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ABSTRACT

MOLECULAR FORCES AND ELASTIC CONSTANTS

OF POLYETHYLENE SINGLE CRYSTALS

by Joginder N. Anand

Lamellar polyethylene single crystals have a folded-chain

structure in which planar zigzag segments of molecules take an

orthorhombic lattice. For these crystals, nine independent elastic

constants appear in the generalized Hooke's law. Thus, they are

inherently quite anisotropic.

Their anisotropy is enhanced further by the directional

intra- and intermolecular forces. Intramolecular forces are due

to the covalent C-C bonds forming the chains, and are much stronger

than the intermolecular London dispersion-type of van der Waals

forces. The latter have been approximated by a 6-12 Lennard-Jones

potential involving two unknown constants; the ratio of which is fixed

by the equilibrium separation to give a minimum in the potential.

Their values are determined by comparing the computed crystal

potential energyand the experimentally-determined cohesive energy,

and are found to be comparable with those of argon.

First and second nearest-neighbor interactions are considered

to derive finite difference expression for the components of the force

acting on a unit in terms of relative displacements and interaction

constants. These are converted into partial differential equations

and compared with the corresponding equations of motion obtained

from continuum theory to establish relationships between the elastic



JOGINDER N. ANAND

constants and the interaction constants. A limited central force

assumption is employed to reduce the number of interaction

constants from thirty to fourteen for the second nearest-neighbors

and from eleven to seven for the first neighbors only.

Interaction constants for units belonging to the same chain

are obtained in terms of the C-C bond stretching, bending and

repulsive force constants while others are obtained from the 6-12

potential in terms of the Lennard-J ones constants and the appropriate

separation distances.

Finally, by substituting values of the intra- and intermolecular

force constants and the geometric parameters, numerical values of

the interaction constants and the elastic constants have been obtained.

From these the values of Young's moduli E1, E2 and E3 obtained in

directions a, b and c, are found to be about 0. 38 x 10-6, 0. 27 x 10"6

and 2. 39 x 10-4 dyne/AZ respectively; while the constants C44, c55

and C66, identified as shear moduli, have been calculated to be 1.12

x10-4, O. 89 x 10-4 and 6. 52 x 10-7 dyne/Az. The magnitudes of

the constants c23, C13 and CM. are found to be equal to those of

C44, c55 and C66.

The value of E3 for the chain direction compares well with the

Young's modulus of oriented polyethylene obtained theoretiCally as

well as experimentally. Furthermore, the value of the Young's

modulus of bulk polyethylene lies between the values obtained for

moduli along and across the chain. It is interesting to note that

polyethylene single crystals are found to have shear resistance even

when only first neighbor interactions are considered and forces are

central.
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I. INTRODUCTION

1. l. Crystallinity in Polymers

It has been found that most polymers, perhaps all, are partially

crystalline, having co-existing ordered and disordered regions (1).

Their x-ray diffraction patterns show both sharp features associated

with regions of three-dimensional order, and more diffuse features

characteristic of molecularly disordered substances like liquids. The

degree of crystallinity can be estimated from changes in density,

specific heat, refractive index, transparency, x—ray diffraction

patterns and various other physical properties. In fact, many of the

unique physical properties of polymers are associated with their

ability to crystallize.

Stereoregular isotactic polymers whose molecules are chemically

and geometrically regular in structure, such as linear polyethylene, are

typically crystalline. Noncrystalline polymers, on the other hand,

include those in which irregularity of structure occurs, such as atactic

polymers or copolymers with significant amount of two or more quite

different monomer constituents.

Unit cell data and other information, such as the configuration

or chemical structure and the conformation of several crystalline

polymers, have been compiled by Miller and Nielson (2). In a number

of new isotactic polymers two or more conformations and unit cells

have been observed to depend upon the temperature and other conditions

of crystallization. The most commonly occurring unit cell structures

in various polymers may be classified as orthorhombic, pseudo-



orthorhombic, triclinic, hexagonal, monoclinic and rhombohedral.

l. 2. Polymer Single Crystals and Related Structures

Crystalline polymers usually crystallize from dilute solutions

in the form of thin lamellae called single crystals; and such crystals

of many polymers such as gutta -percha, polyethylene, polypropylene,

polyamides,cellulose and its derivatives have been reported since their

independent discovery and identification in 1957 by Till (3), Keller (4),

and Fischer (5). All polymer crystals have the same general appear-

ance, being composed of thin, flat or hollow pyramidal platelets.

Spiral growths of additional lamellae originating from screw dislocations

are usually present on their surface. Crystallization conditions such as

solvent, solvent concentration, temperatur'eand rate of cooling determine

the size, shape and regularity of these crystals. However, their‘thick-

ness depends mainly on the crystallization temperature and any subsequent

annealing treatment (6)- .

Electron diffraction analyses of these crystals indicate that the

polymer chains are normal or nearly normal to the plane of the lamellae

(3, 4, 5). The length of polymer chains being several times the thickness

of a lamella, Keller (4) points out that the molecules must be folded

back and forth on themselves several times. In polyethylene, for

instance, the molecules can fold in such a way that only five carbon

atoms are involved in the fold itself (6 ), as shown in Figure 1. 4 (b).

When the rate of growth during crystallization is slow, relatively

thick aggregates of single crystal lamellae having a common nucleus

and orientation, called hedrites (Figure l. 5 c), have been reported for

polyethylene and polyoxymethylene (7, 8, 6 ). They have a polygonal



appearance, and are the closest approach to a macrosc0pic single

crystal. But at faster growth rates numerous defects, such as

vacancies and interstitials, terminal groups, branches and improper

folds, are incorporated into the lattice.

During crystallization from the melt spherulites develop which

have a complex lamellar structure, as seen in the electron micro-

scope (9). Their nuclei have a random orientation, and growth

occurs radially outward from these until the entire volume is filled.

When two spherulites meet during crystallization they form a common

straight boundary in which the transition in orientation takes places (1).

This picture, known as the "crystal defect solid" model of

crystalline polymers, visualizes the matrix as an ordered region

having defects incorporated throughout (1). It is in direct contrast

to the old "fringed micelle" concept, in which a crystalline phase

consisting of crystallites is taken to be embeded in an amorphous

matrix forming a second phase. In the 1atter.molecular chains are

visualized to pass through several crystallites and, thus, to have

several straight and several disordered segments, as shown in

Figure 1.1.

 

.11
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Figure 1.1. Fringed micelle model.
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Although from a macroscopic point of view it may appear that at low

crystallinities both concepts are identical, as far as a microscopic

description is concerned the two are completely different.

1. 3. Polyethylene and Its Single Crystal Structure

The chemical formula of polyethylene is CnH2n+2' Thus, a poly-

ethylene molecular chain consists of n, - CHZ- chemical repeat units,

neglecting the end ones. The configuration of a linear molecule is

shown below in Figure l. 2.

H H H H H H
I I I I I I

H-C -C -C -C-C-C—

l I I I I I

H H H H H H

Figure l. 2. Configuration of linear polyetheylene.

This may also be abbreviated and written as (-CH2-)n .

Covalent single bonds formed by the sharing of two electrons,

exist between two consecutive carbon atoms and between carbon and

hydrogen atoms. The length of the C-C bond is about 1. 54A, slightly

longer than the C-H bond length of about 1. 10A. Carbon is tetravalent

and its four bonds are directed in space in such a manner that it lies

at the center of a tetrahedron as shown in Figure 1. 3.



.H 
1.54A

C

Tetrahedron formed by the four bondsFigure l. 3.

of carbon.

The angle between any two bonds is approximately the tetrahedral

angle of 109°28', as shown. Carbon atoms forming the backbone of

a linear polyethylene molecule take up a planar zigzag conformation

mm crystal lattice, as shown in Figure l. 4 (a).

  

109°28'

      
 

T]

 

repeat distance

Figure l. 4(a). Planar zigzag conformation.



Figure 1. 4(b). Chain folding involving five C atoms.

The repeat unit is (~--CHz-CH2 -) or («C2 H4-) and the distance between

two alternate C atoms is the repeat distance; it is approximately equal

to 2. 55A.

Polyethylene single crystals crystallizing from dilute solutions

have well defined forms, which usually consist of lozenge-shaped

flat or hollow pyramids lOO-ZOOA in thickness and about 10-20 microns

in lateraltdimensions:

   lOO-ZOOA

lO-ZOp

  

Figure l. 5(a). Schematic diagram of flat single crystal.
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(b)

lO-ZOp

(C)

100p. J

r“ '7

Figure l. 5. Schematic diagrams (b) hollow pyramid,

lozenge-shaped, platelike polyethylene single

crystals having a folded-chain structure (c) hedrites.

The molecular chains forming these crystals have a fold-length of

the order of the thickness of the crystals (4).

The unit cell structure of polyethylene is orthorhombic, and

i.

3 Shown in Figure l. 6 (a, b, c).
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(C)

 

   
Figure l. 6. Schematic representation of the unit cell of polyethylene

showing (a) parameters a, b and c (b) location of

molecular chains along the c-axis and (c) setting angle

of 41° that the planes of chains make with the b-axis.
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Axes a, b, and c are orthogonal and the respective parameters a, b

and c are approximately 7. 41 A, 4. 94A and 2. 55A at room temperature,

as determined by x-ray diffraction by Cole and Holmes (10). Molecular

chains lie along the c-axis, thus, c is just the repeat distance. The

unit cell consists of four parallel planar zigzag chains running along

the c-axis at the four corners of the (a, b) rectangle, their planes

making an angle of (3 = 41 o, with the b-axis, as determined by

Bunn (11), and one running through the mid-point of the rectangle

having a different orientation from the other four. The chain through

the midpoint of the rectangle and three additional similarly-oriented

chains through the midpoints of adjacent rectangles may be considered

to form their own (a, b) rectangle. Thus, the entire crystal may be

considered to consist of chains having these two orientations, their

respective rectangles forming an entangled cell structure as shown

in Figure l. 7 (a and b):

41

 

 
 

  
 

Figure l. 7(a). Entangled-rectangular cell structure.
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Figure l. 7(b). Entangled-rectangular cell structure.

1. 4. Anisotropy of Polyethylene Single Crystals

For the class of crystals having an orthorhombic lattice, the

36 constants of the generalized Hooke's law are reduced to 9 independent

constants, as against 3 for crystals having cubic symmetry (12).

Anisotropy of such crystals is, thus, much more complex. Besides,

polyethylene single crystals have another feature, peculiar to poly-

meric crystals, which contributes to additional anisotropy. In the

direction of the c-axis, or along the molecular chains, the primary

covalent C-C bonds, are several times stronger than the secondary

bonds existing between any two molecular chains due to the weak

van der Waals forces (13, 6). This difference is superimposed on

the inherent anisotropy of the orthorhombic lattice structure.

1. 5. Objectives

A connection between the nine independent elastic constants,
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as they appear in the generalized Hooke's law, and the microscopic

intermolecular and intramolecular force constants is obtained for

single crystals of polyethylene in the present work. However, in

accomplishing this objective the continuum or macroscopic elastic

constants are obtained first in terms of interaction force constants,

for the forces existing between units occupying the present orthor-

hombic lattice, by following the von Kafrma'n cubic crystal structure :

J L“!

approach (14).

First nearest-neighbor and second nearest-neighbor inter-

 
actions are accounted for, and the effect of central force assumption ' J

is demonstrated. The interaction force constants are in turn obtained

in terms of the more basic constants, such as stretching, bending,

torsion and repulsive force constants for the primary C-C bonds that

exist along the molecular chain axis, and the intermolecular force

constants for the net attractive forces between adjacent chains due

to secondary bond forces. The strength of the C-C bonds under

various types of deformation is well-established, by Mizushima and

Simanouti (15). However, the strength of the secondary bonds is

not known for polyethylene.

The net potential existing between adjacent chains is

approximated by a‘: 6-12 Lennard Jones potential (6), which involves

two constants whose ratio is determined by the equilibrium distance of ”

the two chains. Their exact values are then determined by calculating

the crystal potential energy density and comparing it with the

experimentally-determined value of the cohesive energy density for

polyethylene (16 ) .
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Numerical values of the interaction constants are obtained

from the values of the C-C bond strength constants, the Lennard-

Jones potential constants and the geometric parameters. These are

then substituted in the expressions for the elastic constants to yield

their numerical values. The nine independent elastic constants of

the generalized Hooke's law are measures of the Young's and shear

moduli of polyethylene single crystals in various directions. These

are compared with known values of the constants, such as the Young's

moduli of oriented and bulk polyethylene. Shimanouchi, et al. (17)

have calculated the Young's modulus for oriented polyethylene,

consisting of infinitely long molecular chains, to be 3. 4 x 10P4

dyne/Az. This is somewhat higher than the value of 2. 6 x 10-4

dyne/A2 determined experimentally by Dulmage and Contois (18),

using x-ray diffraction and the relaxation technique.

The values of the Young's moduli along other directions should

be considerably lower than this, because the forces existing along

other directions are much weaker. The Young's modulus of bulk

crystalline polyethylene is of the order of 10.5 dyne/Az, and this

must represent some kind of an average of the moduli of polyethylene

single crystals along the three lattice axes. Like the Young's moduli,

the shear moduli too should be higher along the chain direction.

 



II. THEORETICAL DEVELOPMENTS

2. 1. Elastic Constants of Polyethylene Single Crystals

In the orthorhombic lattice structure of polyethylene, as

discussed in Section 1. 3 and illustrated in Figures 1. 6 a-c, four

molecular chains having parallel orientations and one having a

different orientation occupy, respectively, the four corners and

the center of the rectangle (a, b). This may be reduced to a simple

orthorhombic lattice by considering pairs of two chains, consisting

of one at the corner and the other at the center of the rectangle, to

 occupy~ lattice points, as shown in Figure 2.1. This reduction.

 

 

 

 

 

 
 

    

Figure 2.1. Reduction to simple orthorhombic lattice. Lattice

points are occupied by units of two chains connected

by a natural fold.

facilitates the application of symmetry operations to a polyethylene .-

single crystal. . since then the crystal would have the same number

of symmetry elements as a simple orthorhombic lattice cell structure.

It may also be noted that a chain lying along the c-axis can be broken

into (-C2H4-) repeat units without any loss of generality and, as

shown in Figure 2. 2, the equivalent lattice structure is then an

orthorhombic structure with units occupying the lattice points.

13
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Figure 2. 2. Equivalent lattice with (-C2H4-) units occupying

lattice points.

We are now in a position to write Hooke's law with proper

symmetry operations for polyethylene single crystals. For small

strains ,Hooke's law states that stress is proportional to strain and

for an anisotropic medium its generalized form may be written

mathematically as

0'. = c. 6. 2.1

The constants of proportionality cij are called the elastic constants

or moduli of elasticity, while (Ti and ej respectively represent the

stress and strain components. Equation 2. 1 may also be solved for

strains in terms of stresses to obtain
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and elements sij of the inverse matrix are called the moduli of

compliance.

The 36 elastic constants in Equation 2.1 are reduced to only

9 independent constants (12, 19) for the symmetry elements of an

orthorhombic lattice. These nine constants are shown in the matrix

given below

  

y—I —

C11 C12 c13 0 0 0

c21 czz c23 o o o

c c c 0 O O

Cij ___ 31 32 33 2.3

O 0 0 C44 0 0

o o o 0 CSS 0

0 0 0 0 0 C66

wh : : :

ere c:12 CZl’ c13 C31 and C.23 c32'

Equation 2.1 may now be written out by using this matrix:

“1 = “11'514r C12 €2 + C13 63

cr2 = C12 61* C22 E2 + C23 63

“3 = C13 61 + C23 '52 + C33 63
2.4

“4 = C44 64

“5 = c55 ‘5

‘6 = C66 66

L .

ettlng u, v and w be the components of displacement along the

ax

es 3:. y and 2, respectively, where these correspond sequentially

with

the parametric axes a, b and c, we may write the strains Ei
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as

-3_u - 2! -E’fl
6l - 3x ' 62— 8y ’ 63 -32

and 2.5

8w 3v Bu 6w _8v Q3

64-3??? 93-575? 66-3.. *3,

Also, it may be noted that a

64 z Y23 E

65 : l’13

66 : le 2.6

Where the Yi-'8 are shear strains. Young's modulus E and the

Shear modulus G are defined by

Where 0' and E are the longitudinal stress and strain, and

2.8

Where 7 and Y are the shear stress and strain.

Applying this to the particular case in hand, we obtain three

Young's moduli El' E2, E3, and three shear. moduli G23. G13.

and G12 as shown below.

Rewriting the first of the six expressions in 2. 4 as for

1111' -lab-(13,1
stress 0'1 only

E161: or1 : C1161+¢12€z ”1363 2.9

and -

dlviding both sides by cl. we get



s
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€ €

_ 7- __3_

I51 ’ C11+C12 61+C13 e1

Similarly, by repeating the above operations for the other five

expressions in 2. 4, we get

6 6

E2 = C125+‘322J'023E;

2.10

6 6

_ _l_ .3.

E3 “ C13s +C235 “:33
3 3

and

E4 : C44 z 23

5 = C55 = (:13 2.11

E6 = C66 = G12

6.

v..=-—-1-=--—1—=-1—— 2.12
13 e. e. V.

J _.1 11

6.

1

to get six vi.'s, such that

V - :1 V _ _ 5.2.
12 62 21 61

6 E

3 1
U : - — , V : - -— 2.13

31 61 13 63

6 6

”23 = ‘ _Z ' ”32 = ' El
63 2

$11

IbST—‘ituting 2.13 in 2.10, we obtain:

E1 : C11 ”‘12 ”21 ' C13 ”31

E2 = C22 ‘012”12 ' C23 ”32 2'14
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The Vij's may be evaluated in terms of the cij's by using

simple uniaxial stre 3 se 3 .

0’

Solving the last two equations of 2.15

and similarly by considering uniaxial

21

31

C

c €+c €+c E

C

dlre<:1:ions, we obtain:

 

32

12

13

23

ll

12

136
m

H
N

m
m

u
.
)

p
—
a

m
m

N
U
)

m

"‘
l

N
H

m

"‘
l

o
a
r
—
-

m
m

C
O
N

€+c €+c E

l

l

1
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Thus, considering a uniaxial stress

1 along the x-direction, 2.4becomes

122133

222 233

+ C23 62 + C33 63

C

 

C33 C12 C23 13

‘ , 2

C33 C22 " C23

(:22 C13 " C12 C23
 

" 2

C33 C22 (:23

C11C23 ' C13 c12
 

 

_ c 2

C11 33 '°13

C33 C12 ' c23 C13

' 2

C33 C11"°13

C22 °13 c12 c23
 

22 C11“ c12

c11 C23 C12 c13
 

11 22' 12

2.15

simultaneously, it follows that:

stresses in the x and y-

2.16a

 



a
-

Ou “4

1“-

TV},G



l9

' Substituting 2. l6.in 2. 14 gives:

°12(°23°13 ' °33°12) + °l3(°12°23 ' °22°13)

1:31 = °11+
( 7‘)
°22°33 ' °23

2 2 _ 2

C12 °13 °23 ' °12 °33 °13 °22
= c +

11 (C C _ c 2)

22 33 23

+ 2 2 2 _ C 2

°11°22°33 °12°23°31 ' °12°33 " °23°11 31°22

2

(°22 °33 " °23)

 

 

2.17

Similarly, E2 and E3 may be obtained by considering uniaxial

stresses 0'2 and 63intle y and z-directions; they are:

+ 2 Z c 2 - c 2c

E °11°22°33 °11°23°31 ' °12°33 ‘ 23°11 31 22

2 _ 2 '

(C11 °33 " °13)

2.18

ccc +2ccc --C2 c2 -c2

E 11 22 33 11 23 31 12°33 23°11 31°22
3 - .

2

(C11 C22 ' °12)

2.19

It Should be noted that

(c c -c2)E=(c c -cz)E=(c c -c2)E
22 33 23 l 11 33 13 2 ll 22 12 3

2
2

°11°22°33 + °11°23°31 ' <:12°33

2 2

' °23°11 ' C31°22 2'20

Later in this work expressions for the elastic strain energy

and . . . . . .

equatlons of motion W11]. be needed for comparison w1th equations

Obt -

3‘ lhed from microsc0pic considerations, in order to evaluate the
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strain energy density U, we note that

all of which may be

Thus,

and

o
n

C o
n

U

asQ
)

m

y
—
I

I
I

q

N

1 2 2 2

U ‘ 2(°11°l +°22°2+°33°3)

’+(°12°1°2'+°13°1°3'+°23°2°3)

+1—(c e + e + 62)

2 44 4 °55 5 C66 6

aU _ _

361 " C11°1+°12°2+°13°3 “l

3U _ _

862 " C12°1+°22°2+°23°3 " “2

aU _ _

353 ’ °13°1'*°23°2'*°33°3 ‘ “3

8U _C E _6 EU _C _a aU

3124‘ 44 4' 4' 355“ 55 5‘ 5' 356

obviously satisfy 2. 21.

To get such an expression for the elastic

2.21

satisfied if U takes the following form:

2.22

2.23

°oo°o ' “6 '

Now, the equations of motion may be written in the form '(‘12,‘ 14):

fi: 60.14.33.193}.

po 32 av az



3215

not L

$53.
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. _ 8176 + 80'Z + 864

p0 8x 8y 82

80' 80' 8a
.. _ 5 4 3

p w - Tx + “8y + —8z 2.24

where po is the density. To Specialize these. equations for an

orthorhombic lattice, we must substitute 2. 4 and 2. 5 in these, the

result is:

a2u a2u an2 av2 8W2

"o"i = °11 3x2 + °66ay? + °55 :2 + (°12+°66)ax_Y"av +(°13"°55)'z§“'_xaz

62v 82v av2 3“2 3va

poI ' °66ax2+ °22 "'2' + °44 :2 + (°12+°66) 8x8y + (°23+°44)""'"8y82

2 2 2 2 2
__ 8 w 8 w 8 w 8u 8 v

Pow ’ °55 a")? + C44—Tay + C33——8z2 + (°13+°55) 8xan I (°23 °44) av"62'

2.25

Since the orthorhombic lattice has nine independent elastic

constants cij instead of three, like a simple cubic structure,

expressions for the Young's moduli, shear moduli, POisson's ratios,

Strain enerSY. and equations of motion are naturally much more

in"(fl-Ved.

2' 2 Intramolecular and Intermolecular Force Constants

Various molecular force constants are described in this section,

and a. procedure is developed for calculating some of them which are

not known. In Section 2. 4 the. macroscopic elastic constants c J

dis c"flesed in Section 2.1 will be obtained in terms of the above-

me -

htl oned microscopic force constants; for this purpose the two
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following types of forces are important:

(1) Intramolecular or primary bond forces

(ii) Intermolecular or secondary bond forces

i) Intramolecular Forces

The carbon atoms constituting the backbone of a linear poly-

ethylene molecule are held together by covalent bonds formed by

sharing pairs of valence electrons. These C-C bonds feature the

primary or intramolecular forces with which we will be concerned.

The other covalent bonds are carbon-hydrogen or C-H bonds by means

of which hydrogen atoms are held to carbon atoms. The C-C bonds

have a length of 1. 54A, as against 1.10A for the C-H bonds, and they

serve different purposes insofar as their contribution to the strength

of the crystals is concerned. The strength of a polyethylene chain

depends entirely on the strength and degrees of freedom of the C-C

bond. On the other hand, because "of its geometric and steric

configuration, the C-H bond plays an important role in determining

the c rystal structure and providing the intermolecular electrokinetic

fox-c e s to be discussed later.

In a polyethylene molecule all four valencies of carbon are

8-at7i»131:'ied and its four bonds are directed in space as shown in

F o

181“are 1. 3. In general, segments of this molecule are free to rotate

a

bout the C-C bond in such a manner that any three carbon atoms always

to

nth a plane. However, as described in Section 1.3, the molecular

Cha ~

11:18 take up a planar zigzag conformation in polyethylene single

"Ya .
tals and thereby prevent any rotation about the C -C bond.
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The strength of C-C bonds for various types of deformation

has been determined by Mizushima and Shimanouchi (15), and values

for these and other geometric parameters are listed in Section 2. 5.

The force between two alternate chemical units of -CHZ- along the

chain axis is repulsive due to their being too near each other. In

the absence of any free rotation about the C-C bond, deformation of

molecular chains will take place by a process of deformation involving

stretching, bending and repulsive force constants only. This fact will

be made use of later in Section 2. 4, to obtain the interaction force

c onstants.

ii) Intermolecular Forces

As discussed in Section 1. 3, the crystal lattice of polyethylene

is such that adjacent molecular chains occupy an orthorhombic cell.

The attractive forces between these chains, which bind them together

in the solid crystalline form, are called the intermolecular or

Sec ondary valence forces.

Polyethylene is a nonpolar material for two reasons. First,

because all the valencies are satisfied and, second, because both

Garb on and hydrogen are equally electronegative. Therefore, the

attractive intermolecular force is not due to permanent dipole

moments, but rather to time varying dipole moments resulting from

diffe rent instantaneous configurations of the electrons and nuclei.

The a . . , . .
e are also called London dispersion forces, the potential govermng

them is proportional to the inverse sixth power of the distance (20).

Between any two molecules, there is also a repulsive force

(11.1e

to the interference of the electron clouds surrounding the nuclei.
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This force is short-range compared to the London attractive force,

decreasing exponentially with distance (21, 22, 23).

At the equilibrium separation the net force is zero; and, of

course, the net energy, or the potential curve, will have a minimum

at this distance.

Different portions of the exponentially-decreasing repulsive

potential function may, for convenience, be matched by different

inverse powers of the distance (24, 25). If for polyethylene, as

suggested by Geil (6), we approximate this potential by the twelfth

power, the total potential energy function 4) may be written as

d>(r) = 315—- %, 2.26

r1‘

where r represaits the separation distance and A and B are

constants called the Lennard-Jones potential constants. This is the

standard form of the Lennard-Jones 6-12 potential (26).

Evaluation of A and B the Lennard-J ones Constants

The shape of the general potential curve ¢(r) is as shown

below:

<I>(r)

 

     
IF(r)

Figure 2.3. Lennard-Jones 6-12 potential curve (Mr) and

force curve F(r).
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The gradient of ¢(r) will give the force F(r) between two adjacent

molecules. Thus, we may write

- 92.111 2.27

 

F(r) : dr

or

F(r) = ”if; - 9-?- . 2.28

r r

The curve of F(r) is also shown in Figure 2. 3.

The force F(r) being zero at the known equilibrium distance

r0 imposes the condition that the constants A and B have a certain

definite ratio;

F(r) = 0 2.29

give 8

 3 - T: O
2.30

O

01‘

E- r . 2.31a
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Rewriting 2. 31a a's

A=pB, 2.311)

6
where p = i— ro is a known constant, 2. 32

and substituting for A in terms of B from 2.31b in 2.26, we

obtain the potential ¢('r) in the form

¢<r> = 3% - 135. 2.33

r1'

which involves only one unknown constant.

The constant B can now be determined by computing the

crystal potential energy density, in a manner similar to that used by

Lennard-Jones (26) for cubic crystals, and by comparing it with the

cohesive energy density—an experimentally-determined value (16).

The crystal potential energy density, denoted by E, is defined as

the energy per mole of polyethylene,in which the individual units

occupying the lattice points are surrounded by an infinite matrix.

It is computed by summing the lattice energy of the individual units

in a mole of the crystal. The lattice energy of a unit, , denoted by

U, is the energy of the unit when in the lattice of an infinite crystal

and is the sum of the contributions ¢(r) , due to all surrounding

units, where

Mr) = 1A: - 32-
r

with r the distance of the surrounding units from the unit whose

lattice energy is being calculated. Cohesive energy density, denoted

by A , is the energy per mole of a substance that is required to

remove a unit from the matrix to a postion far from its neighbors.
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Evaluation of Lattice Energy and Crystal Potential Energy Density
 

For purposes of evaluating the crystal potential energy, we

will consider polyethylene single crystals to be made up of units of

(-C2H4-) (Figure 2. 2). This model will also be used later in

connection with the development of interaction force constants in

Section 2. 3. The lattice structure may, thus, be represented as

shown below:

 

 

 

 

 

 

        

b-axis

(o. 6. 0) ck e e o

‘3’ <3 ’5

(00 4! .0) c C} \( $

\ X ’\

x. \1 yr

(0: 29 0) d’ ‘3 \> D

A e e

(09 Os 0) Q; A J Ax} -

(2.0.0) (4.0.0) (6.0.0) 3-.....

Figure 2. 4. Schematic representation of two-dimensional

lattice structure with lattice points occupied by.

(~CZH4-) units.
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2.34

and



:here

ie 2,

ever. <

2115

leis-r.-

“will
5““ V

tzatv

The:



28

we may then write the position vector of a lattice point (.3, m, n) as

A.s _ A e .
rlmn - Zelil + mezi2 +ne3i3 , 2.35

A

where 2, m, n are integers and il, 12, i3 are unit vectors along

the a, b and c axes respectively. Therefore, the distance rlmn

is

_ [a 2 + 2 + 211/2

rlmn ‘ °1) (Inez) (“'33) . 2.36

From Figure 2. 4 it can be seen that only when 2 and m are both

even or both odd is the point occupied by a real unit. Also, all the

units for which both 2 and m are zero should be excluded; they

belong to a single chain and, hence, are permanently attached

through the C-C bonds.

It follows from 2. 26, which gives the energy of a pair of units,

that we can calculate the lattice energy U of a (0, 0, 0) unit from

1 °° '
: — Z .U 2 l, m, n:-ao ¢£mn(r) 2 37

1 A B

=22 (_1"2" - T" 2°38

lmn rACmn

l l
=-2+[2(-‘132—-—6——)]B, 2.39

rZmn rafmn

where from 2. 32

"
U II

N
I
H

A

H

O
V

0
‘
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and both Land m are odd or even and n equals any integer, but 1,

m,n ;/ 0.

This reduces the problem to one of calculating sums of the

 

 

type

°° l
A = Z S 2. 40

s £,m,n;-°° r1
mn

for s = 12 or 6.

Substituting for

2 _ 2 2 2
rlmn —(1e1) + (mez) + (ne3).

from 2.36, we get

A 5 1

S ‘eam: n: -m [(181)2 + (mez)2 + (ne3)2] 8/2

2.41

Therefore we may write U in the form

U - is( A - ) 2 42
‘ 2 P 12 6 '

= l B A 2 43
2 12-6 '

where A12-6 = pA12 - A6 .

Crystal Potential Enggy and Cohesive Enem

A gram mole of a substance contains 6. 0249 x 1023 units,

called Avogadro's' number and denoted by N . Let M be the

molecular weight of the lattice units (-CZH4-). Therefore, M
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grams of polyethylene will contain NA units. Thus, the crystal

potential energy per mole E is

E = NAU’ 2.44

where U is the lattice energy of a single unit, as determined in

2. 43.

The cohesive energy density has been determined by Small (16).

However, he gives values of 6, which is the square root of the

cohesive energy per unit volurre;thus, 62 determines the cohesive

energy per unit vdume. In order to convert this to a molar value we

must determine the vdime of a mole of crystalline polyethylene. If

p is the density of such material, the volume V of M grams will

be

V = 5’1- 2.45
p

Therefore, the cohesive energy per mole, A , is

A : 1:31-1- 62 ; 2. 46

and equating the values of A and E obtained in 2. 46 and 2. 44, we

arrive at:

A = E 2.47

M 2

T)- 6 .. NAU 2.48

But from 2.43

U E- B A
2 12-6 ’

which when substituted in 2. 48 gives



'o

.m

U
.
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2M62

NApA

 

12-6

The expression for A then follows from 2. 31b:

A pB

ZRM 62
2.50

NA P A12.6

 

The Lennard-Jones potential constants A and B, defined

by expressions 2. 49 and 2. 50 will be evaluated numerically later

in Section 2. 5, by substitution of the values of several physical

constants such as M, NA’ p and p, and by making use of the

series summation for A12-6 developed in Appendix I.

2. 3. Interaction Constants and Elastic Constants

In order to calculate continuum or macroscopic elastic

constants in terms of molecular force constants, it is necessary to

consider the forces of interaction that result when a lattice unit

moves relative to the units which surround it. Since the force fields

vary nearly linearly with distance for small displacements, the

slopes of the force curves at the separation distances of the surrounding

units determine the so-called interaction constants. These constants

may, therefore, be obtained in terms of the intramolecular force

constants (such as the C-C bond stretching or contraction, bending

and repulsive force constants) and the intermolecular Lennard-Jones

potential constants.

In this section a connection between the elastic constants and

the interaction constants of polyethylene single crystals is established
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by following a procedure similar to von Kafrmafn's for simple cubic

crystals, as discussed in Reference (14) by Kittel. Components of

the net force acting on a unit are obtained by considering its inter-

actions with the surrounding units up to second nearest -neighbors.

These expressions, which involve finite displacements, are converted

into partial differential equations by introducing the lattice parameters

a, b and c, and by taking limits. Newton's law is then applied to

convert the force equations into equations of motion, in order to

compare these with the corresponding continuum Equations 2. 25.

A comparison of the coefficients of appropriate partial

derivatives in the two sets of equations yields the desired expressions

for the elastic constants in terms of the interaction constants. These

expressions may be modified to apply to first nearest-neighbor

interactions only simply by eliminating the terms pertaining to second

nearest-neighbors. Also, the central force assumption is applied in

a rather limited manner to polyethylene single crystals. The C-C

bonds along the chain axis have strong resistance to bending in

directions normal to the chain and, thus, make the forces between

units on the same chain non-central. The forces between units on

different chains may, however, be treated as central.

Model and Notation
 

Consider again, as in Section 2. 2, that the lattice points are

occupied by (-C2H4-) units. Figures 2. 5 and 2. 6 show both the

first and the second nearest-neighbors in one quadrant formed by

the positive x, y and z-axes. An additional axis (x') along the

diagonal of the rectangle (a, b) in the xy-plane is also shown.
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Y

(0.1.0)
\
 

b (1',0,0)

  L
C (0.0.0) a ($70.0) x

(0.0.1)

Figure 2. 5. First nearest-neighbors in the first quadrant only.

 

(0.1.1)

  
I

(0.0.0. 1 '0'1 

 
 

1,0,1)

Z

Figure 2. 6. Second nearest-neighbors in the first quadrant only.
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If y' is considered to be in the xy-plane, normal to x',

Figure 2. 7 then represents the x‘y'z set of axes.

 

90

   

Figure 2. 7. Rotation of x' y' z with respect to x y 2.

Similarly, by considering x" to be along the diagonal of the rectangle

(-a,b), the x"y"z set of axes is shown in Figure 2. 8.

xII y

b
 

  
 

-a
X

YII

Figure 2. 8. Rotation of x" y" z with respect to x y z.
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Considering a, b, c and -:—~/a2 + b2 as units of distances

along the respective axes x, y, z, x' and x", the lattice points may

be labelled by their (3, m, n) coordinates, 2, m and n being integers.

Thus, the points listed below indicate first nearest-neighbors:

(l, 0, 0), (-l, 0, 0);(0, l,0)‘,.(0,-1, 0);(0, 0,1),(0, 0, -l);(1', 0, 0), (-l ', 0, 0)

and (1",0,0),(-l",0,0) 2.51

Only four of the first ten nearest-neighbors are shown in figure 2.5.

It may be observed that nearest-neighbors, as defined here, are not

equidistant from the central unit (0, 0, 0). This is due to the geometry

of the orthorhombic cell, for which the three parameters a, b and c

are inherently unequal. An additional feature peculiar to the poly-

ethylene lattice structure is that units corresponding to (1 ‘, 0, 0) and

(1", 0, 0), along the x' and x"-axes respectively, are considered to

be first nearest-neighbors.

Similarly, the points

(0,1,1),(0, -l, 1),(0, 1, -l), (0, -l, -1);(l, 0,1),(-l, 0,1),(1, 0, -l), (-1, 0, -1);

(1', 0,1),(-1', 0,1),(1', 0, -1), (-l', 0, -l) and (1”, 0,1),(-1", 0,1),

(1", 0, -l), (-l ", 0, -l) 2. 52

are the second nearest-neighbors. These are sixteen in number;

however, only three are shown in Figure 2. 6, in addition to the four

first nearest-neighbors. It should be noted that the units corresponding

to (1,1, 0) are excluded because units corresponding to (1', 0, 0) and

(1 ", 0, 0) lie between these and the central unit (0, 0, 0).

Equations of Motion

Let Fx’ Fy and F2 be the components of the force on the

unit (0, 0,0)along the axes x, y and 2, respectively. Similarly, the
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displacement components of the unit at (l, m, n) may be represented

by utmn' v‘mn and wlmn . Interaction constants will'be different

for different units and will also depend upon the direction of the

displacement. Defining kliii’nn as the force on the unit (0, 0, 0) along

the x1 -axis per unit displacement uj of the unit (2, m, n), where

i,j = 1,2,3 and x1, x2, x3 correspond to x, yand 2 while ul, u2

and 113 correspond to u, v and w, respectively, the interaction force

components Fx’ Fy and F2 are derived below:

_ k11 11

Fx ' k100(‘1100 + “-100 ' zuooo) + k010(“010 + ULo-lo ' 2‘1000)

k11

”001(“001 + u00-1 Juan) + k1'100H‘11'00 “-1'00 ' “000)

11

+ (“1"00 + u-l"00 ' “000” + k101[ (‘1101 + “-10-1 " 211000)

+(u +u -2u )]+k13[(w +w -2w )

-101 10—1 000 101 101 10-1 000

-(w +w )]+k“[(u +u -2u )
-101 10-1 W000 011 011 0-1-1 000

+ (1.101”1 + uO-ll - 2u000)] 2.53

+k1'01{[(“l'01+“'.1'0-12‘1000) ”‘1 1'01 +111'0..1 ' zuooon

+[(“1“01 +“-1”o-12uooo) ”‘11"01 +ul"0-l " zuooon}

+k1?01{[(w1'01+W-1'0-1 ‘ zwooo) ' (“V—1'01 + W-1'0-l ' zwooon

+[(w1“01 + v"--1"o.-1 ' zwooo) " (W-l”01 +W1"0-1 2w0010)]}

+kk1'01{[ ("1'01”r v-1'0-1 ' 2v000) ' (V—1'01 I Y-1'0—1 ‘ zvooo”

+[(""1"01 + V-..1"0.1 ' 2v000) ‘ (V-1”01 +Vinc-.1 ' “000’” °
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Expressing (ulmn +u-l-m-n' 2uu000)’ for example, as (ulmn), we

may rewrite 2.53 in the form

F -k (E )+k (E )+k“(E )
x 100 100 010 010 001 001

11 - —

I k1'00[ (“1'00) I (“1"00” I k101[(u101) I “1.101“

+k101[Iw101) (w101)] Iko1l[ (“011) I (301-1”

+kiI01{[(u1.01)+(u_1,01)
] +[(u11101) +(u_11101)]}

+ kl3'01{[(wl'01) ($.1'01 )] + [ (61"01) ’ (;_1I101)l }

+ k11201{[(V1101) " (V_1101)] +[(V1”01)-(V_1"01)]} , 2.54

which involves the following ten interaction constants:

11 11 11 11 11 13 11 11 13 12

k100’ k010' k001' k1'00' k101’ k101' k011’ k1'01' k1'01 and k1'01

2,55

The component of force FY may be written as

22 —

Fy ‘ k100(V10

k22

k1'00[ (Vl'OOI I(V1"00)] I k011[ (V011) I (V01 1)]

22

o)+k

010(V01o’ I 1‘001(V001)

+

Ik01l“W011) ' (IE—01-1)]

+ kl'201{[(vl'01) +(V.1101):l +£(VI'I'UI)'+ (:1;_11101)]}

+ k1I01{[(u1I01) " (11-1101” +[(u11101) "‘ (‘3_11101)]}

2 -— _ , _.

+kk1?01{[ (WIIOI) (w-l'OII] +[(W1"01) -(w-l”01)] o 2.56

which involves the nine following interaction constants:

22 22 22 22 22 23 22 21 23

k100’ k010' k001’ k1'00’ k011' k011' k1'01' k1'01 and k1'01

2.57
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And, similarly, the component of force Fz is

33 — 33 —- 33

Fz I k100(W100) I k01o(W010) I k001(W001
)

I k1900[(W1'00) IIWWl"00)] Ik101[(W101) I(W101)]

Ik101[(“101) I““-101” Ik011[(W011)I(W-01-1)]

1[ (3011) ' 501-1)]

Ik1'301{“W1'01)IIW-llOl” I[(Wl"01)I(W-l"01)]}

Ik1'01{[("1'01)'("-.1'01)]I[("1"01)'("-1"01)]}

+kl'01{[(u1'01 )u-I-1'01)] +[(u(1111101) ’(u_11101)]} b 2-58

involving the eleven following interaction constants:

33 33 33 33 33 31 33 32 33

100' k010' k001' k1'00' k101' k101’ k011' k011' k1'01'

32 31

k1'01 an“ k1'01

k

2. 59

Thus, the total number of interaction constants involved in all three

force equations is 10+9+11 = 30 .

Dividing through by the respective lattice distances and taking

limits, the above difference equations 2. 53-59 can be converted into

the partial differential equations given below:

F =aLk11202d +kll b2 azu +k11 C2 82u +k11 42.4.2

x 100aL "'2' 010 “"7 001'"? 1'00“?"
8}: By 82

82u + 8Zu +kkll (a2 + 2) 8Zu + 8Zu

Z a Z 101 ° “'2' "Z

ax12 x21 8x13 3"31



 

 

 

 

 

 

2 2 2 2
13 2 2 a w a w 11 z 2 a u a u

+k101 (a +C) a -3 +k011(b +C) $7 + E2

1"13 x31 x23 32

+k11 (34132443) 2u + azu + azu + azu

1'01 4 0 2 a 2 *0‘2 _ 3"" 2'

x1'3 x311 3:1,,3 "31"

13 a2+bz+4c2, 82w 32w 32w 82w
+ k . ( , —-—— - —— + —— - ——-

1 01 4 a 2 a 2 a 2 a 2

"13 x31' x1..3 x31H

+ k12 (a2+b2+4c2\ 82v _ 32v + 2v _ 32v

1'01 4. I “—32 —a2 “—32 "8'2

x1'3 x311 x1"3 x31H

2.60

2 2 2
__22 20v 22 20v 22 20v

“klooa ‘7“‘010" "2'“‘001c 2
3x 3y 6

+k22 (az+b2) 32v + 82v +k22 (132+ 2) 2v + 32v

100 4 78x "—32 011 “—32 —a2

12 x21 "23 x32

2 2
+ k23 (b2+C2) a w _ a w

011 '“'—'32 —a2

x23 "32

+k22 (a24b2+4c2) 32v + 32v + 32v + 32v

1'01 4 a 2 a 2 a Z a 2
‘ x1'3 x31' x1"3 "31'I

+ k21 (az+bz'-l-4cz, 82“ 8211 + an 3211

1'01 4 ‘ ' ‘8“2' ' ”'32 “a2 ' ‘73

x1'3 x31' x1..3_ x31"

23 az+b2+4c2, 82w 82w I 82w 82w
+k ( 1 , - — + - -——-—

1'01 4 a 2 a 2 a 2 a 2

"1'3 "31' x1"3 x31"



 

8x 3y 8z

+ k33 (a2+b2) 32w + 32w + k33 (212+ 2) 82w + 82w

1'00 4 a '8'"? 101 a a 2

x12 x21 "13 x31

2 2 2 2
31 2 2 3 u 8 u 33 2 2 8 w 8 w

+k101( + ) 73 - :2) +k011(b+ )(—7-8 + —-—ax2)

x13 "31 "23 32

2 2
32 2 2 a v a v

+k011(b +c) —2-8 --——-32)

"23 x32

+ k33 a2+b2+4c2, 32w 32w 32w 32w
, ( , + + +

1 01 4 a ‘73 a a

x1'3 x31' x1H3 ”‘31"

+ R31 3211 8211 +. 3211 8211

1'01 "“82 " —a2 ‘"'2'8 ' ‘78

x1'3 "31' x1"3 "31'H

+ k32 32v _ 32v I + 2v _ 62v

1 '01 '8' 2 "a "2 “'32 "a'2'

"1'3 x31' "11'3 x31"

2. 62

Here, the xij diagonal axes lie I in the xixj -plane, where

i,j = l, 2, 3,1' and l", such that xl,3 is the diagonal axis along the

rectangle (%~j'az + b2, c) in the x'z-plane. These axes are shown

in Figure 2. 9 a-e below:



 

   
 

 

 

 
 

   
 

  

v y Y

X

b

a a

a a x

x31

z Z

(a) (b)

y Y

b b

-a

a X x

C x1"3

x1'3 c

Z

x31' z x31”

(d) (e)

Figure 2. 9. Geometrical representation of axes xij

(a) xl‘2 and x21 (b) x13 and x31 (c) x23 and x32

((1) x1,3 and x31, (e) 3:1,,3 and x31” .
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Transforming partial derivatives with respect to the x. .'8

into partial derivatives with respect to x, y and z in Equations

2.60 -62, by utilizing the transformations derived in Appendix II,

these equations bec ome:

F =k11 2 3Zu 11 2 32u 11 2 32u
x 1002‘ 2 Ik010b ' Z Ik001C ""2

3x 3y 32

2 2 2 2
111 23u 23u 11 23.u 23u

I'2'k1'00 a—ZIb“? +2k101a‘7Ic‘7
3x 3y 3 32

2 2 2
13 aw 11 23u 23u

+k101ac5—-5—xz +2k011 b ‘76 +c -—2-)

y 32

2 2 2
11 23u 23u 2 3n

“(1,01 a——z—+b—-2-+4c 7

3x 3y 3z

+4kl3 bc i!- +4k12 b 33-3?— 2 63
1'01 3x32 101 ° 3y32 '

_k22 a2 32v +k22 b2 32v +k22 232v

y" 100 '3 2 010 "2 001c "2’
x 3y 32

2 2 2 2
122 23v 23v 22 23v 23v

+2 k1,00 7 +1) ——2- +2k011 b 7 +C "'7

3x 3y 3y 32

2 2 2 2
23 3w 22 23v 23v 23v

+4k011bc 3y32 +kl'01 a -—7 +b -—-2- +4c —-2-

3x 3y 3z

2 2
21 3u 23 3w

+ 4k1,01bc m + 4k1,01bc m; 2. 64



3x 32

2 2 2 2
l 33 2 3 w 2 3 w 33 2 3 w 2 3 w

+2-k1,00 a—z- +b -—-2— +2k101 a——2-+c -—-2-

3x 3y 3x 32

2 2 2 2
31 3 u 2 3 w 2 3 w 32 3 v

+ 4k101 ac m + ZkOll (b ~78}, + c .782 ) + 4ko11 bc WY2

+ k33 a2 32w + b2 32w + 4C2 2w + 4k31 bc 3zu

1'01 “:2 70y “‘2: 1'01 W

+ 4k3 bc 32" 2 65
1'01 532 '

By collecting coefficients of the various partial derivatives,

the above equations may be rewritten as:

_ 2 11 1 11 11 11 32u 11 1 11 11

Fx’ 3 Ik100 I2k1'00 I Zk101 I k1'01) "2 I bZIk010I 21‘1'00 I 2k011

k )32u+c2.(k11-+2k11 +Zk11 ) 31.12 +4 k13 32w

1'01 WY 2 .. . 001' 101 011I 4k1'01 “‘2 ac 1012—52

2 2
13 3w 12 3v

+4bckl,01-5—5-z— +4bckl,01W 2.66

F _a2(k22 +11(22 +1:k22 ) 3v2 +b2(k22 1k22 +2132 +k )3zv

y” 100 2' 1'00 1'01 “'2 010 I2 1'00 011 1'01 ”28),

2(k22 +21<’22 +4 kzz ) ”"2 +4b C(kz +)1<23 82‘”
+c 001 011k1'01 “—2 011I1'01W

2
21 3 u

+4bckl,01 W 2.67
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2
_ 2 33 1 33 33 33 3w

Fz‘a Ik100I2k1'00I2k101Ik1'01I‘a'x'2

+1320(33 +1193 +2193 +k33 ) 32w

010 2 1100 011 1101 “'73),

2 33 33 33 33 32w
+c (1:001 + 2 k101+2 k011+4k1,01)—-2—az

2 2 2
31 3u 31 3u 32 32 3 v

+4aCk101—3x—3z I4b° k1'01 —3y3"z“ I4b cII‘011I1‘1'01Iayaz

2.68

Newton's law for the force components in the directions x, y

and 2 may, of course, be written as

F

_3.‘._ = {3

abc p

.5; ~
abc = p v

and

Fz O.

m- = p W Z. 69

where abc = volume of a unit cell.

The corresponding continuum equations 2. 25 based on the

generalized Hooke's law are relisted below to facilitate comparison:

" - 32“ + La“ + 32“ +( + )fi-H +C )WazwP u - C11“? C66 2 C55' '2 c12 C66 axay C13 55 x zax By 82

2 2 2 Z 2,, _ 3 v 3 V 3_V 3 u 3 wPV - C663? ”2287 I C44 622 + (°12+°66’5§75§II°23 ”44’ 5W

32 32w 2 3 2.. _ w 3 w 3 u 3 v
pw -c55 73x +c44—2-ay +C33_Taz +(c13+c55)-5--5--xz +IC23+C44)3__—y3z
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Comparing coefficients in the two sets of equations we obtain

the following expressions for the elastic constants

the interaction constants kg'nn :

a 11 1 11 11

c.. in terms of

1J

11

C11: "152' Ik100 I2 k1'00 I 2 k101 I k1'01’

C66= EPEIR310I2kiIooIZk311IkiIm) 2'70

C55 I 5915 “31111 I 2 k131I 2 k311I 4 ki'lm)

612 I C66 ._. 0

C13 I °55 =1? k131

C66 = FIE “130 I2 k1:200 I k3201)

C22 = ab: Ikgfo I2 k177200 I 2 1‘31} I 1612.201) 2' 71

C44 z 396' “(2131 I 2 kgfl I 4 ki'zm)

C12 I C66 ‘ 0

C23 I c44 = E “(21131 I kfim)

655 = BEE Ikigo I 2 k1'300 I Z k11311 I k11301)

C44 = '33 “((3110 I '2' k1:300 I 2 kgil I @301) 2'72

c:33 = 2913 “‘331 I Z 16131 I Z kgil I 4 k1?01)

C13 I C55 = “E k15:11

C23 I C44 '"' g “(3111 I k$01)
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These in turn may be combined and rewritten to give:

a 11 l 11 11 11

c11 = 132' Ik100 I2 k1'00 I 2 k101 I k1'01’

(‘22 :29; ”‘ng I2 k1'200 I Z kgfl I R3201)

c33 '“' 5303531 I 2 k1:31 I 2 kgil I 4 k1?01’

C44 = 2% Ikcznzn I 2 1‘31} I 4 kf'zm)

°r C:44 = 2% Ikgio I2 k1:300 I 2 133311 I k1?01)

C55 = 3913' “(31111 I 2 k131 I Z k311 I 4 k11101)

or C55 2 fi— (kigo +é- kfim + 2 #1531 + kffbl) 2.73

c66 = 21% “(310 I2k1I00 I 7' k311 I ki'lm)

°r C66 '"' Ba? “(ff-10 I2 k3200 I kf'zm)

C12 ._. ' c66

c = 5- kl3 - c

13 b 101 55

= g kfln ' c55

C23 '“' g Ikgil I k1.1301) ' c44

= '3’ “3011 I k103201) “' c44

The exPressions 2. 73 may be simplified by excluding the terms

involving the second nearest neighbor interactions; this yields the

following expressions for first nearest-neighbor interactions:



47

_ __ 11 _1_ 11

C ’ Ik100I2 k1'00)

b 22 1 22

C22 = '5? Ik010 I 2 k1'00)

C33 : 2% k313n

c44 : 3% kgfn‘r: 2% “‘30 I2 k'1'300) 2' 74

C55 = 5% 1‘33““ 6% Ikigo I'l2 k:1'300)

__1_3_11111=_a_1_22_1_22

C66 ‘ ac Ik010 I 2 1‘1'00’0'r bc II‘100 I 2 R1100)

C12: ’C66

°13= ‘°55

C23= “C44

Constants C44, c55 and c66,-:and correspondingly C12’ on and C23

are double-valued. An appropriate single numerical value will be

selected fori'thes'e; later in Section 2. 5.

Central Force Assumption

If only central forces are allowed, the following sixteen of the

thirty interaction constants entering Equations 2. 54-59 vanish:

11 13 11 13 12- 22 23 .21: 23

k010' k101' k011' k1'01' k101' k100' k011i" k17.'01i"k1'01'

33 33 33 31 32 32 31 ,

k100' k010' k1'00' k101' k011' k1'01' k1'01 ' 2'75

while the following fourteen will still be involved:
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kiéo’ k331' ki'loo' k11111: ki'lor k310' k331'

kf'zoo' kgfl’ ki'zov @361: 1‘31: kgil’ k17,01 2°76

It may be noted that, unlike nonpolymeric crystals, the

constants kg?” and kggl do not vanish because of the bending

resistance of the C-C bonds. This means that the central force

assumption is being applied in a limited manner.

The expressions for the elastic constants cij under this

central force assumption, including interactions up to second

nearest-neighbors, become:

C11 ' b:(k130 I'l2k1I00 I 2 k131I ki'lol)

C22 = 5% “((2)10 I l21‘12‘1200 I 2 R311 I #1201)

C33 I ab ”‘331 I Z kigl I 2k311 I “$01)

c44 = 3'1? “331 I 2 1‘31 I 4 kf'zm)

°r c44 = 3136 I2 kgil I 163.301)

C55:;%(k(l):)l+2k1:11+4k1'101 2.77

°r C55 z BIC— I2 kigl I k1'301)

C66 : SIDE I2k1I00 I kiI01)

°r C66 = 55(121‘1'200 I kf'zm)

C12 = ‘ C66

Magmtudes of c23, c13, c12 are equal to those of C44, c55, C66 due to

drOpping the interaction constants for the central force assumption.

This does not imply that the number of independent elastic constants

is reduced to six.
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=-c
c13 55

C23 " C44

But for first neighbors only these may be further simplified to give:

a 11 1 11

C11“ 3? Ik100 I2 k1'00)

b 22 1 22

c=22 : E'e' Ik010 I2 k1'00)

C33 = 2% k3031

C44: 29b" kggl °r °44=°'

:__g_:__ kll

ab 001 °r C55:0

1 .19.. k11 1 22__ ..__§_

°66‘2 ac 1'00°I“'2 bc k1'00 2'78

c:12 “' 'C66

C13 I 'C55

C23 = '°44

These show that polyethylene single crystals possess shear

resistance even when first nearest—neighbor interactions and central

forces are assumed. It may also be remarked that identical expressions

are obtained for first nearest-neighbors from strain energy consider-

ations, as shown in Appendix III.
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2. 4. Interaction Constants and Molecular Force Constants

The elastic constants were related to the interaction constants

in the last section, and in Section 2. 2 it was explained that interaction

forces result directly from relative motions of the lattice units in

the intramolecular and intermolecular force fields. The objective

of the present section is to obtain expressions for the interaction

constants in terms both of the intramolecular force constants, such

as those for C-C bond stretching, bending and repulsion, and the

intermolecular force constants, such as those appearing in the

Lennard-Jones potential.

It is assumed as before that the weak secondary bond forces

between units lying on different chains are central. However, the

same cannot be said of the forces between units lying along a single

chain; these are due to the strong connecting C-C bonds which provide

resistance to bending in lateral directions. For this reason the central

force assumption is limited to intermolecular forces only.

The following interaction constants,

11

100’

11 ll 11 ll _ 22 22

001' k1'00' k101’ k1'01’ k kk 010’ 001
k

22 22 22 33 33 33 33

k k k k101' k011' k1'01k1'00’ 011' 1'01' 001'

will be obtained in terms of the molecular force constants such as

the C-C bond stretching, bending and repulsion force constants K,

H and F, respectively, and the Lennard-Jones potential constants

A and B. The rest of the interaction constants (listed in 2. 75-)

vanish under the limited type of central forces that exist between

the lattice units, as . discussed in the preceding paragraph.
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Constants Along the Chain

Of the fourteen interaction constants needed for interactions

up to second nearest-neighbors under the central force assumption,

three are for forces between units along the same chain, viz. ,

11 k22 and k33

k001' 001‘ 001 °

These will primarily involve the C-C bond constants. Further, if

displacements remain small and the planar zigzag conformation of

the polyethylene chain does not change, it may be assumed that no

torsion takes place; and any deformation may be accomplished merely

by stretching and bending the C-C bond. Thus, if as in Figure 2.10,

6r = change in the bond length r

60. = change in the bond angle a/Z

and

6d ll change in the distance Iii-between two alternate C-atoms,

 

   

r a/Z o/Z r

 
C

Figure 2.10. Geometry of two corresponding C-C bonds showing

the bond length r, bond angle a and the distance

between alternate C atoms.
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the strain energy V becomes

I
n
—
n

V = 2[%2-K(6r)2 + 2 H (r6c1)z - :12— F(6d)2] 2.79

where K, H and F represent the stretching, bending and repulsive

force constants.

. . . ll 22
To determine the interaction constants k001’ k001 and

kggl, particular expressions for V must be derived by considering

the respective deformations in the x, y and z —directions; these are

illustrated below:

 

  

  
  

   

Z

K\

\\\

\\\\

6r”):

0 ‘1’ I 62

54 44' ““1

' 1

r / : o
/ 1 ‘”’ Y

0 :
”’4:\ pl

0 K 59 5 \

41° ' / Y
\' I

4 (II 1' x \ I 6x' I

p\\ 1 X,
4>

2\__-:._J’
x

I \‘\ "’6X

_’->1
.6},

(a)
(b)

Figure 2.11. Deformation of C-C bonds (a) in a general direction

(b) in x-direction.only.
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I

. 34+
54> W /

¢ II /\

\\ 69/

" 423:3 V 22

5v

/ 54°44'

X 
(C) (d)

Figure 2.11. Deformation of C-C bonds (c) in y-direction‘only'

(d) in z-d'irec't'ion only. ’ ' ° -- . . .

11

001
The Constant k

By definition, kggl is the force on the unit (0, 0, 0), per unit

displacement u of the unit (0, O, l). Denoting this displacement by

6x, as inFigure 2.11 (b), the quantities Br, 60. and 6d of Equation

2. 78 may be obtained in the following way; Letting

c
s

ll

N
|
=
1

l

l
e

where 921 = 54044',

-410 49 .

.
9
.

ll

N
|
=
I



[
\
-

p
l
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The bond length r is given by

r2=x2'+y2+z2 ;

and differentiating this expression we get

2r 6r 2x 6x + 2y by + 22 6z,

11
where for R001 , 6y = 6z 2 0 .

Therefore,

2r 6r 2x 6x

01'

Gr = 6x

H
l
x

Now, since p = r cos ((1/2), as shown in Figure 2. 11(a),

x E cos (b r c1 0. o. . o.

— = = - cos — cos = cos — 6.05 = cos -- 811'! 4.1
r r r 2 (I) 2 (I) 2 ’7

and we have

6r = cos % sin 410 6x

= cos 54. 7° sin 41° 6x

= g 6x ,

where

g = cos 54.7o sin 410 .

Also, from Figure 2.11 (b) we have

0

60 =£9_§—riL 6x

H
l
o
.

5x,
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where

d = cos 41°

and

6d = 0 .

Consequently, substitution for 6r, 66 or 60., and 6d in

2. 79 yields

V = K(g 6x)2+ H(d 6x)2 ; 2.80

and differentiating this with respect to 6x, we get an expression for

F :
x

_ dV _ 2 2
Fx— '“‘—d6): — -(2gK+2dH)6x 2.81

Therefore, kcl)31 , being the force per unit displacement, is given by

F
11 _ x _ _ 2 2

The negative sign indicates attraction for positive displacement.

22

The Constant kOOl

Following a procedure similar to the above for 1:331, but

considering only the displacement 6y, analogous expressions for

22 .

k001 may be obtained:

2 2

V = K(h6y) +I-I(e6y) , 2. 83

h = cos 54.70 cos 410

e = sin 410
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_ dV_ 2 2
Fy—-d6y—-(2h K+2e H)6y 2.84

22 _ 2 2
1.001- 2(hK+e H) 2.85

33
The Constant k001

 

Similarly, by considering only the displacement 62, the

corresponding expressions for R301 can be derived:

v = K(iéz)?‘ + H(f6z)2 - 1:782)Z , 2.86

1 = sin 54.70

f = cos 54.70 .

.2 2
Fzz-(21K+2fH- F)6z 2.87

33 __ .2 2
1:001 —2(1K+fH-ZF) 2.88

Other. constants are essentially derived from the Lennard-Jones

6-12 potential curve <l>(r) shown in Figure 2.3. This defines the force

existing between the lattice units and its variation with separation

distance as well. If the latter is less than the equilibrium distance

r , the force will be repulsive and if it is greater than the equilibrium

distance, it will be attractive. For the small displacements with which

we are concerned, the force may be assumed to vary linearly, though

the rate of variation will evidently be different for different separation

distances. Such an assumption makes it possible to evaluate the inter-

action constants by determining the slope of the force curve at the

various lattice distances. Thus, if F(r) is given by



 F(r) = If? .. 9% , 2.28

r r

then the derivative of F(r) with respect to r is

dF _ 156A 42B
:1"; — --;—i-Z- '1' :‘g— . 2.89

This determines the interaction constants for the first nearest-neighbors

 

8.8

11 _ dF _ _. 156A 4213

k100 ‘ " IE?) ' 14 " 8 2‘90
1‘38. a a

and

22 _ dF _ 156A 4213

k01o - ‘ (a?) - ‘74" - T ' 2°91
r=b b b

The interaction constants for the diagonal units and second nearest -

neighbors are determined from the components of the diagonal force,

or the force along the line joining the central unit with the surrounding

units . Thus,

11 __d__ a 12A 6B

 

1'00 dr ,1 . 13 7 ‘
[3.2+ b2 r r r _ 1 2 2

" 2- a + b

giving:

k11 _ a 156A , 4213 2 92

1'00 — 2 2 7 '- 2 2 4 °

2 2 a +b . ,a +b

3. + b 4 _ ___._4



 

 

 

 

 
 

 

 

 

 

 

 

 
 

 
 

  

 
 

 
 

k22 _ b. . 156A ___4_2_8__
' —

.
-

I 00 2+b2 (a2+b2)7 a2+b2 4

a 4 4

k11 ___ a . 156A 428

101 az+e2 a2 + C2)? (a2 +? 4

k33 __ c . 156A 428

101 ‘ ' ' 2 2 7 ' 2 2 4
Ia2+c2 (a + c ’ (a + c )

k22 _ b . 156A 428

011 ‘ — - 2 2 7 —'—‘2“24
/b2+C2 (b v+c ) {b +e )

k33 = c 156A 428

011 b2+cz (b +62)? (b2+C2)4

k11 _ a 156A 428

1'01“ 2 2 2 7 " 2 2 2 4
fi2+b2+4e2 a +b +4e \ a +b +4c

4 I 4

k22 _ b 456A . 428

1'01 ‘ 2 2 2'7' ‘ 2 2 2 4
[a2+b2+4cz (a +b +4c \ (a +b +4e I

4 I 4 I

k33 _ 2e f 156A 4 428

1101’ 2 2 427 ' 2 2 24
J3.+102 +4C2 (a +b4+4c ) (a +b 4+4e }

 

2. 94

2.95

2. 96

2. 97

2. 98

2. 99

 

2.100
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Numerical values of the interaction constants will be obtained

along with the other constants in the next section (2. 5), by substituting

the values of the intermolecular force constants A and B and the

intramolecular force constants K, H and F.

2. 5. Numerical Values of Constants

Expressions for the Lennard-Jones potential constants were

derived in Section 2. 2, while in Section 2. 4 expressions for the inter-

action constants were obtained in terms of the C-C bond stretching,

bending and repulsive force constants and geometric parameters such

as bond length, bond angle, lattice distances and setting angle. The

connection between the elastic constants and the interaction constants

was established in Section 2. 3. In the present section, numerical

values for all of these constants are obtained: first the Lennard-Jones

constants, secondly, the interaction constants, and lastly, the elastic

c onstants.

Lennard-Jones Constants

In Section 2. 2, the expressions for the Lennard-Jones potential

constants A and B, 2.49 and 2.50,

 

 

B: 2M 62

NAPAIZ-é

2
2pM6

Azsz ,

N pAlZ-é

involve various quantities to which numerical values may now be

assigned. The molecular weight M of the (-CZH4-) lattice units

is:
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M = 2x12+4 = 28 2.101

Avogadro's : number NA is:

NA = 6.0249x10Z3 2.102

The cohesive energy density 62 for polyethylene, determined

experimentally by Small (1 6), is:

62 = 62 cal/cm3 2.103

.. 9 3
— 2. 595320 x 10 erg/cm

2. 595320 x 10'15 erg/A3

The density p of crystalline polyethylene . varies from one

manufacturer to another; however, the variation is small and one

representative value, listed in the commercial bulletin of the Dow

Chemical Company, Midland, Michigan (27), is:

3 g .
p = 0.964 gram/cm 2.104

The factor A = p A - A6 has been evaluated in Appendix I;
12-6 12

its value is:

_ -3 -6 -
12-6 - 2.345833 x10 A I-35

The factor p = %- (r0)6 has also been evaluated in Appendix I:

p = 3. 897619 x103 A6 1-34

Substituting these values in the above expressions for B and A,

yields:
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2.177300 x10"10 erg A6B =

= 2.177300 x10.58 erg cm6 2.105

A = 8. 486677 x 10'7 erg A12

= 8.486677 x10"103 erg cm12 2.106

Interaction Constants

In Section 2. 4 the interaction constants kymn have been divided

into two categories:

(a) Interaction constants for units on the same chain.

(b) Interaction constants for units on different chains.

These are evaluated below.

(a) Expressions for constants in category (a) are derived in

Section 2. 4. These relations (2. 82, 85 and 88) involve the C-C bond

stretching, bending and repulsive force constants K, H and F which

are given by Shimanouchi, et al (17):

K 4. 0 3:10-3 dyne/A

H 0.113e10"3 dyne/A 2.107

0. 96 x10"3 dyne/A

The geometric factors g, h, i, d, e and f, are defined in Section

2. 4 in terms of the following (10,11):

C-C bond length r = 1.54-A

c-c bond angle a = 109° 28' 2.108

setting angle 8 = 41°

Substituting these values of r, 0., (3,. we obtain:
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g2 = 0.143724

6‘2 = 0.190197

i2 = 0.666084 2.109

d2 = 0.569587

e2 = 0.430414

f2 = 0.333922

The interaction constants in category (a) thus turn out to be:

k“ = 1.275102 x 10"3 dyne/A
001

22 -3
kOOl = 1.616266x10 dyne/A 2.110

13531 = 3.482134x10"3 dyne/A

(b) The expressions for the constants in category (b) are given

in Section 2. 4 (2. 90-2.100). Their numerical values may be obtained

by substituting the values of the Lennard-Jones constants A and B

from 2.105 and 2.106 and the lattice parameters a, b and c d 7. 41A,

4. 94A and 2. 55A. The result is:

kito = - 9.180603 x 10‘8 dyne/A

kzz = - 1.371359 x 10"8 dyne/A
010

k11 _ 4 -6
1,00- ..219081x10 dyne/A

1.12:200 = 2. 809002 x 10"6 dyne/A

11 -8
k101 = - 6. 075525 x 10 dyne/A

kg?” = - 2. 090739 x10"8 dyne/A

1.22 - 4. 538807 x 10'7 dyne/A
011
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33

011

11

1'01 -

22

1'01 -

33

1'01 _

2. 342901 x10-7‘dyne/AW 1

2.843103 x 10“7 dyne/AW

I

I

1. 895375 x10"7 dyne/AW

I

I

1.956759 x 10'7 dyne/AW

I

I

2.111

Elastic Constants

The expressions 2. 77 for the elastic constants cij in terms

of the interaction constants kIIII-nn and the lattice parameters a, b

and c under the central force assumption as derived in Section 2. 4,

on substitution of the numerical values from above, yield the following

values, including second nearest-neighbor interactions:

ell = 0.948127 11:10-6 dyne/Az

-6 2
€22 = 0.288779x10 dyne/A

-4 2
e33 = 2.422665x10 dyne/A

— 1 123761 10'4d /14.2 - -
C44 - o X Yne - C23

- 0 886595x10“48 e/AZ = -c
C55 " ° Y“ 13

- - 6 515515x10“7d ’/A‘Z =-e -
c:66 ‘ ' We 12

2.112

The corresponding expressions 2.73 for first neighbors only yield:

e11 = 1.186831x10“6 dyne/AZ

-6 2
e22 = 0.363552x10 dyne/A

-4 2
e = 2.423565x10 dyne/A
33
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1.124921 x 10'4 dyne/AZ = - c
C44 = 23

- 0 887471 10"4 d /A‘2 —c55 - . x yne - - cl3

c _ 7 006943 x10-7 (1 ne/AZ = - c
66 ° Y 12

2.113

As observed earlier, the constants C44, CSS, (:66, C12’ €23

and C13 are doubled-valued. However, the constants C44 and C55

should have much higher values than the constant C66, because the

former two involve movements of units belonging to the Barrie chain.

Thus, only the higher values of C44 and c55 are used; but in the

case of C66, for which the two values are of the same order of

magnitude, the average value is taken.

Substituting the values of Cij 2. 17-19 yields:

E1 = 0. 377123 x10-6 dyne/AZ

-6 2
E2 = 0.266161 x 10 dyne/A

-4 2
E3 = 2.388100 x10 dyne/A

2. 114

All the numerical values are given to six decimal places as a

matter of calculational convenience only. These may be rounded off

to three decimal places for future use without any loss of accuracy.



III. DISCUSSIONS OF RESULTS

3.1. Anisotropy of Polyethylene Single Crystals

Anisotropy of polyethylene single crystals is a compound effect

depending on the inherent nature of the lattice structure and the

directional molecular forces of different strengths that exist along

the three lattice axes. The complex orthorhombic lattice of poly-

ethylene (Figure l. 6), consisting of (-C2H4-) as the lattice units.

has been converted into a simple orthorhombic lattice (Figure 2.1)

by choosing. as a basis, the pair consisting of dains at the mid-point

and the corner of the rectangle (a, b). An orthorhombic lattice

structure has nine independent elastic constants cij’ whereas cubic

crystals have only three such constants. Thus, an orthorhombic

lattice, by itself, is anisotropic in a manner which is more complex

than the cubic lattice; and the situation is further complicated by the

directional molecular forces that exist between the units themselves.

However, this complexity has been reduced by approaching the

problem from the continuum and the discontinuum points of view

independently, then relating the results.

3. 2. Continuum Theory of the Orthorhombic Lattice

Crystals having an orthorhombic lattice, irrespective of what

the molecular forces are, would be expected to have different elastic

moduli along the “three lattice axes because of the inequality of the

lattice parameters a, b and c. Thus, there are three Young's moduli

and three shear moduli for such crystals; however, Poisson's ratios

are six in number,because

e.

._ _l _

vij — ' s. ’4

J

I
I

V
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A uniaxial tensile stress along the a-axis would cause a certain

contraction along the b or c-axis, and this would be different from

the one caused along the a-axis by a uniaxial stress in the b or c-

directions.

Expressions 2. 17-19, for E E2 and E in terms of Cij’
1’ 3

have a common numerator but different denominators. Hence the

expression 2. 20, which relates all three Young's moduli, can be derived.

The shear moduli (323, G13 and (312 are equal to C44, c55, C66

respectively (2.11) due to the definition of the shear strains (2. 5).

Expressions 2.16, 2.16a for the six Poisson's ratios must be

obtained in pairs by considering uniaxial stresses along the three

axes each time, and by solving the resulting equations simultaneously.

The equations of motion, 2. 25, and the expression for the

strain energy, 2. 22, are slightly more involved than the corresponding

equations and expression for cubic crystals. The strain energy

relation is only an approximation, because higher-order terms

involving rotational or torsional and coupled deformations are

neglected. This is the case for cubic crystals too.

It should be pointed out again that the constants cij differ,

not only due to the inequality of the lattice parameters, but also due

to the inequality of the molecular forces in various directions. This

is discussed in more detail later when their relationship with the

interaction constants is explained.
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3. 3. Molecular Forces

Both intramolecular and intermolecular forces are highly

directional. The intramolecular or primary bond forces which exist

along the molecular chain axis are due to the covalent C-C bonds.

These are several times stronger than the intermolecular or the

secondary bond forces existing between the chains. The latter are a

net result of the London dispersion forces of attraction and the

repulsive forces caused by the overlap of the electron clouds surround-

ing the nuclei. In fact, the intramolecular forces are so strong that

to some extent they dominate the inherent anisotropy of the orthor-

hombic lattice.

Molecular chains take a planar zigzag configuration, when in a

lattice; thereby preventing free rotation of the segments of the molecules

about the C-C bonds. This gives the chains a definite resistance to

deformation along the c-axis, which is also the chain axis, and to

bending in the lateral directions a and b. The strength of the C-C

bond for various types of deformations is fairly well known and the

values of these constants are listed in Section 2. 4.

The strength of the secondary bond forces is known only as a

measure of the cohesive energy or the sublimation energy. These

intermolecular forces have been assumed to be determined by a 6-12

Lennard-Jones potential, which involves two unknown constants. It

should be noted that the value of the sublimation energy. as determined

experimentally by Muller (28), is more than twice the value of the

cohesive energy as determined experimentally by Small (16). However,

the value of the latter quantity is more reliable; first, because it is the
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more recent of the two and, secondly, because it is verified theoret-

ically by the latter author. Accordingly, Small's cohesive energy

data is employed here.

Values of the Lennard-Jones potential constants A and B

determined in this manner have the same order of mangitude as for

solid argon. This is to be expected because the lattice energy is of

the same order of magnitude (23).

The intermolecular forces of polyethylene arise from the

interaction between the hydrogen atoms, which are attached to the

carbon atoms of the molecular chain by covalent bonds formed by

sharing a pair of electrons. Thus, the valence electron of hydrogen

spends most of the time in the region between the carbon and hydrogen

atoms and very little time outside this region. The result is that the

dispersion type of van der Waals forces, which arise from the time -

varying instantaneous electron configurations, are very weak-ma

condition existing in rare gases too, though for a different reason,

It has been emphasized that polyethylene single crystals have

an entangled-rectangular lattice structure in which the planes of the

chains have two orientations. This fact is not considered in the

computation of the lattice energy of a unit in an infinite matrix. How-

ever, as illustrated in Appendix IV, the orientation of the chains

becomes insignificant if one considers their interaction in more detail.

The chains are situated in space in such a manner that for any two

neighboring chains the hydrogen atoms are equidistant from each other.

This determines the Lennard-Jones potential between chains; the net

or effective potential for the two units has been obtained in Appendix IV.
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A slightly different method than the usual low density gas

approach (23) has been used to determine the two Lennard-Jones

potential constants. By taking the equilibrium separation distance

between the two nearest chains to determine the minimum in the

potential curve, the ratio of the two constants is fixed. This leaves

only one unknown constant, which is then determined by computing

the crystal potential energy density and comparing it with the

cohesive energy density. In the case of gases, the crystal potential

energy or the lattice energy is first calculated from a general

potential. Its value is then minimized to determine the value of the

equilibrium separation in terms of the lattice energy and one unknown

constant, which in turn is obtained from data for the second virial

coefficient. However, this is not applicable to solids where the

equilibrium separation and the separation for minimum crystal

potential energy are identical.

The triple inverse power series involved in computing the

crystal potential energy converge very rapidly. Their values have

been obtained by splitting them into component single, double, and

triple series. For evaluation of the single series, standard formulae

are given in reference (29) by Knopp. To compute the sums . of the

double and triple series, they were terminated at a point beyond which

the contribution of the terms is less than 0. 000015 for the sixth power

and less than 0. 00000000024 for the twelfth power.

As the units of distance along the three axes a/2, b/Z, and c

have been used; these lead to the above -mentioned series. However,

it is only for points for which the integers along the a and b -axes
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are even, that a real unit exists. This point has been taken into

account in computing the sums: of the series.

In order to compare the crystal potential energy with the

cohesive energy, all the units belonging to the central chains are

ignored. These units are attached to each other permanently and

remain so even when the chains are removed a considerable

distance from each other, as required in determining the cohesive

energy density.

3. 4. Interaction Constants

To establish a relationship between the continuum elastic

constants and the molecular force constants, first and second nearest-

neighbor interactions have been considered. The expressions for

the force components on a central unit due to its motion relative to

its neighbors, involve thirty constants for interactions up to second

nearest-neighbors, while for cubic crystals there are only five such

constants. If only first neighbor interactions are considered, the

expressions contain eleven constants for an orthorhombic crystal,

whereas only two constants are involved in the case of cubic crystals.

In view of the inequality of the three lattice parameters a, b

and c, all the first neighbors are not equidistant from the central

unit. Such is the case for the second neighbors too. The first nearest-

neighbors are the units which lie nearest to the central unit along the

axes x, y, z, x' and x" in either positive or negative directions. The

second nearest-neighbors are the units that form rectangles with the

first neighbors and the central unit. In this manner the four units

corresponding to (l, l, 0) are eliminated from the family of second
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nearest-neighbors, but the eight units corresponding to (1', 0, l) are

included instead.

A limited type of central force assumption has been applied to

reduce the number of constants to fourteen for second nearest-neighbor

interactions and seven for first nearest-neighbor interactions. The

forces between the lattice units are not quite central, due to the units

being rather unsymmetrical in shape. The major attractive forces

arise from the hydrogen atoms which are located off the lattice points.

However, because the forces between units belonging to different chains

(secondary bond forces) are much smaller than the forces between

units belonging to the same chain (primary bond forces), the former

may be considered to be nearly central. This is what has been termed

a limited type of central force assumption.

The interaction constants have, therefore, been classified in two

categories:

(a) those for units belong to the same chain

(b) those for units belonging to different chains

The interaction constants of category (a) are obtained from the C-C

bond stretching or contraction, bending and repulsive force constants,

while those belonging to category (b) are obtained from the Lennard-

J'one s 6 - 12 potential.

. ll 22 ‘ 33
All three constants of the first category, k001' k001 and k001'

are positive and approximately 103 times stronger than k1}00 and

RIEOO' the only two positive constants of the second category. Other

constants of the second category are negative, and their magnitudes

are 10-100 times lower than these two.
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- 11 22
As mentioned above, the constants kl'00 and k1,00 are

11 22 11 33 22 33
positive, while the constants k100’ k010’ k101’ k101’ k011, k011,

ll 22 33 . . .
kl'Ol’ kl'Ol and k1,01 are negative. The pos1t1ve constants are

for units whose separation distance is smaller than that to the point

where the F(r) force curve has a zero slope. This occurs at a

distance of r = 4. 493 A -- slightly larger than the distance r0 =

4. 450A, at which the ¢(r) potential curve has a zero slope. Because

the interaction constants are negative for units having a separation

distance greater than r = 4.493A. it will be seen later that the

inclusion of second nearest-neighbor interactions lowers the values

of the elastic constants instead of raising them.

11 22 33 .

001, k001 and k001 involve

deformations of the C-C bonds and, thus, are obtained from the strain

The interaction constants k

energy expressions in terms of the particular type of deformation

required. Identical results would be obtained if a general expression

for the strain energy involving all types of C-C bond deformation were

obtained. The constants could then be obtained by taking the apprOpriate

partial derivative, :though the expressions would be slightly more

involved than the one used here.

. . ll 22 ll 22 11
The interaction constants k100' k010, kl'OO’ kl'OO’ km”,

33 22 33 ll 22 33 .

from the slopes of the force curve at the appropriate separation

distances. Of course, this amounts to approximating the force

curve by straight line segments in the neighborhood of the location

of the units. However, for the infinitesimal displacements we are

concerned with,this assumption is well justified.
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3. 5. Elastic Constants

Expressions for the nine elastic constants cij in terms of the

interaction constants kijmn have been derived in Section 2. 3. These

are obtained by comparing the coefficients of the appropriate partial

derivatives in the equations of motion, derived from continuum theory,

and the force components equations, derived from discontinuum theory.

However, some of the partial derivatives appear twice in the equations

of motion. This leads to redindant expressions for the constants 044,

055 and C66 and, correspondingly, for the constants 023, 013 and

612 also. Selection of the appropriate expressions was not made until

their numerical values were obtained and a comparison could be'.‘

made.

The expressions for the elastic constants have been simplified

by employing the central force assumption discussed above to

eliminate some of the constants, and these have been further simplified

for first nearest qieighbor interactions. It may be pointed out that, for

fir st neighbor interactions and the central force assumption,identical

expressions are obtained from strain energy considerations ianppendix

IV.

In order to decide upon one expression for the constants C44,

c55 and C66, all the expressions were first evaluated by substituting

in the values of interaction constants. The constants 0'44, -c‘-55 and

C66 are identified as the shear moduli. The first two involve move-

ments of the units belonging to the same chain whereas the constant

C66 involves movements of units on different chains. Thus, the

values of C44 and c55 should be much higher than that of 666'
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However, C66 has two numerical values, both of the same order of

magnitude; and in the absence of any criterion for making a selection,

it was decided to use an average of the two values as the true value

for this constant. The two lower values of C44 and 055 compare

well with this value of 066; however, their higher values are about

103 times larger. This suggests that the higher values of the constants

are the right ones.

As mentioned earlier, because the interaction constants are

negative for all units whose separation distance is greater than

4. 493A, the numerical values of the elastic constants for second

neighbor interactions are smaller than those for first neighbor inter-

actions. Thus, it appears that the crystal gets weaker as one includes

higher neighbor interactions, but the fact is that,as one includes inter-

actions of all the surrounding units in an infinite matrix, the actual

value of the constant is obtained. However, the contribution of

neighbors higher than second neighbors is negligible :because as one

goes to larger distance, the force curve levels off and its slope

rapidly approaches a zero value. Thus, the value of the constants

obtained by includingi'nteractions up to second neighbors is very

close to their true value. .

If only first neighbor interactions are considered, cubic

crystals have no resistance to shear; it is only when second nearest-

neighbor interactions are included that shear resistance is introduced.

In the case of orthorhombic crystals, however, shear resistance in

all directions is present even when only first neighbor interactions

are considered and forces are assumed to be central. This is due to
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the existence of a unit at the mid-point of the orthorhombic -lattice

rectangle (a, b), and the restrictions imposed on the central force

assumption in the direction of the chain axis.

The values of the constants C11’ C22 and C33 are calculated to

6, 0. 288729 x10-6 and 2. 422665 x 10.“-4 dyne/AZ.be 0. 948127 x10-

The numerical value of C33 is about 100-1000 times the value of C11

and c22 which is compatible with the ratio of the order of 50 for the

C-C bond dissociation energy of 83 kcal/mole (13) and the cohesive

energy of 1.736 kcal/mole (16). Also the value of E3 = 2.388100 x

10-4 dyne/A2 calculated from oil. (2.10) is in good agreement with

the observed value of E = 2. 6 x 10"4 dyiie/A2 for oriented poly-

ethylene, obtained recently by Sakarda et al. (17). Shimanouchi

et al. (17) have also calculated a value of E = 3. 4 x 10'4 dyne/Az

for infinitely-long oriented polyethylene molecules, which is much

higher than the experimentally-determined value.

The constants C44, CS5 and C66, which are measures of the

4 4
shear moduli, have numerical values of 1.123761 x 10' , 0. 886595 x 10-

and 6. 51551 5 x 10"7 dyne/Az. No experimental value is available with

which these may be compared to draw any useful conclusion. However,

the values of the constants C44 and c55 are about 100 -200 times the

value of the constant C66. This is reasonable because the former two

involve movements of the units belonging to the same chain, and are

thus connected by stronger C-C bonds. Further, the values of these

moduli are lower than the corresponding E1, E2 and E3 values

which is true in general for shear and Young's moduli of bulk poly-

crystalline materials.



IV. CONCLUSIONS

l. The constants A and B in the 6-12 Lennard-Jones

potential,

 ¢<r1=12 -—%.
rI‘

for forces existing between polyethylene chains in the crystal lattice

are found to be

A 8.48667 x10-7 erg/A12

and

1 O

B 2.177300 x10- erg/A6 .

They are of the same order of magnitude as those for argon, whose

lattice energy is of the same order as the cohesive energy of poly-

ethylene.

2. The ratio of the dissociation energy of the primary C-C

bonds and the cohesive energy of the secondary bonds is found to be

approximately fifty. Thus, the primary bonds, or intramolecular

forces, are about fifty times as strong as the secondary bonds, or

intermolecular forces, for polyethylene single crystals.

3. For second nearest-neighbor interactions, thirty interaction

constants have been found for polyethylene single crystals, as compared

to only five such constants for crystals having simple cubic symmetry.

For first neighbor interactions only, these constants become eleven

in number, as against two for cubic crystals. On application of a

limited central force assumption to the forces between units belonging

to different chains, the numbers of constants for second nearest-

76
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neighbors have been reduced to fourteen for polyethylene single

crystals and two for cubic crystals. In the latter case, however,

no limitation is imposed on the central force assumption. The

corresponding numbers for the first neighbors become seven and

one.

4. Interaction constants for units belonging to the same chain

turn out to be 103 -105 times higher in value than those for units

belonging to different chains, the former being of the order of 1-3 x

10..3 dyne/A, whereas the latter have a magnitude ranging from

3 x10“6 to 9 x10.8 dyne/A.

5. Interaction constants for units having a separation distance

less than 4. 493 A are positive, while. for others having higher

separation distances they are negative. The magnitudes of the

positive constants are found to be approximately 300 times the

magnitudes of the negative constants for separations up to the most

distant second neighbor. For higher order neighbors this factor will

be still higher; but the true values of the elastic constants are

approached very rapidly. In fact, second nearest neighbor inter-

actions give values of the constants which are quite close to their

acutal values.

6. The value of the elastic constant c is found to be about

33

200-1000 times the values of the constants C11 and C22' These

constants are measures of the Young's moduli along their respective

axes. The exact value of the former is

C33 = 2. 42266 5 x10”4 dyne/AZ
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which yields a value of Young's modulus of E3 = 2. 388100 x 10-4

dyne/Az that agrees with the observed value of Young's modulus for

4 dyne/A2 and is lower than theoriented polyethylene of 2. 6 x 10-

value of 3. 4 x 10.4 dyne/AZ calculated by Shimanouchi (17).

Values of the constants c11 and c22 are found to be:

6 dyne/A2c 0.948127x10-
11

6 dyne/A2c22 0. 288779 x10

These yield values of the Young's moduli E1 and E2 as 0. 377123 x 10"6

dyne/A2 and 0. 266161 x 10-6 dyne/A‘Z and, thus, seem quite reasonable

since the value of Young's modulus of bulk polyethylene is known to

be about 10"5 dyne/AZ. This fall squarely between the minimum value

6
of 0. 266161 x 10' dyi'ie/Az calculated for E2 and the maximum value

of 2. 388100 x 10'4 dyne/AZ calculated for E3.

_ 7. The constants C44, C55 and C66 have been calculated to

be:

-4 2
644 = 1.123761 x10 dyne/A

-4 2
C55 _ 0.866595 x 10 dyne/A

-7 2
C66 _ 6.515515 x 10 dyne/A

Thus, polyethylene single crystals are found to have shear resistance

even when only first nearest -neighbor interactions are considered

and the central force assumption is applied. This is in direct

contrast to cubic crystals, for which shear resistance is introduced

by considering the second neighbor interactions. The shear moduli

C44 and css, which involve movements of units belonging to the same
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chain, are found to be about 100-200 times the shear modulus C66,

which involves movements of units belonging to different chains.
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Due to the lattice units being of unsymmetrical shape, the

forces bemeen them are not quite central. It would be of considerable

interest to determine the effect of these forces on the elastic constants

of polyethylene single crystals. The interaction constants in such a

case may be evaluated by taking their geometry and location into

account.

Bulk polyethylene is made up of spherulites which consist of

randomly-oriented lamellae of single crystals. A future study could

be directed towards finding how the elastic properties of spherulites

are related to those of single crystals. This information may in turn

be related to the elastic properties of bulk polyethylene.

Investigations identical to the present work could be extended

to include polymers having lattice structures such as tetragonal,

hexagonal, monoclinic, triclinic, and rhombohedral. A comparison

of the inherent anisotropies of these materials due to their lattice

structures would then be possible.

In many crystalline polymers hydrogen bonding provides the

intermolecular forces, which are much stronger than the London

dispersion-type of van der Waals forces. An investigation of the

influence of hydrogen bonding on the elastic properties and, hence,

the anisotropy of such polymers would be of considerable interest.
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APPENDIX I

EVALUATION OF SERIES

In order to determine the Lennard-Jones 6-12 potential

constants A and B (Section 2. 2), it is required to evaluate the

triple series

00

AS : 2, mi: 11: _m [(Zel)2 + (me2)2 + (ne3)z] '8/2 I-l

for s = 6 or 12, and where Am both even or both odd, but )4 0

and n = any integer.

As defined earlier ,

_ _3; _
el - 2 — 3.705 A

_ E _
e2 — 2 — 2. 470 A

_ E ._.
e3 — 2 2. 550 A

Dividing and multiplying by ef, I-l may be written as

_ e 2 e 2 —s/2

A =esz[22+mZ(—Z—) +n2(—:1)] , 1-2
s 1 e e

1 1

Substituting

e Z 2
2 _ 2.470 _

(131-) — (3.705) — 0.444

e 2 2
3 2.555 _

(ET) " (3.705") ‘ 0'4”

in I-2, we get

AS : e1"S 23 (22 + 0.444 m2 + 0.474 n'2)'-S/2 I-3

= efs A' a
I-4s
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where

- 2
A; = 2 (£2 +0.444 m2 +0.474 n2) S/

with the same conditions on 2, m, n as in I-l.

This triple series of I-5 is separated into single, double and triple

series to find its value. These component series are evaluated as

follows:

Si_ngl£ Series

For m, n = 0, we have

00 00 _

2 2'S=2223=2a , 1-6

‘:—CD [:2 S

where

°° -s
a : E 2 for .8: even only

3 2:2

I-7
or

'00 l 21/
_ Z) __ _ -

a21/ — n=1 (Zn for n — any integer and

s=2v=even .

Similarly for 2, n = 0, we have

°° 2)-s/2
23... (0.444 m 2 (0.444)'S/2 as . I-8

m

An exact method of finding the value of this single series is

given by Knopp (29), by which

00 2V

1 _ V-1 (211')

1:1 nzu “'"' 2.(2v)£ B21/ ' 1’9

where n is any integer, and B's are Bernoullian numbers. The

first few of these numbers are



 

_ _1 _1 _ 1 __1_ _ 691

136‘1' B1‘2" 52‘6" B4“ ”30' B6‘42' 1312 '2730 °

1-10

and

B3=B5= .=B2V+l=0 for 2V+l:3.

Expression I-9 for odd terms only is

°° 1 v-l gr)“ -11'2V

2 _fi = "1' 2 (ax/)1 '"'
n=1 (Zn-1) ' '

This is obtained from I-9 by substracting the series for even terms

12 21/

_ 0° 1/ _ V -1 it
as — 2:: (EH) — (-1) m B21! I-IZ

n=1

Setting s = 21/ = 6 in I-12 yields:

a - 3% l -( 1)2 "6 B I 13_ _ - 1 -

6 n=1 (2n)6 2.(6). 6

Substituting 36 = 217 from 1-10 in 1-13, we get

a6 = 0. 015895916 . I-14

Similarly for s = 12, we have:

m 12

1 5 11'
a = Z —-— = (-1) —""'— B 1'15
12 n=1 (2n)12 2.(12)1 12

. . _ 691 .
Substituting B12 — - _2730 from I-10 in I-15, we get

a = 0.000244198 . I-16
12
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Double Series
 

For n = 0, we have

00 2 2 -s/Z

E (2 + 0.444 m ) e

I, m: -°°

cn 2 Z -s/2

4 2(1 +0.444m) = 4bs. 1-17

I, m=2

where

00 -s/2

b = 23 (£2 + 0. 444 mg) for l, m = even only.

S I, m=2

I-18

Similarly for m = 0, we have

°° 2 2 '5/2
>3 (2 +0.474n) :4b' , 1-19

2, n: -°° s

where

°° 2 2 .8/2 for t = even only and
b' = z (2 +0.474n)

S 2:2, n=1 n 2 any integer;

I-20

and for l = 0, we have

°° 2 2 '5/2
E (0.444m +0.474n) 24b", I-21

m, n: -°° S

where

00 2 2 -s/2

b" = 2 (0.44m +0.474n)

s
m=2,n=1

for m = even and

n = any integer.

I-22
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The double series bs’ b's and by are evaluated by direct

summation, and to do this with reasonable accuracy all the terms

whose c ontributi on is

3
1

< — z =(40' 0.000015 for s 6,

and is

1 6

< (4‘6) z 0.00000000024 for s :12,

are neglected. Such a termination of these sums is justifiable because

of the fast convergence of the series. Though the number of terms

increases rapidly with the increasing values of l, m and n, the order

of error involved would still be small because, first, the size of the

polyethylene crystals is small (being finite) and, secondly, the

contribution of only the first few terms is significant as compared to

higher order terms.

Thus:

b6 = 0. 34911017055

0
‘

ll 0.101079817615962
12

b'6 = 0.01782841530 1-23

b'12 2 0.0001156995141015

b" = 0.1201500514

b'l'Z = 0. 008143632999903

Trixie Series

We have

00 -s/Z

2 (£2 + 0. 444 m2 + 0. 474 n2)

to ma 1'1: -0)

8c , I-24



where

Evaluating the sums cS

double series, we have:

(1‘2 + 0. 444 m

87

2 -s/2

2+0.474n)

for i, m even and

ii any integer.

I-25

with the same order of accuracy as for

C6 = 0.20449870704

I-Z6

em = 0.0209123979253897

Rewriting the A'S of I-5 as;

- 2
°° 2 2 2 S/

I _

AS _ ,m,n:_m(2 + 0.444m +0.474n)

00 ‘30 -s/Z

= 2 z: 2'5 + 2 2 (0.444m2)

2:2 m=2

co 2 Z -s/Z co 2 2 -S/Z

+4 23 (2 +0.444m) +4 2 (2 +0.474n)

f, m=2 ;2, n=1

°° 2 2 ‘8/2
+4 2: (0.444m +0.474n)

m=2,n=1

°° 2 2 2 '3/2
+8 2 (2 +0.444m +0.474n) . 1-27

,m=2,n=1

we have

-s/2
A'=2(l+0.444 )a +4(b +b'+b")+8c .

S S S S S S

I-28

Substituting

0.444“3 = 0.087528384 for s— 6



88

and

6
0.444" = 0.0076612 for 5 =12

in I-28, we have

A' = 2.175056768a6 +4(b6+b'6+bé‘)+8c6
6

and

._ 1

A' - 2.0153224a +4(b12+b +b'1'2)+8c
12 12’

I-29

12

while substituting the numerical values of as, bs’ b's, b's' , cS in the

above, yields:

Aé = 3. 97935343732

1-30

'12 = 0. 6673191079229836

To obtain numerical values of the sums AS , these numerical values

of A; must be substituted. Thus, for s = 12 and 6

-12

A12 2 61 A12

and 1-31

._ '6 1

A6 — 61 A6 3

where

e1 = 3.705A

such that

el'l‘2 = 2, 587.95131"Z A'12

and I-32

e'6 = 2, 587.95131'1 A'6,
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Substituting I-32 in I-31, gives

A12 = 9.96372 x10.8 A'12

and I-33

A6 = 1.537646x10'3 A’6

Now, from 2. 43 ,

A12.6 : I"”‘12 'A6 '

where

p =-:- (r0)6 =—:— (4. 45)6 =% (7, 795.23947455)

= 3, 897.6197 A6 ; 1-34

therefore,

__ -3 -6
A _ -l.149298x10 A . 1-35
12-6



APPENDIX II

TRANSFORMATION OF PARTIAL DERIVATIVES

Let ci. be the direction cosines of the axes x', y', z', with

reapect to the axes x, y, z, as illustrated in the figure given bdow showing

only the x' axis.

 

 

 
 

 
Figure II-l. Rotation of axes.

Thus,

C11:C°S a, c12=cos (3, c13=cosy II-l

such that

._. l l I

x—cllx +c21y _+c3lz

y = ch x' + c22 y' + C32 2' II-Z

_ 1 I l

z—cI3x +c23y +c33z

Differentiating II-Z with respect to x, y, z, respectively, yields

3x _ 8 _ 3z _ .

”a? " C11' . 35 “ °21’ ’63? " C31 ° H'3

90
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If a displacement function q is given as

q = q(x, y, z) II-4

then

24 z 23 in; 23 :31 9.4 23 -
8x' 8x as + By 3x' + 8x 8x' ° H 5

Substituting from II-3 into II-5 results in

9.9. e 9.9. 23 29. - -
ax' C11 3x “:21 8y +C31 az ' H 6

and differentiating II-6 again, we get

2 2 2 2
a 9 = _8__ 5’31 8 a. 3 a

,2 8x' (ax'f' ' °11 (°11 + C21 axay " C31 8x8z'
3x 3x

2 2 2
a 8 a

+ C21 (°11 8x8 + C21 3y + c31 ayaz'

829 829 a2

+ C31 (C11 exaz + c21 ayaz + (:31 32%)

2 2 2 2
_ 2 a g 2 a 2 a g a 9

" °11 2 +C21 ‘2' + c31 2 +2C11c218x8y
3x 3y 0z

2 2

. . 3 L9.
+2 °11¢31 xaz + 2 °21°31 ayaz '

II-7

It is required to transform second partial derivatives of the

displacements with respect to the axes x12, x21; x13, x31; x23, x32;

x1 ,3, x31,; x1,,3, x31“ into partial derivatives with respect to x, y, 2.

In order to do so, the direction cosines of these axes are needed. They

are listed below along with the corresponding axes.



 



x31'

x1"3

x3111

 
 

 

  

 

 
  

  

( a . -—P-— . 0 )

Va2+b2 0.2.462

( ' a 9 b i 0 )

Vaz+bz «I 2+bZ

( a . o . C )

N/a2+c N/az+cz

( ' a a 0 9 C )

Va2+cz N/a

( o . b . ° )

N/bz+c2 Vbz Z

( O , _ b c )

«l162+e2 «I b

( a b c )

Va2+bz+4c2 Klaz+b2+4c2 Va2+bz+4cz

( _ a. _ b C )

N/a2+b2+4e2 Vaz+bz+4cZ N/a2+b2+4c2

(- a b 2C )

Va2+b2+4cz «/.-iz+b‘2+4cZ ~la2+bz+4cZ

( a. - b 2C )

v 2 Z 2 ’ ’
a “D '4‘: ~laz+bz+4e2 Va2+b2+4c2

II-8
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Thus, for differentiation with respect to the x12 axis, we have

9.91 -23-_2_§_a+_‘2__251
3x - ax' '-

12 N/az+bz Vaz+bz

and differentiating again

 

 

 

 

2

§3_=_L(§s_)=__a._(_2_is+___

8x‘2 3’“ 3’“ 2 2 2 2 8x2
12 «la +b N/a +b

b a 321

+ (~—

2 2 2 2 3""
N/a +b N/a +b

01'

2 2 a2 2

—§-3 = a2 _‘213 +2ab-g—9— + b2 __q_62 )

3x12 a2i-b 8x 8y

Similarly for the aXis x21

2 2 2 2

8 _ 1 2 8 8 2 8
+_ 22 (e—§-2abaa+b —29-)
8x21 3. +b 3x 3y

Adding II 9 and II 10 yields

829 + 629 _ 1 2 82 +21)2 8Z )

2 " 2 2

6x12 8x21 a +b 3x By

and subtracting II-lO from II-9 gives

2 2

89 _ 3 _ 4 ab 6

2 2c _ 2 2 5x5'y '
3x12 8x21 a +b

Repeating the above operation for the other sets, we have

2 Z Z Z
3 3 g 2 3 Z 3 9

3x 3x a2+b 0x 8z

8x 3y

b 82

2 2 5‘33’)
Va +b

b 829 )

2 8 7‘
a +b y

11-9

. 11-10

, 11-11

11-12

11-13
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8 8 _ 4ac 8 _

3‘3— ' “—132 - 7:2 8z ' ”'4
x13 x31 3

2 2 2 2
- 2

§_§_+§_g_=-%——2(2b23 +26 8 ), 11-15

8x23 8x32 b +c " ' 8y 8z

2 2 2

1%.. .. 9.1L = .2422. _3_9_ ; II-16
8 8 2 b +‘2 8y8z

"23 x32 C

2 2 2 2 2

8x1 3 8x31, +b +4e 8x Y 8y

2 82
+ 8 —9-2 ), 1117

8z

82 82 1 8‘2 82

+H—g'm'8ac871q7‘wbc8'g’" 11""
8 8 +b +4 x z Y zXl,3 X31, a C

2 2 2 2 2

8 +——9—a =———————2'2 2(2a2__382 -8ab-g;%—+2bza

8x1”3 8x231” a +b +4c 8x y 8y

2

+8cz a—-g-) , II-l9

82

829 829 182

a2 " 2 zTT‘T"8a°8x8z ”“8“???" “'20
1:1,,3 8x31” a +b +4c

2 a2 a2 1 2 a2

3% +_2q_ + _.9._ +§_<ZJ_ = (4a

8 8 8 2 8 2+b2+4 Z 8
x1'3 x31' x1"3 x31H a C Y

2 2

+4bZ9—% +1667“? ).

8y 8z

11-21

2 2 2 2 2 ’
8 _89 + 39 ___9._3 =——————' (16be——‘1-a ).

2 2 2 2 2 2 8y8z
8x1,3 8x31, 8x1”3 8x31” a +b +4e

II-22

-
.

.
.
‘
.
.
.
u
_
\
?
-
"
'
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Equations II-9 through II-22 are the transformation. relations utilized

in deriving the expressions 2.63 -65 from 2.60-62-
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APPENDIX III

STRAIN ENERGY CONNECTION BETWEEN THE ELASTIC AND

INTERACTION CONSTANTS

In Section 2. 3, the elastic constants were obtained in terms

of the interaction constants from a comparison of the equations of

motion derived from continuum and disc ontinuum theories. Second

nearest-neighbor interactions were considered; and the expressions !

thus obtained were simplified for first nearest-neighbors only and a ,

limited type of central force assumption. Expressions identical to }.

these (2. 78) may also be obtained from strain energy considerations.

In this appendix an expression for the strain energy is derived by

considering motions of the first nearest-neighbor lattice units relative

to the central unit. This is then compared with the corresponding

continuum Expressions 2. 22: of the Section 2.1.

First nearest-neighbors surrounding a central unit (0, 0, 0)

are shown in Figure 2. 5 in Section 2. 3. Using the same notations

as were used for the secondnearest-neighbors, the strain energy

per lattice unit uI in terms of displacements u, v, w and the

interaction constants, under the central force assumption becomes:

u = -'—k1' (u -u 1z+-'-k (v 1"
I 2 k100 100 000 2 k010 "010 “000

1 k11 1 k33

+2'k001'“001'“000' +2k001'"001"’000' +2 k001'w001'w000'

+-1-k1[(u1)2'*'(u
-u 1 ]21‘1'00 1'00““000 1"00 000

1 k22 2

'21‘1100 ["’1'00""000'Z + ("1“00'"000' '

III-l

96
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By dividing each term of the above expression by the appropriate lattice

distance and using the well known finite difference relations we obtain:

1 21(11112 1 2 k22 1 2

“1:2" k100'8x' '2'" k010'8yz' '2 ° ["001(8Z'

k22

“L"001 '82'2 + "001 '82") 2'

a+z 8v 2

"' _"""z"{k1100[("g'u_' )2+("a__xz12) ] +k112001('—"—aav2)2+(‘5;;) ]}

III-2

Once again,by transforming differentiations with respect to x12 and

x21 into those with respect to x, y, 2, III -2 may be written as:

“1'8'3'2 "100'8"x'z +b2"12110"8"f' "CZ' 061'???)

""001'82'12' ""001'8-29'wj'1'

+-l-{kl [a —-:—+b + b 8“2]
8 "1100"'%" 8")2 ("8" y)

. z

”(llaoo[(a1'g—b21)2+(a%§'b%yi)]}

III-3

which may rewritten by collecting coefficients of the respective

partial derivatives as:

___ k11 1k 2 11 c2k11

"I"Z"2'"100"4"1100'(51151""2'71"b "1100 '8' '"'2' "001'8"'z

1 2 22 k22 1 1 c2 k22

+4" "1100 (8") “’2 '2' "010+? 1"100"'8"'2+ '2'c "32001''"'

1 2 k33

+ 2 C "001 (T321114
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To obtain an expression for the strain energy density, let us multiply

both sides of the above by the number of units per cell and divide by

the volume of the unit cell. From Figure 2. 2, we have

8013-) + 2 1%) = 2 111—5number of lattice units per cell

volume of the unit cell = abc .

Thus, the strain energy density U in terms of uI may be written as:

2 uI

abc HI - 6

 U :

The corresponding expression from continuum theory is:

_ 1 2 r 2 2

U ‘ '2' (“1151 + c22'52 + C3363) + (“126162 + c13‘51'53 + °23€2‘3)

21 2 2

+ '2' (C4464 + C5565 + c6666)

which, on substitution for the values of Ej from 2. 5 and 6, yields:

_ 1 8n 2 8v 2 8w 7-

U - 'z[°11 (832) +sz (8;) ”33 (83)]

+[c12 1%) (3%) + cl3 (3%) (133) + an (3%) ($21)]

8u2
2

1 6V 3w 8w 8v 8u2

"fl °44‘8‘2 +8?) + c55 ('8i"+8'2’ + C66 (ENE?) ] ”1'7

Collecting coefficients, this may be rewritten as:

l 1 Eu 2 l
U =

“___
8u7- Bu2 1 av?-

2' C11‘E’ +'Z'°66 +2155 ('32) ”12°66 (83:)

l 8 l 3v)2

z

2
v

+2"sz ('83?) *2 C44 (“8"

1 3w 2 1 3w 2 1 3w 2

+2'C55('8§) “12°44‘87" +‘z'C33 (8'2"

212 '21 9.11 2W. 9.1.1 211.11
+ c12 (8x) (By) J” C13 (3x) (82) + <323 (By) (87.)

3v 8w 8w 8n 8v Bu
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Comparing III-4 and III-8 by using III-6, we obtain the following

ij
expressions for c.. in terms of k!

13 mm

11 ll

 

°11 = 15% ("100 +'2'"11oo)

C22 '"‘ 2% ("3:0 + 2 ":1200)

C33 = {CH- "331 a

(:44: = 2913 "331 °r “44 = 0

c55 = 3215 "(11:11 °r (‘55 = 0

 

C 11.1.11 ._.1.
66 ' 2 ac 1'00- 2 be 1'00

C12 = 0

‘213 -= 0

C23 = 0 0 111-9

Except for C12’ C13 and c23 these are identical to the Expression

2.78. Even redundancy in expressions for C44, c55 and C66 is same

as before. This provides a check on the two procedures. Such an

agreement will not, however, be obtained if non-central forces are

considered because different higher order terms are neglected and

included in the two cases.



APPENDIX IV

A NOTE ON THE LENNARDl-JONES POTENTIAL

Intermolecular forces are approximated by a 6-12 Lennard-

Jones potential,

 

 

(Mr) = $2 - —%— 2.26

1‘ 1‘

01'

1' . r .

¢(r) = e[:2( Tm)” wig—1&6] . 1v-1

Both of these forms are listed by Hirschfelder, et a1 (21). The first

is used herein, and this is also the form employed by Born and

Huang (23). However, 'Peterlin, et al (30), McMahon and McCIIOugh‘Gl)

use variations of the second. Further, they employ one potential along

the b-axis and another along the diagonal (a, b) axis, thus calculating

different values of rmin along these directions. This is probably done

because of the inherent properties of the orthorhombic lattice of poly-

ethylene:

(i) There is an additional unit at the midpoint of the rectangle

(a, b).

(ii) This unit is at a distance of -lz--1\/a2 + b2 , which is not

equal to b.

(iii) The unit has an orientation different from the corner

units.

Nevertheless, a closer study of the lattice structure of poly-

ethylene reveals that such difficulties may be resolved without using

different potential forms in different directions.
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Figure IV-l. Detailed positions of the hydrogen atoms in the

(a, b) plane.
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Figure IV-l is a detailed drawing of a single cell of polyethylene

in the plane (a,b), showing the positions of the hydrogen atoms in

space relative to each other. It may be observed from this figure

that the separation distances r1, r2, r3 and r4 of the hydrogen

atoms are all equal. This suggests that:

(i) The geometry of the polyethylene molecules and their

location in space determine the lattice structure.

(ii) The London dispersion forces between hydrogen atoms

determine the Lennard-Jones potential such that the hydrogen atoms

are at equilibrium separation.

 

Thus, the net force between any two lattice units in a plane is a result

of the interaction of their hydrogen atoms. The potential between the

two nearest hydrogen atoms can be written as

¢'(r) = if? -

1'

IV-Z

1
1
0
t
h

where the ratio of A' and B' is determined by their equilibrium

distance r2) . The net potential 4) between the two units at the lattice

points is:

41(1') = 2[¢'(r1)+ ¢'(r7'_)+ 4".(1'3) + ¢'(r4)]

+ 2 [ ¢'(ri) + ¢'(r'2) + 11>'(r'3)+ ¢'(r;)]

= 8 [ ¢'(r'o) + ¢1<r1)] Iv-3
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