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ABSTRACT

AHEMERAL LIGHT-DARK CYCLES ON
REPRODUCTION IN THE RING-NECKED
PHEASANT (PHASIANUS COLCHICUS)

By

Austin Glasspole Blake

The effects of two ahemeral light-dark (L:D) cycles on
ring-necked pheasant reproduction were investigated in this
experiment. At 10 months of age, 36 females and 12 males each,
were either exposed to a conventional 24 hour (14L:10D), an
ahemeral 22 hour (14L:8D), or an ahemeral 26 hour (14L:12D)

L:D cycle. Most ovipositions occurred later under the 22 hour
L:D cycle and earlier under the 26 hour cycle than under the
conventional cycle. There was oviposition entrainment such
that at the end of the peak oviposition time approximately 60%
of the total ovipositions had occurred regardless of the light
treatment. The values obtained at LH surge under 22, 24, and
26 hour L:D cycles were 4.1, 7.5, and 4.7 ng/ml, respectively,
while progesterone values were 6.9, 8.2, and 9.5 ng/ml, respec-
tively. 1Initiation of the progesterone surge always preceded
the LH surge. The LH and progesterone surge occurred approxi-
mately 6-9 hours prior to ovulation. The shifts in oviposition
times under the ahemeral L:D cycles were due to changes in the
phase of LH but the surge remained fixed relative to ovulation
time.

Total lag time for each egg sequence was greater in the

ahemeral than the conventional cycle, resulting in egg formation



Austin Glasspole Blake

time (EFT) of 25.8, 25.5, and 26.5 hours under the 22, 24, and
26 hour L:D cycles, respectively. The EFT under the 26 hour
L:D cycle was closely synchronized (within 0.5 hours) with the
length of the L:D cycle resulting in longer egg sequences and
a trend for greater egg production than observed under the
other cycles.

The ahemeral 26 hour L:D cycle significantly (P € 0.05)
improved percent fertility of pheasant eggs. However, percent
hatchability of fertile eggs, egg weight, percent hen-day egg
production, feed intake, and body weight were not significantly
(P > 0.05) affected by ahemeral L:D cycle treatments. Conver-
sely, the ahemeral 22 hour L:D cycle significantly (P < 0.05)

reduced egg shell quality.
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CHAPTER 1

INTRODUCTION

Ahemeral light-dark cycles are those cycles in which the
light and dark periods do not add up to 24 hours (h). Since
the early 1970's, there have been a number of reports on the

effects of ahemeral lighting on the chicken (Gallus domesti-

cus). However, there are no reports on ahemeral lighting in
other avian species, with the exception of an unreported pre-
liminary study conducted at the Michigan State University
Poultry Research Station (MSUPRS), in which turkeys (Meleagris
gallopava) were used. Consequently, the effect of ahemeral

lighting in the ring-necked pheasant (Phasianus colchicus)

is not known.

With the growing popularity of the ring-necked pheaéant
as a game bird, both in Michigan and other parts of the United
States of America (Reynnells, 1979), and the continued increase
in pheasant research for the main purpose of improving body
weight and egg production, it has become necessary to learn
more about pheasant reproduction.

Thus, the main objective of this study was to subject
ring-necked pheasants to ahemeral lighting, and consequently
measure the effect of ahemeral lighting on their feed intake,
body weight changes, and reproductive responses. It was hoped
that the information obtained from the research would be of
use in increasing the efficiency of pheasant egg production

and the continued propogation of this species.



CHAPTER 2

REVIEW OF THE LITERATURE

The subject attempted to cover in this review is a very
broad one; thus, only articles relevant to the research under
investigation has been selected. This review is therefore not

all encompassing.

A. Pheasant Propogation at Michigan State University (MSU)

Increasing urban population and high hunting pressures
have resulted in a decline in the pheasant population in
Michigan from 1950 to 1970 (Varghese and Flegal, 1978). A
joint project between the Michigan Department of Natural
Resources (DNR) and the former MSU Poultry Science Department
was initiated in 1970 with the objective of increasing pheasant
production via geveral management procedures.

The foundation stock of pheasants for this project was
obtained from the DNR flock in Mason, Michigan, and was desig-
nated as the DNR strain. To this strain, selection pressure
was applied over the years to improve egg production. The
high egg-producing birds that were obtained from these efforts
were designated MSU étrain (Carpenter, 1980).

At the beginning of the project, egg production averaged
33 percent (%) on a per hen housed basis during a 120 day egg
production period. Due to genetic selection, egg production
increased to approximately 66% by 1979 (Carpenter, 1980;
Carpenter and Flegal, 1981). Compared to pheasants in the

wild, which lay 10-12 eggs during the breeding season (Streib,
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et al., 1973), this represents a great improvement in pheasant
egg production. Artificial insemination was successful in
improving fertility from 30 to 53% over a three year period
(Wing, 1976). Fertility and hatchability of fertile eggs as
high as 69.5 and 75.3%, respectively, were reported by
Carpenter (1980). Differences in egg weight were reported
between both strains of pheasants with the DNR strain producing
an average higher egg weight (34 g) than the MSU strain (33 qg)
(Carpenter, 1980).

B. Photoperiodicity in Birds

The effects of light intensity and color, continuous
lighting, intermittent lighting, ahemeral lighting, and various
photoperiod lengths on reproduction have been examined prima-
rily in domestic chickens, turkeys, and Japanese quails

(Coturnix coturnix japonica). There are few reports on the

effect of light on reproduction in the ring-necked pheasants
(Bissonnette and Csech, 1936; Clark et al., 1937; Adams et
al., 1968).

1. The circadian rhythm

According to van Tienhoven (1968) and Saunders (1977),

a circadian rhythm is that which persists when all environmental
periodicities are excluded, and in the free-running condition
shows a natural period which is close to 24 hours. It func-
tions in providing synchrony between the organism and environ-
mental periodic changes and also in the integration of the
organism's internal environment.

The period of a circadian rhythm can be entrained by exter-

nal stimuli, such that the rhythm adopts the period of the



stimulus (Binning, 1973; Saunders, 1977; Rusak and Zucker, 1979).
The major entraining cue (agent, zeitgeber, signal) for the
reproductive cycle of many species is light (Saunders, 1977;
Rusak and Zucker, 1979; Ringer, 1982), with the change from
light to dark and vice-versa as the most important signal
(Saunders, 1977). However, Morris (1973) stated that entrain-
ment depends on the contrast between the bright and dim phase
and not upon the absolute level of light intensity. A bright:
dim ratio of 27 to 30:1 hours was quite adequate for entrainment
of oviposition in chickens (Morris, 1973). Temperature is

also an important entraining cue but is known to be less
powerful than light (Binning, 1973; Bhatti and Morris, 1977;

Saunders, 1977; Rusak and Zucker, 1979; Ringer, 1982).

2. Mechanism of light

Generally, the photo response in birds involves the
eye, hypothalamus,. anterior pituitary (adenohypophysis) and the
gonads (Ringer and Sheppard, 1960; Benoit, 1964; van Tienhoven,
1981; Ringer, 1982). According to Ringer and Sheppard (1960)
and Ringer, (1982) the energy of light penetrates the eye and
its surrounding tisshes to initiate an impulse which travels
via the optic nerve to the hypothalamus. The neurons in the
hypothalamus are then stimulated to produce releasing hormones.
These neurohormones are carried from the area of the median
eminence via the portal blood vessels to the anterior pitui-
tary where they stimulate the release of gonadotropins.
Gonadotropins travel to the gonad (target organ) via the

general circulation (Figure 1).
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Although the eye appears to be the organ of photoreception,
Benoit (1964) reported that "deeper" photoreceptors may play
a role in light-induced gonadal stimulation. The removal of
the eyes or sectioning of the optic nerves in immature male
ducks does not prevent photoperiodic stimulation of the gonads.
The hypothalamus is one of these "deeper" receptors since its
stimulation with long wave length radiation also resulted in
testicular growth (Benoit, 1964). Rusak and Zucker (1979)
reported that the hypothalamus was an extraocular photoreceptor

in white-crowned sparrows (Zonotrichia leucophrys gambelie),

with the ventromedial portion being the area of greatest
sensitivity. The work of Oishi and Lauber (1973) suggested
that the eyes and the pineal body probably act as guides to
light for the brain's photoreceptor, the hypothalamus (Figure
1). |

During the period of sustained photoperiod in the breeding
season, most birds will exhibit photorefraction; the bird no
longer responds to the stimulatory effect of light, and its
reproductive activity is terminated (Bissonnette, 1938;
Hammond, 1957; van Tienhoven, 1968; Ringer, 1982). The commer-
cialization and genetic selection of chickens reared under
controlled lighting has led to an absence of photorefraction
for this species. Pheasants under similar environmental
conditions as chickens will show photorefraction (Flegal, 1981;

Ringer, 1981).



3. The Influence of light-dark cycles on egg production

Three types of light-dark (L:D) cycles are described
in the scientific literature. One is the conventional cycle,
in which the light and dark periods total 24 hours. This has
been the cycle used in pohltry operations. Another is the
continuous cycle in which the light is given continuously.
The third is the ahemeral‘cycle. In this cycle the light and
dark periods do not total 24 hours (Foster, 1972; Morris,
1973).

For the purpose of this review the emphasis will be placed
on ahemeral L:D cycles. However, the 24 hour conventional
cycle will be briefly discussed because it has been used as

the standard against which ahemeral light is evaluated.

a) The effect of 24 hour light-dark cycles

The majority of earlier experiments and practices
using lighting in poultry operations have been conducted under
natural daylength or under controlled lighting using 24 hour
L:D cycles. There was an assumption that the period of the
biological rhythm for ovulation and/or egg formation was 24
hours. However, more recent work showed that the rhythm for
ovulation is greater than 24 hours (Warren and Scott, 1936;
Wolford et al., 1964a; Woodard and Mather, 1964). A 24 hour
L:D cycle appears to be out of synchrony with the above bio-
logical rhythm. Alternatives to a 24 hour L:D cycle may
therefore be in order.

Under conventional L:D cycles a period of 10 or more hours

of light per day is required to induce maximum sexual maturity



in chickens and turkeys. Beyond 17 hours of light per day no
further increase in egg production will be obtained. A
decrease in photoperiod after sexual maturity attainment in
chickens and turkeys will depress egg production rate, but an
increase will do the opposite (Ringer, 1982; Tucker and Ringer,
1982). A delay in sexual maturity can be achieved with
decreased photoperiods (North, 1978; Tucker and Ringer, 1982).
The absence of light inhibits the onset of sexual maturity in
pheasants (Clark et al., 1937). Pheasants will respond to
night lighting by coming into early egg production (Bissonnette
and Csech, 1936), and will also increase egg production when
they are exposed to artificial lighting (Clark et al., 1937;

Adams et al., 1968).

b) The effect of ahemeral light-dark cycles

The use'of ahemeral L:D cycles in poultry operations

is one method of attempting to synchronize the length of the
L:D cycle with the hen's interval between ovipositions (Foster,
1972). Morris (1978a) hypothesized that under ahemeral cycles
(25 to 30 hours) the bird's biological clock is reset by
"sunrise" or “sunset“ in each cycle. Physiological rhythms
then occur in a manner as if the next sunrise or sunset will
occur approximately 24 hours later, although the light may
actually go "on" or "off" later than this.

An increase in chicken egg weight is usually obtained using
ahemeral L:D cycles that are longer than 26 hours or shorter

than 24 hours (Table 1). Melek et al. (1973), Morris (1973),



Table 1.

The effect of various ahemeral light-dark (L:D) cycles on egg
production characteristics in chickens relative to the 24 hour

light-dark cycle.
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Shanawany (1982)
Ousterhout and Zimmermann
(1983)

Yassin and Biellier (1978)
Koelkebeck and Biellier (1979)
Rezvani and Biellier (1981)

Foster (1968)

Morris (1973)

Koelkebeck and Biellier (1979)
Shanawany (1982)

Foster (1968)

Fox et al. (1971)

Morris (1973)

Koelkebeck and Biellier (1980)
Shanawany (1982)

Foster (1969)

Fox et al. (1971)

Fox and Shaffner (1972)

Morris (1973)

Cooper and Barnett (1976)

Koelkebeck and Biellier (1979)

Nordstrom (1981)

Rezvani and Biellier (1981)

Shanawany (1982)

Nordstrom and Oustershout
(1983)

Fox et al. (1971)

Morris (1973)

Yassin and Biellier (1978)
Nordstrom (1981)

Proudfoot (1980)

Shanawany (1982)
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Table 1 (con't)
L:D
chcle
length 7% 3
(h) Ep1 Ewt?  Em Esg4 Est® Eswt References
28 ¥ 4 - - 4 - Cooper and Barnett (1976)
¥ - - - - - Foster (1969)
0 4 - - - - Leeson et al. (1979)
0 4 - - - 4 Nordstrom and Andrews (1981)
¥ 4 4 - 4 - Shanawany (1982)
- 4 - - - 4 Nordstrom and Oustershout
(1983)
0 4 - - - ) Oustershout and Zimmermann
(1983)
30 ¥ 4 - - 4 - Morris (1973)
¥ 4 - - 4 - Cooper and Barnett (1976)
¥ 4 - - - - Shanawany (1982)
33 - 4 - - 4 4 Morris (1973)
+ 4 + - - - Shanawany (1982)
1
Percent egg production
2 Egg weight .
3
Egg mass
4 Egg specific gravity
3 Eggshell thickness
6 Eggshell weight
4 = increase
+ = decrease
0 = no change
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and Shanawany (1982) reported that the longer the length of
the L:D cycle, the greater is the increase in weight of eggs
produced under the cycle. According to these authors, the
increase in egg weight was attributed to an increase in yolk
size and an increase in albumen and shell deposition. This
was due to the extra oviducal term of eggs when ahemeral L:D
cycle treatments were applied. Increases in egg weight under
ahemeral cycles less than 24 hours was also due to extra
oviducal term of eggs since Biellier et al. (1978) reported

a mean egg formation time of 26.6 hours for hens kept under a
23 hour L:D cycle.

Compared to conventional 24 hour L:D cycles, hens kept
under ahemeral L:D cycles, in most cases, will decrease egg
production (Morris, 1973; Cooper and Barnett, 1976; Proudfoot,
1980; Shanawany, 1982) (Table 1). The decrease in egg produc-
tion for ahemeral L:D cycles have been reported to be almost
linear between 24 and 21, and between 25 and 33 hours L:D
cycles (Shanawany, 1982). The decline reported was offset by
total egg mass (egg weight x number of eggs laid) due to the
greater increase in egg weight under L:D cycles greater than 24
but less than 28 hours (Shanawany, 1982). However, Foster
(1969; 1972) reported that an ahemeral 26 hour L:D cycle allowed
hens to tay in longer sequences or clutches (a number of eggs
laid on successive days, then interrupted for one day or more
before laying is resumed) which eventually led to increased

egg production.
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Improvement in egg shell guality under ahemeral lighting
is more pronounced for L:D cycles of 27 or more hours compared
to L:D cycles of less than 27 hours (Table 1), and very effec-
tive for older hens (Morris, 1973; Yassin and Biellier, 1978;
Shanawany, 1982; Nordstrom and Ousterhout, 1983). A threshold
seems to exist for improvement in egg shell strength when long
ahemeral cycles are utilized. Morris (1973) reported that the
maximum value for shell thickness was obtained under a 27 hour
L:D cycle. This author stated that the improvement in egg
shell thickness/quality, via the use of ahemeral lighting
greater in length than 24 hours, was due to the eggs spending
a longer time in the shell gland of chickens, compared to those
chickens kept under a 24 hour L:D cycle, resulting in a longer
time for calcium accumulation after the last oviposition.

Lacassagne et al. (1973, cited by Morris, 1978b) reported
that hatchability was better for chickens when a 27 hour L:D
cycle was used rather than a 24 hour cycle. No explanation
was offered for this improvement in hatchability. 1In a study
by Proudfoot (1980), an ahemeral 27 hour L:D cycle failed to
cause an increase in hatchability of chicken eggs compared to
the response obtaineé under a 24 hour L:D cycle. The fertility
responses obtained under both L:D cycles were very similar.
A need to investigate the effect of ahemeral L:D cycles on
hatchability, fertility, and embryo mortality in future
ahemeral L:D cycle experiments does exist since data on these
parameters are not presently available for ring-necked pheasants

and are limited for chickens.
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Limited information is available on the effect of ahemeral
lighting on feed intake, body weight, and mortality in birds.
Nordstrom (1981), however, reported a significant improvement
in feed efficiency for chickens kept under an ahemeral 27 hour
L:D cycle compared to chickens kept under a 24 hour L:D cycle.
To the contrary, Proudfoot (1980) reported that a 27 hour L:D
cycle had a depressing effect on feed efficiency. In bobwhite
quail, Kirkpatrick (1957) reported similar feed intake values
under 24, 36, and 40 hour L:D cycles. Proudfoot (1980) and
Nordstrom (1981) reported that there was no significant effect

of ahemeral L:D cycles on mortality or body weights of chickens.

C. The Role of Luteinizing Hormone, Progesterone, and Estra-

diol in the Hen's Ovulatory Cycle

1. Hormone: functions

a) Luteinizing hormone

Luteinizing hormone (LH) is produced by the anterior
pituitary gland and functions in stimulating the maturation and
rupture of the follicles after follicular growth has been
stimulated by follicie stimulating hormone. The secretion of
progesterone from the ovary is also stimulated by LH (Sharp,
1980).

b) Progesterone

In birds, progesterone (P4) is produced by the
follicle (Sturkie and Mueller, 1976). Its secretion increases

rapidly as the ruptured follicle becomes luteinized. There
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seems to be a significant correlation between follicular deve-
lopment and progesterone secretion (Sturkie and Mueller, 1976).
Furr et al. (1973) and Sharp (1980) reported that progesterone
stimulates the pituitary to release LH. These authors suggested
that progesterone could be a positive feedback hormone for the
release of gonadotropins from the pituitary which controls the
ovulatory cycle.
c) Estradiol

Estradiol (E2) is produced by the bird's ova, and has
been reported to be involved in the growth and development of
ovarian follicles (Senior, 1974; Sturkie and Mueller, 1976;
van Tienhoven, 1981). It has been suggested by Senior (1974)
that estradiol may be essential for the synthesis of yolk
protein precursors involved in the conservation of calcium for
medullary bone, prior to the onset of laying, in preparation for
egg-shell formation. Estrogen is also involved in the growth
and differentiation of the oviduct (van Tienhoven, 1981).
Similar to progesterone, estradiol has a positive feedback
effect on LH release during the hen's ovulatory cycle (Sharp,

1980) .

2. Hormone rhythms

The rhythmicity of the above hormones tends to follow
a consistent pattern between hens, within the ovulatory cycle
(assumed to be approximately 24 hours), although peak time and
the circulating concentrations of hormones tend to vary between

species and also between studies (Table 2).
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The LH peak or surge during the hen's ovulatory cycle is
known to either coincide with or precedes that of progesterone
(Furr et al., 1973; Mashaly et al., 1976; Williams and Sharp,
1978; Johnson and van Tienhoven, 1980; Tanabe and Nakamura,
1980; Gulati et al., 1981). However, in most cases the LH and
progesterone peaks have been reported to occur at approximately
6 and 3 hours prior to ovulation, respectively (Etches and
Cunningham, 1976, 1977; Follett and Davies, 1978; Tanabe and
Nakamura, 1980; Gulati et al., 1981; White and Etches, 1984a).
Sharp et al. (1981) also noticed that the progesterone peak
may occur as early as 12 hours prior to ovulation in turkeys.
The peak of LH and progesterone in birds is absent on days
when no ovulation takes place (Cunningham and Furr, 1972;
Mashaly et al., 1976; Follett and Davies, 1978). Generally,
the basal values of LH and progesterone during the hen's
ovulatory cycle tend to be as low as 0.5 ng/ml while peak
value can be as high as 8.0 ng/ﬁl. At the time of ovulation,
the progesterone and LH levels return to base line concentra-
tions (Furr et al., 1973; Wilson and Sharp, 1973; Mashaly et
al., 1976; Etches, 1979; Johnson and van Tienhoven, 1980).

Peaks in blood concentrations of estradiol occur within
3-6 hours prior to ovulation (Opel and Arcos, 1978; Johnson
and van Tienhoven, 1980; Liou et al., 1980; Tanabe and Nakamura,
1980; Gulati et al., 1981). 1In addition, other peaks of estra-
diol have been reported to occur during the ovulatory cycle of

chickens (Tanabe and Nakamura, 1980), and Japanese quails
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(coturnix) (Tanabe and Nakamura, 1980; Gulati et al., 1981).
These peaks occur at approximately 24 and 21 hours prior to
ovulation in chickens and coturnix, respectively. Estradiol
has been reported to have values as high as 0.8 ng/ml (Liou
et al., 1980) and as low as 0.05 ng/ml during the ovulatory
cycle of the bird (Tanabe and Nakamura, 1980).

3. Mechanism of ovulation

In the mature chicken, ovarian follicles develop in
response to an increase secretion of LH and FSH (Tucker and
Ringer, 1982). As a follicle grows it produces an increased
amount of progesterone and estradiol. The increase in estra-
diol is due to the steroidogenic effect of LH on the rapidly
growing follicle (Sharp, 1980). Larger amounts of progesterone
are also produced as the follicle nears maturity (Sharp, 1980;
Tanabe and Nakamura, 1980; Tucker and Ringer, 1982).

Cunningham and Furr (1972) observed that the administra-
tion of progesterone in the fowl was followed 9 to 10 hours
later by premature ovulation, provided that the pituitary
gland remained in situ for at least 1 hour following the
administration of this hormone. 1In experiments in which
lesions were made in the hypothalamus of hens, more than 8
hours before the expected time of premature ovulation, proges-
terone failed to induce ovulation (Cunningham and Furr, 1972).
Ovulation is also known to be blocked by anti-progesterone,
but not anti-estradiol serum (Sharp, 1980).

Ovulation occurs when the final state of follicular matura-

tion coincides with the circadian rhythm, controlling the
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"open period" in which LH is released over a period of 8 hours
each night. 1In normal L:D cycle treatments, this period is
entrained to 24 hours (Cunningham and Furr, 1972; Morris, 1973;
Follett and Davies, 1978; Etches, 1979). The onset of darkness
normally sets the phase of an internal circadian clock which
governs the regular recurrence of LH "open period" which is
controlled by the secretion of luteinizing hormone releasing
hormone (LHRH) from the hypothalamus (Morris, 1973; 1978a).
The first LH release occurs early in the "open period" and is
released progressively later each day, resulting in average
ovulation and subsequent oviposition time occurring later on
successive days. However, there is no shift in the "open
period" (Tucker and Ringer, 1982). If follicular maturation
occurs after the "open period" there will be no ovulation,
resulting in a pause in egg laying (Etches, 1979; Tucker and
Ringer, 1982; Wilson et al., 1983). Usually, ovulation occurs
within 15 to 30 minutes after ovulation for chickens, coturnix,
and turkeys (Warren and Scott, 1936; Wolford et al., 1964a;
Woodard and Mather, 1964).

The attainment of the preovulatory peak of LH which leads
to the eventual rupture of the follicle seems to follow a
cascade of events. The largest follicle, as it grows, becomes
increasingly sensitive to gonadotropin stimulation and will
ovulate in response to an LH surge. A small increase in the
levels of LH will stimulate the ovarian follicle to increase
progesterone and estrogen secretion. This in turn causes the

preovulatory LH surge, leading to ovulation 4-6 hours later
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(Williams and Sharp, 1978; Sharp, 1980). According to Wiléon
and Sharp (1976), Follett and Davies (1978), Sharp (1980), and
van Tienhoven (1981), progesterone exerts a positive feedback
effect on the release of LH. There is a first phase called the
"priming phase" in which the circulating levels of estrogen
and progesterone act to prime the hypothalamus in order.to
obtain a positive feedback to the incremental change in plasma
concentration of progesterone (inductive phase). This leads
to release of LHRH by the hypothalamus which then causes the
preovulatory release of LH (Figure 2).

Enzyme activity has also been implicated in the ovulation
of the chicken ovarian follicle'(Nakajo et al., 1973). Nakajo
et al. (1973) injected collagenase and non-specific proteases
into the wall of follicles and ovulation occurred in almost
all of the follicles within 2 to 3 hours. Doi et al. (1980)
and Tanabe and Nakamura (1980) suggested that LH acts to synthe-
size progesterone which in turn produces these enzymes to
break the follicular membrane. This is based upon the fact
that the content of progesterone is highest in the largest
follicle and starts to increase 10 hours prior to ovulation,
and reaches a peak in the largest follicle 2 hours prior to
ovuiation. This was not observed in smaller follicles. To
make any definite conclusions regarding enzyme activity in
ovulation, enzyme concentrations during the ovulatory cycle

need to be measured.
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D. Egg Production Patterns of Avian Species

When one studies egg production patterns of avian
species factors such as lag time, oviposition time, and egg
formation time should be considered because they affect the
pattern of egg production. At least one of these factors has
been reported in chickens, turkeys, coturnix, and bobwhites.
However, similar reports cannot be found for the ring-necked

pheasant.

1. Oviposition time

Oviposition time is the time of day or the clock
hour at which a hen lays an egg. In most instances, oviposi-
tion occurs as a circadian rhythm, exhibiting some species
variation. Oviposition can be entrained by light (Payne and
Ortman, 1956; Foster, 1972; Morris, 1973; Bhatti and Morris,
1978). The preaominant phase-setting signal for the entrainment
is "sunset" with "sunrise" having a minor influence (Morris,
1973). The length of the L:D cycle appears to affect the time
of oviposition in chickens and coturnix. According to Ostmann
and Biellier (1958), Bhatti and Morris (1978), and Follett and
Davies (1978), increésing the length of the L:D cycle resulted
in progressive advancement of oviposition time. Under constant
lighting, a uniform distribution of oviposition time was
achieved in chickens and coturnix (Warren and Scott, 1936;
McNally, 1947; Arrington et al., 1962). Feeding cycles were
also shown to alter oviposition pattern, from a uniform to a

cyclic distribution in coturnix, when feed was given during the
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day (light) period in a continuous light cycle (Arrington et
al., 1962).

Generally, in chickens, turkeys, and coturnix, most ovi-
positions occur during the light period (Warren and Scott,
1936; Arrington et al., 1962; Woodard et al., 1963; Tanabe and
Nakamura, 1980). Most ovipositions (60%) in chickens will take
place within the first 8 hours of the light period, peaking
at approximately 5 hours into the light phase (Arrington et
al., 1962; Wilson and Huang, 1962; Tanabe and Nakamura, 1980).
In turkeys, ducks, and coturnix most ovipositions (80% or more)
occur later in the L:D cycle compared to chicken oviposition
time (Stockton and Asmundson, 1950; Wilson and Huang, 1962;
Woodard et al., 1963; Wolford et al., 1964b; Tanabe and
Nakamura, 1980). The peak oviposition time occurs in ducks
at 7 hours into the dark phase (Tanabe and Nakamura, 1980),
in turkeys at 8 hours into the light phase (Woodard et al.,
1963), and in coturnix at 12 hours into the light phase (Wilson
and Huang, 1962; Tanabe and Nakamura, 1980). For turkeys, it
was postulated by Wolford et al. (1964b) that afternoon ovi-
position time may result from the fact that egg formation in
the turkey required 2-4 hours longer (26-28 hours) than in the
chicken (24-26 hours). A longer interval of time between
lutenizing hormone release and ovulation could also be involved.
This postulation does not apply to coturnix, although a greater
percentage of their ovipositions occur in the late afternoon
but the time required for egg formation was similar to that

for chickens (Sturkie and Mueller, 1976).
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2. Lag time

The lag time reported for chickens and turkeys
may be defined as the interval of time occurring between
successive ovipositions in the same egg sequence minus 24
hours (Woodard et al., 1963; Morris, 1973; Follett and Davies,
1978) . For example, if the first egg in a clutch is laid at
8:30 a.m. and the second egg is laid at 9:30 a.m. the following
day, then the lag time would be 1 hour. Lag time may be due
to successive follicles maturing progressively later in a
sequence. The cummulative or total lag (Foster, 1972) repre-
sents the extent by which the last egg in a sequence is laid
later in the day,in the L:D cycle, than the first egg in the
sequence. For chickens and turkeys the total lag tended to
increase to a maximum of 8 hours as the number of eggs in a
sequence is increased (Wolford et al., 1964b; Foster, 1972;
Sturkie and Mueller, 1976). This value corresponds to the
period between early morning and mid-afternoon during which
eggs are normally laid. These reports were for hens kept under
a 24 hour L:D cycle and it is not known how ahemeral cycles
would influence lag time in birds.

Generally, as sequence length increases average lag time
decreases although total lag increases (Atwood, 1929, Wolford
et al., 1964b; Morris, 1973; Follett and Davies, 1978). The
greatest lag time between successive eggs in a sequence
occurred between the first two eggs and also between the last

two eggs (Wolford et al., 1964b; Sturkie and Mueller, 1976).
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3. Egg formation time

Egg formation time in birds is defined as the

length of time required for all the necessary components of
an egg to be added to a post-ovulation ovum as it travels
through the reproductive tract to the time of oviposition.
For chickens, coturnix, and turkeys egg formation time or
intra-clutch interval (the time interval between two successive
eggs in a clutch) is approximately 24 to 28 hours (Atwood,
1929; Warren and Scott, 1936; Wolford et al., 1964a; Woodard
and Mather, 1964; van Tienhoven, 1981; Tucker and Ringer,
1982). For chickens kept under a 24 hour L:D cycle, Warren
and Scott (1935) and Sturkie and Mueller (1976) reported the
average time for passage of an ovum through various parts of
the reproductive tract to be as follows: infundibulum, 18
minutes; magnum, 2.9 hours; isthmus, 1.4 hours; shell gland,
20.8 hours. Similar data have been reported for the turkey
(Wolford et al., 1964a) and coturnix (Woodard and Mather,
1964). However, Wolford et al. (1964a) and Sharp et al.
(1981) reported that the ovum spends approximately 23 hours
in the shell gland of the turkey.

The length of the L:D cycle affects the egg formation time.
For example, Morris (1973) reported that using a 14 hour
photoperiod in L:D cycles of 24, 27, and 30 hours, an average
egg formation time of 24.9, 27.1, and 29.0 hours were recorded,
respectively. Also, changing from a 24 hour alternating L:D
sequence to continuous light resulted in a change in egg
formation time from 24.8 to 26.8 hours (Arrington et al.,

1962).



CHAPTER 3

OBJECTIVES

The objectives of this investigation on ring-necked

pheasants are listed below.

1.

To measure the effect of ahemeral lighting on egg produc-
tion and egg characteristics.

To determine the effect of ahemeral lighting on egg
sequence size, lag time, egg formation time, :nd the
rhythm of oviposition.

To measure the effect of ahemeral lighting on percentage
fertility and hatchability of fertile eggs.

To measure the effect of ahemeral L;D cycles on feed
intake and body weight changes.

To measure and also relate luteinizing hormone and

progesterone cyclicity to the time of ovulation.
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CHAPTER 4

MATERIALS AND METHODS
The purpose of this study was to measure the effect of two
ahemeral L:D cycles and a conventional L:D cycle on feed
intake, body weight, and reproduction in two strains of ring-

necked pheasants during the breeding season.

A. Experimental Design

This experiment was initiated on January 2, 1982 and termi-
nated on May 21, 1982 for a period of 20 weeks. A total of
108 female pheasants were used in a 2 x 3 factorial design.
Light and strain were the treatment factors. The light treat-
ments were, a control 24h L:D cycle (14L:10D), controlled by

1

an Intermatic timer*, and two ahemeral L:D cycles which

included a 22h (14L:8D) and a 26h (14L:12D) L:D cycle control-
led by Cramer timers?. Each light treatment consisted of 36
female pheasants. This included two strains (MSU and DNR) of
18 birds each. In addition, 12 MSU males were kept in each
light treatment for the purpose of producing semen to be used
in the articifial insemination (AI) of females.

The rearing procedures used from hatching to the time of the

beginning of the experiment were similar to those outlined by

Carpenter (1980) and Hussein (1983). The rations fed are

1 Intermatic Time Controls, Intermatic Incecrporation, Spring
Grove, 1L 60081.

Conrac, Cramer Division, 0ld Saybrook, CT.
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shown in the Appendix A (Tables Al, A2, and A3). Water and
feed were provided ad libitum. Each light treatment was
assigned to a separate room. Each room was equipped with a
set of stacked battery cages, 20.3 x 40.6 cm, having three
rows of 8 cages. In addition, one row of 12 cages of the

same dimensions were hooked to one side of each room. Simi-
larly, another row of cages was added to each room into which
12 MSU male pheasants were caged. In each row of cages, 4
females from each strain were placed such that each strain

was grouped together. There was one feed and water trough per
4 females per strain. The position of the strains in the rows
were alternately arranged from one row to another. Since there
wereonly 18 females per strain it was necessary to have within
each strain in a L:D cycle one group which had only 2 females.
All the male pheasants were supplied with water from a single
trough but were fed in groups of two, such that there was one
feed trough per two cages (Appendix B, Figure Bl).

Starting at 7 months of age, all birds were randomly
placed in cages within a particular L:D cycle and were pre-
conditioned for 12 weeks to that cycle length using a non-
stimulatory photoperiod of 4 hours per cycle (Figure 3)
supplied from two incandescent 60 watt light bulbs. At age
10 months, the photoperiod was increased to 14 hours which was
thought to be stimulatory. An 18 percent pheasant breeder
ration (Table 3) and water were supplied ad libitum. The
increase in photoperiod for each cycle was for the purpose of

bringing females and male pheasants into egg and semen
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Pheasants hatched
March 27,1981

DNR MsuU MSU

ifemale) {femalel imalel

August 13,1981
5 Months old
Placed in dim environment

October 8,198)
7 Months old
Photoperiod-4 hours per day

Janvary 2,1982
10 Months old
Photoperiod-14 hours per day
Start of Experiment 2

Experiment terminated
May 21,1982

Figure 3. Chronology of study for ring-necked pheasants
treated with conventional and ahemeral light-
dark cycles.
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Table 3. Pheasant breeder ration fed to birds from time
of stimulatory lighting to end of egg produc-

tion.

Ingredient Percent
Corn 53.25
Soybean meal, 44% 15.00
Oats 7.50
Wheat middling 7.50
Alfalfa, 17% 3.00
Fish meal, 60% 2.50
Meat and bone meal, 50% 3.00
Whey, dried 2.00
Salt 0.25
Dicalcium phosphate 1.25
Limestone 3.75
Premixl 0.75

Provides the following micronutrients per pound of pre-
mix: wvitamin A, 600,000 U.S.P. units; vitamin D3,
166,667 I.C. units; riboflavin, 400 mg; pantothenic
acid, 800 mg; niacin, 3,334 ng; choline chloride,
41,344 mg; folic acid, 116.7 mg; vitamin B12, 1 mg;
vitamin E, 500 I.U; menadione sodium bisulfite, 134 mg;
thiamine mononitnate, 66.7 mg; manganese, 1.533%;
iodine, 0.02%; copper, 0.161%; cobalt, 0.0051; zinc,
1.0%; and iron, 0.5%. Premix obtained from Dawe's
laboratories, Inc., 4800 South Richmond Street, Chicago
IL 60632.

CALCULATED ANALYSIS

Crude protein ....cceceeccss 18.00
Fat ceececececcnceccocos ce e 3.44
Fiber .cceececcccccccocccescs 4.65
Calcium cceceeecceccccocooscas 2.40
Phosphorus, available ...... 0.68

M.E. cal/lb. ...ciivieinnnnen 1225.00
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production, respectively. The light intensity at the feed
trough level was approximately 86 international lux (8 foot

candle). This study lasted for 140 days.

B. Data Collected

1. Body weight

Body weights of all birds were obtained with the use
of a Toledo balance3. Weights were recorded to the nearest
gram. Measurements were made at the beginning of the experi-
ment and thereafter at the 10th and 20th week.

2. Feed intake

Feed consumption for male and female pheasants was

determined at 28 day periods. A Homs platform scale?

was used.
No feed intake datawere collected for the first 28 days of the
study.

3. Egg production

Daily egg production records were kept for each hen.
At the end of each 28 day period, a summary was made. The
data were analyzed as percenﬁ hen-day egg production (average
number of eggs laid per hen ¢ 28 x 100). A daily record of
the number of crackea (C) or shell-less (SL) eggs was main-
tained for analysis. The number of cracked and shell-less eggs
were expressed in percentage (number C or SL ¢ number of eggs

laid per 28 day x 100).

3 Toledo Scale Company, Toledo, OH.

4 Douglas Homs Corporation, Belmont, CA.
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4. Egg weight and egg mass

Average egg weight was obtained for each hen by
collecting the eggs laid during the last three days of each of
five consecutive 28 day periods. Egg weights were recorded
to the nearest gram by the use of a Toledo balance> designed
for individual egg weighing. Egg mass was determined by multi-
plying the respective average egg weight by total egg produc-
tion.

5. Egg specific gravity and egg shell thickness

The eggs that were collected for weight measurements
were subsequently used to determine the effect of the three
lighting regimes on shell quality. This involved the deter-
mination of egg specific gravity and shell thickness.

Egg specific gravity was obtained by the floatation of
an egg in a sodium chloride solution (kept at 15.6°C (60°F))
using a multiple bucket system. This method of determination
was similar to that used by Novikoff and Gutteridge (1949),
Njoku (1978), and Rahn (1982). All eggs used in this test
were refrigerated at 15.6°C for 24 hours prior to sampling.

The eggs that were used for the determination of egg
specific gravity were used for the analysis of egg shell
thickness. Both analysis were done within a few hours of each
other. The method used for the measurement of egg shell
thickness was similar to that described by Reynnells (1979)

and Flaga (1981).

5 Toledo Scale Company, Toledo, OH.
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6. Fertility and hatchability

During the third and fourth 28 day periods of this
experiment, all eggs, except those used to test for egg shell
quality, were incubated following AI of the hens. Eggs were
incubated once per week for 8 consecutive weeks.

Individual hens were artificially inseminated by use of
the procedures described by Burrows and Quinn (1935) and
Carpenter (1980). Females within each light treatment were
inseminated with 0.05 ml of pooled semen from males maintained
under the same L:D cycle; The volume of semen used was calcu-
lated to contain approximately 378 x 106, 383 x 106, and 389
x 106 spermatozoa per insemination for hens at 22, 24, and 26
hour L:D cycles, respectively. This was based upon an average
percentage spermatocrit which was determined to be 16.3, 16.4,
and 16.9 for males and 22, 24, and 26 hour L:D cycles, respec-
tively. Determinations were made by the use of a standard
curve (Figure 4) correlating hemacytometer values (sperm cell
count) (Appendix C) with that of percentage spermatocrit.

The procedures used for the incubation of the pheasant
eggs were similar to those of Reynnells (1979), Carpenter
(1980), Fuentes (198l1), and Hussein (1983). The number of
fertile eggs were expressed as a percentage of the total number
of eggs set, while the number of hatched eggs, pipped eggs,
and unpipped eggs with dead embryos were expressed as a percen-

tage of the fertile eggs.
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7. Oviposition time

Starting midway through the third period of egg produc-
tion and continuing for 42 days, the time of oviposition to the
nearest 15 minutes was recorded for all hens. The collection
of oviposition time allows for the determination of lag time,
egg formation time (average lag time + 24 hours), the rhythm
of oviposition, and egg sequence size.

8. Hormones

Blood samples to be used in the radioimmunoassays (RIA)
for the determination of LH and progesterone were obtained
during the same period when daily oviposition times were
recorded. The procedures for collection of blood are outlined
in Appendix D.

a) LH

Pheasant plasma LH concentrations were measured via
a micromodification (a final assay volume of 100 ul) of a RIA
developed by Follett et al. (1972)®. All plasma samples
collected from hens exposed to the three L:D cycle treatments
were analyzed in one assay. Each sample was analyzed in
triplicates of 16 pl. The intra-assay coefficient of variation
was 8.6%. The standard curve that was used is represented in

Figure 5.

6 The LH assay was done in Professor Brian K. Follett's Labora-

tory, Department of Zoology, University of Bristol, Woodland
Road, Bristol, BS8 1lUG.
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Assay validation: To validate the LH RIA, parallelism of
the chicken LH standard and pheasant plasma samples were deter-
mined. The pheasant samples were obtained from five individual
pheasant hens. Concentrations of LH were measured in different
dosages of plasma, which ranged from 2.5 to 20 ul, in incre-
ments of 100%. A dose response curve was set up using each
hen's LH value to be utilized in comparison with the standard
curve. The dose response curves were parallel to the standard
curve (Figure 6).

b) Progesterone

The RIA procedures used for the analysis of
pheasant plasma progesterone concentrations were previously
reported for turkeys (Mashaly and Wentworth, 1974) and
pheasants (Mashaly et al., 1982). The antibody, designated
Lot #112179-38, 'used in the assay was raised against 3-
carboxymethyloxine:bovine serum albumin in female New Zealand
White rabbits’. |

Progesterone was extracted from plasma with 2 ml of toulene:
hexane (1:2). The extraction efficiency was 82.7 + 1.85 (SEM)
$. Extracts were separated from the plasma by placing the
extraction tubes containing samples (100 pl) and the solvents
in a dry-ice and methanol bath for freezing. The agqueous
layer formed contained the solvent and extracted progesterone.

This aqueous layer was used for the determination of

The progesterone antibody was obtained from Dr. M.M. Mashaly,
Poultry Science Department, Pennsylvania State University,
University Park, PA 16802.
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progesterone concentration. The extraction efficiency was
determined by preparing four separate extraction tubes, each
containing 10 ul of 3H-progesterone (used as progesterone
tracer at 5,000 cpm/10 ul) and 100 ul of plasma sample from
the same pool for extraction. The extracts were evaporated
in scintillation vials and then quantified for radioactivity,
which was expressed as a percentage of the total cpm of the
progesterone tracer. This was used to determine the extrac-
tion efficiency in the assay.

Triplicate standard curves (.0, .0, .02, .04, .06, .10,
.20, .40, .60, 1.0, and 2.0 ng of progesterone) were prepared
for each assay (a total fo three assays were done). A
representative standard curve is shown in Figure 7. Prior to
the removal of unbound 3H-progesterone by dextran-coated
charcoal, the tubes were placed in a refrigerated centrifuge
at 4°C for 30 minutes. This resulted in a 32% binding of the
antibody. Centrifugation was done at 2230 x g for 15 minutes
after the 30 minutes equilabration time. The intra-assay and
inter-assay coefficient of variation was 9.0 and 0.0%,
respecitvely.

Assay validation: The validation of the progesterone
assay was similar to that described by Mashaly et al. (1982).
These researchers compared parallelism of the progesterone
standard with pooled, stripped and unstripped pheasant plasma.
Pooled pheasant plasma was stripped of steroids, using 25%
dextran-coated charcoal. The dosages used for the determina-

tion of progesterone concentrations in the stripped plasma
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were 20, 40, 80, and 100 ul, while the dosages of unstripped
plasma used were 20, 40, 100 and 200 ul. The results are
shown in Figure 8. The dose-response curve for the pooled
unstripped, but not the pooled stripped plasma was parallel

to the standard curve.

C. Statistical Analysis

A statistical computing package, Genstat (Alvery et al.,
1982), was used to compute the analysis of variance (ANOVA)
for split-plot models. The statistical model is represented
in Appendix E. The procedures outlined by Gill (1978b) for
analysis of factorial split-plot experiments were used
(Appendix E) except that a one-way ANOVA was used in the
computation of the data obtained from the hormone analysis
and the distribution of oviposition time.

The Bonferréni t-statistics (Gill, 1978a,c) was used to
test for significant differences between treatment means when
multiple comparisons were desired. The Dunnett's t-statistics
(Gill, 1978a,c) was used to test for significant differences
between means in the one-way ANOVA, where it was desired to

test the peak time versus other times.
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CHAPTER 5

RESULTS AND DISCUSSIONS
All results expressed on a per day basis in this study

were calculated based upon a 24 hour day.

A. Male Feed Intake and Body Weight

The effects of the control 24h (14L:10D), 22h (14L:8D),
and ahemeral 26h (14L:12D) L:D cycle on male ring-necked
pheasant feed intake and body weight are summarized in Tables
4 and 5, respectively. There were no significant (P > 0.05)
differences in feed intake or body weight between light
treatments.

Males reared under the 24 hour and 22 hour L:D cycles had
similar feed intakes. The highest average feed intake was re-
corded for males under the ahemeral 26 hour L:D cycle (Table 4).
It was speculated that increases in feed intake during Period
1 could be due to the males' "anticipation" of increasing
their activity since photoperiod length was increased to 14
hours at the beginning of the experiment. The fluctuations
recorded in feed intake for males kept under the respective
L:D cycles cannot be fully explained. It is not known if
the weekly handling of these birds for semen collection during
Periods 2 and 3 could stress them, resulting in reduced feed

intake and subsequent body weight reductions (Table 5).

40
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Table 4. Average feed intake (gm/bird/day) of male pheasants under 22,
24, or 26 hour light-dark cycles at 4 week intervalsl,2,

Period 14L:8D 14L:10D 14L:12D
1 100.1 114.3 105.9

2 84.5 69.1 84.6

3 42.8 36.8 47.4

4 97.8 105.6 120.9
Avg. 81.32 81.52 89.7a

2 Means with the same symbol do not differ significantly (P > 0.05).

1 The standard error of difference (SED) (homogenous variances, split
plot design, see Gill, 1978b) between any two treatment means within
a period is + 13.7 gm. The SED between any two period means within
a treatment is + 11.1 gm.

2 Mean of 12 birds per treatment.

Table 5. Average body weight (gm/bird) of male pheasants under 22, 24,
or 26 hour light-dark cycles at 10 week intervalsls2,

Period 14L:8D 14L:10D 14L:12D
03 1489.0 1527.4 1525.6
1 1411.4 1387.5 1487.4
1466.2 1418.1 1547.7
Avg. 1455.58 1444 .38 1520.28
a

Means with the same symbol do not differ significantly (P > 0.05).

The standard error of difference (SED) (repeated measurements; split plot
design, see Gill, 1978b) between any two treatment means within a period
is + 116.3 gm. The SED between any two period means within a treatment
is + 42.8 gm.

Means of 12 birds per treatment.

Day 1 of experiment.
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B. Female Feed Intake and Body Weight

Ahemeral light treatments had no significant (P > 0.05)
effect on feed intake (Table 6) or body weight (Table 7) of
female pheasants. Although the average female body weight was
lower than the males body weight (Table 5) in this study,
females consumed an average of 14 gm/bird/day (g/b/d) more
feed than the males. The higher average feed intake by the
females, compared to the males, was due to the greater repro-
ductive activity associated with egg laying. Similar to the
males, the period of highest feed intake for females under any
of the L:D cycles was Period 1. It was also thought that this
was due to the females' "anticipation" of increasing their
reproductive activity because of the stimulatory photoperiod
that was provided. The feed intake averages in this experi-
ment greatly exceed the average (65.5 g/b/d) reported by
Fuentes (1981) for laying ring-necked pheasants kept under a
24 hour L:D cycle. This difference in feed intake was not
due to the difference in percent hen-day egg production
(PHDEP). The average PHDEP (63.6%) for hens in Fuentes study
was only 5.1% more than for pheasants in this experiment.

As shown in Table 7, the DNR strain body weight was
significantly (P < 0.05) higher than the body weight of the
MSU strain. However, there was no significant (P > 0.05)
difference in feed intake between these strains. There were
also no significant (P > 0.05) light x strain interactions

for feed intake or body weight.
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Comparisons cannot be made between the feed intake results
obtained in this study and other studies. The author is not
aware of any other report on the effect of ahemeral L:D cycles

on female pheasants feed intake.

C. Percent Hen-Day Egg Production

The first egg collected under all three light treatments
occurred 7 days after the length of the light period within
each treatment was increased to 14 hours of light per cycle.
All hens under the 24 hour L:D cycle started laying by January
31, 1982, for the ahemeral 22 hour L:D cycle, it was on
January 29, 1982, and for the ahemeral 26 hour L:D cycle, it
was January 27, 1982, except for one hen which did not lay
until February 7, 1982. The data on percent hen-day egg
production (PHDEP) are shown in Table 8 and are also presented
graphically in figures 9 and 10 for the effect of light and
strain treatments, respectively. There was a trend for
pheasants exposed to ahemeral L:D cycles to improve PHDEP.
This trend was not significant (P > 0.05) compared to the
PHDEP for hens exposed to the 24 hour L:D cycle (Table 8).
Also the trend for ahemeral L:D cycles to improve pheasant egg
production does not agree with the results obtained in chickens
where ahemeral L:D cycles has shown to decrease egg produc-
tion (Morris, 1973; Cooper and Barnett, 1976; Koelkebeck and
Biellier, 1979; Proudfoot, 1980). However, Foster (1968:;
1972) suggested that if chickens were selected such that

their intra-clutch intervals were synchronized with the length
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Table 8. Average percent hen-day egg production for two strains of
pheasants under 22, 24, or 26 hour light-dark cycles at 28 day
intervalsl,2,3,

Light treatment

22 24 26
Strain Period (14L:8D) (14L:10D) (14L:12D) Avg.
DNR 1 12.3 8.7 10.5 10.5
2 81.7 72.6 83.1 79.2
3 75.6 77.2 82.1 78.3
4 72.6 68.7 75.2 72.2
5 51.4 53.5 54.2 53.0
Avg. 58.7 56.1 61.0 58.63
MSU 1 13.8 9.2 10.3 11.4
2 76.5 75.0 80.5 77.5
3 73.1 67.8 86.1 75.6
4 72.5 70.4 82.5 75.2
5 54.6 - 48.4 53.5 52.2
Avg. 58.1 54.2 62.6 58.32
Overall Average 58.4b 55.2b 61.8b
a

Means with the same symbol within a column do not differ significantly
(P > 0.05).

Means with the same symbol within a row do not differ significantly
(P> 0.05).

The standard error of difference (SED) (repeated measurements; split
plot design, see Gill, 1978b) between any two light treatment means
within a period is + 7.31. The SED between any two period means within
a treatment is + 3.7.

The SED between two strain means within a period is + 5.96. The SED
between any two period means within a strain is + 3.01.

Mean of 18 birds per strain or 36 birds per light treatment.
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of the L:D cycle under which they were to be kept, an improve-
ment in egg production could result. Interestingly, the hens
used in this experiment were not selected for intra-clutch
interval. Thus, pheasants probably respond differently to
ahemeral L:D cycles than do chickens. Neither strain nor
light x strain interactions had any significant (P > 0.05)
effect on PHDEP.

The PHDEP obtained under the light L:D cycle treatments
and for the strain effects peaked at approximately one month
after laying started (Figures 9 and 10). This has also been
reported to occur in chickens kept under a 24 hour L:D cycle
(Bowman, 1960; Bowman and Jones, 196l1l). An interesting
phenomenon of two eggs per L:D cycle was observed occasionally
for some hens in this experiment. The occurrence of 2 eggs
a day, preceded and followed by another egg, occurred under
the 24, 22, and 26 hour L:D cycles on 9, 24, and 17 occasions,
respectively. The occurrence of 2 eggs a day preceded or
followed by no egg, occurred under the 24, 22, and 26 hour L:D
cycles on 13, 36, and 9 occasions, respectively. There were
also other incidences of 2 eggs a day by hens for which one
of the eggs was shell-less, thus these were not included.

This phenomenon could be inherent since it occurs under all
three L:D cycle treatments. However, it appears that the
occurrence of 2 eggs per L:D cycle can be altered by light.
Every precaution was taken to assure that eggs from neigh-

boring cages could not roll over to these hen's cages. 1In
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most cases when a hen laid 2 eggs'a day, the other neigh-
boring hens also laid. At the end of the study, several hens
were sacrificed and necropsied, in order to determine if more
than one egg was present in their reproductive tract. Two

hens were found to have a hard shell egg in their shell gland
along with a shell-less egg with a shell membrane intact at

the end of the isthmus. It was therefore evident that these
hens were occasionally laying two eggs per L:D cycle. Neither
ahemeral L:D cycles nor strain treatments had any significant
(P > 0.05) effect on percent cracked eggs (Table 9) and percent
shell-less eggs (Table 10). As the experiment progressed,

the percentage of cracked eggs obtained under the ahemeral

L:D cycles continued to increase. This was due to the continued
decrease in egg shell thickness which will be discussed in a
latter section; The percentage of shell-less eggs (PSE) laid
by hens under the three L:D cycles also continued to increase
as the experiment progressed. The highest values obtained

were during Period 5 (Table 10), which was most evident for
the MSU strain. According to Romanoff and Romanoff (1949),
shell-less eggs are laid because of either a failure of the
shell secreting glands of the oviduct or violent peristalsis
which hurried the eggs through the shell gland before a shell
can be formed. It is not known if the stress of handling the
hens during the process of artificial insemination and the
withdrawal of blood could have resulted in increase peristalsis
activity of the hens oviduct, resulting in the trend for these

hens to increase PSE towards the latter part of the experiment.
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D. Egg Mass and Egg Weight

The average egg mass and egg weight are shown in Tables
11 and 12, respectively. Egg mass was not significantly
(P > 0.05) affected by light or strain treatments. However,
the DNR strain had a significantly (P < 0.05) higher egg
weight compared to the MSU strain. Carpenter (1980) also
reported higher egg weights for the DNR strain compared to
the egg weight of the MSU strain. Ahemeral L:D cycles did
not significantly (P > 0.05) affect ring-necked pheasant egg
weight compared to the egg weight of ring-necked pheasants
exposed to the control 24 hour L:D cycle. The average egg
weight response under the ahemeral 26 hour L:D cycle was
significantly (P < 0.05) less than the average egg weight
response under the ahemeral 22 hour L:D cycle.

The tendency for the average egg mass to decrease for hens
exposed to the ahemeral 22 hour L:D cycle compared to those
hens exposed to the control 24 hour L:D cycle is in agreement
with the reports of Rezvani and Biellier (1981) and Shanawany
(1982). These researchers reported a decrease or no change in
egg mass for chickens reared under ahemeral L:D cycles of less
than 24 hours. Howéver, the decrease in egg mass for the
26 hour L:D cycle does not agree with previous studies which
showed that ahemeral L:D cycles greater than 24 hours increa-
sed egg mass for chickens compared to the egg mass obtained
under a 24 hour L:D cycle (Morris, 1973; Shanawany, 1982).

The significantly lower egg weight response under the

ahemeral 26 hour L:D cycle was the reason for the lower
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average egg mass obtained under the 26 hour L:D cycle compared
to the average egg mass obtained under the 22 hour L:D cycle.
Thus, the slightly higher PHDEP response under the 26 hour
L:D cycle (Table 8) was not enough to off set the lower aver-
age egg weights of pheasants exposed to the 26 hour L:D cycle.
Failure of hens reared under the 26 hour ahemeral L:D cycle
to increase egg weight compared to the control hens was not
consistent with reports on egg weights for chickens exposed
to other ahemeral L:D cycles (Foster, 1969; Fox et al., 1971;
Morris, 1973; Cooper and Barnett, 1976; Koelkebeck and
Biellier, 1979; Shanawany, 1982).

In chickens kept under a 24 hour L:D cycle, Bennion and
Warren (1933) reported that during the annual production, egg
weight starts to increase and reach a peak where it plateaus
for a while and then starts to decline in a fluctuating manner.
This pattern of egg weight response for chickens was not
observed for the pheasant hens under any of the three L:D
cycles utilized in this experiment. 1Instead, egg production
pattern fluctuates throughout the duration of the study. It
is possible that pheasants egg weight pattern of response
during the egg laying cycle is different from the response of

chickens.

E. Egg Specific Gravity and Egg Shell Thickness

Measurements of egg specific gravity (ESG) and egg shell
thickness (EST) were used to evaluate the effect of ahemeral

L:D cycles and strain treatments on ring-necked pheasants
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egg shell quality. The ahemeral 26 hour L:D cycle did not
have any significant (P > 0.05) effect on ESG (Appendix F,
Table Fl) or EST (Appendix F, Table F2). The average ESG and
EST for hens exposed to the ahemeral 22 hour L:D cycle was
significantly (P < 0.05) lower compared to the ESG and EST
obtained for hens under the control 24 hour L:D cycle.
Compared to the DNR strain, the MSU strain significantly (P <
0.05) reduce ESG and EST. There was no significant (P > 0.05)
light x strain interactions.

The effects of light and strain treatments on ESG are
presented graphically in Figures 11 and 12, respectively.

The information obtained for both strains' ESG is new
since there were no previous references pertaining to their
ESG. According to Koelkebeck and Biellier (1979; 1980),
ahemeral L:D cjcles of more than 24 hours increase chicken
ESG compared to those for chickens under 24 hour L:D cycle.
However, in this study the ESG of pheasants kept under 26 hour
L:D cycle was slightly less than for those pheasants kept
under the 24 hour L:D cycle. Thus, the response by these
pheasants was not the same as that reported by the above
researchers for chickens.

Egg shell thickness responses in this study, either due
to the effects of ahemeral L:D cycles (Figure 13) or strain
treatments (Figure 14) was of a similar pattern as the response
obtained for ESG. There was a high correlation coefficient
of 0.73 between these two parameters, thus, either can be used

as a reliable estimate of egg-shell strangth. This was also
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reported by Rodda (1972) and Ahmad et al. (1976) for chickens.
The overall averages for EST (Appendix F, Table F2) were within
the range (0.260-0.302 mm) reported by Romanoff and Romanoff
(1949) and Reynnells (1979) for ring-necked pheasants. There
was a progressive decrease in ESG and EST as the experiment
progressed with time. This was also reported for chickens
(Petersen, 1965; Wolford and Tanaka, 1970; North, 1978;
Hamilton et al., 1979; Roland, 1982). The failure of the 26
hour L:D cycle to improve pheasant EST compared to the 24 hour
L:D cycle was inconsistent with the reports of Cooper and
Barnett (1976), Koelkebeck and Biellier (1979), and Shanawany
(1982) in chickens. The inability of ring-necked pheasants

to improve egg-shell quality, when reared under a long ahemeral
L:D cycle, is not understood since there was an increase in

the oviducal term of eggs under the 26 hour ahemeral L:D

cycle. This will be discussed in more detail in the section

pertaining to egg formation time.

F. Percent Fertility and Percent Hatchability

The average percent fertility (89.3%) (Appendix F, Table
F3) for ring-necked;pheasants kept under the ahemeral 26 hour
L:D cycle represented a significant (P < 0.05) improvement
compared to the average percent fertility for hens exposed to
the 24 hour L:D cycle. Percent fertility was not significantly
(P > 0.05) affected by the ahemeral 22 hour L:D cycle. There
were no significant (P > 0.05) effects of strain or light x

strain interactions on percent fertility. The average
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reported for the controls in this study was within the range
(61-85%) reported by Reynnells (1979), Carpenter (1980), and
Hussein (1983). Throughout the study, percent fertility under
the light (Figure 15) and strain (Figure 16) treatments tended
to fluctuate periodically, except under the 22 hour L:D cycle
where percent fertility continued to decline steadily. This
pattern of fluctuation shown for pheasant egg fertility was
also observed for bobwhites (Kulenkamp et al., 1967).  The
fluctuation in fertility observed in this study was not due to
different volumes of spermatozoa since special efforts were
made to inseminate each hen once per week with a precise
amount of semen (0.05 ml). Also, the same person was used at
each insemination time. Each insemination took place after
all hens under the same L:D cycle had completed oviposition on
the day that artificial insemination was scheduled to take
place. Thus, spermatozoa could be stored in the utero-
vaginal junction to be released later to secondary storage
sites in the upper part of the reproductive tract where
fertilization takes place. The observed variation in ferti-
lity was probably due to differences in semen quality from
week to week (Kulenkamp et al., 1967).

The effect of ahemeral L:D cycles on percent fertility
of pheasant eggs in this expeirment could be due to a male
effect. The males used to produce semen for the artificial
insemination of hens kept under a particular L:D cycle, were

also kept under the same L:D cycle. The males exposed to



PIRCANT
rERTILITY

78

Figure 15.

»r

PERCENT
FsRTILITY

73

[
]
T

Filgure 16,

58

[ - A 'S A A

A A — A A —
2 3 4 S ¢ 7 ]
PERIOD

Effect of 22, 24, or 26 hour light-dark cycles on everage percent ()
fertility of phessant eggs at 7-day intervals. The SLD betwecn any two
trestment means vwithin a period 1s * 9.22. The SED between any two
period means within a treatment is + 5.21. Arc sin /% transforsation
was used tor scatistical analysis.

NI TLY ]
oo oMt
-— M3V

o
-

] 4 S [ ? ]
rsRiIOD

Strtain differences in aversye pevcent (1) fertility of pheasant cgys

at 7-day intervals. The SED between any two trestsent means within s
period 1s ¢+ 7.52. The SED between any two period seans within 8 treat-
ment 38 * 4.2%. Arc sin /2 trenformation vas used for statistical
analysis.



59

the 26 hour L:D cycle were the first to produce semen of
acceptable quality (thick creamy appearance). These were
followed by the males under the 22 hour L:D cycle, then by
those under the control 24 hour cycle. 1In addition, on a per
volume basis, the concentration of semen from males under the
26 hour L:D cycle was greater than that obtained for males
under the other L:D cycles. The percentage spermatocrit
measured for male pheasants under the 24, 22, and 26 hour L:D
cycles were 16.3, 16.4, and 16.9, respectively. The volume
of semen used per insemination was calculated to contain
approximately 383 x 106, 378 x 106, and 389 x 106 spermatozoa
for hens at 24, 22, and 26 hour L:D cycles, respectively.
These numbers of spermatozoa were approximately three times
more than the minimum spermatozoa numbers (100 x 106)
recommended for optimum fertilization in pheasants (Reynnells,
1979) and chickens (Parker, 1949; Sturkie and Opel, 1976).
It appears that the response obtained for percent fertility
was not dose related but was due to the effect of ahemeral
L:D cycles. Thus, more research needs to be conducted on the
effect of ahemeral L:D cycles on male pheasant reproduction.
Throughout the experiment, percent hatchébility (Figures
17 and 18) fluctuated similar to the pattern established for
percent fertility. Although not statistically (P > 0.05)
significant (Appendix F, Table F4) the percent hatchability
(73.6%) for hens exposed to the ahemeral 26 hour L:D cycle
was 10% greater than for the hens exposed to the other light

treatments. The 63% hatchability of fertile eggs obtained
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under the control 24 hour L:D cycle was within the range
(58-83%) reported by Carpenter (1980) and Hussein (1983).

The increase in hatchability of chicken eggs obtained for hens
kept under an ahemeral 27 hour L:D cycle (Lacassagne et al.,
1973) agrees with the result obtained for pheasants in this
study. Improvement in hatchability under the 26 hour ahemeral
L:D cycle could be due to a carry over effect (probably bio-
chemical) from the improved fertility response. Further
investigation is needed in this area in order to determine
what effect long ahemeral L:D cycles may have on fertilization
and hatchability of pheasant eggs.

Neither ahemeral L:D cycle treatments nor strain had any
significant (P > 0.05) effect on percent pipped eggs (Table
13) or percent dead embryos (Table 14) of fertile eggs. The
tendency was for the DNR strain and the ahemeral 26 hour L:D
cycle to produce smaller responses compared to the other

strain and L:D cycles, respectively.

G. Oviposition Time

1. Intra light-dark cycle test

a) Control 24 hour L:D cycle

The average percent oviposition distribution at
2-hour intervals for the ring-necked pheasants reared under
the 24h L:D cycle (14L:10D) is shown in Table 15. Figure 19
is a graphic presentation of the data. Approximately 95% of
the total oviposition occurred during the light period, 76.3%
of which were afternoon ovipositions (Figure 19). This was

consistent with other reports on oviposition time for turkeys
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(Woodard et al., 1963; Wolford et al., 1964b), and coturnix
(Wilson and Huang, 1962). The 5.0% oviposition that occurred
during the dark period represented the total ovipositions
occurring during the first 4 hours of the dark phase. There
were no ovipositions during the last 6 hours of this cycle.
A similar observation was also reported for chicken oviposition
times (Tanabe and Nakamura, 1980) but not for other avian
species.

Mean peak percentage oviposition (37.9%) occurred between
8 to 10 hours into the light phase or an average 19 hours post
"lights-off" from the previous day. The peak oviposition
time (OT) interval was significantly (P < 0.0l1) different from
the other OT intervals. By the end of the peak OT, 64% of
the total eggs were already oviposited. For any 8 hour period
throughout the.24 hour L:D cycle, the last 8 hours of the light
period which started 16 hours post "lights-off" from the
previous day had the highest percent oviposition (90.24%).
The data obtained in this study indicated that pheasant peak
OT occurred later than that reported for chickens, but not
as late as for cotufnix (Arrington et al., 1962; Wilson and
Huang, 1962), but at about the same time as for turkeys
(Woodard et al., 1963). This was much earlier than the time

reported for ducks (Tanabe and Nakamura, 1980). It

appears that in wild birds (turkeys, pheasants, and coturnix),
the circadian rhythm of oviposition response is quite different

from the chickens.
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b) Ahemeral 22 hour L:D cycle

Oviposition of pheasants under the ahemeral 22h

L:D cycle (14L:8D) occurred throughout the cycle (Figure 20).
The oviposition pattern observed during the light phase of
this ahemeral L:D cycle was similar to the oviposition patterns
observed under a 24 hour L:D cycle for turkeys (Woodard et
al., 1963); while the oviposition patterns observed during
the dark phase of the cycle were more similar to the patterns
reported for ducks (Tanabe and Nakamura, 1980), than the
patterns for any other avian species exposed to a 24 hour L:D
cycle. The mean peak oviposition (24%) occurred 12-14 hours
into the light phase (Table 15) which was 4 hours later than
the mean peak observed under the control 24 hour L:D cycle.
The peak OT interval was significantly (P < 0;01) different
from the other~OT intervals except for the OT intervals that
immediately preceeded and followed the oviposition peak
(Figure 20 and Table 15). Of the total ovipositions, 60%
had already occurred by the end of the mean peak OT. For
any 8 hour period throughout the 22 hour L:D cycle, the last
6 hours of light and the first 2 hours of dark which started
14 hours post "lights-off" from the previous day had the
highest percent of total ovipositions (68.9%).

Approximately 60% of the pheasant ovipositions occurred
during the light period and 40% during the dark. Mean peak
OT occurred an average of 21 hours post "lights-off" from the

previous day, thus implicating "sunset" as the predominant
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phase-setting signal, which was also suggested by Morris
(1973). The 2 hours delay in peak OT, compared to the peak

OT observed under the 24 hour L:D cycle, represented the 2
hours less darkness for the ahemeral 22 hour L:D cycle. This
indicates that the entrainment of OT for pheasants under the

22 hour L:D cycle was occurring later than for those kept

under the 24 hour L:D cycle. According to the general entrain-
ment theory, phase activity should be advanced when the L:D
cycle is more than 24 hours, and be delayed when less than 24
hours (Pittendrigh and Minis, 1964). This circadian predic-
tion has been shown to work for the oviposition rhythm of
chickens (Bhatti and Morris, 1978) and coturnix (Follett and
Davies, 1978; Simpson and Follett, 1982), and for coturnix
testicular growth rate (Simpson and Follett, 1982). Obviously,
this phenomenon also works for the oviposition rhythm of
pheasants since peak OT was delayed and 35% less ovipositions
occurred in the light compared to the 24 hour L:D cycle.

c) Ahemeral 26 hour L:D cycle

The effect of the ahemeral 26h L:D cycle (14L:12D)
on average percentage oviposition distributions at 2-hour
intervals of ring-necked pheasants is shown in Figure 21 and
Table 15. No oviposition under this L:D cycle was observed
to occur between 4 to 8 hours of the dark phase. The
circadian rhythm of oviposition observed for pheasants under
this L:D cycle was more similar to chickens (Wilson and
Huang, 1962; Tanabe and Nakamura, 1980) than any other avian

species under the conventional 24 hour L:D cycle. The mean
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peak percent oviposition was 29.7%. This occurred 4 hours
earlier (4-6 hours of the light phase) than under the 24

hour L:D cycle. The peak OT interval was significantly

(P < 0.05) different from the other OT intervals except for the
OT interval immediately preceeding the oviposition peak. Of
the total ovipositions, 62.4% had already occurred by the end
of the mean peak OT. The highest percent of total ovipositions
(79.6%) for any 8 hour period throughout the 26 hour L:D cycle
occurred during the first 8 hours. This started 12 hours post
"lights-off" from the previous day.

Approximately 92.1% of the pheasant ovipositions occurred
during the light period and 7.9% during the dark. At the
beginning of the study it was observed that virtually all
ovipositions occurred at least 2 hours prior to darkness. It
was only towards the end of egg production that ovipositions
started to occur in the dark. Mean peak percent oviposition
occurred an average of 17 hours post "lights-off" from the
previous day. This indicates that the entrainment of OT for
pheasants under the 26 hour L:D cycles was occurring earlier
than for those under the 22 and 24 hour L:D cycles, thus
also implicate "sunset" as a predominant phase-setting
signal as suggested by Morris (1973). The advancement of the
phase setting activity of oviposition for the pheasants under
the 26 hour L:D cycle which was greater in length than the
24 hour L:D cycle agrees with Ostmann and Biellier (1958)
who reported that increasing periods of day length progres-

sively advance time of oviposition to an earlier time of the
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day. This also conforms to the general entrainment theory

or the circadian prediction by Pittendrigh and Minis (1964).
The theory states that phase activity should be advanced when
the L:D cycle is more than 24 hours and be delayed when less
than 24 hours.

2. Inter light-dark cycle test

In this test, all three L:D cycle treatments taken
at any 2-hour interval of the respective cycles, were compared
statistically to obtain more information on how the rhythmi-
city of pheasant oviposition distribution was relatively
changing bihourly.between cycles as time progressed. The
average of the percent oviposition distribution are graphi-
cally shown in Figures 22A-L. A table with the averages is
also shown (Table 15).

Figures 22A,B, and C represent 2-hour intervals of light
within each L:D cycle treatment for the first 6 hours of
the light phase. During these intervals, the mean percent
oviposition (MPO) for pheasants kept under the ahemeral 26h
L:D cycle (14L:12D) was significantly (P € 0.0l1) greater
compared to the other two L:D cycles. This showed a shift
in entrainment of oviposition time due to an increase in the
L:D cycle length (Ostmann and Biellier, 1958; Pittendrigh
and Minis, 1964; Bhatti and Morris, 1978).

If the entrainment theory (Pittendrigh and Minis, 1964)
is correct, then the next largest entrainment of early ovi-
position in this study should be for the control 24h L:D

cycle (14L:10D) since it was the next L:D cycle in hierarachy
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of length to the 26 hour L:D cycle. The proof of this theory
can further be seen in Figure 22D for which the MPO under the
24 hour L:D cycle had increased and was greater than the value
under the 26 hour L:D cycle. However, these two values were
not statistically significant (P > 0.05) from each other, but
were significantly (P < 0.0l1) greater than the value obtained
for hens exposed to the 22h L:D cycle (14L:8D). In Figure 22F
the MPO for the 24 hour L:D cycle attained its highest value
and was significantly (P € 0.01) different from the other two
L:D cycle treatments. Also the means under the 22 and 26 hour
L:D cycle increased and decreased, respectively.

Figure 22F also brings out the same transition as Figure
22D. In this case the MPO under the 22 hour L:D cycle was
greater than the other two L:D cycles but was only signifi-
cantly (P € 0.05) different than the MPO under the 22 hour
L:D cycle. The shorter ahemeral cycle length (22 hours)
resulted in a majority of the ovipositions occurring after
those of the 24 and 26 hour L:D cycles. The entrainment
theory (Pittendrigh and Minis, 1964) was also in compliance
in Figures 22G,H,I,J, and K. The MPO-under the 22 hour L:D
cycle was increasing while the values under the other L:D
cycleswere on the decline or at least significantly (P <
0.01) greater at all times compared to the other two L:D cycles.

3. Lag time
a) Control 24 hour L:D cycle

Average oviposition lag time for ring-necked
pheasant hens reared under the 24h L:D cycle (14L:10D) is
shown for various egg sequences in Figures 23A and B. A

table with the averages is shown (Table 16). The total or



Figure 23A. Effect of conventional 24 hour (14L:10D) light-
dark cycle on oviposition lag in hours between
successive eggs in a 2, 3, 4, 5, 6, and 7 egg
sequence for pheasants. The "closed" bars in a
particular sequence represents the lag between
the previous and present oviposition. An “open"
bar in a particular seguence represents the total
of all previous and 'present lags.

Figure 23B. Effect of conventional 24 hour (14L:10D) light-
dark cycle on oviposition lag in hours between
successive eggs in an 8 and 10 egg sequence for
pheasants. The "closed" bars in a particular
sequence represents the lag between the previous
and the present ovipositoin. An "open" bar in
a particular sequence represents the total of
all previous and present lags.
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cumulative lag obtained under the 24 hour L:D cycle for any
particular sequence did not exceed 7 hours. This was also
reported in turkeys (Wolford et al., 1964b) and chickens
Sturkie and Mueller, 1976) reared under the conventional 24
hour L:D cycle. The average overall lag obtained under this
L:D cycle treatment for pheasants was 1.5 hours. As egg
sequence size increases, the average lag time in a sequence
decreases. Negative lag was also obtained in one of the
larger egg sequences (10) (Figure 23B). This observation was
also reported for turkeys (Wolford et al., 1964b) and chickens
(Sturkie and Mueller, 1976). It was also noted that the lag
time was greater between the initial and terminal ovipositions
of a sequence than between the other ovipositions within

that sequence.

Generally, the pheasant, like the turkey and chicken,
produces a similar oviposition lag time response under the
conventional 24 hour L:D cycle. This oviposition lag response
of pheasants could be due to the genetic selection of these
pheasants for improved egg production.

b) Ahemeral: 22 hour L:D cycle

There was a continued increase in total lag time
under the ahemeral 22h L:D cycle (14L:8D) as egg sequence
increased (Figures 24A and Table 16). This was the estab-
lished pattern until a sequence size of 7 eggs was obtained,
giving a total lag of 13.4 hours. Above the 7 egg sequences,
total lag started to decline reaching as low as 7.0 hours for

the 10 egg sequences. The average overall lag was 1.8 hours,



Figure 24A.
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lag is the distance between the abscissa and
the beginning of the open area.
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representing only 0.3 hours more than under the 24 hour L:D
cycle (Table 16). This pattern is not understood and does
not agree with the results obtained under the 24 hour L:D
cycle used in this study, or with the reports of Wolford et
al. (1964b), and Sturkie and Mueller (1975) on oviposition lag
time. It is obvious from the data obtained in this study
that the ahemeral 22 hour L:D cycle caused a different
response for total lag than did the 24 hour L:D cycle (Table
16). This difference should not be surprising since the
rhythm of oviposition was also affected by the ahemeral 22
hour L:D cycle.

The discontinuation of the trend to increase total lag
as egg sequence size increased, at the 8 egg sequence, was
due to the negative lag values that were produced (Figures
24B and C). This indicates that ovulation was taking place
progressively earlier each day. Thus, the short ahemeral
L:D cycle could be turning on the release of the ovulatory
hormone, LH, at shorter intervals each day by stimulating some

controlling mechanism (receptor) in the brain of the pheasant.

c) Ahemeral 26 hour L:D cycle

Total lag time under ahemeral 26h L:D cycle (14L:12D)
continues to increase as egg sequence increases, except at the
7 egg sequence (Table 16). This was unlike the ahemeral 22
hour L:D cycle for which the continued increase was only to
the 7 egg sequence, but for this L:D cycle treatment the

increase in total lag was for all sequences. The decrease in



Figure 24B.

Figure 24C.

Effect of ahemeral 22 hour light-dark cycle on
oviposition lag in hours between successive eggs
in a 7 and an 8 egg sequence for pheasants. The
"closed" bars in a particular sequence represent
the lag between the previous and present oviposi-
tion. An ‘"“opened" bar in a particular sequence
represents the total of all the previous and
present lags. In a "closed" bar with an open
space, the total lag is the distance between the
abscissa and the beginning of the open area.

Effect of ahemeral 22 hour (14L:8D) light-dark
cycle on oviposition lag in hours between succes-
sive eggs in a 9 and an 11 egg sequence for
pheasants. The "closed" bars in a particular
sequence represents the lag between the previous
and present oviposition. An "opened" bar in a
particular sequence represents the total of all
the previous and present lags. In a "closed"
bar with an open space, the total lag is the
distance between the abscissa and the beginning
of the open area.
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total lag for the 7 egg sequence was due to a large negative

lag (Figure 25B). The number of negative lags obtained under
this L:D cycle (Figures 25A,B, and C) were less than the number
obtained under the 22 hour L:D cycle. The maximum average total
lag obtained under the 26 hour L:D cycle treatment was 16.7
‘hours which was greater than the maximum average total lag
obtained under the 24 and 22 hour L:D cycle. The overall
average was 2.5 hours (Table 16).

It is obvious that ahemeral L:D cycles affect total lag
time in pheasant egg production. The ahemeral 26 hour L:D
cycle acts to extend the lag threshold (7 hours) for cessa-
tion of oviposition by some unknown mechanism, which probably
lies at the pituitary-gonadal axis, such that longer egg
sequences may be produced.

4. Egg formation time and egg sequence length occurrences

a) Control 24 hour L:D cycle

Egg formation time (EFT) for ring-necked pheasants
under the 24h L:D cycle (14L:10D) averaged 25.5 hours (Table
16). This was within the range (24-26 hours) reported for
chickens and coturnix under a similar L:D cycle (Atwood,
1929; Warren and Scott, 1936; Arrington et al., 1962; Woodard
and Mather, 1964; Morris, 1973; Tucker and Ringer, 1982).

As the egg sequence length was increased, the average lag time
decreased from 3.1 hours for 2 egg sequences to 0.8 hours for
10 egg sequences (Table 16). This represents a range of EFT
from 24.8 to 27.1 hours. This meant that the intra-clutch
intervals also decreased for pheasants as egg sequence size
increases. A similar situation was also observed in chickens

reared under a 24 hour L:D cycle (Heywang, 1938).



Figure 25A.

Figure 25B.

Effect of ahemeral 26 hour (14L:12D) light-dark
cycle on oviposition lag in hours between succes-
sive eggs in a 2, 3, 4, 5, and 6 egg sequence for
pheasants. The "closed" bars in a particular
sequence represents the lag between the previous
and the present oviposition. An "open" bar in a
particular sequence represents the total of all
previous and present lags.

Effect of ahemeral 26 hour (14L:12D) light dark
cycle on oviposition lag in hours between succes-
sive eggs in a 7 and an 8 egg sequence for phea-
sants. The "closed" bars in a particular
sequence represents the lag between the previous
and the present oviposition. An "open" bar in a
particular sequence represents the total of all
previous and present lags.



81

M B
ey r...__..._g.......

P bl S

C [T

T ...
DR

It ftm..... PG B WU IS

ik hiaid BRlcdel i b ) rd

PO ELELEE ]
.- AJI..u.‘.fﬁ

IR

P s e
D PP PR R

.._

T .q ._
t_ .rn..,..._....e AR

\ ! it A \
L 1 i L 1 A L 1 L A i A 2
~ . - ~ - Py Py -~ - Py ~ P - o
- - - - - - L]
PR N -B® 280 Jae

I &4 30QUINCS

0009

L]
L _ i
== T
( R
_ fara
“ oy mran
ondpdudetiys -t
-
' L1 1 5 N U U W B U U N S SN WU SN SN G S N |
* ~ * [} L ] L 4 ~ L ~ - L4 [ )
- - - . . . .
PR X J -3 803s e

6000 1w & IQUINCH



Figure 25C.
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Effect of ahemeral 26 hour (14L:12D)
light-dark cycle on oviposition lag
in an 11 egg sequence for pheasants.
The "closed" bars in the sequence
represents the lag between the pre-
vious and the present oviposition.
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sents the total of all previous and
present lags.
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The greatest occurrence of any sequence length was for the
1 egg sequence which was observed to_occur 141 times (Table
17). An egg sequence length as long as 71 was obtained under
the 24 hour L:D cycle. The total number of sequences obtained
was 605. This resulted in an average of 4.6 eggs per segquence.
According to Tucker and Ringer (1982), if the length of L:D
cycles were synchronized with the length of the time of
follicular maturation, longer egg laying sequences would be
obtained. Based ﬁpon the average EFT (25.5 hours) under this
L:D cycle, it was obvious that the 24 hour L:D cycle was out
of synchrony, by 1.5 hour, with the time of follicular matura-
tion for the pheasants used in this experiment. Thus, the
maximum potential of egg sequence size was not realized from
pheasants reared under the 24 hour L:D cycle.

b) Ahemeral 22 hour L:D cycle

Ring-necked pheasants kept under the ahemeral

22h L:D cycle (14L:8D) had an average EFT of 25.8 hours (Table
16). This was similar to the average EFT for ring-necked
pheasants kept under the control 24 hour L:D cycle. A
minimum time is probably réquired for EFT, thus the pheasant
hens kept under the 22 hour L:D cycle treatment required the
same time for EFT as those hens under the 24 hour L:D cycle.

Similar to the 24 hour L:D cycle, as the sequence size
increased under the 22 hour L:D cycle the average oviposition
lag time decreased from 3.1 hours for 3 egg sequences to 0.8

hours for 10 egg sequences (Table 16). This represented a
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Table 17. The number of occurrences of each egg sequence
length for pheasants under 22, 24, or 26 hour
light-dark cycles.

Number of occurrences

Sequence Light-dark cycle
length 24 (14L:10D) 22 (14L:8D) 26 (14L:12D)

1 141 218 85

2 130 156 50

3 95 146 37

4 54 104 29

5 48 72 22

6 38 47 25

7 11 34 13

8 17 26 5

9 19 16 14

10 8 6 5
11-20 30 19 42
21-30 ' 7 0 13
31-40 2 0 6
41-50 2 0 4
51-60 1 0 2
61-76 2 0 7
81 0 0 1
84 0 0 1

Total eggs/
Total sequences 2785/605 2919/84¢4 3031/361

Avg. no. eggs/
sequence 4.6 3.5 8.4
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range of EFT from 24.8 to 27.1 hours. Intra-clutch intervals
were observed to decrease for pheasants under the 22 hour L:D
cycle as egg sequence size increased. This was also true for
the pheasants under the 24 hour L:D cycle in this study and
for chickens reared under a 24 hour L:D cycle (Heywag, 1938).
A greater incidence of shorter egg sequence length
occurred for hens exposed to the 22 hour L:D cycle than
compared to those hens exposed to the 24 hour L:D cycle (Table
17). There were no egg sequences beyond the 20 egg sequence.
The total number of egg sequences obtained was 844, a 40%
increase over the total obtained under the 24 hour L:D cycle.
A large majority of these were smaller sequences which con-
sequently resulted in an average of 3.5 eggs per sequence.
This was 1.1 egg/sequence less than the egg sequence average
for hens under the 24 hour L:D cycle. The shorter egg sequence
size obtained was probably due to the follicular maturation
time (25.8 hours) being out of synchrony with the 22 hour L:D
cycle (Tucker and Ringer, 1982). This was off by 3.8 hours.
Hens under the 22 hour L:D cycle tend to produce a higher
percent hen-day egg' production compared to those hens under
the 24 hour L:D cycle (Figure 9) because of the higher
incidence of short egg sequences and also the higher incidence

of hens producing 2 eggs per day.
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c) Ahemeral 26 hour L:D cycle

The ring-necked pheasants, exposed to the ahemeral

26h L:D cycle (14L:12D) average egg formation time was 26.5
hours (Table 16). It is obvious that the egg formation time
or the follicular maturation time was in synchrony with the
26 hour L:D cycle than with the 22 or 24 hour L:D cycle
previously discussed. This was not surprising since Morris
(1973) reported mean intra-clutch interval or egg formation
time to increase and be of a similar length to the L:D cycle
when the L:D cycle length was increased above 24 hours.

Similar to the 22 and 24 hour L:D cycles, average lag
tended to decrease as egg sequence length increases, ranging
from 0.4 hours to 5.0 hours (Table 17). This represented a
larger range in egg formation time (24.5-29.0 hours) compared
to the ranges reported under the other L:D cycles in this
experiment. The 1 egg sequences obtained from hens under the
26 hour L:D cycle occurred less than under the other treat-
ments. There was also a higher incidence of longer egg
sequences; a length as long as 84 eggs was obtained. The
number of sequences that occurred under the 26 hour L:D cycle
was 361 which gave an average of 8.4 eggs per sequence. This
showed relative success in improving egg production, via the
use of a L:D cycle length that was closely synchronized with
the time of follicular maturation resulting in longer sequen-
ces. Consequently, percent hen-day egg production was greater
under the 26 hour L:D cycle than under the 22 and 24 hour L:D

cycles (Figure 9). Although eggs oviposited under the 26 hour
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L:D cycle spent an average of 0.7 hours longer in the oviduct,
there was no improvement in egg weight (Table 12) or egg
specific gravity (Appendix F, Table Fl). This was inconsis-
tent with the report of Morris (1973). This author stated
that increases in egg weight was due to increases in albumen
and shell deposition due to the extra oviducal term of the

egg when hens are reared under ahemeral L:D cycles.

H. Progesterone and LH Rhythms During Pheasant Ovulatory Cycle

l. Control 24 hour L:D cycle

The LH and progesterone rhythms, taken at 3-hour
intervals over a period of time during the ovulatory cycle of
ring-necked pheasants kept under the 24h L:D cycle (14L:12D),
is shown in Figure 26. The average values are shown in Table
18. The progesterone value started to exceed the LH value at
approximately 18 hours prior to ovulation (Figure 26). At
6-9 hours prior to ovulation, the surge values of LH (7.5
ng/ml) and progrsterone (8.2 ng/ml) were attained. This was
also reported in chickens kept under a 24 hour L:D cycle
(Williams and Sharp, 1978; Johnson and van Tienhoven, 1980;
Tanabe and Nakamura, 1980). The surge value obtained for
progesterone is similar to the surge value (8.0 ng/ml) reported
for turkeys (Sharp et al., 198l1) but not to the surge values
3-6 ng/ml) reported for chickens (Furr et al., 1973; Etches
and Cunningham, 1976; Follett and Davies, 1978; Tanaka and
Kamiyoshi, 1980) or coturnix (Tanabe and Nakarmura, 1980;

Gulati et al., 1981). The LH surge value shown in Table 18
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Table 18. Pheasants plasma LH and progesterone levels
(ng/ml) during the ovulatory cycle under the
control 24 hour light-dark cycle (l4L:10D).

Hours before

ovulation n Progesterone n LH

21-24 7 1.67 + 0.g38* 8 3.39 + 0.47 «
18-21 L) 1.24 + 0.42 » 7 2.79 + 0.34 *
15-18 4 3.23 + 0.99 4 2.68 + 0.72 =
12-15 5 3.54 + 1.77 6 2.05 + 0.25 *
9-12 9 4.29 + 1.1 5 2.42 + 0.39 *
6- 9 8 8.28 + 1.8 7 7.54 + 2.32

3- 6 10 6.76 + 1.4 ? 3J.63 + 0.88 *
0- 3 9 0.85 + 0.23 * ? 2.51 + 0.26 *

% Mean *+ SEM.

%
Significantly (P < 0.05) different from the highest
mean within the column.

n = Number of observations.
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Figure 26. Changes in plasma progesterone and LH concentrations during the ovulatory
cycle of the pheasant. The birds were kept under a 24h (14L:10D) conven-
tional light-dark cycle., Each point represcents the mean + SEM.
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is similar to that reported in coturnix (Gulati et al., 1981),
ducks (Tanabe and Nakamura, 1980), and chickens (Johnson and
van Tienhoven, 1980; White and Etches, 1984a). Other reports
on LH studies in avian species indicated that the surge value
of LH can be of lower levels (Mashaly et al., 1976; Follett
and Davies, 1978; Tanabe and Nakamura, 1980; Sharp et al.,
1981).

The LH mean surge value was significantly (P < 0.05)
different from all the other LH mean values for the various
intervals prior to ovulation (Table 18). This was not the
case for the progesterone surge value, which was only signi-
ficantly (P < 0.05) different from the mean basal values at
the beginning and end of the ovulatory cycle.

At ovulation, the progesterone value was lower than the
value for LH. It is therefore believed that the cascade of
events, leading to ovulation, that have been reported for
chickens (Williams and Sharp, 1978; Sharp, 1980), occurred in
ring-necked pheasants under the 24 hour L:D cycle. Although
LH and progesterone surged simultaneously, the progesterone
surge was maintained for a longer time than for the LH. Thus,
progesterone could be playing an extended role in ovulation,
probably stimulating the synthesis of an enzyme (collagenase)
involved in the rupture of the follicle as suggested by Doi
et al. (1980) and tanabe and Nakamura (1980).

It is of interest to note that during the ovulatory cycle
LH values starts to decline at 24 hours prior to ovulation to

its nadir value at 12-15 hours before ovulation occurs. The
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LH nadir value which was immediately followed by the LH
surge, has been suggested as a possible change in feedback
sensitivity of the hypothalamus or pituitary gland to the
gonadal steroids, although major changes in the positive
feedback mechanism to progesterone have not been observed
(Wilson and Sharp, 1975; Etches and Cunningham, 1976; White
and Etches, 1984a).

2. Ahemeral 22 hour L:D cycle

Starting at 18 hours prior to ovulation, the plasma
progesterone levels (Figure 27) for the ring-necked pheasants
exposed to the ahemeral 22h L:D cycle (14L:8D) started to
increase. A similar observation was made for plasma proges-
terone levels under the 24 hour L:D cycle. This increase
continued at a rapid pace, and the level was maintained above
4.7 ng/ml prior to the surge time. The surge value, 6.9 ng/ml
(Table 19), under this L:D cycle was lower than the surge
value under the 24 hour L:D cycle, but was within the range
6-8 ng/ml) reported for chickens (Tanabe and Nakamura, 1980)
and turkeys (Opel and Arcos, 1978; Sharp et al., 1981).
Progesterone surge time occurred 3-6 hours prior to ovulation,
which was 3 hours later than under the 24 hour L:D cycle. The
surge in progesterone has also been reported to occur later
than 6 hours prior to ovulation for chickens when L:D cycles
were less than 24 hours (Liou and Biellier, 1979; Liou et al.,
1980) or equal to 24 hours (Furr et al., 1973; Follett and
Davies, 1978; Tanabe and Nakamura, 1980). The progesterone

surge was only significantly (P < 0.05) different from the



Table 19, Pheasant pluaswma LH and progesterone levels (ng/wml)
during the ovulatory cycle under an ahcweral 22
hour light-dark cycle (14L:8D).

Hours before
ovulation n Progesterone n Lul
21-24 12 0.90 + 0.39 = 12 2.56 + 0.2Y
18-21 6 1.15 + 0.9 = 3 2.77 + 0.70
15-18 4 4.7 + 0.5 6 2.25 + 0.42
12-15 b) 5.4 + 1.2 3 l.43 + 0.79
9-12 4 5.9 + 1.9 4 4.08 + 0.69
6- 9 6 5.5 + 1.2 8 4.13 + 0.97
3- 6 7 6.9 + 1.7 7 1.99 + 0.34
0- 3 6 0.5 + 0.3 = 7 2.30 + 0.38
L Means were not significantly (P > 0.05) different trom the
mean with the highest value within the coluan.
? Mean + SEM, '
x . .
Sigaifticantly (P < 0.05) different from the highest wean
within the coluun.
n = Number of observations.
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HOURS BEFORE OVULATION

Changes in plasma progesterone and LH concentrations during the

ovulatory cycle of the pheasant.
(14L:8D) shemeral light-dark cycle.

mean + SEM.

The birds were kept under a 22nh
Each point represents the
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mean basal values at the beginning and end of the ovulatory
(Table 19). This was also the case for the controls previously
discussed.

Plasma LH levels did not start to increase until 12-15
hours prior to ovulation. There was a plateau of LH levels
(approximately 4.1 ng/ml) for 6 hours between the 9-12 to 6-9
hour intervals prior to ovulation. This surge in plasma LH
level was not significantly (P > 0.05) different from the mean
LH values at the other intervals prior to ovulation (Table
19). The shift in oviposition time for pheasants kept under
the 22 hour L:D cycle (Figure 20) was due to the change in
phase of LH. However, LH surge remained fixed relative to
ovulation (Figure 27). Although the surge of LH and proges-
terone did not occur simultaneously, the LH surge did occur
prior to the progesterone surge which is consistent with other
reports in avian species (Furr et al., 1973; Follett and Davies,
1978; Tanabe and Nakamura, 1980). The cascade of events
leading to ovulation, in which a small increase in LH will
result in increases in progesterone which in turn will cause
LH to surge (Williams and Sharp, 1978; Sharp, 1980) were also
observed for pheasants kept under the 22 hour L:D cycle.

3. Ahemeral 26 hour L:D cycle

The initial rise, starting at 18 hours prior to
ovulation, in plasma progesterone for ring-necked pheasants
exposed to the ahemeral 26h L:D cycle (14L:12D) (Figure 28)
was also observed for ring-necked pheasants exposed to the 22

and 24 hour L:D cycle. For the remaining intervals prior to
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ovulation the rise in progesterone continued, but the pattern
was less rapid compared to the pattern observed under the 24
hour L:D cycle. The mean surge value (9.54 ng/ml) which
occurred 3-6 hours prior to ovulation was significantly (P

< 0.05) different from the mean values at the other intervals
during the ovulatory cycle except the two intervals immedia-
tely preceeding the surge (Table 20). There were no signifi-
cant (P > 0.05) differences between the LH mean values during
the pheasant ovulatory cycle under the ahemeral 26 hour L:D
cycle (Table 20). However LH surge was obtained between the
9-12 and the 6-9 hour intervals prior to ovulation. White
and Etches (1984a) using an ahemeral 28 hour L:D cycle in
chickens, also reported a surge LH time of 6 hours prior to
ovulation. Similar to the shift in oviposition time under the
22 hour L:D cycle (Figure 20), the shift observed under the
26 hour L:D cycle (Figure 21) was due to the change in phase
of LH; however, the LH surge remained fixed relative to
ovulation (Figure 28). This is consistent with the report of
Abdelrazik et al. (1983) who indicated that the LH surge under
a long ahemeral L:D cycle (30 hours) remained fixed relative
to ovulation.

The cascade of events, leading to ovulation, that were
previously discussed for the 22 and 26 hour L:D cycles were
also observed under the ahemeral 26 hour L:D cycle.

Under the three L:D cycle treatments used in this study,
the data on the pack cell volume (PCV) (Table 21) indicated

that hemodilution was not a factor due to repeated sampling
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Table 20. Pheuasant plasma LH and progesterone levels (ug/wl)
during the ovulatory cycle under an alhicweral 26
hour light-dark cycle (14L:12D).

Hours before

ovulation n Progesterone n Lul
21-24 13 1.72 + 0.768 = 15 3.25 + 0.52
18-21 9 1.51 + 0.49 7 2.59 + 0.33
15-18 4 2.30 + 0.95 »* 3 2.87 + 0.37
12-15 9 5.62 + 1.02 » 9 2.67 + 0.44
9-12 9 6.14 + 1.62 Y9 4.58 + 1.12
6- 9 9 6.69 + 1.48 9 4.67 + 0.59
3- 6 7 9.54 + 1.41 9 4.43 + 0.67
0- 3 9 1.49 + 0.44 9 2.70 + 0.39
1

Mecans were not significantly (P > 0.05) different from the
mean with the highest value within the column.

Mecan + SEM.

Significantly (P € 0.05) different from the highest wmean
within the column.

n = Number of observations.

100
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(ng;ml)

PROGESTERONE
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21-24 18-21 15-18 12-18 9-12 6-9 3-6 0-3
HOURS BEFORE OVULATION

Figure 28. Changes in plasma progesterone and LH concentrations during the
ovulatory cycle of the pheasant. The birds were kept under a 26h
(14L:12D) aheneral light-dark cycle. Each point represents the
mean + SEM.



95

8°C¢t 1 3 L°0¢ Lzt 1A% L°C¢ L°¢E¢t L°et 0°¢t 23e13Ay TT®I2A0
g Z¢ 7¢ 182 7e (4 1€ £e ¢ VA% (az1:191)
31242 1noy g7
0°¢¢ (A% 8¢ 7e e 13 e 9¢ 4 (dOoT:1%T)
97240 anoy 47
8°C¢t A% £t 0¢ it (A% ve VA% %3 (ag:1%1)
97240 anoy z¢
*3ay £-0 9-¢ 6-9 {1-6 ST-ZT 8TI-ST TZ-8T %Z-11 jusuwjealy

uofiernao o3 a1ofad sinoj

I43r1

*3T7242 Li1o3eTnao jueseayd ayil 3utanp

awfl Surrdues pooTq Yydea e paanseam (ADd) 2mwnloa T[99 ¥oed aldeaaae 3yl *TC aiqel



96

(White and Etches, 1984b). All values on PCV were similar to
each other and were consistent with the average (34.0% PCV)
reported for other female pheasants by Bond and Gilbert (1958,
cited by Sturkie and Griminger, 1976).

Generally, progesterone values throughout the pheasants
ovulatory cycle seem to be higher than for other avian species,
but LH values were always within the expected range. Proges-
terone and LH rhythms for pheasants kept under the 24 hour
L:D cycle followed a similar pattern to that of other avian
species, with a simultaneous surge time at 6-9 hours prior to
ovulation. The use of the ahemeral 22 and 26 hour L:D cycles
resulted in a shift in LH initial rise, but not progesterone,
such that the LH rise began 3 hours earlier than that of
progesterone. Regardless of the light treatment, LH nadir
value occurred 12-15 hours prior to ovulation and also immedia-
tely preceding the LH surge. Shifts ih oviposition time for
the two ahemeral L:D cycles was due to a change in phase of
LH with the surge remaining fixed at approximately 6 hours
prior to ovulation. A cascade of events involving LH and
progesterone leading to ovulation was observed under the
three L:D cycle treatments. Also, hemodilution, due to
repeated withdrawal of blood, did not occur and therefore,

was not a factor in this experiment.



CHAPTER 6
SUMMARY AND CONCLUSIONS

A. Summary

This experiment was conducted to evaluate the effect of
ahemeral L:D cycles, 22 (14L:8D) and 26 (14L:12D) hours on
female pheasant reproduction during the reproductive period.
The effects of these L:D cycles on feed intake and body
weight changes of male and female ring-necked pheasants were
also examined. All comparisons were made with a conventional
24h L:D cycle (14L:10D).

The data indicated that:

1. The greatest increase (6.6%) in percent hen-day egg
production was obtained under the ahemeral 26 hour L:D cycle,
but this was not significant (P > 0.05).

2. Ahemeral 22 and 26 hour L:D cycles had no significant
(P > 0.05) effect on egg weight compared to the control cycle.
However, egg weight was significantly (P € 0.05) greater under
the 22 hour L:D cycle than under the 26 hour L:D cycle. The
DNR strain produced significantly (P € 0.05) greater egg
weights compared to the MSU strain.

3. Ahemeral 22 hour L:D cycle significantly (P < 0.05)
decreased egg shell thickness and egg specific gravity over
the control cycle. Egg shell thickness and egg specific
gravity for the DNR strain was significantly (P < 0.05)
increased compared to the MSU strain's. There was a correlation

coefficient of 0.73 between these two parameters.

97
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4. Neither strain nor light treatments had any signifi-
cant (P > 0.05) effect on egg mass, on percent cracked or
percent shell-less eggs, or on percent dead embryos or pipped
eggs.

5. Percent fertility obtained under the ahemeral 26 hour
L:D cycle was significantly (P < 0.05) greater than the percent
fertility obtained under the 22 and 24 hour L:D cycles. There
were no significant (P > 0.05) differences in percent ferti-
lity between strains.

6. Neither ahemeral L:D cycle nor strain significantly
(P > 0.05) affected percent hatchability. The highest average
percent hatchability (73.6%) was obtained under the 26 hour
L:D cycle. This was approximately 10% more than was obtained
under the 22 and 24 hour L:D cycles. ’

7. Most oviposition times occurred later under a 22 hour
L:D cycle and earlier under a 26 hour L:D cycle than observed
under the 24 hour L:D cycle.

8. Total lag times were greater under the 22 and 26 hour
L:D cycles than under the 24 hour L:D cycle.

9. Egg formation times under the 24, 22, and 26 hour L:D
cycles were approximately 25.5, 25.8, and 26.5 hours, respec-
tively.

10. LH and progesterone surge occurred approximately
6-9 hours prior to ovulation. The surge of both hormones
under the 24 hour L:D cycle occurred simultaneously.

11. Shifts in oviposition times under the ahemeral 22 and

26 hour L:D cycles were due to a change in the phase of LH
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with the surge remaining fixed at approximately 6 hours prior
to ovulation.

12, Female pheasants consumed an average of 14 g/b/d more
feed than the male pheasants. However, there were no signifi-
cant (P > 0.05) differences in feed intake between light treat-
ment or strains for males or females.

13. There were no significant (P > 0.05) differences in
body weight between light treatments for male or female
pheasants. The DNR strain's body weight was significantly
(P < 0.05) greater than the MSU strain's. The decrease in
body weight for both male and female pheasants was due to
reduced feed intake and the use of body fat (in the case of

the female) for yolk synthesis.

B. Conclusions

Ahemeral L:D cycles did not significantly affect pheasant
egg production, but there was a trend for the hens kept under
the longer ahemeral L:D cycle (26 hours) to improve egg produc-
tion and lay in longer sequneces of eggs; thus, using a L:D
cycle longer than 26 hours (example, 28 hours) might result
in significant improvement in egg production for ring-necked
pheasants.

The ahemeral L:D cycles used in this experiment affected
reproduction in that, the rhythm of oviposition, oviposition
lag time, and egg formation time were altered compared to the

results obtained under the control L:D cycle. The significance
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of these changes in pheasant reproduction cannot be interpreted
at this time.

Based upon the hormone data, it appears that LH surge
during the pheasant ovulatory cycle remains fixed relative to
the time of ovulation, regardless of the L:D cycle used,

although oviposition rhythm was altered.
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APPENDIX A

TABLES OF PHEASANT RATIONS
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Table Al. Pheasant starter ration fed to chicks from one
day to six weeks of age.

Ingredient Percent
Corn 46.35
Soybean meal, 49% 39.40
Alfalfa, 17% 3.00
Fish meal, 60% 2.50
Meat and bone meal, 50% 3.00
Whey, dried 2.00
Salt 0.25
Dicalcium phosphate 1.50
Limestone 1.25
Premix (5004)% 0.75

1See footnote, Table 3.

CALCULATED ANALYSIS

Crude protein ....cceececeen 28.00
Fat cccieeececcceecccnncancnn 2.61
Fiber ..ccececececccccccscns 3.32
Calcium ...ccceececcanconsas 1.47
Phosphorus, available ...... 0.70

M.E., cal/lb. ....cccveeeee.. 1241.00
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Table A2. Pheasant grower ration fed to chicks from six
weeks to 13 weeks of age.

Ingredients Percent
Corn 54.50
Soybean meal, 49% 25.50
Wheat middlings 7.50
Alfalfa, 17% 3.00
Fish meal, 60% 2.50
Meat and bone meal, 50% 3.00
Salt 0.25
Dicalcium phosphate 1.50
Limestone ' 1.50
Premix (5004)% 0.75

See footnote, Table 3.

CALCULATED ANALYSIS

Crude protein ....ceccececss 22.00
Fat ceceececccsceccccoaccns . 3.00
Fiber .cccccecccecccns ceccane 3.64
CalCiuM .ceeeecccccccnconcese 1.43
Phosphorus, available ...... 0.63

M.E-’ Cal/lbn ® e 000 000000000 1269000
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Table A3. Pheasant flight ration fed to chicks from 13
weeks to time of stimulating light.

Ingredient Percent
Corn 55.40
Soybean meal, 44% 14.10
Oats 10.00
Wheat middlings 10.00
Alfalfa, 14% 3.75
Meat and bone meal, 50% 3.00
Salt 2.50
Dicalcium phosphate 1.50
Limestone 1.50
Premix (5004)1 0.50

1

See footnote, Table 3.

CALCULATED ANALYSIS

Crude Protein .c.ccceeccccne 16.00
Fat ccieeceeecccececaccccansns 3.51
Fiber .cvcceecscccccccccsnsns 5.30
Calcium .cceeeeecccacccoosss 1.30
Phosphorus, available ...... 0.55

M.E., cal/lb. ..civeeeeseees 1259.00
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APPENDIX B

CAGE LAYOUT
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APPENDIX C

PROCEDURES FOR THE DETERMINATION OF
SPERM CELL CONCENTRATION
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The sperm cell count was obtained by using a bright-1line
hemacytometer8 and a light microscope.

Samples were prepared by filling the tip of a RBC pipette
to the 0.5 mark with semen by capillary action.

A 0.085% saline + 2% formalin solution was used to dilute
the semen to the pipette's 101 mark. This gives a dilution
of 200. The formalin immobolizes the spermatozoa, thus
facilitating easy counting.

The samples counted were done in replicates. Each, con-
sisting of 5 squares or counting chambers (1 x 1 mm), was
located on opposite sides of the hemacytometer. Each
chamber had a depth of 1 mm and consisted of 16 small
squares, thus there was a total of 80 squares.

A cover slip was placed over each replicate.

From the pipette, a small amount of sample was released
at one side of each cover slip, from which the sample
spreads, covering all the counting chambers.

The sperm cell counts used at any point on the standard
curve was the average of the two replicates for a parti-
cular sample.

The following formula was used for the calculations:

Number of cells counted x dilution x 4000
Number of small squares counted

Number counted x 200 x 4000
80

Sperm cell/cu.mm =

Number of cells counted x 10,000

8

American Optical Corporation, Buffalo, NY 14215
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Concentration of sperm cells inseminated per volume =
Number of sperm cells/cu.mm x number of cu.mm/cc (ml)

X volume.
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APPENDIX D

PROCEDURES FOR BLOOD
SAMPLE COLLECTION
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Blood samples were obtained from pheasant hens by the use
of a sterile 5 cc syringeg, attached to a 22 gauge, 3.81
hypodermic needlel0.

Prior to sampling both the syringe and the hypodermic
needle were flushed with heparin (4 mg/ml in physiological
saline) in order to prevent blood clotting.

At each sampling, approximately 4 ml of blood was obtained
via cardiac puncture.

From each sample of blood, a hematocrit determination

was made.

The remainder of the blood sample was centrifuged with a
Dynac centrifugell at 2000 rpm for 20 minutes.

At the completion of the centrifugation process, the plasma
was decanted into three separate portions, each to a

separate screw cap viallz, 12 x 35 mm (% dram), for storage

at -20°C until the time of assay.

The blood samples obtained from an individual hen were not

within a 24 hour period, but over several egg sequences. This

was done in order to avoid hemodilution, which may occur due

to the removal of large volumes of blood at very frequent

10

11

12

Division of Becton, Dickerson, and Co., Rutherford, NJ 07070
Division of Becton, Dickerson, and Co., Rutherford, NJ 07070
Division of Becton, Dickerson, and Co., Rutherford, NJ 07070

VWR Scientific INcorporation, 800 East Fabyan Parkway,
Batavia, IL 60510
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intervals, and stress which may occur due to sampling via
cardiac puncture. The design of sampling was similar to that
of Gulati et al. (1981) in Japanese quail and Wilson et al.
(1983) in chickens. Samples were taken only on a day when

the hen lays. The samples were only considered to be valid

if the hen laid an egg on the day following sampling. This
precaution was necessary in order to relate hormone concentra-

tion to the time of ovulation.
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APPENDIX E

MODELS AND STATISTICAL
ANALYSIS TESTS
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The models used for the two-way ANOVA.

l.

Yijkl

Male
Yikl
Where:

Yijkl

Yikl

M

Ai

Bj

(AB)ij

C(i)k

C(ij)k

Pl

(AP) il

(BP)j1

(ABP)ijl

Female Model

M+Ai+Bj+ (AB) ij+C(ij)k+(AP)il+ (BP)jl+ (ABP)
ij1+E(ijkl1)

Model

M+Ai+C (;)k+P1+ (AP)il+E (ik1)

Is the variable response for time 1 for birds
k from strain j, receiving light i.

Is the variable response for time 1 for bird
k receiving light 1.

Represents the population mean.

Represents the fixed effect of the ith level
of light (3 levels).

Represents the fixed effect of the jth level
of strain (2 levels).

‘Represents the effect of the interaction of

light and strain.

Represents the random effect of birds within
light (Error I). Contributes to error appro-
priate for measuring the effect of light.

Represents the random effect of birds within
light and strain (Error I). Contributes to
error appropriate for measuring the effect
of light and strain.

Represents the fixed effect of the 1lth level
of time.

Represents the effect of the interaction of
light and time.
Represents the effect of the interaction of
strain and time.
Represents the effect of the interaction of
light, strain, and time.
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E(ikl) = Represents the residual error (Error 2). It
contributes to error by measuring all the
effects relating to time. It is also the
random effect of all unspecified variables.

E(ijkl) = Same as E(ikl) above.

B. Test for Significant differences of treatments.
l. F-test (Table A.5, from Gill, 1978c).
F-value = MSy/MSg

If the F-value is greater than fa, V3, V3, then there
are significant differences between treatment means.

MS; = Mean sum of the squares of the treatments.
MSg = Mean sum of the squares of the error.

Vi = Number of treatments - 1 (t-1).

Vy = Number of observations - number of treatments

(n-t) .
2, Treatment comparisons.

a) . Bonferroni t-statistics (Table A.10. from
Gill, 1978c).

1 1
J MsE(rI + r'z_)

If tg is greater than tga/2,M,V there is a
significant difference between the two means
being compared.

M = Number of comparisons - 1.

r = Number of replications per treatment or for
each mean being compared.

<
0

Number of observations - number of comparisons

>l
]

Treatment mean.

b) Dunnett's t-statistics (Table A.9.1 from Gill,
1978c) .

Y, - Y,

tp = 1
1 1
J MSE(I‘I + ri’)
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If tD is greater than tpa/2,V,M there is a
significant difference between the two treat-
ment means being compared.

M = Number of observations - number of comparisons.

r = Number of replication per treatment or for
each mean being compared.

V = Number of comparisons - 1.
X = Treatment mean.

C. Standard error of difference (SED) between means (repeated
measurements; split plot analysis, see Gill, 1978b).

1. Between the two treatment means within a period.

- 1 1
SED = &SEl(rI + r-z—)

2. Between two period means within a treatment.

= 1 1
SED = JMSEz(rI + r;)

D. Standard error of mean (SEM) for the one-way analysis
(used for the oviposition and hormone data).

Standard deviation (SD)
J n
Jz (X-X) 2

n-1

T

n = Number of observations.

SEM

E. Coefficient of variation (CV).
l. Intra-assay

cv

SD of the assay quality control values : mean
of the assay quality control values.

2. Inter-assay
CV = SD of the quality control averages between the

assays + overall quality control mean for the
assays.
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APPENDIX F

TABLES OF THE AVERAGES OF SOME
OF THE PARAMETERS MEASURED
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