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ABSTRACT

DILUTE SOLUTION PROPERTIES OF‘POLYOCTENE—l

by Larry E. Ballard

A sample of atactic polyoctene-l was fractionated and character-

ized by light scattering, osmometry, viscometry and, phase equilibria

measurements.

Three molecular weight—viscosity relationships were established

by correlating molecular weights determined by light scattering with

viscosity data. They are

in cyclohexane at 300C [7]] = 5.75 X 10—5 MO'78

in bromobenzene at 250C [77] = 2.90 x 10‘5 M°°75

in phenyl ethyl ether at SO.bOC [7?] = 6.5h x 10-4 M°°5°.

Mean square end-to-end dimensions of the polymer in bromobenzene

were calculated from light scattering data by the Zimm method as well

as Debye's dissymmetry technique. The universal hydrodynamic parameter

E from polymer viscosity theory was calculated and found to agree very

well with the commonly accepted value.

From phase study data, the theta temperature of the polymer in

phenyl ethyl ether was found equal to SO.b°C.

A comparison of the ratio of the average end—to-end dimensions to

the degree of polymerization for a series of poly a-olefins was made.

It was found that the ratios were in the order polystyrene > poly-

octene-l > polybutene > polyprOpylene CZ.polyisobutylene. This indicates

the dimensions are proportional to the size of the pendant groups.
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The lower critical solution temperatures for a series of solutions

of polyoctene-l fractions in n-pentane were measured. It was found

that the precipitation temperature could be related to the molecular

weight through the Flory interaction parameter, )(1.

A plot of the lower critical solution temperatures against l/kl/Z

gave a straight line. The intercept of this line at infinite molecular

weight, i.e., i/xl/Z = 0, was defined as e that is, the lower critical
L)

miscibility temperature for polymer of infinite molecular weight. The

6L for polyoctene-l in n-pentane was found experimentally equal to

hBLOK and was calculated from a relationship based on the Prigogine

cell model of solutions (assuming )(lc = 0.50) to be b370K.
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INTRODUCTION

Since it was first demonstrated by Nattal that stereoregular a-ole-

fins could be prepared by Specific catalysis, a number of results have

been published-2:3:4 which indicate a dependence of certain physical

measurements on the polymer configuration, i.e. the distribution of
:

asymmetric centers. The present work is a continuation of a program,

being carried on primarily in this laboratory, designed to study the re-

lationship between physical properties of a-olefin polymers and their

chain configuration. The present work was carried out with the purpose

of characterizing a sample of atactic polyoctene-l and thereby adding

to the data which are available for the poly a—olefins in general.

In addition, polyoctene-l is of interest because of its relatively

large pendant group. One object of this study is to discover how the

pendant group will effect such measurable quantities as the average

end-to-end length of the molecule. At first thought, it would be ex-

pected that the end-to—end length of a polymer would be directly pro—

portional to the length of its pendant groups. That is, a long pen-

dant group would be more apt to interfere with other groups and the

polymer backbone and thus have the effect of expanding the polymer.

However, Chinai and collaborators5:6 have investigated a homologous

series of n-alkyl methacrylate polymers and found that the ratio of the

end-to-end dimensions of these polymers to the degree of polymerization

fell off in the order n-hexyl >in-octyl > methyl > ethyl > n-butyl. This

order is curious in that the size of the polymer is not dependent on

the size of the pendant group. In like manner, the end-to-end dimensions

measured for the polyoctene-l will be compared with the data of other

1
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a-olefins and any apparent order or anomalies with reSpect to the length

of the side groups will be noted.

Aside from the standard characterization procedures, measurements

of the lower critical solution temperature (L.C.S.T.) of polyoctene-l,

as well as several other a-olefins in n-pentane were undertaken. The

fact that polymers will precipitate from solution when the solution is

heated sufficiently high has only recently been recognized7:5. It ap-

pears that this phenomena is related to the approach of the solvent to

its critical temperature and is associated with a rapid decrease in the

entropy of mixing and a negative heat of mixing. It is believed that

this is a universal phenomena characterizing all polymer-solvent systems.

Several workers725 have determined the L.C.S.T. for polymer-solvent

systems and found that the L.C.S.T. decreases with increase in molecular

weight. Also the L.C.S.T. was related theoretically to the Flory inter-

action parameter )(1 and the solvent molecule Size9. However, no work

has been carried out in which polymer fractions have been studied. It

was therefore of intereSt to determine the L.C.S.T. of solutions of

characterized polymer fractions and to relate the L.C.S.T. to polymer

molecular weight.

Upon considering the relationship between molecular weight and L.C.S.T.,

a new parameter is immediately suggested. This new parameter, which shall

be referred to as 0L, is analogous to the Flory 0U which is the upper

critical miscibility temperature for infinite molecular weight polymer.

0n the same basis,_9 is the lower critical miscibility temperature for,
L

infinite molecular weight polymer. That is, below the temperature 9L

(provided we are at the same time above GU), polymer of any molecular

weight is miscible with the solvent. Since no exact theory for this
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phenomena is at present available, 0L will be determined in a manner

similar to that used to find 0U. However, any relationship between

molecular weight and the L.C.S.T. which is linear could be extrapolated

to infinite molecular weight to find 0L.



THEORY

Thermodynamics of Polymer Solutions

Because of the size and conformations of dissolved polymer molecules,

their solution behavior is considerably different from that of low molec-

ular weight substances. Thus special theoretical treatment is required

to explain their solution properties. Even at low concentrations, poly-

mer solutions exhibit large deviations from ideal thermodynamic behavior.

These deviations from ideality arise largely from very high entropies

of mixing as a result of the large difference in molecular Size between

the polymer and the solvent. By a statistical mechanical treatment in

which polymer segments and solvent molecules are allowed to occupy sites

in a lattice, Flory1° and Huggins11 independently were able to Show that

the conformational entropy of mixing was given by

AS = -k(nl ln/U'l + 1'12 III/v.2) (1.1)

M

where/V'l and/mfg are the volume fraction and n, and n2 are the num—

ber of molecules of solvent and solute and k is the Boltzmann constant.

The heat of mixing can be seen to originate in the replacement of

some of the contacts between like species in the pure solvent or poly-

mer with contacts between unlike Species in the solution. According to

the lattice theory with each cell able to accommodate either a solvent

molecule or a polymer segment, three types of first neighbor contacts

are possible. That is, it is possible to have a solvent-solvent, a sol-

vent-polymer, or a polymer-polymer contact. If the energies associated

with these contacts are represented by ”11: “12: and "22 respectively,

the change in energy for the formation of an unlike contact pair can be

represented by
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Aw12 = ”12 - (l/2)(w11 + "22) (1.2)

Following the van' Laar' treatment for the heat of mixing, we can write

AHM = ZAW1zninfe (1'3)

This equation can be written as

AHM ‘ kTX1n1/U’2 (1.14)

where we define

X1 = Zimm/RT (1-5)

as a dimensionless parameter which characterizes the interaction energy

between polymer and solvent, 2 is the coordination number of a polymer

segment, and n1 is the number of solvent molecules.

If it is assumed that Aw12 is independent of temperature, that is,

if Awlz contains no entropy contribution and the only entropy contri-

bution is from the conformational entropy as given by equation (1.1),

one can find the free energy of mixing from equations (1.1) and(l.h).

That is,

ARM = AHM - TASM = kT[nl lnnfl + n2 lnAfz + )(1D1fl721 (1.6)

From this expression it is possible to derive several useful relation—

ships involving experimentally obtainable quantities. For example, if

(1.6) is differentiated with respect to n1 (realizing thatlnrl and/172

are functions of n1 and n2), we can find the relative partial molar

free energy, AF, (i.e., the chemical potential per mole of the solvent

in the solution). Thus

0
AFl = “1 ‘ H1 RT[1n(l-/V2)+(1—1/X)flfz + XanZP-l (1.7)

RT 1n a1 (1.8)

where x is the number of chain segments per polymer molecule and is

given by the ratio of the molar volumes of the solute and the solvent,

and a1 is the activity of component 1.
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In like manner, if we differentiate (1.6) with respect to n2, we

obtain for the solute

AF“2 = 112 - 112° RT[ 1n/zr2 - (x-1)(1-/U'2) + X1x(l-nf2)2] (1.9)

RT 1n a2 (1.10)

The theory just discussed is based on the assumption that there is

a uniform concentration of polymer throughout the solution. It is more

likely, however, that in dilute solutions individual polymer molecules

become separated from each other by regions of pure solvent and the con-

centration of polymer segments must become non—uniform in the solution.

This problem is approached by deriving a general expression for the total

free energy of interaction between all of the segments in a volume ele-

ment, (5V, which is considered small enough so that the expected seg-

ment density may be considered to be the same for all portions of 6V. '

It has been shown that the free energy of mixing polymer segments with

solvent in the volume element (5V is given by

6(AFM) .. hflén, 1n(l-n}'2) +X16n1m’2] (1.11)

whereilrz refers to the volume fraction of the polymer in (5V. The

chemical potential of the solvent in 6V is given by

(u. - 111°) = RTtan-w‘z) "0‘2 + X10521 (1-12)

If (1.12) is expanded in series and if powers oftlfé larger than the

second are neglected, we have

(u. - 11.0) = min/2 - X1W'221 (1.13)

These expressions may be regarded as the excess chemical potential re-

sulting from non-ideal contributions.

Equation (1.13) can be written in the form

(11. - 11.0) = RuK, 41/9/2122 (1.11.)

where f<1 and UV, are heat and entropy parameters defined as
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AH, %.RTK1n/’22 (1.15)

15, = 1251/,ng (1.16)

Comparing equations (1.13) and (1.1h), it is seen that

K1 - $01 = Xi - l/2 (1.17)

It is sometimes preferred to use as a parameter the ideal temperature

defined by

e = Kl'r/SL/l (1.18)

so that

W1 ' K1 = W1(1-9/T) (1.19)

The excess chemical potential can be written

(11, - (1,0) = -RTy/,(1 — e/T)/U’22 (1.20)

In a thermodynamically poor solvent, i.e. where both K1 and W1 are

positive, 9 will also be positive. When T = 9, the chemical potential

due to segment-solvent interactions is zero according to equation (1.20).

Thus at T = e, the excess chemical potential is zero and deviations

from ideality vanish and the molecules can interpenetrate one another

freely with no net interaction. At temperatures below 0, they attract

one another, and at temperatures much below 9, precipitation of the

polymer occurs. It will be seen later that G is the critical miscibil-

ity temperature for polymers of infinite molecular weight.

Molecular Extension”a

In general, each molecule in a dilute solution will tend to exclude

all others from the volume which it occupies. This leads to the concept

of an excluded volume from which a polymer molecule effectively excluded

all others. If this concept of excluded volume is extended to individual

molecules, we find that, because of the obvious requirement that two
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segments cannot occupy the same space, the chain will extend over a larger

volume than would be calculated theoretically. The extended conformation

of a polymer molecule is determined by an equilibrium~between an expan-

sion force due to the excluded volume and a contraction force due to a

distortion of the molecule beyond its most probable conformation as de-

termined by bond length and valence and internal rotational angles.

The distorted chain may be considered to be expanded by a factor a over

the unperturbed dimensions (the dimensions determined by the bond angles

and the lengths only) of the molecule. Thus the actual root-mean-square

end-to-end length of the molecule, F2, is given byaFZo where F30 is the

unperturbed dimension determined experimentally from viscosity measure-

ments.

The total free energy of mixing the polymer segments of a molecule

with a solvent consists of the sum of the AFMj for each volume element

plus a term AFel for the free energy change associated with alteration

in molecular conformation. Thus

AF = :AFMJ + are, (2.1)

.1

At equilibrium

(BAP/Gan, P = o (2.2)

This leads to an evaluation of a given by

a5 - a3 = 2CMyj1(1-G/T)M1/2 (2.3)

where

/2fl3/ /25 2 _ '3

C, = (27/2 >(fi72/Nv.>(r2./M> (2.1)

and a? is the specific volume of the polymer, v1 its molar volume, and

N is the number of particles. Equation (2.3) predicts that a should

increase without limit as molecular weight increases. Thus (Fay/2511mm
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increase more rapidly than in proportion to the square root of the

molecular weight. This follows from the theory of random chain config-

uration which shows that the unperturbed root-mean-square distance ( F20)1/2

is prOportional to Ml/Z, whereas ?2 = aFZO.

Also a depends on the intensity of the thermodynamic interaction

as eXpressed byl%&(l-e/T) which is equal to Sfll - AC1. The larger this

factor, the greater the value of a for a given M. Hence, the better the

solvent, i.e. the larger the 90,, the greater the swelling of the
3

molecule.

At T = 0 in a poor solvent, a5 - a3 = 0 and a must equal unity.

Therefore, at T = 0, the molecular dimensions are unperturbed by inter-

molecular interaction and the excluded volume will equal zero at this

temperature.

12b
Phase Study

When the temperature of a polymer solution is lowered, the solvent

becomes thermodynamically poorer. Finally, a temperature is reached

_ below which the polymer and solvent are no longer miscible in all pro-

portions. At this and any lower temperature, a mixture of polymer and

solvent will separate into two phases.

The condition for equilibrium between two phases in a binary sys-

tem is that the partial molar free energy of each component be equal in

each phase. Application of this condition to the partial molar free

energy given by equation (1.7) gives for the critical concentration at

which phase separation first appears

fUzc = 1/(1 + x 1/2) ””V 1/x1/2 (3.1)
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The critical value of )(1 is given by

1 2 1 2

X“, = (1 + x / )2/2x c: 1/2 + l/x / (3.2)

Thus the critical value of 9!, exceeds 1/2 by a small increment depend-

ing on the molecular weight and at infinite molecular weight equals 1/2.

The temperature at which phase separation begins is given by

1/1‘C = 1/e[1 + (1/g[/,)(1/x1/2

_ 1

Thus l/TC(°K) 1 should vary linearly with (l/x

+ 1/2x)] (3.3)

2

/ + l/2x). The theta

temperature is seen to be the critical miscibility temperature in the

limit of infinite molecular weight.

Fractionation

Most polymerization procedures yield products which are hetero—

geneous with respect to molecular weight. Before the polymer is studied,

it is desirable to separate the whole polymer into parts or fractions

having a relatively narrow molecular weight distribution.

All of the methods used to fractionate polymers are based on the

difference in solubility of the different Species present. That is,

the solubility, which is related to the chemical potential of the Species

in solution, decreases with increase in molecular weight. Thus if the

solubility of a solvent is decreased by cooling a solution of a hetero-

geneous polymer, a point is reached when phase separation occurs and

two layers form. The system will then consist of a dilute phase with

low polymer concentration and a precipitated phase w ith high concen-

tration. Because of the lower solubility of the higher molecular weight

species, they will be contained mostly in the precipitated phase, and

the more soluble lower molecular weight species will remain in the dilute

solution phase.
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Likewise if the solubility of a solvent is decreased by adding a

non-solvent to it, a point is reached when enough non-solvent is added

to cause the high molecular weight species to precipitate. If this

precipitated polymer is removed and additional non-solvent is added,

the polymer of slightly lower molecular weight will precipitate. Thus

a scheme is offered whereby a whole polymer can be separated into frac—

tions of different molecular weight.

Osmometry and the Second Virial Coefficient

An osmometer is a device in which a solution is separated from

pure solvent by a membrane permeable only to solvent molecules. The

activity of the solvent in the solution is less than that of the pure

solvent, and if the system is to be kept in equilibrium, the activity

of the solvent on both sides of the membrane must be brought into equi-

librium. This may be done by applying an excess pressure to the solu-

tion side, either mechanically or by developing a hydrostatic head.

The excess preSsure required to reach equilibrium is called the osmotic

pressure, n, and the change in activity with pressure is given by the

equation

(aln al/aP)T N = vl/RT (11.1)

3

where V, is the molar volume of the solvent. Thus at osmotic equilibrium,

1 n

f a 1n a1 = f (VI/RT) ap (1.2)
o 0

Since v1 is essentially independent of pressure, we can write

- ln a1 = n vl/RT (11.3)

If the solution is sufficiently dilute, a1 = N1 where N1 is the mole
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fraction of the solvent, and since N1 is near unity,

- ln N1 261 —N1’/"vN2 xcvl/M (11.11)

where c and M are the concentration and molecular weight reSpectively

of the solute. Substituting these expressions in equation (h.3), we

obtain

n/c e: RT/M (1.5)

However, this expression holds only for ideal solutions and in order

to treat polymer solutions, it is necessary to use the thermodynamic

relationships discussed previously.

According to equation (1.8), we have for a polymer solution

RT 1h a1 = ln(l-/U'2) + (1 - 1/x)nf,_ + le'zz (11.6)

Substituting (b.6) directly into (h.3), we have

n = -(RT/v1)[ln(l-nf2) + (1 - l/x)/U’2 + Xlrv'zzl (11.7)

If the logarithmic term is eXpanded and only terms in powers of Va of

order three or less are retained, then

= (RT/v.)W2/x + (1/2 - .X1W'22 Mfg/3 + ...J (11.8)

chwhere A7 is the (partial) specific volume of the polymer

2

Since ”2

and since x is the ratio of the molar volume of polymer and solvent,

we have

n/E/xvl = efif/kv, = c/M (h.9)

Thus

fi/c = RT/M + RT(nI2/v,)(1/2 - X1) 0 + RT(fl73/3v1)c2 + (11.10)

The first term on the right is the van't Hoff ideal term. At infinite

dilution fl/c must approach this limit. The higher order terms repre-

sent the deviation from ideality.

It has already been pointed out that the lattice model theory

suffers from the invalid assumption that the interaction of the segments
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of a given polymer molecule with the segments of all other polymer mol-

ecules are the same as would be expected if theSe latter segments were

randomly distributed over the entire volume. It is much more likely

that at high dilution, the solution may be considered to consist of

two more or less distinct regions; i.e., one containing clfisters of

polymer molecules and the other region consisting of pure solvent. The

expressions for osmotic pressure derived from the lattice model theory

are therefore invalid at high dilution.

The deviation of a polymer solution from ideal behavior may be

thought to arise from interaction of molecules in the solution. Each

molecule in a dilute solution of a good solvent will tend to interact

with those in its vicinity and thus exclude them from the volume which

it occupies. This excluded volume is calculated by considering the

interaction between a pair of molecules in solution. Flory and Krig-

baum13 derived a general expression for the free energy of mixing

in terms of the excluded volume. Thus

AFM £5 - nsz[ln V - (u/2)(n2/V)] + Constant (b.11)

where u is the excluded volume. The excluded volume u can be expressed

by the following relationship:

u = 2801(1 - e/T)(fi2m2/v,) F(J £3) (11.12)

where m is the weight of a polymer molecule, V1 is the volume of the

solvent, and J has the value

J = w,(1_e/T)W2/v,) ' (1.13)

The value of (33 is given by

£3 = (33/21/2113“2) Ni’leg/Mfi/z M'Vzas (1.11)

where NA is Avogadro's number. The function F(Jg33) is of the nature
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that it decreases as the agrument increases. If we examine equation

(1.13), we see that when T = 0, J vanishes. When J vanishes, F(J§3)

becomes unity. The dependence of the excluded volume on temperature is

seen by examining equation (1.12). AS the solvent becomes poorer by

decreasing the temperature, the excluded volume decreases and at T = 6

it vanishes.

From equation (1.11) we can derive an.expression for osmotic pres-

sure by use of standard thermodynamic operations. Thus

n/t = RT[l/M+ (NAu/2M2)c] (1.15)

This equation holds only at very high dilution since only binary inter-

action between molecules was considered. If the osmotic pressure is

expressed as a power series in concentration analogous to the virial

eXpansion for a gas, we may adopt the convention form

n = RT[A1c + Azc2 4- A3c3 + ...] (1.16)

where c expresses the concentration of polymer in gm per unit volume.

Recalling that nZ/V = cNA/M and comparing equations (1.15) and 1.16) it

follows that

1/M (1.17)

NAu/2M2 (1.18)

A1

A2

or from equation (1.12) we can show that

A. = Wynn/ml - 6/1“) my) (1.19)

= JF(Jg33) (1.20)

When equation (1.16) is compared with the virial expansion of PV

in powers of l/V for a real gas, the analogy is at once obvious. Thus

if the gas molecules are regarded as point particles which exert no

forces on each other so that u = 0, the second and higher virial coef-

ficients, A2, A3, etc. vanish and the gas behaves ideally. Likewise
)
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in a polymer solution when T = 0, u = 0, and equations (1.15) and(1.l6)

reduce to the ideal van't Hoff's law

fl/t RT/M (1.21)

which rearranges to

II11V, anT (1.22)

and is a direct analogy to the perfect gas law. Thus the temperature

T = B for a polymer solution is seen to be the analog of the Boyle

point of a real gas, that is, the temperature at which a real gas obeys

the relation PV = nRT except for terms in the square and higher powers

of l/V.

The value of A3 depends on interactions involving three molecules.

In order to evaluate A3, it is necessary to consider the region of Space

from which the center of gravity of molecule k is repelled by both of

the molecules 1 and m. An accurate evaluation of the intergals result-

ing from considerations of the problem are difficult and so approxima-

tion procedures are used. In one model, the molecules are treated as

inpenetrable non-interacting spheres. The results of these calculations

show that

A. = (5/8>A.2M (1.23)

A more detailed analysis14 shows that the numerical coefficient 5/8

should be replaced for polymer molecules by a slowly increasing function

of A2. It is less than 5/8 and vanishes as A2 goes to zero. Calling

this function g, we have

A3 = 9822M (1.21)

For many purposes it is preferable to use instead of equation

(1.16) the series expansion

fl/c =(fl/t)o[1 + [EC + rgcz + ...] (1.25)
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where

B. = Az/Ai (1.26)

F. = 13/11, (1.27)

and

(Ir/ch) = RT/M (1.28)

An important consequence of the relationship between the second and

third virial coefficient is that the contribution of the third virial

coefficient decreases rapidly as the second is made smaller, that is,

when poorer solvents are used. It follows that the decrease in slope

for poorer solvents should be accompanied by a rapid decrease in curva—

ture.

Osmotic pressure measurements are made to determine both the molec-

ular weight of a polymer and the polymer-solvent interaction. These two

values require that the first two terms in equation (1.25) be evaluated.

Since the third term is important only as it aids in the accurate evalu-

ation of the others, its value can be approximated, and since it makes

a negligible contribution in poor solvents, it is sufficient to take for

9 its value in a good solvent, that is 0.2514, and to treat it as a

constant15. Thus if g = 0.25 is used and higher order terms are neglected

we can write equation (1.25) as

n c = (n/t).[1 + ( F}/?)c]2 (1.29)

The osmotic pressure data is then treated by plotting (n/c)1/2 against

c. The molecular weight is calculated from the intercept of the line

and.A2 is determined from the slope and the intercept of the line.

If we examine equation (1.2)), we see that A2 is given by the molec-

ular weight independent factor J, multiplied by the factor F(Jg33) which

decreases slowly from unity to approach zero asymptotically as the
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molecular weight becomes larger. We can compute A2 easily from the

theoretical expression using experimentally obtained parameters. Thus

J = (Elm - e/T)'n';"2/v, (1.30)

is obtained easily by using values of 1 and 0 obtained from phase

studies, and 572 and V, are found from density measurements. The fac-

tor £33 can be computed using values of a obtained from viscosity stud-

ies. The factor F(Jg33) can be found by successive approximation calc-

ulations. Also this factor has been expressed in closed form by Flory,

Krigbaum, and Orofinol5217, and by Cassassa and Marrorityla. The calc-

ulated values of A2 can then be compared with those obtained from

osmometry or light scattering measurements.

Viscosity

A pr0perty common to all high polymers is that when dissolved, the

viscosities of the resulting solutions are considerably larger than those

of the pure solvents. This ability to produce a viscous solution is a

property of polymers related to the voluminous nature of the randomly

coiled chain molecules and So is basically a measure of the Size or ex-

tension in space of the polymer molecule.

The viscosity of a liquid is commonly determined by timing the flow

of a known volume of the liquid through a capillary (viscometer) and is

calculated using the relation

7']: Apt — B/O/t (5.1) .

where A and B are viscometer constantS,/4)is the density of the liquid,

and t is the flow time. The factor B is used to correct for kinetic

energy-effects. If t is large and if well-designed viscometers are used,

the kinetic energy effect is small and can be neglected. If the kinetic
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energy effects are small, the viscosities of the solvent and solution,

YLand no, can be replaced by the flow times, t and to, since only the

relative values are required. (The subscript 0 refers to solvent flow

time.)

It is customary in polymer science to represent polymer solutions

concentrations, c, in gm./100 m1. On this basis, if the viscosity of

the solution is 77 and that of the solvent is 770: we can define several

useful quantities. If the viscosity of the solution is divided by the

viscosity of the solvent, we obtain the relative viscosity, 72rel° The

Specific viscosity is defined as 773p = 77rel - l and expresses the in-

cremental viscosity attributable to the solute. The ratio 77Sp/c, the

viscosity number (or reduced specific viscosity), is a measure of the

Specific capacity of the polymer to increase the relative viscosity.

The limiting value of this ratio at infinite dilution is called the

intrinsic viscosity19 which is designated by [7?]. Thus in mathematical

language

[721 = (mp/c), _, O = [07,81 - we], _,_ O (5.2)

When the concentration c is expressed in gm./100 ml., the intrinsic.

viscosity is given in the reciprocal of this unit, deciliters per gm.

Intrinsic viscosity may aIso be defined as the following:

, [721 = [nanny/c], _,O (5.3)

Huggins19 found, for a series of polymer fractions at different

concentrations in the same solvent at the same temperatures, that the

slopes of the linear portions of the plots of 77sp/c against c were

proportional to the square of the intercept, and he proposed the empir-

ical relationship
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= 2USP/c [771+ k' [77] c (5.1)

In this equation, k' is constant for a given polymer-solvent system pro-

vided the polymer is pure and homogeneous. It is generally in the range

of 0.30 to 0.10. Another relation, due to Kraemerzo, similar to (5.1) is

= _ 2(1177mm [771 mm c (5.5)

If the left side of equation (5.1) is expanded in terms of 77Sp/c,

we obtain

2 ' 3

[1n(nrel)/c1/c = 332 - 31.2 52,... 77,2 §2 - (5.6)

c c c

from which we have

11 [l ( )/1 = 1' ( /) (5.7)
C_:Onnrelc C_1_;n_o7?SpC

If equation (5.1) is substituted into equation (5.6) and powers of c

higher than the first are neglected, it is seen that k' + k" = 0.50.

This furnishes a convenient aid for extrapolating viscosity data.

Usually [TI] is found by plotting both , ”Sp/C against c and

ln(7?rel)/c against c on the same graph. This procedure facilitates

extrapolation since both intersect the ordinate at zero concentration.

If log [7?] of a series of polymer fractions is plotted against

log M, a general empfiical relationship, known as the Mark-Houwink equa-

tion21, is obtained. The relationship may be eXpressed by the equation

in] = 11' Ma (5.8)

where K' and a are constants for a given polymer, solvent, and temper-

ature. The value of the constant a, when applied to measurements of

flexible chains, usually lies between 0.50 and 0.80. Although equation

(5.8) is empirical in origin, it can be closely approximated by more

complex theoretical expressions.
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It has been shown that the viscosity measurement gives a viscosity

average molecular weight22 defined by the equation

Mv=[Z ”iMa]l/a = [2 NiMiHa/Z “811/:11 (5'9)
i=1 i=1 i=1

If fractionated polymers are available so that Manv’xMw, any absolute

molecular weight measurement can be used with values of intrinsic vis-

cosity to evaluate the constants in equation (5.8). However, since MV

is nearer to Mw than to Mn’ weight average molecular weights are prefer-

red for determining the constants.

The theories of the frictional properties of polymers in solution

conclude that the intrinsic viscosity is proportional to the effective

hydrodynamic volume of the molecule in solution divided by the molecular

weightlzc. The effective volume is shown to be proportional to the cube

of a linear dimension of the polymer chain. When (F2)1/2 is chosen as

the linear parameter, it is shown that12C

[7?] = 1 (Rf/2m (5.10

where Q is a universal constant independent of solvent temperature and

polymer. We can separate (301/2 into the factors a(F§)1/é, and since

(F0)1 2/M is independent of the solvent and molecular weight, we can

write

[771 = “ROADS/2 111/ch = mil/2:13 (5.11)

where

K = D (Poms/2 (5.12)

which is constant for a given polymer and independent of solvent and

molecular weight. It was shown previously that at T = G, a = 1. There-

fore at T = 0 we have
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[7?]. = KMl/Z (5.13)

The constant A can be calculated from equation (5.10) if F2 has

been determined from light scattering measurements or by some other

means and if is measured in the same solvent at the same temperature

at which the light scattering measurements were made. From the value

of E, (FQ/M)l/2 can be calculated from (5.10) and compared with similar

values calculated, assuming free rotation about the bonds. Thus it is

possible to obtain information on the effect of hindered rotation about

bonds and other perturbing effects, such as side groups on the main

polymer chain.

Light Scattering

When a beam of light passes through a non-absorbing liquid, it is

found that the medium is not perfectly transparent but scatters a small

amount of the incident radiation. This scattering in pure liquids was

shown by Einstein23 to be related to local thermal fluctuations in the

density of the liquid which made it optically inhomogeneous. If the

inhomogeneity of the medium is increased by adding a solute, the scat-

tering intensity increaSes.

The intensity of the light Scattered from a solution depends on

the polarizability of the molecules compared with that of the solvent,

the size of the molecules, and the concentration of molecules. The in-

tensity of the light scattered in a given direction from a single mole-

cule is proportional to the square of its size or molecular weight. This

means, for example, that the light scattered from one molecule of molec-

ular weight 2M will be greater by a factor of 2 than the light scattered
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by two molecules of molecular weight M. This dependence of scattered

intensity per particle on a power of molecular weight greater than the

first make possible the determination of molecular weight and polymer

size.

The problem of measuring molecular weights of polymers by light

scattering therefore becomes a matter of determining the intensity of

scattered radiation. The intensity of scattered light is expressed in

terms of the turbidity 2', defined as the fraction of the light scattered

in all directions from the primary beam per cm. of path. The turbidity

is measured experimentally by comparing the scattered intensity at a

given angle to the incident intensity of the light. Debye34 related

molecular weight to scattered intensity by the expression

3.3% = 117.1 ‘1' 2A2C (6.1)

where

H = 32w: no2 (92 2 (6 2)

3NA 7.71- dc ’

is constant for a given polymer-solvent system and a specific wave

length of light, I. The other constants are Avogadro's number NA’ the

refractive index of the solvent no. The (dn/dc) is the refractive index

increment of the solution due to dissolved polymer. This is a measur-

able quantity which is pr0portional to the excess polarizability of the

molecules in the solvent. A2 is the second virial coefficient and c is

the concentration of the polymer expressed in terms of weight per volume.

Equation (6.1) is satisfactory for particles smaller than about

(l/20)A. For larger particles, interference occurs in the scattering

pattern and the scattering enve10pe becomes unsymmetrical. In this
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case, it is necessary to correct equation (6.1) with a factor P(0) which

is a shape factor that corrects the observed scattering to that which

it would be if there were no interference. Thus equation (6.1) becomes

%E = METBT + 2A2c (6.3)

Zimm was able to Show25 that the shape factor for randomly coiled

polymer molecules (that is, those whose radial segmental density distri—

bution can be represented by a Gaussian function) may be represented

approximately as

_ 3-

LimPl(O) = 1 + g},— r2 31.12-2- + (6.1)

C-9O

where sin 0 is the viewing angle as measured from the direction of the

incident light. Combining (6.1) with equation (6.3), we have

2—

1.1111 Liz—C: = W-fi- (IT’S—:31”? 51112-2"? ...) (6.5)

c a> 0

If the dissymmetry method of Debye is used to calculate the molec-

ular weights and sizes, it is necessary to measure the scattering inten-

sity, ie, at two angles symmetrical about 90°, for example, at 15° and

135°. The dissymmetry coefficient, 2 = i90-45/190+45, thus obtained

can be used to calculate the value of (172)1 2 for the molecules being

measured. We can then use (F?)1/é with equation (6.1) to calculate the

shape factor, P(G), and then use P(G) in equation (6.3) to calculate

the molecular weight.

If the dissymmetry is large, the scattered intensity, and therefore

the turbidity, will be functions of the angle at which it is determined,

as well as the concentration. Zimmz6 solved this problem by plotting

the data simultaneously as a function of angle and concentration. Thus

Hc/qf in equation (6.3) is plotted against sinZO + kc (k is an arbitrary
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constant chosen so that kc assinz g ) and the curves are extrapolated

both to zero angle and zero concentration. These limiting values are

then extrapolated to the common intercept at zero. The limiting slope

of the zero angle line yields the second virial coefficient, A2; the

ratio of the limiting slope of the zero concentration line to the inter-

cept gives the mean-square end-to-end dimension of the molecule, and

the intercept gives the reciprocal of the weight average molecular

weight, Mg.

The dimensions of the molecules obtained in this way are the 2-

average values, and some knowledge of the molecular weight distribution

is required in order to convert them to weight average values. Many

molecular weight distributions can be approximated by a function of the

form

h+l h _ M

f(M) = lfi—r- M e y (6.6)

where h is a parameter characterizing polydispersity. Zimm has shown“:26

that for such a distribution, h is given by

h = (fi;/fin - 1)‘1 (6.7)

and that

Mz =1») = E (6.8)

h+2 h+1 h

If we assume that a polymer has this particular distribution, we can

convert the z-average dimensions to the weight average dimensions by

use of the relation

r = rw(h + 2)/(h + 1) (6.9)
Z
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Lower Critical Solution Temperature

If two unlike liquids are mixed, two results are possible. The

liquids will either dissolve each other completely to form a single

phase or the liquids will not dissolve each other completely and two

phases (each of which is a solution) will form. If the homogeneous

mixture of two liquids is not miscible at all temperatures and at all

compositions, then at some other temperature or composition, the two

will separate into two phases. For example, n-hexane and nitrobenzene

are miscible in all proportions, if the temperature is above 19°C..

Likewise, outside the limits of about 0.15 and 0.80 mole fraction nitro-

benzene, the two liquids will be miscible at all temperatures.

If we plot the phase separation temperature against the mole frac-

tion of nitrobenzene, the results will be as shown in Figure 1.? At

the point C, the maximum in the curve, the two liquid layers become

identical and the liquids will be miscible in all proportions. This

point is called the upper critical solution temperature (U.C.S.T.) and

also called the upper critical consolute temperature.

In other two component systems, a different type of behavior may

be observed. For example, in the system diethylamine and water, shown

in Figure 2, there exists a temperature below which the liquids are

miscible in all pr0portions. This point represents a lower critical

solution temperature (L.C.S.T.). Finally, there are liquid systems

which exhibit both an upper and a lower critical solution temperature.

An example of this is the system n-toluidine and glycerol as depicted

in Figure 3. In this particular case, the two phase region is a closed

100p and the L.C.S.T. is lower than the U.C.S.T. In another case, the
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L.C.S.T. is higher than the U.C.S.T. and there are two, two phase regions

separated by a one phase region. This type of behavior has been obser-

ved for polymer systems and is the one which will be of primary interest.

An example of this type is shown in Figure 1.

The stability of a binary phase can be characterized in terms of

the chemical potential. If we consider a binary system whose two com-

ponents are in equilibrium, thermodynamic arguments27a show that for

equilibrium with reSpect to diffusion for a two component system

(egg) = (g—fif) < o (7.1)

Making use of the Gibbs Duhem relation, it can be shown that

u - 2. ‘ u s 9.gig - x188?) and %: x165? (7.2)

and so equation (7.1) is equivalent to

6:43:3(0 and gia<0 ' (7.3)

For example, these conditions may be illustrated by the hexane-nitro-

benzene system shown in Figure 1. If the chemical potential of hexane

is plotted as a function of the mole fraction of nitrobenzene, the

curves shown in Figure 5 result. Above 19°C (curve 1) a single phase

only exists and the conditions of (7.3) are always satisfied. However,

below 19°C, curve 3 consists of three parts: one corresponding to the

phase rich in nitrobenzene, one for the phase rich in hexane, and a

horizontal line joining these two, corresponding to the simultaneous

presence of two phases. The curve at 19°C represents the transition

temperature between these two types of curves. The horizontal portion

is reduced to a single point of inflection at C which mathematically

satisfies the restrictions
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“1 2 = o .h3,912,) (3.15:1) (7 )

and

253A

(3331),, < 0 (7.5)
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Fig. 5.27a variation of chemical

potential of n-hexane as

a function of nitrobenzene

concentration.

The conditions of stability as given by equation (7.1) can be

written also in terms of the free energy of mixing since we can write

_ (5 F

(43-191,p - ' X2 #5731)» (7.6)

Therefore, for stability we can write from (7.1) and (7.6).

621:
‘b—ii) > 0 (7-7)

This inequality has a simple geometric interpretation. If'F is plotted

as a function of x2, then equation (7.7) requires that for a stable sys-

tem to exist, the curve must be concave upward at all points. This is

illustrated in Figure 6, curve 1. However, if we consider curve 2, we

see that the portion of the curve BC is unstable with respect to mater-

ial fluctuations and is surrounded by the portions AB and CD which are
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materially stable but are metastable with respect to the heterogeneous

mixture represented by the line AD.

'
l
e

 

  
 

Fig. 6.27a Variation of molar free

energy with composition.

The two phases in equilibrium have compositions A and D. That is,

the common tangent AD satisfies the equilibrium conditions,

“‘1' = “'1"

(7.8)
“'2' = “'2"

where the primes refer to phase' and phase". FUrthermore, at the crit-

ical point, we can write

 T -0___g) _ (7.9)

and

 

We will now investigate the conditions which determine whether the

critical point shall be a maximum or a minimum, that is, an U.C.S.T. or

a L.C.S.T. Referring to Figures 1 and 2 we have from.Prigogine and Defayz7b

that the slope of the curve CA is given by

a...) x2"A}' 11', + (1.1201) 11,

717— ‘ _ 7(x."-x.')<ezr'/ax.'2)

 

(7.10)
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where A," refers to a change in a thermodynamic variable from phase' to

phase" and'Hi is the partial molar enthalpy of component i. If we adopt

the convention of calling the first phase that which is more dilute in

component 2, we have

x2" > xz’ or (x2" — xz') > 0 (7.11)

If equation (7.10) is positive in the neighborhood of C on the curve AC,

then C is an U.C.S.T., and if the slope is negative on AC, then C is a

L.C.S.T.

The denominator is always positive for stable phases because of

(7.11) and the fact that

(-g—X—:-rz) > O (7.12)

Therefore, the sign of (7.10) is determined by the numerator.

Now we consider two phases very close to the critical point. We

let their temperature and concentrations be defined as To + 6 T, (x2)C +

6 x2' and TC +6 T, (x2)c + (5 x2". The partial molar enthalpy of com-

ponent l in these solutions can be obtained from the following expres-

sions

a . = (ii) + (3’31) 6x . + (381) (ST (7 13)
1 1 C 8X26 2 51 C .

and

8'1" = (8'1), + 7.339061." + (£1101 (7.11)

The heat of transfer of component 1 from the first phase to the second

is therefore

M81 = H." - 81' = ($3), (51211-6..21) (7.15)

From the Gibbs-Duhem relationship we can write

a h
x.(%,—,;)T,p + 111-3721,. = o (7.16)
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Therefore, the numerator in (7.10) can be written

—0x" (— --(§*“)1 (0x." - 6x20 (7.17)

To simplify the expression, we make use of the following relationships.

The derivative of R with reSpect to x2 can be written in the form

9— : H2 _ ii, (7.18)

and therefore

(7.19)
 

Since the change of component 2 in phase' must be equal to and the

negative of the change of component 2 in phase", we can write

6X2' = '6x2" (7.20)

Hence, if we substitute (7.19) and (7.20) into (7.17), we have for the

numerator of (7.10)

(6x29?- (7.21)

As we have seen, the Sign of (7.10) must be the same as that of (7.21),

that is, Opposite to (azH/axzz)c. Therefore, we have at an U.C.S.T.

2—

(855.2% < O (7.22)

and for a L.C.S.T. we have
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(3X22) > o (7.23)

These conditions relate the nature of the consolute temperature

to the curvature of the line H as a function of x2. For an U.C.S.T.,

the curve of R(x2) must be concave up as curve 1 in Figure 7, whereas

for a L.C.S.T., the curve must be convex down as curve 2. In the first

case, the heat content of the mixture is larger than that of the pure
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substances. The mixture will be formed from the pure substances with

an absorption of heat, that is, it will be an endothermic reaction. In

the other case, the mixture will be formed by an evolution of heat, that

is, it will be an exothermic reaction.
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Fig. 7.27b Molar enthalpy as a func-

tion of composition.

If we consider the relation

'15 = H — TS (7.21)

and remember that at the critical point (azF/azxzz) is zero, we can

write

2h is
( x221. = T(j5;:2)c (7.25)

The curvature of R(x2) and S(x2) have the same Sign at the critical

point. Therefore, in addition to (7.22) and (7.23) we have as a further

condition at an U.C.S.T.

CECE—2) < 0 (7.26)

and at a L.C.S.T.

 

> O (7.27)
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It will be beneficial to express these conditions in terms of the

excess thermodynamic functions. Thus we have

FE = FM -|RT(x1 1n x1 + x2 1n x2) (7.28)

EB = PM (7.29)

1S5 = EB - 1‘5 (7.30)

The superscript E indicates the function to be the thermodynamic excess

function, that is, the difference between the thermodynamic function of

mixing (denoted by M) and the value corresponding to an ideal solution.

So from equations (7.28, 7.29, 7.30) we can write

 
 

 

 

2—» RT 2-8

(3,5121% = $2 + (g :2)C =_-'0 (7.31)

2—E

(3232),: 03—32% < O (U.C.S.T.) or > 0 (L.C.S.T.) (7.32)

EBTS R ZSE0537§2)c = _ X1X2 + (jgfiz) <50 (U.C.S.T. or > 0 (L.C.S.T.) (7.33)

These conditions can be illustrated as shown below.

  

 

 
 

    
 

HE X —9

1s 0 :2 1

O X —> 1 H E

2 TS

Fig. 8.27C Fig. 9.2"C

Thermodynamic excess functions in the neighborhood of an U.C.S.T.

(Fig. 8) and a L.C.S.T. (Fig. 9).

Thus for an U.C.S.T., the excess functions appear as in Figure 8 and for

a L.C.S.T., they appear as in Figure 9. So it can easily be seen that

the following conditions hold: for an U.C.S.T.,



FE:> 0

and for an L.C.S.T.,

>0, S >0 (7.31)
3

FE>0, EE<0, SE<0 (7.35)

The conditions above can be summarized28 by saying that U.C.S.T.‘s

are related to large positive deviations of the enthalpy of the system

from ideality while L.C.S.T.‘S result from sufficientlylarge negative

deviations of the entropy from ideality.

At an U.C.S.T., the critical value of FE can arise only from ener-

getic factors which affect the enthalpy of the system though not neces-

sarily the entropy. However, a L.C.S.T. point will occur only if the

system has a large negative excess entropy and a small negative excess

enthalpy. The difficulty of satisfying the conditions for a L.C.S.T.

can be shown in the following wayza. Consider a one phase system which

satisfies the conditions of (7.35) and is therefore potentially capable

of having a L.C.S.T. Suppose that at a temperature To the system has

at O a value of PE (Point O in Figure 10). Since SE is negative,'FE

will increase with T. If C: is positive, however, S8 will become less

negative as T incneases and so the slope of FE(T) will decrease with

increase of T. The curvature of FE(T) will be larger, the larger the

ratio SE/Cg. Thus system A will show a L.C.S.T.; system B will show a

closed loop and C will not show a phase separation. However, almost any

system.at 0 having excess entropy greater than -FE(critical) will

separate into two phases on lowering the temperature, for example, OE,

OF (correSponding to a regular solution), and 00. So for a L.C.S.T.

there must exist the proper combination of HE, SE, and‘CE

)
but almost

any system having SB larger than 4FE will show a U.C.S.T. For example,
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E, F, G are systems showing an U.C.S.T. Since HE must change from nega-

tive at a L.C.S.T. to positive at an U.C.S.T., it follows that for a

closed 100p C: must be positive.

 

FE (critical) _

   
Fig. 10.28 Variation of‘FE starting

from 0 to L.C.S.T. (to the

right) and to U.C.S.T. (to

the left).

An alkane polymer that is above its melting point is generally

miscible in all proportions with a paraffin solvent8 and according to

the original Hildebrand-Scatchard solubility parameter theory, the heat

of mixing should be small and positive. The polymer is often incom-

pletely miscible with aromatic and polar solvents in which the heat of

mixing is large and positive. The polymer becomes more soluble as the

temperature is raised until complete miscibility is attained at the

U.C.S.T. However, Freeman and Rowlinson7 have shown recently that

hydrocarbon polymers can also be precipitated from hydrocarbon sol-

vents whether aliphatic or aromatic by raising the temperature suffic-

iently above the normal boiling point of the solvent. The minimum

temperature at which immiscibility occurs is the L.C.S.T. for the

system. .As we have seen, in order to satisfy the thermodynamic re-

quirements for a L.C.S.T., the heat of mixing must be negative at this

point.
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A modified Hildebrand-Scatchard solubility parameter theory was

used by Delmas, Patterson and Somcynsky9 to Show the variation of AHM

with solubility parameters 6, and 6 2. Thus

AHM = 2VM/U'1/U'2(61 ‘ 6211136 1/3T) (7.36)

where

= vap 1/2

61 (AB, Ni) (7.37)

AEivap is the energy of vaporation, Vi the molar volume, and AF, is

the volume fraction of species i. As the temperature increases, AElvap

will decrease. Therefore, 61 will also decrease. Since (52 is less

temperature dependent than 51, a point will eventually be reached where

(5 2 will be larger than (S, and the difference ((51 - (52) becomes nega-

tive. So AHM will be positive or negative according to whether (5 1 is

greater or less than (S 2.

A quantative treatment of this problem has been given by Delmas,

Patterson, and Somcynsky9 and by Bellemans and Naar-Colin29. The deri-

vation of AHM is carried out using the quasicrystalline lattice or cell

theory deve10ped by Prigogine3°. Thus it was shown that AHM is given by

AHM

no. base moles XV,

 

= A - B(T/r,>2 (7.38)

where A and B are constants which depend on the solvent-polymer system

and are given by

A zw NA = 267162 NA/8 (7.39)

B

.-)(-

10.5 (112/2512) N11 (7.10)

€21, is the minimum potential energy of interaction of two segments of

type i and j (a solvent and polymer segment for example). (5 is given by

‘3? *

0= (ial-Eu) (7.11)

11
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Prigogine has shown31 that rA should be given by

r, = (n + l)/2 (7.12)

where n is the number of carbon atoms in the solvent molecule. Further,

it was shown that

RXl = AMA/T) + (BT/rA) (7.13)

Thus we have an eXpression which shows the dependence of )(1 on the

temperature. Or conversely, for every }(l, we can find twg correspond-

ing critical temperatures.

If A does not equal zero, we find the change of )(rwith T for

constant rA is given by

a X..-1 _._ _ .11 .13.31 mg. + 11R (7.11)

For )(1 to be a minimum we find that

102 = (A/B)rA2 (7.15)

The significance of )(1 being a minimum at this point means that above

or below To, )(l'will increase and the solvent quality becomes poorer.

As T increases or decreases, )(1 will reach the critical value and the

polymer will precipitate from the solution. So if we solve for TC/rA,

we find

+ 1/2

TC/rA = RX, 4031?} - MB] (7.16)

Depending on the relative values of A and B, we can distinguish

three possible cases. If A is zero (the polymer liquids differ only

in chain length), the U.C.S.T. is zero and the L.C.S.T. is given by

TC/rA = R/2B (7.17)

If 1AB < (1/2 R)2, two real roots exist corresponding to the L.C.S.T.

and the U.C.S.T. If 1AB > (1/2 R)2, there are no critical temperatures
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and the polymer and the solvent are not soluble in all proportions.

These three cases are illustrated in Figure ll, 12, and 13.

  

     

 

   

Two TWO
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One Phase Phases

X2 -—> . X2 —>

Fig. 11. A = 0. Fig. 12. 1AB < (1/2 R)2,

One Phase

T

Fig. 13. 1113 > (1/2 R)?

 



EXPERIMENTAL

Fractionation

The sample of polyoctene-l used for this study was supplied by the

Union Carbide Corporation. The polymer as received was a dark yellowish,

rubber-like substance. No measurements were made on the bulk polymer

prior to purification.

The polymer was fractionated by precipitation according to the

method described by Flory12d using cyclohexane as the solvent and ace-

tone as the non-solvent. The solution from which the polymer was pre-

cipitated was prepared by dissolving approximately ten gm. of polymer

in 1000 ml. of cyclohexane. Acetone was slowly added to the stirred

solution until a slight turbidity (due to precipitated polymer) per-

sisted. The precipitated polymer was redissolved by warming and the

resulting solution was placed in a thermostat maintained at 25i0.5°C

for 21 hours to allow the precipitated phase to settle. After the two

phases had separated, the supernatant phase was removed leaving the

polymer rich phase in the flask. The polymer was removed from the flask

by dissolving it in cyclohexane. The solution was filtered through

glass wool to remove impurities and the polymer was recovered by freeze-

drying. The procedure was repeated using the supernatant phase until

a total of twelve fractions was- recovered.

After the first fractionation, it was discovered that the discol-

oration was due to a residue, probably catalyst, left in the polymer.

When the polymer was dissolved in n-nonane, the residue remained insol-

uble and could be removed easily by centrifugation. After the residue

39
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was separated, the recovered polymer was tranSparent and colorless. The

insoluble residue did not ignite when heated over a gas flame and an X-

ray powder photograph produced a typical crystalline pattern. Thus it

was concluded that the residue was predominantly inorganic in nature.

In view of the amount of work entailed in extracting the residue from

each individual fraction and in repeating several measurements which

had been made using the impure polymer, a sample of the polymer from

which the residue had been removed was refractionated in order to ob-

tain pure fractions.

Ten gm. of the polymer were dissolved in 1000 ml. n-nonane and the

resulting mixture was centrifuged on the high-speed Servall centrifuge.

The purified polymer was recovered by pouring the solution into an ex-

cess of acetone. The precipitated polymer was dried under vacuum,

weighed, and then fractionated according to the procedure discussed

previously. This second fractionation yielded eleven fractions. In

addition, several of the first fractions were purified and later used

for measurements. Henceeforth, the fractions from the first fraction-

ation will be designated by a primed number, and those of the second

fractionation will be designated by a number followed by the letter A.

Phase Studies

Precipitation temperatures, Tp, of polyoctene—l in ethyl phenyl

ether were determined by the method described by Shultz and Floby32.

A polymer solution was prepared by weighing solvent and polymer direct-

ly into a test tube. The solution in the tube was then diluted after

each determination of T? to obtain the next solution. Tp was determined
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for four to seven concentrations for each of the six polymer fractions

studied.

After the solution was prepared, it was placed in a stirred water

bath and cooled rapidly to determine the approximate Tp. The precipi-

tated polymer was redissolved by heating and replaced in the water bath.

The bath was cooled Slowly (about 0.2°/min.) until the polymer precipi-

tated. The temperature at which the solution first became turbid was

noted, and when the solution became Opaque, the temperature was again

noted. The mixture was defined as opaque when a black line behind the

tube was no longer visible through the tube. The two temperatures were

in most cases within 0.2°C of each other and Tp was taken to be the

temperature between the two.

After the polymers had been precipitated by cooling, the mixture

was warmed slowly. The polymer would, in most cases, redissolve about

1°C higher than the precipitation temperature. This difference in

temperature probably resulted because the warming took place too rapid-

ly for equilibrium conditions to be established and because some of the

precipitated phase settled.

The Specific volume of the polymer between 20°C and 50°C was

determined by measuring its density at 5° intervals from 20° to 50°.

A cyclohexane solutipn.of the polymer was placed in a calibrated speci-

fic gravity bottle and the solvent was evaporated leaving a polymer

film. The bottle was filled with water and the total weight of the

bottle, water, and polymer was measured over the temperature range.

Thus the volume of the polymer at each of the seven temperatures was

easily calculated. From a knowledge of the weight and volume of the
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polymer, its density, and thus its specific volume, was calculated over

the 30°C temperature range. The density of the solvent was calculated

using the equation given in the International Critical Tables33.

Viscosity

All viscosity measurements were made with a No. 75 Cannon-Ubbelohde

semi-micro dilution type viscometer. The intrinsic viscosities of the

polyoctene-l fractions were determined in cyclohexane, bromobenzene, and

ethyl phenyl ether. The temperature of the solutions was maintained to

within i0.5°C by placing the viscometer in a thermostat. The solution

flow times were measured by an electric timer accurate to i0.l sec.

The relative viscosities of all solutions were between 1.2 and 2.0.

The viscosities of three solutions at different concentrations

were measured for each fraction. The first solution was prepared by

weighing polymer and solvent directly into a flask whereas the other

two were obtained by successive dilutions of the solution within the

viscometer.

Viscosity measurements in the theta solvent presented problems not

encountered ordinarily when working with solutions of thermodynamically

good solvents since incipient precipitation of the polymer occurs a few

degrees below the measurement temperature. It was therefore essential

the polymer solution did not cool below the theta temperature. All

apparatus used in the transfer of the solution from the preparation

flask to the viscometer was preheated to prevent precipitation of the

polymer. In addition, the solvent used for the dilutions was heated

above the theta temperature before it was added to the solution in the

viscometer.
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It has been shown by Cannon, Manning, and Bell that the kinetic

energy correction is negligible for the type of viscometer used in this

study34. Therefore, no corrections due to kinetic energy effects were

applied to the viscosities.

The intrinsic viscosities of all the fractions measured in bromo-

benzene were equal to or less than about 1 deciliters/grm. Flory and

others have shownlzes35 that for intrinsic viscosities less than about

1 deciliters/gm. it is not necessary to correct the intrinsic viscosity

for rate of shear effects. The effect of shear rate on the viscosities

measured in cyclohexane was investigated by plotting [7?] bromobenzene

against [77] cyclohexane since some [7?] values in the latter solvent

are larger than 1. As seen in Figure 11, the relationship was linear

over the range of the fractions studied. This linearity indicates

that no shear corrections were necessary for the visCosity measurements

in cyclohexane. In addition the linear relationship between log [7?]

tyclohexane and log Mw indicated that shear rate corrections were un-

necessary.

Osmometry

The number average molecular weight of the polymer fractions was

determined by osmometry. A modified Zimm-Myerson osmometer designed by

Stabin and Immergut was used for the measurementsss. The instrument

was designed to facilitate removal of the solution while the instrument

remained in the thermostat making successive readings much faster.

Another feature of the instrument is the large ratio of membrane area

to capillary radius which decreases the time required to reach equilib-

rium.
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Since the osmotic pressure of a solution is directly pr0portional

to the absolute temperature, the temperature needs to be measured to

within i0.l°C. The error of the temperature measurement will not affect

the molecular weight significantly. However, more stringent require-

ments upon temperature control are imposed by the following considera-

tions. The osmometer encloses a volume of liquid which is large com-

pared to the volume of liquid per millimeter of capillary. The osmometer

acts toward temperature fluctuations as if it were a sensitive thermo-

meter. For example, cyclohexane at 30°C has a temperature coefficient

of volume of 0.0011 ml. per ml. per °C whereas the volume of liquid

contained by a 0.1 mm. length of 0.5 mm. diameter capillary is 7.8 x 10'5

m1. Therefore for an osmometer containing 10 ml. of solution, a change

of 0.05°C correSponds to a change in scale reading of 0.7 mm. In order

to fulfill the requirement for accurate temperature control, the osmom—

etry measurements were carried out in a 30° thermostat whose temperature

was controlled to within i0.0l°C. The temperature fluctuation was de-

termined by a Beckmann thermometer.

The membranes used in the osmometer were de-nitrated gell cello-

phane grade 150. The membranes were treated in a 5% NaOH solution for

one hour to render them more permeable to the solvent. After the mem-

branes were treated with the NaOH solution, they were conditioned grad-

ually to the solvent, cyclohexane, following the method described by

Yanko37. When the osmometer was assembled, the permeability of the mem-

branes was measured. The importance of the permeability measurement is

to establish that the membranes are free from imperfections and that the

osmometer is assembled correctly. It is also used to decide the minimum

time required for the establishment of osmotic equilibrium.
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The measurement of the time constant of an osmometer, from which

the permeability is obtained, may be made with the osmometer filled with

pure solvent. The initial level in the measuring capillary, hl, is set

1—5 cm. above that for the reference capillary, hz, and the descent noted

at a series of times. The 10garithm of the hydrostatic head (the dif-

ference between h, and hz) is then plotted vs. time. The time neces-

sary for the natural logarithm to decrease by l is the time constant33.

An example of this measurement is shown in Figure 15.

When the results of the measurement indicated that the osmometer

was functioning prOperly, the solvent was removed from the cell and it

was filled with the polymer solution by means of a syringe and a long

hypodermic needle. (To prevent the membranes from drying, the osmometer

was never left free of solvent.) The cell was rinsed with a few ml. of

solution before it was filled so that the final concentration of the

solution would not be affected by the small amount of liquid which re-

mained in the cell.

Care was taken to remove all air bubbles from the osmometer cell

after it was filled. This presented no problem since the bubbles could

be seen easily through the glass cell and were easily removed.

The polymer solution was preheated to the operating temperature

before it was placed in the cell. However, it cooled slightly when

transferred to the cell. Thus when it was placed in the cell, it warm-

ed and expanded. The expansion of the solution caused an immediate

capillary rise which continued for several minutes. After this expan-

sion ceased, it was assumed that temperature equilibrium was established

and the readings were begun.
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Osmotic pressure was determined by measuring the difference between

the level in the solution capillary, hl, (previously referred to as the

measuring capillary) and the level in the reference capillary, hz. The

heights, hl and hz, were measured by a cathetometer accurate to $0.001

cm. The difference between hl and ha, i.e. Ah, was therefore accurate
3

to $0.002 cm.

It is usual for Ah to pass through a maximum and then decrease

slowly with time. The level in the measuring capillary and therefore

Ah should increase with time until an equilibrium height is reached.

If Ah is plotted against time, it will increase to a maximum and then

drop slowly. The decrease in Ah (or in the level of the measuring cap-

illary) is caused by polymer molecules diffusing through the membranes.

Actually the polymer molecules diffuse through the membranes from the

beginning of the measurements and so the maximum Ah is not the true

equilibrium value.

Assuming that the polymer diffusion has been constant throughout

the determination, the effect can be corrected by extrapolating Ah to

zero time. The intercept at zero time gives the equilibrium Ah value.

An example of this extrapolation is shown in Figure 16.

After the reading of the first solution was completed, it was re-

moved from the cell and the cell was rinsed with pure solvent. The

first solution was diluted and the procedure just described was repeated.

Finally this second solution was removed and diluted and a third read-

ing was made. Thus three concentrations of each fraction were measured.
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hexane. C = 0.80h7 gm/lOO cc.
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Light Scattering

The weight average molecular weights of six polymer fractions were

determined by light scattering. All of the measurements were performed

using the Brice-Phoenix Light Scattering Photometer series 1000.

Light scattering measurements were performed on six of the higher

molecular weight fractions with bromobenzene as the solvent. Prelimin-

ary investigation of the solvent indicated that the solvent exhibited

no fluorescence at the wave length used for the light scattering measure-

ments. All reported measurements were taken with the unpolarized green

(Sbléfl) line of mercury.

The techniques and procedures for making the light scattering

measurements were, with a few exceptions, the same as those described

by Mchy3Qa. One difference in technique involved the method of measur-

ing the scattering intensities over the range of angles. Since the light

scattering calculations depend upon the ratio of the scattering intensity

at a given angle 9, Ge, to the intensity at zero angle, Go, it is impor-

tant that Go remain constant throughout the measurements. However, it

was found that Go would drift slightly during the time of the measure-

ment and thus the ratio of 69/00 was affected. This change in the Go

reading which was attributed to instrument drift or photo tube fatigue

changed the 66/00 ratio by as much as two to three percent. The techni-

que used by McCoy did not take into consideration the change in Go with

time and, in fact, assumed it to be constant over the range of angles

covered. In order to correct for this drift, it was deemed advisable

to check Go after the intensity at each angle was measured. The photo

tube was set at the sero angle position and the galvanometer deflection
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was arbitrarily set at 95. The photo tube was then rotated to the first

angle, the h5° position, and the intensity measured. The photo tube

was returned to the zero angle position and if necessary the galvanometer

deflection adjusted to 95. The intensity at the second angle was then

read. This procedure was continued throughout the entire range of angles.

Thus the zero angle intensity, Go, was the same for all angles.

The anomalous readings between 700 and 800 mentioned by McCoy”b

were also observed during this investigation. As McCoy noted, these

anomalous readings were probably due to extraneous reflections. This

effect was corrected by using a rectangular tube between the cell table

diaphragm and the cell. This tube, although allowing the parallel light

beam from the lamp to pass unhindered, fit tightly against the cell so

that no extraneous light reached the photo tube.

The data obtained from these measurements were treated in the man-

ner outlined by McCoy with the exception that, because of larger dis-

symmetry ratios, the Fresnel corrections for the back reflection of

light at the glass/air interface were applied.

The Specific refractive index increment, (dn/dc), of the solution

due to the polymer was measured using the Brice-Halwer4° type differen-

tial refractometer. The instrument was calibrated with standard sucrose

and alkali chloride solutions. The (dn/dc) was measured for the whole

polymer and for several fractions at the temperature at which the light

scattering measurements were made. Details of the measurements and

calibration procedure are given by Mchy39C. n "'

If the technique just described was used, the ratio 69/00 should

be independent of any instrument fluctuations. That is, G , the inten-

sity of scattered light at G, is directly proportional to the incident
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intensity, Go. Any fluctuation in Go will cause a fluctuation in 69.

The ratio 66/00 will remain constant. However, it was found that the

ratio 69/00 tended to decrease with time. A definite correlation was

seen to exist between the decrease in this ratio and the increase in

the solution temperature. The temperature of the solution increased

as a result of the increase of the temperature inside the instrument.

It is believed that as the temperature of the solvent increased, its

solvent qualities changed which caused the polymer coil size to change.

Although this effect would not change the measured value of the molecu-

lar weight, it would, however, change those parameters which depend on

the solvent-polymer interaction such as the second virial coefficient.

Although no extensive study was made of this effect, it was found that

the change did not effect the value of the data to an appreciable ex-

tent and so no direct attempt was made to maintain the solution at a

constant temperature. That is, the temperature of the solution was

determined by the temperature inside the photometer.

Lower Critical Solution Temperature

Lower critical solution temperatures were made of n-pentane solu-

tions of polyoctene-l and two other a-olefins, isotactic and atactic

polypropylene and polybutene. For the polyoctene-l and the atactic

polypropylene and polybutene, n-pentane solutions of known concentra-

tions were prepared and transferred to capillary tubes by means of a

long hypodermic needle. Because they were insoluble at room tempera-

ture in n-pentane, the isotactic polymers were weighed directly into

the tubes. The solvent also was weighed directly into the tubes. When
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the solutions, or solvent and polymer, had been placed in the tubes,

they were cooled to dry ice temperature and evacuated. The tubes were

then sealed while under vacuum.

On several occasions during the sealing, it was observed that solu-

tion was lost due to "bumping" of the solutions while under vacuum. It

was found that this problem could be solved if the solution was frozen

with liquid nitrogen before the tube was evacuated. To determine if

any solution was lost during the sealing, the liquid level in the tube

was measured with a cathetometer before and after sealing.

The tubes were heated by immersing them completely in a heating

bath of Dow-Corning 550 silicone oil. The temperature of the phase

separation, Tb, was found by heating the bath slowly (O.1°C per min.)

until the solution became turbid. The phase separations, in most cases,

took place over a range of one degree or less and were reproducible to

within one degree with two or three repeated heatings. No evidence for

decomposition of the polymer upon heating was observed.

Above Tp, the two phases separated, the polymer rich phase being

the denser. If the bath was cooled immediately after the solution be-

came turbid so that the phases did not separate, the polymer would re-

dissolve immediately at the precipitation temperature.



RESULTS

Fractionation

Two samples of polyoctene-l were fractionated from a dilute cyclo-

hexane solution. The first fractionation was carried out on the untreat-

ed whole polymer, while the second fractionation was carried out using

a sample from which the metallic residue had been extracted. This~

second fractionation yielded eleven fractions. With the exception of

two extracted fractions, no studies were made of the fractions from the

first fractionation.

The results of the fractionation were determined by viscosity measure-

ments. Thus the intrinsic viscosity of each of the eleven fractions

from the second fractionation and the bulk polymer were determined in

cyclohexane at 30°C.

The results of the second fractionation are shown in Table I. It

is seen that the molecular weights (as determined by intrinsic viscosity)

of the first three fractions are in reverse order. It is suSpected that

this resulted either because of non-uniform temperature throughout the

fractionation or because the polymer separated on the basis of tacticity

rather than molecular weight alone. Another possibility is that some

branching was present in the molecules and that this caused the solubil-

ity of lower molecular weight Species to be decreased. No information

was available concerning either the tacticity or the possible presence

of branching of the polymer and no measurements were made to determine

either tacticity or branching of the fractions.

5h
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Table I. Fractionation data.

 

 

 

Fraction [7?] cyclo- wt. gm. wt. % [7?]iwi

hexane 300

Second Fractionation

M 6.37 0.638 7.50 0.1.8

2A 6.72 0.133 1.5h 0.10

3A 9.30 0.290 3.A5 0.32

11A 9.61. 0.285 3.33 0.32

5A 8.60 0.7Al 8.10 0.76

6A 5.71 1.59 18.92 1.08

7A b.19 1.05 12.50 0.53

8A 2.90 0.91. 11.-19 ' 0.32

9A 1.75 1.30 15.A7 0.27

10A 1.00 0.75 8.93 0.09

11A . 0.30 0.70 8.33 0.02

Zn, 8.1.0 Zimiwi 829

‘.First Fractionation

2' 6.61;

7' 2.61

8' 1.58

 

Bulk intrinsic viscosity, [7213 = b.57

B7711": = 8.29
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0f the 8.52 gm. of polymer which were fractionated, a total of

8.h0 gm. were recovered for a recovery of over 98%. The fractionation

data was checked by the equation [7(JB = $;1[7?Jiwi where [7?]B and

[7?]i are the intrinsic viscosities of the bulk polymer and the ith

fraction respectively and wi the weight fraction of the respective

polymer fractions. The value of 11.29 for 3:1[77liwi is somewhat lower

than the intrinsic viscosity of the bulk pélymer, [7?] = b.57. Since

the recovery of the polymer was high, this discrepancy can not be ex-

plained bythe loss of higher molecular weight species. It is believed

that a small amount of degradation occurred between the time the poly-

mer was fractionated and the intrinsic viscosities were determined.

However, this degradation was shown to be negligible over a long time

period by redetermining the intrinsic viscosities of fractions. An-

other possible explanation for this discrepancy is that no corrections

were made for the shear effect at high intrinsic viscosity. The shear

effect would cause the measured viscosity to be lower than the true

value for higher molecular weight species while having no effect on the

viscosity of lower molecular weight species. The overall effect would

therefore cause the sum 3:1[7211wi to be smaller than [7?]B.

The molecular weight-distribution of the polymer was not constructed

because not enough fractions were recovered from the whole polymer for

an accurate representation.

Phase Studies

Liquid-liquid phase diagrams were constructed for five fractions

of polyoctene-l in phenetole near the critical miscibility temperature.
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The diagrams were constructed by plotting the precipitation temperatures,

Tp, against the volume fractions,/Dr2, of the polymer. The resulting

phase diagrams are shown in Figure 17.

The critical miscibility temperatures, TC, correspond to the maxi-

mum point in the phase diagrams. In Figure 18, the reciprocal of the

critical temperatures is plotted against the molecular size function,

l/xl/2 + 1/2 x, in accordance with equation (3.3). The intercept of

the y-axis gives the reciprocal of the theta temperature and the ratio

of the intercept to the lepe of the line gives the value of the entropy

of dilution parameter )(1. These values are then used with equations

(1.15), (1.16), and (1.18) to calculate the excess entropy and heat of

dilution respectively. These results are shown below in Table II.

Table II. Thermodynamic parameters from phase equilibrh.studies.

Polyoctene—l in phenetole.

 

 

 

e(°x) AH','U-2 75,1er

1%4 ca1./m81e cal./moie deg.

50.h .813 788 1.66

 

The value of x in equation (3.3) was calculated from.fi§ rather than

fih~since it was only possible to measure Hg for two fractions. To deter-

mine if the use of Mw rather than Mh to calculate x would affect the

value of 1/0, a value of 1.2 for the ratio Mw/Mn was assumed and calcu-

lated values of Mn were used to calculate new values of x.

The important parameter 6, which is obtained at the y intercept,

was unaffected by using Mw rather than Mn; however, a small change of

slope is noted which introduces approximately six percent uncertainty

in WI.
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Fig. 17. Binary phase diagrams for polyoctene-l in phenyl ethyl ether.
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Light Scattering

The weight average molecular weight of the polymer fractions was

determined using the Zimm method as outlined previously. The Zimm

plots for the polyoctene-l fractions five through ten are shown in

Figures 19 through 28.

The dimensions of the polymer molecules were calculated both by

the Zimm technique and Debye's dissymmetry method. To calculate the

dimensions by the Zimm method, the limiting slope of the zero concentra—

tion line of the Zimm plot was divided by the intercept and this ratio

.set equal to (8n2/912)FZ. This value for the ratio is used because we

assumed that the molecules in solution are in theform of random coils

(see equation (6.h)). The wave length of the light in the solution is

given by X and F2 is the mean-square end-to—end length of the polymer

molecule. Since (1:2)1/2 obtained by this method is a z-average length,

it was converted to the weight average length by the use of equation

(6.9)

r2w = F2 (h + l)/(h + 2)

The h is a parameter characterizing the molecular weight distribution

and can be found from equation (6.8)

Mn aMw (h/h + 1)

Since Mn was determined from only two fractions, it was necessary

to assume that the average value calculated from the two Mfi/Mh ratios

was the same for all of the fractions. The average for the ratio was

1.09 and the value of h calculated from Unis ratio was 12.10. Using

this value of h, the ratio (h + l)/(h + 2) was found equal to 0.93.

Therefore, r2z was multiplied by 0.93 to obtain 52w.
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A source of error in the Zimm method for determing the dimensions

of the polymer coils arises from the difficulty in determining the

limiting slope of the zero concentration line which generally becomes

non-linear near the intercept. Furthermore, the Zimm method becomes

less accurate as the molecular weight of the polymer decreases. It is

possible, however, to obtain better results under these conditions by

Debye's dissymmetry method.

Since dissymmetry is generally a function of solution concentra-

tion, it is necessary to use the limiting or intrinsic dissymmetry,

[z], for the calculations. The dissymmetry is usually not a linear

function of 0. Therefore, the extrapolation to zero c is improved by

plotting l/z-l against 0. The chain dimension can then be obtained

from published tables41 which relate the dimensions to z.

The values of z for the different concentrations were not calculated

directly from the observed Hc/fif values at 85° and 135°. Rather, the

values were taken from the averaged plot of Hc/Q’ against sin20/2 + kc

at h5° and 135° for each concentration. The values of 2 determined by

this method are independent of individual readings at h5° and 135° and

so are not effected by anomalous readings at these angles.

The second virial coefficient, A2, for polyoctene-l in bromobenzene

at 25° was obtained from the slopes of the zero concentration lines of

the Zimm plots. The usual decrease of A2 with molecular weight is ob-

served.

The parameter D in equation (5.10) was calculated from both the

Zimm and the dissymmetery data using the values of [7?] measured in the

light scattering solvent, bromobenzene. The values calculated for D
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agree well with the most commonly accepted value of 2.1 x 1021 as given

by Florylzc. This agreement indicated that the polymer molecules have

random coil configurations in solution.

The results of these calculations from the light scattering data

are shown in Table III. The dimensions of fraction 10 were not calcu-

lated by the dissymmetry method because it was not possible to obtain

an accurate measurement for z. A value of 0.105 for the specific re-

fractive index increment (dn/dc) of polyoctene-l in bromobenzene at

25°C was used for the calculations.

Viscosity

In addition to determining intrinsic viscosities of thecfleven frac-

tions of the second fractionation in cyclohexane at 30°C, the intrinsic

viscosity of two fractions from the first fractionation was also measured

in cyclohexane at 30°C. Also the intrinsic viscosities of five fractions

were determined in bromobenzene at 25°C and the intrinsic viscosities

of four fractions were measured in the theta solvent, phenetole, at

50.A°C. The data were treated according to the quations of Huggins

(5.8) and Kraemer (5.5). The results of the viscosity measurements are

shown in Table IV with the values of the Huggins constants k' and k".

The sums of the Huggins constants, k' + k", in cyclohexane and

bromobenzene are near the theoretical value of 0.5 in thermodynamically

good solvents. However, Huggins constants, k', and the sums, k' + k",

obtained in phenetole were considerably larger. This effect has been

observed previously in poor solvents42.

By plotting log [7?] cyclohexane 30°C against‘log HQ, the constants

for the Mark-Houwink equation were determined for each solvent from the



Table III. Light scattering results in bromobenzene at 25°C.
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_ _ (F2)w1/E,X D x 1071 A2 x 1 4

Fraction wa 10 5 Zimm Dissym. Zimm Dissym. ml mole gm2

5A 11.00 2070 1995 1.83 2.01 1.62

6A 2.50 1530 1392 1.97 2.61 1.98

7A 1.68 1239 1172 1.87 2.03 2.15

8A 1.25 980 1080 2.27 1.68 2.22

9A 0.607 686 765 2.25 1.h0 2.95

10A 0.250 366 -- 2.25 -- 3.12
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Table IV. Viscosity results for polyoctene-l from fractionations l and 2.

 

 

Fraction [7]] k' k" k' + k"

 

A. In cyclohexane at 30°C

LA 6.37 0.211 0.230 0.17

2A 6.72 .263 .212 .18

3A 9.30 .257 .221 .18

1A 9.61 .238 .221 .16

5A 8.60 .270 I .200 .17

6A 5.71 .219 .208 .16

7A 1.19 .322 .161 .19

8A 2.90 .261 .200 .16

9A 1.75 .290 .250 .51

10A 1.00 -- -- --

111 0.30 —- -- --

2' 6.61 .212 .231 .15

7' 2.61 .281 .208 .19

whole 1.57 .390 .110 .50

B. In bromobenzene at 25°C

7A 1.95 .291 .262 .56

8A 1.51 .255 .261 .52

9A 1.00 .300 .290 .59

10A 0.11 .261 .232 .50

2' 3.11 .510 .103 .61

C. In phenetole at 50.1°C (theta)

7A 0.86 .833 - .079 .75

9A .51 .865 - .096 .77

2' 1.26 .317 .198 .52

7' 0.65 .897 - .061 .83
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resulting relationships. (See Figure 25). The following relationships

were established:

in cyclohexane at 30°C, L7fl= 5.75 x 10‘5 M0°73 (8.1)

in bromobenzene at 25°C,:Tfl= 2.9 x 10'5 M0-78 (8.2)

I

In phenetole at 50.100, Tfl= 6.51 x 10'4 M°-5 (8.3)
I. 

Osmometry

The number average molecular weights of fractions F9A and F10A

were determined by osmometry. The molecular weight of fractions higher

than F9 were too large to be determined accurately.

The data were treated according to equation (1.29) by plotting

(fl/b)1/E against c. The results of this plot are shown in Figure 26.

The second virial coefficient, A2, was found from the slope and inter-

cept of the lines. Also the interaction parameter, )(1, was calculated

from the relation12c

A2 = (fie/VIHl/Z -X1) (9.1)

The results of the molecular weight measurements and the calculations

are shown below in Table V.

Table V. Osmotic pressure data for polyoctene-l in cyclohexane at 30°C.

 

 . A2

Fraction Mn x 10 5 [2(cc./gm.) (cc. mole/gm.2x104) , )(1

 

9A 5.10 210 3.89 .198

10A 2.38 109 1.58 .198
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Fig. 25. Intrinsic viscosity - molecular wei%1t relationship for poly-

octene-l in (1) cyclohexane at 30°C , (2) bromobenzene at

25°C A and (3) phenetole at 50.1°C 0.
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Lower Critical Solution Temperatures

Lower critical solution temperatues were determined for four frac-

tions of polyoctene-l in n-pentane. In addition, the L.C.S.T. of single

fractions each of atactic polypropylene and polybutene and isotactic

polypropylene were determined in n-pentane solution.

Phase diagrams were constructed by plotting precipitation tempera-

tures, Tp, against weight fraction of polymer.‘ These phase diagrams

are shown in Figures 27 and 28. The L.C.S.T. was taken from the minimum

of the Tp vs. weight fraction curve. These results are given in Table VI.

Table VI. Lower critical solution temperatures for poly a-olefin frac—

tions in n-pentane.

 

 

 

Fraction TCL(°K) Y . M? x 10-6

Polyoctene-l

5A 138.1 1.00

61 139.0 2.50

BA 110.0 1.25

11A 116.1 0.06

Atactic polypropylene

JKS 125.3 0.0758

Isotactic polypropylene

JKEB 125.1 0.121

Isotactic polybutene-l

M17 121.3 0.199

Atactic polybutene-1

A121 122.3 2.3
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Table VII. The expansion factor and its dependence on the molecular

weight of polyoctene-l in cyclohexane and bromobenzene.

 

 

[(05-03)/Ml/lel03Fraction M x 10"6 a3=177 I/m Ie
 

A. In cyclohexane

5A 1.00 6.62 8.10

6A 2.50 5.51 7.52

7A 1.68 1.78 6.80

8A 1.25 1.11 6.76

9A . 0.607 3.38 5.15

10A 0.250 2.95 6.71

B. In bromobenzene

5A 1.00 3.13 1.78

6A 2.50 2.71 1.65

7A 1.68 2.22 1.19

8A 1.25 2.06 1.13

9A 0.607 1.93 1.22

101 0.250 1.31 0.52

 



DISCUSSION OF RESULTS

The molecular eXpansion factor a was calculated from the follow-

ing relationshipl.2C

0.3 = [77 UN? 10

where [7?] is the intrinsic viscosity of the fraction in the thermo-

dynamically good solvent and [77]e is the intrinsic viscosity in the

theta solvent. The measurements of the [77] values for the polymer

fractions in both cyclohexane and bromobenzene were made at temperatures

below that for the [T] lo values. It has been shown that [77] for poly-

isobutylene in several good solvents has a small temperature dependencelzc.

It is presumed that this is true for other polymer-solvent systems and

so it is assumed that a is not greatly affected by this difference in

temperature.

The values of a3 calculated for six fractions of polyoctene-l in

cyclohexane and in bromobenzene and are listed in Table VII. It is

seen that there is a definite increase of a3 with molecular weight.

This agrees with equation(2.3) which predicts that a should increase

without limit as the molecular weight increases.

According to equation (2.3), the factor (CL5-c13)/IVII/2 should be in-

dependent of molecular weight. However, as seen in Table(VII), there

is a considerable dependence on molecular weight. This suggests that

the function 05403 is not exactly the correct one to use for this re-

lationship.

The unperturbed dimensions of the molecules are related to the

molecular weight and intrinsic viscosity by equation (5.11)

78
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[77] = 1(on/M)3/2M1/2 03

Since, according to theory, the factor (on/M)3/2 is independent of

molecular weight, we can write

[77] = KM1/2o3

where

K = 1(FZO/M)3/2

At the theta temperature when a = 1, we can write equation (5.11) as

[7710 = KMl/Z

Thus from the values of [7719 and M1/2,'we can calculate K for a partic-

ular polymer. According to theory, K should be a constant independent

of both solvent and molecular weight. It may be somewhat dependent on

temperature, however. The results of the intrinsic viscosity measure—

ments at the theta temperature (shown by (8.3)) (see page 71) gave re-

sults which are in complete agreement with theory as expressed by equa-

tion (5.13). That is, the exponent a is equal to 0.5. The value of K

for polyoctene-l was found experimentally to be equal to 6.51 x 10-4.

If we use the commonly accepted value of D as being 2.1 x 1021, we

can use equation (5.11) to calculate (on/M)l/é for polyoctene-l.

This factor is characteristic of each type of polymer. Using the K

calculated above, it was found that for polyoctene-l

GZo/M)1/2 % 67.6 x 10’10

From the relationship r0 = r/a, (gzo/M)1/§ for the polymer was calculated

for the six polymers studied by light scattering. The r0 values were

calculated using dimensions obtained from both the Zimm method and the

dissymmetry technique. The values calculated from the dissymmetry dimen-

sions tend to increase with decrease in molecular weight. It is thought



80

that this is a result of larger errors which result at lower dissymmetry

values at the lower molecular weights. The values calculated from the

Zimm dimensions are reasonably constant as predicted by theory and

their average, ('17'20/1\’Ii)1/2 = 68.9 x 10_1°, agrees very well with the

value calculated from K. The results of these calculations are shown

in Table VIII.

Table VIII. Values of (FZO/M)l/E as determined by light scattering.

 

 

 

Fraction Dissymmetry Zimm

(F20)1/2 (FZO/IVI)1/2x101° (1:20)1/2 (Fag/M)1/2x101°

5A 1366 66.8 1118 70. 9

6A 991 62 .9 1093 69. 2

7A 902 69.6 953 73.6

8A 819 73.1 710 66.1

9A 612 78.8 517 66.5

10A - ' 7- 336 67.2

 

It is of interest to examine an equation due to Kurata and Stock-

mayer which relates [77] to the molecular weight of the polymer. They

show43 that equation (10.1)

[T] 12/3/111/3 = 112/3 + K5/3(a5 - 0.3)M1/2/[T’] (10.1)

due to Flory44 should be modified and the resulting equation becomes

[7112/3/141/3 ___ K2/3 + 0.3630 B[g(a)M2/3/[TI.]1/3] (10.2)

where B is a parameter characteristic of a particular polymer and 9(a)

is given by

9(a) = Bus/(aw + 03/2
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If we plot [77JZ/3/M1/3 against g(a)Mw2/3/ITZ]1/3, a linear relationship

results and the intercept will give KZ/B. The results of this plot for

polyoctene—l in the three solvents are shown in Figure 29.

K obtained from the theta solvent data, at 51°, was 7.50 x 10.4 and

the K from the bromobenzene data at 25°C was 7.08 x 10-4. Both these

values are somewhat larger than the observed [77le/N1/é value, i.e.,

6.51 x 10-4. The value from the cyclohexane data, at 25°C, was 8.89 x

10‘4 which is larger still.

It would be expected that K decreases as the temperature increases.

That is, the chain length decreases with increase in temperature. This

trend is observed as the temperature decreases from 51° to 25°C. How-

ever, the K from the cyclohexane data is in the reverse order as that

expected. The explanation for this is not known.

The unperturbed dimensions of polyoctene-l at the theta temperature

were calculated from the Flory-Fox equation, (F20)3/2 = [7?]M/E, assum-

ing 0 = 2.1 x 1021, for the four fractions measured in the theta solvent.

The values for fractions 7A and 9A whose unperturbed dimensions were

calculated from the light scattering results using the dissymmetry method

and the value of the expzansion factor, 0, agree fairly well. This in-

dicates that a value for 0 = 2.1 x 1021 is reasonable. Also the assump-

tion that a for polyoctene-l can be calculated from [72] at temperatures

different than the temperature at which the intrinsic viscosities in the

good solvents is measured, appears to be valid. The unperturbed dimen-

sions as measured in the theta solvent, are 2.1 times the values calcu-

F2 = 2n12 where llated assuming free rotation about the bonds, i.e., ,

is assumed to be 1.5 12C. The perturbed dimensions in bromobenzene, as
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measured by light scattering and calculated from viscosity measurements

using the Flory—Fox equation and I = 2.1 x 1021, are about 3.3 times as

large, and the dimensions of the molecules in cyclohexane are about 1.2

times as large as the freely rotating dimensions. A comparison of these

dimensions are shown in Figure 30. The dimensions calculated from the

viscosities measured in bromobenzene compare very well with those mea-

sured by light scattering. Again the value of 2.1 x 1021 for 0 is shown

to be correct, at least within experimental error.

Finally it will be of interest to compare the dimensions of poly-

octene—l with several other poly a-olefins. It has been reported by

Chinai and collaborators5 that for a series of methacrylates, the ratio

of the square of a linear dimension to the degree of the polymerization

falls in the order n-hexyl > n-octyl > methyl > ethyl > n-butyl. The

dimensions of polyoctene—l were therfore compared with several other

poly a—olefins, the purpose being to discover if any such curious order

existed for the poly a-olefins. A comparison was made using the ratio of

(F20)1/§ to the square root of the degree of polymerization to determine

if any order existed. Table IX shows the results of this comparison.

These calculations indicate that the dimensions are dependent on the

pendant group and are proportional to their size. Thus, with respect

to the pendant group, the average end-to-end dimensions fall in the or-

der phenyl > hexyl > ethyl > two methyls Qfimethyl. This order results

when the data of Wilkins48 or Natta“7 are used to determine the ratio

(on/D.P.)t/Z for polybutene. The ratio calculated from the data of

Krigbaum45, however, results in a ratio for polybutene which is larger

than both polystyrene and polyoctene-l.
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Table IX. Comparison of (on/D;P.)1/2 for atactic poly a-olefins.

 

 

 

 

Polymer (FZO/M)1/éx101° (1:20/13.P.)1/2 Pendant group

polystyrene 7045 7.16 phenyl

polyoctene 68 7.08 hexyl

polybutene 10046 7.18 )

polybutene 8147 6.00 > ethyl

polybutene 78046 5.81 J

polypr0pylene 83.52 5.32

methyl

polypropylene 9249 5.98

polyisobutylene 765° 5.66 two methyls

 

The results of the L.C.S.T. studies substantiate the findings of

other studies with bulk polymers.“8 which indicate that the L.C.S.T.

decreases as the chain length of the solute species increases.

Using the theory developed by Delmas, Patterson, and Somcynsky,

an attempt will be made to relate L.C.S.T. to the Flory interaction

parameter, IXQ. Before studying the results of the present work, it

will be of interest to use the theory and the resulting equation

R . + R 2 - 1/2

TC/rA = Xi [( 31%) MB] (11.1)

to try to predict the results of the work carried out by Baker gt_al9 in

lwhich they determined the L.C.S.T. for four samples of polyisobutylene

of different molecular weights in n-pentane.

The value of A used in the equation was that determined by Delmas,

Patterson, and Somcysky from the heat of mixing of polyisobutylene with
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n-paraffins. B was also that determined by the above workers; it being

the value which gave the best fit for the data. The values of these

constants are

A 10.1 ca1./m01e (11.2)

B 8.2 x 10'3 ca1./deg.2 (11.3)

According to equation (7.12), rA for n-pentane is equal to three. If

we assume that the L.C.S.T. occurs at the same value of ch as the

U.C.S.T., we can use the simple Flory approximation relating X10 to

the molecular weight. That is,

)(lc = 1/2 + (l/xl/2 + 1/2 x) (11.1)

Using the above values for A and B and the Flory approximation for )(10,

the TCL values for the polyisobutylene in n-pentane were calculated.

The results of the calculations are shown in Table X. The data shown is

that of Freeman and Rowlinson7 and Baker $3.31'8

Table X. The thermodynamic interaction parameter as a function of

molecular weight and the observed and calculated TCL for

polyisobutylene in n-pentane.

 

 

 

 

Polymer M l/x 1/2 X10 TCL(°K) TCL(OK)

(observed) (calculated)

(ref. 7) 7 1,581,000 .007 .507 318 331

III8 11,000 .086 .586 373 396

IV5 62,000 .010 .510 366 360

VB 2,250,000 .007 .507 311 331

If we plot TCL against 1/91/2, we obtain the relationship shown in

Figure 31. Although this plot is not strictly justified by equation (11.1),

there should be'a linear dependence of TCL or l/xl/Z if the factor 1AB is
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much smaller than R( X1C)2. Polymer II from Baker _e_t _a_l_. does not fit

this linear relationship. It is believed that the molecular weight of

polymer II was too small (1,170) to justify using the preceding method

for calculating T Also the fact that unfractionated polymers were
CL'

used would lead to uncertainty in determining the precipitation temper-

ature. That is, TCL values measured for polymers having true weight

average molecular weights equal to the molecular weights given in Table X

would probably be different than those observed.

An attempt was made to calculate the A and B from the observed data

of Freeman and Rowlinson. Two equations were obtained by substituting

two sets of the data, i.e., values of )(10 and T into equation
CL’

(11.1) and the equations were solved for A and B. It was found that

the values of A and B are very sensitive to T and unless accurately

C

known values are available, these constants can not be obtained by this

method.

It should be mentioned that the )(IC calculated from thermodynamic

data by Baker 33 31. for polymer V is somewhat larger than the )(lc

calculated from the Flory approximation. However, the value for polymer

V of )(1c = .53 givesTCL = 316°K which is much closer to the observed

value of 3110K. Thus the use of the Flory approximation for calculating

)(lc to determine the L.C.S.T. should be taken with reservation and

at best should be considered an approximation.which can be used if

thermodynamic data are not available.

Independent values for A and B were not available for polyoctene-l

and so it was necessary to assume A equal to zero and to calculate B
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from one of the TC values. A is equal to zero if the solvent and poly-

mer differ only in chain length. Therefore, this assumption is not un-

reasonable since the polymer is predominately methylene groups. Also

if A is zero, the U.C.S.T. should be zero. A solution of polyoctene-l

F5 (Mw = 1 x 105) was cooled to the freezing point of the solvent

(1120K) without observing precipitation. Thus this criteria is obeyed,

at least as far as can be observed. Hence if A is equal to zero, equa-

tion (11.1) becomes

= /
TC/rA R)QC,B (11.5)

If we use the TC for F5A, B is equal to 6.81 x 10-3 cal./deg.2. The

results of the calculation of T for the remainder of the fractions

C

are shown in Table XI.

Table XI. The thermodynamic interaction parameter as a function of

molecular weight and the observed and calculated T for

 

 

 

polyoctene-l in n-pentane. CL

Fraction Mw x 10“6 1/91/3 I880 TCL(OK) TCL(°K)

(observed) (calculated)

51 1.32 .005 .505 138.1 138

6A 1.18 I .009 .509 139 111

8A .75 .010 .510 110 112

11A .06 .010 .510 116 168

 

An attempt was also made with this data to calculate A and B. How-

ever, as before, it was not possible to obtain satisfactory results

from the TC data alone.
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The agreement of the calculated L.C.S.T. with the observed values

becomes worse as the molecular weight increases. This indicates that A

is not equal to zero as was assumed and/or that, as was decided before,

the interaction parameter can not be calculated accurately by the Flory

approximation.

So in order to be able to calculate the L.C.S.T. with more ac-

curacy, it is necessary that A and B be determined independently or

from highly precise L.C.S.T. data and that true values for)(1c be known.

Although the calculations do not fit the observed data exactly, the

equation seems to fulfill the need of predicting the dependence of

L.C.S.T. on molecular weight. .

If we extrapolate the TCL to infinite molecular weight, i.e., to

1/xl/é = 0, we obtain the L.C.S.T. for infinite molecular weight poly-

mer. This is an analogy to the familiar Flory theta temperature which

is the U.C.S.T. for polymer of infinite molecular weight. 0n the basis

of this analogy to the 0U for U.C.S.T., we will tentatively refer to

the L.C.S.T. for infinite molecular weight as 0L.

Using equation (11.5) and a value of 0.5 for)(u:, the TCL'S for

polyisobutylene in n-pentane and polyoctene-l in n—pentane were calcu-

lated. This is compared with 0L as determined from the extrapolation

just described. (See Figure 31)

The results of the calculation and the extrapolation are shown

below in Table XII. The results for polyoctene-l agree to within less

than 1%. This agreement is very good considering the assumption made.

The agreement for the polyisobutylene results is about 3%. This agree-

ment indicates that equation (11.5) predicts values of T fairly well
CL

if the proper)(1c is used.
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Table XII. Values of 0 obtained by extrapolating T to infinite

molecular weight and calculating from equation 11.5 using

 

 

 

KC = 0050

Polymer 0L 0L

(extrapolation) (calculated from 11.5)

polyisobutylene 3430K 3380K

polyoctene-l 1370K 131°K

 



SUMMARY

A sample of atactic polyoctene-l was fractionated and characterized

by light scattering, osmometry, viscometry and phase equilibria measure-

ments. Molecular weight-viscosity relationships were established for

the polymer in cyclohexane, bromobenzene, and phenyl ethyl ether. The

mean—square end-to-end dimension of the polymer in bromobenzene was

calculated from light scattering data using both the Zimm method and

Debye's dissymmetry technique. The dimensions calculated by the two

methods agree within experimental accuracy. The average value of the

universal hydrodynamic parameter, 0, was found equal to 2.01 x 1021.

This agrees very well with the most commonly accepted value, 0 =

2.1(i0.2) x 1021. This close agreement indicates that the polymer

molecules in solution are in the shape of random coils (as determined

by a Gaussian distribution) and so can be treated in accordance with

the standard theories of dilute solutions. The molecular weights of

all but two fractions were too high to be studied by osmometry.

The dimensions of a series of poly a-olefins were compared by calcu-

lating the ratio of the average end-to-end dimensions of the polymers.

It was found that the order, with respect to the size of the pendant

groups, was phenyl > hexyl >Iethyl > 2 methyls 5% methyl. This is the

order expected since the larger groups should cause the polymer molecules

to be more expanded due to a higher probability of chain interference.

The lower critical solution temperatures, L.C.S.T., for a series

of solutions of polyoctene-l fractions in n-nonane were measured. The

decrease in TCL with increase in molecular weight was tentatively

92
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explained in terms of the Flory interaction parameter, )(i. .Also it was

shown that fairly accurate values of T could be calculated using )(1

CL

calculated from the molecular weight or thermodynamic measurements using

a relationship based on the Prigogine cell model of solution. It was

found that a plot of T against l/xl/Z gave a linear relationship.
CL

The intercept of this line at infinite molecular weight, i.e., at l/xl/2

= 0, was defined as 0 that is, the L.C.S.T. for polymer of infinite
L)

molecular weight. The parameter, 0L, was also found by calculating from

the relationship mentioned above using )(lc = 0.5. The two values agree

to within less than 1% for polyoctene-l. Thus the relationship between

TCL and X1 appears to be correct for the system investigated.
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