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ABSTRACT

CONFORMATIONAL ANALYSIS OF SUBSTITUTED PHENYLACETALDEHYDES BY
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

By

Donald William Bushman

Nuclear magnetic resonance spectroscopy has been used in the conform-
ational analysis of substituted phenylacetaldehydes. The time averaged
vicinal spin-spin coupling constants between the aldehydic and a-protons
of phenylacetaldehyde, p-methylphenylacetaldehyde, p-methoxyphenylacetal-
hyde, p-chlorophenylacetaldehyde, 2,6-dichlorophenylacetaldehyde, and
phenylmercaptoacetaldehyde were studied at 60 MHz as a function of
temperature and solvent. The data for the substituted phenylacetaldehydes
were interpreted in terms of conformations I and II, in which a single
bond eclipses the carbonyl group. The analysis of the data led to the

following conclusions for the substituted phenylacetaldehydes. 1) Conform-
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ation II has a lower enthalpy than I in solvents of high dielectric
constant, 2) as the dielectric constant of the solvent is increased the

stability of II relative to I increases, 3) the free energy differences for



Donald William Bushman
I < II are solvent dependent, being more negative in solvents of high
dielectric constant, and 4) Tlocal dipole-dipole interactions are more
important in determining rotamer stability than overall dipole-dipole
interactions.

The following conclusions were drawn for phenylmercaptoacetaldehyde.
1) Conformation I is favored by enthalpy relative to II in all solvents
studied, 2) as the dielectric constant of the solvent is increased the
stability of I relative to II decreases, 3) the free energy differences
for I < II are solvent dependent, being more positive in solvents of low
dielectric constant, and 4) the local dipole-dipole interactions are
more important in determining rotamer stability than overall dipole-
dipole interactions.

Chemical shifts of the aldehydic and methylenic protons were also
measured in conjunction with the coupling constants. It was found that
the chemical shift results are in agreement with a recent model for the
anisotropy of the carbonyl group. These data also reinforce the
conclusion derived from the coupling constant data concerning the

stability of the rotamers, I and II.
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INTRODUCTION

Many techniques have been used in the investigation of rotational
isomerism about carbon-carbon single bonds. Particular attention has
been paid to the relative stabilities of rotamers in systems such as
1. The relative stabilities of rotamers 2a and 2b, and 3 have been

studied with respect to rotation about the carbon-carbon bond joining the

X
RCH2 \\
1
Y
sp2 and sp3 hybridized carbons as a function of X, Y, and R. These in-

vestigations include Raman and infrared studies of a-haloacetones

H X

\ /N s\ /
A VA VA

Y H Y H H Y
a Z2b
Vv

AV

cw

(1,2,3), haloacetylhalides (4,5), and a-haloacetaldehydes (6);
microwave studies of acetaldehyde (7), acetone (8), propionaldehyde (9),
fluoroacetyl fluoride (10), and olefins (11,12); electron defraction
studies of aliphatic ketones (13) and aldehydes (14,15,16); and

1
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nuclear magnetic resonance studies of ketones (17), 3-substituted
propylenes (18-22), hydrazones (23,24,25), and aldehydes (26-31).

Several basic factors have been proposed to explain the results
of many of these investigations. Included among these factors are
nonbonded (attractive and repulsive), dipole-dipole, dipole-induced
dipole, and electrostatic interactions. Thus, nonbonded repulsions
between R and Y as well as electrostatic dipole-dipole interactions in
rotamers 2a and 2b have been used to explain the different
2(a and p)/3 ratios in chloroacetone (1) and chloroacetyl chloride (4).
In agreement with this hypothesis are reports using I.R. techniques
(6,28), that chloroacetaldehyde exists essentially in conformation R>
conformer 2 being about 300-1500 cal/mole more stable than 3
according to aH° values. However, N.M.R. results (28) have shown 3
to be more stable than 2. It has been shown (29) that in nonpolar
solvents 2 for dichloroacetaldehyde is about 300 cal/mole more stable
than 3 according to AH° values. In polar solvents, however, dipole-
dipole interactions become sufficiently important in dichloroacetaldehyde
to make 3 more stable than 2 by 450-1400 cal/mole according to AH®
values. Since both conformers 2 and 3 are present in chloroacetone,
it might be concluded that nonbonded interactions between R and Y
significantly affect the relative stabilities of 2 and 3. In contrast,
nonbonded interactions play minor roles on the stabilities of rotamers
of aldehydic systems (X = 0, Y = H, and R = alkyl or aryl) (27). For
example, aH® for 2 ¢ 3 is -800 and -500 cal/mole when R is methyl or
isopropyl, respectively. When R is methyl, less than 200 cal/mole of
the 800 cal/mole is due to nonbonded repulsions. Nonbonded repulsions
only become significant when R is t-butyl, in which case 2 is favored

over 3 by 250 cal/mole.
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Although for discussion purposes the threefold barrier to
rotation is considered and spoken of as having perfectly eclipsed
minimum energy conformations, we recognize that N.M.R. techniques
cannot detect small deviations in the dihedral angle (27,32).

Previous work (30) has indicated that dipole-induced dipole
interactions do not play major roles in determining the relative
stabilities of 4a, 4b, and 5. However, since dipole-dipole interactions
may be significant and since logical substrate choices such as chloro-
and bromoacetaldehydes suffer from nonbonded interactions, it is
interesting to study the rotational isomerism in substituted phenyl-

acetaldehydes to see the effect of such substitution on the relative

\ /N I\
A N4 VA

R H R H h H H
4a 4b 5

Y VAV v

stabilities of 4 and 5. Two possibilities immediately come to mind:
1) that the dipole of the entire group, R, (i.e., phenyl and
substituent) will affect the relative stabilities of 4 and 5 or 2)
that only local dipole-dipole interactions are important and therefore,
substitution should not greatly affect the relative stabilities of 4
and ».

The effect of the anisotropy of the carbonyl group has been the
subject of investigations in recent years (33,34). A model, §,

described by Jackman (35) has been widely accepted; however, a more
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refined model, 7, has recently been suggested (36). In order to

6
N

determine the agreement of the newer model, {, with experimental

7
N

results, the chemical shifts of the substituted phenylacetaldehydes

and phenylmercaptoacetaldehyde were also measured.



RESULTS

A. Spin-Spin Coupling Constants

The vicinal spin-spin coupling constants for the substituted
phenylacetaldehydes and phenylmercaptoacetaldehyde are summarized in
Table I. Theicoupling constants were measured in 5% (vol./vol. for
liquids or wt./wt. for solids) solutions in the various solvents and
are an average of six to ten measurements with a precision of +0.03 Hz.
They were checked for accuracy against the known values (26,37) of
acetaldehyde; 2.85, 2.88, and 2.90 Hz at 36, 0, and -30°, respectively.

The coupling constants of the phenylacetaldehydes proved to be
smaller than those of acetaldehyde, as are those of monosubstituted
alkyl acetaldehydes (27). These decreased with increasing dielectric
constant of the solvent, except in the case of 2,6-dichlorophenylacetalde-
hyde which behaved erratically. In contrast, the coupling constants
for phenylmercaptoacetaldehyde were larger than those of acetaldehyde
and again decreased with increasing solvent dielectric constant.

The temperature dependence of the coupling constants are given
in Tables II, III, IV, V, VI, and VII. Plots of the coupling constants
versus temperature are given in Figs. 1, 2, 3, 4, 5, and 6. The
coupling constant of phenylacetaldehyde decreased with increasing
temperature in cyclohexane and decalin, was constant in ethyl ether,
and increased in methylene bromide, dimethyl formamide, and benzonitrile.
As may be seen in Fig. 1, the coupling constant for phenylacetaldehyde

becomes independent of temperature at a value of 2.40 Hz. The same

5
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trends are noted in the case of p-methylphenylacetaldehyde, Fig. 2,
the coupling constant becoming temperature independent at a value of
2.30 Hz. In p-methoxyphenylacetaldehyde, the coupling constant remained
constant in ethyl ether and tetrahydrofuran, but increased with
increasing temperature in methylene bromide, dimethyl formamide, and
benzonitrile. It also becomes temperature independent at a value of
2.40 Hz as seen in Fig. 3. The coupling constants for p-chlorophenyl-
acetaldehyde and 2,6-dichlorophenylacetaldehyde increased with increasing
temperature in all solvents studied. The coupling constant of
p-chlorophenylacetaldehyde appears to become temperature independent
at 2.20 Hz as shown in Fig. 4. The coupling constant for 2,6-dichloro-
phenylacetaldehyde is considerably smaller than those of the other
phenylacetaldehydes and appears to become temperature independent at
1.35 Hz as shown in Fig. 5. The coupling constant for phenylmercapto-
acetaldehyde decreased with increasing temperature in all solvents
studied, except in dimethyl formamide, where it remained constant. The

coupling becomes temperature independent at 2.75 Hz, Fig. 6.

B. Chemical Shifts

Summarized in Table VIII are the solvent dependencies of the
chemical shifts of the aldehydic and methylenic protons of the
substituted phenylacetaldehydes and phenylmercaptoacetaldehyde. The
chemical shifts were measured in 5% (vol./vol. for liquids or wt./wt.
for solids) solutions using tetramethylsilane as an internal standard.
The values were calibrated at a sweep width of 1000 Hz using a known
sample of tetramethylsilane (0.0 Hz), cyclohexane (86.0 Hz), acetone
(126.7 Hz), 1,1,1-trichloroethane (164.0 Hz), dioxane (217.0 Hz),
methylene chloride (318.0 Hz), and chloroform (439.8 Hz).
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The chemical shifts of the aldehydic and methylenic protons moved
to lower fields as the solvent polarity increased. Those of the
methylenic protons, however, underwent a much larger change than those
of the a]dehydic proton in all compounds studied, except 2,6-dichloro-
phenylacetaldehyde.

The temperature dependence of the chemical shifts of the
phenylacetaldehydes is given in Tables IX, X, XI, XII, and XIII. With
increasing temperature, the chemical shifts of the methylenic protons
of the para-substituted phenylacetaldehydes remained constant or were
shifted downfield in solvents of low dielectric constant and upfield
in those of high dielectric constant. The chemical shifts of the
aldehydic protons remained constant or were shifted downfield with
increasing temperature. For 2,6-dichlorophenylacetaldehyde, the chemical
shifts of the methylenic protons and of the aldehydic proton were
shifted upfield with increasing temperature, regardless of solvent
dielectric constant.

The temperature dependence of the chemical shifts of phenylmercapto-
acetaldehyde is given in Table XIV. With increasing temperature, the
chemical shift of the methylenic protons moved downfield in solvents
of low dielectric constant and upfield in those of high dielectric
constant. The chemical shift of the aldehydic proton remained constant

or was shifted downfield with increasing temperature.
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DISCUSSION

A. Spin-Spin Coupling Constants

The data in Tables I, II, III, IV, V, VI, and VII have been
interpreted in terms of an equilibrium between rotamers 4 and 5. It
is assumed that J, > J , where J

t g t
is the gauche. The observed coupling constant would be temperature

is the trans coupling constant and Jg

independent if 43, 4h, and 5 were isoenergetic. If 4a were more stable

H

AN AN
A VA

H R H R H H H H H
4a 4b

¥ VAV

o

than 5, the observed vicinal coupling constant would decrease with
increasing temperature; conversely, it would increase with increasing
temperature if 43 were less stable than 5. The following conclusions
can be drawn from the temperature dependence of the spin-spin coupling
constants of the aldehydes investigated: 1) The rotamers of phenyl-
acetaldehyde are isoenergetic (i.e., no change in the observed coupling
with temperature) in solvents of low dielectric constant. However, in
solvents of high dielectric constant, the most stable rotamer is 5.

2) In solvents of low dielectric constant, rotamer da of p-methylphenyl-

31
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acetaldehyde is more stable than é. In solvents of intermediate
dielectric constant, such as ethyl ether and tetrahydrofuran, é@ and
g are isoenergetic. In solvents of high dielectric constant, g is
the more stable rotamer. 3) For p-methoxyphenylacetaldehyde, ﬂe
and g are isoenergetic in ethyl ether and tetrahydrofuran, while é is
more stable in solvents of high dielectric constant. 4) For p-chloro-
phenylacetaldehyde in cyclohexane or trans-decalin, 33 and é are
isoenergetic at or above 38°, but in solvents of higher dielectric
constant, 5 is more stable than Qg. 5) For 2,6-dichlorophenylacetaldehyde,
E is more stable than 33 in all solvents studied. 6) For phenylmercapto-
acetaldehyde, 53 is more stable than § except in dimethyl formamide
where they are isoenergetic.

Rotamer populations were calculated using equation 1, where Jobsd

Jopsg = P *+ 95072 + (1-p)y (M

is the observed coupling constant, p is the fractional population of
4 (4a + 4b), and (1-p) that of 5. Free energy differences, AG°,
VI VAV LVaw v

between 32 and é were calculated from equation 2. The enthalpy

86° = -RTIn(I, + 90 = 2000 )/ oy = 9,) (2)

differences, aH°, between Qg and § were obtained from plots of log Keq

versus 1/T, where Keq is the equilibrium constant given by equation 3.

Keq = 2(1-P)/p (3)

For the above calculations, the values of Jt and Jg must be known
or estimated. For systems with large changes in Jobsd’ limits for

Jt and Jg may be set using equation 4, which relates the experimental

Jobsd = (1/3)(3y + 23.) (4)
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coupling constant to Jt and Jg, either when the rotamers are equally
populated, or at free rotation about the carbon-carbon single bond
(usually at very high temperatures).

In cases, such as those investigated here, where the changes in
Jobsd are relatively small, such estimates are not easily made. Since
Jy and Jg for acetaldehyde have been estimated (27) as 7.6 and 0.5 Hz,
respectively, the temperature independent value of the coupling constant
can be used to estimate the correction needed to be applied to the
observed couplings to allow the use of Jt and Jg of acetaldehyde in
equations 1 and 2. The temperature independent values for phenyl-
acetaldehyde, p-methylphenylacetaldehyde, p-methoxyphenylacetaldehyde,
p-chlorophenylacetaldehyde, 2,6-dichlorophenylacetaldehyde, and
phenylmercaptoacetaldehyde are 2.40, 2.30, 2.40, 2.20, 1.35, and 2.75 Hz,
respectively. Using a value of 2.85 Hz for the coupling constant of
acetaldehyde, the applied corrections are +0.45, +0.55, +0.45, +0.65,
+1.50, and +0.10 Hz, respectively.

Using the above method, the effect of the solvent dielectric
constant on the relative populations of 4 and 5 for the substituted
phenylacetaldehydes studied was determined. The results of these
calculations are given in Table XV. Since the temperature independent
coupling constants for p-chloro- and 2,6-dichlorophenylacetaldehyde are
lTower than those usually found for monosubstituted aldehydes, the
calculations for these compounds were also performed as if the
temperature independent coupling constants for both were 2.40 Hz.

As noted previously from the coupling constant data, the population of
R increases as the solvent dielectric constant increases. This same
effect can be seen in Table XVI in terms of the free energy differences,

0G°, calculated from equation 2. The enthalpy differences (aH°)
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between 4 and 5, determined from reasonably linear plots of log Kgq
versus 1/T, are given in Table XVII. The effect of solvent dielectric
constant on the relative populations of 4 and 5 for phenylmercaptoacetalde-
hyde are given in Table XVIII. The free energy differences, 4G°, and
the enthalpy differences, 4H®, between 4 and 5 are given in Table XIX.

The relative stabilities of rotamer 5 compared with 43 for the

monosubstituted acetaldehydes studied here and previously (27,28,30) are:

=
|

= CH3 > CH3CHp v 0CgHg ~ OCHgy > CH(CH3)2 > C1 » 2,6-(C])2C6H3

e

>

y SC6H5

This order is only valid in solvents of low dielectric constant, such

as cyclohexane or trans-decalin. In solvents of high dielectric
constant, the methoxy, phenoxy, chloro, and bromo groups become more
effective than the methyl group in the above order. The position of the
more polarizable methylmercapto group with respect to that of the less
polarizable methoxy group, along with that of bromine with respect to
chlorine, has been used to show that dipole-induced dipole interactions
play only a minor role in determining the relative stabilities of 4 and
5 (30). Nonbonded repulsions are partly responsible for the positions
of the bulky t-butyl and methylmercapto groups. However, their relative
positions (30) reinforce the conclusion (27) that nonbonded repulsions
are not the overriding factor controlling rotamer stability. From the
great similarity in AG° and AH° values between the para-substituted
phenylacetaldehydes in a given solvent, it appears that overall dipole-
dipole interactions are not a major factor determining rotamer stability,
but rather only local dipole-dipole interactions are important. Since

the AG® and AH° values for 2,6-dichlorophenylacetaldehyde are more
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Table XVIII. Solvent Dependence of the Relative Rotamer Populations®

of Phenylmercaptoacetaldehyde

PhSCH,CHO

Solvent %5
cyclohexane 19
trans-decalin 19
(CH3CH2)20 22
THF 27
CHZBr2 22
(CH3)2NCH0 33
C6H5CN 29

aA11 values calculated for 5% solutions at 38°.
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Table XIX. Solvent Dependence of the Free Energy Difference?

s AG°, and
the Enthalpy Differenceb, AH®, Between Rotamers of

Phenylmercaptoacetaldehyde

PhSCHZCHO
4G®, cal/mole, AH®, cal/mole,
for 43 7 5 for 42 ¥ 5
Solvent
cyclohexane +415 +1670
trans-decalin +415 +1050
(CH3CH2)20 +310 +540
THF +165 +440
+ +
CH28r2 310 660
(CH3)2NCH0 +10 +100
C6H5CN +110 +500

4These values pere calculated from the corresponding data at 38° in
Table XVIII. "“These values were obtained by plotting the natural
logarithm of the equilibrium constants calculated from the rotamer
populations versus 1/T.
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negative than for the para-substituted phenylacetaldehydes, overall
dipole-dipole interactions are probably not important; and this difference
may be due to attractive interactions between the chloro and the
carbonyl groups.

For p-chloro- and 2,6-dichlorophenylacetaldehyde, the rotamer
populations, AG°, and AH° were also calculated as if the temperature
independent value of Jobsd were 2.40 Hz. Although AG°® values are
sensitive to Jobsd’ AH® values are less so. There appears to be no
reason to assume that all the compounds studied should have the same
temperature independent value. If rotamers 8 and 9 are considered, the
temperature independent value of Jobsq 15 @ function of the energy

wells for the rotamers of the system. If the energy wells for 8 and 9

0 H 0 R

H H
8 R

are broad, then J d will become temperature independent at lower

obs
temperatures (accessible to experimental measurement) than if the
reverse were true. Thus, the temperature independent values of Jobsd
may have different values due to the effect of the substituents on
the shape of the energy wells describing the system.

The possibility of a twofold barrier to rotation may be eliminated

by considering rotamers 5 and ]Q as the equilibrium conformations. The
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relevant vicinal spin-spin coupling constants would be Jg (60°) from 5

and J120° from ]Q. For a twofold barrier to rotation, equation 4 becomes

equation 4'. From the observed coupling constants, J, must be equal

9

JObSd = (]/2)(‘]9 + J]zoo) (4|)

to or smaller than 1.84, 1.85, 2.05, 1.47, and 0.52 Hz for phenyl-,
p-methylphenyl-, p-methoxyphenyl-, p-chlorophenyl-, and 2,6-dichloro-

phenylacetaldehyde, respectively. If Jg and J120° are assumed to be

of the same sign, then J120° would be equal to or greater than 2.96,
2.76, 2.74, 2.92, and 2.48 Hz, respectively. These results are

unreasonable, since Jg and J]20° are expected to have similar values

(32,38). Since Jg for all these compounds is certainly less than 1 Hz,

the discrepancy between J_ and J120° is even greater than that calculated

g
using the minimum values of the observed coupling constants. If Jg
and J]ZOO are assumed to be of opposite sign, the discrepancy is larger

than if the coupling constants are assumed to have the same sign.

B. The Effect of Solvent Polarity on Rotamer Stabilities

The increase in the rotamer ratio 5/4 for phenylacetaldehyde with
increasing solvent dielectric constant, as reflected in the populations

given in Table XV, is logical in Tight of the higher dipole moment of 5
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relative to 4 (illustrated by ]] and ]2).

0
’\3 \ ’\ \
/ /
H Ph 11 H H H 12 H
VAV AV

In the case of p-methylphenylacetaldehyde, the dipoles may be
represented as in ]J4. It is apparent that the dipoles, other than the
carbonyl, should almost completely cancel. If, therefore, overall

BV

~

.
A\

H

O
ch
-

dipole-dipole interactions are important in determining rotamer
stability, then the rotamer populations of 4 and 5 should remain
constant for p-methylphenylacetaldehyde regardless of solvent dielectric
constant. This is not the case. The populations of 4 and % (and the
free energy and enthalpy differences) are roughly equivalent to

and change in the same manner as those of phenylacetaldehyde, supporting
the idea that only local dipole-dipole interactions are important in

determining rotamer stability.
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In p-methoxyphenylacetaldehyde, the overall dipole will depend on
the relative importance of the charge separated resonance form, lﬁ’ to
15. Taft and coworkers (39) have taken o values for the ionization
of benzoic acids and the rate of saponification of benzoate esters and

estima:ed the contributions of ars the contribution due to induction,

e %
“& H3C';:;; 0 )S"

AN
AN A\

H 15 H HH 16 H

and Ips the contribution due to resonance. Taft's values of o and

9R indicate that the methoxy group withdraws electrons by induction

and donates electrons by resonance, the resonance contribution being
about twice as large as the inductive. Comparison of the dipole
moments for anisole, 1.16 D (40), chlorobenzene, 1.52 D (41), bromo-
benzene, 1.51 D (42), p-chloroanisole, 2.24 D (43), and p-bromoanisole,
2.23 D (44) also indicates that the dipole arising from the methoxy group
is directed towards the phenyl group. This would indicate that
rotamer 4 has a higher overall dipole moment than 5 in p-methoxyphenyl-
acetaldehyde; consequently 4 should increase in stability relative to
5 in going to solvents of higher dielectric constant if overall dipole-
dipole interactions are important. This is not the case; rather, the
observed trends for rotamer populations, free energy differences, and
enthalpy differences are similar to those of phenylacetaldehyde. This
again implies that local dipole-dipole interactions are important in

determining rotamer stability.
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In the case of p-chlorophenylacetaldehyde, two resonance forms,

11 and 18, are again possible. Taft's o1 and op values (39) indicate

: 4
Q\ /7 &\ /
AN A\

HoH 17 H HH 1B H

that the inductive withdrawal of electrons is about twice as important
as the resonance effect. Comparison of the dipole moments for chloro-
benzene, 1.52 D (41), nitrobenzene, 3.84 D (45), toluene, 0.4 D (41),
p-chloronitrobenzene, 2.55 D (40), and p-chlorotoluene, 1.74 D (46)
shows that the dipole due to the chloro group is directed away from
the phenyl group. It would be predicted, if overall dipole moment
were important, that the percentage of § for p-chlorophenylacetaldehyde
should be greater than for phenyl-, p-methylphenyl-, or p-methoxy-
phenylacetaldehyde in solvents of high dielectric constant. This is
not the case. The populations, free energy differences, and enthalpy
differences are again similar to those of phenylacetaldehyde. These
results are again consistent with local dipole-dipole interactions
being the major factor determining rotamer stability.

The important dipoles for 2,6-dichlorophenylacetaldehyde are
shown in ]9. If the overall dipole moment were important, then in
solvents of high dielectric constant, rotamer 5 should be less stable

for the dichloro compound than for phenylacetaldehyde. This is not the
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case. In proceeding from nonpolar to polar solvents, the change in

populations is about the same as for phenylacetaldehyde. If the
populations for Q and 5 are similar to those calculated using 2.40 Hz
as the temperature independent value of the coupling constant, then

the larger population of 5 for 2,6-dichlorophenylacetaldehyde to that
of phenylacetaldehyde must be explained by some other factor than

local dipole-dipole interactions. Such a factor could be an attractive
interaction between chlorine and oxygen. In any event, the overall
dipole-dipole interactions cannot be of major importance.

The results for phenylmercaptoacetaldehyde may be compared to those
previously obtained for methylmercaptoacetaldehyde (30). It is found
that the magnitude and trends in rotamer populations, free energy
differences, and enthalpy differences are the same. This may be due
to the dominance of local dipole-dipole interactions or due to the
steric effect of sulfur. If, however, overall dipole-dipole interactions
were of major importance, some difference between the phenylmercapto-
and methylmercaptoacetaldehyde would have been expected due to the
polarizability of sulfur.

The above results and discussion indicate that local dipole-dipole
interactions are important in determining rotamer stability, while

overall dipole-dipole interactions are of minor importance.
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A close examination of the data in Table VI shows that the coupling
constant of 2,6-dichlorophenylacetaldehyde decreases in going to
solvents of higher dielectric constant, but for the more bulky
polar solvents within the series (chloroform, methylene bromide, and
methylene chloride) an increase in the coupling constant may be due to
a coordination of the bulky solvent, S, as in gg, which would

destabilize rotamer é due to steric interactions with the chlorines.

In comparing the AH® and 4G° values, it should be remembered
that 4H® in high dielectric constant solvents may be overly negative,
since the dielectric constant of the solvent decreases as the
temperature increases. This decrease in the dielectric constant
causes a decrease in the rotamer ratio, 5/4, and results in the calculation
of more negative AH° values. For this reason, in solvents of high
dielectric constant, AG® values generally reflect the enthalpy difference
to a better degree than do the AH° values themselves. This change in
dielectric constant with temperature becomes a severe problem in
systems where rotamer dipole moments differ greatly. In the aldehydes
studied, however, AG° and AH° are usually the same within experimental
error indicating that AS® is probably zero. For p-chlorophenylacetaldehyde

there is a discrepancy between aG° and AH®°, indicating that AS° may
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not be zero. The 4G° and AH° values calculated for 2,6-dichlorophenyl-

acetaldehyde, using 1.35 Hz as the temperature independent value of the
coupling constant, indicate that AS° may be close to zero for solvents
of low dielectric constant, but not so for those of high dielectric
constant. Using 2.40 Hz gives AG® and AH° values of roughly the same
value, indicating that AS° may be nearly zero in all solvents if

this temperature independent value is valid.

C. Chemical Shifts

The chemical shift data for the substituted phenylacetaldehydes
may be interpreted best by using model 7 (36) rather than model § (35).

Model £ would predict that Ha in gl would be deshielded in the plane

of the carbonyl group, while { would predict it to be shielded. From
Table VIII, it can be seen that for nonaromatic solvents, the chemical
shifts of the methylenic protons move upfield as the dielectric
constant of the solvent decreases. Therefore, these protons are being
shielded to a greater extent than in solvents of high dielectric
constant. The previous results on rotamer stability show that for the
substituted phenylacetaldehydes the stability of rotamer 4 is increased
as the solvent dielectric constant is decreased. Therefore, the

methylenic protons are being shielded as predicted by model Z. The
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same arguments may be applied to the chemical shifts of phenylmercapto-
acetaldehyde.

The temperature dependence of the chemical shifts of the aldehydic
and methylenic protons for the substituted phenylacetaldehydes are
given in Tables IX, X, XI, XII, and XIII. It is seen that as the
population of rotamer 4 increases, the chemical shifts of the methylenic
protons move upfield, a fact that is consistent with model Z. The
aldehydic protons for phenylacetaldehyde, p-methylphenylacetaldehyde,
and p-methoxyphenylacetaldehyde were deshielded with increasing temperature
in all the solvents studied. The chemical shift of the aldehydic
proton for p-chlorophenylacetaldehyde was deshielded in solvents of low
dielectric constant and remained relatively constant in solvents of
high dielectric constant with increasing temperature. The aldehydic
proton in 2,6-dichloroacetaldehyde was shielded with increasing
temperature in all solvents studied. The reasons for this behavior of
the aldehydic protons is not presently understood.

The temperature dependence of the chemical shifts for the aldehydic
and methylenic protons for phenylmercaptoacetaldehyde are given in
Table XIV. The chemical shift of the methylenic protons in most
solvents was constant. In N,N-dimethylformamide and benzonitrile,
the methylenic protons are deshielded with increasing population of
rotamer Q. This may be due to specific solvent solute interactions.
The aldehydic proton was deshielded with increasing temperature in less

polar solvents and was constant in polar solvents.




EXPERIMENTAL

A. Reagents and Compounds

A1l aldehydes were purified either by distillation or by isolation
of the bisulfite addition product. Phenylacetaldehyde, p-methylbenzyl
cyanide, 2-methyl-2,4-pentanediol, p-methoxystyrene, p-chlorostyrene,
2,6-dichlorostyrene, chloroacetaldehyde diethyl acetal, and benzenethiol

were obtained commercially (Aldrich Chemical Co.).

B. Solvents
A1l solvents used in these studies were purified by standard
methods (47). The purified solvents were stored over molecular sieves

in glass stoppered bottles.

C. Synthesis
I. p-Methylphenylacetaldehyde

p-Methylphenylacetaldehyde was prepared from p-methylbenzyl cyanide
by combining the procedures of Tillmanns and Ritter (48) and Meyers,
et al. (49). To 90 g of concentrated sulfuric acid cooled in an ice
bath, was added 25 g of p-methylbenzyl cyanide (0.19 mole) with stirring
over a period of 0.5 hours, followed by 21.3 g of 2-methyl1-2,4-
pentanediol (0.18 mole) added over a two hour period. This mixture was
poured over 180 g of ice, half-neutralized with 40% sodium hydroxide
solution and extracted three times with 100 m1 of chloroform. The pH
was then adjusted to 10 and the product was extracted with ethyl ether
and dried over anhydrous potassium carbonate. After evaporation of the

49
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ether extracts, 8.5 g of 2-(p-methylbenzyl)-4,4,6-trimethy1-5,6-
dihydro-1,3(4H)-oxazine (19.6%) was obtained as a yellow 0il which
solidified on distillation (84-90° at 0.3 mm). The product was
dissolved in a mixture of 200 ml of tetrahydrofuran and 200 ml of
95% ethanol, cooled to -40° and 9N HC1 and sodium borohydride solution
(7.6 g, in 15 ml of water containing 2 drops of 40% sodium hydroxide)
were added alternately, keeping the pH between 6 and 8. The reaction
mixture was cooled for an additional two hours, 200 ml of water was
added and the solution was made basic with 40% sodium hydroxide. The
layers were separated and the aqueous layer extracted twice with ethyl
ether. The combined organic layers were washed twice with 200 ml of
saturated sodium chloride solution and dried over anhydrous potassium
carbonate. After evaporation of the solvent, the crude 2-(p-methylbenzyl)-
4,4,6-trimethyltetrahydro-1,3-oxazine was added dropwise to 300 ml
of water containing 100 g of oxalic acid. The produced aldehyde was
steam distilled under a helium atmosphere. The distillate was saturated
with sodium chloride and extracted three times with 150 ml1 portions
of pentane. Distillation of the dried pentane extracts yielded 1.6 g of

pure p-methylphenylacetaldehyde (0.011 mole, 6.6%, 44-46° at 0.5 mm).

II. p-Methoxyphenylacetaldehyde

p-Methoxyphenylacetaldehyde was prepared from p-methoxystyrene by
the procedure of Mannich and Jacobsohn (50). To a suspension of 22 g
of yellow mercuric oxide in a solution of 10 g of p-methoxystyrene
(0.74 mole), 100 ml of ethyl ether and 10 ml of water, was added small
portions of iodine (25 g) over a period of one hour. The solution was
filtered and washed twice with saturated sodium thiosulfate solution.
The solution was diluted with 50 ml of ethanol. After the removal of

ether and addition of 100 ml of saturated sodium bisulfite, the solution
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was stirred for one hour and the bisulfite adduct was filtered and
washed with ethyl ether. After addition of 100 ml of saturated sodium
bicarbonate to an aqueous solution of the adduct, the solution was
stirred for one hour at 0° and then extracted with ethyl ether, dried
over anhydrous sodium sulfate and evaporated to give 3.9 g of

p-methoxyphenylacetaldehyde (0.026 mole, 35%).

IIT. p-Chlorophenylacetaldehyde

p-Chlorophenylacetaldehyde was prepared from p-chlorostyrene by
the procedure of Freeman et al. (51,52,53). To 10 g (0.0725 mole) of
freshly distilled p-chlorostyrene dissolved in 250 ml of methylene
chloride and cooled to 0° was added dropwise 12.6 g (6.6 ml, 0.082 mole)
of freshly distilled chromyl chloride dissolved in 125 ml of methylene
chloride. After one hour, 6.10 g (0.094 mole) of zinc dust was added.
It was followed, after an additional 15 minutes of stirring by 37 ml of
water and 15 g of ice. The mixture was allowed to reach room temperature
and then steam distilled until 5 2 of distillate were collected. The
distillate was extracted with an equal volume of methylene chloride,
the organic layer was dried over anhydrous magnesium sulfate, decanted,
and the solvent evaporated. The resulting oil was distilled, yielding
0.489 (0.0031 mole, 4.3%) of p-chlorophenylacetaldehyde (colorless
solid, bp 75-78 at 0.6 mm).

Iv. 2,6-Dichlorophenylacetaldehyde

2,6-Dichlorophenylacetaldehyde was prepared from 2,6-dichloro-
styrene by the procedure of Freeman et al. (51,52,53). To a stirred
mixture of 10.30 g (0.059 mole) of freshly distilled 2,6-dichlorostyrene
in 200 ml1 of methylene chloride and cooled to 0° was added dropwise

10.32 g (5.4 m1, 0.067 mole) of freshly distilled chromyl chloride
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dissolved in 100 m1 of methylene chloride. An hour later, 5 g

(0.077 mole) of zinc dust was added, followed, after an additional

15 minutes of stirring, by 30 ml of water and 12 g of ice. The mixture
was allowed to reach room temperature and then steam distilled until

5 & of distillate were collected. The distillate was extracted with an
equal volume of methylene chloride, the organic layer was dried over
anhydrous magnesium sulfate, decanted, and the solvent evaporated. The
resulting oil was distilled, yielding 1.45 g (0.0077 mole, 12.9%) of
2,6-dichlorophenylacetaldehyde (colorless solid, bp 95-98° at 0.2 mm).

V. Phenylmercaptoacetaldehyde

Phenylmercaptoacetaldehyde was prepared from benzenethiol and
chloroacetaldehyde diethyl acetal by the procedure of Wick, et al. (54).
To a solution of sodium phenylmercaptide (11.0 g, 0.48 mole, of sodium,
120 m1 of ethanol, 58.3 g, 0.53 mole, of benzenethiol) chilled in an
ice bath was added dropwise 39.65 g (0.26 mole) of chloroacetaldehyde
diethyl acetal. After warming, the mixture was heated at 50-60° for
one hour, and was then allowed to stand at room temperature overnight.
The resulting orange solution containing a white solid was filtered, and
the filtrate was diluted with water to twice its volume and extracted
with ether. The ether layer was dried with anhydrous magnesium sulfate.
After evaporation of the ether and vacuum distillation of the residue
32.16 g of phenylmercaptoacetaldehyde diethyl acetal (0.14 mole,

54.2%, 131-35° at 3.4 mm) was obtained.

A mixture of 22.6 g (0.1 mole) of phenylmercaptoacetaldehyde
diethyl acetal and 120 m1 of 10% sulfuric acid was refluxed at 80° for
45 minutes. The mixture was then steam distilled and the distillate

extracted with ether. The ether layer was dried with anhydrous magnesium
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sulfate and the ether evaporated. Vacuum distillation gave 5.45 g of

phenylmercaptoacetaldehyde (0.036 mole, 36.0%, 108-110° at 3.7 mm).

D. N.M.R. Spectra

The Nuclear Magnetic Resonance spectra were obtained at 60 MHz on
a Varian Associates Model A56/60D Analytical Spectrometer (Varian
Associates, Palo Alto, Calif.). Samples, in concentrations of
5% vol./vol. for liquids or wt./wt. for solids, were run with tetra-
methylsilane (TMS) as the internal standard. Coupling constants (J)

were recorded at a sweep width of 50 Hz. The recorded coupling constants

were averages of six to ten measurements and were calibrated against
known values of acetaldehyde (26,37). Chemical shifts were obtained
at a sweep width of 1000 Hz and were calibrated against a known sample
of tetramethylsilane (0.0 Hz), 1,1,1-trichloroethane (164.0 Hz),
dioxane (217.0 Hz), methylene chloride (318.0 Hz), and chloroform
(439.8 Hz). Temperature studies were carried out by using a Varian
Associates V-6040 Variable Temperature controller with a precision of

+2°,
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