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ABSTRACT 

 

SOFTWARE TOOL METHODOLOGIES ON A GPU FOR FINITE ELEMENT 

OPTIMIZATION IN MAGNETICS 

 

By 

 

Sivamayam Sivasuthan 

The design of magnetic devices requires optimization coupled with finite element 

analysis (FEA). This involves a massive computational load and requires a specialized mesh 

generator. It is therefore not practicable. This thesis therefore presents i) a parameterized 

iterative mesh generator for two-dimensional and three-dimensional finite element optimization; 

ii) fast and low memory finite element solvers using a graphics processing unit (GPU). In 

particular we introduce element by element finite element computations on a GPU with a 

speedup of 102 while the best competing method gives only 10; and iii)  an examination of 

parallelizing such matrix computations on already parallelized genetic algorithm threads using 

new GPU architectures. The resulting system is reliable and yields solutions in practicable times 

with massive speedup. Example inverse optimization problems are presented.   These software 

tools are written in C/C++ and CUDA C/C++. The system is shown to be applicable to the 

synthesizing of two-dimensional and three-dimensional electromagnetic devices and to non-

destructive evaluation (NDE) problems. 

Several finite element mesh generators exist in the public domain, some even based on a 

parametric device description. But for optimization we need a parametrically described mesh 

dynamically evolving through the iterations without user input.  The few that exist are 

commercial and their methodology is not known. In this thesis the mesh generator that we 

describe is in open source code with parametric mesh generation that runs nonstop and 

seamlessly through optimization iterations to convergence without user intervention. Such mesh 
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generators as do exist are rare, commercial and not easily available to researchers except at great 

cost and never with the code to modify it to suit needs individual. Besides, the typical mesh 

generator requires some man-machine interaction to define the mesh points and boundary 

conditions and does not work for nonstop optimization iterations. We take two regular open 

source mesh generators, one for two-dimensional systems and the other for three-dimensional 

systems, and write a script-based interface as open source code to run nonstop for optimization.  

We then use it to create an NDE system for an army ground vehicle’s hull defect characterization 

and use it equally adaptively for machine design. A simple scheme of averaging neighbor heights 

gives us a smooth geometry without having to use Bezier curves. 

This thesis also points out using a literature survey issues in GPU computation which 

result in erratic speedup and explain why in some instances GPU solutions are arithmetically a 

slight improvement on CPU solutions. 
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Chapter 1 

 

Introduction 

 

 
1.1 Motivation 

 

 

Existing finite element analysis software for electromagnetic fields provides advanced 

features for design or analysis problems. However engineering design involves inverse problem 

solving. That is, once the requirements are given, we have to find the geometrical shape or the 

material properties, which will satisfy the requirements as closely as possible (if not exactly). 

This is done basically using optimization algorithms.  The deviation of the performance result of 

the analysis of the present shape from the requirements must be formulated as an error function, 

which must be minimized to get the optimum solution [1].  Most finite element analysis software 

packages do not support this. Therefore this must be done using a trial and error process. 

However a trial and error process alone will be so inefficient that it is not practically possible to 

obtain a solution. Therefore an expert is required to guide this trial and error process using his 

experience.  However the success is directly dependent on the ability of the human expert and 

therefore the solution obtained may deviate from the most optimum solution possible (Note that 

computer based optimization solutions also do not guarantee the global minimum, however they 

can reach a far better solution than a human expert). 

There are some finite element analysis software packages that support optimization. 

However such software can only be used for the optimization of special classes of problems. A 

totally new program has to be developed in order to solve a new type of problem. This is an 

expensive and time consuming task. This forces the designers who do not have the resources to 
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develop a separate optimization program for their specific need, to use the old trial and error 

approach with traditional finite element analysis programs. Actually, it is usually not economical 

to develop a separate program if we have to solve a given problem only once or twice. 

 

Figure 1.1: Regular finite element analysis 

 

 

 

Figure 1.1 shows the regular finite element analysis process.   Figure 1.2 shows finite 

element optimization using the zeroth order genetic algorithm (GA) and gradients based 

algorithms. If we use GA optimization we can speed-up our solution time through parallelization 

on a GPU. In the genetic algorithm, the design parameter vector {h} is binary encoded in general 
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[2]. A chromosome is a vector {h}. Its fitness score f is defined in terms of the object function 

𝑓 =  
1

1 + 𝐹
                                                                         (1.1) 

                                         
Though GA is practicable and gives a faster solution when parallelized [3], it is slow in 

our experience as a single process when compared with the gradient optimization methods. In 

sequential CPU computing, the fitness value is calculated for each chromosome one by one.  

When the population is high it takes a very long time to converge. We use GPU computation to 

overcome this problem [3].  We launched GPU kernels for computing the fitness value. So the 

fitness value will be calculated simultaneously for each chromosome in the population (Figure 

1.2) [4]. Genetic algorithm based finite element analysis in magnetics has been carried out by 

many researchers [5, 6, 7, 8, 9, 10] over the past 20 year period. 

In gradients based optimization, the changes in parameters of device description {h} are 

against the gradient of the object function F because in one-dimensional analogy the minimum 

point is to the right of locations with negative gradient and to the left of those with positive 

gradient: 

{ℎ} = {ℎ} −  𝛼 
𝜕𝐹

𝜕{ℎ}
                                                              (1.2) 

 
where the amount of change 𝛼 is determined by a line search [11]. The computation of the 

gradient ∇F (= ∂F /∂ {h}) was previously by finite difference, computing F through a finite 

element solution corresponding to a given {h} and then in turn changing each component hi by 

an infinitesimal amount and re-computing F to get = ∂F /∂hi  ≈ δF /δhi.  Thus the component of 

∇F at each iterative step with n components of {h} took n + 1 finite element solutions and then 

once the direction of change of {h}, −∇F, is established several more finite element solutions 

need to be sought during the line search as α in Equation 1.2 is progressively increased and the 
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problem iteratively solved until the minimum of F in that direction is identified [11]. Each 

changed {h} means a new geometry and therefore a new mesh. For a seamless iterative process, 

automatic mesh generators are required that can yield a mesh corresponding to a given {h}.  

However with gradient based algorithms the matrix solution may be parallelized whereas with 

the GA, both matrix solution and optimization may be parallelized through forking within a fork 

[12]. 

 

Figure 1.2: FEM with optimization algorithms 

 

 

Therefore, we have developed general-purpose two-dimensional and three-dimensional finite 
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element analysis inverse optimization procedure using GA software tools on a GPU for analysis 

and geometrical shape optimization in design and NDE problems. 

 

1.2 The Finite Element Method 

 
1.2.1 Introduction 

 

 

The finite element method is a method used for solving partial differential equations 

numerically.  It is widely used to solve electromagnetic problems [13], structural design 

problems [14] etc. using computers. This method is generally used to find the distribution of a 

certain field (e.g. magnetic vector potential, electric scalar potential, tension, fluid velocity, etc.) 

in space governed by a given differential equation called the governing equation. 

In order to solve the problem numerically, the solution region is divided into a finite 

number of elements (which are not needed to be uniform). The potentials are assumed to have a 

known mathematical variation called the trial function (e.g. linear variation, quadratic variation, 

etc.)  over each individual element. The field is postulated to be interpolations from its values at 

certain nodes. Note that these elements must be small enough for this assumption to be valid 

[13]. The problem is then solved to get the potentials at the interpolation nodes of these elements.  

Then the potential at any given point in the solution space can be found by interpolating these 

now known potentials using the trial function. 

 

1.2.2 Two-Dimensional Problems 

 

 

In most two dimensional finite element analyses, the space is divided into a mesh of 

triangles. Points in these triangles are called the interpolation nodes of the mesh. The variation of 
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the potential over the triangles is assumed to be defined by a given trial function (most often a 

first order trial function). The objective is to find the potentials at the nodes of the mesh so that 

the potential at any given point inside a triangle can be found using the trial function. To do this, 

we develop one equation per unknown node in the mesh. Then, this set of equations must be 

solved to find the potentials at each node. Since these equations alone are not sufficient to get a 

unique solution, some boundary conditions must also be considered. 

 

1.2.3 Trial Function 

 

 

Since we use only first order trial functions in our software tools, let us consider them in 

detail. In two-dimensional cartesian coordinates, a first order trial function can be expressed as 

follows [13, 15]: 

𝐴 = 𝑎 + 𝑏𝑥 + 𝑐𝑦                                                                    (1.3) 

 

where x and y are cartesian coordinates  and a, b and c are constants for the triangle. Triangular 

coordinates are used in finite element analysis, as these normalized coordinates provide several 

 

Figure 1.3: Definition of H1 and h1 for a triangle 
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advantages in analyzing properties inside triangles. Triangular coordinates ξ1, ξ2, and ξ3 of a 

point P inside a triangle are defined as follows (see Figure 1.3). 

𝜉1 = ℎ1 ÷ 𝐻1                                                                       (1.4) 

𝜉2 = ℎ2 ÷ 𝐻2                                                                       (1.5) 

𝜉3 = ℎ3 ÷ 𝐻3                                                                       (1.6) 

 

where H1 is the shortest distance from N1 to N2N3 and h1 is the shortest distance from P to N2N3, 

and so on (see Figure 1.3). If S is the area of the triangle, 

𝑆 =  
1

2
𝐻1𝐿1 =  

1

2
𝐻2𝐿2 =  

1

2
𝐻3𝐿3                                                   (1.7) 

 

Considering the three triangular areas in the triangle separated by dotted lines, (Figure 1.3) 

𝑆 =  
1

2
ℎ1𝐿1 +  

1

2
ℎ2𝐿2 +  

1

2
ℎ3𝐿3                                                   (1.8) 

 

From the definitions of ξ1, ξ2 and ξ3, Equations 1.4, 1.5 & 1.6 

 

𝑆 =  
1

2
𝐻1𝐿1𝜉1 +  

1

2
𝐻2𝐿2𝜉2 +  

1

2
𝐻3𝐿3𝜉3                                                   (1.9) 

 

Using 1.7 

1 =  𝜉1 +  𝜉2 +  𝜉3                                                                  (1.10) 

 

Using linear interpolation, the Cartesian coordinates of a point within the triangle can be written 

as follows [15]. 

𝑥 = 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3 𝑥3                                                             (1.11) 

𝑦 = 𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3 𝑦3                                                             (1.12) 
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These are exact because x and y are linear. Solving 1.10, 1.11 and 1.12, 

𝜉𝑖 =

|
1 1 1
𝑥 𝑥𝑖1 𝑥𝑖2

𝑦 𝑦𝑖1 𝑦𝑖2

|

|
1 1 1
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

|

                                                             (1.13) 

 

Where i1 = i mod 3 + 1, and i2 = i1 mod 3 + 1 Equation 1.13 can be re-written as, 

𝜉𝑖 =  𝑎𝑖 +  𝑏𝑖𝑥 + 𝑐𝑖𝑦                                                        (1.14) 

 
 
where  

𝑎𝑖 = (𝑥𝑖1𝑦𝑖2 − 𝑥𝑖2𝑦𝑖1)  /Δ                                                  (1.15) 

𝑏𝑖 = (𝑦𝑖1 − 𝑦𝑖2)  /Δ                                                        (1.16) 

𝑐𝑖 = (𝑥𝑖2 − 𝑥𝑖1)  /Δ                                                        (1.17) 

and 

Δ = |
1 1 1
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

|                                                           (1.18) 

 

Using these triangular coordinates, the first order trial function A is expressed as follows 

 

𝐴 =  𝐴1𝜉1 +  𝐴2𝜉2 +  𝐴3𝜉3                                                       (1.19) 

 

where 𝐴 is the potential at the point (𝜉1, 𝜉2, 𝜉3) and A1, A2 and A3 are the potentials at the node 

points 1, 2 and 3 of the triangle. 

This can be verified by considering that the triangular coordinates of the three nodes of 

the triangle are (1,0,0), (0,1,0) and (0,0,1). By substituting these points, one will get A1, A2 and 
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A3 as the potentials at the three nodes and a linear variation of potentials along any given line 

inside a triangle. This trial function also provides a continuous variation of potentials from 

triangle to triangle and a continuous first derivative from triangle to triangle along the tangential 

direction of the boundary. Equation 1.19 can be re-written as, 

𝐴 =  {𝐴}𝑇{𝛼}                                                                        (1.20) 

 

where   

{𝐴} = {𝐴1 𝐴2 𝐴3 } 𝑇                                                                   (1.21) 

and 

{𝛼} = {𝜉1 𝜉2 𝜉3 } 𝑇                                                                   (1.22) 

  

From 1.16 and 1.17, 

 

𝜕{𝛼}

𝜕𝑥
=

[𝑏1 𝑏2 𝑏3 ] 𝑇

∆
      = {𝑏}                                                        (1.23) 

 

𝜕{𝛼}

𝜕𝑦
=

[𝑐1 𝑐2 𝑐3 ] 𝑇

∆
      = {𝑐}                                                          (1.24) 

 

From 1.19, 

𝜕𝐴

𝜕𝑥
=

𝜕{𝐴}𝑇{𝛼}

𝜕𝑥
      = {𝐴}𝑇

𝜕{𝛼}

𝜕𝑥
    =  {𝐴}𝑇{𝑏}                                        (1.25) 

 

𝜕𝐴

𝜕𝑦
=

𝜕{𝐴}𝑇{𝛼}

𝜕𝑦
      = {𝐴}𝑇

𝜕{𝛼}

𝜕𝑦
    =  {𝐴}𝑇{𝑐}                                        (1.26) 
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Let us examine another property of these triangular coordinates, referring to Figure 1.4 

 

Figure 1.4: Integration of triangular coordinates 

 

 

 
 

where S is the area of the trainable. That is, 

  

Where 𝑇0,1 = [
1 

3
 

1

3   

1

3
] ; 𝑇0,1 is a metric tensor 
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1.2.4 Solving Magneto-Static Problems 

 

 

This solution uses first order triangular elements and materials with linear magnetic 

properties at low frequency for simplicity.  The following differential equation (From 

Maxwell’s laws [13] (under static conditions)) governs the solution region.  

 

where �̅� is the magnetic field intensity and 𝐽 ̅is the current density. Since �̅� = 𝜐�̅� and 

�̅� =  ∇ × �̅� where 𝜐 is the reluctivity  

  

 

From 1.31, the energy functional can be derived. Since the energy is at its minimum at the stable 

state, this function should achieve its minimum at the point of the solution.  This function is 

called the Lagrange function: 

 

 

The solution region has been divided into triangles. Therefore now the total energy can be 

written as the sum of the energies of each individual triangle. 
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Let us integrate this by parts, 

 

 

From 1.28, 

 

 

From 1.33, 1,34 and 1.35 

 

where  

 

and 
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From 1.33 and 1.36 we can get  

 

 

To get the solution we have to minimize L{A} 

 

 

Therefore the final solution can be obtained by solving, 

 

 

This can be re-written in the form, 

 

 

and the equation solved for {A}. 
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Figure 1.5: Known elements and unknown elements in matrix 

 

 

1.2.5 Boundary  Conditions 
 

 

We basically use two types of boundary conditions, namely Neumann and Dirichlet [13]. 

Dirichlet boundary conditions mean that the potential along the boundary is fixed at a given 

value and Neumann boundary conditions mean the derivative of the unknown potential at the 

boundary along the normal direction is zero.  Dirichlet boundary conditions can be implemented 

by considering the node points on the boundary to have known values. Neumann boundary 

conditions are implemented automatically if Dirichlet conditions are not used at a boundary [13]. 

They are said to be natural. If Neumann boundary conditions are used, it means the potentials at 

some points along the boundary are known. Therefore the vector A can be broken into two as 

potentials at nodes with known potentials 𝐴𝑘𝑛 and potentials at nodes with unknown 

potentials𝐴𝑢𝑘. Therefore Equation 1.43 can be written as (see Figure 1.5), 

 
This is the matrix equation used by this software to find the final solution of finite 

element analysis. There is no minimization of L with respect to 𝐴𝑘𝑛 
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1.2.6 Three-Dimensional Problems 

 

 

Corresponding to the triangle in two dimensions, the tetrahedron is a convenient element 

to use in three dimensions. For the tetrahedral coordinates 𝜉𝑖  [13]: 

𝜉1 =
ℎ𝑖

𝐻𝑖
                                                                          (1.45) 

 

where now ℎ𝑖 is the height of a point from the opposite triangular face of a tetrahedron and 𝐻  is 

the height of the vertex opposite that face. First order interpolation, 

𝐴 =  𝐴1𝜉1 +  𝐴2𝜉2 +  𝐴3𝜉3 +  𝐴4𝜉4                                                    (1.46) 

 

1 = 𝜉1+𝜉2 + 𝜉3 + 𝜉4                                                                 (1.47) 

 

𝑥 = 𝜉1𝑥1 + 𝜉2𝑥2 + 𝜉3 𝑥3  + 𝜉4 𝑥4                                                        (1.48) 

 

𝑦 = 𝜉1𝑦1 + 𝜉2𝑦2 + 𝜉3 𝑦3 + 𝜉4 𝑦4                                                        (1.49) 

 

𝑧 = 𝜉1𝑧1 + 𝜉2𝑧2 + 𝜉3 𝑧3  + 𝜉4𝑧4                                                         (1.50) 

 

Solving the preceding four equations for the four  𝜉 s, we have 

 

𝜉𝑖 =  
1

6𝑉
(𝑎𝑖 +  𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧)                                                       (1.51) 
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Where, 

 

 

where 𝑖, 𝑖1, 𝑖2, 𝑖3 𝑎𝑟𝑒 1,2,3 𝑎𝑛𝑑 4 or a cycle permutation of them. A is the potential at the point 

(x, y, z) and A1, A2, A3 and A4 are the potentials at the node points 1, 2, 3 and 4 of a tetrahedron 

[13]. 

 

Figure 1.6: Traditional engineering design process 
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1.3 Inverse Optimization Problems 

 

 
The inverse problem, the more practically realistic problem, is synthesis. That is, wanting a 

performance, computing the system description from it. Thus the computational design 

assignment may be this: compute the size and other descriptions of a motor that can produce so 

much torque.  Figure 1.6 shows the traditional engineering design process.  An expert decides 

which device to use and for that device assigns parameters to use and then checks the 

performance by making and testing. Finally, an expert has to make changes in parameters if 

needed. This process repeats until we get the desired performance.  In the 1960s, the analysis 

phase was introduced in place of make and test before checking the performance. Thereafter the 

expert who makes the entire decision about the design process is replaced by powerful software. 

Figure 1.7 shows the modern design process using AI techniques, knowledge base etc. to make 

device selection. Optimization algorithms are used to select parameters in order to get the desired 

performance.  In the modern design process, the analysis phase is replaced with synthesis. The 

earliest persons to automate this cycle in magnetics were Marrocco and Pironneau in 1978 [16]. 

In 1976 a parallel work with [16] by Arora and Hang [17] also established finite element 

optimization in magnetics. 

An erratic undulating shape with sharp edges arose when Pironneau [18] optimized a 

recording-head to achieve a constant magnetic flux density and this was overcome through 

constraints [19]. Haslinger and Neittaanmaki [20] suggest Bezier curves to keep the shapes 

smooth with just a few variables to be optimized, while Preis, Magele, and Biro [21] have 

suggested fourth-order polynomials which when we tried gave us smooth but undulating shapes 

because of the higher order. Most of the required shape changes can be achieved with linear 

variations [22]. Figure 1.8 shows that without regularity constraints, sharp corners and jagged  
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Figure 1.7: Modern design process 

 

 

contours arise in designing a pole-face for constant vertical flux density. Figure 1.9 shows the 

shape is smoothened further and there is no sharp corner when B-spline curves are used but the 

undulation is mathematically correct though not practicable. 

 
 

Figure 1.8: Equipotentials of vector potential at 

the optimum 

 

 

Figure 1.9: Equipotentials of vector potential at 

the optimum with B-spline interpolation 

In optimization problems like NDE of steel plates, besides the detection of cracks, what is 

also important is their characterization. Characterization is necessary for determining whether 

any discovered crack demands withdrawal of the part from service [23, 24]. In eddy current 
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crack identification the response of a part to an eddy current test coil is compared to the response 

without a crack [4]. When different, the presence of the crack is flagged. But to characterize the 

defect, the computed response from eddy current analysis with a crack described by parameters 

is optimized to match measurements with computations. When the two match, the parameters 

describe the defect [4]. In inverse electromagnetic problem solutions by the finite element 

method, we require three tools.  They are a special mesh generator, efficient matrix equation 

solvers and optimization algorithms. These are for the 3 major steps of finite element 

optimization. They are as follows, 

 

1. Preprocessing: The essential operation for optimization is involved with this step. The 

design for optimization is parameterized before mesh generation. As the geometry 

defined by parameters is optimized, it changes shape, and a new finite element mesh must 

be created without stopping the optimization iterations to create a new mesh. Several 

finite element mesh generators exist in the public domain [25, 26, 27, 28, 29, 30, 31, 32], 

a few even based on a parametric device description. The required mesh generator must 

therefore support parameter based mesh generation and be completely automatic once the 

optimization process begins.  That means we must be able to change the physical shape 

of the problem during run time and generate the mesh without stopping.  Such mesh 

generators as do exist are rare, commercial and not easily available to researchers except 

at a great cost and never with the code to modify them to suit individual needs. We 

propose taking a regular open source mesh generator and writing a script-based interface 

as open source to run nonstop for two and three dimensional optimization problems. In 

this thesis we are going to develop parametric mesh generators that run nonstop and 

seamlessly through optimization iterations to convergence. 
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2. Solution: The biggest load in finite element field computation is in matrix solution. 

Recently GPU computing has had great success in many very large numerical 

computations (For example [33, 34, 35, and 36]). GPU-based finite element computation 

offers massive parallelization.  This thesis will investigate speeding up using the GPU in 

sparse matrix computation. We will also examine the memory needs. For this purpose we 

will investigate parallel EbE processing by Gauss iterations [24] and preconditioned 

conjugate gradient [23]. 

 

3. Optimization:  The parameters need to be optimized in NDE as well as synthesis to make 

the computed fields match the desired performance. As we discussed in the introduction 

section, we can use zeroth order optimization methods like the genetic algorithm, bee 

colony algorithms [37] etc.  Moreover, if gradient  methods are to be used in the mesh 

topology  the nodal connections need to be held fixed to preserve C
1
 continuity of the 

object function lest the mesh-induced minima are seen by the optimization algorithm as 

from the physics of the problem 

 

This thesis mainly focuses on the first two steps because several open source 

optimization algorithms are available on the web (for example, [38]) and a colleague in the group 

is using GPU computations to parallelize genetic algorithm optimization [4]. However his code 

will be used for the test problems. 
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Chapter 2 

 

Parameter Based Unstructured Mesh Generator for Two 

and Three Dimensional Problems for Seamless Optimization 

 

 
2.1 Background 
 

 

 

Figure 2.1 shows the design cycle for a geometric optimization problem. In the 

beginning, the initial geometric positions are either selected by the subject expert or in the 

absence of the expert, randomly selected. In the next step we generate the mesh for the current 

geometry, measure the object value by a finite element solution and check whether it is minimum 

or not.  If this is a minimum we terminate the loop; otherwise we change the geometric 

parameters and do the same to procedure again. 

Mesh generation is therefore a very important part of finite element analysis. But mesh 

generators do not support parameter based mesh generation for optimization.   For real world 

inverse problems we need a mesh generator as a library where the design is described by 

parameters ℎ̅ and it takes ℎ̅ as input and returns the mesh from iteration to iteration. 

Figure 2.2 shows the design cycle for an inverse problem. In the first step the design 

parameter set ℎ̅ is randomly selected (or estimated by a subject expert) and thereupon we 

generate the corresponding mesh, get the finite element solution and measure the object value 

(often conveniently defined as a least square difference between design objects desired and  
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Figure 2.1: Design cycle for a geometric optimization 

 

 

 

 

Figure 2.2: Design cycle for an inverse problem 
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computed) and check whether it is minimum or not. If this is a minimum we terminate the loop; 

otherwise we change the design parameters and do the same procedure again. This procedure 

repeats until the object value is acceptably small. For optimization to go on non-stop, the mesh 

needs to be generated for the new parameters without user intervention. In NDE the only 

difference is that the object function compares measured values with those computed from 

presumed values of ℎ̅  being sought. 

In this section of this thesis we describe the necessity of a parametric mesh generator that 

runs nonstop and seamlessly through optimization iterations to convergence. Such mesh 

generators as do exist are rare, commercial and not easily available to researchers except at great 

cost and never with the code to modify them to suit individual needs. Besides, the typical mesh 

generator requires some man-machine interaction to define the points and boundary conditions 

and does not work for nonstop optimization iterations. We will take a regular open source mesh 

generator and write a script-based interface as open source to run nonstop for optimization. 

There are many mesh generators available on the web [25, 26, 27, 28, 29, 30, 31, 32] and 

in the literature; some packages are open source software and others commercial.  But they 

usually do not support parametric mesh generation.  However they do support features we would 

like in a parametric mesh generator. To summarize some notable mesh generators, Triangle, 

which we use, generates exact Delaunay triangulations, constrained Delaunay triangulations, 

conforming Delaunay triangulations, and Voronoi diagrams to yield high quality triangular 

meshes without large angles as suited to finite element analysis [25]. AUTOMESH2D generates 

high quality meshes quickly [32]. Cardinal’s Advanced Mesh INnovation with Octree [31], 

CGAL [28], ADMESH [30], and Delaundo [39] are all notable for special features. Indeed there 

are parametric mesh generators, for example [40]. However it is not publicly available. Another 
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such mesh generator is, CEDRATs suite Flux whereas parameters are changed, the mesh is 

generated and the device analyzed to study the effect of parameters on performance [41]. The 

same approach has been taken in NDE studies [42]. However, the works of [40, 41] are not 

intended for non-stop optimization. For that CEDRAT uses a script based scheme called GOT-It 

[43] which passes parameters to the program Flux and gets the results back for the optimization. 

Their software and information are mainly in the commercial domain. A ’Lightened’ version of 

GOT-It, named FGot, is offered free to students although, but there again, the code is not 

accessible. 

Figure 2.3 shows the performance comparison of triangulation using CPU-Delaunay tri- 

angulation (DT) and GPU-DT for different number of points [44]. We can see the gain is 

nominal compared to finite element solvers which are given in Chapter 5. Therefore it is not 

worthwhile parallelizing mesh generation 

 

Figure 2.3: Performance comparison of triangulation using CPU-DT and GPU-DT for different 

number of points 

 

 

Moreover,  if gradient  methods are to be used, the mesh topology given by the nodal 

connections need to be held to preserve C
1
 continuity of the object function lest the mesh  
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induced fictitious minima are seen by the optimization algorithm as from the physics of the  

 

Figure 2.4: Problem specific parametric mesh generators 

 

 

problem [45]. For these reasons very problem specific mesh generators are constructed by 

researchers.   As an example, when an armored vehicle is targeted by an improvised explosive 

device, the armor is inspected by an eddy current test probe to characterize the interior damage to 

determine if the vehicle should be withdrawn from deployment. Figure 2.4 shows a problem 

specific parametrically described crack in steel excited by an eddy current probe, where P1-P6 

are the lengths that represent the position and shape of the crack, J is current  density and µr  is 

relative  permeability.  In this NDE exercise the parameters need to be optimized to make the 

computed fields match the measurements. The mesh has been constructed for the specific 

problem. As the parameters change, the mesh topology is fixed, pulling and crunching triangles 

as shown in Figure 2.5.  Such problem specific meshes are a headache because they restrict the 

geometry, lack flexibility and take time for modifications. Hence the need for general-purpose 

parametric mesh generators.  We can use zeroth order optimization methods for which C
1
 

continuity is irrelevant, such as the genetic algorithm, bee colony algorithms etc.  without pulling 

and crunching meshes  for inverse problems; e.g. in reconstructing  cracks to characterize interior 



26 
 

defects, or designing power devices. For non-stop optimization, the commercial code ANSYS 

offers a gradients-based optimization suite [46], but gives little information on the techniques 

employed. That is, although these methods are known within the companies, they are rarely 

published. There are other companies, particularly from structural engineering, that also offer 

gradients-based optimization.  A huge lacuna is how they address the problem of mesh-induced 

minima. These artificial minima are seen as physics-based object function minima and the code 

tends to get stuck at these. Other approaches like a mathematical distance function to model the 

geometry lie in the domain of specialized efforts [47]. 

 

Figure 2.5: Elastically deformed problem specific NDE mesh: As defect moves 

 

 

Like in 2D there are also many 3D-mesh generators available on the web and in the literature 

[29, 43, 48, 49]. Some are open source software and others commercial. TetGen [48, 49] is for 

tetrahedral mesh generation and is more effective than previous methods at removing slivers 

from and producing Delaunay optimal tessellations [50]. Each of these mesh generators has its 

own merits but none of these mesh generators supports parametric mesh generation. 

We will take the freely available, widely published, nonparametric, open source 3-D 
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mesh generator TetGen [48, 49] which like all published mesh generators involves user input in 

the process of mesh generation.  Here also we use a script file which uses a parametric 

description of the system to start the mesh from initial parameters and thereafter runs it 

seamlessly without stopping as the parameters are updated by the optimization process. Sample 

3D meshes are shown in Figures 2.6 and 2.7 

 

Figure 2.6: 3D mesh for NDE problem: As parameters change 

 

 

2.2 Mesh Generation 

 
2.2.1 Introduction 

 

 

The finite element method requires the problem space to be split into a finite number of 

finer elements. The preferred element shape for two-dimensional problems is the triangle and for 

three-dimensional problems it is the tetrahedron [13]. This set of triangles/tetrahedrons is called 

the mesh. If the mesh is finer, it will produce a better result in FEA [13], although it will increase 

the processing time. If we can have a finer mesh only at the places where we want a more 

accurate result, then we can reduce the processing time considerably. This is called adaptive 
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mesh generation [13]. Apart from this, the shape of the triangles/tetrahedrons in the mesh has a 

great effect on the final solution of finite element analysis. If we have very obtuse angles in the 

triangles of the mesh, they will introduce considerable errors into the final solution. Therefore, 

all these facts have to be considered when generating a mesh for FEA problems. 

 

Figure 2.7: 3D Mesh for motor problem 

 

 

There are many mesh generation algorithms available. Basically we can divide them into 
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two categories. They are, 

1 Algorithms which generate a crude mesh to define the basic geometry and then refine it 

to get a good quality mesh 

2 Algorithms which generate a fine mesh from the beginning, 

 

The Advancing Front Algorithm [51] and Quad-tree Algorithm [52], Delaunay based 

Algorithms [25] are the examples of the second category.  These methods can produce very good 

quality meshes. Delaunay based algorithms are well-known and commonly used algorithms for 

quality mesh generations and therefore we use them. 

 

2.2.2 Delaunay Based Methods 

 

 

A Delaunay based meshing approach is a concept which consists of two tasks: 

1 The mesh points are first created by a variety of techniques; e.g. advancing front, octree, 

or structured methods 

2 The Delaunay triangulation is first computed for the boundary without internal points. 

The mesh points are then inserted incrementally into the triangulation/tetrahedralization 

and the topology is updated according to the Delaunay definition. 

 

There are many Delaunay triangulation algorithms; the incremental insertion algorithm, 

the divide and conquer algorithm, the plane-sweep algorithm etc.  In this work, we take the 

freely available, widely published, non-parametric, open source two-dimensional (2D) mesh 

generator Triangle [25]. These three mentioned algorithms have been implemented in the 

Triangle [25] mesh generator.  We then adapted it for seamless optimization [24]. 
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Figure 2.8: Applying Delaunay triangulation 

 

 

2.2.3 Delaunay  Triangulation and Constrained Delaunay  Triangulation 

 

2.2.3.1    Introduction 

 

Delaunay triangulation [13] is a technique used to improve the quality of the mesh by 

simply rearranging the nodal connections that make triangles. This algorithm ensures that there 

will be no obtuse angles in the mesh other than in the triangles at boundaries. This is done by 

rearranging the triangles, if the uncommon point of the neighboring triangle lies inside the 

inscribing circle of one of the triangles, as shown in Figure 2.8. This can be identified by 

calculating the two angles corresponding to the uncommon points. By the properties of cyclic 

quadrilaterals, when the sum of these angles is greater than 180
◦
, the triangles must be 

rearranged. 

In Figure 2.8, the triangle QRS lies inside the inscribing circle of the triangle PQS. This 

can be recognized by summing the two opposite angles, A and B (These are the angles 

corresponding to the uncommon points for the two triangles, P and R). Since the sum of A and B 

is greater than 180
◦
 the two triangles are rearranged as PQR and PRS as shown in the figure. 

Now the point of the opposite triangles is not inside the inscribing circles. Constrained Delaunay 

triangulation is a generalization of the Delaunay triangulation that forces certain required 
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segments into the triangulation. An example is shown in Figure 2.9. Both triangles are in 

different regions where each may have different properties. So they cannot be flipped like the 

previous case 

 

Figure 2.9: Example for constrained Delaunay triangulation 

 

 

2.2.4 Algorithms for Constructing a Delaunay Triangulation 

 

2.2.4.1    Introduction of Constructing a Delaunay Triangulation 

 

 

There are many Delaunay triangulation algorithms; for example Divide-and-Conquer [53], 

Sweepline [54], Incremental insertion [55] etc. As Su and Drysdale [56] found, the divide- and-

conquer algorithm is fastest; the second is the sweepline algorithm.  The incremental insertion 

algorithm performs poorly, spending most of its time in point location.  Su and Drysdale 

introduced a better incremental insertion implementation by using bucketing to perform point 

location, but it still ranks third.  A very important development in the divide and conquer 

algorithm is partitioning the vertices with vertical and horizontal cuttings [53]. 

 

2.2.4.2    Divide-and-Conquer Algorithm 

 

 

The point set v is divided into halves until we are left with two or three points in each 

subset. Then these smaller subsets can be linked with edges or triangles which is called a 
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Voronoi diagram. Now we have a set of Voronoi diagrams because we have a set of smaller 

subsets. In the conquer step, we merge the subsets to get the whole Voronoi diagram (see Figure 

2.10). The dual of the Voronoi diagram is the mesh [25]. 

 

Figure 2.10: Divide and conquer algorithm 

 

 

 
Figure 2.11: Sweep-line algorithm 

 

 

2.2.4.3    Sweep-line Algorithm 

 

 

The sweep-line algorithm uses a sweep-line which divides a working area into two sub-

areas. This process constructs the Voronoi diagram - the dual graph of Delaunay triangulation 

(shown in Figure 2.11). This algorithm was introduced by Fortune [54]. Shewchuk [25] pre- 

sented a successful algorithm for constructing a higher-dimensional Delaunay triangulation. 

Figure 2.11 explains how the sweep-line algorithm works. There is a vertical line which is called 

a sweep line in the Figure 2.11. When this line passes a point this algorithm creates a Voronoi 

diagram with other points which are already passed. 
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Figure 2.12: Incremental insertion algorithm 

 

 

2.2.4.4    Incremental Insertion Algorithm 

 

 

Here we generate a fictitious triangle containing all points of V in its interior. The points 

are then added one by one. Figure 2.12 (b) shows the mesh after the first point is added. Figure 

2.12 (c) shows how to handle the insertion of the second or subsequent point. The idea is to draw 

circumcircles of a particular triangle where the new point is located and neighboring triangles, 

select the triangles whose circumcircles cover the new points, remove the interior edges of 

selected triangles; and finally, a new point is connected with every point of a created polygon. 

This algorithm always maintains the Delaunay triangulation of the points. 

 

2.2.5 Mesh Refinement 

 

 

There are many mesh refinement algorithms available. Most of them are based on 

Rupert’s Algorithm [57]. They produce quality meshes with more nodes at regions where there 

are finer geometrical shapes and fewer nodes at other regions. The basic idea of the algorithm is 

to maintain a triangulation, making local improvements in order to remove the skinny triangles. 
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Figure 2.13 shows the basic idea of avoiding skinny angles. 

 

Figure 2.13: Delaunay mesh refinement 

 

 

 
Figure 2.14: Delaunay mesh refinement between two regions 

 

 

Both triangles are in different regions (shown in Figure 2.14); each may have different 

properties. So they cannot be refined like in the previous case. Here the algorithm follows the 

same idea without violating the boundary of separate regions 

 

2.2.6 Three  Dimensional  Mesh Generation 

 

 

Since almost every real world problem is three-dimensional, we extend our two-dimensional 

work to three-dimensional geometric parameterized mesh generation for optimization problems 

in design and NDE. Mesh generators in electrical engineering commonly use Delaunay 
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tetrahedralization and constrained Delaunay tetrahedralization for quality meshes. The 

Incremental Insertion algorithm is a well-known algorithm for tetrahedralization [48].  The worst 

case runtime of this algorithm is of O(n
2
), but the expected runtime for this algorithm is of O(n 

log  n) [25]. Constrained Delaunay tetrahedralization was first considered by Shewchuk [25]. 

Gmsh [29] and TetGen [48] are the better-known free, open source 3D mesh generators.  TetGen 

[48] uses a constrained Delaunay refinement algorithm which guarantees termination and good 

mesh quality. A three-dimensional Delaunay triangulation is called a Delaunay 

tetrahedralization. Ideas for Delaunay operation, constrained Delaunay triangulations, and mesh 

refinements are the same but only the dimension is different. 3D objects are usually represented 

by Piecewise Linear Complexes (PLCs) [48]. The design goal of TetGen is to provide a fast, 

light and user-friendly meshing tool with parametric input and advanced visualization 

capabilities. Even though TetGen and Gmsh [29] are great open source mesh generators, from an 

inspection of the code, it is very hard to use for non-stop optimization problems. For the non-stop 

optimization that ANSYS offers [46], it gives little information on the techniques employed. 

CEDRAT uses a script based scheme called GOTIt [58]. FGot, is offered free to students 

although the code is not accessible and therefore will not permit modification nor work for 

industry-scale problems [58]. Here TetGen [48] is used as a backend for parameterized meshes 

for optimization. Therefore we will develop it on our own and make it available as open source. 

It is always possible to tetrahedralization a polyhedron if points are not vertices of the 

polyhedron. Two types of points are used in TetGen: 

1 The first type of points are used in creating an initial tetrahedralization of PLC. 

2 The second type of points are used in creating quality tetrahedral meshes of PLCs.  

The first type of points is mandatory in order to create a valid tetrahedralization. While 
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the second type of points is optional, they may be necessary in order to improve the mesh 

quality. 

 

2.3 Parameterized Mesh Generation 
 

 

Parametric mesh generation is a very important part of finite element optimization 

problems. In optimization problems, parameters describe the device in terms of materials, 

currents, and dimension. During optimization, as these parameters   are changed to minimize an 

object function, a new mesh has to be generated and a new finite element solution obtained to re-

evaluate the object function.  At each iteration of an optimization algorithm, given the variables 

as input, the mesh is generated without user intervention.  Finite element mesh generators exist 

in the public domain, a few even based on a parametric device description. The typical mesh 

generator requires some man-machine interaction to define the points and boundary conditions, 

and does not work for non-stop optimization iterations for which we need a mesh dynamically 

evolving through the iterations with optimization variables as changing parameters.  Such mesh 

generators as do exist are rare, commercial, and not easily available to researchers except at great 

cost and never with the code to modify them to suit individual needs. 

 

2.4 New Approach to Parameterized Mesh Generation 
 

 

We take the freely available, widely published,  nonparametric,  open source 2-D mesh 

generator Triangle [25] and 3-D mesh generator TetGen [48, 49] which like all published mesh 

generators (with  the exception of commercially restricted ones whose methodology  is not 

published) involves user input in the process of mesh generation.  But for use in optimization we 
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cannot stop the iterations to make input [24]. To address these problems we use a script file 

which uses a parametric description of the system to start the mesh from initial parameters and 

thereafter runs it seamlessly without stopping as the parameters are updated by the optimization 

process [24]. The script file provides the user input while the code is iteratively running, input 

that is normally made in the mesh generator being used, but for which the optimization iterations 

cannot stop [24]. Figure 2.15 explains our approach to parametrized mesh generation. In the first 

step, the initial input which is described in the following sections is given to our mesh generator.  

Next, the mesh generator calls our chosen open source mesh generator to generate the mesh. 

After that, the FEM solver uses the mesh to solve the problem. Next, the optimization algorithm 

updates the parameters which are accepted by our new mesh generator to generate the new mesh. 

 

Figure 2.15: My approach to parameterized mesh generation 
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2.5 Data  Structure  and User Interface 

 
2.5.1 Data  Structure 

 

 

The data-structure used in these mesh generator software suites contains the following col- 

lections of objects: 

1. Points list 

2. Regions list 

3. Properties list 

4. Variable points list 

5. Measuring points list 

6. Segments list 

7. Mesh details list (triangles/ tetrahedrons) 

8. Holes list 

9. Boundary conditions 

 

 Points List: The point collection contains all the points used in the problem definition and 

solving process. Each point contains the coordinates of the relevant finite element node. 

For the three-dimensional mesh generator the list has x, y and z coordinates.  For the two-

dimensional mesh generator, it should have x and y coordinates only. 

 

 Regions List:  The region list contains all the regions used in the problem definition. 

Region here means a material- source combination which has different physical 

characteristics. 



39 
 

 Properties List: Properties list contains all the properties of each region. Each region has 

a set of properties. 

 

 Variable points list: The variable points list contains the information about the points to 

be moved according to the changes of the parameters, during optimization. 

 

 Measuring points list: The measuring points list contains the points in the solution space 

where we want to find the potentials, flux density, etc. 

 

 Segments list: The segments list contains the edges of the problem model. Each problem 

may have many segments. 

 

 Mesh details list: The mesh details list contains the triangles/tetrahedrons of the mesh. 

This collection is empty until the mesh is generated. For a two-dimensional mesh 

generator each triangle contains references to its three vertex points. For a three-

dimensional mesh generator each tetrahedron contains references to its four vertex points. 

 

 Holes list: Holes are a special kind of region where we do not need to generate the mesh. 

A hole list contains all the holes used in the problem definition. 
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 Boundary conditions:  There are two types of boundary conditions that are usually used 

in FEA problems.  They are 

1. Neumann boundary conditions 

2. Dirichlet boundary conditions 

 

A Dirichlet boundary condition means the potential along the given boundary is fixed and a 

Neumann boundary condition means the derivative of the potential along the given boundary is 

fixed, and usually zero. Dirichlet boundary conditions can be implemented by keeping the 

potential of all the points on the given boundary to be fixed at their given value. The user can 

select any segment, and define the potential of that segment.  If the potential of the segment is 

set, then all the points which will be added onto that line will get this potential automatically.  

The boundaries that do not implement Dirichlet conditions will automatically act as Neumann 

boundaries during the FEA process.  This is because it is natural to the finite element formulation 

[13]. Therefore no special provisions are needed to define Neumann boundaries. 
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Figure 2.16: Sample input file for mesh generator 

 
 

2.5.2 User Interface 

 

2.5.2.1 Introduction 

 

 

A proper user interface is very important for good software. If the user interface is not 

friendly to use, even if it is very powerful, most users will not be able to use it effectively. 

Therefore the user interface is carefully designed and used in this software  as described  in the 

next subsection. 

 

2.5.2.2 Defining the Geometrical Shape 

 

 

Since we are providing the code as open source, it is necessary to describe it for other 

users to re-engineer the code. This software is made to import drawings from the text file format. 

Figure 2.16 shows the sample input file of our mesh generator adapting Triangle using a script 

file to run non-stop from iteration to iteration without manual intervention. 
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1 The mesh generator code does not care about lines which start with #. We can write 

comments using the # sign. 

2 First interpreted row: <a number, a number> - The first number represents the num- ber 

of nodes in the domain; the second number represents the number of variable points. 

These variable points are also nodes but their coordinates may vary with the optimization 

iterations. 

3 From the second row to row number 10 (that is, 9+1) in the domain, there are, associated 

with that row,  

<a integer number, a floating point number, a floating point number > 

The integer represents the node number. These must be numbered consecutively, start- 

ing from one. The two floating point numbers represent the coordinates of this node. For 

the three-dimensional mesh generator, the three floating point numbers represent the 

coordinates of this node. 

4 The next segment of this input file represents variable points. These are also in the same 

format as the previous. 

5 In the third part of the input file we have segment details. The first row of this file has the 

number of segments. From the second row onwards it has 4 columns. The first column 

involves the segment numbers which must be numbered consecutively, starting from one. 

The next two columns are node numbers. Each row represents a segment. The fourth 

column is a marker. A marker has different integer values; it can be used to define the 

boundary condition. Here -1 means it is not on a boundary. If we have to define the 

boundary condition we have to give any positive integer to the marker. Then we can 

assign the boundary value using these markers. For the three-dimensional mesh 
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generator, the first row of this segment of this file has the number of faces and a 

boundary marker. Each face has a list. The first part of the list has the number of 

polygons in the face, number of holes on the surface and the boundary marker. From the 

second row onwards, polygons and holes of the surface are defined. 

6 The next segment of this file is the definition of boundaries. The first row contains the 

number of boundary conditions. From the second row onwards the first column 

represents the numbering; the second column is a marker number which has been already 

defined in the previous part (the segment part).  The third column represents the 

boundary value for a particular marker. 

7 The subsequent segment is a definition of the regions of the problem. Here a different 

region means different materials so it has different properties. The first row represents the 

number of regions in the domain. From the second row, each row has five columns. The 

first column represents the numbering as usual. The second and the third columns 

represent the coordinates.  These coordinates are used to identify the region. The point 

may be any point in the relevant particular region. The fourth column is an integer which 

starts from 1. It can be used to assign properties to these regions. The next column is not 

used here because it is an area constraint coming from Triangle but, as mentioned, it is 

not used by us. 

8 The next segment of this input file represents the number of holes. The hole is a region in 

which we do not want to generate the mesh. In the first step we define the number of 

holes in the problem domain. Form the next row, there are three columns. The first 

column represents the hole number. The second and third columns represent the x and y 

coordinates of any point within that hole. 
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9 The segment thereafter is for the measuring point list for object function evaluation. The 

first part is the number of measuring points where we are going to calculate the solution 

to get the target solution. Our source code helps users to identify the errors in the input 

file. It works very efficiently for any shape of problem domain. The sample inputs files 

are attached in this thesis as Appendices B and C. Users customize their own problem 

very efficiently as tried out in our lab [4, 3, 24]. This software is easy to use. This 

software is well supported in any operating system, i.e., Linux/Unix, Windows etc. 

 

2.5.3 Post-processing of Meshing 

 

 

Once we triangulate/tetrahedralize the problem domain, we have to define the boundaries 

and boundary values. Upon triangulation/tetrahedralization, we have an element list (node 

numbers), the properties of regions and point list (for FE solution).  We do not need to calculate 

the solution of known nodes so we have to separate the known and unknown nodes. This step is 

known as renumbering the nodes which is also to reduce the profile of the matrix [13]. In this 

process, we 

1. Define the boundary (generally using segment numbers in 2D, faces in 3D) 

2. Get the boundary values (different boundaries may have different boundary values) 

3. Get all nodes which are on boundaries (We used the segment marker list to determine the 

boundary nodes) 

4. Separate  boundary elements  from non-boundary elements; and separate  unknown nodes 

from known nodes 

5. Give the first set of numbers for the unknown nodes and the last set of numbers for the 

known nodes 
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6. Renumber the whole point list based on new numbering. 

7. Renumber the node entries in the triangle list based on the new numbering system. 

8. Get all properties for the particular regions 

9. Assign these properties to all corresponding triangles. 

 

Since real world problem size is typically very large, this renumbering process takes a very long 

time. Algorithm 2.1 describes the regular renumbering process. This algorithm is very inefficient 

because each node will be searched for in an index array. The order of this algorithm is O(n
3
).  

This step can be improved. In this work the traditional algorithms have been improved based on 

the merge sort technique. 
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2.5.4 Approach to Renumbering 

 

 

 
Figure 2.17: Simple example problem 

 

 

Instead of searching for every element from the whole list, this thesis tracks the node 

number changes and updates the node numbers of the mesh. Figure 2.17 shows a simple ex- 

ample finite element problem. The boundary elements are circled. Figure 2.18 (a) shows the 

node numbers which are assigned in the mesh generation process. Figure 2.18 (b) presents the 

rearranged nodes which are separated based on whether the nodes are of known or un- known 

values. Figure 2.18 (c) shows the new numbering system. The boundary elements are shown in 

the gray boxes in Figure 2.18. The corresponding old number list (c) is renumbered in (b).  

Figure 2.19 shows the new numbering of the nodes. Let us take the array of Figure 2.18 (a) and 

use a new index which has 1, 2, up to the number of elements. We sort the array of Figure 2.18 

(b) using the merge sort algorithm which will be described in the following section. We apply 

every operation of the sort algorithm to a new index array. The resultant arrays are shown in 

Figure 2.20. Now if we want to get a renumbered value of a particular node number we can 

directly access it from the updated index array. For example 1 is replaced by 4, 2 by 1, 3 by 5, 

and so on. 
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Figure 2.18: Numbering and renumbered nodes 

 

 

 
Figure 2.19: Renumbered nodes 

 

 

 
Figure 2.20: Sorted version of (b) and corresponding index changes 
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Figure 2.21: Merge Sort 

 

2.5.5 Merge  Sort 

 

 

Sorting is a technique that arranges the elements in a certain order. There are many 

sorting algorithms such as counting sort [59], bucket sort [59], radix sort [59], merge sort [59], 

heapsort [59], quicksort [59] etc. Each algorithm has it own advantages.  Merge sort is one of the 

best sort algorithms which has n log (n) time complexity for each average, best and worst case 

time complexities [59]. Another very important reason for selecting merge sort is that this 

algorithm is easily parallelizable - parallelization on the GPU is the main theme of this thesis. 

Figure 2.21 [60] describes the merge sort in a graphical way. First the list is split into two pieces 

and then each is split into two further pieces. This process is repeated until arriving at the 

singleton list. Then we work our way back up the recursion by merging together the short arrays 

into larger arrays. Algorithms 2.2 and 2.3 describe merge sort. 
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Algorithm 2.2 (Cont’d) 
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Algorithm 2.3 (Cont’d) 

 
 

 

2.5.6 Modified Form of Merge Sort for Renumbering 

 

 

As we described in section 2.5.4, we track the node number changes using a form of 

merge sort instead of searching for every element from the whole list.  This new algorithm has n 

log (n) time complexity but the traditional method has time complexity of O(n3).  We define an 

array of size given by the number of nodes in the mesh. The array has 0, 1, 2, up to (number of 

nodes - 1).  We applied every operation of the sort algorithm to this newly defined array. 

Algorithms 2.4 and 2.5 describe the idea underlying what we have used. 
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Algorithm 2. 5(Cont’d) 
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Chapter 3 

 
Low Memory High Speed FEM Solvers Using the GPU 

 

 
3.1 Introduction 
 

 

It has been more than 20 years since genetic algorithm (GA) based optimization was first 

used in finite element optimization [5, 6, 7, 8, 9, 10]. Since GA is practicable and gives a faster 

solution when parallelized [3], GA has been used for optimization in FE. The object function 

corresponding to every member ℎ̅ of a population has to be computed many times to find the 

minimum. The many members ℎ̅ form the genetic search space. Since ℎ̅ consists of dimensions 

and materials of a particular design being examined for its goodness [3], for those dimensions a 

mesh is constructed, the finite element problem solved and the object function evaluated (see  

figure 3.1).  The object function itself is computed from a finite element solution involving a 

matrix equation. Thus we may treat the object function computation as a kernel and launch it on 

multiple threads, each for a different member of the population. Then within that kernel, we can 

parallelize the matrix equation solution. In genetic algorithm based finite element optimization 

[61, 62], several copies of the matrix are held on the GPU and the corresponding solutions 

attempted. Limited memory is also a very big issue in GPUs [23]. This part of the work mainly 

focuses on low memory and high speed finite element solvers. 

As we already mentioned, the GA based optimization method presents a huge 

computational load. Powerful PCs are capable today of solving large matrix equations in a few 

seconds, sometimes using a Graphics Processing Unit (GPU). GPU based finite element 
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computation offers massive parallelization [63]. 

The finite element solution of field problems requires the solution of large-sized matrix 

equations leading to large waiting times [13]. To address these parallel computations were used 

at one time [64, 65]. But the speedup was limited by the fact that on the shared memory parallel 

computers, there was a memory bottleneck which typically  then allowed 4, 8, 16 or rarely 32 

processors with more computing elements meaning exorbitant cost. For an n- processor 

machine with one processor dedicated to book-keeping on what the other processors were 

doing, the best speedup was n-1 and always a little less because of communication and waiting 

issues.  Recently the graphics processing unit (GPU) has been shown to speed up the matrix 

solution part in the finite element solution [34, 66]. This was a major advance in finite element 

computational efficiency. 

 

Figure 3.1: Finite element optimization using genetic algorithm 
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Figure 3.2: Floating-point operations per second and memory bandwidth for the CPU and GPU 

 

 

Parallelization is the best approach to speeding up as bigger problems are tackled in field 

computation [13, 64]. However as noted, the need for shared memory between processors was a 

bottleneck because machines with more than 8 processors were very expensive. 

 

3.2 General  Purpose Computing  on a Graphics  Processing Unit  (GPGPU) 
 

 

The GPU is a single chip processor with integrated transform, lighting, triangle 

setup/clipping, and rendering engines [67]. In November 2006, Nvidia group introduced CUDA 

which is a general purpose parallel computing platform and programming model. The GPU has 

its own memory, up to 24 GB in current configurations [68]. This device (GPU) memory 

supports a very high data path using a wide data path. The CPU has a few cores which have been 

used for optimized sequential processes. In contrast, the GPU has thousands of small more 

efficient cores which have been used for massive parallel processes. The GPU has tremendous 
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computational horsepower and a very high memory bandwidth (shown in Figure 3.2 [69]). 

 

Figure 3.3: The GPU devotes more transistors to data processing 

 

 

GPUs are used for highly parallel computation. Therefore they are designed using more 

transistors for data processing (ALUs) rather than data caching and flow control (shown in 

Figure 3.3 [69]). The GPU is well suited for data-parallel processing. In GPU FE computation, 

data-parallel processing maps data elements to parallel processing threads. 

GPU computing uses the GPU to accelerate the computational speed of very large 

scientific and engineering problems. Generally a GPU has thousands of cores, For example the 

Tesla K40 GPU has 2880 cores [68]. Here cores mean a number of computing components. 

Nowadays there are so many multi-core processors available in the market but the number of 

cores is very limited in CPUs. 

The GPU for general purpose calculations instead of graphics rendering is called general 

purpose computing on graphics processing unit (GPGPU). The Nvidia GPU CUDA architecture 

is composed of streaming multiprocessors (SMs), each containing a number of streaming 

processor cores (SPs) with on-chip memory, and a single instruction unit.  All SMs have access 
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to global memory, the off-chip memory (DRAM), which has a latency of several hundred clock 

cycles. Thus unlimited speedup is possible unlike with shared memory machines. The until-

recent  restriction that  a kernel  launched on parallel threads cannot launch another kernel in 

further forking from a fork [12] is no serious shortcoming  since with multi-processor  systems, 

even though we can fork from a fork, we usually do not have spare processors to assign. 

However in a recent development CUDA dynamic parallelism has been made available on the 

SM 3.5 architecture GPU [70] and this is available on PCs now. 

In finite element analysis the coefficient matrix is very large when dealing with real 

world problems; for example in reconstructing cracks in inverse non-destructive evaluation 

problems and device design problems. We use two different techniques to overcome this 

memory problem: 

 

1. Use sparse storage schemes to store the coefficient matrix and solve the matrix equation 

using the GPU [23] 

 

2. Use element by element FEM - performs operations on the local finite element matrix 

[P]
L
 that corresponds to operations on the global matrix and therefore does not require 

storage for the larger global matrix([P]) [65] 

 

However, the need for shared memory between processors was a bottle neck because machines 

with more than 8 processors were very expensive. With n processors we could at best get a 

speedup of n-1. Using the GPU of PCs is a new alternative [71, 72]. The NVIDIA GPU CUDA 

architecture is composed of streaming multiprocessors (SMs), each containing a number of 
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streaming processor cores (SPs) with on-chip memory, and a single instruction unit.  All SMs 

have access to global memory, the off-chip memory (DRAM), which has a latency of several 

hundred clock cycles. Thus unlimited speedup is possible unlike with shared memory machines.  

We will use well known storage schemes such as the profile (sky line) [13] storage 

schemes and the sparse storage scheme [13, 73] (also known as the compressed sparse row 

scheme). We revive the old element by element finite element solvers from the early 1980s for 

working on a highly memory limited IBM PC 282 to launch thousands of CUDA threads on the 

GPU architecture. We will examine different numerical techniques such as conjugate gradients 

(CG), preconditioned conjugate gradients (PCG), Jacobi, bi-conjugate gradients etc. to get the 

high speed solution we seek. These ideas are explained below. 

 

3.3 Related  Works 
 

 

To Wu and Heng [71] should go the credit for first exploiting as far back as in 2004 the 

CUDA architecture in parallelizing FEM computations. They focused their attention on the 

conjugate gradients matrix solver where the most gains could be made. It took until 2010 for 

CUDA FEM computations to enter seminal electrical engineering works and that too without 

reference to Wu and Heng’s seminal work [35, 36]. 

Kiss et al. [34] have recently applied EbE processing to solve their finite element 

equations from a first order tetrahedral mesh using the conjugate gradients algorithms. Their EbE 

method is different from EbE in references [65, 74]. They implement the bi-conjugate gradient 

technique [75]. Since the matrix is not formed, they use the diagonal to implement Jacobi 

preconditioning. Fernandez et al. [33] decoupled the solution of a single element from that of the 

whole mesh (Figure 3.4 [33]), thus exposing parallelism at the element level.  Individual element 
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solutions are then superimposed node-wise using a weighted sum over concurrent nodes. They 

used Jacobi iterations to calculate the solution of each local matrix in parallel and then couple 

local solutions using weighted average enforcing continuity.  For example node number 1 in 

Figure 3.4 [33] is replaced by numbers 1 and 6 in new numbering system; number 1 is in element 

e1 and 6 in e2.  Once calculated the local solutions of elements e1 and e2, need to form the 

global solution using the following formula [33], 

𝜑1(𝑔𝑙𝑜𝑏𝑎𝑙) =  𝜑1(𝑙𝑜𝑐𝑎𝑙)

𝑘11

𝑘11 + 𝑘66
+  𝜑6(𝑙𝑜𝑐𝑎𝑙)

𝑘66

𝑘11 + 𝑘66
                              (3.1) 

 

where 𝑘11 and 𝑘66 are local matrix  elements (shown in Figure 3.4 [33]), 𝜑6(𝑙𝑜𝑐𝑎𝑙)  is the solution 

of element  e2 and 𝜑1(𝑙𝑜𝑐𝑎𝑙)  is the solution of element  e1 [33].  Fernandez et al. compared 

different generations of GPUs getting speedups with conjugate gradients of up to 14 times and 

111 times for the 8800GT and the GTX480 GPUs respectively, compared to optimized CPU 

results. 

 

Figure 3.4: Steps in the classic finite element method (FEM) and the proposed changes for the 

FEM-SES method enclosed within the dashed line 
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3.4 Element by Element Solvers 
 

3.4.1 Element by Element with  Jacobi Algorithm 

 

 

To overcome the memory limitation of 612 kB on the IBM PC 286 of the early 1980s, 

Hughes et al. [74] introduced EbE processing. The then available memory of 612 kB was not 

enough to hold even a trivial finite element matrix. What we used to do following Hughes et al. 

[74] was not form the coefficient matrix [P]. Instead, recognizing that [P] is assembled from the 

small element matrices [P]
 L

 (of size 3 × 3 in magnetics with triangular first order elements), 

according to 

[𝑃] = ∑ [𝑃]𝐿

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

                                                               (3.2) 

 

all the operations meant for [P] we performed  multiple times on each [P]
L
.  We took an element, 

computed its [P]
L
, did the operation meant to be done on [P], added the result to that from other 

elements already dealt with as indicated in equation 3.2, threw away [P]
L
, went to the next 

element and so on. The non-forming of the coefficient matrix meant that only iterative schemes 

of solution without decomposing [P] in any way could be done. This restriction therefore 

excluded the powerful iterative incomplete Cholesky conjugate gradients (ICCG) scheme of 

solution usually preferred in finite elements work because an incomplete Cholesky factor of [P] 

is required [13]. In solving [𝑃]{𝜑} = {𝑄} the Gauss-Seidel iterations commonly used by power 

engineers, is an improvement on the older Gauss iterations [13]. In Gauss-Seidel, in each 

iteration m + 1 we use the latest available values of the unknowns 𝜑, using equation i of 

[𝑃]{𝜑} = {𝑄}  to compute 𝜑𝑖 treating only 𝜑𝑖 as the unknown and all the other variables as 

known and given by their latest values in the iteration cycle: 
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𝜑𝑖
𝑚+1 =

1

𝑃𝑖𝑖
{𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘

𝑚+1

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

}                                          (3.3) 

 

with obvious modifications for i =1 and i = n.  In this algorithm 𝜑𝑖−1  must be computed 

before 𝜑𝑖.  Here at iteration m + 1, computing 𝜑𝑖 in the order i=1 to n, 𝜑 is at values of iteration 

m + 1 up to the (i −1)
th

 component of { 𝜑 } and at the value of the previous iteration m for 

values after i.  It is therefore necessarily a sequential algorithm. 

 
Figure 3.5: Proposed method in flow chart 

 

  

When EbE processing was developed for the Gauss algorithm [65], in solving [𝑃]{𝜑} =

{𝑄},  the older displaced Gauss iterations [65] use the values of the old iteration m for computing 

every {𝜑𝑖} in iteration m + 1. Therefore the computation of a particular {𝜑𝑖} value is 
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independent of the computation of all other {𝜑𝑖} values for that iteration and therefore 

parallelizable: 

𝜑𝑖
𝑚+1 =

1

𝑃𝑖𝑖
{𝑄𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘

𝑚

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

}                                           (3.4) 

 

This is inefficient in the context of sequential computations. But in the case of 

parallelization it is highly efficient as was laid out by Mahinthakumar and Hoole [65] and Carey 

et al. [76] for shared memory systems. Speedups were just below (n-1) where n is the number of 

processors.  If [D] is the matrix [P] with all off diagonal elements eliminated, then the Gauss 

iterations yield 

[𝐷]{𝜑𝑚+1} = {𝑄} − [𝑃 − 𝐷]{𝜑𝑚}                                               (3.5) 

 

Our proposed implementation first computes the diagonal vector [D] of the unformed global 

matrix [P], the right hand side of the finite element equation {Q} and initial solution vector, and 

saves them as two one dimensional arrays. This computation will be done only once. We can 

parallelize this computation. In the second step, our algorithm calculates the residual components 

ri, i = 1 to n, of {r} in parallel: 

𝑟𝑖 = 𝑟𝑖 − ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑖−1

𝑘=1

− ∑ 𝑃𝑖𝑘𝜑𝑘
𝑚

𝑛

𝑘=𝑖+1

                                                 (3.6) 

 

Algorithm 3.1 shows the element-by-element Gauss iterations.  In that n is the total number of 

unknowns, {V} is a vector which contains the vertices of an element, {r} is the residual vector, 

[P ]
L
 is the local coefficient matrix, {Q} is global right hand side vector, {D} is the diagonal 

vector of the global matrix [P], and {𝜑} is the current solution vector. NC and NR represent the 
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column number and row number respectively of the unformed global matrix in which the local 

matrix term [P]
L
(i, j) stored as the column vector [P ]

L
(i ∗ 3 + j).The first step of this algorithm 

computes the diagonal matrix [D] and solution vector {Q}.Algorithm 3.2 explains how to 

compute the diagonal matrix [D] and solution vector {Q}. This algorithm is common for all 

following algorithms which are described in this chapter. Moreover, this step is also parallelized. 

Steps 4 to 19 of the Algorithm 3.1 which compute the residual vector of this process also can be 

parallelized. A problem is in updating the vector {r}.  Here more than 2 processes may access 

the same memory location at the same time while updating a particular ri.  This is called the race 

condition (Figure 3.5). To avoid the race condition we used ’atomic’ [72] operations which are 

predefined functions.  The ‘arch = sm_20’ [72] flag was used to enable FERMI advanced 

architecture features which support them [72]. Kiss et al. used the coloring technique [34] to 

avoid the race condition and a two numbering system [33] was used by Fernandez et al. Both 

methods take a lot of memory and extra computations. So we avoided these methods. 
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Algorithm 3.1 (Cont’d)  
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Algorithm 3.2 (Cont’d)  

 

 

3.4.2 Element by Element Conjugate  Gradients  Algorithm 

 

The linear system equation from the finite element formulation can be solved by a 

minimization method [77]. Consider a quadratic equation 

𝑓({𝑥}) =  
1

2
{𝑥}𝑇[𝐴]{𝑥} − {𝑏}𝑇{𝑥} +   

1

2
{𝑏}𝑇{𝑏}                                          (3.7) 

 

where [A] is a symmetric matrix, {b} and {x} are vectors, and  1/2{𝑏}𝑇{𝑏} is a scalar constant. 

It is the square of the residual of the equation [A]{x} = {b}. [A] is symmetric and positive- 

definite for our finite element equation, f ({x}) is minimized by the solution to [A]{x} = {b} The 

iterates {x}
(i)

  are updated in each iteration by a multiple α(i)  of the search direction vector {p}
(i)

 

[78]: 
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{𝑥}(𝑖) = {𝑥}(𝑖−1) + 𝛼𝑖{𝑝}(𝑖)                                                         (3.8) 

 

Corresponding residual {𝑟}(𝑖) = {𝑏} − [𝐴]{𝑥}(𝑖) are updated as {𝑟}(𝑖) = {𝑟}(𝑖−1) −

𝛼𝑖[𝐴]{𝑝}(𝑖) where 𝛼𝑖 = {𝑟}(𝑖−1)𝑇
{𝑟}(𝑖−1)/{𝑝}(𝑖)𝑇

[𝐴]{𝑝}(𝑖) is chosen so as to minimize f({x}) 

along {𝑥}(𝑖) +  𝛼𝑖{𝑝}(𝑖). 

The search directions {p}
 (i)

 are updated using the residuals {r}
(i)

 i.e., 

{𝑝}(𝑖) = {𝑟}(𝑖−1) + 𝛽𝑖−1{𝑝}(𝑖−1)                                                   (3.9) 

 

where 𝛽(𝑖)is defined by {𝑟}(𝑖)𝑇
{𝑟}(𝑖)/{𝑟}(𝑖−1){𝑟}(𝑖−1)𝑇

 

 

The conjugate gradients iterative solver can also be decomposed into an element by 

element process [79]. Here we have used the element-by-element Jacobi preconditioner [80, 63] 

because traditional preconditioners cannot be used without the assembled global matrix. In this 

algorithm we use the Jacobi preconditioner [78] which is weak but offers preconditioning.  

Algorithm 3.4.8 shows the element by element process using the conjugate gradients algorithm 

[79]. Steps 6 to 18 of the Algorithm 3.3 compute the residual vector (v) – this process also can be 

parallelized. 
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Algorithm 3.3 (Cont’d)  
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3.4.3 Element by Element Biconjugate Gradient Algorithm 

 

 

Kiss et al. [34] have recently applied EbE processing to solve their finite element 

equations from a first order tetrahedral mesh using the bi-conjugate gradients algorithm. 

Algorithm 3.4 shows their element by element process using the biconjugate gradient algorithm. 

The CG method is not suitable for a non-symmetric system since the residual vectors cannot be 

made with short recurrence [81, 82]. The biconjugate gradients method takes another approach, 

replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at the 

price of no longer providing a minimization.  In the biconjugate gradients method, we update the 

two sequences of residuals and search directions for [A] and [A]
T
 . Steps 4 to 19 of the 

Algorithm 3.4 compute the residual vector, steps 31 to 34, update the vectors {xt}, {r} and {rd} 

and steps 41 to 47 update the vectors  {d}, {dd}, {q} and {qd}.  These processes also can be 

parallelized. In this process the residuals may be computed using, 

{𝑟}(𝑖) = {𝑟}(𝑖−1) +  𝛼𝑖[A]{𝑝}(𝑖)                                                            (3.10) 

{𝑟}′(𝑖) = {𝑟}′(𝑖−1) +  𝛼𝑖[A]{𝑝}′(𝑖)                                                          (3.11) 

 

The search directions are given by, 

 

{𝑝}(𝑖) = {𝑟}(𝑖−1) +  𝛽𝑖−1{𝑝}(𝑖−1)                                                       (3.12) 

{𝑝}′(𝑖) = {𝑟}′(𝑖−1) + 𝛽𝑖−1{𝑝}′(𝑖−1)                                                      (3.13) 

 

and the distance to be moved along a direction by, 

𝛼𝑖 = {𝑟}′(𝑖−1)𝑇
{𝑟}(𝑖−1)/{𝑝}′(𝑖−1)𝑇

[𝐴]{𝑝}(𝑖)                                        (3.14) 
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𝛽𝑖 = {𝑟}′(𝑖)𝑇
{𝑟}(𝑖)/{𝑟}′(𝑖−1)𝑇

{𝑟}(𝑖−1)                                             (3.15) 
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Algorithm 3.4 (Cont’d) 
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3.4.4 Element by Element with  Bi-Conjugate Gradient Stabilized method 

 

 

The BiCGSTAB iterative method had been used to solve the steady Navier-Stokes 

equations by Wang et al. [83]. Sheu et al. [84] used the BiCGSTAB method for solving the 

monotonic finite element model. The BiCGSTAB method is suitable for non-symmetric systems 

but can be applied to symmetric systems too [75]. This method avoids the irregular convergence 

pattern of the conjugate gradient squared method. In the biconjugate gradient method, the 

residual vector {r}
(i)

 can be written as the product of {r}
(0)

 and an i
th

 degree polynomial in [A]; 

{𝑟}(𝑖) = 𝑃𝑖(𝐴){𝑟}(0)                                                          (3.16) 

 

This same polynomial satisfies  

 

{𝑟}′(𝑖) = 𝑃𝑖(𝐴)𝑇{𝑟}′(0)                                                       (3.17) 

 

So that 

𝜌𝑖 = ({𝑟}′(𝑖). {𝑟}(𝑖)) = ({𝑟}′(0)𝑃𝑖
2(𝐴). {𝑟}(0))                                     (3.18) 

 

This result suggests that if Pi(A) reduces {r}
 (0)

 to a smaller vector {r}
(i)

, then it might be 

advantageous  to apply this Pi  operator twice,  and compute 𝑃𝑖
2(𝐴). {𝑟}(0) [85]. This algorithm 

is known as the conjugate gradient squared method. The biconjugate gradient stabilized method 

(BiCGSTAB) avoids the irregular convergence of the conjugate gradient squared method. The 

BiCGSTAB computes 𝑞𝑖(𝐴)𝑃𝑖(𝐴){𝑟}(0)instead of 𝑃𝑖
2(𝐴). {𝑟}(0)[86]. The BiCGSTAB method is 

computationally expensive per iteration compared to the CG algorithm [87]. 

Algorithm 3.5 shows the element by element process using bi-conjugate gradient 
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stabilized algorithm [84, 83]. BiCGSTAB has two stopping tests which are shown in Algorithm 

3. 5. Steps 13 to 27 and 36 to 50 of the Algorithm 3.5 compute the residual vectors. These 

processes also can be parallelized. 
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Algorithm 3.5 (Cont’d) 
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Algorithm 3.5 (Cont’d) 

 

 

3.5 Conjugate  Gradients  Algorithm with  Sparse Storage Schemes 
 

3.5.1 Conjugate  Gradient Algorithm for Matrix  Solution 

 

 

There are several works, which attempt to solve finite element problems using GPU(s) 

[66, 88, 89, 90, 91, 92] but they are not based on using the element by element technique as in 

this thesis. The authors of [92] tested the conjugate gradient (CG), the biconjugate gradient 

(BiCG), and the biconjugate gradient stabilized (BiCGSTAB) algorithms with popular 

preconditioning techniques; for example the algebraic multigrid, diagonal, shifted incomplete 

 Cholesky, and shifted incomplete LU methods. The best performance was found for conjugate 

gradients with preconditioning [92]. The authors of [88] also implemented CG with 
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preconditioning algorithms. The reported speedup is between 2 and 325. The speedup varies with 

different applications [88]. The reported speedup for the BiCGSTAB algorithm is on average 8 

to 10 times faster [91]. The authors of [89] reported that the speedup obtained with the 

preconditioned conjugate gradients (PCG) on a GPU, with respect to the CPU implementation of 

the CG algorithm, is between 8 and 10 (depending on the sparse matrix-vector multiplication 

used). 

The PCG algorithm is considered more efficient for large matrix equations and therefore 

usually used for solving a symmetric, sparse, positive definite system of linear equations as from 

finite element analysis. It identifies the residual in successive orthogonal directions and for n 

equations is guaranteed to converge in no more than n iterations [93]. We use it because it is 

cheap. Algorithm 3.6 describes the PCG method for the system of linear equations [𝑃]{𝜑} = {𝑄} 

; where [P] is a real, positive definite, symmetric matrix from finite element discretization and 

{𝜑} is the initial solution of the system which is improved in each iteration k. Preconditioning by 

the matrix M is used to replace the original system [𝑃]{𝜑} − {𝑄} = 0 by 𝑀−1([𝑃]{𝜑} − {𝑄}) =

0.  The Jacobi preconditioner is one of the simplest forms of preconditioning, in which the 

preconditioner is chosen to be the diagonal of the matrix P = {diag}(A). In the case of the 

implementation of this algorithm, we use CUDA C for parallel implementation and C++ for 

sequential implementation. 
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Algorithm 3.6 (Cont’d) 

 

 

3.5.2 Matrix Storage Schemes 

 

3.5.2.1 Introduction 

 

 

In finite element analysis and optimization the coefficient matrix is very large when 

dealing with real world problems but very sparse [13]. For a symmetric matrix, we need to store 

only the diagonal and upper or lower triangular part of the matrix. The sparsity property brings 

storage down to O(n) for the finite element method [13]. The elimination of unnecessary 

multiplications with 0.0 also speeds up computations significantly.  The following sections give 

an overview of matrix storage schemes. 

 

3.5.2.2    Profile Storage 

 

 

Profile storage is also known as its equivalent skyline storage which reduces the storage 

requirement for a matrix.  The matrix would be stored in three one dimensional floating point 
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number arrays. Space is allocated for every number to the right of the first non-zero on a row, up 

to the diagonal term. Therefore renumbering is used first to reduce storage, to band the matrix. 

 

Figure 3.6: A. Sparse full matrix, B. Sparse lower triangular matrix (because of symmetry) 

 

 

 
Figure 3.7: Data structures for the symmetric profile storage corresponding to Figure 3.6 B 

 

 

The matrix of Figure 3.6 A is reduced first to its lower triangle part in Figure 3.6 B. It is then 

stored  as the vectors Diag, giving the diagonal element location, FC giving the first column on a 

row occupied by a non-zero and V, giving the coefficient of the matrix which now has several 

zeros which are between the first non-zero column and the diagonal. An example matrix and 

profile storage scheme vectors are shown in Figures 3.6 and 3.7 respectively. 

The data structure consists of three one-dimensional arrays: A real type array V; the size 

of this array is equal to the number of non-zero elements plus the number of zeros between two 

non-zero elements in the array, an integer type array FC; the size of this array is equal to the 

number of non-zero elements in the array, an integer type array Diag; the size of this array is n ; 

where n is the number of rows/columns in the array. When we are dealing with real world 
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problems, the coefficient matrix is a very large sparse matrix [13] and we can use the profile 

storage scheme to reduce memory consumption 

 
Figure 3.8: A. Sparse full matrix, B. Sparse upper triangular matrix (because of symmetry) 

 

 

 
 

 

Figure 3.9: Data structures for the symmetric profile storage corresponding to Figure 3.8 B 

 

 

3.5.2.3    Sparse Storage Scheme 
 
 

The sparse storage scheme is also known as the compressed sparse row (CSR) scheme. 

The sparse storage scheme is a row-wise (or alternatively column-wise) representation of the 

nonzero entries in the coefficient matrix of the linear system.  For a symmetric matrix, computer 

memory can be saved by storing only the nonzero entries in each row on and before the main 

diagonal. The associated column numbers are stored in an integer-valued array JA such that 

JA(K) is the column number for the coefficient A(K). A mapping vector IA is used to denote the 

starting location of each row. An example matrix and its sparse storage scheme vectors are 

shown in Figures 3.8 and 3.9 respectively.  The data structure consists of three one-dimensional 

arrays: A real type array A, contains all the non-zero elements of a matrix.  The size of this array 
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is equal to the number of non-zero elements in the array, an integer type array JA, contains the 

matrix column indices of the elements of A. The size of this array is equal to the number of non-

zero elements in the array. Another integer type array IA contains the index of each row in the 

arrays A and JA. The size of this array is n +1; where n is the number of rows/columns in the 

array.  When we are dealing with real world problems, the coefficient matrix is a very large 

sparse matrix [13] and we can use CSR storage scheme to reduce the memory consumption and 

speedup the computations. 
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Chapter 4 

 
Test and Validation Problems 

 

 

4.1 Device  design inverse-optimization problem: Design of the Pole Face of 

an Electrical  Motor 
 

4.1.1 Problem  Definition 

 

 

Our mesh generators and solvers will be demonstrated on two examples from design. 

First let us consider the following sample problem. The objective is to achieve a uniform flux 

density distribution in the vertical direction in the air gap of a pole face (see Figure 4.1). Since 

the air gap in turbo-alternators compared to the radius of the machine is small, the shape of the 

pole face can be approximated by a straight line. 

 

Figure 4.1: Pole face of electrical motor 

 

 

Figure 4.2 gives the related dimensions, material properties and field excitation values 

used. The symmetry of the magnetic fields with respect to the pole axis allows the modeling of 

just half the pole pitch, where the pole axis, which is the line of symmetry, is located at the right 

boundary to the finite element solution domain. The relative permeability of 20 for the magnetic 
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circuit is deliberately set this low, so that the leakage flux through air at the left edge of the pole 

face is larger than for higher and more realistic permeability. Our requirement is to have a 

uniform vertical flux density of 1 Tesla along measuring points on the stator.  That means all our 

measuring points must have their y direction flux density (x direction derivative of the vector 

potential) of 1 Tesla. The influence of this leakage flux requires significant correction in the 

shape of the pole face close to the left edge in order to achieve the desired constant flux density 

in the air gap. This example is frequently used in the demonstration of electromagnetic 

optimization methods and it can be considered as a standard demonstration example [13] 

 

Figure 4.2: Geometry, boundary conditions and the material properties of the sample problem 
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4.1.2 Problem Model 

 

 

Figure 4.3 shows how to model the problem using our software. There are 11 fixed points 

(shown in Figure 4.3), 10 variable heights (h1....h10) to be optimized, 8 measuring points 

(purple-dots), and 4 materials (stator, air, coil, back ion) in this problem. Figure 4.4 shows the 

generated mesh. Figure 4.5 shows the equipotential lines of the starting design of the pole face of 

a motor.  Since this is a 2D magneto-static problem, these lines represent the flux lines as well. 

As we discussed in Chapters 1 and 3, we use the genetic algorithm for optimization. In 

genetic algorithm optimization [61, 62], several copies of the matrix are held on the GPU and the 

corresponding solutions attempted. We have tried different problems using the GA on a GPU 

[12, 3]. 

 

Figure 4.3: Defining the problem using our tool 

 

 

When we optimize directly this problem by defining an independent parameter for the 

displacement of each point in the pole face, the shape we get is given in Figure 4.6. This shape is 

not a manufacturable shape but the solution really gives a very good result (see Table 4.1 and 
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Figure 4.9). However it is clear that this type of pole face cannot be practically constructed. 

 

Figure 4.4: Generated mesh using our tool 

 

 

 
Figure 4.5: Finite element solution 

 

 

There are two solutions for this problem. We can add some constraint to the solution on 

force the variable points to be arranged in a curve function of known mathematical form. Both 

methods had been tested by Wijesinghe [22]. And he claimed that even though the second 
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method is easy because of the known equation, the result is not as good as the result by the first 

method.   

 

Figure 4.6: Results of the un-constrained optimization of the problem 

 

 

 
Figure 4.7: Results of the constrained optimization without smoothening 

 

 

An erratic undulating shape with sharp edges arose when Pironneau [18] optimized a pole face to 

achieve a constant magnetic flux density and this was overcome through constraints [19].   
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Figure 4.8: Results of the constrained optimization with smoothening 

 

 

Table 4.1: The flux distribution from the un-constrained optimization 

 

 

 

 

 

 

Haslinger and Neittaanmaki [94] suggest Bezier curves to keep the shapes smooth with just a 

few variables to be optimized, while Preis et al.  [95] have suggested fourth order polynomials 

which when we tried gave us smooth but undulating shapes.   As such we follow Subramaniam 

et al.  [19] and extend their principle, so as to maintain a non-undulating shape by imposing the 

constraints: 

ℎ1 ≥ ℎ2 ≥ ℎ3 ≥ ℎ4 ≥ ℎ5 ≥ ℎ6 …                                             (4.1) 

Measuring points Flux density (in Tesla) 

1 1.001 

2 1.001 

3 1.002 

4 0.996 

5 1.001 

6 1.001 

7 0.999 

8 0.999 
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to ensure a smooth shape Even this gives a non-smooth shape (Figure 4.7) but we use averaging 

of neighboring heights which is shown in Figure 4.10, to obtain a very manufacturable shape as 

demonstrated  in Figure 4.8. The final results are given in Table 4.2 and Figure 4.11. Average 

error percentage of un-constrained optimization is 0.15% while the constrained optimization 

method has an error percentage of 1.0625%. Even-though un-constrained optimization gives a 

more accurate solution than constrained optimization, the resulting shape from the un-

constrained problem is not practicably manufacturable. 

 

Figure 4.9: The flux distribution from the un-constrained optimization 

 

 

The average error percentage was calculated using the following formula: 

𝐸𝑝 =
1

2
∑

|𝐵𝑐𝑎𝑙 − 𝐵𝑡𝑎𝑟|

𝐵𝑡𝑎𝑟

𝑛

𝑖=1

   × 100%                                                   (4.2) 

 

where n is the number of measuring points, Ep is the error percentage, 𝐵𝑐𝑎𝑙is the calculated flux 

density and 𝐵𝑡𝑎𝑟 is the target flux density. We have reported solutions for a population size of 

100. Figure 4.10 shows the averaging techniques which have been used to get a smooth 

manufacturable shape. This figure shows a 3-neighbor averaging technique. We have a mask that 

covers 3 elements. The mask moves the left most elements to the right most element and updates 
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the middle element with the average of the three values which are covered by the mask. We 

introduced 2 temporary elements at the front and end to calculate the average of the first and last 

elements. If we wish to use a 5-neighbor technique, we need to introduce 2 elements at the front 

and 2 elements at the end to calculate the average of the first and last elements. 

 

Figure 4.10: Averaging technique for manufacturable shape 

 

 

Table 4.2: The flux distribution from the constrained optimization 

Measuring points Flux density (in Tesla) 

1 0.991 

2 1.016 

3 1.008 

4 1.008 

5 0.977 

6 0.978 

7 0.993 

8 0.988 

 

Figure 4.11: The flux distribution from the constrained optimization 
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4.2 Inverse-optimization for Device Design: Determining the Rotor Contour 

of a Salient Pole Synchronous Generator 
 

4.2.1 Problem Definition 

 

 

The second example is about determining the pole face contour of a salient pole 

synchronous generator to demonstrate the parametrized mesh generator and matrix solution 

software as applied to constrained optimization.  The current density in the excitation coil and 

the geometric parameters that define the shape of the pole piece have to be predicted in order to 

achieve a sinusoidal distribution of the airgap flux with a peak value of 1.0 T and reduce the flux 

leakage while the airgap is constrained to a minimum to prevent the motor from hitting the stator 

(Figure 4.12). 

 

Figure 4.12: A synchronous Generator (A) two pole and (B) four pole 

 

 

Figure 4.13 gives the related dimensions, material properties and field excitation values used. 

The symmetry of the magnetic fields with respect to the pole axis allows the modeling of just 

half the pole pitch, where the pole axis, which is the line of symmetry, is located at the right 
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boundary to the finite element solution domain. The stator is idealized as a solid steel region 

without slots, and both stator and rotor are made of linear steel with a relative permeability of 

2000. We will optimize the device with constraints of current density J ≤ 2.0 A/mm
2
  which is 

the limit  for copper windings, air gap between stator and rotor x < 2 cm and flux go through the 

points A1 and A2 < 0.3 × flux go through the points A3 and A1 which means allowable  leakage 

flux is 30%, 

 

Figure 4.13: Parametrized geometry of salient pole 

 

 

4.2.2 Problem  Model 

 

 

Figure 4.13 explains the parameters of the problem and how to model this problem. There 

are 14 fixed points, 16 variable heights (h1....h16), 8 measuring points and 4 materials in this 

problem (see Figure 4.14). Figure 4.15 shows the corresponding starting mesh for this problem.  

Figure 4.16 shows the flux lines of this salient pole synchronous Generator at starting. When we 
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optimize directly this problem by defining an independent parameter for the displacement of 

each point in the rotor like in the previous example, the shape we get is given in Figure 4.17. 

This shape is also not a manufactorable shape but the solution really gives very good result in-

terms of a sinusoidal distribution of the airgap flux with a peak value of 1 T (Table 4.3 and 

Figure 4.17). 

 

Figure 4.14: Defining the problem 

 

 

 

Figure 4.15: Initial mesh 
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Figure 4.16: Flux line of a salient pole synchronous Generator 

 

 

 

Figure 4.17: Optimized shape without smoothening constrained by rising pole heights from left 

to right 

 

 

Figure 4.17 shows the flux lines for the optimum solution with a constraint like in (4.1) 

but the height of the shaped surface having to go up from left to right. It has sharp corners but is 

reasonably smooth. We then use an averaging technique to remove sharp bends. We took five 

neighboring values of a height and calculated the mean for every variable solution with suitable 
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modification for boundary variables to get Figure 4.20. 

Table 4.3: The flux distribution after the optimization without smoothened shape 

Measuring points Flux density (in Tesla) Target Flux density (in Tesla) 

1 0.0202 0.0000 

2 0.1869 0.1736 

3 0.3721 0.3420 

4 0.4987 0.5000 

5 0.6321 0.6428 

6 0.7453 0.7660 

7 0.8769 0.8660 

8 0.9215 0.9397 

9 0.9709 0.9848 

10 1.0091 1.0000 

 

 

Figure 4.18: The flux distribution after the optimization without smoothened shape 

 

 

 

Figure 4.19: The flux distribution after the optimization with smoothened shape 
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The final results are given in Table 4.4 and Figure 4.19. The average error percentage of un-

smoothened optimization is 2.96% while the smoothened optimization method has an error 

percentage of 2.24%. The average error percentage is calculated using Equation 4.2 (the first 

point is not included because of the zero denominators in Equation 4.2). Since GA is a stochastic 

optimization algorithm [96, 97], the optimization value is not always perfect. The optimum value 

depends on the initial population and search space [96, 97]. 

Table 4.4: The flux distribution after optimization with smoothened shape 

Measuring points Flux density (in Tesla) Target Flux density (in Tesla) 

1 0.0083 0.0000 

2 0.1596 0.1736 

3 0.3560 0.3420 

4 0.4964 0.5000 

5 0.6434 0.6428 

6 0.7517 0.7660 

7 0.8549 0.8660 

8 0.9183 0.9397 

9 0.9986 0.9848 

10 1.0035 1.0000 

 

 

Figure 4.20: Final smoothened shape 
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4.3 NDE benchmark problem:  Characterizing Interior Defects 

 

4.3.1 Problem  Definition 

 

 

As an example, when an armored vehicle is targeted by an improvised explosive device 

(Figure 4.21), the armor is inspected by an eddy current probe to determine whether there is 

damage or not. But we wish to characterize the interior damage to determine if the vehicle 

should be withdrawn from deployment. The same system is also intended for regular rust 

mitigation maintenance since the US army’s estimated loss from corrosion is in the billions of 

dollars [98, 99, 100] 

 

Figure 4.21: Inspection of an army vehicle after improvised explosive device 

 

 

Figure 4.22 presents crack shapes, both shown through the meshes, to make the computed 

field match the measured field. The normalized least-square mismatch of nodes from the 

midpoint between the measured and computed shapes (Figure 2.4) shows a parametrically 

described crack in steel excited by an eddy current probe. In this NDE exercise the parameters 
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need to be optimized to make the computed fields match the measurements. An objective 

function F is defined as the sum of the squares of the difference between computed and desired 

performance values: at measurement points i, 

𝐹 = ∑(𝐵𝑐𝑎𝑙
𝑖 − 𝐵𝑚𝑒𝑎

𝑖 )

𝑖

                                                       (4.3) 

 

where 𝐵𝑐𝑎𝑙
𝑖  is the calculated magnetic flux density and 𝐵𝑚𝑒𝑎

𝑖  is the measured flux density. By 

minimizing the objective function F by the optimization method, the characteristics of the defect 

can be estimated since F is the function of the parameters. 

 

Figure 4.22: Parametrically defined crack in plate from Triangle 

 

 

4.3.2 Problem  Model 

 

 

Figure 4.23 shows the parameters of the described NDE problem and how to model it to 

using our tools. There are 14 fixed points, and 6 variable points (for example); the x coordinates 

are fixed [101]. There are also 4 materials (air, crack, steel plate and coil) in this problem. Figure 

4.24 shows the generated mesh for this problem. Different materials are shown in different colors 

(although in black and white in this printout).  Figure 4.25 shows the flux lines from this 

example. The flux lines are shown in Figure 4.25. Figure 4.26 shows the true defect and 

constructed defect. 
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Figure 4.23: Defining the problem 

 

 

 

Figure 4.24: Generated Mesh for NDE problem 

 

 

Table 4.5 shows the variable points (defect coordinates), their x and y coordinates, 

euclidean distance between the centroid of that the crack and a point (d1 and d2 respectively) 

and normalized distance between d1 and d2. That means centroid difference between the true 

profile and the constructed profile, d1 and d2, is calculated using the Equation 4.4. Let us say, 

(x1, y1) and (x2, y2) are the two points; the euclidean distance between the two points is 

defined by the following formula: 



96 
 

    𝑑1 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2                                         (4.4) 

 

 

Figure 4.25: Flux line for NDE problem 

 

 

Table 4.5: The solution of defect characterization 

 True profile Reconstructed profile Norm error 

Variable points x  y  d1 x  y  d2 ((d1 − d2)/d1)2 

1 

2 

3 

4 

5 

6 

7 

8 

8 2.0 1.5892 

9 1.2 1.4162 

10 2.4 0.5153 

11 2.2 1.5348 

11 2.7 1.5101 

10 3.0 0.6896 

9 3.2 0.8400 

8 3.5 1.7890 

8 2.24 1.5268 

9 2.34 0.5331 

10 1.96 0.7544 

11 2.15 1.5461 

11 2.54 1.5000 

10 2.94 0.6497 

9 3.42 1.0251 

8 3.55 1.8167 

0.001541 

0.388815 

0.215191 

0.000054 

0.000044 

0.003342 

0.048597 

0.000240 

 

 

Figure 4.26: Optimum shape of the reconstructed defect 
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The normalized least-square match of nodes from the midpoint between the measured 

and computed shapes (Figure 4.26) was close to 90%. The error in location was 4.65%. A better 

match would require the use of more parameters. We tried with several population sizes and 

multiple times of iterations.  These results are reported in [102].  This thesis presents the 

particular solution for a population of 200.  Tests were carried out for the different population 

sizes and different number of iterations and we measured the time taken to compute the solution 

and tabulated these in Table 4.6. The best fitness score for different population sizes and 

different number of iterations is reported in Table 4.7 for real and binary representations of GA 

solutions [102]. We can see that solutions from parameters represented by real numbers are 

obtained faster than the solutions that are represented by binary numbers [102]. 

Table 4.6: Real and binary solutions time need to compute 

 

Population Size 

30 iterations 40 iterations 50 iterations 

Time Taken(s) Time Taken(s) Time Taken(s) 

Real Binary Real Binary Real Binary 

10 

20 

30 

40 

50 

60 

274.33 

540.68 

861.79 

1319.36 

1583.73 

1757.78 

311.97 

661.79 

1024.65 

1431.34 

1769.6 

2131.94 

346.58 

695.28 

1095.82 

1666.79 

1994.77 

2199.26 

408.29 

891.06 

1258.17 

1950.36 

2302.99 

2534.36 

413.16 

866.47 

1588.32 

2024.03 

2323.93 

2656.53 

503.43 

1105.42 

1749.1 

2390.25 

2891.94 

3303.85 

 

Table 4.7: Real and binary solutions time need to compute 

 

Population Size 

30 iterations 40 iterations 50 iterations 

Best Fitness Score Best Fitness Score Best Fitness Score 

Real Binary Real Binary Real Binary 

10 

20 

30 

40 

50 

60 

0.0123 

0.0084 

0.0040 

0.0105 

0.0111 

0.0127 

0.0019 

0.0012 

0.0009 

0.0017 

0.0017 

0.0017 

0.0091 

0.0084 

0.0040 

0.0105 

0.0068 

0.0127 

0.0020 

0.0008 

0.0009 

0.0017 

0.0017 

0.0016 

0.0091 

0.0084 

0.0040 

0.0105 

0.0068 

0.0127 

0.0015 

0.0008 

0.0009 

0.0017 

0.0017 

0.0000 
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4.4 A Simple Three-dimensional Problem 

 

 

For testing purposes, we took a small cube which is made of a material with relative 

permittivity 1. Another inner cube with a relative permittivity of 1 and charge density of 1C/m3 

is inside the outer cube (shown in Figure 4.27). The outer surface’s potential is zero (boundary 

condition). The measuring points (along a line) are shown in Figure 4.27. Then we solved the 

Poisson equation to calculate the potential (𝜙) using FEM: 

𝜀∇2𝜙 = −𝜌                                                                   (4.5) 

 

 
 

Figure 4.27: Square conductor problem 

 

 

There are 16 fixed points, 2 materials (air and material) and 100 measuring points (along 

the line) in this problem. Since this is not an optimization problem, there are no variable points. 

Figure 4.28 shows the generated mesh for this problem. Different materials are given in different 

colors; light green for material 1 and red for material 2. 

Figure 4.29 shows the potential at the measuring points.  We may recognize that the 

potential within the inner cube is constant because the inner cube has a constant uniform charge.  
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Figure 4.28: Mesh for square conductor problem 

 

 

 

Figure 4.29: Potential at measuring points 

 

 

 

Figure 4.30: Potential at measuring points for a simple cube 
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Table 4.8 shows the numerical solution for this problem. The first column gives the measuring 

point number; the second and third columns give the electric potential value and tetrahedron 

number in which the particular measuring point exists, respectively. Figure 4.30 shows the 

potential at the measuring points for a simple cube problem (a simple cube with the same 

dimension as above, charge density is 1C/m
3
- no inner outer cubes and no change in 

permittivity). 

Table 4.8: Potentials at measuring point 

Measuring points ϕ(in V) Element# Measuring points ϕ(in V) Element# 

1 0.0000 19962 51 3.4708 10058 

2 0.2159 13483 52 3.4711 12276 

3 0.4318 13483 53 3.4714 12276 

4 0.6477 13483 54 3.4717 12276 

5 0.8636 13483 55 3.4721 12276 

6 1.0795 13483 56 3.4727 7335 

7 1.2954 13483 57 3.4736 7335 

8 1.4938 982 58 3.4745 7335 

9 1.6796 982 59 3.4755 7335 

10 1.8616 12016 60 3.4763 1321 

11 2.0228 18763 61 3.4767 1321 

12 2.1673 18763 62 3.4772 18264 

13 2.3118 18763 63 3.4777 18264 

14 2.4446 5702 64 3.4793 15140 

15 2.5760 5702 65 3.4844 15136 

16 2.6948 21367 66 3.4897 15136 

17 2.8076 21367 67 3.4950 15136 

18 2.9204 21367 68 3.5003 15136 

19 3.0161 21366 69 3.5056 15136 

20 3.0922 18694 70 3.5109 15136 

21 3.1629 15809 71 3.4988 15448 

22 3.2293 5610 72 3.4792 15448 

23 3.2924 5610 73 3.4596 15448 

24 3.3532 14667 74 3.4400 15448 

25 3.3950 25126 75 3.4205 15448 

26 3.4169 25126 76 3.4009 15448 

27 3.4388 25126 77 3.3562 15446 

28 3.4607 25126 78 3.2909 15446 

29 3.4826 25126 79 3.2257 15446 

30 3.5045 25126 80 3.1591 8028 



101 
 

Table 4.8: Potentials at measuring points (Cont’d) 

Measuring points ϕ(in V) Element# Measuring points ϕ(in V) Element# 

31 3.5181 23548 81 3.0841 19985 

32 3.5122 23548 82 3.0092 19985 

33 3.5064 23548 83 2.9343 19985 

34 3.5005 23548 84 2.8152 18420 

35 3.4947 23548 85 2.6758 18420 

36 3.4888 23548 86 2.5364 18420 

37 3.4830 23548 87 2.3971 18422 

38 3.4772 23548 88 2.2578 18422 

39 3.4723 22059 89 2.1185 18422 

40 3.4719 22059 90 1.9794 8298 

41 3.4712 19315 91 1.8409 8298 

42 3.4708 19049 92 1.6655 17398 

43 3.4707 19049 93 1.4562 17398 

44 3.4708 4482 94 1.2470 17398 

45 3.4707 4482 95 1.0383 14912 

46 3.4705 4482 96 0.8303 14912 

47 3.4703 4482 97 0.6222 14912 

48 3.4701 4482 98 0.4142 14912 

49 3.4704 17128 99 0.2072 13685 

50 3.4706 5560 100 0.0001 13685 

 

This is a simple problem. We will test the mesh generator on the more complex system of 

the next section. These results are verified with the mesh generator Gmsh [29] with Matlab 

functions. This simple problem verifies that our parameterized mesh generator and FEM solver 

work perfectly. 

4.5 NDE benchmark  problem  in  3D:  Characterizing Interior Defects 
 

 

As a more complex example for testing our parameterized mesh generator, this is a three 

dimensional version of example 3 (Section 4.3). We wish characterize the interior damage to a 

land vehicle hull to determine if the vehicle should be withdrawn from deployment. Figure 4.31 

shows the initial shape of the crack (in the lower half of the Figure 4.31), the ’E’shaped coil 

frame, air (upper half of the Figure 4.31) and steel plate (lower half of the Figure 4.31). 
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Figure 4.31: Three-dimensional NDE problem 

 

 

Figure 4.32 shows how to define a crack whose outline coordinates and location 

coordinates are changing as the optimization algorithm runs. We define two surfaces; the outer 

coordinates of both surfaces are the same. We made some constraints on the y coordinates to 

ensure that this is truly a volume without the surfaces crossing each other. In Figure 4.32 top, 

there are two surfaces.  Each has a few variables shown in green, while the outer common 

coordinates are given in blue. In Figure 4.32 the lower part of the figure shows the top view of 

the top surface which has 13 variables in addition to its outer common coordinates. Similarly the 

bottom surface also has variable points. 

Figure 4.33 shows the generated mesh for this problem. Different materials are shown in 

different colors; green - air, red - steel, blue - coil and yellow - crack (made by 2 surfaces) 

although this printout is black and white. For this test problem we took 5 variable points on the 

upper surface, 8 variable points on the common interface and 4 variable points on the lower 

surface. There are a total of 17 × 3 variables associated with the 17 variable points. Here we 

made another assumption that the points are varying in the y direction only; the x and z 
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coordinates are fixed. Table 4.9 shows the true and characterized profile coordinates and the 

normalized distance between results. 

 

Figure 4.32: Defining variable: top: side view, bottom: side view 

 

 

 

Figure 4.33: Three-dimensional mesh for NDE problem: As parameters change 

 

 

The last column of Table 4.9 shows the norm error (the formula is also given in the Table 4.9). 

Average error is 2.5%. Average error is calculated using the following formula: 

𝐴𝐸 =
1

𝑛
∑

|𝑧𝑡 − 𝑧𝑟𝑒|

𝑧𝑡
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

  × 100%                                                     (4.6) 
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where n is the number of variables, 𝑧𝑡  is the target value and 𝑧𝑟𝑒  is the reconstructed value. This 

thesis presents the particular solution for a population of 200. This demonstrates the validity of 

our 3D optimization tools. 

Table 4.9: The solution of 3D defect characterization 

 True profile Reconstructed profile Norm error 

# x  y  z x  y  z |zt − zre| /zt 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

52.853  44.000  50.927 

51.763  42.000  52.427 

48.237  45.000  52.427 

47.147  42.000  50.927 

48.237  45.000  47.573 

50.000  44.000  47.000 

51.763  43.000  47.573 

52.853  43.000  49.073 

51.427  46.000  50.464 

50.000  46.000  51.500 

48.573  47.000  50.464 

50.882  46.500  48.786 

50.000  48.000  50.000 

51.427  40.000  50.464 

48.573  40.000  50.464 

49.118  40.000  48.786 

50.882  40.000  48.786 

50.000 38.000 49.000 

52.853  42.628  50.927 

51.763  43.892  52.427 

48.237  43.682  52.427 

47.147  41.873  50.927 

48.237  44.670  47.573 

50.000  41.893  47.000 

51.763  44.735  47.573 

52.853  42.444  49.073 

51.427  44.239  50.464 

50.000  47.193  51.500 

48.573  46.317  50.464 

50.882  46.483  48.786 

50.000  47.219  50.000 

51.427  37.999  50.464 

48.573  39.835  50.464 

49.118  40.022  48.786 

50.882  38.213  48.786 

50.000 36.903 49.000 

0.0312 

0.0451 

0.0293 

0.0030 

0.0073 

0.0479 

0.0403 

0.0129 

0.0383 

0.0259 

0.0145 

0.0004 

0.0163 

0.0500 

0.0041 

0.0005 

0.0447 

0.0289 
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Chapter 5 

 

Results and Analysis 

 

 
5.1 Memory Limitation 
 

 

Recently, Graphics Processing Unit (GPU) computing has had great success in many 

very large numerical computations. Software developers, researchers, and scientists have been 

using the GPU for speeding up their computations. Applications taking advantage of this new 

technology have ranged from quantum chemistry [66] and molecular dynamics [103, 104] to 

fluid dynamics [105, 106] and cloth simulation [107]. In this work we discuss the often 

undiscussed GPU memory limitation in finite element optimization. In GPU computing the 

memory of the Nvidia GPU is limited. This part of this thesis assesses the memory limits in 

terms of matrix size in light of the various ways to store a large matrix in order to overcome 

these limits. 

We took a 4 cm
2
 square conductor with current density = 1 A/mm2 and relative 

permeability 1. Then we solved the Poisson equation to calculate the magnetic vector potential 

(A) using FEM 

1

𝜇
∇2�̅�  = −𝐽 ̅                                                              (5.1) 

In this experiment we defined different number of progressively refined triangles; i.e. 

288, 768, 1408 etc. Therefore the final solution can be obtained from the equation, [P] {A} = 

{Q}; where [P] is the matrix and {A} and {Q} are vectors. In this experiment we used both 
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storage schemes to reduce the storage capacity. Matrix [P] is a symmetric positive definite sparse 

matrix; each row has approximately 3 to 5 elements in a symmetric half [13], because of the first 

order mesh. 

Table 5.1 shows the total number of matrix elements and storage with matrix size for 

different storage schemes. Clearly, we can store very large matrices using the profile or sparse 

storage scheme because in FEM, the matrix [P] is a symmetric sparse matrix [13]. According to 

our result, memory-wise, the sparse storage scheme is much better than the profile storage 

scheme as to be expected because of fill-in during decomposition with the latter. Although well 

known, we repeat this investigation to obtain memory limits with CUDA. In inverse problems 

where many equations need to be solved, this is limiting.  Figure 5.1 (A) shows the memory 

required for the matrix versus matrix elements.  Figure 5.1 (B) shows the memory required for 

profile and sparse storage schemes. 

Table 5.1: Number of elements (NE) and storage (in MB) with matrix size for different storage 

schemes  

Matrix Size NE Regular NE(Profile) Profile NE(Sparse) Sparse 

100 10500 0.040054 1161 0.004429 1709 0.006519 

400 18000 0.068665 10819 0.041271 4421 0.016865 

900 814500 3.107071 33329 0.127140 9521 0.036320 

1600 2568000 9.796143 75239 0.287014 18421 0.070271 

2500 6262500 23.889542 142549 0.543781 29801 0.113682 

6000 36030000 137.443543 404459 1.542889 71681 0.273441 

8000 64040000 244.293213 697679 2.661434 94221 0.359425 

10000 100050000 381.660461 1070099 4.082104 118021 0.450214 

 

Using curve fitting projection we determined the maximum size of the problem that may 

be attempted within the 4 GB memory limit of the GetForce GTX 970 GPU card that we worked 

with. Table 5.2 shows the matrix size and corresponding memory size that we need to store the 

variables. From these calculations we can say that the sparse storage scheme can be used for very 

large problems of size 50,000K × 50,000K. It takes much lower memory than the profile storage 
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scheme as remarked. Using the sparse storage scheme we can solve bigger than a 50,000K × 

50,000K matrix size before running into memory limits (4 GB limit).  With the 24 GB Kepler 

K80 GPU cards [68] now available, we can solve problems much bigger than 50,000K × 

50,000K matrix 

 

Figure 5.1: Memory vs matrix size 

 

 

Table 5.2: Projected Memory (in MB) Needs 

Size Regular Profile Sparse 

20K 1525.2 14.73 0.90 

30K 3430.5 32.13 1.35 

50K 9526.5 87.06 2.26 

100K 38097.0 341.79 4.52 

500K 952240.0 8417.70 22.58 

1000K 3808900.0 33608.00 45.17 

5000K 95220000.0 838940.00 225.85 

10000K 380880000.0 3355100.00 451.70 

50000K 9522000000.0 83865000.00 2258.50 

100000K 38088000000.0 335450000.00 4517.00 

 

Our conjugate gradients method with Jacobi preconditioning gives the results shown in Figure 

5.2. We stopped our experiment with size of 10000 × 10000 because if we have a population of 

5000 in GA, theoretically we can go up to 10000 × 10000 with sparse storage schemes because 

of the memory limits as discussed above. If we want a larger population, the problem size should 
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be decreased. Even-though the sparse storage scheme reduces the memory consumption, we can 

not solve problems larger than 10000 × 10000 with larger populations than 50. But with the new 

GPU cards like Kepler K80 [68] that came out as this thesis was completed, memory will not be 

a problem  

 

Figure 5.2: Speed-up versus matrix size: Jacobi preconditioned conjugate gradients algorithm 

 

 

5.2 Element-by-Element Solvers 
 

 

Again we solved the Poisson equation for the magnetic vector potential A with 

progressively refined meshes using the finite element method for the Poisson equation for a test 

problem from magnetics. We defined different number of progressively refined tetrahedrons to 

obtain results for different matrix sizes. Run time statistics obtained for different mesh sizes is 

given in Table 5.3 which compares the CPU and GPU calculation times for different sizes of 

problems for the conjugate gradient element by element (CGEbE) algorithm. This table gives the 

speedup which is defined as CPU calculation time/GPU calculation time and the speedup per 

iteration which is defined as CPU calculation time for one iteration/CPU calculation time per 

iteration.  It shows a high speedup of 51.23 for 2,828,782 unknowns which is equivalent to a 
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matrix size of 2, 828, 782 × 2, 828, 782 in regular first order finite element analysis. 

Table 5.3: The CGEbE solution 

 CPU GPU  

Elements

 Unknown 

Itns  Time Itns  Time Speedup (S) S per itn 

26595               3072 

32682               3843 

45328               5440 

106587 13312 

210024 27852 

273008 36704 

399928 54672 

978905 137639 

1940736 279340 

2569403 372149 

3830869 559546 

9521059 1413142 

18879664 2828782 

51 1.15 

55 1.63 

60 2.39 

79 7.38 

119 22.34 

130 36.02 

148 54.32 

206 189.24 

294 524.26 

329 953.45 

413 1542.75 

645 11120.06 

903 46348.39 

66 0.33 

69 0.33 

69 0.33 

90 0.45 

126 0.73 

134 0.91 

151 1.33 

201 7.11 

271 25.19 

310 41.27 

346 75.06 

514 308.25 

733 904.54 

3.4848              4.5098 

5.0938              6.3903 

7.2424              8.3288 

16.4000 18.6835 

30.6027 32.4029 

39.5824 40.8003 

40.8421 41.6700 

26.6160 25.9700 

20.8122 19.1841 

23.1027 21.7685 

20.5536 17.2192 

36.0748 28.7480 

51.2397 41.5933 

 

This number of iterations depends on both number of unknown elements and total 

number of elements (see the algorithms in Chapter 3). That is why both iterations and speedup 

with number of unknown elements and total number of elements are plotted.  Figure 5.3 shows 

the number of iterations vs number of unknowns. Figure 5.4 shows the number of elements vs 

number of unknowns. In both graphs, the number of iterations increases with problem size. We 

can see that the number of iterations increases with problem size for both CPU and GPU. The 

reason for the difference between number of iterations in the GPU and in the CPU is as 

explained later in this section. 

The Figure 5.5 shows the speedup vs number of unknowns for the CGEbE. Figure 5.6 

shows the speedups vs number of elements for the CGEbE. The speedups vary with problem 

size. We can see an erratic nature in the speedups in Figures 5.5 and 5.6. The causes of the erratic 

speedup need to be investigated [108]. 
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Figure 5.3: Number of iterations vs number of unknowns for CGEbE 

 

 

 

Figure 5.4: Number of iterations vs number of elements for CGEbE 

 

 

Since we have been working with the regular finite element method for the Poisson 

equations for magnetics, the bi-conjugate gradient method [34] also works as the conjugate gradient 

method because [A] = [A]
T
  [34, 77]. In the situation where the convection effect when dealing with 

temperature problems is significant, finite element matrix equations take antisymmetric form [83]. 

Therefore for a generalized finite element package, antisymmetric solvers also should be included 

with the package. 

Table 5.4 shows the CPU and GPU calculation times for the different sizes of problems for 
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the biconjugate gradient stabilized element by element (BiCGSTABEbE) method. Even- though it 

gives higher speedup than the CGEbE method, this BiCGSTABEbE method takes a long time to 

converge. We can see the differences in Tables 5.3 and 5.4.  The BiCGSTABEbE method shows a 

higher speedup of 80.1364 for 54,674 unknowns while the speedup is only 20.55 for 2,828,782 

unknowns. So BiCGSTABEbE method can be used to solve small problems (smaller than 54,674 

unknowns problems). 

 

Figure 5.5: Speedup vs number of unknowns for CGEbE 

 

 

 

Figure 5.6: Speedup vs number of elements for CGEbE 
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The Figure 5.7 shows the number of iterations vs number of unknowns for BiCGSTABEbE. 

Figure 5.8 shows the number of elements vs number of unknowns for BiCGSTABEbE. In both 

graphs, the number of iterations increases with problem size. This is as to be expected for a well-

conditioned problem, such as this. 

Table 5.4: The BiCGSTABEbE solution 

 CPU GPU  

Elements

 Unknown 

Itns  Time Itns  Time Speedup (S) S per itn 

26595               3072 

32682               3843 

45328               5440 

106587 13312 

210024 27852 

273008 36704 

399928 54672 

978905 137639 

1940736 279340 

2569403 372149 

3830869 559546 

9521059 1413142 

18879664 2828782 

71 3.44 

72 4.27 

83 6.84 

107 21.24 

143 56.68 

145 74.81 

162 123.41 

219 421.69 

263 1051.64 

361 1785.89 

371 5158.10 

466 11147.04 

553 28191.35 

69 0.34 

72 0.34 

72 0.35 

96 0.50 

129 0.88 

134 1.08 

146 1.54 

198 6.41 

237 21.24 

260 33.43 

375 82.78 

569 366.80 

884 1371.98 

10.1176 9.8326 

12.5588 12.5588 

19.5429 16.9528 

42.4800 38.1129 

64.4091 58.1033 

69.2685 64.0137 

80.1364 72.2217 

65.7863 59.4780 

49.5122 44.6175 

53.4218 38.4755 

62.3109 62.9828 

30.3900 37.1071 

20.5479 32.8470  

 

Figure 5.7: Number of unknowns vs number of iterations for BiCGSTABEbE 
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The Figure 5.9 shows the speedups vs number of unknowns for BiCGSTABEbE. Figure 

5.10 shows the speedup vs number of elements for BiCGSTABEbE. The speedups vary with 

problem size. The speedup is decreasing after 54,674 unknowns in contrast to the speedup 

increasing for CGEbE after 54,674 unknowns.  Again the causes of the erratic speedup need to be 

investigated [108].  

Table 5.4 compares the CPU and GPU calculation times for different sizes of problems for 

CGEbE algorithm. This table gives speedup and speedup per iteration.  It shows high speedup of 

102.12 for 54,672 unknowns which is equivalent to a matrix size of 54,672 × 54,672 in regular first 

order finite element analysis. 

 

Figure 5.8: Number of elements vs number of iterations for EbEBiCGSTAB 

 

 

 
Figure 5.9: Speedup vs number of unknowns for BiCGSTABEbE 
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Figure 5.11 shows the number of iterations vs number of unknowns for Jacobi EbE. Figure 

5.12 shows the number of iterations vs number of elements for Jacobi EbE. In both graphs, the 

number of iterations increases with problem size as to be expected.  We can see that the number of 

iterations increases with problem size for both CPU and GPU 

The Figure 5.13 shows the speedups vs number of unknowns for Jocobi EbE. Figure 5.14 

shows the speedups vs number of elements for Jacobi EbE. The speedup is decreasing after 372,149 

elements (see Table 5.5). 

 

Figure 5.10: Speedup vs number of elements for BiCGSTABEbE 

 

 

 

Figure 5.11: Number of unknowns vs number of iterations for JacobiCG 
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Figures 5.15 and 5.16 show the convergence of the CGEbE algorithm for CPU and GPU 

respectively. We can see that both convergence patterns are almost the same and that the 

convergence rate is very high in both figures. 

Figures 5.17 and 5.18 show the convergence of the BiCGSTABEbE algorithm for CPU and 

GPU respectively. We can see that both convergence patterns are slightly different and the 

convergence rate is high in both figures 

Table 5.5: The Jacobi solution 

 CPU GPU  

Elements

 Unknown 

Itns  Time Itns  Time Speedup (S) S per itn 

26595               3072 

32682               3843 

45328               5440 

106587 13312 

210024 27852 

273008 36704 

399928 54672 

978905 137639 

1940736 279340 

2569403 372149 

3830869 559546 

9521059 1413142 

18879664 2828782 

806 17.24 

889 23.58 

1019 37.01 

1557 134.42 

2371 409.10 

2712 619.42 

3320 1129.47 

5376 6219.27 

7826 19026.61 

9070 31069.48 

11185 56743.83 

17853 217808.09 

24904 488881.06 

807 0.70 

889 0.78 

1018 0.95 

1557 1.96 

2374 4.67 

2713 6.52 

3314 11.06 

5374 66.84 

7819 269.75 

9063 452.96 

11176 930.97 

17856 4364.02 

24908 12852.42 

24.6286 24.6591 

30.2308 30.2308 

38.9579 38.9197 

68.5816 68.5816 

87.6017 87.7126 

95.0031 95.0381 

102.1221 101.9375 

93.0471 93.0125 

70.5342 70.4711 

68.5921 68.5392 

60.9513 60.9023 

49.9100 49.9184 

38.0381 38.0441 

 

 

Figure 5.12: Number of elements vs number of iterations for JacobiCG 
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Figures 5.19 and 5.20 show the convergence of the Jacobi EbE algorithm for CPU and 

GPU respectively. We can see that both CPU and GPU convergence rates are very slow 

compared to CGEbE and BiCGSTABEbE. But convergence patterns in CPU and GPU are the 

same and the convergence pattern is smooth. Here we can see there is not that much difference 

between number of iterations between GPU and CPU compared to CGEbE and BiCGSTABEbE 

algorithms.  In CGEbE and BiCGSTABEbE methods many statements including element by 

element process are parallelized  in GPU but in the Jacobi method only one statement with 

element by element executes in the GPU. This is the possible reason for this difference in the 

number of iterations in CPU and GPU 

 

Figure 5.13: Speedup vs number of unknowns for Jacobi EbE 

 

 

 

Figure 5.14: Speedup vs number of elements for Jacobi EbE 
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Figure 5.15: Convergence rate of CG in CPU 

 

 

 
Figure 5.16: Convergence rate of CG in GPU 

 

 

 
Figure 5.17: Convergence rate of BiCGSTABEbE in CPU
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Figure 5.18: Convergence rate of BiCGSTABEbE in GPU 

 

 

 

Figure 5.19: Convergence rate of Jacobi in CPU 

 

 

 

 

 

 

 

 

 

Figure 5.20: Convergence rate of Jacobi in GPU 
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Figure 5.21 compares the speedup of Jacobi EbE, CGEbE and BiCGSTABEbE methods. 

In terms of speedup, the Jacobi CG method gives a higher speedup for small problems (less than 

372,149 unknowns), the second higher speedup is for BiCGSTABEbE and then CGEbE. But 

convergence time is much less for CGEbE, followed by BiCGSTABEbE and then Jacobi EbE. 

For large problems (bigger than 372,149 unknowns, see Tables 5.3, 5.4, 5.5), CGEbE gives a 

higher speedup, followed by Jacobi EbE and then BiCGSTABEbE. But convergence time is 

much less for CGEbE, second less for BiCGSATBEbE and then Jacobi EbE (see Tables 5.3, 5.4, 

5.5). 

 

Figure 5.21: Speedup comparison between CGEbE, BiCGSTABEbE and Jacobi EbE algorithms 

 

 

Figure 5.22 graphically summarizes Kiss et al.’s speedups from [109] which are lower 

than those by the same authors, Kiss et al., in [34] even though both use the same hardware. Kiss 

et al.  [109] got 10.01 as their maximum speed up for computations on a single GPU 

(corresponding to our results which shows a maximum speedup of 102.12). In terms of speedup 

we got better results while at the same time they got a higher convergence rate than ours with an 

astoundingly fast rate in terms of iterations (e.g., 79 iterations for a 91,000 X 91,000 matrix on a 

CPU) but the results of Fernandez et al.  [33] are more comparable to our Jacobi EbE. Kiss et al 
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[109]’s speedup peaks at 1,339,434 unknowns and decreases with matrix size thereafter. There is 

an erratic up and down speedup that needs to be investigated [108]. 

 

Figure 5.22: Speed-up versus matrix size of Kiss et al. 

 

 

Table 5.6: Speedup ratio between single and double 

Matrix size Jacobi Gauss-Seidel GMRES(35) BiCGSTAB 

2000 1.9148 1.9197 1.9773 1.9712 

4000 1.5568 1.8194 1.9854 1.9976 

8000 2.3471 1.9148 1.9255 1.8784 

12000 1.9851 1.8095 2.0099 1.9157 

16000 2.2012 1.9276 1.8528 1.9545 

20000 2.0449 1.8841 1.8819 1.8850 

 

Table 5.6 shows the speedup ratio of the single and double precision GPU implementation of the 

direct method for linear systems [110]. Theoretically for memory bound algorithms, double 

precision work on the GPU has been shown to take twice as much time than single precision 

arithmetic [111]. However, there are papers where this is not so [108, 110] (see Table 5.6). 

Communications is a factor but the exact nature is still not known as pointed out in our paper 

[108]. Devon Yablonski analyzes numerical accuracy issues that are found in many scientific 
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GPU applications using floating point computation [112]. As he puts it, two widely held myths 

about floating-point on GPUs are that the CPU’s answer is more precise than its GPU version 

and that computations on the GPU are unavoidably different from the same computations on a 

CPU [112]. He appears to have dispelled both myths by studying specific applications.  

 

Figure 5.23: Serial addition losing precision. Numbers surrounded by a box represent the actual 

result floating point value with 7 digits 

 

 

Accumulating values serially (Figure 5.23 A) will sometimes result in a large value that each 

successive small value is added to, resulting in diminished accuracy of the results. The reduction 

style of computation (Figure 5.23 B) avoids the issue in accumulating floating-point values in a 

way that is similar to binning [112]. Binning describes collecting and computing small groups of 

values and then computing the final result by combining each result.  There is sometimes an 

erratic up and down speedup [113] like in Figures 5.5, 5.6, 5.9, 5.10, 5.13, 5.14. The causes need 
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to be investigated as we have pointed out [108]. In a study we did of GPU computation for finite 

element optimization by the genetic algorithm [3], the speedup showed an unexpected erratic up 

and down trajectory [108]. This result is seen in other works too such as of Krawezik and Pool 

[113] as shown in Figure 5.24 and Kiss et al. [34] as shown in Figure 5.22. In the absence of an 

explanation we carry on but a real understanding of the method to obtain the best speedup, 

requires some investigation. 

 

Figure 5.24: Erratic behavior of gain for various methods 

 

 

While expert programmers have programmed their problems in CUDA C to reap the 

benefits of speedup, it is to be noted that the compiler is very difficult to work with as pointed 

out by us [108]. Error messages are still difficult to use in debugging. When memory is violated 

in one function, the program crashes in another without a proper error message. Debugging is 

therefore more difficult in CUDA C, particularly because we cannot print intermediate outputs 

directly from the GPU 
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Chapter 6 

 

Conclusion and Future Works 
 

 

The first part of this thesis describes a successful script-based, parameterized mesh 

generator library for design and NDE developed in C for seamless finite element optimization. 

Unlike other such systems written in inaccessible code and designed for use with specific 

software, this system is provided as open-source  code [114, 115] so that it may be modified by 

anyone and used with his or her own finite element (FE) optimization system. This system with 

the finite element analysis and optimization on the GPU makes for quick NDE assessments and 

other finite element optimization problems in the field [3]. The modified open source codes 

Triangle and TetGen we have developed for optimization are CPU-based because mesh 

generation takes little time compared to finite element matrix solution and optimization. As such 

the massive effort to port them to a GPU is not justified. Moreover they are too complex for 

porting to the GPU. A large team of engineers can translate that too to the GPU but we do not 

think the effort is warranted by the gains to be had. The mesh generator has been demonstrated 

through a successful NDE system for testing army ground vehicle hulls with damage from 

corrosion or IEDs and some associated optimization problems. 

In the second contribution of this thesis, we have presented our GPU-based EbE matrix 

solution routine that is very fast and takes little memory. It has been specifically developed for 

finite element optimization.  Several finite element solutions are done on parallel GPU threads 

for use where memory is critical and solution times long. The GPU-parallelized pre- conditioned 

conjugate gradient (PCG) algorithm with sparse-stored matrix formation is the best way for 
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PCG. With 24 GB GPU cards now available, EbE processing is not necessary for most practical, 

single, forward problems. This element by element (EbE) method, how- ever, becomes a must 

for genetic algorithm optimization where, whether in NDE or device design, several genetic 

algorithm threads are launched in parallel and memory capabilities are challenged. The EbE 

Jacobi iterations give better speed-up than the conjugate gradients element by element (CGEbE) 

for which incomplete cholesky conjugate gradient (ICCG) is not possible because the matrix is 

never formed in EbE processing. 

In our work we use the genetic algorithm where the object function corresponding to 

every member ℎ̅ of a population has to be computed many times to find the minimum. The many 

members ℎ̅ form the genetic search space. Since ℎ̅ consists of dimensions and materials of a 

particular design being examined for its goodness [116], for those dimensions a mesh is 

constructed, the finite element problem solved and the object function evaluated. The object 

function itself is computed from a finite element solution involving a matrix equation. Thus we 

may treat the object function computation as a kernel and launch it on multiple threads, each for 

a different member of the population. Then within that kernel, we can parallelize the matrix 

equation solution at a speedup which we shall refer to a SP, which depends on problem size. 

Alternatively, we may do the object function evaluation for each member of the population in 

sequence and in that process parallelize the matrix computations. Let the population number be 

n.  Say the object function evaluation for each member of the population takes 𝑡0 + 𝑡𝑚 in time 

where 𝑡𝑚 is the time for the matrix solution and 𝑡0 is the time for other operations. Therefore if 

we parallelize the operations for the different members of the population, the time for evaluating 

all the object functions corresponding to the entire population would still be, neglecting 

coordination time, 
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𝑡 = 𝑡0 + 𝑡𝑚                                                             (6.1) 

 

since these are done simultaneously.   Here we have assumed that the work for each member of 

the population is being done in parallel, and that the time for combining results and other 

communications is negligible. 

On the other hand, if we parallelized the matrix computation, the evaluation of the object 

function has to be in sequence since we cannot have forking from a parallelized kernel. The total 

time would then be the number of members in the population multiplied by the time for 

computing the object function for each member of the population 

𝑡 = 𝑛 [𝑡0 +
𝑡𝑚

𝑆𝑃
]                                                             (6.2) 

where SP is the matrix equation solution speedup, tm is the time for the matrix solution, n is 

population number and t0  is the time for other operations. A decision on which of the processes 

is to be parallelized would depend on considerations like this.  However we have not seen such 

considerations in the literature [12]. Further in a recent development CUDA Dynamic 

Parallelism has been made available on the SM 3.5 architecture GPU [72], we can parallelize 

both the genetic algorithm and the FE calculations.   Suggested future work includes, 

• Develop the GPU based parametrized mesh generator for two and three dimensions. 

• Develop dynamic parallelization based optimization tools. 

• Develop a user friendly PC-based optimization tools for portable NDE use in the field. 
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Appendix B: Sample Input File 2D 

 

 
#A set of pointsin 2D(* WITHOUT VARIABLE POINTS). 

# Number of nodes is 9 number of variables is 5 

9   5 

#And here are the nine points. 

1 0.0  0.0 

2 10. 0 0. 0 

3 20.0 0. 0 

4 10. 0 10. 0 

5 0. 0 10. 0 

6 2. 0 2. 0 

7 4. 0 2. 0 

8 4. 0 4. 0 

9 2.0 4.0 

# variable points 

# number of points in first draw. Then coordinates 

10  20.0 1.85 

11 18 1.90 

12 15.5 2.10 

13 13 2.40 

14 10  3 

#segments, 1st line --number of segments following lines are segments (node 

numbers, each 

segment has two node numbers and a marker to identify the boundary elements. 

#number of segments 

15 

#segments (two nodes) and a marker 

1 3 10 1 

2 4 5 2 

3 6 7 -1 

4 7 8 -1 

5 1 2 -1 

6 2 3 -1 

7 5 1 -1 

8 14 4 -1 

9 10 11 -1 

10 11 12 -1 

11 12 13 -1 

12 13 14 -1 

13 2 14 -1 

14 8 9 -1 

15 9 6 -1 

#segment markers used to identify the boundaries and set boundary 

#conditions. do not give 0 or 1 to segment marker because already 

#fixed as a default, 3rd column is boundary condition value 

2 

#asdf 
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1 2 0 

2 3 0 

#regions, number of regions x y   coordinates of region, regional 

#attribute  (for whole mesh), Area constraint that will not be used 

#we can leave one region without any assignments we have to assign for 

#this case 0 0 0 0 but we can give properties to this region 

  

2 

1 1 0.5 1 0.1 

2   12  3   2   0.9 

# 

#properties of regions, first number of properties then property 

#values 

2 

1 1 1.32 

2   1.90  9.312 

# holes, number of holes x y   coordinates of the hole 

1 

1 3 3 

#type 

0 

#measuring points 

10 

#point coordinates 

1 1.1 1.10 

2   2.1 1.19 

3   3.1 1.18 

4   3.3  1.17 

5   3.6  1.16 

6   3. 9   1.15 

7   4 .1 1.14 

8   4. 4   1.13 

9   4. 9   1.12 

10  5.1 1.1 
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Appendix C: Sample Input File 3D 

 

 
#3DMesh Input File 

#Number of  points <--> Number of variable points 

36 22  

#13 3 0 1 

1 0 0 0 

2 100 0 0 

3 100 0 100 

4 0 0 100 

5 0 50 0 

6 100 50 0 

7 100 50 100 

8 0 50 100 

9 0 100 0 

10 100 100 0 

11 100 100 100 

12 0 100 100 

 

#coil 

13 40.0 52.0 48.0 

14  44.0 52.0 48.0 

15 48.0 52.0 48.0 

16 52.0 52.0 48.0 

17 56.0 52.0 48.0 

18 60.0 52.0 48.0 

19 40.0 52.0 52.0 

20  44.0 52.0 52.0 

21 48.0 52.0 52.0 

22  52.0 52.0 52.0 

23 56.0 52.0 52.0 

24  60.0 52.0 52.0 

25  44.0 56.0 48.0 

26  48.0 56.0 48.0 

27  52.0 56.0 48.0 

28  56.0 56.0 48.0 

29  44.0 56.0 52.0 

30  48.0 56.0 52.0 

31 52.0 56.0 52.0 

32  56.0 56.0 52.0 

33 40.0 60.0 48.0 

34  60.0 60.0 48.0 

35 60.0 60.0 52.0 

36 40.0 60.0 52.0 

#variables 

37 52.85316955 44 50.92705098 

38 51.76335576 42 52.42705098 

39 50  43  53   
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40 48.23664424 45 52.42705098 

41 47.14683045 42 50.92705098 

42 47.14683045 43 49.07294902 

43 48.23664424 45 47.57294902 

44 50  44  47   

  

45  51.76335576  43  47.57294902 

46  52.85316955  43  49.07294902 

47  51.42658477  46  50.46352549 

48  50  46  51.5 

49  48.57341523  47  50.46352549 

50  49.11832212  46  48.78647451 

51  50.88167788  46.5 48.78647451 

52  50  48  50 

53  51.42658477  40  50.46352549 

54  50  40  51.5 

55  48.57341523  40  50.46352549 

56  49.11832212  40  48.78647451 

57  50.88167788  40  48.78647451 

58  50  38  49 

 

 

#number of  faces,   boundary markers 

53  1 

#  no  of  polygons> no  of holes, boundary marker 

1  0  3 

4 1 2 3 4  

1 0 3    

4 5 6 7 8  

1 0 3    

4 9 10 11 12  

1 0 3    

4 1 2 6 5  

1 0 3    

4 5 6 10 9  

1 0 3    

4 2 3 7 6  

1 0 3    

4 6 7 11 10  

1 0 3    

4 1 4 8 5  

1 0 3    

4 5 8 12 9  

1 0 3    

4 8 7 11 12  

1 0 3    

4 4 3 7 8  

1 0 -1    

12 13 14 25 26 15 16 27 28 17 18 34 33 
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1 0 -1          

12 19 20 29 30 21 22 31 32  23 24 35 36 

1 0 -1    

4 13 19 36 33  

1 0 -1    

4 18 24 35 34  

1 0 -1    

4 33 34 35 36  

1 0 -1    

4 13 14 20 19  

1 0 -1    

4 14 20 29 25  

1 0 -1    

4 25 26 30 29  

1 0 -1    

4 15 21 30 26  

1 0 -1    

4 15 16 22 21  

1 0 -1    

4 16 22 31 27  

  

 

1 0 -1  

4 27 28 32 31 

1 0 -1   

4 17 23 32 28 

1 0 -1   

4 

#new 

1 17 

 

0 18 

 

-1 24 23 

3 37 38 47  

1 0 -1   

4 38 39 48 47 

1 0 -1   

4 39 40 49 48 

1 0 -1   

3 40 41 49  

1 0 -1   

4 41 42 50 49 

1 0 -1   

3 42 43 50  

1 0 -1   

4 43 44 51 50 

1 0 -1   

3 44 45 51  



135 
 

1 0 -1   

4 45 46 47 51 

1 0 -1   

3 46 37 47  

1 0 -1   

4 47 48 52 51 

1 0 -1   

3 48 49 52  

1 0 -1   

3 49 50 52  

1 0 -1   

3 50 51 52  

1 0 -1   

3 37 38 53  

1 0 -1   

4 38 39 54 53 

1 0 -1   

4 39 40 55 54 

1 0 -1   

3 40 41 55  

1 0 -1   

4 41 42 56 55 

1 0 -1   

3 42 43 56  

1 0 -1   

4 43 44 57 56 

1 0 -1   

3 44 45 57  

1 0 -1   

4 45 46 53 57 

1 0 -1   

3 46 37 53  

1 0 -1   

4 53 54 58 57 

1 0 -1   

3 54 55 58  

1 0 -1   

3 55 56 58  

1 0 -1   

  

 

3 56 57 58 

 

#bounday conditions 

1 

#conditions 

1 3  0 

 

# 2 regions 
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3 

1 10 10 10 1 0.1 

2 46 50 50 2 0.01 

3 -1 -1 -1 3 1.2 

 

#number of properties 

2 

1 1.90 2.20 

2 2.213.30 

3 3.214.30 

 

#number of holes 

0 

 

#measuring points 

5 

1 52.85316955 51 50.92705098 

2 51.76335576 51 52.42705098 

3 50  51  53   

4 48.23664424 51 52.42705098 

5 47.14683045 51 50.92705098 

#mesh area constraint 

10 
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