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ABSTRACT

SIMILARITY RULES IN MAGNETOHYDRODYNAMICS

BASED ON MULTI-FLUID THEORY

by Joab Jacob Blech

In the present work similarity rules are derived

in magnetohydrodynamics, in the physical Space, based

on a multi-fluid theory. The basic hypothesis of the

multi-fluid theory is that the fluid consists of a

number of fluid components, each with its own intrinsic

properties (such as molecular mass, charge, etc.). Each

of the Species is assumed to be inviscid and non-heat

conducting. The postulated fundamental equations for

each fluid component are: equation of state, first law

of thermodynamics, conservation of mass and conservation

of momentum. In addition two Maxwell's vector equations,

describing the electromagnetic field, are inserted into

the system of equations. The flow is assumed to be

multi-diabatic, i.e., there is injection of momentum as

well as energy (heat) by means of sources from outside

into the various fluid components.

We assume a steady flow which depends only on two

spatial coordinates; but in the present multi-fluid

theory such a flow is not a two-dimensional flow in the

usual sense. The velocity, the electric and the magnetic

fields have three components. After a reduction of the

number of fundamental equations is made, the system of
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equations is linearized, i.e., it is assumed that a

first order small perturbation theory describes adequately

the flow field.

In the present case of MHD a mere linearization of the

system of equations seems to be insufficient for obtaining

similarity rules. An additional procedure, i.e., some

sort of a smoothing process, is applied in which a crite-

rion for neglecting very small terms is introduced, thus

leading to a simplified system of equations which governs

the flow. A correlation between this simplified system

of equations of the compressible flow and correSponding

systems of equations of the incompressible flow is estab-

lished for the case of aligned fields, in which the velocity

and the magnetic fields in the undisturbed stream are

parallel, and for the ease of crossed fields, where the

velocity and the magnetic fields in the undisturbed stream

are perpendicular. Pressure coefficients for the indivi-

dual Species and for the gross fluid are calculated and

correlated. AS a Special numerical case, a fully ionized

plasma is considered and the ion pressure coefficient

is plotted vs. the ion free stream Mach number for

various orientations of the magnetic field.
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INTRODUCTION

In the past, many formulas for the similarity relations

between incompressible and compressible fluids in an

isentr0pic gas flow, were derived. A collection of such

rules in the physical Space is given in (8). The Kérmén-

Tsien technique which employs the hodograph method can be

found, for example, in (7, pp. 336-340). Similarly, some

attempts to derive similarity rules in diabatic flow, i.e.,

a flow with heat addition by means of sources, were made (4).

In recent years there has been a tendency to derive various

similarity rules in magnetohydrodynamics.

From various attempts in the past we may quote and

discuss briefly the following:

(i) v. Krzywoblocki and Nutant (5) derive a similarity

rule for an inviscid, non-heat conducting, diabatic flow

which takes place in an electromagnetic field, with excess

electric charge equal to zero, following the technique of

Kérmén-Tsien in the hodograph plane and assuming a simpli-

fied pressure-density-entrOpy relation. Although a similarity

rule is derived, the disadvantage of this procedure is

that equations of the electromagnetic nature are not trans-

formed into the hodograph plane. The electric and magnetic

fields are treated as known functions. Moreover, the

1
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correlation of correSponding coefficients in both stream-

function equations of the compressible and incompressible

flow requires that there be a certain relation between

the vorticity distributions of both flows. A Special

relation is also imposed on the Jacobians of the trans-

formations in the physical Spaces.

(ii) McCune and Ressler (6) treat the two-dimensional

steady case of a highly electrically conducting, inviscid,

non-heat conducting, isentr0pic flow passing over a thin

body. A single partial differential equation for the

current field is used to study the flow. This differential

equation is derived from the linearized fundamental system

of equations of the hydrodynamic and electromagnetic nature.

The discussion is separated into three main cases, depending

on the orientation of the externally applied magnetic field:

The case of aligned fields, where the magnetic field is

parallel to the velocity field of the uniform undisturbed

flow, the case of the crossed fields where the magnetic

field is perpendicular to the free stream velocity, and

the case of an arbitrary field angle. In each case,

procedures are deve10ped for the solutions of the

magnetoaerodynamic problems involved and the compressibility

effects can be studied through the solutions.

In the works mentioned previously the ionized gas

is treated as a single fluid. It was pointed out in (2)

that if one seeks a single fluid magnetohydrodynamic

formulation in which the current density is considered
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as an unknown, a counting of variables and equations shows

the necessity of an additional vector equation which is

usually taken as the generalized Ohm's law. The influence

of gasdynamic effects on the electric current density has

been completely neglected. One way to improve the descrip-

tion of the mechanism which governs the electric current

density is to use multi-fluid theory. In this formulation

the fluid is assumed to consist of several fluid components,

each with its own intrinsic pr0perties (such as molecular

mass, charge, etc.) and with its own thermodynamic state

variables. Conservation equations from the macroscopic

point of view are then postulated for each fluid component.

There is no necessity for Ohm's law Since the electric

current density is defined by means of the velocities and

charge densities of the various Species, and the former

are governed by the conservation equations of the indivi-

dual fluid components. Thus the effect of the various

forces on the electric current density through the velocity

vectors and momentum equations can now be treated exactly

from the macroscopic point of view.

The main purpose of the present work is to derive Simi-

larity rules, avoiding the pitfalls appearing in the works

of previous authors. A multi-fluid theory was employed.

Each fluid component was assumed to be inviscid and non-

heat conducting. In Chapter I, section 1, the dependent

variables and a list of the fundamental equations are

introduced. In section 2, equations of state, first law



of thermodynamics, conservation of mass and of momentum

for each fluid component were postulated and the passage

from the Species equations to a gross fluid formulation

is discussed. In order to obtain correct momentum and

energy equations for the gross fluid, it was assumed that

the fluid component flows may be multi-diabatic, i.e.,

there may be injection of momentum, as well as energy (heat)

by means of sources from outside into the various Species.

Equations of state and for the internal energy of each

component are allowed to deviate from perfect gas equations,

so that it is possible to derive perfect gas equations

of state and for the internal energy of the gross fluid.

Various results pertaining to the charge and current

equations and to Ohm's law, which were obtained in (1, 2)

are summarized in section 3. The fundamental electromagnetic

equations, i.e., Maxwell's equations, are introduced in

section 4, and following (9) two possible formulations of

the final system of equations are given in section 5.

In Chapter II, section 1, a steady three-dimensional

flow which depends only on two Spatial coordinates is

assumed. In the multi-fluid theory, one cannot assume

that such a flow is two~dimensional in the usual sense.

The velocity and the magnetic field have three components

which have to be calculated from the fundamental equations.

The electric field component in the third direction is shown,

from the fundamental equations, to be a constant. The

electromagnetic system of equations is further reduced



into two differential Equations for prOperly chosen functions,

the spatial derivatives of which give us the remaining two

components of the electric and magnetic fields. In section 2,

the single quasi-stream function* and potential equations

for each Species are derived. Those functions are associated

only with two velocity components. The third velocity

component is governed by the momentum equation in the

correSponding direction. Generalized Crocco and Bernoulli

equations are derived in section 3. In section 4, a

summary of the governing system of equations is given.

The quasi-stream function and potential equations for the

incompressible flow are given in section 5, and the final

system for the incompressible flow is discussed. Section 6

merely introduces a nonmdimensionalization of the various

quantities and equations of the flow, after which a lineari-

zation procedure is carried out in section 7, i.e., it is

assumed that a first order small perturbation theory

describes the flow field.

In Chapter III an analogy between the compressible

and incompressible flow is obtained. For this analogy it

is necessary to simplify further the linearized system of

governing equations. Thus in section 1, following a criterion

similar to the one given in (11), very small terms are

neglected in the linearized system of equations. Certain

pairs of coefficients in the linearized quasi-stream function

 

* A three-dimensional steady flow has actually two stream

functions (3).
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equations are approximated by their weighted mean. In

section 2, a correlation between the simplified linear

system of equations of the compressible flow and correSponding

systems of equations of the incompressible flow is established

by means of linear transformations of the coordinates and

of pr0perly chosen relations between corresponding

quantities of both flows. It is necessary here to distinguish

between the two separate cases of aligned fields and of

crossed fields. Finally, in section 3, pressure coefficients

for the individual Species and for the gross fluid are

calculated in both flows and the relation between them is

given. A Special case is chosen in section 4, and the

cOmpressible pressure coefficient is plotted vs. the free

stream Mach number with the externally applied magnetic

field components as parameters.

In ordinary isentr0pic irrotational flow it is

sufficient to linearize the equations in the physical

Space in order to obtain similarity rules. In a rotational

flow of such a character, some additional assumptions

must be made to take care of the vorticity effects. It

seems that in the present case of MHD the procedure known

from the classical gas dynamics is absolutely insufficient

for obtaining reasonable similarity rules. The additional

procedure which is applied in the present work is some sort

of a smoothing process after linearization which is actually

equivalent to neglecting some terms of smaller order, and

taking mean values. It seems as if this procedure can be
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considered as a first approximation in a chain of a successive

approximation process as applied to the similarity rules.

Higher approximations are then obtained from a more accurate

system of equations of the flow and the results of the first

approximation. In the present work only the first approxi-

mation is considered.



CHAPTER I

FUNDAMENTAL EQUATIONS AND CLASSIFICATION OF FLOWS

I.1. Fundamental Concepts

We consider the plasma, on the base of a continuous

medium, as a mixture of n fluid components, each with its

own intrinsic properties (such as molecular mass, charge,

etc.) and each with its own thermodynamic state variables.

From a macroscoPic point of view, the following quantities

are sought:

T5 = temperature of the s-th species;

p5 2 pressure of the S-th Species;

P, : density of the S-th Species;

u: = i-th component of the velocity field of the sath Species;

T : temperature of the gross fluid;

p : pressure of the gross fluid;

P = density of the gross fluid;

u = i-th component of the velocity field of the gross fluid;

= i-th component of the electric field;

H‘ = i-th component of the magnetic field;

where s=1,2,...,n and i:1,2, or 3. Counting the unknowns

8
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we get 6n+6 quantities to be determined*.

The following gas—dynamics equations are postulated

for each fluid component: Equation of state, first law

of thermodynamics, equation of continuity and equation

of momentum.

In addition, two Maxwell's vector equations, describing

the electromagnetic field, are inserted into the system

of equations.

Counting the equations we get 6n+6 relations.

I.2. Fundamental equations of the Gasdynamic Subsystem

The following relations are postulated for each of

the fluid components, assuming that each component behaves

like an inviscid, non-heat conducting fluid:

Equation of state:

TasrRSPS—E}, (1.201)

where R5 is the gas coefficient of the s-th component.

The density, fl;, is assumed to be given by:

Patna), . (1.2.2)

 

* The quantities T, p, p, u; depend on T5, p5, P,, u;

and, therefore, will not be counted.
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where m6 is the molecular mass of the S-th component and

1; is its number density.

First law of thermodynamics in a form:

dQ5= dU5+ 1osd((o;‘), (1.2.3)

where dQ5 is the energy addition per unit mass into the

s-th component and U6 is its internal energy per unit mass.

With the aid of Eq. (I.2.1), Eq. (1.2.3) can also be

written in the well-known form:

()1 Q.= dI, - 0:11.10, , (1.2.4)

where I5 is given by:

[5: Us +R5Ts. (1.2.5)

Equation of continuity*:

%%*afi'fi((0.u’§)’ 6., (1.2.6)

where Cg is the mass source, per unit volume, of the s-th

component. From the conservation of mass it follows that:

:5; 0, (1.2.7)
9'1

 

* Summation convention is used for repeated tensorial

indices but not for subscripts distinguishing between the

fluid components.



11

which implies that there is no addition of mass from out»

side.

Equation of momentum is postulated (1, p. 8, Eq. (1)):

- Xi}

6 ° 8 ' ‘ _ 9.) 4" / 4’ 8 s

fi(@su::)+ SEARS“; Uzi) "'fi€+ Fe + OSZS- ax} , (I.2.8)

where i=1,2, or 3 and F; is the i-th component of the

body force acting on the s-th Species. This force may

be written as:

a z a :

F5 : F s + Fee + F09 , (1.2.9)

where Ffi;is the i-th component of the non-electromagnetic

body force such as gravitation force, etc., F; is the i-th

component of the electromagnetic force and Fé is the i-th

component of the interaction force, i.e., the force on

the s-th component due to all the other kinds of Species

in the fluid. By Newton's third law of motion, we have:

Z F0: “‘2 0; (121,2.3). (1.2.10)

S=i

i

6525 is a momentum source associated with the mass source

6%. Following (1, p. 9) we require that:

n L

;6925=O; (i=1,2.3). (1.2.11)

if
X5 is a momentum transfer tensor, associated with the s-th
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fluid component, the significance of which will be explained

later.

Next, we derive an energy equation analogous to the

one given in (1, p. 8, Eq. (1)). Assuming that QS is a

differentiable function, then from Eq. (1.2.4):

 
 

  

8 g a 5 —i , .

835’ aid: —[05 %% 9 (3319293)»
(I.2.12)

3 31-5 ‘1- ()5

985 : at ~ (05 $4?
(I.2.13)

Multiplying Eq. (1.2.8) by u: and using Eqs. (1.2.1),

(1.2.5), (I.2.6), (1.2.12), (1.2.13) we get after a few

manipulations:

a - x“

Edge-[0505) + g—fl(ésuas .(95{ SJ“: 'FFSUé) = 111;}T5t-(L; fi'f

i ' A.

+55( I5 QS-Z u": LL: U’SZ»), (I.2.14)

where 85 is given by:

g. = é—patéui ”110.11.. (1.2.15)

Equation (1.2.14) is the energy equation, analogous to the

one obtained in (1).

Define the following gross fluid variables:

11.

P: :1 (a, , (1.2.16)
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(0,11: , (1.2.17)11

(“A '

F‘= M
g

S
M
:

FT; 1
(1.2.18)

1(
D 11

. ' _ .. ’11) ~' - . --

XL3= 10131.1( -P8L3 +;(X? will; 11: +1056”), (1.2.19)

, . 11 . 1 m

S = Ii- Pw' LL” +i0U = ; (“é“(OSLL: Us + P5115): 5:? SS (1.2.20)

PQFFEMPQLLUPMFA 37,(eu5+p111)+11 7171' +

91

+;[11§F;—9—————(e, 113++1.11) +§TWPQ +3—;(P.Q.ui)—

143+ (I o z:1153—)“ 6, ,- ,——11:;_:11 +;11 )] (1221)

where 6&6 is the Kronecker delta. The diffusion velocities,

U1

5!
are defined by:

1 1 1
if, = 11,5 - 11 . (1.2.22)

It is evident from Eqs. (1.2.16), (1.2.17), (1.2.22) that:

I", .

2P5”; =0 . (1.2.23)

The pressure, p, is defined in (1, p. 9) to be* :

 

* The pressure dealt with in this work is the gas-

dynamic ressure. The radiation pressure is neglected (see

9’ p. 12 Q
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FE::PS MP u‘ , (1.2.24)

Another possible definition is (9, p. 10):

@2105. (1.2.25)

We will ad0pt the latter proposition for the pressure.

Using Eqs. (1.2.11), (1.2.16), (1.2.17). (1.2.18),

(1.2.22), (1.2.23), (1.2.25) in Eqs. (1.2.19) to (1.2.21)

it can be shown that:

- 7" , _

X)A =:1(X:1+P,1IJUJ), (1.2.26)

[DU = 2(F5US + 71(051}: U2): (1'2'27)

+17; 2:) ‘37, (55,05U,5,55% (1.2.28)

Adding each of the individual Eqs. (1.2.6), (1.2.8),

(1.2.14) over s, and making use of Eqs. (1.2.7), (1.2.11),

(I.2.16) to (1.2.21), (1.2.25) we obtain:

fiflpui) = O , (1.2.29)



-
1~ *fi

397(3011‘) 1- ”1311“” 111) 3311.1 ‘1— 3:, , (1.2.30)

a—at—(é -PQ) wefifia 118 -P()115‘ +1111?) =~

7%

=H1F “Lia—F". (1.2.31)

Equations (1.2.29), (1.2.30), (1.2.31) are the continuity,

momentum and energy equations for the gross fluid.

In the equations of the single plasma components we

introduced terms representing momentum and energy flux

into the s-th.component from outside ( LX721 -@—(FSQS)+

3X3 1 81

+38X3()DS OSLL1135)) . The inclusion of these terms made it
 

possible to obtain correct momentum and energy equations

for the gross fluid. A correct continuity equation for the

gross fluid was obtained by the requirement that the density

of the gross fluid be equal to the sum of the densities of

the component fluids, and that the mass flux in the gross

fluid be equal to the sum of the mass fluxes of the component

fluids. We will define a "perfect gross fluid flow" as

one for which Eulerian formulation is obeyed, i.e., as

in our case,.XTLEO , due to nonmexistence of'a momentum

transfer into the gross fluid. A perfect gross fluid flow

will be called ”adiabatic" or "diabatic", depending on

whether Q does or does not vanish.

In a diabatic fluid flow we assumed that the energy

is added into the particle with no viscosity and heat

conductivity present; similarly, in our case of perfect



 

 
.
‘
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gross fluid flow, we observe, by inSpection of Eqs.

(1.2.26), (1.2.28), that in general there exists an

injection or subtraction of momentum and energy into a

particle (X: 9&0, 054:0 ), hence the Species flow is

diabatic not only in an energy sense, but also in a

momentum sense. We, therefore, propose the name

"multi-diabatio flow" for this model which is more general

than the diabatic flow.

From Eq. (1.2.26) we get in the case of a perfect

gross fluid flow:

’11

X(>< +1.11,U1) =0 . (1.2.32)
5:1

Q

One way to satisfy Eq. (1.2.32) is by choosing )(5 in

the form:

x‘1—-- 1s _ P6115113 - (IE-2.33)

In the case of an adiabatic perfect gross fluid flow

the left-hand side of Eq. (1.2.28) vanishes, and therefore:

:[UJ F.f——,1—,—,(e.ug +10: 111) +3t(1.0.)+9fi((D.Q.11§)—

vii—X—s+ds(l Q.- uéué+U§Zl)+
9111

”111—111(1)”; 11.3)] = O . (1.2.34)
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One way to satisfy Eq. (1.2.34) is by choosing QS such

that:

%

fiat-(PSQS)+ 330 (PQ LL) _U5151F1383A86U1P2527511) U51 99%?

L (r '\

" 9(Ie_Q5 — ”El-us 1’15 +1}: 2:1 -._ ucégfl<PSUJU3)) (I‘2°35)

Q

and if 2X; is given by Eq. (1.2.33) we get, with the aid

of Eq. (1.2.22):

—(FSQS)+ _8_3_((SP550 LL21) ' 7451?: + 5%??(11 Us} +P5U51) ‘

—6,(I,—Q,—Ziu;u§ +U§Z:)-— uéfifipsvévé). (1.2.36)

Eqs. (1.2.33). (I.2.36), if taken into account, enable

{

one to eliminate )(51 , QS from the momentum and energy

equations of each fluid component.

Defining the Operator %§ by:

= 2R1+U} 5X, (1.2.37)
2

it can be shown that the equation of energy (1.2.31) can

be remodelled with use of Eqs. (1.2.29), (1.2.30) into a

form which may eXpress a gross fluid first law of thermo-

dynamics:

ZFF'= TIT'+'P"&RT(P¢)- (1.2.38)
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It is sometimes convenient to consider another form

of the momentum equation for each fluid component which is

obtained from Eqs. (1.2.6), (1.2.8):

 

 

 

l g 8 s _1' - 4'. 9X3,

516(3)“ + 111 19):) = 73.1. 165(Zé-u.) a). , (1.2.39)

where 121,2, or 3, and for the gross fluid, using Eqs.

(1.2.29), (1.2.30):

' i . -Q

m1 M 9 1 951 .

()(9’0 + 3W) :_‘03%+F '33)? , (i=1.2.3). (1.2.40)
 

Dividing Eq. (1.2.39) by p, , Eq. (1.2.40) by P’ sub-

tracting the second equation from the first, and using

Eq. (1.2.22) leads to the soecalled difference momentum

equations:

 

 

sp;1(Zf.-u:) , (1.2.41)

For the derivation of an equation of state for the

gross fluid, we define the gross fluid temperature as

(9. p. 11):

T = V1: 115T. , (1.2.42)

where 9 is given by:



9:}: )5 , (1.2.43)
5:1

The gas coefficient for the smth fluid component, Rs ,

is assumed to be given by:

R,=R,m;1 (141,) =R..(1+W.) , (1.2.44)

where RA is a universal constant and W5 is a function

representing the deviation of the state of the s-th Species

from the state of a perfect gas. We observe that if W5 : 0

then the s-th component has a perfect gas equation of state

since equation (1.2.1) becomes, using Eqs. (1.2.2), (1.2.44):

P5=RA95T5 , (1.2.45)

which is a perfect gas equation of state. R#,is given by:

111.512.7113. (1.2.46)

Inserting Eq. (1.2.44) into Eq. (1.2.1) and using Eq.

(1.2.2) furnishes:

70.=R..(1+w.)(o.1; = RA(1+W,)YSTS, (1.2.47)

Summing each of the individual Eqs. (1.2.47) over s and

making use of Eqs. (1.2.25), (1.2.45) we get:
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(FRANK/”T , (1.2.48)

where W is defined by:

W=()’T)—15Z__1WSY,T, , (1.2.49)

Equation (1.2.49) can also be written in the form:

10=R(0T, (1.2.50)

where R is defined by:

R= Rm(1+ W)--RP(1++;)\/) Rpm/m“, (1.2.51)

13:50))“ =(5::_!Ds)(:ys) (2:213),)(:Ve>. (1.2.52)
5:1

The symbol m is referred to as the mean mass of a particle

in the gross fluid.

In order that Eq. (1.2.50) be a perfect gas equation

of state it is necessary that R be a constant. We observe,

from Eqs. (1.2.51), (1.2.52) that the condition W20 is not

sufficient to make R a constant since the mean mass of a

particle in the gross fluid, m, given by Eq. (1.2.52) is,

in general, not a constant. If one assumes however that

m = constant (and W;O), then the gross fluid has a perfect gas

equation of state.

Next, a specifying equation for each fluid component
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is derived. Introduce the entrOpy per unit mass of the

s-th Species, 55, by means of the following relation:

T5615, = 310, . (1.2.53)

It is assumed that the Specific internal energy of the

s-th component is given by:

U,=C,,,(1+1\,)T5 , (1.2.54)

where A5 is a function which represents the deviation of

the Specific internal energy of the S-th component from

a perfect gas Specific internal energy, i.e., the imper-

fections of the gas. 0,5 is the heat capacity of the s-th

fluid component at constant volume if it would have been a

perfect gas, and will be assumed to be a constant.

Inserting Eqs. (1.2.53). (1.2.54) into Eq. (1.2.3),

deviding the resulting equation by TS and using Eq. (1.2.47)

furnishes:

(1.35: C15“. 1A5) .1—5-1 de + Cvs dAS-RPS(1+WS)P:deO (I.2.55)

Integrating Eq. (1.2.55) from a zero subscript initial

state to some and state gives after the elimination of

the logarithms by means of eXponential functions:

T5 T5: = 65(51553; Ks-i WHSJSSJCJH , (1.2.56)
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where Gs , K5 are given by:

G: 2x1019(A.-/\..) - (0A.? 012T. + (112110114): 4111.1, (1.2.57)

K.=1+R..C;i. (1.2.58)

Using Eq. (1.2.47) in Eq. (1.2.56) we get:

1156.))? 54315.1.) (1.2.59)

where the function 05 is given by:

C5 = 13.053355(1+1315)“11/1/21.)—1 Gs 9X10(“SSOC;:) . (1.2.60)

Eq. (1.2.59) is the Specifying equation (generalized pre-

ssure-density-entrOpy relation) for the S-th fluid

component.

Similarly, we introduce the specific entrapy, S ,

and internal energy, [1, for the gross fluid by the

relations:

T115 = (10, (1.2.61)

U=C.(1+A)T, (1.2.62)

where A, c1, have a similar meaning for the gross fluid as

A5 , c,s have for a fluid component.
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It can be shown, by similar operations which were

performed to obtain Eq. (1.2.59) and with the additional

assumption m = constant, that:

1P= CPKW181111) (1.2.63)

where:

C: PoPJK “HA/X11110)—1 G W(—So CV1) , (1.2.64)

6 = WRMVAO) ‘LAT—1 dT + {19910141504115} ’ (1.2.55)

K= 111121.03. (1.2.66)

Equation (1.2.63) is the Specifying equation for the gross

fluid*.

It may be worthwhile to notice that the n+1 functions

A, A1 ’ A2 , coo , A“. are related. by Eq. (I02027),

remodelled with the use of Eqs. (1.2.54), (I.2.62):

PCvU(1):ij—5:1: PMCv51H1—1'A “Mg—ENJUSI']. (I.2.67)

One cannot assume, in general, that:

AEA,EA,E...‘=‘AREO, (1.2.68)

 

* 1n the case where the mass m is assumed to be a
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Since we would get one more relation between.P, T, PS, TS,

v; , thus overSpecifying our system of equations. If,

however, one assumes that Eq. (1.2.68) is true, then the

gross fluid as well as all the component fluids have perfect

gas specific internal energies.

Next, we calculate the value of (93%,)55 . Using Eq.

(1.2.47) in differential form and Eq. (1.2.58) in Eq.

(1.2.55) we get, after rearranging:

(3.6}: (11A,)d55: dp.—K.psf.i(’11(\1,)()?gt111(1W)(iv/gr+1111)1).)1111.(1.2. 69)

where N5 is given by:

N. = (Ks-1M1;1 (W.-A,)(1+A,)-i. (1.2.70)

Assuming ()5 and 5. independent, also assuming that 10., As,

Ws , are, possibly, functions of R5and some other variables

independent of P5, we get, equating coefficients of dPS

in Eq. (1.2.69) and rearranging:

s O

(065)2 = (11%:35) = K5131” (1 N.+) p.13—P;103(1+w.)(14A,)-1]S (1.2.71)

Similarly, assuming m = constant,f)and S as independent

variables and p, A, W as functions off1and, possibly, of

 

variable, we can decompose it into two parts: m = mean

constant + variable perturbation. This will give us in the

final Eqs. (1.2. 63) to (1.2.65) an additional term which will

represent a deviation from their present forms.
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some more variables, independent of P , we have:

2 9 _ 1 _

(06) 43%)5-7Kpp‘(i+N)+yloflf(13(1*W)(1+/)HS, (1.2.72)

where N is given by:

N =(K—1)K‘1(W—A)(1+A). (1.2.73)

I.3. Charge and Current Equations, Ohm's Law

Following (1, pp. 11, 12) we derive a charge and a

current equation.

Let P%,be the charge density of the smth fluid

component, given by:

PBS: 6595 ,
(I0301)

where es is the charge of a particle of the smth Species.

From Eqs. (1.2.2), (1.3.1) we have:

11.51.11. ; 21:263st (1.3.2)

Assuming 55: consonant, we have, multiplying Eq.

(I.2.6) by'#;and making use of Eq. (1.3.2):

$51,711:): 6515. (”'3’
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Equation (1.3.3) is the equation of conservation of

electrical charge for the s-th fluid component.

Requiring that there be no input of electric charge

sources from outside into the fluid, we have:

71.

Z 6.). =0. (1.3.4)
S=i

The gross fluid excess charge density, Fe, is given

’71.

foe=ZPes , (1113.5)
5:1

and the electrical current density, J), is given by:

i. 'n. J. 1'. 1‘.

J =;pe.u, = J, +1111 , (1.3.6)

where J; is given by, using Eqs. (1.2.22), (1.3.5):

‘ _ 1
Ju — [0957}, . (10307)

J‘ is the current observed in a fixed system of coordinates

while J: is the current observed as ”moving with the gross

fluid". The term (mu‘ is called the convection current.

Adding the individual Eqs. (1.3.3) over s and using

Eqs. (1.3.4), (1.3.5). (1.3.6) leads to the equation of

conservation of electrical charge of the gross fluid:
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_%%,h§E(Jg)g(). (1.3.8)

It may be worthwhile to notice that in the case of a

fully ionized plasma (n = 2), Eqs. (1.2.7), (1.3.4) lead to

the immediate conclusion:

@E@EO. (LEW

which means that there is no mass interchange between the

fluids.

Multiplying Eq. (1.2.8) by 55 and using Eq. (1.3.2),

we get the individual current equations:

.99T(Pesuvs)+3x1(resusug+5e,:x8):"J53—§1+65
E+556,,:.Z (I.3.10)

The total current equation is obtained by summing the

individual Eqs. (1.3.8) over s and making use of Eq.

(1.3.6):

J‘ + 251(11uiuth?‘216105813);HF: “523- ”'3'”)

Multiplying Eq. (1.2.40) by Eksgji, summing the resulting

 

equations over s, subtracting the resulting equations from

Eq. {1.3-11). and using Eqs. (I.3.22). (1.3.5) to (1.3.8).

gives, after some Operations:

234++:[§éfi([°.,v:vf)) + ((3%;- + E95304} JJ) +5:1
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+2 [16%(135813 + X5] ' p.10": gag-(1081 + X”) =

{17.11: 22:11-11:11". 7......
S=i

Either Eq. (1.3.11) or Eq. (1.3.12) are the gross fluid

current equations (1, p. 12).

Next we state some results pertaining to Ohm's law.

For a more complete discussion, the reader is referred

to (2).

It was shown in (2) that a generalized Ohm's law is

contained in the difference momentum equation, (1.2.41),

as a certain limiting case. If we assume that all terms

in the difference momentum equatiOn can be neglected

compared to electromagnetic and interaction forces, then

Eq. (1.2.41), reduces to*:

(a: S 15‘): , (1.3.13)

where the force, 1; , is given by, according to Eq.

(1.2.9):

F; =-):és~+ F15 . (1.3.14)

The electromagnetic force, figs , is given by:

 

* Vector notation is used in the following

derivation.
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F652P25( +Jsxg),
(103-15)

where § is the magnetic flux density. The interaction

force, fim , is assumed to have the form:

F05 = Z 0651(E+__U’5) ) (I03016)'

+4

where kg are assumed to be constants. Substituting Eq.

(1.3.14) into Eq. (1.2.18) and making use of Eqs. (1.2.10),

(1.3.5), (1.3.6) and (1.3.15) we get:

—’D _.

F 1091:, ijfi+§oeuxfi, (1.3.17)

Inserting Eqs. (1.3.14) to (1.3.17) into Eq. (1.3.13),

eliminating'fis by means of Eq. (1.2.22), we have:

(PPes-Pspe) Eu, +(Pfe9175 *stu)x_B’ "

_:[oms+(175-fi) =0 ; s =1,2,...,n, (1.3.18)

where E, is given by:

—.§

Eu. = E + leB . (1.3.19)

If we consider P5, P85, 1),, , E, 0&3, as given, Eq.

(1.3.18) is a system of n algebraic linear equations

for the velocities is (also contained implicitly in
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TL

3., = :Pesfis ). It is shown in (2) that I, can be written

5:1

in the form:

Ju=aEw+ (1E.XB+C(E.,XB)XE, (1.3.20)

where a,b and c, obtainable from the solution of the

system (1.3.18), are scalar functions of 95, (k5, my and

B. Equation (1.3.20), if inverted, yields:

---I- —.—§-

Eu = R11 Ju. +3 waB + (R11-Ri)B—Z(iIXE)X—é, (1.3.21)

where R" , R, and 5 can be written explicitly in terms

of a, b and c, as follows:

12.. = w ; 5 = 11114131212821",-

R, = 1.. .Bl)[(.-.13+)2+ 1:132)“ ; 1:11.: ;

1 "511114152131“ ; c11111—111311]. 1......

For the case of the fully ionized plasma (n : 2), Eq.

(1.3.21) becomes (See 2):

Eu = 641]& + gJux—E , (L123)

where §,<5 are given by:
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5 =’( 1111” 1121312111212 3 $011(1.1232111? +302‘)'2 , (1.3.24)

and Nzxazdu . The inversion of Eq. (1.3.23) can be

put in the form:

* *

J. = 6E... 1‘ 6‘16” + ngzfi-E’i -§(6*2 72139-1;th , (1.3.25)

where E:, , E; are given by:

‘IF -—.—0-

E1=( ~E.)B" ;E1=B'ZE1(E.1B); 15.51113. (1.3.26)

By inspection of Eq. (1.3.23) one is tempted to call 15

the electrical conductivity and EnixB , the "Hall effect".

When the Hall effect is negligible, Eq. (1.3.23) reduces.

to the generalized Ohm's law:

_. —. —+

Ju=6Ew =6<E+EXE). (1.3.27)

In a similar manner one may decide to keep more

terms in Eq. (1.2.41), in addition to the electro-

magnetic and interaction terms. Ohm's law will take then

different forms than the one stated above (2, p. 17, Eqs.

(22), (23)). The reader is also referred to (13) where

the derivation of the generalized Ohm's law in a three

component plasma is dealt with.
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1.4. Fundamental Electromagnetic Equations

It is assumed that the gross fluid, as a whole, is

subjected to one electric field, E, and one magnetic field,

E. The equations governing the electric and magnetic fields

are the Maxwell equations (12, p. 2):

VXE + ‘3‘?" Z 0, (1.4.1)

VXFI “ g? = 3, (1.4.2)

where §,'5 are given by:

= eE: dielectric diSplacement vector, (1.4.3)

U
H

U
1
1

= [13% magnetic flux density vector, ' (1.4.4)

6 is the inductive capacity and fie, the magnetic

permeability.

Following (12) we take the divergence of Eq. (1.4.1).

The first term is identically zero. Assuming that the

Operators V1 and g%'are commutable for E we get:

—9-— v-E —— 0at _ , (I0405)

‘3 is, therefore, a function of position only. Assuming

that ever in its past history the field has vanished,

one concludes that:
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V-‘B=o. (1.4.6)

Simdlarly, taking the divergence Of Eq. (1.4.2), using

Eq. (1.3.8), commuting the Operations V andgfi'on i, we

get:

Kat—(17» 11.4.7)t
4 1

”
t
s

(
D

\
J H

c
:

which becomes:

V'sze , (1.4.8)

by a similar reasoning which led to Eq. (1.4.6).

1.5. The Final System Of Fundamental Equations

Following (9, p. 14) we state two ways to describe

the final system of equations:

(a) Equations Of state, continuity, momentum and energy

for each fluid component and two Maxwell's vector

equations, i.e., Eqs. (1.2.1), (1.2.6), (1.2.8), (1.2.14),

(1.4.1), (1.4.2) where s runs over all n fluid components.

These are 6n+6 equations for the 6n+6 unknowns (T,, p,,'

(1,, ui, E‘, 11‘).

(b) Equations Of state, continuity, momentum and energy

for n-1 fluid components and for the gross fluid, and two
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Maxwell's vector equations, i.e., Eqs. (1.2.1), (1.2.6),

(1.2.8), (1.2.14), (1.2.29), (1.2.30), (1.2.31), (1.2.50),

(1.4.1), (1.4.2) where s runs over n~1 fluid components.

These are 6n+6 equations for the 6n+6 unknowns (T5,p”%” u: ,

1, p, P, u‘ , E‘, H‘).

Additionally let us consider a system of equations

for a single fluid. Most Of the magnetohydrodynamical

problems which were dealt with up till now consider the

plasma as a single fluid. The electromagnetic phenomena

due to the existence Of differently charged particles and

a relative velocity between them in the plasma, was taken

into account through the introduction Of additional

variables, like the excess charge density,[%, and the

electric current density, 3} The final system Of equations

is supplemented by the equation of conservation Of charge,

(1.3.8), and by Ohm's law, (1.3.27). In this formulation

no injection Of momentum and no mass sources are present.

The final system is:

p=RpT, (LSJ)

+ 3,117.11)- 0, 45.21

g11111..§_,,11111111= —%§, F (1.5.3)

‘gt—(é-MP0)+3—)(éu’++1ou‘—— PQU)- (131:3, (1.5.4)



(1.5.5)

(I.5.6)

(1.5.7)

(1.5.8)

These are 16 equations for the 16 unknowns (T, (9’ (D, u‘ ,

E“, H
4'.

9 (De, J‘ ), with 6 being known.



CHAPTER II

QUASI-THREE-DIMENSIONAL STEADY FLOW

11.1. The Governing System of Equations

From this chapter and on we deal with the quasi-three-

dimensional steady flow of each component fluid. The basic

hypothesis for such a flow is that all quantities are

independent Of x3 and t. The equations valid for this

type of motion can be Obtained from the governing system

of equations given in Chapter I.

Eqs. (1.2.6), (1.2.8), (1.2.14), (1.4.1), (1.4.2)

become:

"3%;(F5U94r 1731135162“) 6., (11.1.1)

%(p,u:u;)+§%(psd;u§)= 5154+F. +6.2: X: (11.1.2)

fi(p,u§u§)+5§y(Psu§ui)=--W9X: +511? 65Z:X:,(II-‘-3)

5%(P.u:u:)+—937.—(t.ui 113.)= F: + Cali-Xi, (11.1.4)
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9X‘( 5‘5?ng 11.:”atrial/(1). ”111‘“ 11i-(D.O.11§+1p,11§o
) :-

=uéF,‘+u:F: +u2F2- 11:?‘ 11:31:: ~111X§+

 
 

 

 

  

+a.[I.—Q.—-:-1u.>’-+ 1122M: 2.11:2:1, 1......)

2E3 , 9E3 . :E2 at“

aleO, 9x1: , 6?-ERT:O, (II0106)

3H3 __ 1. :H3 _ 2. 8111 8H1 _. 3
3x2..J’ , ax1""J , 81?"”Y""J. ’ (11.1.7)

1

where XS, (i:1,2,3), is defined by the equation:

1‘. 31-11 3X12

X5 : “9‘15 *' -a—:X;ZE . (110108)

From the first two Eqs. (11.1.6) it follows that:

E3 2 constant (11.1.9)

TO determine H3, the first two Eqs. (11.1.7) are

used. From Eq. (1.3.8) we have:

_.....---.2. (II01010)

which, together with the first two Eqs. (11.1.7) is a

necessary and sufficient condition that -J2dx‘+J‘dxz be

the total differential of the function H3:
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dH3= JWLW-—J2dx'. (11d.11)

Eq. (11.1.11), when integrated from a 0 subscripted

initial point to some end point along an arbitrary path

gives:

H3=HZ +(O(J4dx2—J20(X‘). (11.1.12)

It should be noticed that the first two Eqs. (11.1.6)

determine E3 only, and the first two Eqs. (11.1.7)

determine H3 alone. By having four equations determining

only two unknowns our system of equations becomes

underspecified, i.e., the number of unknowns exceeds the

number Of equations, unless two additional equations can

be supplied to the system. We note that the two electro-

magnetic equations (1.4.6), (1.4.8) which were derived from

Maxwell's equations (1.4.1), (1.4.2) cannot be derived

from those equations after one putsiéz 0 there. In our

case we will take them into account, thus making our total

system Of equations Specified by having the two additional

equations, using Eqs. (1.4.3). (1.4.4):

59F(/1EH1) + 99x2</“6H2) = 0 , (11.1.13)

$4,151) . 534.132) = 21.. (11.1.1111

The system Of governing equations consists, therefore,



39

Of Eqs. (1.2.1), (11.1.1) to (11.1.5), the third Eqs.

(11.1.6), (11.1.7) and Eqs. (11.1.12) to (11.1.14), which

are 6n+5 equations for the 6n+5 unknowns (T5, pg, 1%, u; ,

ug, ug, E‘, E‘, H‘, H2, H3).

We note that the third Eq. (11.1.6) is automatically

satisfied by the choice of a function wfixi, x2) such that:

9:933: ; E1=37:)(5. (11.1.15)

Inserting Eq. (11.1.15) into Eq. (11.1.14) and assuming

€z= constant, we get:

-é_;§g+(§%z= Pee“. (11.1.16)

Similarly, assume we: constant and introduce a function

§(x‘, x‘) such that:

H1==-%§5 ; H2=:%g% (11.1.17)
,

then Eq. (11.1.13) is automatically satisfied. The third

Eq. (11.1.7) becomes, using Eq. (11.1.17):

gip+ (973-172 : J3 . (II.1.18)

Eqs. (11.1.16), (11.1.18) will be used tO determine the

functions n(x*, x2), §(x‘, x“) reSpectively.

In the case where e is not assumed to be a constant
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(11.1.16) is replaced by:

.:.1e::1+:.<ea1=1e. 1......)

When IQ is not assumed to be a constant, the function f

 

is assumed to be such that:

feHi=‘%§1; few-5% , (11.1.20)

and Eq. (11.1.18) is replaced by:

t0? 38531185311133. ”“2"

We will assume in the present work that air, are constants.

11.2. Quasi-Stream-Function and Potential Equations

In Eq. (11.1.1) the functions 6% are known and given.

Suppose that there exist functions BS, by means Of which

the functions cg may be expressed in conjunction with (k

and ué, by the formula:

(11.2.1)6,=-37(P, LL13,)      

with the condition that when there is no mass source into

the s-th fluid component, i.e., 13520 , the trivial solution
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B8 = 0 should be taken. Inserting Eq. (11.2.1) into Eq.

(11.1.1), we have:

7371(1)}.43 QT,((D,11,=) 0, (11.2.2)

where P, is given by:

Ff 3,043,). (11.2.3)

We introduce the quasiwstream function %gxi, x‘) such

that:

(11.2.4)

then Eq. (11.2.2) is automatically satisfied by this

choice Of 5.

Eqs. (11.1.2), (11.1.3), remodelled, using Eq. (11.1.1),

 

 

yield:

5 3 -

11; 2:): + 11: 333‘; =-[o_;,‘—§—)%i+ {1“F§+Y, ; 312) (11.2.5)

where )3 is given by:

1311.16.12:- 111.) - X3]. (11....)

Setting 3 = 1 in Eq. (1.2.5) and multiplying the equation

by -u§, then setting 3 = 2, and multiplying by ug, adding
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the resulting equations, furnishes, after a few manipulations:

— 1 aft. 2 an _ I{L1 9 a

“50"- 9x* L15 9715) ‘ (a52:)“ + (D;("’L5 9x: “ii—£2+§u F:

142$)" Lt: Y: - LL: Y5}, (11.2.7)

 

where as , (A): are given by:

 

 

(if = (L12)Z + (11:)2 , (11.2.8)

3 9425 9H:
(1)., = 911‘ — 9111 . (11.2.9)

The term A): is the 1:3— component of the vorticity of the

s-th species, [5,, given by:

ws=Vle5 . (11.2.10)

Next, we represent the term (1);95%, (1:3, 2), in a

different form. The enthalpy of the s-th fluid component,

15, can be written, using Eqs. (1.2.5), (1.2.44), (1.2.54),

in the form:

IS = crs(i+D5)T5 , (11.2.11)

where 0,15 , D5 are given by, using Eq. (1.2.58):

CTN}: C35 + RPS = Kscvs , (IIO2012)
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D5: K;‘[A.+(KS=1)W.]. (11.2.13)

Substituting an eXpression for T5 from Eq. (1.2.47) into

Eq. (11.2.11), and inserting the resulting equation into

Eq. (1.2.12), differentiating the product, using Eqs.

(1.2.70), (11.2.12), (11.2.13) and solving for 32%fi3,

furnishes:

93WM1wX1/1) 3:49 w.:,—-3,[Xo)(1w.)(+.)"1A)

«41.30: (P N59331: . (11.2.14)

In Chapter I it was already assumed that As, W5 are,

 

possibly, functions of Psand some other variables

independent of 3k. Let us denote those variables by the

symbol.‘§: (i=1,2,...,k$), then we have:

35(3[113(1+W)()(;1+A)‘=]W35U§13(1+W.)(1+A9193%+

)1.

+11 535—[103(1%)1]§§;- (11.2.15)

Substituting Eq. (11.2.15) into Eq. (11.2.14) and using

 

m
e
-

Eq. (1.2.71), we get:

323 =(K.-1)(1W.)(1A)90“ 331‘ 06.9333++Z,L (11.2.16)
3X3

where Li is-given by:



3.

L}: 1

. 11911 .31
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[(1111 W)(1+A.)"] 351 (11.2.17)

 

Eq. (11.2.16), remodelled with the use of Eq. (11.2.3)

gives:

3.333%(-1)+((1<. WW)“As”)a). Pé‘(ws)2§3§-

«0692311939191 + L3, (11.2.18)

 

From Eqs. (11.2.4), (11.2.8) we have:

(3.51.916 i)2 + @3392. (11.2.19)

Differentiating Eq. (11.2.19) with respect to x1 and

multiplying the result by -u:, then with reSpeot to x2

and multiplying the result by ué, adding the resulting

equations and using Eqs. (11.2.4), (11.2.8), we get:

113133;). - 2.1111: .33— .1191 39—3. = (1119:3911 - 11:33)

+3.115(u.§%%-‘ _ (123%)
(11.2.20)

Solving Eqs. (11.2.4) for u;, u; and inserting the

results into Eq. (11.2.9) it can be shown that:

“92.3% =psw:+(—$'(33.) +3335: (11.2.21)
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Inserting Eq. (1I.2.18) into Eq. (11.2.7), substitutu

ing the resulting equation into Eq. (11.2.20) by elimination

of the term u:3%§-:Ué§%3, and using Eq. (11.2.21) to

substitute for the term LQ“%%~1 253% , we get, after

rearranging and using Eqs. (11.2.4), (11.2.6):

[(0692 ’01:)? (93%; ‘ 211.311: 33:32:33; + I: (065)2' (”92] T333237 =

= -34..)1... + 3: (399311.411111/.)(11A.)“--3—~.%2 — 1.: +

+ (065 Z 9_33X3_[1031(1”Bs)] + P:[F3 + 6521: _ X: J} 3 (II.2.22)

Eq. (11.2.22) is one possible form of the quasi-stream

function equation.

Next, we derive a quasimpotential equation by

introducing the two functions(&(x1, x2),3%$x‘, x2) such

that

lib—333:3. ; (j=i,2). (11.2.23)

It is readily seen from Eqs. (11.2.9)9 (II.2.23) that

gs must satisfy the equation:

.9. ‘1; - 32:1. -.- a): (11.2.24)

We add the condition that if ageao, the trivial solution

gs: 0 should be taken.
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Setting 3:1 in Eq. (11.2.5) and multiplying the

equation by -u;, then setting 3:2 and multiplying by -u§,

adding the resulting equations and using Eqs. (11.1.1),

(II.2.2), (11.2.3). (II.2.18), (11.2.23), we get, after

rearranging:

[(06924(us)]['3%z+§‘31] “Mafia—121133317 %&+%)+

1(1):.)- (11313393. 3.3133151 (1121*

z
—3o;1F$—Y.]3 (11.2.25)

 

1(1):)()<.-[MW)(1A)
{-(1

Eq. (11.2.25) is one possible form of the quasi-potential

equation.

We assume that the body force, 1;, consists only of

the electromagnetic force, 1.. , which is given by:

—.

Ff2.33:5:391.115“? +/‘e(asxfl)]3 (11.2.26)

Inserting the correSponding components of Eq.

(11.2.26) into Eq. (11.2.22), using Eqs. (1.3.2), (11.1.15),

(11.1.17), (11.2.4) and dividing the resulting equation by

(06,): leads to the final form of the quasi-stream function

equation:
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[1 (“6955“)ng -éZLL u§((oc)Z—9335—+[1-(uéwg‘)]izfi
’$—

2W 3111(2))(1)2 :

" 1.1: + )Z (33)1111111111+ (11.111211111111111>‘331‘

-1 3 5 3

+105 (652. "Xs) -1.5)} (11.2.27)

Inserting the correSponding components of Eq.

(11.2.26) into Eq. (11.2.25), using Eqs. (1.3.2),

(11.1.15). (11.1.17), (11.2.23) and dividing the result-

ing equation by (agfi leads to the final form of the

quasi-potential equation:

[1-(uiocg‘)][m%z .312] (1:11: (11.(25%,— 2,51%)

111+111131311% 11‘

1123—11: 1111—15 1 (1(1)111:1: 1:11-11:11)

+p;‘[e.Zi -Xi-6s(%¥?+ 32)] ii}. (11.2.28)

11.3. Generalized Bernoulli and Crocco Equations

Eqs. (11.1.1) to (11.1.4) combined with Eq. (1.2.12),

and written in vector form, give:
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:VQS_VIS+(D:FS+YS’
(11:03.1)

 

9
—
5
:
—

—9

where the components 1: ,(j: 1, 2 ,3), of the vector Ys are

given by Eq. (11.2.6), and the operator j%'operating on

an s-subscripted quantity denotes:

d._u13 I429:“

af—-' us‘ir + u.3yi us ‘V . (11.3.2)

Let the position vector of a particle of the s-th

fluid component be denoted by 5;, then the velocity of this

particle, fig, is given by:

.1 i1
u5= 11$ . (11.5.3)
 

Taking the vector dot product of Eq. (11.3.1) by 3;, using

Eqs. (1.3.2), (11.2.26), (11.3.2), (11.5.3), multiplying

the resulting equation by dt and integrating along a

streamline of the s-th fluid component from a zero sub-

scripted state to some end state, we have:

1411.) 1 £111) “311: 11. 11.11. H, (11.3.1)

where Hso is given by:

1450= %'(u.Jz-*J.O (11.5.5)

(11.3.4) is the generalized Bernoulli equation.
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From Eqs. (1.2.70), (I.2.71), (II.2.11) to (11.2.13)

we have:

15(065)—2 = (i’rP_.)(1<.—i)'i , (11.3.6)

where P5 is given by:

4

P. ={ (1 + W.)(1+A.)“ + (1.11.111): 11111111111} -1 . (11.3.7)

Inserting Eq. (11.3.6) into Eq. (11.3.4) we have:

21111.):+(11.)2(1+P.)(K.-1)11011-1101311 101.11% 11..., (11.3.8)

where H50 is given by:

_ 1 _

H50- 7(uvso)z +(MSO)Z(1+PSO)(KS-1)1e (11.3.9)

Eq. (11.3.8) is another form of the generalized Bernoulli

equation.

Let.A,be a streamline of the s-th fluid component

which intersects the x1 -x‘ plane at the point A,.(x;.,

xf. , 0). this streamline satisfies the equation of

differential type:

dxé:dx::dx2=u::u;:u: , (11.3.10)

Let drs be an arc element of A. and let dr; be an element
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of arc length taken along the curve C which is the pro-

Jection of A? on the x’-x‘ plane. We note, from Eqs.

(11.2.4), (11.3.10) that Q is a qg = constant curve.

3
X

( 35(1; ,X: 91: )

/

 a:xz 

        
Val

2WJ A.(x,‘ .x; .0)

'(h= constant

 

Fig. 1. Streamline Geometry

Let 35(x;, xi, 1:) be some end point on flu, and let

A5(x;, xi, 0) be the projection of B6 on the x*-x‘plane.

Let F, be any vector function defined in the three-dimen-

sional space and depending on the coordinates (1‘, 1‘)

only, i.e., for a pair (2‘, x2), )1, is the same for any x”.

Denote the two unit vectors, tangential and normal to the

F; curve, in the x‘-x2plane, by §,, h. respectively,

and let E be a unit vector in the x’direction. The{

components of jg in the above mentioned directions are
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denoted by (fig, [Q3 /Q), and the components of the velocity

vector 1, in those directions are (3,, 0, ug). Using

Eq. (11.3.3), the relation as = £3: and the fact that all

functions depend only on the (x‘-x2) coordinates, we have:

8. _. 1 B. 1 g __1 g _

(A... /1.,-d16 =)Aso(/"$'u5)us M's:5:;(fleUs)“ 0111, (11.3.11)

and

V( )1: f5 ”9) ‘ V( 5:11. "1191110119411. 1191131.»

A,

+3—31T.[):‘:(fu) ujaLFJfiS =:(/1 [1: uifl;‘)§s.§%—S[A3fg1141111111.. (11. 3. 12)

Subtracting VHWJ] from both sides of Eq. (11.3.1),

using Eqs. (1.3.2), (11.2.26), (11.3.4) and the identity

for steady flow: % - V [%(LL5)2] = 5341:, we get:

1135111”. = —VH..+ VQ..-).v( (05011;) — v( (1.11;) +

As As

+YS+5$[E+/18(115Xg)] -. (II-3.13)

Substituting for E in Eq. (11.3.13) the expression quEéfi

which can be obtained when using Eq. (11.1.15), noting

that (DV'VI'dfiWl-vlo, using Eqs. (11.1.9). (11.3.11) where

-> AC

1”; is taken to be equal to k, and using Eq. (11.3.12)

where 15 is substituted for }C, we get in Eq. (11.3.13):
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wsxu5= -VH.,.,+VQ.. +3571). 1.133 V“ 1121:1112) —

P50

1311:1131 — 3%:[10115-111'1y1q1. + 1:15 + 131+

Q

+3.E3’2 +),/141151111). (11.3.14)

It may be worthwhile to notice that the zero subscripted

functions are constant along streamlines and, in addition,

are not functions of x3, thus, zero subscripted functions

are constant on the cylindrical surfaces qg:= constant.

The component of Eq. (11.3.14) in the direction he

is:

3" _ 3 fl; = __9____Hso+ 9050 _ 3 3-4 ’

(.05 LL LLS 971:5 9714+ 9715 ((55—1971: 655——E597—1;(gou's “’6 dr‘

Q

- .3972“ (25.115) a: 1111].. Y:+36/118(E5x-H)n , ”(11.3.15)

where (fi‘x flit is the component of 15x E in the fis

direction. Solving Eq. (11.3.15) for a@ we have:

GT, 9% 59h
1.34:13—H» 10—»5—1-). 111111-11)

1 Gus_94—71.[),(Yfla;)a: (1,1411+Y:+mix/fl5,111+) ”12111—3. (11.3.16)

Q

Transforming from ( R, n.) variables to ( R, Q,) variables,

we have, using Eqs. (11.2.4), (11.2.8) and the relations:

’J_X_ __ ‘4. 9X:_ 1- -1.

911, 11:11,, 11..



 

9 ‘ ._ 9 SE: 9 5 3X1 _ — —

9%5— 9 9n. + 9x2 9115‘Psuvs- (II.3.17)

Using EQ- (11.3.17) we have:

_1_=
3 ,9 s =- — _3__

3715 atysfi P9u53(+)5 0
(II03018)

 

Eq. (II.3.16) becomes, using Eq. (11.3.18):

(1):: Psi-fig};— +d'Q:o ”3%-fiE393—q1Uu2
-Hdr)

[W°112:1]1115-11“s 1s/4e1fisx9)“]*

2112
+LL: 94);}.

(II03019)

 

 

Eqs. (11.3.16), (11.3.19) are two possible forms of the

generalized Grocco equation. Transformong from (F;, n,)

variables to (x‘, 1‘) variables, we have, using Eqs.

(II.2.4), (II.2.8):

 

z
5_9_=’3X£_’3_ + _9_'X =P5'1E‘1(§-(£—L+ 33%???) (II.3.20)

3%: 9n. QX‘ 971,371 QX‘ 31111111

and for the component ”2 of an arbitrary vector,/'l',:

= "riflfit/«i * $33), ”I'M”

wheref1,‘, f: are the components of /15, in the directions

1 , x reSpectively. Using Eqs. (11.1.17), (11.2.4),
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(11.3.20), (11.3.21) in Eq. (11.3.19) we get:

2

a»: = 12(— 33‘ 353: + 21-33?) ‘31313‘2 333133-31?"
 

 

 

fa

33x3“ uiujdf‘s) - 5%33WY5'L335'1dF53+ Y1-

‘35fe3FQIHB%+ ”2%;W) 3x31}. (11.3.22)

Eq. (11.3.22) is the form of the generalized Crocco

equation which will be used in the present work.

11.4. The Final Quasi-Three-Dimensional System

There are two ways in which the governing system

of equations can be formulated, depending on whether one

chooses the quasi-stream-function or the quasi-potential

function as the unknown to be solved for. In the present

work, the.first formulation is given and dealt with.

The quasi-stream function equation, (11.2.7), becomes,

using Eq. (11.3.22) and rearranging terms:

—(u:oc;H633?- Zu: 31:04;973%}: [1.3(ugwgflgafigfi

[.Psa;1(.g_31:° + 2%) + :;3%3%)3£7330331-B5)3 +

+1131>111>3113—3: ~31-M33331»
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335

1313-333 1211:3331 13:31-33“ 3

3 L"1"‘1333113113311311313+“ H
333-

-3o;‘6523133;‘Xi)333 3 (13.4.1)

 

Multiplying Eq. (11.1.4) by 1-Bs and using Eqs.

(1.3.2), (II.1.1), (II.1.17), (II.2.3), (II.2.4), (II.2.26),

we get:

13 33— 33 13: 3311331313 1313

+33’Bs)[6s3Z:‘LL:)‘X:] . 1 (11.4.2)

 

Eq. (11.1.12) becomes, using Eqs. (1.3.2), (1.3.6),

.
-6 l 3 6 lo

(11.2.3), (11.2.4) and the relation dqg-fik—dx +34%]; .

=H:+;313o33—B53-1033" (11.4.3)

It may be worthwhile to notice that in the case of a

fully ionized plasma (n22, Egao) Eq. (11.4.3) can be

integrated and one gets:

2

3

+33 1 ; 353333.333). (13.4.4)

Using Eqs. (1.3.2), (1.3.5) in Eq. (11.1.16) we get:



 

Gzn + 32" - _

(9x82 (9x11): __ E 12 x5 P5 . (11:04.5)

Eq. (11.1.18) becomes, using Eqs. (1.3.2), (1.3.6):

31 31 _ W
#41 563?“ ggsfguz.

(11.4.6)

Eqs. (1.2.1), (1.2.59), (11.3.4), (11.4.1), (11.4.2),

(11.4.4), (11.4.5), (11.4.6), are considered as a system

of 5n+3 equations for the 5n+3 unknowns 1,, p., p.,(%, u: ,

H3, 3, f.

11.5. Incompressible Flow

We distinguish between the following two cases of

incompressible flows:

(a) Gross fluid is incompressible (P = constant). In

this case the component fluids' densities, P5, need not

be constant, only their sum is a constant, since P=Z;Ps.

(b) Each fluid component is incompressible ( Rs: constant;

6 = 1,2,...,n). In this case the gross fluid is incomp-

ressible. In the present work only case (b) is considered.

To derive a quasi-stream function equation for this

type of flow we start from Eq. (II.2.21)*, and using Eqs.

 

* Note that .1 is not a constant in the incompressible

flow due to existence of mass sources or sinks, de, in

this type of flow.
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(11.2.3), (11.2.4) and the conditioneqzconstant, we have:

2

z

T337337 3. $33, = 13.3»: + ;3‘§333‘33133‘333'B133 (11.5.1)

Equation (11.5.1) is the quasi-stream function equation

for the incompressible flow. w: will be calculated from

the generalized Crocco equation which was derived in

Section 3.

The quasi-potential equation is obtained from Eq.

(11.1.1), using the condition P5:constant and Eq.

(11.2.23):

925 l 35 s "‘1

33333113331 1131 » 111-1"

where gs is calculated through Eq. (11.2.24) and one of

the forms of the generalized Crocco equation which was

given before.

In the single fluid formulation it is possible to

obtain the stream function equation and the potential

equation for the incompressible flow, from the stream

function equation and the potential equation for the

compressible flow, by setting the velocity of sound in

each of those equations to becw. this result carries

on to the present type of flow, for if we set czs=°°

(s=1,2,...n) in Eqs. (11.2.27), (11.2.28) we obtain Eqs.

(11.5.1), (11.5.2) reSpectively.

When a formulation with the quasi-stream function
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as an unknown is chosen, in addition to the quasi-stream

function equation, (11.5.1), one has to consider in the

incompressible flow Eqs. (11.4.2), (11.4.3), (11.4.5),

(11.4.6), and n Bernoulli's equations, with the accompany-

ing condition. R5: constant. In order that the system

of equations for the incompressible flow be Specified,

there is a need for n additional equations. Those must

be supplied by means of n given relations between the

pressures, p5, and the temperatures, T5, for each fluid

component, given, for example, in the form of the

equations:

f5(p5,T9) = o; s:1,2,...,n. (11.5.3)

Note that Eq. (11.4.5) in the present case contains

a known constant on the right hand side, thus, if prOper

boundary conditions are given for n, this equation

"decouples" from the system of equations and one may solve

Eq. (11.4.5) for q first, and use the result in the quasi-

stream function equation where n appears.

11.6. Non-dimensionalization

We introduce the following non-dimensional quantities,

denoted by the symbol N:
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x‘=x"L; ns=%$L; F.=F.L, (11.6.1)

i NC - 2

u5=u5 u‘fo"o ;u'5=u'$u’$¢, (II0602)

5.31.1; H‘=1"1‘H., (11....)

$115.1. ; Ei=EiEoo , (11.6.4)

_ 1’!

P9: FSPS‘”; Ps=fisP5~(usw>2 ; T5:LT_$T500; P5=P5P5m , (11.6.5)

cps-1).)..u..l_; «1.3.11.4. ; 3.4321»... (11....)

Q5: 65 (wavy. ; HS = HSoo(|/LSoo)2 , . (II°6‘7)

a): = C3: IJ.,.,.L.1 , (11.6.8)

65 ' gs Paco use» L1 3 X: =X: £35000;is [—4 ;

i. "’ ' “’4'. -

Zs =Z: usao; Y:= Y5 )Dsm(u’$m)2 Li, (11.6.9)

~ 1 w L z 4

.=o¢.w.. ; L. = L, (u...) L , (II.6.10)

where Ts"° , F5” p5,, , u... , H, , Em , 065,, L are some

standard temperatures, densities, pressures, velocities,

magnetic and electric fields, velocities of sound and

length reapectively.

Using Eqs. (11.6.1) to (11.6.10) in Eqs. (11.4.1),
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(11.4.2), (11.4.3). (11.4.5), (11.4.6) we get:

[1111:3211.)1—,1g.- 21:1: (52; 11..)23—31‘13. +

 

*[1 (113533 ”Mtg-)7 = 1.11.)“(—%:—flj 93215:) .

+E:(2%)(23’15H13U-
9))"(55:Maw)2((K.-1)(1+1+

..'W)(1+A)909x;

1‘

 
 

~

 

  g3 11: — 3. 1:1” 1-11.1113 1.131111% 3,. -

"-55%- :;2) + (1‘B5)[55( 3—332) ’32.] , (11.6.12)

(‘13 =11: + Z R...1011-13.)“ 111. , (II.6.13)

2N ‘ " ~ 2 31 a

V )1 = 4: RMR; RC: (0.; ‘7 =W+% , (11.6.14)

70

V2? = :Rmsfifii , (11.6.15)

$1

where M5”, Rms, RHS, RC5, RE., are given by:
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VLm= u.~AQ:, (Mach number) (11.6.16)

R7115: 6.»...11...L HZ, (1312311133: 33:16:30 (11.6.17)

Raf 112(1):»)2 (>2: L125. , (33151116230 pressure (11.6.18)

R1),..1....)2, 1:111:13) 1......)

- _ -1 -1 -1 (electrical field

R55 ‘ [ac/(e LLsoa oo , parameter) (II.6.20)

REng'EsE‘: E:, (11.6.21)

where c is the velocity of light, and E: are the components

of the standard electric field vector, 1;. Using Eq.

(11.1.9) we choose E3 = E: .

The correSponding incompressible equations to Eqs.

(11.6.11) to (11.6.15) are obtained by setting H5, = 0,

Fs=:1 in those equations.

11.7. Linearization

We shall treat the problem of flow under uniformly

applied electric and magnetic fields such that a first

order small perturbation theory is sufficient to describe

the flow field in the neighbourhood of the origin of the

disturbances in question.
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The velocity vector of each one of the fluid compo-

nents is assumed to have the following components:

I 1 ,

11. =u.‘.+ 11., ; ué=u:. . 112w; , (11.7.1)

where uéw is the velocity of the undisturbed uniform

flow of the s-th fluid component and ug+ (121,2,3) are

the perturbed x‘ components of the velocity reSpectively.

4

We assume u; »u., .

The externally applied magnetic field has the

following components:

.1

H as H: = constant ; (121,2,3). (11.7.2)

Hence the resultant magnetic field has the components:

H‘ = H: + H; ; H;:» H; . (11.7.3)

Similarly we have for the electric field*:

E = E, + E? ; slaw E; . (11.7.4)

We also assume:

(as = P5w+ Pep ; P5» >> Pep. (II-705)

 

* From Eq. (11.1.9) we have E; = 0.
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Eqs. (11.7.1), (11.7.3), (11.7.4), (11.7.5), written

in non-dimensional form, become, using Eqs. (11.6.2) to

(11.6.5):

8; = 1 + 61+ ; 8; = 8;? ; a; = as, , (11.7.6)

8‘ = E; + fig ; EL 2 E; + E; , (11.7.7)

(‘0'. = 1+ (5.1., (11.7.8)

Ni Ni “’4'.

where 3;? , (LT’ fig, EP' H”, Em, are given by:

fig: 11111911; ; ' (11.7.9)

8; = Hgnj ; 8; = Egnj , (11.7.10)

E: = HLHj ; E; = 8:8: . (11.7.11)

The function j can be Split into the form:

fl = Nii‘ + fiiiz + fl, , (11.7.12)

where 9!", represents the perturbation part for the electric

field components in the (x‘, x2) plane. Using Eqs.

(11.1.15). (11.6.1), (11.6.4), (11.7.4), (11.7.7),

(11.7.8), (11.7.11), (11.7.12) we get:



E; : 34L; (431,2), (1107013)

In a similar manner we split g :

§= “H:§‘+H:5(‘ “g1. , (11.7.14)

and get, using Eqs. (11.1.17), (11.6.1), (11.6.3),

(II.7.3), (II.7.7), (II.7.10), (II.7.11), (II.7.14):

H1 “—39 ; Hz: 1:?— (11.7.15)
1 9x2 1“ ax‘ .

We will assume conservation of mass of each fluid

component in the undisturbed stream, i.e., no mass

sources or sinks ( 6;.2 O and, therefore, BS, = o). If

we choose the non-dimensional quasi-stream function,(Ps.

in the form:

(PS: §z+q35P , (1107016)

we get, using Eqs. (11.2.3), (11.2.4), (11.6.1), (11.6.2),

(11.6.5). (11.6.6), (11.7.1), (11.7.6), (11.7.8), (II.7.16):

%% : -(1'B$)a:1 3 %%p = (1‘ B.)(a:p*(5.,)'Bs, (11.7.17)

It may be assumed, since we are dealing with a first

order small perturbation system, that the non-dimensional

mass source of the s-th fluid component, 3}, is small at
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least to the first order. It can be shown* that Bs is

of the same order as 3;. Thus, neglecting second order

terms in Eq. (11.7.17). we have:

N N

5 ~ Gs "’ ~111,. =-u:,; _‘Lr -1151? *Psr'B$° (11.7.18)
9X‘ 9X‘

In order that the electromagnetic forces, fin, , be

small at least to the first order we assume that those

forces vanish in the undisturbed stream. Using Eq.

(11.2.26) we have:

-.

Em+/)e(EsmxHao)= O . (11.7.19)

The components of the velocity vectors in the undisturbed

stream are (us; , O, O). The three component equations

of Eq. (11.7.19) are, therefore:

i_ , 2_ 1 a. 3__ 1 a

Eco—0) E00-fleu'$¢o GD, Ew‘ f'eu'fw‘l‘L) S:1,2,...,n. (1107.20)

It follows from the last two equations given in Eq.

(11.7.20) that either:

ESEHSEEEEHEO, (11.7.21)

01‘:

 

* Using Eq. (A.4) which is derived in Appendix A.
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uioo : ul‘” 2 °°° :: undo: 1100 9 (II.7.22)

i.e., the velocities of the n fluid components in the

undisturbed stream are equal.

Summarizing, from Eqs. (11.7.20) to (11.7.22) we

have one of the following two possible cases:

.
0

(a) 11 = 112,, = 0.0 : um): um ; E: = O ; E: : renal-13

E: : -/uumH: . (II-7.23)

(1107024)m

8
m
”

m ’1
1:

s
w

m

0 O(b) 1:15 13.21:,

In the present work the case (a) is dealt with.

Using Eqs. (11.7.11), (11.7.23) in Eqs. (11.6.19),

(11.6.20) we get:

REHUM)(H32) FH‘Miffi; Rgf‘Hi.‘ (11.7.25)

We assume that the equations of state and of the

internal energy of each one of the n fluid components

follow perfect gas laws in the undisturbed stream, i.e.,

Wags A955 0. We also assume, since we are dealing with

a first order small perturbation system, that W5, A5 ,

are small quantities, at least to the first order,

throughout the disturbed flow field. Similarly, it is

85...... that X.‘.. -_-. o, and that X,‘, 2.2’.‘ (1=1.2.3). L93;
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(3:1,2), are small quantities, at least to the first order.

Inserting Eqs. (11.2.6), (11.3.9), (11.7.1) into

Eq. (11.3.8) and using Eqs. (11.6.1), (11.6.2), (11.6.4),

(11.6.7), (11.6.9), (11.6.10) we get:

é—(asfy + 11:? + (325 Mew)2(i+P5)(Ks‘ 9-1 _ 55 =

=(Msw)TZ(Ks-i)fii, (11.7.26)

where T15? , 5, are given by:

(11.1.1 = ZWQV , (11.7.27)
3:61

i=(m1i5fiRwfigsL: 1811162211356”.+:.(Z:-11.)11.1. (11.7.28)

Note that P5 , which is given in Eq. (11.3.7). vanishes

in the undisturbed stream, since W. , is do. Solving

Eq. (11.7.26) for ((32.12 we have:

—i

(52:)-2=(11P5)(1+(Ks-1)(M5..)2[59.11; —:-(\ 1169?} . (11.7.29)

We assume that (Ks-1)(M,.,)2Ti;1, , %(K_., -1)(M5,,)2(u51,)<<1,

thus neglecting them in Eq. (11.7.29) we get:

(-5)-2 (1 +P5()[1+(Ks 1)(Me..2.)5]1. (11.7.30)

Furthermore, we will approximate 13.5 , 55 by chosen
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constant mean values 155 , 55 reSpectively, thus having

in Eq. (H.730):

(1.): +- (1111+11.111111211“ = 10151111- 1:17.11 ’

Using Eqs. (1.3.2), (1.3.6). (11.1.17). (11.2.3).

(11.2.4), (11.6.5). (II.6.6), (11.6.16) to (11.6.18),

(11.6.20), (11.6.21), (11.7.1), (11.7.5) to (11.7.8).

(11.7.11), (11.7.12), (11.7.14), (11.7.16), (11.7.17),

(11.7.23), (11.7.25) in Eqs. (11.6.11) to (11.6.15),

noting that Q5“, H5“ are universally constants, i.e.,

‘%%? E €§ETEE , neglecting second and higher order terms,

assuming ii? is small at least to the first order, 33}: fig,

and making the following changes in notation: E‘ = x,

£1: y,LPZP‘jsr q);,u:1,=ws,H;:-.Hz, fir'n , ff‘f,

(5.15 0. , 5,: a.,Zézzsx,z§=z%,23=z,,,x,=x,,,

"L

x; = 11%,, 11;: x,,, ’0’, = 0,, 1.5 = 1.5,, '11; = 1.3, we get*:

F;%%+%;% FeeRm-iRHS‘g‘PHR...H.111“msRngflifih}

+(1.211.111H.+R..R,$R.a(1-F;)%§r+11., ' 1......)

3—1" R..R,g1é+,,11-11 1.11.135, +R..R,,;B, +

 

* In order that the equations which were derived

above comply with the linearized case, the 0 subscripted

state is taken at the undisturbed stream, 1. e., the

subscripts 0 and1n are assumed to be equivalent.
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wig—X”, (11.7.33)

H; 2: RMQV, +£(1-BJ1113]; 3?} = :Rm+%%, (11.7.34)

qu= : RngfiR: 11...), (11.7.35)

V’f =:me,, (II.7.36)

where F5”, RH: , G6 are given by:

Pem‘j- (~6HMsoo) , (13.7.37)

RH‘5=RH:H.: ='/(.”H...~.103. (LL... , (II.7.38)

G.=-35§-{13.R+..R+.-B {1.4.5.1.—X.,) 1.S[a.(z.- 1)-

-X.x] dx} (1'P$°°)[(Kd)(1*ws)(1*As)-igas L53} (”'7'”)

In the incompressible case thC). (r:1,2,...,n).

Taking the derivative of Eq. (II.7.35) once with respect

to x and then with reSpect to y, and commuting differen-

tiation signs we have:

V2(%:H =0 ; Vz(%‘) =0 . (11.7.40)

Assuming that the perturbed electric field, E;, vanishes

at large distances from the origin of disturbances, we



7o

obtain, using Eqs. (11.7.10), (11.7.13). 35%}: 0 at

large distances. Using this result and Eq. (11.7.40)

we have:

9 _ 9

9% ‘ a} " 0 everywhere, (11.7.41)

i.e., in the incompressible case, the perturbed electric

field vanishes identically everywhere. We assume in the

compressible case, that the right hand side of Eq.

(11.7.35) 18 approximately a constant and, therefore,

the same result is obtained for this case.



CHAPTER III

SIMILKRITY OF FLOWS

III.1. Approximate Governing System of Equations

To obtain similarity rules we apply, additionally

to the linearization, a procedure which could be called

an equalization of the order of terms, i.e., we will

further simplify the governing system of equations

neglecting very small terms.

Let m“ = min.(m¢) and assume furthermore that*:

4

mdm,<<1; r:1,2,...,n; r #66; e,6 #0 . (III.1.1)

In addition we assume:

RQZRE; 029.12le << 1, (111.1.2)

where 63, is obtained by using Eqs. (11.6.17), (11.6.18)

in Eq. (III.1.2):

 

* Thecx-th fluid component may be the electron

fluid. ,

71
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Qg=e..(p..,.m5: e“)? . (111.1.3)

$L,is called the plasma frequency of the w-th Species*.

Assuming that the number density of each fluid

component at w is the same, we have, using Eqs. (11.6.17).

(11.6.18), (11.7.38):

1Kmfl¥<;:‘= 3+6: ; ‘{H*¥{::=qn47fl: §

‘

RHiRH:=%¢m:H; :5 (“1.2.35 +=1.2.....%). (111.1.11)

Taking the derivative of Eq. (11.7.36) with reSpect

to x, substituting Eq. (11.7.33) into the resulting

2

equation, dividing by RMRH‘, using Eq. (111.1.4),

commuting the Operators V2 and £1 and rearranging, we

get:

.1311}; V‘fiH ‘ (251‘)2(6f 63 mm?) =

= Z { e: e;zm,m:[H;H3—e% " (1:11:19? * H: H:B+] +

+ 61. e: meH‘ (61.21} ‘X+2)} . (III.1.5)

Neglecting small terms in Eq. (111.1.5). following the

assumptions made in Eqs. (111.1.1), (111.1.2), we have:

 

* Similar assumptions to the ones above can be

found in (10, 11).



L—H: H: 7.1 — H: H1111— - H: H.111.-

—Z 9.9.: meH‘(61Z12-Xn). (III.1.6)

Inserting Eq. (111.1.6) into Eq. (11.7.33). using

Eq. (11.7.38) and rearranging furnishes:

LU. =RmeRH:(%§(Di-%§i()—)+RWSRH:(%%-%)+RMSR1fi-(9BTB)

Tb

_ e5 ejmwm: Z(:e+(6+Z+z‘Xn)] + 65Z52 —X52 . (III.1.7)

Taking the derivative of Eq. (11.7.32) with respect

to x, substituting Eq. (111.1.7) into the resulting

equation and dividing by 11.3.3.1 , we have, using Eq.

(111.1.4):

RniRK-‘(Ps«ab—qu+ ”(33352): szmeseéH: H: 7n.m:Rmi Hug—3%

[3.2. esemeHZ'mimf {Hm H:((3x‘1%%)+

+H1H.1(%§(1-%1) H.:-H.1.(R —R.)

-— .111.:1.e1.(.z.1.)) R1.R.:(.1z.- x.))—

 

- _ .. 61

~e.e;: .1.mgH1H1 :.R.: ...(S,w.11)+
P9

TD

- _ - - 693

+ 5100 6.18.: ma‘mSile-w H: 2 (e1. 3);) +

tq
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-3 R“ LG:
1m. H. ex . (111.1.8)

Neglecting small terms in Eq. (111.1.8), following the

assumption made in Eq. (111.1.2) we have:

.1. R1. 1: e: H; H: 111: .121) H:H.:1(%?(1 - 3.131%

«111111111118 +H.:H;1(R.-R.) -

_ Rx“ R11: ;[E—r €;1(6+Zu-X12)]+ R711:R1):(6-121‘.tmx:11+z)}9

'11

+ :90 8.8’imxm?R.1.R.:;(e.%%) = O . (III.1.9)

For sfiw, Eq. (111.1.9) becomes, neglecting small terms

in view of Eq. (111.1.1):

'7).

291%:01 (111.1.10)
1+1

or, using Eqs. (11.6.17), (11.7.34), (111.1.10) we get:

1x (111.1.11)
LHl‘O,

and since 32:0 in the undisturbed stream we conclude

that:

H2 2 O everywhere. (111.1.12)
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For Szw, using Eq. (111.1.10) in Eq. (111.1.9) we get:

; e+(6+Z1-2 _X‘hi‘) = ew(6fi6Zw2.-Xw2). (III.1.13)

Inserting Eq. (111.1.13) into Eqs. (III.1.6),

(III.1.7) we have:

3 H211)- H: H: 131- H; H.113. —

R;R..:(6..Z... Xi), (111.1.14)

33—1 =RR.R(—311.-—3—3+MM(131 331) +R..R.(B.-.+B)

+6eZsz“Xs. for s #06 + w. = o . (111.1.15)
,

(11.7.32) becomes, using Eqs. (11.7.41), (111.1.12):

2 924’s + 82w5_

Fees 9x3— 38,” FstmeRméQ—93.5 F:me9RH: we

”RmsRH: $6" 111. (ix) + 6.. (111.1.16)

Eqs. (111.1.14) to (111.1.16) will be considered as a

system of equations governing approximately the n-

component fluid flow. The equations of this system can

be solved separately by solving first Eq. (111.1.16) for

Q3, after which Eq. (111.1.14) is solved for .§, and Eqs.

(111.1.15). (111.1.16) can be solved for ig,(#. (six).
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111.2. Correlation of Flows

The system of equations governing approximately

the compressible flow of an n-component fluid will be

correlated to n systems of equations governing

approximately the incompressible flow of a correSponding

n-component fluid. By correlation it is meant that there

will be derived simple relations between correSponding

functions of the compressible and those of the incom-

pressible flow° This procedure can serve, then, as a

first approximation in the correlation of the more general

system of Eqs. (11.7.32) to (11.7.36). Having this first

approximation one can try to derive, by an itterative

procedure, a higher order correlation, using the system

of Eqs. (11.7.32) to (11.7.36).

The equations for the x-th fluid component and each

of the s-th fluid components separately are coupled

together and will be taken as one system when compared

to the incompressible flow. We will denote functions

and coordinates in the incompressible flow by primes.

The equations for the s-th and w~th fluid components in

the incompressible flow are, from Eqs. (11.7.39):

(111.7.39). (III.1.15), (111.1.16), (here is {35: = 1,

(an: :1):

RT

91 , 91; ' 2 5’ 7 '

$5 + 3—39;— =Rm9RHi 13%— - R7115 Rt): 7H,; -



wgdx)+G§, (11:.2.1)

1.11m .431133,912-11Mg— 1.31)+.:R;.R(BB2)

1622;. *X... , (111.2.2)

17.1—1thme WM)

0 = 11:R..R,;.R;- 6:2.» X5;

1ti5.[6;(z.;—1)-X;H+}; ww- n+1-2+)
1;

 

The equations for Hg, y; have both Laplacian

Operators on the left hand side. If we want to correlate

the equations for 4k,(%, of the compressible flow to the

corresponding equations in the incompressible flow by

means of a linear transformation between the (x, y) and

the (x’, y') coordinates we have to introduce one further

approximation by introducing a weighted mean value Ffi.:

2.

F9m=ESP52mf(i-ES)P¢ZOO; 05 Eséi, (111.2.5)

where e; is a weight factor, the value of which must be

known. We approximate in Eqs. (11.7.39). (III.1.15),

(111.1.16) for the s-th and the w-th fluid components

1

the ’85: and the a. by F9: , and get:
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(113111—913W162R.R,.1.1g (5.:R..R.,.;6 —

—R,.R,,.1g-(L6.Bx) + 6., (III.2.6)

1—1—1=R-R(111— 111) RR.(21 2—‘(1)+R,.R.;(B.-B.)+

+6.Z..-X.., (111.2.7)

(1.2%(w 1.3117: R.,R,,;11—,3 6., (In...)

6.=— —1——B11..:R..R,R (a: (:.Z.,—X,,)+-.1g((1.12.1)-

-X..] d1}1(1-pf.)[(R.-1)(11W.)(MlgmL11:]; (=1(5,1) (111.2.9)

We correlate the system of Eqs. (111.2.6) to

(111.2.9) with the system of Eqs. (111.2.1) to (III.2.4).

Introduce the following linear transformation:

X = x; 3: {55003, (III.2.10)

and assume that the dependent variables in the two

flows are related by:

Lys=a.(y;; ngéws’; (p.=a.((1.’, (111.2.11)

where as, b5, a06 are constants which will be determined.

Using Eqs. (111.2.10), (111.2.11) in Eqs. (111.2.6)
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to (111.2.9) we have:

—)g)(7- gig: stR’MSRH33% HartlfiRmRH:21.

m6'1asfimeRH; gig-(Lu; dx’) ’1 01':ng G. , (111.2.12)

'1.

9w; - a z 3 :6 _ _ 3 :5 3 0,6

37'— : I351 RmRH; (as—3%: _ 0... 33") + (36" flsiRmRHg(053% - ad???) +

 

(.1R,.R,;(B.-B.)+B:(s.z.—X.), (In...)

34:11:.11: = .-.R,..R16+ afi”i.(111.2.11)

a:F; = " 0,;{35: 95T§f+a+m-RH2B1- — a:(6+Zt3-X113) +

1a: F111‘3H7H~[11(Z11” 1) ~X..] dx’} 1

+ .1 . 2 . 11.1.9.1-
0.,F...(i-P..)[(K.-1)(1+W+)(1 A.) 33 L13]; ($5.06). (111.2.15)

In order to correlate Eqs. (111.2.12) to (111.2.15)

with Eqs. (111.2.1) to (111.2.4) we require the following

relations to exist:

(.1: R..RH;=R.;.R;; ; a.(}.“R..RH;=RQ.RQ;, (III.2.16)

(1.0: :RnsRHfRésRfi; ; a.(r;‘RmsRH;‘-'R(5Rfi; , (111.2.17)

FmRmsRH: =R:«+R;: ; P; 0:: 6,»: 6;, (111.2.18)
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RMRH;(B;B»)=RJSRJ;(BQ‘BL)3€‘(6SZSIX,.)=6§Z;-X;2, (mm)

where r = s,w . In addition we require that the curve

r; be transformed into the curve r2, i.e., projected

streamlines in the compressible flow transform into

projected streamlines in the incompressible flow. This

leads to the so-called "streamline analogy" (8, pp. 180,

181), which requires that Qg be transformed in the same

way as y, thus, using Eqs. (IIIo2.10), (III.2.11) we have:

_-1 I

a5= Pan. (111.2.20)

From either the second Eq. (III.2.16) or the second

Eq. (III.2.17) we get:

a¢=a5. (III.2.21)

From Eq. (III.2.16) we have:

35a? '1 unless RmsRH:E RJSRfii'é-O. (III.2.22)

From Eq. (III.2.17) it can be seen that;

’f’s 0: = Fem unless R'msRH: E szsRég 50. (III.2.23)

Since the first Eqs. (III.2.22), (III.2.23) are conflict-

ing each other we will limit our correlation to the
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following two Special cases:

1 H130.(R R E 2 2 SQ) 3 4__

Case (a): Hana a” , ms H: RmRH: , sas ‘Fem- (III-234)

Case (b): H:5H:’EO$ (RmsRHfRn:3R;leD),”Quiet-‘1. (111.2.25)

Using Eq. (111.2.20) in Eqs. (111.2.24), (III.2.25) we

have:

bs = 1 in case (a) ; bs :‘E1 in case (b). (III.2.26)
Q

We assume the following relations:

rmfimL; e,= e; (haw); u, = LLL;

_ ’

Ye,“ 9:. ; L‘ L . (111.2.27)

Thus, in order that the relations in the first Eqs.

(III.2.18) be established, we assume, using Eqs.

(II.6.17), (II.6.18), (III.2.27):

Fecal—i: = 030’, (III.2.28)

and, in order that Eqs. (III.2.16), (111.2.17) be satis-

fied we choose, using Eqs. (II.6.17), (11.6.18), (III.2.27):

Hi=H:’ ; Hi= Hi, . (III.2.29)
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To satisfy the second Eq. (III.2.18) we assume, using

Eqs. (111.2.4), (111.2.15), the first Eq. (111.2.18), and

Eq. (III.2.20):

B1,:B; ; 61.: 6a;- ; 6rZ+x= 4:21;; Fsmng'fx= &;Z;3;

X-Hs'X-Lx , stX+3=X;3;

Féfli—p&)[(K+-1)U*W+)U*A5i'§§i‘ bdrm (1'=6,o¢). (III.2.30)

The eXpression on the left hand side of the last Eq.

(III.2.30) is assumed to be negligibly small since

1 - [5,: = 1 - 1 + Wham)" : (3'64‘."11I¢.,,)2 is assumed to be a

small quantity.

The first Eq. (III.2.19) is automatically satisfied

when using Eqs. (III.2.17), (III.2.24) and the first Eq.

(III.2.30). In order satisfy the second Eq. (111.2.19),

we assume, using Eq. (III.2.26)3

65252: 6,, 25,2; Xsfx; in case (a), (III.2.31)

Feuéazsfézge; stX53=X;z in case (b). (111.2.32)

Denoting the nonndimensional perturbation velocities

in the y direction by v;, we have, using Eqs. (III.7.18),

(III.2.1o), (III.2.11), (111.2.20), (111.2.21):
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Emu: W 3 (FM). (111.2.33)

A summary of the relations between correSponding

quantities of the compressible and the incompressible

flow, when the s-th fluid component is correlated, is

given below in a table form:

Table 1. Correlation for the s-th fluid component

 

 

 

quantities

Compressible Incompressible

1n+,e+,u,,ys,H:,H:,H: mksémhyéfiffifififi 3'

L 2. 3 U __ ’ 31 )

Ego=0)Eoo,E°o’L ”:0,P6p:, on,L

9», 15,13“ «5+, eZu, {231113, psi: vi, 3,1,5; 42,1,

6,2,, X“,X? {3; 6,32,; , Xi, , (5;: Xé,

Case (a): 1175,6152”,st 715;, 65’ Z532L ,Xs;

Case (b): 2J5, 532551,st F’s: w; , P526;25;3;Xs;    
where r:s,x .

For the correlation of the weth fluid component we

consider Eq. (111.1016) for s:x combined with the second

Eq. (III.1.15). We also consider Eq. (III.1.14).

Introducing the linear transformation:



X =.1 ; ‘fr-1m‘1, (111.2.34)

and assuming;

(For: 0.x05%); a = (III.2.35)

where a“, b are constants which will be determined, we

get, using Eqs. (11.7.41), (III.1.15), (III.2.34),

(111.2.35), in Eqs. (11.7.39), (III.1.14), (III.1.16)

for s:%:

32;

jig—Jr 9.312%: waRmeH:jx-gfi— — a: Patina (III.2.36)

 

Cari; Goo = " a: Fa;oo QB +0.0,RW‘RH:ocB " 0.1%ng Xx3)+

+ 1:,” fijgexzw- 11 - xxx] 11+} +

+aZP+i[(-1(i1111111131?“ 1411, arm-371

%§+—=‘aPH: Higg—3x7 a.(3“H:H;‘ €35?-

 

-111:11: 13,- 1111,:.311(Hz... 11,) (mass)

Requiring a streamline analogy we have:

a,=-P;, (111.2.39)
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In order to correlate Eqs. (III.2.36) to (III.2.39)

twith the correSponding equations for the incompressible

:flow we will require the following relations to exist,

‘using Eq. (III.2.39):

)
PmRmRH; = meR;: 7. F2126“: G; (111.2.40)

£4ng H: H: = HZ’H’: ;1}’11,113.23Hm‘Hi’=HI;1 , (111.2.41 )

Yi‘Rfii incl“ m3 Hfi6Z,,;5‘RmRH“X; ,, (111.2.42

We assume the following relations:

41mm; e,=e;; 11m=u;; »m=11;; 15L);

meH2- H5; Hot=H.:,; H:=H:, (111,2,43)

From the last three Eqs. (III.2.43) we have:

= 11:01 1+ F;Z(1+p§m)( H:’ 11:12] $- , (mg...)

In order that Eq. (III.2.41) be completely satisfied

we use Eqs. (III.2.43), (III.2.44) and choose:

’6: PM.“ [3;oo(1-P“X:H?)J2:. (III.2.45)
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The first Eq. (III.2.40) is satisfied by the assump-

tions made in the first six Eqs.(III.2.43). In order

that the second Eq. (III.2.40) be satisfied we assume,

using Eq. (III.2.37) and the first Eq. (111.2.40):

8.553.; 6,261; daze“: 6.1ZL.;

meéwagz 6::Zia. 3 Xxx: XLx; Pume3r-Xo:3,;

-i 2 ‘1_Q£

Paco(i-wa)[(Kw’i)(1_+w¢)(1+/A\oo) 33% +L“8]%D, (III/2.46)

From Eq. (II.6.17), (II.6.18), (III.2.44), (III.2.45)

we have:

11mm; 11;: ,1: =9... (111.2.47)

Using Eq. (III.2.47) in Eq. (III.2.42) we have:

606206} = (3;; 60:20:} ; X062 = Pecfa-oxcc; . (11102-48)

Summarizing the correlations of the w-th fluid

component in a table form:
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Table 2. Correlation for the math fluid component

quantities

 

Compressible Incompressible

 

H1 2 }+3 , 1 1 1 U H2, 4. 3’

mw’ew,uw’yw) 00, w, m, mw)ew,u/ijw, m) m ’ “U U,

E:=O,E:, 3,1. E;’=o,{1;:E:,E:',1_'

 

z 3’ ’— J

1+: 1:1:11111112111111» 1111+
Bead“ 6¢Zxx,6oon3 Bl)é.:,6.:Zo:x ,F;: 612023,

6.42012 ,XoLX7Xp¢8’Xo(3: Fiodzaiz, Xéx,F>;toXo2%, [371: a;   
 

III.3. Pressure Coefficients

In this section we invalidate the changes in

notation which were introduced for the perturbed

quantities in Chapter II, Section 7.

The s-th Species' pressure coefficient is defined by:

_ -i —2

Cfs- 2(T35-10500) boo H1500 . (III0301)

Bernoulli's Eq. (11.3.4) becomes, using Eqs.

(11.3.5), (11.6.2), (11.6.4). (11.6.5), (11.6.7),

(II.6.9), (II.6.17), (11.6.18), (11.6.20), (11.7.1)
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(11.7.4) to (11.7.11). (11.7.23), (11.7.25). (11.7.28),

neglecting second order terms and using the result 3-:

constant which was obtained in Chapter II, Section 7:

CLJP+IsLL7§-5s= Imuif , (111.3.2)

where:

15”.: = Cf5(1+Ds)Ts LL: ; mu: :CPSTS LL: , (IIIo3o3)

:1.=1.+1.+1..+i.; 1.5100111; ; :1.» 11.11.: (”11+ ;
N

a d

_. N3 ”L . . ~ Ali-D N 5. Ni

fies—RWSRng Herdsx , 354’s [64215 1>+Xs]d«x . (III.3.4)

1*.” 11

Note that D50.55 0 since each of the fluid components

follows perfect gas laws in the undisturbed stream.

From Eqs. (1.2.70), (1.2.71) and the relations A...,w..§o

we also have:

(055.)2" K510500119; . (111.3.5)

-1

Using the relations 13500505: =R1osTSoo , RPs=C1os"Cve, Ks: Cps Cite ,

we have:

(04,.)2 = c,.(1<.—1)T.. (111.3.6)

Using Eqs. (II.6.16), (111.3.5). (III.3.6) in Eq. (111.3.3)
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we get:

[.1113 = (1+D.)(1<.—1)‘1(M..)’2 T. T: ;

Law: = (Ks-1)-1(M.a)-2 . (111.3.7)

Inserting Eq. (III.3.7) into Eq. (III.3.2) and solving

for T,T,;,1 furni she 5:

T5 T5: =(1+Ds)-i[1+ (Ks‘i)(Msw)2 (56 -,u+:f>] (III.3.8)

We introduce the following approximations:

LRJ: 0LT.“R.LT;‘0)T. ; )mst.‘dP.“Ws)w(5:dP., (111.3.9)

where K6, W5 are some mean values representing A9, W,

in those integrals. Using Eq. (111.3.9) in Eq. (1.2.57)

we have:

6. =(T. Tsj-A)(p.p;-)"‘"”ws W¢P(_As). (111.3.10)

Inserting Eq. (III.3.10) into Eq. (I.2.56), making use

- _ ‘ A

of the relation Pepei=PsTj5a§ TSooTSt1+w5) which is obtained

from the equation of state, and solving for P5 3ywe

get:

p.319 =(T. T..‘)K‘HK‘Q(H))W‘)“R1W.) mp(‘A.+c?.AS.), (111.3.11)
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where 55,A5, are given by:

— ~ _-

De= K:[/A\5+ ‘1)Ws] ; A85: 85— 8500 . (III.3.12)

Inserting Eq. (III.3.8) into Eq. (III.3.11) gives:

10510;:
= { (1+D)

-1[1+
(Ks‘1)(

M5w)2(j
s - Eli-9]]

Ke(K,-i)'
1(1+fis)(1

+WS)-i .

111/1W111...s11m1+11+111+1 . 1......)

We make the following approximations by eXpanding the

power and eXponential expressions in Eq. (III.3.13),

neglecting higher than first order terms and using Eqs.

(1.2.53). (11.6.71. (11.6.16), (111.3.4), (III.3.6) and

the relation K.=c..c;¢. :

WW:(“D-+111"~1- ...1+1, 1......)

[111511115115 11.11““5 MMMI 1.1115111. 31...), (III 315)

(”Meme defied-1K.111+WJ1111+(K.—i)“A.-

"c..(1<.—1))T:0)0.” 110151;)11‘1 K.(M..o)3e.(111.3.16)

Inserting Eqs. (III.3.14) to (III.6.16) into Eq.

(III.3.13). neglecting higher than first order terms and

using Eq. (II.2.13) and the first Eq. (III.3.4) we get:
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13510;: =1+ K51Msm1213esz. + 5. ’11:..1. (111.3.17)

Dividing Eq. (III.3.1) by f5, and using Eqs. (II.6.16),

(III.3.5), (III.3.17) leads to:

61.5,: 21111910523111 K: Mgi=2135f iflriiQ. (111.3.18)

Eliminating Tgmtin Eq. (III.3.11) by means of the

equation of state, using the relation £05930: 1 +156? and

Eqs. (III.3.12), (III.3.16), neglecting higher than

first order terms gives:

136 Pa: x 1+ 1453551” +WS—AS + K5(K5‘i)11v1$oo)2 354. . (III.3. 19)

Using Eqs. (111.3.4), (111.3.17) in Eq. (111.3.19) and

solving for fi$ we get:

152111501 (6— m...—u:.1- K21w.—/\.1. (111.3...)

”
‘
6
1

Inserting Eq. (III.3.20) into Eq. (11.7.18) we get:

2 :- =1715m)2 “1):?+(M500>2($5-K565i>-K:(W5’A$>— B5. (III-3021)

where 9‘50.» is given by:

(25m)z=1-11\’15m1a, (111.3.22)
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In the incompressible case, the corresponding

Bernoulli equation to Eq. (III.3.2) is:

i ’ - - _ 9 ‘4. :

us,» +10; pg; uéf 35’:“pm $5“. us? (III.3.23)

where 5; is given by:

3;: 552+ 5525+ 5’»; j52=-RmsRH{Lod1~fl§

G

553-RMRHjuggdx 35’4=J[2’g(2§’—1)+X:’]d§‘. (1113.24)

at”

The pressure coefficients in the incompressible

flow are given by the following relation, using Eq.

(111.3.23):

C’- Him-105;) Lal‘ulf =ZHQ-flif’). (mm-5.25)P5—

In the incompressible case the Eq. (11.7.18)

becomes:

gals? _ N1,
,

$2403“ LL51D “B5 . (III.3.26)

From Eqs. (111.2.10), (III.2.11), the first Eq.

(III.2.30), (III.3.21), (III.3.26) we have:

B15110 = 9:5: I115}, _ (7‘2: Macy-(35‘ K5351)+ K_i25i(w5flA5)° (III ° 3'27)
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From Eqs. (III.2.1o), (111.2.11), (111.2.17),

(III.2.18), (III.2.20), (111.2.24), (111.2.30), (III.3.4),

(III.3.24) we have:

5’2=(F5w>2j52; 15;:j53 ; js,q:j54 . (111.3.28)

Combining Eqs. (III.3.4), (111.3.18), (111.3.24),

(111.3.25), (III.3.27), (III.3.28) we get, after a few

manipulations:

Ct“ (fiswszr’s +2 (ASH-[1- (Poi RmRHgfldez +
Q

+(Ks’1)[i'((7mm)JL d0:- K;L(W5’As)}, (III .3.29)

The pressure coefficient for the gross fluid is

defined by:

-i -2

[fab-10mm“, LL00. (III.3.30)

It can be shown, using Eqs. (1.2.25), the first Eq.

(II.7.23), (111.3.1), (III.3.3o), that:

Cf: Z?”«:93?fZ’m-J(W“C105 (111.3.31)

521 6=L

where nm is given by:

7!.

nm=zfm+, (III.3.32)

'f‘hi
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Similarly, in the incompressible case, we have:

3 1" i

— v y )1

Cr- gush: m)Crs, (IIIJJS)

where nn' is given by:

TL

‘n’m’= Z’M. (1115.34)

From Eqs. (111.3.29), (111.3.31), (III.3.33) and the

first Eq. (III.2.27), we have:

'3‘:

C;Z m;(n"m’){ 2;: Cf; + z sin-(pm RngJou +
5‘1 F‘

”MKS1)—[1 (25.0)JfionLQmdJSWmAJJJ (III.3.35)

Adding and subtracting aij', to Eq. (III.3.35) and making

use of Eq. (111.3.33) we get:

C1: :CJJHW‘CJJ :m;JC,:5[1-h:x)2]+

+—2[[1(ps)‘gJRmRHfide +((-—Ksi)[i (AssHJQols

" K;1(W5‘Ae)JJJJ (111.3.36)
,

where (’Ag)z is given by:

(%:)2=i-(Mm)z , (111.3.37)
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and (mg)2 is the gross fluid free stream Mach number.

In the case s:w, we replace J2“ by “w in all the

formulas.

III.4. Application

Eq. (III.3.29) is applied to the calculation of the

pressure coefficients, Cfs, in a fully ionized plasma

consisting of electrons and singly charged ions (hydro-

gen ions). The subscript 1 refers to the values for ions

and the subscript e refers to the values for electrons.

We assume W;EA;EW¢EAQ§ O . (and, therefore, using

Eq. (11.3.7). P: =1“ R 5 Pei“ fi. 5 O ). Furthermore, we

make the assumption:

PdQ‘V’ PidOfiJoedQe, (III.4.1)

which becomes, approximating 9gp, by their values in

the undisturbed stream, using Eqs. (1.2.2), (I.2.16)

and neglecting me in comparison to m; :

dQ=th (III.4.2)

Following (5) we split dQ into the form:

otQ=oLQ + (quoéufid’r. (III-“'3’
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vniere d5 is all the heat injected from outside into the

ggross fluid except the Joule heat, (J)‘°’(J)<Su)‘i is the rate

of Joule heat,<5 is the electrical conductivity of the

gross fluid and dr is an element of arc of the gross

.fluid streamline. Assuming d5 5 O, approximating (J')"'(Joc3u)‘i

by its value in the undisturbed stream and using Eqs.

(I.2.2), (I.2.16), (1.2.17). (1.3.2), (I.3.6), (III.4.2),

(III.4.3) we have:

th= (9.92)“, um cmfs‘i (111.4.4)

Assuming E; 2 1, Ge 2 O and using EQSo (I9309)!

(11.7.28), (II.7.31), (II.7.37): (III.2.5)9 (111.3.4),

(III.3.22) in Eq. (III.4.4) we get:

cps cg.[1——(Mm)]‘ +2[1—(ngJim—WMs)JOLE-—
N

‘UWW:JMJi at.mWJJWP

’RMRHE'J"? NRRH_;.°JutfdxJJJiJ . (III.4.5)

pl.

Eq. (III.4.5) becomes, using Eqs. (II.6.3). (11.6.7).

(II.6.16) to (II.6.18), (11.7.38), (III.4.4):

C? W-(HM + 2MLin'JMLw)Z]'1J(Ki-1)AgJJroLfi.-

”[AHzHZJ:dY’JJJ1 (K..-1M)MUMJoLF+ A(H: 1121.de-

7‘.
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-H’: Judi )JJJi . (111.4.6)

‘where Aé,"Am are given by:

Adi: (6i)2wam;iM£-:6-4; Aeri/‘eHeoLm‘z‘Mzt. (11104.7)

We calculate C; using the following values*:

 

Cé‘i; Kr: ; v..=1o‘8m‘3; [51%; 6=88-5W*""s
U
.OCLm=Zx104 m-sec"; Jail-“’1 JOLXZ=5MO-2;

PL P1

N3 ’Vi - ~49 -

mfdx = 5.102; e.= Lexie CPr. ; mg: Lumovfigo;
w

i.

[m imio" &3_.,n-a;2; Hm=102 3m. (III.4.8)

Figs. 2 to 5 show the results compared with the

isentr0pic curve Cf CH1 - (M...)2]-1 for various orienta-

tions of the magnetic field**° The relation between M“,

and Mn» is assumed to be (11, p. 10, Eq. (31)):

 

* The value of 0Q” is based on a temperature of

30,000°K approximately. <§ is calculated from the formula:

-4.

6 = 1.56x1o“xm‘"5x[1og(1.23x104xm"‘xn;°'5)] i 15%, where T av

30,000°K = plasma temperature, neew 102‘cm4'z electron

number density. This formula is given in (Spitzer, L.,

Jr., and R. Harm: TranSport Phenomena in a Completely

Ionized Gas. Phys. Rev., 89, 997, 1953.).

** The calculations were made on a CDC 3600 computer

at the Michigan State University computing center.



(III.4.9)
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APPENDIX A

Some Remarkas on the Functions Bs

Carrying out the differentiation in Eq. (11.2.1)

and using Eqs. (11.1.1), (11.3.2) we get, after a few

manipulations:

£17]: X53 (1_Bs)]= — P2165 . (A.1)

Integrating Eq. (A.2) along a streamline of the s-th

fluid component, starting from an m subscripted state

it,

to some end state, and using the relation ug= HE_ ,

we have:

1_Bs = (1-Bsoo) MG J00 Peiuvjdsd’rs) . (A.2)

A.

In the linearized, steady quasi-three dimensional flow

we assume B500: 0, @fi P5W+P5f, LL5=[(LL5..+ 1.131.)“ (1152102 +(Ltif)z]%,

d1,” til-'5 , where dl"5 is an element of arc taken along

the curve r; which is the projection of the streamline,

13, on the (x‘, x2) plane. Using Eqs. (11.6.1),

(II.6.2), (II.6.5). (II.6.9) and the relations above,

we get , neglecting higher than first order terms:

103

 





(L3)

(AA)

  



10.

11.

REFERENCES

Grad, H.: General Fluid Equations. Notes on Magneto-

hydrodynamics, No. I, Inst. of Math. Sciences, New

York Univ., NYO-6486, 1956.

Grad, H.: Ohm's Law. Notes on Magnetohydrodynamics,

No. IV. Inst. of Math. Sciences, New York Univ. NYC-

6486, 1956.

Krzywoblocki v., M. 2.: 0n the Stream Functions in

Non-Steady Three Dimensional Flow. Journal of the

Aero/Space Sciences, 25, 1, Jan. 1958, p. 67.

Krzywoblocki v., M. Z., F. Horiuchi and J. Voda: 0n

the Similarity Rules in Diabatic Flow. Proceedings,

Third U. S. National Congress of Applied Mechanics,

Brown University, Sept. 1958, pp. 771-775.

Krzywoblocki v., M. Z. and J. Nutant: 0n the Simi-

larity Rule in Magneto-Gas-Dynamics. Acta Physica

Austriaca, Vol. 13, No. 1, 1960, pp. 1-18.

McCune, J. E. and E. L. Resler Jr.: Compressible

Effects in Magneto-aerodynamic Flows Past Thin

Bodies. Journal of the Aero/Space Sciences, 27,

19609 PP- 493'5030

Oswgtitsch, K.: Gas Dynamics. Academic Press Inc.,

195 .

Oswatitsch, K.: Similarity and Equivalence in Com-

pressible Flow. Advances in Applied Mechanics, VI,

1960, Academic Press, pp. 153-271.

Pai, S. I.: Magnetogasdynamics and Plasma Dynamics.

Springer-Verlag, Vienna, and Prentice-Hall, Inc.,

Englewood Cliffs, N. J., 1962.

Pai, S. I.: Gasdynamic Effects on Electric Current

Density in Magnetogasdynamics. Journal of the Aero/

Space Sciences, 29, 1962, pp. 483-484.

Pai, S. I. and S. K. 0h: Linearized Magnetogasdynamics

Based on Two Fluid Theory. (Unpublished).

105



106

12. Stratton, J. A.: Electromagnetic Theory. McGraw-Hill

Book Co., Inc., N. Y., 1941.

13. Zhdanov, V. M.: TranSport Phenomena in a Partly Ionized

GaSO PM, v01. 26, N0. 2, 1962’ ppo 280-2880



 


