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ABSTRACT

None of the commion system=-analysis techniques are com-
pletely satisfactory for the analysis of mixed systems in
general. Electromechanical analogies have been used with
considerable success, but for complicated systems made up of
multiterminal components, a more powerful formulation tech-
nique is needed.

In recent years, electrical network theory, using the
notions of linear graph theory (studied formally under the
mathematical designation of topology) has made significant
advances in formulation techniques. In electrical network
analysis, it has been found that networks, for which equa-
tions are virtually impossible to formulate using the conven-
tional from-the-diagram node and mesh techniques, can be
treated--using a systematic and simple procedure--by distin-
guishing between the equations characteristic of the compo-
nents and those characteristic of the component connection
pattern. The equations, which are characteristic of the con-
nection pattern, are called circuit and segregate equations,
and are written from a collection of oriented line segments,
called a linear graph of the system.

The lineer graph is useful in the analysis of any system
in which one set of measurements sums to zero around closed

circuits, and/or one set of measurements at points, areas or
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regions, sums to zero. With a proper understanding of its
role in the analysis of systems, the linear graph can be ob-
tained for & particular system by an orderly, logical pro-
cedure.

The general pattern of formulation of equations, used
in electrical network theory, can be extended to the analysis
of mixed systems if mathematical forms, different from thosé
encountered in formal electrical network theory, are admitted
for the equations characteristic of the components. When
these mathematical forms are used, questions relative to rank
of equations arise in a manner not treated in electrical net-
work theory.

The problem considered is defined in Chapter I. 1In
Chapter II convenient terms are defined, and the background
is set, with respect to termminology and concepts, for consid-
eration of the system formulation problem.

In Chapter III an examination is made of the conditions
on topological placement of the various component types con-
sidered, such that a unique solution to the system equations
is possible.

A set of general proéedures for the systematic reduction
of equations to be solved simultaneously is presented in Chap-
ter IV. In all cases, the eguation-reduction procedures do
not involve taking a matrix inverse--depending instead upon
explicit forms of equations.

A set of procedures for systems containing specific
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component types is given in Chapters V and VI. The number
of equations to be solved simultaneously for each situation
is noted. In many of these procedures, the number of equa-
tions to be solved as a simultaneous set--under certain topo-
logical arrangements of particular components--is less than

would be the case with conventional mesh or node formulation.
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LIST OF SYIMBOLS

A list of symbols, which are used repeatedly, is given

below.

Symbol
e

v
p
njl
D2

Number
Number
Number
Number
Number
Number
Number

Number

of
of
of
of
of
of
of
of

component

Number

of

component

Variables

Variables

Variables

Variables

Description
elements of a graph.
vertices of a graph.
separate parts of a graph.
J terminal equations.
K terminal equations.
specified x-variable equations.,
specified y-variable equations.

x-variables not related in the
equations.

y-variables not related in the
equations.

related by A terminal equations.
related by B terminal equatilons.
related by J terminal equations.

related by K terminal equations.

x-variable specified function.

y-variable specified function.
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Description

x-variables not related in the corponent
equations.

y-variables not related in the component
equations.

Tree variables, elther the unknowns or
the complete set, depending on context.

Chord variables, either the unknowns or
the complete set, depending on context.

Tree variables not classified by some
other criteria.

Chord variables not classified by some
other criteria.



I. INTROUDUCTICON

lilstoricallv, Lagcrenge's ecuations have cerved as the

cf wecrnani-

0]

basis for forwulating eauntions for troe analyveil
cal srsteuns, wlectric2i netuiork toeory, ucsing the notions of
linear gratch theorv, cdeveloged siong corjletely alfferent
lines, 1In electrouechanicsl-systen analysls and electronic-
systew analysis, siynal-flow graphse [1,2] and block clagrsus
[3,4,5] kave heen utilized for forwulation, Lkach technique

18 successful on a certain clacss of systews, No one tecknique
1s comrletely satiefactory in general for systeuns which con-
tailn subsy:ztems of different types,

Tnere are certaln limitations in the Lagranglan foru-
ulation, which make 1t unsatisfactory for forwulating ecua-
tions of cowplex systews [6]. Firestone [7,8] ana others
r2cognized some vears afo that the form ol the ecuations,
descriptive of a wechanical svsteu, 18 identical to that
used 1n electrical network tceory. It was also recognized
that the network-tacory technloue had sonre definite advan-
taxes over the Lagrangian technioue for certain types of
mechanical systems, &lectrical analogs of mechanical systeus
rave been ueed in an attenpt tc explolt thece advantzges,

It is vossible to define the technicues of analysis
used 1n electrical network tneory in 2 uwanner such tioat taey

are equally applicable to systews of other types--mechanical,
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thermal, hydreuliec, etc. [9,10,11].

Trent [12] has written of the usefulness of linear
£rarh theory, and introduced the notion that the convention-
al node 2nd mesgh foruwulation rrocedures can be extended to
include "perfect couplers"--coumponents of the "iaeal trans-
forrer" tvie. | |

The obJjective cof thils tiesis 1s to extend the work of
Trent witn respect to the analysis of systews which incluae
"direct couplers," In following this objective, the work of
Reed [13,14,15,16] in electrical network theory is used and
extended, and the work of Koenig [9,10,11], 1in establishing

foundations of system analysis, 18 used and extended,

When cowponents of trhe type calied by Trent "perfect

couplers" and "direct couplers" are included in a systeuw,
certaln questions as to rank of ecuations arise, Thece gues-
tions have not occurred in electrical network theory, and
hence have not been formz2lly investigated until now, Chap-
ter III is devoted to investigating cconditions for waich a
unique eolution to the eocuations of a systew 1s possible,

Certain procedures in the writing of the eouations, for
a systew containing "direct couplers", are very helpful in
€stablishing a svstewatic foruulation technioue, Extensions
°of Reed's work in electrical network formulation [13] are re-
quired., This is the subject of Chapter IV,

The apglication of the general principles outlined 1n

Chapter IV i1s carried out in Chapters V and VI for particuiar



ITI. EQUATICNS CF PHYSICAL SYSTENS

2.1 Introduction

The oriented linear gragh, as used in systea analysis,
could be sald to serve as a rack u.on which 1s glaced infor-
watlon relative to two-polnt observations mwade in the systeuw,
In electrical networ: tneory, as expounded by Reed [13], two
variables, v(t) and i1(t), are assocliated with each elewent of
tne graph for the electrical system, These variables, =2s
treated in [14,15], are j.ostulated to satiefy the circuit and

seyregate equations of tne grapn, and are acssunred to corre-

late with the instantaneous voltage and current neasurewents,

respectively, associated with relr of desipnated observa-

tion points,
In order to use the linear sraph for a wore general
systeic analyslis, it 1s desirable to assoclate with each ele-

iient of the graph of the svstem a palr of variables, not car-

rving tne counnotation of voltage and current,

Definition 2,1,1: Across variable: [he eiewent vari-

able, whiich 18 associated with an across ueasuresent, 1is

called the ecross variable,

The across variable of a graph elenent 1s also desig-
nated as tne x-variable, and is postulated to satisfy the

Circuit eanations of the linear graph,
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Definition 2,1,2: Series variable: Tne eiement vari-

able, whi~h 18 associated with a series ueasureuent, 1s called

the series variable,

I'ne series variable of a grarh elexent 1s also cazlled
the y-variable, arnd is postulated to tsatisfy tne segregate
equations of the linear grapn., A dilscussion of across and
serles uweasureaents for various physical systews, and tech-
niques for relating them to the variables of the graph, 1is
included in [9,11,12]. Tne aefinitions and tueorews of linear
graph theory, wnich are used in this thesis Qithout strecific
reference, are taken from Reed [13,16], Reed and Reed [15],

and leed and Seshu [14].

2.2 Comgponents

Ikesentlial to the application of lirear graph theory to
the foruwulation of systei eouatlons is the notion of cowmjpo-
nents, In electrical networkX theory, tne "building block"
is tne two-terminal couponent, Devices with two terumlnals
acces-icle for weasureincnt (resistors, coils, etc.,) are rep-
resented 1a the network vragn by one element, However, the
need for a gra_hical represent2tion for larger sutnetworks
hae resulted in such "enuivslent circuits" a: Thevenin's and
Norton's two-terminal eauivalent circuits, and the "tee" and
"ti" three-teriinal equivalent circuits, Trere is no aues-
tion as to the usefulnese of these equivelents, 3Based on ex-

perience, it can be reasonably assuwed that any electrical



subsystei, which i1s connectea to the rewsinder of the eyctew

at two points, can be represented in a ¢r2:h of the system by
one eiement, Further, it seeus apparent frow developients in
[10], that any subsystew, which has three terminals in couwon
with 1ts couplenent in the systew, can be reprec-nted in the

systew gragh by two elewents, which are cunnected, ana which

do not forw a circult,

Thls notion cun ve extended to a subsysteuw with n ter-
wuinzle connected to the rewalning systei, A rigorous aatoe-
catical acvelopuent to s ecify tne nececsary and sufficient
conaltions for a sultztle subgsra:zh for an n-terwinal cougo-
nent 1s, a8 vet, lacking, The followlng postulate, based on
experlence, was sugrecsted by Koenly [10]. It nas proved use-
ful, and in 2 wide variety of ;robleus, a contradiction has

not been Zound,

rostulate: A csubsyste. of a pnhysical systen, wnlen 1s
connected at n polnts to its con lew=nt In the srcten, anu
wWitlen invuolves p different ¥inds of weasurcuents (electricsal,
hyarauiic, rotational w:cnanical, etc,) can be repreiented 1in
the eystex grapn by some greph G of p parts, such tn=t the
subgrach of G in eacn part is connected, ana contains no clr-

cuits,

The wxra_h G thus conteins for an n-terwinsl comjonent
“ith p different kinds of wessureucnts, (n - p) elewents and

n vertices, The terzinology "can be re.resented 1n tue sys-



tew graph by", used in tie postulate, is intended to imply
that an analycsie of a system using a linear gragh, woicn 1s
rade upr of subtg rarns of the type described Tor the csubsvstews,
vields a solution which correlatss witn cohycical aeasureuwents

iiaie on tne svsteu,

Definition 2,2,1: Comgonent subgraph: A grapn for a

coixponent, whicihh 1s sufficlent to represent the couponent in

a grach for the srstew, 1s Jefined to be a cowncnent subaraph,

The :r2rh G, described in the postulate, 1s thue s
speclal forwm of cosponent subwxrapin,

In a paysical svstew the coizonents of the svetew are
connected 1in sowe wanner, The goints of connection are iopg-
icailly tne obsurvatlon points, or terxinals, of the cowpo-
nents, Suppose a3 physical svstean tc be cowposed of an arbi-

trary cet of cuvsystews, for eacn of wolch, the cowponent

subgrarh is known,

Definition 2,2,2: Systew grach: A collection of cou-

ronent subygrachs, such thet the vertites comnson to two or
more subgraphs corres;ond “o colnciuence of observation
201nts of corresponding subsysteiis in the physicsl systei,

i1s called a svsteu gragh,

'ne ejuations for a sy-ten f2il1 into two classes: (1)
those eaquations peculiar to the cowm.onents, and (2) those

equations wulict: vesult frow the way the couponents are con-
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nected, Tne enustions of the fir:t classification are decl,-
nated as component 2-uations, Ths cowponent eouations relate
the variables of tne coumponent sucgrapgh clewents, These re-

lations are assuuzed 1lncegendent of the zarticulor systew in

Wwinico the comsonent 1s connsched,

2.,% Component ~quations

A coavendient type of coun_onent 1s one sucn tuazat the
veriables acsoclated with tine coixponent subgra.h are related
only cupong tregmselves, Tnus a convenloent ccoronent in an
electricel systewn wicht ve a taree-winding trznsforuer, 2an
operztional suplifier, or sc.e coniected cet of two-teruinal
cowponents, n

This restricted concert of a comxponent ie so uceful that
i1t 1s the only type discusced further, The followlng defini-

tions were suggested by the forwulation procedures outlined

by Reed [1i3].

Definition 2,5,1: Couponent equations: Taose netrne-

«8ticel relations between, sna only between, tie variables of

a couponent subyrash, are called cowronent eocuaticns,

Corgonent ecuztions can be conveniently diviced into

two tvpes,

Definition 2,2.2: OSpecified-varistle eouations: Ire

couzonent eonations, which equate elemwent varlables to speci-

fied functions, are czlled spgecified-variochle eouations,



pefinition 2,%,35: leruwinal equations: All those con-

ponent eauvations, wrnlch are not erecifled-variable eoustions,

are ca.led terwlnal ecuations,

The only couponents known to have utility in sy:zteu
analysis, nna hence tiie only ones considered here, ars those
for wnilch tucre are exactly Aas uany cozponent eouations as
there are elements in the coaponent shbgraph,

In zenerel, paycical eystens ey ve cowgposed of a set
of two-terminal cowmponents, a set of wultiterwinal cowponents,
or 3 couwbination of the two, As 1in electrical networx tneory,
the terzinal enuations, which can bes acsociated with the !'th
two-%eruinal coumconent, sre lliilted to expreesing xj in terws
of y,, or vice versa, 1f the coizonent enuation taves tre

J
form of 8 epecified-viriable equation, elther involvin. x or
, tuhen the orner elewent variable cannot be related in the
component eaquations, ‘fForwulztion of equations {for systeus
contalning two-terwinal components 1c¢ very trnoroughly devel-
cped,

In contrast %o the two-terilianal coaionent, tiere is no
practiczl 1liuit on the nuuber of forms trat alght Le encoun-
tered in tne descriction of wmultiterminal cowiponents, liow-
ever, there 1s a particular set of forie, wnich is of partic-
tlar i:portance in electrlcal, wecianlcal and clectrouwecuan=-
ical syste.s, Forus of cou_onent ennations wrlcu are encous-

tered freouently, aad which sro counslderea anere are shown
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foure 2,3.1

Conponent-eruation lyvies a2nd Varlabtle sesipnstions

It ¢mould ne noted that, since the systew equstlions

- R , . J = 2 AV R
ara fornvlat<d in the e-dounin, , 'Jr, ' and K con-

I

tain elelents wileh are functions ¢f s, ncwever, no fuac-,

—~

tilocnal nctatlon 1g ucsed, since t-doialn e~uatlons Jdo not ap-
pear excae. bt uoere s, ecificelly menticned,

In this tiec=ls tuere are no clavsifications of terwminal
eauvetions 1n walcen s_ecified Tunctlons zppear, For exa.ple,
weasure.cnts on a couyonant nay indicate terninal eouations

of the following types:




In the forwulation irocecures described later, (2.3.1)
1s nanuled 1in exactly the saze usnner a2s a set of A teruinsl

equations, and (2, foriulation pattern ss

Ui
—r
)
o
ct
4]
+
D
m
W
T

the Z terulnsl eocuanticns, The additional tyueses of terminal
enuztlion classification are not shown because of tue more

1

cun.bervowe forie reculred in the lforul-~tion procs=duics ex-
2iined 1=ter,
An alternste way of handling 2 corgonent subgregn with
eriinel enn=tionc c¢f the type of (2,.2.1) is by =an eculvelent
Frazn, In %his eouvivalent gragh, every element wlth an X5
zssoclated with 1t, 1s re;laced by itwo elerents in serles--

ar. A-clesent ~nd a Ux-elegent. An eoulvalent grooh for a

P

couionent subors; b, witih teriinal ecuatlions of the type of
(2.5.2) 1g 2 grapgic 1. wulch eachh element of tihn couponent
subgeravh, wnlen has a Y. associsted withh 1t, 1s re-jaced by
two elecents 1n psrallel--a D-elewest and a U _-elcuont,
fiere is no reason to suppose thnst saticfactory cor-
relztion c=n be =zciiieved with ex_.ilicit terwinal enustions for
211 multiter.inal cowuvonents, In f-=ct, 1t is easy to saow
thet non-c¢x:licit t-dowain differcntial teriinal cauatlons
result for multiteriinetl components couwposed of siuple con-
cinations of two-terainal componente, In present practice,
the ecuivslent of exilicit teruwinnl eruations 1g cou.only
assuied for tne conpecnents uscd, Tne Tcericulstlon procecure,
which is taven up later, nowever, a: .plles to non-cxollicit ter-

Linal equations as well as to ce¢xplicit cones,



If an elemx nt hee ty = A t=. .ia2] enuations, thrn 1t is

T

called an A-z2leoient, I the variables assoclioted with 2n cle-
went are related In terusinel eouatlons of ty;e A, anu only
tviee A, 1t 19 celled alco 2n AA-e’enent, Thuz, 2 two-teruinal
resistor was as a coionent suhrrayph, one elewent wiich czn
be claselifiel 28 2n A—Clement; 2 S=elegent, an Ad-elietent, or
2 ES-eleuent, A two=ter.inal eloreont @ith o ecifled X-varvri-
acle ieg a ux-eleuent, an Ny—e1ement, and a LXNy—elexent,

As rnother exz_.ple, supriose that tre component 2nua-
tions for a three-terwinal device are: Xy = k Xy and y, = C,

Where the component subrra;h wigat be:

y 1

A - roc*ical case correspondings to Lhls exnille 1s an

electronlc axplifler, wita srid current nepglected in tne 2ns -

vels, and cutput voltage assuuwcd preportional to input voel-

B

tage, Doth clewments are -cleuents, Elesent 1 18 & KD -ele-
J

A g

went, Lblewent 2 is a2 KN -cleiient, This same scneie 1ls used
o
1

in a later section to classify ccmoonents,

2.4 Louztions fron the Systewm Grapa

Sugpose a systeir craph to have e elements snd v ver-
tices, Using the fundz.ental circiit ecquations diccusced Ly
Reed and sSesav [14] (e = v + 1) independent circult ecustions

for a eys*tewn ~raph can be written as
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eocu] ;7<<¢ =0 (2.4.1)

witerz subscrirts ¢ asnd ¢ deeignate tree ana chord respectively,
Using the fundswental segrezzate ecuatlons jresented by
Reed and Reed [15], (v - 1) indegeadent segregsate eauztions

for a systea grap- of one ;art are wriltten as

[fu 92"} Yel=0 (2.4.2)
“Ue

athen the grarih contalns wore taan cne part--as pay well
be the czse in systew 2anlysis--thece eouatione are foruulsted
for each part by croosin: e tree Tor e2cn wzart, If the svs-
tei grash contalns p oparts, ttere are exactly (e - v o+ ) in-
aegencent circuit equaticns and (v - i) inuepsnceut segis_ ate
eauations foir the groph, fhus, tiuere is a total of e ladcier-
cent enuations frow the rach, regardless of tae nuwber of
parts, [he followiny

a systewn pr2.h of wore then cne [=rt:

yszfinition 2,4,1: Forest: A forest F, of s zragh ¢ of

[N ']

£ varts, is 2 subgrapi. of G such *hat the eleuents of 7 in

ceach se, zrzte art satlsly in tonat osart the definition of a

trce of 2 concected (rach,

3

Frox tue definition, 1t ig clear tnat Ffor a coanceleld

‘ra-h the terus "Sforest" and "trae" sres synonowous, For a

gracn of p parts, the forust consiete ¢f 2 collcetion vfl p



zparate part,  Slnece so 2uliocity

"r

will reesnlt, the terae "chord set" 1s used for vo4a tiue con-
s~ewent ¢ a tree and Tor the complement of a forest,
e crogertles of the furdaientsl segvesntz and cir-
cult enuations 2re so fupcrtant tnat, unless otacrvwise stated,
. Jj o
tre syabols and (2 are te=tcn to Indicate trls :articulsr
cetrix furc Ia *tidls thesis, A desipnation for the particulzar

foresgt, for uilci the fundeientsl sesrezate ~rd circult equa-

tiovns =z2rp- written, 1¢ often lurncriant,

Definition 2,4,2: Forwulation forest: TIhe Torest for

which o particular cst of fundauwentsl circuit and/or sepre-

e enurtions =sre written, is c=2lled the “or.ulation forest,

The auestion of _erilessitle togological location of D-

of twu-ter-

[

clewents hza teen cuntiderec in [15] for ths czs
“in2l con_vnents, where an elcoweat is o D—c'le-:.uz;xt 1f, "nu onuy
1f, it is 2180 21 N-clcuent, The generszl theory in trls Le-
veio:.iLint procezds nore swootnly witn s siightly aiter-a
view oint,

The X-varlabties ascocliated wita D{-elemuqts in a sys-
teuw graph appear only in the specified-varisbile saustions 204
in the circult zquaticns, If tiere 2xists a unloue solution

to the ecuations of the systeu, the rani of the clircult eouve-

tions 2nd the D _-equatione wmust be (e = v+ p + nx).

RS

Theorenr 2.4.1: The circuit ecuations and the Dx ecua-

+ions for a systew graph have r2nk (e = v + p + nt) if, ana
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only if, the Dx-eleuents foru z subset of couwe forecet of tne
gystew grepn,
Iroof: The circult equstions sna tre Dx equations can

be written as

Ev e || X 0
O l 7(2 L’XJ

in wrich there sre (e = v + p + nY) rovie in the coefficient

aatrix, If, znd orly 1if, Is conteins a2 set of (e - v + p)

11
columns, which corresgond the couplewent of come forest, *t.en
thera exlists (e - v + o) indepencient coluuns in &311, end &

nonvenisulng deteridnant of order (e = v + p + n_) 1n the

coefficient matrix [14],

Thieorew 2,4 .2: Tne sesregste eauetions sna *the Dy equé -

tions for & svstew pra.n nave reak (v - p o+ ny) 1f, zancd only

&

if, tre U -elcuwents Toru @ suo raph of the conplewent of scue

forest cf the svstew grain,
Froof: foliows trne sswe noettern zs tue proof for

Tueorew 2.4.1,

The followiny theorem is taken from [17].

)

Theorei. 2,4.3: L2t G te & connected grapn, Let Sl and

52 ne disjoint subsets of eleuwcnts of G such that there exists
e trece Tl witn the elements of Sl as cihords, and tuere exlsts

a2 tree T2 with tae eleuxents of 5, as branches, Then there



exlsts a2 tree 7, with the elewents of S, &s chords and the

1
eleuwents of S, as Tranches,
e

In writin_ the sepregqate and circuit equations 1t is
desirable, in general, tc cbtain a form wiich ex_.licit for
g set of unknowns in terms of other unknowns end specified
functions, This necessltates using for &f a forwulation
forest whicn 1aclules the b -elewents, and for J) e foruu-
lation forest uvhose ccuplexent includes the Dy-elements,

In th= caces considered, no eleuwent nas both the x-ver-
leble and the y-variable specified, Therefore, Theorew 2,4.3
indicates that, 1f toere 1s & s2tisfliuctory formulation forest

for {© and slso one for .22, then there exists a formulation

forest wnich is satisfactory for the writing of both sets,

2,5 Systeii kquations

It 1s convenient to eliiinate the specified-varieble
ecuations from the set of sluultzneous equations for the sys-
tem by substituting ttiem into the sceprezate end circult equa-

tions,

Definition 2,5,1: Systen equations: iet the circuit,

sesregste, and component equations for & physicel systei be
known, iet all specified-variable cquations be substituted
into the circuit and segregate egustions, The cquations re-

sulting are called the systewm equations,



III. 1NDBEFBNDENCE CnITERIA

3.1 Introductjion

The system equations in the s-domain are all linear and
algebrailc. They csn be classified in two groups, however,
as to type of coefficients. The equations from the graph
always have constant coefficients, while the component termi-
nal equations may have coefficients which are polynomials in
s. The questions of rank and independence msy be explored
for the circuit and segregate equations, using the standard
definitions and theorems of the theory of linear algebraic
eguations with constant coefficients. However, some defini-
tions are now presented in order to make clear what is meant
by the terms, rank and independence, in the developments to
follow, when applied to linear algebraic equations, which

have coefficients which are polynomials in s.

Definition 3.1.1l: S-matrix: A matrix with elenents

which are polynomials or ratios of polynomials in s is called

an S-matrix.

Suppose that a system of Laplace-transformed ordinary

‘dinear differential equations, with constant coefficients,

is written

C:2?3;><(s) = 625%5)

~16-
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where the order of CX(S) is n x n, and TX(S) and fﬁ(s) are
column matrices. It is clear that a solution for iX(t) does
not exist if the determinunt of Ck(s) vanishes for all s.

Therefore the following definition is made.

Definjtion 3.1.2: Rank of an S-matrix: Let CX(S) be an
S-matrix. The rank of C](s) is the order of the highest-
ordered determinant in (](s) which does not vanish identically
for all s.

Definition 3,1.3:+ Independent equations: A set of m
equations in n unknowns, m € n, is said tc be independent if

the coefficient matrix hes rank m.

Theorem 3.1,1: The rank of the system equations (in the
sense of Def. 3.1.2) must be equal to (2e - n, = ny), the num-
ber of unknowns, if a unique solution is to exist for some

value of s.

3.2 Topologiczl rattern of N-elements

The material in this section is an extension of the work
of Reed and Reed [15]. Their development treats the case of
two-terminal components for which a graph element is an N-
clement if and only if it is also & D-element. The rmlti-
terminal component requires an extension to handle the situ-

ation where N-elements need not be associated with D-elements.

Theorem 3.2.1: Let a be a square n-order matrix which

can be partitioned as follows:



-18-

la. a.
a = 0 (U

where Czll is of order m x p, p <€ m £ n. (:Z-l exists only

if 11 has rank p.

Proofs Use the first m rows to expand by Laplace s ex-
pansion [18] . If the p colums of Cle are not linearly

independent the determinant of CZ vanishes.

Theorem 3,2,2: Given & matrix M of constant coefficients
of order p x q, P q, Wwhich has rank p. Let any set of r
independent columns, r < p, be designated by Sl' There exists
a set of (p - r) columns S, such that the union of S; and S,
has rank p.

Proof: Follows from Theorem .22 of [18] .

Theorem 2,3+ Given a @3 matrix for a connected graph,
any p columns, p £ (e = v + 1), are independent if, and only

if, the columns correspond to a subset of some chord set.

Proof: a) Sufficient: Follows from Theorem 14 of [1L].

b) Necessarys By Theorem 14 of [14] , a set of
(6 = v + 1) columns are independent only if they correspond to
a chord set. Assume that at leost one of some set of p inde-

pendent columns 54 does not correspond to a chord. By Theorem
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3.2.2 there exists in /£ at least one set of (e - v + 1)
independent columns S of which S1 is a subset. But this is
impossible, since by hypothesis at lecst one column in S does

not correspond to a chord.

Corolla 2,3: Given a (O matrix for a graph of p
parts, any q columns, q £ (e = v + p), are independent if,
and only if, the columns correspond to elements which form a

subgraph of the complement of some forest.

Theorem 3,2,4: Given an_QJ matrix for a connected graph,
any q columns, q € (v - 1), are independent if, and only if,

the columns correspond to a subset of some tree.

Proof: It can be shown [16] that if, and only if, any
(v = 1) columns of an‘ﬂj matrix correspond to. some tree, the
columns are independent. This proves the sufficiency aspect.
The necessary proof follows the same pattern as for Theorem

3.2.3.

Corolla 2.4: Given an.ﬂg matrix for a graph of p
parts, any q columns, g € (v - p), are independent if, and
only if, the columns correspond to elements which form a sub-

graph of some forest.

Definition 3.2,1: Trivial segregate element: One ele-
ment, which forms a segregate set, is called a trivial segre-

gate element,

Theorem 3.2,5: A unique solution for the system equa-
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tions exists only if the Nx-elements can be made a subset of

some chord set, and the Ny-elements a subset of some forest.

Proof: The system equations can be written

(e 20 o |[%] [8]

0 &, Gn 0 K|+ o |[=0

0 0 oh |l Y | Y
G

) P N
By Theorem 3.2.1 d?ll must have rank n_. and 3L must have

rank n, if the inverse is to exist. The columns of dgll

Y
must, therefore, correspond to a subset of some chord set by
Corollary 3.2.3. The columns of 3), must correspond to a
subset of some forest by Corollary 3.2.4.

The following lemma is obtainable from developments in

[15].

Lerma 3,2.1: If the fundamental segregate and circuit
matrices, in the form of (2.4.1) and (2.4.2), are written for

/
the same tree of a one-part graph then dgll = - 53;12'

Theorem 3,2,6: For a connected graph containing no
trivial segregate elements, if a set of elements S forms a

segregate set, the fundamental circuit equations for any tree

of the graph can be written



where TX

<] Xsl

Kyz

the across variables assoclated with S, j{m contains the
chord variables except for ‘?<32, and ¢321 is a column

submatrix containing 1 or -1 in each position.

Proof: The fundamental segregate matrix for the same

formulation tree 1is

/0 0
o U o, S

By Lemma 3.2,1 &6’11 = - szin‘ Therefore

=10 =l U 0
-, -d 0 U

and the theorem follows.,

Theorem 3.2,7: If in a system graph containing no trivial

segregate elements, any segregate set contains only Nx-elements,

the C>(n of that set of elements is indeterminate.

Proof: By Theorem 3.2.6 the system equations can be

written
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where /< = X

cj)<nEZ

and <><a contains all across variables not associated with the
segregate of Nx-elements. Let the number of elements in the
segregate set be p. With ?X; known, there must exist a non-
vanishing determinant of order p in the last p columns if a

unique solution is to exist for i(rr This 1s impossible since

there are only (p-1) rows in [4823 7,(]

If one Nx-element forms a segregute set the x-variable
associated with that element does not appear in the system
equations, and the y-variable is zero. Tae solution for the
remainder of the system graph is unchanged if such an element

is omitted from the graph.

Theorenm 3.2.8: If a set of elements S form a circuit in

a connected graph, the fundamental segregate equations for any

tree of the graph can be written

U 0 o o[
o u o 0]
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where J%js = ysl
Yse

/%fb contains the tree variables not in ‘??;2, lzym con-

tains the chord variables except for Vg2 and 1l is a

column submatrix with 1 or -1 entries.

Proof: Since the elements of S form a circuit, the com-
plement of every tree contains at least one element of S.
Furthermore a tree T can be chosen such that only one element
of S is in its complement. The fundamental circuit matrix

for T can be written as

JQ';: d.?v: v 0
En O O
/
By Lemma 3.2.1 4311 = - Jzylz. Therefore sz can be written

U 0 -8B -&,
o U -8B, 0

Theorem 3.2,9¢ If in a system graph, any circuit con-

tains only N&-elements, the 621; of that set of elements 1is

indeterminate.

Froof: By Theorem 3.2.5 the system equations can be writ-

ten
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U Ao 0| Y|_,
0 0 G Q.

R Q¥

wliere @n = Yo
U

Jn
and J;(/a contains all through variables not associated with
the circuit of Ny-elements. Let the nwiber of elements in
the Ny-element circuit be p. If all varlables except ?/n
are known, there must exist a non-vanishing determinant of
order p in the first p columns if a unique solution is to ex-

ist for @ . But there are only (p - 1) rows in
e J n
L2 o).

It should be noted, of course, thut even though thiere
i1s = circuit of Ny-elements or a segregate of Nx-elements in
& sy stem graph, Theorems 3.2.7 and 3.2.9 imply nothing about
the existence or non-existence of a unique solution for the
othexr variables in the system eqguations.

It has now been established that, if a unique solution
®XxIsts for a set of system egquations, the up.er bound on no-
relation elements is given by n . £ (e - v + p) and - <
v - p). 1r (n_  + noy) is equal to e, the terminal equations
M3y be solved independently of the remaining set. For this

¢é3 e the terminal equations consist of (e - n, - ny) equations

In (e - n, - ny) unknowns. If the terminal equations are
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homogeneous, only a trivial unigue solution is possible.
Thus for a non-trivial solution for the system equations of

a system with homogeneous terminal equations (nOx + noy) < e.

3.3 Rank of the System Eguationg

The rank of the circuit and segregate equations is ex-
actly e if the D-elements have an acceptable topological
arrangement. The rank of the system equations must be
(2e - n, - ny) if a unique solution exists. Thus the rank
of the terminal equations must be (e - n, - ny).

The maximum rank of the circuit equations and the K
texrminal equations together fixes an upper limit on the num-

ber of K-elements permissible in a system graph.

If the K terminal equations and the cir-

Theorem 3.3,1

cult equations form an independent set, then at most there

can be (v - p - nx) K,-elements in the system graph.

Proofs The rank cannot be greater than the number of
Vari ables related. Therefore, (e - v + p + nk2) < (e = nx),

from which n,< (v-p- nx).

Likewise, the maximum rank of the segregate equations
and the J terminal equations limits the number of J-elements

PérmY ssible in a system graph.

Theorem 3,3.2: If the J terminal equations and the seg-

regate equations form an independent set, then there can be

at most (e ~-v+p - ny) Jl-elements in the system graph.
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Proof: Parallel to that of Theorem 3.3.1.
(v -p+ njl) < (e - ny), from which nj) < (e - v+ p- %)-

It is, of course, desirable to be able to state neces-
sary and sufficient conditions for which the segregate and
circuit equations, and the terminal equations of type J and
K, form an independent set. liccessary conditions are extremely
difficult, if not impossible, to show in general. However,
sufficlency criteria, of a nature general enough to be widely

useful, can be established readily.

Theorem 3.3.3: If in a system graph, all K-elements and

Dx-elements can be included in some forest, and all J-elements
and Dy-elements can be included in the complement of some

forest, then the set of circuit equations, segregate equa-

tionns and terminal equations of type J and K have rank
(6 + nyy + o).

Proof':

a. Suppose that all K-elements and Dx—elements are in-
cluded in the formulation forest of the system graph. The
circuit equations and the K terminal equations can then be

writ ten as follows:

U8 B E[X
01U K 0%,
Xu
X,

O)(c Contains the chord x-variables, and ?(b contains the
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tree x-variables not associated with K-elements. Tiiis set

of equations has rank (e - v + p + nkz) because of the tri-
angular submatrix in the leading position, with unity elements
on the main diagonal.

b. Suppose that all J-elements and Dy-elements are 1in-
cluded in the complement of the formulation forest of the

system graph. The segregate equations and J terminal equa-

tions can be written:

Uish o h|[%]_,
0 ;/L{ -q 0 q/jl
| Y

These equations have rank (v - p + nJl) by the same reasoning
as that used in (a).

The hypotheses for Theorem 3.3.3 are relatively simple.
For @ given system graph the independence criteria outlined
therre are easy to apply, and thus may be quite useful. How-

éver> , the sufficient conditions for independence can be made

less restrictive, by sacrificing some of the simplicity of the

hYPOtheses .

Theorem 3.3.4: If for some system graph,

1. The K-elements form a subset of some forest T,

2 The D_-elements and K -elements form a subset of

SIS Lorest T,

3. There are no circults of XKy, Ky, and D -elements
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(all three, and only all three, types),
then there exists a forest for which the fundamental circuits

associated with the Kl-elements include no Ka-elements.

Proof: Take the forest T2 which includes as a subset
all elements of type Dx and K,. If T, includes the Kl-ele-

ments, Theorem 3.3.3 holds. If not, each fundamental circuit
involving a K,-element either: (1) does not involve a K,-ele-

ment, or (2) involves at least one K>-element. If (1) there

L T =8 S -

is no protlem. If (2), there must be at least one other ele-
mennt involved since T, includes all K-elements. If a Ky-ele-
mernt is involved, either: (a) only D, -elements in addition
to the K-elements are also involved, or (b) some other type
element, say an A-element is included. If (a), then the
hyp othesis 1s violated. If (b), a forest Ty can be chosen
S0 as to include the K,-element as a branch with the A-element
in ¥ ts complement.

The form of the proofs of Theoreris 3.3.5 and 3.3.7 was
Suggested by Koenig [10]. From this form the hypothesis of

Theoxrems 3.3.lt and 3.3.6 were devised.

Theorem 3,3.5: If the hypothesis of Theorem 3.3.L4 1is
%at1 s fijed then the fundamental circuit equations and the K-

term g ng) equations are independent for all ’K

Proof: By ‘I'heoremv3.3.’-l- there exists a forest for which
te  fNandamental circuits for the K, chord elements involve no
f2"® 1 ements. Therefore the fundamental circult equations for

t
1S treo and the K terminal equations can be written



o KoUK 0|,
G EC. OU 0%, |=0
Eo E.. G O U|| K
’ K
[ o

where OX'Q: ["K, oKz] 7<K,-'
Ko

Zlementary operations will reduce the matrix to one with

an  identity submatrix in the trailing position.

Theorem 3.,3,6: If for some graph G,

1. The J-elements form a subset of the complement of

some forest Tl’

2. The J, and Dy-elements form a subset of the comple-
meyt of some forest Ty,

3. There are no segregates of Jys Jp, and Ny-elements
(11 three, and only all three, types), then there exists a
fore st for which the fundamental segregates for the J, branch

elements include no Jl-clements.

Froof: Take the forest T2 which has in its complement
811 e1lements of type J; and Dy‘ If the complement includes
all  £1e Jo-elements, Theorem 3.3.3 holds. If not, each funda-
Nt gl segregate involving a J,-element either: (1) does not
Ivolve a J,-element, or (2) involves at least one J,-element.

¥ C1) there 1s no problem. If (2) there must be at least

A3~

™
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one other element since the complement of Tl includes all
J-elements. If a Jl-element is involved either: (a) only
Dy-elements in addition to J-elements are involved or (b)
sSome other type element, say an A-element, is included. If
(a ) the hypothesis is violated, if (b) a forest T3 can be
chosen so as to include the A-element as a branch and the Jo-

element in its complement.

Theorem 3.3,7: If the hypothesis of Theorem 3.3.6 is
satisfied, then the fundamental segregate equations and the
J terminal equations are independent for all g .

Proof: By Theorem 3.3.6 there exists a forest for which
the fundamental segregates for the J, branch elements include
no Jl-elements. Therefore the fundamental circuit equations
foxr +this forest and the J terminal equations can be written

0

U o
o U

— -

g o[ %
Qf]/.? M//)d QZ: V)%Jz’

SBJL gif //J Jt

JZ'I _@

whe r- o = [g, z] ?J.z,
Y 7

If the order of the variables is rearranged so as to
ringr the third column to the leading position, then elemen-

tary Operations will reduce the leading submatrix to an

[ e e R it ]
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identity matrix.

A situatlon of considerable importance occurs when the
System graph is in separate parts and when J-elements and K-
elements are distributed such that: (1) the K,-elements are
in one set of parts--the K,-elements in the other, and (2)
the Jl-elements are in one set of parts--the J2-elements in

the other.
Theorems 3.3.5 and 3.3.7 apply, of course, to graphs of

Separafée parts. However, a more general set of conditions
cann be given, for the particular distribution of J-elements

and K-elements just stated, such that the segregate and cir-

cult equations and the J and K terminal equations are inde-
rPeradent. |
Theorem 8: If for some graph G',

1. The graph is in two separate parts, such that K-

¢lements are in part 1 and K,-elements in part 2,

2. The D_,-elements form a subset of some tree of part 1,

3. The Kz-elements and sz-elements form a subset of

Sme tree of part 2,

thexry the fundamental circuit equations and the K terminal equa-

tlorag are independent for all ﬂK.

Proof':

&t 1ons can be written as:

T

The fundamental circuit equations and K terminal
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o X .0 U E-K, 0 0

& B. 0 o0, ,U 0 O K
o E. © 0 E o Uu 0 X,,
0 0 B Eui 0 0 U || K

Kee

where DXKZ: [DKI JKZ] 7!('"
7(Kz’

The K,-elements are in the chord set of part 1, and the I\.l-
elements in the tree together with the Dx-elements. Thus the
only restriction on the topological arrangement of the K-
elements is that they be contained in part 1.

Theorem 3,3.9: If for some graph G,

1. The graph is in two separate parts, such that Jl-
¢lements are in part 1 and Jo-elements in part 2,

2., The DYZ-Qlements form a subset of some chord set of
rprt 2

3. The J;-elements and Dyl-elements form a subset of
S0me cnord set of part 1,

thexry  the fundamental segregate equations and the J terminal

*dUa tions are independent for all g .

Proof: The fundamental segregate equations and J termi-

nal ©quations can be written as:




U 0 0o of, 0 0 ||
0 VU | b2
0 : 0 0 SZX:n 5244 /9 =0

0 0 U0 0 o h||Ys

L O 0 _g : Z{ o 0 -ng ?dlﬂ
o

/(,;/m?

MC/jz“

where VZO/J" = [g gl] %z.

0%/j2'

The J,-elements form a subset of some tree of part 2, and the
J5—elements together with the Dyz-elements form a subset of
the chord set. If the third row is multiplied by 7 and
added to the fourth row the result is a triangular submatrix,
With 1 on the main diagonal, in the leading position. Thus
the only requirement on the topological arrangement of the
J>—elements is that they be restricted to part 2.

As a result of Theorems 3.3.8 and 3.3.9, a theorem can
be stated for the graph of two parts in which all K-elements

are also J-elements, and vice-versa.

Theorem 3.3.10: .If for some graph, containing no K-
elenments nor J-elements which are not Jki-elements

1. The graph is in two separate parts such that the J’Kl-

¢lements are in part 1, and the JK,-elements in part 2,

2. The J"x{l-elements and the Dyl-elements form a subset

°f Some chord set of part 1,
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3. The D,;-elements form a subset of some tree of
part 2,

. The JK,-elements and the sz-elements form a subset
of some tree of part 2,

5. The D p-elements form a subset of some chord set of
part 2,
then the fundamental circuit and segregate equations, together

with the JK terminal equations, form an independent set for
all g and ’7{.

Proof: Follows from Theorems 3.3.8 and 3.3.9 since all

conditions in the hypotheses of both theorems are satisfied.

Theorems 3.3.8 - 3.3.10 can all be extended to the case
of a system graph of more than two parts by replacing the
term "tree’ by "forest’ and the term ‘part" by “set of parts’.

The proofs of independence have been based on the fact
that fundamental Jf and gﬁ’ matrices are used, and that these
matrices are written for the particular tree used to locate
topologically the J-elements and the K-elements. The next
step 1s to show that, if these equations are independent, then
independence is assured for any full-rank set of circuit and
segregate equations.

For this development let

gll 6!2 ‘LQ)‘g Xm _ (ﬁ, ?(

K U 0 ’sz - a
X
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[~ — i

and ;}Yu Q?Iz /@9,3 Jé/ﬂ —

u g oy,
Y

eorem J.3.11: For some graph of p parts let 43; and
6 o be circuit matrices with rank (e - v + p).

A a

have the same rank.

Proof: Follows from the fact that dgl and 62 are re-

lated by a non-singular transformation.

Theorem 3,3,12: For a graph of p parts let /le and
52:? > be segregate matrices with rank (v - p).

;igu and 9£ have the same rank.

5 L

Proof: Parallel to that of Theorem 3.3.11.

Thus if, and only if, independence exists for some set
of full-rank circuit and segregate equations, the equations
are independent for any set of full-rank circuit and segre-

gate equations.



IV. GENERAL PROCEDURE FOR IORMULATION

L.1 Introduction

If the graph of a physical system is known, together
with the necessary number of component equations, all infor-
mation required for simultaneous solution is available. How-
ever, for complex systems, the number of simultaneous equa-
tions is very large. Even when computers, either digital or
analog, are to be used, a great saving in time can usually be
gained by a reduction in the equations to be solved simul-
taneously.

With regard to formulation of the system equations, the
system graph serves just one purpose--that of providing a
systematic method of writing a set of independent equations
in a convenient explicit form. When this has been accomplished,
the graph has served its purpose and the analysis procedure is
based only on the form of the system equations.

In general, the graph of a system may contain elements
with all types of component equations. The formulation pro-
cedure is, of course, influenced by the type of elements pre-
sent. However, a general procedure can be stated, utilizing
the explicit form of at least some of the system equations,
to effect a reduction in the number of eguations to be solved
similtaneously. There is no assurance that this procedure

Yields the smallest set of simultaneous equations, which it

-36-
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is convenient to obtain, nor that the procedure is the simplest

possible. It 1s, however, relatively simple to accomplish,

and it handles systems containing the types of components dis-

cussed. In order to facilitate the reduction process, certain

procedures in the writing of the circuit and segregate matrices

are helpful. These procedures are examined next.

lt .2 Circuit Equations for System Graph Containing Nx-Elements

The following i1s an extension of a formulation technique
developed by Reed [13] for two-terminal components in which

an element is an N, -element if, and only if, 1t 1s also a Dy-

e lement.
If there are Nx-elements in the system graph, then the

onnly gystem equations involving these variables are the cir-

cult equations. It has been shown that a complete solution

to the system equations can only be obtained if the Nx-elements
Discussion 1s limited to the

If a forrmlation

are a subset of some chord set.
Case for which a complete solution exists.
forest is chosen, such that the Nx-elements are a subset of

the chora set, and if the equations and variables are properly

S¢quenced, then the circuit equations can be written

— —

B, F. O ||X|_ 0
JZ, (_,(3‘22 /(7/{ 77 (,-I-.Z.l)
_O‘Xm

J» specified across functions;

(&%)
vhe re the variables are:

OXT: across variables related by some type of terminal equa-

I
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tions; OXn’ no-relation across variables.

Since OX n is related only by the second row of Eq.
L .2.1, and the number of equations is equal the number of
variables in ?(n’ this set of equations can be “set aside’

in that they need not be solved simultaneously with the other

equations of the system. Thus, for simultaneous solution,

the circuit equations are reduced to
(»tllcyd + /!‘J‘Z/Z yT =O (’40202)

The unknown variables in Eq. 4.2.2 number (e - n, - n__ ).

L .3 The Segregate Equations for System Graph Containing

Ny -Elements
The following is an extension of a formulation techhique

dewveloped by Reed [13] for two-terminal components in which

an element is an Ny-element if, and only if, it 1s also a Dx'

¢element.

If the system graph contains Ny-elements , then the series

Vari g bles /?/n are related only in the segregate equations.

If a complete solution to the system equations exists, Ny-ele-

nent s must form a subgraph of some forest. If a formulation

forest 313 chosen such that the Ny-elements are included as a
sWbset of the forest elements, and if the variables and equa-

tlons are properly sequenced, then the segregate equations can

be Wri1tten
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QJiz SZXQ 09)1 — 0
,'Jzz ,Qng /97
i ygd 1 (L.3.1)

U
Y

where the variables are: @/n’ no-relation series variables;
?%T’ series variables related by some type of terminal equa-
tions; % s, specified through functions.

The only equations, in the entire set of system equations,
that involve @n’ are those represented by the first row of
Eq. U4.3.1. Thus, these equations can also be set aside. There-
fore the contribution of the segregate equations to the set

that must be solved sirmultaneously is:
7,
5212 /97 + 23 ((//d =0 (4L.3.2)

In Ehis set the mumber of unknown variables is (e = n - noy).

L.L The_ Substitution Procedure

In reducing a set of n simultaneous equations in n un-
knowris to a smaller simultaneous set, the equivalent of the
following must be done: Some set of (n - m) equations are
used to obtain an explicit relationship for some (n - m) un-
known wvariables, in terms of the remaining m variables. Then
the (rn - m) variables are eliminated in the remaining m equa-
tlons . If the n equations are independent, this can always
be done for any subset of unknown variables. Therefore,
whether the reduction process is a useful one or not, depends

In general upon the degree of difficulty with which the ex-
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plicit relations can be obtained. If matrix inverses must
be taken before the substitution process can be carried out,
it may well be that inverting the original set of n equations
would be less tedious than reducing the set before inverting.
In the system formulation, as considered in this thesis,
the terminal equations are explicit in form. Therefore, by
substitution of the terminal equations into the circuit and

segregate equations, the number of simultaneous equations can

always be reduced to (e - Ny - noy).
The cilrcuit and segregate equations are not, in general,

explicit forms. However, the fact that the fundamental cir-

cult and segregate equations are explicit, make them very use-
ful in any procedure involving reduction of simultaneous sys-

tem equations. As noted earlier, because of this explicit

relationship, the f)fn and ‘%/n varlables can be solved for,
and since they appear in none of the remaining equations, the

sirultaneous set is reduced by (nox - n_). The system equa~-

oy
tions can be shown in the form:

U o0 dhoo o o[y
o U wh 0 0 0|7,
o 4l s Ao 0 1Y =0 (b.lh.1)
0 0 o & U ol||%x
0 0 0 & o0 w||
| X

where C><m and ?(n are the chord x-variables, and @b and

d%/n the forest y-variables. These equations are not homo-
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geneous, as the matrix form might seem to imply. The Dx-
element x-variables are assumed to be contained in ¢?<t’ and
the Dy-element y-variables contained in ‘??;.

The equations represented by the rows between the parti-

tioning lines in Eq. I.L4.1 are the (26 - n ) simultan~

ox ~ Poy
eous equations. The center row represents the various possi-
ble forms of terminal equations.

A second procedure, which could be used for reduction of
the simultaneous equations, is to take the explicit relations
from the second and fourth rows, and substitute them into the
third row. This substitution can always be made, regardless
of the form of the terminal equations (explicit or not). The
nmumber of simultaneous equations to be solved after such a
substitution is (e - n, - hy). Ir (nx + ny) >(n0x + noy),
this procedure would be preferable to that of substituting
the terminal equations into the circuit and segregate equa-

tions.

4.5 Chord Formul

A third reduction technique utilizes the explicit form
of the second row of Eq. U.4.1, and any terminal equations
explicit in the x-variables., It is evident that the forest
Yy-variables &%fb’ can be expressed in terms of the chord y-
variables 4%%. Let the second row be substituted into the
terminal equations. Let m terminal equations be explicit in
X. If these m terminal equations are then substituted into

the fourth row, the set of simultaneous equations remaining
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are (e - n, - ng - m)+ (e -v+p-n_)=(2 -v +p -

oxX
n_ - -n -m n number
% 0X ) 1 er.

x
Ifm= (e - n, - n.y), a common case for electrical cir-
cuits, this reduces to (e - v + p - nox) simultaneous equa-
tions, conventionally called “mesh equations” in electrical
network theory. For thlis case the terminal equations are of

type A and the problem of formulation has been treated by
Reed [13].

L.6 Tree Formulation
A fourth reduction technique utilizes the explicit form

of the fourth row of Eq. 4.4,1, and any terminal equations
explicit in the y-variables. Using the fourth row, the chord

x-variables, (é< , can be expressed in terms of the forest x-

m

variables, fX’ Let the fourth equation be substituted into

t.
the terminal equations. If there are q equations explicit in
the y-variables, substitution of these q equations into the
second row results in (e - n, - ng - q) + (v -p - noy) =

(e +v-p-n

x =Ry ~ Boy - qQ) equations.

If q = (e - n, - ny), this reduces to (v - p = noy) si-
multaneous equations, sometimes referred in electrical net-
work theory as the “branch equations”. For this case the
terminal equations are of type B and the problem of formula-
tion has been treated by Reed [13].

If the graph is in separate parts, it is evident that
there i1s an independent choice in each part as to what formu-

lation technique is used.
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After the various procedures of substitution have been
carried out, as outlined, there still may be explicit rela-
tions, which allow of further systematic reduction without
the necessity of inversion. Two cases are of sufficient im-

portance to warrant examination.

Case 1: Terminal equations of type K:
l1(a) Tree formulation: The first step in the

tree formulation 1s to write from Eq. L.h4.1

7(;11 = - ﬁ“ 7(t

and substitute into the terminal equations. If the K-elements
are a subset of the formulation forest, then the K terminal

equations can be written

Fx o wl[x]=% v o][x.]=0
Xz At (4.6.1)
Xy

N/
This relation is explicit in C)\tz, so that these varigbles

may be eliminated by substitution into the remaining equa-
tions. It follows, of course, that this reduction can be
made for any subset of the K terminal equations, which relate
variables associated with the formulation forest.

1(b) Chord formulation: The general procedure,
as outlined, covers this case, since the substitution is for
terminal equations explicit in the x-variables, into the cir-

cult equations.
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Case 2: Terminal equations of type J:
2(a) Tree formulation: Covered by general pro-
cedure.
2(b) Chord formulation: The first step in the

chord formulation procedure is to write from Eq. U.L.1

@b = —,)éj:a!gc (4.6.2)

and substitute into the terminal equations. If the J-elements

are a subset of the complement of the formulation forest, then

the J terminal equations can be written:

B n

v 7] Zm[v 7 0]fu]=0

E2 (4.6.3)

7
L 7

This relation is explicit in Jé%l, so that a further reduc-

tion by substitution can be made. If only a part of the J
terminal equations are associated with the chord set, that
part can be used to reduce the number of simultaneous equa-

tions.

L.7 Relationship between JZV a B8 for the e Formul n
Foresgt
Using Lemma 3.2.1 it can be shown that, for the same

fornmlation forest,

dgz :F_an;



LTS
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It follows that the explicit relations from the segregate and

circuit equations, respectively, can be written as:

7Jt :_jzj'z yc = 61/’ /Zd/c (4L.7.1)
K= B U= SN, (4.7.2)

Therefore, regardless of the reduction procedure to be used,
only the fundamental segregate or fundamental circuit equa-
tions need be written. It should be noted that, in general,
the forrulation forest most convenient for the equation-reduc-
tion procedure depends upon the particular reduction technique
to be used. The formulation forest most convenient for re-
duction of equations, is certainly not necessarily the one

used for independence criteria.







V., FURMULATION PCi SYSTLIS OF 1ADTICULAR CULLECNLNTS

£.1 Introducticn

7o exezine s_eccific foruulaticn _roceclures, for systew

&rzaone contalning ell _oselkle types of elewnents, 1s obviously

tnis cection, with two excegtions, the

not ;recticesble, In
Intention 1s to exsulne sowe fomlstion procelures for sy

m

tems contsining A-clianants end/or L-elewcats, D _N_-eleucats,
AN

e

+N _ —eleu end couiyonents ccsociasted with lees e
D.N_ -cleuents, oLy t ociated with at leest ocue
Otiier tvie of terwuinal ecuztion,
s bjle in the foruwulastion pr du "’
The objective in the Torwulation procedure 1s to errive
te ubtained witn-

- n

&t tihic sxzzllest set of equations, walch cin

dds
Sut  <ttle iaversion of watrices, Consictent witi this .urpuse,
tie A teritazl cauations nave a convenlent fors Jfor subetitu-

tion into the circnit ecuntions, Thus ths cnerd foruwulcticn
ne srsten grally eleweats

14

i - 1
011l A ysuelly be iandiceted wrere *ue
“re s reco.incntly of the A tv.-e, Likewlise, tue tree foruu-

lat g Oin 35 .02t effective where the 13 terwinel eouation is

"‘ecol‘iinant. However, there ere ey ceses wunere the ter-
il . .
“lna ecuatione way te inverted ©v inspection, or &t wost LY
inv . .

S X tine g diagonal, or otherwise siuple uwetrix forw, In

the & .
S= cases, the terminal eouations are assumed to be elther

ty
‘S or 4 or B, depending on convenlence,
the chord znu tree

The

In the sgcecial cases that follow,

forx-‘
W1 ation procedures are precented for tne .ost part,

-
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+IrOcedures are valld for srsteu ¢rz_os of wore tuoesn one pert,
Of course, However, tue ecuation counts, unless otherwice

<

re tesed on 2 sragh of ovnz .art, L

7

«

entially,

m
1)

m

Specified,

2ilow e=sy ceuparison of the nuuter of sviliuvltane-

ct+

a2is 18 to

Oue equations for tue particuler forwu.e*lion o rocedure, to te

made with the nulver of conventionai umesu &:d node ecustions,
Whici woula resuit for the seme greph end ay.royricte terni-
tne teria "tree" is rellnced by "forest",

nal equations, If

to & grotew grapn of sesarsate _orts,

Ceac iy Lrocedure e, p_lcs
s_eclel forwuletion .rocedure is .reseated 1in cut-
line foru, as wuca ze nrecticeble, If tue seie furwslstion
tree  ie ured for boti. cirenit =i se. resate metrices, one 1is
Obt = insble Srow tue other, Therefore in wost of the cuses

€rat.inec, tihe only one written is the vne into wilcn tae final

Flos titution 1s wedes,

-
>3 -
o= Tveces of Couponen“s Coneldered

In oraer to feacilitzte the presentrtion of forwulation

‘Y22 eJdures for srstews containins soecific types of cou o=
rex . .
‘]*t5=, it is convenient to ¢a2fine sowe conponcnt types,

A KLlh=-cuuponent is

-

Definition 5,2,1: ULN-coupvnent:

One N S 5 . +. ' o= v e
1'or which tae couponent ecvations Leve the followin, for.:

o / 4 A 4j
Ko = ’}\‘Xm’ chﬂ: 14/&1

k2

Qék2 not reiated in tne coumwronent eauatiuns,



4n electronic sxgiifler, witn ocut.ut volitepe tealen
Portionel to inuut veltoge, 2ac input current neglected

5

sur_ose of znéilvsls, 1c an exsuple of o luli-co.prunent,

-y~ 1

pbefinition 5,2,2: Lil-couw_.onent: A Y3l-cou.onent

One for whicn tne co... crent enuvations hive the foliowing

7.~ 00t reletec in tle couponent eouations,

. o=

i

for

forw

An eveipie of 2 LliNeco..onsnt is an copervtionzl anpli-

-f‘ -
Tler of an analog cowpu‘er,

Lefinition 5,2,3: JDN-couwronent: A JuN-couzonent

9l¢ T oy voica tne conponent eoustions have the following

ixkl not releted in tie cowgsonent enuations,

Definition 5,2,4: JAN-cou, onent: A JAl-couionent

One f‘ [ ®] xr

)
'

whicn the cui.onent esuctions n:ve tie followling
f)/ 742 ?< & «/7,
¢i1 432' 2Ty (]32

ile not related in the coiiponent couatlions,

is

foru

§ 2.

re

Toru

1:3?, for e coumon-vase transistor, tiue collector curient

]

r
.o

S)
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ena the enltter voltspe cre assuwsd procortionai to clitter

ha

Current, tte trencgletor cen e clzssifica es a JaN-couponent,

befinitivn 5,2.5: JEK-cow.oneat: A JK-cc.. onent 1s one

for wihich tne cowyonent enuations Liave tie followin, forus:

2 9
’7(;(.1 - 7<0X‘£2’ %/ke N 7 éal:«":_

5.3 Systewse of & and EDw Coinconents

Chora foriulation 1s used:
In tre foriauletion tree: All N -clenente, vwolchn in-
y 9
Cludes the h?-ele;;;ents.

In the chord set: ALl D -elecents and N -elicuents, in-

Clud;izyl tie K]—elements.
Circua it equatians:

F CC n bt‘\«'; 0 0 W

To

N

<

(]

2 38
5o &

=

I

S

G

w

-

xR

Ealle 1 ¢ fora of tie secrregate eauations frouw the circult

equa t 1 ons:




[
—/u-

17 . - N
In (5.2.2) Ylf centeins tre vnsuecificd tree y-voriesbles,
1399

Yer.inal enuation: efter suocctitution frow s recste ecustions:

n
L]
LGN
L]
!

Yoo 3y Sl # a1 (5.5.3)

X>2
~
\
>
:
C
Ul
L]
(&3}
.
S
~

Circwuit eruations efter substituticn of terminel enuations:

.19, (&, e e[ w]+[zx B+ [e =0
3,, Uo| | EK+U €

9

Léb
L >
Unknowns: ‘Q and X ,-..

il ki

Nuibe r of equations: (e =v+1l-mn_).

e Rt . - \ . R
volinents: . iy is *tne nunber of Dylv‘(—ele;;ents in the syctew
4 -

crelln ©opr t.ils cise,

: N — = AR
.4 S3-7stess of B end KDN Comiconents

Tree for.ulation is used:

In the foriulntion tree: All D _-elements, and eil ,oo-

sit? <. 5 N
lele 4y —e¢leucnts, IF all K-clewents cannot Ze jut into the
Su e . - .
dic o I'noulation tree witn tire u‘(-elements, then a forwulz-
tic ‘ : ;

1 Tree spould be chosen such that tihe masiuuz nuzber of
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K terizinel equations relzte only tree veriables,

In the chord set: All Nx-elements,

In this procedure all K-elewents are essuwed to be in

the formulation tree,

Segregate esuations:

U0 0
770

&
+
e

/Q}M
o -u o 2 Us=0 (5.4.1)
0 0 U Sl | Yo |
A S A S

Expl 1 cit form of the circuit equations frou the segregate

equa. tions:

o A I L M A ol | I I
Xa
X,
&c><b

-

1

Where Cj(b contains the unknown tree x-veriables.

‘rilna ] equations after substitution from sesrezate equa-

tions e

X, = KX, (5.4.3)



U wm =Wl L L[N s

Termzinal eacuations &after eliiination of oxkez

U = wld (e A (5.4.5)

Segregate enuations after substitution of (5,4.5):

2 WY [ [ ke nty ]
o A “ Ka| | s

Unknowns ; 7(1(1 and ?(b'

Nuwbe x~ . - - = - - -
of eouations: (v -1 noy) (v 1 n, 5 n)

5.5 Sy stews of A and XBN Cownponents

C hord formulation is used,
In the formulation tree: All Ny—elements, which in-
clug
udes £ hre K,-elements,

In tpe chord set: All Dy-elements and Nx-ele:nents.






Circuit eauations:

0 J:L"t Ud?i 0524 a)( K2 (I:"zc
X
| Aa

mIZ/I~ B _\_E,z _‘ubu _Jild_ 7:’;7 -+ ‘_@5_5_ ‘Xd — 0 (5.5.1)

Exrlicit form of the serregzte eauations from (5.5.1):

%u E. ©. Y, (5.5.2)
QJ"‘ = u//?u 0923 L7 m
JZ/‘;Ia @’4 (bz:

[ -

Teru i nal encuations zfter substitution from (5.5.2):

X =3a[ﬁ; é. | Y, (5.5.3)
Y.

Ao = KX, (5.5.4)

[ ¢, &, | Ui = WX, (5.5.5)
5.

Circuy ¢ eaueations after substitution of expliclt terminal




lex-e s 396 e.][w |+ ex=0

(5.5.6)
Final enuetions:
! Ny
p ] (ﬁ' '_' e /
. R Ao+ ° . 0 I I
) 2 L) 4‘" Vo RV ] 2
ﬁZE'K + J”:Z! LZ‘;Q ‘L/V'A Iu.j?4‘{d \ JZ4 [gm @zglxd
(5.5 07)
' ) . I " 17
Unknowns : >(k1 and éﬁn,
Wuzmber of eauations: (e - v + 1 - g, o+ nkl)'

. 1s known, or ea2s8ily obtalned, tne K

1r Wit - “j

teraiinal enuations can be written

Ke|_| 3K (5.5.5)

For this form, the terwinal eauations 2fter substitu-

tion from the segregcte enuations are:

—

‘><xz 3: K 0 61; ﬁz‘s Jgd (5.5.9)
”Xm = 3, 0 @:L (Bz’4 74"‘
K] L0 G




Circult eocouations after substitution of

S0 a kY o , o
{ (LZZ (‘[/(: Uze ] C//")‘\ O C-!. 0:513 (‘(’jld + 625% - 0

30 [ |& Ca Yo
0 (5.5.10)

Unknowns: dé;,.
ad

(e = v+l-n)=(e-vs+1l- ny)_

Nurber of eocuations: o

5.6 Systews of B 2nd KBN Jougponents

Tree foruulaticn 1s used,
In the formulation tree: All Ny—elements, and ell k-
cleients possible, In eny ca2se the warinum nuuter of K terci-
nal eocvations poesible s ould relate tree variables only,

In th? chord set: All Ny—clements:

Serregate eoustions:

2 0 0 ,‘4-] V';‘/n QL (5.6.1)
S _ ._?/l_ . _O_ _ :,d’g ‘ /J“?— + |- .;:f_ ‘ljd =0
O (Z/( 2738 OZJK, /Jrf
0 O O —-/.)u CZ/{BJ Jas

.
.

Lxplicit form of the circuit equations from (5.€.1)




Terxinel eruations £fter substitution of (5.6.2):

U= I [ L A A [

2l [
EidRi2

Terminel eouatiors after eliuwination cof ixygz

U= i L (xeal) ol

N

U= WX,

(50602)

(5.6.%)



Segregete eauations &fter substitution of (5.£.5) anag (5.6.6):

- T T ]
U b Sl Lde (LX) o ]| AL | ey,
o [ ! | ]cxg.lzfc’fd'o

X

(5.6.7)

TA Y " . <]
Unknowns: ixkl and ;Xb’
[ t : - - j = - - - )
Nuwber of equetions: (v 1 Doy (v - 1 n,.o- N5l

The form of (5,6.7) is not appealing, but no good pur-
vose 1o servea by rewrltin: to pet «ll variasbies togcther,
since this wrrectly cuimvlicetes tne penerel form,

n . = 4 ‘ nea i \ d

The case of 7<k1 = ‘}1 zékl 1s not conesildered hrere,
As 1117t be expected, tiere 1s nc cporecietle change in the
foruw of the finel enuations, If {%{lj(kl is reulcced by
tokl’ gnd jxkl %s reglcced by Ebilﬁéfkl in (5.6.7) the al-

ternate ecuvations are obtzined,

5.7 8Systews of KBN Cowgonents

A special cese, which 1s luportent enough to merit soue
attention, 1s the type which includes the anulog-:omputer
srstex, If ecch coperctioncl smpilifier iz regresented by a
Lagrenglan-tree subgrach, with the cowi.on vertex corres;onc-
ing to ground, tne greph of the csyster 1s seperable at the
ground vertex, Lach nonsepareble pert consists of two or
more eleuwents in pzrellel, In eacih septrable pért there ic

one, and only one, eleuent of the foliowing types: (1) DvNy-



elesent, or (2) an 2leuent representizng tre ocutput of &n
operationzl awplifier, Thus, the spgecified-voltage elements
and operational-a.plifier output elements in general make up

& lLagrenglan tree of the systew graph,

In tne formulation tree: All Ky-eleients, since ﬁ%ke
1s not related 1n the couronent equatlions, and ell Dx-elements,

In the chord set: All Kl-ele;ents.

The cowm;.lete get of systew eouations:

-

U oo oo o llul o

O U A 00 Y| |0

o o0 U 0 W Yo ¥ 0 |0 (5.7.1)
o 0 0 U K ||X, 0

0 0 0 C.. ,U B UXMJ _(B.:x”

The first three rows way be set aside, The fourth row
may be substituted into the fifth row, or vice versa, There-

fore, the final equations are:

(U+BK) K+ B, X,=0 (5.7.2)
or (K&, + UKo = K e X, =0 (5.7.3)

Unknowns : kal or c?<k2

Nuuber of equations: n or n

k1 ko+  (Ppy > Dyo)



Comuwents: Tne gegregate eousations, anc¢ the 3 terwinal ecua-
tlons, do not 2ffect *he x-variavle solution for this tyge

of systeu.,

5.8 Systews of A en.. JDN Couponents

Chord forumulation 1s usea,.

In the formulatlon tree: All L -elcuents,

In the chord set: AllL Dv—eleuents, ana &ali J-elenents
1f posgible, In eny cese, *the raxiuvu possivtcle nuinber of J
terwinal enuations should relate oniy chord variables,

In this procedure, the J-elewents are assumed to be a

subset of the couplement of tne formulation trec,

Circuit eauations:

—

co 00 1.1 2
(1“—.)“. J‘J 0 . (X ’ N ) -
IS T L J2 + _(ﬁ_/(d—o (5.5.*)
‘*‘-"’:’)11 O (U O 7><_“ kbzif
B \L::GI 0 O OL‘ B er\_ _"g‘fi

Explicit form of the segrecate eanuations frow (-,8.1):

Zdla:[@: E. G, ‘f]U (5.8.2)







0=

where Véﬁu contains the chord y-variasbles not in the remain-

ing sets,

Terwinal eoguations after substitution

Cxa = ga 0 ‘ﬂn' O:??».' \)g?l
0 o UuUllo -¢ U

In general,
tions 1s retained,

chord cet,

Terwinal equations efter elliumineting

K= Fa| & (v ) Eu]

of (5.8.2):

-7
12
U,

o

U,

v

624/.5 1

v

_ZQQJ

B
0

(5.8.3)

the explicit forw of the J terminal equa-

only i1f the J-elements are a subset of the

(5.8.4)

Circuilt equations after the substitution of (5.8.4):

B % [& BB &)
é,

Unknowns: fz?lm and JZ{,}/Q.

Number of equations:

(e = v+ 1 - Ny

0 [Kat
U

(8;5 ‘xd =0
(a5

(5.8.5)

+

).(e-v-rl---ny-nkl)



5.9 Systews of B and JDN Conponents

Tree formulation is used:

In the formuletion tree: The Dx-elemonts, including
the J2-elements,

In the chord set: Tne Nx-elements, includins the Jl-

elements,

Segregate eauatlions:

U o A || [

9] —
0 ‘U %; ,J;‘ fgjz + /QJif té’{d - 0 (5.9 . 1 )

JI
8_

Explicit form of the circuit eouvations frow (5.9.1):

%= [ ]

X

\O

.
N

N

(5.

>

2

53

where 7<b contalns tree x-variebles not in 3Kd and j(ﬂg.

Teruinal ecuations after substitution from (5.9.2):

62f3 =ic7$: [_;J: ini _;zgj:] X (5.9.2)




U= I
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Segregate equations after substitution of terminal equations:

J

U+ 4.7 Vs 2 W[

4.4 A

Unknowns: 6%62 and 7(b°

(v-1-n

Number of eocuations:

J. ]

oy

5.10 Systems of A and JK Cou-onents

Chord formuletion 18 used,

In the formulation tree:
In the cnord set:

1f Lossible. 1In any cease,

) = (v-1-n).

All Ny-elements.

4—-525 =0
Rk

(5.9.5)

All Dy—elements, and all JK-elexents

tne maxluum possible nuwber of J

terninal eouations snould relete only chord variables,

In tnis procedure,

&re 1n the chord set,

Clreus ¢ eguations:

@ o0 o0
B U 0
& 0 U
. 0 0

IR

EaE

&, |
B,
Bos

(Bus

X

it 1s assured that all JK-eleuents

(5.10.1)



Explicit form of tne segregate equetions from (5,10,1

— —

/

(T & & 8. &, ]

L’\x@ c;é Q}§
z a

9
a~
L

[
(A8

Teraiinal ecuations after substitution of (5.10.2):

Y.
.

]

%x.= % (5 8 &, &)

Q‘g@..

Y=g %
K= KX,

Terminal equations after elimination of yklz

%zya[a:,.' (E.G+B,) el U

Xe™ KX,

(5.10.2)

(5.10.3)

(5.10.4)

(5.10.5)

(5.10.6)

(5.10.7)



Y.

-~

Circult eauations after substitution of (5.10.6) ana (5.10.7):
r ] [ ! ! ' ] [ ] [ ] B - 7]
6 \%le @ggyelln) o] e

ﬂ' dyxz + U 'X'“ + \523’ r>(d =0
_ ﬁu_ .yd_« i KJ _ﬁ’fj

)
Unknowns: Jé&ﬂ L?kE and K1

Nuwber of equations: (e - v + 1 = n = (e =v+1l- ny).

ox)
Coumwents: If 1t is not possible to put all JK-eleuente into
the chord set for forumulation, then the final set of siwul-

taneous equaticns is larger by the nuuber of J eaquations not

assoclated with chord veriables,

In (5.10.8) it 1s obvious th2t an explicit relationship
exists for ‘>(k1 in the second row, Thercefore, enother sub-
stitution can be wade walch reauces the nuiber of siuwultene-
ous eouations by 0y A direct substitution proceaure in tne
general foru 1s very unwieldy, However, the ecuivalent of

substitution for f>(kl 1s orewultipliceaetion by

U 0 0
0 -K U

The result of tnis preuwultipiicetion is:

£ %l @eoe) ]|y, &
(£.-¥8,) W e W)




7]
Unknowns : i/ and {b.,,
A 7 <2
Number of enuetions: (e - v + 1 = n

Cownents: If 97' = -7< then
Rl . /
(Bu = [w" (é‘ag—# @3’)]
This 1s tie cese callea "perfect coupling” by Trent
[12] . for tnis situation, the motrix to ce inverted is SYii=

zetrical if i}a'is syzmetrical,

5.11 Svystews of B and JX Coumgonents

Tree foriculation is used,

In the foruwulation tree: AlL Dx-elements, zna all JK-
elements, '1f possivle, In eany case, the waxiwuw possible
numbsyr of K terwiinal e~uatlions should reliate on.y tree x-ver-
lavies,

In tne ctiord set: All Nx-elements,

Segregste enuctions:

K

5
Q.

O C oo
&
LR

’s ’Z/Id:O (5.11.1)

S < T o

.




Explicit torwm of the circuit esuatione from (5.11.1):

A DL A

X

- -

e

[
o
[

(5.11.2)

Teruinal eauations after substitution of (5.11.2):

Yoo LA 2 oA

x
e ¥

— - -
A,
X«

?/

K2

- ~J

I

?dm 7 Z]Kz
K= KA.

Xy

Terminal enuations after eliuination cf j<k2:

U= Wl (L) o]

— —

X
CX Kl

X

(5.11.3)

(5.11.4)

(5.11.6)

(5.11.7)
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Serregate enuations after substi*ution of (5.11.€) and (5.11.7):

— — —

K I L e 21 o

U (Yo | Nl *| o, [4o=0

—

34
L 0 ._ | s _éxqj _Jzij
(5.11.8€)
Unknowns: CZ/kE’ iXkL &nd ?(b‘
Nucber of eauations: (v - 1 - noy) = (v -1 - nx).

Presultipiication by
U g 0
0 0 U

effects = substitution for ‘Q4yg.

Final eoustions:

P’-g y ‘)}% el L g oy
*J oX"' —sz d

44
X,
(5.11.2)

- J

Unknowns: jxkl and 3Kb°

Nuim X . - - -
ber of ecuations: (v - 1 ng, = Dyl

D

Comments: For the "perfect coupler" case

[M.—%)J = [~ o]
o



N
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and the Letrix to be invertea 1s symmetrical, if /(B is syu-

wetrical,

5.12 Systeurs of A, B and JK Couponents--Secarate Graph

A foruulation provler of considerable precticel lupor-
tence erises frenuently in electrozechanical systews, wnere
the systeu graph consists of at least twe seierzte subgre.ns,
The terminal ecuations for the electrical subgra.h are wost
The teruinel equa-

like:y to ce exclicit in the x-variables,

tlons for the wechanical subgragh are nore llzely to be ex-

plicit in the y-veariabies, Tne coupling between tne two sub-

graphs 1s usually of the "airect" type., The forwulation

procedure snown here 1s an extenslion of one proposed by
Koenig [10].

If the electricel-subgreph varisbles are denoted by
subscript 1, and the mechaniczl-subgrzph variables are de-

noted by subscript 2, then tne svstew eacuations can be writ-

ten as: (5.12.1)
K’ g: o 0 ! o 0 ! 0o 0] -62;/,‘7 J,;zd/,j
O 0 U o 00 0 Yl |,

% S0 0 U O LK Wl Yl | O

o Gl 00100 UK K|l Y B
G FelsU 00 0K Wl X 0
oGO0 U0 0l || xl] | O
0 0 o 0 & U q"—o“ Y| £,
o 00 00 0 S U N LB
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where tre equations involving no-reiation variables ere owltted,

If the firset row and the last row ere substituted into

the terminal equations, the terminal enuations rewain ex.ilcit,

and hence can be substitutea into the second and seventn rows,

In this case, chord foruulation in used in pert 1, eana

tree formulation in pert 2, In this procecure there is no

rerticulaer advantege in partitioning to snow the J¥K-clement

variables distinct frow those remailnin,., Therefore, suppoce

the terminal ecuations to take the foliowling form:

axla = &'/0 2’;& M Kﬂ OXZB

J

) o - RS
), ) L
(e = N Nog T <y C
025 8 2 /‘ —1a

In the foriiulation forest: Dx-elements,

In the chiord set: Dy-elements,

Circuit ecuvations, part 1l:

_@%‘_ ?it..?%-, iXUW =0

2 <)
(Ezu V.22 L/( 7'0

Exgolicit forw of the segregete equations, part 1,

' ! 7)
Y= L8 )| %
g
azjld

(5.12.2)

(5.12.3)

(5.12.4)

from (5.12.4):

(5.12.5)
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Segregete ecuations, part 2:

U oS A Uon| _ 0 (5.12.€)
O ‘QJ?Z QJ;; /1425

| Yo |

Explicit forw of the circuit eocuations, cart 2, froum (5.12.9):

Ao = [J{ Ju] K (5.12.7)
Ka

Terwinal enuations sfter substitution of (5.12.5) in pert 1,

and of (5.12.7) in pert 2:

Ka|_| Zo Kl| Ca B O O]
1%23 2;2 7 0 0 o, 4, f%ﬁd (5.12.8)
Nea
L Nzw

Circuit equetions, part 1, and sesregate eaquations, part 2:

2 o
43'¢Xu+' 0 %AJ-F Lo O Kia
SJ;; O dz z 28

=7 (%.1¢
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Equation (5,12,9) after substitution of (5.12.8):

’ e e Ly
Kt o c

_
i / P - ]

5, 0 Yo F.2 2K A || U

o]" L4 s e J L P

‘Elzja J:; KE’ZK-CJ?:. m%'“ =0
e o X

(5.12,10)

Unknowns: éZ/ and 3Kék.

d L
T . . -1 - - -
Nuwber of eaquations: (e1 vyt 1 noxl) + (v2 1 noy2)'

5.13 Svstems of A and B Comrponents

If couxponents of both A and B tyvee are contained in

the same connected svsteu graph, nelther the conventional xesh

nor branch eguations can be obtalned, However, 1 the A-elie-

wents ana b-eleuwents of tne systen greph are ilocatea 1in cer-
taln topological usatterns, 1t 1s possiple to ottain a set of
€quations which are nuwerically the same 2s elther the wesh
Or the btranch equations,

In the formulation tree: A:l Dx—elements, and a.l A-

€lewents possible,

In the chord set: All Dy-elements, end all B-eliewents

bossible,

T
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Systew equations, with ecuations involving N-elewents oxitted:

- ' - ” .’
,Z( 0 J! ;:4 ! »"‘ ) J ; QI!—J lt' (/5 u‘
| .
” Y [N
0 L/l J”i zgz‘f - ) 4 J !;  "-: !/"7 lu
. A
T R S R A A R R
[od : ¢ ‘ b
- / ! '
‘?cé 0 e O 9 O i 3 \: ‘/~'Ct { /) | K
sCt i 20 - 5
0 ” 0 A vt o Lt l| =0 :
U o 7 /i, 0 S R B ‘
| ! N
v ! - | | |
c 0 ¢ w0 Y. 0 Aoy 0 i
‘ i B !
o R T A A B U B B |
; ; i > vk
o 0 0 0 vy Faoo ] T s “
— \ J - - - =
(5.15.1)

Subscripts 1 and 2 denote A-elewent and E-elewent vari-

ables, respgectively,

Coefficient watrix of (5.13.1) after substitution of the
first row into rows 3 and 4, and substitution of row 8 into

rows 5 and 6:

E«,ﬁj/ 0 A < ¢ [
oy e e 0 0 o 0

0 0 (flc 34“?3\] -:t*"‘/4 ”i( 0 Y 0

9] O (jc - Ect ,’2’7,3\1 - .,‘.C! <o¢ 0 ) { j

0 A U 0 B V/'"/'tc «-’vz, (—/ﬁ T :’2> v 0

(/) 4 1 - ! LS .

0, L e o (ul-br) O 0
:l o_o 0 _ _ 0 & _P. = 0
| 0 N 0 , e Eon 0 U

(5.13.2)






Coefflcient matrix efter substitution in (5.13.2) of row 2

into row £, and of row 7 into row 4:

R - . | R
F g {I U //? —/“ 0 O O d
- - R — - = - L . )
C 4 l -~ :):4 0 ¢ 0 4
l
O O i(/tg jt j?) - /f \-’.9!& (/ O 0 O :
0 O ;( c —gc‘t -Q?,a) _:Ct ’?IQ - dfn “/3'2 . 0 d
0 0l s cha R, (k) 0 O
O 0 : 0 2( ‘7LC (820 (’)}’ct (o I._‘t) 0 0 I[
o o0 0 - & e U0
L 0 0 O 0 fél J:‘32 J (
(5.13.3)

At thls pcint, either of two substitutions wmay be waae
conveniently, which 1s used would depend in general on the

nuiver of simultaneous equations to solved in each case,

1. If row 3 is substituted into rows 4, 5 and 6, the

eauation count is (e - v + 1 - n + nt2)’ where n,, 1s the

ox
nuiiber of B-elements in tne formulation tree, The veriables
in the simultaneous equations are the chord y-variables ana
the B-elenent x-veriables, Therefore, if B-elemwents can bte
rut into some chord set with the Dy-elements, only (e - v +
1 - nox) enuations result,

2, If row € 1s substituted into rows 3, 4 and 5, the
eqguation count is (v - 1 - no'V + nlc)' where n, . is the nui-

cer of A-elements in the tree cowmplenent, The verliaebles in

the simultsneous equations ere the tree x-veérlables egna the
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A-c:euwent y=-verizsbles, 1f, tuerefore, thie A-ecic.ents cen ode
rut into the formulation tree with the Dx-elements, oniy

(v = 1 - noy) equations result,

Tol TR




VI, SYSTEM GRAFHS FOR WHICH EACH PART INVOLVED
EITHER ACRCSS CR SKRIES VARIABIES ONLY

€.1 Systew Gracn of Cne Part

Conslaer first a system graph, with walch 1s essocliated
only x-variebles, The nuwber of unknowns is (e - nX), there-
fore there wust be (e - n.) ince;endent ecuations, if a u-
nioue solution exists, If the Dx-elements forw a subset of
soue tree, the inde:.enuent circuit ecuatlons nu.ber (e = v + 1).
The additiocnal (v - 1 - nx) eousations imust be K terwinai equs-
tione, Thue n , must be exactly (v - 1 - nx). Frow this, it

= (e - v+ 1l - nox)' This is so restrictive

follows that n,
%1

as *to ue2ke 1t 2 *rivial case, For tre one-pzrt sreyh invol-
vin: onlv v-variables, a siuilar situation exists, Thus, be-
cause of & lack of practicsl use, the one-_urt grogn aoes
not seeir tuv gserit further consiceretion,

The followins foriuiatlon proceduvres sre written for
a two-pert systew sreph, Thery oooiyv to & ecvstew are .o of

wore tnen two psrts i tne terw "psrt" 1s replesced oy "eet

of perts,”

€.2 System Grezgh of Two Ierts--Across Verizoies

In the foruwulation forest: The Dx-elements,

In the chord set: Nx-ele&ents,

-75=-
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Systew enuvations:

K %, K, .0 o ||, o |
E U 0 010 0|7 | &
O O G UL O O [Nl | Ludel=0
(G G 0 00U O | |F| | @a7
0 O e x.,.; 6 U | K| L Ml
| Ko,

(£.2.1)
The last tLwo rous .2y be set aside, The teruinel zausz-
tions nuuver (v - 2 - nx), since the svstew eocustions wust
nu.oser (e - nx), ihether ther esre explicit or not, the eaqus-
tions to he solved sluaultaneously con be reciucel to (v = 2
- n_) cy substituting the circuit enuetions into thewn, yileiding

X

( .")(\2(8..)7“ + (7’\3’ KQ.I:‘Z?)‘XfZ + Xz@n?(dl + ‘Kl& 3327 7:12 =0
(6.2.2)
If the veriavizs of Lert 1 ccn be er.ressca exslicitly
in terus of the variavles in pert 2, then & dJdiffercnt proce-
dure way yield fewer eouations, Suppose the teruinal ejuations

to have the form

U O K Kl X
O U K, KelX,.,|=0 (6.2.%)
X
| Ko
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iouation (6,2,3)--after tne circuilt ecuations of part 2 nave

been substituted in--to_ sther wita the circuit ecustions of

part 1:
i /L( O (7{.3—7{“ Bz: ) —GXcaﬁ FIKM @zf)(d?.-1
0 U (‘Kzs— ’huﬁn) A |= 'sz (Bz‘l 7(dz (6.2.4)
i d_‘;)“ U o) L,th_ _6147<dl
The

first teo rows of (6.2,4) may be substitutea into
the third row, Tne eaouations, to be solved simultzneously,

nu.ber (v2 -1 - nxp)——the nui.ber of K-elewents associatea

with the forwuletion tree in cart 2,
rfor tnose systews 1In which the terminal ejquatlions uay
Ve ex.ressed ex.licitly for the veriebles of either part 1 or

vért 2, the rcduced set of equations way relate tne tree ver-

i2bles of either part,
This foruulation procedure 18 readily extenasu to sys-

tew srahs of wure than two parts,

- . . . . - Vo
0.5 OLystew Grapa of Two Farts--Series Varisblies

In the foruulation forest: The N -eleuents,

In the chord cet: Thre Dy-elements,

g .I\‘\"‘,{'
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Svsteu ecuations:

~ [ m r
rl/‘ 0 { &y Jjw 0 a ( ym ,an a'/jd,
I R . S T
0 01U Fu 0 0 ||[UY+| o Ya|=0
0 0 0 0 U | Y| |oh Yo
0 0. g G G G| U| | O]
s (6.2.1)

The first two rows uay e set sside, The terzinal equa-

tions number (e - v + 2 - nv), since tre system eaquations
must nuuver (e - nv), The substitution procedures follow the
sezue pattern as those discussed for a systea Involving x-var-
lables oniy, The nuuber of equations, &nd the variables in-
for tnree conditlons on the teriinal equations, are

voived

snown below,

! Terwinal equations not exglicit:

Lo ew . - ’
Veriabhies: ﬁyél and (%%2.

Nuwber of eocuations: (e - v + 2 - nv).

2 Teruinal eouations explicit for variables of part 1:

Variaebles: ﬁ%hz.

Nuzber of ecuations: (e2 - v, + 1 - ny2).

[~
> Terminal enuztions e:x:ulicit for veriables of part 2:

Variables: ijl‘
Nuwber of eauations: (e1 -V, + 1 - nyl).

p—
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Tie two-dluensiocnal static cin-tyze rigsid truss, or
bridge, 1s a type of svetew willch nes & systew raph sna ter-
winal enuatione ¢f tnls type, For this cese, noreover, the
teriiinal egquations czn be writte:n expylicitly for the variables
of one part as ecsily ac for tue other, Therefore, a choice
of either type of formulation is alweys possiple,

6.4 8System Gresprh of Two Perts--Across
and Serles Variabiles

Iart 1: Series veriables:
In the formulation tree: The Ny-elements,

In the chord set: The Dy-eiements.

Fart 2: Across veariabies:
In the forzulation tree: The Dx—elements,

In tiie chord set: The Nx—elements,

Systeux equations:

_ l L o e - _
W : 0 4, 0 OJ: O N Yo ﬁgw/zefd' i
0 | u 4, o 010 T || e Y
01 a  a. d, 0 || Ya 0 |=r¢
| |
000 0 A U0 K | | Bude
0 l 0 0 /:I‘" 0 : "Z'( .sz QEZ4CX¢£2
L ! _ —_ - L J

(6.4.1)
kquation (£.4.1) has tne sgue furi as (4.4.1). The

difference between tren lies in tne fact +*uat nere the cepre-

3



gate enquations &nd circuit eauatlons are written for Gifferent
carts of the svsteu sraznh, Since tne unknown varisbles nusber
(e - n_ - nv), end tne circuit and se; regnte ecuations togetn-
er avuber (v1 + e, - v2), there nust bte (e1 -V, vV, -,
- ny) ter.inel erustions,

If the teriinal enustions are expliclt for the vsrlables
of elther part, a recuction _.roceaure sinller to thet utiilzead
In tue cunord or tree foruoulations can bte cerried ocut, The

nuwber of ecnug*tions, &anu tne viriables inve.vea, for three

conditions on the terulnai esuations, are shown velow:

1, Teruinal ecuations not expgilcit:

. 9 '
Veriables: “401 and ?¥t2'

r.)

Nunber of enuations: (el -Vt 1 - n, + vy -

- nx)'

. Terminsl enua*ions expiicit for voriebles of part 1

Variables: ﬁ(ta.

Nuzber of eauations: (v2 -1-n)).

N

oo

3. Terwinal eouations explicit for variabies of pert 2
7
Varleables: “jcl'

Number of enuetions: (e1 - vyt 1 -n_).



VII. CONCLUSION

The usefulness of the linear graph in system analysis
stems, essentially, from the fact that a convenient set of
equations for a system can be written by inspection from the
system graph. The conditions for their independence are pre-
cisely known. The explicitness of the equations is useful
In a general reduction procedure.

Given the system graph and component equations for a
physical system, the problem of analysis is influenced only
by the mathematical forms of the equations. By divorcing the
equation formulation from the particular physical system, it
becomes obvious that certain mathematical procedures apply
equally well to a very large class of systems. This fact is
particularly important, when systems include components of
mixed types--electrical, thermal, hydraulic, etc.

In a system containing direct-coupled components, inde-

pendence of the circuit and segregate equations, together with

the direct-coupled terminal equations, 1s assured if the com-
ponent subgraphs are located in certain topological patterns
in the system éraph. The conventional node and mesh equa-
tions may not be possible, but often a still smaller set of
equatlons is obtalnable without inversion of matrices.

A set of formulation procedures for particular systems

of special interest are presented. However, system equations
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may contain, in almost any combination, component equations
of all types discussed, and possibly some not explicitly dis-
cussed. Therefore, the notions contained in the discussion
on a general formlation procedure are probably of more im-
portance for application to systems which do not fit the par-
ticular patterns discussed.

An important aspect of this viewpoint on system analysis
1s the educational implications. Given a workable understand-
ing of linear graph theory, and practice in the reduction of
equations on an abstract basis, a student would have the
necessary groundwork bullt for applications in particular
flelds. If this sequence were followed, courses in particu-
lar fields might well stress: (1) how the component equations
are obtained, and (2) the properties of certain useful systems
made up of the components. The unification of method, in
this type of sequence, should allow of a great saving in time,

otherwise devoted to particular methods of analysis.
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