RETURNING MATERIALS: 1V1ESI_J P1ace in book drop to LJBRARJES remove this checkout from “ your record. ' FINES will be charged if book is returned after the date stamped be10w. ‘ TESTING TWO FAILURE RATES NITH RANDOMLY RIGHT CENSORED DATA AND UNCENSORED DATA By Michael George Biake A DISSERTATION Submitted to Michigan State University in partiaI fquiTTment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Statistics and Probability 1981 1' ARA- in. «a m\\0 ABSTRACT TESTING TNO FAILURE RATES WITH RANDOMLY RIGHT CENSORED DATA AND UNCENSORED DATA By Michael Goerge Blake We study the problem of testing H0: h](t) = h2(t) almost everywhere Lebegue measure (u) versus the alternatives H}: h2(t) 3 h1(t) almost everywhere (u) and h2(t) # h1(t) almost everywhere (u) with randomly right censored data and un- censored data where hi is the failure rate function for the right sided distribution function F1, i = 1,2. We show that the functional m t a(o; F1. F2) = 6 g {F](t)F2(s) - F](s)F2(t)}dm(s)d¢(t) where ¢ is a strictly increasing continuous function has the property that for (F1, F2) 6 H0 U H1 then A(¢; F1, F2) = 0 if and only if (F1, F2) 6 H0 and A(¢; F1, F2) > 0 if and only if (F1, F2) 6 H1. In the uncensored case, we give sufficient conditions so that the estimator A(¢) = A(¢; Fm, F") is asymptotically normal where Fm, Fn are the right sided empirical distributions of F1, F2. In the randomly right censored case, we give sufficient A A conditions so that the estimator 2(m) = A(m; Fm, Fn) is asymptotically A I normal where Em, Fn are the Susarla-Van Ryzin estimators of F1, F2. We also derive a consistent estimator for the asymptotic variance of 3(m) under HO. Kochar (1979) studied the above problem only for the un- censored case where he used the functional 5(F F 0‘s 8 O‘fir‘l’ {F](t)F2(s) - F](s)F2(t)}d(x‘F‘1(s) + (M)? (s)d(T=‘ (t) l’ 2) 2 l + (l-A)E2(t)) where O < A < l and E} = l-Fi, i = 1,2. In this paper, we show A A that the estimator 5(Fm, F") is asymptotically normal under appropriate conditions. We also derive a consistent estimator for its asymptotic variance under H0. ACKNOWLEDGEMENTS I wish to express my sincere thanks to Professor Hira Koul for his guidance in the preparation of this dissertation. The advice and encouragement he gave are greatly appreciated. I wish to thank Dr. V. Susarla for several very helpful discussions about my dissertation. I would also like to thank Professors Dennis Gilliland, Joseph Gardiner, and Sheldon Axler for their review of my work. The excellent typing of the manuscript was done by Mrs. Clara Hanna. Finally, I would like to thank my parents, Mr. and Mrs. George A. Blake, for their constant encouragement during my years as a graduate student. 11 INTRODUCTION AND SUMMARY ....................................... Chapter I . £N(¢) IN THE UNCENSORED CASE ....................... l. Asymptotic Normality of /N'(8N(¢) - A(¢)).... 2. Pitman A.R.E. ................................ II THE ESTIMATOR ZN(¢) .............................. 1. Notation and Preliminaries...z ................ 2. Asymptotic Normality of VN'(AN(¢) - AN(m)).... 3 Consistent Estimators of a? and oz Under H0 .................................... 4. Computational Aspects ........................ III THE ESTIMATOR SN ................................ l Notation and Preliminaries...z ................ 2. Asymptotic Normality of /N (6N - 6N) ......... 3. A Consistent Estimator of as ................. . «2 «2 4 Computational Form of OO,m and 00’” ........ APPENDIX A ..................................................... APPENDIX B ..................................................... BIBLIOGRAPHY ................................................... TABLE OF CONTENTS Page 1 7 7 12 I3 24 28 32 32 42 47 57 INTRODUCTION AND SUMMARY 1,...,Xm be iid G]; Yl""’Yn be iid 62’ where F1, F2, G1, G2 are Let X1,...,Xm be 11d F]; X be 11d F2; and Y],...,Yn right sided absolutely continuous distribution functions, i.e., F](t) = P(X1 > t), such that F](O) = F2(O) = G](O) = 62(0) I. All the random variables are independent. Also the life distributions F F2 are on [0,m) with densities -f1. -f2 TGSPECthEIY- 1! We get to observe Ui - min (Xi, Xi)’ 61'= [Xi < Xi] for l f i f m and Vj = min (Yj’ Y3), yj = [Yj < Yj] for l 5 j 5 n, where [A] is the indicator of the set A. This model is called the two sample randomly censored model. In it the random variables X} and Y3 are the censoring random variables. The Gi's may have all their mass at m which corresponds to the uncensoring model. On the basis of the above observations, we wish to test h = h2 a.e. Lebesgue measure (H) vs. H]: h2(t) 3 h](t) O‘T a.e. (u) and h2(t) # h1(t) ’a.e. (u) where h1, h2 are the failure rates of F1, F2 respectively, i.e., for i = l, 2, fi(t)/Fi(t) if F1.(t) > O (l.l) h.(t) + m if Fi(t) = 0 2 Our plan of constructing a test statistic is the following. Let F = {(F1, F2): F1, F2 are right sided absolutely continuous distribution functions and F](O) = F2(O) = l}. For (F1, F2) e F, 1et (1.2) D(s,t) = F](t)F2(s) - F](S)F2(t) for t 3 S 3 O and (1.3) T = sup {tz F2(t) > D}. If D(s,t) 3 O for all t 3 s 3 0 then F2(t) f F](t) for all t since F](0) = F2(O) = l. Thus if D(s, t) 3 O for all t 3‘s 3 0 then h2(t) 3 h](t) for all t 3 T. Now for t < T and D(s, t) 3 0 for all t 3 s 3 0, we have that F1(t) F](S) (1.4) ‘F—z'mz—Z—(ET f0T311T>t2520. F (t) But (l.4) implies that -1 is a nondecreasin function for t < T. F210 9 F Since F1, F2 are absolutely continuous and 4:1 is nondecreasing for 2 t < T, we have that Emma) - f1(t)F2(t) F3 (t) > 0 (1.5) for almost all t < T where almost all is with respect to Lebesgue measure. But (1.5) is equivalent to h2(t) 3 h](t) for almost all t < T. Thus, if (F1, F2) 6 F and D(s, t) 3 O for all: t 3 s 3 O . then (F1, F2) 6 H0 U H]. Now let (F1, F2) 6 H0 U H], then for t 3 T we have that D(S’ t) = F](t)F2(S) 3 0 where S 5 t. Also notice that if (Fl’ F2) 6 Ho U ”1’ then F](t) = 0 implies that F2(t) = 0. Thus if t < T then F](t) > 0 and F2(t) > 0. Since (F F2) 6 H U H], l’ O h2(t) 3 h1(t) for almost all t < T then implies that (l.5) holds for almost all t < T. Since F1, F2 are absolutely continuous and F (1.5) holds for almost all t < T, we have that 'F1 is a nondecreasing 2 function for almost all t < T. But F1, F2 are continuous, therefore, F 'F1 is nondecreasing for all t < T. Hence (l.4) holds for all 2 T > t 3 s 3 0. Therefore, if (F1, F2) 6 H U H then D(s, t) 3 0 O 1 for all t 3 s 3 0. Thus for (F1, F2) e F, we have that (1.6) (F1, F2) e Ho U H1 iff D(s, t) 3 O for all t 3 s 3 0. Now let w: [0, w) + [0,w) be a nondecreasing right continuous function such that w(0) = 0 and let t (1.7) Ms») = M93 F1. F2) = (I) 0(5. t)d‘P(S)d‘P(t)- 0‘58 If (F1, F2) 6 H0 then A(¢) = 0 since D(s, t)5 0. But if A(m) = O and (F1, F2) e H0 U H1 then D(s, t) = 0 a.e. with respect to “W x pcP where ucP is the measure induced by m. Suppose D(s, t) = 0 a.e.with respect to u and there exist a point (x0, yo) such ‘qu‘P that xo < y0 and D(xo, yo) > 0. Then D continuous implies there exists (a, b) x (c,d) such that (x0, yo) 6 (a, b) x (C, d), and for all (x, y) E (a, b) x (c, d), D(x, y) > 0. Thus if w is strictly increasing and continuous then “W x u? [(a, b) x (c, d)] = (m(b)-¢(a)) x (¢(d)-w(c)) > 0. Therefore, D(x, y) = O for all y 3 x 3 0 if A(w) = O and m is a strictly increasing continuous function. Hence for (F1, F2) e H U H1 and for those m which are strictly increasing 0 and continuous we have that A(m) = 0 iff (F1, F2) 6 H0 and A(m) > 0 iff (F 1, F 2) e H. Therefore, A(¢) is a reasonable measure of departure of H1 from H0 for a given pair (F1, F2). Observe that H1 implies that Fé 3 F1 where F'= l-F. From Doksum (l969) we recall that Fé is tail ordered with respect to F3 (F2< t 1'] Fé(x) - x is nondecreasing in x 3 0. Observe that F2 O a.e. imply h2 3 h1. To see this observe that FE h1(x) for all x 3 0. Thus the alternatives H1 are smaller than the slippage IV alternatives Ha: Fé 3 F1 with strict inequality somewhere, and larger than the alternatives F2 O a.e. In Chapter 1, we study the uncensored model where we use ONkp)= A(Q Fm, F") as an estimator of A(m) where Fm, Fn are the right sided empirical distribution function for F1, F2 and N = m + n. We obtain the asymptotic normality of /N'(£N(?) - A(¢)) and obtain a consistent estimator of its asymptotic variance. Also a member of this class of tests, one based on 9(x) = x, is found to have asymptotic Pitman efficency relative to the locally most powerful rank test equal to .84375 at Fe(x) = e-px exp {- 9-p2x2}, e > 0, equal to .7875 at 2 F6(X) = (1 - (3)6.x + ee'x(l - (l-e'x)3), e > O, and equal to l at F6(X) 1 -exp (-{x + e(x + e-x-l)}), e > O, the Makeham distribution. Whereas, the asymptotic Pitman efficeny of the Wilcoxon test relative to the locally most powerful rank test (L.M.P.R.) are .0938, .35 and .25 at the above alternatives. Also the asymptotic Pitman efficency of the Savage test relative to the L.M.P.R. test are .5, .7292 and .75 at the above alternatives. In Chapter 2, we study in the randomly CEM;OEEd model the asymptotic normalitKNo: {N (36(m) - Aq(¢))3 where AN(9) = 6 630(5, t) d 9(s)dm(t), Zfi(¢) = A .6 {Fm(t)Fn(s) - Fm(s)Fn(t)} d ¢(s)d m(t); Fm and Fn are the modified Susarla and Van Ryzen estimators of F1 and F2; and Mn + T = sup {tz F2(t) > O} at an appropriate rate, under the assumption that T 5 sup{t: 62(t) > 0} and sup{t: F1(t) > 0} 5 sup{t: G1(t) > 0}. We also obtain a consistent estimator for the asymptotic null variance of JN'XN(@). Kochar (1979) studied the above problem for the uncensored case using t 6(F1. F2) = I D(s. t)d(AF1(s) + (T-I>T,(s)>d<>.f1(t) + (l-x)‘F’2(t)) 0%8 O and 3(Fm, Fn) instead of A(9) and £(m) where F(t) = l - F(t). He found that the asymptotic Pitman efficency of the 3 test relative ‘ 6+1)x’ e > 0’ to the L.M.P.R. test is equal to .8203 at Fe(x) = e'( equal to .9843 at Fe(x) = (l-e)e'x + e e'x(l-e'x)2), e > O and equal to .7813 at Fe(x) = (l-O)e'x + e e'x(l-(l-e’x)3), e > 0. Whereas, the asymptotic Pitman efficency of the Wilcoxon test relative to the L.M.P.R. test is equal to .75, .625, and .35 at the above alternatives. , In Chapter 3, we will study the asymptotic normality of “fi-(EN - 5N) for the randomly censored case where M N t __ ._ __ EN = 6N (F1, F2) - g A O(s, t)d(ANF1(S) + (l-IN)F2(s)d(ANF1(t) + (I'AN)F2(t)), EN = 5N(Fm, Fn), AN = %-, and MN + T at an appropriate rate. In what follows ”3“ means ”converges in probability to" and "5” means "converges in distribution to". CHAPTER I 8N(¢) IN THE UNCENSORED CASE 1. Asymptotic Normality of /N(3N(O) - O(O)). In this section, we will restrict the model of Chapter 1 to the uncensored case, i.e., G1 and G2 put all their mass at w. Hence U1 2 X1, 61 E 1, Vi a Yj and y. s l for l f 1 < m and n1 < j < n. j m - - l. =._ Let N - m + n, Fm(t) - m .2] [X1 > t], Fn(t)nj)1 [Yj > t]. y < x] + O(x)[y 3 x1). Also assume that 0 < A < l, where X- -1im %-. g X h (X.; Y.). Thus 8N(¢) i=1 j=l is a two sample U-statistic of degree (1,1) with symmetric kernel Observe that AN(¢)= h(P and E(£N(O)) = A(O). So by the theoEy of2 U- statistics (c. f. pm and Sen), x/fi(3N(O) - Am) 3 MO, 3—1 ) where a? = Var(O(X) ] O dF' + O 2(X) F2( (X) - jY O2 sz- O(X) Z O dfé) and a; Var( (O(Y) ] O dF1 + O 2(Y)F1(Y) - OIOZ dF1 - O(Y) 7 O dF1), provided 0 Y 2 E h ¢(X; Y) < m. The following lemma gives a necessary and sufficent condition so that E hi (X; Y) < w. < w and f O2 dFé < m if and only if 0 8 Proof: E h (X;Y) = f 92 dF1 I W2 dFé + I R4 F) dFé + I T4 F2 di} 0 O O O {N m X °° X - 2 ) O(x) f O3 sz dF1 - 2 ) O(x) ) O3 df1 dFé. Thus if 0 O O O 2 , m 2 —- m 2 ._ E h (X, Y) < m, then f O dF < w and f O dF < w. W 0 l O 2 Conversely, if f O2 dF1 < m and f O2 dFé < m then 0 O O?(x)F1(x) + O and O?(x)F2(x) + 0 as x + w. So letting A - sup {O?(x)F1(x)} and B = sup {O2(x)F2(x)}, then 0 5 A < w, 0§x 2 . H5: hfé(x) = l + O(l — e‘x), i.e., 'Fé(x) = l - exp(-{x + O (x + e'x-l)}), the Makeham distribution. The alternatives H2, H3 and H4 have been considered by Chikkagoudar and Shuster (1974) where they have obtained the L.M.P. rank test for these alternatives. The L.M.P. rank test for H5 can be similarly obtained. . d A(x; F0, F6) Let A = d’e | e = O on on ch 2 _ ){x I F d - 2 f f F (s)ds dt} d F (x) 2 = O O 0 Y o t 0 ° °N N A(1 - A) : C(AN) = lim A , C(L.M.P.) = the efficacy of the L.M.P. rank test /N ON . . . . . C(AN) 2 for the alternative being conSTdered, and let e(AN, L.M.P.) - (C L.M.P. ) , the Pitman A.R.E. of A to the L.M.P. rank test. N ' - l. = - \ ’5 ‘ =.l - 2. A - 2 , o (3A(1 A,N) , C(AN) 2 A A , C(L.M.P.) = 72XTTZTT" and e(AN, L.M.P.) = .375. = P‘2(3A(T-A)N)‘*, C(A For H . _ 1; g FOP H3, A ' ON N): 4 (3A(]‘ A)) SJ 11w C(L.M.P.) = “2 (1' 5’ and ke(AN, L. M. P.) = .84375. For H4=1K11111+21 , ON =(3A(1-A)N)‘*, C(AN) = 1R31)(Rig: , C(L.M.P.) = {A(1-A)(4kg-])}%, and d%,LM.P .)- 3H32-U 2. (k+1) (k+2) 11 For H5, A = 3,011 = (3A(T.A)N)‘£5 C(AN) = Using Theorem 2.1 of 0-5 (1974),we have G(x; 0) = 1-e'x, G‘](x) = 1OXl-x), d MM 0) = e"‘. H(x; e) = EXPI-6(x + e‘x-m. O(u) 1%H(e"(u>; an, _ (l-u) 32 g t] i=1 + n (1.3) Nn(t) = Z LV. > t] i=1 3 + A- m 2 + N (U ) [6 = 0’ U f t] (1’4) G 1(t) = R] { m 2 } 1 2 l + N;(U£) + .,1 " 1 (1.5) §m(t) g Nm(t;Gm (t) and (1.7) en“, = NI1 dO (1 8) ZN(O) = n 111 08392 where M 5 MN + T sup{t: F2(t) > 0}. Also let M t (1.9) AN The following notation is used throughout this Chapter and Chapter 3: (1.10) H1 = F161 for 1 = 1, 2 ‘ S (1.11) H1(S) = P(61 = 0, U1 gs) = 6 F1 dG1, s 3 0 N S — (1.12) H2(S) = P(y1 - 0, V1 5 s) = 6 F2 dGz, s 3 0 S (1.13) H1(S) = P(61 ‘ 1, U1 5 s) = g 61 dF1, s 3 O as S (1.14) H2(S) = P(y1 - 1, v1 5 s) = g 62 dFé,s 3 o Ngm (1.15) Hm(t) - m - hm (1.16) Hn(t) - n N 111 (1.17) m Hm(t) = 1;] [61 = 0, U1 5 t] and ~ n (1.18) n Hn(t) - jZ1EYj - 0, vJ 5 t] Also F1], 6;] , and Hg] stand for 1/F1, 1/61, and 1/H1 respectively. 2. Asymptotic Normality of /N’(ZN(O) é AN(O)). We start this section by quoting some inequalities from Koul, Susarla and Van Ryzin (1981) and state them as Lemmas for convenience. 14 Lemma 2.1: (2.1) E{(1 + N:(Vi))'r|(vi, 11)} 5 c h'r H'" (v.) (2.1)' {E (1 + N;(u1))'”|(u. Q2)EM1+fi(wMTMO J . Y.). (v.. v.)1 g c n'r Hg“ v.) 1 1 J J mzr HO+N§OMTMA.OL(%.%M_ A O S 1 I —-a 1 1 A c: v 1 5 i, j 5 n and where C depends only on r. Lemma 2.2: . 2d (2.3) E{( en(v1) - 62(v1)) |(v1, )1 < C(n “T 1154de2 -2d -4d may H(G(U)-G(UHNHU a 11 0 . t ._ (2.4)' E{( Gm(t) - G1(t))2d} < c m'd ) H14d F1 dG1 0 whenever H1(t) > 0 for d = 1, 2,..., and where C depends only on d. Lemma 2.3: V. ~-1 -1 2d d -2d 1 4d (2.5) E{(Gn (v1) - 62 (v1)) |(v1, 1)1 < c n H2 (v1){£ H2 F2 do2 v. 1 - d -— I - -4d + (A 112‘5 F2 deg)”E + h d(1 - Y1) H2 (v1)1 15 U. . ~-1 -1 2d -d -2d 1 -4d - (2.5) E{(Gm (U1) - (31 (U.)) |(ui, 61)} 5 c m H1 (Ui){é H1 FldG] Ui + (A Higd Fldfii)€ + m d(1 - a.) Hi4d(ui)} t -8d - k + (6 H2 F2 d62) } t . ~-1 -1 2d -d -2d -4d -— (2.6) E(Gm (t) - 62 (t)) 5 c m H1 (t){g H1 F1 do1 t + (g Hi8d F] dE.)*} whenever H](t) > 0, H2(t) > 0 and for d = 1, 2,..., where C depends on1y on d. Lemma 2.4: (2.7) E{(%n(v,) - F2(v,))2d((v.. .1), 5 c n-d -6d ”2 (V1) w)Fhmvsp} 0 (2.8)' E(Em(t) - F](t))2d 5 c m‘d H;5d(t) whenever H1(t) > o, for d = 1, 2,..., and C depends on1y on d. We wi11 henceforth assume that T = sup{t: F2(t) > 0} f sup{t: 62(t) > 0} and sup{t: F](t) > 0} f sup{t: G](t) > 01. A150 without 1055 of genera1ity, we wi11 assume that T = + m. Now 1et F G , G and M = M satisfy the fo11owing conditions: 1’ F2’ 1 2’ AN N (2.9) f F1 d v < e for i = 1, 2 o 16 H13 d m)2 (2.10) N‘*( 1+ o as N + e 2 (3?1 HT4 d d)2 + o as N + e for 1 = 1, 2, -1 (2.12) N ( 1 1 M I o -5 M -3 2 (2.11) N (f H d m) -+ O as N + w o M I o (2.13) N'1 q?(M) H12(M) + o as N + e for 1 = 1, 2 (2.14) AN = 2mg + A as N + m with O < A < 1, and M = MN + m. Observe that M t . . ZN(¢0 - AN(¢0 = £ £ (Fm(t) - F1(t))(Fn(s) - F2(s)) dw(s)d v(t) M t . . - 6 g (Fm(s) - F1(s))(Fn(t) - F2(t)) d ((5) d ¢(t) M . (2 15) - é 91,m(t)(Fn(t) - F2(t)) d ¢(t) M . + g 92,n(t)(Fm(t) - F](t)) d ¢(t) t M where g]’n(t) = (g F](s) d 9(5) - { F1(s) d ¢(s))Et f M] t M and 921M(t) = (6 F215) d ¢(s) - { F2(s) d ¢(s))[t 5 M]. We wi11 show that under conditions (2.9) - (2.14), /N(ZN(¢) - AN(¢)) converges in distribution to a N(0, oz) random variab1e in three steps. The first step is to show that the first two terms on the right hand side of (2.15) converges to zero in L2. This step is done in Lemma 2.5. The second step is to show that the 1ast two terms on the right hand side of (2.15) can be approximated in L2 by a genera1ized U- ' statistic. This is done in Theorem 2.1. Fina11y, we show that this 2) genera1ized U-statistc converges in distribution to a N(0, 0 random variab1e. 17 Lemma 2.5: If conditions (2.10), (2.11) and (2.14) ho1d then ~ M . M . N E{(AN(v) - AN(v)) - (g 921M(Fm - F) dv - é 9],M(Fn - F2) dcp)}2 + 0 as N + w. Proof: By (2.15), we have M A M . N EHKNW) - AN 2)) - I 92.11”)“ - F1) d? +111 91.11% - F2) d o 0 0 - by conditions (2.10), (2.11) and (2.14). D Thus vN'(ZN(¢) - AN(w)) can be approximated in L2 by 18 A M A M /N(g 92,M(Fm - F1) do - é g1,M(Fn - F2) do). We W111 now proceed as in section 3 of Susar1a and Van Ryzin (1980) with some modifications to show that M . N E{g g1 M(Fn - F2) do - n‘*’(sn - E(Sn))}2 + o where +a M -1 -2 ~ M - (2.16) Sn = n {6(2 H2 - Hn H2 )M2,Md Hn + 5 g1,M G2 M 1 Hn dv} First observe that M M ~ _ 2-1 g g1,M(Fn ' F2) d? ' g g1,M{Hn(Gn -1 -1 - 62 ) + G2 (Hn - H2)} dm . M . -1 -1 “-1 -1 Now | 6 g1,M{Hn(Gn - 62 ) - Mn 62 ( Gz - 62 )} dm 1 ” M “-1 -1 1 ~-1 -1 ” M -1 ~-1 -1 2 5 4 (5 F2 do) 6 62 ( on - 02 ) do by equation (3.5) and Lemma 3.1 of Susar1a and Van Ryzin (1980). Therefore, 1 M . M -1 ~-1 N E{é g1,M(Fn - F2) dw - g g1,M(Hn 02 ( 02 - G ) + -1 2 62 (Hn ‘ H2)) d@} A 15 N M 2 M -1 2 2 (6 F2 d?) E{ g 62 ( 62 - on) d?) IA IA c N M 2 M -1 -4 2 . . ‘—§'(I F2 d?) (I G2 H2 d?) + 0 by condition (2.12). But n 0 0 19 M A - '1 A I 91 M M G2 ( G2 ‘ 62) d? ‘ é 91,M H2 62 ( Gz ‘ Gn)ch M -1 + £ 91.M Gz (Hn ‘ M2)( Gz ' G ) d? Since N E{ M (H - H ) G']( G - G ) d }2 0 91.M n 2 2 2 2 Q C N '1 ‘4 )2 f -—§-(g 91 M G2 H2 dm + 0 by condition (2.12) we have that n 3 M 6-1 M . ~ 2 M E{ g g1.M(Fn ‘ ”2 d? ‘ I 91, M( G2 (Hn ‘ ”2) + F2( G2 ' Gn)) MM} + 0 if condition (2.12) ho1ds. It is a1so easiTy seen that M A M t ~ t _ ~ N E {I 91 MF2( 62 - G)dv - f g] M(t) F2(t)(f --'-'—;-dHn - f Hzldemcp}2 0 ’ 0 ’ 0 1+Nn 0 converges to zero provided (2.12) hons. Now writing n(1 + N"')'1 - (2 Hal- Hg Hn) as (1 + N :) 1H 2(Hn -H 2) - H2 (1 + N w) + n(1 + N3)"1 H2 (Hn - H2)2 , it can be shown that -1 2 -2 + H2 ~ 2 Hn)d Hn d¢(t)} 2+ 0 M N E££ g1 M(t n provided condition (2.11) hons. Therefore, if conditions (2.11), (2.12) and (2.14) ho1d then M . -1 N E{g g],M(Fn - F2)d o - n F(sn - E(Sn))}2 + o. SimiTar1y, we have by conditions (2.10), (2.12) and (2.14) that A M _% 2 N E£é 92,M(Fm ’ F])d¢ ' m (Sm ' E(Sm))} + 09 M M u] M( =f 92 M F1 dwt M]. Hence we have the fo11owing theorem. 20 Theorem 2.1: If conditions (2.9) - (2.14) hon, then m N E{(ZN(v) - AN<¢)) - m‘*}2 + o where Sn and Sm are defined by (2.16) and (2.17) respective1y. Now 1et ¢n<(v1. 71). (v2. 2)) = u, M(V1) Hg‘mm1 - I O o < —‘ A :3 l-J + -1 _ “2,M(V2) hz (V2)[Y2 ’ 09 V2 5 M] V1AM VZAM 1 -1 ' 2 ((1) 91,M62 ”‘9 T (I) 91,M62 ‘1‘?) + (2.18) n-1 -2 _ - (25-){EV1 > V21M2,M(v2) H2 (V2)[Y2 ‘ 0» V2 5 M] -2 - + [V2 > V11U2,M(V1) H2 (V1)[Y] ' 0: V] 5 M1}- Lemma 2.6: Var(on) = 0(¢z(M) H§2(M)). Proof: As wi11 be shown be1ow, each term in the right hand side of (2.18) has a second moment bounded by a constant mu1tip1e (C1’ 02,... are constants) of ¢?(M) H52(M). In particuTar, the f011owing inequa1ities hon, E _ 2 -2 -2 ([Y] ‘ 09 V] f MJUZ’M(V]) H2 (V])) f C] H2 (M), - - 2 _ - - ‘ HUI 91," 62 dcp) 5 c2 Hg 62 dc?) - 2 c2 3 F2(v) $92 (u)<.:N> dwv) 5 c3 ¢?(M) H;‘(M). ~ and 21 M 2 -4 _ 3 -— ENv1 > V21u2,M(V2) H2 (V2)[v2 - 0. v2 5 M1) 5 c4 5 H2 (u) F2(u)d 62(u> -2 5 CS H2 (M) A11 three inequa1ities comp1ete the proof of the 1emma. 0 Theorem 2.2: S - E(Sn) + N(0, 0%) where " o 2_”-2 ” 2 e (2.19) 02 - 6 H2 (t) ({ 91 F2 d m) d H2(t) u w ‘ 2 and g (u) = f F d.w - f F d W . Provided o < w and 1 0 1 u 1 2 N" d?(M) H£2(M) + 0. Proof: First notice that V.AM n-8 s = g-n (v ) H‘1(v )[ = o v < M] + l- [J g 6'1 do n n § “2,M j 2 j Yj ’ j - n 1 0 1,M 2 _2 n n _2 _ n 321 kg] “2.M(Vd) H2 (Vj)[*j 0’ vi 5 MJEVk > VJ] ‘ (3)..| Z. ¢n ((vjs Yj): (vks Yk)) where 2' stands for summation over a11 (J, k) such that 1 f j < k f n. Letting vn,]((V], v])) = E(¢n|(v1, v1)). 1n,2 = d“. and 9n = E(n'% S"), we then have V1AM -1 -1 - - (flfil)u2’M(V1) Hé11V])LY] = 0, V1 5 M] + vaM -1 E(é 91,M 62 dv) 22 + -‘l _ 2 E(Uzm (V2 ) H2 (V2)[Y2 ‘ 0: V2 f M1) Mr M H-2 (T 1) of1A NZ M H2 d H2 V1AM f 6'] do + (911) (v ) H'1(v )[ = o v < M] 0 g1,M 2 n u2,M 1 2 1 Y1 ’ 1 - V1 AM VZAM %) I u2,M H2 d H2 + 51% 91.M G2 d?) + -1 _ 2 E(“2,M(M2) H2 (V2)[Y2 ‘ 0, V2 f M1)- From Hoeffding (1948), -% _ 4 n-2 2 Var(n Sn) - n n-1 Var(wn’1) + E(fi:T)'Var(Mn,2)’ and “ 2 E{(sn - 5(sn)) - 2 n'M 1 (Mn,1((Vj’ Yj)) - en)} %( $1 Var(wn 1) +— "2 MVar( 1n,2) + 4 Var(wn,1) -8 Var(wn’l) 2 _ 2 ’ fi:T' IA Var(on) + 0 as N + w by 1emma (2.6), since N'1 w 2(M) H? (M)-+ 0. Therefore, Sn — E(S") can be approximated in L2 by 2 n 3 X {on ”(V ., yj )) - en }. Since 2 . 2 (2.21) 4 Var(dn1) + 02 (see appendix A) and 02 < m, 2n 5 1 {Mn 1((VJ , yj )) - en } can be shown to be asymptotica11y norma1. Thus (Sn - E(Sn)) 0 N(0, 02). D 1 Theorem 2.3: S - E(S ) +~N(0, 02) where m m D 1 (2.22) 02 W2 12(t) (292 F1 de)2 d fi1(t) 23 u w 2 and 92(u) = 5 F2 do - I F2 d m provided 01 < w and u N'1 o?(M) H;2(M) + 0. Proof: By a simiTar arguement as in Theorem (2.2). 2 2 Theorem 2 4' /N (X ( ) - A ( ))1+ N(0 31-+ 02 ) if 2 < m 2 < m ' ' N ¢ N ¢ D ’ x TTT' ’ °1 ’ O2 and conditions (2.9) - (2.14) hold. Egggfi. By Theorems (2.1), (2.2), (2.3) and independence. 2 2 U U . . = "‘ J. __2 CoroTTary 2.1. Under ”0’ F1 F2, «N AN(¢)-E N(0, A + ]_x ) provided a? < a, cg < m and conditions (2.9) - (2.14) ho1d. Remark: Notice that if G1 and G2 put all their mass at + m, i.e., there is no censoring, then w y w y a; 2{6 g 91(5) F2(S)9](y)d¢(y)d¢NS) - g g 91(S)F2(S)91(y)F2(y)d¢(y)d¢(S)} y __ y ._ (a g,(t)dq>(t) d @1112 Y1 1 ._ 2 Var(g 91(t) d 2(t)) = Var(¢(Y1) 6 w dF1 + w (Y])F](Y1) 11 m I <92 d'F—1 - cp(Y.l) ] (p dfi). Also 0 11 x 2 x F + 2 1 2 F °° d? II II CT*~8 O 8 .< So the asymptotic variance of VN'(EN(¢) - AN(¢)), in this case wi11 be . Y Y -1 1 - 2 1 2 -— ” «— (1-1) Var(?(Yl) f m dF1 + w (Y1)F](Y1) - I m dF1 - ¢(Y1) I v d 1) 0 0 Y 24 1 x1 x1 w + 1' Var(o(x]) é o dFé + m2(X])F2(X1) - é o2 d?é - P(X1) I v d—é) x which is the asymptotic variance in the uncensored case. 3. Consistent Estimators of a? and a: under H0. Under H0: F = F2 = F, we have that 1 0% = Z {H£1(t) { F(s)do(s) E F(3)dcp(s)}2 d fi2(t). So 1et E (s)dcp(s)}2 d fi (t) (3.1) n 52 = M 1+n °N,2 é 0%(‘1' M . { Fn(s) d¢(s) where H (t) = %- 2 EV. < t, y. = 11. We wi11 now show that 53 2 + US under H0 provided conditions (2.9), (2.11), (2.12) p and (2.13) hon. Lemma 3.1: If conditions (2.9), (2.11) and (2.13) hon then V. 1 1+n 3 ~ M 2 (3.2) HZ {—1—— I (Fn(t) - F(t))d2 ("'L2 H§1(M))nJ2 (f H23 dCP)2 0 0 M M By conditions (2.9) and (2.l0), we have that n-%(f F dcp)2 (f H53 dcp)2 + 0. 0 0 Since w is strictly increasing, ¢(0) = 0 and MN + w, there is an No, such that \fN 3 NO we have ¢(MN) 3 ¢(l) > 0. Thus n‘la H;'(M) = o"(i) n'i oii) H5‘ g e"(i) n' by (2.l3). Therefore, V. J A M E(v- (~l:$-- f (Fn(t) - F(t))d¢(t) f chp)2 Ev. 5 M] + 0 J 1+N n(v. ) o v. 3 J J and so we have that vj M 91.2 4—1" f (an - F(t))d+0 by (212) 0 Thus 1 n+1 V' M 2 ' Hz(—————--H (v.))2(f chpf chp) y.[V.§Ml->0. J l+N n(v.) J J P J VJ Lemma 3.3: If conditions (2.9) and (2.13) hold then VJ. M ‘32 H§2(vj)yj(f chp)2 (f Fd3”(i+1> > Um] - P(V(k)))£v(k) 5 M112 -wwmnwk f M3:V(i+1> > ”(amJ ‘ W (U(j))(¢(V(i+1)AM) ‘ 9 (V(1) V U(j))) X [”m V V f M35V ’ U(J)]- Therefore, ~ M A M . M A t . (4.9) AN(¢) = 6 Fm dw é Fn d¢ - 2 g Fn(t) é Fm(s)d¢(s) d¢(t) - 1 m-l n-l . . J 2+ _£ [b =0] - fifi-jgo 120 (m-J)(n-1) £30 (1+$_£) V i 2+ _1 [d =0] X £20 (1+$_£) E {(¢(MAU(j+])) ‘ ¢(U(l)))[U(j) < M] X (¢(M A V(i+])) ' ¢ (V(i)))tv(i) < M] + 2 W (U(j)) X (¢(V(i+]) A M) ' ¢ (V(i) V U(j)))[U(j) V V(l) : M] EV ’ ”(3')J 2 ¢ (U(j+]))(@(v(l+l) A M) ‘ w (V(l) V U(j+]))) X E”(am V V(i) f M3EV<1+I> ’ ”(:M)3 2 2 -W ”(j)“ - CHAPTER III THE ESTIMATOR EN. 1. Notation and Preliminaries. Let Mt.. .. ... = ... (1.1) EN = 6 6 {Fm(t)Fn(s) - Fm(s)Fn(t)}d(ANFm(s) + (l-AN)Fn(s))d(ANFm(t) + (l-AN)Fn(t)) and M t (1.2) 5N = 6 5 {F](t)F2(s) - F](s)F2(t)}d(ANT,(s) = (T-AN)Té(s))d(xNT,(t) + (l-AN)Fé(t)). In this Chapter, we obtain the asymptotic distribution of /N (3N - 5N) and obtain a consistent estimator for its asymptotic null variance. 2. Asymptotic normality of /fi'(3N - 5 Let F M, G , G N)' 1’ F2’ l satisfy the following conditions as N + m, and for i = l, 2. 2 M (2.1) M‘2 1 F1 H§8 do, + o o M __ (2.2) N'] f H;]2 G;2 dF1 o o M (2.3) N" j H;5 H55 dF} +.o o M M -l -6 -l .— -6 -l -— (2.4) N 6H] (31 dF] 6H2 G1 dF1+0 M M N‘1 I Hi6 6;] dTé / H56 651 dig + o o o “ 33 and M t -l -l -12 -— -— (2.5) N é F2 62 6 H1 G1 dF1dF2 + o M t -l -l -12 -— N g F1 G1 5 H2 G2 sz dF1 + 0 Observe that N 2 M t . . . . x = (5N - 5N) = AN(£ é {Fm(t)Fn(s) - Fm(s)Fn(t)}dFm(s)dFm(t) M t (2.6) - I f D(s,t)d —F'](s) dl—'1(t)) o o M t ,. ,. ,. A : 7. + AN(l-le(g é {Fm(t)Fn(s) - Fm(s)Fn(t)}dFm(S)an(t) M t - 6 A D(s,t)d F](s) d F2(t)) Mt ,. ,. ,. .. z 7: + AN(1-AN)(6 é {Fm(t)Fn(s) - Fm(s)Fn(t)} d Fn(s)d Fm(t) M t - 6 6 D(s,t)d F2(s)d F](t)) 2 M t A A A A 1' I + (l-AN) (6 g {Fm(t)Fn(s) - Fm(s)Fn(t)} d Fn(S)d Fn(t) M t - f f D(s,t) d F2(s) d F2(t)). o o = i§:§ g {E (ui)fin(u.) - ?m(u.)% (U,)}{aj é;1(U ) m J J n J (an + TTU. g u, 5 M]. 34 Expanding the right hand side in the usual fashion and using Lemmas 2.2, 2.3, and 2.4, of Chapter 2, we get the following Theorem. Theorem 2.l: If conditions (2.1) - (2.4) hold then M t . . . . M t N E{(é éTFm(t)Fn(s) - Fm(s)Fn(t)} dF} dF} - g g D(s,t)dF} at}) (l -l “-l m l g g {(fi Tu.) - F,(U,))F2){(T- )H-](V ) ? F R dF [v < M] n J 2 VJ 2 3 v. 2 l,M T j - V.AM J J -2 M _ _ - 6 H2 F2 j F2 R1,MdF] dGzl X V.AM - 1- {fJ G 1 R d? - W F R dF }) n g 0 2 T,M T 6 2 l,M T X M i = l, 2, and 0] M(x) = 6 D(y’x)dFl ' I D(y,x)d?, : X Proceeding as above with each term in (2.6), we get the following theorem. Theorem 2.3: If (2.1) - (2.5) hold then M t AV (EN - é 6 0(5, t)d(ANFM + (l-AN)?é)d(AN?, + (l-AN)Fé)) - AV (Afi, (l-AN)2, AN(l - AN)) - (5&1) - S§2)) converges in L2 -to zero, where S§]) and Séz) are defined in appendix B. With the notation as defined in appendix B, we have the following two theorems. (l) (2) Theorem 2.4: If I < m and X < m, then X“) + Z<2) ’ A l-A JM (5&1) - s§2)) E N 20 3 ( 36 (1°) (1) 1) Proof: Since E(SN ) = Q for i = l, 2, IN + Z < m for ‘ - fl+ E J— 1 1 1 1 1 - l, 2, m l/A, n + ]_A , and the U, s, 61 5, vi 5, and vi 5 are all independent, we have that (l) (2) fir-(5,81) - 5,3“) + N(0,a___1:__a_ + EH) for all a 6 R3. D Thus by the Wold-Carmer device, we may conclude that (l) (2) Jfi'(s§1) - s§2)) 6 N3 (9, I—:—- + 4:35) . D (l) (2) Theorem 2.5: If conditions (2.1) - (2.5) hold and I < m, I < m then xfi (aN- g 5 01s. m1 (TNF11s s) + (l-AN)F2(s))d (TNF111 ) + (T-TNTFZTtTTT converges in distribution to a normal random variable with mean zero and variance 2 (T . (l-A)2. A( (T A) MIL—-+ légr-Mfi , (l-A)2. TTT-TTT Proof: This is a result of theorems 2.3 and 2.4. D Corollary 2. 1: Under HO: F‘3° = F2 = F, if conditions (2.l) - (2.5) hold, I Gfl F2 dF < e, and j 6'2 F3 as, < e for 1 = T, 2, then /N3 + N(0, 08) where ND 2_T_-1°°-T 2_ 4 6- -T°°-1 2 co - 64 {T 6 G1 (7 F 18 F + 11 F )dF + (T-T) g 62 (7 F -l8 F4 + 11 F5TdF‘}. 37 Proof: Under H 0, (1) 1 1 2 °° _ _ oo 1 = 1 T 2 (%-j G1‘(F2 - 3F4 + 2F6)dF - g%-f Biz (F3 - 2F5 + F7)d§,) 2 2 4 o 0 But ] e;2 (F3 - 2FS + F7)dfi, = j 6;] (3F2 - 10F4 + 7F5TdF, so 0 0 we have that (1) 1 l 2 w ._ I = T T 2 (fig) f 6;] (7F2 - 18F4 + llF6)dF , 2 2 4 o and (2) T T 2 m _ ._ I = l 1 2 (fig) 1 62‘ (7F2 - 18F4 + llF6)dF . 2 2 4 0 Therefore, by Theorem 2.5, /N EN + N(O,og). D 0 Remark: Notice that if (31 and G2 put all their mass at m, . . . 2 _ l . . i.e., there 15 no censorTng, then 00 - 210 A(l-X) , thch 15 the asymptotic null variance of Kochar's statistic VN'EN . 3. A Cohsistent Estimator of °3 . Let (3.1) 03 1 = j 6;] (7F2 - 18F4 + 11F6)dF' for 1 = l, 2 ’ o (3 2) “2 = ) é‘] (7F2 - 18F4 + 11F )d; ' O0,m 0 m m m m m and - A M - x - - (3.3) 52 = f G“ (7Fn - 18F: + lng)dF o n Theorem 3.l: If 03’] < m, 03,2 < w and conditions (2.l), (2.2) hold then 83,m P 03,] and 83,” 3 08,2 under H0. Progf;_ Consider (3.4) 2 6;] F: dFm = %.igl 6&2 (U,TF; (U1) a, [U1 < M] + %-§ é$2(ui)F; (Ui)(2 + M; (U1)) 1 [51 = 0, U1 5 MT But 2 “-l -l 2 *2 + -l _ 5512mm (Up-G1 (11.)) Fm(Ui)(2+Nm(Ui)) [61-0, U15M] +2.;e2wT1? (U)(2+N (11))“ Ta =0 U fG] F dF. T-l P 0 “-12- "-12—”42- Since I G1 F dF < m, then f G1 F dF + f G F dF1 . Thus 0 o o to prove (3.7) we need only show that M 1'" -2 2 -l 2 — (3.8) T117; {(31 (U1.)F(U1.)<51.[UifMJ-j'G1 F dFl-rO. 1-l 0 P -2 2 M -12 — But E(G1 (U )F (U.) 6. EU. < M3} = f G F dF , and 1 1 1 1 - O l 1 G;3 F4 dF'+ 0 by (2.2). Hence statement (3.8) is true which implies that statement (3.7) is true if condition Var(L.H.S. of 3.8) 5 n‘ 0‘53 (2.2) hold. 40 Therefore, by (3.6) and (3.7) we have that the first term @ on the R.H.S. of (3.4) converges in probability to f 6;] F2 dF}. 0 By similar arguements, we have that ? G.1 F4 d; + ? G'1 F4 d? and ? G'1 F6 d; + ? G.1 F6 d? Therefore 0 m m m P 0 l 0 m m m P 0 l ' ’ 2 . . . 2 00,m ; CO 1 prov1ded conditions (2.l), (2.2) hold and 00,1 < m. D Combining this result with Corollory 2.1, we have the following theorem. Theorem 3.2: Under H0: F1 = F2 = F, if 0811 < e, 0312 < e and conditions (2.1) - (2.5) hold, then 8 5N f4. :3. T’ ”‘°’ " __4_. + 2 m n . «2 4. ComputatTOnal form of 00,m and 00,” . Using the same notation as in Section 4 of Chapter 2, we have that *2 _ l 2 .4 . (4.l) 00,m - fi-§% 2(U(1.))(7Fm (U (. )) - ll Fm(U(1))+- 18 Fm(U(1))) x {1.1. + (T-b,T(2 +Nm(U(1)))'1}[U(1.) 5 M1 m l + m-1 i [b2=01 - , + - = m 3 Z (m-T)2 H ($ 1 $_})4 (7 1 2=l . i . 2Tb = O] _ 11 (m-1)2 (2 + m-T) 2 and (4.2) 4l . . i . 4Eb = O] ) x (b1. + (l-b1.)(2 + m-1)")[u(1.) < M1. - J _. 4Ed = O] = n 3201-1)2 11 ($3,243) 1 (7 j 2=l 3:112 2 + n-J thz = O] - ll ( ) n (1 + n-J) 1 2:1 . j . 4Ed = 0] n;;_4 2 + n-g 2 2=l x (41. + (1-111.)(2 + n-TT“TTv(1.)5MT. APPENDIX A In this appendix, we want to obtain (2.2l) where 2 Mn 1 is defined by (2.20). Observe that v AM 4 Var(wn11) = Var(é1 911M 6;] d¢ + “n,M(vl)H21(Vl)[Yl = 0, V1 5 M] V‘AM -2 ~ 1 -l ' g u2,M”2 dH2 T fi'{“2,M(V1)M2 (V1)CV1 ‘ 0’ V: f M] v AM 1 -2 ~ + 6 “2.MM2 dM2}) = Var(A + B - C + D). Now we see that Var(D) = O(n"2 H£2(M)) since “2 M is bounded and that V AM I] H'2 dfi < F‘1(M)G"(M) = H“(M) 0 2 2 - 2 2 2 where we have used the equality d M2 = F2 dGé. Consequently, -2( 2 MT) + O(n“ Hg‘UTTT 4 Var(w ) = Var(A + B - C) + O(n'2 H n,l provided Var(A + B - C) is bounded for large N. Thus a; < m will imply M -2 M 2 z -1 -2 4 Var(4n11) = 6 H2 (t)({ 911M {2 d4) dH2(t) + 0(n H2 (M)) where fi2(t) = P(y1 = l, v1 5 t) if M 2 M Var(A + B - C) = g H; (t) ({ gl,M F2 d¢)2 dH2(t). 42 43 Since 00 mm -2 ~ E(C) = g £ “2 M(S) H2 (S)dH2(S)dH2(t) M m _2 __ N = 6 { p2,M(S)H2 (s)dH2(t)dH2(s) M _] ~ = g “2,M(S)H2 (s)dH2(s) = 5(3), we have Var(A + B - C) = Var(A) + E(BZ) + E(CZ) + 2E(AB) - 2E(AC) - 2E(BC). But ” t“” -1 2 —- ” t“” -1 (Al) Var(A) = f (f g.I M62 dw) dH2(t) - (f f 91 M62 dQ dH 2(t))2 0 0 ’ 0 0 on UN _ = 2 é {6 91 M(u f g] M WV)G (V)d¢(v)d¢(u U)}dH2(t) M (g 91,M(u)eg‘(u)27 dfiznwwunz U M u = 2 g g1,MF2(u) g g1,M(v)eg‘d¢(v)d¢ M u 2 g 91,M(”) 6 g] M(V)F2(V)d¢(V)dw(U) 2 -2 - _ -2 ~ “2,M H2 F2 dGz - H dH (A2) E(B)- niM 2 2 N I 0%: 0%: (AS) IT! A (.3 N v II 0‘5 8 N 0‘53 0‘38 2E(AB) -2E(BC) -2E(AC) II N N N 0%.: 0“: 0‘“: N (f > 3 A O‘fi T.’ N U 2 A C V I N A C V D. I N A C v V N {l I N A ff V > 3 2 u N N _ (u)H§ (u) g uz,M(v)H52(v)dH2(v)dH2(u)dH2(t) O‘Hf” 1: N 3 9 l -2 ~ u N u2,n(U)H£ (U) 6 u2,M(V)H2 (V)dH2(V)dH2(U) -1 UN 4 ~ ,M(t)H2 (t) g 91,M(”)Gz (U)d¢(U)d H2(t) ‘C A (+%3 N tAM ~ g1,M(v)F2(v)d¢KV)) g g],MHg‘(t)de(t) M v 91,M(u)eg‘ 0° SAM _.' SAM -2 .... _ '2 g (6 91,M(U)Gz (u)d¢(u))(é “2,M(t)H2 (t)dH2(t))dH2(s) M _2 t _] m __ -2 6 uz’M(t)H2 (t){é g],M(u)GZ (u) { dH2(s)d¢(u) M ~ + { g],M(u)eg‘eg‘(u)d¢ng(t) { g1 M(u)F2(u)dw(u)dH2(t) 0 ’ 3 M M t _ N -2 I (I 91 M(v)F2(v)dcp(v))Hg‘(t) 6 91 M(U)Gz](u)d¢(u)dH2(t) o t ’ ’ M -2 6 ug’M(t)H§2(t)dM2(t) 45 M M v = -2 g g]’M(u)G£1(u) j 91 M(v)F2(v)(f H2](t)dfi2(t))d¢(V)d¢(U) u ’ u 2 M 2 -2 ~ - é p2,M(t)H2 (t)dH2(t). By adding (Al) through (A6), we obtain that M u Var(A + B - C) = 2 f 91,M(U)F2(U) é 9],M(V)62](V)d¢(V)d¢(U) U -2 é 91,M(U)F2(U) 6 91,M(V)F2(V)d¢(V)d@(U) 2. However, 2 2 H-2 dH = M M F 2 22 ~ ‘ H2 M H2 2 ' é ({ g],M(u) 2(U)d¢(U)) H2 (t)dH2(t) M u _2 u ~ = -2 g g],M(U)F2(U){l H2 (t) f g1’M(V)F2(V)d¢(V)dH2(t)}d¢(U) M u v H_2 ~ = 2 6 g,,M(u)F2(u u) g 91 M(v)2 )F (v) é<- H2 (t))dH2(t)d¢(v)d¢(u) M u =25MMwMgo591ngnMM)MM) M u _] -2 g 1 (U)F2(u U) A 9] M(v)G2 (V)d¢(V)d¢(U) M u dz + 2 g 9] M( F2(U) 6 g1,M(v WF ”(v )(I H2 2(t) )dH 2(t ))d¢(V)d¢(U). Thus V Var(A + B - c) = 2 j g1,M(u)F2(u){é g1 M(v)F2(v) 6 H; T ()()'f‘2 u 2 F { H 91 M u 2 u o 2 t , M_2 M u = 2 6 H2 (t)({ 91,M(u)F2(u) { 91,M(V)F2(v)d¢(V)d¢(u))dH2(t) M _2 M 2 z = 6 H2 (t)({ 9] M(U)F2(U)d¢(U)) dH2(t) which comp1ets the proof of Theorem (2.2). APPENDIX B In this appendix, we present the notation that is used in Chapter 3. ~ x __ M __ x ._ M ._ Let R1,M(x) = g F1dF2 - i Fisz, Ri,M(x) é F1dF] - i F1dF], Oi M(X) = f D(x,y)dFi(y) - I D(X.y)dFi(y). and ’ 0 x x ._ M ._ Qi M(x) = 6 D(y,x)dFi(y) - f D(y,c)dFi(y) for i = 1, 2. Aiso ’ x (1) - (1) (1) (1) ' (2) _ (2) (2) (2) ' 1et SN - (SN1 , 5N2 , 5N3 ) and SN - (SN1 , 5N2 , 5N3 ) where 5(1) = 1-2 (»){(1-5 )H‘](u ) ? (Q + F R )d?‘ [u < M] N1 m 1 2 i 1 i u. 1,M 1 2,M 1 i - U.AM 1 1 _2 M __ __ - 6 H1 F({mhM + F1 R2,M)dF1)dG]} U.AM + 1.2 {f 6'1 R df - ? F R df 1 m i 0 1 2,M 1 0 1 2,M 1 1 L -1 M X - -— + 5'1 2{G1 (”i)51 Q],M(Ui)[Ui 5 M3 - 2 g 6 D(y,x)dF]dF1}, 5(‘) = 1.2 »{(1-5 )H"(u ) ? F R dF [u < M] N,2 m i 2 i 1 i u. 1 2,M 2 i - U.AM 1 1 _2 M __ - 5 H1 F1 i F1 2,Msz dG]} 1 1 Sé3) = 5'; (%){(1‘5 2) N2 and 3'5”] 2) N3 II 3 [—J LJ-M A NV V r5 A _; I .< C, I N I A < v “fl A O —J 2 + F2 Rln)dF2 [vj 5 M] < > z (.1 (4M a-‘H 0““.