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ABSTRACT
SIMILARITY RULES IN MAGNETOHYDRODYNAMICS
BASED ON MULTI-FLUID THEORY

by Joab Jacob Blech

In the present work similarity rules are derived
in magnetohydrodynamics, in the physical space, based
on a multi-fluid theory. The basic hypothesis of the
multi-fluid theory is that the fluid consists of a
number of fluid components, each with its own intrinsic
properties (such as molecular mass, charge, etc.). Each
of the specles is assumed to be inviscid and non-heat
conducting. The postulated fundamental equations for
each fluid component are: equation of state, first law
of thermodynamics, conservation of mass and conservation
of momentum. In addition two Maxwell's vector equations,
describing the electromagnetic field, are inserted into
the system of equations. The flow is assumed to be
multi-diabatic, 1.e., there 1s injection of momentum as
well as energy (heat) by means of sources from outside
into the various fluld components.

We assume a steady flow which depends only on two
spatial coordinates; but in the present multi-fluid
theory such a flow i1s not a two-dimensional flow in the
usual sense. The veloclity, the electric and the magnetic
fields have three components. After a reduction of the

number of fundamental equations is made, the system of
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equations is linearized, i.e., it is assumed that a
first order small perturbation theory describes adequately
the flow field.

In the present case of MHD a mere linearization of the
system of equations seems to be insufficient for obtaining
similarity rules. An additional procedure, i.e., some
sort of a smoothing process, 1s applied in which a crite-
rion for neglecting very small terms is introduced, thus
leading to a simplified system of equations which governs
the flow. A correlation between this simplified system
of equations of the compressible flow and corresponding
systems of equations of the incompressible flow 1s estab-
lished for the case of aligned fields, in which the velocity
and the magnetic fields in the undisturbed stream are
parallel, and for the case of crossed fields, where the
velocity and the magnetic fields in the undisturbed stream
are perpendicular. Pressure coefficients for the indivi-
dual species and for the gross fluld are calculated and
correlated. As a special numerical case, a fully lonized
plasma 1s considered and the ion pressure coefficilent
ig plotted vs., the ion free stream Mach number for

various orientations of the magnetic field.
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INTRODUCTION

In the past, many formulas for the similarity relations
between ilncompressible and compressible fluids in an
isentropic gas flow, were derived. A collection of such
rules in the physical space is given in (8). The Kirmén-
Tsien technique which employs the hodograph method can be
found, for example, in (7, pp. 336=340). Similarly, some
attempts to derive similarity rules in diabatic flow, i.e.,
a flow with heat addition by means of sources, were made (4).
In recent years there has been a tendency to derive various
similarity rules in magnetohydrodynamics.

From various attempts in the past we may quote and
discuss briefly the following:

(1) v. Krzywoblocki and Nutant (5) derive a similarity

rule for an inviscid, non-heat conducting, diabatic flow
which takes place in an electromagnetic field, with excess
electric charge equal to zero, followlng the technique of
Kérmén-Tsien in the hodograph plane and assuming a simpli=-
fied pressure-density-entropy relation. Although a similarity
rule is derived, the disadvantage of this procedure is

that equations of the electromagnetic nature are not trans-
formed into the hodograph plane. The electric and magnetic
fields are treated as known functions. Moreover, the
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correlation of corresponding coefficients in both stream-
function equations of the compressible and incompressible
flow requires that there be a certain relation between
the vorticity distributions of both flows. A speclal
relation 1s also imposed on the Jacobians of the trans-
formations in the physical spaces.
(11) McCune and Ressler (6) treat the two-dimensional
steady case of a highly electrically conducting, inviscid,
non-heat conducting, lsentropic flow passing over a thin
body. A single partial differential equation for the
current field is used to study the flow. This differential
equation 1s derived from the linearized fundamental system
of equations of the hydrodynamic and electromagnetic nature.
The discussion is separated into three main cases, depending
on the orientation of the externally applied magnetic field:
The case of aligned fields, where the magnetic fleld 1is
parallel to the velocity field of the uniform undisturbed
flow, the case of the crossed fields where the magnetic
field is perpendicular to the free stream velocity, and
the case of an arbitrary field angle. In each case,
procedures are developed for the solutions of the
magnetoaerodynamic problems involved and the compressibility
effects can be studied through the solutions.

In the works mentioned previously the iohized gas
1s treated as a single fluid. It was pointed out in (2)
that if one seeks a single fluid magnetohydrodynamic

formulation in which the current density is considered
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as an unknown, a counting of variables and equations shows
the necessity of an additional vector equation which is
usually taken as the generalized Ohm's law. The influence
of gasdynamic effects on the electric current density has
been completely neglected. One way to improve the descrip-
tion of the mechanism which governs the electric current
density is to use multi-fluid theory. In this formulation
the fluid is assumed to consist of several fluid components,
each with 1ts own intrinsic properties (such as molecular
mass, charge, etc.) and with its own thermodynamic state
variables. Conservation equations from the macroscoplc
point of view are then postulated for each fluid component.
There i1s no necessity for Ohm's law since the electric
current density i1s defined by means of the velocities and
charge densities of the various species, and the former
are governed by the conservation equations of the indivi-
dual fluid components. Thus the effect of the various
forces on the electric current density through the velocity
vectors and momentum equations can now be treated exactly
from the macroscopic point of view.

The main purpose of the present work is to derive simi-
larity rules, avolding the pitfalls appearing in the works
of previous authors. A multi-fluid theory was employed.
Each fluid component was assumed to be inviscid and non-
heat conducting. In Chapter I, section 1, the dependent
variables and a list of the fundamental equations are

introduced. 1In section 2, equations of state, first law



of thermodynamics, conservatlon o:i mass anl of momentum

for each fluld component were postulated and the passage
from the species equations to a gross fluid formulation

1s discussed. In order to obtain correct momentum and
energy equations for the gross fluid, 1t was assumed that
the fluld component flows may be multi-diabatic, i.e.,

there may be injection of momentum, as well as energy (heat)
by means of sources from outside into the various species.
Equations of state and for the internal energy of each
component are allowed to deviate from perfect gas equations,
so that i1t is possible to derive perfect gas equations

of state and for the internal energy of the gross fluid.
Various results pertaining to the charge and current
equations and to Ohm's law, which were obtained in (1, 2)
are summarized in section 3. The fundamental electromagnetic
equations, i.e., Maxwell's equations, are introduced in
section 4, and following (9) two possible formulations of
the final system of equations are given in section 5.

In Chapter II, section 1, a steady three-dimensional
flow which depends only on two spatial coordinates is
assumed. In the multi-fluid theory, one cannot assume
that such a flow is two-dimensional in the usual sense.

The velocity and the magnetic field have three components
which have to be calculated from the fundamental equations.
The electric fileld component in the third direction is shown,
from the fundamental equations, to be a constant. The

electromagnetic system of equations is further reduced



into two differential equations for properly chosen functions,
the spatial derivatives of which give us the remaining two
components of the electric and magnetic fields. In section 2,
the single quasi-stream function#* and potential equations
for each specles are derived. Those functions are assoclated
only with two veloclty components. The third velocity
component is governed by the momentum equation in the
corresponding direction. Generalized Crocco and Bernoullil
equations are derived in section 3. In section 4, a
summary of the governing system of equations 1s given.
The quasi-stream function and potential equatlons for the
incompressible flow are given in section 5, and the final
system for the incompressible flow is discussed. Section 6
merely introduces a non-~dimensionalization of the various
quantitlies and equations of the flow, after which a lineari-
zatlon procedure is carried out in section 7, i.e., it is
assumed that a first order small perturbation theory
describes the flow field.

In Chapter III an anzlozy between the compressible
and incompressible flow 1s obtained. For this analogy it
1s necessary to simplify further the linearized system of
governing equations. Thus in section 1, following a criterion
similar to the one gi?en in (11), very small terms are
neglected in the linearized system of equations. Certain

pairs of coefficlents in the linearized quasi-stream function

# A three-dimensional steady flow has actually two stream
functions (3).
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equations are approximated by theilr weighted mean. 1In
section 2, a correlation between the simplified linear
system of equations of the compressible flow and corresponding
systems of equations of the incompressible flow is established
by means of linear transformations of the coordinates and
of properly chosen relations between corresponding
quantities of both flows. It is necessary here to distinguish
between the two separate cases of aligned fields and of
crossed fields. Finally, in section 3, pressure coefficients
for the individual species and for the gross fluld are
calculated in both flows and the relation between them 1is
given. A special case is chosen in section 4, and the
compressible pressure coefficient is plotted vs. the free
stream Mach number with the externally applied magnetic
field components as parameters.

In ordinary isentropic irrotational flow it is
sufficient to linearize the equations in the physical
space in order to obtain similarity rules. In a rotational
flow of such a character, some additional assumptions
must be made to take care of the vorticity effects. It
seems that in the present case of MHD the procedure known
from the classical gas dynamics is absolutely insufficient
for obtaining reasonable similarity rules. The additional
procedure which 1s applied in the present work is some sort
of a smoothing process after linearization which is actually
equivalent to neglecting some terms of smaller order, and

taking mean values., It seems as 1f this procedure can be
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considered as a first approximation in a chain of a successive
approximation process as applied to the similarity rules.
Higher approximations are then obtained from a more accurate
system of equations of the flow and the results of the first
approximation., In the present work only the first approxi-

mation is considered.



CHAPTER I

FUNDAMENTAL EQUATIONS AND CLASSIFICATION OF FLOWS

I.1. Fundamental Concepts

We consider the plasma, on the base of a continuous
medium, as a mixture of n fluid components, each with 1ts
own intrinsic properties (such as molecular mass, charge,
etc.) and each with its own thermodynamic state variables.
From a macroscopic point of view, the following quantities

are sought:

Ts = temperature of the s-th species;

P = pressure of the s-th specles;

Ps = density of the s-th species;

uc = 1-th component of the velocity field of the s=th species;
T = temperature of the gross fluid;

P = pressure of the gross fluld;

P = density of the gross fluid;

u = 1-th component of the velocity field of the gross fluid;
E" = 1-th component of the electric field:

H* = 1-th component of the magnetic field;

where s=1,2,...,0 and i=1,2, or 3. Counting the unknowns

8
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we get 6n+6 quantities to be determined*,

The following gas-dynamics equations are postulated
for each fluld component: Equation of state, first law
of thermodynamics, equation of continulty and equation
of momentum.

In addition, two Maxwell's vector equations, describing
the electromagnetic field, are inserted into the system
of equations.

Counting the equations we get 6n+6 relations.

I.2, Fundamental equations of the Gasdynamic Subsystem

The following relations are postulated for each of
the fluld components, assuming that each component behaves
like an inviscid, non-heat conducting fluid:

Equation of state:

Tos:RsPsTs , (I.2.1)

where Rg; 1s the gas coefficient of the s-th component.

The density, Ps, i1s assumed to be given by:

Ps:ms))s , (I.2.2)

# The quantities T, p, P, u* depend on Ts, Dps, Ps, ug
and, therefore, will not be counted.
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where m, is the molecular mass of the s-th component and
Y; 18 1ts number demsity.

First law of thermodynamics in a form:
Q= dU, 1056,(?);‘), (1.2.3)

where dQ; 1s the energy addition per unit mass into the
s-th component and U, is its internal energy per unit mass.
With the aid of Bq. (I.2.1), Eq. (I.2.3) can also be

written in the well-known form:
d Q.= dI, —\a;‘df)s, (I.2.4)

where I, is given by:
]:s=Us +R5Ts . (I.2.5)

Equation of continuity#*:

390s )
E?E* 'i&(@s\bf)’ Ss (I.2.6)

where ei is the mass source, per unit volume, of the s-th

component. From the conservation of mass it follows that:

Zd,=0, (I.2.7)

G4

* Summation convention is used for repeated tensorial
indices but not for subscripts distinguishing between the
fluld components.
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which implies that there is no addition of mass from out-
side.
Equation of momentum is postulated (1, p. 8, Eq. (1)):

i
. . ) ) i Xs
alput)s Splpeuiut) g For 2 Z.- 555, e

where 1=1,2, or 3 and F; is the i-th component of the
body force acting on the s-th species. This force may

be written as:
i ¢ ¢ ¢
Fs = ng + Fes * Fos , (1.2.9)

where Fé is the i-th component of the non-electromagnetic
body force such as gravitation force, etc., Fé is the i-th
component of the electromagnetic force and F; is the i-th
component of the interaction force, i.e., the force on

the s=-th component due to all the other kinds of species
in the fluid. By Newton's third law of motion, we have:

n R
; Fo‘; =0; (1=1,2,3). (I.2.10)

¢
6525 is a momentum source associated with the mass source

Ss. Following (1, p. 9) we require that:

~ i
;692530; (1=1,2,3). (I.2.11)

4
)(Sis a momentum transfer tensor, associated with the s-th
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fluid component, the significance of which will be explained
later.
Next, we derive an energy equation analogous to the
one given in (1, p. 8, Eq. (1)). Assuming that Qg is a
differentiable function, then from Eq. (I.2.4):

ale 9ls -4 .

a§§ = a&} - Ps %g% ’ (3=1,2,3), (I.2.12)
Is -4

2?5 = %%J - Ps %ﬁ? (I.2.13)

Multiplying Eq. (I.2.8) by ul and using Egs. (I.2.1),
(1.2.5), (1.2.6), (1.2.12), (I.2.13) we get after a few

manipulations:

71(8,-ps0s) - S5 (2,0t <052 - psus) = Py U i’)f((,&
v 1= Q- 7ulnl + wiZ.) (I.2.14)
where €, is given by:

B = 7 patisus * pals. (1.2.15)

Equation (I.2.14) is the energy equation, analogous to the
one obtained in (1).

Define the following gross fluid variables:

n
p- 5 P (I.2.16)

S5=1
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n
¢ Z F)su (I.2.17)

{

)
s

S=
2 ¢
=) F., (I.2.18)

S=1

—rl‘- .

o

; g N i .

K —qu?’ —PW +;(Xf +P5u; ut « Tass”), (I.2.19)
. n . T

é = zi Pu‘ uw +IDU = ; (%fosu; LL: + P5U5>=2_; €,, (1.2.20)

2 2 ~ a1

T(PQ)J”W(PQ“}) —uwiFte D (eute puf st 355 +

+Z[LL F. -2 (sul E+poul) e 7 Q) + = (PsOsui)'

n aXd v oo (I-0,- Futul~uiZ:)] (I.2.21)

Us axt

where 8‘3 is the Kronecker delta., The diffusion velocities,
V‘

.» are defined by:

vE=ul-ut, (I.2.22)

It is evident from Egs. (I.2.16), (I.2.17), (I.2.22) that:
,’L -

ZPQU; -0 . (I.2.23)

The pressure, p, is defined in (1, p. 9) to be# :

* The pressure dealt with in this work is the gas=-
dynamic pressure. The radiation pressure is neglected (see

9’ p' 12 ]
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}::P Fsugug , (I.2.24)

Another possible definition is (9, p. 10):
p=2 s . (I.2.25)

We will adopt the latter proposition for the pressure.
Using Eqs. (I.2.11), (I.2.16), (I.2.17), (I.2.18),
(r.2.22), (1.2.23), (I.2.25) in Egqs. (I.2.19) to (I.2.21)
it can be shown that:

- N - R
X' =Z(Xg+PsU;Uj), (I.2.26)

S=1

T _ .
= 2. (pUs + Fpewinc), (1.2.27)

aa—t(PQ) a—,POM X[UF Lalevd + povd)+

() ) § e ajxf% Lo, 604
+a—t(Pst) +3_X3(P€>qu'5)— s 9X#4 65(-15—Q$-Tu'5u3+

A Z axt {D A U*)} (I.2.28)
Adding each of the individual Egqs. (I.2.6), (I.2.8),

(I.2.14) over s, and making use of Egs. (I.2.7), (I.2.11),
(I.2.16) to (I.2.21), (I.2.25) we obtain:

%(Pw =0 (I.2.29)
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) ) S 54
e—at—([ou‘) + Eax&_(?)ww) = fﬂ , (I.2.30)

’o?_t(é -PQ) + L (eul -PQM +qpul) -
_ RV
- w', F* B H,L 8>\.

EY (I.2.31)

Equations (I.2.29), (I.2.30), (I.2.31) are the continuity,
momentum and energy equations for the gross fluid.
In the equations of the single plasma components we

introduced terms representing momentum anq energy flux
aXd —L<0Q‘)+
EFURY ( 5

+ gxsqgllsu;» o The inclusion of these terms made it

possible to obtain correct momentum and energy equations

into the s-th component from outside (

for the gross fluid. A correct continuity equation for the
gross fluid was obtalned by the requirement that the density
of the gross fluid be equal to the sum of the densities of
the component fluids, and that the mass flux in the gross
fluid be equal to the sum ¢of the mass fluxes of the component
fluids., We will define a "perfect gross fluid flow" as
one for which Eulerian formulation is obeyed, i.e., as
in our case,)(qzo » due to non-existence of a momentum
transfer into the gross fluid. A perfect gross fluid flow
will be called "adiabatic" or "diabatic", depending on
whether Q does or does not vanish.

In a diabatic fluid flow we assumed that the energy
is added into the particle with no viscosity and heat

conductivity present; similarly, in our case of perfect



S
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gross fluild flow, we observe, by inspection of Egs.
(1.2.26), (I1.2.28), that in general there exists an
injection or subtraction of momentum and energy into a
particle (X;‘ 9’:0, QST#O ), hence the species flow 1is
diabatlic not only in an energy sense, but also in a
momentum sense. We, therefore, propose the name
"multi-diabatic flow" for this model which is more general
than the diabatic flow,

Prom Eq. (I.2.26) we get in the case of a perfect
gross fluld flow:

5=1

n
> (X (X " s U*) =0 . (I.2.32)

4
One way to satisfy Eq. (I.2.32) is by choosing )(s in
the form:

i .
X, - —Psvgvﬁ . (I.2.33)

In the case of an adiabatic perfect gross fluid flow
the left-hand side of Eq. (I.2.28) vanishes, and therefore:

;[U; Fsi' _gﬁ(ésvg + 'Ps'l)’g) + ga—t({‘)st) +%<{0505u§) -
‘9—X5+ds(I -0, - ;+U;Z:)+

£ axt

+LL‘9—’3'(7(PSU§ vg')]= 0. (I.2.34)
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One way to satisfy Eq. (I.2.34) is by choosing Qs such
that:

5%(?5@5) axz(PQ M) = - B (et povd) + v %3‘(‘

- 65(]:5_@5 - —{%—u'{; LL: +U‘: Z;)‘ - {’LL%(PSU:U:,&) y (I.2.35)

g
and if )(s is given by Eq. (I.2.33) we get, with the aid
of Eq. (I.2.22):

—(FSQS) -3_3 P Q uz = -1 lVITsC /fxa(vsvz Psvsé) -
= Se(Ie-0s- fuiul «viZ5) - ui-ty poevd), (.2.36)

Egqs. (I.2.33), (I.2.36), 1f taken into account, enable
i
one to elimlinate )(J s Qs from the momentum and energy
equations of each fluid component.
Defining the operator %{ by

d _ 2 19

at = et tW A (I.2.37)
it can be shown that the equation of energy (I.2.31) can
be remodelled with use of Egqs. (I.2.29), (I.2.30) into a

form which may express a gross fluid first law of thermo-

dynamics:

s P'a,:’t' (Pi) (I.2.38)
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It is sometimes convenient to consider another form
of the momentum equation for each fluid component which is

obtained from Egs. (I.2.6), (I.2.8):

i ¢ ' i i
p(34E  ut ) - - 3 F e Z-us) s e

where 1=1,2, or 3, and for the gross fluid, using Egs.
(I.2.29), (1.2.30):

. 4.3
P(at 33%)=‘%}%+F“%§‘; (1=1,2,3). (I.2.40)

Dividing Eq. (I.2.39) by Ps, Eq. (I.2.40) by P, sub=

tracting the second equation from the first, and using
(I.2.22) leads to the so~called difference momentum

equations:

-

Q>

e 4 3%—u*§&§=p‘i%r 2 F*F p‘iF—

(I.2.41)

P il (20 -l)

For the derivation of an equation of state for the
gross fluid, we define the gross fluid temperature as

(9: 1° 11)3
T = P"Z ) (I.2.42)

where ) is given by:



-3 (1.2.43)

The gas coefficient for the s-th fluld component, R, ,

i1s assumed to be given by:
]':<5v=1:<»¢\rrrl'-si (1+Ws) :RT’S(1+WS) ’ (I.2.44)

where R, 1s a universal constant and W; is a functlon

representing the deviation of the state of the s-th speciles
from the state of a perfect gas. We observe that if Wg = O
then the s-th component has a perfect gas equation of state

since equation (I.2.1) becomes, using Eqs. (I.2.2), (I.2.44):
'P5=RA>>S T, , (I.2.45)
which is a perfect gas equation of state. RF is given by:
Rps= Ramgt . (I.2.46)

Inserting Eq. (I.2.44) into Eq. (I.2.1) and using Eq.
(I.2.2) furnishes:

P2 = Ryps (i+ws){oﬂ; = Ra(L+W)h Ts . (1.2.47)

Summing each of the individual Eqs. (I.2.47) over s and
making use of Egs. (I.2.25), (I.2.45) we get:
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P:RA(1+W)))T : (I.2.48)
where W is defined by:

W=(PT)_i;W5V5TS . (I.2.49)

Equation (I.2.49) can also be written in the form:

P:R?T ) (102050)
where R is defined by:

R=Rum*(1+W) =Re(t+W) ;  R=Rem*, (1.2.51)
m=(w"=(g{as)(2))s) =<s‘ )(Z))s) . (I.2.52)

S=t

The symbol m is referred to as the mean mass of a particle
in the gross fluid.

In order that Eq. (I.2.50) be a perfect gas equation
of state 1t 1s necessary that R be a constant. We observe,
from Eqs. (I.2.51), (I.2.52) that the condition W=0 is not
sufficient to make R a constant since the mean mass of a
particle in the gross fluid, m, given by Eq. (I.2.52) is,
in general, not a constant. If one assumes however that
m = constant (and W=0), then the gross fluid has a perfect gas
equation of state,

Next, a specifying equation for each fluid component
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1s derived. Introduce the entropy per unit mass of the

s-th species, 55, by means of the following relation:
T.4d5, =4dQ, . (I1.2.53)

It 1s assumed that the specific internal energy of the

s=th component is given by:
U5=Cv5(i+As)Ts ’ (I’2'54)

where A; i1s a function which represents the deviation of
the specific internal energy of the s-th component from
a perfect gas specific internal energy, i.e., the imper-
fections of the gas. C,, 1s the heat capacity of the s-th
fluid component at constant volume if it would have been a
perfect gas, and will be assumed to be a constant.

Inserting Egs. (I.2.53), (I.2.54) into Eq. (I.2.3),
deviding the resulting equation by T, and using Eq. (I.2.47)
furnishes:

dS.- co(1+A,) Ts"dTgcvsdAs—RPg(bws)p;*dfs. (1.2.55)

Integrating Eq. (I.2.55) from a zero subscript initial
state to some end state gives after the elimination of

the logarithms by means of exponential functions:

TsTsz-;i = Gs (Psf);: ot 9)(10[(55—550) Cl;:] ) (I.2.56)
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where G; , Ks; are given by:
Gs= W['—(A{ASJ— L, As Ts-i d T *(Ks‘i)[o WSP: df)SJ , (I.2.57)
Ks"'i"‘RPsC;: . (I.2.58)

Using BEq. (I.2.47) in Eq. (I.2.56) we get:

p= (. (o oy (S.c) , (1.2.59)

where the function C, is given by:

o™ Poan” (LWl +Wer) ™ G etpl-Dus) (1.2.60)

Eq. (I.2.59) is the specifying equation (generalized pre=-
ssure-density-entropy relation) for the s=-th fluid
component.

Similarly, we introduce the specific entropy, S ’
and internal energy, [}, for the gross fluid by the

relations:

Td5 =4dQ, (I.2.61)
U=, (1+A)T, (I.2.62)

where A, c, have a similar meaning for the gross fluid as

4; , c,s have for a fluid component.
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It can be shown, by similar operations which were
performed to obtain Eq. (I.2.59) and with the additional

assumption m = constant, that:

0= CPKWP(SC;‘), (I.2.63)
where:
C=POPJK (1+W)(1+Wo)~16wp(—50c;‘), (I.2.64)
G - @(f)[-(/\-Ao) -LAT—i AT + (K-i)SoWiO“ d{)] ) (I.2.65)
K=1+RPC{,1. (I.2.66)
Equation (I.2.63) is the specifying equation for the gross
fluid#,
It may be worthwhile to notice that the n+1 functions

A, A, , 4, , ... , A, are related by Eq. (I.2.27),
remodelled with the use of Egqs. (I.2.54), (I.2.62):

Pc,,(i*«A)T =; [Pscvs(i +A) T, + %Psuj ] (1.2.67)

One cannot assume, in general, that:

A=A =A,=..=A,=0, (I.2.68)

% In the case where the mass m is assumed to be a



24

since we would get one more relation between P, T, Ps, I.,
vy , thus overspecifying our system of equations. If,
however, one assumes that Eq. (I.2.68) is true, then the
gross fluid as well as all the component fluids have perfect
gas specific internal energles,

Next, we calculate the value of (%%ﬁss. Using Eq.
(I.2.47) in differential form and Eq. (I.2.58) in Eq.

(I.2.55) we get, after rearranging:
05 Cos (ﬂ’rAs)dedp;&p(i)ﬁ{iﬂ\’Jql& (1 W) dbend] A)dA (1.2.69)
where N_ 1s given by:

N = (Ks=1) K2 (We-AL)(1+AL)". (I.2.70)

Assuming &,and ssindependent, also assuming that P” Ag,

W , are, possibly, functions of ﬂ;and some other variables
independent of PS, we get, equating coefficients of dPS

in Bq. (I.2.69) and rearranging:

s *

CANE ( P) = Ko psfi (1 L(1+N) +P$[§ﬂF&3(i+ws)(1+As)'ijs (I.2.71)

Similarly, assuming m = constant,f)and S as independent

variables and p, A, W as functions OfP and, possibly, of

variable, we can decompose it into two parts: m = mean
constant + variable perturbation. This will give us in the
final Eqs. (I.2.63) to (I.2.65) an additional term which will
represent a deviation from thelr present forms.
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some more variables, indeperdent of P , wWe have:
2.__ 2 _ _ N g_
() -(ag)s-Kpp‘(i*N) HP (WA Y]y (a2u72)

where N is given by:

N =(k-1)k™*(W-A)[L+A). (1.2.73)

I.3. Charge and Current Equations, Ohm's Law

Following (1, pp. 11, 12) we derive a charge and a
current equation.
Let P% be the charge density of the s=th fluid

component, given by:
Pes: esvs ) (I0301)

where e, 1s the charge of a particle of the s-=th species.

Prom Eqs. (I.2.2), (I.3.1) we have:
Pes=fops 5 o= Bome (I.3.2)

Assuming Jsz consonant, we have, multiplying Eq.
(I.2.6) by & and making use of Eq. (I.3.2):

_g&e_ 9’“<F ) = oo - (I.3.3)
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Equation (I.3.3) is the equation of conservation of
electrical charge for the s-th fluld component.
Requiring that there be no lnput of electric charge

sources from outside into the fluid, we have:
>
{ GCsye = 0. (I.3.4)

The gross fluld excess charge density, Pe, i1s given

by:

n
joe=;pes , (1.3.5)

1

and the electrical current density, J , is given by:

. n . . .
i i i
J =;Pesu's = Ju’ +Peua‘ 9 (I.306)
where J; is given by, using Egqs. (I.2.22), (I.3.5):

n

Je - Pesvi : (I.3.7)

[l

S=

J' 1s the current observed in a fixed system of coordinates
while J: is the current observed as "moving with the gross
fluid". The term ’%u‘ is called the convection current.
Adding the individual Egqs. (I.3.3) over s and using
Bqs. (I.3.4), (I.3.5), (I.3.6) leads to the equation of

conservation of electrical charge of the gross fluid:



a7

‘aa%*‘;x‘&(JéF 0. (I.3.8)

It may be worthwhile to notice that in the case of a
fully ionized plasma (n = 2), Eqs. (I.2.7), (I.3.4) lead to

the immediate conclusion:
G1=6,=0. (I.3.9)

which means that there is no mass interchange between the
fluids.,
Multiplying Eq. (I.2.8) by JS and using Eq. (I.3.2),

we get the individual current equations:

QL( esu's)+'3-X* Fﬁusu +5X 6)—_3 GX‘ 65F;+556°Z:' (1.3.10)

The total current equation is obtained by summing the
individual Eqs. (I.3.8) over s and making use of Eq.
(I.3.6):

im(}oesusu* KSXJM“ ZJF +8,2s). (1.3.11)

Multiplying Eq. (I.2.40) by Pes So“, summing the resulting

equations over s, subtracting the resulting equations from
Eq. (I.3.11), and using Eqs. (I.3.22), (I.3.5) to (I.3.8),
gives, after some operations:

i ™ . Foaut ¢
) [dalpotod] + g 2l )

s
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2 Lpedlpest > X2 - pop alpet + X)-
=;[Js(F«:*dsZ:)]‘Pe(o”Fb. (I.3.12)

Either Eq. (I.3.11) or Eq. (I.3.12) are the gross fluid
current equations (1, p. 12).

Next we state some results pertaining to Ohm's law.
For a more complete discussion, the readef is referred
to (2).

It was shown in (2) that a generalized Ohm's law is
contained in the difference momentum equation, (I.2.41),
as a certain limiting case. If we assume that all terms
in the difference momentum equation can be neglected
compared to electromagnetic and interaction forces, then

Eq. (I.2.41), reduces to*:
P—si s =!’61F ’ (1-3013)

where the force, f; s 1s given by, according to Eq.
(I.2.9):

Fo= Foe + Fos . (I.3.14)

The electromagnetic force, fks s 1s gliven Dby:

* Vector notation is used in the following
derivation.
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—>

Fes = Fes(E +I<B) (I.3.15)

where B 1s the magnetic flux density. The interaction

force, fm » 1s assumed to have the form:

l:_—o's; - Z DCS*(Ef_U’s) y

(I.3.16)
t=1 :

where X, are assumed to be constants. Substituting Eq.

(I.3.14) into Eq. (I.2.18) and making use of Eqs. (I.2.10),
(1.3.5), (I.3.6) and (I.3.15) we get:

—_— . —

f—:’ = PeE + Jule +}[)e_[IxE .

(I.3.17)

Inserting Eqs. (I.3.14) to (I.3.17) into Eq. (I.3.13),

eliminating U, by means of Eq. (I.2.22), we have:

([\)Pes-{\)s{be) F, + ( Pfe;ﬁs —stu)‘—g -
—prs-#(ﬁs_ﬁf} =0 ; s=1.2

oy (I.3.18)

where ﬁh is given by:

(I.3.19)

If we consider Ps, Pes, E, , B, %, as given, Eq.
(I.3.18) is a system of n algebraic linear equations
for the velocities V; (also contained implicitly in



30
n
J. = §:;Pesii ) It is shown in (2) that J, can be written
e

in the form:
(I.3.20)

where a,b and ¢, obtainable from the solution of the
system (I.3.18), are scalar functions of Ps, )%59 %, and
B. Equation (I.3.20), if inverted, yields:

— - -

Eu=Rlle +S JulXB+<R”~Rl)B-Z(—J;x—B)xE, (I‘3'21)

where R, , R, and S can be written explicitly in terms

R-ot 5 g --blla-cBY KBTS
Ro-(o-cB)f(a-B)~ FBY "5 o-RY
b--e(Ri+s'B)" 5 -BRIRIR BT, crs.e

For the case of the fully ionized plasma (n = 2), Eq.
(I.3.21) becomes (See 2):

——

Eu =g 3& * §I&.XB , (I.3.23)

where §,<5 are given by:
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s (gt ppQpepd™s ool ()" (1.3.24)

and X =&, =0z . The inversion of Eq. (I.3.23) can be

put in the form:

— —— —

Ju=sE.tst(st+ §2BZ)*—E’1-§(6‘2 +§‘B‘f1 FoB,  (1.3.25)

where B, , Ei are given by:

— —  —e=

E! =(B-EJB'B ; EL=-B*Bx(EuB); Eu-EL+Er. (1.3.26)

By inspection of Eq. (I.3.23) one is tempted to call &
the electrical conductivity and §QLKE , the "Hall effect".
When the Hall effect is negligible, Eq. (I.3.23) reduces
to the generalized Ohm's law:

—_ — —-

J.-sE. = (- UxB). (1.3.27)

In a similar manner one may decide to keep more
terms in Eq. (I.2.41), in addition to the electro=-
magnetic and interaction terms. Ohm's law will take then
different forms than the one stated above (2, p. 17, Egs.
(22), (23)). The reader is also referred to (13) where
the derivation of the generalized Ohm's law in a three

component plasma is dealt with.
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I.4., Fundamental Electromagnetic Equations

It is assumed that the gross fluid, as a whole, is
subjected to one electric field, ﬁ, and one magnetic field,
H. The equations governing the electric and magnetic fields
are the Maxwell equations (12, p. 2):

VxE + %tli =0, (I.4.1)
VxH “g—? = J, (I.4.2)

where ﬁ, D are given by:

= e¢E= dielectric displacement vector, (I.4.3)

i B

= /gﬁ# magnetic flux density vector, ' (I.4.4)
€ 1s the inductive capacity and /e, the magnetic
permeability.

Following (12) we take the divergence of Eq. (I.4.1).
The first term is identically zero. Assuming that the

operators V. and f% are commutable for B we get:
2 v.E =
at ’ (10405)

B is, therefore, a function of position only. Assuming
that ever in its past history the field has vanished,

one concludes that:
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V-B=0. (I.4.6)

Similarly, taking the divergence of Eq. (I.4.2), using
Eq. (I.3.8), commuting the operations ¥ and.ﬁ-on D, we
get:

S

2-(v 'Pe) =0, (I.4.7)

which becomes:
V-D=Fe , (I.4.8)

by a similar reasoning which led to Eq. (I.4.6).

I.5. The Final System of Fundamental Equations

Following (9, p. 14) we state two ways to describe
the final system of equations:
(a) Equations of state, continuity, momentum and energy
for each fluid component and two Maxwell's vector
equations, i.e., Egs. (I.2.1), (I.2.6), (I.2.8), (I.2.14),
(I.4.1), (I.4.2) where s runs over all n fluld components.
These are 6n+6 equations for the 6n+6 unknowns (Ts, DPs,’
ps ut, ', B).
(b) Equations of state, continuity, momentum and energy

for n-1 fluid components and for the gross fluid, and two
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Maxwell's vector equations, i.e., Egs. (I.2.1), (I.2.6),
(1.2.8), (1.2.14), (1.2.29), (1.2.30), (1.2.31), (I.2.50),
(I.4.1), (I.4.2) where s runs over n-1 fluid components.
These are 6n+6 equations for the 6n+6 unknowns (TS’P”%’ ut ,
T, p, P, w o, B

Additionally let us consider a system of equations

, ).

for a single fluid. Most of the magnetohydrodynamical
problems which were dealt with up till now consider the
plasma as a single fluld. The electromagnetic phenomena
due to the existence of differently charged particles and
a relative veloclty between them in the plasma, was taken
into account through the introduction of additional
varlables, like the excess charge density,{%, and the
electric current density, J. The final system of equations
is supplemented by the equation of conservation of charge,
(1.3.8), and by Ohm's law, (I.3.27). In this formulation
no injection of momentum and no mass sources are present.

The final system is:
10=RPT , (I.5.1)
%&-+—é§;¢ﬂko -0, (I.5.2)
()« Zalpws) = - 3% - FY, (1sam)

ﬁ;@-ﬁ@+fgﬁw+pM—PQw):uﬁFﬁ (I.5.4)
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pefi- 22,
e dald) - 0,

—

7= <(E + a<B) - pell

(I.5.5)

(I.5.6)

(1.5.7)

(1.5.8)

These are 16 equations for the 16 unknowns (T,lp, P, ut ,

E', HY, f)e’ J'), with & veing known.



CHAPTER II

QUASI-THREE-DIMENSIONAL STEADY FLOW

II.1. The Governing System of Equations

From this chapter and on we deal with the quasi-three-
dimensional steady flow of each component fluid. The basic
hypotheslis for such a flow is that all quantities are
independent of x2 and t. The equations valid for this
type of motion can be obtained from the governing system
of equations given in Chapter I.

Egqs. (I.2.6), (I.2.8), (I.2.14), (I.4.1), (I.4.2)

become:

%(f)suiﬁ axl(ﬁo U2 = G, (II.1.1)

%(Psuiué)+—a%(—z( ) 2P £ /- W0 (a2

Q_?XT(SDsu:u:) %2 P u‘ u’S) - gf(z F;+6SZZ-X27 (II.1.3)
ﬁ(fsuiu;%ﬁ(?suiui% For s e-Xo, (L)
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3%I(ésui'“P5qu;'+P5u;>+ aé{(égui~~P5qu;‘+?gué) =

SPH PRV SaRTH TR S M (9 G

SLis wiig
+ S L- Q- () + wt Z2 il Z2 v w22 ], (11.1.5)
o’ ) . 9E* s’
7 =05 Sa-05 S5-%a-0, (II.1.6)
aH’ v . i 2. oH* gH' | 13
o I X C -J5 %‘}I‘ ..3_5(.2. =] ’ (II.1.7)

i
where)(s, (1=1,2,3), is defined by the equation:

X" _ stu ?)_Xiz

s - a\X‘ + _a:x—i_ . (II.108)
From the first two Egs. (II.1.6) 1t follows that:
E® = constant (II.1.9)

To determine H?, the first two Eqs. (II.1.7) are
used. PFrom Eq. (I.3.8) we have:

ol - T (II.1.10)

which, together with the first two Egqs. (II.1.7) is a
necessary and sufficient condition that -J?dx'+J'dx? bve

the total differential of the function H>:
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A= J'dxr - gtdx', (II.1.11)

Eq. (II.1.11), when integrated from a O subscripted
initial point to some end point along an arbitrary path

glves:
H>=H; +go(J4dx2—J2<ix9. (I1.1.12)

It should be noticed that the first two Eqs. (II.1.6)
determine E’ only, and the first two Eqs. (II.1.7)
determine H®> alone. By having four equations determining
only two unknowns our system of equations becomes
underspecified, i.e., the number of unknowns exceeds the
number of equations, unless two additional equations can
be supplied to the system. We note that the two electro-
magnetic equations (I.4.6), (I.4.8) which were derived from
Maxwell's equations (I.4.1), (I.4.2) cannot be derived
from those equations after one puts %: O there. In our
case we will take them into account, thus making our total

system of equations specified by having the two additional
equations, using Eqs. (I.4.3), (I.4.4):

_L(/teH‘) . 9_(/,eH2) -0, (I1.1.13)
%(GEL) + —9%(7(6 EZ) = e (II.1.14)

The system of governing equations consists, therefore,
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of Eqs. (I.2.1), (II.1,1) to (II.1.5), the third Egs.
(II.1.6), (II.1.7) and Eqs. (II.1.12) to (II.1.14), which
are 6n+5 equations for the 6n+5 unknowns (Tg, Ps, Ps, ut ,
us, u, E*, E*, H', H*, H3).
We note that the third Eq. (II.1.6) is automatically
satisfied by the choice of a function qﬁx*, x?) such that:

Ei=%% ; El=%§1. (II.1.15)

Inserting Eq. (II.1.15) into Eq. (II.1.14) and assuming

€ = constant, we get:

| é%aﬁ T ég%‘:: Pee-i : (II.1.16)

Similarly, assume fez constant and introduce a function

§(x1, x?) such that:

Hi:"-%§z; H* = %§z (II.1.17)

)

then Eq. (II.1.13) is automatically satisfied. The third
Eq. (II.1.7) becomes, using Eq. (II.1.17):

'€ 'f 13

Rt G J . (II.1.18)
Eqs. (II.1.16), (II.1.18) will be used to determine the
functions vvx*, x?), f(x‘, x?) respectively.

In the case where € is not assumed to be a constant
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(II.1.16) is replaced by:

( 33‘) 31‘(63;]9):{%, (II.1.19)

When /% is not assumed to be a constant, the function f

is assumed to be such that:

;EH‘=--§§¢; /eH2=%§7 , (II.1.20)

and Eq. (II.1.18) is replaced by:

36\)(“(/(: aa;i) ;)a'xz(/(‘i 962) J (IT.1.21)

We will assume in the present work that eﬂre are constants.

II.2. Quasi-Stream Function and Potential Equations

In Eq. (II.1.1) the functions <, are known and given.
Suppose that there exist functions B;, by means of which
the functions o, may be expressed in conjunction with Ps

and u;, by the formula:
65=67(PuB gi—iauB) (I1.2.1)

with the condition that when there is no mass source into

the s-th fluid component, i.e., 4,=0, the trivial solution
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B, = O should be taken. Inserting Eq. (II.2.1) into Eq.
(II.1.1), we have:

%(Fs us) + %;(Elui% 0, (II.2.2)

where P, is given by:
{05=P5(1‘BS). (II.2.3)

We introduce the quasi-stream function ¢(x*, x*) such
S

that:

(II.2.4)

- a -
L Qs ] 2 3
Psus_'axz ’ Psus =_-3Xf ,
then Eq. (II.2.2) is automatically satisfied by this
choice of ().

Egs. (II.1.2), (II.1.3), remodelled, using Eq. (II.1.1),

yield:
4 i ) ] P
b s - e 2P (), ares)
where Yﬁ is gliven by:
Y: = [o;’[és(Zi -bti) - XE] (II1.2.6)

Setting J = 1 in Eq. (I.2.5) and multiplying the equation
by -u, then setting j = 2, and multiplying by us, adding
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the resulting equations, furnishes, after a few manipulations:

— 13& all =\2,.\3 -1 19: 9
o S5 - 03 2 ) = ()03« bt e+ w2 P -

-u? F,’)+ utY; (II.2.7)
where U;, @2 are given by:
(@) = (us)® + (u2)*, (II.2.8)
oy -2 e (11.2.9

The term () is the x3- component of the vorticity of the
s-th specles, &L, given by:

We=Vxll, . (II.2.10)

Next, we represent the term ? 4%, (1=3,2), in a

different form. The enthalpy of the s=th fluld component,

I., can be written, using Egqs. (I.2.5), (I.2.44), (I.2.54),
in the form:

I,=cp(1+Ds) Ts (II.2.11)
where Cps , D¢ are given by, using Eq. (I.2.58):

CTJS= Cv5+ RP5= KSC'U'S ) (II.2012)
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D, = K;‘LAS+(KS-1ﬂMJ. (II.2.13)

Substituting an expression for T, from Eq. (I.2.47) into
Eq. (II.2.11), and inserting the resulting equation into
Eq. (I.2.12), differentiating the product, using Egs.
(r.2.70), (11.2.12), (1I.2.13) and solving for y@%ﬁ%,

furnishes:

it 3 - (koI WA 228 o gt 2 [l WE-AY ]
+Ksps}0;2 (1+N,) %% . (II.2.14)

In Chapter I it was already assumed that As, Wg are,

possibly, functions of Ps,and some other variables
independent of Ps. Let us denote those variables by the
symbol ‘§ (1=1,2,...,k,), then we have:

2al by Leh)(t+AY ] - 3%5[1&13(1+w6)(1+/\5)“}%$;+
ks

2 3%_[)$}( §~ (II.2.15)

[

{-

Substituting Eq. (II.2.15) into Eq. (II.2.14) and using
Eq. (I.2.71), we get:

P: g b= (ko)L W (LA gg; 2 (o0 285 » L (1)

where Li i1s given by:



L= L s gl wdiion) ) s (11.2.17)
Eq. (II.2.16), remodelled with the use of Eq. (II.2.3)
glves:

i 387 = LWL AT 555+ it 2 -

-(%s)‘&[ff«}(i-&)] HLE (II.2.18)

From Eqs. (II.2.4), (II.2.8) we have:

(f)sfts)z=(%%)z + %%)2. (II.2.19)

Differentiating Eq. (II.2.19) with respect to x* and
multiplying the result by -ul, then with respect to x?
and multiplying the result by ul, adding the resulting
equations and using Eqs. (II.2.4), (II.2.8), we get:

u2)® (%%)—z ~2ulu? a—?(:%% +(us)* (%f)q = (ﬁs)z(u’s%% - "Lzs%)*
< Belly (ud oL,

Solving Eqs. (II.2.4) for u;, u? and inserting the

- Us %&L—f) (II.2.20)

results into Eq. (II.2.9) it can be shown that:

U.TE—‘ u‘@g Pws w), %; (II.2.21)
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Inserting Eq. (II.2.18) into Eq. (II.2.7), substitut=
ing the resulting equaticn into Eq. (II.2.20) bty elimination
of the term ut%gf = u? %%?, and using Eq. (II.2.21) to
substitute for the term u;%%—ug%% , we get, after

rearranging and using Egs. (II.2.4), (II.2.6):
(s \ (s 30s _
[~ ()" ] G - 2t b+ [ )"~ (4)* s -
2

- Pl + ) (%%){ WA 5 - L

i1

+ (06s)? %W}(PBQ} + Pgi[Ff WA Xi J} . (II.2.22)

Eq. (II.2.22) 1is one possible form of the quasi-stream
function equation.

Next, we derive a quasi-potential equation by
introducing the two functions(&(x‘, x?), 3Jx¥, x?) such
that

u£=4§%+35 ;o (4=1,2). (II.2.23)

It 1s readily seen from Egs. (II.2.9), (II.2.23) that

gs must satisfy the equations
Xy (II.2.24)

We add the condition that if ageao, the trivial solution
g,= O should be taken.
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Setting J=1 in Eq. (II.2.5) and multiplying the
equation by -u;, then setting J=2 and multiplying by -ui,
adding the resulting equations and using Egs. (II.1.1),
(1r1.2.2), (11.2.3), (11.2.18), (I11.2.23), we get, after

rearranging:
AR ué)][—%z 2| W(Z—aﬁ%ﬁ B ) -
o[ (o) - (u3)°] [——&%; —4&] P (oc” +

2

2 (uh] (KoL WAy 22

*1

TEE-&L (II.2.25)

Eq. (II.2.25) is one possible form of the quasi-potential
equation.

We assume that the body force, f;, consists only of
the electromagnetic force, f;s , which is given by:

—

F-:5=Fes={beﬁ[€ +/‘(e(asx]:|)]. (I1.2.26)

Inserting the corresponding components of Eq.
(II.2.26) into Eq. (II.2.22), using Egs. (I.3.2), (II.1.15),
(II.1.17), (II.2.4) and dividing the resulting equation by
(0s)* leads to the final form of the quasi-stream function

equation:
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[4- (ws0es')’] 8 - 2ubul (g 5ot +[i~(u§w;‘)2J(—3%=

2
-t - (3] al pl1-Bi) el AT
(3 - pewt g - e SR)
+P§(G&§Zi -}(i)-t_i]}. (II.2.27)
Inserting the corresponding components of Eq.
(II.2.26) into Eq. (II.2.25), using Egqs. (I.3.2),
(II.1.15), (II.1.17), (II.2.23) and dividing the result-

ing equation by (0¢s)° leads to the final form of the

quasi-potential equation:

+[1-(utoes 2][5%, ﬁ;H 65(0
(o) ?Z (5% -+ 3,){“(5—1) (WA 55+ ol 5 - o 3
*P;’[dsZi'Xg“és(%%+89)]*Li} . (II.2.28)

II.3., Generalized Bernoulll and Crocco Equations

Eqs. (II.1.1) to (II.1.4) combined with Eq. (I.2.12),

and written in vector form, give:
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iltisz VQs - VI, + iosi F. +Y. , (II.3.1)

—

where the components Yi, (3=1,2,3), of the vector Y are
given by Eq. (II.2.6), and the operator fﬁ'Operating on
an s-subscripted quantity denotes:

d 2 5 _ -
11" Us pa T USHeE = UstV (II.3.2)

Let the position vector of a particle of the s=th
fluld component be denoted by 5;, then the velocity of this
particle, u,, is given by:

~ 4%
u’$= it . (II.303)

Taking the vector dot product of Eq. (II.3.1) by 4,, using
Egqs. (I.3.2), (Ir.2.26), (II.3.2), (II.3.3), multiplying
the resulting equation by dt and integrating along a
streamline of the s=th fluid component from a zero sub-

scripted state to some end state, we have:

—

L L d o[ Todi B,

where H,, is given by:

Hso= zL(LLso)z * Lo (II.3.5)

Eq. (II.3.4) is the generalized Bernoulli equation.
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From Egs. (I.2.70), (I.2.71), (II.2.11) to (II.2.13)

we have:
15(065)_2 = (i*st(Ks—i)-i , (II1.3.6)
where P, 1s given by:

P, {(1 Ws)( At ()Ks(i +N.)* QPJ(P )(U\)” 1. (11.3.7)

Inserting Eq. (II.3.6) into Eq. (II.3.4) we have:
ZL( Us)® ("‘)(iP)Ks J‘w UEM IYM Heo, (11.3.8)
where Hy, 1s given by:

Hao= (oo + (o2ag?(1+Pus) (k- 1) (11.3.9)

Eq. (II.3.8) is another form of the generalized Bernoulli
equation.

Let Asbe a streamline of the s-th fluid component
which intersects the x'-x’ plane at the point &, (x,,,
xZ,, 0). this streamline satisfies the equation of
differentlial type:

dae s dxs:dad =us:us:ul . (II.3.10)

Let dr, be an arc element of A, and let dl, be an element
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of arc length taken along the curve [; which is the pro-
jection of A, on the x!-x! plane. We note, from Egs.

(II.2.4), (II.3.10) that [} is a qg = constant curve.

x3

|

B, (x, ,x2 ,x2 )

/

U L
A (x; ,x; ,0)

4L= constant

—
/V

Aso (x:o ’x:o so)

Fig. 1. Streamline Geometry

Let Bg(x), x2, x3) be some end point on A, and let

A (xi, x2, O) be the projection of B, on the x*'-x’plane.
Let F‘ be any vector function defined in the three-dimen-
sional space and depending on the coordinates (x*, x?)
only, i.e., for a pair (x*, z*), f,is the same for any x°.
Denote the two unit vectors, tangential and normal to the
¢ curve, in the x!-x*plane, by §&,, n, respectively,

and let K be a unit vector in the x’direction. The

components of iﬁ in the above mentioned directions are
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denoted by (/(:, /«’;, /{:), and the components of the velocity
vector U, 1in those directions are (u.,, 0, u). Using
Eq. (II.3.3), the relation u, = g'% and the fact that all

functions depend only on the (x'-x?) coordinates, we have:

SB' e =SB‘ (AL it Al =SA‘ (foL)izdly | (11.3.11)

Ago
r

A As
3 T A Py - =\ A
+3—7T=UA (/4S-LL5)LLs cU-'S] ’n,s=(/q§+ Zusust)ss»a—n—s (Fgus)u,‘d@“s,(llé-‘?)
N N
Subtracting V[%(us)z] from both sides of Eq. (IIL.3.1),
using Eqs. (I.3.2), (II.2.26), (II.3.4) and the identity
for steady flow: % -V [Zi(us)’] = (Es*as, we get:

By, = - Tt V00 7| gﬁ-dﬁ) i v( gyw ,

Ag As

+?5+55[E+/e(E5xH)J, (II.3.13)

Substituting for E in Eq. (II.3.13) the expression VTE’@
which can be obtained when using Eq. (II.1.15), noting
that iV"l-dﬁﬂl—'tlo, using Eqs. (II.1.9), (II.3.11) where
/'«; 15 taken to be equal to k, and using Eq. (II.3.12)
where Y, is substituted for /75, we get in BEq. (II.3.13):
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@t == VHa e 0 0o oV - B2 9 | 0202440 -
wa s - ] | (ea) s en)i, - e

f

+3,E3'é + Js/(e(ﬁs"ro . (II.3.14)

It may be worthwhile to notice that the zero subscripted
functions are constant along streamlines and, in addition,
are not functions of x3, thus, zero subscripted functions
are constant on the cylindrical surfaces qg = constant.

The component of Eq. (II.3.14) in the direction n,
is:

3. _ 3ﬂjs=_9Hso 80w B 3 3= }
Wl -wi e - e gk kB Uelhs ars

T‘S
- . e _
_-in;[g (Ys-u,s)u,s" d'r;]+Ys +Jsﬂe(ust) ’ (II.3.15)
s
where (U, x H)' 1s the component of U, x H in the n,

direction. Solving Eq. (II.3.15) for w} we have:

IMNs

an,U (Y )ﬂ;‘dr‘,} Yo Z{sf‘e(as"H)* Ws%% } (II.3.16)

fs

wi:a;‘{'ﬁg*% par. pE (Su&“dF}

Transforming from ( [{, n;) variables to ( [}, Q,) variables,

we have, using Eqs. (II.2.4), (II.2.8) and the relationms:

e 9X_1-1.
I, Uslls .
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_g%= e BXt 2y, X Pa ‘ (II.3.17)

3 o, v o,

Using Eq. (II.3.17) we have:

3 .3 3 5o 9
Ms atrsi% Psuvsaq)s . (II.3.18)
Eq. (II.3.16) becomes, using Eq. (II.3.18):

i hye vl B fween)-

- fif-
-51},—5[;(? )i dF] f)"u;‘[Ys Xs/«e(ﬁsxmn]*
t U, w: , (II.3.19)

Eqs. (II.3.16), (II.3.19) are two possible forms of the
generalized Crocco equation. Transformong from (s, n,)
variables to (x!, x®) variables, we have, using Egs.
(II.2.4), (II.2.8):

ot o 3 5 )
o a " m, axt ? 2 (3 £ ‘?w (II.3.20)

and for the component /4: of an arbitrary vector,f,:

P-Lu's (2%:/1 + 9)'(2/4 ) (II.3.21)

where /(5, /1 are the components of /«5, in the directions
x', x* respectively. Using Eqs. (II.1.17), (II.2.4),
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(I1.3.20), (II.3.21) in Eq. (II.3.19) we get:

ot a:(— o i 3 ) BE

~ 417> 90s 3 3Us
-gSfe(PSi ? a b + u—; j)-.. u-: ax; } . (II03022)

Eq. (II.3.22) is the form of the generalized Crocco

equation which will be used in the present work.

II.4. The Final Quasi-Three-Dimensional System

There are two ways in which the governing system
of equations can be formulated, depending on whether one
chooses the quasi-stream-function or the quasi-potential
function as the unknown to be solved for. In the present
work, the first formulation is given and dealt with.

The quasi-stream function equation, (II.2.7), becomes,

using Eq. (II.3.22) and rearranging terms:

- (wsoesY) ]—%1 J Us Ul ogs Wg‘%}vz [1-(Usts)] (T;%—; =
M e ) ) )
e oW AT 3+ g k- U ] o 5
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i i a3
syt axaU w4 Sef s ~UI R *

+[1- (stsy) ](K/‘“ST%W/‘F H 35 -
-{0;,‘ WA *P:Xi)ﬂ} ,. (II.4.1)

Multiplying Eq. (II.1.4) by 1-B; and using Egs.
(I.3.2), (IT.1.1), (II.1.17), (II.2.3), (II.2.4), (II.2.26),

we get:

gaut); g&f B g% %Lf: 5E3 (‘q)f W %%%9"“

+(i-Bs)[5s(ZZ—ui)-XZ]. (II.4.2)

Eq. (II.1.12) becomes, using Egs. (I.3.2), (I.3.6),
. 6 i a0, 1 33
(I1.2.3), (II.2.4) and the relation d?s=7ﬁ%dm +7§;dx.

H3=H:+ng§o(i—Es)—id?9- (IT.4.3)

S=1

It may be worthwhile to notice that in the case of a
fully ionized plasma (n=2, B,=0) Eq. (II.4.3) can be

integrated and one gets:
2
H3=H: + ; XS(LVS—(YGO)‘ (IT.4.4)

Using Eqs. (I.3.2), (I.3.5) in Eq. (II.1.16) we get:



GZ az _
@%&)_z . WT&)" LZK e . (II.4.5)
(II.1.18) becomes, using Egs. (I.3.2), (I.3.6):

—5? + - H),ui. (II.4.6)

Eqsc (10201), (102059), (II.}.II’)’ (II.4.1), (II.A’QQ),
(Ir.4.4), (11.4.5), (I1.4.6), are considered as a system

of 5n+3 equations for the 5n+3 unknowns T., p., Ps,‘%, u ,

H?, T, §-

II.5. Incompressible Flow

We distinguish between the following two cases of
incompressible flows:
(a) Gross fluld is incompressible (P = constant). In
this case the component fluids' densities, Ps, need EOt
be constant, only their sum 1s a constant, since P=Z;Ps.
(b) Each fluid component is incompressible ( P’= constant;
§ = 1,25e0050)e In this case the gross fluid is incomp=-
ressible. In the present work only case (b) is considered.

To derive a guasi-stream function equation for this

type of flow we start from Eq. (II.2.21)%, and using Egs.

# Note that @, is not a constant in the incompressible
flow due to existence of mass sources or sinks, s, in
this type of flow.
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(I1.2.3), (II.2.4) and the condition.&;constant, we have:

B - - pt - (W) Gl BY]. s

Equation (II.5.1) is the quasi-stream function equation

for the incompressible flow. 3 will be calculated from
the generalized Crocco equation which was derived in
Section 3.

The quasi-potential equation is obtained from Eq.
(II.1.1), using the condition Ps:constant and Eq.
(11.2.23):

615 al as es _ -4
Betho ko doop.  wmeo

where g, is calculated through Eq. (II.2.24) and one of
the forms of the generalized Crocco equation which was
given before.

In the single fluid formulation it is possible to
obtain the stream function equation and the potential
equation for the incompressible flow, from the stream
function equation and the potential equation for the
compressible flow, by setting the veloclity of sound in
each of those equations to be . this result carries
on to the present type of flow, for if we set o¢g=o0
(s=1,2,.e.n) 1n Egs. (II.2.27), (II.2.28) we obtain Egs.
(II.5.1), (II.5.2) respectively.

When a formulation with the quasi-stream function
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as an unknown is chosen, in addition to the quasi - stream
function equation, (II.5.1), one has to comsider in the
incompressible flow Eqs. (II.4.2), (II.4.3), (II.4.5),
(II.4.6), and n Bernoulli's equations, with the accompany-
ing condition @,: constant. In order that the system
of equations for the incompressible flow be specified,
there 1s a need for n additional equations. Those must
be supplied by means of n given relations between the
pressures, ps;, and the temperatures, T,, for each fluid
component, given, for example, in the form of the

equations:
fs(pS’Ts) = O; S:1,2,ooo,no (II.S.})

Note that Eq. (II.4.5) in the present case contains
a known constant on the right hand side, thus, if proper
boundary conditions are given for n, this equation
"decouples” from the system of equations and one may solve
Eq. (II.4.5) for N first, and use the result in the quasi-

stream function equation where n appears.,

ITI.6. Non-dimensionalization

We introduce the following non-dimensional quantities,
denoted by the symbol “:
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¥= %L m=m,L; M=fL, (II.6.1)
i ~ § - o
u’5=u'5 u‘S"’ ; us=usus¢ ) (II.6¢2)

§=§“H..,L : H = H. , (II.6.3)
n=fkaL ; Ef-E'E. (II.6.4)

Ps= P’spsw; Ps=ﬁsPsa(u«sw)z > Tsz—“‘i‘s.\—sm ) Ps"’z(:-;s(osao, (II.6.5)

LPS-% f)gwus,,l_ ; cr;i?susml_ FCIER AT (I1.6.6)
Qs= (rjs (uos.,)z ) Hs = st(usw)z y (I1.6.7)
we = Be uaal (11.6.8)

~ - i g el -4
65 = 65 Psw uoSwLi ; XS =X5 Psm(u-Sw) L_ ;
P RV -4
Zs = Z: u’sw ; Ys = Ys iosw(u'Sm)z L ) (II0609)
~ i vt 2 -4
ws=%sw3w ; l—S = LS (uf,soo) L 9 (II.6010)

where T, , ?SM Psw » Usw 5 He » Exw » Kgy, L are some
standard temperatures, densities, pressures, velocities,
magnetic and electric fields, velocities of sound and
length respectively.

Using Eqs. (II.6.1) to (II.6.10) in Eqs. (II.4.1),
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(I1.4.2), (II.4.3), (II.4.5), (II.4.6) we get:

- (L6 M) ] e - 20802 (35t M) s +

[t-tma T - par( - %)

2:(-2%){ ey 18] (a5 Mol AS 2«

FoncPu Re, S - T (29| RueRs

where Mg,, Rms s Ry, s Res s Rg, » are given by:

.12)

«13)

o14)

«15)
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l%sw= uswﬂﬁi, (Mach number) (I1.6.16)
_ -1 (modified magnetic
Fim,-es%wude.F1w, Reynolds number) (II1.6.17)
'R - “ﬂ 2 4 -2 (magnetic pressure
Hg - ﬁe “) PSW LLSW I number) (II .6 . 1 8)
F{ _ 42 2 (relativit
cs"(uswc ) =/ﬂ°€(uwg), parameter (II.6.19)

_.E; 4 -4 -t (electrical field
RES— w/e LLS“ *® 9 pa’rameter) (II06020)

Res=Re E2EZ, (11.6.21

where ¢ is the velocity of light, and Ei are the components
of the standard electric field vector, ﬁ;. Using Eq.
(II.1.9) we choose E> = E2 .

The corresponding incompressible equations to Egs.
(II.6.11) to (II.6.15) are obtained by setting M., = O,
Fs= 1 in those equationms.

II.7. Linearization

We shall treat the problem of flow under uniformly
applied electric and magnetic fields such that a first
order small perturbation theory is sufficient to describe
the flow field in the neighbourhood of the origin of the

disturbances in question.
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The velocity vector of each one of the fluid compo=-

nents is assumed to have the following components:
1 1 .
Ue = Ugmw * usr > LL: = u'szp ’ LL2= u'sa? R (II.7.1)

where us‘°° is the velocity of the undisturbed uniform
flow of the s-<th fluid component and u;? (1=1,2,3) are
the perturbed x* components of the velocity respectively.
We assume ul, >»Uu,,.

The externally applied magnetic field has the

following components:
H' = H. = constant ; (1=1,2,3). (II.7.2)
Hence the resultant magnetic field has the components:
gt = H: + H; s HS » H; . (II.7.3)
Similarly we have for the electric field#*:

E' =E +E ; E.» E . (II.7.4)

We also assume:

Ps = Ps«»"‘ Psp ) Pseo» Psp. (II.7.5)

* From Eq. (II.1.9) we have E; = O.
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Eqs. (II.7.1), (II.7.3), (II.7.4), (II.7.5), written

in non-dimensional form, become, using Egs. (II.6.2) to

(II1.6.5):

W=t @b ¥E=o@E 5 8=l (I1.7.6)
B = H' + ﬁ; ; B = Es o+ Ep (II.7.7)
Fs =1+ Pep, (II.7.8)

~ A

where ﬁzf , Eir, ﬁ;, E;, g, E., are given by:

U,y = whug, (II.7.9)

By = HHY ; Ep = E,E], (II.7.10)

g = mlut; B =EErl. (II.7.11)
The function ﬁ can be split into the forms

ﬁ = EIF o+ E2X* 4 ﬁp . (II.7.12)

where %,represents the perturbation part for the electric
field components in the (x', x?) plane. Using Egs.
(II.1.15), (I1.6.1), (II.6.4), (II.7.4), (II.7.7),
(ITI.7.8), (II.T.11), (II.7.12) we get:



E;):_ﬂr_ ; ("31,2)‘ (II.7013)
In a similar manner we split § :
f - -Host + H. & “Ep (I1.7.14)

and get, using Egs. (II.1.17), (II.6.1), (II.6.3),
(II.7.3), (II.7.7), (II.7.10), (II.T.11), (II.7.14):

}41 i v He = ﬁﬁl' (II.7.15)

P IX* Foooext .

We will assume conservation of mass of each fluid
component in the undisturbed stream, i.e., no mass
sources or sinks ( Gsn = O and, therefore, Bge, = 0). If
we choose the non-dimensional quasi-stream function, @s,

in the form:
Ba= %20 Puy (II.7.16)

we get, using Eqs. (II.2.3), (II.2.4), (II.6.1), (II.6.2),
(I1.6.5), (II.6.6), (II.T.1), (II.7.6), (II.7.8), (II.7.16):

~

%%f ) _(1—BS) s ; %%f - (1- BJ(ﬁir*st)-Bs. (II.7.17)

It may be assumed, since we are dealing with a first
order small perturbation system, that the non-dimensional

mass source of the s-th fluid component, &, is small at
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least to the first order. It can be shown# that B; 1s
of the same order as 3;. Thus, neglecting second order

terms in Eq. (II.7.17), we have:

~ ~

R ~ Ps ~ ~
g#p = _u:P ; —(z-r = u':r. + PSP-BS' (II07018)

oxt e

In order that the electromagnetic forces, fl, » be
small at least to the first order we assume that those
forces vanish in the undisturbed stream. Using Eq.
(I1.2.26) we have:

—

Ew+/{3(u‘smme)= O . (II07019)
The components of the veloclity vectors in the undisturbed

stream are (u;g , O, 0). The three component equations

of BEq. (II.7.19) are, therefore:
1_n. : L3, [3__, 4 Le,
Eoo_o) Eco-/{euls«n © 9 an_ /{euSwi-L, S=1,2,ooo,no (II.7.20)

It follows from the last two equations given in Eq.
(II.7.20) that either:

Fi=H.=E2=HI=0, (II.7.21)

* Using Eq. (A.4) which is derived in Appendix A.
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U, = Wao = 0o = Wppy= Uyp o (II.7-22)

{00

1.e., the velocities of the n fluid components in the
undisturbed stream are equal.
Summarizing, from Eqs. (II.7.20) to (II.7.22) we

have one of the following two possible cases:

=0; E,= /Aeu.,H?,

o

E: = -/«eu.,Hf, 3 (II.7.23)
(b) E.=RB:=E!=g:=H.= 0, (II.7.24)

In the present work the case (a) 1s dealt with.
Using Eqs. (II.7.11), (II.7.23) in Egs. (II.6.19),
(I1.6.20) we get:

Re [(Hi) (H)f=[1—(?\i)2]%; RE:“F\:. (11.7.25)

We assume that the equations of state and of the
internal energy of each one of the n fluid components
follow perfect gas laws in the undisturbed stream, i.e.,
Wo.= Ag= O. We also assume, since we are dealing with
a first order small perturbation system, that Wy, A5 ,
are small quantities, at least to the first order,
throughout the disturbed flow field. Similarly, it is

assumed that X, = O, and that X., & Z (1=1,2,3), 38;
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(3=1,2), are small quantities, at least to the first order.

Inserting Eqs., (II.2.6), (II.3.9), (II.7.1) into
Eq. (II.3.8) and using Egs. (II.6.1), (II.6.2), (II.6.4),
(11.6.7), (11.6.9), (I1.6.10) we get:

%(asf,)z + U’:P + (BZS Msw)z (1+R,)(Ks- 1)—1 - js =
= (MSQ)—Z(Ks—i)'L, (I1.7.26)

where 1"5.5? ’ 55 are given by:

3

(asf>2=;<aipf , (21.7.27)

3 [ 4l RuRe o B 3 s (g Zi-ulast (11.7.28)

0 {ed

Note that B, which is given in Eq. (II.3.7), vanishes
in the undisturbed stream, since W,, A, do. Solving

Eq. (II.7.26) for (%)% we nave:
-1
(&) ’(1*&){1*(Ks—i)(Msw)z[ﬁs“ﬁ:r‘ %(aep)z]} . (II.7.29)

We assume that (K =1)(Mw. ) a;?, %(Ks-1)(M5m)l(ﬁsr Y«1,

thus neglecting them in Eq. (II.7.29) we get:

AN (1 +Ps)[1+ (Ks"i)(Msw)zﬁs] _i. (II.7.30)

Furthermore, we will approximate P,, J. by chosen



— e w———
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constant mean values P,, J, respectively, thus having

in Eq. (II.7.30):
()2 = (1+PS)[1+ (KS-L)(Mm>2 j—s]_i = consbant, (II.7.31)

Using Eqs. (I.3.2), (I.3.6), (II.1.17), (II.2.3),
(II.2.4), (11.6.5), (II1.6.6), (II.6.16) to (II.6.18),
(II.6.20), (II.6.21), (II.7.1), (II.7.5) to (II.7.8),
(II.7.11), (II.7.12), (II.7.14), (II.7.16), (II.7.17),
(II.7.23), (II.7.25) in Eqs. (II.6.11) to (II.6.15),
noting that Qs;n, He, are universally constants, 1.e.,

20w _ 9Hse _
91:3 = 3{5 = , neglecting second and higher order terms,

assuming %f is small at least to the first order, %}: E2,

and making the followlng changes 1n notation: ! = x,

;’- =75, lT)sr=qu ’ lhi,af = Wg ?I; = Hz, :;‘ZP- 'Yl ’ §r=f ’

F‘f= ?s y Ge=dg Z: = Zgy i: = Z,a ’ 2: = Zgz o i: = Xg »

i; = xs& ’ i: = xs) ’ 69 = QS) i; = Ilsx ’ i; = Il.a., we get*:
2'Qs ’h W 4

F;” EX%— + 7;% = F:m RMQRH:% - Pfa RmRH; Wy -RWRH: b?(gmwsdd)-r

i

piRuR et R e ip) B 06y canrsd

3&)’; = RmsR": %9:5 + RMsRHf g >+ RnsRHs% +RMsRH;B5 +

# In order that the equations which were derived
above comply with the linearized case, the O subscripted
state is taken at the undisturbed stream, i.e., the
subscripts O and w are assumed to be equivalent.
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+&:Lsx-X,, | (II.7.33)
H,= ; m@,+f (1 B) dy] 3?i=+Z4R’m+‘2L&Pi, (II.7.34)

:i; -R;: L+?,, (II.7.35)
' =§me,, (I1.7.36)

where fg,, RH:, G, are given by:
Feio = i_ (&:Msw)z ) (II.7.37)

R{—R&H ﬂH“~P*(%w (IT1.7.38)
G~ 5y * pe BBz B i (6 21y~ Kop) + S [u(Ze!)-

-X,x) d,x} (1—(3,@)[&—5)(1”'\45)(1"/‘\)4305 Lsg). (II.7.39)

In the incompressible case ?LEO s (r=1,2,0005n).
Taking the derivative of Eq. (II.7.35) once with respect
to x and then with respect to y, and commuting differen-

tiation signs we have:

Vz(%) =0; Vz(%ﬂ‘) =0 . (II.7.40)

Assuming that the perturbed electric field, E;, vanlishes

at large distances from the origin of disturbances, we
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obtain, using Egs. (II.7.10), (II.7.13), %,%}-: 0 at
large distances. Using this result and Eq. (II.7.40)
we have:

N _
%-%}_ =0  everywnere, (II.7.41)

i.e., in the incompressible case, the perturbed electric
fleld vanlishes identically everywhere. We assume in the
compressible case, that the right hand side of Eq.
(II.7.35) is approximately a constant and, therefore,

the same result i1s obtalned for this case.



CHAPTER III

SIMILARITY OF FLOWS

III.1. Approximate Governing System of Equations

To obtain similarity rules we apply, additlionally
to the linearization, a procedure which could be called
an equalization of the order of terms, i.e., we will
further simplifj the governing system of equations
neglecting very small terms.,

Let m, = g;n.(m*) and assume furthermore that#:
ot ST

MM €1 5 T=1,2,000,m 3 T #0 5 € £0 . (III.1.1)
In addition we assume:

R;&R;j 2 0F =<1 ) (III.1.2)

where £d, 1s obtalned by using Eqs. (II.6.17), (II.6.18)
in Eq. (III.1.2):

# The =th fluid component may be the electron
fluid.

71
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Q= u(Vuwma €1)E (III.1.3)

G 1s called the plasma frequency of the w-th speciles*.
Assuming that the number density of each fluild
component at o 1s the same, we have, using Eqs. (II.6.17),

(I1.6.18), (II.7.38):

RWR;::' .o , R RH,‘, 'md'm"r ’

RiRis =m, my HoHas (24,235 +=1,2,.,n). (III.1.4)

Taking the derivative of Eq. (II.7.36) with respect
to x, substituting Eq. (II.7.33) into the resulting
2
equation, dividing by Rm,Rm“ using Eq. (III.1.4),

commuting the operators V? and :;x and rearranging, we

get:
<R v (D) - BH @ eman) -
DREDEVE LR S ST

+ e.,.e;“ W”RHJ. (d-rZ‘r’t—Xﬁ)} . (III.1.5)

Neglecting small terms in Eq. (III.1.5), following the
assumptions made in Eqs. (III.1.1), (III.1.2), we have:

# Similar assumptions to the ones above can be
found in (10, 11).



B é:: €4 e,.ot RmmRH‘( 6rZ +2 -Xn) .

(III.1.6)

Inserting Eq. (III.1.6) into Eq. (II.7.33), using
Eq. (II.7.38) and rearranging furnishes:

e - R Ry (B - 50 * RusR (35 - 3) *RmsRie (BB -

T

- e M Z_[e*(azn—x,}ﬂ + 67X

(III.1.7)

Taking the derivative of Eq. (II.7.32) with respect

to x, substituting Eq. (III.1.7) into the resulting

equation and dividing by R:wRi’, we have, using Eq.
(III.1.4):

R;iR;,f((s; ) - phet B RERG: % -
- ple el e HoH we{ HaH2 (58 - 5¢) -

e H2H (38 - 55 - HaH(B.-B.) -

RatRit Yoo (6.7 X)) * Rt (8:Za X} -
e ot HHE RAR:E (v da)

s

oo €0 €5 MM, R Z( _‘P_)

X
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+ R R'i s. (III.1.8)

Neglecting small terms in Eq. (III.1.8), following the

assumption made in Eq. (III.1.2) we haves
- oo Rot b e HEH ez HEH2GE - 58)
HIHZ (58 - 3) +H2H2(B.-B.) -
RiRe )l (6 Zn Ko Rt Rit (62 Ko
2, €.EeMams R R Z(erih) . (I11.1.9)

For sfw, Eq. (III.1.9) becomes, neglecting small terms
in view of Eq. (III.1.1):

N
Ze*%ih 0, (III.1.10)

=1
or, using Egqs. (II.6.17), (II.7.34), (III.1.10) we get:

oH _ 0,

2% (III.1.11)

and since H,;=0 in the undisturbed stream we conclude

that:

H, = O everywhere. (III.1.12)
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For s=x, using Eq. (III.1.10) in Eq. (III.1.9) we get:

E e+(6+Zn —Xﬂ) = eu(éwai-sz). (III.1.13)

Inserting Eq. (III.1.13) into Egs. (III.1.6),
(III.1.7) we have:

B HEH S -HIH2 S -HIH2B.-
RaeRy. (@Zu 'Xm> , (III.1.14)
3¢ = RocRg (3 - 28]+ RucRia (5 - 35+ RuRoe (BB

+66252—X52 for S #% ? ‘\T“ = O . (III.1015)

’

Eq. (II.7.32) becomes, using Eqs. (II.7.41), (III.1.12):

Fsi% _yq)— FstmsRH’ 93' stRmaRH‘ Ws ~
—RmRH: %('L We dx) * Gs : (III.1.16)

Eqs. (III.1.14) to (III.1.16) will be considered as a
system of equations governing approximately the n-
component fluid flow. The equations of thls system can
be solved separately by solving first Eq. (III.1.16) for
qu, after which Eq. (III.1.14) is solved for f, and Egs.
(Irr.1.15), (III.1.16) can be solved for s, qg (s#£w).
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III.2. Correlation of Flows

The system of equatlions governing approximately
the compressible flow of an n-component fluid will be
correlated to n systems of equations governing
approximately the incompressible flow of a corresponding
n-component fluid. By correlation it 1s meant that there
will be derived simple relations between corresponding
functions of the compressible and those of the incom-
pressible flow., This procedure can serve, then, as a
first approximation in the correlation of the more general
system of Eqs. (II.7.32) to (II.7.36). Having this first
approximation one can try to derive, by an itterative
procedure, a higher order correlation, using the system
of Eqs. (II.7.32) to (II.7.36).

The equations for the x=th fluid component and each
of the s=th fluld components separately are coupled
together and will be taken as one system when compared
to the incompressible flow. We will denote functions
and coordinates in the incompressible flow by primes.

The equations for the s-th and w=th fluid components in
the incompressible flow are, from Egs. (II.7.39),
(I11.7.39), (III.1.15), (II1.1.16), (here is P;, =1,

Po::o =1):

%(X&— 3%“ RM9R R'M.SR Lw



7
~Ras Re 3%»—(10117;0[:(' +0,, (III.2.1)
s
d

0 = RouRie (3 )RR (- )RR (BL-B)+
+6:Z;‘Xs’, , (ITII.2.2)
—3%‘3—+§~;?§=R;,R;;35+6; , (III.2.3)
b - - B R R B 6 2y Ko

+3%{L[61(Z+;“1)'X:2]‘“’}; (t=5,0). (III.2.4)

r

The equations for q); , (P; have both Laplacian
operators on the left hand side. If we want to correlate
the equations for LPB, (P‘” of the compressible flow to the
corresponding equations in the incompressible flow by
means of a linear transformation between the (x, y) and
the (x’, y') coordinates we have to introduce one further
approximation by introducing a weighted mean value Fé,:

2

Pt:oo:esﬁ:aof(i"‘és)ﬁ:m y 0<es<, (111.2.5)

where €, 1s a weilght factor, the value of which must be
known., We approximate in Egs. (II.7.39), (III.1.15),
(III.1.16) for the s-th and the w=th fluid components
the ‘e; and the f«: by F,f, , and get:
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-2 92 S 31 n

P-‘* axz * o _P;R RHa a PSmRMsR L,
—RT"SR“SZ:T(LWLX) * 0., (III.2.6)
PR Ry - 2R R (8- 289+ R, R (BB

*d—,Zsz‘st, (III.2.7)
— 5 e _
PSMT;(PT 33)7 - FS‘D R""“RH 93 6061 (I11.2.8)

+__—3——Bt (3 R'MR B Fw(érZr} X-r&) 7 {j [5+(Z 1)
Tod e} (- pi U WMAT 5Ll o) (xrx.c.s)

We correlate the system of Egs. (III.2.6) to
(III.2.9) with the system of Eqs. (III.2.1) to (III.2.4).

Introduce the following linear transformation:

! ) -

X =43 3= Psmy, (III.2.10)

and assume that the dependent variables in the two

flows are related by:
Go= 0y 5 wom b5 s aupl, (111.2.11)

where a,, by, a, are constants which will be determined.

Using Egs. (III.2,10), (III.2.11) in Egs. (III.2.6)
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to (III.2.9) we have:

_’f)(}:’_‘ 3_5,0% FRmRH 33 - ft R Ryl -

-4, 62 fus Ko R 91(! w d) + ot pre Ge, (I1I.2.12)

Bt RoneRs 03 - e« oo &5 R R as%ﬁ»;- - a,‘%‘)*

X}Q‘RMRH;(BS-B,)+!§;‘(65Z52‘Xa), (III.2.13)

a—}»Lz —3{{; B Rims R 2 -% a.f”‘Gw, (III.2.14)

GG - 0 gt 5+ i ReRBy - (2 Xg)
S INCAD AL

a,f&s.(i- sn[Kf—i(PW»,)(i*/‘\) \_,3] (t=5,%).  (III.2.15)
In order to correlate Eqs. (III.2.12) to (III.2.15)

with Egs. (III.2.1) to (III.2.4) we require the followlng

relations to exist:

'&s‘fsi RmsRuva:sR;; ) arffs'iRnsRHfR;sRﬁ;, (II1.2.16)
‘F,“‘RnsRHfR.:.sR,’,; i o At ReRe=ReRy ,  (111.2017)

FmesR“:-"Rv’n'rR;: ; P;" ot G,= Gy, (III.2.18)
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RmsRH: (Bs-Bm)=Rv:sRH’; (B; -B:c) ) &;1(6525; Xsa) = 6; ZS’i—Xs’i, (111.2.19)

where r = s,&4 » In addition we require that the curve
[ be transformed into the curve [,, i.e., projected
streamlines 1n the compressible flow transform 1into
projected streamlines in the incompressible flow. This
leads to the so-called "streamline analogy" (8, pp. 180,
181), which requires that Qg be transformed in the same
way as y, thus, using Eqs. (III.2.10), (III.2.11) we have:
-1

a-5= Psm. (III.2020)

From either the second Eq. (III.2.16) or the second
Eq. (III.2.17) we get:

a,=a, . (III.2.21)
From Eq. (III.2.16) we have:
has=1  untess RmsRpe=RuRie=0.  (1r1.2.22)
From Eq. (III.2.17) it can be seen that:
'%s Qs = st unless R'msRH: = R',,’,sR;:EO (III.2.23)

Since the first Eqs. (III.2.22), (III.2.23) are conflict-
ing each other we will 1limit our correlation to the
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following two special cases:

case (a): Ho=H'=0; (RmsRHfR;sRH’fO), 3saf=§5,.. (III.2.24)

Case (b): H:SH:’ O; (RmsRH:ERT‘;R;:ED), '8;0::=1. (III.2.25)

Using Eq. (III.2.20) in Egs. (III.2.24), (III.2.25) we

have:
b, = 1 1in case (a) ; by = F: in case (b). (III.2.26)
We assume the following relations:
?
My=My 5 €,=8p (F=5,0)5 Uo= Ukj
_ ’
Vo=vo 3 L=L . (III.2.27)
Thus, in order that the relations in the first Egs.
(I1I.2.18) be established, we assume, using Egs.
(II.6.17), (II.6.18), (III.2.27):

FsmHi = i,, (III.2.28)

and, in order that Eqs. (III.2.16), (III.2.17) be satis-
fied we choose, using Eqs. (II.6.17), (II.6.18), (III.2.27):

Hao=HZ ) Hfo= Hfo’. (ITII.2.29)
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To satisfy the second Eq. (III.2.18) we assume, using
Eqs. (III.2.4), (III.2.15), the first Eq. (III.2.18), and
Eq. (III.2.20):

B.,,=B;, . Gy = 6; ’ 6rZ+x= d;Z-:x; Fsmer?&= &:'Z;& ’
X*}-y. = X«:-‘x ; FSoo X+&= X-:x ;
F;fc(i— P&)[(Krﬁ)(i*W*)(i*AJL%% - L—r&]” 05 (t=s,w). (III.2.30)

The expression on the left hand side of the last Eq.
(III.2.30) 1s assumed to be negligibly small since

1 - [l:,, =1 =14+ (B'C,tMm)z = (%*M4e0)® 1is assumed to be a
small quantity.

The first Eq. (III.2.19) is automatically satisfied
when using Egs. (III.2.17), (III.2.24) and the first Egq.
(III.2.30). In order satisfy the second Eq. (III.2.19),
we assume, using Eq. (III.2.26):

) ?
6;Zsa= G, Zsz > Xsf st in case (a), (III.2.31)
- - ) ) - = )
Psa 63253' Gs Zsz; anXsa Xsi in case (b). (II1.2.32)
Denoting the non-dimensional perturbation velocities

in the y direction by v_, we have, using Eqs. (III.T.18),
(Irr.2.10), (11r.2.11), (r11.2.20), (I11.2.21):
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Fsmvﬁ vy s (tesu). (III.2.33)

A summary of the relations between corresponding
quantities of the compressible and the incompressible
flow, when the s=-th fluld component is correlated, is

given below in a table form:

Table 1. Correlation for the s=th fluld component

quantities
Compressible Incompressible
i 2 3 1 "y 37
/m'f',e'r’up)))oo,Hwao,Hm ’mor,err,u«oa,))w,H H F

i 2 3 4? — 2’ 3 )
an=0 an E L o = 0 F L
) , ® , ) M6w Lo %

— -4

(1)4', U} , B»r, d'r, 6+Z+x ’ Fs.: (.})f ’ Psm Uf, B;, 61", éf,Z'r,x,
SrLong , Kx, Xy, oo G Ly, X, oo Kty
Case (a): Ws,gsZsz,Xsi Ws’, o ZS‘,} ,Xs’z

Case (b): Ws , é‘Zsz,st [35(» 'ws , Psoo ds 5‘:P-Xse

where r=s,x .
For the correlation of the x-=th fluid component we
consider Eq. (III.1.,16) for s=x combined with the second
(III.1.15). We also consider Eq. (III.1.14).

Introducing the linear transformation:



X=X 5 w2 (III.2.34)
and assuming:.
W 0o ?x ; = , (III.2.35)

where a,, b are constants which will be determined, we
get, using Eqs. (II.7.41), (III.1.15), (III.2.34),
(II1I.2.35), in Eqs. (II.7.39), (III.1.14), (III.1.16)
for s=0;

P -
V& 3}},2 wameRH:_;)i)_ B &:Pai Cw, (III.2.36)

a-,,: (5;020 G = - 0.,‘ Fatao 3J t R'me B 1(6MZ%— Xm3)+

02 pea ] | [l T 1) - X ]
+aw/5m[( )*(M\/ )(W\.‘/i gﬁ + l_xg], (II1.2.37)
S0 HH S - I 5 -
FHHZ Be = A Roi Rt (6700 X ). (111.2.38)

Requiring a streamline analogy we have:

Ay = (s;m (III.2.39)
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In order to correlate Eqs. (III.2.3%6) to (III.2.39)
wlth the corresponding equations for the incompressible
flow we will require the following relations to exist,
using Eq. (III.2.39):
PmRMRHl = Rm:wR;;: ) Fm Gu= G G , (I1I1.2.40)

A - Syt o, i -4 - et

’f’ifmiHot Hwi B Hw Hao ’ Pxoo Hi Hmlz Hazo Hm , (III.2.41)
b Row Ry Gela= R Ryi6 2 5 B R R X R R KL, (11102482

We assume the following relations:
M=, 5 €= 0L 5 Ue=lUh § Ju-vl 3 L=l ;
FWHa Ha’; H HU Iz‘ . (III.2.43)
From the last three Egs. (III.2.43) we have:
o[ (He)  (H2)» (2] -
:H;[i+F;i(i‘P:m>(Hi’H;—i)2]i- . (ITI.2.44)

In order that Eq. (III.2.41) be completely satisfied
we use Eqs., (III.2.43), (III.2.44) and choose:

£ - [3“.»[1 /m(i- 2HZH) J L. (III.2.45)
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The first Eq. (III.2.40) is satisfied by the assump=-
tions made in the first six Egs. (III.2.43). In order
that the second Eq. (III.2.40) be satisfied we assume,
using Eq. (III.2.37) and the first Eq. (III.2.40):

BM=B; 5 6°‘=6.: ; 6.‘Zocx= 6—:Zu’x s
FW&Z“& = 6; Z.:b» ’ Xotx: Xu’.x ’ Pme&:ong,;
P;i (1—F:w)[(K«.‘i)(1-+w¢)(1+/A\w)_i%%i + Lua] ~0. (III.2.46)

From Eq. (II.6.17), (II.6.18), (III.2.44), (III.2.45)

we have:
b7 RmeRi, R Ri: = o (III.2.47)
Using Eq. (III.2.47) in Eq. (III.2.42) we have:
Gulins = F;i Culuz ; Xuz= p&ix;z : (III.2.48)

Summarizing the correlations of the ¥-th fluid

component in a table form:
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Table 2, Correlation for the ®=th fluld component
quantities

Compressible Incompressible

Hi 2 Hs ) ) ) ! 7 12> -4 )3
m“)ew)u'w;))w) @y lloy e, /m"')e‘")“"”)))w’ @ “’F“m ® 0

Fi-0,E2 E2,L £4-0, B2, B2

2 3 - -4
- U"’f ({)l U f’P;:[hp;i(i- [%)(H,, H.,4)21 i
Bd,dot, 6¢Z¢Lx)6-onH. Bo:.)éo:, 60:Zo:x ) P:!tn 6:2:48,
6wZaL2 ,qux 7X¢U,Xa(z P;:;d: Zd’i, X;-K ,F::’Xa;* ’ F;«LoXa(;

ITI.3. Pressure Coefficients

In this section we invalidate the changes in
notation which were introduced for the perturbed
quantities in Chapter II, Section 7.

The s=-th species' pressure coefficient is defined by:
- -4 -2
CTJS- Z ()r)s— Tjsm) 500 Hme . (III0301 )

Bernoulli's Eq. (II.3.4) becomes, using Egs.
(1r.>.s), (1r.6.2), (11.6.4), (11.6.5), (11.6.7),
(II.6.9)’ (II06017)’ (II0601.8), (IIo6020), (II.701)
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(II.7.4) to (II.7.11), (II.7.23), (II.7.25), (II.7.28),
neglecting second order terms and using the result E =

constant which was obtained in Chapter II, Section T7:

Bop* Lowsd =35 = Tou2, (III.3.2)
where:
Low? = ¢l D)Towd 5 Lo =cpoTouZ, (II1.3.3)
o= 3ut Jeat Dt Bun s &ffwd@s s Jam Reeky Sd%‘;
7 A

jsa R'msRHfusr jsfgm[gs(Z:_i)*i:]dw, (III.3.4)

s
Note that Ds, = O since each of the fluld components
follows perfect gas laws in the undisturbed stream.
From Eqs. (I.2,70), (I.2.71) and the relations Agy,Wee=0

we also have:
(ocs,,)z= Kspswpgi : (III.3.5)

- -4
Using the relations T)seoPsto =RP5T5a: , Rps= Cfs'Cve, Ke= Cps Cvs ,

we have:
(“Sw)z = Cps(Ks‘i)Ts . (III0306)

Using Eqs. (II.6.16), (III.3.5), (III.3.6) in Eq. (III.3.3)
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we get:

LowZ = (D) (ko0 (Mae) 2 T T2

Lmu;z = (Ks"iyi (Mew)—z . (III.3-7)

Inserting Eq. (III.3.7) into Eq. (III.3.2) and solving
for T,T.} furnishes:

Ts Ts;i =(1+Ds)_ii:1+ (Ks’i)(Mis(js_u:f)j] . (III.3.8)
We introduce the following approximations:
| AT aT,= A\ 7T, 5 Lt g g, oz

where Ks, Ws are some mean values representing A,, W,
in those integrals. Using Eq. (III.3.9) in Eq. (I.2.57)

we have:

b =(7—'T;m) (Pspsm)M;”wseuf(‘Ag). (III.3.10)

Inserting Eq. (III.3.10) into Eq. (I.2.56), making use
- ; - -4

of the relation P5P5i=PsPs$ Tszstbws) which is obtained

from the equation of state, and solving for Ps o we

get:

P'f) (TST-i)Ks(K, D) (1+W)W\A C%AS) (111.3.11)
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where D., A% are given by:

Do= k[ At (ke-W.] 5 2596= Osm Sem. (III.3.12)

Inserting Eq. (III.3.8) into Eq. (III.3.11) gives:

’Ps Ps_i = { (i‘fD)‘i U_+ (Ks'i)(Mw)z(js _ D,:f,ﬂ} Ks(Ks“-)'i(i*Bg)(i*rWs)'i .

'(1+ Ws) W[(As‘ﬁs ASs)(Ks‘i)-i(i"ws)_i] , (III.3.13)

We make the following approximations by expanding the
power and exponential expressions in Eq. (III.3.13),
neglecting higher than first order terms and using Egs.
(r.2.53), (11.6.7), (11.6.16), (III.3.4), (II1I.3.6) and
the relationl@=cﬁc% :

(o, DR -

Ks(ts=1)™ Ds (III.3.14)
g e e M08, arzs.15)
wj[ (Asm 5 05 et (W) 4] = 1+ (Ks-1) A =

= Cos (Ks71) ﬁdo\Q 1+ ket A~ Kol Mos) o (III.3.16)
Inserting Eqs. (III.3.14) to (III.6.16) into Eq.

(III.3.13), neglecting higher than first order terms and
using Eq. (II.2.13) and the first Eq. (III.3.4) we get:
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059022 =1+ Ko(Mao)( Baav B <3 -1y (II1.3.17)

Dividing Eq. (III.3.1) by Px and using Egs. (II.6.16),
(III.3.5), (III.3.17) leads to:

C,P; Z[Upg’p;i)—i] K M;i=2<ﬁ52* ﬁsfﬁsfﬁ;). (III.3.18)
Eliminating'ET;'in Eq. (III.3.11) by means of the
equation of state, using the relation qg%;: 1 + §ﬂ° and

Eqs. (III.3.12), (III.3.16), neglecting higher than

first order terms gives:
Potpow = 1+ K{o’sr “We-Ae* koK) (Men) Jss . (III.3.19)

Using Eqs. (III.3.4), (III.3.17) in Eq. (III.3.19) and

solving for F$ we get:
? = (Mso® (45~ ko9t ﬁif)‘ K2 (WemA,) . (III.3.20)
Inserting Eq. (III.3.20) into Eq. (II.7.18) we get:

%h‘%} ) (Asw)z utf (Msorbz(ﬂs'Ksé“)—K:(ws,As)— Bs‘ (II1.3.21)

where ), 1s given by:

(Msw) = 1-(Msw)z. (III.3.22)
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In the incompressible case, the corresponding

Bernoulli equation to Eq. (III.3.2) is:
~d? - -2 _ - ’ =4 -
lep’ % poa’ Usa” = 55 = e Pl Tl (III.3.23)
s

where J. 1is given by:

) b) ) H ) ) ~2?
B Sardavdh s da=-RaRpl di;

¥

’ ’ y (A~ ~y ) v | [~ (P2 AN

Jo= RmRH;j oy dit; 354-J [2:(7¢-1)+ X dgt. (111.3.28)
7 o
The pressure coefficlents in the incompressible

flow are given by the following relation, using Eq.
(III.3.23):

Cpo= 2 (02~ ) it 0® = 2( 92 -T08,). (III.3.25)

In the incompressible case the Eq. (II.7.18)

becomes:
g@gﬁ, _ ~yq? )
axl’- U.sf -Bs . (III.3026)

From Eqs. (III.2.10), (III.2.11), the first Eq.
(I11.2.30), (r1r.3.21), (I111.3.26) we have:

= 25 08~ st Maof [ )t a2 (WA, cxmsen)
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From Egs. (III.2.10), (III.2.11), (III.2.17),
(111.2.18), (I11.2.20), (I11.2.24), (I111.2.30), (III.3.4),
(III.3.24) we have:

3s'z=({§sw)zﬁsz; 35535 5 Jeu= T . (III.3.28)

Combining Eqs. (III.3.4), (III.3.18), (III.3.24),
(IIr.’3.25), (I11r.3.27), (II1r.3.28) we get, after a few

manipulations:

Cm (oo "Ce 22 (" [ o RenP | 4+

ms

* (ke t) 4 %sw)zu. A0 - K;L(WS’AJ} : (III.3.29)

The pressure coefficient for the gross fluid is
defined by:

-1 -2

Cﬁ Z('p-pm){om b . (III.3.30)

It can be shown, using Egqs. (I.2.25), the first Eq.
(I1.7.23), (I111.3.1), (III.3.30), thats

Cyp= i Psm[o;f Cps = i ma(nm)* Cps | (III.3.31)

5=1 s=1

where nm 1s given by:

N
n”m=Z’m+. (II1.3.32)
ity
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Similarly, in the incompressible case, we have:
) - 1
- ] ) )-i
C?-st(nm)@s, (II1.3.33)
where dm' 1is given by:

n
‘n”m’=Z'm; : (III.3.34)

=4

From Eqs. (III.3.29), (III.3.31), (III.3.33) and the
first Eq. (III.2.27), we have:

N

sz Z Me ('n"m.’){ Aow Cf’s 7 ﬁ;i[[i'(Fsm)l] R'msRung’i *
S F;
* (Ko 1) [1-(05)° Jd@ W, A)]]} (II1.3.35)

Adding and subtracting a;fC,} to Eq. (III.3.35) and meking
use of Eq. (III.3.33) we get:

Com 2 C;{b(wm’cf’,)"z Gl 1 - (]
2[[1 (Fe)] Rems Ry de + (K1) [ £- Asm)]Jal
_ K}(W;As)]]]} (III.3.36)

b

where (2,)% 1s given by:

(%)"'=i-(Mm)" , (III.3.37)




— —— — e e e e
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and (M,)> 1is the gross fluid free stream Mach number.
In the case s=x, we replace {@, by A. in all the

formulas.

III.4. Application

Eq. (III.3.29) is applied to the calculation of the
pressure coefficlients, Cfs, in a fully ionized plasma
consisting of electrons and singly charged ions (hydro-
gen ions). The subscript 1 refers to the values for ionms
and the subscript e refers to the values for electrons.
We assume W;=A,=We=A.,=0 (and, therefore, using
Eq. (II.3.7), P, =P, =P.=P, =0 ). Furthermore, we

make the assumption:
pdld= pidOﬁPedQe, (III.4.1)
which becomes, approximating P“Pe by their values in

the undisturbed stream, using Egqs. (I.2.2), (I.2.16)

and neglecting m, 1in comparison to m; :

dQ=dQ: (III.4.2)

Following (5) we split dQ into the form:

dQ=4Q - (T (psw*dt, (111.4.3)
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where dﬁ i1s all the heat injected from outside into the
gross fluld except the Joule heat, (J)z(twu)'i is the rate
of Joule heat, & is the electrical conductivity of the

gross fluid and dr is an element of arc of the gross

fluid streamline. Assuming dQ = O, approximating (J)z(fdu)*

by its value in the undisturbed stream and using Egs.

(I.2.2), (1.2.16), (1.2.17), (I.3.2), (I.3.6), (III.4.2),
(III.4.3) we have:

Q= (e)* you. mi6™. (III.4.4)

Assuming €, =1, €, = O and using Egs. (I.3.9),

(11.7.28), (1r.7.31), (1r.7.37), (Ir1r.2.s), (IIr.3.4),
(III.3.22) in Eq. (III.4.4) we get:

o Clt-(MIT™ + 2101 sl 8-

~

-[(Mu) RusR, jdx]ﬂ1 M ( 4% -
‘RMRH:LA R R Ju‘f mi} . (III.4.5)

Eq. (III.4.5) becomes, using Eqs. (II.6.3), (II.6.7),
(II.6.16) to (II.6.18), (II.7.38), (III.4.4):

Cpem G4~ (Me] + 2Muaf1- (M) {K‘.-QAai_om-

[AT L4 1+ ot A4 A, (R s

A

&
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-2 S@di )H]i . (III.4.6)

where AQ , Am are given by:
Aé_: (6;)2 Voo L'm:f 064'.:.6-45 AH,:: e;/‘eHmLm_: Mz: . (III.4.7)

We calculate Cﬁ using the following values#:

C’.ri- Kizg ; yw___.iow,m:3- L:i,m_; 6:88.5%}1““"\'-4;

Pe

~

0‘:‘.«»’-2"104 m-sec” ; Id 1 =1 J dv)h(d:SXiO-z;
o K
rv3 'VL - -49 -
S u;fdx =5:007 5 €= 46540 (b j  m= 1075407 Ay
i

/~e= 440’ &3-%-5172; Ho=10% fouss. (III.4.8)

Figs. 2 to 5 show the results compared with the
-4
isentropic curve CP=C%[1-(MQ){] for various orienta-
tions of the magnetic field##, The relation between M,

and M;, 1s assumed to be (11, p. 10, Eq. (31)):

# The value of 0, is based on a temperature of
30,000°K approximately. < 1s calculated from the formula:

-4
G = 1.56*10"’xT‘“5x[10g(1.23x104xTL's-n':‘s)J * 159, where T =~
30,000°K = plasma temperature, n, ~ 10% cm~ = electron
number density. This formula is given in (Spitzer, L.,
Jr., and R. Harm: Transport Phenomena in a Completely

Ionized Gas. Phys. Rev., 89, 997, 1953.).

## The calculations were made on a CDC 3600 computer
at the Michigan State University computing center.



(III.4.9)
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APPENDIX A

Some Remarkas on the Functions Bg

Carrying out the differentiation in Eq. (II.2.1)
and using Eqs. (II.1.1), (II.3.2) we get, after a few

manipulations:
H,d’;—[ /&Iﬂ, (1—Bs>]= _P;iés . (A.1)

Integrating Eq. (A.2) along a streamline of the s-th

fluid component, starting from an o subscripted state
dt

to some end state, and using the relation U.= ;;i ,

we have:

1-B. = (1‘Bsm)PJXIp<'J P;Lufdsolt), (A.2)

£
In the linearized, steady quasi-three dimensional flow
we assume Bse=0, @s= Psw* PSf?, Us=[(Use* usif)z + (u'szr)z + (uasf)z]%,
d+,~t“1 , where dl; is an element of arc taken along
the curve [; which is the projection of the streamline,
A, on the (x*, x?) plane. Using Eqs. (II.6.1),

(11.6.2), (11.6.5), (II1.6.9) and the relations above,
we get , neglecting higher than first order terms:
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(4.3)

(A.4)
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