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ABSTRACT

EXTENDED RULES FOR THE SEQUENCE COMPOUND
DECISION PROBLEM WITH m X n COMPONENT

By

Robert John Ballard

For a sequence compound decision rule g = (Ql,...,gh),
where L, is a function of the first o observations, 1 € ¢ <N,
let gN(g,gp denote the compound (average) risk at state
9= (91,...,eN). The usual standard for compound risk is R(GN)
where R 1is the Bayes envelope for the component problem (the
simple envelope) and GN is the empirical distribution of com-
ponent states 91""’9N' Much of the literature in compound

decision theory has dealt with the construction of rules satisfying

-l_in_xN sup&[gﬂ(g,@ - R(G] 5 0

for various components.
. k k)
More stringent standards for compound risk are R (GN ,
k =1,2,..., where Rk is the Bayes envelope for a construct called

the [, game and Gk is the empirical distribution of the k-tuples
k N

k k k
ﬂl = (91,--”91(), _Qz = (92,...’91("'1)’...’%-”1 = (eN-k"’l’...’eN). The

ktl standard is asymptotically more stringent than the k standard
where Rl( 1) = R(G,,)
6y = RGy).-
We will consider the m X n component and demonstrate for

each k, a k-extended sequence compound rule (, “5 being Fk






Robert John Ballard

k .
Bayes versus an estimate of Gor based on the first -k observa-

tions, k € ¢ € N, which satisfies

_— k k
Lim SUP_Q[BN(_Q,Q) - R (G)] 50

-1/5
with a rate of N / . Furthermore, we compute the envelope R

where the component is discrimination between N(-1,1) and N(1,1)
and use Monté Carlo methods to estimate the compound risks for some
k=1 and k =2 procedures and various § and N 1in order to
determine possible smea1ll N advantages of extended procedures. In
addition, we compute some Bayes compound risks versus strictly

stationary § for various N.



EXTENDED RULES FOR THE SEQUENCE COMPOUND
DECISION PROBLEM WITH m X n COMPONENT

By

Robert John Ballard

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY

Department of Statistics and Probability

1974



TO MY PARENTS AND CINDY



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Professor
Dennis C. Gilliland for his guidance of the research for this
dissertation. His comments, observations and suggestions were
invaluable. Further, I am indebted to Professor James Hannan for
suggesting the problem and many helpful observations.

The financial support provided by the Department of Statistics
and Probability and the National Science Foundation made my graduate
studied possible. I wish to thank them and Noralee Barnes who

demonstrated both patience and skill in typing this dissertation.

iii



Chapter

1

TABLE OF CONTENTS

INTRODUCTION ......... e eeececercearsnsacroroaone

ASYMPTOTIC SOLUTIONS TO THE EXTENDED SEQUENCE
COMPOUND PROBLEM ........ e .

1. Preliminaries ......c.v.ivee.
2. Estimation of the Empiric
3. Main Result ........... eee

COMPUTATIONS ... iviveevnnnennns

. Introduction

1
2. Computation of RZ(G) e
3. Simulation Study of the Risk Performance of

Some Compound Rules ........

oooooo

.....

oooooo

e e e 0 s 00

e 00 0 000 "o
oo o s 0 o0 . .
o o0 . oo oo
------- o o o0
. . e 0o

oooooooooooooooooooooooooooooooo

DR A S A ]

4, Performance of Compound Rules when the
Parameter Sequence is a Strictly Stationary

Process

CONCLUSIONS

REFERENCES

D e I N R ) @ © 000 0 c s ca 000 cacs e e

iv

oONs

18

18
19

24

36
42

43



Table

10

11
12
13

14

Values of

Values of Rz(p,b) for p

LIST OF TABLES

R(p) for

§ =0(.05)1 ........ et e .
Estimated Risks for N = 20 and Parameter
Sequences of Type 1 ..... .o . et
Estimated Risks for N = 20 and Parameter
Sequences of Type II .......ccecvunn. e .
Estimated Risks for N = 50 and Parameter
Sequences of Type I ........ Ceeatteeaanaes .o
Estimated Risks for N = 50 and Parameter
Sequences of Type II ..... e Ceeeeens
Estimated Risks for N = 100 and Parameter
Sequences of Type I ..i.vveteiiiiiniinnnnnnns .
Estimated Risks for N = 100 and Parameter
Sequences of Type II ....... e et
Estimated Risks for N = 200 and Parameter
Sequences of Type I ........ v e .
Estimated Risks for N = 200 and Parameter
Sequences of Type I .. iviiininnirnnccnrnnenns
Estimated Bayes Risk of udb for N =50 .....
Estimated Bayes Risk of edb for N =50 ....
Estimated Bayes Risk of udb for N = 200 ...
Estimated Bayes Risk of edb for N = 200 ....

Page

22

27

28

29

30

31

32

33

34
38
39
40

41



Figure

1

LIST OF FIGURES

2
Plot of R (p,8) as a Function of §
fixed p ........ et e e

vi

..........



INTRODUCTION

The compound decision problem introduced by Robbins (1951)
involves N independent repetitions of a component problem. For a
compound decision rule ¢ = (91”"’§N)’ where g& is a function of
all N observations, 1 < g € N, let EN(Q,gQ denote the compound
(average) risk at state g = (91""’9N)' The usual standard for
compound risk is R(GN) where R 1is the Bayes envelope for the
component problem (the simple envelope) and GN is the empirical
distribution of component states 91""’9N' Robbins (1951)
demonstrated a "bootstrap' compound rule ¢ satisfying the two-

sided (1limit) version of
1) limg SUPQEBN(Q,Q) - RG] s O

for the featured example where the component is discrimination between
N(-1,1) and N(1,1). The term "bootstrap'" refers to the fact that
each gy is component Bayes versus an estimate of GN based on all
N observations. Much of the literature in compound decision theory
has dealt with the construction of bootstrap rules satisfying (1)
for various components. Recently, Gilliland, Hannan and Huang (1974)
have shown that a large class of Bayes compound rules satisfy (1)
for 2-state, compact risk component.

The sequence compound decision problem introduced by Hannan
(1956),(1957a) restricts the class of compound rules fo @ where

1



gﬁ is a function of the first o observations, 1 € ¢ < N. Hannan
(1956), (1957a) and Samuel (1963) were the first to propose sequence
compound rules to satisfy (1) for various components. The rules are
bootstrap in nature, ga being component Bayes versus an estimate of
Ga based on the first o observations and possible artificial
randomization, 1 € ¢ < N. In the meantime, many additional components
have been considered in the sequence compound problem.

The notion of using more stringent standards for compound
risk is found in Johns (1967, §4). He introduces a set of standards
Rk(Gg), k =1,2,..., where RI(G;) = R(CN) and the k+ 1 standard
is asymptotically more stringent than the k standard. (Here we
have used notation similar to that of Gilliland and Hannan (1969)
who give the most general treatment of these standards. Rk is the
Bayes envelope for a construct called the Fk game and G; is the
empirical distribution of the k-tuples QT = (61,...,ek),

Q; = (62""’6k+1)""‘g:-k+1 = (QN_k+1,...,eN).) Johns (1967) for a
two action component and fixed k gives a sequence bootstrap rule
@, gb being Fk Bayes versus an estimate of Gz based on the first

o Observations, k € ¢ € N, which satisfies the two-sided version of

- k k
(2) limN supﬁ[&N(g,gﬂ - R (GN)] <0 .

Swain (1965) in a thesis under Johns treats some squared error loss
estimation components, obtaining (2) with rates later improved by
Yu (1971). Swain calls the compound problem with standard Rk(GS)
the extended compound decision problem.

We treat the extended sequence problem with m X n component

and, thus, cover the original featured example of Robbins. We



demonstrate for each k, a sequence compound rule which satisfies

(2) with rate. For proving this asymptotic result we rely heavily

on Van Ryzin's (1966b) analysis of the unextended version of the
problem. Furthermore, we compute the envelope R2 for Robbins'
featured example and use Monte Carlo methods to estimate the compound
risks for some k =1 and k = 2 procedures and various § and

N in order to determine the possible small N advantages of
extended procedures. In addition, we compute some ﬁayes compound

risks versus strictly stationary § for various N.



CHAPTER I

ASYMPTOTIC SOLUTIONS TO THE EXTENDED SEQUENCE COMPOUND PROBLEM

1. Preliminaries.

Consider a component decision problem with m states
®@={1,2,...,m} indexing @ = {Pl,Pz,...,Pm} where the Pi are
distinct probability measures on (X,3). Let yu be a finite

measure dominating & such that
(3) fi = dPi/du s K, iee

for some positive finite constant K. There is no loss of generality

in making this assumption since we may always take p = ; Pi and
i=1

K =1.

Suppose the action space is ¢ = {1,2,...,n} and the m X n
loss matrix L has non-negative finite elements. A (randomized)
component decision rule, ¢, 1is a /F-measurable mapping into af,
the (n-1)-dimensional simplex of probability measures on (. That
is, ¢ = (@1,...,qh) where wj >0,1<j<n, and ZT qh = 1. The

risk of ¢ at state i is

n

(4) R(i,g) = [( RACHIENE
j=

1
= X Xoo. X d = 3 n s s oy h
Let P P91 Peq P and g (gﬁ @ ﬁﬁ) where
< o
for each o, 2, is a [/ -measurable mapping into Ci. The risk

incurred in the ¢ component decision by the sequence compound rule

4



Qis

n
(5) R (8.9 = I(jEIL(Oa,j)Qa’j)dl_).

and compound risk at N repetitions and state § is
N

(6) R (8.9 = Nt ZlRa(g,gQ)
d:

In order to motivate the construction of rules satisfying

(2) we describe the [, decision problem. 1In our case it is an

k

k k k
m X n problem with states i = (il,...,ik) € ® 1indexing product

distributions P K € ék. The loss matrix Lk is mk X n with

i
Lk(ik,j) = L(ik,j). A (randomized) decision rule ¢ in the Fk

*
problem is a Bk-measurable mapping into (¢ . Letting Rk(ik,¢)

denote its risk at state ik, the Bayes risk of ¢ versus a prior

k
G on @ is

k k, .k
7 R°(G,p) = ZR (1L ,9GC Kk
k i
i 1
n k k k, k
=02 o (x) L LDE L (x)6 | Tdu(x)
i J k . .
j=1 k i i
k k .
where f ,(x) = f. (x)f, (x,) ... £  (x,) and o is the k-fold
ik i 1 i, 2 i,k

j th
product of . Let Li denote the j=—™ column of L for 1 sj $n,

k’

k
f denote the m X 1 matrix of densities f | and Liﬁ denote

K x L .
the m X 1 matrix with components Lk(i yDE K Letting ( , )k
k i

denote the usual inner product in E" -space, it follows from )

that a Bayes rule in the [I'| problem places all its mass on the j's

k
which minimize Aj(gk) = (Liﬁ(ﬁk),c)k. A particular version denoted

by Qk{G} is



1 if j 1is the smallest integer such

that Aj(§k) = min A (Ek)

1<j=n ]
(8) qﬁ{c; x} =

0 for the other j .

The specification k =1 1in the Fk construct gives the

component decision problem. For simplicity of notation we abbreviate
k =1 by omission whenever it is both possible and convenient.
Theorem 2 of Gilliland and Hannan (1969) suggests that for

the compound problem the sequence rule which plays Fk Bayes versus

k
an estimate of Ga’ k € o <N, may satisfy (2). Let x = (xl,...,xd)
o

and 5: = (X y5eee, ) for a,v=1,2,... . The sequence compound

v xv+k-1

rules ¢ that we investigate have

k. .~k k
= G ; X y > k
(9 @ () = @G 5 X yyqds
~k ~k mk
where for each o =2 k, G =G (§a) is a E -valued estimator of
o o

~k
Gk. When G is a function of x only we refer to ¢ of (9)
o

o a-k
as a delete bootstrap rule.

Since the T construct is itself a finite state, finite

k
action decision problem, many of Van Ryzin's (1966b) results apply
to the analysis of extended rules (9). Consequently, notations,

a preliminary lemma and the main theorem to follow are patterned
after his work on the k =1 case. However, we first treat some of

the problems related to estimation of higher order empirical dis-

k
tributions Ga



2. Estimation of the Empiric Gz

For general results on the estimation of finite mixtures
see Hannan (1957b), Teicher (1963), Robbins (1964, §7) and Van Ryzin
(1966a, §3). Here we discuss the estimability of mixtures of the
special finite class of product measures Qk and the structure of
the dual basis estimators.

k
The class & is estimable if there exists a function

K )
= ...,h i i
h (hl,. RE R m,...,m) on Y with components in Ll(uk)
such that E h =@ for all mixtures Pw of Ok and h 1is said
w a
to be an unbiased estimator of Ok. (Ew denotes expectation with

respect to the mixture Pw') Such functions provide kernels for

. . k .
unbiased estimators of G since
o

(10) E kh K = 5(gk, ik) for all QF, lk € @k

g 1
where § 1is the Kronecker delta function. From Van Ryzin (1966a,
§3), 0k is estimable if and only if Qk is identifiable, if and only
if 3k = {f k\ik € @k} is linearly independent in Ll(uk).
Remifk 1. 7 = {fl,...,fm} linearly independent in Ll(u)
implies 7k linearly independent in Ll(pk).

Proof: Suppose

(11) T a f, =0 a.e. p

k
Almost every x 1-section must be 0 a.e. p, so that from

£y = f k-lfi and the linear independence of & it follows that
i i k

k
(12) T a k-1 | f,k-l =0 a.e. 1, i €.

o
]
[
I
-
-
|~



By induction on k it follows that a , = 0 for all i ¢ @,

i
If h satisfies (10), then

a-kt+1

-1
@-k+D1 g hE
i=1 1

m

(13) h (x)
a o

is an unbiased estimator for G:; and if its components are in
Lz(uk), then it is consistent. Henceforth, we take & to be
linearly independent which assures the existence of h satisfying
(10). From Robbins (1964, §7) and Van Ryzin (1966a, Theorem 1) if

h satisfies (10) with components in Lz(uk), then
(14) hypy =8, +8y

*
where the f Kk form the (unique) dual basis of Sk, the subspace

k 1
of Lz(u ) spanned by ﬁk, and g, & Sk for all i# € @k.
* * % 1 k
Remark 2. f k= f. £, ... f for all i where
- = . i, i i -
* % * 1 1 72 k
{fl,fz,...,ﬂ“} is the (unique) dual basis of S, the subspace of

Lz(u) spanned by &.
Proof: The dual basis of Sk is the (unique) subset of

or

mk element from the span of fk with elements satisfying (10).

* % * k .
The products f_  f ... £ are in the span of % since
i, i i
fl’fZ""’fm are in the span of ¥ and satisfy (10).
From any unbiased estimator h = (hl,...,hm) of @&, one
. . . _ k
obtains an unbiased estimator h = (hll...1’°'°’hmm...m) of @
by taking
k .k k
(15) h,(x) =h, (x)h, (x,) ... h, (x,) forall i € @ .
ik i1, 2 107k =

We call such an estimator a product estimator. Our theorem concerns

an extended compound procedure based on an unbiased bounded product



k
estimator of @ and Remark 2 shows that such an estimator is pro-

* * *

* * *
(flfl . fl,...,fmfm .o fm). (In general, the class

vided by gf
of unbiased product estimators of Ok does not exhaust the class
of all unbiased estimators of Ok.)

The following remark can be applied to determine the rank
of the covariance matrix of a product estimator.

Remark 3. Let h = (hl,...,hm) be unbiased for & with
components in Lz(u) and let V(i) denote its covariance matrix
under Pi’ i € ® Let h denote the product estimator (15) and
let V(ik) denote its covariance matrix under P ., Lk € @k. Then
Rank V(i) = m for all i € @ implies Rank V(ik% = mk for all
ife o~

Proof: We use the fact that the rank of the covariance
matrix is the dimension of the span of the centered components in

k k

L,. Let i €@ and

16 va.,(h,, -E h )=0 a.e. P .
(16) X jk ik ik ik ik
i 1 1
Taking E k-1 expectation gives
i
(17) sa (E, . h, D, -E h )=0 ae. P, .
ik lkilikl Ik 'k Ik i
. _ k-1 k-1 ,
Since E,k-lh,k—l = 6(1 ,i ), it follows that
1 1
m
(18) S a (h, -E_ h) =0 a.e. P, .
IERFLLE 'k
Since V(ik) has rank m, (18) implies a k-1 = 0, jeEO®.

i ]
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3. Main Result.

We will now state a lemma which is used to obtain rates for
our decision procedure. Let X = LT OFERED be a sequence of
k-dependent random variables with means zero and finite variances.

(Here k-dependent means that the variables (X ..,Xr) and

1°°
(Xs,...,Xt) are independent for all 1 € r<s £t and s -r = k.)

We will use the notation

2 _
Xj’ Bn = E(Sn), Fn(x) = Pr[Sn < x /Bn],

2]
]
nmMos

ji=1

2
2 = 7 % et Mg

As a corollary to the proof of Theorem 1 of Egorov (1970)

it follows that if there exist constants b > 0 independent

e Pk
of n such that

(19) X | sa, n=z1

k’

(20) Bn 2 bkn’ nz21

then there exists a constant > 0 1independent of n and the

Cx

distribution of X such that

(21) sup_|F () - 860| = ¢, (b, /%, a1

From this result, Lemma 1 easily follows.
Lemma 1. Using the notation and conditions (19) and (20)

from above,

-5 -1/5
Pr(d < s sd+als (27 bkn) a + 2ck(bkn) , n=21

for all real d and a 2 0.
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In this section we consider the extended compound rule g

of (9) with GX=h ., o > k where
o a-k

-1 a-ktl K
( - k+ 1) T h(x.) a2k
. =i
i=1
22 h =
(22) O1(501)
0 a< k
and h is defined by (15). We take h = (hl’ .,h ) to be an
unbiased estimator of & with
(23) mx |h | sH<o a.e. 3 .

For convenience in establishing the asymptotic result (2)

for the extended delete bootstrap procedure

- k - . k .
(24) g, (x) = ¢ {ha_k(ia_k), x—'oz-k-i-l}’ a 2 k;

we consider the average risk over the decisions concerning

ek,ek+1,...,eN, i.e.,

N
k -1
(25) R((O,® = N - k+ 1D 3 R (8,9
a=k ©
- k
. 2 . . .
With gh of (24), the independence of ha-k and Ia-k+1 implies

_ o ok, Kk k-
(26) R,(8:9 =ER(Q, 14> @fh 1, ksasN

where here and throughout this section E denotes expectation with

respect to P = P81 X P92 XoooX PeN measure on (xl,xz,...,xN).
Using the notation of Van Ryzin (1966b) we let e denote the
k i

m . P : .y
E" -vector of all 0O's except 1 in position i and let

P k(w) = Rk(ik,m), i& € @k. Since gk is independent of h
i

o -k+1 a-k

and h is unbiased for Ok we have
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k.-
@7 R0 “ECe ot Th I,
‘Qcy-k'l-l

k k.-
=EMG )0 2@ (h (D), oz k.

Using (27) in (25) it follows that

|3 -1 N k k.- k.-
(28) Ry(8,@) = (N - k+1) afkyh(&a_m)’ oo {h D - oo (h D)y

+ (N k+1-1NEhk CACI)
(N - ) z E(h(x _i4q) > (@ (R 1)y

The left inequality of Lemma 3.2 and equality (3.4) of Van Ryzin

(1966b) applied to the [, decision problem, together with (28)

k

gives

k k -
(29) BN(_e_,_cg) SAN(Q) +E R (h))

where

1 N

- k i '
(30) A (®) = (N - k+1) qu jzj' Ef|(h(x 14y LaE(y - Lf< £(y_k))k\-
k

k - k., k ,- k k,- k, k ,- k k
. . + . .
{ij(ha_ka VA )CPJ '(hQ” A ) (.Pj(ha) VA )(«PJ '(ha~k’ bA )}dld- (l )

and Xk = (yl,...,yk). By the unbiasedness of EN for G;

]
o

- k - k k
ER () - RG]} < EGy - G, a(o(oyD)
so that by (29)

k
(31) RY(8,0) - R(Gy) = A (D

We now proceed to show that if the kernel h = (hl,...,hm)

has full rank covariance matrix under Pi’ i € @, then AN(Q) =

N-1/5

0( ) uniformly in g. Thus we establish (2) with rate for the

procedure (24).
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|3
Fixing y , j and j' and letting u denote the mk X 1
k j '
matrix Li fy) - Li g(xk), we see from definition (8) that the

factor in curly brackets in (30) is bounded by

a-k+1 K a-k+1 K
(32) [-z (h(x.), u), <S s0]+[0<S <-g (h(x.),w), ]
{=q-2kt2 ' k f=g-2kb2 L K

where the square brackets denote indicator functions and

a-2kt+1

(33) 5= f (ax), W, -
i=1

A calculation shows that

k

(34) BG) s Wy =2, 32002 Zike1 k
where

h ) f ’ = 1, -,k"l

( (xe) (yy)) Y
(35) z =

B,y
= k ,

(h(xa), u(YY)) Y

. )
f(y) = (£,(y ), (y)) and u(y) =Lf - 1) £(y). With
oy 10 m{Yy yY) (yY) (yY)
| || denoting the Euclidean norm in Em-space, (34), (35) and the

Schwarz inequality for EN applied to the Z3 v’ it follows that

k-1

el B e

(36) [EE N NIPEALT

In order to apply Lemma 1 to the sum S of k-dependent
variables we need to investigate the variance of S.

Lemma 2. Suppose h has full rank covariance matrix V(i)

under Pi’ i € ® and let k2 = min k? where xi is the minimum
l<igm
eigenvalue of V(i), 1 € i < m, (necessarily positive since V(i)
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is positive definite). Then for all g,

k-1
ol B llepl”

- 2
(37) Varﬁ(S) 2 [g——zgktllk k

where [x] denotes the integer part of x.

a - 2kt+l

” ], we write

Proof: Letting r = [

a-2k+1 r r
= LS +(5 - &S
i=1 j=1

(38)

S = z .z O/
151 i,17i+1,2 i+k-1,k

where

jk
(39) S(j) = ¢ z. .z, e 2. ,j=1,...,r.
i=jk-k+1 i, 1 i+1,2 i+k-1,k

By letting ~ denote conditioning on all X, except xk,xzk,...,xrk

we have

var(S) =

J

Var (S (j))
1

r
Defining

= (z z ...z .
25 = Chrer 1% 5k-k42,2 k-1, k178 g kekd2,17 " 2 5ke1, k=22 ik, K

R/ z ee. Z
"Tik+1,2 jk+2,3 jk+k-1,k)1xk

u(y,)

£y, _p)

f(yl) kXm

and 6j = sz, it follows that

o 2. .2
VAE(S(§)) = Var(8, hx;0) = W |8,
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Hence,
2 I 2
(40) Var (S) = ) E|ls.||" -
[} 2%
J
Letting subscript jktk-1 on E and Var denote conditioning
th
X, j—
on all X, except jltk-1 and 6j,i be the i component of 6j,

we have for j =1,2,...,r

]
|1

(41) Elg,|” =5

A

m

2
iEIEjk+k-1(6j,i)

I
|

m
2E I Va

(8. .)
i=1 >t

Tiktk-1"75

mo2

=E ¥ f (y,)Z
. i1
i=1

2 2

.z v
it ,2 jletk-2,k-1 o )

T2 k-1, k

The right hand side of (41) is bounded below by

2

2 2 2.2
(42) E(\ “u(yk)ﬁ “f(yl)n ij+1,2 e ij+k-2,k-1)

2 2 2 2 2
MO NEGDITEE g ) B 1)

2 2 2
A lu I IE@ || varz

k-1 2
nlEGry)|
i=1

\Y)

..Var(Z,
( J

k1,20 letk-2 k-1

2 2 Dy

where use is made of

12

Var (2 )) = AZHu(yk)h

B,k) = Var(U(yk), h(xB

and

[
N
-
=
[
—

Var(ZB’Y) = Var(f(yy), h(xa)) > XZWf(yy)“z for v

Thus, (40) - (42) imply (37).
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By (36) the bound (32) is seen to be zero if “u(yk)“ =

“f(yj)n =0 for any j =1,2,...,k-1. Otherwise, Lemma 2 implies

(43) VarQ(S) 2 bk(q - 2k+l), a 2 3k
where
k-1
2 2 2
Mol” T el
-— 1=
(44) bk = K ) >0 .

max  |L(i,j) - L(s,t)]|,
i,j,s,t

Further, using (3) and (36) and defining D

we have
\(h(xk) u) \ < a
=i’ ~k k
where

ak = mkaD Kk

Hence, conditions (19) and (20) of Lemma 1 are satisfied for Sn =8S.
Using (32), Lemma 1, (36) and (3), it follows that for

a 23k the o, j, j' summand of (30) is bounded by

(45) B, (o - 2k+1) "% 4 B, (a - 2141y 15
vhere
B, = 2(2n)-%D[k3(k+1)]% 3/2, 2k K01 K
B, = ack m4k/5Hkx-2k/5D3/5[k(k+1)] [u(l)]k K3k/5

For k € ¢ < 3k, we bound the summands of (30) by B3 = ak[u(I)]k

which together with (45) gives
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N
46) A((® 5 O - D) T (2B, + B, T (a-2kH) %
2 3 1
a=3kt+l
N
+8, 1 (a2t /3
a=3k+1
Noting
N 1l
L (a-2e)P s [ xPa < (o)
a=3kt+1 X
for -1 < p < 0, we can state
-1 -% -1/5
47) AN(Q) SCIN + CN + C,N
where ¢, k(2k+1)(2)B3, c, 2(2)kB1 and 03 S/A(Z)kB2 .

The above analysis establishes the following theorem.

Theorem. If the bounded unbiased estimator h = (h ,---,hm)

1
is such that V(i), the covariance matrix of h under Pi’ is of
full rank for all i € ® and ¢ 1is the sequence procedure (24)

then there exists a positive constant Ck independent of §

such that

k k, _k -1/5
Ry(8:® - R sC N



CHAPTER 2

COMPUTATIONS

1. Introduction.

The target for k-extended procedures is Rk(G:). We showed
in Chapter 1 for the compound problem with m X n ‘component that
this standard is achicved asymptotically by certain extended
sequence compound rules. Gilliland and Hannan (1969, Corollary 1)
showed that Rk+1(G:;+1

k k
R (GN) so that these extended rules will have asymptotically lower

) is asymptotically more stringent than

risk than the unextended sequence and set procedures constructed by
Van Ryzin (1966a,b) for the same component.
In this chapter we use Robbins' original component where

m=n =2, 1L(1,1) =L(2,2) =0, L(1,2) =L(2,1) =1, P, =N(-1,1)

1
and P2 = N(1,1). We calculate R2 and compare it with Rl.
Furthermore, we compute the compound risks for four unextended and
four k = 2 extended sequence compound rules for various N and

9 to determine possible finite N advantages of extended procedures.
Finally, for a selected unextended rule and a selected extended rule

we compute the Bayes compound risks with respect to various distribu-

tions on 9§ for N = 50, 200 to study the risk behavior of the rules.

18



19

2
2. Computation of R (G).

Consider the Fz decision problem based on the Robbins'
component. Let f1 and f2 be the usual normal densities of
N(-1,1) and N(1,1) with respect to Lebesgue measure p. (In
Chapter I | was chosen to be a finite measure only for convenience

in establishing the asymptotic result.) Then the Bayes rule (8)

versus G = (py 1oPy 2Py 10Pp 2) 1S

2 . . ‘
wl{G; (xl,xz)} =1 if and only if Al(xl,xz) < Az(xl,xz)

where
2
By0xpoxg) = () B Py o0
and
2
Bpxpxy) = 10p) B Py 10
By defining
2
Zp; of; 00
_i=1
P(x)“‘ 2 2
a I py 'fi(x)
i=1 j=1

it follows that pa;(x;,%,) < Az(xl,xz) if and only if p(xl)fz(xz) <
(1 - p(xl))fl(xz) which holds if and only if X, < c(xl) where

c(x is the cutoff value of the component Bayes rule versus

1)
1 - p(x), p(x), namely c(x) = % log((l - p(x))/p(x)).
Hence

2

Zp; i [RG, 4G E, (o dx

(48) rR2(G) =
13=1"

i

MmN

where
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R(1, d(x))

]

1 - §(c(x) +1)
and

R(2, d(x))

8(c(x) - 1)

We will compute RZ(G) for various G wusing the trapezoidal
rule for the integrations indicated in (48). Since the marginals of
Gé are equal in the limit and RZ(G;) is the standard for compound
risk in the k = 2 extended compound decision problem, we will

2
compute R (G) for G which satisfy

(49) Pr2t P2 P 1 %P,

k) b ’

Letting p denote the common marginal probability (49) and defining
5 = p, 2/p for p > 0, we obtain a convenient parameterization for

G satisfying (49),

G = G(pyé) = (1 = P(z‘é), P(l'f))) P(l'é)) pé)’

and we will, henceforth, abbreviate RZ(G(p,G)) to Rz(p,é). Since
each component of G(p,5) is linear in §, aG(p,bl) + (1-a)G(p,62) =
G(p, abl + (1-a)62) for 0 € o € 1, the concavity of R2 implies
Rz(p,é) is concave in § for fixed p. Furthermore, by Remark 1
of Gilliland and Hannan (1969), Rz(p,é) as a function of § is
maximum at § = p; the maximum value being R(p), the k =1 envelope
evaluated at the prior 1-p, p on states 1 and 2 respectively.

The k =1 envelope R(p) is easily computed by hand and

is given in Table 1 to 5 place accuracy.
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Table 1 - Values of R(p) for p = .1(.1).5

p R(p)

.1 .07006
.2 .11207
.3 .13875
A .15378
.5 .15866

Values of Rz(p,é) for p = .1(.1).5 and § = 0(.05).1
were computed on a CDC 6500 computer using (48) and the trapezoidal
rule of numerical integration. These are given in Table 2 with
maximum column values underlined. The grid used in these computa-
tions was sufficiently fine to guarantee that the error terms are
bounded by .005. However, for most values, we feel these errors
are less than .0001.

In order to more clearly understand the behavior of Rz(p,é)
as a function of & for fixed p, we have plotted the values from
Table 2 in Figure 1. The relatively flat nature of the curves
corresponding to small p 1indicates that the extended rules will
not be much better than the less complicated unextended rules at
parameter sequences § with a small proportion of states 2. (By

symmetry also at § with a large proportion of states 2.)
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2
Table 2 - Values of R (p,8) for p = .1(.1).5 and § = 0(.05)1

5 p 1 2 .3 4 5
0 .06939 .10757 12474 .11999 .07866
.05 .06993 .10975 .12957 .12898 .09705
.10 07008 11111 .13312 .13608 11167
.15 .06995 .11186 .13569 14177 .12365
.20 .06958 .11210 13744 14623 .13348
.25 .06901 .11188 .13845 .14961 14146
.30 .06824 11123 .13878 .15196 .14780
.35 .06729 .11019 .13846 .15336 .15262
.40 .06617 .10876 .13751 .15382 .15601
.45 .06489 .10695 13594 .15336 .15802
.50 .06344 10477 .13375 15199 .15869
.55 .06183 .10220 .13093 .14970 .15802
.60 .06005 .09925 12747 14647 15601
.65 .05811 .09589 12334 14226 .15263
.70 .05599 .09212 11852 .13702 14781
.75 .05369 .08791 11294 .13069 14147
.80 .05121 .08322 .10655 .12316 .13348
.85 .04852 .07801 .09926 11429 .12365
.90 .04562 .07220 .09093 .10387 11168
.95 .04246 .06570 .08133 .09154 .09705

1.00 .03901 .05831 .07007 .07658 .07867
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3. Simulation Study of the Risk Performance of Some Compound Rules.

In this section we compute and compare the compound risks of
various unextended (k = 1) and extended (k = 2) compound procedures
through the use of computer simulation. We consider two different
unbiased kernels for estimating the empirical distributions in both
the delete rule (24) and the corresponding non-delete version where
hu-k is replaced by hu' Thus, a total of 8 different rules are
considered.

A bounded unbiased estimator is provided by the dual basis

of {fl,fz] in Lz(u)' In the example under consideration, it is

b(x) = (bl(x), bz(x)) where

2 2 -1
b,(x) = (A -B) "(Af,;(x) - BE,(x))

2 -
b, = (A° - B NAR, () - BEL ()

2 2 -1
= = = 2 = =
A jfl(x)dx ‘I‘fz(x)dx (/) and B J‘fl(x>f2(x)dx Ale.
Estimator b has full rank covariance matrix under both
P1 =N(-1,1) and P2 =N(1,1). The second unbiased estimator we

consider is r(x) = (rl(x), rz(x)) where

(1 - x)/2

rl(X)

0, (x) = (1 +x)/2 ,

which is the kernel function used by Robbins (1951). Estimator r

is unbounded and its covariance matrix has rank 1 under both P1

and P2.

The four unextended rules we consider are given by (9) with

k = 1 and 61 one of the following:
o
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-1 o-1

(@-1 5] b&x) , az?
-1 a-1

(@ - 1) 8? r(x;) » az2

-1 o
a L b(xi) , az=21

o
@ L r(xi) , az=21.

We refer to these compound rules as udb, udr, unb and unr
respectively where, for example, unr denotes the unextended, non-
delete rule with kernel r.

The four extended rules we consider are given by (9) with

a2
k=2 and G one of the following:
o

- - 2
(a - 3) 12? 3 b(x.) , a2t
1
-1 -3 2
(o - 3) Z? r(x;)) », azé
-1 -1 2
(- 1) 7g] bx) , w=2
- - 2
(a-l)lzfilg(ii) , a2

where b and r are the product estimators based on b and r.

We refer to these rules as edb, edr, enb and enr respectively.
For our computations the compound losses for the rules edb

and edr are calculated as average loss over the last N - 3 com-

ponents; for wudb, udr, enb and enr as average loss over the last

N - 1 components and for unb and unr as average loss over all

N components. 1In practice onc might use the component minimax rule

as the initial segment of the sequence compound rule. In defining

the rule for the Theorem of Chapter 1 we took for convenience the

estimator of G; to be 0 (cf. (22)) in the initial segment forcing

all initial decisions to be action 1 (cf. (8)).
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The behavior of our eight procedures will be examined for
N = 20, 50, 100 and 200 components and for two extreme types of para-
meter sequences.

Type I - Means of 1 occurring uniformly along the sequence
such that § = 0. The proportion of these means will take values
p = .1(.1).5.

Type II - All means of 1 occur in a group after means of -1.
The proportion of means of 1 will take values p = 0(.1).5. 1In this
type of sequence § =1 - (pN)-l.

Rayment (1971) has used these types of parameter sequences
in an investigation of the compound risk behavior of the unextended
delete sequence rule with &i = fd truncated to the range of G;.

One hundred simulations were made for each given § and N.
All eight rules operated on the normal variables generated in a simula-
tion. The estimated compound risk of a rule was obtained by averaging
the one hundred compound losses. These averages along with error
ranges of twice the standard deviation are given in the following
tagles. Envelope values from Tables 1 and 2 are given to indicate
the unextended and extcended asymptotic risk standards for each »p

and parameter sequence type.
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The following observations can be made from the above tables.

1) When R(p) and R2(p,6) are nearly equal and N > 20,
the unextended and extended procedures appear to have similar be-
havior. However, at points where Rz(p,é) is considerably less
than R(p) and N > 20, the extended procedures are significantly
better. The results for N = 20 are somewhat inconclusive except
when the parameter sequence is of Type I and p = .5 the extended
procedures are a great improvement.

2) The performance of the nondelete rules appears on the
average to be better then the delete rules at 20 and 50 components.
But for 100 and 200 components this advantage seems to disappear.

At p=0 for N = 20, 50, 100 and 200, the delete unextended rules
have uniformly lower estimated risks.

3) Generally, the behavior of the rules based on the dual
basis kernel is the same as the behavior of the rules based on Robbins'
original kermel.

Observations 1 and 2 are cretainly consistent with the theory
and intuition. When the extended envelope is significantly below
the unextended envelope, one would expect the extended procedures to
be better. Further, it is consistent that the advantage of nondele-
tion would become negligible as the number of components increases.
The last two observations seem to indicate that Theorems 4.2 and 4.3

of Van Ryzin (1966b) may be generalized to the extended setting.
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4. Performance of Compound Rules when the Parameter Sequence is a

Strictly Stationary Process.

Gilliland and Hannan (1969, Theorem 3) show that if
g = (el,ez,...) is a strictly stationary stochastic process then any
asymptotic solution of the k-extended sequence compound decision prob-

lem ¢ = (91’32"") satisfies

I;;& fBN(g,ggdG(g) - Rk(cf)

e e k
where G denotes the measure on infinite sequences § and G*

denotes the marginal on Q: = (gi,ei+1,...,g )y, i=1,2,... .

i+k-1
This theorem serves as the motivation for our next set of
calculations. We modified the computer program used in the above

computations so that the sequence of parameters is generated by a

Markov process. The distribution of the initial parameter is

Pr[e1 =

|
N
[

=P

Pr[e1 = 1]=1-p

and the transition probabilities are

Prlo,,, =2l9; =2] =58
Pr[ei_H = 1\9i =2]1=1-%
Prlo,,, =2|8; = 17 =p1-8)/(1 - p)

Pr[9i+1= 1\9i = 11 =1 - pA-8)/(1 - p).

It is not difficult to show that this process is strictly stationary.
In our calculations we compared the Bayes performance of

udb and edb for 50 and 200 components. One hundred simulations were
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made for each case and both rules operated on the same hundred samples.
The estimated risks of the two rules were obtained by averaging the
one hundred compound losses. These averages, along with error ranges
of twice the standard deviation are given in the following tables.
From these tables we observe that for 50 components the un-
extended procedure, udb, performs better at every (p,8)-value while
for 200 components the extended procedure, edb, is significantly
better at many (p,8)-values. Further, the estimated risks for edb
indicate that its convergence to or below Rz(p,s) is relatively

slow.
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CONCLUSIONS

In this thesis we have shown that the product estimators of
Gg are natural and logical extensions of the estimators of GN in
the unextended problem. Further, using these estimators, we pre-
sented a sequence extended delete compound decision procedure which
satisfies (2) with a rate of N-lls.

Our computer simulations for the featured example in Robbins
(1951) showed that the k = 2 extended envelope is significantly be-
low the simple envelope for many parameter sequences. For these
sequences, the four extended rules investigated have estimated risks
that are significantly better then those of the corresponding un-
extended procedures for as few as 20 repetitions of the component
problem. The calculations indicated that the risks of extended rules
converge relatively rapidly to RZ(G;). From a comparison of extensive
tables of component by component loss not published here, one can
conclude that for most parameter sequences the average number of errors
made at component ¢ has reached the envelope value for o = 50.
However, it takes some time to average out the large number of errors
made in the first few components. Our last set of calculations showed

that the extended rules perform quite effectively when the parameter

sequence is being generated by a Markov process.
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