MOLECULAR CONSTANTS. 0F N02 FROM HIGH-RESOLUTION ABSORPTION SPEB'I'RA AND MAGNETIC CIRCULAR DICHROISM AND MAGNETIC CIRCULAR BIREFRIIIGENCE 0F I‘IO: AND N02" Thesis for the Degree of Ph. ’D. MICHIGAN STATE UNIVERSITY ’ ' RICHARD E. BLARK 1970 i LIBRARY Michigan Sta to University This is to certify that the thesis entitled MOLECULAR CONSTANTS OF N02 FROM HIGH- RESOLUTION ABSORPTION SPECTRA AND MAGNETIC CIRCULAR DICHROISM AND MAGNETIC I CIRCULAR BIREFRINGENCE OF NO AND N02 presented by RICHARD E. BLANK has been accepted towards fulfillment of the requirements for __Ph_'P_L_ degree in 3, & %zz¢i\ Major professor PHYSICS Date Aprll 17, 1970 0-169 ABSTRACT MOLECULAR CONSTANTS OF NO2 FROM HIGH-RESOLUTION ABSORPTION SPECTRA AND MAGNETIC CIRCULAR DICHROISM AND MAGNETIC CIRCULAR BIREFRINGENCE OF NO AND NO2 by Richard E. Blank High-resolution, near-infrared absorption spectra of the (0,0,3), (1,0,3), and (3,0,1) vibration-rotation bands l4N1602 and 15N1602 have been analyzed. Ground state of constants have been given by Olman and Hause as well as vibration-rotation interaction constants from which initial values for A, B, and C in the upper states were predicted. Improved values for the upper state constants including centrifugal distortion and empirical P6 terms have been obtained. Prediction of improved ground state constants showed no significant difference from those previously reported. Spin splitting was observed and analyzed for a number of transitions in the (0,0,3) band of both isotopes since the splitting was large and resolution favorable in that region (~0.03 cm-l ). Effective spin-rotation coupling constants were obtained for the excited state. No spin splitting was observed in either of the (1,0,3) or (3,0,1) bands due to weakness of absorption and reduced resolution (No.05 cm-l) in that region. Richard E. Blank The (1,0,1) and (2,0,1) bands previously analyzed in this laboratory combined with the results from the (0,0,3), (1,0,3), and (3,0,1) bands have been used to calculate vibrational and vibration-rotation interaction constants. Finally methods based on those described by Stalder and Eberhardt for measurement of magnetic circular dichroism and magnetic circular birefringence were used to obtain these Spectra for the (0,0,3) band of N02. Magnetic circular birefringence spectra were also observed for the 3-0 band of NO. The Jones-Mueller matrix mathematics of polarized light is discussed, and a general matrix describing the effect of a dichroic, birefringent sample on any incident state of polarization has been derived. The Jones-Mueller calculus was then used to derive intensity expressions for magnetic circular dichroism and magnetic circular birefringence. MOLECULAR CONSTANTS OF NO2 FROM HIGH—RESOLUTION ABSORPTION SPECTRA AND MAGNETIC CIRCULAR DICHROISM AND MAGNETIC CIRCULAR BIREFRINGENCE OF NO AND No2 By Richard E. Blank A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1970 TO KAREN ACKNOWLEDGMENTS It has been a privilege to work and study under the patient guidance of Professor C. D. Hause. His dedication to teaching and research is evident to all who know him. I am grateful to Professor T. H. Edwards who has given freely of his time and who has provided many good ideas. If '31:... “(fig 3—. U" V I appreciate the aid of Professor P. M. Parker who has taken the time to answer many questions. My thanks also to Professor R. D. Spence for the help that he has given. I would like to thank Dr. Melvin Olman who contributed much to the development of this work. I appreciate the assistance received from Dr. Donald Keck and Dr. Lamar Bullock who contributed computer programs which were very useful in reducing the data. I wish also to thank Dr. Peter Willson, Dr. Richard Peterson, Dr. Lewis Snyder, Dr. Tom Barnett, and Dr. Kent Moncur for their stimulating discussions and various contributions. . I am grateful to the Department of Physics and the National Science Foundation for their support of this work through assistantships, fellowships and grants. My thanks to the Michigan State University Computer Center staff for their assistance and consideration. I am deeply grateful to my parents, Mr. and Mrs. E. H. Blank, for their encouragement. My father contributed iii several ideas for experimental apparatus. A special thanks to my wife, Karen, for her help in the preparation of this thesis and for making it all worthwhile. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS. . . . . . . . . . LIST OF FIGURES LIST OF TABLES LIST OF APPENDICES . . . . . . . . . INTRODUCTION . . . . . . . . . . . CHAPTER. . . . . . . . . . . . . I ENERGY EXPRESSIONS. . . . . . II III GEOMETRY . . . . . . . SYMMETRY CONSIDERATIONS . . SELECTION RULES . . . . . ASYMMETRIC ENERGY EXPRESSIONS SPIN-ROTATION INTERACTION. . EXPERIMENTAL METHODS AND ANALYSIS. IDENTIFICATION OF TRANSITIONS ANALYSIS OF ASYMMETRIC ENERGY UPPER STATE CONSTANTS . . . SPIN SPLITTING ANALYSIS . . GENERAL FEATURES OF THE BANDS VIBRATIONAL CONSTANTS . . LEVELS Page . iii . vii .viii . ix . l . 3 . 3 . 5 . 6 . 7 . 10 . 16 . l7 . l7 . l8 . 22 . 22 . 32 VIBRATION-ROTATION INTERACTION CONSTANTS. 39 THE MATHEMATICS OF POLARIZED LIGHT JONES-MUELLER CALCULUS. . . 42 IT'S-3:64:331'ffis“ ~_L_ . -. 1 - IV PHASE SENSITIVE DETECTION OF MAGNETIC CIRCULAR DICHROISM (MCD) AND MAGNETIC CIRCULAR BIREFRINGENCE (MCB) IN NO AND NO . SUMMARY. . REFERENCES. APPENDICES. 2 THE JONES INSTRUMENT MATRIX OF THE SAMPLE O O O O O I O O O CONVENTIONAL MAGNETIC ROTATION . MAGNETIC CIRCULAR DICHROISM . . MAGNETIC CIRCULAR BIREFRINGENCE. DICHROISM AND BIREFRINGENCE SPECTRA SUGGESTIONS FOR CONTINUED WORK . Vi 48 49 50 52 57 62 66 68 69 71 10. 11. 12. l3. 14. 15. 16. LIST OF FIGURES Geometry of the N02 The spin splitting scheme. molecule. Spin splitting in the P, Q, and R branches The complete (0,0,3) band of 14N02. . . The K_l = o subband of the (0,0,3) of 14No Typical spin doublets in the (0,0,3) of 14 The complete (1,0,3) band of 14N02. . . The K_1 = O and l subbands of the (1,0,3) of 14NO . . 2. O O O O 14 The (3,0,1) band of NO 2" Experimental apparatus for magnetic circular dichroism . . . . Chopper construction . Schematic diagram of the difference signal The balancing scheme for magnetic circular dichroism . . . . Experimental apparatus for magnetic circular -birefringence . . . Magnetic circular birefringence in the 3-0 of NO. . . . . . Magnetic circular dichroism and birefringence for the (0,0,3) of NO vii 2 Page l3 14 33 34 35 36 37 38 52 S3 54 56 58 63 64 Win-cu ”“177.“ L ' VFW—1 ‘ i Table II III IV VI VII VIII IX LIST OF TABLES Ground State Constants for N0 . Upper State Constants for the (0,0,3) of N0 Upper State Constants for the (1,0,3) of NO Upper State Constants for the (3,0,1) of N0 Spin Split Lines in the (0,0,3) of N0 2 2 Effective Spin-Rotation Coupling Constants. Vibrational Constants. . Vibration-Rotation Interaction Constants Jones Vectors . . . . Jones Instrument Matrices viii 2 2 2 Page 19 23 24 25 26 29 40 41 46 47 .3. man.- “it? Appendix II III IV VI VII LIST OF APPENDICES Computer Programs. VIBCON ROTCON Frequencies for Frequencies Frequencies Frequencies Frequencies Frequencies for for for for for the the the the the the ix of of of of of of 14NO 15NO 14N0 ISNO l4No lSNo Page 71 72 80 88 94 99 103 107 110 ‘ . In—r—Iu-nwm” l ; ! INTRODUCTION Nitrogen dioxide and nitric oxide have been of interest in molecular spectroscopy because they are among the very few stable, paramagnetic molecules. The single unpaired electron possessed by these molecules produces unique spin coupling and magnetic effects. This work is primarily concerned with studies of vibration-rotation bands and magnetic effects in N02(l)-(6). Also included are experimental magnetic circular birefring- ence spectra of NO which are of interest in themselves. The NO spectra, because of their intensity, were useful in refining the experimental techniques for the weaker magnetic circular birefringence and dichroism spectra of N02. The first section of this work details the analysis of the (0,0,3), (1,0,3), and (3,0,1) vibration-rotation spectra 14N16 15N16 of 0 and 02 in the near-infrared. The spectra 2 are analyzed on the basis of the slightly asymmetric rotor with the spin-rotation interaction as a perturbation. From these results combined with the previously analyzed (1,0,1) and (2,0,1) bands are derived the upper state constants, spin-rotation coupling constants, vibrational and vibration— rotation interaction constants. The second part of this work details the experimental results of recent techniques (7) (8) for obtaining separa- tion of magnetic circular birefringence and magnetic circular dichroism effects which have generally been measured in a combined form in magnetic rotation studies (9) (10). An introduction to the Jones-Mueller mathematics of polari- zation is given which is used to derive intensity expressions for the two experimental arrangements. Experimental spectra are presented for N02 and NO as well as an indication of the methods by which predicted spectra may eventually be generated and compared to the observed. Whowhnmu‘m 7:? . . .- L A. ‘ 7 I ,. CHAPTER I THEORY ENERGY EXPRESSIONS This part of the work is a continuation of the invest- igations begun by Olman and Hause on the absorption spectra 14Nl60 and 15N160 of 2 2. A discussion of the theory of energy levels, selection rules, and spin-rotation interaction is presented. GEOMETRY Nitrogen dioxide is a slightly asymmetric, non-linear, triatomic molecule whose geometry is illustrated in Figure l. The assignment of axes a, b, and c is as shown. Each axis has associated with it a moment of inertia Ia, Ib, and IC respectively. It is conventional to define recipro- cal quantities: h Rz—T— 8n cI r where R = A,B,C and r a a,b,c respectively. Molecules are classified according to the relative value of the reciprocal moments: A = B = C Spherical Top A > B = C Prolate Symmetric Top 4:0-N-O = 134"4', rs o = 1.1934 A Figure 1 Geometry of the N02 molecule. fif—w..7_i-.' ._. a -_ A = B > C Oblate Symmetric Top A > B > C Asymmetric Top In each case the axes have been assigned to the molecule such that A 1.3 1 C. Nitrogen dioxide closely approaches the prolate symmetric top since B and C are nearly equal. One method of denoting the degree of asymmetry is by the value of Ray's asymmetry parameter K = 2B - A - C A - C where K = +1 (-1) for an oblate ( prolate ) symmetric top. Nitrogen dioxide is found to have K = -0.994 so that it is a close approximation to the prolate symmetric top. This is an aid in analysis since energy levels for symmetric tops can be expressed in closed form, and perturbation theory yields excellent values for levels of slightly asy- mmetric tops. SYMMETRY CONSIDERATIONS As can be seen from Figure l, nitrogen dioxide belongs to the C2V group with the b-axis corresponding to the symmetry axis. This symmetry has an important consequence in that if the two identical nuclei have zero or integral spin the total eigenfunction for the state must be symmetric and the molecule follow Bose statistics. This means that even though the symmetric top energy levels are split by the asymmetry of the molecule, only the totally symmetric levels are populated i.e. half of the levels are missing. The missing levels can be determined as follows. All transitions discussed here are within the 22 ground state which is symmetric. If the vibrational state is denoted by (vl,v2,v3) then the vibrational eigenfunction is symmetric (antisymmetric) as v3 is even (odd), and all upper states observed here have v3 odd. Finally the nature of a rotation about the b-axis is such that the rotational eigenfunction is symmetric under a 1800 rotation about the b-axis if K_1 and K+1 are both odd or both even, and antisymmetric if one is odd and one is even (11). Thus the rotational wave— function is symmetric if K_l + K+1 is even and antisymmetric if K_1 + K+1 is odd. Since the total eigenfunction must be symmetric, we have for the ground state (Symmetric)x(Symmetric)x(Symmetric) + Symmetric and for the upper state (Symmetric)x(Antisymmetric)x(Antisymmetric) + Symmetric Thus YR must be symmetric in the ground state and anti- symmetric in the upper state. As a consequence of the A missing levels symmetric rotor notation, KANK(N), may be used without ambiguity where K is K—l' SELECTION RULES All observed bands were of Type A which correspond to parallel bands in the near-by prolate limit. For such bands the selection rules are AK__l = 0 AN = 0,11 if K_l # O (1) AN = :1 if K = 0 AK_l = :2 transitions which would be allowed by the finite asymmetry of the molecule were not observed presumably due r“ to the very low intensity of such lines. ASYMMETRIC ENERGY EXPRESSIONS . ‘d't "M'fi-.- . r ' . The energy levels have been determined from the perturbation expansion: E = E0 + El + E2 + ESR ESR represents the spin-rotation interaction energy and will be given in detail in the next section. E0 is the rigid rotor energy for the slightly asymmetric molecule based on the Wang reduced energies(12). E0 = (gamma) + (A-(B+C))w (2) 2 ‘7— A,B, and C are the molecular rotational constants, and w is the Wang reduced energy. The method used to obtain the Wang energies is based on the diagonalization of the Wang reduced energy matrices by numerical techniques(l3). El includes P4 or centrifugal distortion terms of the 4 E = Z T.X. = + T 1 Taaaaxl bbbbx2 + Taabbx3 + Tababx4 (3) The T's are treated as parameters and account is taken of possible vibrational dependence by allowing the T'S to be determined independently in the upper and lower states. It was found that there is a strong correlation between Taabb and Tabab in each of the bands studied. In order to deter- mine a Significant estimate of Taabb the value of Tabab was calculated from the expression of Chung and Parker (27). = -16 A B C Tabab e e LONG) (A) Explicit expressions for the x's are given by Hill (l4)(21). x1 = 1 r2[N2(N+l)2-61-2N(N+l)62] - (r-2)[2rN(N+1) I6 2 4 + 2rd3 - (r-2)]} X2 = l {(l+S)2[N2(N+l)2—2N(N+1) + ] 1'6 Z Z — (l-s)261 + 2(1-SZ)[N(N+1)62 + 531} (4) x3 = l{(l+s)[rN2(N+l)2 - 2(r-l)N(N+1) + (r-2)] 5 Z Z + r[(1-s)61 - 25N(N+1)62] - 2[1+s(1-r)]s3} r 2 4 X = 1 N(N+1)

-

- 6 } 4 21 z z 3 _ 2 _ 4 _ 2 2 61 — (2w w )/bp 5 = ( - w)/b 2 z p _ 2 _ 4 63 — (w )/bp and _ 2 2 r = C2/A2 S _ Ce/Be e e Since the equilibrium rotational constants Ae’ Be’ and Ce are not known it is necessary to use the ground state values for those constants in the calculation of r and s. P6 TERMS E2 consists of P6 terms as described by Pierce, {I DiCianni, and Jackson (15). These terms are of the form I E = H N3(N+1)3 + H 2 2 2 2 N NKN (N+l) + H 4 6 NN(N+l) + H (5) K K Where the H's are empirical constants and the are expectation values of the operator P2 5 Pa' is very nearly K_l since in the prolate limit the wavefunctions are eigenfunctions of Pz‘ THE COMPLETE ENERGY EXPRESSION Thus combining E0, E1, and E2 the complete energy expression exclusive of the spin-rotation interaction can be written E = (gimme) + [A - (signw 2 2 4 + E Tixi (6) 3 3 2 2 2 4 6 + HNN (N+l) + HNKN (N+l) + HKNN(N+1) + HK 10 SPIN-ROTATION INTERACTION The only angular momentum of an electronic character in non-linear molecules is a spin momentum since the orbital motion of electrons is generally "quenched" or suppressed. Thus the primary perturbation on the energy levels of the non-linear NO2 molecule is an Mfg interaction where N’is the ‘ 'nur‘rg‘T-“ifl m1 F rotational and S the spin angular momentum. The spin magnetic moment interacts with the magnetic field due to molecular rotation which gives an interaction energy prop- ortional to N-S. The field arises partly from the motion of charges in the molecule due to simple rotation, and partly from the transfer of a small amount of angular momentum from end-over-end rotational motion to electronic orbital motion(16). The spin Splitting is small compared to the differences in rotational energy levels. The result is a doubling of the spectral lines for K_1 # 0. A detailed treatment is discussed by Lin (17) in which the spin-rotation Hamiltonian can be represented in the form: _ N-g Z EijNiNj i,j = a,b,c (7) HSR " i , j N“‘(“TTN+ ' The spin splitting observed in this work is at most 0.2 cm-1 so the symmetric rotor approximation may be used. In this approx1mation eij = 0 for i # j and Ebb = Sec“ So HSR can be written in the fOrm 11 _ . 2 2 2 _ 2 H — N S [e aNa + ebb(Nb + NC)] — N‘S [eaaNa 2 2 SR _ _ a + ebb(N -Na)] (8) Since the symmetric top eigenfunctions are eigenfunctions of N: and N2 and Since = J(J+1) - N(§+1) - S(S+l) (9) we have ESR = [Ebb + (Eaa'ebb)§:fi¥II (10) Then neglecting Ebb in comparison to the second term in Eq. (10) and defining an effective 6 and a K such that SR 6 = Eaa — Ebb (11) and 2 KSR = K e (12) NIN+I) we can write ESR = KSR[J(J+1) - N(N+l) - S(S+l)] (13) 2 Since there is one electron and one unit of spin angular momentum, S = 1/2, J can assume only the values J+ = N + 1/2 (14) J' = N - 1/2 then '1 '1 '1 ‘i i. 12 + ESR — KSRN/Z (15) ESR - -KSR(N+1)/2 thus the magnitude of the splitting of a given level is P3 + - 2 . S ESR ' ESR = KSR(N+l/2) = K é§;i{§)€ (16) i The only transitions observed have AJ = AN so that the I spin splitting is not directly measurable as seen in Figure 2. p” Denoting the J+" to J+' and J-"to J-' transitions by 0+ and P: v- reSpectively we have for AK = 0 0+ — v- = K2(N'+l/2)e' - K2(N"+l/2)e" (17) N'(N‘+l) N"(N"¥1) It is important to note that even if 5' = e" splitting will occur in the P and R branches due to the dependence on N. In the more typical case the effective spin‘ splitting constants differ so that splitting also arises in the Q branch. Then as can be seen in Figure 3, it is possible for the spin splitting to be increased in the R(P) branch and decreased in the P(R) branch. In addition the spin splitting is not symmetrical about the asymmetric energy levels so one need not expect symmetrical splitting in the observed transitions. If one makes the assumption that the electronic structure is unchanged by isot0pic substitution it follows (18) that 13 Figure 2 J‘I'" E’+ E+I ‘ s.r E, / _’ - \i E! + Egic . /\ ' ' * v+ 1’. +II J E"+ EII’ I! _ _..II fJ II _ FE+%£ A schematic diagram of the observed transitions giving rise to spin doubling. 14 Figure 3 - N +1 N ~ UPPER N —'I/2 I STATE A A N +1 I N GROUND N -—I/ L. STATE ' P Q R A schematic diagram of spin splitting in the F, 0, ind R branches . 15 (18) where R assumes the values A,B,and C as r assumes a,b, and c. Since Baa is so nearly equal to the effective 5 in N02, it is a valid approximation to write = ——— (19) This makes it possible to combine the spin data from isotopes of the molecule for a particular band. Constants determined from the combined data agree very closely with those deter- mined from each isotope separately. Conversely one can use this as a verification of the premise that the electronic structure is unchanged by isotopic substitution. CHAPTER II EXPERIMENTAL METHODS AND ANALYSIS The Michigan State University high-resolution, near- infrared spectrometer as previously described (9)(10)(l9), was employed to produce absorption, Zeeman, and magnetic rotation spectra of the (l,0,3),(3,0,l) and (0,0,3) bands l4N1602 and 15N1602. The spectra were recorded on of strip charts utilizing a dual pen recorder in which one pen traced the spectrum of NO and the other recorded 2: calibration fringes for the purpose of accurate interpolation between calibration lines of known frequency. The speCtra were photographed and measured on the Hydel system (30), and each chart was measured twice to reduce measuring error. Two runs were made of the (1,0,3) of 15NO and the (3,0,1) 2 and (0,0,3) bands of both isotopes. The (1,0,3) of 14NO2 required additional runs because the only available calib- ration lines were situated directly above the band. The (0,0,3) band was run at a pressure of 15-18 Torr and an absorbing pathlength of 6.3 meters. The (1,0,3) and (3,0,1) bands were run at 50 Torr and 40 Torr respectively with a 15.75 meter pathlength. The method of calibration has been described by Rao et. al. (20). The spectra were calibrated using the precise near-infrared absorption frequencies measured by Rank and co—workers (20). 16 ‘17 The standard errors of the least squares fits to obtain calibration constants averaged 0.002 cm.1 for the (0,0,3) band and 0.003 cm‘1 for the (1,0,3) and (3,0,1) bands. The effective resolution obtained was approximately 1 1 0.05 cm‘ for the (1,0,3) and (3,0,1) bands and 0.03 cm_ for the (0,0,3) band where conditions were favorable. IDENTIFICATION OF TRANSITIONS The individual transitions were identified through the use of ground state combination differences. These differ- ences have been determined by microwave authors and Olman and Hause (l) (22). For a given band all possible differ- ences of the frequencies were formed and compared to the known ground state combination differences. ThoSe which agreed within a given tolerance were tabulated and were extremely useful in identifying series of lines and consequently subbands. Once a few transitions had been identified the predicted frequencies from the least squares fits could be used in conjunction with the ground state combination differences in order to identify additional lines. ANALYSIS OF ASYMMETRIC ENERGY LEVELS GROUND STATE The ground state energy levels and molecular constants are assumed known from previous work. Attempts to refine 18 the ground state constants employing the data from the (1,0,3), (3,0,1), and (0,0,3) bands yielded no significant changes in the values reported by Olman and Hause (1). Thus these ground state values are accepted and for completeness are listed in Table I. UPPER STATE CONSTANTS Analysis of the upper state rotational, centrifugal distortion, empirical P6 terms, and spin splitting constants proceeded as follows: 1. A sufficient number of unperturbed lines were identified to enable prediction of the entire unperturbed spectrum of the band. 2. Spin split lines were identified and analyzed yielding effective spin splitting constants. 3. A single unperturbed frequency was determined for each spin split line and these values, in addition to the unsplit lines, were entered in the least squares fits of the unperturbed spectrum. The upper state constants may be determined by forming upper state combination differences or by using ground state constants plus observed transitions to determine the set of upper state vibrational and rotational energy levels. The latter method was used because it is difficult to determine A and H from combination differences, and furthermore, K series deviating from the predicted Spectrum are clearly 19 Table I Ground State Constants for N02(cm-l) 14 15 N02a NOZa r: A 8.00251 1 0.00010b 7.63062 1 0.00029 1 B 0.433665 1 0.000004 0.433717 1 0.000016 I c 0.410493 1 0.000014 0.409492 1 0.000030 1 1 (-11.37 1 0.28) x 10‘3 (-9.15 1 0.5) x 10'3 i, aaaa . —6 -6 Tbbbb (-1.418 1 0.023) x 10 ( 1.40 1 0.04) x 10 1 (6.91 1 0.24) x 10""5 (5.87 1 0.4) x 10"5 aabb x -8.215 x 10‘6 -8.l75 x 10‘6 abab —7 HKN (-1.1 1 0.6) x 10 0.0 ”K (2.8 1 1.1) x 10"5 0.0 a Ref. (1) b 95% Simultaneous confidence intervals throughout The 95% confidence interval is approximately 4.5 times as large as the standard deviation. The ground state constants were obtained by forming ground state combination differences. 20 defined. The complete asymmetric energy level expression given by Eq.(6) is not in a form directly suitable for ' least squares and iterative procedures. The expression was linearized by Hill (21) by writing the approximation E = CA + E(B+C) + n(B-C) 0 T T ‘20) After some manipulation (22) one finds the expressions _ 2 g _ 2 g = N(N+l) - (21) n = ( - w)/b Z P where b = C-B p 2A-B-C (22) So the complete linearized energy expression can be written E = cA + £(B+C) + n(B-C) + Xxiri + HNN3(N+1)3 + HNKN2(N+1)2 2 2 i 4 6 + HKNN(N+1) + HK (23) Corrections to the energy levels in a given vibrational state can be expressed as: 21 AB = cAA + £A(B+C) + nA(B-C) + inAri + N3(N+1)3AHN + 2 2 i (24) 2 2 2 4 6 N (N+1) AHNK + N(N+l)AHKN + AHK Experimentally one observes not energy levels but transitions between energy levels so we can write the freq- uency of an observed line as v = 00 + E - E (25) where V0 is the band origin, and a prime indicates the upper state while a double prime indicates the lower state. One finds corrections in the molecular parameters by using least squares to minimize the differences between the observed and predicted frequencies. This can be written Av + AE' - AB" (26) vobs - vpred = o If the ground state is known AE" vanishes and vobs - vpred = Avo + AE' (27) In order to employ iterative methods it was necessary to provide initial values for A, B, and C in the upper state from which c, E, n, and could be calculated. The least squares fits were done utilizing program Specfit contributed by Olman (22). The resulting upper state constants are given in the following tables. (0,0,3) Table II 22 (1,0,3) Table III (3,0,1) Table IV SPIN SPLITTING ANALYSIS Least squares methods were used to analyze the spin splitting data. Since 6' and 8" occur linearly in Eq. (17) least squares methods can be applied directly to determine I values for these constants. The data was analyzed utilizing program SPINFIT contributed by Olman (22). The values of 5 derived from the various fits are given in Table VI. The combined fits agree very closely with the separate fits which may also be used as a confirmation that the elect- ronic structure is unchanged by isotopic substution. GENERAL FEATURES OF THE BANDS (0,0,3) of N02 The (0,0,3) is a strongly absorbing band located in the region from 4695 cm"1 to 4775 cm_1 for 14NO and from 2 4611 cm"1 to 4676 cm-1 for 15N02. A previous analysis ascribed the observed structure to the overlapping of a type A and a type B band, but with the exception of one weak series underlying the (0,0,3) of 15NO2 we have found that at room temperature the structure can be accounted for entirely by the type A band. Analysis has produced fits of nearly all observed lines with K_ as high as 7 l and N as high as 48. The branches of differing subbands 23 Table II Upper State Constants for N02 (cm-1) 003 14 15 N02 N02 00 4754.20910.006 4655.22810.009 A 7.342710.0012 7.021710.0019 B 0.42545710.000032 0.42578110.000046 C 0.40291610.000024 0.402214:0.000036 -2 -2 Taaaa (—0.992:0.025)x10 (—0.8361 0.044)x10 -5 -6 Tbbbb (-l.5110.14) x 10 (-l.5810.l9) x 10 -5 -5 Taabb (9.0610.38) x 10 (7.2610.81) x 10 -6 -6 Tababb —8.215 x 10 -8.l75 x 10 -7 HKN (-l.7720.31) x 10 0.0 HK (2.96110.093)xlo"5 (0.2910.17) x 10‘5 No. Lines Identified 550 466 No. Lines 416 308 Used SD of Fit 0.0082 0.0092 a 95% simultaneous confidence intervals throughout b Calculated values The value of Tabab is in all cases fixed at the theoretical value given by Chung and Parker (27). 24 Table III Upper State Constants for N02(cm-l) 103 14N02 15N02 “o 5984.70510.004a 5874.95110.010 A 7.414010.0087 7.079110.0057 B 0.42321110.000039 0.4235510.00016 c 0.39935810.000017 0.39872810.000065 Iaaaa (-1.2010.19) x 10‘2, (—0.9910.15) x 10"2 Tbbbb (-1.54010.076)xlo‘6 (-1.3910.40) x 10"6 Taabb (8.612.1) x 10'5 (6.811.0) x 10'5 Tababb —8.215 x 10'6 -8.175 x 10'6 HKN 0.0 0.0 HK 0.0 (1.0710.71) x 10"5 No. Lines Identified 301 323 No. Lines 214 233 Used s0 of Fit 0.0065 0.0199 a 95% simultaneous confidence intervals throughout b Calculated values 25 Table IV Upper State Constants for N02 (cm-l) 301 F: 14N02 15N02 2 00 5437.54010.012a 5367.31610.026 g A 8.014010.0056 7.532810.0090 i B 0.4238410.00011 0.4245210.00027 y c 0.39951910.000079 0.3991110.00019 Taaaa (-3.9710.31)xio"2 (4.8610.895)x10"2 Tbbbb 0.0 0.0 raabb (1.1610.37)xio'4 0.0 Tababb -8.215xio'6 -8.175xio'6 HN 0.0 0.0 HNK 0.0 (4.613.6)xio‘8 HKN 0.0 (—9.413.3)xio'6 HK (2.2210.24)xio'4 (-2.70010.097)xio"3 No. Lines Identified 228 152 No. Lines Used 171 121 so of Fit 0.009 0.016 a 95% simultaneous confidence intervals throughout b Calculated values Branch P FUIOIOIOOIOIOOO'U'U I! 50 9U 50 5U 5U 50 9U K‘ 2 6 Table V (0,0,3) Band Spin-Splittings (cm-1) 11 12 14 OBS +0.0515 +0.0642 -0.0440 -0.0995 _000571 -0.063O -0.0428 -O.1008 -0.0755 -0.0552 -0.0440 -001080 -0.0873 NO 2 PRED +0.0594 +0.0595 -0.0356 -0.0865 -0.0592 -0.0654 -0.0441 -0.0992 -0.0730 -0.0568 -0.0460 -001010 -000818 15 OBS +0.049l -000652 -000459 -0.0626 -0.1105 -0.0569 -0.0593 -0.1049 -0.0431 -001845 -000982 -000673 NO 2 PRED +0.0425 -000465 -000359 -0.0523 -0.0987 -0.0511 -0.0651 -0.0942 -0.0436 -001674 ‘000957 -000785 Branch R W W W W W W W W W W W W W W W W (0,0,3) Band Spin-Splittings (cm- 14 9 10 11 12 13 10 11 12 13 14 15 16 10 12 15 16 17 18 Table V OBS -0.0652 -0.0444 -0.0286 -0.0260 -0.0224 -0.0876 -0.0636 -0.0729 -0.0592 -0.0384 -0.0407 -0.0422 -001036 -0.0626 -0.0440 -0.0524 2 NO 7 2 PRED -0.0582 -0.0505 -0.0445 -0.0397 -0.0357 -0.1578 -0.0789 -0.0695 -0.0620 -0.0559 -0.0507 -0.0464 -0.0427 -0.0983 -0.0668 -0.0615 -0.0570 (con't) 1) 15 OBS -0.0542 -0.0534 -0.0461 -0.0835 -0.0556 -0.0491 -0.04l9 -000269 -O.1027 —0.0461 NO 2 PRED -000642 -0.0551 -0.0860 -0.0747 -0.0528 -0.0479 -0.0404 -O.1093 «0.0501 Branch R W W W W K -1 (0,0,3) N 19 20 21 22 23 2 8 Table V 14 OBS -000416 -0.0403 NO Band Spin-Splitting 2 PRED -000437 -0.0413 1) 15 (cm- OBS “000437 -000403 -000354 -000447 PRED -0.0468 -0.0439 -0.0413 -0.0369 29 Table VI Effective Spin-Rotation Coupling Constants For the (0,0,3) Band of NO 14 15 N02 N02 a 1000 0.181644 0.173210 1201b 0.1782 1 0.0014 0.1693 1 0.0016 b (1000 - 6201) 0.0036 1 0.0010 0.0038 1 0.0010 1003C 0.1629 1 0.0013 0.1555 1 0.0010 C (8000 - 6003) 0.0187 1 0.0013 0.0177 1 0.0010 EOOBd 0.1627 1 0.0012 0.1556 1 0.0019 d (€000 - 1003) 0.0189 1 0.0012 0.0176 1 0.0019 a. From microwave values b. From Ref. (1) c. Fitting 14NO2 and 15N02 separately d. 14NO2 and 15N02 data combined 0.”!!! vnmnum 30 overlap considerably, and the Q branches of the various subbands are widely separated. In the (0,0,3) of 14NO2 the Q lines for Kel = l are grouped about 4752 cm"1 while for K—l = 6 they occur about 4730 cmnl. Figure 4 displays the complete picture of the (0,0,3) band of 14NO2 and Figure 5 shows a detailed picture of a portion of the (0,0,3) showing the K_1 = 0 subband. A perturbation was found affecting the K_1 = 5 subband in the (0,0,3) of 14N02. The deviation of observed from predicted frequencies increased with N and was as large as 0.16 cm.1 at N = 42. A similar perturbation was noted in the K_l = 4 subband of 15NO2 and of approximately the same deviation. Spin splitting has been observed and analyzed in the (0,0,3) band. The high resolution, strong absorption, and large splittings permitted observation of 32 resolved or nearly resolved spin doublets in 14NO and 27 such 2 doublets in 15N02. Splitting is small in the P branch, intermediate in the Q branch, and large in the R branch. The possibility of this was considered previously. The maximum observed splitting was 0.135 cm-1 14NO 1 for R4(4) in 15N02. Very few doublets for R5(6) in 2 and 0.185 cm— were observed in the P branch due to the small splitting, overlapping, and weakness of the spin split lines. A list of the observed doublets is given in Table V. A small region of the (0,0,3) of 14N02 is shown in Figure 6 with 31 several resolved spin doublets. Effective spin rotation splitting constants are listed in Table VI. (1,0,3) of N02 The (1,0,3) is a weakly absorbing band located in the region from 5923 to 6000 cm"1 for 14N02 and from 1 15 5825 to 5890 cm’ for NO The complete (1,0,3) band 2. is shown in Figure 7, and a portion of the (1,0,3) is seen in Figure 8 where the K_1 = 0 and the K_l = l tran— sitions are indicated. Note the missing lines in the K_l = 0 series. Q branches of the subbands were present but too weak to be analyzed. Transitions have been ident- ified with K__l as high as 5 and N as high as 46. Good fits were obtained for series through K_l = 3. The K_ = 5 1 series was very weak, and the K_1 = 4 series was perturbed. Spin splitting was not observed due to overlapping, low resolution (~0.05 cm-l) in the region, and weak absorp- tion of the low N lines. (3,0,1) of NO 2 The (3,0,1) is a Type A band extending from 5380 cm-1 to 5456 cm"1 for 14N02 and from 5330 to 5387 cm-1 for 15N02 P, Q, and R branches were observed in both bands. P and R lines were identified and analyzed by least squares methods to yield molecular constants. This also led to correct predicted positions for the O subbranches wh.ch are present. '9? I E r; If . . 32 The weakness and overlapping of the Q subbranches prevented identification of individual lines. Figure 9 Shows the K_ 1 = 0 subband of the (3,0,1) of 14N02. Lines were identified 14 15 through K_ = S for NO and K_ = 4 for NO The K_ = 4 1 l subband was perturbed. 2 1 2' Due to the weak absorption and overlapping of band lines spin splitting was not observed in the (3,0,1) bands. VIBRATIONAL CONSTANTS The vibrational energy levels can be expressed as a sum of harmonic oscillator energy levels linear in the vi quantum numbers and quadratic anharmonic terms in the form 3 i G(v v ,v ) = )30).(v.+l) + '23 Z X..(v.+ 1)(v.+ l) (28) 1' 2 3 1 1 1 2 i=1 j=l 13 1 2 3 2 with a zero point energy of i z x.. (29) G(0,0,0) = 1 lj=l 3 "saw Ami + I i 1 2 41 Thus the band origins of the measured bands are given by vo(vl,v2,v3) = G(vl,v2,v3) - G(0,0,0) (30) This equation is in a form adaptable to least squares analysis. In addition to the (1,0,3), (3,0,1), and (0,0,3) bands the (1,0,1) and (2,0,1) bands of 14N02 and 15N02 analyzed by Olman and Hause (l) were included in the least 33 .N 02 ea we seen Am.o.ov mueaasoo mes it an? IJ—hlt‘ «a 2: mad v musmfim .1. 34 .pcwnnsm o u HIM 0:» mo puma mcfl3oam 4H no 6665 Am.c.ov 0:» no coenuoa a N 02 4F , L._.) «cased... .=__::_____.C____.%.L _ _ _ _ _ .1. m musmflm 35 r .5 :. «JEE‘I’YINIE .HIEU mno.o ma mcfluuwamm 0:» now£3 SH Amvmm mm noun humansop Um>HOmou o» Ammvmm mm £05m mocaa pmcmpmoun Eoum onwmcwn mumHQDOU seam no musmflm . m: .23 $2.35 85 m r I_.||| w A as; E a _ 65:. as; 621 6.0.8 36 ‘1 .N 02: Va we came Am.o.HC wumeasoo one J1 Jar .2... 2.. h musmfim J... 37 .ucmmmum mum mocha z cm>o .mcflmmflfi wocHH z co>w Sufl3 wco ppo cm can mcfimmfifi mmcfla z poo sufiz USSQQSm cm>o cm "momma: can H n aux How mpSSQQSm o3u mum when» Hwaosc commxo Hmoflucwpa 03» Mo wocowwnm map can oasooaoe onu mo >uquE>mm onu.ou one A u aux can 0 n HIM on“ NO puma mcfl3onm Noz any waco o u HIM Mom .mUCMQQSm ea «0 econ Am.o.Hv 0e» m0 conunom a —B “F ._.. ‘ it). .1 m wusmflm 38 .60060eeee etennsm o n Hus man sees esoem we moz 00 hate Aa.o.mc was "a themes 3“ «Jen omen . WES oo_¢m 818 . 1:3; e I s; 5:: :Z:::::... 3 Eon e 2 cu as $96.. .2... to .n 39 squares analysis. Note that in each of the bands v2 = 0. Thus it was necessary to supply values for X12 and X23 from the work of Arakawa and Nielsen (5). The accuracy of the results thus depends on the accuracy of that work. Program VIBCON was written to perform the fits utiliz- ing the Efroymson least squares subroutine. The resulting vibrational constants as well as all the constants from Arakawa and Nielsen are given in Table VII and a listing of VIBCON is given in Appendix I. h VIBRATION-ROTATION INTERACTION CONSTANTS The rotational constants A, B, and C depend on the vibrational state as follows: 3 R. = R - Z a.v. (31) where R = A, B, or C and the vi are the vibrational quantum numbers. This equation is easily adapted to least squares analysis and program ROTCON listed in Appendix I, was written to perform the desired fits. Values of a? and a? for both isotopes of NO2 are given in Table VIII. 40 TABLE VII VIBRATIONAL CONSTANTS (cm'l) Constant 14No a 14No b'c 15N0 a 15N0 b'c 2 2 2 2 61 1357.8 1355.9 1342.5 1338.5 02 756.8 756.8 747.1 747.1 03 1665.8 1663.5 1628.0 1628.3 xll -9.0 -8.1 -8.8 -7.4 x12 -9.7 -9.7 -9.5 -9.5 x13 -28.7 -29.8 -27.7 -28.4 X22 -005 -005 -004 -0c4 X23 “-207 "207 —206 .2.6 x33 -16.4 -15.6 -15.6 -15.3 Arakawa and Nielsen's values Present work w2, X12, X22, and X23 are fixed at the values given by Arakawa and Nielsen 41 TABLE VIII VIBRATION-ROTATION INTERACTION CONSTANTS 141102 15N02 0? —0.075310.0083 -0.04210.038 a? 0.00235410.000094 0.0022210.00019 6E 0.0028210.00050 0.0026910.00058 a? 0.220810.0070 0.19910.032 63 0.00271810.000079 0.0026510.00015 cg 0.0026410.00042 ' 0.0025610.00049 CHAPTER III THE MATHEMATICS OF POLARIZED LIGHT In the discussion which follows it is interesting and economical to apply the powerful methods of matrix algebra which have been developed to describe the polarization state of electromagnetic radiation and the changes introduced by various optical elements such as polarizers and retarders. Since these methods are not generally common knowledge it is thought desirable to include a brief description of the mathematics and some useful matrices. More complete infor- mation is available in POLARIZED LIGHT by Shurcliff (23) and the RCA Institute Lecture Notes entitled MODERN OPTICS by Sutton and Panati (24). Also references to several papers are found within these references. THE JONES-MUELLER CALCULUS Two forms of matrix algebra have been developed to aid computation in dealing with phase relationships, intensity, and polarization of light. One form, the Mueller calculus utilizes 4x4 matrices and the Stokes vector as its basic units. It is most useful in dealing with incoherent beams and partially polarized light. The matrices in this 42 raw .1 J" _ .‘7.'.-?.-" 1 gm. fie—.5 - .- M '5." ;- 43 theory have been derived empirically, and thus have a firm experimental basis. Jones calculus is based on 2x2 matrices and the Jones vector which is simply a vector of the amplitudes and phases of the x and y vibrations for a beam propagating along the z axis. Jones calculus is suited to completely polarized light and addition of coherent beams. Thus Jones calculus is best suited for this work and will be discussed briefly. The general Jones vector can be written J = X . (31) for some particular amplitudes of the electric vector EX and Ey with some definite phase angle ex and sy. An harmonic time variation is assumed. The type of polarization depends on Ex' Ey’ and the relative phase difference. There is ng_Jones vector for unpolarized light or partially polarized light. Where absolute phases and intensities are unnecessary one uses standard normalized Jones vectors. For example the complete vector for light plane polarized along the x axis is J = X (32) The normalized Jones vector is 44 eiex J 1/2 = (33) (J1J) where J+ is the Hermitian conjugate of J. Since ex is arbitrary one writes the standard normal- ized Jones vector 1 J' = (34) 0 A Jones matrix can be associated with each optical element which alters the polarization state but leaves the direction of prOpagation unaltered. These matrices when operating on the Jones vector of the incident light yield the Jones vector of the emergent radiation. A list of useful Jones vectors is found in Table IX and Jones instrument matrices are found in Table X. As an example consider the case of a polarizer- analyzer assembly with the axis of the analyzer making an angle 6 with the polarizer axis. Suppose the polarizer produces linearly polarized light with a Jones vector 1 (35) 0 The Jones matrix of the analyzer (Table X) operating on the incident Jones vector can be written 2 . 2 Cos 0 COSOSInB l Cos 0 . . 2 = (36) CosGSine Sin 0 0 CosOSine .__ 45 so the amplitudes are 2 Ex = Cos 0 (37) E = SinGCose Y and they are in phase. The intensities are found from I * * 2 I = J J = E E + E E = C03 6 (38) x x y y in agreement with the Law of Malus. In this way the theory of polarization is reduced to a series of matrix multiplications often with great simplification of the problem. Note that if light described by a Jones vector, [J] , is incident on a series of elements in the order A,B,C, to yield a Jones vector, [J'] , then the matrix multiplication takes the form [J'] = CBA [J] (39) The Mueller calculus is similar in application since the Stokes vectors and Mueller matrices are tabulated. The Mueller calculus deals directly with intensities and is useful only where phase information is not required. 46 TABLE IX JONES VECTORS POLARIZATION FORM JONES VECTOR FULL STANDARD NORMALIZED LINEAR POLARIZATION P - - r1 0 Axele 1 Horizontal 0 = 0 ——— 0 0 ' u) (hi r — F‘ o 0 0 Vertical 0 = 90 is A e l I Y y h- .1» 1.4) fl 0 is 1 11 l Oblique 0 = :45 X Axe x — 11-l filed CIRCULAR POLARIZATION i q Axe 8x -i Right Circular hue H Axe1(sx+w/2) ‘ is Axe X 1 ei(sX-‘n'/2) /2 Left Circular A x F——_-_'1 H P- ELLIPTICAL POLARIZATION Axelex (CosR)e-1Y/2 General Elliptical Ayeley (SinR)e1Y/2 TanR = Ay/AX y = e + e 47 TABLE X JONES INSTRUMENT MATRICES LINEAR POLARIZERS AZIMUTH OF TRANSMISSION AXIS, MATRIX 0 P cl 0 l 0 0 0 0 .L - F q 0 0 0 90 0 l J- ‘I V 2 . Cos 0 Cosesine General 0 2 CosBSine Sin G‘J IDEAL LINEAR RETARDERS or RETARDANCE 6y= 90o AZIMUTH OF FAST AXIS, e - WI 0 CIR/4 0 0 . 0 e-lfl/4 b. -. F.-. o e 10/4 0.1 90 11/4 0 e r 1 1 ii 0 = 1450 — /2 ii 1 CIRCULAR POLARIZERS Right Circular HWIH Left Circular NIH Fri I I—‘ P_]' I—‘ I-“| 64H F7 P. 5.1- d, n 'l CHAPTER IV PHASE SENSITIVE DETECTION OF MAGNETIC CIRCULAR DICHROISM (MCD) AND MAGNETIC CIRCULAR BIREFRINGENCE (MCB) IN NO AND NO2 Conventional magnetic rotation spectra are obtained by inserting a sample of gas between a crossed polarizer- analyzer pair, applying a magnetic field, and recording the intensity of the radiation emerging from the analyzer. These spectra are a combination of contributions from magnetic circular dichroism and birefringence. In this series of experiments adaptations of the techniques described by Eberhardt and Stalder of the Georgia Institute of Technology (7)(8) have been applied to separate and record magnetic circular dichroism (MCD) and magnetic circular birefringence (MCB). The techniques for the measurement of MCB were applied to the 3-0 band of NO and the (0,0,3) band of NO Measure- 2. ment of MCD requires production of right and left circularly polarized light. This can be accomplished with quarter- wave plates and properly oriented polarizers or by electro- Optical techniques such as Pockel's effect. In these initial experiments quartz quarter-wave plates were selected as being the simplest method to verify that MCD signals could be detected. The quarter-wave plates were purchased from 48 49 Carl Lambrecht Co. and were centered at 2.11 microns which is the center of the (0,0,3) band of N02. The radiation at 2.11 microns was essentially circularly polarized and MCD could be measured, however, the radiation at the 3-0 of NO at 1.8 microns showed such ellipticity that measurement was not feasible. THE JONES INSTRUMENT MATRIX OF THE SAMPLE A general Jones matrix to describe a sample with circular dichroism and circular birefringence may be determined as follows. Assume that there exists a matrix which describes the way in which the sample operates on any incident state of polarization. Further assume that the matrix has the circular polarization states as eigenvectors. Thus we have an eigenvalue problem. For right circularly polarized light _;_D = (T+)l/2ei6/2_i_ ’1 (40) CD/2'1 /21 where T+ is the right circular transmission fraction and 0 is the relative phase shift between the right and left circularly polarized components. Likewise for left circularly polarized light 1/2e-1s/2 1 1 /§ 1 (41) __ = (T-) C D /2 1 50 where T- is the left circular transmission fraction. Solution yields the matrix A B (42) -B A r: where A = (T+)l/2ei6/2.+ (Té)l/2 e—iG/Z (43) 2 and v, r~ 21 This matrix operating on the incident Jones vector gives the emergent Jones vector. This permits the following work to be described completely in terms of Jones calculus. CONVENTIONAL MAGNETIC ROTATION (MR) The signal observed when a sample in a magnetic field is placed between crossed polarizers may be readily derived. The first polarizer generates a horizontal beam described by then the sample and final polarizer operate to give ('01 J I; 0 A B l 51 which simplifies to J; 0 = (46) J' -B Y and f 1 I s J J = B B (47) B is evaluated from Eq.(44) so the intensity becomes + 2 I a 1[T + T" -2(T+T-)l/ 4 C056] (48) Assume an exponential absorption law where 0+ (0”) is the absorption coefficient for right (left) circularly polarized light and 0 is the relative phase shift between right and left circularly polarized components. This is usually expressed in terms of the Faraday angle 6 = 0/2 (49) where (n- - n+)L (50) Then Eq.(48) may be rewritten I « [(T+)1/2— (T')1/2]2 + (T+T')1/251n28 (51) 4 which separates into a magnetic circular dichroism term 52 AzaV + l 2 - 2 2 MCD = [(T ) / - (T )1/ 1 (52) 4 and a magnetic circular birefringence term MCB = (T+T’)1/251n28 (53) Magnetic rotation spectra are composed of the combined effects of dichroism and birefringence. MAGNETIC CIRCULAR DICHROISM (MCD) The MCD of the (0,0,3) band of NO2 was measured using the experimental setup of Figure 10. Figure 10 ANALYZER MAGNET I BEAM - ////////// DETECTOR! AMPLIFIER -——+ SAMPLE SPECTROMETER L“ AND ' RECORDER ////////// BALANCING (J QUARTER- CHOPPER WAVE PLATE 53 The construction of the chopper is shown if Figure 11 Figure 11 axis of rotation where R stands for the right circular polarizer and L stands for the left circular polarizer. The right and left circular polarizers were constructed by mounting a quartz quarter—wave plate preceeded by an HR polarizer in a teflon assembly. The axis of the HR polarizer was mounted at an angle of :450 to the fast axis of the quarter-wave plates which generates left and right circularly polarized light respectively. The relative orientation of the circular polarizers was not important since circular polarization has no unique axis. As thechOpper rotates the incident beam is alternately converted to right and left circularly polarized pulses. It is therefore possible to look for a difference in the right and left signals directly. This is accomplished by observing that the primary signal occurs at a frequency 54 20 where v is the frequency of rotation. Also present is a difference signal at 0 which is proportional to the difference in intensities of the right and left pulses after passing through the sample. The origin of the signal can be schematically visualized by reference to Figure 12 Figure 12 R represents right circular ”"‘~\\\__‘(/,w pulses L represents R L R L R L left circular 7 pulses This difference signal is a direct measure of the circular dichroism and can be expressed as D = (I - IL)Sin(wt + y) (54) R where w = 200 and y is an arbitrary phase angle. The signal was detected using a Princeton HR-8 lock- in amplifier which is a sensitive tuned amplifier plus a phase sensitive detector. The phase sensitive detector requires an externally generated reference Signal which has a definite phase relationship to the actual signal. The reference for convenience was generated by reflecting a laser beam from a half blackened disk mechanically locked to the chopper disk. The beam was detected by a photo detector, amplified, and used to provide the reference 55 required by the HR-8. The lock-in amplifier effectively selects a frequency, converts the output of the detector to a sinusoidal wave form at the desired frequency whose amplitude is proportional to the signal, rectifies the resultant AC signal utilizing the reference signal as a timer or gate, and filters the output to generate a DC. voltage. Appropriate time constants can be selected for the filtering in order to smooth out the high frequency noise while retaining the signal. In practice the right and left circular polarizers do not pass precisely the same intensity of radiation, and the grating is polarization sensitive. Any imbalance in the right and left signals produces an absorption spectrum which could mask the desired circular dichroism. Thus a compensating scheme was necessary. Balancing was accomp- lished by inserting a quarter-wave plate and a linear polar- izer into the optical train after the sample as shown in Figure 13. The quarter-wave plate converts the right and left circularly polarized light to linearly polarized light at :450 to the fast axis of the plate. In practice the final polarizer is aligned with the grating to give maximum sensitivity and the fast axis of the quarter-wave plate is rotated until balancing is achieved as shown is Figure 13. The initial imbalance was small but compensation was required and this scheme allowed effective balancing. The 56 F . A Figure 13 The linearly polarized pulses emerging from the balancing quarter-wave plate are shown resolved along the axis of the analyzer. R is the result of conversion of the right circular pulse to linear polarization. L is the result of conversion UNBALANCED of the left circular pulse to linear polarization. F is the fast axis of the F A balancing quarter-wave plate. A is the axis of the analyzer. Both cases are for zero -applied field. Balancing is achieved when the components along the analyzer axis are equal in the absence of a field. BALANCED method is also useful because small rotations of the quarter-wave plate produce a difference which can be used as a test signal when tuning and phasing the electronics even in the absence of a sample. The net result of the balancing scheme is to reduce the signal slightly but to retain the same dependence of the signal on (IR-IL). The overall result of a change in the relative values of (IR-IL) is to introduce a negative sign -(IR-IL) which is equivalent to a 1800 phase shift. D = -(IL-IR) Sin(wt + y) = (IL-I ) Sin(wt + y + w) (56) R 57 In a lock-in amplifier a 1800 phase shift inverts the output voltage which makes it possible to record positive and negative deflections. MAGNETIC CIRCULAR BIREFRINGENCE (MCB) Magnetic circular birefringence is usually measured by the degree of rotation of a linearly polarized beam of radiation in passing through a sample subjected to a long— itudinal magnetic field. A linearly polarized beam can be thought of as composed of a right and a left circularly polarized component of equal magnitudes. Thus mathematically the Jones vector of a vertical linearly polarized beam can be represented as l 5' (57) ll MI I-‘ From a classical point of View the right and left components can have different indices of refraction denoted by nR = 11+ and nL = n- which yields a difference in relative phase as the components traverse the sample. The following is a description of an experimental arrangement which can measure the relative difference n - n . The experimental setup for measurement of MCB is R L shown in Figure 14. The polarizer and analyzer were crossed and the rotating polarizer was mounted on a cylinder set in a 1.75 inch I.D. ball bearing. The assembly was rotated 58 Figure 14 MAGNET ANALYZER BEAM ——————9» SAMPLE O SPECTROMETER AMPLIFIER ——’ 7777777777 / RECORDER I ROTATING POLARIZER POLARIZER using pulleys and a belt drive powered by a 1/20 H.P. synchronous motor. The reference required for the lock-in was derived by aligning a laser beam with a hole bored in the cylinder which produced two brief pulses per revolution. The pulses were detected with a photo detector and amplified in a tuned circuit then sent to the tuned reference amplifier of the HR—8 lockein amplifier. The tuned circuits converted the brief pulses into sinusoidal waves suitable as a refer- ence. A mathematical analysis of the system is required to. find the form of the radiation emerging from the analyzer, but a brief physical picture may be useful. If one neglects circular dichroism then the result of magnetic circular birefringence on a linearly polarized beam is to produce a 59 rotation of the plane of polarization. This occurs because the relative phase of the two equal amplitude circular compo- nents into which the linearly polarized beam can be decomposed is changed due to their differing indices of refraction. Thus neglecting dichroism we have a linearly polarized beam emergent from the sample and incident on the rotating polarw izer but at different angles depending on the MCB. In the experimental arrangement of Figure 14 and in the absence of a sample one has a primary signal at 40 where v is the rotational frequency of the polarizer. The maxima O of the signal occur at 0 = 45°, 135 , 225O , and 3150 where 0 is the angle of rotation of the polarizer measured from the horizontal. When the sample is introduced and the beam is rotated by +8 degrees alternate pulses increase and the remaining pulses decrease, and for -e the relative pulse difference is reversed. This means that going from +5 to -e changes the phase of the signal impressed at 20 by 180°. This is the reason that positive and negative deflections can be observed. The following calculation with Jones calculus shows how the observed signal is related to the angle of rotation. Assume that the first polarizer produces a horizontal beam (1 L0 which is incident on the sample. Then we have the following multiplication of Jones matrices for the experimental 60 arrangement of Figure 14. (58) where Cl and S1 are C050 and Sin¢ and the angle 0 is the azimuthal angle of the rotating polarizer measured from the horizontal. A and B were defined previously. This reduces to r- q 0 2 ClslA f SIB :— .I The emergent intensity is found from ' I « J1J (60) which after appropriate simplification gives 2COS(2¢ + 0)) (61) I « Sin2¢(T+ + T" + 2(T+T-)1/ where o = mot is the rotating polarizer angle. Recall 0 is measured from the horizontal. If we wish to measure from the vertical 0 + ¢ + fl/Z and the expression becomes I « C052¢(T+ + T- - 2(T+T~)1/2C052(¢ + 6)) (62) ‘I (y. u- _._. - _._.._.__._._ -A_‘_- 61 where 6 = 0/2 which reduces in the appropriate limits to the conventional magnetic rotation signal (10). This intensity is converted to an equivalent electrical signal at the detector. The remaining problem is to Show that if the lock-in amplifier is tuned to twice the rotational frequency one gets a signal proportional to the angle of rotation of the beam or the Faraday angle. For this to be true two conditions must be met: (a) The MCD must be very small compared to the MCB and (b) The rotation of the beam in the sample must be a few degrees or less. These conditions have been experimentally verified for N02 and theoretically for N0 (10).) The terms dependent on 20 may be found as follows. First expand 065(2¢ + 0) = CosZ(¢ + 0) = 1 - 28in2(¢ + e) (63) SO +)1/2 —(T-) 4 1/2]2 I a [(T Cosz¢ + (T+T')1/20652651n2(¢+0) (64) The first term is the MCD which is assumed small. Then complex exponentials can be used to reduce Coszosin2(¢+0) into simple trigonometric functions. The only term in 20 which remains is Sin0Sin(2¢+0). The observed intensity then assumes the form 62 12¢ « (T+T-)l/zsinesin(2¢ + e) (65) or in terms of the absorption coefficients 12¢ = Ioe[‘(‘1++ a-)L]/28in63in(2¢ + e) (66) The signal depends on an amplitude factor and a phase shift. The Sin(2¢ + 6) term introduces a small phase shift but the dominant signal arises from the Sine term. As 0 goes from + to -, 12¢ changes Sign which corresponds to a 1800 phase shift in the lock-in amplifier. This makes it possible to observe positive and negative deflections of the recorder about some relative base line. MCD AND MCB SPECTRA NO 3-0 BAND Magnetic circular birefringence spectra were observed in the 3-0 band of l4N160 utilizing the Michigan State University near-infrared spectrometer. The spectra are shown in Figure 15. The absorption and magnetic rotation spectra have been observed previously and are included in Figure 15 for comparison. The MCB spectra were run at a pressure of 10 cmHg and with an absorbing pathlength of 18.9 meters at fields of 2000 and 4000 Gauss. The signal was detected at a frequency of 47 Hz 11th a lead sulfide detector. ALIA. ____..-...‘- . .3 U . . bu 1 skin’s), , ! .mmsmu ooov mo caoflm m cufl3 omazz «0 pawn cum on» cw mnuommm mu: .m: .coHuQHOmnm "ma madman menu in . Tic . hi _ _ _ 1§,%CE%E “81353!- 3 6 .b.o IIBEI gigs/L 0. .3. am. sIEISI¢ a use)» 64 .|¢~ I ..1I . .. n a.” . a . I. . x....Plutwivil01-52ulflllk N .mmsm 0 ma 0 m o w ooov m pH .w u omHZvH m mnuommm no: can .moz .mz .coflumnomnd "ma madman mfih‘ . .LZU 09!. 331x12 8.. akf>PS%Xé<$33§$§€322>Eé§/H _, .3. «a... «6.0 65 The spectra at once prove that for the P and R branches the 2H1/2 and 2H3/2 lines are rotated in opposite directions. The direction of rotation is positive for the 2H P and R 1/2 lines and negative for the 2H3/2 lines. The Q branch shows a very strong signal which is predominantly rotated in the negative direction. The directions of rotation are in agree- ment with the work of Aubel (9) and Keck (10).. A complete explaination of the spectrum awaits a detailed analysis. (0,0,3) of NO2 It was possible to observe both MCB and MCD signals ’ 14 16 in the (0,0,3) band of N 02.. Absorption and magnetic rotation spectra were also run for camparison. Typical absorption, MR, MCB, and MCD spectra are shown in Figure 16. MCB and MCD spectra were run at a pressure of 3 cm Hg and a pathlength of'18.9 meters at fields of 2000 and 4000 Gauss. The MCD signals were much weaker than the MCB and required that the entrance and exit slits of the spectrometer be opened from 100 microns to 200 microns. Furthermore it was necessary to increase the gain by a factor of 2.5. This supports the premise that the MCD signals are much smaller than the MCB signals. The strongest MR, MCB, and MCD signals occur around the Q branch lines which are closely spaced in N and widely separated according to the value of K-l' The MR lines from right to left in Figure 16 arise from K_l = 2,3,4,5,6,7 and 8. Hm. 66 The theory required for prediction of Zeeman patterns 2 that a detailed study of these patterns will lead to further for NOV has been detailed by Olman (22), and it is hoped meaningful interpretation of these spectra. SUGGESTIONS FOR CONTINUED WORK Much work has already been done on the magnetic rotation spectra of paramagnetic molecules. Mann and Hause (25) (26), Aubel (9), and Keck (10) have develOped a considerable body of information about the MR of NO and N02. The calculation of MR spectra requires prediction of both magnetic circular birefringence and dichroism terms. In principle calculation of either birefringence or dichroism signals should be simpler than the MR signals where they are combined. A semiclassical approach to the calculation of hire- fringence and dichroism effects has been outlined by Aubel (9) and continued by Keck (10) with application to the NO molecule. Briefly, in this approach one calculates the absorption coefficients, 0+ and 0-, from expressions which apply to DOppler, Lorentz, or intermediate line shapes. Then the indices of refraction, n+ and n-, are related to the absorption coefficients through the Kramers-Kronig relations. Once n+ and n- are known 0 is determined and can be inserted into Eqs. (66) and (56) which are the intensity expressions for birefringence and dichroism. This enables computation of an ideal predicted spectrum. To compare this 67 with the observed spectrum the effect of the spectrometer slit function must be included. Semi-quantative agreement between predicted and observed signals provides strong support for the validity of the Zeeman and dispersion theories. It is hoped that this approach will be fruitful for interpretation of the observed MCB and MCD spectra of NO and N02. ";~'. 25‘ SUMMARY The (0,0,3), (1,0,3), and (3,0,1) vibration-rotation bands of 14N1602 and 15N1602 have been analyzed on the basis 1 of the slightly asymmetric top molecule. Least squares methods were used to compare the observed to predicted trans- ‘ itions and by iterative procedures yielded the upper state constants for those bands. This information in conjunction with the previously analyzed (1,0,1) and (2,0,1) bands was used to predict improved vibrational and vibration-rotation interaction constants. Spin splitting was observed in the (0,0,3) band and was analyzed to give spin-rotation interaction constants. Magnetic circular birefringence and dichroism studies were undertaken for NO and N02. Experimental spectra were obtained which are qualitatively in agreement with previous experimental work and theoretical predictions. Finally a method was suggested whereby theexperimental spectra may be compared to theoretical predictions. 68 10. ll. 12. 13. 14. 15. REFERENCES M. D. Olman and C. D. Hause, J. Mol. Spectry. £6.241 (1968). M. D. Olman and C. D. Hause, J. Chem. Phys. 49, 4575 (1968). a G. R. Bird et 31., J. Chem. Phys. 49, 3378 (1964). R. M. Lees, R. F. Curl, Jr., and J. G. Baker, J. Chem. Phys. 45, 2037 (1966). E. T. Arakawa and A. H. Nielsen, J. Mol. Spectry. a, 413 (1958). G. E. Moore, J. Opt. Soc. Amer. 43, 1045 (1953). A. F. Stalder, Thesis, Georgia Institute of Technology (1967). A. F. Stalder and W. H. Eberhardt, J. Chem. Phys. 41, 1445 (1967). J. L. Aubel, Thesis, Michigan State University (1964). D. B. Keck, Thesis, Michigan State University (1967). C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book Co., New York, 1955), p. 93. Ibid., p. 84. Swalen and Pierce, Journal of Math. Phys. 3' 736 (1961). R. A. Hill and T. H. Edwards, J. Mol. Spectry. 9, 494 (1962). L. Pierce, N. DiCianni, and R. H. Jacksvn, J. Chem. Phys. 38, 730 (1963). (5 (a a.“ l6. 17. 18. 19. 20. 21. 22. 23. 24. 27. 28. 29. 3‘). 70 Townes and Schawlow, 92. giE., p. 175. C. C. Lin, Phys. Rev. 116, 903 (1959). w. T. Raynes, J. Chem. Phys. 41, 3020 (1964). D. B. Keck EE.E£" "Symposium on Molecular Structure and Spectroscopy," Columbus, Ohio, 1966, Paper H-Z. K. Narahari Rao, C. J. Humphreys, and D. H. Rank, E2237 length Standards in the Infrared, Appendix III and pp. 160, 161, 171. Academic Press, New York, 1966. R. A. Hill, Thesis, Michigan State University (1963). M. D. Olman, Thesis, Michigan State University (1967). W. A. Shurcliff, Polarized Light (Harvard University Press, Cambridge, Mass., 1962). A. M. Sutton and C. F. Panati, Modern Optics (RCA Institute, Inc. Lecture Notes, 1969). G. Mann, Thesis, Michigan State University (1959). G. A. Mann and C. D. Hause, J. Chem. Phys. 31, 1117 (1960). K. T. Chung and P. M. Parker, J. Chem. Phys. 43,3869 (1965). G. Herzberg, Infrared and Raman Spectra 9£_Polyatomic Molecules, Molecular Spectra and Molecular Structure II (D. Van Nostrand Company Ltd., New York, 1945). M. A. Efroymson, Mathematical Methods for Digital Computers (John Wiley and Sons, Inc., New York, 1960), Ch. 17, pp. 191-203. T.L. Barnett, Thesis, Michigan State University (1967). APPENDIX I COMPUTER PROGRAMS Several computer programs were utilized in the course of this work. Several programs were contributed as previously acknowledged. The following programs were written to perform least squares fits based on a least squares routine by M. A. Efroymson (29). Typical data decks are listed as well as the programs. VIBCON This program performs a least squares fit on Eq. (30) using the experimentally determined band origins as data points to determine vibrational constants. It is necessary to input approximate values of the vibrational constants and any or all of the constants may be fixed or varied as indicated in the data deck. ROTCON This program performs a least squares fit on Eq. (31) using the experimentally determined rotational constants A, B, and C as data points to determine vibration-rotation interaction constants. The program is otherwise similar in operation to VIBCON. 71 v k? D CJN L) H! '4 ,4 fl 3.; C") M“ (U 12 104 l: PRQGFAM 7? VIBCON COMfiOA/123/NK(30). COMMON/lZ/ IHFC1.INF02. 10EmT<2> NFELMAX, YDFV“AX COMMOA/A/ NAVE(39) DINEMSION NUlfFD). ~02<5r). ”U3(5U) INF33.NU“CCN.JUNP.COVSI(301:5?IN;EF0UT}TOL DIMENSION COW(30:50).F038(60).FCfiLC(5u)oWT(50))NUSE(503 READ 20a III F09MAT(12) PRINT 210 III FORMATti THE FCLLUNING VIBRATIONAL CONSTANTS APE FOR &I2‘N02t) REAUII PRINT 1. FORMAIt21 READ5JINFC1JIVFOEIINEOE PRINT 5 . FORMAT! N = 0 N : N READ 20 PRINT12 , FOEHAI(1XJ IF(CO\8T( NUMCUNaJUMpv 315: i 1 CONST(N)J F09MAI¢F19.4o YDFVVAV; NPELMAX KUICOH.JUHP, XDFVMAX. NVELMAX 5»F13.4)I5) :TOL0:FIV0EFOUT 19501. INFDZ. INFDS. TCL:EVINoEF”UT 6F1§.5) NKlw) I1) C0M3T(N)o ~K(N) F190402X0I1) N).NE.3) G” TO 102 NCOUNT = W - 1 NN = C “N = NM + 1 READ 4: HU1(NN).N02(NV).NUK(MN)p F088(NN).WT(V”) pRINT 4,NU1(NN),HU?(MM):VU3(NN): FORMATt3I IF(FOBS(NN).NE.O) INDATA = DRINTéi I FORMAT! NAME(1) NAHE(2) NAMEIS) NAME(4) MAVE(5) NAVE(6) NAMEI7) NAME(8) NAME(9) NCONPl = 00 110.NN COV(19MW) CON(2aNN) CON(3oNN) CON(4.HN) CON‘SoNN) CUNI515UJ) CON(7.MH) CONI8.NM) COM(9.NN) IIIINIIIIflIlflflfi FCBS(NN),%T(0”) 3: 2F10.4) GO TO 104 NM - 1 WDATA INDATA ISt 6HOHEGA1 6HOMEGL2 3HX11 SHXZE 3HX33 SHXLE 3HX13 3HX21 NUMCDN + 1 ' 1, {NBATA ”01(HN) NU?(NN) NU3(NN) ((KUI(NN) ((WUZ(NV) ((NU3(NN) ((hUiCNN) ((“01(NN) ((NUE(NN) I5) F,5)*(901(“N) 0.5)*(“U3(1N) n.5)*(NU?(VN) 0.5)*(UU3(VN) n.5)*(MU3(”N) "- "0 "- I. II- "5 fl '0 II II +4-+«++ + 1-+-+4»+1+ U‘“lh‘lfl a 0.25 0.95 0.75 0.25 0.95 0.25 110 Can 001 10 200 165 166 9100 9110 175 73 CONTINUE PRINT 1800. C0N FORMAT(F10.4) PRINT 1001. NAVE FOGMATCAB) DO 200. NV = 1. INDATA FCALC£NN) é COKST(1)*CON(1.NN) + CONSTI2)tCOH(?.NN) + CONST(3)6 100NI3.NN) + CONST(4)oCCN(4.NM) + CONST(5)tCON(5.NN) + CONST(6)* 2000(6.NN) + ConsT(7)wCCN<7,NM) + CONST(B)tCON(8oNN) + CovST(9)* 3COM(9.NN) PquT 10. 001(IN).N02(MN).N03(NN).rCALCS0 GO TO 254 NUSEIRI=1 NODATA:NODATA+1 CONTINUE NDEL=0 NDIN=K=WSENT=NCMIsznMAx=vaR=FLEVEL=a,6 L03P=o NOVHI : NOVAP - 1 NOVPL = NOVAR + 1 00 176 I = 1.NOVDL 00 176 J = 1.N0VPL VECTOR‘I'J’ = C.Q IF(NDEL)501.500 SUVNHI=C.O IDEXINOVAR)=NCCNP1 00525N=1.INDAIA NU“=0 00 512 1:1.NUMCON IF!NK(I))511.512 NUM=MUM+1 IDEXIHUM)=I CONTINUE DATA(NCONP1.N):FOBS(M)-FCALC(N) SUMNHTsSUMW4T+WT(M) AVEwHTasuwwHT/NODATA 00510N=1.INDATA IF(NUSF(N))146.510 WHT=WT(N)/AVENHT DO 540 I = 1, NOVAR VECT0R(I.NOV8L):VECTOR JJJ = MOMAX IN; PRINT 153. J, (VECTOPII.J). I = “OVIN. JJJ) ‘ PRINT 154. (VECTCRII,JCVAR). 1 = NUMIN, woMAx) IFINOMAX.EC.VJVMI) 60 T0 603 NOWIN = NOMAX + 1 1 N60 = N60 + 5 I HOMAX 2 NOVHI GO T0 602 COVTINUE i DRINTISS. VECTORINfiVAR.NUVAd) g MOSTFP = -1 E4 ASSIGN 1320 To NUMRED h DEFR = VECTOP(NOVPI:KUVPL) ' 10G 00 800 I = 1.NOVAR IFIVECTORII.I)) 792.794,919 PRINT 7939 I GOT0172 PRINT 795. I SIGWAII) = 1.3 00 T0 800 SIGMAII) =FSGRT (VECTOR (1.1)) VECTORII.I) = 1.0 DO 830 I = 1.NCVMI 1P1 = I + 1 00 830 J = 1P1. NOVA: VECTOR(1.JI = VECTOR(1.J) /( SIG”A 1160.1179.QJ4 PRINT 906 GOT0172 VMIN = VAR MOMIN : 1 GO TO 1053 U IF(VAR - VMIN)1050.1050.1173 IF (VAR - V4AXI1150.1350.121P VHAX : VAR NOMAX 2 I CONTINUE IF (“OIN) 933.1240.1330 PRINT 907 GO TO 172 STDY=SIGY GO TO 1350 IFIINF03)1312.1320 IF INCENT) 1311.1311.131? PRINTLOBO NOSTFPo K GO TO 1314 PRINT169. NUSTFP. K IFILOCP) FLEVEL=FL PRINT 162.K.FLEVEL.SIGY D01331J=10NOIV N=INDEX(J) PRINT1630N3H1(N)QCOEM(J)OSIGMCO(J) IFIJUMP) 8332.8304 IFILOOP) 8303.8304 PRINT 8305 rooMAT¢.2FINAL CONSTANTS AFTFR CORRECTIONS MERE ADDEDtl) DO 8306 J=1.NOIN M=Ih0EXIJI XWENCON=COENIJI+XC0NST(N) PRINT 163.N.N1(N).XNFNCUN.SIGMCO(J) GO TO NUMBER.(1320.1580) FL=FLEVEL FLEVEszMIN*0EFR/VECTOR(IOVAR.NOVAR) IFIEFOUT + FLEVEL) 1350. 1350. 1‘40 I! “4- W‘ ' A' .1'1Wm 134m 134? 1350 1361 137a 1391 1392 1400 143R 1460 144a 141a 1506 1481 154a 1520 1389 1381 157a 1586 1630 1651 1652 77 K = NCMIV NOCNT : 3 GO TO 1391 FLFVEL = VV1X * PEFR / (VEnTUR(W7VAR.H0VAR)- VMAX) IF (EFIN - FLEVEL) 13731136111383 IF (FFIN) 1383,1389p1370 K = NOVAX NOFET = K IF(K) 1392.139?.14F3 PRINT 1395: KOSTFP 8070172 F0 1410 I = 1,10VAQ IF (I-K) 1438.1410.1450 DD 1440 J = j, NPVAR IF (J-K) 1460.1440.1463 VECTOR(I.J)=VECTOQ(I.J)-VEFTOR(I.K)tVEFTOR(<.J)/VECTOR(K.K) CONTINUt CONTINUE DO 146J I = 1. NOVA? IF (I‘K) 1500:14R301?30 VECTOR (I.K) = - VECT?R (I.K) / VECTUP ((.K) CONTINUE no 1520 J t 1. NOVAR IF (J-K) 1540.1520.1R40 VECTORCK.JS = VECTOR (¥.J) / VECTOR (K.K) COYTINUE VECTCR(K.K) = 1.0 / VFCTDP(K.V) 80701031 PRINT 167.IUE~T(1).IPEHT(2).NOUATA.NOVNI.HPELMAX.XDEVMAX.AVENH7o lSTDY.NOSTEP COHTIVUE ASSIGN 1583 TO NHWSEQ L00P=1 GO TO 1513 CONTIAHE IF(INF03) PRINT 1596. CALL PRINT 2 VFII=DEVMAX=SwT=XIP=C.O 001660N=1.I1DATA NTM=NUSE(VStHT(N) MHT=NTN/AVEAHT YPQFD = 0.0 no 1633 I = 1.N01~ LASSIE = IPEX(INDEX(I)) YPQED = VPPED + COEVCI)*DATA(LASSIE.N) DEV=FORS(N1-FCALC(M)-YPPFD IF(1E.-WT(N))1652.1662.1651 VFIT=VFIT+HTN«PEV**2 XI?=XIR*1.C SNT=SNT¢NT?1) FRCDPRfi=FCALC(N)+YPRFD NHTszTiAVEdHT CALL PRINT 3(OkTA.FORS.FCALC. NT. MUSE. NCDJPl. INDAIA) ADEV=ARSF(PEV)*SORTF(NHT)*NUSE(N) A 1______.__.._ .—~ 7R IFCDEVHAX-ADEV)1615.1613o1‘6? 1613 NMAX=N DEVMAX=ADEV 1660 CONTINUE VFIT:VF1T~X1P/t(XIP-NOIN)*S~T) STDFIT=SQRTF(VFIT) PRIOTISC. VFIT. STOFTT IF(NDELMAX§NDEL)17?.172.16?4 1624 IF(DEV”AX-XDEVVAXJ172.179.1690 1620 NUQE(NMAX)=3 NDEL=NDEL+1 HODATA=NODATA-1 SUMWHT:SUMkHT-kT(NMAX) DRINT 9201.NPAX GOTO495 172 RETURN 15 pquAT(w Yt7!17o/) 17 FOQMAT(X1P7E17.6.Eib.6.//) 1116 FORhAT(113.6117./) 150 FORMAT(*CSTAT FROM LINES qu0 LT 10.0*/¢CV¢R. =*710.6§ STD. 0E 1V =tF754/i7t) 151 FORMAT <10AO) 152 FORMATttRAw sscp MaTnlvt/5126) 153 FURMATCXI2olpSF26.10) 154 FOQMATtt Y~1P5E26.1§) 155 FORMAT(* Y vs Y*F15.4) 156 FORMAT (1311.35x12.10x15.F5.QXA6> 159 FOQMAT (i-PAPTXAL c092. COfiFF.i//1618) 160 FODFAT (13.16F8.4) 161 FOQMAT (* Y¢16F8.4) 162 FORMAT (. F LEVEL OF X-*11.E10.2.9XFSTO rev OF (O-P)5F7.4//10X*V 1AR1ARLE COEFFICIFuT STD ERROR*/) 163 FORMAT (111.A9.2F17.12) 167 FORMAT(*1LEAST SQUARFS FIT OF $268 /3 FIT wldt DATA POINTS TO . 112* VARIABLES*7t OELFTFS up T0 «I2* POTMTS TF (O-PT 18 GT *F6.3( 2. HHT NORw w F6.2/* STO PEV 0F (C-C)*F8.4/* COMPLETED i1?» STEPSw> 160 FOQMAT (*GSTEP NO*13/* VAR. REMOVEOwTO) 169 FOQMAT (*OSTFF NOwt3/r VAR. ENTEDEO*13T 701 FOQMAT (4F15) 702 FORMAT (*ABDVE NCNvEIGENVALUF NOT DIAS; AFTER 1o CYCLE9*I 793 FORMAT (* ERROR 9&8!“ SO VAR*I3* IS MEG" 795 FORMAT (*UVARtIS* IS CONSTfi) 850 FORMAT (X613.F20.F10.23X18> 906 FOQMAT (*OFRROF. VMIM pus.) 907 FORMAT (OBFRROP NOIN NFG*) 1000 FORMAT (*OLINE 00.14. DELETEDtSX613.2F10.4) 1004 FOPHAT (*SY SQUARE NF3 STEDFIS) 1019 FORMAT (rOZERO DEG FQEEDON STEPaTsa 1044 FORMAY (*SOUARE x-il?* NFGATIVF STEP*13) 1395 FORMAT (*K=D STEPwtsa 1586 FORMAT (*0 DIAG ELEMENTSv/r VAR 00 VALUE*//(I4.F12I6)) 9000 FORMAT (215.?10) 9201 FOQMAT (*+LINE 00:14: REINC DELETED FROM FITt) END 79 7/9 RUN CAWH 4F SECUVJS TYPICAL DATA DFCK C IDENTIFY THE ISDTUDE 15 c THE MAXIMJM NUMBER OF COTSTAVTS AND TYPICAL TOLERANCFS 9 1 1.8 2 1 1 1 c.00001 1.0 0.0 C VALUES OF CWEGA 1.2.3 AND A PAnAVETEQ 0 IF VOT VARIED 1 IF VARIED 1342.5 1 747.1 0 1078.0 1 C THE PRELIMINARY X SUP IJ VALUES WITH 1 (8) IF VARIFD (NOT VAQIFD) -8.8 1 .004 0 .1506 1 -9.5 0 .2707 1 -2.5 0 C A BLANK CARD IS INSEPTFD HFRF C THE FOLLOWING ARF DATA CLRHS HIT” THE FIRST THPEE INTEGEQS IDENTIFYING 5 THE UPPER STATE FOLLQAED BY TAF nAND ORIGIN AVD THF WEIGHT 1 0 1 2558.7071 1.0 2 0 1 4123.3673 1.0 O 0 3 4655.2?53 1.0 3 0 1 536703149 103 1 0 3 5874.9510 1.9 1 n 0 1336.0 C.01 C A BLANK CARD IS INSEQIFD HERE ‘ r 1.! P? 6.. ,80 , MPRQGRAM ROTCON COHMON/lZS/NK(3O). NDELNAX. xDEVNAx CQUMON/12/ INFO1 INEOZ INFO3; NUMCON JUMP C0DSY13011EF1N EFOUT. TOL 1c IDENT‘2) icOMMON/A/ NAME(30) DIMENSION CON(5 30), F0831301oFCAL613oiaflT130).NUSE(30) A DIMENSION NU1£301.ND2(302.NUS(30) READ 20, A, 11 20 FORMAT( A8, 12) PRINT 21, A, 111 21 FORMAT1t THE FOLLON1N3 NOTAYIONAL CONSTANTS ARE FOR THE tABt 0F c! 12tN02t) .100 NUMcoN a 4 NCONP1 a NUMCON i 1 NAME¢1) = 4HR000 NAMEcZ) g 6HALPHA1 NAME‘S) = 6HALPHA2 NAMEc4) . 6HALPHA3 READ 1, JUMP PRINY 1. JUMP FORMAT115) 1“ READ 2. co~sr¢1).coNsr¢2), CONST(3),CONST(4) PRINT 2, c0N51(1),cDNsr(2>; CONSTt3).C0NST(4) 2 FORNAT(‘F15,6) 7 ,1 N s U 101 N I Nt1 READ 3: NU11N)aNU2(N)nNU3(N>.FOBSQN).NY(N), (d ,FORHAT‘ 3131P10.63F10.1’ CON(1DN’ ' 1'0 CON12an EHNU1(N) W CON‘SgN) =-NU2(N) CON‘4,N) =-NU3(N) IF¢FOBS(N),NE,0) GO YO 101 ,,XNDATA 9 N a 1 PRINT 7. INDATA 7 FORMAT(* INDATA IS . 14) READ 4. NK(1).NKtZ),NK13).NK(4).XDEVMAX.NDELFAX, INF01, INPDZ. llNPQS. 70L: EFINI EFOUT ‘ F0RH‘T1‘11,5X.F10.5,41292X.3F10.5) PRINT 10, NK‘1),NK(2).NK(3;.NK(4),XDEVMAX,NDELNAX,INF01,!NP02, ' ieros, 70L. EFIN, EFOUT 10 FORMATg1X,4l1 5x r10 5 412 2x. 3r1o. 5, DD 120. N n 1,1NDATX FCALC(N) I CONST(1)GCON(1. N) o CONSI‘2)tCON(2.N) ¢ CONST(3)0 160N(3,N) . CONsr(4)-DDN(4 . , PRth_a. NUi¢N2.Nu2(N).Nu5 = o. o , IF(NDEL25011500_ 500 SUMHHTsO. 0 _!DEX(NOVAR)§NCONP1 00525N=1.1NDATA 1_~uM.o DO 512 1:1.NUMCON ___HIF(NK(1))5111512 511 NUMzNUHt1 -1 -XDEX(NUM)=LN. 512 CONYINUE __DATA(NC0NP11N)=FOBS1N)~ECALC(N) 525 SUMNHTtSUMNHY*NT(N) 501 AVEHHTISUMNHT/NODATA 00510N31,!NDATA .IF(NU$E(N))146.510 146 HHY:HT(N)/AVENHT __ Do 540 I a 1& NOVAR VECTOR(I.NOV L):VECTOR.(vecroa<1.Nov91121s1;~cMAx> 9581 IF1NOVMI.E0,NOMAX) GO to 581 MoMAx a NOMAX * 1 5‘ VOHAX a MOMAX o 7 IF.4III 150 FORMAT 11311.35x12.10x151F5.EXA81 “159 FORHAT It-PARTIAL CORR. COEFF.A//16181 160 FORMAT (l3 16F8 .41 “.161 FORMAT_IR_ 1'16F8.41 162 FORMAT (A F LEVEL OF x-t11.E10.2,9XRSTD DEV OF (o.R1AF7 4//1OXRV _ _ IARIABLE COEFFICIENT "m_mmm-STD-ERR0Rt/1_pumwnwmmmm "I 163 FORMAT I111.A9 2’17. 121 _167 FORMATItlLEAST SOUARES FIT OF t2A8 It FIT .14. DATA POINTS To . 112. VARIABLESA/v DELEYE§ UP To .12. POINTS IF IO-PI 13 GT th. 3/ 2A HHT NORM i F6 Z/A STD DEV OF Io- -C)aF8, 4/o COMPLETED «12: STEPs.) 16B FORMAT (ODSTEP No.15]. VAR.REMOVEDa13) 169 FORMAT (ROSTER NOR!3/*__ VAR, ENTERED-I31 701 FORMAT (4F151 702 FORMAT_I.ABOVE NON-tIsENVALUE NOT OIAO. AFTER 10 CVCLESA1 793 FORMAT I. ERROR RESIO SO VARRISA Is NEG.) 795 FORHAT_(¢0VAR*I§. 15 CONST.) 050 FORMAT Ix613.F20;F10;23xA81 __906 FORMAT_(A0ERR0R,_VMIN Ros¢1mm 907 FORMAT (.0ERROR NOIN NEGRI _1000 FORMAT (OOLINE No.14. DELETEDO5X613,2F10.4) 1004 FORMAT (.01 SQUARE NEO STERA151 1019 FORMAT I.DlERO DEG FREEDOM STEPOISI 1044 FORMAT («SQUARE x..;z. NEGATIVE STEPAISI _ 1395 FORMAT (8K: 0 STEPAISI __ . 1586 FORMAT (.0 OIAO ELEMENISEIR VAR NO VALUEo/III4LF12.611 9000 FORMAT 1215. F101 9001 FORMAT IvtLINE No.14. BEING DELETED FROM FIT-1 END 7/9 RUN CARD 45 SECONDS 87 c TYPICAL DATA DECK c THIS CARD IDENTIFIEs THE ROTATIONAchONSTANT AAD ISOTOPE A H 14 C THIS Is A SNITCHING FARAHETER CALLED JUMP 1 c INROT THE VALUE OF THE-ROTATIONAL CONSTANT_AND ALPHA 1.2;3 c THE FOLLOHING ARE DATA.ROINTs NITH IDENTIFICATION OF THE OFFER c STATE AND THE HEIGHT ASSIGNED To THE POINT 1 '0 1 7.85404 1.0 ' ' 2 -0 1 7092649 100 3 o 1 8.01300 1.0 O 0 3 7.3427 1.0 1 0 3 7.4140 1.0 C “INSERT'A BLANK CARD HERE 0 THE FIRST FOUR COLUMNS CAUSE VARIATION OF YHE'CONSTANTS A 500 zERO, c MALPHA 1.2. AND 3 RESPECTIVELV THE REMAINING PARAMETERS ARE USED 0 INTERNALLY AND ARE sET TO TYPICAL VALUES 0101 "'0.0002 ”1 2 1 1 1 0.0001 ' 0.0 0.0 c INSERT A BLANK CARD HEREI a: ‘41.. v Fla-Rn." X APPENDIX 1! FREQUENCIES FOR THE (0.0.31 BAND OF 14N02 nun‘on‘onflnnnnnuv‘onvunnnuunufiuvv‘ouunvnn‘onnnv MNNNMNNHHHJ—l-HHHHHHHHHHHHHHHHHHHOOOODO00000?) 063 O-P I. K N 085 O-P NT 4696.466 ~0.004 0.3 P 0 46 4699.567 -0.002 0.3 4702.626_ 0.000 0.3 P 0 42 4705.616 0.011 0.0 4708.529 0.005 0.5 P 0 36 4711.365 0.004 0.8 4714.184 0.004 0.6 p 0 34 4716.913 .0.004 0.6 4719.597 0.003 1.0 P 0 30 4722.212 0.000 1.0 4724.769_ 0.001 1.0 P70 26 4727.266_ 0.003 1.0. 4729.699 -0.002 0.5 P 0 22 4732.064 0.007 1.0 4734.396 -0.004 1.0 P 0 16 4736.654 0.005 0.5 4736.643 -0.001 0.3 P 0 14 4740.960 0.002 1.0 4743.055 0.002 1.0 P 0 10 4745.067 .0.001 1.0 4747.020 0.001 0.6 P 0 6 4746.913 0.004 0.5 4750.737 .0.001 0.6 _ P 0 2 4752.505 .0.000_0.6 4694.569 0.018 0.3 P 1 47 4697.915 -0.000 0.3 4697.752 0.011 0.3 P 1 45 4700.997 0.026 0.0 4700.693 0.026 0.0 P 1 43 4703.946 .0.012 0.3 4703.946 _0.019 0.3 P 1 41 4706.669 .0.003 0.3 _4706.933 0.006 0.5 P 1 39 4709.761 -0.001 0.6 _4712.576 _0.006 0.3 p 1 36 4712.736__0.004 0.5 4715.316 -0.001 1.0 P 1 34 4715.527 -0.011 0.0 4716.009 -0.004 0.5 P 1 32 4716.294 _0.013 0.5 4720.630 -0.002 0.6 P 1 30 4720.964 0.003 1.0 4723.202 0.004 1.0 P 1 26 4723.574_-0.004 1.0 4725.705 0.002 1.0 P 1 26 4726.134 0.004 0.6 4726.146 0.001 1.0 P 1 24 4726.619 -0.001 1.0 4730.539 0.009 0.6 P 1 22 4731.043 -0.004 0.6 4732.661 0.006 0.5 P 1 20 4733.411 _0.000 0.6 4735.121 0.006 0.5 P 1 16 4735.713 0.002 1.0 4737.307 -0.009 0.3 P 1 16 4737.947 .0.001 1.0 4739.456 0.000 0.6 P 1 14 4740.123 0.002 1.0 _4741.534 -0.001 1.0 R 1 12 4742.230 .0.002_1.0 4743.554 0.002 0.5 P 1 10 4744.260 0.001 1.0 4745.510 0.000 1.0 P 1 6 4746.265 -0.003 0.5 4747.406 -0.000 0.6 P 1 6 4746.162 .0.000 0.6 4749.236 -0.002 1.0 P 1 4 4750.040 _0.002 1.0 4751.009 -0.004 1.0 P 2 46 4692.965 0.003 0.0 4696.166_ 0.011 0.3 P 2 45 4696.195 -0.003 0.5 4699.301 0.016 0.3 P 2 43 4701.230 -0.012 0.3 4702.352 0.005 0.0 P 2 41 4704.231 0.006 0.0 4705.337 -0.005 0.3 P 2 39 4707.137 -0.005 0.5 4706.267 -0.003 0.5 P 2 37 4709.996 -0.001 0.6 4711.135 0.002 0.5 P 2 35 4712.781 -0.009 0.6 _4713.925 -0.005 0.6 p 2 33 4715.527 0.006 0.5 'UTJU'UYJU‘UT)U‘UVJU‘UTlv‘DTIW'DYJV'UTin‘U1JU'UTJW‘UTJ”‘07)U‘DTJU‘DTJU'DT)U‘DTIU'UYJU‘DT3U 32 30 28 26 24 22 20 18 14 12 10 46 46 44 42 40 36 36 34 30 28 26 24 22 20 16 14 12 10 45 43 41 39 37 35 33 31 29 27 25 22 20 18 16 14 2Ath.§h-A.bALblshhb¢bhmbJSGCJOJM(AOIMCdOHNOiHCADI“CdO‘GL‘OLquOIMPONDNPUNHUR)NFONMUflJNTU 18‘ 4716.660 4719.336 4721.927 4724.469 4726.942 4729.352 4731.694 4733.974 4736.165 4736.340 4740.427 4742.450 4744.410 4746.299 4746.140 4690.169 4693.324 4696.403 4699.434 4702.393 4705.290 4706.122 4710.692 4713.599 4716.236 4716.621 4721.337 4723.794 4726.165 4728.514 4730.762 4732.963 4735.121 4737.207 4739.223 4741.176 4743.055 4744.663 4690.605 4693.633 '4696.590 4699.511 4702.352‘ 4705.141 4707.667 4710.522 4713.119' 4715.656_ 4716.135 4721.731 4724.056' 4726.311_ 4726.514 52391644 “00003 00006 .00006 ~0.002 '00003 '00001 '00003 f0p003 -0.007 -o.003 .0.003 70.001 0.000 -0.005 0,006 ’0'016 “00013 .01021 '-0.013 “0.013 .09012 -0.011 '00009 -0.007 '00010 -0,006 '00007 ‘0.004 '0.004 -0.004 ‘-0.001 .09004 .0.008 0.000 -0.001’ '09000 “00015 “00016 0.034 _0.026 0.010 0.021 0.013 0.017 0,020 _0.013 0.011 0.010 0.012 0.009 0.012 0.007 0.011 0.004 UCGCQCGGC H DHHDOOPOODCOCOOCODHHQOOHHO1DHHPHODCDODDC‘OQOHHHOHHHDHHQH -h£bbb-§£>Ame>AHbJ>ACdOHH(HOHH(ROHUCdOJUCNOHNCNOHNCHOKNOJNFURJNWORHUflJNHURJNFOfl)N ‘01)?'DTJV'U1JTVUWJV7013U"013"UTJU‘UTJV'UWJU'D1JV‘OTJU‘U1317C133'CYJU'U1TU'DTJTIU‘DTJV‘UWJ 4716.164” 4720.791 4723.338 4725.819 ’4726.237 4730.598 ‘4732.691 4735.121 4737.307 4739.415 4741.460 4743.440 4745.366 4747.226 4749.042 4691.600 4694.913 4697.969 '4700.944 4703.672 4706.734 4709.530 4712.267 4714.934 4717.546 4720.095 4722.579 4724.996 4727.362 4729.656 4731.694 4734.060 4736.165 4736.222 4740.205 4742.132 4743.965 4669.063 4692.124 4695.130 4696.062" 4700.944 ”4703.757 4706.509 4709.196 4711.631 4714.396 4716.913 4719.336 4722.695 4725.192' 4727.416 4729.566 4731.694 “00005 '09005 “00002 701003 n0.005 u0,002 -0.004 -0.009 0.005 0.003 0.001 un,004_ :0.001 .0.002 0.016 200012 -0.012 01°l4_ '60.016 -0.012 .0.009 30.010 -0.006 -0.010 $0,006 90.003 00.003 -0.007- 00.001 .0.001 0.001 .0.006 0.009 90,001 .00004 0.000 “00007 -0.034 0.026 0.030 0.020 _0.022 0,019 -0.016 06012 0.015 0.012 _01921 '0.002 _0.004 0.010 _0.005 0.009 0.006 0Acratawracaumacrocac30c::M3c39c1rtuwfihuchh-o(aame:c>ozacrocycma+4HJAwMom3HbohaherAwsa! .. - C O C C I. O i. O p C . C . C O C D O D C . I b O . O . . - O . O 1. . O . . . O 1. . C b . . O O O C O Q . ommooumomommuuomummmcoco(paommoommmuuouuoooucmuommoooom OU‘DU‘O'UTITJTJ'U‘OU'D'UTJ’O'U‘JUUU‘O'UU‘U‘U‘J‘U‘JU'O‘UTJ'U‘J‘U‘UDW'U'DU‘UTJUU’J‘JU‘D‘JU'D’J Huuuuuuuuuuwuuwooooooooooooooooommmmmmmmmmmmmmvlmumbana 12 10 42 40 36 36 34 _32 30 26 26 24 22 20 16 16 14 12 10 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 10 (I) 37 35 33 31 29 27 .25 23 21 19 17 15 13 11 13 4732.721 4734.735 4736.665 4736.562 4669.349 4692.264 4695.166 4697.969 4700.734 4703.436 4706.064 4706.634 4711.135 4713.599 4715.976 4716.294 4720.563 4722.771 4724.919 4726.990 4729.011 4730.970 4664.169 4667.074 4669.697 4692.661 4695.362 4697.969 4700.593 4703.115 4705.562 4707.976 4710.324 4712.602 4714.627 4716.977 4719.064 4722.119 4724.101 4662.044 4664.793 4667.479 4690.104 4692.661 4695.167 4697.621 4700.014 4702.352 4704.596 4706.630 4706.973 4711.071 4713.119 -4754.215 0.006” _0.006 0.004 _0.010 '00165 -0.156 .0’139 '0 9122 -0.120 .0.099 -0.091 -0.061 -0.079 -0.056 -0.050 -0.049 .00036 _700022 .0|00° '0,008 0.002 00012 “0.048 -80025 “0.023 “0'020 '09020 '01033 '00089 f09007 '00000 '01006 0.003 _0.001 06006 _f09003 0.006 0.006 " 0.040 -0.033_ 0.032 __0.o26 0.023 .0.009 00003 -00005 00004 _0.006 -0'019 -90002 -0'013 “0.011 00002 _0.006 0. . UIVOH- OCOODOOQOO:ODDOODCOOCDOOODOOODOOOHCDOODOCOODOOCQOOOQOH O..0000.-.-0....-.OCDCDODQDQO01......OODODQDODODOOOD. 0c:c;cc:c::o~u(ac:u::o~c¢:o-uc.c:cczc:v\lu~beUFQCaczutzo:a(.c c<=cac¢=c=c<=cacc:ctu(.a¢: O‘C‘U‘Ut‘U'OV‘U‘U‘U‘U‘O‘TJ‘U‘U‘O‘D‘D‘U‘D‘D‘U'U‘O‘U‘UV‘U'U‘DVTV‘U‘UTJ‘D“O‘D'UV‘OV‘U‘D‘OTJV‘DVTJTJTJID 14V\1vwvuuuuuuwvuoooooooooooooooooommmmwmmmmmmmwmmwmaaaa- H 741 39 37 35 33 31 29 27 ’25 23 21 19 17 15 13 11 9 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 11 9 7 36 34 32 30 28 26 24 22 20 18 16 14 12 10 1 ‘4696.590 4733:737 4735.713 ‘4737.635 4739.499 '4690.820 4693.729 4699.369 4702.090 4704.754 4707.358 4709.892 4712.380 4714.804 4717.153 4719.446 4721.689 47239851 4725.965 4728.010 4729.999 4682.738 4685.623 4688.485 4691.289 4694.018 4696.694 4699.301 4701.865 4704.358 4706.794 4709.174 4711.468 4713.718 4715.918 4718.041 4721.123 4723.109 4725.046 4683.419 4686.145 4688.773 4691.395 4693.924 4696.403 4698.819 4701.182 4703.480 4705.732 4707.906 4710.037 4712.088 4714.093 4753.565 0.007 .81000 0.001 0.005 ‘10.i66 .0.153 7.0.126 '0.121 -0,112 70,099 .0,085 _fOI080 c0.060 '0,043 .0,041 -0.032 .00814 301016- '0,004 '0.000 0,008 70.015 '0,042 f0,032 00,019 '0.022 ~0,015 70.018 .o.n05 ’02902 0.005 0,015 v0.000 '0.000_ 0.010 __0.005 0.006 "0.014 0.034 0.026 0.032 _-0.001 0.021 _0.008 0.006 -0.002 -0.002 .0.006 0.000 -0.010 -0.005 -0.019 -0.020 ”0.001 C3D DDPQDDQQDOD-QD 30.99013 DD’ODOCJ D‘O'O D'DDDD‘HHODD DID 0'0040010 0‘03 O'HJ-‘H' auto...-non.-.noon-9....Ono-onobooo-Cbonchloo-coonopabo (domoouuummuuuoooummmmmommuoouououmoommmcoooooooooooooo ! 13311211120131)370133131321nD‘DDDUDD‘ODDDDDDT-D‘D 10:0DDUDIJIJDODDDDODDDODO-n iommmmmMPHHHHHHHHHHHHHH4HH-HH'HHH4:34:20Doc:34:30::oom‘mmmbuummmmmm 4749.662 4750.252 4750.702 4751.160 4751.449 4751.562 4747.799 4746.047 4742.646 4736.726 4737.307 4737.691 4737.690 4775.202 4774.665 4774.227 4773.346 4772.216 4770.817 4769.130 4767.166 4764.936 4762.416 4759.667 4756.635 4774.613 4774.666 4774.401 4774.052 4773.635 4773.149 4772.567 4771.960“ 4771.257 4770.505 .4769.656 4766.755 4767.771 4766.739 .4765.631 4764.451 “4763.211 4761.911 4760.515 4759.096 4757.594 4756.021 4773.232 4773.635 4773.346 4772.962 4772.540 4772.053 .-4771.503 0.009 '00001 ‘00014 0.005 0.000 0.023 -0.010 0.004 -00006 -0'027 0.001 -09028 .09028 '09004 0.024 0.003 -U.002 0.006 0.011 0.005 '0.001 -0.000 '0.020 70.005 .09012 -0.004 0.010 0.012 0.005 _0.002 0.003 40.001 0.002 “09003 0.014 0.002 “0,003 0.005 _0.005 '0,001 -0.001 “ 0.005 '02019 0.001 -0.001 -0.008 _0.003 0.016 0.011 “0.001 .09018 ‘09010 _03001 cccacaauucoccccuccccucuc coho-onoocunoonounce-coonouooooononoo-o0.0-0.0.000-00. QUCUCUCOG'GCGCUGUG‘(IGOGUUCUCIUbO-‘U NNNNNNNHPHHHHHHHHPHHHHPHPHHHHOOOOOOOOQODOO‘U‘U'IUIUTUOJCNNNNNN 4749.662 4750.613 4750.916 4751.273 4751.515 4747.507 4747.921 4746.140 4736.510 4737.119 4737.560 4737.796 4730.669 4775.049 4774.573 4773.623 4772.616 4771.546 4770.004 4766.164 ”4766.067 4763.722 4761.067 4756.204 4755.041 4774.665 4774.305 4773.962 4773.549 4773.074 4772.540" 4771.929 4771.257 4770.505 4769.715 4766.647 4767.931‘ 4766.937 4765.660 4764.761 4763.565 4762.345 4761.034 4759.667 4756.224 4756.723 4755.151 4773.074 4772.676 4772.567_ 4771.652 4771.372 4770.817“ ' 0.002 0.002 -0.001 -0.000 0.002 -0.006 .0.014 0.004 -0.030 .0.018 .0.017 -0.030 o0.041 -0.005 0.008 0.004 0.003 0.004 '“0.004 0.003 ~0.000 _0.001 -0.001 _0.013 0.004 0.012 -0.007 -0.001 -0.001 0,003 0.011 0.007 0.007 -0.010 -0.000 .0.005 0.006 0.003 0.000 -0.001 0.004 _0.006 0.004 0.007 .0.003 .0.010 40.025 f0.015 -0.005 -0.020 .0.004 -0.001 '09003 .01914 ”5 .- umimn ‘. 1‘11 I‘ coococa-39000:)coat-394144.314:ooooooooooHoH1HQOHl-4o«-aooooooooooo:oo . C D O O O '0 O - C C O D . D . . O 3 . . ‘ D O I O D O . . D C D C D I D O O O U '0 '. O ‘ Q I O . C D O '0 O mmuuoumomummmmmooomoommammmuuouomoommoo mmoooooooooomuo AAAAAAAbba;aaaaaauwuuuauuuuuuuuuuuuuuummmwmmmmmmmmc‘ommm ZUDDD'DIJDDUIJDDUIJD‘ODDIJUUDDDD‘OUDDDUDDDUDDDV‘JDDDODUDIJIJDDDZUDD 4770.660 4770.160 4769.422 4766.600 4767.724 4766.777_ 4765.772 4764.720 4763.565 4762.416 4761.167 4759.665 4756.511 4757.069 4755.592 4754.055 4770.260 4769.970 4769.593 4769.176 4766.656 4766.111 4767.490 4766.614 4766.067 4765.273 4764.421 4763.466 4762.496 4761.451 4760.344 4759.172 4757.927 4756.635 4755.267 4753.644 4752.354 _4765.665_ 4765.333 4764.720 4764.236 4763.666 4763.053 4762.019 4761.236 ' 4760.407 4759.510 4756.547 4757.531" 4756.434 4755.283 4754.076 4752.799 47519449- ’09013 __0.000 09000 '0.003 0.002 '09000 0.004 -0.009 _0.006 -0.003 -0.003 0.007 -0'030 -0.001 0.009 -0.021 -0.003 '0.009 0.006 -0.018 “0.010 '0.014 _‘09011 0.002 -0.010 0.002 -0.005 '09009 -0.004 0.001 0.004 '0.003 09003 “09003 .0900]. -0.005 _0.022 0.017 _0.012 0.020 ”0.023 0.003 0.012 00004 0.008 0.010 0.008 00015 0.003 “09001 _0.001 ‘09004 _f09020 UUCOOUOUU'QCCUUUGCIGCCQQ CUQ': QOODOOOHQOOODOODOOOODOHDHOHCHOCPOOOQOOOQOOHHOOOHOQPHOO 0......O....‘O-.....-......C..-...-DOC-ODCDCDOCO...0.. CGCQCUUCQUCOQUCOCQUCGUCGCJCO ##4##A5AéAAAb-bcbbbbAUO-OJGOJOJCNOJUGGMUUUGMMGU(ANNNNNNNNNNNNNNN 23 ‘4770:214w-0.006 0 "4769.541 .0.001 1 4766.601 0.002 0 4767.964 -0.006 0 4767.125 0.010 0 4766.173 _ ; 4765.166 -0.003 1 4764.099 .0.003 1 4762.960 0.011 0 4761.770 g0.001 1 4760.515 0.005 0 4759.172 _ - 4757.795 0.000 1 4756.346_ 0.004 0 4754.621 «0.007 0 4770.160 -0.032 0 4769.970 -0.002 0 4769.656 -0.009_0 4769.279 .0.013 0 4766.647_-0.004 0 4766.336 -0.009 0 4767.771 -0.003 0 4767.125 .0.014 0 4766.429 '4765.665 -0.010 0 .3 .0 .5 .8 .5 .e .0 .0 .5 .0 .5 .0 .0 .3 .5 .3 .3 .6 .3 .6 .8 .5 .5 .0 .3 4764.636 -0.011 0.6. 4763.952 .0.004 1.0 4762.960 -0.022 0.0 4761.964 -0.000 0.6 4760.901_.0.003-1.0 4759.755 -0.007 1.0 4756.547_,0.009 0.3 4757.292 0.003 0.5 4755.963 0.005 0.5 4754.570 0.004 0.5 4753.112_ 0.001 0.6 4765.928 0.023 0.0 4765.530 _0.033 0.3 4764.938 0.014 0.0 4764.489_ 0.021 0.0 4763.952 0.005 0.8 4763.382_"0.019 0.5 4762.732 0.015 0.6 4761.641__0.013 1.0 4760.844 0.020 0.3 4759.964 0.006 0.6 4759.046 0.018 0.3 4758.043_"0.007 1.0 4756.966 0.004 0.6 4755.662 0.017 0.0 4754.679 -0.008 0.0 4753.445 ~0.002 0.0 4752.132 -0.012 0.0 4750.779 -0.000 0.3 DJDIJULUIJDIDIJD7CIJD-DIIU‘U 0~OCIU1¢KflUIWKnde\fl01m\flb-A 30 28 26 24 22 20 16 14 12 10 21 16 12 4750.079 4746.619 4756.635 4755.662 4755.064 4754.215 4753.300 4752.313 4750.147 4746.971 4747.735 4746.429 4745.057 4743.614 4746.014 4743.311 4740.679 0.035 0.002 “00091 “0,092 -0.076 -U9072 ”0.051 “0.039 “0'071 “00014 “0.005 ’00004 “0.007 “0.020 00008 0.013 0.021 QDOODODCOOODGDDQH . O O D O D O '. C D . . O C O. . UQUUQUQQUCCCCCCUC 93 :UIJDIUZWDJDIJDJDJDNIEZJIII ocrovwxnuwm\nvnm\nu1m\nuwa 0 31 27 25 23 21 19 15 13 11 22 17 15 4749.352 4756.986 47560267 4755.490 4754.679 4753.770 ‘4752.626 4751.804 4749.563 4746.350 4747.091 4745.756 ‘4744.336 4746.496 4743.676 4742.719 .00n01 ~0.091 IO.091 -0.066 -0.054 -0.056 ~0;031 -0.025 90.021 90.019 -0.002 _0.000 no.019 -0.005 0.006 0.007 (DUIMOQDC’JCDOM 12399033033 9.309543 0: WKDUWONHOJ X NMNNNNNMNNNNNF‘PPO‘FHI‘HHPHFHPHFHHHOOOODODDOO FREQUENCIES FOR THE (00003) 085 46120866 46180317 46230526 46230509 46330260 46370733 46420067 46460131 4649.946 46530541 46110339 46140164 46160920 46190647 46220274 46240852 46270389 4629.850 46320251 46340585 46360873 46390091 46410250 46430351 46450384 46470351 46490274 ‘46510111 46520908 46120671 46150434 46180142 46200785 46230354 46250865 46280315 46300703 46330022 4635.286 46370485 4639.617 4641.694 0-6 00004 0.009 00004 00003 00002 00006 00002 00009 00003 00014 00009 00005 '00007 0.014 D0.005 900013 00001 ‘00001 ’00001 “00008 00001 00000 00002 00008 00006 00000 00012 “00001 00007 $0.097 000008 .00001 00003 .00003 200004 900003 .00002 ‘00006 000003 .00002 i00005 0.000 APPENDIX III E _‘ TO4OTII'. .0 I. 0. 5. 0. '0’}... i. .1. I'l. 01...].QOOC0DHOIO \ncaUH:\ncno\JC)unacaoun\nOhotnouacacwotacaaumc3c0mHDCJCDmm3c50H3c3cno(D EOE-3.1.). OJ. IIOJO 1J‘D‘D'O1J‘D1I1J1J‘O‘OIIV‘D1J‘OUU‘DU'O‘D‘D‘D‘D‘TJ‘0111‘013‘011‘0‘013‘0‘0131‘0‘0 fluhDNHvrouJNHURJNHURJNHDt‘EtHwir‘wwdrfiH44h9Hdér‘HW4F‘Hfl‘cacnocacuocacac0 :K 085 46154619 46206944 46262036 46301915 46350562 46394960 46440126 46484064 46510778 46116313 46140071 46164772 46190421 46224010 46240543 4627:015 46290429 46311779 46340076 46360313 46383468 46401611 46420669 46441685 46463612 0648:497 46504324 46520088 46114604 46144363 46173049 46190675 46220251 46244771 46274220 4629:611 46314946 46343222 46360436 46383589 4640:690 46423711 BAND 0F 15N02 03? 0.006 0.000 .0060, 0.005 0.016 0.009 00003 00002 0.013 0.009 0.003 90,002 "00001 ’00000 0.003 0.003 0.004 ’00000 0.002 0.002 “00001 0.002 90.600 0.014 ’00002 '00001 0.000 F00002 '00003 0.003 900004 '00011 ‘00008 ’00001 I'00005 E'00007 200006 900003 900003 900503 0.004 900008 HT ooooocoooooooo.cocooooooocococooooooooooo. 0‘ 0901010 U! C. £3va 013:0! D (d m \n “01“ (D 610.0 o1uo-o.o;o.oio0oz.u Gunmetal {DO 00 flooooooommmmmumummmmbaa@66506.0-6.6.0-aauuuuuauauuauuuuummmm 4643.702 4645.648 4647.532 4649.362 4611.339 4614.047 4616.671 4619.246 4621.763 4624.219 4626.612 4628.951 4631.229 4633.439 4635.583 4637.683 4639.717 4641.694 4643.607 4645.464 4611.374 4613.956 4616.486 4618.939 4621.347 4623.697 4625.987 4628.218 4630.390 4632.506 46340567 4636.559 4638.488 4640.371 4611.074 4613.569 4615.979 4618.344 4620.642 4622.872 4625.062 4627.193 4629.246 4631.229 4633.185 4635.070 4613.142 4615.401 74617.606 4619.742 4621.822 4623.859 4625.821 4612.301 40.002 40.003 60.005 00000 00011 0.021 00006 0.004 0.004 0.002 900001 00001 00004 00.002 '00012 g00007 900007 '00005 4-0.005 '00001 00134 00116 00106 00078 00064 00054 00042 0.032 00021 0.016 00014 00004 900010 “00009 00.039 '0.018 900022 900012 900011 900018 '00006 00006 900002 90.019 900004 00.001 0.010 0.006 0.006 900002 *0-099 900001 00.006 ‘00046 I.‘.‘.7.3.I...l.9.§.3 0. o .;0 .0. t. .-. O O I. I. 1". 001.003.3000 .3. .0. 020,-. .2. .000. cu0\nc:onmcauum\nc:uuocac3auasnqua(dcnocacaaum(ucaauacacHDCdOiuuacacaUHHCJCDGHDCJCDUHDCJCMD(D OWDCDOMDCDOMDCDOWDC)OW‘CDHHDCDOMDCDOH*CDHWDC)OM3C30WDC)Dd:C30W¢hOOMDCDfiW+C)OWQE*OMDCIfldfiC: ‘D‘D‘O‘D‘DWUTD‘D‘D'DU'D‘D‘D‘D‘D‘U'D‘D'0'0‘013‘0‘D‘O1113139111)?V’TJ‘U‘D‘D'DTJ‘O‘D‘D‘OTIVTJ‘DV'DV‘01)“U voooooooommmmuunuunuammAAA666.536.066.066.»6uuuuuuuuuuuuuuuummmm O .8. .1. 46441685 46464612 4646;461 46504255 46120671 46154345 46170955 46201505 46224990 46250416 46273785 46300090 46320334 4634;524 46361645 46383708 46400707 46420669 46440531 46460357 46120671 46150220 46170716 46200152 46223533 46240852 46276113 46296311 46314454 4633:542 46350562 46374527 46393440 46410273 46124328 46144779 46174173 46190497 46210763 46230975 46264133 46284218 46300252 46320222 4634:123 46120003 46140288 46163514 46183666 46202765 46220842 46240852 46260765 46130358 P00007 0.006 0.003 0.005 0.004 00006 0.005 0.005 0.001 0.000 90.001 ’00003 *0.005 '00001 ”00506 ’00007 900013 0.006 '00015 '00012 00123 0.102 0.087 0.072 00063 0.050 0.039 0.026 0.017 0.013 0.001 900006 '00006 ”00025 .00030 '00622 900013 ’00015 900016 "00012 '00002 ’00007 ’00003 "00004 ’00014 00023 0.017 0.010 0.008 90.010 '00011 00001 “00007 ”00038 ooooooooooooocoovocoooococoooooooooosonooooo010-000....o (0‘ (do oununonn a “DEC. 00 U! \3 a 001C310! D~mkfl O.“ o": 000000010-010 0-00 CID.QIO'O'Q:D_Q-°tkjolm 0101““ (A . H. H PH OOPOWGDOOODNWUDOO&NU|MON HJ-‘a 1:9:03101:1:3:lxznzuzinzazszznzaxznzizzozaxznzarznc>aia:0ocac9063:0003caasacrolntnoiiclu‘o an»Hpnunnnpmnuunmupooaaaoaococoonumm.#a.¢duuu~mnmmnuufl 4615.401 4617.433 4654.687 4654.760 4652.776 4652.671 4652.498 4652.258 4651.952 4649.727 4649.601 4649.397 4648.999 4645.502 4645.352 4645.131 4644.836 4644.315 4640.144 4639.812 4639.376 4633.647 4633.430 4633.143 4676.287 4675.591 4674.635 4673.436 4671.960 4670.260 4668.271 4666.017 4663.490 4660.683 4657.670 4676.390 4676.120 4675.787 4675.402 4674.955 4674.437 4673.666 4673.225 4672.526 4671.749 4670.937 4670.048 4669.102 4668.109 4667.018 4665.885 4664.691 4663.439 4662.123 *6 P H 90‘ p6 OVNOOWN‘O‘JWHOO‘UOVWHO‘HH “WOWOOOUUOOOGOWWUUUWOWOOOOOOO“OOWOWWOOOOOWOOAU‘OW“040060040 mammmzlxmzuzuznzuznmmza:nzuzuznzorzamzozumzuznmmoooooooooooonooooooooo'u ~40~N04c00 PFHflflflflHPPPPHHHPHHHOOOODOOOOODOoommm&&&bAuuWUNNNNNHPPQ .l...l.l.1. .ZD‘OtOOO-l...l.|.l.l.l.l. I‘OIOX. DICK. .‘-.I. .2.l.i.‘.l.l.l.i.3. CADIOIOIOIO Cl. O-O 1.0.7.1.].l oonouorooosoooooooooooowvooonooooooooooooooooaoooooooo 46160416 46540652 46541229 46530205 46521732 46521618 46521407 46520147 46511527 46491666 46490511 46491144 46481829 46451445 46451247 46441996 46441495 46431876 46401036 46394683 46390203 46333551 46338287 46761562 46751956 46751149 46741074 46723750 46713151 46691295 46671173 46643779 46620123 4659:228 46560061 46763395 46760162 46750853 46750477 46752026 46740505 46733914 46731249 46721528 46716749 46701866 46691948 46680956 46671887 46660771 46651572 - 46640323 46633008 46616627 ”00001 0.016 900006 .0001? '0000‘ 0.017 '0.002 '0.018 '00005 0.005 ’00006 ’0.010 '00009 0.003 ’00001 0.004 “00002 0.012 .0000, .00005 0.007 0.004 '00000 00008 ”00013 0.004 0.002 0.005 .0000: 900002 0.000 0.002 900.00 0.005 t. a C. \l (I (A an 0‘ a 01134, 06010901m (A on! “0‘“ (d 0401000?“ :10 u \l 0204007020:\. o-D! . '- :0mmnmmmnnzmnmmmmzunmnnmzon133:0nxnnmmzuzznmzuznnmzmmmnmmxmsu132010 w¢#3«b-bfiA0100“UMUOIOIOJOIOICACAOI“(AGGOIOIUCANNMMNNNNNMMNMNNNNNMNMHHHH 4660.736 4659.300 4657.798 4656.247 4675.355 4675.026 4674.635 4674.163 4673.632 4673.031 4672.367 4671.640 4670.866 4670.006 4669.102 4668.133 4667.099 4666.017 4664.875 4663.687 4661.757 4660.423 4659.026 4657.572 4656.042 4672.196 4671.914 4671.561 4671.151 4670.660 4670.112 4669.503 4668.839 4668.133 4667.318 4666.470 4665.541 4664.573 4663.526 4662.428 4661.272 4660.054 4658.769 4657.439 4656.037 4654.570 4653.066 4666.513 4665.885 4664.875 4664.104 4663.294 4662.428 4661.481 '00092 ’03091 20.004 00003 0.004 00001 0.005 .00093 900092 «0.095 50.006 0'00007 0.007 500004 0.001 -0;001 “0.098 .00097 '00008 0.002 900092 0.000 0.001 00095 4‘00006 00005 0.013 0.014 0.021 0.010 0.095 00091 00005 0.028 0.005 00010 002094 00003 -0.007 .00007 .00005 *0-905 60.0;0 00090 00.002 .00098 00009 0.196 00158 0.147 0.135 0.104 0.098 0.072 I. .1......:.£..5.3.;.....0.0. 3.1. 1.3. i. I. 0.1. ‘O 1.1.. D S. D O .1. owncacu3c50m3caow3c5nw3c:on9c30uac5fiuacaou3c30m3caow3cafiw3c>c43c30u3c30wahhww3cro(3:)ow¢c: cacnocacno¢3c>unmc3an:(Dc:ouncwocacnocaoamwaonoHuCHaHmcacno\nc:an:\nuuuc:Unacauuacacumcucuo mmmmmmrnznznmzummmammznmzazomznmiummzmmmzxmmmxmmmmmzamznmzummmmzam:0 A40...#&&A¢uuuuuuuuuauuuuuuuuuuummmmmmmNNNNMNNMNNNMNNNHHI—s 03.0. .i.‘. 03.103.1020'. 01.10:. 46603182 46584680 4657:106 46743813 46743560 46743240 46731866 46731404 46723893 46721317 46710662 46704961 4670;198 46690350 46683461 4667;503 46663470 46651388 46643238 4662.428 46610107 46593739 46583316 46560808 4655.264 4672.274 46714914 46714493 46714005 46700478 46690885 4669;232 46683512 46670739 46660913 46664017 46651073 46640061 46633008 4661.860 4660.683 46594425 46583112 46561749 4655:310 4653:817 46660771 4666:215 46650229 46643506 46632687 4662:862 4661:954 46601991 0.003 0.010 0.006 .0000? 900004 'OQUOS 0.007 900605 "09802 0.000 900012 ”00907 0.000 '00613 ’0060‘ “00001 900610 "00805 '00006 0.000 90.006 900001 0.008 ”0.006 ”00502 0.005 0.008 0.008 90.602 0.008 0.009 0.009 0.000 900002 0.002 90.005 0.001 900003 0.013 I'0.006 0.007 '00002 '00904 0.003 '00606 .00608 0.187 0.189 0.151 0.138 0.089 0.094 0.077 0.064 o0.0.0.000...coto.ooocoo...one...oncooooooooooooooo.oo O 6320 ozo‘ozoso D a O'OIU‘ 0 Claim O'D‘D m U! U! U! a Dr“ @0101“ 0".“ COM ov-DiOrD'E' a “0'0 m crown“ u a 0’“ m 11:01)menmnmnmmnzmmmnmmnmznnnnm OOOOOOOOWUIUIU‘IUIUIUIQUIUIUIUIAbbb&b#458. 4660.480 4659.425 4658.316 4657.140 4655.921 4654.626 4653.284 4651.873 4650.419 4660.126 4659.077 4657.899 4657.044 4656.104 4655.131 4654.106 4652.997 4651.220 4649.967 4647.976 4645.852 4650.741 4648.808 4647.756 4646.069 4644.831 4643.599 4642.275 4640.181 0.051 0.037 0.029 00015 0.047 0.004 0.005 ~0-oo4 0.004 “0.052 .00046 '00035 90.023 *0.036 .0002; -0.001 .00004 ~0.0;0 -0.007 .00003 00002 0.019 0:014 0.015 00017 00.0g1 00007 0.002 '00003 3.0 1.. 1. 1.1. I. I. 0. iozolololulo 05.101010». .6. a I. 8.3. 1013:)OWDCDOM3CDDCDC)DMDC)OWDC)OWDC)OW4C)OWDCDOWD umoummuumumuumGCAoomoummoomuooo :nzuzamzuzomwmzuznmmmzozummmzummmwmmmzwu .5..'. 0000O‘O‘OOOUIU‘UIU‘IUIUIUIUIUIUNUI...A.A.b. 20 1a 16 12 10 32 26 24 22 20 18 16 13 27 23 20 18 13 11 46594973 46583885 46574738 46561551 46550286 46533963 46523588 46511151 46493665 46593785 46583316 46573485 46563593 46555636 4654:626 46533541 46524420 46503605 4648.661 46471283 46512615 46494794 46480291 46473211 4645;441 46440221 46424939 46403895 46395457 0.054 0.040 0.024 0.029 0.016 0.005 0.002 ”00003 0.004 900056 ”00029 .0902: 900818 ”00818 ”00612 '00621 90.006 ’00505 0.001 “00602 0.017 0.007 0.016 0.018 ”00015 900008 900601 ”00001 900501 o0000000COCO-QOOOOOOOOOC’ODQQOHO cocoooooooaoooooooo0.00....Co D “(dud-3‘3““ “9m01u0*0 mOiOOiOImm’) IOO‘O‘C’") APPENulx IV V ‘_. .u—n— ——— .-.-- .- an“ _ -. __ . _ .-.. _ . _ .— FREQUENCIES FOR [HE (1.0.3) BAND or 14002 08$ 05? HT 42 5930.554 .0.004 .38 5937.387_90.013 34 5943. 883 .0 .002 30 5950.010 0 1001 26 5955: 773 0. 000 _22 5961.179 90 001 18 5966: 248 0.015 14 5970. 936 .0. 003 10 5975 .305 0. 006 085 ORP X 2 E 0-4 X Z I I 46 5923.372 0 010 4015934.026__ 0. 003 36 5940.689 0. 002 32 59461983 -0 ,009 28 5952.927 -0:009 24_5958.533 _01012 20 5963.749 .0.002 _16 5968,620 “0.009 12 5973 157 -0.005 f 8 5977. 356 _0.005 5979 .326 0 008_ 4 5981.203 0. 003 5982: 988 .0. 008 _46 5922_620_ -0. 032 5924. 938 .0 .019 44 5926.296 0. 006 5928. 533 «0.001 42 5929.8331'09005- 41 5932.020_-0.004 40 5933.288 -0.006 38 5936.656_-0.003 36 5939.935 -0. 001 34 5943.133_ 0 010_ 32 5946.224 0. 002 30 5949.240 _0. 009 28 5952.151 -0.006 26 5954.991 -0.004 24 5957.747 0.001 22 5960.411_.0.000 20 5962. 999 0.008 18 5965. 486_ 0.000 16 5967. 900 0.005 14 5970_216,70.005 12 5972. 467 0. 006 10 5974 .618 0. 002 39 5935.411 20.013 37 5938.734 .0,003 35 5941. 963 0.002 _3315945. 097_ _0. 000 31 5948.1577 0. 014 29 5951 0991.01003 27 5953. 973 0.001 5956. 750 .0. 003 23 5959.446 .0. 001 ‘21 5962 044 _.0 009_ 19 5964.577 0. 006 417 5966' 998 PO 803 15 5969. 341 .0. 002 513 5971. 601 0.002 11 5973.766 .0. 000 9 5975. 845 :0 .002_ 8 5976. 690 0: 002 5977. 841 0. 001 “6 5978. 677 0 002 5979. 751_ 0.005 4 5980. 567 '0. 009 5981. 564 0. 000 46 5921, 505 0. 035 ‘43'5926: 665 0. 028 _41 5930 148 _0. 027 39 5933.529 _0. 011 37 5936.837 0. 010 35 5940.053’”0.005 335943,180_-0.001 31 5946.224 -o.003 29 5949.212 010?9_ 44 5925 .043 .0 .006 '42 5928. 533 _0.008 40 5931. 954 "0 006 38 5935. 272 0. 002 36 5938. 517 0 .010 34 5941. 663 0, 002 32 5944 .735 0. 004 30 5947. 702 .0 .017 28 5950. 618_ _.0. 005 -1)V‘D1JV‘Q1JV‘O1JV‘01)0‘0173‘01rfi93133'011fij01iv‘Uf0113‘01rfi‘0133‘0110 . .l . I . ’ I I flambonflvn3mwonhévbHHAF‘HJ‘E‘HwfiH44HmArNH+¢+4H+4hbfiw3c50caodac2013am1 :OMDCLQCDCMDCDCHDCDdeh‘Hwahtow4caflwac:ruse:cu:c>owahbHWJcanocacaomacH 0.-...0...-.-.¢..-...P...OODOu..-...-.-.-...g C\IU«oc~c¢:c:cc.a1cc3ccro~cllc:at=atU<=O\JCauczc:c¢=c:cA.bJLA}bA45£bAJMAHbOIOKAUJQOdQHHOlHCAOWGCdQI“(dblucdOHIHMVDGNHURJNPONMUfiJN t I 100 26‘5953. 439 .0. 005 1 24 5956.180 _-0.001_1 22 5958 837 0. 002 1 20 5961.403 :0. 002 0 18 5963.885 -0. 005 1 27 5952.055”30I003“ . Q 0 9 16 5966. 284 -0. 007 0. I 0 O _25 5954.843 '09000 23 5957.544 0.002 21 5960.156 0.001 5962.680 -0.001 5965.118_-0.002 5967.477 0.002 5969.745 0.003 5971.923 “00002 H14 I\JO* I 14 5968. 620 0. 014 0 12 5970 832 '0. 002 1 #‘H 04W 10 5972. 975 90. 003 1 H. H- 0 0 0 5 0 0 8 0 0 5 5 5 0 0 0 0 5 0 I O I O I O Q I ’9 5974.023_ 0.002 . __ __8 5975. 042 0. 009 0 7 5976.029 -0. 003 , 6 5976.999 .0. 004 0 _5 5977 946 -0. 011 . _“4 5978. 893 _o 006 0. 46 5918. 669 0. 008 . 45 5920.379 ”0. 022 0. 44 5922:226 0. 003 . 43 5923.904 _0.000 0. 42 5925. 701 -0. 004 . 41 5927. 388 0. 023 0. 40 5929 .100 -0. 006 . 39 5930.736 .0 .004 0. 38 5932.433 0. 006 . 37 5934. 026 .0. 005 0. 36 5935.670 0. 006 . 35_5937. 245_ 0 .010 0.3 34 5938. 814 -0. 005 . 33 5940 .357 0 001 0 .5 32 5941. 897 0. 007 . 31 5943. 395 0.006 0. 9- 30 5944.893 0.015 . 29 5946.330 -0.008 0.8 28 5947.791__0.008 . 27 5949.212__0.010 0.5. 26 5950.618 0.015 . 25 5951.979 -0.001 0.3 24 5953.341_“D.004 . 23_5954.672_50.002_1.0--_ 22 5955.988 01000 . 21 5957.281 90.001 1.0 20 5958.536 -0.017_ 19 5959.805- 0.001 1. _ 18 5961.025 -0.009 17 5962.244 0.003 16 5963.427 -0.001 15 5964.609 0.015 14 5965. 740 0. 003 13 5966. 858 .0. 002 12 5967.954 .0 007 _ 11 5969.045 0. 004_ 10 5970.!106 0. 007 9 5971.133 .0. 004 _8 5972.157 0. 005 6 5974.108 -0. 012 1 4 5975. 992 -0. 010 42 5921.350 -0.463 _40 5924.737_30.475 37 5929. 694 -0. 459 35 5932.892 .0. 452 33 5935.997 .0 .453 31 5939.026 .0. 446 29 5941.963 -0.447 _27-5944.820_-0.443 25 5947.597 ~0.434 ,23_5950.288 -0.428 21 5952. 868 -0. 449 "19 5955.417 30. 415 17 5957. 814 .0.448 -14 5961.265 _-0.485 29 5937. 307 -0. 207 27 5940.136 _-0.214 25 5942.903 '0 200 23 5945.592 -0. 181 20 5949 456 .0 .165 18 5951.918 -0. 165 1 0 1. 1 1 -7 5973.157 _0. 010 0 5 5975. 073 0. 002 0 43 5919.608 .0 .469 0 41 5923.044 .0. 476 0 39 5926.419 -0 .459 0 36 5931.293 60 :467 0 34 5934. 433 .0 475 0 32 5937.510 .0 461 0 30 5940. 507 .0 445 0 28 5943. 395 v0. 452 0 26 5946 .224_-0. 434 0 24 5948. 956 -0.429 0 22 5951. 582 .0. 445 0 20 5954.158 -0. 426 0 18 5956. 627 90.431_0 16 5958 .999 90.447 0 30_5935. 863 -0 .202 0 28 5938. 734 .0. 209 0 26 5941. 535 90. 203 0 24 5944.252 '0.197 0 22 5946.904 -0.172 0 19 5950.693 .0.169 0 17 5953.129 .0.152 0 OOOOOOOOOGDOOOOOOODOOOOHOHHOHHOOOOOOGOOOOOCHHHFHOHOHHO‘ oooonobono.cacao-obopopoponoo cc:c::c:c<2:.cc:c:c<:c:c:cc:c;o<=c:u(xc:vc:c:ucacaa\Jc-cc:o-U\10u:£:c:oc3c12csc:ac:ac:c:u; ‘U1JD‘O1JU‘OITV‘D1JV‘U‘OTVD‘D1IU‘U1JTVU‘D1DV‘D1JU‘D1JD‘DYTU‘01TU‘DITU‘01}?‘01)?‘OWJU‘DTJ1V0 1 f i | m\nUHM\nUVm.bJMbJ>A.bJIth.thAubeOMNOJOHNCNQKd04UCN0HQOJGHNOiOKN(dGHVRJNHUhJNHVBDAHVhJNM _J :17. $26" 9' - . . .. - DDDIJ‘OIJDDDIOTD‘DIUOIJIODZDIJDDDD 1010132030151)“anDDBDDDDDDDDDDDDDDOD‘OU NHVIOAJNHVPOMfvnonflvrunanéhtHMJhtHwartHufitrthWJFMHwaktH+4:30»o:3c:a<:::o43::QCA0eronlmxfl * 1 - ' ' . i g : 5954f316 5956.627 5982.317 5982.175 5979. 287 5979. 069 5978. 751 5978. 322 59992211' 5999.715 5999.856 5999.603 5998.987- 5997.955_ 5996.527 5994.722 5992.530 5990.003 5987.093 5998 212 6000 082 6000_418__ 6000.442 6000-357__ ‘6000.173 5998.759 5998.425 5997 983 5997.457 5996. S41 5996.140 5995.342_ 5994. 432 5993 483 5992. 398 5991 244 5990.003 5988 666 5987. 235 5985. 724 5998.176 5999_071 5998.870 5998 594 5998.240 5997.806“ 5997. 287 5996. 702 ‘5996. 021 5994 722 5993. 894 5992 965_ 5991.931 12290295361 #0;144 0'09128 ’00012 .01002 “00007 0.010 0.014 -00009 -0. 007 '0. 009 -0. 001' :0. 008 00 014 0. 010 0. 001 ~0. 002 -0:016 '01002 -00014 _0.019 0.001 09004 09011 00006 0.000 '00002 0. 006 '0. 002 '0. 003 “:0. 002 00006 09006 '0 016 0 .014 '0. ’002 0. 001 0. 007' 0. 005 -0. 003 -0. 002 0.014 0:007_ '0. 006 -0. 009 '0. 007 70_004 ’00005 _0.009 0. 005 -0. 004 0. 007' 0.005 '0.013 01015 [.6 quuwucdoam | O N 0......O.‘-.-..‘...‘O..........t.. O...b...- .O.‘.-....‘M. NNNNNNNNNNNNNMNPPPHPPHHHHHHPHPHPHHHOOOOOOODOODOGUCANNHU‘ canoeot—MHOOOoooo1ooooo0-toooowhbooocooooo OD OOHOOOOODDOOO GOOD ”5955:4777;0:i41” f03006 5984.133 5982.268 5981. 792 5979.187 5978. 893 5978: 542 5998.842 5999:534 5999.856_ 5999.790 5999.342 5998;511‘” _5997. 287 5995.669 5993. 681 5991. 319 5988. 599 '5985: 522 5998 594 6000. 309 5999. 211 5999.243 5999.178 '5999. 894 5999.534 5999 .071 5998; 512 5997: 878 5997.150 5996. 318 5995. 407 5994. 380 5993 .326 5992.134 5990 .858 5989 .528 5988; 094 5986. 552 5999.178 5998.241 5998:212 '5998.085 5997.878 5997.579 05997.194 5996.702 5996.140 5995. 256 5994 432 5993. 483 5992 .531 5991.423 ,5990323018 0. 004 .0 007_ .0. 000 -0 016 .0. 003 0. 015 '0i018‘ 0 018 0. 008 09001, 0.003 0. 003 .0 003 .0. 000 -0. 002 -0;no?- 00. 006 0.008 0.012 _f00002 0. 005 0.006_ -0. 005 0.002- ‘10. 000 .0 007 0. 005 __0.011 0.004 0.0066 80. 019 0. 016 '0. 000 _g0 .013 0. 0051 0 .006 00. 015 _-0 .001 0.011 0_007 -0.003 00.001 '0.002 06005 90. 006 0. 003 .0. 004 0. 008 -0. 025 0. 019 00.011 0.009- loimumcptnon. Gamma-um:DUImaiommmmomalmomoummmmomoaction:mmolmo‘oo'u MOG‘SUDUOD' L t I»: 9:0 D 01:) 0'09 C3 Oi'DO'C’ 01° 010 0‘0”“: 00 Flo O‘D‘Q‘O 0'0 0 0 0‘0‘ DO: 00° ”’0 HID O‘C‘O‘D D100 o-oc: Di - O D O D C ‘0 O r. O . . |. O C O D O O D U O ’- D b O D C p O “‘C O b. O 0. . b D D . D IJDID133IDIJU7DIIDIDIJUTOIJDJUIIDZJDTDIJDTDIJU DIJUZOJDDIDZJDZUIJITD k”U1Wkflm\fldLbler>AJ>AubthJSdeQlQCMQHAOJGOUMOdMCAQNACiMCARHUhJN I 5989.651 5988.366 5987.020 5985.543 5995.114 5995.753 5995.696 5995.706 5995.623 5995.466 5995.212 _5994.881 5994.240 5993.681 5993.029 5992.307 5991.480 5990.591 5989.615 5988.632 5987.384 5986.166 5991.123 5990.891 5990.525 5990.099 5989.615 5989.032 5988.295 5987.506 5986.639 5985.695 5984.666 5983.554_ 5985.190 5984.282 5983.581- 5982.820 5981.955 5980.471 5979.402 *0.002‘ _f00005 00014 f00012 -0.010 _‘0,019_ 00000 ’00003 '00010 '00005 '00010 -700003 00001 -0'005 .00004 0.003 .00011 .0.001 0.006 0.093 .00002 0.021 .00461 '00428 '0.445 .00436 '00400 .0'423 -0.437~ -0.443 70.441 ’0.439 301434 '00200 700207 ’00203 '0.175 fi'Ogléb _70.182 ”00167 OODOOOOODOOOOOOOOOOOHOOOOOQOOOQOOOQ OODCOO I}NJCJJDJCJDDIUIJDIUIJmZDJDIIDZJDJDZJEIUIEDID!)INDZ3DIDIJEIUJJIIUJDII UHm\flm\nUHflUL535AJbb.thbJ>AJ>QMNOdUCAUCHQKNOKAOHMCdOJQMKOHURJNIU O p C D O '. O D C b C D O . . b O I. O C O I O b O ‘ O r. O O O O O D O . C - O O O cczcrcczc02c:cczcacczc¢:c:c<:c:«czc U\Jc:acaall\rC(nc::C‘C(nC¢=Orc '5989.0327 5987.699 59860288‘ 5984.789 5995.407 5995.863 5995.863 -5995.787 5995.641 5995040? 5995.114 5994.722 ‘5993.949 _5993.365 5992.669 5991.931 5991.044 5990.099 5989.063 5987.970 5986.773' 5984.819 5991.014 _5990.700 5990.326 _5989.847_ 59890286 5988.632 5987.922 5987.093 5986.166 5985.190 5984.117 5985.903 5984.621 59830963 5983.217 5982.386 5981.007 5979.967 5978.227 0.002 70.005 "0.006 '00009 ""0.003 _fl0.003 ”00007 '00014 '00011 _300015 0.004 _,0.006 '0.002 00011 I00.003 _03027 '0.005 gamut 90.021 ”00003 90.003 I0.002 '00450 _'00457_ '0.‘38 no.439 90.437 30.443 -O.419 90.430 ~0.453 “0.441 no.439 “0.197 '0.190 ”00185_ 90.183 L-0.182 90.156 90.155 "A0.174 D DO‘DAODOOOODI°°°*D°D'°° COD o-QP‘DQO o‘ooooo:o 3'0100‘9‘ a: Ocoooooooaooooooaooumuomoomoammmo»oo.omouou- . . A = , 1 ._ . 5 _ j , D D C D D C C D . . D I . D D D C - O . O . O O O C . O D b O I. O D D t. O I. O O O X MNNNMNMMMMMNNHHHHHHHHHHHHHHHHHHHOO00005300C) 40 36 32 28 24 20 16 12 39 FREQUENCIES FOR THE (10003) 088 5824.847 5831.387 5837.575 5843.508 5848.972 5854.137 5858.977 5863.464 5867.629 5871.464 5826.289 5830.626 5833.768 5836.794 5839.789 5842.658 5845.469 5848.203 5850.847 5853.403 5855.867 5858.264 5860.569 5862.776 5864.929 5866.990 5868.963 5870.867 5872.676 5829.327 5832.414 5835.457 5838.414 5841.263 5844.065 5848.118 5850.701 5853.197 5855.617 5857.944 5860.188 5862.359 O-P 00006 '00023 “00046 00029 900015 “00014 00003 “00000 00005 00011 00015 900005 ’00009 “00041 500019 000037 “00023 ‘00013 '00003 '00000 '00006 00004 00003 .00014 '00002 '00001 “00006 g 0.002 '00002 00006 '00019 '00005 00005 '00013 00003 '00005 '00003 I'00005 00001 00.003 '00008 ’00002 APPENDIX V 2: A 7: 1.50.1...O..’-...1..1.'.i.”.C. .i t. otDUanflOWfiOJQCDOWMLd0H3ouOCDCMDCDCDO(DUHDCMUCDQHwOHGCDUHNOHW\NUHD(3 !. CICFDIC . (O O D. .1.1. ‘ C'. IAF‘DWACDHwacaot4croc3CH4cacnacaPmlwuacaotacuocaot:caow¢caomncnacao:3 V‘UTTV‘O13fi‘D13t‘OWJfi‘D1DTVD13U‘E1JV‘DTVU1DU‘D1JU‘D13t‘0131‘013t‘01)t IURHURHURJNhONFONHUhJNF‘H+‘HE‘PF‘H+‘P+‘PF*HWJH14FHDC)OCDCCDO(DOW: BAND OF 15N02 30 CBS 5828.163 58341548 5840.612 58463257 58511610 . 58560605 58610267 5865.601 58693595 58731255 5829.543 58321710 58353794 58380799 5841.723 58441540 58473287 58490957 5852.530' 58551006 58573416 58593714 58613956 5864;101 58661163 58680161 58703037 58711864 5827;699 58300857 5833.962 5836.946 5839;865 5842;696 58453469 58493381 5851;926 58543381 58563762 58593049 58610267 5864.437 0-9 “00007 .0091? 0.018 '00620 ’00002 00001 00006 00015 0.015 00012 00004 P00005 '00009 ’00006 00004 “00907 1’00002 00011 0.013 00002 00010 "00009 00001 “00003 '00905 00013 ‘00606 00012 “00000 '00915 00002 '00816 900913 “00614 0.010 900009 ”0.807 '00612 “00008 '00017 900011 “00007 i. 4 000°C! mc3c>mOID ummouoouoommuummmuuouommumwomuuoommummoommmmuuoommomuo AA;AAuuuuuumuuuuuuMNNNNNNNNNNNNNNHHHHFPHHHHPHHQOoooooo 0.0;....;blo . O . OO'Oi. 0 .‘I':‘ ... o o co . o.-o.:.‘. .1. .~. D 0 O 0. O 34 26 20 16 12 29 26 24 22 20 18 16 14 12 10 36 34 31 28 26 24 22 20 18 16 14 12 10 31 29 27 25 23 21 18 13 11 27 25 23 21 18 58900448 58895443 58873642 5886.005 5883.981 5881.578 58783838 5875.776 58891340 58893576 5888.977 58880314- 58873564 5886;693 5885.773 58843731 58831649 58823438 58800276 58783947 5877.516 58891901 58894657 5888.570 58883477 58873912 5887.288 58865555 5885;773 _58845919 58833981 5882;982 58814871 58800719 5879.440 58781095 58863150 58853773 58853297 58841731 5884.108 58831509 58824169 58811254 58795703 5878.572 58763724 58750391 58733255 58813443 58808885 58804276 58791563 5878;365 0.011 0.024 .00008 00008 00009 '00009 “00014 0.802 00020 0.007 ’00009 0.001 00012 900010 0.004 ’00017 0.807 "00014 '00016 '00803 ”00006 '0.808 ’00023 '00012 '00010 '00017 ’00005 '00826 ’00020 ’00009 ‘00006 0.013 ”00001 0.022 ”00002 '00011 00056 00058 00044 00023 0.029 00041 00019 0.024 00007 00001 ’00003 '00003 00016 ’00052 “00058 '00834 “00033 90.805 W\flUlmr)C) O..0.“..C4.4.0“..'.-.3.’.."..‘.J..-.‘Ot..‘D‘c..m‘-..‘....‘.‘..40.0O (Aficim‘JCJOU'IJrrcauuuomouuooommu‘ooumouououfioomom'p'mm'mouoo ‘J‘U‘UIU‘U'IUIWAAAAJS 17 14 12 710 23 21 19 16 14 12 10 5577.913 5575.452 5875.367 5874.204 5872.973 5575.537 5874.805’ 5874.027 5872.676 5871.665 5870.571 5869.459 90.008 09003 00004 _0.008 00026 00027 09013 0.034 "0.035 0.027 0.019 0.074 000000000000 coconoloo.oo:r«oo UOGOCAUUMUUWQ mmmmxmlnxm‘xzm mU'IU'IU‘U‘WJ-Ab‘A 15 13 11 22 20 18 15 13 11 5876.954 5875.904 5874.805 58733592 5872;329 58753197 5874.436 5673.592 5872.170 5871.122 5870.037 ’00806 _501012 0.015 0.011 0.039 0.036 0.033 0.030 0.020 0.016 0.058 OOQGOOGODC’H OQODGDDK’ID'.nOi O‘COGH'90'. O k-i__'m—"”- '°'_ N ""- ”""1\PPENDIX_VT ’_k """""" x ‘N ' OBS" o-P ' w7“'5'“"5'K*'N“5'055" """ OPP "'H1 5 ' P 0 36 5394.106 0.005'0.3-—-——-—P"6534-53971253553;502—0.3'5'"'-'- Eh} P 0 32 5400 336 0.019 0.0 P 0 30 54031295 0.015 0.3 7 1 'P'u 26'5406.159550.006‘0.5""'5 P55526*5406:936550;005 0;55" P 0 24 5411.633 0.005 0.6 P 0 22 54141242 0.004 0.3 ""'P 0'20'5416.766'50.003 0:5"5'555P'0'18'54191207'60.002'0.3' P 0 16 5421. 544 b0. 026 0:0 P 0 14 5423; 653 0. 600 0. 3 555550512 5426; 04260.01150:55'55'5P50515554261166 560.304 6;!"‘_"““ P 0 6 5430.207 «0. 002 0. 3 P 0 6 54321159 «0. 006 0. 5 "55—5P’U‘“4 5434. 032 50. 007 0; 3"—‘_—’PMU“‘2“54351832"'0.301 0. 5 P 1 32 5400. 260 0.011 0. 5 P 1 31 5401*. 663 0. 005 0:3 " 'P' I 30 5403; 191"0. 000 0;55~5555'P51529'54041763“:0. 003 0. 5 P 1 26 5406. 046 0. 000 0. 6 P 1 27 5407. 621 -0.003 1.0 '55'55P"1—26'5406;626550:00950:55*55—55P5I525554101366550:007'1;65""5 P 1 24 5411.504 30.001 023 P 1 23 54131029 -0.007 1.0 '55'P'1522'5414;109'50.005 I:35555555P515215541535995?01013'!.05' P 1 20 5416.643 0.001 1.0 P 1 19 54161100 s0.303 1.0 “‘55P51518”5419.067'50;0g3"1105555555P5I5I755420:507550}303'1.05“ P 1 16 5421.456 «0.004 1:0 P 1 15 5422:629 -0.004 1.6 9 1 14‘5423-‘746’30;0fiS‘Itfi'P—I‘Ifsnstms—i'on05'1355" ' 5"" P 1 22 5425-964 0.003 0.5 P 1 11 54271216 50.007 0.3 '555"P*I510'5426;103550; 010 0. 35" P 1 '9“5?29§284’?U.910"U.!"’"'” P 1 8 5430.153 0. 007 0. 3 P 1 7 54311272 60.607 0.3 "'5"P'I 56 5432.122"0*. 00350; 0 P 1'55‘54331165'50.014 0.3""" P 1 4 5434.011 0. 000 0. 0 P 1 3 5434: 979 o0. 015 0. 0 P I '5255435;2325'0. 006 0: 55 ”“’”"P”2‘33“63951665"303 011 0.3 P 2 34 5397.211 .0. 005 0. 3 P 2 33 53961729 .6. 641 0.0 5 5- P52 32'5400;260'50.009'025555——'5P5253I*54011749550.022 0.0 P 2 30 5403.191 60.007 0:5 P 2 29 54041626 -0.056 0.0 '55'5'P‘2'26'5406.046'50:015'0:3555555'P52'27554071547553;341 0.0 P 2 26 5406.626 40.015 0;5 P 2 25 54101272 0.027 0.3 5555P52524'541135425m'0g350;3 P z 23554127923—32323 0.0 '5' P 2 22 5414.160 0. 003 0. 3 P 2 21 5415.’ 497 0. 026 0.6 '555~-P 2 20 5416. 696"0. 005 0: 5"555'5P 25195541719605‘0.019 0.3 P 2 16 5419.151 0. 004 0. 5 P 2 17 5420. 379 0.010 0. 3 '5P—2'165542155225 0. 002 0. 5555'152515'54221'707—01012 0. 35 ' ’ P 2 14 5423. 822 0.011 0. 3 P 2 13 54241943 0.004 0. 5 '555-5P52'12554263042'50502250:355555I5P52511554271396550:304'1;0"5'" P 2 10 5426.166 0. 022 0. 5 P 2 9 5429.164 0.001 0. 3 5'5'5P 253 5430. 207—0. 016 0: 3'55 512—25431113950mu7' 0.3 "I P 2 6 5432.159 0. 011 0. 3 P 2 5 54331109 0. 011 0. 3 "55P"2“‘t—5434.U32— 0. 006 0; 3'55'5"P52"3554341919530.313'0.0”5' P 3 33 5396.622 0.037 0:0 P 3 32 54001122 0.431 0.0 —-—h._ __—.— _ —.-—_ _yfi ._ 108 ___,_1,2 P 3331354617596336. 01630 H:‘333333P333363546216343367374363633333“"3 ’ P 3 29 5404. 493 0. 012 02’ P 3 28 54051905 0.407 0.3 "333333P33327354073304330; 06630.33333333P33326354061674336260130;53333“'3 P 3 25 5410.033 0.001 0:5 P 3 24 54114366 v0.000 0,5 ’333333P33323354123667330:0633635 P33 22354131972336;60530;6333”333*3 P 3 21 5415.256 0.002 0:5 P 3 20 54161506 40.000 0.5 '__—___P_3—19"5417T735"‘U.066*UTS_‘—"__‘F_3_IH‘53167946‘?676O5“UI§"_—““—“”_‘” P 3 17 5420.141 40.007 0.5 P 3 16 54214316 -0.004 0.5 “333333P3331535422;470'30.00330:53‘3333‘P3331435423.599“30.40633.53”‘333““ * P 3 13 5424. 707 40. 011 0. 5 P 3 12 5425; 805 v0. 604 0. 5 _3‘P33311354263IP65340. 012 0‘; 33——33P33331335427; 91733601430 3 P 3 9 5428. 959 40. 002 0. 3 P 3 6 54291972 0. 002 0. 0 “333333P3432335412. 405330719336. 63333333P343223541317793363196 0. 6“ P 4 21 5415. 046 0.195 0. 0 P 4 20 5416. 290 0.166 0.01 1 P 4 19354171533336;19930§0"”“‘“‘3P‘631635418;737“02192'6.6”"'fl P 4 17 5419.927 0.192 0:0 P 4 16 54211095 0.109 0.0 ‘333333P3431535422I250330.195‘0:03 P 4 143542313753’61190‘0.6‘3‘ 3 P 4 13 5424.480 0.185 0.0 P 4 12 54251576 0.192 6.0 P 4 11354261668336.21430:0 P 4 10 54271665333:16233:6333333“3'“ P 4 9 5420.725 0.196 0.0 P 5 29 54041056 -0.010 0.0 33333 ”P35323 5405:466“¥D?091“0;U‘———"—“P_5_27_5306186I_'U.HOY"U:U” P 5 26 5406. 225 0. 007 0. 0 P 5 25 54094556 -0.605 0.3 *3—3--*P35324*5410.674 90. 010 0. 3333333‘P3532335412.196 _0:002'0.33' P 5 22 5413.472 0. 000 0. 0 P 5 21 5414.734 .0.002 0.5 P 5320354151967340. 013 0. 3 ~ P 5319354171221"”67017'025“"‘”’ '“ P 5 1a 5418.416 0.067 0.5 P 5 17 54191592 -0.602 0.5 ‘3333P35316‘5420;754-40;00530:33‘ 66666 P35315354211902330.603'0.33" P 5 14 5423.024 -0.006 0.3 P 5 13 54241140 0.605 0.3 333333336330—5452:960330.02530:33333333P30326354521626330;61430.63" P 0 26 5452.194 0. 005 1.0 P 0 24 54511620 -0. 640 0. 0 R 0 22 5451; 065— 0. 01331. O“’““_’R"U_ZU'545U"H362_-U 619 0; 33‘3”" " P 0 18 5449. 557 0. 016 0. 3 R 0 16 5440. 663 0. 014 0. 3 ‘"3333 P30 14 5447. 662330; 016 0. 5333333”P36312354461614 0. 613 0. 3‘3‘” R 0 10 5445.451 0.013 1.0 R 0 6 54441204 0.010 1.0 --““-_~P36“36‘5442:369330:00531:03333333P36334354411457330.609“0.633 3 R 0 2 5439.975 0. 028 0.3 R 0 0 54361376 0. 012 0.3 '—3333P3133235454—280‘0. 01230. 333333331431331354521741330: 3131:6333 R 1 30 5453. 907 40. 020 0. a R 1 29 54521490 0. 613 0. 3 ““““ ‘3‘3P'1 28354537474340; 015 0. a P 13273545231163 0. 612 0. 3 a 1 26 5452.960 0. 001 0.8 R 1 25 5451.628 .0, 009 0. 5 333331 24‘5452; 323'50. 01236. 633'3333P3132335451. 065330.614 1.63"‘ R 1 22 5451. 628 40 005 0. 5 R 1 21 5450. 426 -0.004 1.0 3333333631320354507344330. 003 1. 0 P 1 1935449. 702 —6.003 1.0 P 1 1e 5449.965 0. 001 1; 0 R 1 17 5446. 659 v0. 610 1.0 "'"“"‘R I 1635448. 995*30. 010 1.0”333333P31315354471957330.901 1.0 R 1 14 5447.957 40. 006 1: 0 R 1 13 5446.956 0. 600 1. 0 "333333R3131235446. 333—30. 06731.33333333P‘1311354451864 s01309 1.0““"’ R 1 10 5445. 629 -0. 006 1.0 P 1 9 54441701 -0.600 1. 0 ”333333331338'54441342330. 0053:.63333333P31337354431443330700131163““ "“‘3 P 1 6 5442.965 no.015 1.0 R 1 5 5442.102 0.901 0.0 ”P3m-3P*1*-4“544175123P0102030: ' 3 * ' '*.5""3 '3 R 1 2 5439.975 40.626 033 R 1 1 54391130 -0.027 0.6 3*832“19"5450:053336;011"0:6333‘333P—2313P54491702330;010‘0.6“ P 2 17 5449.178 0.011 1:0 R 2 16 54461701 0.617 0.6 __.____.._. ___.R R "R R J ‘ ”R R ” _ " “’R R R R ‘ R R __ R, R R R -__...__-109 ______1 4-.- 52-15 5448.214““0.066‘0.8“”’“““*R"2 14554474750““0.009 0.5 2 13 5447.167 0.003 0.8 R 2 12 54464614 -0.025 0.0 ~‘2 11 5446.035 80.092 1.0 ““R_2‘1U‘5445:451‘30.608 0.8 2 9 5444.827 0.000 0:8 R 2 8 5444;204 0.005 0.8 52*”7‘5443.528 90.006'0.5“*“‘“8'R'2*“6‘5442;889“0.010‘I.0 3 24 5451.743 ~0.006 0.3 R 3 23 54511396 -0.010 0.5 '3522 5451.085"0.002 0:8““‘*"R‘3‘21‘54502883""0.000 0.3 3 20 5450.295 0.001 0.0 R 3 19 54494873 -0.003 0.3 3 1a 5449.444 ‘0.000 0:3 ‘ —"R'3'17“5448;995“‘0.008 0.5‘ 3 16 5448.513 50.000 0.8 R 3 15 54484019 0.003 0.0 3 i4 5447.507"0.008 0.5“ ”'"'R'3”13’54465955‘20.606 0.8' 3 12 5446.425 0.017 0.0 R 3 11 5445.884 0.034 0.0 “3'10 5445.255"0.022‘0:0”‘—“‘"*R”3“'9—5444:582”.0.053 0.0‘ 3 .7 5443.280 n0.037 0.0 R 4 21 5450.479 0.185 0.0 4 19 5449.702' 0.222 0.0”’ "R"4‘16"5448§294"0.188 0.0‘ : 4 15 5447.804 0.195 0:0 8 4 13 54461750 0.199 0-0 ; 1_ - 1 _ __W_LHWMmm#wfi__WH __ 11 a; X T390'0U‘O‘DU'D'D'D‘O'D'U'DTJTJ"OU'U‘OVTJ'U'U'OT) DD‘O‘OUUU‘O'U‘D’O‘O‘UU‘O Abb-50404CAUCAOJCACAOJCRMN)MMMMMMNNNMHHHMHHHHHHODDOCDC?) 32 26 20 16 29 24 22 20 18 16 12 10 30 28 25 22 19 16 14 12 10 29 27 24 19 16 14 10 21 19 15 FREQUENCIES FOR THE (3.0.1) 085 5330.846 5339.166 5346.825 5351.508 5360.826 5363.831 5335.104 5341.548 5344.057 5346.563 5348.946 5351.276 5355.719 5357.847 5360.987 5364.682 5333.157 5335.914 5340.005 5343.834 5347.616 5351.109 5353.342 5355.564 5357.698 5359.697 5361.637 5363.504 5332.793 _5335.577 5339.643 5346.027 5349.632 5351.916 5354.120 5356.295 _5358.353 5360.322 5335.395 5337.976 5340.734 5343.227 O-P 90.007 ‘0.002 0.022 “09007 “0.001 0.004 0.010 09041 ‘0-001 0.026 0.003 0.001 0.001 0.019, “0.014 ‘09004 0.022 “0.000 50.025 “0.006 0.013 0.002 [09034 '09003 0.022 ‘0.009 '00019 -509020 0.013 0.002 0.008 _“0.010 “00010 '0.029 ’09045 .00007 '00002 00001 .0.186 I'06236 “0.021 0.021 APPENDIX VII 1: .4 X o.....o.!oooooono-.o.o....9...*..O.soo..oooooo“0' ooooummoumuuuuuumuoommwmuumuummmomommuooo(.4 1311'!)‘U'D‘UW‘D‘O‘DU‘D‘DVTJ‘D‘D‘U‘D‘D‘U‘OV‘DTJ‘O‘U‘D‘0'0‘011'01313‘0“O‘DTJ‘D‘D“D 0AAémuuuuuuuuuummwmwmNNNNNNPHPHHPP‘HPHOODOo ODODOODOOODOODDOODHOODODDDODDODOOQODODPODO 088 53334722 53414770 5349.207 5355.908 53613966 53331407 53404497 53431091 53454634 53483041 5350.376 5353.519 5356.980 5359.867. ” 53621889 5331.772 53343600 53374356 53413274 53464456 5349;983 53524275 53543495 53563650 53581704 53604688 53624588 53311369 53341199 53364924 53404966 53485445 53504783 53533064 53550225 53573346 53593364 53613308 53363738 53394397 5341.966 53813011 BAND OF 15N02 0.022 '09019 0.011 “00015 0.000 '09025 '00603 0.001 0.032 0.003 '00019 “00015 '00916 0.005 0.005 "00040 “00020 _'0.004 0.005 0.018 0.006 '00902 '09003 0.007 “09004 '09006 '00913 0.018 0.017 '02021 0.011 ”09015 “0.021 '00902 '00019 _0.007 0.015 0.035 '00170 '09097 '09025 “0.006 NT 70.3 a a n .v 0.8 0000 o o a +0 0 . U'u'J‘OiCdU} OGOGOOOOGOOCGQOOQOOOOOOHOOQODOODHOQ oo‘ocoo-OO-ooooooooooooo0.0.0.000... HDCDOQCAHHOmJ‘mu-fflmuNEHmMU‘CIJD\fiKflil‘(flJ‘u-'dDO (".3 J30331U / 7.) 70131312333133EDDIJIJIJIanLLLLDsz uCAOHVR3m00NHVAJMPONH4P*H+*H+4h5H+*Hw4h5O<3cns 20 18 15 13 11 H \J‘OAAOCD 5381.125 5379.490 5376.498 5372.685 5369.724 5382.814 5383.053 5381.125 5380.394 5379.645 5378.814 5377.789 5375.605 5374.023 5372.685 5371.253 5369.724 5383.206 5382.569 5380.248 5379.375 5377.789 5376.737 5375.605 5373.710 5372.370 5370.929 5375.785 5372.936 5371.673 “0.013 *0.033 0.031 0.019 ‘90.004 0.020 800015 90.001 '00018 0.026 “0.025 0.026 50.033 “0.051 '00005 0.024 0.034 ’0.007 0.002 0.005 0.041 0.007 0.021 0.034 “0.003 0.008 '0.005 “0.008 “0.022 ‘0.006 cocooooo-oo‘o.0...,oooooooonoooco “(DWUWGDOI‘CNCJOHWCDWOOOJQCNUOCNODUUTU‘IOJUDUUD (NUCNNNNNNNNNNNNHHHHHPHHHHHPOOOD OOOODDOOHCJOOOODDDDDQODDOOOOOOC) 5380.397 53773572 53744029 53714253 53831206 53824378 53821578 53811631 53801744 53791825 53774789 53753737 53751374 5373.150 5371.819 53704559 53836053 53821569 5381.122 53794645 53781814 53773298 53761207 5374;995 53731028 53711673 5369.917 53733575 53724370 5370’359 0.024 0.003 0.014 0.016 0.012 0.062 0.003 0.026 ’09015 “0.012 ’00001 "00017 '00007 '00012 0.016 '00004 '0.041 0.011 0.038 “00955 0.043 '00007 0.024 0.009 ’09014 0.017 '0.011 0.009 0.041 0.044 thiflCde‘J‘ pumauu-mwmuumuumuoutnwmuw(A O C 'C C I. O I. C '0 . *0 O ~. 0 ‘C O ‘0 O -. C 9. O O O *C O 5. O .0 O OOQOOC’C’OGGGODOOCOOOOOOHQQDODOD