then, there exists

a real valued potential function
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(209 = -log{u(1) / u(¢) l ---(3)

where ¢ is the configuration with 0's at all site values and Q(¢) = 0.

Rewriting (3) we obtain,

U(§) = Z expi-Q(§)}. ---(h)

where Z is a normalizing constant obtained by setting the sum of (h)

over all subsets X E T to one. This type of probability distribution

is frequently referred to as a Gibbs potential.

For finite lattices, the class of probability distributions with

Gibbs potentials has been proved to be identical to Markov random field

models [8.50.89]. A Markov random field [29] is a joint probability

density on the set of finite mxn arrays, subject to the following

conditions -

(i) Positivity : p(X) > 0 V 5 E T, and

(ii) Markovianity : p(Xi j | all points on lattice except

(i.j)) - p(xi j | neighbors of (i.j)).

A Markov random field is defined to be of order k, if Xi j depends on

neighbors up to the kth order.

The potential function can be expanded as follows if the pixels are

labelled l to N.

Q(l) =2 xiFi(xi) + leiji j(xi’xj) + ----

i i,j ’

+ xI"2"""NF1,2,----,N(xi'x2’""’"N)'
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where the functions {F. } are called interacting potentials, and

'9j9---ak

xi is the label on the the ith pixel.

A Markov random field is called an Auto-model if the following two

conditions are satisfied.

(i) All F functions with more than two subscripts vanish

identically;

(ii) The conditional probability distribution at each point belongs

to the exponential family.

The potential function for a first order Auto-model is called the near

neighbor potential function and can be expressed as

(2(5) g :xiai + iijiiji’j ---(5)

where b. . = 0, unless xi and xj are neighbors. From (5) we obtain

exp{-x(ai +-Z:iji’j)}

 

l + exp{-(ai +23iji,j)} ---(6)

where X' represents the configuration X minus the ith point.

Equations (5) and (6) define a first order random field with N(N-l)

parameters, the ai's and the bi j's. A Markov random field is said to

be spatially homogeneous if

ai . a, i =19 2’ ---! N;

bi . = b(l) if xi and xj are vertical neighbors and
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bi j 8 b(2) if xi and xj are horizontal neighbors.

A spatially homogeneous first order Markov random field can be defined

by these three parameters and is called isotropic if b(l) = b(2).

5.3.2 The Distortion Model

We base our distortion model on the isotropic first order Auto

model. Given an ideal structure of size mxn, we define a change

template T as an mxn binary array generated by the isotropic first

order Auto model that relates the ideal structure Y = [yi,j] and the

observed patterns X = [xi jJ in the following manner,

l-y. . if t. . = 1. ---(7)

A desirable property for our distortion models is that the

probability of change on and around borders be greater than the

probability of change in interior and background regions. This is

achieved by defining a nonhomogeneous Markov random field. The points

on the change template are broken up into interior points and border

points, as determined by the ideal pattern structure. Our first order

nonhomogeneous Markov random field model requires five parameters,

(i) ai - corresponding to first order interactions for the

interior points,

(ii) ab - corresponding to first order interactions for the
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boundary points

(iii) ai i - corresponding to pairwise interactions of interior

D

points

(iv) ab b - corresponding to pairwise interactions of boundary

9

points, and

(v) ab i 8 a3 b - corresponding to second order interactions for

9 9

interior-boundary pairs.

Setting ab < ai produces more changes around border regions than in

interior regions. Cross[25] showed that the parameters b(l) and b(2)

control the clustering or grouping of l's on a lattice for homogeneous

models, with negative values indicating attraction and postive values

indicating repulsion. Setting the parameters, b(l) and b(2) to 0,

produces equally likely configurations. This interpretation is also

valid for our nonhomogeneous model, and ai,i’ ab,b and ab,i control the

clustering of interior-interior, boundary-boundary and interior-bound-

ary pixels that are l's.

Following (5) the potential function can be written as

Qt(X) - siai + s a + siia. --(8)
b b .,i + sbbab,b + sbiab,i’

where 5i and 5b are the numbers of interior and boundary points

respectively that are l's, and sii’ and s are the number of int-

sbb bi

erior-interior, boundary-boundary and interior-boundary neighbor pairs,

respectively, that are both l's. The probability of occurrence of a

block, obtained by applying the nonterminal rules of the pattern class,

can be written as,
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l TT p(t..|X)

NZ-N]+l (i.j)Eblock "J '

where p(ti | X) is defined in (6), and ti j is the pixel value in

.i

change template T. We again assume that the type of a pattern is

distributed as U[N],N2].

5.3.3) Generation 9: Distorted Patterns

The procedure for generating distorted patterns is based on an

algorithm for generating texture [25]. The generation procedure is

derived by analogy to a discrete, finite state Markov chain, whose

states are the set of configurations { X }, with the limiting

distribution given by u(X)[h9]. The transition probability from a

state X to a state 1 is given by u(X)/u(X). The algorithm is given in

Fig. l3 [37,73]. Convergence to the limit distribution is unaffected

by the choice of the initial configuration; only the time taken to

achieve the final configurations depend on the initial configuration.

Step l in Fig. l3, therefore, requires the choice of a good initial

configuration. We generate our initial configuration using the

procedure for the independent distortion model described in Sec. 5.2.1.

This procedure requires the two probabilities pb and pi whose maximum

likelihood estimates are developed below. A likelihood function that

defines the ratio of the desired density function to that for the

independent model distribution is,
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exP(Siai + sbab + siiai,i + sbbab,b + sbiab,i
L(l) ‘ 55(1— )nb-sb 5i(]- )“L'sl __( )

pb pb pi :3i 9

where nb and ni are the total number of boundary and interior points

respectively. Equation (9) can be broken up into product terms and

expressed as

L(l) ' [exp(- ab)(l- pbl/ pb]sb [exp(- ai)(l- pi)/ pi Jsl

- '"i - -n -

[ (' pi) (‘ pb) b exp{ (Siiai,i+sbbab,b+sbiab,i)} J

The two probabilities pb and pi are chosen to make the expressions in

the first two brackets equal to l. Therefore,

= l , p. = lPb
:

l+exp{ ab} ll+exp{ ai}

We follow the procedure used by Cross [25] to define the parameter

STABLE. Given mxn arrays, we define M = mn. and consider M attempted

switches to constitute one iteration. This count ignores attempted

switches between pixels with the same value. Convergence to the

desired configurations is indicated when the number of changes per

iteration drop off to a small percentage of M, or the estimated

parameters match the input parameters closely. These two factors are

used to define the variable STABLE in Fig. 13. The algorithm was used

to generate distorted sets for the triangle pattern structures as

illustrated in Figs. lh and l5 for different second order parameters.

The time taken to generate templates of types l0-20 was roughly 500-600

seconds per template on a PDP—ll/3h computer; the computation time for
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.........................................4.

l

(l) Generate initial Template l

usung pi and pb :

........................................+

l

(2) Until STABLE !

l

+-----------------------------------+

, l

(3) Choose sites (k,l) G (k',l') l

with different pixel values !

l

l

l Switch l Retain I

l (k,l)G l old i

I (k',l')! config.l

l l l

+--------+--------+

l

(h) Compute u(new)/u(old)=r !

l

+-----------------------------------+

l l

l (5) r >8 I 7 l

l yes no !

+-----------------------------------+

l l l

l ! Get 2 - U[0,l] l

! l l

! +-----------------+

! l l

l Switch ! r > z 7 l

! (k,l) l yes no l

! and +--------+--------+

! (k',l') ! l

l

l

l

l

+

519. 1}: Algorithm for Generating Template from MRF distribgtion with

given Parameters
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the indepedent models was just a fraction of a second.

5.3.A Estimation of Parameters

This section explains a method for estimating Markov random field

parameters from a given set of training patterns. Nonhomogeneous

Markov random fields involve many more parameters than homogeneous

ones [25]. The first approach simplifies the computational

requirements of the estimation procedure by approximating the

probability distribution u(X) of a configuration X

expl-Qt (5)}

u(X) = ---(lO)

Zexp{-Qt (x);

XET

 

For convenience of notation we define C, the count vector as

'S ., 'S

c ‘ (”si’ "‘b' in bb’

and A, the parameter vector as,

A = ( ai’ ab’ ai,i’ ab,b’ ab,i)

Then exp{-Qt(X)} - exp<C,A>, where < , > denotes the vector dot

product. The denominator of (l0) can be expressed as

Z exnl-QtQQ} = 2”"Etexp<c.A>J mm)
XET

for a mxn lattice where E is the expectation assuming all
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configurations generated by the parameter set A are equally likely.

We expect the count vector C to converge to a multivariate normal

random vector as the pattern size increases. Monte Carlo runs

performed to verify this for the triangular pattern structure showed

that (ll) seems to converge in distribution to a multivariate normal

distribution with mean vector E[C] and covariance matrix R; R is a 5x5

matrix consisting of the second order moments of the C vector.

Mardia's [26,70] skewness and kurtosis tests for multivariate normality

were the criteria. The Monte Carlo runs involved picking a template

size N, and then creating sets of 500 random templates at random. The

count vector was then computed for each of these configurations, and

Mardia's test was applied to each set .of 500 count vectors. The

procedure was repeated l00 times and the number of rejections of the

null hypothesis for the skewness and kurtosis tests were observed.

This test was conducted for pattern types l0, l5, 20, no and 50. For N

less than 20, the multivariate normal hypothesis was consistently

rejected by the skewness test but there were less than five rejections

by the kurtosis test at the 5% significance level. For pattern types

#0 and 50 the hypothesis was accepted at the 5% significance level for

both the tests. Therefore, the approximation to the denominator seems

adequate and we write,

E[exp<C,A>] exp{<E[C],A> + 0.5<A,RA>}

which reduces (ID) to

u(X) - exp{<C-E<C>,A> - 0.5<A,RA>}
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If R is nonsingular, the maximum likelihood estimate can be written as

A = R"(c-E[cJ)

where C is the vector of observed values; E[C] and R depend on the

ideal pattern structure.

Table 1 indicates that this estimation procedure worked poorly for

the configuration of triangles. One possible explanation is that the

parameters chosen generate distorted, atypical configurations and that

the degree of nonhomogeneity is very high. There is a high degree of

attraction among boundary l's in the change template, but the

distribution of l's in the interior is quite random. The normal

approximation of the probability function is exact at the origin of the

parameter space. As one moves further away from the origin this

approximation worsens. This was illustrated when the estimation

procedure was applied to sets of triangular patterns of type l5

generated by the Markov field model with the parameters listed in Table

l. A second explanation is that the approximation is linear but the

function is not, so the parameters are not unique; i.e., several

parameter sets produce the same probability values but for different

sets of configurations. The poor results obtained in Table l prompted

us to use the exact form of the likelihood function to estimate the

five parameters.

The log likelihood function for the probability distribution can be

written as
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Table 1: Parameter Estimates by the two schemes

for the Markov random field model

r ____________________________________________________________________ -

PARAMETER ESTLMATES-t—f_aiz_ab, ai’i, ab’b, ab’i>

GENERATIVE __ __ __ _'._ __E§T1MATED _____ .___ _ _

SCHEME I ‘F SCHEME 2

--L............................................. . ......................

1) o.o,o.o,o.o,o.o,o.o o.o,-o.2,o.o,o.i,o.o **

2) l.0,l.0,0.0,0.0,0.0 2.5,2.5,-0.8,-l.l,-0.8 l.2.l.2,0.0,0.l,0.0

3) 2.0,l.0,0.0,0.0,0.0 .h,3.6,-2.l,-l.6,-l.6 l.8,l.0,0.l,0.3,0.l

5) 2.0,].2,0.0,0.0,-l.

5

h) 2.0,].0,-l.0,0.0 5.5,2.9,-2.l,-l.6,-l.6 l.8,l.3,0.0,-l.3,0.l

5.h,3.3,-2.0,-l.6,-l.8 2.2,0.9,-0.l,0.2,-0.2

66) 2.2,).5,0.l,-l.,-.8 .h,h.h,-2.5,-2.3,-2.0 2.0,].2,0.l,-l.l,0.7

7) 2.2,).5,0.5,0.5,0.5 5.“,h.h,-2.l,-2.l,-l.7 l.5,l.3,0.5,0.7,0.5

8) 2.2,].5,-.5,-.5,-.S 5.9,k.h,-2.3,-2.l,-l.9 l.6,l.5,-0.h,-0.h,-0.h

69) 2.2,1.5,-.2,-.8,.1 .3,A.7,-2.3,-2.5,-l.9 1.7,1.h,-o.3,-o.9,-.05

L......................ll .............................................. -)

** - could not compute; problems in numerical computation.

     
LI- 2: ln(p(xi B x | X)

xiGX

where p(xi - x | X) is given in equation (6). All the terms in the

summation above are not independent, because of the nature of the

Markov random field scheme. Therefore coding schemes [8,25], which

break up the lattice into disjoint sets of independent points, are

employed. A first order scheme requires at least two codings for
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estimation purposes so we break up L into parts L(l) and [(2),

corresponding to the two codings. The maximum likelihood estimate

requires the solution of five simultaneous non linear equations for

each k. This system of equations can be solved numerically by a

multivariable extension to Newton‘s method [5h]. The final estimate

for A is the average value of the estimates obtained from each coding

scheme. Although the estimation procedure is quite complex, it does

yield accurate estimates for the parameter set A as illustrated in

Table l. The estimate may be more accurate as the pattern size

increases.

5.h Summary

ln this chapter we have studied the independent noise model, two

independent distortion models and a distortion model based on Markov

random fields and presented their capabilities and restrictions. The

Markov random field model is very rich, and generalizes other models.

For example, setting the a parameters to 0 and ai - ab, creates the

independent noise model; setting the a... parameters 0, but requiring

ai f ab describes the independent distortion model. For each model we

state a random experiment for the generation of patterns based on an

ideal structure. The results of applying these experiments to specific

configurations is illustrated. Parameter estimation from a finite

sample set and the scheme for computing the probabilities of blocks,

obtained by applying the nonterminal rewriting rules, are also
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presented. The estimation procedure for the Markov random field

distortion model is quite complex, and we have presented an

approximation to simplify this computation, that is applicable in

certain cases. These noise and distortion models are quite general,

and may be used in other image modelling applications. For example,

the nonhomogeneous Markov random field model can be applied to texture

analysis and the analysis of plant and crop data [8].



CHAPTER VI

EXPERIMENTAL RESULTS AND COMPUTATION

This chapter presents applications of the array grammar inference

scheme. The two structures studied are the triangular patterns and the

numeral '7', whose array grammars and ideal structures are presented in

Figures 2 and 3 in Chapter 2. The training sets are versions of the

ideal structures corrupted by three types of noise and distortion.

The first set of experiments uses the two dimensional discrepancy

measure defined in Section A.A to compare the robustness of the

inference algorithm. Robustness properties are further investigated by

parsing experiments defined in Section 6.2. The second objective is to

examine the effect of errors in the ideal configuration. A set of

noisy patterns is generated after rotating the ideal structure slightly

and the rate at which the array grammars inferred from the training

sets generated by the three corrupting processes accept the samples is

determined. The last section suggests the use of parallel techniques

to reduce the computation time for the array grammar inference scheme.

98
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6.] The Inference Scheme

This section applies the inference scheme presented in Section 3.2

to training sets whose patterns are generated by independent noise,

independent distortion and the Markov random field distortion models of

Chapter 5. The triangular pattern structure, illustrated in Figure 2

(Chapter 2), was used for most of our experiments. The remaining

experiments generate a p-array grammar inferred from noisy versions of

the figure '7' (Fig. 3, Chapter 2). This illustrates the concept of

coding matrix samples into strings using vector primitives.

The parameters used to generate each of the training sets are

summarized in Table 2. All the training sets contained 20 patterns.

With independent noise and distortion models the pattern types were

chosen uniformly from the range [7,l0]. With Markov random field

distortion, the training set was made up of l0 triangles of type 9 and

l0 triangles of type l0. This ensured a sufficient number of patterns

of each size for parameter estimation. The training set for the '7's

were either 8x8 or llxll arrays corresponding to pattern types 2 and 3,

corrupted by the uniform noise model. The inference of the array

grammar for the 7's takes an enormous amount of computer time and

memory so we did not employ the distortion models with it. The

parameters used to generate each of the training sets are summarized in

Table l. The probability of change parameters p, pi and pb were chosen

so as to allow a reasonable amount of deviation without completely
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destroying the underlying pattern structure. The value of pb was set

higher than pi so as to allow greater distortions in the boundary than

in interior regions. For the Markov random field model the parameter

values were selected after a number of test runs. Parameters ai and

ab in Table 2 introduce reasonable amounts of distortion into the

patterns, with more changes likely in the boundary regions. Reasonable

amounts of distortion along the three edges of the triangle and random

changes are obtained in the interior regions for the values chosen for

ai,i’ ab,b and ab,i in Table 2.

Table ;; Parameters values used t9 generate training sets

Generative Parameter values Number of

model patterns

I) Pattern Structure: Triangles.

l) Independent noise p = 0.05, N U[7,lO] 20

2) Independent distortion pi = 0.05, pb = 0.l5 ' 20

N U[7,lO]

3) Markov random field A = <2.2,l.5,0.l,-l.0,-0.8> 20

distortion N - 9,l0

II) Pattern Structure: '7'

1) Independent Noise p - 0.05, N U[2,3] 20

N denotes the pattern type.
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The first part of this section presents the results obtained at

each stage of the inference scheme. The second part studies the

robustness of the inference algorithm and demonstrates that the Markov

random field model is quite general and covers the other two schemes.

6.l.l Implementing the Inference Scheme

The first step in the inference scheme, described in Fig. 5 (Chap-

ter 3), is to estimate the parameters of the model from the patterns of

the training set as training set as described in Chapter 5. The

noise/distortion process used to generate the training patterns is

referred to as the generative model, whereas the model assumed when

estimating the parameters for the inference scheme is termed the

inferential model. With independent noise and distortion inferential

models, this involved counting over the entire pattern set. However,

the estimation procedure for the Markov random field model depends on

size, so parameters were estimated separately for each size. Since the

pattern sizes are small, the counts for all the patterns of one size

are accumulated together for estimation. Our final estimates average

the values obtained over all sizes and the two codings (Section 5.3.A).

The estimates for each of the training sets appears in Table 3.
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Table 3i Estimated Parameter Values

I) Pattern Structure: Triangles

l) Independent noise p = 0.0A68

2) Independent distortion . pi - 0.05h3, pb = 0.l37

3) Markov random field distort. A = <l.86,l.06l,0.097.‘l.l66,-0.632>

II) Pattern Structure: '7'

l) Independence Noise p = 0.05l

Step 2 in Fig. 5 breaks up the patterns into individual blocks,

computes their probability, and separates them into their respective

intermediate languages. For the '7's the blocks were coded into

'vector primitives' and converted to string form as shown in Fig. l6.

The k-tail method for inferring regular string grammars produces a

number of candidate grammars corresponding to different tail lengths.

To emphasize structural differences, weight factors bl = l.0 and

b2 - l0.0 were used to compute the overall discrepancy (Section A.2.3).

The complexity and discrepancy values were plotted as functions of tail

length and the grammar corresponding to the tail length that is closest
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INTERMEDIATE LANGUAGE -- A

VECTOR PRIMITIVES -- Vl --> X . . V5 --> . X

V2 --> . X X V6 --> . X .

V3 --> . . . V7 --> X . X

Vb --> X X X V8 --> X X

BLOCK CODED FORM

x O

. X X ----> Vl V2 V2

X X

X X X

X X

----> V3 VA V2 V3 V3 V3

INTERMEDIATE LANGUAGE -- B

. . X X

VECTOR PRIMITIVES -- WI --> . W2 --> X W3 --> X WA -->

X X .

. . X X

W5 --> . W6 --> x W7 --> . W8 --> x

. - . X X

BLOCK CODED FORM

0 O x x O

. X X . . ----> Wl W2 W3 Wk W5

x x O O O

X . X X . .

X X X . X . ----> W8 W2 W3 WA W5 W6 W5 Wl W5 W5 W5

X X . . X . .

gig. lg: Coding Blocks into String;

or Numeral

to the point of intersection of the two graphs was selected as the
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'best' grammar for the intermediate language. Some of these plots are

illustrated in Figure 17.

The inference procedure was implemented by a Spitbol (Snobol)

program on the Cyber l70/750 computer. However, to reduce the total

computation time, the discrepancy computation was implemented in a

separate Fortran routine. The run time and the amount of core memory

required by the inference program is presented in Table A for each of

the training sets: LA and LB correspond to the two intermediate

languages for each array grammar as illustrated in Figs. 2 and 3

(Chapter 2). The table indicates that the run time and core

requirements for the inference algorithm are extremely high, even for

the moderate pattern sizes used in our experiments. This was the main

reason for limiting the number of experiments conducted.

6.l.2 Robustness Tests

The purpose of the robustness test is to assess the effectiveness

of the inference procedure when the generative and inferential models

are not the same. The two dimensional discrepancy measure assesses the

fit of the inferred array language to the training set.



Fig. 12:  Complexity and Discrepancy versus Tail length.
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Table 5i Run Times and Core Reguirements

Generative Run Time Max. Core Used*

Model (secs.) (in K-words)

LA LB LA LB

Pattern Structure: Triangle

l) Independent Noise 295.l 506.7 72.6 92.5

2) Independent Distort. 36l.2 559.9 72.6 72.6

3) Markov Random Field 299.0 909.3 72.6 98.5

Pattern Structure: '7'

l) Independent Noise 867.3 906.2 76.6 83.2

A

- Each word on the Cyber is 60 bits long. The maximum core available

to a user is I27.5 K-words.

The triangle was used as the ideal structure. Three training sets

of 20 patterns each were formed: l0 of the patterns were of type 9 and

the other IO were of type ID. The parameters for the generation

process were the same as in Table 2 and the corresponding array

grammars were inferred in the usual way. The discrepancy measures are

presented in Table 5.

Rows l, 2 and 3 of Table 5, with the independent noise generative

model, show that the Markov random field distortion model subsumes the
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Table 5; Robustness Test ; using the Discrepancy Measure

Generative Model Inferential Model Suitability Value

l) Indep. Noise Indep. Noise l.06l E-l6

2) Indep. Noise Indep. Distort. 2.090 E-l6

3) Indep. Noise MRF Distort. 0.205 E-l6

A) Indep. Distort. Indep. Noise l7.62 E-l6

5) Indep. Distort. Indep. Distort. l.933 E-l6

6) Indep. Distort. MRF Distort. 0.66l E-l6

7) MRF Distort. Indep. Noise 37.9l E-l6

8) MRF Distort. . Indep. Distort. 30.02 E-l6

9) MRF Distort. MRF Distort. ' 'o.oso E-l6

independent noise model. Rows h, 5 and 6 show that with the

independent distortion generative model, an inferential model of

independent noise creates a high discrepancy whereas a Markov random

field inferential model produces an even better fit than the "correct"

inferential model. Comparing rows 3 and 6 with the discrepancy values

obtained in rows 7, 8 and 9, emphasizes the generality of the Markov

random field inferential model, which produces more suitable grammars

than the other two inferential models create for the same generative

model (rows l and 5). This justifies the use of the Markov random

field inferential model.
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6.2 Parsing Experiments

The two experiments reported in this section compare acceptance

' probabilities for triangles generated by the three different

noise/distortion models. In the first experiment, the array grammars

used for parsing were inferred in Section 6.l.l (Table 3, part I) and

the patterns parsed were generated from the same array grammars. The

second experiment created l5 distorted triangles from the physical

processes themselves, five under each of the noise/distortion models.

The array grammars used to parse them were inferred as in experiment I

except that intermediate grammars of tail length one were selected.

These array grammars are less restrictive than the grammars in

I

experiment I.

The results of experiment I are given in Table 6. Except for

pattern number lh, the probability of acceptance for each pattern was

highest when the pattern was parsed by the array grammar that generated

it. Some of the patterns generated by one of the corruption processes

could not be parsed by the array grammars trained on patterns from the

other corruption processes which demonstrates differences among the

array grammar models of Section 6.l.l.

The results of the second experiment are listed in Table 7. The

grammar based on the Markov random field model accepted all l5

patterns, whereas grammars based on the independent models could parse
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Table 6; Acceptance Probabilities ; Patterns generated from

Array Grammars

Source Pattern Size Inferential Model

Number INN IND MRF

INN l 9 0.l58 E-l7 0.032 - 7 0.000l E-l7

INN 2 l0 0.l99 E-l9 0.026 - 0.000l E-l9

INN 3 l0 0.203 E-22 R R

INN 0 ll 0.68l E-23 0.026 E-23 R

INN 5 ll 0.602 E-26 0.009 E 26 R

IND 6 9 O l00 E-l9 0.207 E-l9 R

IND 7 IO 0.0l3 -27 0.233 E-27 R

IND 8 IO R 0.020 E-26 0 I79 E-26

IND 9 II R 0.275 E-29 R

IND l0 ll 0 l78 E-3l 0.5I2 E-3l R

MRF ll 9 R R 0.629 E-25

MRF 12 IO R 0.009 E-30 0 7l6 E-30

MRF l3 l0 R R 0.707 E-32

MRF l0 ll 0.0l7 E-3l 0.327 E-3l 0.000 E-3l

MRF l5 II R R 0.353 E-35

INN - Independent noise model: IND - Independent distortion model:

MRF - Markov random field model.

R - Rejection: pattern could not be parsed by that grammar.

only two patterns generated under the Markov random field model. This

illustrates that the Markov random field model generalizes both the

other models. Table 7 also shows that the independent distortion model

generalizes the independent noise model. In a few cases, the patterns

were accepted with higher probability by an inferential model that was

different from the generative model (e.g. patterns I and 3), but this

is more likely a spurious result caused by the random nature of the

generative process.
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Table 1i Acceptance Probability ; Patterns Generated from

Physical process

Source Pattern Size Inferential Model

Number INN IND MRF

INN l 6 0 05l E-Il 0.l76 E-ll 0.086 E-ll

INN 2 6 0 I65 E-l3 R 0 290 E-l3

INN 3 ll 0 350 E-33 0.530 E-33 0.0l0 E-33

INN 0 ll 0 508 E-32 R 0.006 E-32

INN 5 l2 0 l9l E-30 0.0l5 E-30 < E-33

IND 6 6 0.0l6 E-l3 0.l93 E-l2 0.308 E-IZ

IND 7 6 R 0 I60 E-l3 0.002 E-l3

IND 8 l2 0.009 E-38 0 80l E-38 0 070 E-38

IND 9 l2 R 0 59l E-39 0.0l0 E-39

IND l0 l2 R R 0.266 E-03

MRF ll l2 R R 0.5l2 E-05

MRF l2 l2 0.0002 E- 7 R 0.l80 E-07

MRF l3 l2 < E-5l R 0.l0l E-07

MRF l0 l2 R R 0.088 E-06

MRF l5 l2 R R 0.l00 E-52

INN - Independent noise model: IND - Independent distortion model:

MRF - Markov random field model.

R - Rejection: pattern could not be parsed by that grammar.

< - The acceptance probability was less than the value indicated.

6.3 Recognition of Rotated Triangles

The purpose of this experiment is to examine the effects of small

rotations of the ideal configuration on the acceptance rate. A

triangle of type l3 was rotated by l0 degrees as shown in Figure l8.

Ten patterns were created by imposing the independent noise model with

a probability of change value of 0.05 on the rotated triangles and

parsed by the three array grammars of Section 6.l.l: the results are
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presented in Table 8. Some of the noisy rotated triangles are shown in

Figure l9.

The Markov random field model grammar accepted 9 of the ID rotated

patterns though the probability of acceptance was quite low (the

acceptance value is of the order of E-07 for the ideal triangular

structure of size IS). The noise and distortion model grammars failed

to recognize these triangles. This shows that an inference scheme

based on the Markov random field distortion model can incorporate small

variations in the ideal structure into the distortion process.

Table 8; Acceptance Probabilities ; Rotated Triangles

Source Pattern Inferential Model

Number INN IND MRF

INN l R R 0.l32 E-97

INN 2 R R 0 008 E-l00

INN 3 R R 0.082 E-93

INN 0 R R 0.262 E-92

INN 5 R R 0 725 E-95

INN 6 R R R

INN 7 R R 0.388 E-97

INN 8 R R 0.030 E-lOl

INN 9 R R 0.275 E-92

INN l0 R R 0.723 E-97

INN - Independent noise model; IND - Independent distortion model:

MRF - Markov random field model.

R - Rejection: pattern could not be parsed by that grammar.
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6.0 Parallel Computation Techniques

The inference algorithm for regular grammars, the algorithm for

computing the discrepancy measure and the computation of the measure of

suitability for array languages require large amounts of computer time

in the normal sequential mode of operation. However, parallel

computation techniques, such as the SIMD (Single Instruction-Multiple

Data) and pipeline architectures, offer significant speedup. Parallel

algorithms have been presented for the k-tail inference scheme for

string grammars [l6] and the computation of the WLD between two

strings [l6,l7], which can be implemented on general purpose pipeline

processors [6] or dedicated SIMD systems [l7]. The time complexity for

the WLD computation for two strings of lengths m and n is reduced from

O(mn) to 0(m+n), but requires [min(m,n)+l] processing elements [l7].

We now extend the parallel algorithm for computing the WLD for

strings to a parallel algorithm for computing WL02, the distance

between two arrays. This algorithm, a parallel implementation of the

algorithm from Moore [76], is presented below. The notation

WLD(COL-J,COL-L) denotes the WLD measure for strings between column J

of the IxJ subarray from A and the Lth column from the KxL subarray

from B. WLD(ROW-I,ROW-K) has a similar interpretation. SUBS(qu,BRS)

represents the substitution cost of replacing element APQ of array A by

element B of array B. It is 0 if A = BRS’ and SC (the substitution

RS PO

cost) otherwise.
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Procedure 0:

Input: Two arrays, A and B, of sizes PxQ and sizes RxS respectively.

SC, the substitution cost, IC, the insertion cost and DC, the

deletion cost.

Begin

(I) Set Dist(0,0,0,0) - o

(2) For M 8 l to P+Q+R+S

Do in Parallel For all I,J,K,L = O to M such that

|+J+K+L 8 M, steps (i)-(xvi)

(i) eI = Dist(I,J,K,L-l) + K*IC

(ii) e 8 Dist(I,J,K-l,L) + L*IC

(iii) e 8 Dist(I,J-I,K,L) + I*DC

(iv) eh 8 Dist(I-l,J,K,L) + J*DC

(v) e 8 Dist(I,J,K-l,L-l) + (K*L-l)*IC

(vi) e6 8 Dist(I-l,J-I,K,L) + (I*J-l)*DC

(vii) e7 8 Dist(I,J-l,K,L-l) + WLD(COL-J,COL-L)

(viii) e8 8 Dist(I-I,J,K-I,L) + WLD(ROW—l,ROW-K)

(ix) e Dist(I,J-l,K-I,L) + L*IC + I*DC

9

(x) e10 - Dist(I-l,J,K,L-l) + K*IC + J*DC

(xi) e1] 8 Dist(I,J-l,K-l,L-l) + (J-l)*DC +

WLD(COL-J,COL-L)

(xii) e12 = Dist(l-l,J,K-l,L-l) + (K-l)*IC +

WLD(ROW-I,ROW-K)

(xiii) e]3 = Dist(I-l,J-l,K,L-l) + (J-l)*DC +

WLD(COL-J.COL-L)

Dist(|-l,J-l,K-l,L) + (l-l)*DC +(xiv) em
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WLD(ROW-I,ROW—K)

(xv) e1 8 Dist(I-l,J-l,K-l,L-l) + WLD(ROW-l,ROW-K) +

5

WLD(COL-J,COL-K) - SUBS(A
PQ’BRS)

(xvi) Dist(l,J,K,L) 8 min(ei: l<8i<8l5).

End Loop

End Loop

Distance(A,B) 8 Dist(P,Q,R,S)

End Procedure.

At each step in the WLD2 computation, the string WLD between

strings of length I and K, and J and L respectively, is computed.

Therefore, the WL02 computation for PxQ and RxS arrays requires P+Q+R+S

steps with a time complexity of O{(P+Q)+(R+S)} at each step. The

overall time complexity can then be expressed as

O((P+Q+R+S)2}

For P8Q8R8S8N this reduces to O(Nz), as opposed to O(N6) for the

sequential case. The general expression for the maximum number of

processors required is extremely complicated, but for I8J8K8L8N can be

expressed as

(N+l) (2N2+0N+3) , for N>82 --(l)

3

For N 8 l, seven processors are required.

This shows that the number of processors required is of the order of

N3. The WL02 computation of two 20x20 arrays requires 6l8l processors,

a rather large number. A more practical scheme might involve using a
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smaller number of processors, say U, and a pipeline architecture.

Ignoring the delay in the set-up time, or the time taken to structure

the pipeline for the computation, the number of time steps required for

computation can be expressed as,

I+J+K+L

> 5'
/

E:

where Mi is the number of processors required at each step (2) of the

above algorithm. For I8J8K8L8N, Mi can be expressed recursively as

(i+l)(i+2)(i+3) l<-i<-N

M.‘ ---------------

I

6

= Mi_ + i+l i8N+l

8 Mi-l + (2N-l)-3(i-N-l) N+2<8i<82N

8 M0N-i 2N<i<-0N-l

Therefore, the use of pipeline architectures results in fairly

large speedup without requiring an unreasonable number of processing

elements, even for the WL02 computation between large arrays. For

example, the WL02 computation between two l28xl28 arrays would require

an enormous number of processors (0,293,507) by equation I for a SIMD

implementation. The use of a pipeline architecture with 0096 processors

will increase the number of computation steps from O(NZ) to O(N3°O6),

which is still a considerable improvement over the O(N6) steps required

for a sequential scheme. However, the actual speedup obtainable in a
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practical implementation will also depend on memory bandwidth and the

interconnection network used between memory and the processors.

6.5 Summary

In this chapter, we have presented results obtained by applying the

inference scheme in conjunction with the independent noise, the

independent distortion and the Markov random field distortion models.

The discrepancy measure for array languages and parsing experiments

show that the inference scheme based on the Markov random field model

is more robust than those based on the other two schemes. The

acceptance rates for the set of rotated triangles shows that the Markov

random field model introduces flexibility into the syntactic

recognition scheme by allowing small deviations and changes in the

ideal structure at the cost of increased computational complexity. The

last section describes parallel techniques that may be used to speed up

the computation process.

 



CHAPTER VII

SUMMARY. CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the main contributions of this thesis and

suggests directions for future research.

7.l Summary and Conclusions

The goal of this thesis was to develop a two dimensional picture

description and learning scheme for binary images using the array

grammar as a formal mathematical model. The block structure of array

grammars has been exploited to develop an inference scheme that

requires knowledge of the ideal image, which implies the nonterminal

rewriting rules be known. Chapter 3 of this thesis proposes the first

formal algorithm for inferring an array grammar that models the

structure of noisy and distorted patterns. The key step is to infer

intermediate grammars from probabilistic samples. The development of

the probabilistic two dimensional inference scheme is the primary

contribution of this thesis. Several of the subproblems that were

attacked are summarized below.

ll9

 



l20

A number of complexity and discrepancy measures for string grammars

are reviewed in Chapter 0, and a computationally simple complexity

measure that permits quantification of the differences in complexity

among regular grammars inferred by the k-tail method was chosen for our

application. The main development in this part of the thesis is the

definition of a new discrepancy measure for string languages in Section

0.3 that involves both probabilistic and structural factors. The new

discrepancy measure is shown to be bounded and convergent, making it

computationally feasible, even for infinite languages. It is also

shown to possess a number of intuitively desirable properties. The

concept of the structural discrepancy measure for string languages is

extended to define a two dimensional discrepancy measure for array

languages in Section 0.0 that quantifies the ability of an inferred

array language to match the training set.

Chapter 5 discusses a simple independence noise model and two

independent distortion models for describing corrupting influences on

images. A powerful and comprehensive distortion model based on

nonhomogeneous Markov random fields is also analyzed. These models

have wider applications than grammatical inference. Mathematical

formulations and techniques for generating patterns are studied.

Estimation of the parameters of each model are defined, given a finite

set of training patterns. The estimates are used to compute the

probabilities of the block samples for each intermediate language.
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Tests performed on isosceles triangles indicate that the array

grammars inferred under the Markov random field models are capable of

accepting patterns that are generated by independent noise and

distortion processes. Approximations to the two dimensional

discrepancy measure of Section 0.0 have been used to investigate the

robustness of array grammars that are inferred from three generative

models. The Markov random field inferential model was found to be the

most robust in Section 6.l.2. Parsing experiments in Section 6.2

demonstrated the capability of the Markov random field inferential

model to parse patterns from other models. Results of an experiment on

a rotated triangle in Section 6.3 show that the array grammar inferred

under the Markov random field inferential model is capable of parsing

noisy rotated patterns. The two main conclusions of this study are

first. the Markov random field model infers a versatile two dimensional

grammar that is applicable with a number of noise and distortion

models. and second, it allows the use of underlying structures that

have small deviations from the original ideal structure, thus making

the inferential model more flexible.

The run time and the memory requirements for the inference

algorithm on the Cyber l70/750 computer show that the proposed

algorithm requires tremendous amount of computation time in the

sequential mode of operation. The lack of adequate computer resources

was the main reason for the limited number of experiments conducted in
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this thesis. The array grammar model is more suited for a

sequential/parallel mode of operation. Chapter 6 examines potential

computational speedup obtainable by using SIMD and pipeline architectu-

res. A parallel implementation of the WL02 algorithm is proposed, that

reduces the time complexity of the algorithm from O(N6) to O(NZ).

Possible implementation using a pipeline architecture when the number

of processing elements required becomes too large, is also discussed.

The study of a two dimensional learning scheme in conjunction with

a corrupting scheme is the primary contribution of this thesis. The

main conclusion is that the learning scheme based on the Markov random

field model infers a vesatile array grammar that is applicable with a

number of noise and distortion models and also allows small deviations

in the assumed ideal structure. Implementation of this scheme with the

architecture proposed in Section 6.0 should open up a number of real

time practical applications in industrial vision and robotics.

7.2 Future Research

Directions for further research can be classified into two

categories -

(i) Modifications and extensions to the inference scheme and the

noise and distortion models that enhance their performance. and

(ii) Implementation of cellular automata as language acceptors [l03]

and of parallel rewriting rules [59,90]. to define a new form of formal
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array grammar model that could overcome the computational problems of

present two dimensional inference schemes.

A few problems from category (i) are outlined below. An important

factor that arises after the matrix samples have been converted into

vector primitives is the size of the set of primitives. Formal

primitive extraction procedures could be studied using the overall

complexity of the inferred grammar as a criterion. The grammar would

be accepted as a candidate grammar only if its complexity was below a

prespecified threshold. In case no string grammar could be found

satisfying the above criterion, an alternative scheme that involves

inferring a two level matrix grammar( Siromoney ) could be adopted. as

is explained in Appendix C. When the underlying noise/distortion model

for the sample set is not known. statistical tests might be developed

to model the noise and distortion in the training set. A decision

making procedure would be required to choose the appropriate model.

This procedure could be based on computing the difference in

probabilities assigned to samples by the distortion scheme. and the

apriori probabilities assigned to the sample. The model that provides

the closest fit could then be chosen as the underlying distortion

scheme for the pattern class. This scheme could be further advanced to

modelling the noise and distortions observed in real image processing

applications.
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Another direction for future research, involves trying to fit the

concepts of cellular automata as language acceptors [103,100,105] and

the concept of parallel rewriting rules [59.90.101.102] into the array

grammar model. Intuitively, a cellular automaton is an array of

identical processing elements called cells, which are uniformly

connected in some form of a neighborhood pattern. Each cell is

connected in a particular configuration to a fixed number of

neighboring processors. These cells operate synchronously and in

discrete time steps. Reconfigurable cellular processors have also been

defined [30]. Cellular computers are presently being used for image

processing operations [32,106]. The usefulness of cellular automaton

as language acceptors and their ability for fast parsing of regular and

context free languages indicate possible applications in inference and

learning schemes. The concept of parallel two dimensional parsing

using cellular architectures also indicates new possibilities in

modelling the structures of two dimensional images and developing

learning schemes for the same.
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APPENDIX A

NOTATION AND DEFINITIONS - ARRAY GRAMMARS

    

We define I to be an alphabet - a finite non empty set of terminal

symbols. A matrix over is an mxn array of symbols from I. The set

*0 *0

of all matrices over I is denoted by I ’ and I++8 I - { }. where the

empty matrix is denotedA . If

, T F ' j

a(l,1) a(l,2) --- a(l.n) b(l.1) b(l.2) --- b(l.n )

a(2.l) a(2,2) --- a(2.n) b(2,1) b(2.2) --- b(2,n')

X 8 --- --- --- Y 8 --- --- ---

Li_=i(rn.l) a(m.2) --- a(m.n)_d b(m'.l) b(m'.2) ---b(m'.n')

I— _I

are two matrices then column catenation is defined only when m 8 m',

and is written as,

,—

a(1.l)a(l.2)

x 0 v .

a(m.l) a(m.2)

_ 

--- a(1.n) b(l.1)

--- a(m.n) b(m,1)

125

---- b(l.n')

---- b(m'.n')
_J 
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The new matrix has m rows and (n+n') columns. Similarly row catenation

is defined only when n 8 n'. and is written as,

  

”a(iii) “““ a(1,n)—i

X B Y 8 ---- ---- ----

3011.1) ---- a(m,n)

b(I.I) ----- b(1,n)

‘—b(m'.l) ---- b(m',nlJ

The resultant matrix has (m+m') rows and n columns. If M and M' are

two sets of matrices, then the column and row products are sets of

matrices defined as follows

Column Product, M 0 M' 8 {X 0 Y | X E M, Y 6 M'}

and Row Product. M B M' 8 {X B Y | X E M. Y E M'}.

Columnwise Kleene closure is defined iteratively as follows:

1 2
Let - M a M. n = M] 0 M. -—-, M"+' - M" 0 M.

n*-fu(A>
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Kleene closure by rows is defined as

Let - MI 8 M, M2 8 M1 8 M. ------- . M 8 Mn 8 M.

 



APPENDIX B

ARRAY AUTOMATA

An array automaton consists of a two dimensional input tape and a

two dimensional storage tape. If the input is an mxn array of cells,

the storage tape contains a (2m+l)x(2n+l) array of cells. The movement

of the automaton is in three stages. In the first. the automaton acts

on the storage tape. reading, printing and ”pushing“ symbols around

depending on the nonterminal production rules, ultimately subdividing

the (2m+l)x(2n+1) storage tape into blocks. each of which corresponds

to a matrix of a corresponding IML. In the second step. the automaton

acts as several automata and fills up each symbol (i.j) of the storage

tape : i and j are both even numbers. The blocks can have a fixed num-

ber (say k >8 1) of rows (or columns) so the automaton must act on

these rows or columns simultaneously. The third step consists entirely

of checking. The automaton compares the input symbol in the (i.j)th

cell with the symbol on the (2i,2j)th cell of the storage tape. If the

comparison fails at any cell the automaton halts without accepting.

Otherwise the automaton halts and accepts the input.

The set of patterns accepted by an array automata are equivalent to

the set of arrays generated by array grammars [60]. We conclude this

section with a formal definition of a (regular:regular) array automaton

128
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{(R:R) AA}.

The (regular:regular) array automaton is a 10 tuple

(K,I,Z.d], d d 2 F C)
2! 3! qo! o! i

where

K is a set of finite states:

q0 E K is a distinguished (start) state:

FCZK is the set of final states:

I is the input alphabet, or the primitive picture symbols:

2 8 Zl U 22 U 23, with Z3 8 I is the finite set of storage symbols:

Z0 E Z] is the initial storage symbol;

d‘ 15 a mapping from {qoixlI into finite subsets of {qo}x{Z]QZ2} or

{qo}x{ZzQZ]} where 0 represents row catenation (B) or column catenation

(0) :

d2 is a mapping from le2 into the finite subsets of

Kx{(zz023)u(230zz)l:

d3 is a mapping from lexl into Kx{DOWN,TOP}:

C is a counter that starts from an initial value of 0. and keeps track

of the d1 moves of the automaton.

The .dI moves of the automaton correspond to the nonterminal rewriting

rules of the corresponding array grammar, and create the block

structure description of the required size. The d2 moves are the

second step and correspond to filling each block independently with the

primitive symbols of the picture. The d mapping corresponds to the

3

checking phase. where the input picture is compared to the picture on
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the storage tape. DOWN implies a move downward along a column and TOP

implies a change to the top of the next column.

 



APPENDIX C

MATRIX GRAMMARS

A matrix grammar is a two tuple

"6' (GI! G)

2

where

GI ‘ (Vl’

context-free or regular:

I],P.S) is a string grammar that can be context-sensitive,

V] is a finite set of horizontal nonterminals;

II is a finite set of intermediates {SI’SZ’---’Sk};

P1 is a finite set of production rules:

S 6 V1 is the start symbol:

k .

G2 8 U G2i is the set of vertical grammars where each

i8l

G2i ‘ (Vzi"' PZi’Si)

is a right linear (regular) grammar and

V2i is a finite set of vertical nonterminals,

P2i is a finite set of right linear production rules.

I is the set of picture primitives and

v2i(\ V21 - 0 if i + j.

Derivations to create an mxn picture follow a two step procedure.

First a string 5 5 ---sn symbols from I is generated horizontally
1 2 I
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using G]. Then the corresponding G rules are applied m times
2

simultaneously to every column. to create an mxn matrix. The set of

all matrices generated by a matrix grammar is denoted

L(MG) 8 {mxn arrays [aij]' m,n>81 I S8 5152"5517{ai13}°
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