

SOFTWARE TOOL METHODOLOGIES ON A GPU FOR FINITE ELEMENT

OPTIMIZATION IN MAGNETICS

By

Sivamayam Sivasuthan

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Electrical Engineering—Doctor of Philosophy

2015

ii

ABSTRACT

SOFTWARE TOOL METHODOLOGIES ON A GPU FOR FINITE ELEMENT

OPTIMIZATION IN MAGNETICS

By

Sivamayam Sivasuthan

The design of magnetic devices requires optimization coupled with finite element

analysis (FEA). This involves a massive computational load and requires a specialized mesh

generator. It is therefore not practicable. This thesis therefore presents i) a parameterized

iterative mesh generator for two-dimensional and three-dimensional finite element optimization;

ii) fast and low memory finite element solvers using a graphics processing unit (GPU). In

particular we introduce element by element finite element computations on a GPU with a

speedup of 102 while the best competing method gives only 10; and iii) an examination of

parallelizing such matrix computations on already parallelized genetic algorithm threads using

new GPU architectures. The resulting system is reliable and yields solutions in practicable times

with massive speedup. Example inverse optimization problems are presented. These software

tools are written in C/C++ and CUDA C/C++. The system is shown to be applicable to the

synthesizing of two-dimensional and three-dimensional electromagnetic devices and to non-

destructive evaluation (NDE) problems.

Several finite element mesh generators exist in the public domain, some even based on a

parametric device description. But for optimization we need a parametrically described mesh

dynamically evolving through the iterations without user input. The few that exist are

commercial and their methodology is not known. In this thesis the mesh generator that we

describe is in open source code with parametric mesh generation that runs nonstop and

seamlessly through optimization iterations to convergence without user intervention. Such mesh

iii

generators as do exist are rare, commercial and not easily available to researchers except at great

cost and never with the code to modify it to suit needs individual. Besides, the typical mesh

generator requires some man-machine interaction to define the mesh points and boundary

conditions and does not work for nonstop optimization iterations. We take two regular open

source mesh generators, one for two-dimensional systems and the other for three-dimensional

systems, and write a script-based interface as open source code to run nonstop for optimization.

We then use it to create an NDE system for an army ground vehicle’s hull defect characterization

and use it equally adaptively for machine design. A simple scheme of averaging neighbor heights

gives us a smooth geometry without having to use Bezier curves.

This thesis also points out using a literature survey issues in GPU computation which

result in erratic speedup and explain why in some instances GPU solutions are arithmetically a

slight improvement on CPU solutions.

iv

This thesis is dedicated to my parents; Sinnathurai Sivamayam and Sivamayam Sivakumary, and

my mentors . . .

v

ACKNOWLEDGMENTS

I would like to address my heartily profound gratitude and appreciation to my advisor Dr.

S. Ratnajeevan H. Hoole for taking me on as a research student under his valuable guidance

with funding. His advice and insights were the real encouragement to complete this work. It has

been an honor to work with him. My sincere thanks also go to the rest of my PhD committee

members, Dr. Lalita Udpa, Dr. William Punch and Dr. Nihar Mahapatra, for their suggestions

and encouraging comments throughout this work.

Next, I am very grateful to the US Army’s Tank Automotive Research and Development

Center (TARDEC) for funding our research under Contract Number W911NF-11-D-0001 and

W56HZV-07-2-001. I am thankful to the MSU Graduate School and College of Engineering for

awarding a summer graduate excellence fellowship thrice, a graduate office fellowship and a

graduate teaching assistantship for one semester. This support was instrumental in facilitating

the completion of my degree.

I would also like to thank the faculty- and staff- members of the Department of Electrical

and Computer Engineering at Michigan State University, especially its College of Engineering,

for their support in various forms and their friendship. I have been lucky to share a lab with so

many friendly colleagues, namely V. U. Karthik, M. R. Rawashdeh and T. Mathiyalakan. I

express my sincere gratitude for their unstinted friendship. My sincere thanks go to all the

academic and nonacademic staff members and friends at University of Jaffna, Sri Lanka, where

my career as a student in computer science started.

Finally, I am forever indebted to my parents and other members of my family, who have

supported and encouraged me through their kindness and affection, so that I could concentrate on

my studies. They touched me more deeply than I could have ever expected.

vi

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ALGORITHMS ...xv

Chapter 1 Introduction..1

1.1 Motivation ..1

1.2 The Finite Element Method ...5

1.2.1 Introduction ..5

1.2.2 Two-Dimensional Problems ...5

1.2.3 Trial Function..6

1.2.4 Solving Magneto-Static Problems ..11

1.2.5 Boundary Conditions ..14

1.2.6 Three-Dimensional ...15

1.3 Inverse Optimization Problems..17

Chapter 2 Parameter Based Unstructured Mesh Generator for Two and

 Three Dimensional Problems for Seamless Optimization21

2.1 Background ...21

2.2 Mesh Generation ..27

2.2.1 Introduction ...27

2.2.2 Delaunay Based Methods ...29

2.2.3 Delaunay Triangulation and Constrained Delaunay Triangulation30

2.2.3.1 Introduction ..30

2.2.4 Algorithms for Constructing a Delaunay Triangulation ...31

2.2.4.1 Introduction of Constructing a Delaunay Triangulation31

2.2.4.2 Divide-and-Conquer Algorithm ...31

2.2.4.3 Sweep-line Algorithm ..32

2.2.4.4 Incremental Insertion Algorithm ..33

2.2.5 Mesh Refinement ..33

2.2.6 Three Dimensional Mesh Generation ...34

2.3 Parameterized Mesh Generation ..36

2.4 New Approach to Parameterized Mesh Generation...36

2.5 Data Structure and User Interface ..38

2.5.1 Data Structure ..38

2.5.2 User Interface ..41

vii

2.5.2.1 Introduction ...41

 2.5.2.2 Defining the Geometrical Shape ..41

2.5.3 Post-processing of Meshing ..44

2.5.4 Approach to Renumbering ...46

2.5.5 Merge Sort ..48

2.5.6 Modified Form of Merge Sort for Renumbering ..50

Chapter 3 Low Memory High Speed FEM Solvers Using the GPU..52

3.1 Introduction ...52

3.2 General Purpose Computing on a Graphics Processing Unit (GPGPU)54

3.3 Related Works ..57

3.4 Element by Element Solvers ..59

 3.4.1 Element by Element with Jacobi Algorithm .. 59

 3.4.2 Element by Element Conjugate Gradients Algorithm ..64

 3.4.3 Element by Element Biconjugate Gradient Algorithm ..67

 3.4.4 Element by Element with Bi-Conjugate Gradient Stabilized method.70

3.5 Conjugate Gradients Algorithm with Sparse Storage Schemes ...73

 3.5.1 Conjugate Gradient Algorithm for Matrix Solution ... 73

 3.5.2 Matrix Storage Schemes ..75

 3.5.2.1 Introduction ..75

 3.5.2.2 Profile Storage ... 75

 3.5.2.3 Sparse Storage Scheme .. 77

Chapter 4 Test and Validation Problems ..79

4.1 Device design inverse-optimization problem: Design of the Pole Face of an Electrical

 motor ..79

4.1.1 Problem Definition ...79

4.1.2 Problem Model..81

4.2 Inverse-optimization for Device Design: Determining the Rotor Contour of a

 Salient Pole Synchronous Generator ..87

4.2.1 Problem Definition..87

4.2.2 Problem Model..88

4.3 NDE benchmark problem: Characterizing Interior Defects ..93

4.3.1 Problem Definition..93

4.3.2 Problem Model..94

4.4 A Simple Three-dimensional Problem...98

4.5 NDE benchmark problem in 3D: Characterizing Interior Defects101

Chapter 5 Results and Analysis ..105

5.1 Memory Limitation ..105

5.2 Element-by-Element Solvers ...108

viii

Chapter 6 Conclusion and Future Works ...123

APPENDICES ..126

Appendix A: Publications Raised from This Research ...127

Appendix B: Sample Input File 2D ..130

Appendix C: Sample Input File 3D ..132

BIBLIOGRAPHY ..137

ix

LIST OF TABLES

Table 4.1 The flux distribution from the un-constrained optimization ..84

Table 4.2 The flux distribution from the constrained optimization ...86

Table 4.3 The flux distribution after the optimization without smoothened shape91

Table 4.4 The flux distribution after optimization with smoothened shape92

Table 4.5 The solution of defect characterization ..96

Table 4.6 Real and binary solutions time need to compute ...97

Table 4.7 Real and binary solutions time need to compute ...97

Table 4.8 Potentials at measuring points ...100

Table 4.8 Potentials at measuring points ...101

Table 4.9 The solution of 3D defect characterization ..104

Table 5.1 Number of elements (NE) and storage (in MB) with matrix size for different storage

schemes 106

Table 5.2 Projected Memory (in MB) Needs ...107

Table 5.3 The CGEbE solution ..109

Table 5.4 The BiCGSTABEbE solution ..112

Table 5.5 The Jacobi solution ..115

Table 5.6 Speedup ratio between single and double precision ..120

x

LIST OF FIGURES

Figure 1.1 Regular finite element analyses . ..2

Figure 1.2 FEM with optimization algorithms ..4

Figure 1.3 Definition of H1 and h1 for a triangle ..6

Figure 1.4 Integration of triangular coordinates ..10

Figure 1.5 Known elements and unknown elements in matrix ..14

Figure 1.6 Traditional engineering design process ..16

Figure 1.7 Modern design process ...18

Figure 1.8 Equipotentials of vector potential at the optimum ...18

Figure 1.9 Equipotentials of vector potential at the optimum with B-spline interpolation18

Figure 2.1 Design cycle for an geometric optimization ...22

Figure 2.2 Design cycle for an inverse problem ..22

Figure 2.3 Performance comparison of triangulation using CPU-DT and GPU-

 DT for different number of points ..24

Figure 2.4 Problem specific parametric mesh generators ..25

Figure 2.5 Elastically deformed problem specific NDE mesh: As defect moves26

Figure 2.6 3D mesh for NDE problem: As parameters change ...27

Figure 2.7 3D Mesh for motor problem ...28

Figure 2.8 Applying Delaunay triangulation ...30

Figure 2.9 Example for constrained Delaunay triangulation ...31

Figure 2.10 Divide and conquer algorithm ..32

Figure 2.11 Sweep-line algorithm ..32

Figure 2.12 Incremental insertion algorithm ...33

xi

Figure 2.13 Delaunay mesh refinement ...34

Figure 2.14 Delaunay mesh refinement between two regions ..34

Figure 2.15 My approach to parameterized mesh generation ..37

Figure 2.16 Sample input file for mesh generator ..41

Figure 2.17 Simple example problem ..46

Figure 2.18 Numbering and renumbered nodes ..47

Figure 2.19 Renumbered nodes ...47

Figure 2.20 Sorted version of (b) and corresponding index changes ..47

Figure 2.21 Merge Sort ..48

Figure 3.1 Finite element optimization using genetic algorithm ...53

Figure 3.2 Floating-point operations per second and memory bandwidth for the

 CPU and GPU ...54

Figure 3.3 The GPU devotes more transistors to data processing ...55

Figure 3.4 Steps in the classic finite element method (FEM) and the proposed changes for

 the FEM-SES method enclosed within the dashed line ...58

Figure 3.5 Proposed method in flow chart ...60

Figure 3.6 A. Sparse full matrix, B. Sparse lower triangular matrix (because of symmetry)76

Figure 3.7 Data structures for the symmetric profile storage corresponding to

 Figure 3.6 B ...76

Figure 3.8 A. Sparse full matrix, B. Sparse upper triangular matrix (because of symmetry)77

Figure 3.9 Data structures for the symmetric profile storage corresponding to

 Figure 3.8 B ...77

Figure 4.1 Pole face of electrical motor ...79

Figure 4.2 Geometry, boundary conditions and the material properties of the sample problem ...80

Figure 4.3 Defining the problem using our tool ..81

xii

Figure 4.4 Generated mesh using our tool ...82

Figure 4.5 Finite element solution ...82

Figure 4.6 Results of the un-constrained optimization of the problem..83

Figure 4.7 Results of the constrained optimization without smoothening83

Figure 4.8 Results of the constrained optimization with smoothening ..84

Figure 4.9 The flux distribution from the un-constrained optimization ..85

Figure 4.10 Averaging technique for manufacturable shape ..86

Figure 4.11 The flux distribution from the constrained optimization ..86

Figure 4.12 A synchronous Generator (A) two pole and (B) four pole ...87

Figure 4.13 Parametrized geometry of salient pole ...88

Figure 4.14 Defining the problem ...89

Figure 4.15 Initial mesh ...89

Figure 4.16 Flux line of a salient pole synchronous Generator ...90

Figure 4.17 Optimized shape without smoothening constrained by rising pole heights from

 left to right...90

Figure 4.18 The flux distribution after the optimization without smoothened shape91

Figure 4.19 The flux distribution after the optimization with smoothened shape91

Figure 4.20 Final smoothened shape ...92

Figure 4.21 Inspection of an army vehicle after improvised explosive device 93

Figure 4.22 Parametrically defined crack in plate from Triangle ..94

Figure 4.23 Defining the problem ...95

Figure 4.24 Generated Mesh for NDE problem...95

Figure 4.25 Flux line for NDE problem...96

Figure 4.26 Optimum shape of the reconstructed defect ..96

xiii

Figure 4.27 Square conductor problem ..98

Figure 4.28 Mesh for square conductor problem ...99

Figure 4.29 Potential at measuring points ...99

Figure 4.30 Potential at measuring points for a simple cube ...99

Figure 4.31 Three-dimensional NDE problem ..102

Figure 4.32 Defining variable: top: side view, bottom: side view ...103

Figure 4.33 Three-dimensional mesh for NDE problem: As parameters change103

Figure 5.1 Memory vs matrix size ...107

Figure 5.2 Speed-up versus matrix size: Jacobi preconditioned conjugate gradients algorithm.108

Figure 5.3 Number of iterations vs number of unknowns for CGEbE ..110

Figure 5.4 Number of iterations vs number of elements for CGEbE ...110

Figure 5.5 Speedup vs number of unknowns for CGEbE ...111

Figure 5.6 Speedup vs number of elements for CGEbE ..111

Figure 5.7 Number of unknowns vs number of iterations for BiCGSTABEbE112

Figure 5.8 Number of elements vs number of iterations for EbEBiCGSTAB 113

Figure 5.9 Speedup vs number of unknowns for BiCGSTABEbE ...113

Figure 5.10 Speedup vs number of elements for BiCGSTABEbE ...114

Figure 5.11 Number of unknowns vs number of iterations for JacobiCG114

Figure 5.12 Number of elements vs number of iterations for JacobiCG 115

Figure 5.13 Speedup vs number of unknowns for Jacobi EbE ..116

Figure 5.14 Speedup vs number of elements for Jacobi EbE ..116

Figure 5.15 Convergence rate of CG in CPU ..117

Figure 5.16 Convergence rate of CG in GPU ..117

xiv

Figure 5.17 Convergence rate of BiCGSTABEbE in CPU ...117

Figure 5.18 Convergence rate of BiCGSTABEbE in GPU ...118

Figure 5.19 Convergence rate of Jacobi in CPU..118

Figure 5.20 Convergence rate of Jacobi in GPU ...118

Figure 5.21 Speedup comparison between CGEbE, BiCGSTABEbE and Jacobi

 EbE algorithms...119

Figure 5.22 Speed-up versus matrix size of Kiss et al ...120

Figure 5.23 Serial addition losing precision. Numbers surrounded by a box rep-

 resent the actual result floating point value with 7 digits 121

Figure 5.24 Erratic behavior of gain for various methods ...122

xv

LIST OF ALGORITHMS

Algorithm 2.1 Renumbering ..45

Algorithm 2.2 Merge Sort ..48

Algorithm 2.3 Merge ...49

Algorithm 2.4 Merge Sort-Modified..50

Algorithm 2.5 Merge-Modified ...50

Algorithm 3.1 Element by Element Jacobi Algorithm ..62

Algorithm 3.2 Computing the diagonal vector {D} and the right hand side vector {Q}63

Algorithm 3.3 Element by Element Conjugate Gradients Algorithm..65

Algorithm 3.4 Element by Element Biconjugate Gradient Algorithm ..68

Algorithm 3.5 Element by Element with Bi-Conjugate Gradient Stabilized method71

Algorithm 3.6 Preconditioned Conjugate Gradient ...74

1

Chapter 1

Introduction

1.1 Motivation

Existing finite element analysis software for electromagnetic fields provides advanced

features for design or analysis problems. However engineering design involves inverse problem

solving. That is, once the requirements are given, we have to find the geometrical shape or the

material properties, which will satisfy the requirements as closely as possible (if not exactly).

This is done basically using optimization algorithms. The deviation of the performance result of

the analysis of the present shape from the requirements must be formulated as an error function,

which must be minimized to get the optimum solution [1]. Most finite element analysis software

packages do not support this. Therefore this must be done using a trial and error process.

However a trial and error process alone will be so inefficient that it is not practically possible to

obtain a solution. Therefore an expert is required to guide this trial and error process using his

experience. However the success is directly dependent on the ability of the human expert and

therefore the solution obtained may deviate from the most optimum solution possible (Note that

computer based optimization solutions also do not guarantee the global minimum, however they

can reach a far better solution than a human expert).

There are some finite element analysis software packages that support optimization.

However such software can only be used for the optimization of special classes of problems. A

totally new program has to be developed in order to solve a new type of problem. This is an

expensive and time consuming task. This forces the designers who do not have the resources to

2

develop a separate optimization program for their specific need, to use the old trial and error

approach with traditional finite element analysis programs. Actually, it is usually not economical

to develop a separate program if we have to solve a given problem only once or twice.

Figure 1.1: Regular finite element analysis

Figure 1.1 shows the regular finite element analysis process. Figure 1.2 shows finite

element optimization using the zeroth order genetic algorithm (GA) and gradients based

algorithms. If we use GA optimization we can speed-up our solution time through parallelization

on a GPU. In the genetic algorithm, the design parameter vector {h} is binary encoded in general

3

[2]. A chromosome is a vector {h}. Its fitness score f is defined in terms of the object function

𝑓 =
1

1 + 𝐹
 (1.1)

Though GA is practicable and gives a faster solution when parallelized [3], it is slow in

our experience as a single process when compared with the gradient optimization methods. In

sequential CPU computing, the fitness value is calculated for each chromosome one by one.

When the population is high it takes a very long time to converge. We use GPU computation to

overcome this problem [3]. We launched GPU kernels for computing the fitness value. So the

fitness value will be calculated simultaneously for each chromosome in the population (Figure

1.2) [4]. Genetic algorithm based finite element analysis in magnetics has been carried out by

many researchers [5, 6, 7, 8, 9, 10] over the past 20 year period.

In gradients based optimization, the changes in parameters of device description {h} are

against the gradient of the object function F because in one-dimensional analogy the minimum

point is to the right of locations with negative gradient and to the left of those with positive

gradient:

{ℎ} = {ℎ} − 𝛼
𝜕𝐹

𝜕{ℎ}
 (1.2)

where the amount of change 𝛼 is determined by a line search [11]. The computation of the

gradient ∇F (= ∂F /∂ {h}) was previously by finite difference, computing F through a finite

element solution corresponding to a given {h} and then in turn changing each component hi by

an infinitesimal amount and re-computing F to get = ∂F /∂hi ≈ δF /δhi. Thus the component of

∇F at each iterative step with n components of {h} took n + 1 finite element solutions and then

once the direction of change of {h}, −∇F, is established several more finite element solutions

need to be sought during the line search as α in Equation 1.2 is progressively increased and the

4

problem iteratively solved until the minimum of F in that direction is identified [11]. Each

changed {h} means a new geometry and therefore a new mesh. For a seamless iterative process,

automatic mesh generators are required that can yield a mesh corresponding to a given {h}.

However with gradient based algorithms the matrix solution may be parallelized whereas with

the GA, both matrix solution and optimization may be parallelized through forking within a fork

[12].

Figure 1.2: FEM with optimization algorithms

Therefore, we have developed general-purpose two-dimensional and three-dimensional finite

5

element analysis inverse optimization procedure using GA software tools on a GPU for analysis

and geometrical shape optimization in design and NDE problems.

1.2 The Finite Element Method

1.2.1 Introduction

The finite element method is a method used for solving partial differential equations

numerically. It is widely used to solve electromagnetic problems [13], structural design

problems [14] etc. using computers. This method is generally used to find the distribution of a

certain field (e.g. magnetic vector potential, electric scalar potential, tension, fluid velocity, etc.)

in space governed by a given differential equation called the governing equation.

In order to solve the problem numerically, the solution region is divided into a finite

number of elements (which are not needed to be uniform). The potentials are assumed to have a

known mathematical variation called the trial function (e.g. linear variation, quadratic variation,

etc.) over each individual element. The field is postulated to be interpolations from its values at

certain nodes. Note that these elements must be small enough for this assumption to be valid

[13]. The problem is then solved to get the potentials at the interpolation nodes of these elements.

Then the potential at any given point in the solution space can be found by interpolating these

now known potentials using the trial function.

1.2.2 Two-Dimensional Problems

In most two dimensional finite element analyses, the space is divided into a mesh of

triangles. Points in these triangles are called the interpolation nodes of the mesh. The variation of

6

the potential over the triangles is assumed to be defined by a given trial function (most often a

first order trial function). The objective is to find the potentials at the nodes of the mesh so that

the potential at any given point inside a triangle can be found using the trial function. To do this,

we develop one equation per unknown node in the mesh. Then, this set of equations must be

solved to find the potentials at each node. Since these equations alone are not sufficient to get a

unique solution, some boundary conditions must also be considered.

1.2.3 Trial Function

Since we use only first order trial functions in our software tools, let us consider them in

detail. In two-dimensional cartesian coordinates, a first order trial function can be expressed as

follows [13, 15]:

𝐴 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 (1.3)

where x and y are cartesian coordinates and a, b and c are constants for the triangle. Triangular

coordinates are used in finite element analysis, as these normalized coordinates provide several

Figure 1.3: Definition of H1 and h1 for a triangle

7

advantages in analyzing properties inside triangles. Triangular coordinates ξ1, ξ2, and ξ3 of a

point P inside a triangle are defined as follows (see Figure 1.3).

𝜉1 = ℎ1 ÷ 𝐻1 (1.4)

𝜉2 = ℎ2 ÷ 𝐻2 (1.5)

𝜉3 = ℎ3 ÷ 𝐻3 (1.6)

where H1 is the shortest distance from N1 to N2N3 and h1 is the shortest distance from P to N2N3,

and so on (see Figure 1.3). If S is the area of the triangle,

𝑆 =
1

2
𝐻1𝐿1 =

1

2
𝐻2𝐿2 =

1

2
𝐻3𝐿3 (1.7)

Considering the three triangular areas in the triangle separated by dotted lines, (Figure 1.3)

𝑆 =
1

2
ℎ1𝐿1 +

1

2
ℎ2𝐿2 +

1

2
ℎ3𝐿3 (1.8)

From the definitions of ξ1, ξ2 and ξ3, Equations 1.4, 1.5 & 1.6

𝑆 =
1

2
𝐻1𝐿1𝜉1 +

1

2
𝐻2𝐿2𝜉2 +

1

2
𝐻3𝐿3𝜉3 (1.9)

Using 1.7

1 = 𝜉1 + 𝜉2 + 𝜉3 (1.10)

Using linear interpolation, the Cartesian coordinates of a point within the triangle can be written

as follows [15].

𝑥 = 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3 𝑥3 (1.11)

𝑦 = 𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3 𝑦3 (1.12)

8

These are exact because x and y are linear. Solving 1.10, 1.11 and 1.12,

𝜉𝑖 =

|
1 1 1
𝑥 𝑥𝑖1 𝑥𝑖2

𝑦 𝑦𝑖1 𝑦𝑖2

|

|
1 1 1
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

|

 (1.13)

Where i1 = i mod 3 + 1, and i2 = i1 mod 3 + 1 Equation 1.13 can be re-written as,

𝜉𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 (1.14)

where

𝑎𝑖 = (𝑥𝑖1𝑦𝑖2 − 𝑥𝑖2𝑦𝑖1) /Δ (1.15)

𝑏𝑖 = (𝑦𝑖1 − 𝑦𝑖2) /Δ (1.16)

𝑐𝑖 = (𝑥𝑖2 − 𝑥𝑖1) /Δ (1.17)

and

Δ = |
1 1 1
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

| (1.18)

Using these triangular coordinates, the first order trial function A is expressed as follows

𝐴 = 𝐴1𝜉1 + 𝐴2𝜉2 + 𝐴3𝜉3 (1.19)

where 𝐴 is the potential at the point (𝜉1, 𝜉2, 𝜉3) and A1, A2 and A3 are the potentials at the node

points 1, 2 and 3 of the triangle.

This can be verified by considering that the triangular coordinates of the three nodes of

the triangle are (1,0,0), (0,1,0) and (0,0,1). By substituting these points, one will get A1, A2 and

9

A3 as the potentials at the three nodes and a linear variation of potentials along any given line

inside a triangle. This trial function also provides a continuous variation of potentials from

triangle to triangle and a continuous first derivative from triangle to triangle along the tangential

direction of the boundary. Equation 1.19 can be re-written as,

𝐴 = {𝐴}𝑇{𝛼} (1.20)

where

{𝐴} = {𝐴1 𝐴2 𝐴3 } 𝑇 (1.21)

and

{𝛼} = {𝜉1 𝜉2 𝜉3 } 𝑇 (1.22)

From 1.16 and 1.17,

𝜕{𝛼}

𝜕𝑥
=

[𝑏1 𝑏2 𝑏3] 𝑇

∆
 = {𝑏} (1.23)

𝜕{𝛼}

𝜕𝑦
=

[𝑐1 𝑐2 𝑐3] 𝑇

∆
 = {𝑐} (1.24)

From 1.19,

𝜕𝐴

𝜕𝑥
=

𝜕{𝐴}𝑇{𝛼}

𝜕𝑥
 = {𝐴}𝑇

𝜕{𝛼}

𝜕𝑥
 = {𝐴}𝑇{𝑏} (1.25)

𝜕𝐴

𝜕𝑦
=

𝜕{𝐴}𝑇{𝛼}

𝜕𝑦
 = {𝐴}𝑇

𝜕{𝛼}

𝜕𝑦
 = {𝐴}𝑇{𝑐} (1.26)

10

Let us examine another property of these triangular coordinates, referring to Figure 1.4

Figure 1.4: Integration of triangular coordinates

where S is the area of the trainable. That is,

Where 𝑇0,1 = [
1

3

1

3

1

3
] ; 𝑇0,1 is a metric tensor

11

1.2.4 Solving Magneto-Static Problems

This solution uses first order triangular elements and materials with linear magnetic

properties at low frequency for simplicity. The following differential equation (From

Maxwell’s laws [13] (under static conditions)) governs the solution region.

where �̅� is the magnetic field intensity and 𝐽 ̅is the current density. Since �̅� = 𝜐�̅� and

�̅� = ∇ × �̅� where 𝜐 is the reluctivity

From 1.31, the energy functional can be derived. Since the energy is at its minimum at the stable

state, this function should achieve its minimum at the point of the solution. This function is

called the Lagrange function:

The solution region has been divided into triangles. Therefore now the total energy can be

written as the sum of the energies of each individual triangle.

12

Let us integrate this by parts,

From 1.28,

From 1.33, 1,34 and 1.35

where

and

13

From 1.33 and 1.36 we can get

To get the solution we have to minimize L{A}

Therefore the final solution can be obtained by solving,

This can be re-written in the form,

and the equation solved for {A}.

14

Figure 1.5: Known elements and unknown elements in matrix

1.2.5 Boundary Conditions

We basically use two types of boundary conditions, namely Neumann and Dirichlet [13].

Dirichlet boundary conditions mean that the potential along the boundary is fixed at a given

value and Neumann boundary conditions mean the derivative of the unknown potential at the

boundary along the normal direction is zero. Dirichlet boundary conditions can be implemented

by considering the node points on the boundary to have known values. Neumann boundary

conditions are implemented automatically if Dirichlet conditions are not used at a boundary [13].

They are said to be natural. If Neumann boundary conditions are used, it means the potentials at

some points along the boundary are known. Therefore the vector A can be broken into two as

potentials at nodes with known potentials 𝐴𝑘𝑛 and potentials at nodes with unknown

potentials𝐴𝑢𝑘. Therefore Equation 1.43 can be written as (see Figure 1.5),

This is the matrix equation used by this software to find the final solution of finite

element analysis. There is no minimization of L with respect to 𝐴𝑘𝑛

15

1.2.6 Three-Dimensional Problems

Corresponding to the triangle in two dimensions, the tetrahedron is a convenient element

to use in three dimensions. For the tetrahedral coordinates 𝜉𝑖 [13]:

𝜉1 =
ℎ𝑖

𝐻𝑖
 (1.45)

where now ℎ𝑖 is the height of a point from the opposite triangular face of a tetrahedron and 𝐻 is

the height of the vertex opposite that face. First order interpolation,

𝐴 = 𝐴1𝜉1 + 𝐴2𝜉2 + 𝐴3𝜉3 + 𝐴4𝜉4 (1.46)

1 = 𝜉1+𝜉2 + 𝜉3 + 𝜉4 (1.47)

𝑥 = 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3 𝑥3 + 𝜉4 𝑥4 (1.48)

𝑦 = 𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3 𝑦3 + 𝜉4 𝑦4 (1.49)

𝑧 = 𝜉1𝑧1 + 𝜉2𝑧2 + 𝜉3 𝑧3 + 𝜉4𝑧4 (1.50)

Solving the preceding four equations for the four 𝜉 s, we have

𝜉𝑖 =
1

6𝑉
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧) (1.51)

16

Where,

where 𝑖, 𝑖1, 𝑖2, 𝑖3 𝑎𝑟𝑒 1,2,3 𝑎𝑛𝑑 4 or a cycle permutation of them. A is the potential at the point

(x, y, z) and A1, A2, A3 and A4 are the potentials at the node points 1, 2, 3 and 4 of a tetrahedron

[13].

Figure 1.6: Traditional engineering design process

17

1.3 Inverse Optimization Problems

The inverse problem, the more practically realistic problem, is synthesis. That is, wanting a

performance, computing the system description from it. Thus the computational design

assignment may be this: compute the size and other descriptions of a motor that can produce so

much torque. Figure 1.6 shows the traditional engineering design process. An expert decides

which device to use and for that device assigns parameters to use and then checks the

performance by making and testing. Finally, an expert has to make changes in parameters if

needed. This process repeats until we get the desired performance. In the 1960s, the analysis

phase was introduced in place of make and test before checking the performance. Thereafter the

expert who makes the entire decision about the design process is replaced by powerful software.

Figure 1.7 shows the modern design process using AI techniques, knowledge base etc. to make

device selection. Optimization algorithms are used to select parameters in order to get the desired

performance. In the modern design process, the analysis phase is replaced with synthesis. The

earliest persons to automate this cycle in magnetics were Marrocco and Pironneau in 1978 [16].

In 1976 a parallel work with [16] by Arora and Hang [17] also established finite element

optimization in magnetics.

An erratic undulating shape with sharp edges arose when Pironneau [18] optimized a

recording-head to achieve a constant magnetic flux density and this was overcome through

constraints [19]. Haslinger and Neittaanmaki [20] suggest Bezier curves to keep the shapes

smooth with just a few variables to be optimized, while Preis, Magele, and Biro [21] have

suggested fourth-order polynomials which when we tried gave us smooth but undulating shapes

because of the higher order. Most of the required shape changes can be achieved with linear

variations [22]. Figure 1.8 shows that without regularity constraints, sharp corners and jagged

18

Figure 1.7: Modern design process

contours arise in designing a pole-face for constant vertical flux density. Figure 1.9 shows the

shape is smoothened further and there is no sharp corner when B-spline curves are used but the

undulation is mathematically correct though not practicable.

Figure 1.8: Equipotentials of vector potential at

the optimum

Figure 1.9: Equipotentials of vector potential at

the optimum with B-spline interpolation

In optimization problems like NDE of steel plates, besides the detection of cracks, what is

also important is their characterization. Characterization is necessary for determining whether

any discovered crack demands withdrawal of the part from service [23, 24]. In eddy current

19

crack identification the response of a part to an eddy current test coil is compared to the response

without a crack [4]. When different, the presence of the crack is flagged. But to characterize the

defect, the computed response from eddy current analysis with a crack described by parameters

is optimized to match measurements with computations. When the two match, the parameters

describe the defect [4]. In inverse electromagnetic problem solutions by the finite element

method, we require three tools. They are a special mesh generator, efficient matrix equation

solvers and optimization algorithms. These are for the 3 major steps of finite element

optimization. They are as follows,

1. Preprocessing: The essential operation for optimization is involved with this step. The

design for optimization is parameterized before mesh generation. As the geometry

defined by parameters is optimized, it changes shape, and a new finite element mesh must

be created without stopping the optimization iterations to create a new mesh. Several

finite element mesh generators exist in the public domain [25, 26, 27, 28, 29, 30, 31, 32],

a few even based on a parametric device description. The required mesh generator must

therefore support parameter based mesh generation and be completely automatic once the

optimization process begins. That means we must be able to change the physical shape

of the problem during run time and generate the mesh without stopping. Such mesh

generators as do exist are rare, commercial and not easily available to researchers except

at a great cost and never with the code to modify them to suit individual needs. We

propose taking a regular open source mesh generator and writing a script-based interface

as open source to run nonstop for two and three dimensional optimization problems. In

this thesis we are going to develop parametric mesh generators that run nonstop and

seamlessly through optimization iterations to convergence.

20

2. Solution: The biggest load in finite element field computation is in matrix solution.

Recently GPU computing has had great success in many very large numerical

computations (For example [33, 34, 35, and 36]). GPU-based finite element computation

offers massive parallelization. This thesis will investigate speeding up using the GPU in

sparse matrix computation. We will also examine the memory needs. For this purpose we

will investigate parallel EbE processing by Gauss iterations [24] and preconditioned

conjugate gradient [23].

3. Optimization: The parameters need to be optimized in NDE as well as synthesis to make

the computed fields match the desired performance. As we discussed in the introduction

section, we can use zeroth order optimization methods like the genetic algorithm, bee

colony algorithms [37] etc. Moreover, if gradient methods are to be used in the mesh

topology the nodal connections need to be held fixed to preserve C
1
 continuity of the

object function lest the mesh-induced minima are seen by the optimization algorithm as

from the physics of the problem

This thesis mainly focuses on the first two steps because several open source

optimization algorithms are available on the web (for example, [38]) and a colleague in the group

is using GPU computations to parallelize genetic algorithm optimization [4]. However his code

will be used for the test problems.

21

Chapter 2

Parameter Based Unstructured Mesh Generator for Two

and Three Dimensional Problems for Seamless Optimization

2.1 Background

Figure 2.1 shows the design cycle for a geometric optimization problem. In the

beginning, the initial geometric positions are either selected by the subject expert or in the

absence of the expert, randomly selected. In the next step we generate the mesh for the current

geometry, measure the object value by a finite element solution and check whether it is minimum

or not. If this is a minimum we terminate the loop; otherwise we change the geometric

parameters and do the same to procedure again.

Mesh generation is therefore a very important part of finite element analysis. But mesh

generators do not support parameter based mesh generation for optimization. For real world

inverse problems we need a mesh generator as a library where the design is described by

parameters ℎ̅ and it takes ℎ̅ as input and returns the mesh from iteration to iteration.

Figure 2.2 shows the design cycle for an inverse problem. In the first step the design

parameter set ℎ̅ is randomly selected (or estimated by a subject expert) and thereupon we

generate the corresponding mesh, get the finite element solution and measure the object value

(often conveniently defined as a least square difference between design objects desired and

22

Figure 2.1: Design cycle for a geometric optimization

Figure 2.2: Design cycle for an inverse problem

23

computed) and check whether it is minimum or not. If this is a minimum we terminate the loop;

otherwise we change the design parameters and do the same procedure again. This procedure

repeats until the object value is acceptably small. For optimization to go on non-stop, the mesh

needs to be generated for the new parameters without user intervention. In NDE the only

difference is that the object function compares measured values with those computed from

presumed values of ℎ̅ being sought.

In this section of this thesis we describe the necessity of a parametric mesh generator that

runs nonstop and seamlessly through optimization iterations to convergence. Such mesh

generators as do exist are rare, commercial and not easily available to researchers except at great

cost and never with the code to modify them to suit individual needs. Besides, the typical mesh

generator requires some man-machine interaction to define the points and boundary conditions

and does not work for nonstop optimization iterations. We will take a regular open source mesh

generator and write a script-based interface as open source to run nonstop for optimization.

There are many mesh generators available on the web [25, 26, 27, 28, 29, 30, 31, 32] and

in the literature; some packages are open source software and others commercial. But they

usually do not support parametric mesh generation. However they do support features we would

like in a parametric mesh generator. To summarize some notable mesh generators, Triangle,

which we use, generates exact Delaunay triangulations, constrained Delaunay triangulations,

conforming Delaunay triangulations, and Voronoi diagrams to yield high quality triangular

meshes without large angles as suited to finite element analysis [25]. AUTOMESH2D generates

high quality meshes quickly [32]. Cardinal’s Advanced Mesh INnovation with Octree [31],

CGAL [28], ADMESH [30], and Delaundo [39] are all notable for special features. Indeed there

are parametric mesh generators, for example [40]. However it is not publicly available. Another

24

such mesh generator is, CEDRATs suite Flux whereas parameters are changed, the mesh is

generated and the device analyzed to study the effect of parameters on performance [41]. The

same approach has been taken in NDE studies [42]. However, the works of [40, 41] are not

intended for non-stop optimization. For that CEDRAT uses a script based scheme called GOT-It

[43] which passes parameters to the program Flux and gets the results back for the optimization.

Their software and information are mainly in the commercial domain. A ’Lightened’ version of

GOT-It, named FGot, is offered free to students although, but there again, the code is not

accessible.

Figure 2.3 shows the performance comparison of triangulation using CPU-Delaunay tri-

angulation (DT) and GPU-DT for different number of points [44]. We can see the gain is

nominal compared to finite element solvers which are given in Chapter 5. Therefore it is not

worthwhile parallelizing mesh generation

Figure 2.3: Performance comparison of triangulation using CPU-DT and GPU-DT for different

number of points

Moreover, if gradient methods are to be used, the mesh topology given by the nodal

connections need to be held to preserve C
1
 continuity of the object function lest the mesh

25

induced fictitious minima are seen by the optimization algorithm as from the physics of the

Figure 2.4: Problem specific parametric mesh generators

problem [45]. For these reasons very problem specific mesh generators are constructed by

researchers. As an example, when an armored vehicle is targeted by an improvised explosive

device, the armor is inspected by an eddy current test probe to characterize the interior damage to

determine if the vehicle should be withdrawn from deployment. Figure 2.4 shows a problem

specific parametrically described crack in steel excited by an eddy current probe, where P1-P6

are the lengths that represent the position and shape of the crack, J is current density and µr is

relative permeability. In this NDE exercise the parameters need to be optimized to make the

computed fields match the measurements. The mesh has been constructed for the specific

problem. As the parameters change, the mesh topology is fixed, pulling and crunching triangles

as shown in Figure 2.5. Such problem specific meshes are a headache because they restrict the

geometry, lack flexibility and take time for modifications. Hence the need for general-purpose

parametric mesh generators. We can use zeroth order optimization methods for which C
1

continuity is irrelevant, such as the genetic algorithm, bee colony algorithms etc. without pulling

and crunching meshes for inverse problems; e.g. in reconstructing cracks to characterize interior

26

defects, or designing power devices. For non-stop optimization, the commercial code ANSYS

offers a gradients-based optimization suite [46], but gives little information on the techniques

employed. That is, although these methods are known within the companies, they are rarely

published. There are other companies, particularly from structural engineering, that also offer

gradients-based optimization. A huge lacuna is how they address the problem of mesh-induced

minima. These artificial minima are seen as physics-based object function minima and the code

tends to get stuck at these. Other approaches like a mathematical distance function to model the

geometry lie in the domain of specialized efforts [47].

Figure 2.5: Elastically deformed problem specific NDE mesh: As defect moves

Like in 2D there are also many 3D-mesh generators available on the web and in the literature

[29, 43, 48, 49]. Some are open source software and others commercial. TetGen [48, 49] is for

tetrahedral mesh generation and is more effective than previous methods at removing slivers

from and producing Delaunay optimal tessellations [50]. Each of these mesh generators has its

own merits but none of these mesh generators supports parametric mesh generation.

We will take the freely available, widely published, nonparametric, open source 3-D

27

mesh generator TetGen [48, 49] which like all published mesh generators involves user input in

the process of mesh generation. Here also we use a script file which uses a parametric

description of the system to start the mesh from initial parameters and thereafter runs it

seamlessly without stopping as the parameters are updated by the optimization process. Sample

3D meshes are shown in Figures 2.6 and 2.7

Figure 2.6: 3D mesh for NDE problem: As parameters change

2.2 Mesh Generation

2.2.1 Introduction

The finite element method requires the problem space to be split into a finite number of

finer elements. The preferred element shape for two-dimensional problems is the triangle and for

three-dimensional problems it is the tetrahedron [13]. This set of triangles/tetrahedrons is called

the mesh. If the mesh is finer, it will produce a better result in FEA [13], although it will increase

the processing time. If we can have a finer mesh only at the places where we want a more

accurate result, then we can reduce the processing time considerably. This is called adaptive

28

mesh generation [13]. Apart from this, the shape of the triangles/tetrahedrons in the mesh has a

great effect on the final solution of finite element analysis. If we have very obtuse angles in the

triangles of the mesh, they will introduce considerable errors into the final solution. Therefore,

all these facts have to be considered when generating a mesh for FEA problems.

Figure 2.7: 3D Mesh for motor problem

There are many mesh generation algorithms available. Basically we can divide them into

29

two categories. They are,

1 Algorithms which generate a crude mesh to define the basic geometry and then refine it

to get a good quality mesh

2 Algorithms which generate a fine mesh from the beginning,

The Advancing Front Algorithm [51] and Quad-tree Algorithm [52], Delaunay based

Algorithms [25] are the examples of the second category. These methods can produce very good

quality meshes. Delaunay based algorithms are well-known and commonly used algorithms for

quality mesh generations and therefore we use them.

2.2.2 Delaunay Based Methods

A Delaunay based meshing approach is a concept which consists of two tasks:

1 The mesh points are first created by a variety of techniques; e.g. advancing front, octree,

or structured methods

2 The Delaunay triangulation is first computed for the boundary without internal points.

The mesh points are then inserted incrementally into the triangulation/tetrahedralization

and the topology is updated according to the Delaunay definition.

There are many Delaunay triangulation algorithms; the incremental insertion algorithm,

the divide and conquer algorithm, the plane-sweep algorithm etc. In this work, we take the

freely available, widely published, non-parametric, open source two-dimensional (2D) mesh

generator Triangle [25]. These three mentioned algorithms have been implemented in the

Triangle [25] mesh generator. We then adapted it for seamless optimization [24].

30

Figure 2.8: Applying Delaunay triangulation

2.2.3 Delaunay Triangulation and Constrained Delaunay Triangulation

2.2.3.1 Introduction

Delaunay triangulation [13] is a technique used to improve the quality of the mesh by

simply rearranging the nodal connections that make triangles. This algorithm ensures that there

will be no obtuse angles in the mesh other than in the triangles at boundaries. This is done by

rearranging the triangles, if the uncommon point of the neighboring triangle lies inside the

inscribing circle of one of the triangles, as shown in Figure 2.8. This can be identified by

calculating the two angles corresponding to the uncommon points. By the properties of cyclic

quadrilaterals, when the sum of these angles is greater than 180
◦
, the triangles must be

rearranged.

In Figure 2.8, the triangle QRS lies inside the inscribing circle of the triangle PQS. This

can be recognized by summing the two opposite angles, A and B (These are the angles

corresponding to the uncommon points for the two triangles, P and R). Since the sum of A and B

is greater than 180
◦
 the two triangles are rearranged as PQR and PRS as shown in the figure.

Now the point of the opposite triangles is not inside the inscribing circles. Constrained Delaunay

triangulation is a generalization of the Delaunay triangulation that forces certain required

31

segments into the triangulation. An example is shown in Figure 2.9. Both triangles are in

different regions where each may have different properties. So they cannot be flipped like the

previous case

Figure 2.9: Example for constrained Delaunay triangulation

2.2.4 Algorithms for Constructing a Delaunay Triangulation

2.2.4.1 Introduction of Constructing a Delaunay Triangulation

There are many Delaunay triangulation algorithms; for example Divide-and-Conquer [53],

Sweepline [54], Incremental insertion [55] etc. As Su and Drysdale [56] found, the divide- and-

conquer algorithm is fastest; the second is the sweepline algorithm. The incremental insertion

algorithm performs poorly, spending most of its time in point location. Su and Drysdale

introduced a better incremental insertion implementation by using bucketing to perform point

location, but it still ranks third. A very important development in the divide and conquer

algorithm is partitioning the vertices with vertical and horizontal cuttings [53].

2.2.4.2 Divide-and-Conquer Algorithm

The point set v is divided into halves until we are left with two or three points in each

subset. Then these smaller subsets can be linked with edges or triangles which is called a

32

Voronoi diagram. Now we have a set of Voronoi diagrams because we have a set of smaller

subsets. In the conquer step, we merge the subsets to get the whole Voronoi diagram (see Figure

2.10). The dual of the Voronoi diagram is the mesh [25].

Figure 2.10: Divide and conquer algorithm

Figure 2.11: Sweep-line algorithm

2.2.4.3 Sweep-line Algorithm

The sweep-line algorithm uses a sweep-line which divides a working area into two sub-

areas. This process constructs the Voronoi diagram - the dual graph of Delaunay triangulation

(shown in Figure 2.11). This algorithm was introduced by Fortune [54]. Shewchuk [25] pre-

sented a successful algorithm for constructing a higher-dimensional Delaunay triangulation.

Figure 2.11 explains how the sweep-line algorithm works. There is a vertical line which is called

a sweep line in the Figure 2.11. When this line passes a point this algorithm creates a Voronoi

diagram with other points which are already passed.

33

Figure 2.12: Incremental insertion algorithm

2.2.4.4 Incremental Insertion Algorithm

Here we generate a fictitious triangle containing all points of V in its interior. The points

are then added one by one. Figure 2.12 (b) shows the mesh after the first point is added. Figure

2.12 (c) shows how to handle the insertion of the second or subsequent point. The idea is to draw

circumcircles of a particular triangle where the new point is located and neighboring triangles,

select the triangles whose circumcircles cover the new points, remove the interior edges of

selected triangles; and finally, a new point is connected with every point of a created polygon.

This algorithm always maintains the Delaunay triangulation of the points.

2.2.5 Mesh Refinement

There are many mesh refinement algorithms available. Most of them are based on

Rupert’s Algorithm [57]. They produce quality meshes with more nodes at regions where there

are finer geometrical shapes and fewer nodes at other regions. The basic idea of the algorithm is

to maintain a triangulation, making local improvements in order to remove the skinny triangles.

34

Figure 2.13 shows the basic idea of avoiding skinny angles.

Figure 2.13: Delaunay mesh refinement

Figure 2.14: Delaunay mesh refinement between two regions

Both triangles are in different regions (shown in Figure 2.14); each may have different

properties. So they cannot be refined like in the previous case. Here the algorithm follows the

same idea without violating the boundary of separate regions

2.2.6 Three Dimensional Mesh Generation

Since almost every real world problem is three-dimensional, we extend our two-dimensional

work to three-dimensional geometric parameterized mesh generation for optimization problems

in design and NDE. Mesh generators in electrical engineering commonly use Delaunay

35

tetrahedralization and constrained Delaunay tetrahedralization for quality meshes. The

Incremental Insertion algorithm is a well-known algorithm for tetrahedralization [48]. The worst

case runtime of this algorithm is of O(n
2
), but the expected runtime for this algorithm is of O(n

log n) [25]. Constrained Delaunay tetrahedralization was first considered by Shewchuk [25].

Gmsh [29] and TetGen [48] are the better-known free, open source 3D mesh generators. TetGen

[48] uses a constrained Delaunay refinement algorithm which guarantees termination and good

mesh quality. A three-dimensional Delaunay triangulation is called a Delaunay

tetrahedralization. Ideas for Delaunay operation, constrained Delaunay triangulations, and mesh

refinements are the same but only the dimension is different. 3D objects are usually represented

by Piecewise Linear Complexes (PLCs) [48]. The design goal of TetGen is to provide a fast,

light and user-friendly meshing tool with parametric input and advanced visualization

capabilities. Even though TetGen and Gmsh [29] are great open source mesh generators, from an

inspection of the code, it is very hard to use for non-stop optimization problems. For the non-stop

optimization that ANSYS offers [46], it gives little information on the techniques employed.

CEDRAT uses a script based scheme called GOTIt [58]. FGot, is offered free to students

although the code is not accessible and therefore will not permit modification nor work for

industry-scale problems [58]. Here TetGen [48] is used as a backend for parameterized meshes

for optimization. Therefore we will develop it on our own and make it available as open source.

It is always possible to tetrahedralization a polyhedron if points are not vertices of the

polyhedron. Two types of points are used in TetGen:

1 The first type of points are used in creating an initial tetrahedralization of PLC.

2 The second type of points are used in creating quality tetrahedral meshes of PLCs.

The first type of points is mandatory in order to create a valid tetrahedralization. While

36

the second type of points is optional, they may be necessary in order to improve the mesh

quality.

2.3 Parameterized Mesh Generation

Parametric mesh generation is a very important part of finite element optimization

problems. In optimization problems, parameters describe the device in terms of materials,

currents, and dimension. During optimization, as these parameters are changed to minimize an

object function, a new mesh has to be generated and a new finite element solution obtained to re-

evaluate the object function. At each iteration of an optimization algorithm, given the variables

as input, the mesh is generated without user intervention. Finite element mesh generators exist

in the public domain, a few even based on a parametric device description. The typical mesh

generator requires some man-machine interaction to define the points and boundary conditions,

and does not work for non-stop optimization iterations for which we need a mesh dynamically

evolving through the iterations with optimization variables as changing parameters. Such mesh

generators as do exist are rare, commercial, and not easily available to researchers except at great

cost and never with the code to modify them to suit individual needs.

2.4 New Approach to Parameterized Mesh Generation

We take the freely available, widely published, nonparametric, open source 2-D mesh

generator Triangle [25] and 3-D mesh generator TetGen [48, 49] which like all published mesh

generators (with the exception of commercially restricted ones whose methodology is not

published) involves user input in the process of mesh generation. But for use in optimization we

37

cannot stop the iterations to make input [24]. To address these problems we use a script file

which uses a parametric description of the system to start the mesh from initial parameters and

thereafter runs it seamlessly without stopping as the parameters are updated by the optimization

process [24]. The script file provides the user input while the code is iteratively running, input

that is normally made in the mesh generator being used, but for which the optimization iterations

cannot stop [24]. Figure 2.15 explains our approach to parametrized mesh generation. In the first

step, the initial input which is described in the following sections is given to our mesh generator.

Next, the mesh generator calls our chosen open source mesh generator to generate the mesh.

After that, the FEM solver uses the mesh to solve the problem. Next, the optimization algorithm

updates the parameters which are accepted by our new mesh generator to generate the new mesh.

Figure 2.15: My approach to parameterized mesh generation

38

2.5 Data Structure and User Interface

2.5.1 Data Structure

The data-structure used in these mesh generator software suites contains the following col-

lections of objects:

1. Points list

2. Regions list

3. Properties list

4. Variable points list

5. Measuring points list

6. Segments list

7. Mesh details list (triangles/ tetrahedrons)

8. Holes list

9. Boundary conditions

 Points List: The point collection contains all the points used in the problem definition and

solving process. Each point contains the coordinates of the relevant finite element node.

For the three-dimensional mesh generator the list has x, y and z coordinates. For the two-

dimensional mesh generator, it should have x and y coordinates only.

 Regions List: The region list contains all the regions used in the problem definition.

Region here means a material- source combination which has different physical

characteristics.

39

 Properties List: Properties list contains all the properties of each region. Each region has

a set of properties.

 Variable points list: The variable points list contains the information about the points to

be moved according to the changes of the parameters, during optimization.

 Measuring points list: The measuring points list contains the points in the solution space

where we want to find the potentials, flux density, etc.

 Segments list: The segments list contains the edges of the problem model. Each problem

may have many segments.

 Mesh details list: The mesh details list contains the triangles/tetrahedrons of the mesh.

This collection is empty until the mesh is generated. For a two-dimensional mesh

generator each triangle contains references to its three vertex points. For a three-

dimensional mesh generator each tetrahedron contains references to its four vertex points.

 Holes list: Holes are a special kind of region where we do not need to generate the mesh.

A hole list contains all the holes used in the problem definition.

40

 Boundary conditions: There are two types of boundary conditions that are usually used

in FEA problems. They are

1. Neumann boundary conditions

2. Dirichlet boundary conditions

A Dirichlet boundary condition means the potential along the given boundary is fixed and a

Neumann boundary condition means the derivative of the potential along the given boundary is

fixed, and usually zero. Dirichlet boundary conditions can be implemented by keeping the

potential of all the points on the given boundary to be fixed at their given value. The user can

select any segment, and define the potential of that segment. If the potential of the segment is

set, then all the points which will be added onto that line will get this potential automatically.

The boundaries that do not implement Dirichlet conditions will automatically act as Neumann

boundaries during the FEA process. This is because it is natural to the finite element formulation

[13]. Therefore no special provisions are needed to define Neumann boundaries.

41

Figure 2.16: Sample input file for mesh generator

2.5.2 User Interface

2.5.2.1 Introduction

A proper user interface is very important for good software. If the user interface is not

friendly to use, even if it is very powerful, most users will not be able to use it effectively.

Therefore the user interface is carefully designed and used in this software as described in the

next subsection.

2.5.2.2 Defining the Geometrical Shape

Since we are providing the code as open source, it is necessary to describe it for other

users to re-engineer the code. This software is made to import drawings from the text file format.

Figure 2.16 shows the sample input file of our mesh generator adapting Triangle using a script

file to run non-stop from iteration to iteration without manual intervention.

42

1 The mesh generator code does not care about lines which start with #. We can write

comments using the # sign.

2 First interpreted row: <a number, a number> - The first number represents the num- ber

of nodes in the domain; the second number represents the number of variable points.

These variable points are also nodes but their coordinates may vary with the optimization

iterations.

3 From the second row to row number 10 (that is, 9+1) in the domain, there are, associated

with that row,

<a integer number, a floating point number, a floating point number >

The integer represents the node number. These must be numbered consecutively, start-

ing from one. The two floating point numbers represent the coordinates of this node. For

the three-dimensional mesh generator, the three floating point numbers represent the

coordinates of this node.

4 The next segment of this input file represents variable points. These are also in the same

format as the previous.

5 In the third part of the input file we have segment details. The first row of this file has the

number of segments. From the second row onwards it has 4 columns. The first column

involves the segment numbers which must be numbered consecutively, starting from one.

The next two columns are node numbers. Each row represents a segment. The fourth

column is a marker. A marker has different integer values; it can be used to define the

boundary condition. Here -1 means it is not on a boundary. If we have to define the

boundary condition we have to give any positive integer to the marker. Then we can

assign the boundary value using these markers. For the three-dimensional mesh

43

generator, the first row of this segment of this file has the number of faces and a

boundary marker. Each face has a list. The first part of the list has the number of

polygons in the face, number of holes on the surface and the boundary marker. From the

second row onwards, polygons and holes of the surface are defined.

6 The next segment of this file is the definition of boundaries. The first row contains the

number of boundary conditions. From the second row onwards the first column

represents the numbering; the second column is a marker number which has been already

defined in the previous part (the segment part). The third column represents the

boundary value for a particular marker.

7 The subsequent segment is a definition of the regions of the problem. Here a different

region means different materials so it has different properties. The first row represents the

number of regions in the domain. From the second row, each row has five columns. The

first column represents the numbering as usual. The second and the third columns

represent the coordinates. These coordinates are used to identify the region. The point

may be any point in the relevant particular region. The fourth column is an integer which

starts from 1. It can be used to assign properties to these regions. The next column is not

used here because it is an area constraint coming from Triangle but, as mentioned, it is

not used by us.

8 The next segment of this input file represents the number of holes. The hole is a region in

which we do not want to generate the mesh. In the first step we define the number of

holes in the problem domain. Form the next row, there are three columns. The first

column represents the hole number. The second and third columns represent the x and y

coordinates of any point within that hole.

44

9 The segment thereafter is for the measuring point list for object function evaluation. The

first part is the number of measuring points where we are going to calculate the solution

to get the target solution. Our source code helps users to identify the errors in the input

file. It works very efficiently for any shape of problem domain. The sample inputs files

are attached in this thesis as Appendices B and C. Users customize their own problem

very efficiently as tried out in our lab [4, 3, 24]. This software is easy to use. This

software is well supported in any operating system, i.e., Linux/Unix, Windows etc.

2.5.3 Post-processing of Meshing

Once we triangulate/tetrahedralize the problem domain, we have to define the boundaries

and boundary values. Upon triangulation/tetrahedralization, we have an element list (node

numbers), the properties of regions and point list (for FE solution). We do not need to calculate

the solution of known nodes so we have to separate the known and unknown nodes. This step is

known as renumbering the nodes which is also to reduce the profile of the matrix [13]. In this

process, we

1. Define the boundary (generally using segment numbers in 2D, faces in 3D)

2. Get the boundary values (different boundaries may have different boundary values)

3. Get all nodes which are on boundaries (We used the segment marker list to determine the

boundary nodes)

4. Separate boundary elements from non-boundary elements; and separate unknown nodes

from known nodes

5. Give the first set of numbers for the unknown nodes and the last set of numbers for the

known nodes

45

6. Renumber the whole point list based on new numbering.

7. Renumber the node entries in the triangle list based on the new numbering system.

8. Get all properties for the particular regions

9. Assign these properties to all corresponding triangles.

Since real world problem size is typically very large, this renumbering process takes a very long

time. Algorithm 2.1 describes the regular renumbering process. This algorithm is very inefficient

because each node will be searched for in an index array. The order of this algorithm is O(n
3
).

This step can be improved. In this work the traditional algorithms have been improved based on

the merge sort technique.

46

2.5.4 Approach to Renumbering

Figure 2.17: Simple example problem

Instead of searching for every element from the whole list, this thesis tracks the node

number changes and updates the node numbers of the mesh. Figure 2.17 shows a simple ex-

ample finite element problem. The boundary elements are circled. Figure 2.18 (a) shows the

node numbers which are assigned in the mesh generation process. Figure 2.18 (b) presents the

rearranged nodes which are separated based on whether the nodes are of known or un- known

values. Figure 2.18 (c) shows the new numbering system. The boundary elements are shown in

the gray boxes in Figure 2.18. The corresponding old number list (c) is renumbered in (b).

Figure 2.19 shows the new numbering of the nodes. Let us take the array of Figure 2.18 (a) and

use a new index which has 1, 2, up to the number of elements. We sort the array of Figure 2.18

(b) using the merge sort algorithm which will be described in the following section. We apply

every operation of the sort algorithm to a new index array. The resultant arrays are shown in

Figure 2.20. Now if we want to get a renumbered value of a particular node number we can

directly access it from the updated index array. For example 1 is replaced by 4, 2 by 1, 3 by 5,

and so on.

47

Figure 2.18: Numbering and renumbered nodes

Figure 2.19: Renumbered nodes

Figure 2.20: Sorted version of (b) and corresponding index changes

48

Figure 2.21: Merge Sort

2.5.5 Merge Sort

Sorting is a technique that arranges the elements in a certain order. There are many

sorting algorithms such as counting sort [59], bucket sort [59], radix sort [59], merge sort [59],

heapsort [59], quicksort [59] etc. Each algorithm has it own advantages. Merge sort is one of the

best sort algorithms which has n log (n) time complexity for each average, best and worst case

time complexities [59]. Another very important reason for selecting merge sort is that this

algorithm is easily parallelizable - parallelization on the GPU is the main theme of this thesis.

Figure 2.21 [60] describes the merge sort in a graphical way. First the list is split into two pieces

and then each is split into two further pieces. This process is repeated until arriving at the

singleton list. Then we work our way back up the recursion by merging together the short arrays

into larger arrays. Algorithms 2.2 and 2.3 describe merge sort.

49

Algorithm 2.2 (Cont’d)

50

Algorithm 2.3 (Cont’d)

2.5.6 Modified Form of Merge Sort for Renumbering

As we described in section 2.5.4, we track the node number changes using a form of

merge sort instead of searching for every element from the whole list. This new algorithm has n

log (n) time complexity but the traditional method has time complexity of O(n3). We define an

array of size given by the number of nodes in the mesh. The array has 0, 1, 2, up to (number of

nodes - 1). We applied every operation of the sort algorithm to this newly defined array.

Algorithms 2.4 and 2.5 describe the idea underlying what we have used.

51

Algorithm 2. 5(Cont’d)

52

Chapter 3

Low Memory High Speed FEM Solvers Using the GPU

3.1 Introduction

It has been more than 20 years since genetic algorithm (GA) based optimization was first

used in finite element optimization [5, 6, 7, 8, 9, 10]. Since GA is practicable and gives a faster

solution when parallelized [3], GA has been used for optimization in FE. The object function

corresponding to every member ℎ̅ of a population has to be computed many times to find the

minimum. The many members ℎ̅ form the genetic search space. Since ℎ̅ consists of dimensions

and materials of a particular design being examined for its goodness [3], for those dimensions a

mesh is constructed, the finite element problem solved and the object function evaluated (see

figure 3.1). The object function itself is computed from a finite element solution involving a

matrix equation. Thus we may treat the object function computation as a kernel and launch it on

multiple threads, each for a different member of the population. Then within that kernel, we can

parallelize the matrix equation solution. In genetic algorithm based finite element optimization

[61, 62], several copies of the matrix are held on the GPU and the corresponding solutions

attempted. Limited memory is also a very big issue in GPUs [23]. This part of the work mainly

focuses on low memory and high speed finite element solvers.

As we already mentioned, the GA based optimization method presents a huge

computational load. Powerful PCs are capable today of solving large matrix equations in a few

seconds, sometimes using a Graphics Processing Unit (GPU). GPU based finite element

53

computation offers massive parallelization [63].

The finite element solution of field problems requires the solution of large-sized matrix

equations leading to large waiting times [13]. To address these parallel computations were used

at one time [64, 65]. But the speedup was limited by the fact that on the shared memory parallel

computers, there was a memory bottleneck which typically then allowed 4, 8, 16 or rarely 32

processors with more computing elements meaning exorbitant cost. For an n- processor

machine with one processor dedicated to book-keeping on what the other processors were

doing, the best speedup was n-1 and always a little less because of communication and waiting

issues. Recently the graphics processing unit (GPU) has been shown to speed up the matrix

solution part in the finite element solution [34, 66]. This was a major advance in finite element

computational efficiency.

Figure 3.1: Finite element optimization using genetic algorithm

54

Figure 3.2: Floating-point operations per second and memory bandwidth for the CPU and GPU

Parallelization is the best approach to speeding up as bigger problems are tackled in field

computation [13, 64]. However as noted, the need for shared memory between processors was a

bottleneck because machines with more than 8 processors were very expensive.

3.2 General Purpose Computing on a Graphics Processing Unit (GPGPU)

The GPU is a single chip processor with integrated transform, lighting, triangle

setup/clipping, and rendering engines [67]. In November 2006, Nvidia group introduced CUDA

which is a general purpose parallel computing platform and programming model. The GPU has

its own memory, up to 24 GB in current configurations [68]. This device (GPU) memory

supports a very high data path using a wide data path. The CPU has a few cores which have been

used for optimized sequential processes. In contrast, the GPU has thousands of small more

efficient cores which have been used for massive parallel processes. The GPU has tremendous

55

computational horsepower and a very high memory bandwidth (shown in Figure 3.2 [69]).

Figure 3.3: The GPU devotes more transistors to data processing

GPUs are used for highly parallel computation. Therefore they are designed using more

transistors for data processing (ALUs) rather than data caching and flow control (shown in

Figure 3.3 [69]). The GPU is well suited for data-parallel processing. In GPU FE computation,

data-parallel processing maps data elements to parallel processing threads.

GPU computing uses the GPU to accelerate the computational speed of very large

scientific and engineering problems. Generally a GPU has thousands of cores, For example the

Tesla K40 GPU has 2880 cores [68]. Here cores mean a number of computing components.

Nowadays there are so many multi-core processors available in the market but the number of

cores is very limited in CPUs.

The GPU for general purpose calculations instead of graphics rendering is called general

purpose computing on graphics processing unit (GPGPU). The Nvidia GPU CUDA architecture

is composed of streaming multiprocessors (SMs), each containing a number of streaming

processor cores (SPs) with on-chip memory, and a single instruction unit. All SMs have access

56

to global memory, the off-chip memory (DRAM), which has a latency of several hundred clock

cycles. Thus unlimited speedup is possible unlike with shared memory machines. The until-

recent restriction that a kernel launched on parallel threads cannot launch another kernel in

further forking from a fork [12] is no serious shortcoming since with multi-processor systems,

even though we can fork from a fork, we usually do not have spare processors to assign.

However in a recent development CUDA dynamic parallelism has been made available on the

SM 3.5 architecture GPU [70] and this is available on PCs now.

In finite element analysis the coefficient matrix is very large when dealing with real

world problems; for example in reconstructing cracks in inverse non-destructive evaluation

problems and device design problems. We use two different techniques to overcome this

memory problem:

1. Use sparse storage schemes to store the coefficient matrix and solve the matrix equation

using the GPU [23]

2. Use element by element FEM - performs operations on the local finite element matrix

[P]
L
 that corresponds to operations on the global matrix and therefore does not require

storage for the larger global matrix([P]) [65]

However, the need for shared memory between processors was a bottle neck because machines

with more than 8 processors were very expensive. With n processors we could at best get a

speedup of n-1. Using the GPU of PCs is a new alternative [71, 72]. The NVIDIA GPU CUDA

architecture is composed of streaming multiprocessors (SMs), each containing a number of

57

streaming processor cores (SPs) with on-chip memory, and a single instruction unit. All SMs

have access to global memory, the off-chip memory (DRAM), which has a latency of several

hundred clock cycles. Thus unlimited speedup is possible unlike with shared memory machines.

We will use well known storage schemes such as the profile (sky line) [13] storage

schemes and the sparse storage scheme [13, 73] (also known as the compressed sparse row

scheme). We revive the old element by element finite element solvers from the early 1980s for

working on a highly memory limited IBM PC 282 to launch thousands of CUDA threads on the

GPU architecture. We will examine different numerical techniques such as conjugate gradients

(CG), preconditioned conjugate gradients (PCG), Jacobi, bi-conjugate gradients etc. to get the

high speed solution we seek. These ideas are explained below.

3.3 Related Works

To Wu and Heng [71] should go the credit for first exploiting as far back as in 2004 the

CUDA architecture in parallelizing FEM computations. They focused their attention on the

conjugate gradients matrix solver where the most gains could be made. It took until 2010 for

CUDA FEM computations to enter seminal electrical engineering works and that too without

reference to Wu and Heng’s seminal work [35, 36].

Kiss et al. [34] have recently applied EbE processing to solve their finite element

equations from a first order tetrahedral mesh using the conjugate gradients algorithms. Their EbE

method is different from EbE in references [65, 74]. They implement the bi-conjugate gradient

technique [75]. Since the matrix is not formed, they use the diagonal to implement Jacobi

preconditioning. Fernandez et al. [33] decoupled the solution of a single element from that of the

whole mesh (Figure 3.4 [33]), thus exposing parallelism at the element level. Individual element

58

solutions are then superimposed node-wise using a weighted sum over concurrent nodes. They

used Jacobi iterations to calculate the solution of each local matrix in parallel and then couple

local solutions using weighted average enforcing continuity. For example node number 1 in

Figure 3.4 [33] is replaced by numbers 1 and 6 in new numbering system; number 1 is in element

e1 and 6 in e2. Once calculated the local solutions of elements e1 and e2, need to form the

global solution using the following formula [33],

𝜑1(𝑔𝑙𝑜𝑏𝑎𝑙) = 𝜑1(𝑙𝑜𝑐𝑎𝑙)

𝑘11

𝑘11 + 𝑘66
+ 𝜑6(𝑙𝑜𝑐𝑎𝑙)

𝑘66

𝑘11 + 𝑘66
 (3.1)

where 𝑘11 and 𝑘66 are local matrix elements (shown in Figure 3.4 [33]), 𝜑6(𝑙𝑜𝑐𝑎𝑙) is the solution

of element e2 and 𝜑1(𝑙𝑜𝑐𝑎𝑙) is the solution of element e1 [33]. Fernandez et al. compared

different generations of GPUs getting speedups with conjugate gradients of up to 14 times and

111 times for the 8800GT and the GTX480 GPUs respectively, compared to optimized CPU

results.

Figure 3.4: Steps in the classic finite element method (FEM) and the proposed changes for the

FEM-SES method enclosed within the dashed line

59

3.4 Element by Element Solvers

3.4.1 Element by Element with Jacobi Algorithm

To overcome the memory limitation of 612 kB on the IBM PC 286 of the early 1980s,

Hughes et al. [74] introduced EbE processing. The then available memory of 612 kB was not

enough to hold even a trivial finite element matrix. What we used to do following Hughes et al.

[74] was not form the coefficient matrix [P]. Instead, recognizing that [P] is assembled from the

small element matrices [P]
 L

 (of size 3 × 3 in magnetics with triangular first order elements),

according to

[𝑃] = ∑ [𝑃]𝐿

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 (3.2)

all the operations meant for [P] we performed multiple times on each [P]
L
. We took an element,

computed its [P]
L
, did the operation meant to be done on [P], added the result to that from other

elements already dealt with as indicated in equation 3.2, threw away [P]
L
, went to the next

element and so on. The non-forming of the coefficient matrix meant that only iterative schemes

of solution without decomposing [P] in any way could be done. This restriction therefore

excluded the powerful iterative incomplete Cholesky conjugate gradients (ICCG) scheme of

solution usually preferred in finite elements work because an incomplete Cholesky factor of [P]

is required [13]. In solving [𝑃]{𝜑} = {𝑄} the Gauss-Seidel iterations commonly used by power

engineers, is an improvement on the older Gauss iterations [13]. In Gauss-Seidel, in each

iteration m + 1 we use the latest available values of the unknowns 𝜑, using equation i of

[𝑃]{𝜑} = {𝑄} to compute 𝜑𝑖 treating only 𝜑𝑖 as the unknown and all the other variables as

known and given by their latest values in the iteration cycle:

60

𝜑𝑖
𝑚+1 =

1

𝑃𝑖𝑖
{𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘

𝑚+1

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

} (3.3)

with obvious modifications for i =1 and i = n. In this algorithm 𝜑𝑖−1 must be computed

before 𝜑𝑖. Here at iteration m + 1, computing 𝜑𝑖 in the order i=1 to n, 𝜑 is at values of iteration

m + 1 up to the (i −1)
th

 component of { 𝜑 } and at the value of the previous iteration m for

values after i. It is therefore necessarily a sequential algorithm.

Figure 3.5: Proposed method in flow chart

When EbE processing was developed for the Gauss algorithm [65], in solving [𝑃]{𝜑} =

{𝑄}, the older displaced Gauss iterations [65] use the values of the old iteration m for computing

every {𝜑𝑖} in iteration m + 1. Therefore the computation of a particular {𝜑𝑖} value is

61

independent of the computation of all other {𝜑𝑖} values for that iteration and therefore

parallelizable:

𝜑𝑖
𝑚+1 =

1

𝑃𝑖𝑖
{𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘

𝑚

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

} (3.4)

This is inefficient in the context of sequential computations. But in the case of

parallelization it is highly efficient as was laid out by Mahinthakumar and Hoole [65] and Carey

et al. [76] for shared memory systems. Speedups were just below (n-1) where n is the number of

processors. If [D] is the matrix [P] with all off diagonal elements eliminated, then the Gauss

iterations yield

[𝐷]{𝜑𝑚+1} = {𝑄} − [𝑃 − 𝐷]{𝜑𝑚} (3.5)

Our proposed implementation first computes the diagonal vector [D] of the unformed global

matrix [P], the right hand side of the finite element equation {Q} and initial solution vector, and

saves them as two one dimensional arrays. This computation will be done only once. We can

parallelize this computation. In the second step, our algorithm calculates the residual components

ri, i = 1 to n, of {r} in parallel:

𝑟𝑖 = 𝑟𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

 (3.6)

Algorithm 3.1 shows the element-by-element Gauss iterations. In that n is the total number of

unknowns, {V} is a vector which contains the vertices of an element, {r} is the residual vector,

[P]
L
 is the local coefficient matrix, {Q} is global right hand side vector, {D} is the diagonal

vector of the global matrix [P], and {𝜑} is the current solution vector. NC and NR represent the

62

column number and row number respectively of the unformed global matrix in which the local

matrix term [P]
L
(i, j) stored as the column vector [P]

L
(i ∗ 3 + j).The first step of this algorithm

computes the diagonal matrix [D] and solution vector {Q}.Algorithm 3.2 explains how to

compute the diagonal matrix [D] and solution vector {Q}. This algorithm is common for all

following algorithms which are described in this chapter. Moreover, this step is also parallelized.

Steps 4 to 19 of the Algorithm 3.1 which compute the residual vector of this process also can be

parallelized. A problem is in updating the vector {r}. Here more than 2 processes may access

the same memory location at the same time while updating a particular ri. This is called the race

condition (Figure 3.5). To avoid the race condition we used ’atomic’ [72] operations which are

predefined functions. The ‘arch = sm_20’ [72] flag was used to enable FERMI advanced

architecture features which support them [72]. Kiss et al. used the coloring technique [34] to

avoid the race condition and a two numbering system [33] was used by Fernandez et al. Both

methods take a lot of memory and extra computations. So we avoided these methods.

63

Algorithm 3.1 (Cont’d)

64

Algorithm 3.2 (Cont’d)

3.4.2 Element by Element Conjugate Gradients Algorithm

The linear system equation from the finite element formulation can be solved by a

minimization method [77]. Consider a quadratic equation

𝑓({𝑥}) =
1

2
{𝑥}𝑇[𝐴]{𝑥} − {𝑏}𝑇{𝑥} +

1

2
{𝑏}𝑇{𝑏} (3.7)

where [A] is a symmetric matrix, {b} and {x} are vectors, and 1/2{𝑏}𝑇{𝑏} is a scalar constant.

It is the square of the residual of the equation [A]{x} = {b}. [A] is symmetric and positive-

definite for our finite element equation, f ({x}) is minimized by the solution to [A]{x} = {b} The

iterates {x}
(i)

 are updated in each iteration by a multiple α(i) of the search direction vector {p}
(i)

[78]:

65

{𝑥}(𝑖) = {𝑥}(𝑖−1) + 𝛼𝑖{𝑝}(𝑖) (3.8)

Corresponding residual {𝑟}(𝑖) = {𝑏} − [𝐴]{𝑥}(𝑖) are updated as {𝑟}(𝑖) = {𝑟}(𝑖−1) −

𝛼𝑖[𝐴]{𝑝}(𝑖) where 𝛼𝑖 = {𝑟}(𝑖−1)𝑇
{𝑟}(𝑖−1)/{𝑝}(𝑖)𝑇

[𝐴]{𝑝}(𝑖) is chosen so as to minimize f({x})

along {𝑥}(𝑖) + 𝛼𝑖{𝑝}(𝑖).

The search directions {p}
 (i)

 are updated using the residuals {r}
(i)

 i.e.,

{𝑝}(𝑖) = {𝑟}(𝑖−1) + 𝛽𝑖−1{𝑝}(𝑖−1) (3.9)

where 𝛽(𝑖)is defined by {𝑟}(𝑖)𝑇
{𝑟}(𝑖)/{𝑟}(𝑖−1){𝑟}(𝑖−1)𝑇

The conjugate gradients iterative solver can also be decomposed into an element by

element process [79]. Here we have used the element-by-element Jacobi preconditioner [80, 63]

because traditional preconditioners cannot be used without the assembled global matrix. In this

algorithm we use the Jacobi preconditioner [78] which is weak but offers preconditioning.

Algorithm 3.4.8 shows the element by element process using the conjugate gradients algorithm

[79]. Steps 6 to 18 of the Algorithm 3.3 compute the residual vector (v) – this process also can be

parallelized.

66

Algorithm 3.3 (Cont’d)

67

3.4.3 Element by Element Biconjugate Gradient Algorithm

Kiss et al. [34] have recently applied EbE processing to solve their finite element

equations from a first order tetrahedral mesh using the bi-conjugate gradients algorithm.

Algorithm 3.4 shows their element by element process using the biconjugate gradient algorithm.

The CG method is not suitable for a non-symmetric system since the residual vectors cannot be

made with short recurrence [81, 82]. The biconjugate gradients method takes another approach,

replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at the

price of no longer providing a minimization. In the biconjugate gradients method, we update the

two sequences of residuals and search directions for [A] and [A]
T
 . Steps 4 to 19 of the

Algorithm 3.4 compute the residual vector, steps 31 to 34, update the vectors {xt}, {r} and {rd}

and steps 41 to 47 update the vectors {d}, {dd}, {q} and {qd}. These processes also can be

parallelized. In this process the residuals may be computed using,

{𝑟}(𝑖) = {𝑟}(𝑖−1) + 𝛼𝑖[A]{𝑝}(𝑖) (3.10)

{𝑟}′(𝑖) = {𝑟}′(𝑖−1) + 𝛼𝑖[A]{𝑝}′(𝑖) (3.11)

The search directions are given by,

{𝑝}(𝑖) = {𝑟}(𝑖−1) + 𝛽𝑖−1{𝑝}(𝑖−1) (3.12)

{𝑝}′(𝑖) = {𝑟}′(𝑖−1) + 𝛽𝑖−1{𝑝}′(𝑖−1) (3.13)

and the distance to be moved along a direction by,

𝛼𝑖 = {𝑟}′(𝑖−1)𝑇
{𝑟}(𝑖−1)/{𝑝}′(𝑖−1)𝑇

[𝐴]{𝑝}(𝑖) (3.14)

68

𝛽𝑖 = {𝑟}′(𝑖)𝑇
{𝑟}(𝑖)/{𝑟}′(𝑖−1)𝑇

{𝑟}(𝑖−1) (3.15)

69

Algorithm 3.4 (Cont’d)

70

3.4.4 Element by Element with Bi-Conjugate Gradient Stabilized method

The BiCGSTAB iterative method had been used to solve the steady Navier-Stokes

equations by Wang et al. [83]. Sheu et al. [84] used the BiCGSTAB method for solving the

monotonic finite element model. The BiCGSTAB method is suitable for non-symmetric systems

but can be applied to symmetric systems too [75]. This method avoids the irregular convergence

pattern of the conjugate gradient squared method. In the biconjugate gradient method, the

residual vector {r}
(i)

 can be written as the product of {r}
(0)

 and an i
th

 degree polynomial in [A];

{𝑟}(𝑖) = 𝑃𝑖(𝐴){𝑟}(0) (3.16)

This same polynomial satisfies

{𝑟}′(𝑖) = 𝑃𝑖(𝐴)𝑇{𝑟}′(0) (3.17)

So that

𝜌𝑖 = ({𝑟}′(𝑖). {𝑟}(𝑖)) = ({𝑟}′(0)𝑃𝑖
2(𝐴). {𝑟}(0)) (3.18)

This result suggests that if Pi(A) reduces {r}
 (0)

 to a smaller vector {r}
(i)

, then it might be

advantageous to apply this Pi operator twice, and compute 𝑃𝑖
2(𝐴). {𝑟}(0) [85]. This algorithm

is known as the conjugate gradient squared method. The biconjugate gradient stabilized method

(BiCGSTAB) avoids the irregular convergence of the conjugate gradient squared method. The

BiCGSTAB computes 𝑞𝑖(𝐴)𝑃𝑖(𝐴){𝑟}(0)instead of 𝑃𝑖
2(𝐴). {𝑟}(0)[86]. The BiCGSTAB method is

computationally expensive per iteration compared to the CG algorithm [87].

Algorithm 3.5 shows the element by element process using bi-conjugate gradient

71

stabilized algorithm [84, 83]. BiCGSTAB has two stopping tests which are shown in Algorithm

3. 5. Steps 13 to 27 and 36 to 50 of the Algorithm 3.5 compute the residual vectors. These

processes also can be parallelized.

72

Algorithm 3.5 (Cont’d)

73

Algorithm 3.5 (Cont’d)

3.5 Conjugate Gradients Algorithm with Sparse Storage Schemes

3.5.1 Conjugate Gradient Algorithm for Matrix Solution

There are several works, which attempt to solve finite element problems using GPU(s)

[66, 88, 89, 90, 91, 92] but they are not based on using the element by element technique as in

this thesis. The authors of [92] tested the conjugate gradient (CG), the biconjugate gradient

(BiCG), and the biconjugate gradient stabilized (BiCGSTAB) algorithms with popular

preconditioning techniques; for example the algebraic multigrid, diagonal, shifted incomplete

 Cholesky, and shifted incomplete LU methods. The best performance was found for conjugate

gradients with preconditioning [92]. The authors of [88] also implemented CG with

74

preconditioning algorithms. The reported speedup is between 2 and 325. The speedup varies with

different applications [88]. The reported speedup for the BiCGSTAB algorithm is on average 8

to 10 times faster [91]. The authors of [89] reported that the speedup obtained with the

preconditioned conjugate gradients (PCG) on a GPU, with respect to the CPU implementation of

the CG algorithm, is between 8 and 10 (depending on the sparse matrix-vector multiplication

used).

The PCG algorithm is considered more efficient for large matrix equations and therefore

usually used for solving a symmetric, sparse, positive definite system of linear equations as from

finite element analysis. It identifies the residual in successive orthogonal directions and for n

equations is guaranteed to converge in no more than n iterations [93]. We use it because it is

cheap. Algorithm 3.6 describes the PCG method for the system of linear equations [𝑃]{𝜑} = {𝑄}

; where [P] is a real, positive definite, symmetric matrix from finite element discretization and

{𝜑} is the initial solution of the system which is improved in each iteration k. Preconditioning by

the matrix M is used to replace the original system [𝑃]{𝜑} − {𝑄} = 0 by 𝑀−1([𝑃]{𝜑} − {𝑄}) =

0. The Jacobi preconditioner is one of the simplest forms of preconditioning, in which the

preconditioner is chosen to be the diagonal of the matrix P = {diag}(A). In the case of the

implementation of this algorithm, we use CUDA C for parallel implementation and C++ for

sequential implementation.

75

Algorithm 3.6 (Cont’d)

3.5.2 Matrix Storage Schemes

3.5.2.1 Introduction

In finite element analysis and optimization the coefficient matrix is very large when

dealing with real world problems but very sparse [13]. For a symmetric matrix, we need to store

only the diagonal and upper or lower triangular part of the matrix. The sparsity property brings

storage down to O(n) for the finite element method [13]. The elimination of unnecessary

multiplications with 0.0 also speeds up computations significantly. The following sections give

an overview of matrix storage schemes.

3.5.2.2 Profile Storage

Profile storage is also known as its equivalent skyline storage which reduces the storage

requirement for a matrix. The matrix would be stored in three one dimensional floating point

76

number arrays. Space is allocated for every number to the right of the first non-zero on a row, up

to the diagonal term. Therefore renumbering is used first to reduce storage, to band the matrix.

Figure 3.6: A. Sparse full matrix, B. Sparse lower triangular matrix (because of symmetry)

Figure 3.7: Data structures for the symmetric profile storage corresponding to Figure 3.6 B

The matrix of Figure 3.6 A is reduced first to its lower triangle part in Figure 3.6 B. It is then

stored as the vectors Diag, giving the diagonal element location, FC giving the first column on a

row occupied by a non-zero and V, giving the coefficient of the matrix which now has several

zeros which are between the first non-zero column and the diagonal. An example matrix and

profile storage scheme vectors are shown in Figures 3.6 and 3.7 respectively.

The data structure consists of three one-dimensional arrays: A real type array V; the size

of this array is equal to the number of non-zero elements plus the number of zeros between two

non-zero elements in the array, an integer type array FC; the size of this array is equal to the

number of non-zero elements in the array, an integer type array Diag; the size of this array is n ;

where n is the number of rows/columns in the array. When we are dealing with real world

77

problems, the coefficient matrix is a very large sparse matrix [13] and we can use the profile

storage scheme to reduce memory consumption

Figure 3.8: A. Sparse full matrix, B. Sparse upper triangular matrix (because of symmetry)

Figure 3.9: Data structures for the symmetric profile storage corresponding to Figure 3.8 B

3.5.2.3 Sparse Storage Scheme

The sparse storage scheme is also known as the compressed sparse row (CSR) scheme.

The sparse storage scheme is a row-wise (or alternatively column-wise) representation of the

nonzero entries in the coefficient matrix of the linear system. For a symmetric matrix, computer

memory can be saved by storing only the nonzero entries in each row on and before the main

diagonal. The associated column numbers are stored in an integer-valued array JA such that

JA(K) is the column number for the coefficient A(K). A mapping vector IA is used to denote the

starting location of each row. An example matrix and its sparse storage scheme vectors are

shown in Figures 3.8 and 3.9 respectively. The data structure consists of three one-dimensional

arrays: A real type array A, contains all the non-zero elements of a matrix. The size of this array

78

is equal to the number of non-zero elements in the array, an integer type array JA, contains the

matrix column indices of the elements of A. The size of this array is equal to the number of non-

zero elements in the array. Another integer type array IA contains the index of each row in the

arrays A and JA. The size of this array is n +1; where n is the number of rows/columns in the

array. When we are dealing with real world problems, the coefficient matrix is a very large

sparse matrix [13] and we can use CSR storage scheme to reduce the memory consumption and

speedup the computations.

79

Chapter 4

Test and Validation Problems

4.1 Device design inverse-optimization problem: Design of the Pole Face of

an Electrical Motor

4.1.1 Problem Definition

Our mesh generators and solvers will be demonstrated on two examples from design.

First let us consider the following sample problem. The objective is to achieve a uniform flux

density distribution in the vertical direction in the air gap of a pole face (see Figure 4.1). Since

the air gap in turbo-alternators compared to the radius of the machine is small, the shape of the

pole face can be approximated by a straight line.

Figure 4.1: Pole face of electrical motor

Figure 4.2 gives the related dimensions, material properties and field excitation values

used. The symmetry of the magnetic fields with respect to the pole axis allows the modeling of

just half the pole pitch, where the pole axis, which is the line of symmetry, is located at the right

boundary to the finite element solution domain. The relative permeability of 20 for the magnetic

80

circuit is deliberately set this low, so that the leakage flux through air at the left edge of the pole

face is larger than for higher and more realistic permeability. Our requirement is to have a

uniform vertical flux density of 1 Tesla along measuring points on the stator. That means all our

measuring points must have their y direction flux density (x direction derivative of the vector

potential) of 1 Tesla. The influence of this leakage flux requires significant correction in the

shape of the pole face close to the left edge in order to achieve the desired constant flux density

in the air gap. This example is frequently used in the demonstration of electromagnetic

optimization methods and it can be considered as a standard demonstration example [13]

Figure 4.2: Geometry, boundary conditions and the material properties of the sample problem

81

4.1.2 Problem Model

Figure 4.3 shows how to model the problem using our software. There are 11 fixed points

(shown in Figure 4.3), 10 variable heights (h1....h10) to be optimized, 8 measuring points

(purple-dots), and 4 materials (stator, air, coil, back ion) in this problem. Figure 4.4 shows the

generated mesh. Figure 4.5 shows the equipotential lines of the starting design of the pole face of

a motor. Since this is a 2D magneto-static problem, these lines represent the flux lines as well.

As we discussed in Chapters 1 and 3, we use the genetic algorithm for optimization. In

genetic algorithm optimization [61, 62], several copies of the matrix are held on the GPU and the

corresponding solutions attempted. We have tried different problems using the GA on a GPU

[12, 3].

Figure 4.3: Defining the problem using our tool

When we optimize directly this problem by defining an independent parameter for the

displacement of each point in the pole face, the shape we get is given in Figure 4.6. This shape is

not a manufacturable shape but the solution really gives a very good result (see Table 4.1 and

82

Figure 4.9). However it is clear that this type of pole face cannot be practically constructed.

Figure 4.4: Generated mesh using our tool

Figure 4.5: Finite element solution

There are two solutions for this problem. We can add some constraint to the solution on

force the variable points to be arranged in a curve function of known mathematical form. Both

methods had been tested by Wijesinghe [22]. And he claimed that even though the second

83

method is easy because of the known equation, the result is not as good as the result by the first

method.

Figure 4.6: Results of the un-constrained optimization of the problem

Figure 4.7: Results of the constrained optimization without smoothening

An erratic undulating shape with sharp edges arose when Pironneau [18] optimized a pole face to

achieve a constant magnetic flux density and this was overcome through constraints [19].

84

Figure 4.8: Results of the constrained optimization with smoothening

Table 4.1: The flux distribution from the un-constrained optimization

Haslinger and Neittaanmaki [94] suggest Bezier curves to keep the shapes smooth with just a

few variables to be optimized, while Preis et al. [95] have suggested fourth order polynomials

which when we tried gave us smooth but undulating shapes. As such we follow Subramaniam

et al. [19] and extend their principle, so as to maintain a non-undulating shape by imposing the

constraints:

ℎ1 ≥ ℎ2 ≥ ℎ3 ≥ ℎ4 ≥ ℎ5 ≥ ℎ6 … (4.1)

Measuring points Flux density (in Tesla)

1 1.001

2 1.001

3 1.002

4 0.996

5 1.001

6 1.001

7 0.999

8 0.999

85

to ensure a smooth shape Even this gives a non-smooth shape (Figure 4.7) but we use averaging

of neighboring heights which is shown in Figure 4.10, to obtain a very manufacturable shape as

demonstrated in Figure 4.8. The final results are given in Table 4.2 and Figure 4.11. Average

error percentage of un-constrained optimization is 0.15% while the constrained optimization

method has an error percentage of 1.0625%. Even-though un-constrained optimization gives a

more accurate solution than constrained optimization, the resulting shape from the un-

constrained problem is not practicably manufacturable.

Figure 4.9: The flux distribution from the un-constrained optimization

The average error percentage was calculated using the following formula:

𝐸𝑝 =
1

2
∑

|𝐵𝑐𝑎𝑙 − 𝐵𝑡𝑎𝑟|

𝐵𝑡𝑎𝑟

𝑛

𝑖=1

 × 100% (4.2)

where n is the number of measuring points, Ep is the error percentage, 𝐵𝑐𝑎𝑙is the calculated flux

density and 𝐵𝑡𝑎𝑟 is the target flux density. We have reported solutions for a population size of

100. Figure 4.10 shows the averaging techniques which have been used to get a smooth

manufacturable shape. This figure shows a 3-neighbor averaging technique. We have a mask that

covers 3 elements. The mask moves the left most elements to the right most element and updates

86

the middle element with the average of the three values which are covered by the mask. We

introduced 2 temporary elements at the front and end to calculate the average of the first and last

elements. If we wish to use a 5-neighbor technique, we need to introduce 2 elements at the front

and 2 elements at the end to calculate the average of the first and last elements.

Figure 4.10: Averaging technique for manufacturable shape

Table 4.2: The flux distribution from the constrained optimization

Measuring points Flux density (in Tesla)

1 0.991

2 1.016

3 1.008

4 1.008

5 0.977

6 0.978

7 0.993

8 0.988

Figure 4.11: The flux distribution from the constrained optimization

87

4.2 Inverse-optimization for Device Design: Determining the Rotor Contour

of a Salient Pole Synchronous Generator

4.2.1 Problem Definition

The second example is about determining the pole face contour of a salient pole

synchronous generator to demonstrate the parametrized mesh generator and matrix solution

software as applied to constrained optimization. The current density in the excitation coil and

the geometric parameters that define the shape of the pole piece have to be predicted in order to

achieve a sinusoidal distribution of the airgap flux with a peak value of 1.0 T and reduce the flux

leakage while the airgap is constrained to a minimum to prevent the motor from hitting the stator

(Figure 4.12).

Figure 4.12: A synchronous Generator (A) two pole and (B) four pole

Figure 4.13 gives the related dimensions, material properties and field excitation values used.

The symmetry of the magnetic fields with respect to the pole axis allows the modeling of just

half the pole pitch, where the pole axis, which is the line of symmetry, is located at the right

88

boundary to the finite element solution domain. The stator is idealized as a solid steel region

without slots, and both stator and rotor are made of linear steel with a relative permeability of

2000. We will optimize the device with constraints of current density J ≤ 2.0 A/mm
2
 which is

the limit for copper windings, air gap between stator and rotor x < 2 cm and flux go through the

points A1 and A2 < 0.3 × flux go through the points A3 and A1 which means allowable leakage

flux is 30%,

Figure 4.13: Parametrized geometry of salient pole

4.2.2 Problem Model

Figure 4.13 explains the parameters of the problem and how to model this problem. There

are 14 fixed points, 16 variable heights (h1....h16), 8 measuring points and 4 materials in this

problem (see Figure 4.14). Figure 4.15 shows the corresponding starting mesh for this problem.

Figure 4.16 shows the flux lines of this salient pole synchronous Generator at starting. When we

89

optimize directly this problem by defining an independent parameter for the displacement of

each point in the rotor like in the previous example, the shape we get is given in Figure 4.17.

This shape is also not a manufactorable shape but the solution really gives very good result in-

terms of a sinusoidal distribution of the airgap flux with a peak value of 1 T (Table 4.3 and

Figure 4.17).

Figure 4.14: Defining the problem

Figure 4.15: Initial mesh

90

Figure 4.16: Flux line of a salient pole synchronous Generator

Figure 4.17: Optimized shape without smoothening constrained by rising pole heights from left

to right

Figure 4.17 shows the flux lines for the optimum solution with a constraint like in (4.1)

but the height of the shaped surface having to go up from left to right. It has sharp corners but is

reasonably smooth. We then use an averaging technique to remove sharp bends. We took five

neighboring values of a height and calculated the mean for every variable solution with suitable

91

modification for boundary variables to get Figure 4.20.

Table 4.3: The flux distribution after the optimization without smoothened shape

Measuring points Flux density (in Tesla) Target Flux density (in Tesla)

1 0.0202 0.0000

2 0.1869 0.1736

3 0.3721 0.3420

4 0.4987 0.5000

5 0.6321 0.6428

6 0.7453 0.7660

7 0.8769 0.8660

8 0.9215 0.9397

9 0.9709 0.9848

10 1.0091 1.0000

Figure 4.18: The flux distribution after the optimization without smoothened shape

Figure 4.19: The flux distribution after the optimization with smoothened shape

92

The final results are given in Table 4.4 and Figure 4.19. The average error percentage of un-

smoothened optimization is 2.96% while the smoothened optimization method has an error

percentage of 2.24%. The average error percentage is calculated using Equation 4.2 (the first

point is not included because of the zero denominators in Equation 4.2). Since GA is a stochastic

optimization algorithm [96, 97], the optimization value is not always perfect. The optimum value

depends on the initial population and search space [96, 97].

Table 4.4: The flux distribution after optimization with smoothened shape

Measuring points Flux density (in Tesla) Target Flux density (in Tesla)

1 0.0083 0.0000

2 0.1596 0.1736

3 0.3560 0.3420

4 0.4964 0.5000

5 0.6434 0.6428

6 0.7517 0.7660

7 0.8549 0.8660

8 0.9183 0.9397

9 0.9986 0.9848

10 1.0035 1.0000

Figure 4.20: Final smoothened shape

93

4.3 NDE benchmark problem: Characterizing Interior Defects

4.3.1 Problem Definition

As an example, when an armored vehicle is targeted by an improvised explosive device

(Figure 4.21), the armor is inspected by an eddy current probe to determine whether there is

damage or not. But we wish to characterize the interior damage to determine if the vehicle

should be withdrawn from deployment. The same system is also intended for regular rust

mitigation maintenance since the US army’s estimated loss from corrosion is in the billions of

dollars [98, 99, 100]

Figure 4.21: Inspection of an army vehicle after improvised explosive device

Figure 4.22 presents crack shapes, both shown through the meshes, to make the computed

field match the measured field. The normalized least-square mismatch of nodes from the

midpoint between the measured and computed shapes (Figure 2.4) shows a parametrically

described crack in steel excited by an eddy current probe. In this NDE exercise the parameters

94

need to be optimized to make the computed fields match the measurements. An objective

function F is defined as the sum of the squares of the difference between computed and desired

performance values: at measurement points i,

𝐹 = ∑(𝐵𝑐𝑎𝑙
𝑖 − 𝐵𝑚𝑒𝑎

𝑖)

𝑖

 (4.3)

where 𝐵𝑐𝑎𝑙
𝑖 is the calculated magnetic flux density and 𝐵𝑚𝑒𝑎

𝑖 is the measured flux density. By

minimizing the objective function F by the optimization method, the characteristics of the defect

can be estimated since F is the function of the parameters.

Figure 4.22: Parametrically defined crack in plate from Triangle

4.3.2 Problem Model

Figure 4.23 shows the parameters of the described NDE problem and how to model it to

using our tools. There are 14 fixed points, and 6 variable points (for example); the x coordinates

are fixed [101]. There are also 4 materials (air, crack, steel plate and coil) in this problem. Figure

4.24 shows the generated mesh for this problem. Different materials are shown in different colors

(although in black and white in this printout). Figure 4.25 shows the flux lines from this

example. The flux lines are shown in Figure 4.25. Figure 4.26 shows the true defect and

constructed defect.

95

Figure 4.23: Defining the problem

Figure 4.24: Generated Mesh for NDE problem

Table 4.5 shows the variable points (defect coordinates), their x and y coordinates,

euclidean distance between the centroid of that the crack and a point (d1 and d2 respectively)

and normalized distance between d1 and d2. That means centroid difference between the true

profile and the constructed profile, d1 and d2, is calculated using the Equation 4.4. Let us say,

(x1, y1) and (x2, y2) are the two points; the euclidean distance between the two points is

defined by the following formula:

96

 𝑑1 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (4.4)

Figure 4.25: Flux line for NDE problem

Table 4.5: The solution of defect characterization

 True profile Reconstructed profile Norm error

Variable points x y d1 x y d2 ((d1 − d2)/d1)2

1

2

3

4

5

6

7

8

8 2.0 1.5892

9 1.2 1.4162

10 2.4 0.5153

11 2.2 1.5348

11 2.7 1.5101

10 3.0 0.6896

9 3.2 0.8400

8 3.5 1.7890

8 2.24 1.5268

9 2.34 0.5331

10 1.96 0.7544

11 2.15 1.5461

11 2.54 1.5000

10 2.94 0.6497

9 3.42 1.0251

8 3.55 1.8167

0.001541

0.388815

0.215191

0.000054

0.000044

0.003342

0.048597

0.000240

Figure 4.26: Optimum shape of the reconstructed defect

97

The normalized least-square match of nodes from the midpoint between the measured

and computed shapes (Figure 4.26) was close to 90%. The error in location was 4.65%. A better

match would require the use of more parameters. We tried with several population sizes and

multiple times of iterations. These results are reported in [102]. This thesis presents the

particular solution for a population of 200. Tests were carried out for the different population

sizes and different number of iterations and we measured the time taken to compute the solution

and tabulated these in Table 4.6. The best fitness score for different population sizes and

different number of iterations is reported in Table 4.7 for real and binary representations of GA

solutions [102]. We can see that solutions from parameters represented by real numbers are

obtained faster than the solutions that are represented by binary numbers [102].

Table 4.6: Real and binary solutions time need to compute

Population Size

30 iterations 40 iterations 50 iterations

Time Taken(s) Time Taken(s) Time Taken(s)

Real Binary Real Binary Real Binary

10

20

30

40

50

60

274.33

540.68

861.79

1319.36

1583.73

1757.78

311.97

661.79

1024.65

1431.34

1769.6

2131.94

346.58

695.28

1095.82

1666.79

1994.77

2199.26

408.29

891.06

1258.17

1950.36

2302.99

2534.36

413.16

866.47

1588.32

2024.03

2323.93

2656.53

503.43

1105.42

1749.1

2390.25

2891.94

3303.85

Table 4.7: Real and binary solutions time need to compute

Population Size

30 iterations 40 iterations 50 iterations

Best Fitness Score Best Fitness Score Best Fitness Score

Real Binary Real Binary Real Binary

10

20

30

40

50

60

0.0123

0.0084

0.0040

0.0105

0.0111

0.0127

0.0019

0.0012

0.0009

0.0017

0.0017

0.0017

0.0091

0.0084

0.0040

0.0105

0.0068

0.0127

0.0020

0.0008

0.0009

0.0017

0.0017

0.0016

0.0091

0.0084

0.0040

0.0105

0.0068

0.0127

0.0015

0.0008

0.0009

0.0017

0.0017

0.0000

98

4.4 A Simple Three-dimensional Problem

For testing purposes, we took a small cube which is made of a material with relative

permittivity 1. Another inner cube with a relative permittivity of 1 and charge density of 1C/m3

is inside the outer cube (shown in Figure 4.27). The outer surface’s potential is zero (boundary

condition). The measuring points (along a line) are shown in Figure 4.27. Then we solved the

Poisson equation to calculate the potential (𝜙) using FEM:

𝜀∇2𝜙 = −𝜌 (4.5)

Figure 4.27: Square conductor problem

There are 16 fixed points, 2 materials (air and material) and 100 measuring points (along

the line) in this problem. Since this is not an optimization problem, there are no variable points.

Figure 4.28 shows the generated mesh for this problem. Different materials are given in different

colors; light green for material 1 and red for material 2.

Figure 4.29 shows the potential at the measuring points. We may recognize that the

potential within the inner cube is constant because the inner cube has a constant uniform charge.

99

Figure 4.28: Mesh for square conductor problem

Figure 4.29: Potential at measuring points

Figure 4.30: Potential at measuring points for a simple cube

100

Table 4.8 shows the numerical solution for this problem. The first column gives the measuring

point number; the second and third columns give the electric potential value and tetrahedron

number in which the particular measuring point exists, respectively. Figure 4.30 shows the

potential at the measuring points for a simple cube problem (a simple cube with the same

dimension as above, charge density is 1C/m
3
- no inner outer cubes and no change in

permittivity).

Table 4.8: Potentials at measuring point

Measuring points ϕ(in V) Element# Measuring points ϕ(in V) Element#

1 0.0000 19962 51 3.4708 10058

2 0.2159 13483 52 3.4711 12276

3 0.4318 13483 53 3.4714 12276

4 0.6477 13483 54 3.4717 12276

5 0.8636 13483 55 3.4721 12276

6 1.0795 13483 56 3.4727 7335

7 1.2954 13483 57 3.4736 7335

8 1.4938 982 58 3.4745 7335

9 1.6796 982 59 3.4755 7335

10 1.8616 12016 60 3.4763 1321

11 2.0228 18763 61 3.4767 1321

12 2.1673 18763 62 3.4772 18264

13 2.3118 18763 63 3.4777 18264

14 2.4446 5702 64 3.4793 15140

15 2.5760 5702 65 3.4844 15136

16 2.6948 21367 66 3.4897 15136

17 2.8076 21367 67 3.4950 15136

18 2.9204 21367 68 3.5003 15136

19 3.0161 21366 69 3.5056 15136

20 3.0922 18694 70 3.5109 15136

21 3.1629 15809 71 3.4988 15448

22 3.2293 5610 72 3.4792 15448

23 3.2924 5610 73 3.4596 15448

24 3.3532 14667 74 3.4400 15448

25 3.3950 25126 75 3.4205 15448

26 3.4169 25126 76 3.4009 15448

27 3.4388 25126 77 3.3562 15446

28 3.4607 25126 78 3.2909 15446

29 3.4826 25126 79 3.2257 15446

30 3.5045 25126 80 3.1591 8028

101

Table 4.8: Potentials at measuring points (Cont’d)

Measuring points ϕ(in V) Element# Measuring points ϕ(in V) Element#

31 3.5181 23548 81 3.0841 19985

32 3.5122 23548 82 3.0092 19985

33 3.5064 23548 83 2.9343 19985

34 3.5005 23548 84 2.8152 18420

35 3.4947 23548 85 2.6758 18420

36 3.4888 23548 86 2.5364 18420

37 3.4830 23548 87 2.3971 18422

38 3.4772 23548 88 2.2578 18422

39 3.4723 22059 89 2.1185 18422

40 3.4719 22059 90 1.9794 8298

41 3.4712 19315 91 1.8409 8298

42 3.4708 19049 92 1.6655 17398

43 3.4707 19049 93 1.4562 17398

44 3.4708 4482 94 1.2470 17398

45 3.4707 4482 95 1.0383 14912

46 3.4705 4482 96 0.8303 14912

47 3.4703 4482 97 0.6222 14912

48 3.4701 4482 98 0.4142 14912

49 3.4704 17128 99 0.2072 13685

50 3.4706 5560 100 0.0001 13685

This is a simple problem. We will test the mesh generator on the more complex system of

the next section. These results are verified with the mesh generator Gmsh [29] with Matlab

functions. This simple problem verifies that our parameterized mesh generator and FEM solver

work perfectly.

4.5 NDE benchmark problem in 3D: Characterizing Interior Defects

As a more complex example for testing our parameterized mesh generator, this is a three

dimensional version of example 3 (Section 4.3). We wish characterize the interior damage to a

land vehicle hull to determine if the vehicle should be withdrawn from deployment. Figure 4.31

shows the initial shape of the crack (in the lower half of the Figure 4.31), the ’E’shaped coil

frame, air (upper half of the Figure 4.31) and steel plate (lower half of the Figure 4.31).

102

Figure 4.31: Three-dimensional NDE problem

Figure 4.32 shows how to define a crack whose outline coordinates and location

coordinates are changing as the optimization algorithm runs. We define two surfaces; the outer

coordinates of both surfaces are the same. We made some constraints on the y coordinates to

ensure that this is truly a volume without the surfaces crossing each other. In Figure 4.32 top,

there are two surfaces. Each has a few variables shown in green, while the outer common

coordinates are given in blue. In Figure 4.32 the lower part of the figure shows the top view of

the top surface which has 13 variables in addition to its outer common coordinates. Similarly the

bottom surface also has variable points.

Figure 4.33 shows the generated mesh for this problem. Different materials are shown in

different colors; green - air, red - steel, blue - coil and yellow - crack (made by 2 surfaces)

although this printout is black and white. For this test problem we took 5 variable points on the

upper surface, 8 variable points on the common interface and 4 variable points on the lower

surface. There are a total of 17 × 3 variables associated with the 17 variable points. Here we

made another assumption that the points are varying in the y direction only; the x and z

103

coordinates are fixed. Table 4.9 shows the true and characterized profile coordinates and the

normalized distance between results.

Figure 4.32: Defining variable: top: side view, bottom: side view

Figure 4.33: Three-dimensional mesh for NDE problem: As parameters change

The last column of Table 4.9 shows the norm error (the formula is also given in the Table 4.9).

Average error is 2.5%. Average error is calculated using the following formula:

𝐴𝐸 =
1

𝑛
∑

|𝑧𝑡 − 𝑧𝑟𝑒|

𝑧𝑡
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 × 100% (4.6)

104

where n is the number of variables, 𝑧𝑡 is the target value and 𝑧𝑟𝑒 is the reconstructed value. This

thesis presents the particular solution for a population of 200. This demonstrates the validity of

our 3D optimization tools.

Table 4.9: The solution of 3D defect characterization

 True profile Reconstructed profile Norm error

x y z x y z |zt − zre| /zt

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

52.853 44.000 50.927

51.763 42.000 52.427

48.237 45.000 52.427

47.147 42.000 50.927

48.237 45.000 47.573

50.000 44.000 47.000

51.763 43.000 47.573

52.853 43.000 49.073

51.427 46.000 50.464

50.000 46.000 51.500

48.573 47.000 50.464

50.882 46.500 48.786

50.000 48.000 50.000

51.427 40.000 50.464

48.573 40.000 50.464

49.118 40.000 48.786

50.882 40.000 48.786

50.000 38.000 49.000

52.853 42.628 50.927

51.763 43.892 52.427

48.237 43.682 52.427

47.147 41.873 50.927

48.237 44.670 47.573

50.000 41.893 47.000

51.763 44.735 47.573

52.853 42.444 49.073

51.427 44.239 50.464

50.000 47.193 51.500

48.573 46.317 50.464

50.882 46.483 48.786

50.000 47.219 50.000

51.427 37.999 50.464

48.573 39.835 50.464

49.118 40.022 48.786

50.882 38.213 48.786

50.000 36.903 49.000

0.0312

0.0451

0.0293

0.0030

0.0073

0.0479

0.0403

0.0129

0.0383

0.0259

0.0145

0.0004

0.0163

0.0500

0.0041

0.0005

0.0447

0.0289

105

Chapter 5

Results and Analysis

5.1 Memory Limitation

Recently, Graphics Processing Unit (GPU) computing has had great success in many

very large numerical computations. Software developers, researchers, and scientists have been

using the GPU for speeding up their computations. Applications taking advantage of this new

technology have ranged from quantum chemistry [66] and molecular dynamics [103, 104] to

fluid dynamics [105, 106] and cloth simulation [107]. In this work we discuss the often

undiscussed GPU memory limitation in finite element optimization. In GPU computing the

memory of the Nvidia GPU is limited. This part of this thesis assesses the memory limits in

terms of matrix size in light of the various ways to store a large matrix in order to overcome

these limits.

We took a 4 cm
2
 square conductor with current density = 1 A/mm2 and relative

permeability 1. Then we solved the Poisson equation to calculate the magnetic vector potential

(A) using FEM

1

𝜇
∇2�̅� = −𝐽 ̅ (5.1)

In this experiment we defined different number of progressively refined triangles; i.e.

288, 768, 1408 etc. Therefore the final solution can be obtained from the equation, [P] {A} =

{Q}; where [P] is the matrix and {A} and {Q} are vectors. In this experiment we used both

106

storage schemes to reduce the storage capacity. Matrix [P] is a symmetric positive definite sparse

matrix; each row has approximately 3 to 5 elements in a symmetric half [13], because of the first

order mesh.

Table 5.1 shows the total number of matrix elements and storage with matrix size for

different storage schemes. Clearly, we can store very large matrices using the profile or sparse

storage scheme because in FEM, the matrix [P] is a symmetric sparse matrix [13]. According to

our result, memory-wise, the sparse storage scheme is much better than the profile storage

scheme as to be expected because of fill-in during decomposition with the latter. Although well

known, we repeat this investigation to obtain memory limits with CUDA. In inverse problems

where many equations need to be solved, this is limiting. Figure 5.1 (A) shows the memory

required for the matrix versus matrix elements. Figure 5.1 (B) shows the memory required for

profile and sparse storage schemes.

Table 5.1: Number of elements (NE) and storage (in MB) with matrix size for different storage

schemes

Matrix Size NE Regular NE(Profile) Profile NE(Sparse) Sparse

100 10500 0.040054 1161 0.004429 1709 0.006519

400 18000 0.068665 10819 0.041271 4421 0.016865

900 814500 3.107071 33329 0.127140 9521 0.036320

1600 2568000 9.796143 75239 0.287014 18421 0.070271

2500 6262500 23.889542 142549 0.543781 29801 0.113682

6000 36030000 137.443543 404459 1.542889 71681 0.273441

8000 64040000 244.293213 697679 2.661434 94221 0.359425

10000 100050000 381.660461 1070099 4.082104 118021 0.450214

Using curve fitting projection we determined the maximum size of the problem that may

be attempted within the 4 GB memory limit of the GetForce GTX 970 GPU card that we worked

with. Table 5.2 shows the matrix size and corresponding memory size that we need to store the

variables. From these calculations we can say that the sparse storage scheme can be used for very

large problems of size 50,000K × 50,000K. It takes much lower memory than the profile storage

107

scheme as remarked. Using the sparse storage scheme we can solve bigger than a 50,000K ×

50,000K matrix size before running into memory limits (4 GB limit). With the 24 GB Kepler

K80 GPU cards [68] now available, we can solve problems much bigger than 50,000K ×

50,000K matrix

Figure 5.1: Memory vs matrix size

Table 5.2: Projected Memory (in MB) Needs

Size Regular Profile Sparse

20K 1525.2 14.73 0.90

30K 3430.5 32.13 1.35

50K 9526.5 87.06 2.26

100K 38097.0 341.79 4.52

500K 952240.0 8417.70 22.58

1000K 3808900.0 33608.00 45.17

5000K 95220000.0 838940.00 225.85

10000K 380880000.0 3355100.00 451.70

50000K 9522000000.0 83865000.00 2258.50

100000K 38088000000.0 335450000.00 4517.00

Our conjugate gradients method with Jacobi preconditioning gives the results shown in Figure

5.2. We stopped our experiment with size of 10000 × 10000 because if we have a population of

5000 in GA, theoretically we can go up to 10000 × 10000 with sparse storage schemes because

of the memory limits as discussed above. If we want a larger population, the problem size should

108

be decreased. Even-though the sparse storage scheme reduces the memory consumption, we can

not solve problems larger than 10000 × 10000 with larger populations than 50. But with the new

GPU cards like Kepler K80 [68] that came out as this thesis was completed, memory will not be

a problem

Figure 5.2: Speed-up versus matrix size: Jacobi preconditioned conjugate gradients algorithm

5.2 Element-by-Element Solvers

Again we solved the Poisson equation for the magnetic vector potential A with

progressively refined meshes using the finite element method for the Poisson equation for a test

problem from magnetics. We defined different number of progressively refined tetrahedrons to

obtain results for different matrix sizes. Run time statistics obtained for different mesh sizes is

given in Table 5.3 which compares the CPU and GPU calculation times for different sizes of

problems for the conjugate gradient element by element (CGEbE) algorithm. This table gives the

speedup which is defined as CPU calculation time/GPU calculation time and the speedup per

iteration which is defined as CPU calculation time for one iteration/CPU calculation time per

iteration. It shows a high speedup of 51.23 for 2,828,782 unknowns which is equivalent to a

109

matrix size of 2, 828, 782 × 2, 828, 782 in regular first order finite element analysis.

Table 5.3: The CGEbE solution

 CPU GPU

Elements

 Unknown

Itns Time Itns Time Speedup (S) S per itn

26595 3072

32682 3843

45328 5440

106587 13312

210024 27852

273008 36704

399928 54672

978905 137639

1940736 279340

2569403 372149

3830869 559546

9521059 1413142

18879664 2828782

51 1.15

55 1.63

60 2.39

79 7.38

119 22.34

130 36.02

148 54.32

206 189.24

294 524.26

329 953.45

413 1542.75

645 11120.06

903 46348.39

66 0.33

69 0.33

69 0.33

90 0.45

126 0.73

134 0.91

151 1.33

201 7.11

271 25.19

310 41.27

346 75.06

514 308.25

733 904.54

3.4848 4.5098

5.0938 6.3903

7.2424 8.3288

16.4000 18.6835

30.6027 32.4029

39.5824 40.8003

40.8421 41.6700

26.6160 25.9700

20.8122 19.1841

23.1027 21.7685

20.5536 17.2192

36.0748 28.7480

51.2397 41.5933

This number of iterations depends on both number of unknown elements and total

number of elements (see the algorithms in Chapter 3). That is why both iterations and speedup

with number of unknown elements and total number of elements are plotted. Figure 5.3 shows

the number of iterations vs number of unknowns. Figure 5.4 shows the number of elements vs

number of unknowns. In both graphs, the number of iterations increases with problem size. We

can see that the number of iterations increases with problem size for both CPU and GPU. The

reason for the difference between number of iterations in the GPU and in the CPU is as

explained later in this section.

The Figure 5.5 shows the speedup vs number of unknowns for the CGEbE. Figure 5.6

shows the speedups vs number of elements for the CGEbE. The speedups vary with problem

size. We can see an erratic nature in the speedups in Figures 5.5 and 5.6. The causes of the erratic

speedup need to be investigated [108].

110

Figure 5.3: Number of iterations vs number of unknowns for CGEbE

Figure 5.4: Number of iterations vs number of elements for CGEbE

Since we have been working with the regular finite element method for the Poisson

equations for magnetics, the bi-conjugate gradient method [34] also works as the conjugate gradient

method because [A] = [A]
T
 [34, 77]. In the situation where the convection effect when dealing with

temperature problems is significant, finite element matrix equations take antisymmetric form [83].

Therefore for a generalized finite element package, antisymmetric solvers also should be included

with the package.

Table 5.4 shows the CPU and GPU calculation times for the different sizes of problems for

111

the biconjugate gradient stabilized element by element (BiCGSTABEbE) method. Even- though it

gives higher speedup than the CGEbE method, this BiCGSTABEbE method takes a long time to

converge. We can see the differences in Tables 5.3 and 5.4. The BiCGSTABEbE method shows a

higher speedup of 80.1364 for 54,674 unknowns while the speedup is only 20.55 for 2,828,782

unknowns. So BiCGSTABEbE method can be used to solve small problems (smaller than 54,674

unknowns problems).

Figure 5.5: Speedup vs number of unknowns for CGEbE

Figure 5.6: Speedup vs number of elements for CGEbE

112

The Figure 5.7 shows the number of iterations vs number of unknowns for BiCGSTABEbE.

Figure 5.8 shows the number of elements vs number of unknowns for BiCGSTABEbE. In both

graphs, the number of iterations increases with problem size. This is as to be expected for a well-

conditioned problem, such as this.

Table 5.4: The BiCGSTABEbE solution

 CPU GPU

Elements

 Unknown

Itns Time Itns Time Speedup (S) S per itn

26595 3072

32682 3843

45328 5440

106587 13312

210024 27852

273008 36704

399928 54672

978905 137639

1940736 279340

2569403 372149

3830869 559546

9521059 1413142

18879664 2828782

71 3.44

72 4.27

83 6.84

107 21.24

143 56.68

145 74.81

162 123.41

219 421.69

263 1051.64

361 1785.89

371 5158.10

466 11147.04

553 28191.35

69 0.34

72 0.34

72 0.35

96 0.50

129 0.88

134 1.08

146 1.54

198 6.41

237 21.24

260 33.43

375 82.78

569 366.80

884 1371.98

10.1176 9.8326

12.5588 12.5588

19.5429 16.9528

42.4800 38.1129

64.4091 58.1033

69.2685 64.0137

80.1364 72.2217

65.7863 59.4780

49.5122 44.6175

53.4218 38.4755

62.3109 62.9828

30.3900 37.1071

20.5479 32.8470

Figure 5.7: Number of unknowns vs number of iterations for BiCGSTABEbE

113

The Figure 5.9 shows the speedups vs number of unknowns for BiCGSTABEbE. Figure

5.10 shows the speedup vs number of elements for BiCGSTABEbE. The speedups vary with

problem size. The speedup is decreasing after 54,674 unknowns in contrast to the speedup

increasing for CGEbE after 54,674 unknowns. Again the causes of the erratic speedup need to be

investigated [108].

Table 5.4 compares the CPU and GPU calculation times for different sizes of problems for

CGEbE algorithm. This table gives speedup and speedup per iteration. It shows high speedup of

102.12 for 54,672 unknowns which is equivalent to a matrix size of 54,672 × 54,672 in regular first

order finite element analysis.

Figure 5.8: Number of elements vs number of iterations for EbEBiCGSTAB

Figure 5.9: Speedup vs number of unknowns for BiCGSTABEbE

114

Figure 5.11 shows the number of iterations vs number of unknowns for Jacobi EbE. Figure

5.12 shows the number of iterations vs number of elements for Jacobi EbE. In both graphs, the

number of iterations increases with problem size as to be expected. We can see that the number of

iterations increases with problem size for both CPU and GPU

The Figure 5.13 shows the speedups vs number of unknowns for Jocobi EbE. Figure 5.14

shows the speedups vs number of elements for Jacobi EbE. The speedup is decreasing after 372,149

elements (see Table 5.5).

Figure 5.10: Speedup vs number of elements for BiCGSTABEbE

Figure 5.11: Number of unknowns vs number of iterations for JacobiCG

115

Figures 5.15 and 5.16 show the convergence of the CGEbE algorithm for CPU and GPU

respectively. We can see that both convergence patterns are almost the same and that the

convergence rate is very high in both figures.

Figures 5.17 and 5.18 show the convergence of the BiCGSTABEbE algorithm for CPU and

GPU respectively. We can see that both convergence patterns are slightly different and the

convergence rate is high in both figures

Table 5.5: The Jacobi solution

 CPU GPU

Elements

 Unknown

Itns Time Itns Time Speedup (S) S per itn

26595 3072

32682 3843

45328 5440

106587 13312

210024 27852

273008 36704

399928 54672

978905 137639

1940736 279340

2569403 372149

3830869 559546

9521059 1413142

18879664 2828782

806 17.24

889 23.58

1019 37.01

1557 134.42

2371 409.10

2712 619.42

3320 1129.47

5376 6219.27

7826 19026.61

9070 31069.48

11185 56743.83

17853 217808.09

24904 488881.06

807 0.70

889 0.78

1018 0.95

1557 1.96

2374 4.67

2713 6.52

3314 11.06

5374 66.84

7819 269.75

9063 452.96

11176 930.97

17856 4364.02

24908 12852.42

24.6286 24.6591

30.2308 30.2308

38.9579 38.9197

68.5816 68.5816

87.6017 87.7126

95.0031 95.0381

102.1221 101.9375

93.0471 93.0125

70.5342 70.4711

68.5921 68.5392

60.9513 60.9023

49.9100 49.9184

38.0381 38.0441

Figure 5.12: Number of elements vs number of iterations for JacobiCG

116

Figures 5.19 and 5.20 show the convergence of the Jacobi EbE algorithm for CPU and

GPU respectively. We can see that both CPU and GPU convergence rates are very slow

compared to CGEbE and BiCGSTABEbE. But convergence patterns in CPU and GPU are the

same and the convergence pattern is smooth. Here we can see there is not that much difference

between number of iterations between GPU and CPU compared to CGEbE and BiCGSTABEbE

algorithms. In CGEbE and BiCGSTABEbE methods many statements including element by

element process are parallelized in GPU but in the Jacobi method only one statement with

element by element executes in the GPU. This is the possible reason for this difference in the

number of iterations in CPU and GPU

Figure 5.13: Speedup vs number of unknowns for Jacobi EbE

Figure 5.14: Speedup vs number of elements for Jacobi EbE

117

Figure 5.15: Convergence rate of CG in CPU

Figure 5.16: Convergence rate of CG in GPU

Figure 5.17: Convergence rate of BiCGSTABEbE in CPU

118

Figure 5.18: Convergence rate of BiCGSTABEbE in GPU

Figure 5.19: Convergence rate of Jacobi in CPU

Figure 5.20: Convergence rate of Jacobi in GPU

119

Figure 5.21 compares the speedup of Jacobi EbE, CGEbE and BiCGSTABEbE methods.

In terms of speedup, the Jacobi CG method gives a higher speedup for small problems (less than

372,149 unknowns), the second higher speedup is for BiCGSTABEbE and then CGEbE. But

convergence time is much less for CGEbE, followed by BiCGSTABEbE and then Jacobi EbE.

For large problems (bigger than 372,149 unknowns, see Tables 5.3, 5.4, 5.5), CGEbE gives a

higher speedup, followed by Jacobi EbE and then BiCGSTABEbE. But convergence time is

much less for CGEbE, second less for BiCGSATBEbE and then Jacobi EbE (see Tables 5.3, 5.4,

5.5).

Figure 5.21: Speedup comparison between CGEbE, BiCGSTABEbE and Jacobi EbE algorithms

Figure 5.22 graphically summarizes Kiss et al.’s speedups from [109] which are lower

than those by the same authors, Kiss et al., in [34] even though both use the same hardware. Kiss

et al. [109] got 10.01 as their maximum speed up for computations on a single GPU

(corresponding to our results which shows a maximum speedup of 102.12). In terms of speedup

we got better results while at the same time they got a higher convergence rate than ours with an

astoundingly fast rate in terms of iterations (e.g., 79 iterations for a 91,000 X 91,000 matrix on a

CPU) but the results of Fernandez et al. [33] are more comparable to our Jacobi EbE. Kiss et al

120

[109]’s speedup peaks at 1,339,434 unknowns and decreases with matrix size thereafter. There is

an erratic up and down speedup that needs to be investigated [108].

Figure 5.22: Speed-up versus matrix size of Kiss et al.

Table 5.6: Speedup ratio between single and double

Matrix size Jacobi Gauss-Seidel GMRES(35) BiCGSTAB

2000 1.9148 1.9197 1.9773 1.9712

4000 1.5568 1.8194 1.9854 1.9976

8000 2.3471 1.9148 1.9255 1.8784

12000 1.9851 1.8095 2.0099 1.9157

16000 2.2012 1.9276 1.8528 1.9545

20000 2.0449 1.8841 1.8819 1.8850

Table 5.6 shows the speedup ratio of the single and double precision GPU implementation of the

direct method for linear systems [110]. Theoretically for memory bound algorithms, double

precision work on the GPU has been shown to take twice as much time than single precision

arithmetic [111]. However, there are papers where this is not so [108, 110] (see Table 5.6).

Communications is a factor but the exact nature is still not known as pointed out in our paper

[108]. Devon Yablonski analyzes numerical accuracy issues that are found in many scientific

121

GPU applications using floating point computation [112]. As he puts it, two widely held myths

about floating-point on GPUs are that the CPU’s answer is more precise than its GPU version

and that computations on the GPU are unavoidably different from the same computations on a

CPU [112]. He appears to have dispelled both myths by studying specific applications.

Figure 5.23: Serial addition losing precision. Numbers surrounded by a box represent the actual

result floating point value with 7 digits

Accumulating values serially (Figure 5.23 A) will sometimes result in a large value that each

successive small value is added to, resulting in diminished accuracy of the results. The reduction

style of computation (Figure 5.23 B) avoids the issue in accumulating floating-point values in a

way that is similar to binning [112]. Binning describes collecting and computing small groups of

values and then computing the final result by combining each result. There is sometimes an

erratic up and down speedup [113] like in Figures 5.5, 5.6, 5.9, 5.10, 5.13, 5.14. The causes need

122

to be investigated as we have pointed out [108]. In a study we did of GPU computation for finite

element optimization by the genetic algorithm [3], the speedup showed an unexpected erratic up

and down trajectory [108]. This result is seen in other works too such as of Krawezik and Pool

[113] as shown in Figure 5.24 and Kiss et al. [34] as shown in Figure 5.22. In the absence of an

explanation we carry on but a real understanding of the method to obtain the best speedup,

requires some investigation.

Figure 5.24: Erratic behavior of gain for various methods

While expert programmers have programmed their problems in CUDA C to reap the

benefits of speedup, it is to be noted that the compiler is very difficult to work with as pointed

out by us [108]. Error messages are still difficult to use in debugging. When memory is violated

in one function, the program crashes in another without a proper error message. Debugging is

therefore more difficult in CUDA C, particularly because we cannot print intermediate outputs

directly from the GPU

123

Chapter 6

Conclusion and Future Works

The first part of this thesis describes a successful script-based, parameterized mesh

generator library for design and NDE developed in C for seamless finite element optimization.

Unlike other such systems written in inaccessible code and designed for use with specific

software, this system is provided as open-source code [114, 115] so that it may be modified by

anyone and used with his or her own finite element (FE) optimization system. This system with

the finite element analysis and optimization on the GPU makes for quick NDE assessments and

other finite element optimization problems in the field [3]. The modified open source codes

Triangle and TetGen we have developed for optimization are CPU-based because mesh

generation takes little time compared to finite element matrix solution and optimization. As such

the massive effort to port them to a GPU is not justified. Moreover they are too complex for

porting to the GPU. A large team of engineers can translate that too to the GPU but we do not

think the effort is warranted by the gains to be had. The mesh generator has been demonstrated

through a successful NDE system for testing army ground vehicle hulls with damage from

corrosion or IEDs and some associated optimization problems.

In the second contribution of this thesis, we have presented our GPU-based EbE matrix

solution routine that is very fast and takes little memory. It has been specifically developed for

finite element optimization. Several finite element solutions are done on parallel GPU threads

for use where memory is critical and solution times long. The GPU-parallelized pre- conditioned

conjugate gradient (PCG) algorithm with sparse-stored matrix formation is the best way for

124

PCG. With 24 GB GPU cards now available, EbE processing is not necessary for most practical,

single, forward problems. This element by element (EbE) method, how- ever, becomes a must

for genetic algorithm optimization where, whether in NDE or device design, several genetic

algorithm threads are launched in parallel and memory capabilities are challenged. The EbE

Jacobi iterations give better speed-up than the conjugate gradients element by element (CGEbE)

for which incomplete cholesky conjugate gradient (ICCG) is not possible because the matrix is

never formed in EbE processing.

In our work we use the genetic algorithm where the object function corresponding to

every member ℎ̅ of a population has to be computed many times to find the minimum. The many

members ℎ̅ form the genetic search space. Since ℎ̅ consists of dimensions and materials of a

particular design being examined for its goodness [116], for those dimensions a mesh is

constructed, the finite element problem solved and the object function evaluated. The object

function itself is computed from a finite element solution involving a matrix equation. Thus we

may treat the object function computation as a kernel and launch it on multiple threads, each for

a different member of the population. Then within that kernel, we can parallelize the matrix

equation solution at a speedup which we shall refer to a SP, which depends on problem size.

Alternatively, we may do the object function evaluation for each member of the population in

sequence and in that process parallelize the matrix computations. Let the population number be

n. Say the object function evaluation for each member of the population takes 𝑡0 + 𝑡𝑚 in time

where 𝑡𝑚 is the time for the matrix solution and 𝑡0 is the time for other operations. Therefore if

we parallelize the operations for the different members of the population, the time for evaluating

all the object functions corresponding to the entire population would still be, neglecting

coordination time,

125

𝑡 = 𝑡0 + 𝑡𝑚 (6.1)

since these are done simultaneously. Here we have assumed that the work for each member of

the population is being done in parallel, and that the time for combining results and other

communications is negligible.

On the other hand, if we parallelized the matrix computation, the evaluation of the object

function has to be in sequence since we cannot have forking from a parallelized kernel. The total

time would then be the number of members in the population multiplied by the time for

computing the object function for each member of the population

𝑡 = 𝑛 [𝑡0 +
𝑡𝑚

𝑆𝑃
] (6.2)

where SP is the matrix equation solution speedup, tm is the time for the matrix solution, n is

population number and t0 is the time for other operations. A decision on which of the processes

is to be parallelized would depend on considerations like this. However we have not seen such

considerations in the literature [12]. Further in a recent development CUDA Dynamic

Parallelism has been made available on the SM 3.5 architecture GPU [72], we can parallelize

both the genetic algorithm and the FE calculations. Suggested future work includes,

• Develop the GPU based parametrized mesh generator for two and three dimensions.

• Develop dynamic parallelization based optimization tools.

• Develop a user friendly PC-based optimization tools for portable NDE use in the field.

126

APPENDICES

127

Appendix A: Publications Raised from This Research

Journals

1. S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, Ravi Thyagarajan, Lalita

Udpa and S.R.H. Hoole; “Addressing Memory and Speed Problems in Nondestructive

Defect Characterization: Element-by-Element Processing on a GPU,” Journal of Non-

destructive Evaluation, vol. 34(9), 2015

2. S. Ratnajeevan H. Hoole, Sivamayam Sivasuthan, Victor U. Karthik and Paul R.P. Hoole

“Flip-teaching Engineering Optimization, Electromagnetic Product Design and

Nondestructive Evaluation in a Semesters Course,” Computer Applications in Engi-

neering Education Journal(CAEE), vol. 23, pp. 374-382, 2015

3. Victor U. Karthik, Sivamayam Sivasuthan Arunasalam Rahunanthan, Ravi S. Thya-

garajan, Paramsothy Jayakumar, Lalita Udpa and S. Ratnajeevan H. Hoole, “Faster, more

accurate, parallelized inversion for shape optimization in electroheat problems on a

graphics processing unit (GPU) with the real-coded genetic algorithm,” COMPEL

International Journal of Computations and Mathematics in Electrical, vol. 34, no. 1, pp.

344-356, Jan. 2015.

4. S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, Ravi Thyagarajan, Lalita

Udpa and S.R.H. Hoole; “A Script-based, Parameterized Mesh Generator for Machine

Design and Army Ground Vehicle Crack Characterization on a GPU,” IETE Technical

Review, Vol. 32(2), pp. 94-103, 2015.

5. S. Ratnajeevan H. Hoole , Victor U. Karthik, S. Sivasuthan, A. Rahunanthan, R. Thya-

garajan , P. Jayakumar, “Finite Elements, Design Optimization, and Non-destructive

Evaluation: A Review in Magnetics, and Future Directions in GPU-based, Element- by-

Element Coupled Optimization and NDE,” International Journal of Applied Elec-

tromagnetics and Mechanics, vol. 47(3), pp. 607-627, 2015

6. S. Ratnajeevan H. Hoole, Sivamayam Sivasuthan Victor U. Karthik, Arunasalam Rahu-

nanthan, Ravi S. Thyagarajan and Paramsothy Jayakumar, “Electromagnetic Device

Optimization: The Forking of Already Parallelized Threads on Graphics Processing

Units,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 29(9), pp.

677-684, 2014

128

7. Sivamayam Sivasuthan, Victor U. Karthik, Arunasalam Rahunanthan, Ravi S. Thya-

garajan, Paramsothy Jayakumar and S. Ratnajeevan H. Hoole, “GPU Computations for

Finite Element Optimization: Some Issues to be Addressed,” Revue roumaine des

sciences techniques-Serie Electrotechnique et Energetique (accepted)In press Vol. 60,

No. 3, 2015.

Peer-reviewed Conference Papers

1. S. Sivasuthan, P. Jayakumar, R. S. Thyagarajan, and S. R. H. Hoole, “A Parameterized

3D Mesh Generator for Optimization in NDE and Shape Design on a GPU,” The 31st

International Review of Progress in Applied Computational Electromagnetics, 22-26

March 2015, in Williamsburg, VA

2. S.R.H. Hoole, S. Sivasuthan, “GPU Computations for Finite Element Optimization: A

Review of the Methodology and Problems for Study,” ISFEE Conference 2014

(Accepted) November 28-29 2014, Bucharest, Romania

3. S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, Ravi Thyagarajan, Lalita

Udpa and S.R.H. Hoole; “GPU Computation: Why Element by Element Conjugate

Gradients,” 16th Biennial IEEE Conference on Electromagnetic Field Computation

(CEFC), May 25-28 2014, Annecy, France.

4. S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, Ravi Thyagarajan, Lalita

Udpa and S.R.H. Hoole, “A Script-based, Parameterized Mesh Generator Li- brary for

CoupledGradient Design and NDE,” 16th Biennial IEEE Conference on Elec-

tromagnetic Field Computation (CEFC), May 25-28 2014, Annecy, France

5. Sivamayam Sivasuthan , “The General Purpose Parameter Based Two Dimensional Mesh

Generator,” In proceedings of 2014 American Society For Engineering Education, NCS

Conference, April 4 and 5, 2014, Oakland University, Rochester, MI.

6. S. Sivasuthan Victor U. Karthik, Arunasalam Rahunanthan, Ravi S. Thyagarajan,

Paramsothy Jayakumar, and S. Ratnajeevan H. Hoole, “The Finite Element Method in

Optimization: The Forking of Already Parallelized Threads on Graphics Processing

Units to Realize Speedup,” The 30th International Review of Progress in Applied

Computational Electromagnetics, March 23th-27th, 2014 in Jacksonville, Florida

7. S. Sivasuthan, Victor U. Karthik and S. Ratnajeevan Hoole, “CUDA Memory

Limitation in Finite Element Optimization to Reconstruct Cracks,” in 40th Annual

129

Review of Progress in Quantitative Nondestructive Evaluation, edited by Dale E.

Chimenti, Leonard J. Bond, and Donald O. Thompson, AIP Conference Proceedings

1581, 1967- 1974 , American Institute of Physics, Melville, NY.

8. Victor U. Karthik, S. Sivasuthan and S. Ratnajeevan Hoole, “Parallel Implementation of

the Genetic Algorithm on NVIDIA GPU Architecture for Synthesis and Inversion,” in

40th Annual Review of Progress in Quantitative Nondestructive Evaluation, edited by

Dale E. Chimenti, Leonard J. Bond, and Donald O. Thompson, AIP Conference

Proceedings 1581, 1991-1998 , American Institute of Physics, Melville, NY.

9. S. Sivasuthan V. U. Karthik, P. R. P. Hoole, and S. R. H. Hoole, “The Finite Element

Method in Electrical Engineering Optimization: Parallelization on Graphics Processing

Units Realizing High Speedup Without Memory Limits,” ICPAM-LAE satellite

conference, in Port Moresby, Papua New Guinea, 2013.

10. Victor U. Karthik, S. Sivasuthan, A. Rahunanthan, P. Jayakumar, R. Thyagarajan, S.

Ratnajeevan Hoole, “Finite Element Optimization for Nondestructive Evaluation on a

Graphics Processing Unit for Ground Vehicle Hull Inspection,” In proceedings of NDIA

Ground Vehicle Systems Engineering and Technology Symposium, Troy, MI, August

2013.

11. S. Sivasuthan and S. R. H. Hoole. “Software Tools for Inverse Problem Solution,”

Inverse problem symposium, East Lansing, 2012 (Digest)

130

Appendix B: Sample Input File 2D

#A set of pointsin 2D(* WITHOUT VARIABLE POINTS).

Number of nodes is 9 number of variables is 5

9 5

#And here are the nine points.

1 0.0 0.0

2 10. 0 0. 0

3 20.0 0. 0

4 10. 0 10. 0

5 0. 0 10. 0

6 2. 0 2. 0

7 4. 0 2. 0

8 4. 0 4. 0

9 2.0 4.0

variable points

number of points in first draw. Then coordinates

10 20.0 1.85

11 18 1.90

12 15.5 2.10

13 13 2.40

14 10 3

#segments, 1st line --number of segments following lines are segments (node

numbers, each

segment has two node numbers and a marker to identify the boundary elements.

#number of segments

15

#segments (two nodes) and a marker

1 3 10 1

2 4 5 2

3 6 7 -1

4 7 8 -1

5 1 2 -1

6 2 3 -1

7 5 1 -1

8 14 4 -1

9 10 11 -1

10 11 12 -1

11 12 13 -1

12 13 14 -1

13 2 14 -1

14 8 9 -1

15 9 6 -1

#segment markers used to identify the boundaries and set boundary

#conditions. do not give 0 or 1 to segment marker because already

#fixed as a default, 3rd column is boundary condition value

2

#asdf

131

1 2 0

2 3 0

#regions, number of regions x y coordinates of region, regional

#attribute (for whole mesh), Area constraint that will not be used

#we can leave one region without any assignments we have to assign for

#this case 0 0 0 0 but we can give properties to this region

2

1 1 0.5 1 0.1

2 12 3 2 0.9

#properties of regions, first number of properties then property

#values

2

1 1 1.32

2 1.90 9.312

holes, number of holes x y coordinates of the hole

1

1 3 3

#type

0

#measuring points

10

#point coordinates

1 1.1 1.10

2 2.1 1.19

3 3.1 1.18

4 3.3 1.17

5 3.6 1.16

6 3. 9 1.15

7 4 .1 1.14

8 4. 4 1.13

9 4. 9 1.12

10 5.1 1.1

132

Appendix C: Sample Input File 3D

#3DMesh Input File

#Number of points <--> Number of variable points

36 22

#13 3 0 1

1 0 0 0

2 100 0 0

3 100 0 100

4 0 0 100

5 0 50 0

6 100 50 0

7 100 50 100

8 0 50 100

9 0 100 0

10 100 100 0

11 100 100 100

12 0 100 100

#coil

13 40.0 52.0 48.0

14 44.0 52.0 48.0

15 48.0 52.0 48.0

16 52.0 52.0 48.0

17 56.0 52.0 48.0

18 60.0 52.0 48.0

19 40.0 52.0 52.0

20 44.0 52.0 52.0

21 48.0 52.0 52.0

22 52.0 52.0 52.0

23 56.0 52.0 52.0

24 60.0 52.0 52.0

25 44.0 56.0 48.0

26 48.0 56.0 48.0

27 52.0 56.0 48.0

28 56.0 56.0 48.0

29 44.0 56.0 52.0

30 48.0 56.0 52.0

31 52.0 56.0 52.0

32 56.0 56.0 52.0

33 40.0 60.0 48.0

34 60.0 60.0 48.0

35 60.0 60.0 52.0

36 40.0 60.0 52.0

#variables

37 52.85316955 44 50.92705098

38 51.76335576 42 52.42705098

39 50 43 53

133

40 48.23664424 45 52.42705098

41 47.14683045 42 50.92705098

42 47.14683045 43 49.07294902

43 48.23664424 45 47.57294902

44 50 44 47

45 51.76335576 43 47.57294902

46 52.85316955 43 49.07294902

47 51.42658477 46 50.46352549

48 50 46 51.5

49 48.57341523 47 50.46352549

50 49.11832212 46 48.78647451

51 50.88167788 46.5 48.78647451

52 50 48 50

53 51.42658477 40 50.46352549

54 50 40 51.5

55 48.57341523 40 50.46352549

56 49.11832212 40 48.78647451

57 50.88167788 40 48.78647451

58 50 38 49

#number of faces, boundary markers

53 1

no of polygons> no of holes, boundary marker

1 0 3

4 1 2 3 4

1 0 3

4 5 6 7 8

1 0 3

4 9 10 11 12

1 0 3

4 1 2 6 5

1 0 3

4 5 6 10 9

1 0 3

4 2 3 7 6

1 0 3

4 6 7 11 10

1 0 3

4 1 4 8 5

1 0 3

4 5 8 12 9

1 0 3

4 8 7 11 12

1 0 3

4 4 3 7 8

1 0 -1

12 13 14 25 26 15 16 27 28 17 18 34 33

134

1 0 -1

12 19 20 29 30 21 22 31 32 23 24 35 36

1 0 -1

4 13 19 36 33

1 0 -1

4 18 24 35 34

1 0 -1

4 33 34 35 36

1 0 -1

4 13 14 20 19

1 0 -1

4 14 20 29 25

1 0 -1

4 25 26 30 29

1 0 -1

4 15 21 30 26

1 0 -1

4 15 16 22 21

1 0 -1

4 16 22 31 27

1 0 -1

4 27 28 32 31

1 0 -1

4 17 23 32 28

1 0 -1

4

#new

1 17

0 18

-1 24 23

3 37 38 47

1 0 -1

4 38 39 48 47

1 0 -1

4 39 40 49 48

1 0 -1

3 40 41 49

1 0 -1

4 41 42 50 49

1 0 -1

3 42 43 50

1 0 -1

4 43 44 51 50

1 0 -1

3 44 45 51

135

1 0 -1

4 45 46 47 51

1 0 -1

3 46 37 47

1 0 -1

4 47 48 52 51

1 0 -1

3 48 49 52

1 0 -1

3 49 50 52

1 0 -1

3 50 51 52

1 0 -1

3 37 38 53

1 0 -1

4 38 39 54 53

1 0 -1

4 39 40 55 54

1 0 -1

3 40 41 55

1 0 -1

4 41 42 56 55

1 0 -1

3 42 43 56

1 0 -1

4 43 44 57 56

1 0 -1

3 44 45 57

1 0 -1

4 45 46 53 57

1 0 -1

3 46 37 53

1 0 -1

4 53 54 58 57

1 0 -1

3 54 55 58

1 0 -1

3 55 56 58

1 0 -1

3 56 57 58

#bounday conditions

1

#conditions

1 3 0

2 regions

136

3

1 10 10 10 1 0.1

2 46 50 50 2 0.01

3 -1 -1 -1 3 1.2

#number of properties

2

1 1.90 2.20

2 2.213.30

3 3.214.30

#number of holes

0

#measuring points

5

1 52.85316955 51 50.92705098

2 51.76335576 51 52.42705098

3 50 51 53

4 48.23664424 51 52.42705098

5 47.14683045 51 50.92705098

#mesh area constraint

10

137

BIBLIOGRAPHY

138

BIBLIOGRAPHY

[1] M. Yan, S. Udpa, S. Mandayam, Y. Sun, P. Sacks, and W. Lord, “Solution of inverse

problems in electromagnetic NDE using finite element methods,” IEEE Transactions on

Magnetics, vol. 34, no. 5, pp. 2924–2927, 1998.

[2] M. Melanie, “An Introduction to Genetic Algorithms,” Computers Mathematics with

Applications, vol. 32, p. 133, 1996.

[3] V. U. Karthik, S. Sivasuthan, A. Rahunanthan, R. S. Thyagarajan, P. Jayakumar, L. Udpa,

and S. R. H. Hoole, “Faster, More Accurate Parallelized Inversion for Shape Optimization

in Electroheat Problems on a Graphics Processing Unit (GPU) with the Real-Coded

Genetic Algorithm,” COMPEL, vol. 34, no. 1, pp. 344–356, 2015.

[4] V. U. Karthik, S. Sivasuthan, and S. R. H. Hoole, “Parallel implementation of the genetic

algorithm on NVIDIA GPU architecture for synthesis and inversion,” in AIP Conf. Proc.,

pp. 1991–1998, 2014.

[5] G. F. Uler, O. A. Mohammed, and C. Koh, “Utilizing genetic algorithms for the optimal

design of electromagnetic devices,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp.

4296–4298, 1994.

[6] J. Kim, H. B. Lee, H. K. Jung, and S. Y. Hahn, “Optimal design technique for waveguide

device,” IEEE Transactions on Magnetics, vol. 32, no. 3 (2), pp. 1250–1253, 1996.

[7] S. Dong-Joon, C. Dong-Hyeok, C. Jang-Sung, J. Hyun-Kyo, and C. Tae-Kyoung,

“Efficiency optimization of interior permanent magnet synchronous motor using genetic

algorithms,” IEEE Transactions on Magnetics, vol. 33, pp. 1880–1883, Mar. 1997.

[8] M. Khanzadeh, M. Malekshahi, and A. Rahmati, “Optimization of loss in orthogonal bend

waveguide: Genetic Algorithm simulation,” Alexandria Engineering Journal, vol. 52, no.

3, pp. 525–530, 2013.

[9] L. Saludjian, J. Coulomb, and A. Izabelle, “Genetic algorithm and Taylor development of

the finite element solution for shape optimization of electromagnetic devices,” IEEE

Transactions on Magnetics, vol. 34, no. 5, 1998.

[10] H. Enomoto, K. Harada, Y. Ishihara, T. Todaka, and K. Hirata, “Optimal design of linear

oscillatory actuator using genetic algorithm,” IEEE Trans. on Mag., vol. 34, no. 5, 1998.

139

[11] G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design: With

Applications (Mcgraw Hill Series in Mech. Engineering). Mcgraw-Hill College, 1984.

[12] S. R. H. Hoole, S. Sivasuthan, V. U. Karthik, A. Rahunanthan, R. S. Thyagarajan, and P.

Jayakumar, “Electromagnetic Device Optimization: The Forking of Already Parallelized

Threads on Graphics Processing Units,” ACES Journal, vol. 29, no. 9, pp. 677–684, 2014.

[13] S. R. H. Hoole, Computer-aided Analysis and Design of Electromagnetic Devices. New

York: Elsevier, 1989.

[14] E. Ellobody, R. Feng, and B. Young, “Design Examples of Metal Tubular Connections,”

Finite Element Analysis and Design of Metal Structures, pp. 182–205, 2014.

[15] M. V. K. Chari and P. P. Silvester, Finite Elements in Electrical and Magnetic Field

Problems (Wiley Series in Numerical Methods in Engineering). New York: John Wiley &

Sons Inc, 1980.

[16] A. Marrocco and O. Pironneau, “Optimum design with lagrangian finite elements: De- sign

of an electromagnet,” Computer Methods in Applied Mechanics and Engineering, vol. 15,

no. 3, pp. 277–308, 1978.

[17] J. S. Arora and E. J. Haug, “Efficient optimal design of structures by generalized steepest

descent programming,” International Journal for Numerical Methods in Engineering, vol.

10, no. 4, pp. 747–766, 1976.

[18] O. Pironneau, Optimal Shape Design for Elliptic Systems. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1984.

[19] S. Subramaniam, A. Arkadan, and S. Ratnajeevan Hoole, “Optimization of a magnetic

pole face using linear constraints to avoid jagged contours,” IEEE Transactions on

Magnetics, vol. 30, no. 5, pp. 3455–3458, 1994.

[20] J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape,

Material and Topology Design, 2nd Edition. Wiley, 1996.

[21] K. Preis, C. Magele, and O. Biro, “FEM and evolution strategies in the optimal design of

electromagnetic devices,” IEEE Tran. on Magnetics, vol. 26, no. 5, pp. 2181– 2183, 1990.

[22] K. Wijesinghe, “The First General Purpose Optimization Software for Electromagnetic

Device Optimization,” Annual Transaction of IESL, pp. 141–149, 2003.

140

[23] S. Sivasuthan, V. U. Karthik, and S. R. H. Hoole, “CUDA memory limitation in finite

element optimization to reconstruct cracks,” in AIP Conf. Proc. 1581, pp. 1967–1974,

2014.

[24] S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, R. Thyagarajan, L. Udpa,

and S. Hoole, “A Script-Based, Parameterized Finite Element Mesh for Design and NDE

on a GPU,” IETE Technical Review, vol. 32, pp. 94–103, Mar. 2015.

[25] J. R. Shewchuk, “Applied Computational Geometry towards Geometric Engineering,”

Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, vol.

1148, pp. 203–222, 1996.

[26] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh generation,”

Computational Geometry, vol. 22, pp. 21–74, May 2002.

[27] J. Schoberl, “NETGEN An advancing front 2D/3D-mesh generator based on abstract

rules,” Computing and Visualization in Science, vol. 1, pp. 41–52, July 1997.

[28] The CGAL Project, “CGAL User and Reference Manual,” CGAL Editorial Board 4.2,

2013.

[29] C. Geuzaine and J. Remacle, “Gmsh: A 3-D finite element mesh generator with built- in

pre and post-processing facilities,” International Journal for Numerical Methods in

Engineering, pp. 1–24, 2009.

[30] C. J. Conroy, E. J. Kubatko, and D. W. West, “ADMESH: An advanced, automatic

unstructured mesh generator for shallow water models,” Ocean Dynamics, vol. 62, pp.

1503–1517, Nov. 2012.

[31] T. Chen, J. Johnson, and W. D. Robert, A Vector Level Control Function for Generalized

Octree Mesh Generation. Vienna: Springer Vienna, 1995.

[32] X. W. Ma, G. Q. Zhao, and L. Sun, “AUTOMESH2D/3D: robust automatic mesh gen-

erator for metal forming simulation,” Materials Research Innovations, vol. 15, pp. s482–

s486, Feb. 2011.

[33] D. M. Fernandez, M. M. Dehnavi, W. J. Gross, and D. Giannacopoulos, “Alternate Parallel

Processing Approach for FEM,” IEEE Trans. on Mag., vol. 48, pp. 399–402, Feb. 2012.

[34] I. Kiss, S. Gyimothy, Z. Badics, and J. Pavo, “Parallel realization of the element-by-

141

element FEM technique by CUDA,” IEEE Trans. on Magnetics, vol. 48, no. 2, pp. 507–

510, 2012.

[35] T. Okimura, T. Sasayama, N. Takahashi, and S. Ikuno, “Parallelization of Finite Element

Analysis of Nonlinear Magnetic Fields Using GPU,” IEEE Transactions on Magnetics, vol.

49, pp. 1557–1560, May 2013.

[36] A. Kakay, E. Westphal, and R. Hertel, “Speedup of FEM micromagnetic simulations with

graphical processing units,” IEEE Trans. on Magnetics, vol. 46, pp. 2303–2306, 2010.

[37] W. Khamsen, A. Aurasopon, and W. Sa-ngiamvibool, “Power Factor Improvement and

Voltage Harmonics Reduction in Pulse Width Modulation AC Chopper Using Bee Colony

Optimization,” IETE Technical Review, vol. 30, no. 3, p. 173, 2013.

[38] K. Deb, “COIN Lab,” http://www.egr.msu.edu/˜kdeb/COIN.shtml.

[39] J. Muller, “On triangles and flow,” Special Section on Software Agents in Electronic, 1996.

[40] S. Niu, Y. Zhao, S. L. Ho, and W. N. Fu, “A parameterized mesh technique for finite

element magnetic field computation and its application to optimal designs of

lectromagnetic devices,” in IEEE Trans. on Magnetics, vol. 47, pp. 2943–2946, 2011.

[41] “FLUX 10 2D and 3D Applications New features.” http://www.jaewoo.com/material/

magazinefolder/jwnews/0710/10_New_Features.pdf. [online accessed 2013-08-01].

[42] J. Xin, N. Lei, L. Udpa, and S. S. Udpa, “Nondestructive Inspection Using Rotating

Magnetic Field Eddy-Current Probe,” IEEE Transactions on Magnetics, vol. 47, pp. 1070–

1073, May 2011.

[43] “Forge.” http://forge-mage.g2elab.grenoble-inp.fr/project/got. [online accessed 14-07-26].

[44] K. Vishnukanthan and K. Markus, “Parallel finite element mesh generator using mul- tiple

GPUs,” in 14th International Conferennce on Computing in Civil and Building

Engineering, pp. 1–8, Publishing House ASV, 2012.

[45] S. R. H. Hoole, K. Weeber, and S. Subramaniam, “Fictitious minima of object functions,

finite element meshes, and edge elements in electromagnetic device synthesis,” IEEE

Transactions on Magnetics, vol. 27, no. 6, pp. 5214–5216, 1991.

[46] A. Vaidya, S. H. Yu, J. St. Ville, D. T. Nguyen, and S. D. Rajan, “Multiphysics CAD-

142

Based Design Optimization,” Mechanics Based Design of Structures and Machines, vol.

34, pp. 157–180, July 2006.

[47] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, “PolyTop: a Matlab

implementation of a general topology optimization framework using unstructured

polygonal finite element meshes,” Structural and Multidisciplinary Optimization, vol. 45,

pp. 329–357, Jan. 2012.

[48] H. Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator,” ACM Trans-

actions on Mathematical Software, vol. 41, pp. 1–36, Feb. 2015.

[49] H. Si, “TetGen, a quality tetrahedral mesh generator and three-dimensional Delaunay

triangulator, 2007,” URL http://tetgen. berlios.de, 2006.

[50] B. Joe, “Construction of Three-Dimensional Improved-Quality Triangulations Using Local

Transformations,” SIAM Journal on Scientific Computing, vol. 16, pp. 1292– 1307, Nov.

1995.

[51] D. J. Mavriplis, “An Advancing Front Delaunay Triangulation Algorithm Designed for

Robustness,” Journal of Computational Physics, vol. 117, pp. 90–101, Mar. 1995.

[52] R. Schneiders, “Algorithms for Quadrilateral and Hexahedral Mesh Generation,” in

Proceedings of the VKI Lecture series on Computational Fluid Dynamic, pp. 2000– 2004,

2000.

[53] D. T. Lee and B. J. Schachter, “Two algorithms for constructing a Delaunay triangulation,”

International Journal of Computer & Information Sciences, vol. 9, pp. 219–242, 1980.

[54] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” Algorithmica, vol. 2, pp. 153–

174, 1987.

[55] C. L. Lawson, Software for C1 Surface Interpolation. Mathematical Software III.

Academic p ed., 1977.

[56] P. Su and D. R. L. Scot, “A comparison of sequential Delaunay triangulation algorithms,”

Computational Geometry, vol. 7, pp. 361–385, Apr. 1997.

[57] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh

Generation,” Journal of Algorithms, vol. 18, pp. 548–585, May 1995.

143

[58] “CEDRAT.” http://www.cedrat.com/en/software/got-it.html. [online accessed 2014-04-21].

[59] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. The

MIT Press, 2011.

[60] “Merge Sort.” http://webdocs.cs.ualberta.ca/~holte/T26/merge-sort.html. [online

accessed 2015-02-11].

[61] D. Robilliard, V. Marion-Poty, and C. Fonlupt, “Genetic programming on graphics

processing units,” Genetic Programming and Evolvable Machines, vol. 10, pp. 447– 471,

Oct. 2009.

[62] M. L. Wong and T. T. Wong, “Implementation of Parallel Genetic Algorithms on Graphics

Processing Units,” Intelligent and Evolutionary Systems, vol. 187, pp. 197– 216, 2009.

[63] S. Sivasuthan, V. U. Karthik, A. Rahunanthan, P. Jayakumar, R. S. Thyagarajan, L. Udpa,

and S. R. H. Hoole, “Addressing Memory and Speed Problems in Nondestructive Defect

Characterization: Element-by-Element Processing on a GPU,” Journal of Nondestructive

Evaluation, vol. 34, no. 2, 2015.

[64] S. R. H. Hoole, “Optimal design, inverse problems and parallel computers,” IEEE

Transactions on Magnetics, vol. 27, no. 5, pp. 4146–4149, 1991.

[65] G. Mahinthakumar and S. R. H. Hoole, “A parallel conjugate gradients algorithm for finite

element analysis of electromagnetic fields,” Journal of Applied Physics, vol. 67, no. 9, p.

5818, 1990.

[66] C. Cecka, A. J. Lew, and E. Darve, “Assembly of finite element methods on graph- ics

processors,” International Journal for Numerical Methods in Engineering, vol. 85, pp.

640–669, Feb. 2011.

[67] “GPU.” http://www.nvidia.com/object/gpu.html. [online accessed 2014-07-26].

[68] “NVIDIA Tesla.” http://www.nvidia.com/object/tesla-servers.html. [accessed 2015-07-26].

[69] “NVIDIA programming guide.” http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html\#axzz3gSPnvaGC. [online accessed 2013-08-01]

[70] “Tuning CUDA Applications for Kepler.” http://www.nvidia.com/object/

cudaget.html. [online accessed 2014-07-26].

144

[71] W. Wu and P. A. Heng, “A hybrid condensed finite element model with GPU acceleration

for interactive 3D soft tissue cutting,” in Computer Animation and Virtual Worlds, vol.

15, pp. 219–227, 2004.

[72] “NVIDIA CUDA Toolkit Release Notes.” http://docs.nvidia

.com/cuda/ cuda-toolkit-release-notes/index.html. [online accessed 2013-08-01].

[73] D. R. Kincaid, J. R. Respess, D. M. Young, and R. R. Grimes, “Algorithm 586: IT- PACK

2C: A FORTRAN Package for Solving Large Sparse Linear Systems by Adaptive

Accelerated Iterative Methods,” ACM Transactions on Mathematical Software, vol. 8, pp.

302–322, Sept. 1982.

[74] T. J. Hughes, I. Levit, and J. Winget, “An element-by-element solution algorithm for

problems of structural and solid mechanics,” Computer Methods in Applied Mechanics and

Engineering, vol. 36, pp. 241–254, Feb. 1983.

[75] Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 3. 2003.

[76] G. F. Carey, E. Barragy, R. McLay, and M. Sharma, “Element-by-element vector and

parallel computations,” Communications in Applied Numerical Methods, vol. 4, pp. 299–

307, May 1988.

[77] C. Heusser “Conjugate gradient-type algorithms for a finite-element discretization of the

Stokes equations,” Journal of Computational and Applied Mathematics, vol. 39(1), pp. 23–

37, Feb. 1992.

[78] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. 1994.

[79] J. Erhel, A. Traynard, and M. Vidrascu, “An element-by-element preconditioned conju-

gate gradient method implemented on a vector computer,” Parallel Computing, vol. 17, pp.

1051–1065, Nov. 1991.

[80] A. Wathen, “An analysis of some element-by-element techniques,” Computer Methods in

Applied Mechanics and Engineering, vol. 74, pp. 271–287, Sept. 1989.

[81] V. Faber and T. Manteuffel, “Necessary and sufficient conditions for the existence of a

conjugate gradient method,” SIAM J. Numer. Anal., vol. 21, pp. 352–362, 1984.

145

[82] V. V. Voevodin, “The problem of non-self-adjoint generalization of the conjugate gradient

method is closed,” USSR Comput. Maths. Math. Phys., vol. 23, pp. 143–144, 1983.

[83] M. M. Wang and T. W. Sheu, “An element-by-element BICGSTAB iterative method for

three-dimensional steady Navier-Stokes equations,” Journal of Computational and Applied

Mathematics, vol. 79, pp. 147–165, Mar. 1997.

[84] T. Sheu, C. Fang, and S. Tsai, “Application of an element-by-element BiCGSTAB iterative

solver to a monotonic finite element model,” Computers & Mathematics with Applications,

vol. 37, pp. 57–70, Feb. 1999.

[85] P. Sonneveld, “CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems,”

SIAM Journal on Scientific and Statistical Computing, vol. 10, no. 1, pp. 36–52, 1989.

[86] H. A. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for

the Solution of Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical

Computing, vol. 13, no. 2, pp. 631–644, 1992.

[87] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, vol. 13. Cam-

bridge: Cambridge University Press, 2003.

[88] A. F. P. de Camargos, V. C. Silva, J.-m. Guichon, and G. Munier, “Efficient Parallel

Preconditioned Conjugate Gradient Solver on GPU for FE Modeling of Electromagnetic

Fields in Highly Dissipative Media,” IEEE Transactions on Magnetics, vol. 50, pp. 569–

572, Feb. 2014.

[89] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient algorithm on

GPU,” in J. of Computational and Applied Mathematics, vol. 236, pp. 3584–3590, 2012.

[90] M. Ament, G. Knittel, D. Weiskopf, and W. Straber, “A parallel preconditioned conjugate

gradient solver for the Poisson problem on a multi-GPU platform,” in Proc. of the 18th

Euromicro Conf. on Parallel, Distributed and Net.-Based Processing , pp. 583–592, 2010.

[91] Z. Ning and X. Wang, “A parallel Preconditioned Bi-Conjugate Gradient Stabilized solver

for the Poisson problem,” J. of Computers (Finland), vol. 7, no. 12, pp. 3088–3095, 2012.

[92] A. F. P. de Camargos and V. C. Silva, “Performance Analysis of Multi-GPU

Implementations of Krylov-Subspace Methods Applied to FEA of Electromagnetic

Phenomena,” IEEE Transactions on Magnetics, vol. 51, no. 3, pp. 1–4, 2015.

146

[93] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1998.

[94] J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape,

Material and Topology Design, 2nd Edition. Wiley, 1997.

[95] K. Preis, C. Magele, and O. Biro, “FEM and evolution strategies in the optimal design of

electromagnetic devices,” IEEE Trans. on Magnetics, vol. 26, no. 5, pp. 2181–2183, 1990.

[96] D. M. Rocke and Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution

Programs,” Journal of the American Statistical Association, vol. 95, p. 347, Mar. 2000.

[97] J. H. Holland, “Genetic Algorithms and the Optimal Allocation of Trials,” SIAM Journal

on Computing, vol. 2, no. 2, pp. 88–105, 1973.

[98] E. F. Herzberg, D. A. Forman, N. T. O’Meara, and J. C. Tran, “The annual cost of

corrosion for army ground vehicles,” 2009.

[99] BDM Federal Inc, “Corrosion Detection Technologies,” 1998.

[100] E. Herzberg, “The Annual Cost of Corrosion for DOD,” in DoD Corrosion Conference, pp.

1–11, 2009.

[101] V. U. Karthik, “Reconstructing and Classifying Damage in a 2D Steel Plate Using Non-

Destructive Evaluation (NDE) Methods,” in ASEE-NCS, (Oakland), ASEE, 2014.

[102] V. U. Karthik, Shape optimization using finite element analysis in eddy current testing and

electro-thermal coupled problems. PhD Thesis, Michigan State University, 2015.

[103] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, and A. Aspuru-

Guzik, “Accelerating Resolution-of-the-Identity Second-Order Møller-Plesset Quantum

Chemistry Calculations with Graphical Processing Units,” Journal of Physical Chemistry

A, vol. 112, no. 10, pp. 2049–2057, 2008.

[104] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecular dynamics

simulations fully implemented on graphics processing units,” Journal of Computational

Physics, vol. 227, pp. 5342–5359, May 2008.

[105] D. J. Hardy, J. E. Stone, and K. Schulten, “Multilevel summation of electrostatic potentials

using graphics processing units,” Parallel Computing, vol. 35, no. 3, pp. 164–177, 2009.

147

[106] E. Elsen, P. LeGresley, and E. Darve, “Large calculation of the flow over a hypersonic

vehicle using a GPU,” Journal of Comput. Physics, vol. 227, pp. 10148–10161, Dec. 2008.

[107] D. Goddeke, S. H. Buijssen, H. Wobker, and S. Turek, “GPU acceleration of an unmod-

ified parallel finite element Navier-Stokes solver,” in 2009 International Conference on

High Performance Computing & Simulation, pp. 12–21, IEEE, June 2009.

[108] S. Sivasuthan, V. U. Karthik, R. Arunasalam, R. S. Thyagarajan, P. Jayakumar, and S. R.

H. Hoole, “GPU Computations for Finite Element Optimization: Some Issues to be

Addressed,” Revue roumaine des sciences techniques-Serie electrotechnique et

energetique, vol. 60(3), no. (accepted- in press), 2015.

[109] I. Kiss, Z. Badics, S. Gyimothy, and J. Pavo, “High locality and increased intra-node

parallelism for solving finite element models on GPUs by novel element-by-element

implementation,” in 2012 IEEE Conf. on High Perf. Extreme Computing, HPEC 2012.

[110] B. OANCEA, T. ANDREI, and R. M. DRAGOESCU, “Improving the performance of the

linear systems solvers using cuda,” in Challenges for the Knowledge Society, pp. 2036–

2045, 2012.

[111] “CUDA Tutorials.” http://www.nvidia.com/content/PDF/sc_2010/

CUDA_Tutorial/SC10_Accelerating_GPU_Computation_Through_Mixed-

Precision_Methods.pdf. [online accessed 2014-07-26].

[112] D. Yablonski, Numerical accuracy differences in CPU and GPGPU codes. MS Thesis-

Northeastern University, 2011.

[113] G. Krawezik and G. Poole, “Accelerating the ANSYS Direct Sparse Solver with GPUs,”

in Symp. on App. Accelerators in High Perf. Computing, (Urbana- Champaign, IL), 2009.

[114] “2DMesh.” www.egr.msu.edu/~hoole/FE2DMesh. [online accessed 2014-05-25].

[115] “3DMesh.” www.egr.msu.edu/~hoole/FE3DMesh. [online accessed 2015-07-26].

[116] E. Laithwaite, “The goodness of a machine,” Electronics and Power, vol. 11, no. 3, pp.

101–103, 1965.

