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ABSTRACT

LIMIT THEOREMS FOR DISCRETE PARAMETER
RANDOM EVOLUTIONS

By
Gilles Blum

Let E’ be a subset of R. For y in R and N =1,2,...

let {XN’y(k): k =0,1,...} be a Markov chain in E, with transition

N
PN’y. Assume that for every xinEN and y in R

IE, (XY (1)-x)-ayp (x,¥)-a2r(x.9) | < vyon()s
JE (XY (1)-x)-afs (xa¥) | < vyop(y),

where N € R+ s TN € R+ and p,r,s and PN are functions satisfying
some additional conditions. Let {Y(k): k=0,1,...} be an ergodic
Markov chain in R with transition P and Z,(k) ={{X(k), Y(k):k =0,1,..}

be the Markov chain in E, x R with transition PN satisfying

PN((x.%),A % B) = PN*Y(x,A)P(y,8B).

Then under some technical conditions it is shown that, as ay Vv (yN/aN) +0

N ([-/:::J) converges to a diffusion process that we characterize
by its generator in terms of p,r,s and P. We then use this resuilt
to obtain a diffusion.approximation to the Wright-Fisher model in

Markovian environments, among other applications.
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Notation

PE) 1is the set of Borel probability measures on E.
B(E) 1is the o-algebra of Borel sets of E.
Bor(E) i{s the set of Borel measurable functions on E.

B(E) is the set of bounded Borel functions on E. o

If fe Bor(E) and the integral of f with respect to the positive

measure m on E -exists we shall write it
{ fdn or m(f).

C(E) 1is the set of continuous functions on E.

C(E) 1is the set of continuous functions on E vanishing at infinity.

CK(E) is the set of.cont‘lnuous functions on E with compact support.

c{(z) is the s;t of r tins‘continuo_usly differentiable functions on
E with compact support.

If f 1is a function on E and EN is a subset of E we will also

denote by f the restriction of f to E'N.
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INTRODUCTION

The primary purpose of this work is to prove limit theorems
for discrete parmtér random evolutions. Before describing the kind
of theorems we have in niind we first recall a few definitions and
results pertaining to the continuous case. Intuitively a continuous
parameter random evolution describes a situation in which a process
controls the development of another process. When the controlling
(or driving) process is continuous parameter Markov the main questions
concemin;; representation and asymptotic theorems have been answered.

~ To describe the type of results which have been obtained we
con‘sider one of the simplest examples of a continuou§ pariaefer random
evolution. The'mode‘l is that of a particle moving on the real line

at one of n possible velocities VisesesVpo It changes velocity at

n
random according to a pure jump Markov process Y(-) in {1,2,...,n}
with generator Q. Let X(t) and Yy (t) be respectively the position
and velocity of the particle at time t. The Markov process Z(.) =

(X(+), Y(+)) has generator
d n
Af(Xgi) = V.' dx f(xai) + jz] qijf(xmj)
for fé€ 61’°(Rx{1.2....,n}) and if for such an f we define u by

u(t,x,1) = £, LF(Z(E)



then u is the solution of the hyperbolic system

g: (t.x.'i) = Vi (d]: (t9x:1)
3 ( ), 1
+ toX,j)s 1 < i <n.
g1 3 |-

It is a well known fact that for cert;fn.e111ptic or parabolic
equations the solution can be expressed as the expectation of a function
of a Markov process. Random evolutions pfovide an example where this
is also true for hyperbolic equations. It is this type of consideration
that led Griego and Hersh (1969) to their definition of random evolutions
and, as in the elliptic case, a purely probabilistic analysis of random
evolutions can lead to new methods of proof for problems arising outside
probability.

For continuous parameter random evolutions, asymptotic theorems
involve a balance between two limits: one takeS the limit of small
stochastic disturbances over long‘periods of time. Depending pn the way
this scaling is done at least two types of limit theorems have been obtained:
one corresponds to the weak law of large numbers (a first order limit
theorem), another to the central 1imit theorem (a second order limit
theorem). For instance for the model of the particle moving on the real
1ine considered above, of interest is the 1imiting behavior, as € -+ 0,
of the process

t
Xett) -x+ £ VY(s/e)ds

in the first order case and of the process
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t
Xg(t) = x + é (I/E)VY(S/ez)ds

in the second -order case.

The connection between the first order Hmit'theorem (resp. the
second order 1imit theorem) and the weak law of large numbers (resp.
the CLT) can easily be seen from this example. Consider for instance
the second order case. Let CIYLITEEE be the successive states occupied
by Y(-), TgeTyse - the time spent there, M(t) the number of jumps
in the time interval [0,t] and for j =1,2,... 1let

80’

S0
3 :Z; Ty
Assume € = N¥ and write Xy(t) for &e(t). Making a change of
variables
Xy(t) = x + N [ wds
o Y(s)
= x + N"‘("(gt)-]vﬂs )Ty * (Nt- ) v RY
| 5 vy vy’ (s oV

Suppose now that instead of being exponentially distributed, for
J =0,1,... T satisfies P(rj'l)-I and let t=1 and x = 0. We
obtain then |

N
« 1
xﬂ(]) N kzl vt(k'.')’

and the second order 1imit theorem, which is now a result about discrete
parameter random evolutions, reduces to the CLT for a Markov chain in

{v],...,vn}.



Asymptotic theorems for discrete parameter random evolutions
(both driving and driven processes are discrete parameter) have been
obtained by several authors. Here are two examples.

For N=1,2,..., Tet {(XMk), YN(k)): k=0,1,...} bea
homogeneous Markov chain in R™ x R". Supposing that asymptotically
as N+« the "infinitesimal" covariances and means of x"([-/e"J)
are aij(x,y) and bj(x,y) and those of YN(['/GNJ) are 0 and
cz(x.y) and assuming li:*.cn = 11:L. eN/GN = 0 and the zero solution
of y = c(x,y) 1is globally asymptotically stable, Ethier and Nagylaki
(1980) show that XN([-/GNJ) converges weakly to a diffusion process
with coefficients aij(x.o) and by(x,0). This could be regarded as
- an example of a 1imit theorem for a random evolution with feedback:
x“(-) is driven by Y"(-) which in tun depends on x"(-).

In a recent article Kushner and Huang (1961) developed a general
method for broving weak convergence to a diffusion process of the sequence

of appropriately scaled and interpolated solutions to the equation

Xy (k1) = Xy(k) = af ky(Xy(K), ¥y(KD)
+ aygy(Xy(K), Yy(K)) + o(ad),

where YN(k) are random variables satisfying certain mixing conditions.
In this example XN(-) can be considered as the déiven part of the random
evolution (xu(.). YN('))' (We were unaware of Kushner and Huang's

article while doing this work and there is some overlap between their



results and ours.)

The main result of this work is motivated by a problem of Karlin
and Levikson (1974). The problem is to derive a diffusion approximation
to the Wright-Fisher genetic model with selection coefficients in a random
environment. The mathematical formulation is as follows.

let 0 < By < oy for each N > 1, and suppose ay * 0. Let
6€R and Ey= 0, xoooeald For N=1,2,... let {Z(k) =
(XN(k), Y(k)): k =0,1,...} be a homogeneous Markov chain in EN x R
with transition pN satisfying

(0.1) PN(x,y)s A x B) = PNY(x,A) P(y,B),

‘'where P is the kernel of a stationary Markov chain in R and for every
NoY(, .
y in R P"*(x,-) 1is binomial (N'P’F:°N(¥)) »whfre

(0.2) Pro ™ o
and
(0.3) on(¥) = (8,0 + ayy)V(- ;-).

The problem is to obtain a diffusfon approximation for the Sequence
{k"(k): k= 0,1,.';..} when it has been suitably scaled. In their article
Karlin and Leviksén study the case ay * N"’.BN = N'], {Y(k): k=0,1,...}
i.1.d. with E(Y(K)) = O.

Our main result can be roughly stated as follows (see §2 for the
exact formulation). Let E be a closed interval of R.'EN a subset
of E, m€ P(R), uy € P(EN),u € P(E) and assume uy = u. For
N=1,2,..., let {ZN(k) = (XN(k), Y(k)): k =0,1,...} be a homogeneous



Markov chain in EN x R with initial distribution uy X m and
transition PN satisfying (0.1). Assume that for each yinR, plsy
is the transition of a homogeneous Markov chain {XN’y(k): k =0,1...}

in E, and P 1is the kernel of an ergodic Markov chain in R with

N
invariant measure m. Suppose there exist functions p, F1s» Tps S
on ExR and °N in L‘V 3(¢h). assumed to satisfy some additional

conditions, such that for every x in EN’

(0.4)  |E,(XMY(1)-x)=ay p(x.y)-ah ry(x.y)-8y rp(x.y)]| < W)

(0.5)  E (X" (1)-x)2-a2 s(xay)] < vy,
(0.6)  EXMY(N)x]® < vy,

where yy(sy v a2)”' + 0. Thenas N+ the finite dimensional distri-
butions of x"([-/(aﬁ v B“)]) converge to those of a diffusion process
X(-), with initial distribution u,.that we characterize by its generator
in terms of p, Fys» Tos S M and P.

Depending on the relative values of .a and By in (0.3) and

N
on the scaling there are several possible 1imiting diffusions. The case
a'z‘ B;l + 0 corresponds to a first order 1imit theorem and leads to a

deterministic process. If aﬁ = BN (resp. aﬁ Bl-ll + =) condition (0.4)

takes the form
(0.4 [E MY (1)=x) - ay Plxay)-ap r(x)] < vy oy(¥)

where r=r, +r, (resp. r = r.l). Replacing (0.4) by (0.4)' the cases |

2 -1

a: = By and ay s;‘ s e can, without loss of generality,be treated

simultaneously.



Using our theorem we can generalize the result of Karlin and

Levikson to Markovian environments. More precisely let {Y(k): k = 0,1,..

be a stationary Markov chain with Markov kernel P, Q the linear con-
traction on L](dm) defined by

Qf(y) = [ f(z) P(y,dz),
and assume there exists n in L4(dm) and A in Lz(dm) such that

(0.7) (I"Q)“ = IdFs

2 2

(0.8) (1-Q)x = [y“dm - y°.

Then XN([NtJ) converges to the diffusion process whose generator
A, with domain C2[0,11, is given by

(0.9) A= x(1-00e(1-20) + (6- xv)1 -

| | .
+ % x(1=x)01 + x(1-x)(v + 21)] ﬁ;?

where v = E[Yz(k)] and 1, a constant, can be computed in terms of P.
When {Y(k): k =0,1,...} are i.1.d., which is the case studied by
Karlin and Levikson, t = O.

We can also easily prove a central limit theorem for ergodic
Markov chains, another one for chain dependent random variables and obtain
diffusion approximations to a certain type of stochastic difference
equ#tion. The CLT for Markov chains we have in mind can essentially
be stated as follows. Let {Y(k): k = 0,1,...} be an ergodic Markov
chain satisfying (0.7) and (0.8). Let

.}
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(0.10) o = J(Qn? - (Qn)?)dm.

Then Y() +:#¥(M)  yigy),

gonditions (0.7) and (0.8) are clearly very restrictive and limit
the applicability of such a resuIi. Nevertheless it must be noticed that
we do not impose any mixing condition on {Y(k): k = 0,1.;.:}; conditions
(0.7) and (0.8) are assumptions on the one step transitions of the Markov.
chain. In a certain sense this result is a very natural generalization
to the Markov case of the CLT for i.i.d. random variables.

Generalizing this CLT we obtain a diffusion approximation for
suitably scaled solutions to the equation

xﬂ(k"']) - xN(k) = G(xu(k)t SN(k))

where for k = 0,1,... Sn(k) = ay0 + By Y(k) and G satisfies-soue
| differentiability assulptioﬁs. An application of this can be found in
Guess and Gillespie (1978). We do not pursue such applications as they
have been recently treated by Huang and Kushner (1981).

In 0'Brien (1974) a CLT for rindon variables defined on a count-
able Markov chain (or chain dependent random variables) is obtained.
We prove a similar result without any countability assumptions.

The last result of this work is a CLT for random variables taking
their values in a Riemann manifold. This is essentially a discrete
parameter analogue of a theorem of Pinsky (1976, 1978).

Two approaches have been particularly successful to prove
asymptotic theorems for random evolutions in the continuous case: the
semigroup approximation theorems of Kurtz (1969, 1973, 1975) and

the martingale problem of Stroock and Varadhan (Papanicalaou, Stroock,



Varadhan, 1977). In the discrete parameter case we can adapt either of
“these methods. We have chosen the semigroup approach; the approximation
tbeorem we use is a discrete parameter analogue of a theorem of

‘Kurtz (1975 Theorem 3.15). Remarking that ZN(k) = ~(XN(k), Y(k)) is

a Markov chain in EN x R and def‘lﬁing

w-jfehﬂ%xlnzﬁpﬂﬂhﬂnl<ﬂ

we show that for every f in a core for the generator A of a Feller

semigroup there exists a sequence f, in L, such that
sup Elfy(Zy(k)) - f(Xy(k))| + 0
and
swp E|Af(Zy(k))- AF(X(K))| = 0
where |
Ay F00Y) = oyl (£, F(Zy(1) - Flxay)).

Assuming convergence of the initial distributions this implies that the
finite dimensional distributions of XN([-/af‘]) converge to those of
a Markov process with generator A. ' ‘



CHAPTER I
AN ASYMPTOTIC THEOREM FOR DISCRETE PARAMETER RANDOM EVOLUTIONS

Throughout this section E is a closed interval of R, possibly
unbounded, EN a Borel subset of E, F & Borel subset of R, {Y(k):
k =0,1,...} an ergodic Markov chain in F with transition P and
invariant measure m. If f ¢ L](dm) we define the function Qf in
L](dm) by setting

(1.1) Qf(y) = [ f(z)P(y,dz).
We note that Q is a contraction in Lp(ch), l<p<ce.

Theorem 1.1: Let k;,k, be two integers, ky > ky > 0. Let
p,r and s be in Bor(E x F) and of the form

(1.2) P(x,y) = a5(x)by(y),
K
(1.3) rix.y) = ; a;(x)by(y),
| ,
(1.4) s(x,y) = k2+‘l a;(x)by(y),

1
where, for 1 = 0,1,...,k, 2, is bounded twice continuously differenti-

able, b, € t4(dm) and for 1 = 1oeeeskys by € L2(dm). Assume that for

is= 0.1.....k2 there are functions n € L‘(ch) and ); € Lz(m) satisfying
(1.5) | (I-Q)n = by,

(1.6) (1-Q)2g = (byn - bg)-t,

10



n

where

(1.7) v = 5(f(Qn? = (n)?)dm - b3 dm},
and for i =1,...,k,,

(1.8) (1-Q)a; = b, - [bydm.

let weP(E). For N=1,2,... and y € F let {(X\Y(k): k=0,1,...
be a homogeneous Markov chain in E, with transition denoted by P\*Y
and initial distribution uy. Suppose that for every A in B(EN)

the function (x,y) + P"’y(x,A) is Borel measurable and uy ™ u as

N+« Let a, be numbers satisfying 0 < ay+0 as N+« and assume

N
there exist functions N in L4/3(dm). numbers W > 0 and M> 0

such that, for every x in E“ and y in F,

(1.9) IE("Y(1) - x) - ay 'p(x,y)-u;‘; rix.y)| < YN’NG)"
(1.10) 1E, MY (1) - 02 - s(xay)| < v ),

(1.11) | sxlx“”(.l) - x]3 < wnlv),

(1.12) Jog/3m <M and vyaZ+0 as N+-.

Let {Z"(k) = (xN(k), Y(k)): k = 0,1,...} be the Markov chain in
E" x F with initial distribution uy X ® and transition PN satisfying,
for A€ B(EN) and B ¢ B(F),

(1.13) PN x.yLA x B) = PN*¥(x,A)P(y,B).

Let A be the iinear operator on C(E), with domain Cﬁ(E), defined by



12

2
(1.14) & = [xagag + Jr(-aydn(@)] G + Lxag + ufs(-y)m(ay)1 .

a) Assume A generates a strongly continuous, positive, conservative,
contraction semigroup {T(t)} on C(E). There exists then a Markov
process X(<) with sample paths in CEEO,-), semigroup {T(t)} and
initial distriﬁution u such that the finite dimensional distributions
of XN([-/aﬁl)- converge to those of X(-).

b) Furthermore if sup Ibi(y)l <o and sup le(y)l < » (this being
i,y N,y

essentially the case when F 1is compact), convergence is in distribution
in PE[O.-).

33@5;5: Since

(1.142) / (I-d)n dm = [n(z)m(dz) - [ m(dy)[ n(z)P(y,dz) = O,

" a necessary condition for (1.5) t§ be satisfied is |

(1.15) | [ bydm = 0.

For the same reason (1.6) can hold only if

(1.16) r?jmm-b@m.

By (1.14a) with n replaced by nz,
f QnZdm = [ nZdm.

Applying then (1.5) we easily see that

J (an)2am = [ (a2 - 2bgn + b3)am.

So (1.16) follows from (1.7) and (1.16) is thus always true.
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In general to find sufficient conditions for (1.5), (1.6) and
(1.8) is more difficult. One case where they exist is the following.
Assume that for i = 0.1,...,k2 b1 is a polynomial of degree less than
or equal to two. (This is typically wﬁat happens in the applications
we consider.) Let a,a; and g, be real numbers with o and o, not
equal to one, u = [ ym(dy), v = [ yzn(dy) and suppose {Y(k): k = 0,1,...
s such that 1f f, and f, are definedby f,(y) =y and f,(y) = y°
then '

(1.17) 0f, (¥) = oy + u(1-a)
and.
(1.18) 0f,(v) = apy® + gy + v(1-a;)-8pu.

Let o and 2 be defined by

no(.Y) = 1&

and
\(y) = 2 . ByY
o (T=a)(T=eg]
Then (I-Q)ng = y-u and (I-Q)r = y?ev.

A case of particular interest is when
bo(y) = eo("“)
and for { = 1,...k2.

“byly) - [ by dm = 0 (y-u) + v;(y%-v),
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,

where 8y and vy are constants. Since p is then a polynomial of

degree one satisfying (1.16) there exists ¢ and y in R such that
2 2
t-(bgn-b3) = 8(y-u) + y(y?-v).

The form of n and Ag in (1.5), (1.6) and (1.8) follows then easily.
We give now two examples of Markov chains satisfying (1.17)
and (1.18).

Example 1. Let {Y(k): k =0,1,...} be the Markov chain in Z+ with
transition P(-.,-) given by

P(y,+) = bin(y,p)*Poisson(e),

where 0 <p<1 and e > 0.

If 1= 0/(1~p),Poisson(r) can serve as invariant measure for

{vY(k): k=0,1,...}. (To pro§e this one can use generating fmctions:
I (I s*Ply;z)mly))
y 2z

yY 8(s-1) e

-§h+sp Y

- el0+P2)(s-1)
- e(8/(1-p))(s-1)

Using generating functions again it is then easy to show that

Qfy(y) = py + 2(1-p)
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and

2

0f,(y) = P22 + p(1-p) (22 + 1)y + A(1-p)IA(1-P) + 1]

Conditions (1.17) and (1.18) are thus satisfied here.

Example 2. Assume Y(0) is N(0,1) and X(0), X(1),... are i.i.d.
N(O,l) and independent of Y(0). Let

Y(ntl) = p*(n) +-/1-az X(n),

where -1 <p < 1. {Y(n): n=0,1,...} is a stationary Markov chain
with invariant measure the standard normal. Conditions (1.17) and
(1.18) are easily seen to be satisfied with a = p, aj = pZs 8, = 0,
v=1. We also note that here n(y) = y/(1-p) and

v = (S (@ - (Qn)P)em - fyPam)

2 2 2
=il (L= - 2L)dm - 1)

(1-p) (1-p)

= o/(1-p).

If we do not want to assume (1.17) and (1.18) the following
result (Revuz 1975 Theorem 6.3.10) gives sufficient conditions for
(1.5), (1.6) and(1.8). Let

8O(F) = (f € B(F): m(f) = 0).
If {Y(k): k =0,1,...} 1is a quasi compact Harris chain then
(1-Q)B(F) = BO(F).

We can use this result if for i = 0,1,...k2 bi is bounded.



16

Proof of Theorem 1.1: We will prove part a)of this theorem using

Theorem A.1.2). To prove part b) one can use Theorem A.1.b).

' Let K = {g ¢ B(E): § = constant + f with f € C(E)}. Clearly
fe é(E) and g € K implies f g € K. The existence of a Markov
process with sample paths in CEEO.-) and initial distribution
corresponding to {T(t)} follows from Theorem A.2.

Let ~ be the equivalence relation on Bor(EN x F) defined

by

f~g 1ff E|f(Zy(k)) - g(z,(k))| = O for every k>0,
and let
(1.19) Ly = {f € Bor(Ey x F)/~: s:p E[f(Zy(k))] < =}.

For . f € Ly, x € f". YEF let

(1.20) Ty fxy) = [f(u,v) PV (x,y,du,dv)

(1.21) Ay f = a,;z (1, - D).
For f € B(E) define my F €Ly by
(1.22) 7y f(x.y) = f(x),

and let D = c;(z) be the space of infinitely differentiable functions
with compact support. (D 1is a core for A.) Condition (A.2) of
Theorem (A.1) is assumed. We construct a sequence fN in LN

satisfying (A.7), (A.8), (A.9) and (A.10).
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Let x € EN’ YE€F and B be the linear operator on L
defined by

(1.23) Bg(x,y) = fg(x,v)P(y,dv) - g(x,y).

Let f be in D, f], fz. h, hj, k in L, and let

N
fo o= wf + agh + aylk
N NTtoagh ook

Using the triangle inequality and denoting f by f,

™
(1.24) oy (TyFy=Fy) - my AFI
-2 P 2 -1
-1
+ ay WTyh = h - Bh - a/h |
+ ihy + £, + Bk -y Afl

+ uTNk - k - Bk,

where for f € Ly, Ifll = s:p E|f(Zy(k))].

To finish the proof we find f], f2’ h, h] and k such that

(1.25) an2Tyf = F = ayfy = alfoll + 0,
(1.26) f, +Bh =0,
(1.27) o iTyh - h - Bh - ah i 0,

(1.28) h.l + f, + Bk - m,Af = 0 WN,

2 N
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(1.29) IiTyk - k - Bkl + o.

For Xx € EN’ Yy € F, let

(1.30) f1(x.y) = p(x,y)f'(x),
and
(1.31) fo(x.y) = r(x,y)f'(x) + % s(x,)f (x).

Clearly f.' and 1’2 belong to LN' Using a Taylor expansion with
remainder term of order 3 and (1.20),

Tyf(xay) = £(x) = £ () f(u-x)P"Y (x,du) - 3% £ (x)[(u-2) 2PN (x,u) |
< K lu-x]3 PNo¥ (x,du),

where K, = sup(|f (x)[}. By (1.9), (1.10), (1.11) and the triangle
X ’ .
inequality,

[Tyf(xsy) - f(x) - apf,(xy) - aﬁfz(x.y)l
1Ty f(x.y) - f(x) - £ (x)f (u-x)PNY (x,du) - f"_(x)l("-X)zP""(x.du)l »
+ 1 (0 (u=x)PYY (x,du) + 35 £(x)[(u-x)2PNY (x,u) - ayfq(x.y) - aﬁfz(x.y)l
< 3K, v,io,,(y).
where K2 = sup{ky, [f'(x)[, [£"(x)]1. (1.25) follows then from (1.12).
For x€E,y€F, let

(1.32) h(x,y) = n(y)ag(x)f'(x).
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(Note that |lh)| < s:plao(x)f'(x)l inll implies h € LN). By (1.23) and
(1.5),

Bh(x,y) = fh(x,z)P(y,dz)- h(x,y)
= a5(x)f* (x)(fn(z)P(y,dz) - n(y))
= ‘f] (x’.Y)

(1.26) is thus proved.
For x € Ey, g €F, let

(1.33) hy(x¥) = p(xay)f 3 (x,)P(y.dv).
By (1.32), (1.2) and (1.5),
hy(x,y) = ag(x)by(y) (ay(x)F*(x))' [n(z)P(y,dz)

= ag(xX(ag(x)F' (x]' Cbo(y)nly) - b2(y)1.

Since b, and n are in L‘(dn) and ab(x)(ao(x)f'(x))' js bounded,
h.l is in LN‘ Using a Taylor expansion in the first variable with
remainder term of order two and (1.32),

ITNh(xsy) - h(xs.Y) - Bh(X,Y) - I(U'X) 'g% (X.V)'PN(X..Y.du,dv)l
<K J (u=x)2|n(v) [PN(x.ydu,dv)

where K, = sup{l(ao(x)f‘(x)) |s l(ao(x)f'(x))"|} By the triangle
inequality, (l 13) and (1.33),
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(1.34) |Tyh(x,y) - h(x,y) - Bh(x,y) - ayhy(x,y)]|

< |Tyh(x,y) - hix,y) - Bh(x,y) -f(u-x) %g(x.V)P"(x.y du,dv) |

+ |I(U-X) :—:—(x,v)PN(x,y,du,dv) - %N h] (st)I

1A

Ky Ju-x)2|n(v) [PN(x,y.du,dv)

+

l I(U-X) :—:(x,v)PN(x,y,du,dv) - oy h'l (X,.Y)I

Ky J(u-x)%P"Y (x,du) | |n(v)[P(y.av)

1A

+ 1 u=)PMY (x,du) £ B, v)P(y,dv) - ayp(xay) [x,vIP(y,dv) .

By (1.9) and (1.10) we can find s, € L%(dm) and r, € L%(dm) such

that

1

(1.35) . Ju-x)?PNY (x,du) < of 5,09) + vyou(9).
(1.36) | f(u=x)P"*Y (x,du) - ayp(x.y)] < aﬁ ri(y) + vyop(y).

Using then the inequality -lj%(x.v)P(y,dv)l < Kq [ In(v)|P(y,dv),
(1.35) and (1.36), |

|Tyh(x,y) = h(x,y) - Bh(x,y) = ayhy(x.y)]
< Ky(2ryon(y) + a2(ry(y) + 53(0))) J In(v)[P(y.dv).

Let then o ¢ L*(am) be defined by o(y) = [|n(v)|P(y.dv). Since
oy € L¥3(dm), the H3lder inequality implfes
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UTyh = h = Bh - ayh il < Koy lloyell + aﬁ Iry + sq)ell)
< Kylry (o 2am¥/ 2 (1o%am) M4 & G2(f(ry + 5)7am)5(fo2am)®,

and (1.27) follows from (1.12).
We now have to find k in 'LN such that (1.28) holds.

" We first rewrite A 1in a more condensed form. Let x € Eye
co(x) = ag(x)ag(x)f'(x) + ag(x)f"(x).
a;(x)f'(x) for <1<k

c(x) = ¢
3 ai(x)f"(x) for k] <i< k2°

S

Using the definition of A, fé, h] and h we get
mAF(x,y) = rcy(x) + ‘I] cy(x) [ by(yIm(dy),
fo(x,y) = rix,y)f'(x) + % s(x,y)f"(x)

K ka

-q a; (x)by (¥))f* (x) + % (@, 240003 0D)F"x)

k2 1
= ; °1 (x)bi(Y)o

hy(x,y) = p(x,y) f%:% (x,2)P(y,dz)

= a5(x)by(y)rag(x)f' (x) + ag(x)f*(x)1 fn(z)P(y,dz)



22
= co(x)Iby(y)nly) - bg(y)J.

Let
ko
k(x,y) =} e;(x)a;(y).
0 kz
(Note that Ikl < (sup |cy(x)]) (] Wasll) < = implies k€ LN.)
i,X - =0
By (1.20),.

Bk(x,y) = [k(x,z)P(y,dz) - k(x,y)
k

, .
=1 c;(x) (/a(2)Ply.dz) - 2 (y)).
0

By (1.5), (1.6), (1.7) and (1.8),
k
2
Bk = cylt -'(bon-‘bg)J + 121 c;L/by(z)m(dz) - b3
= aNAf - h] - f2. :

(1.28) follows. Let

ky
Aly) = X Iaf(Y)l»
i=0

8,(y) = [A(z)P(y,dz),
Kq = sug les(x)].

k X»
2
Since k(x,y) = 120 c;(x)3;(y), using the mean value theorem, (1.20)

and (1.10),

[Tk(x,y) = k(x,y) - Bk(x,y)| < Kp04(y) [ (u-x)P"*Y (x,du)
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Ko7 () (/(umx)%P"Y (x,qu))*

1A

Ky (ryoy(¥) + aBls(x,y) )% 65 (y)

A

A

Ky aylryey ogl) + 50005, ().

Using the fact that o, € L%(dm), oy € L¥3(dm), s, € L2(dm) imply
that e.l(pN + s.l);5 € L1(dm) and assuming N big enough for yNuaz

to be smaller than one, we get
ITyk = k = Bl < ay K, li(oy+ 5;)%lI.
By the Holder inequality
oy + 59)%I7 = (floy + 59)% 0 am)?
< [(oy + sy)om[ o%dm.

By (1.12) the term on the right side of the inequality is bounded
by a number independent of N and (1.29) follows. Since {fN}
clearly satisfies (A.7), (A.8) and (A.9) Theorem 2.1 is proved.

‘Remark. It is possible to give an abstract semigroup version of the
previous theorem. For N = 1,2,..., let LN be a Banach space, TN

a linear contraction on LN’ GN a positive number and put AN = (Tn-I)/eN.
Let BN’ CN’ DN be 1inear operators on LN' Assume that for every

f in v(Bn) n D(CN) n'D(DN)

UTyf - £ - (Byf + &y Cuf + €, pr)u = o(€y)-

Let L be a Banach space, m™: L » LN a bounded linear transformation
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with sup ""N" <=, Let {T(t)} be a strongly continuous contraction
N

semigroup on L with generator A. lLet A be a core for A and

assume that for every f in A there exists hN and kN in

v(BN) n v(cN) n v(vN) such that an € v(BN)n v(cN) N v(DN) and

(1.37) BNhN = - BN(wa). CNwa =0
(1.38) Byky = T\Af = (Cyhy + Dymyf),
(1.39) 5:9 (lthll. llknll- IICNﬁNll. IICNkNII.IlDNhNII. "DNKN") < @

Then, as EN + 0, for each f €L, Tﬁtleul n,f > T(t)f for all t > 0,

uniformly on bounded intervals. "
_ The proof of this result goes as follows. Let fN = wa +

E'hu + €uky. Since llf - xy fll + 0, by Kurtz's approximation theorem

for discrete paranter contraction semigroups (Kurtz 1969, Theorem 2.13)

it is enough to show that
(1.40) "ANfN - wNAfll +0
as €y ~+ 0. Denote for simplicity wf by f. By (1.37)

Wty = fy = (BySy * & Cufy * € Oyl

= Ty T = CBENT + €xyT + Y By + Eyhy + e}/ DNhN
+ eByky + €3/ cyky + €€ Dk M.

3/2 2

= WTyfy = iy - Ey(Byky + Cyhy + DyF) + €7° (Dyhy + Cuky) + €30, Nu;

Using then (1.38) and (1.39),
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”TNfN - fN - GN‘"NAf" = O(EN)

and (1.40) follows.
If we go back to the proof of Theorem 2.1,

and for g, the restriction to EN x F of a functionon E x F twice
differentiable in x, ’

Ch9(x,y) = p(x,y) l%&(x.z)P(y.dz).
2
Dy9(xsy) = r(x,y) [ 3x,2)P(y,dz) + % s(x.y) fi%(x.z)P(y,dZ),
and |
a = C,(E).

‘In'this setting (1.5), (1.6) and (1.8) teply (1.37), (1.38) and (1.39).



CHAPTER II
APPLICATIONS

In this chapter we give an application of Theorem 1.1 to the
problem of Karlin and Levikson mentioned in the in;roduction (Theorem
2.1), another one to sums of c.hain dependent processes and to the central
1imit theorem for ergodic Markov chains (Theorem 2.2). We discuss then
briefly a method for obtaining diffusion approximations to sequences
of suitably scaled stochastic difference equations.

Throughout this chapter ({Y(k): k = 0,1,...} 1{s an ergodic
narkov; chain in F, a Borel subset of R, with invariant measure m

and transition P. We assume [ ym(dy) = 0.

Theorem 2.1: Let E = [0,11, u € P(E), Ey = {Osps---»1}ouy € PIE,).
Assume Uy M jysm(cu) <o and for 1 =1,...,4 there exist functions
n and 1, satisfying (1.5), (1.6) and (1.8) with

bo(y) = .y9
b](y) = b3(y) = ]o
by(y) = byly) = ¥2.

Let oy = N5, g = N1 and for N =0,1,..., (ZN(k) = (XNK),Y(K)):
k = 0,1...}be the Markov chain with transition PN given by (0.1),

26
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(0.2) and (0.3). Then as N + = the finite dimensional distributions
of XN([NtJ) converge to those of X(-), the diffusion with initial
distribution u and generator A given by (0.9) where 1 is defined
by (1.7).

Proof: For y in R and N=0,1,... let {X""Y(k): k=0.1,...}
be the Markov chain in EN with initial distribution N and transition
P"’-Y. We show first that conditions (1.9) to (1.12) are satisfied with

p(x,y) = x(1-x)y,
r(x,y) = (e-xyz)X(I-X).
s(x.y) = x(1-x)(1 + x(1-x)y?).

Using the fact that x"Y(0) =x 1implies NXMY(1) is binomial
My on(y)) ™0 Py (y) = (1 + oD/ (1 + oy(y)x),

(2.1) Ex(x“’y(” -x) = Pxsoply) = X ,
= oy )x(1-x)-oZ(y)x2(1-x) + oﬁ(y)x%}e,{‘w,;).
We have the following two relations

(2.2) ox(¥) = (1o + Ny ()

= (00 + W) - LT 4 N v (o ()

and
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[N To + N %y)v(-1)72

(2.3) oy(¥)?

(e + N2 - cv e+ NP -y (o).
From now on we denote 1(_“’_%](0,‘()')) by GN(y). By (2.1), (2.2) and

(2.3),

E (" (1)-x) = N%x(1-x) + N7 (8-y2x)x(1-x)

3/zey)xz(l--x) - t(N e + N"3y) + 351x(1-x) 6y (¥)

324, . 1,2 2 21,3 (1=x
+ (N 2%+ 2N - NyT 30X (1-x)6y(y) + oy (y)x {—M—N%y)x—

and we get

- (N 202, 2N

JE MY (1)-x) + N3 (1-x)-N 7 (0-y20x(1-x) | < W20, (),
) |

N
I v with

where PN, 1 = oA

Ny) = N5 w'z'(y) = 20y, wg(y) = (Mo +n Y/ z)su(y),
) = Nysy (), vh(y) = (V%2 )5, (v,
vl¥) = 2096y(y), ¥h(¥) = A yZ5,(y), vily) = ‘N3/ 2)oy (0 12

To complete the proof of (1.9) we have to show that {IIpN’](y)|4/3m(dy)}
is a bounded sequence. By Minkowski's 1inequality it is enough to show that
for k = 1,2,...,8,f]v : |4/3dm are bounded sequences. This is clear
for k =1,2,6 and 8. We check that the condition is satisfied for

k = 7. The other cases follow in the same way.
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If 8 > 0, an(y) < 1(_w’_JN72)(y) and

-2,

-N/2
flwg(y)l4/3m(dy) < 2¥3 | _ [(VNYZ)yz 1*3m(dy) < 24/3I y m(dy)~ 0.

The case 8 < 0 follows by a similar argument, -

This completes the proof of (1.9).
We show now that (1.10) is satisfied. Note that

(2.4) Ex(xN’y(])'x)z * Ex(xN’y(”'px.oN(Y))2 * (px.oN(Y)-x)z'

Using a property of the binomial distribution we get

N,y 2 _1 _
EX(X (])-pX.oN(y)) N'px.oN(y)(] Px’on(y))

.1 1-x
E[X + oN(y)x %-*?%m][]-x UN(.Y)X (W)J

1 on(¥)x(1-x) op(¥)x(1-x)
x(1-x) + § 1o % [1-2x-1{f-o;mx— ]

1
N
This implies

(2.5) e (X"Y(1) - Prsoy(y)) = R0 5 {loyI(1 + [oy)]).

We find next a bound f - x)2
und for (Px.aN(y) x)“. Since

Prpoyly) = X * oN(y)xu-x)-oﬁ(y)xz(ﬁm :

(2.6) (B, (1)) = RUIEARZ + 4y (v
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where 1y, satisfies

19y (oy X < oh(y) + 2[ay(y) I,

Using then (2.3),

1.2 , =3/2

oﬁ(y) = Ny + N5, (e,y) + [wg(e.y)JGN(y),

where ¥o and wg are polynomials of degree 2 in y. We then get

|(p x)? - N']yzxz(l-x)zl

XQON(.Y)

3/lez(e.y)l + |93(0,5) [84(¥) + 14 (oy(¥)x)].

Using the triangle inequality, (2.4), (2.5) and (2.6),
IEx(x"”(l)-X)2 - N x(1-x) (1 + x(1-x)y?) | < N'3/29N’2(y).

where o ,(y) = N2 oy (1)1 + o)1) + N2 1u,(0.9)]
+ |¥5(0.y) [y (y) + ¥y (oy(¥)x) 1.

The fact that {]n4/3 dm} 1is a bounded sequence can be shown easily
and (1.10) is proved.
In the same way it is possible to show that

E MY (1)-x3 < N¥2 (1 4 242,

If we define py 5(y) = (11 + 2y)¥? then jp4/3 dm 1is finite, does

not depend on N and (1.11) is satisfied. Taking then NI + N2 + PN3 =

(1.12) follows.

PN
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We find now the form of A. Using the notation of Theorem 1.1,
ao(x) = x(1-x),
Jr(x,y)m(dy) = (e-xv)x(1-x),
Js(x,y)m(dy) = x(1-x)(1 + x(1-x)v).

By (1.14) A is given by (0.9) and by Theorem A.3 A is the generator
of a strongly continuous positive conservative contraction semigroup

on. C[0,1]. This proves Theorem 2.1.

Definition: Let {Y(k): k = 0,1,...} be as in Chapter 1. Random
variables {X(k): k =1,2,...} defined on the same space as

{Y(k): k=0,1,...} are said to be chain dependant iff for every x
in R and k =1,2,...,

PLX(k)

1A

x|Y(0),Xx(1),...Y(k-2),X(k-1),Y(k-1)3

PCX(k) < x|Y(k-1)1.

Theorem.2.2: For y in R let PY € P(R) be defined by
PY (~=,x] = PCX(K) < x|Y(k-1) = y3
and let
bgly) = /xPY(dx),
by(y) = [xZPY(dx),

oly) = f1x|%(dx).
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Assume by € L4 (dm), b, € L2(dm) and o € L¥3(dm). Suppose (1.5),

(1.6) and (1.8) hold with k1 =1, kz =2, bo, b2 as above and b] = 0.
Let

o? = [(@n? - (Qn)?)dn.

(o}
Proof: For y in R let {X(k): k =1,2,...} be i.i.d. with
distribution PY and {XN*Y(k): k =0,1,...} be the Markov chain
defined by

XN’y(O) has a given distribution u

and

MY (k) = MY (o)e X+ X (K)
oN

Let PYY be the transitionof X"*Y and Tet Zy(k) = (X(k),Y(K))
be the Markov chain in R x R with transition PV satisfying

PN((x,y).A x B) = PN*Y (x,A)P(y,B).

(Note that {XN(k): k =0,1,...} 1is given by

XN(k) = xN.y(o) + X(])"‘...*X(k) .)
g

Conditions (1.9) to (1.11) of Theorem 1.1 take the form
16, (XY (1)-x) - (/)7 Tby(y)] = 0,
IE (MY (1)-x)2 - (o®N)7Tb, ()] = 0,

EXVY(1) - x|? < (03N3/?)-]6 (v).
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Here ay = (o), 8y = (27T, vy = (N¥2)T o = 65 plxay) = byly),
r(x,y) = 0 and s(x,y) = bz(y).

Using then Theorem 1.1 we conclude that the finite dimensional
distributions of XN([N-]) converge to those of X(-), the Brownian
motion with gengerator %-ﬁ;z-. This completes the proof.

Remark. If PY = 6(y), the Dirac measure at y, Theorem 3.2 is the CLT
for ergodic Markov chains mentioned in the introduction.
In the last result of this section we obtain a diffusion approxi-

mation for a sequence of adequately scaled stochastic difference equations.

Theorem 2.3: Let {oy(k): k = 0,1,...} be defined by
(2.7) au(k) = al6 + au¥(K)
: N Ne * oy

where {Y(k): k = 0,1,...} is as in Theorem 1.1. Let E = [ro.r]]
be a closed interval of R and let G € C(ExR) satisfy the following

conditions:
(2.8) G(x,0) = 0,
(2.9) ro-X < G(x,y) slr]-x

for every x in E and y in F, and
' 2 3
(2.10) |6(x,y)-yf(x)-y“g(x)| < M|y|

where f and g are continuously differentiable on E, M is a constant

and



34

fry) = gry) = £(rp) = g(rp) = 0.

Assume conditions (1.5), (1.6) and (1.8) are satisfied with

b1 as in Theorem 2.1. For N = 1,2,... let

{(Xy(k): k =0,1,...} be defined by

XN(O) has distribution u € P(E)

Let X(-) be the Markov process in E whose generator A, with domain

C2[0,1], is given by

A=[ﬁw+ef+§uwu+[ﬁ2+%3m§u2

Then, as N - =, the finite dimensional distributions of Xy (C-/a3])

converge to those of X(-).

Proof: We just give an outline of the proof.

Let o, = a:e +ayy and define oNY(K): k=0,1,...3 by:
N,y
X"*?(0) has distribution u,

XY (k1)-XN Y (k) = 6%y (K)sy,).

(Note that we define like this a deterministic difference equation.)
If we call pNsY  the transition of xN+Y  the chain {ZN(k) = (XN(k),
Y(k)): k =0,1,...} has transition PN’y(x,-)xP(y,-). We can use
Theorem 1.1 and here (1.9) and (1.10) take the form
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E,LOMNY(1)-%)-6(x,0,)7 = 0,
E L0 (1)-x)2-6(x,04)%1 = 0.
Using (2.10) we obtain
p(x,y) = yf(x),
rixy) = of(x) + y%g(x),
s(x.y) = y2f(x).

Theorem 2.3 follows.



CHAPTER III
A LIMIT THEOREM FOR GEODESIC RANDOM WALKS

Let M be a Riemann manifold of dimension n. The Brownian
motion in M 1is a stochastic process {x:: t > 0} with continuous

sample paths such that XS = x and
X t X
f(xt) - f(x) + 5 (Af)(xs)ds

is a martingale. (For the existence of such a process see Pinsky(1978)).
The aim of this section is to approximate the Brownian motion by geodesic
random walks. The result we prove is a discrete parameter version
of a result of Pinsky (1978).

Let x € M, Tx(M) be the tangeﬁt space of M at x, Sx(M) the
unit sphere of Tx(M), S(M) the bundle of tdngent unit spheres. Let
& € Sx(M) and x(é,ex) be the unique unit speed geodesic starting
from x 1in the direction £, Let {t(k): k=0,1,...} be i.i.d.
in R* with distribution P and assume ECt(k)] = ELE(K)] - 1= 1. Let
{Z(k): k = 0,1,...} be the random variables in S(M) such that
2(0) = (xgsEg)s---»Z(k) = (x2E,) where

Xk = Xk_] (t(k-1),¢ k-1 )’

Ek‘E

Xk
and the conditional distribution of Ek given {(xo,so),...,(xk_].sk_])}

is the uniform distribution on Sx denoted by u. The sequence
k

36
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{xo,x],...} is called a geodesic random walk.

Theorem 3.1. For N =1,2,... let {Zy(k) = (x:,sk): k=0,1,...}

be the random variables such that xg = X, and

’ Ek_] ).

Assume the Ricci curvature of M bounded from below. Then for every

- N = X
f in C(M),mE[f(X[m])] E[f(x£)].

Proof. To prove this theorem we need the following Lemma:

Lemma: Denote by P (x,z) the parallel transport along the geodesic

X(-,). Let f ¢ C'Z((S(M)) and let
U(t,X,E :Tl) = f(x(taﬁ): Pt(x9E)(n)),
where x €M, ¢ ¢ SX(M). ne€ SX(M). Then

au S, au _ i 3
ot (ooxogaﬂ) 51 3"1 rj ,ka ﬂk 351 .

3u n £
We will denote 5% by DE(u) and DE by DE .

We also remark that
2 - of '
if f e cCy(M), DEf ; £ _a"i . We use Theorem A.1b.

In the notation of this theorem GN = S(M),
E=M,D= cﬁ(n). For f in E(S(M)) we define

TWF(xiE) = [ R, Py fx,8) ()P wldm),

N
Ay = N(Ty-1),
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Af=-}‘—Af for febD.

1

let fe D, h=Df, k=DDF and f =fF+NEh+ N

D N k.

We have to show that “ANfN -Afj] 0 as N>+ =, Using the Temma we

have the following Taylor expansions for f and h(we replace (1) by r]):
(2.1) [f(xly MRLE) - F(x) - ((r) M) DF(x) + (G/MDDF(xD] < K NI/23,

(3:2) [R(xlxy/E) By g (xuE) ) = lxan) = (xy/MORGxum | < K7

For g € C(S(M)) let B be defined by

Bg(x,€) = [  g(x,n)u(dn) - g(x,&).
S, (M)

By (2.1), (2.2) and the definition of Ty >
(2.3)  N|TyF(xu6) = Flx.6) = (7D F(x) 5N DD F(x)| < N E|<]),
where K is a constant depending on M only,

(2~4) mITNh(va) = h(xai) - Bh(X,E) - (m-] ngh(X.n)u(dnH ’

< (M7 ke = (M7,

(2.5) |Tyk(x,8) = k(x,E) - Bk(x,£)| < (/M) KEfrql = A 7T K.
Using then a triangle inequality,
A F(0E) - AF(R)] < )T KGE| 13+ 14 0)

+ |Bh(x,£) + DEfllﬁ

+ |Bk(x,g) + DEDEf(x) + [ Dgh(x.n)du(n)-Af(X)l-
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To conclude the proof we show the following equalities :

(2.6) Bh(x,t) + DEf =0,
(2.7) IDgh(X,n)u(dﬂ) =0,
(2.8) uu@)=nu)-%%ﬁn.

Using the definition of B and the fact that fniu(dni) =0,

. (. 2 of o of |
Bh(x'£)1 fﬂi 3"1 u(dni) - 51 3X1 'E.i 3"1 -DEf(X)i .

This proves (2.6). For (2.7),

n =g, o0 -rl 3h '
Dsh(x:rl) = E'l axi(xm) rj,kgj“k ani(xsn)

22f i of

= &k X%, T3k 53" ax +
(A.7) follows then from the fact that

2
Jo7n(x.n)uldn) = (g, %;f;;;-(x) - T s g;k )neuldn,) = 0.

(A.8) follows essentially as in Pinsky's article. We have to show
Bk(x,£) = [D.D f(x)u(de) - D, f = Af - DD f.

This reduces to jnkosf(x)u(dg) = Af (see Pinsky 1978 p. 209).

To conclude we use the following result of Yau.

Lemma: Let M be a complete Riemannian manifold with Ricci curvature
bounded from below by a constant. Then the Brownian motion semigroup

preserves the class of continuous functions which vanish at infinity.
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Remark: In his article Pinsky assumes that for k = 0,1,2,.. Ty is
exponential with parameter one. He then introduces the geodesic transport

process X(-) defined by
x(t) = X1 (t-(‘r.|+...+'rk_.|), Ek-l)

where T+...+t ; <t < t+...+7,. He then shows convergence of a

scaled geodesic transport process to Brownian motion.



APPENDIX

In this appendix we give conditions for sequences of discrete
parameter processes to converge to Markov processes. Theorem A.1 is
a discrete parameter version of Theorem 3.15 in Kurtz (1975). Throughout

this section (E,r) 1is a complete locally compact separable metric space.

Theorem A.1: a) Let K be a Banach subspace of B(E) which contains
é(E) and such that f € E(E) and g € K imply f g € K. Suppose
{T(s)} 1is a strongly continuous contraction semigroup on K with
generator A corresponding to a Markov process X(.) with initial
distribution u and sample paths in D.[0,=). For N=1,2,... let
{ZN(k): k =0,1,...} be a sequence of Markov chains with transition
PN and measurable state space GN. Let eN be a positive constant,

€y * 0 as N+ =, and ny: GN + E a measurable mapping. Let

(A.1) Xy(t) = ny (2, (rey't1))
and assume
(A.2)  HmE(FOy(0))) = E(F(x(0))

for every f in K. Let ~ be the equivalence relation on Bor(GN)
defined by

f~g iff E|f(Zy(k)) - g(zy(k))| = O for every k >0

41
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and let
(A.3) Ly = {f € Bor(6y)/~: |If]| = sup E|f(Zy (k)] < =},
(A.4) T,fx) = [F(2)PN(xdz), feLy,

(A.5) Ay = eﬁ'(TN-I).

and

(A.6) . myf(z) = fny(2)), f € B(E).

Let D be a core for A and assume that for every f in D there

is a sequence {fN} in LN such that

(A.7) sup el < = -
(A.8) sup ANl < = s
(A.9) Vime  Wfy-myfll =0 ,

(A.10) limy, . IAyfy-myAfll = 0.

Then the finite dimensional distributions of XN(') converge to those
of X(-).

b) If in (A.7) - (A.10) L, is replaced by B(GN) with the sup norm,

N
then convergence is in distribution in DE[°’°)'

Proof: a) Let V be an independent Poissonprocess with E[V(t)] = t.
Remarking that LN is a Banach space and TN is a linear contraction

on L, it follows that A is the generator of ZN(Vteﬁ]t]). Let
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Yy(t) = Z,(Vi€y't1). Conditions (A.7) to (A.10) imply conditions
(3.17) to (3.20) of Theorem 3.15 in Kurtz(1975), and the finite
dimensional distributions of nN(YN(t)) converge to those of X(t).
The convergence of the finite dimensional distributions of XN(t) to
those of X(t) follow then by a standard argument.

The next theorem,due to Blumenthal and Getoor(1968, Theorem
1.9.4), gives conditions for a semigroup to be the semigroup associated

with a Markov process.

Theorem A.2: Let E be as in Theorem 2.1 and {T(t)} be a strongly
continuous positive contraction semigroup on E(E) whose infinitesimal
generator A is conservative in the sense that there exists a sequence
{fN}c D(A) such that b. p lim fN =1 and b.p.lim AfN = 0, where

b.p. 1im fN = f means fN(x) + f(x) for every x in E and

s:p quu < », Then, for each u € P(E) there exists a Mafkov process

X corresponding to T(t) with initial distribution u and sample
paths in DEEO,w).

Suppose also that the generator A of {T(t)} satisfies the
following condition: for every x € E and neighborhood V of x
there exists f € D(A) and a neighborhood U of x such that
ly<f<ly and Af =0 on U. Then almost all sample paths of
X(+) belong to CEEO.w)

The next theorem gives conditions for a one-dimensional diffusion

operator to be the generator of a contraction semigroup. (Ethier 1978).
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Theorem A.3: Let E be a closed interval of R, possibly
infinite, with end-points <" Let a and b be continuous
functions on E with a > 0, having bounded deviratives a", b', b".

Suppose
i
a(ri) =0 < (-1) b(ri) if |r1| < ®

and for f ¢ C;(E) let Gf = af" + bf'. A =G 9generates a semigroup
{T(t)} satisfying the conditions of Theorem A.2.
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