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ABSTRACT

EFFICIENCY AND FRONTIER PRODUCTION FUNCTIONS

BY

Richard Almy Barclay

This dissertation raises serious questions regarding

the validity of frontier production functions which are

considered better than traditional production functions

because they distinguish between "technical efficiency"

(TE) and "price efficiency" (PE).

In empirical work there are always variations in the

data. Frontier production functions represent a new

theory explaining the cause of these variations predicated

on the existence of an interior to an isoquant at the same

level of production. This dissertation first explores

unit isoquants and solid production possibilities sets.

It is shown that specification and/or aggregation error of

the sub-production function, due to a lack of attention to

the fixed inputs, account for the variations attributed to

TB and PE. It is also shown that the discrepancies between

observations within a unit isoquant attributed to differ-

ences in TE are due to the averaging process itself, so

that the unit isoquant represents the boundary between

Stages I and II of production.

Frontier production functions and distance functions

are frequently regarded as the same. It is demonstrated



Richard Almy Barclay

that the principles of duality implicit in distance

functions conflict with the distinguishing characteristics

of frontier functions. Specifically, duality proves that

TE and PE are always identically equal by definition.

The two appendices present background theory and

agruments that substantiate the thesis that "TE" and "PE"

:nepresent specification and/or aggregation error. A brief

review of thermodynamics shows that thermal efficiency and

economic efficiency are the same, and that "technical

inefficiency" as used in the frontier production function

literature is physically impossible.
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CHAPTER ONE

INTRODUCTION

It is becoming increasingly fashionable to estimate

production functions in a 'new and better way.‘ Increas-

ingly researchers estimate a "frontier" production

function rather than a traditional production function.

The frontier production function is supposed to be a new

way to explain differences in the observed production

behavior of different firms [King, 1980]. The frontier

function is supposed to be 'better' because it represents

an estimate of the best performance observable.

A frontier production function

may be thought of as a "best practice"

production function (Forsund and Jan-

sen) or a function that expresses the

maximum product obtainable from various

combinations of factors given the exis-

ting state of technical knowledge.

[King, 1980, page 1]

1.1. VARIATION IN OBSERVATIONS IN APPLIED WORK

Undoubtedly the frontier production function approach

has some intuitive appeal, or it would not be gaining such

Wide acceptance and popularity. The intuitive appeal of

the frontier production function approach is probably due

t° the fact that in applied work it is not uncommon to

°bserVe two firms 0 and P, which appear to be using the

l



same technology with different amounts of the same inputs

to produce the same amount of the same output.

One should remember that all applied problems assume

a consistent theoretical basis for all the observations

included in the data. This theoretical basis is under-

stood to be an abstraction from reality which helps one

distinguish what is important from what is unimportant.

In firm level production analysis this frequently means

that all observed firms are assumed to use the same

technology, use the same inputs, pay the same prices for

their inputs, and receive the same price for their output.

These same assumptions are generally made for frontier

production functions, too. It is clear that the as-

sumptions do not strictly hold in reality; that firms do

not use the same technology, do not use the same inputs,

do not pay the same prices for their inputs, and do not

get the same price for their output. Traditionally, re—

Beachers have assumed that the real observations represent

a distribution around the theoretical points of "same"

technology, "same" inputs, "same" input prices, and "same"

output price. This distribution is caused by "noise," or

random uncontrollable factors affecting the real observa-

t-‘lons . Consequently, one uses the data to estimate para-

IIIeter‘s of the system at the mean of the data, i.e., at the

theoretical points of "sameness." That is, with careful

attention to one's assumptions, one in effect theoretical-

ly insures the variation does not exist. Dealing with the

variation that does exist in the data is an empirical



 

 

problem, rather than a theoretical one.

Traditionally, one deals with the variation by care-

fully specifying the sub-production function in terms of

the levels of the fixed inputs, so that all observations

are on the "same" sub-production function, and by aggrega—

ting inputs that are very close to the "same" for all

observations. How close is "very" close is a matter of

judgement. When the specifying and aggregating is not

"very close," one commits either a specification or an

aggregation error. That is, if one includes data from two

firms in estimating a function which are on two different

sub-production functions, one has a specificationjroblem.

()r', if one includes two firms using different inputs which

are treated as the "same," one has an aggregatiowoblem.

One expects that the actual variation left after speci—

fying the sub-production function and aggregating the

inputs will be variation that deviates from the mean of

the data points, the point of theoretical "sameness," and

not from one extreme. Thus, such observed differences

betWeen firms are not due to "technical" efficiencies or

inefficiencies but, rather, to either implicit specifica-

tion and/or aggregation errors.

Frontier production functions represent not only a

e”Pil'lical departure from the traditional approach but also

a Lhaoretical justification for this departure. Frontier

produ£>tion functions constitute a new theory of produc-

tion, not simply a new method for explaining variation in



data. No longer are observations simply deviations from

their means, they are deviations from their extremes.

Why not use a statistically estimated

average unit isoquant, rather than a

frontier isoquant? The answer is that

the frontier function, which determines

"best" practice in the industry and

which all firms are attempting to emu-

late, may not be a nuetral transforma—

tion of the average function. The

frontier production function may have

entirely different factor elasticities

from the average function. [Timmer,

1971, page 779]

Because the frontier function is the "best practice"

function, it reputedly allows the researcher to discrim-

irxate between firms on the basis of "technical" efficiency

(TE) and "price," or allocative efficiency (PE) to explain

'ttme difference between Q and P. That is, some of the

variation in the data, due to its lack of "sameness," is

exPlained as being due to differences in "technical"

a“Id/or "price" efficiency between observations.

1.2. WHY FRONTIER PRODUCTION FUNCTIONS ARE "BEST"

The theory of frontier production functions is still

evcl\ting. This means that in understanding frontier pro-

duction functions, one must accept the presence of two

Obstacles. These two obstacles result in problems of

inconsistency, ambiguity, and vagueness, and are the re-

sult (of the fact that frontier production functions prove.

in eVery case, to be misleading interpretations of real-

ity,



First, there is more than one definition of a fron-

tier production function and hence a lack of consensus

among authors as to what represents a frontier production

function. There might be disagreement or inconsistencies

between authors regarding some aspects of what constitutes

frontier production function theory.

Second, for a particular representation of a frontier

production function, not all the underlying preconditions

(assumptions) are necessarily clear. Nor are all the

implications or ramifications of a particular characteris—

tic stated, or even clearly implied.

Despite these two obstacles all frontier production

functions share two concepts: (1) TE 76 PE due to an in—

trinsic separation between physical decisions and value

deoisions, and therefore (2), there is a technical effi-

c: iency and a technical inefficiency that are exclusively

different.

The first characteristic shared by all representa—

t dons of frontier production functions is that TE is

separate from PE; that technical efficiency and allocative

e fficiency are mutually exclusive phenomenon. Recent

e<.‘{uivocation, that allocative efficiency means only get-

t 1119 inputs in the proper ratios but not necessarily in

the proper quantites [Kopp, 1981a, Schmidt and Lin, 1983],

has not altered the basic premise that one can observe

technical efficiency (or inefficiency) in isolation from

Q‘Dserving price efficiency.



Contrary to price efficiency which is a

purely behavioral concept, technical

efficiency is purely an engineering

concept. It entirely abstracts from

the effect of prices. [Lau and

Yotopoulous, 1971, page 95]

If technical efficiency "entirely abstracts from prices,"

111 so doing,

vvjnthout value (price) are considered to be "free"

and therefore are of no economic consequence.

it ignores the fact that physical commodities

goods,

Quite

Simply, some frontier production theory suggests that one

may get

increasing technical efficiency. Since technical

something for nothing (more output) by simply

effi-

c1 ency is separate from price efficiency the increase in

ef ficiency should be costless.

These results also show, however,

that on average there is 22.82 (=1.0 -

0.7718) percent and 23.27 (= 1.0 —

0.7673) percent technical inefficiency

in the cases of crop and mixed farm

samples, respectively. This means that

actual (observed) output is about 23

percent less than maximal output which

can potentially be achieved from the

existing level of inputs. In other

words, through the efficient use of

existing inputs the farm output can be

increased by almost 23 percent without

any additional cost to the farmers.

[Bagi and Huang, 1983, page 255]

This quote not only exemplifies that TE and PE are re—

gasleded as mutually exclusive, but also exemplifies the

Eg“~‘9c:ond concept that all frontier production function in-

t§rpretat

This

ions share.

second concept is that technical efficiency

theans one might get more than one quantity of output given

 



the same technology (the same set of identical fixed and

variable inputs) and that the failure to achieve the same

level of output cannot be corrected using economic theory

as a guide.

The economic decision-making process

can fail in two different ways. The

whole core of economic theory is con—

cerned with the first of these - the

marginal revenue products of some or

all factors might be unequal to their

marginal costs. If this is true the

allocative decision is said to be in-

efficient. The second source of

failure is the technical production

function - a failure to produce the

greatest possible output from a given

set of inputs means the technical deci-

sion is inefficient. [Timmer, 1971,

page 776]

The suggestion that one might get two or more possible

o\JLtcomes when using homogeneous inputs in identically

3pacified production processes has lead some to suggest

prlicitly that the production set is a solid rather than

‘31 surface; that an isoquant is a plane rather than a line

[ Jamison and Lau, 1982] .

As can be seen from the quotes above, both these

QOncepts are so interdependent that there is virtually an

1 f~and-only-if connection between them. This is because

both of them rely entirely on the existence and interpre—

tation of interiors £9 isoguants. Being on the isoquant

mQans being technically efficient, while being within the

1Interior of the isoquant means being technically ineffi-

Qllent. Being at the point where the budget constraint is



 

 

tangent to the isoquant, or being on a ray from the origin

through this point, means being price efficient. Being

away from the tangency point, or the ray through it, means

being allocatively inefficient.

1.3. WHY IS THIS IMPORTANT?

The frontier production function is an attempt to

explain the cause of variation in data in empirical work.

This is a practical problem rather than a theoretical one.

Unfortunately, frontier production functions do not merely

JFGEJpresent a method for dealing with an empirical problem.

They also represent a theory of production which is physi-

C=ialllry and logically questionable. This confusion of theo—

zt‘ifie'tical issues with empirical issues has resulted in an

aJn'biguous and misleading frontier production function

1 i terature.

Eliminating this confusion is important because the

SalziLstinction between technical and price efficiency reduces

the credibility of economic theory in explaining reality.

Utrltle distinction places economists at odds with engineers

is‘lrld all physical scientists. Frontier production function

theory encourages researchers to believe that efficiency

‘2“E311 be solely concerned with physical production relation—

et‘lfips (TE), or solely concerned with value relationships

(IEEIE). This suggests that economic efficency is not merely

minimizing opportunity cost, but that there is a purely

physical aspect that is unassociated with value.



COH-current production literature increasingly

'two

The

tains examples of research that have measured these

of efficiency [Bagi and Huang, 1983, Bravo-Ureta,

Cooper,

types'

and Rhodes, 1978, Charnes,1983, Charnes, Cooper,

and Schmidt, 1979,Lovell,

Forsund and Hjalmarsson,

1980,

Forsund,

1974,

and Rhodes, 1981,

Forsund and NJ almarsson ,

Hall and Le Veen,

and Lovell, 1977,

is a fundamental difficulty in the logic

or more, types

1978, Lesser and Greene,

Schmidt and Lovell, 1978].

15379,

ESCflhmidt

of

of

Since there

the proposition that there are two,

are fundamentally flawed andefficiency, these studies

Researchers have measuredI'each erroneous conclusions.

What is in reality variation in the data due either to (1)

from two or more different sub-c: Onbining observations

production functions (the specification problem) or (2)

aQgregating heterogeneous inputs (the aggregation prob—

differences are then attributed to differ-

There is a

Jl-isem). These

‘EPJraces in "technical" efficiency between firms.

‘5lnianger that the conclusions of these studies will be used

deci—1 In formulating public policy or in entreprenuerial

More importantly, the credibility and le-

jeo—

Qdon making.

gitimate development of the science of economics is

and misleadingpIl‘odized by institutionalizing illogical

t lleory .

Frontier production functions are both a theory and

iaur‘ explanation of variation in data. If the theory is in-

functions, properly inter-valid , frontier production

lIEJPeted, can still be an empirically valid way of detecting
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and explaining variation in the output of firms. The

methods currently used in frontier production function

analysis can be used diagnostically to detect aggregation

and/or specification errors.

1.4. OUTLINE OF CHAPTERS

1 - 4.1. CHAPTER TWO: UNIT ISOQUANTS AND PRODUCTION SOLIDS

Two cases of frontier production function theory and

‘vac3 mutually exclusive types of efficiency are discussed

1111. this chapter. First, the unit isoquant is defined.

This concept is used in the original and fundamental

de finition of a frontier production function. It compares

f 5- :rms on the basis of input used per unit of output ob-

‘t:*El.ined. The next section considers two cases of a solid

production set. A solid production set implies that two

identical sets of the same inputs can produce different

01:. tput using the same technology.

These cases preserve the essential frontier produc—

“:‘:i.on function characteristic that there is an interior to

aatlrl isoquant at the same level of production. The last

aection explains why such an interior can appear to be

Q"Deerved in reality gm if a specification or aggregation

errors exist. Specification error means one is making a

Qanparison across sub-production functions or input re-

quirement sets, rather that within them. Aggregation

$1":Ir'or means one has aggregated heterogeneous inputs and

identified them as homogeneous.
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Apparent differences in TE are attributed to firms

having different amounts of fixed inputs, or aggregating

heterogeneous inputs. Frontier production function analy—

sis often ignores the presence of fixed inputs and the

economies of investment/disinvestment necessary to change

the amount of fixed input used in production (see Edwards,

.1958) .

1 -4.2. CHAPTER THREE: FRONTIER FUNCTIONS AND DISTANCE

FUNCTIONS

Frontier production functions are often assumed to

c=<3nform to the same underlying assumptions as distance

functions; concavity and monotonicity. Therefore, it

111:1 ght be inferred that frontier production functions are a

8E>ecial case of distance functions. First, it will be

s1'10wn why frontier production functions and distance

f‘I.:lnctions may mistakenly be interpreted as being the same.

Tc many, the frontier production function appears to be a

b3.7-product of the attempt to provide a rigorous mathemati-

Qa1 proof to duality theory. The third and fourth sec-

t lions prove by contradiction that frontier production

functions and distance functions are incompatible.

The proofs in the third and fourth sections rely

liQavily on an interpretation of duality theory presented

by McFadden (1978) . McFadden's duality theory excludes

S‘tage III of production because he postulates that mar-

ginal physical products are always non—negative. His

qIlality theory implies that TE and PE are identical; i.e.,
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that all points on a production function that are TE are

also PE by definition. This is demonstrated using polar

reciprocal sets. Polar reciprocal sets make a one to one

mapping from physical to value relationships (excluding

Stage III); the physical aspect of production (TE) and the

*value aspect of production (PE) are inseparable. There-

fore, the third section demonstrates that there can be no

difference between TE and PE.

The fourth section demonstrates that an isoquant

Cannot have an interior at the same level of production

\Jssing duality theory and its inherent principle of free

disposal. Free disposal in production space means the

<=C>rresponding cost is also freely disposed. Free disposal

ll"earns that 92th input and output are freely disposed and

completely removed from accounting, i.e., it is as if the

eJ-ittra input and output never existed; consequently "extra"

‘ifituput/output cannot affect technical efficiency because

“:lney can not be included in production or cost.

1 .4.3. CHAPTER roan: A m casz

The last case presented is a new case that has not

Iaeen considered in the frontier production literature.

firhis case presents a valid interpretation of the unit

.isoquant where there is neither specification nor aggrega-

tion error. This case is fundementally different from a

frontier production function because there is no dis—

tinction between TE and PE, and the unit isoquant may have
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both interior and exterior points. It defines "technical

efficiency" as obtaining maximum average physical output.

Therefore, the point of "technical efficiency" can be

viewed as roughly equivalent to the boundary between Stage

I and II in production and is 33211 efficient only if the

firm is in long run equilibrium under perfect competition.

1.4.4. CHAPTER FIVE: THE FRONTIER PRODUCTION FUNCTION

LITERATURE

Chapter Five deals with the frontier function litera—

‘ture itself. Careful reading shows that TE is due to

especification error and/or aggregation error. Only the

asaiient theoretical literature is dealt with since much of

‘tlae literature is reptitious. The "other literature" is

also briefly described. This literature falls into one of

“twat: categories, (1) it develops a method for measurement

(:1? TE and PE, or (2) it develops related concepts that

encounter the same basic difficulties.

1.5. OUTLINE OF APPENDICES

The Appendices present two mutually exclusive argu—

men-ts, each of which raises serious doubts about frontier

Production functions and all of their ramifications; (1)

that a firm can be "technically inefficient" given a set

Of lilaputs (system). an output (useful work and any change

it! ‘the state of the system and its environment), and a

sula“1;roduction function (processes), and (2), that one may

s
Sparate physical efficiency (TE) from value efficiency
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(PE). Both appendices demonstrate that there can be no

relevant logical interior to an isoquant.

1.5.1. APPENDIX ONE: EFFICIENCY AND THE LAWS OF

THERMODYNAMICS

There is no single term for "technical efficiency" in

engineering. Rather there are a number of different types

of efficiency which describe aspects of what some eco—

nomists call technical efficiency. Thermal efficiency is

an example of one such technical efficiency. The focus of

this appendix is on thermodynamics, the laws of which

determine thermal efficiency. Thermal efficiency is de—

fined as the ratio of useful output to costly input

(Dixon, 1975], so that in thermodynamics the physical

aspect of production is not separated from the value

aspects of production.

The first part of the appendix defines the important

terms and concepts from thermodynamics.

The second section presents the first and second laws

01‘ thermodynamics. This establishes the one to one rela-

tionship between total input and total output, i.e., es-

tab; ishes that one cannot get more of the same output with

less of the same input using the same processes.

Finally, thermal efficiency, as a case of technical

efficiency found in thermodynamics, is described. In the

appendix it is shown that, (1) thermal efficiency is an

evaluation of output which means TE and PE are insepar-

ab
13 . and (2) , thermal efficiency is not the TE of fron—



15

tier production literature. It is also shown that dif-

ferences in thermal efficiency can be found only in situa-

tions where one is comparing two different sub-production

functions (cycles) or two different sets of inputs (sys-

tems). Differences in technical efficiency using the same

bundle of inputs, and the same production processes, are

xaot possible in thermodynamics.

11.5.2. APPENDIX TWO: EFFICIENCY IN ECONOMIC THEORY

Microeconomic theory, simply but clearly stated. has

110 logical place for the frontier production ’function

(zoncept. Using set theory notation, the first section of

‘tiie appendix carefully defines terms, including input and

catltput, production functions and sub-production functions,

input requirement sets and isoquants, and distance

functions.

The second section of this appendix states the funda-

mental assumptions of production sets. The implications

of these assumptions are critical to understanding, (1)

"I13? frontier production functions are invalid, and (2) the

real ity they misrepresent.

The assumption of concavity implies the importance of

f1"“341 inputs. In order to evaluate efficiency, something

must always be fixed. Therefore, the consequences of

f1’{‘3<i inputs are critical to evaluating efficiency.

Each of the relevant consequences of fixed inputs is

taut‘ila up in turn in this appendix. Without fixed inputs.

t

he law of diminishing returns implies constant returns to
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scale. Even within this context one may conclude that

total input or output must be fixed or constrained in

order to discuss efficiency. The law of diminishing re—

turns states that fixed inputs affect the productivity of

the variable inputs. The law of diminishing returns is

important if one is going to freely dispose of the

input/output of one firm in order to make it "comparable"

to another firm; precisely what is implicitly done in the

frontier production function theory. The last, often over

looked, consequence of a fixed input is the existence of

Stage III of production. While it is true that additional

input always results in additional output (monotonicity) ,

it does not always result in additional useful output, or

product. The idea that one can get more or the same

useful output with fewer of the same inputs, is only true

for a move from Stage III towards Stage II. Stage III

also means that marginal physical products can be nega—

tive. Thus, producing- in Stage III is not economically

rational, not because it is not technically efficient nor

because it allows one to distinguish between TE and PE,

but because it does not pay to be there, which is simul-

ta~11eously a physical and an economic phenomenon. There-

fc’lsia, being in Stage III is inefficient.

The assumption of monotonicity means there can be

free disposal in production. Free disposal has little if

any counterpart in the real world. Theoretically, it

exiSts for perfect complements generally assumed in linear
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programming. It is used in the conventional theory simply

as a means to an end [McFadden, 1978]. In order to pro-

vide a rigorous mathematical proof for duality theory,

excluding Stage III of production, one ordinarily deals

with convex sets rather than convex functions.

The theory establishing the dual

relation between cost functions and

production functions was introduced

into economics by Shepard (1953), who

drew heavily on properties of convex

sets discovered by Fenchel (1953).

[McFadden, 1978, page 5]

{this means one hs an 'interior' to the production (dis—

tance) function, since it is a convex set, rather than

just a convex function.

Even though the identical word convex

appears in both the term convex set and

the term convex function, it has a

widely different connotation in each

context. In describing a set, the word

convex is concerned with whether the

set has any holes in it, whereas, in

describing a function, the word has to

do with how a curve or surface bends.

[Chiang, 1974, page 643]

Since an interior is clearly a violation of nature and

e‘=<>tmomic theory, free disposal is used to reconcile being

0:1 iand off the isoquant at the same time. This is how one

j‘ls3‘tifies an input requirement set, which has an

I

interior' of higher order isoquants, as a description of

the sub-production function or distance function.

A misunderstanding of free disposal leads to a defi—

n

ition of TE that is in conflict with the laws of dimin-
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ishing returns. Free disposal does not mean that a pro-

duction function is a solid rather that a surface, i.e.,

it does not mean that what one usually conceives of as an

isoquant has an interior at the same level of production.

The 'interior' of an input requirement set is a collection

of true isoquants which is consistent with the fact that

given identical sets of inputs one always gets identical

sets of outputs. Frontier production theory misrepresents

free disposal by applying the concept to only one side of

the inputzoutput equation. It suggests one may retain all

the input bundles within an input requirement set and

equate them to the output represented by the "bounding"

lowest isoquant of the set by ignoring ("freely dispo—

sing") the additional output of each of the higher iso-

quants within the set. "Technical inefficiency" implies

one does not ignore the additional inputs themselves that

are consumed in producing the additional output that is

freely disposed, or ignored. That is, the extra inputs

are included in the accounting of what is required to

achi eve the given lower level of output.

It can be shown that a distance function (a gen—

era-1 ized production function excluding Stage III that

disE>lays free disposal) is from the same set as its cost

fur1'12tion. Therefore, there is a one to one mapping from

distance functions to cost functions. Factor-price re-

quirement sets in cost space are analogous to input re-

quirement sets in production space, and are a direct

c

onsequence of duality theory. Together they are polar
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reciprocal sets. Polar reciprocal sets mean that free

disposal in production space is always accompanied by free

disposal in cost space.

The third section briefly describes profit maximizing

behavior which constitutes a valid definition of efficien—

cy. The ratio that determines the efficient point of

production in economic theory is the same ratio that

determines efficient production in thermodynamics; i.e.,

equating the ratios of the marginal physical products with

their respective prices.

The last section explains how and why frontier pro—

(duction functions violate the tenets of microeconomic

theory .

1.6. SUMMARY

First and last this thesis is a discussion of effi-

c::iency. It is predicated on the fundamental fact of

jg>luysical reality that there is a 1:1 physical relationship

batween input and output (product, waste, and pollutants)

5113» production; a one to one accounting between everything

that goes in to everything that comes out. Given two sets

of identical inputs, using the same sub-production

function, one cannot get two different amounts of iden-

tical output. Therefore, isoquants cannot have interiors

at the same level of production. One cannot observe tech-

I-l~1|-¢::al inefficiency without simultaneously observing price

1rIefficiency. One cannot distinguish between them or
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discuss them separately. One cannot measure technical

inefficiency except with respect to price(s) or value.

Therefore, there is only one type of economic efficiency,

involving the physical and value attributes.

Frontier functions are illegitimate since, (1) they

postulate that one may get something for nothing, i.e.,

more output with the same inputs and nothing else of value

in addition, and (2), they attempt to separate technical

efficiency from price efficiency.



CHAPTER TWO

UNIT ISOQUANTS AND PRODUCTION SOLIDS

In this chapter, frontier production theory, inclu-

ding its distinction between technical and price efficien-

cy will be summarized briefly. The first section, Section

2.1, will develop the concepts of technical efficiency

(TE) and price efficiency (PE) by describing the unit iso—
 

guant. The frontier production function originated as a

unit isoquant in Farrell (1957), and is still often so

described. Much of the first section follows the presen-

tation of frontier production functions made by Bressler

( 3966) .

The second section, Section 2.2, will describe two

c:aases of frontier production functions that are not expli-

citly sets of unit isoquants, but retain the essential

characteristic of the unit isoquant: there is an interior

 

to the production surface (frontier) that is made up of

" technically inefficient" points of production. Without

an interior so characterised, there can be no frontier

Iz’t‘thiuction functions. The laws of diminishing returns and

111: :llity indicate that the interiors described by frontier

pt‘Oduction functions cannot exist (see Appendices One and

TWO) .

21
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Section 2.3 explains why the frontier production

function interpretation of these interiors arose from the

misinterpretion of observed phenomena. Apparent observed

differences in firm performance attributed to differences

in technical efficiency, are in fact due to comparing two

separate sub-production functions (specification error),

or aggregating heterogeneous inputs (aggregation error).

In neither of these cases do identical sets of inputs

produce different levels of identical output.

2.1. UNIT ISOQUANTS

231.1 WHAT IS "TECHNICAL EFFICIENCY?"

In much of the frontier literature, technical effi-

ciency (TE) means being on a "unit isoquant [Farrell,

.1957, Bressler, 1966, King, 1980, Nerlove, 1965, Timer,

1 9 71] . "

Consider an input requirement set with two variable

inputs V1 and v2, and one fixed input 23, that together

EDIFthuce some output Y. Since there is only one input

PetI"-lirement set, one is implicitly considering iden-

tical sub-production functions. The inputs and outputs

31“: assumed to be homogeneous. These conditions assume

that technology is fixed and identical for all observa-

tith. The technology of this production process is

reEiresented by the unit isoquant yo in Figure 2.1. The

unit isoquant is found by dividing the input quantities by

t

‘r‘fié output quantities they produce, i.e. the unit isoquant
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FIGURE 2.1

A UNIT ISOQUANT WITH BUDGET A CONSTRAINT

\
/
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maps the average variable input required per unit of

output (not the marginal input bundle that produces one

unit of output at the margin). Such a mapping can produce

observations located at widely varying positions in the

quadrant. The points lying closest to the axes are con-

nected to produce the unit isoquant, or the "technically

efficient" isoquant. That is, all points on this unit

isoquant are regarded as "technically efficient," while

all points within it are regarded as "technically ineffi—

cient." Consider an observation on firm P. The firm uses

the inputs V1 and v2 in the same relative proportions as

the firm Q, but uses more of both v1 and v2 on average in

[aroducing a unit of output as Q; P gets less output per

Izriit of variable input on average than Q.

The distance OP relative to OQ measures

the extent to which the same amount of

output could be produced with fewer

inputs used in the same proportion....

[Nerlove, 1965, page 88]

The ratio OQ/OP is the measure of technical inefficiency.

This means that P can produce the same quantity of output,

"1 th less of the same homogeneous inputs, using the same

I:’I'°cesses or sub-production function, merely by becoming

teehnically efficient. TE means getting different output

g““Ven the same inputs and the same production processes.

art‘SE firms on the unit isoquant are technically (physi-

c=iifilly) efficient since they produce on average the most

Q‘u-tput per unit of input, or conversely, they use on

a"erage the least input per unit of output. The interior
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points are technically inefficient because they use

greater physical quantities of both v1 and v2 on the

average to produce a unit of output.

2.1.2. WHAT IS "PRICE EFFICIENCY?"

Technical efficiency does not imply price

in frontier production theory since they are

exclusive phenomena. Price efficiency (PE) impl

efficiency

mutually

ies inputs

being used in their least cost combination ratios. It

reflects the proportions of v1 to v2 but not necessarily

the quantities. In Figure 2.1 Q and Q' are both technical-

.1y efficient, but only Q' is price efficient since it is

tangent with aa' , the budget constraint. The ratio that

Jreeflects the degree of price efficiency for both P and Q

i s OA/OQ.

The distance [OA] relative to CO mea-

sures the fraction of costs for which

the output could be produced if the

relative use of inputs were altered.

[Nerlove, 1965, page 88, underlining

added]

2 ' 1.3. WHAT IS "ECONOMIC EFFICIENCY?"

Economic efficiency (EE) in the frontier

function literature is defined as the product of

ef ficiency and price efficiency:

(2.1) EE TE * PE = OQ/OP * OA/OQ

OA/OP

production

technical
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While this formulation makes a distinction between tech—

nical and price efficiency, economic efficiency remains

connected with prices or values.

Note that price and economic efficiency

measures are in fact cost comparisons:

The "price line" aa' represents total

expenditure per unit of output, with

slope representing the inverse ratio of

the given factor prices; lines parallel

to aa' through Q and P represent the

higher unit expenditures. Thus, the

economic or overall efficiency ratio is

equivalent to the ratio of the average

cost of producing at Q' to the average

cost of producing at P. [Bressler,

1966, page 130]

In order to apply this theory to "reality," one must

(mallect observations on firms producing the same amount of

'time same output (or assume constant returns to scale),

tissing the same technology (same sub-production function),

Ettjd different amounts of the same variable inputs. If one

c:<:uld find such observations, the next step would be to

plot this unit requirement in the positive quadrant and

connect the observations closest to the axes. These con-

he3<=ted observations define the unit isoquant from which

a1 3- efficiency comparisons are made. A set of such unit

18°quants, for different levels of production, define what

is called the frontierirmction function.

2 ‘ 1 .4. SUMMARY OF UNIT ISOQUANTS:

The essential and critical aspect of the unit iso-

c;‘1ant as described above is the existence and interpreta-

 



 

28

tion of the interior points. Consequently, frontier pro—

duction functions are valid only if one, or both, of two

things are true about reality.

First, given two sets of variable inputs that differ

gnly in quantity, e.g., one set is "a" times larger, and

using the same fixed inputs, one may produce the same

quantity of identical output. That is, different quanti—

ties of given inputs produce the same output using the

same technology. It is producing a different quantity of

output from identical inputs and technology that explains

the existence of the interior to a unit isoquant for a

given level of output. Without an interior to the 'unit

.isoquant for firms producing the same output there is no

tweed for the concept of a frontier production function.

Consequently, the existence and the nature of this

.jgnterior is critical to the interpretation of the frontier

production function.

Secondly, one must be able to separate TE from PE.

In the frontier production formulation, TE is purely a

JEllxysical concept, PE is purely a gglgg concept, and TE and

IF'EE are observable mutually exclusively of each other.

ntfilmerefore, measurements of physical quantities have no

zi-Jratrinsic relationship with their corresponding prices or

“’"ialues. In Figure 2.1 for firm P, TE is measured at the

:IEPCDint P, while PE is measured at point Q.

Though TE and PE are regarded as mutually exclusive,

2:313 and total cost may not be. That is, the measurement of

PE is the same for firms P' and Q'. Both firms P' and 0'

‘
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are price efficient since the measurement of PE = OQ'/OQ'

are the same for both. Since P' uses more of both v1 and

V2 in total and on average to produce one unit of output,

the total cost for P' must be higher than for Q'.

Current frontier production function literature often

deals with a frontier production function that is not

 
explicitly defined as a collection of unit isoquants since

there is no averaging process. This type of frontier

;pmoduction function clearly represents a production set

‘that is solid, rather than the surface that one ordinari-

.1y associates with a production function in traditional

zproduction theory.

2.2. PRODUCTION SOLIDS

It should be evident from the description of the unit

isoquant given above that the production set represented

EDEV' a frontier production function is characterized as a

Surface (the traditional production function) and its

iiJEJterior which is a set of "technically inefficient"

points of production. The two cases of production sets

t1Plat are solids, rather than shells, presented in this

£3‘E’tction retain this critical aspect of unit isoquants,

“'lblmile ignoring the average aspect of unit isoquants.

Therefore these two cases highlight the critical aspect of

6‘ frontier production function that its interior is a set

(3315‘ technically inefficient points. In so doing, it demon—

&trates the deficiency of frontier production functions by

$11Owing that this interior is either physically impos—

a  
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ble, or a misinterpretation of what is observed. Both

ses fundamentally revolve around specifying the appro-

iate sub—production functions, and the economic ad—

stment of investment and disinvestment implicit in

ving from one sub-production function to another. Both

ses arise from either committing a specification error

d/or an aggregation error in identifying the sub—produc—

on function described by the set of observed production

ints. These are empirical issues rather than theoreti-

l ones.

Consider the production possibility set represented

Figure 2.2. In Figure 2.2, points Q and P are

... technically efficient in the sense

that they are in the production possi-

bility set, and there is no way to

obtain more output than depicted by

these points without using more of the

input. Point [P'] is technically inef-

ficient, in that more output could be

obtained with no more input. [Jamison

and Lau, 1982, page 54].

"frontier" of this frontier production function is

E‘esented by the surface upon which points Q and P lie.

Flt P' represents a point within the solid interior to

frontier. P' is technically inefficient since one

It: get the same amount of output, Y1! "with no more

311:;" i.e., by using less input and producing at point

l§dditionally, point P' is technically inefficient, "in

more output," Y2, "could be obtained with no more

3‘ same] input," by producing at point P. In both cases
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it is implicit that neither does the total input bundle

nor does the technology change, only the degree to which

the technology is used technically efficiently. That is,

the input VP can produce either y1 or y2 using the same

technology merely as a matter of technical efficiency.

2.2.1. CASE 1:

Case 1 is the obvious case of a solid production  
possibility set for the variable inputs given the same

technology and the same fixed inputs. That is, the

technology used and the quantities of the same fixed

inputs are identically equal at points Q, P, and P'. An

obvious difficulty with this is that both points P and P'

use the same input, VP, but get different outputs. Since

the variable input is the same, the fixed input is the

same, and the technology is the same, there is nothing to

account for the marginal physical product being positive

at P and zero between P and P' . Jamison and Lau (1982)

ex£31a1n the difference as follows:

Technical inefficiency results from

combining available inputs poorly; for

example, by plowing the insecticide

into the ground or spraying fertilizer

on the plant leaves. [Jamison and Lau,

1982, page 54]

There are two problems with this explanation. The first

18' cane can increase TE without additional cost, since one

81‘WE>:1y uses less of the same variable input to produce the

3

ani‘* output, i.e. moving from P' to Q [Bagi and Huang,
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1983]. In frontier production theory the only physical

(technical) difference between Q and P' is the quantity of

variable input used. In fact, improving TE should result

in a savings since one is using less costly variable

input. Therefore, one can increase profit at no cost; get

something for nothing. Therefore, either there is no

opportunity cost to instituting the changes that will

 
bring about the improvement in TE, or the net opportunity

cost is always positive by definition and no marginal

analysis is needed to consider changes to improve TE. In

the examples quoted above: there is no cost in taking care

not to plow any insecticide into the ground nor in taking

care not to spray any fertilizer on the leaves.

The second is that in traditional theory, inputs are

defined with respect to time, location, and quality (see

APpendix Two), so that one cannot combine inputs "poorly"

01' "better" since any particular combination of inputs is

tinnee, location, and quality specific. Changing any of

these aspects of the combination means changing the inputs

by definition. How inputs are combined in practice is an

appl ied problem and not a theoretical one. The frontier

production literature confuses theory and application.

Ines*=—"<:ticide plowed into the ground is not the same homo-

ger‘fietaus input as insecticide not plowed into the ground

beczii\ase they are not in the same location. Similarly,

fel“::ilizer sprayed on the plant leaves is not the same as

fez?1t.1lizer sprayed on the ground. The problem of treating

he’tezlrogeneous inputs as "homogeneous" groups for the pur-

.  
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poses of analysis is a specification or aggregation prob—

lem. It is a problem in application that is assumed away

in theory by the homogeneity conditions.

The theory of frontier production functions maintains

that the same homogeneous inputs (systems) can be used

with the same sub-production function (processes) to get

different output (actual work and/or final states). This

is clearly in violation of the laws of thermodynamics (see

Appendix One) and diminishing returns (see Appendix Two).

Therefore, Case 1 is physically impossible; i.e., in—

teriors to unit isoquants for the same levels of total

output.

2.2.2. CASE 2:

The second case is the case of a traditional produc—

txic>n possibility set, where all the points are also within

tilee feasible production set. Therefore, if a point P'

“Ses more of the same homogeneous variable inputs, and the

same technology as point Q, and only gets the same amount

of. identical output, then P' and Q must be on different

s“"5>-—production functions; i.e., be using different amounts

°r' ltinds of fixed inputs. That is, point P' represents

131E, 'interior' to the production set, but only because it

ii; on a different sub-production function than Q and P.

T

11E: interior in Figure 2.2. is in reality a collection of

suit:

‘~production functions, for each of which the level or

n

a‘t'tilre of the fixed input is different. Because P' uses
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less of the fixed input than Q, output of the variable

input is less by the law of diminishing marginal returns.

Consequently, for Figure 2.2 there are two problems.

The first is an indexing problem, due to the fact

that the different levels of the fixed input are not

clearly specified for Q and P, and P'. The input bundle

VP at P is different than at P'. Therefore, P' is not

"technically inefficient." At P' one cannot get more

output with the same ("no more") input, i.e., move to P,

because P' does not have enough fixed input. Nor can P'

get the same output by using less ("no more") variable

input, i.e., move to Q, for the same reason.

The second problem with Figure 2.2 is related to the

first. Figure 2.2 represents a case of not properly

treating the economics of adjusting the use of the

"fixed" inputs. The problem of making an adjustment with

resPect to fixed inputs, the analysis of investment and

disinvestment, has been treated by Edwards (1958) . Clear-

IY' there is a cost in moving from P' to either Q or P

girl<==e P' must invest in more of the fixed input to make

thfia change. The economics of this adjustment is totally

ignored in the frontier production function literature

"hi eh treats such adjustments as costless technical

Chair‘smes.

2.3. THE EXPLANATION FOR "OBSERVING" CASES 1 AND 2

In reality, when one makes observations on firms Q,

P.
and P', one is observing differences between the firms

 

 



35

that are due to either specification error or aggrega-

tion_gg£or.

The specification problem, involving the amounts of

which variables are included and which ones are not, is

almost indistinguishable from the aggregation problem.

When inputs are defined as homogeneous with respect to

 
time, form, and space, production systems and processes

become interdependent. It is also due to output being

both useful output (work) and the changes in the final

states from the initial states, one a function of the

processes (work) and the other a function of the systems'

properties (see Appendix One).

2 . 3 . 1 . TEE SPECIFICATION PROBLEM:

Ordinarily, a comparison of firms assumes all firms

are using the "same" sub—production function. Speci-

fication means identifying the sub-production function

Cleeéirly and accurately. Specification error means one has

1na.<:curately identified two different sub-production

functions as being the same. That is, one commits a

specification error in classifying the the firms as repre-

8e:t1":atives of the same sub—production function. A com—

parison between firms is valid only if their sub-produc-

t1c311 function(s) are properly identified, so that differ-

eanS between firms can be properly explained. If dif-

fEEI‘Qtnces are due to the firms having different sub-produc—

t

1c>t1 functions, then those differences must be properly

ill-Illl--__  
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identified. The specification problem is an empirical

problem not a theoretical one. In applied work specifica-

tion problems arise in several ways.

One way one creates a specification problem is by

aggregating observations across sub—production functions

in specifying the sub—production function to be analyzed.

This means that inputs that are fixed at the observation

level, e.g. tillable acres for crop production, are gg;

sumed variable within the sub—production function, i.e.,

 

across all observations.

Another way is to ignore the Egg; impact of some

unspecified input(s). One generally avoids this problem

precisely by assuming that the uncontrollable random

variables (the unspecified variables) are equal to some

"average" value across all observations when in fact they

Eire not, so they can be treated like fixed inputs, i.e.

flaving the "same" impact on all observations.

A third way of mis-specifying a sub-production

function is to ignore an input entirely, or to aggregate

‘Iwwo inputs inconsistently (this latter situation is also

clcnsidered an aggregation problem, which is considered in

't3lfie following section). If one omits a relevant variable

input from the specification of the sub-production

function, a variable input that is present in the produc-

t ion processes in different amounts across observations,

§~t‘id this omitted variable input is correlated with one or

.m‘tire included variable inputs, then the marginal physical

Ig’lroducts for identical quantities of the included variable

L_  
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inputs will appear to be different due to their including

the additional marginal product of the unspecified vari-

able input. This means that the TE observed is due only

to the differences in the marginal physical products for

the unspecified variable input. Note that the differences

in the quantities of the random uncontrollable variables

also has this effect. If the unspecified input is a fixed

input, and it is present in different amounts across

observations, then one is measuring and comparing marginal

physical products for the variable inputs across different

sub-production functions. The "technical inefficiency" is

not inefficiency, but a difference in the productivity of

the variable inputs due to the point of diminishing mar-

ginal returns for the variable inputs starting at dif-

ferent points for the different levels of the fixed

1 nput .

:2..3,2, THE AGGREGATION PROBLEM:

The aggregation problem is also a real world problem

t'ather than a theoretical one. In order for analysis to

be legitimate, one need only insure that this error is

‘ghjithin some recognized tolerable bound prior to conducting

the analysis, i.e., the inputs aggregated are "very

C::llose."

Aggregation error is suspect when one finds differ-

§rlees in marginal physical products for "homogeneous"

1klputs. One reason may be specification error as des-
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cribed above. The other reason the same amounts of two

"like" inputs may have different marginal physical pro-

ducts, when measured with respect to the identical amounts

of fixed, or unspecified, input, is they are not in fact

homogeneous; they are not "very close" to the "same"

input. Aggregation error means inaccurately identifying

heterogeneous inputs as homogeneous inputs. Economists

recognize that labor is not homogeneous across laborers,

but in applied work this labor is aggregated and specified

as one input. This results in error being introduced into

the analysis due to the differences in quality (form),

time, or space of the inputs aggregated.

In either case, specification or aggregation, the

assumptions one makes about the error term (the unspe-

czified variables), the inputs which are fixed (which sub-

Erroduction functions are included), and/or how inputs are

<=<meined into "same" inputs implicitly means that the dif—

ferences in marginal physical products that do in fact

emtist are "unimportant" to the analysis.

2.4. SUMMARY

This chapter has outlined the theory of frontier

E’11"’<3duction functions as unit isoquants and production

SQlids. Frontier production function theory suggests

pub'coduc’cion within the interior of an isoquant at the same

lQVel of production is possible so that an isoquant is a

Iz):lane rather than a line. That is, one can produce dif-

erent amounts of the same output using identical amounts
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of the same inputs and the same technology. Interiors are

critical since they allow one to separate TE and PE as

mutually exclusive phenomena which implies that TE é PE.

It also means that technical efficiency is purely physi-

cal, which is contrary to the laws of nature, e.g., the

laws of thermodynamics. This means that the physical

quantites of inputs used in production, and the value of

those inputs in production do not have an intrinsic one—

to—one correspondence, since they cannot have the same

marginal value products if they are not producing the same

output.

If one uses more inputs in one situation to produce

the same amount of work as in another situation, those

additional inputs have an opportunity cost. Yet the total

\halue of the bundles must remain the same if they produce

equal output.

If one is measuring a "frontier production function,"

sElbecification error or aggregation error accounts for the

discrepancies in observations attributed to "technical

inefficiency." That is, "technical inefficiency" is a

ll‘EP-‘iasurement of specification error or aggregation error.

II15 the two sets of "identical" inputs produce different

an"lounts of work, and if one tries to compare them by

insisting that they are from the same input requirement

E3‘3’1t, using the same processes or sub—production function,

then one has committed either an specification error, they

(1‘:* not belong to the same input requirement set, or an
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Jgregation (measurement) error, they are not the same

1puts used in the same proportions. It is a logical

asurdity to conduct an analysis where one creates or

atroduces discrepancies between observations by mis—

pecifying the function or by aggregating heterogeneous

iputs, measures the discrepancy, calls this discrepancy

lgnificant, and attributes it to some inherent differ—

1C8 (TE) between the observations. Yet, this is exactly

1at is done in order to obtain measurements of "technical

iefficiency" between firms.

 

m
l

 

 



CHAPTER THREE

PRONTIER PRODUCTION FUNCTIONS AND DISTANCE FUNCTIONS

In this chapter two hypotheses will be tested. The

first hypothesis is that frontier production functions and

distance functions are 3h; game. The second hypothesis is

that technical efficiency (TE) and price, or allocative,

efficiency (PE) are not the same. These two hypotheses

are both tested in this chapter because each has a bearing

on the other. If it is true that frontier production

functions are distance functions, then the property of

frontier production functions that TE and PE are not the

Same will be true by transitivity. Conversely, if TE and

PE are not the same, as frontier production function

theory maintains, then this condition will be consistent

"1 th duality theory as demonstrated by distance functions.

The reason it is important to test the first hypothe-

sis, that frontier production functions and distance

E"-ila'ictions are the same, is that distance functions appear

to provide a legitimate theoretical basis for the exis-

hel'lce of frontier production functions within the current

set theoretic approach to microeconomic theory [Malinvaud,

1972, McFadden, 1978, Quirk and Saposnick, 1968, Varian,

13'28]. It might appear that a frontier production

f“Auction is simply a special case of a distance function;

41
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that frontier production functions and distance functions

arise from the same theoretical basis and display the same

properties. If frontier production functions are distance

functions, then they are legitimate functions and all

their conditions, notably that TE and PE are not the same,

are valid.

The reason it is important to test the second hy-

pothesis, that TE and PE are not the same, is two fold.

First, the apparent difference between TE and PE is a

consequence of frontier production functions. If TE and

PE are not mutually exclusive, the two terms as they are

now used in the frontier production function theory are

cmnfusing, inconsistent, and misleading because they sug—

gest that there is more than one type of efficiency, when

.111 fact there is only one type of efficiency [Knight,

15333].

In order to test the first hypothesis, it will be

8blown that frontier production functions and distance

f1llrictions are not the same because they have different

theoretical origins.

In order to test the second hypothesis it will be

demonstrated that the theory of frontier production

titllnctions is incompatible with duality theory and free

‘11 Sposal (or monotonicity) . The duality principles impli—

‘=11 ‘: within a distance function prove that TE 5 PE, while

:Elb‘fiee disposal eliminates the relevance of any 'interior'

9Q ints to the lowest bounding isoquant of an input re—

q‘l irement set .

  



-

OI.

,

but

.0.

.
-

(
L
)

"
i



43

This chapter will rely heavily on duality theory as

asented by McFadden (1978). The purpose of McFadden's

978) discussion of microeconomic theory is to provide a

>rma1 mathematical duality between [distance] and cost

xctions...." A modified presentation of this theory is

:lined in Appendix Two. An important consequence of

[lity theory is that a distance function and a cost

action have a unique one to one correspondence with each

[er which can be conceptually and graphically represen—

l by what are termed "polar reciprocal sets [McFadden,

78] . II

3.1. TEST OF THE FIRST HYPOTHESIS

L.1. WHY FRONTIER PRODUCTION FUNCTIONS APPEAR TO BE

DISTANCE FUNCTIONS:

A superfical interpretation of a distance function

[gests a similiarity with a frontier production

nction. Mathematically, a distance function is defined

McFadden (1978) as:

(3.1) F(y, v) = Max[ a > O | 1/a * v €.V(y)]

a difference between this definition and the one found

equation (A2.8) in Appendix Two is that (3.1) neglects

distinguish between variable and fixed inputs. In

rure 3.1A, TE = OQ/OP. In Figure 3.13, a = A/B, so that

(3.2) l/a = B/A = ov'/ov

b°th cases Yo looks like the "frontier" of a frontier

>duction function so that TE = 1 when P = Q while "a" =
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FIGURE 3 . 1

A UNIT ISOQUANT DERIVED FROM A FRONTIER PRODUCTION

FUNCTION (A) AND AN INPUT REQUIREMENT SET

DERIVED FROM A DISTANCE FUNCTION (8)
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1 when v = v'. In addition, consider the

quotes:

While reformulation of duality in terms

of distance functions is potentially

 

useful in application, its primary

appeal comes from the fact that it

allows us to establish a full, formal

mathematical duality between [distance]

and cost functions, .... [McFadden,

1978, page 24, underlining added]

It is sometimes useful to extend

the definition of the distance function

to all non-negative input bundles v by

applying the formula [3.1] provided

v/[a] is in V(y) for some positive

scalar [a], and setting F(y, v) = 0

otherwise.... In applications, it is

sometimes useful to employ this ex-

tended definition of the distance

function. [McFadden, 1978, page 28]

When y contains more than one

element, efficient production of y can

be described in terms of the distance

function

[FJ(Y. v) = maxtlal>0 l 1/[al‘v € V(y)]

for (v, y) Y and v strictly positive;

the frontier satisfies [F](y, v) = 1.

[Fuss, McFadden, Mundlak, 1978, page

227]

following

From this one could easily, but mistakenly, infer a basis

for frontier production functions. Unfortunately, some

authors make the connection directly:

Notice

In addition, admissable frontier

functions must be continuous, quasi-

concave, and exhibit strong free dis-

posability of inputs. [Kopp and

Diewert, 1982, page 322]

that the conditions for the "frontier functions,"
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continuity, quasi-concavity, and free disposal, are ex—

actly those conditions that apply to distance functions

(see Sections A2.1.2.4. and A2.2 in Appendix Two).

3.1.2. FRONTIER PRODUCTION FUNCTIONS ARE NOT DISTANCE

FUNCTIONS:

Frontier production functions are not distance

functions because the two types of functions have dif-

ferent origins; they are derived from different theoret—

ical premises. A frontier production function is derived

from a production solid. The frontier production function

describes the surface of a production solid that includes

both "technically efficient" and "technically inefficient"

points. "Technically efficient" points are those points

that are on the production surface (or function) and are

supposed to represent those points of production for which

it is true that the firm represented by that point "yields

the greatest output for any set of inputs, given its

particular location and environment (French, 1977, page

94]." What is frequently not made explicit, but can be

easily inferred from this definition of "technical effi-

ciency," is that a firm can be "technically inefficient"

which is represented by a point within the interior of the

surface of the production solid at the same level of

output. That is, "technical inefficiency" means that a

firm 'yields lggg that the greatest output for any set of

inputs, given its particular location and environment.’

(It will be shown in testing the second hypothesis that
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this distinction between "technically efficient" and

"technically inefficient" points of production is incon-

sistent with reality, and therefore confusing and mis—

leading.)

A distance function does not originate as a descrip—

tion of a surface to a production solid. A distance

function is a true production function or surface.

McFadden's (1978) fundamental purpose in defining the

distance function is to obtain the 'interiors' to iso-

quants necessary to satisfy the convexity conditions re-

quired to make his "formal" mathematical proof to duality

theory. But, there are no true or observable interior

points of production that represent a solid interior to a

distance function. The 'interior' to a distance function

is represented in Figure 3.13 by point v in V(YO)' This

is not the same 'interior' as the interior to a frontier

production function, point P in Figure 3.1A. Properly

understood, the 'interior' of a distance function is not

that of a solid (points at the same level of production),

but is composed of higher order isoquants (see Appendix

Two). That is, point ve:V(yo) but f(v) ? YO' Rather f(v)

= Y1 where Y1 > YO' In addition, this 'interior' is

'swept out' for p11 practical purposes by invoking free

disposal. Free disposal is used to make f(v') = f(v).

Therefore, any 'interior' points from production solids

that might exist within a distance function are for the

sake of mathematical convenience physically and econom-
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ically superfluous in any description of reality. Free

disposal eliminates fill the differences between v and v'

whatever their origin.

Frontier production functions are different than

distance functions and the first hypothesis is rejected.

Frontier production functions describe the surface of a

production solid. The existence of observable interior

points to an isoquant at the same level of production is a

fundamental condition for frontier production functions.

Only the observable interior points allow one to identify

"technical inefficiency;" that is, being in the interior

of a surface isoquant of a frontier production function.

This means that the isoquants for the complete production

set are planes rather than lines. This is not true for a

distance function which obtains its 'interior' points by

mapping higher order isoquants into a lower one. The

'interior' to the lowest bounding isoquant of an input

requirement set is not made up of additional points of

equal production, but of points of higher or greater

production. That is, an input requirement set is created

conceptually by mapping the production surface of three

dimensional space into a plane. It looks like a conven-

tional isoquant map. It is true that every point within a

given input requirement set, designated by the lowest

bounding isoquant, produces "at least as much" output as

the points on the lowest bounding isoquant, since all the

points within the lowest bounding isoquant are points on

higher isoquants which therefore produce more ("as least
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as much") output.

3.2 TEST OF THE SECOND HYPOTHESIS

The second hypothesis to be tested is that TE is not

the same as PE. Because a frontier production function

describes the surface to a production solid, frontier

production function theory distinguishes between two sepa—

rate and mutually exclusive types of efficiency, TE and

PE. In frontier production function theory, TE is getting

the most output from a given set of inputs, given a pro-

cess, being on an isoquant rather than in the interior of

an isoquant. PE is using inputs in their least cost

combination ratio. The condition that TE i PE has two

implications. The first is that one can have two firms

that are both price efficient when only one of them is

technically efficient while the second is that one can

have two firms that are both technically efficient when

only one of them is price efficient.

The second hypothesis will be tested in two steps.

The first step will test whether or not the first implica-

tion, that one can have two firms that are both price

efficient when only one of them is technically efficient,

conforms to the principles of duality theory and free

disposal. The second step will test whether or not the

second implication, that one can have two firms that are

both technically efficient when only one of them is price

efficient, conforms to the principles of duality theory.
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It will be shown that both implications violate duality.

Conversely, it will be shown that TE 5 PE. Additionally,

it will be shown that the term "technical efficiency

(TE)," as it is used in the frontier production function

theory, is ambiguous, confusing, and misleading.

3.2.1. THE CONDITIONS FOR THE TESTS:

Whether measuring distance functions or frontier

production functions, one assumes that any two firms, "A"

and "B", are using the ppm; process and the gppg cost

function, and that the principles of duality apply to the

distance (production) or frontier production function, and

the cost function, which is to say, that for both firms

their production or cost functions are identical. There-

fore, any technically efficient point on a frontier pro—

duction function is implicitly associated with correspon—

ding prices in cost space.

Duality between product space and cost space means

that if one holds output constant and changes prices,

e.g., by a scalar, then one maps from the same isoquant in

product space to different isocosts in cost space. Simi-

liarly, if one holds total cost constant and varies input

quantities, e.g., by a scalar, then one moves from the

same isocost line in cost space to different isoquants in

product space. Finally, if one holds both output and

total cost constant then duality means one isoquant maps

to one isocost line (this is a special case). If one

holds neither output nor total cost constant, then duality
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does not apply since points in product space can map to

more than one point in cost space, and vice versa.

Polar reciprocal sets represent the set of points for

which duality exists between points in input (product)

space (excluding Stage III) and cost space. In order to

define the full set of mappings one must assume that both

price and input ratios vary in both spaces simultaneously.

This means that a duality mapping is always between a

point that is technically efficient in input space and a

point that is price efficient in cost space. All points

in cost space represent least cost bundles by definition

of a cost function.

The theory of frontier production functions assumes

that firms are purchasing their inputs in perfectly compe-

titive markets so that input prices are fixgg and the same

for all firms. This means that only one price ratio

defines PE, the ratio of the given fixed prices.

Consider the polar reciprocal sets of a distance

function and what frontier production functions might

suggest is true that would assure that frontier production

functions conform to the same principles of duality that

distance functions do (see Figure 3.2). Figure 3.2A,

V(y), is the input-conventional input requirement set from

a distance function and 3.28, R(y) is the input conven-

tional factor-price requirement set from a cost function.

Together they represent the distance function and the

total cost function respectively for both firms "A" and
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"3°" Let points A0 and BO represent two firms "A" and "B"

respectively. Either all the firms on the isoquant yo

produce at the same total cost (a special case), or one

firm is the least cost producer. Assume that for output

Y firm "A" (point A ) is the least cost producer. The
O 0

prices for WhiCh A0 has a mapping in cost space are PlA'O

and P2A'O; i.e., A0 maps to A'0 in Figure 3.28 at output

YO and at a total cost of co. Similiarly, 80 maps to 8'0

at a total cost C1 > CO. In Figure 3.2A, the ray OAo

represents a path along which the ratio of the prices for

the inputs (PZA'O/PIA'O) remains constant. At point A0 in

Figure 3.2A the line bb' represents the budget constraint

With slope ‘ PZA'O/PIA'O. Point Ao maps to point A'o in

Figure 3.28 when the input prices are PIA'O and pzA'o and

total COSt equals CO' Point 80 in Figure 3.2A maps to

point 8'0 in Figure 3.28 when the input prices are PlB'o

and PZB'O, and total cost c1, and to point 8'1 when input

prices are PIB'l = kPlB'O and PZB'l = kP28'2, and total

cost equals c2 = kc1 (where k equals some coefficient of

proportionality greater than 1.0). Therefore, the ray

OB'1 in Figure 3.28 represents the locus of points in cost

space that map from B0 in product space as prices and

total cost increase in proportion. Notice that at any

P0111t on the ray 03'1, the ratio of input quantities

(VIBO/szO), remains constant since all points on the ray

map from 80. This is analogous to all the points on the

ray OAo having a constant price ratio. Point Ao maps to

A'o, and point 80 maps to 8'0, and vice versa, by duality.
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The price level is the set of prices that will keep

the total cost relationship between firms constant when

output is held constant but the ratio of input quantities

used varies. Notice again that if the general price level

faced by "A" and "8" were to increase by |1-k|, Ao would

map to A'1 and 80 would map to 8'1. That is, relative

prices and relative total cost would remain the same in

comparing "A" and "B," but the ceteris paribus conditions

would not be violated only if the prices for 293p "A" and

"8" increased by the same proportion |1-k|; if the prices

paid by "A" and "8" remain of the same magnitude. The

magnitude, or price level, paid by the firms is important

since "A" and "8" would both continue to produce yo at the

higher price level only if the price for y were also in-

creased by the proportion |1-k|. Otherwise, "A" and "8"

would produce Y1' Y1 < yo, at A2 and 82 respectively since

the income from the sale of the output would only allow

them to purchase a lesser amount of both v1 and v2 at the

higher input price level.

In demonstrating why duality theory refutes frontier

production functions, close attention to three aspects of

duality theory is especially important: (1) Both the input

(product) space and the cost space for the firms con-

sidered must conform to the assumptions of being input—

conventional. This means the input requirement sets and

the factor-price requirement sets for the firms considered

must display not only regularity conditions, but also
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display (1) monotonicity. or free disposal, and (ii)

strict convexity from below [McFadden, 1978].

It should be noted that the one-

to—one link between the input—conven—

tional classes described above does not

hold between input—conventional cost

structures and the input-regular pro—

duction possibility sets. Distinct

input-regular production possibility

sets may yield the same input-conven—

tional cost function. However, while

going from the production possibility

set to the cost function can entail a

real loss of technological information

in this case, the information lost is

precisely that which is superfluous to

the determination of observed

competitive cost minimizing behavior.

[McFadden, 1978, 22]

... However, input-conventional cost

structures and distance functions are

defined to have identical mathematical

properties with respect to their second

arguments, input prices or inputs

respectively. [McFadden, 1978, page

26]

(2) The dual prices represented in the cost space of the

duality mapping are the prices which would make the pur—

chased input bundle the least cost bundle. The prices

associated with a particular input bundle may or may not

be market prices. Market and dual prices are not neces—

sarily equal, and may necessarily be different. One must

keep very close track of whether or not prices are market

prices, dual prices, or both. Between firms for which

duality is assumed to hold, only the dual prices are

relevant for the purposes of making comparisons between

the firms whether or not they are market prices. (3)

Finally, and most importantly, the level of prices must
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remain constant across firms being compared. This means

that the difference between the dual prices of two firms

may be different with respect to their ratios, but one

firm cannot have dual prices of a greater absolute magni-

tude than another. To do so would violate the usual

ceteris paribus conditions. For example, firm "A" may

have dual prices (P150, PZAO) and firm "8" dual prices

(P B0, 9230) where PIAO/PZAO # PlBO/PZBO. But firm "A"
1

cannot have dual prices (Ple, pon) and firm "8" dual

prices (kPIBO, kPZBO) where |1—k|, and k # 0 represents

some percentage difference in the prevailing price level

faced by "A".

3.2.2. WHY FRONTIER PRODUCTION FUNCTIONS ARE NOT COMPATIBLE

WITH DUALITY THEORY - FIRST PART:

This section will test the implication that two firms

can be price efficient when only one of them is technical—

ly efficient. This means that both firms are on the price

efficient ray, e.g., line OAo in Figure 3.2, but one of

them is pp; on an isoquant (it is a true interior point),

while the other one is on an isoquant. That is, one firm

is technically efficient, and the other one is "technical—

ly inefficient," meaning it could produce more output with

the same resources than it is 1p £353 producing without

changing the amounts of the inputs being consumed in

production.
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In this section a proof will be offered to demon—

strate that frontier production functions are incompatible

with duality theory and free disposal given the charac—

teristic of frontier production functions that there is an

interior to an isoquant at the same level of production.

Apart from the fact that it has already been shown that

production sets cannot be solid due to the laws of thermo-

dynamics (see Chapter Two and Appendix One), it will be

shown that solid production sets are contrary to duality

and free disposal.

3.2.2.1. THE INTUITIVE ARGUMENT:

Consider Figure 3.3 which represents the presumed

input requirement set and factor—price requirement set for

a frontier production function. If one can produce the

same output as one produces at 80 using less of both

inputs and the same process, i.e., produce at A0 with

absolutely no other changes, then why cannot one produce

the same output as one produces at A0 using less of both

inputs? Differences in TE, as the term is used in the

frontier production function theory, must involve some—

thing else in addition to merely a change in the level of

V1 and v2. Since that something else is never defined or

explicitly included, its cost is implicitly ignored, and

therefore comparisons of "technical efficiency" are incom—

plete and invalid.

Consider the polar reciprocal sets in Figure 3.3 for

two firms "A" and "8" which have the same technology and
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the same cost function conforming to the assumptions and

principles of duality.

Assume for an initial situation that firm "A" is

represented by point A0 and firm "8" is represented by

p01nt BO in Figure 3.3A, that both firms produce exactly

the same product yo, and that both firms purchase their

inputs in a perfectly competitive market at fixed prices

(P1, P2). According to the theory of frontier production

functions, this means that firm "A" is both technically

efficient and price efficient, while firm "8" is price

efficient but not technically efficient, as 80 is a "true"

interior point to the isoquant yo, That is, firm "8" uses

more Of both inputs, V1 and v2, to produce the same amount

of product as firm "A."

Therefore in Figure 3.3, using frontier production

function theory it appears that AC and BO map to points

A'O and 8'o respectively. Indeed, if one calculates the

total cost for firms "A" and "B" at the given market

prices (P1, P2), then C(80) = c1 is greater than C(Ao) =

Co, and those values would be located in cost space at 8'0

and A'o respectively.

3.2.2.2. PROOF USING DUALITY:

Notice that at 8'0, the dual prices for firm "8" are

at a higher price level than the market prices and dual

prices for "A." (P1, P2), but in the same ratio, i.e. they

are higher by a constant, |1-k|, where k > 1.0. Now,
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using duality, find the points in product space that map

from A'o and 8'0; the points in product space for which

A'o and 8'0 represent the least cost bundle as required by

the definition of a cost function. Notice 8'o will map to

31 since B'o's dual prices are P1 = kP1 and P2 = kP2: that

"8" has dual prices that are |1-k| times greater than "A."

But at 81, f(Bl) = y1 = y0 only if 81 is at A0, since

there cannot be two different least cost bundles at the

same level of output. Otherwise, production at 81 must

equal yl, where y1 > yo; that is, there are two least cost

bundles, but at two different levels of output. Notice

production at 31 is not equal to production at 80 so that

81 is not lacated at 8 0’

In neither case does 8'o map to 80. Therefore, our

initial assumption is inconsistent with duality since firm

"8" cannot be at both points 80 and A0, or points BO and

81, at the same time. Thus, there cannot be any frontier

production function "technically inefficient" points that

conform to duality. Two firms cannot be price efficient

when only one is technically efficient.

3.2.3.3. PROOF USING FREE DISPOSAL:

One might reason that since point 80 is a "true"

interior point, it does not map to a point 8'o in cost

space, but to 3'1. For instance, McFadden (1978) suggests

that the 'interiors' to the isoquant of a distance

functions map to exteriors of factor-price requirement

sets, and vice versa. In so doing one keeps production at
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a constant level in product space and total cost at a con—

stant level in cost space therefore maintaining duality.

In order to map BO to 8'1, one must have dual prices for

the greater quantities of the inputs used at 80 that are

lower than the market prices (P1, 92), lower by a factor

|1—k|, where k < 1.0, which is a violation of the ceteris

paribus conditions since this implies a change in the

price level paid by 80' Therefore, a correction or ad-

justment must be made to keep all comparisons between "A"

and "8" on an equal footing. This means that given fixed

market prices (91' P2), one must freely dispose of the

difference in total cost between "8" and "A," c1 — CO' in

order to have points in cost space for which total costs

are equal (as they are for 8'1 and A'o),

When one uses free disposal in product space one

freely disposes of both input app output (see Appendix

Two). In cost space, total cost corresponds to the output

of product space, while prices correspond to the inputs of

product space. Therefore, when one freely disposes of the

difference in total cost between "8" and "A," this free

disposal is the same as disposing of the difference be-

tween the dual prices for 80 and the market (also dual)

prices for A0. It is the same as moving from 8'1 to A'o

in cost space by free disposal. By the same argument,

free disposing of the total cost difference between "8"

and "A" is the same as disposing of the difference between

the dual prices for 8'0 and the dual prices for A'o; that
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is, it is the same as moving from 8'0 to A'O in cost space

by free disposal. But by duality, if one freely disposes

in cost space, one must freely dispose in product space

and vice versa. Therefore, moving from 8'1 to A'o, or

from 3'0 to A'o, in cost space by free disposal means one

is necessarily moving from 81 to A0 (where 81 # A0), or 80

to A0, in product space respectively at the same time,

which eliminates any difference in "technical efficiency,"

as the term is used in the frontier production function

theory, between firms "A" and "8."

The possibility that one might define or locate a

point 3'1 in cost space, where cost is equal to co, raises

two other issues. First, this may be the reason that some

frontier production function authors maintain that im-

provements in "technical efficiency" are costless [Bagi

and Huang, 1983], while others maintain that there is a

cost to "technical inefficiency [Kopp, 1981a, and Schmidt

and Lin, 1983]." Second, and more importantly, the exis-

tence of a point 3'1 at a total cost co would seem to

violate the assumption of strict convexity from below that

is implicit in a cost function. Therefore, if cost

functions cannot have exterigrs at a constant total cost,

in order to maintain strict convexity from below, distance

functions cannot have interiors at a constant production.

Thus, the implication that two firms can be price effi-

cient when only one firm is technically efficient is

refuted. Any firm that is price efficient is always

technically efficient.
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3.2.3. WHY FRONTIER PRODUCTION FUNCTIONS ARE NOT COMPATIBLE

WITH DUALITY THEORY - SECOND PART:

Section 3.2.2. refuted the implication of frontier

production functions that TE and PE are mutually exclusive

and that two firms can be price efficient when only one of

them is technically efficient. This section will consider

the other implication that two firms can be technically

efficient when only one of them is price efficient since

the fact that PE implies TE does not necessarily mean that

TE implies PE.

Recall the frontier production function definition of

TE, that one produces the greatest amount of output given

a bundle of inputs and a specific process. This defini—

tion leaves open the possibility that one can produce

something less than the greatest amount of output and

still consume all the inputs. This would mean that pro-

duction functions have true interiors at the same level of

production. Section 3.2.2. eliminated using this possi-

bility to distinguish between PE and TE. This is not

surprising since the theory of thermodynamics clearly

demonstrates the same thing, where thermal efficiency is

considered to be an example of technical efficiency (see

Appendix One). In thermodynamics, technical efficiency,

or thermal efficiency, is determined only within the con—

text of comparing value of input (heat) to value of output

(work), a point made in economics by Knight (1933) and

Boulding (1981).
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Therefore, the term "technical efficiency (TE)," as

it is used in the frontier production function theory is

ambiguous, confusing, and misleading. The term efficiency

implies a comparison. In order to make a comparison, one

must first have a basis for making the comparison; one

must in effect have a numeraire. The frontier production

function theory definition of TE, that one produces the

greatest amount of output given a bundle of inputs and a

specific process, is ambiguous, confusing, and misleading

since for any point on a production function there is only

ppg level of output possible. That is, any point on a

production function not only represents the greatest

amount of output given that bundle of inputs, it also

represents the smallest amount of output given that same

bundle of inputs, if all the inputs are consumed (which is

true by definition). Therefore, to define TE as being on

any point on an isoquant is ambiguous, confusing, and

misleading since by itself there is no basis for compari-

son; there is no counter point that represents any other

degree of "technical efficiency" given the same set of

inputs and the same process. Production means creating

utility by changing the time, form, or location of inputs.

Therefore, efficieny involves implicit comparisons of

value (Knight, 1933; Boulding, 1981]. Value must be

measurable for there to be a basis for comparison between

two points of production: one needs a numeraire.

Physical measures alone divorced from their specific

value (i.e., from a numeraire) are an inadequate for
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comparing efficiency. Marginal physical products of

inputs, which are determinate once a production function

is defined, have value, as does the output they represent.

They are technical coefficients of production. But as

physical quantities their specific values are not indi-

cated and, as such, they are an inadequate basis for

making efficieny comparisons.

Consider the case where one is faced with a set of

measurements of marginal physical products for various

sets of the same types of inputs used in the same produc-

tion process. If TE was determined by the set of coeffi-

cients of the largest magnitudes (hence the largest

value), then TE would imply selecting those input bundles

where average physical products are their largest, which

represents the unit elasticity point on the production

function, or the boundary between Stages I and II (for a

further discussion of this case see Chapter Four). If

price efficient points are always technically efficient,

as Section 3.2.2. showed, then the set of techniclaly

efficient points must include points that are at points of

unit elasticity on the production function. Even if one

assumes that all the unit elasticity points will lie on

one isoquant, which is not generally true, one might still

ask if any one of the unit elasticity points is more

"technically efficient" than the others. This is the same

as asking if any one point on an isoquant can be more

"technically efficient" than the others.
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Consider two sets of inputs, v10 and v2O that produce

a given level 0f output, Y0. The marginal physical pro-

ducts are determinate with MPP(v10) = X01 and MPP(V20) =

X02. If one changes the amounts of the inputs used, e.g.

to V11 and v21, then the marginal physical products will

no longer be X01 and x0 1

1

2!

but MPP(v11) = x

o

1 and MPP(v21)

> X11 and

2!

= x where x01 ¢ x1 and x 2 ¢ x12. If x0

O O
X 2 > x12, then f(vlo, v2 ) = y1 where y1 > yo. There-

1, then X02 < X12, for f(vlo,

1 1

fore, in general, if X0 > x1
1

v20) = f(vll, v21) = yo. In this case, notice that the

inherent values of v11 g v10, and v21 ¢ v2O
so that one

might ask if one set of inputs (v10, v20) or (v11, v21) is

"technically more efficient" in producing yo. To answer

this question, one needs to have a basis of comparison, a

basis for valuation; i.e., one needs a numeraire or a set

of relative prices.

In economics, the utility function provides a basis

for measuring value, by allowing one to derive the demand

for all commodities based on the value (utility) they each

provide. When one selects a numeraire, one commodity, the

utility function serves as a basis for evaluating the

relative value of all other commodities (including money)

by comparing them to the numeraire; specifically by estab-

lishing how much of a specific quantity of a specific

commodity will be equal in value (utility) to a specific

quantity of the numeraire. A change in the underlying

utility function will change the relative measures of

value.
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In economics, relative prices represent specific

measures of value because they are determined by normali-

zing commodities on a numeraire. Clearly, associated with

any specific production function are an infinite number of

sets of relative prices, each set determining a unique

total cost function. The relationship between the rela-

tive prices for any two points on the production function

remains the same, in direction if not in magnitude, re-

gardless of which set of relative prices is selected to

measure the value of the physical quantities if they are

based on the same preselected utility function. In gen-

eral, changes in relative prices from one set of relative

prices to another is accomplished either by vector multi-

plication (changing the utility function) of all prices

and/or a change in the choice of numeraire which deter-

mines the measurable degree of difference between relative

prices. A change in the utility function causing a change

in relative prices is accomplished by vector multiplica-

tion of prices, where the elements of the vector are not

equal. Any comparisons using the resulting two sets of

prices is fundamentally a comparison of the change in

utility. A change in numeraire, holding utility con—

stant, will change relative prices, but not the direction

of change between those relative prices, only the magni-

tude; i.e., the ranking of preference for the individual

commodities will be unchanged.
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Therefore, while the prices for the physical quan—

tities represented by a point on a production function can

change, any set of prices is as valid a representation of

the instrinsic value of those physical quantities as any

other set of prices, if they are derived from the same

utility function; i.e., one holds the utility function

constant. If one holds the utility function constant,

then any change in prices will be the result of either

scalar multiplication, multiplying all prices by a con—

stant, which leaves relative prices unchanged, or a change

in the numeraire, which leaves the fundamental values of

the commodities unchanged. This is why economists prefer

to make comparisons based on sets of "real" prices, sets

of prices using the same numeraire that are not different

by a scalar, and why in a duality mapping a valid compari-

son of points must hold relative prices at the same level

of magnitude, or price level, as was pointed out in Sec-

tion 3.2.1.

In this thesis, all the prices are designated as

algebraic unknowns or variables, which means they can be

any set of pea; prices from the infinite number of sets of

prices with no change in the arguments presented, assuming

there is only one underlying utility function upon which

all comparisons are based. This is a necessary ceteris

paribus condition for comparisons to be on an equal

footing. If two points on a production function are

designated as equally technically efficient at the same

level of output, as the term is used in the frontier
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production function theory, and the two points represent

two different levels of utility, then since production is

by definition a change in the utility of inputs through a

change in time, form, or space, the two points are in fact

on two different value productivity functions since they

represent two different levels of utility (or output).

Specifically, this means that any two points on an iso-

quant that are designated as equally technically efficient

must reflect the same level of utility on the same utility

function; i.e., two or more points on an isoquant can be

equally technically efficient only if everything is held

to be the same. That is, once one has normalized all

prices by selecting a utility function and a numeraire,

there is only one set of relative prices associated with

the value of, or physical quantity of, any given bundle of

inputs and output.

Therefore, "TE," as the term is used in frontier

production function theory, is either associated with spe-

cific relative prices by virtue of being associated with a

given utility function and a numeraire, or it is mean-

ingless since there is no basis for the comparison of

efficiency of "TE" points. Specifically, if "TE" is not

meaningless, then any point that is techniclly efficient

is also price efficient. For the purposes of testing the

implication that two points can be technically efficient

when only one of them is price efficient, it will be

assumed that the term TE is meaningfully distinct from PE.
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3.2.3.1. THE INTUITIVE ARGUMENT:

Consider the implication of frontier production

functions that TE and PE are mutually exclusive and that

two firms can be equally technically efficient at the same

level of output (utility) when only one of them is price

efficient. If two firms are equally technically effi-

cient, it means that the two firms are on the same iso-

quant and can produce pp mpg; than that output with the

(value of, or quantity of) the resources at their disposal

when input (and output) prices 3;; fixed. If two firms

"A" and "8" are producing the same output Y0' and they are

purchasing their inputs in perfectly competitive markets,

so that only one of the two firms, assume it is "A", is

price efficient, then the firm that is not price effi-

cient, "8," is not producing as much output (utility) as

it could given the (value of, or quantity of) the resour-

ces at its disposal. Therefore, "8" is not technically

efficient. If "8" is not price efficient, then its cost

is not as low as it could be if it were a least cost

producer; its total cost is higher than it would be if it

were a least cost producer. Therefore, in the perfectly

competitive markets, "8" can costlessly rearrange its

input bundle so that the inputs are used in the same ratio

as they would be were "8" a least cost producer, i.e., in

the same ratio as the input bundle used by "A," and at its

same (original) cost produce more output that "A."
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3.2.3.3. PROOF BY DUALITY:

Consider Figure 3.4, which is essentially like Figure

3.2. Frontier production function theory suggests that

firms "A" and "8" are initially at points A0 and BO res—

pectively, while prices are fixed at (PIA'O, pzA'o) for

both firms. That is, both "A" and "8" are equally techni-

cally efficient for output yo, but only "A" is price

efficient. Recall that TE means producing the greatest

amount of output (utility) possible from a given set of

inputs in a given process. It was pointed out above that

this definition is meaningless unless one recognizes that

with every set of physical quantities there is associated

a specific set of relative prices (subject to change only

by vector multiplication or a change in numeraire). For

the frontier production function definition of TE to be

rhetorically and internally consistent, it must not change

whether prices are considered or not; the definition of TE

must be invariant with respect to prices, or a lack of

prices, if there is to be a meaningful separation of TE

from PE. But this is not true. Including the PE condi-

tions, concurrent with the TE conditions, for the puposes

of making comparisons between firms means relative dual

prices are established. Frontier production functions

cannot be used to consider TE without concurrently con—

sidering prices as a measurement of the value of the

technically efficient bundle.
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But fixing prices (which fixes the efficient price

ratio) by assuming that both "A" and "8" buy their inputs

in the same competitive market, and that the prices they

face are the prices that make AO price efficient, (PIA'Ov

PZA'O), means PE is determined, but that 80 does not map

to 3'0. For 80 to map to 8'0, firm "8" would have to have

dual prices equal to (PIB'O, P BlO), at a total cost of c
2 1

when it is paying market prices equal to (PIA'O, PZA'O).

Therefore, calculate C(80), the cost at "8," at

A
prices (PIA'O, P2 '0) using the cost function shared by

"A" and "8," and find the location for the resulting value

in the factor-price requirement set.

Notice that C(80) # c1 at prices (PIA'O, pzA'O). If

C(80) = Cl, then 8'o represents a least cost producer at

both market prices (PIA'O, P2A'O) and at market prices

(PIB'O, PZB'O) at a total cost c1, using inputs V130 and

szO to produce yo. But this would violate the condition

that if one holds output constant and changes prices, then

one moves from the same isoquant in product space to

different isocosts in cost space since PIA'O ¢ pIB'o and

A' Bl

P2 0 # P1 0.

Notice, too, that C(80) { c1 at ,prices (P1A O.

8' 8'

then P O and P O are not the

1' 1 2

Al

, rather (P1 0, P

Al

P2 0). If C(80) < c

least cost prices at 8 A'0) are.
0 2

The location of C(80) must be on a ray from the

origin in the factor—price requirement set so that the

ratio of the inputs in the input bundle purchased by firm

"8," (VIBO/VZBO), is not changed. Therefore, C(80) is 10-
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cated not at 3'0, but at 8'1 and at a total cost c2 > c1.

I

Given 80 at fixed prices (P1A O, PZA'O) using the cost

function it shares with "A," firm "8" is located at 8'1 in

the shared factor-price requirement set. That is, if

firms "A" and "8" share the same production and cost

function, then at fixed market prices the locations for

those firms in cost space are at A'O and 8'1 respectively.

The prices (PlB'l, PzB'l) represent not the market

prices which were used to calculate the value C(80), but

the derived prices that make the input bundle represented

by 8'1 a least cost bundle, and the price ratio that would

make the firm "8" PE, since all points on the cost

function are least cost bundles by definition of a cost

function. The bundle purchased by "B" is in fact not

price efficient, since the ratio of the dual prices,

(PlB'I/PZB'l), is not equal to the ratio of the dual

prices, (PIA'O/PzA'O) for the price efficient producer,

"A." Notice that at 8'1 the dual prices (PIB'l, PZB'I)

are absolutely greater than the prices at 8'0, (PIB'O,

923'0). That is, 913'1 = kPlB'O and 923'1 = kPZB'o, where

k > 1.0. At the fixed prices P A'0 and PZA'O, "8" enters
1

the duality mapping at 8'1. This implies that "8" is not

only generating dual prices that are inefficient,

Bl Bl Al Al

P1 1/P2 1 # P1 O/P2 0, but also generating dual prices

that are higher than the level of prices paid by "8."

That is, the magnitude of the dual prices paid by "8" are

greater than the magnitude of the dual prices paid by "A,"
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by |1-k|.

Because of this change in the magnitude of the dual

prices generated by "B" at 3'1, one must make an ad—

justment to eliminate this implied difference in the mag-

nitude of the dual prices generated by “A" and "B" in

order to maintain ceteris paribus conditions in the com-

parison. Now, having located 8'1 in cost space, under the

assumption that both firms face the same fixed market

prices, where does 3'1 map back to in its corresponding

shared technical (product) space by duality? That is,

what point in the technical (product) space would map to

8'1 in cost space where the dual prices P13'1 and sz'i

would be at the same price level as the dual prices gen—

erated by "A." The point is either 81 or 32, not to 30'

Therefore, the bundle purchased by firm "8" no longer

represents the same technically efficient level of output

(utility) "A" does. 8y duality, points in product (cost)

space have a unique one—to—one mapping with points in cost

(product) space.

If one wishes to maintain "8"'s greater expenditure

capacity, "8"'s larger budget, or total cost, c2, then "8"

must produce a greater output y2 > yo, to provide "8" with

the greater compensating income to cover its greater cost

c2. This means "8" would be represented by 81 in the

duality mapping.

If one wishes to maintain the same budget constraints

for both "A" and "8" at CD and c1, thereby maintaining the

original total cost relationship between the two firms,
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then "8" must purchase fewer inputs and produce a lower

output Yl' where y1 < yo at c1, and therefore be repre—

sented by 82 in the duality mapping.

In either case, within the duality mapping "8" cannot

be technically efficient at a production level y0 while

paying market prices (PlA'O, P A'O). Therefore, there ap—
2

pears to be a contradiction between the initial situation,

two firms "A" (represented by A0) and "3" (represented by

80) both technically efficient at the same level of ouput

(on the same isoquant), and the final situation, two firms

"A" (represented by A0) and "8" (represented by 81, or

82), on two different isoquants. The firm "8" cannot be

at 80 and 81, or 82, (on two isoquants) at the same time.

The conclusion is that being off the isocost line, not

being price efficient, means by duality that the firm is

also off the isoquant Y0 and not technically efficient at

the same level 0f output Yo. Therefore, the only firm

that is technically efficient on the yo isoquant is "A,"

because it is the only firm that is price efficient. Firm

"8" could produce more output with the budget (resources)

that allows it to produce yo (when its not price effi—

cient), or it could produce less output if it can spend no

more than c1. Therefore, TE 5 PE always, by duality.

This should not be a surprise to persons familiar with

Knight's 1933 and Boulding's 1981 arguments.

Buying 80 inputs at market prices (PIA'O, P A'O) is

2

identical to buying 81' or 82, inputs at dual prices
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(PIB'l, PzB'i). The duality exists only between 8'1 and

81' or 82, for firm "8" at the fixed market prices (PIA'O,

P A'0). That is, there is no duality mapping on the cost
2

function for 80 at prices (PIA'O, PZA'O) and an output

level yo, since 80 is not a least cost bundle for yo and

prices (PIA'o, PZA'O). Therefore, in measuring efficiency

for firms for which the duality principle is assumed, the

relevant points for firm "8" are 81, or 82, and 8'1, which

means that at the assumed market prices "8" is neither

technically efficient nor price efficient at output level

Yo ; only "A" is either, and it is both, technically effi—

cient and price efficient at output level yo,

3.4. SUMMARY

Distance functions are based on production functions

"hi ch are input-conventional, meaning they conform to

regularity conditions, free disposal (monotonicity) , and

stI‘ict convexity from below. Using duality, one can find

corresponding cost functions which must also display free

d1 eposal and strict convexity from below (quasi-concavi-

ty ) . Distance functions are valid representations of

be ality (excluding Stage III of production). It might

eaGily be mistakenly inferred that frontier production

fulctions are also valid representations of reality be-

c§‘use they look the same as distance functions and bear a

g“:I-perfical appearance to distance functions when graphs of

the two are compared (see Figure 3.1) .
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Section 3.1 tested, and rejected, the hypothesis that

distance functions and frontier production functions are

the same, since they arise from different theoretical

origins. Distance functions arise from a production set

that has no true interior points of production to its

isoquants at the same level of production. Frontier pro—

duction functions arise from a production set that is a

solid set with interior points to its isoquants that

represent the same level of output as the isoquant.

Therefore, distance functions can have no "technically

ine fficient" points of production, as the term is used in

fzrc>11tier production function theory, within its corres—

Ponding production set.

Frontier production functions have the fundamental

pI'OEJerty that TE and PE are mutually exclusive conditions

of reality; that there are in reality these two different

types of efficiency, rather than only one type of effi-

ciency, simply efficiency. If these two kinds of efficien-

CY validly reflects reality, they should conform to the

principles of free disposal and duality between product

and cost space. The hypothesis that TE and PE are not

the same was tested in Section 3.2 in two parts by testing

8&9 Erately the two implications of the hypothesis. The

rib Qt implication is that two firms can be price efficient

wh§m only one of them is technically efficient. It was

shQ'Vm in Section 3.2.2. that this first implication is

curEttradicted by free disposal and duality and therefore

t

list a firm that is price efficient is necessarily techni—
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cally efficient at the same time. The second implication

is that two firms can be equally technically efficient at

the same level of output when only one of them is price

eefficient. Section 3.2.3. demonstrated that this implica-

tLion is contradicted by duality, and therefore that any

firm that is technically efficient is necessarily price

efficient at the same time. Therefore, TE and PE are

always identically equal and the two adjectives "techni-

cal" and "price" add nothing to the discussion.

The consequences of testing these two hypotheses are

twofold. Frontier production functions are not the same

2:5; distance functions since they arise from a different

theoretical origin than distance functions, that of a

solid production set including both "technically effi—

c“1<311t" and "technically inefficient" points of production.

firrleslrefore, in production theory, only distance functions

sl'1<>1..1ld be used as the basis for theoretical explanations

of reality (excluding Stage III of production), or for any

amp drical analysis that excludes Stage III of production,

since distance functions alone reflect the physical reali-

t3? that production sets are hyperplanes (surfaces) in

irllgivut space rather than solids (see Appendices One and

TNQ ) .

The consequences of testing the second hypothesis,

tkjt‘sht TE and PE are not the same, are that the terms "TE"

aljt‘ii "PE" as they are used in the frontier production

E

uhction theory are ambiguous, misleading, and confusing,
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since they imply that there is two kinds of efficiency.

There is only one -- simply efficiency. Since production

is by definition a change in the time, form, or space of

the utility of the inputs, a production function implicit—

ly measures utility or value. Therefore, in order to

determine the degree of efficiency for any point on a

production function, one must first have a basis of com—

paring the intrinsic value represented by a point; i.e.,

one must first choose a numeraire. Once a numeraire is

designated, all points on a production function are asso—

ciated with a set of relative prices that serve as a

measure of their value or utility. A change in those

relative prices can be accomplished only by vector multi-

Plication, which means that one has changed production

(utility) functions, or by a change in the numeraire,

which will not change the direction of differences between

‘tllee original relative prices, only the magnitudes of those

dj~152ferences. Therefore, "TE" as it is used in the fron-

tier production function theory must be implicitly asso-

Ciated with specific relative values, or prices, or it

'inm]E>>lies a comparison of points without a basis for com—

pat‘ison. In this case, the adjective "technical" loses

'1‘:WEE: meaning as the distinction between "T8" and "PE" is

‘vjl ”t:hout foundation. If technically efficient points in

ft‘SDntier production function theory are associated with

sgQcific relative values, or prices, which would be impli-

ctdl Utly logical since they stands as counter points to

9% :lnts that are price efficient, points which are expli-
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citly associated with values, or prices, then points that

are technically efficient must also be price efficient and

vice versa. TE always means PE by duality; a firm that is

'technically efficient is always price efficient and vice

tiersa. The converse is also always true; a firm that is

IlOt price efficient is not technically efficient and vice

versa. Consequently, in discussions of efficiency, the

aicijectives "technical" and "price" are ambiguous, mis-

leading, and confusing, and might best be dropped from the

discussions. Efficient production is always determined by

treaJlues as Knight (1933) pointed out over fifty years ago.
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CHAPTER FOUR

A NEW CASE

There is one other case worth considering. It arises

as a result of calculating a unit isoquant. This chapter

ijull show how a point on the production surface becomes an

';lxnterior' point to the unit isoquant for another point of

Llcauner production on the production surface due to the

at\r¢eraging process itself. This is a new case since it has

not previously been dealt with in the frontier production

function literature. However, unlike a frontier produc-

‘tlicazi function, the definition of technical efficiency is

fundamentally different, there is no distinction between

{rig and PE, and the unit isoquant so described may have

both 'interior' and 'exterior' points.

Consider points Q and P in Figure 4.1. Both points

represent production of the same output, y, using dif-

ferent quantities of the same variable inputs, v1 and v2,

s"I‘laject to the same quantity of an identical fixed input,

:ZEB - Therefore both points are on the same sub-production

futtinction (surface). P represents a higher level of pro-

d.":""'§tion, but is a member of Q's input requirement set.

{Pljl43ls means that both P and Q can be projected into the V1

3116 V2 plane. In the (V1,v2) plane the isoquant for Q is

the boundary to Q's input requirement set, within which P

82
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will lie (see Figure 3.1A in Chapter Three). Notice that

Q represents the point of production for which APP (av—

erage physical product) is at a maximum, and therefore

represents the boundary between Stages I and II of produc—

tion.

Now construct the unit isoquant through point Q for

the set of production points from which these two observa-

tions are drawn (see Figure 4.2). Point Q maps to Q' and

point P maps to P'. Point P' is an 'interior' point to

the unit isoquant through Q'. Assuming that both Q and P

use inputs in their least cost combination, both points Q'

and P' are "price efficient," but point P' appears to be

"technically inefficient" as compared to Q'. Notice that

at Q one obtains maximum output per unit input, i.e.,

maximum APP. At P one obtains less output per unit input,

i.e. lower APP. Therefore, Q is on the unit isoquant

where one is using minimum input per unit output, and P is

in the 'interior' where one uses more input per unit

output. By definition of the unit isoquant, P' represents

less output per unit input than point Q' because point P

represents a lower APP than point Q. This means that the

discrepancies between Q' and P' in Figure 4.2 come about

as a direct consequence of the averaging process itself.

The difference between Q' and P' are not due to any

intrinsic "technical" or physical inefficiency originating

at a true interior point to Q as would be construed from

frontier production function theory. In constructing the

unit isoquant one in effect shifts one's attention from
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FIGURE 4.2

A UNIT ISOQUANT
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points on the TPP (total physical product) curve to cor—

responding points on the APP curve (see Figure 4.1). That

is, clearly there is less output per unit input, i.e.,

more input per unit output, at P (P') than at Q (Q') due

to the law of diminishing returns. At P (P‘) the MPP

(marginal physical product) is lower than it is at Q (Q').

4.1. IS THIS A NEW DEFINITION OF TE 7

This new definition of TE does not depend on interior

points to a production function. It does not mean one can

get more output with the same inputs at P', as would be

concluded from frontier production function theory.

Therefore, to conclude that Q (Q') is "technically, effi—

cient" would be misleading. The point P' (P) is only less

"technically efficient" than Q (Q') in the sense that one

can achieve a higher APP using less input than is used at

point P (P') by moving back to point Q (Q'). If one were

to define this difference in average physical output

potential between points P (P') and Q (Q') as a difference

in "technical efficiency" between the two points, one

would be creating a definition for TE that is fundamental-

ly different than the "TE" that is defined in the frontier

production function literature. Recall that in the fron—

tier production literature a point is TE if, and only if,

one can not get more output (TPP) from the same inputs.

Clearly, at point P (P') one cannot get more output from

the same inputs; one can only get a higher APP from the
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same variable inputs by leaving some variable inputs

unused. This difference in potential APP is clearly un-

derstood in traditional microeconomic theory. Equally

clear from traditional microeconomic theory is the inap-

propriateness of recommending that one always maximize

APP; that one maximize TE where TE means maximum average

physical product. In traditional microeconomic theory the

relevant issue is whether or not a higher APP is wggth

producing. This is a case of properly treating economic

adjustment with respect to variable inputs.

4.2. TE NOT SEPARATE PROM PE

This case still does not separate TE and PE. A point

P (P') would be off the unit isoquant for Q (Q') due to:

(1) either P (P') not properly equating its MRP (marginal

revenue product) to its MFC (marginal factor cost), or

(2) to P (P') paying lower prices for inputs v1 and v2

(having a higher budget constraint). P' cannot be alloca-

tively efficient, a least cost producer, if Q' is, and

vice versa, when both firms have the same budget con-

straint and pay the same prices and opportunity costs for

all their inputs, both variable and fixed. This is clear

due to the same arguments that were advanced in Chapter

Three regarding distance functions and frontier production

functions.

If P' (P) and Q (Q') are considering different within

firm opportunity costs for the identical quantity of fixed

1DPUt 23, then both might be least cost producers and be
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producing different levels of output. Recall from tradi—

tional microeconomic theory that inputs become fixed in

production when their within firm opportunity cost (shadow

price) is between their out of firm opportunity costs

(acquisition and salvage price) [Johnson and Quance,

1972]. The different firms represented by P' (P) and Q

(Q') might maximize the within firm opportunity cost for

the fiXEd input 23, the economic returns to 23, at dif-

ferent values between the acquisition price and salvage

price that both firms face. If P' (P) allocates less of

its budget to compensate for the use of 23, pays less rent

to 23 than Q (Q') does, then P' (P) can "purchase" more of

the two variable inputs v1 and v2 than Q (Q') can. This

problem can be avoided if both firms endogenize the quan-

tity allocation 0f 23 using the method outlined by Edwards

(1958); i.e., both firms will be evaluating 23 at the same

within firm opportunity cost.

4.3. 'INTERIOR' AND 'EXTERIOR' POINTS

Unless the unit isoquant drawn through Q (Q') is the

boundary between Stage I and Stage II due to the firm

being in long run equilibrium within a perfectly competi-

tive industry, there are both 'interior' and 'exterior'

points. Notice that if point P in Figure 4.1 were to

represent the least cost producer, and one were therefore

to draw a unit isoquant through P (P'), then Q (Q') would

become an 'exterior' point to the unit isoquant through P
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(P'). That is, one could still increase "TE", increase

physical output per unit input, by operating at point Q

(Q'). In this case 23 for Q (Q') would be earning eco—

nomic rent; 23 for Q (Q') would have a higher within firm

opportunity cost (shadow price) than for P (P').

4.4. SUMMARY

This chapter has considered a valid case where one

can construct unit isoquants that have 'interior' points.

It is clear that the interpretation of these unit iso—

quants is not the same as the interpretation of a frontier

production function. The 'interior' points to the unit

isoquant represent higher levels of total production than

points on the unit isoquant, rather than equal levels of

production. An 'interior' point becomes an 'interior'

point due to the fact that at higher levels of production

the law of diminishing physical returns results in lower

total output per unit input which means one uses more

input per unit output. In addition, unless the unit

isoquant represents the boundary between Stages I and II

of production, where average physical production is at a

maximum, a production set for firms that are in long run

equilibrium in a perfectly competitive industry, the unit

isoquant will have both 'interior' and 'exterior' points.

The term "technical efficiency" is really a misnomer in

this case, since it has nothing to do with getting maximum

output from a given set of inputs. In this case, techni-

cal efficiency implies only that one is producing where
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average physical product is at a maximum. Clearly, one

chooses to be technically efficient or maximize APP only

if it is allocatively efficient.



CHAPTER FIVE

TEE FRONTIER PRODUCTION PUNCTION LITERATURE

While the popularity of frontier production functions

is relatively recent, the arguments for their existence

have been around for some time. The erroneous distinction

between TE and PE has flourished largely unchallenged.

The distinction between TE and PE seems to have been

simply postulated and accepted without any serious atten-

tion to its logic or its conformity with the laws of

nature. How did such misguided logic establish itself in

economic theory? What are the original sources of error?

If the logic of frontier production functions is inconsis-

tent with legitimate economic theory, the frontier produc—

tion function literature should have discredited itself.

This chapter will examine some of the more salient

literature relevant to frontier production functions. An

exhaustive review of all the literature is unnecessary

since it is highly repetitious. The chapter will attempt

to explain briefly how the errors established themselves

and evolved despite the internal inconsistences revealed

in the foregoing chapters. It will be shown that these

inconsistences substantiate the arguments offered in Chap-

ter Two; that frontier production functions arise due to

specification error and/or aggregation error.

91
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5.1. LINEAR PROGRAMMING AND TREE DISPOSAL

5.1.1. EDOPHANS:

In tracing the development of technical and price

efficiency, free disposal, and frontier production

functions, there does not appear to be any literature

prior to the development of linear programming, or activi-

ty analyisis.

One of the earliest references to technical efficien—

cy may be found in Koopmans (1951). The article is a

discussion of how one finds the efficient set amongst the

feasible set. Koopmans creates ambiguity by saying that

he will be discussing the "efficient point set in the

commodity set." It is clear that he means isoquant in

using the term feasible set rather than the efficient set

(a maximum profit point, or an expansion path), since he

is referring to a production function. His postulate that

the isoquant is ”the efficient set" is never substan-

tiated; indeed what an "efficient set" means is not dis—

cussed. If an isoquant is itself efficient, then the

tangency of the isoquant and the budget constraint is a

different type of efficiency and one can infer that there

is technical and price efficiency. If the isoquant is a

technically efficient set, then one can infer that a

technically inefficient set must also exist, i.e., the

interior to the isoquant. None of this is explored in the

article. Koopmans' use of "efficient" is an unfortunate
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word choice that is never explained. The same is true of

his use of the term free disposal.

The concept of free disposal is not developed, but

alluded to within the context of developing the conditions

and characteristics of activity analysis. It is evident

from the introductory remarks that free disposal depends

on the perfect complementarity assumed for each activity

being analyzed.

.. and situations where some factors

can only be combined, within the

technological principle involved, in

fixed ratios to each other (limita-

tional factors). The second type of

situation can only be reconciled with

the notion of a production function

defined in the whole factor space by

allowing the production manager to

discard parts of the factor quantities

specified as being available. The cor-

responding production functions have

kinks at the points where the ratios of

available factor quantities coincide

with the technical ratios specific to

the process in question. [Koopmans,

1951, page 33-34; underlining added]

In linear programming this type of free disposal is repre-

sented by slack and surplus activities, which serve as a

place "freely" to "dispose," or "discard," "available" but

unused amounts of resources in order to establish the

equality constraints of the algorithm. Seldom are the

quantities of inputs in the slack and surplus activities

interpreted as having been consumed in the production

process: they are not inputs to production. Instead sur-

plus (slack) activities can be thought of as warehouses in

which inputs can be stored at zero cost, i.e. disposed of
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freely -- at no cost. Having inputs available does not

mean they are consumed. In addition, it is worth noting

that in a linear program any input always has a shadow

price associated with it. Consequently, in linear pro-

grams the physical quantities of inputs are not separated

from their values.

Free disposal probably originated in the slack acti-

vities of linear programming. This in itself casts some

suspicion on its theoretical rigor since linear program-

ming is not a general theory of production but is, in-

stead, a operational method for optimizing returns under a

set of extremely restrictive and often unrealistic as-

sumptions which simplify calculations.

5.1.2. BOLES:

Boles' (1966, undated) contribution is worth noting

since he develops an algorithm closely related to a linear

programming algorithm. Boles restricts his discussion to

the mechanical aspects of constructing an algorithm that

will compute technical and price efficiency indices.

While he provides no new insight into the theory, the

algorithm he develops could have a very practical applica-

tion in applied work, in determining the degree of speci-

fication or aggregation error one has in a sample and the

need to carry out additional detailed investment/disin-

vestment analysis of the causes of apparent interior

points -- that is, by recognizing that Boles measures of
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technical and price efficiency are essentially measures of

specification or aggregation error, his algorithm serves a

potentially legitimate and useful diagnostic value.

5.2. FRONTIER PRODUCTION FUNCTION THEORY

5.2.1. FARRELL:

Farrell (1957) is credited with formally introducing

the theory of frontier production functions. It is clear

that Farrell developed his ideas from association with

linear programming.

the treatment of the efficient

production function is largely in-

spired by activity analysis....

(Farrell, 1957, page 11]

Except for extending his theory to include situations

where constant returns to scale need not be assumed

[Farrell and Fieldhouse, 1962], and some elaboration and

interpretation [Bressler, 1966], Farrell's theory has been

largely accepted without critcal challenge. Nerlove

(1965) and Yotopoulous (1974) point out some critical

ambiguities, but still accept the fundamental premise.

It is the virtue of the present method

that it separates price from technical

efficiency. [Farrell, 1957, page 264]

Farrell himself states that the concept of technical effi—

ciency is a consequence of aggregating inputs, management,

and measurement error. Recognizing this destroys the

distinction between TE and PE.
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Price efficiency deals with choosing the optimum set

of inputs along an isoquant. Price efficiency (allocative

efficiency) is the point where an isoquant is tangent to a

budget constraint. This determines the quantities of

variable inputs V(J) purchasable with a given budget that

will maximize production. Similarly, technical efficiency

maximizes physical output from a given bundle of inputs.

If technical efficiency and price efficiency are dif-

ferent, then it implies that V(J) can produce different

levels of output, each level having a different value.

There are two possible explanations.

Technical efficiency implies that given amounts of

the V(J) can produce different amounts of an output.

Clearly, two different outputs can not be on the same

isoquant since one output is smaller than the other. If

the sub-production function is the same for both sets of

inputs, then the two isoquants are in the same input

requirement set, and the "extra" input and output must be

freely disposed in order to move from the higher to the

lower isoquant. But because of polar reciprocal sets, the

TE and PE of the two points on the two isoquants are the

same and there can be no difference between TE and PE.

This flatly contradicts the statement that Farrell's

method "separates price from technical efficiency."

The second case suggests that the quantity of output

forthcoming from V(J) is not uniquely determined by the

production processes. Nowhere is there an explanation of
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how identical inputs can produce different output; that

is, there is never an explanation of what accounts for the

differences in production. Therefore, price efficiency

does not insure maximum value, only a proportionate rela-

tionship; between the v's in V(J). If the bundle is used

technically efficiently one gets one output but if its

used technically inefficiently then one gets a different

output. Therefore, the value of V(J) is not uniquely

determinable.

If one looks closely, what Farrell treats as tech-

nical inefficiency results from comparisons across sub-

production functions (specification error) or from aggre-

gating heterogeneous inputs (aggregation error). Indeed,

one can infer that mis-aggregation 2: inputs creates an

apparent "technical inefficiency" from his suggestion that

dis—aggregating inputs improves the technical efficiency

of the firm.

It will be seen that, in accordance

with the theory developed in Section 3,

the introduction of a new factor of

production in the analysis cannot

lower, and in general, raises the

technical efficiency of any particular

[observation]. Thus, the more factors

that are considered, the more are ap-

parent differences in efficiency ex—

plained as being due to differing in-

puts of the factors. [Farrell, 1957,

page 269]

Since inputs are defined to be quality (form) specific,

one cannot have differences of quality between units of

the same input, without committing an aggregation error.
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Management is better regarded as choosing production

processes, input levels, and hence, output levels than as

a factor of production. Consequently, it does not affect

the "technical efficiency" of a given set of inputs.

Farrell is ambiguous when he says,

... the technical efficiency of a firm

or plant indicates the undisputed gain

that can be achieved by simply 'gin—

gering up' the management. [Farrell,

1957, page 260]

Management chooses the input requirement set. Choosing

one set over another set is not maximizing output from a

given set of inputs, or 'gingering up' technical efficien-

cy, but an economic adjustment among the alternative sets

[Edwards, 1958]. For different input sets, the physical

output will be different, but not for identical sets. This

is a physical (technical) phenomenon, but implicit is a

comparison of two input requirement sets with different

fixed inputs. If a one chooses one set rather that an-

other, one is implicitly changing sub-production functions

in the process.

The two problems mentioned above can arise due to

measurement error. In discussing the practical problems

of measuring inputs, i.e., measurement error, Farrell

aknowledges,

... that a firm's technical efficiency

will reflect the quality of its inputs

... [Farrell, 1957, page 260]

Farrell goes on to explain that discrepancies in the
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measurement of inputs also affects price efficiency, "but

in rather a complex way, so that problems are best discus-

sed ad hoc." As an example he states,

If labour input were measured in man-

hours, as is conceptually correct, this

too would affect price efficiency, but

if in numbers of men employed, it would

affect the firm's technical efficiency.

[Farrell, 1957, page 261]

This suggests that Farrell regards men as fixed inputs but

man hours as variable inputs. Farrell seems to be sugges-

ting that price efficiency is associated with variable

inputs and technical efficiency with fixed inputs and that

variable inputs cannot be used technically inefficiently

while "fixed" inputs cannot be used in uneconomic propor-

tions. When Farrell attempts fully to illustrate the dif-

ference between price and technical efficency he attri-

butes the differences to specification error (comparisons

across sub-production functions), or error in aggregating

inputs.

Farrell's paper contains repeated instances of ambi-

guity about what one is to assume initially about the

production function that gives rise to the "efficient"

production function. He is repeatedly ambiguous about how

price and technical efficiency can be separated and iso-

lated without interactions. Finally, he repeatedly

neglects the implications noting that what he calls

"technical efficiency" depends on input mis-specification

and/or aggregation errors.



100

5.2.2. BRESSLER:

Bressler's (1966) summary of the frontier production

function theory has been presented in Chapter Two. In

addition, Bressler offers three explanations for ineffi-

ciency in a firm: (1) operating with excess capacity, (2)

inefficient use of technology, and (3) using an outmoded

or inefficient technology [Bressler, 1966].

Operating with "excess capacity" clearly focuses

attention on the role of fixed inputs. If having excess

capacity means that to be profitable one must expand use

of variable inputs, then the firm is simply inefficient.

A second interpretation is more conventional: excess

capacity suggests the need to make length of run ad-

justments (changing sub—production functions), which is

treated below.

Since the production possibilities set defines the

technology, Bressler appears to be using a different defi-

nition of technology in cases two and three. Technology

is not chosen, but given by a state of knowledge. Bres-

sler's technology appears to be the same as the input

requirement set, or technique, of Appendix Two. Bres-

sler's cases two and three, efficient use of technology

and choice of technology, imply efficiency in general

rather than just "technical efficiency." In light of the

theory of production functions presented in Appendix Two,

one can conclude that the choice of technology and the
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efficient use of technology are not merely physical

(technical) decisions but are inherently economic deci—

sions based on evaluating the costs and returns involved.

Choosing a technology raises the issue of technical change

and makes the selection of fixed and variable inputs

carrying old and new technologies endogeneous to the sys-

tem (see Edwards, 1958). Changing technology implies

changing sub-production function. Using a technology

efficiently means first, finding the tangencies between

the budget constraints and isoquants and then the high

profit level of production. "Using an outmoded or ineffi—

cient technology" suggests that one has not properly con-

sidered the economies of investing in or using inputs

carrying new technologies and disinvesting in or ceasing

to use inputs carrying old technologies.

Bressler's comparisons of efficiency are directly

attributable to making comparisons across sub-production

functions. As mentioned in Chapter Two, Bressler points

out that economic efficiency has a direct relationship to

average costs. Specifically, if one maps the inverse of a

production function's longer-run average total cost curve,

one finds a curve representing maximum efficiency for the

production function at each level of production, e.g.

point A maps to point D in Figure 5.1. Each level of

production represents an isoquant. If one observes a

point within this "efficient envelope," point E, to what

may it be attributed? There are only two possible expla-

nations.
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First, if the efficiency envelope represents maximum

efficiency at each level of output (for each isoquant),

then the efficient envelope is an expansion path. One

would be inefficient if one used inputs in proportions

different from the proportions determined by the tangency

of the isoquant and the budget constraint. One would be

inefficient, but still be on the isoquant. Point E must

be on the same isoquant as D, but not on the budget con—

straint. D and E produce the same amount of output.

Thus, E is inefficient from an allocative point of view

and does not illustrate technical inefficiency. Technical

efficiency cannot be determined from this presentation.

Technical inefficiency, as Bressler uses the term, is

ambiguous.

The second possiblity is that the interior of the

efficient envelope maps back to the interior of the

longer-run average cost curve, e.g., point E to point B.

But what is in the interior of a longer-run average cost

curve? The longer-run average cost curve is an envelope

of shorter-rgg average Egg; curves. Consequently, being

off an efficient envelope means being on a different

short-run average cost curve which, by duality, means

making a comparison across different sub-production

functions without considering the economies of shifting

between them; i.e., of making a comparison between firms

which are using different levels of fixed inputs without

due attention to investment and disinvestment theory.
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Consequently, being at point B (off the efficient

envelope) is due to the law of diminishing returns when

certain inputs are fixed at different levels for A and B.

This is a curious treatment of efficiency because the

values of the difference in the amount of fixed inputs are

not taken into account.

If only the variable inputs are taken into considera-

tion, a firm operating on the SRAC at B in Figure 5.1

appears inefficient because it is not operating on its

longer-run average cost curve at A. This is inappro-

priate. The efficient firm would still be experiencing

decreasing costs on its sub-production function at A, and

would continue to expand output thereby reducing average

total cost at least to 8. Furthermore, A is only per-

tinent in the longer-run, and with respect to the longer-

run, A is not efficient, C is. Therefore, A is not an

efficient point on either the SRAC or the LRAC. It is

simply inappropriate to compare A and 8 without con-

sidering the economies of investing and disinvesting in

the inputs which are treated as fixed.

In his conclusion, Bressler aknowledges the aggrega-

tion problem, but without aknowledging any of the critical

problems it raises as to the legitimacy of the frontier

production function.

First, all these methods are subject to

essentially similar problems of aggre-

gation; for example, if we use some

aggregate measure of capital inputs in

any of these approaches, we are ig—

noring the fact that capital is a non-
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homogeneous input and $1.00 of capital

applied marginally in a small or a

large business may represent quite

different real inputs. Stated another

way, it makes a lot of difference if

our marginal capital input is in the

form of power shovels or hand shovels.

[Bressler, 1966, page 136]

In effect Bressler recognizes that aggregation hides

specification error and that when one compares firms, one

frequently compares two different sub-production

functions. Further, he implicitly recognizes that dif—

ferences between firms can be attributed to the influence

of differences in fixed input on output.

In summary, Bressler, too, fails to make valid dis-

tinctions between price efficieny and technical effi-

ciency. The difference which appears to him to exist

between the two kinds of efficiency are due to different

sub-production functions (specification error) or aggrega-

tion error.

5.2.3. NERLOVE:

As was mentioned earlier, Nerlove (1965) discusses

some of the ambiguities in Farrell (1957). Despite recog-

nizing the short comings of Farrell's approach, Nerlove

attempts to retain the technical/price efficiency dichoto-

my and "attempt[s] to generalize Farrell's work."

Nerlove summarizes the conventional assumptions about

production and concludes that there will be no difference

in output for profit maximizing firms using the same

inputs in the same environment (subject to the same
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uncontrollable random inputs of the same magnitudes).

Those differences which do exist must

therefore be due to differences among

firms with respect to their technical

knowledge and fixed factors, their

ability to maximize profits, and their

economic environments. [Nerlove, 1965,

page 87]

Different technical knowledge implies different production

possibilities sets and/or technical change. Different

technical knowledge and different fixed factors suggests

different sub-production functions which alone are not

grounds for evaluating differences in efficiency between

firms using a physical criteria alone. The ability to

maximize profits involves, among other things, finding the

tangency between the budget constraint and an isoquant

which is not determined solely by technology. Different

environments result in different sub-production functions,

as defined in Appendix Two. None of these situations

allows for "technical inefficiency."

Nerlove quickly pinpoints the weakness of Farrell's

argument.

His measure may be divided into two

components. The first, technical effi-

ciency, relates to an improper choice

of production function among all those

actually in use by firms in the indus-

try. The second, price efficiency,

refers to the proper (or improper)

choice of input combinations.

[Nerlove, 1965, page 88]

The choice of "production function," which corresponds to
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the choice of sub—production function of Appendix Two,

means choosing the amount of the fixed inputs. Nerlove

does not define what "improper" means. Had he done so he

would have had to consider the economies of investing in

variable inputs and of disinvesting in what might be fixed

inputs. This may be similiar to Bressler's (1966) refer—

ence to excess capacity. But his comment makes it clear

that differences in "technical" efficiency are due to

being on different sub-production functions, i.e., dif-

ferent levels of fixed input. He does not consider the

question of the opportunity costs associated with choosing

one sub-production function over another, i.e., whether

the total net value of one bundle of resources, both

variable and fixed, is greater than or lesser than another

bundle of resources.

Nerlove elaborates on this same essential issue in

his discussion of Farrell's "quasi-factors" [Farrell,

1957]. Quasi—factors are those inputs which are defined

in Appendix Two as uncontrolled random inputs, the collec-

tion of which Nerlove calls "the environment." Nerlove

implies that firms with different amounts of quasi-factors

will produce different levels of output, which is to be

expected inasmuch as the quasi-factors act as fixed inputs

and influence the onset of diminishing returns. Regarding

firms purely with different amounts of quasi-factors as

the "same" constitutes a specification error -— e.g., dif—

ferent sub-production functions are regarded as the same.
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The last point is clearly crucial to

any definition of relative economic

efficiency; in general, some attempt

must be made to standardize environment

in the construction of the measure, or

else the measure will reflect not mere-

ly differences in efficiency but also

the degree to which the environment of

a particular firm is favorable or un-

favorable. [Nerlove, 1965, page 90]

He continues by pointing out that distinguishing between

price efficiency and technical efficiency is tantamount to

mixing short-run considerations (what he calls price

efficiency). and long-run considerations (what he calls

technical efficiency).

If price efficiency applies only in the short-run,

then it deals with the variable inputs. To make efficien—

cy comparisons across firms one must hold the levels of

fixed input identically constant among firms. Conse-

quently, differences in efficiency will be due only to

differences in the success of each firm in accurately

finding the tangency between its budget contraint and an

isoquant and its high profit points.

If technical efficiency applies only in the long—run,

then clearly it deals with economic adjustment or changing

the amount of fixed input -— with investment and disin-

vestment. This means that changing the amount of fixed

input will change technical efficiency and technical effi—

ciency must result from inappropriate comparisons across

different sub—production functions. This creates two

problems: (1) what are the criteria for making changes in

fixed inputs in order to change what is called technical
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efficiency; and (2), a firm cannot be technically effi-

cient and price efficient simultaneously except at point C

in Figure 5.1. A firm cannot be both shorter-run and

longer-run efficient except at point C since in general

there will be the inherent contradiction noted above that

B is efficient but A is not.

Unfortunately, after clearly identifying the short

comings of the frontier production function approach,

Nerlove equivocates by attempting to "generalize

Farrell's" method. In so doing he implicitly assumes that

a firm with less fixed input than another firm is "tech-

nically" less efficient. In assuming that firms are 2353

to choose whatever level of fixed input they want in order

to minimize long-run average costs Nerlove implicitly

assumes there is no cost in changing sub-production

functions. If this were true, all firms would be opera-

ting at the minimum of their long-run average total cost

curve and there would be no such thing as inefficiency,

"technical" or otherwise.

In Appendix Two it is noted that Edwards (1958)

offers a way out of this dilemma by showing that the

fixity or variability of inputs can be endogenized to the

system for the purpose of finding the most efficient

point, without changing any of the basic conclusions of

the theory presented.
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5.2.4. YOTOPOULOUS:

Yotopoulous (1974) comes closest to dispelling the

technical efficiency fallacy. He repeatedly identifies

the real sources of "technical inefficiency."

The difference in output between the

"average" firm and the extreme positive

outlier is used to measure the techni-

cal inefficiency of the average firm.

Another interpretation, of course,

could have the "average" firm represen-

ting the norm and positive outlier

representing an unusual endowment of

some fixed factor of production, such

as entrepreneurship, or luck. It may

represent the classical source of error

in measurement or of noise in the uni-

verse, and as such it can imply nothing

systematic about efficency. [Yotopou-

lous, 1974, page 264]

This clearly suggests that given a comparison between two

firms, the "technically efficient" firm is so due to some

additional amount of some fixed factor though entrepre-

neurship is a poor candidate for reasons discussed earlier

in considering Farrell's contribution. When firms have

the same amount of fixed input, and face the same prices,

than differences in efficiency are due either to error in

maximizing profits which is simply inefficiency; or to

differences in the uncontrollable random fixed inputs,

which cannot be appropriately called "technical efficien-

CY. u

... the remaining differences in obser-

vable input mixes can be attributed to

two factors. First, they can be traced

to differences in nonmeasured fixed

inputs of production. These can be
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readily captured through the analysis

of variance as used to measure manage-

ment bias. They constitute the com-

ponent of technical efficiency. Se-
 

cond, the results can be attributed to

residual differences that are due to

imperfect equalization of marginal pro-

ducts to opportunity costs. These

constitute the component of price effi-

ciency. [Yotopoulous, 1974, page 269]

Like Nerlove (1965), Yotopoulous failed to exploit his

insights; instead he attributed "technical" efficency to

the "environment" and to uncontrolled random inputs. This

makes differences in "technical" efficiency among firms

due to chance or to being on different sub-production

functions. Yotopoulous constructs, hypothetically, the

set of situations where one might observe differences in

technical efficiency between two firms. He specifically

attributes the differences in "technical" efficiency to

being on different sub-production functions: The differ—

ences in firms which he treats as differences in "tech-

nical" efficiency are due to differences in the amount of

fixed input being used.

In Panel II comparison of technical

efficiency becomes possible since the

isoquants belongs to production

functions that differ only by the con—

stant. This term represents differen-

ces in endowments of fixed factors as

well as the impact of nonmeasurable

inputs, such as entrepreneurship.

Technical efficiency is the shorthand

notation for such differences.

[Yotopoulous, 1974, page 266]

In his discussion of these various cases, only the "effi—

ciency" of the variable inputs is actually compared. He
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does not introduce the economies of investing or disin-

vesting to change sub-production functions. In effect,

technical efficiency becomes a comparison of the produc—

tivities of the variable inputs, ignoring his own critical

point that these productivities will differ with dif—

ferences in the quantites of fixed inputs. This is the

same thing as ignoring the contribution to production and

the costs of the fixed input(s).

Despite repeated statements demonstrating that

technical efficiency cannot exist if one maintains the

usual set of assumptions about production, as stated in

Appendix Two, Yotopoulous retains a belief that something

called "technical efficiency," and its logical corollary

"technical inefficiency," exist. Firms that have the same

production function, but different amounts of fixed input,

are said to have "neutral differences in technical effi-

ciency." That is, firms on different sub-production

functions display no differences in technical efficiency,

which contradicts everything he has previously developed.

He states:

Technical inefficiency, on the other

hand, is related to the fixed resources

of the firm. It is an engineering

datum and as such, at least in the

short run, it is exogeneous and part of

the environment that is taken as given.

[Yotopoulous, 1974, page 271]

What this suggests is that the amount of fixed input used

is either not a choice -- an example of an uncontrollable
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input -- or that the choice is made without any reference

to costs. 7

Like Nerlove (1965), Yotopoulous fails to exploit the

opportunities revealed by his own observations and in-

sights. Consequently, he presents a "computational form

that combines the three elements, technical, price, and

economic efficiency." Prehaps because his "form" excludes

consideration of fixed inputs, and fixed costs, he does

not detect the inconsistency of his "form" with his own

arguments.

5.3. FORMAL MICROECONOMIC THEORY

Unfortunately, some of the leading microeconomic

texts of the last twenty years have institutionalized the

error of distinguishing between "technical" and "price"

efficiency. As in the frontier production function

literature itself, the distinction is postulated with

little, if any, attention to the logic of such a dis—

tinction, or its contradictions with the usual assumptions

made regarding production processes.

5.3.1. HENDERSON AND QUANDT:

In the "Basic Concepts" of production theory, Hender-

son and Quandt (1971) state that the "production function

states the quantity of his [the manager's or entrepre-

neur's] output as a function of the quantities of his

variable inputs." One or more additional inputs are con-

sidered fixed within the production function. Conse-
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quently, for two firms to have the same production

function, they would have to be constrained by the same

amounts of the same fixed inputs. This corresponds to the

firms having the same sub-production function as defined

in Appendix Two.

In defining technology, and explaining how it is

different than a production function, Henderson and

Quandt contradict the laws of thermodynamics. They begin

by stating that,

The entreprenueur's technology is all

the technical information about the

combination of inputs necessary for the

production of his output. it includes

all physical possibilities. [Henderson

and Quandt, 1971, page 54]

It would seem they have defined the production possibili-

ties set. Appendix One and Two make it clear that the

laws of thermodynamics substantiate that the production

function is a surface and not a solid; no isoquant has an

interior due to identical quantities of variable inputs

producing more than one quantity of output given the same

fixed inputs. However, Henderson and Quandt contradict

this in their next sentences.

The technology can state that a single

combination of [V1] and [V2] can be

utilized in a number of different ways

and therefore can yield a number of

different output levels. The produc-

tion function differs from the tech-

nology in that it presupposes technical

efficiency and states the maximum out-

put obtainable from every possible

input combination. The best utiliza—
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tion of any particular input combina-

tion is a technical, not an economic,

problem. The selection of the best

input combination for the production of

a particular output level depends upon

input and output prices and is the

subject of economic analysis. [Hender-

son and Quandt, 1971 page 54]

This suggests that within the production possibilities

set, two identical sets of inputs can produce different

sets of output. The crucial phrase is "utilized in a

number of different ways." The inputs can be used in

different ways only if they are used in different rela—

tionships to each other with respect to their time, form,

or location. In any of these cases the inputs are not

identical. As is pointed out in Appendix Two, the time,

form, and space (location) of an input is held constant in

its definition; two apparently identical inputs that dif-

fer in either time, form, or space are in fact different

inputs. Consequently, "a single combination" of two iden-

tical variable inputs cannot be "utilized in a number of

different ways." The "way" the inputs are "utilized" is

captured within each input vector in the input requirement

set. The choice among the different ways of using inputs

is as economic as any other choice: it depends on whether

or not "it pays" to make the change in time, form, or

location, and is therefore economic and not merely

"technical." If one observes different quantities of

output as a result of using two identical bundles of

variable inputs, then the difference must be due to dif—

ferences in the amount of the fixed input[s] used. Then,
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by Henderson and Quandt's own definition of a production

function, the different outputs are produced by different

production functions, not by a difference in technical

efficiency.

5.3.2. MCFADDEN:

McFadden's (1978) development of microeconomic theory

is ironic because he maintains a distinction between

technical efficiency and price efficiency, and at the same

time develops the duality theory of polar reciprocal sets

that eliminates any possible distinction between the two.

In fact it is done within the same context, distance

functions (see Appendix Two).

His treatment of distance functions creates ambiguity

and misunderstanding as was suggested in Chapter Three.

The similiarity of the unit isoquant of a frontier produc-

tion function, and a distance function is more than coin-

cidence (see Figure 3.1). It was suggested that a fron-

tier production function is mistakenly identified as a

distance function, where "a" is a measure of "technical

efficiency." This suggests that the scaling process im-

plicit in distance functions changes the quantities of v,

but not the original marginal physical products associated

with them, which is not generally observed if there are

fixed inputs.

A positive input bundle (v, z) is

efficient for an output bundle y and

distance function F if F(y,v, z) = 1
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and any distinct postive input bundle

(v', z) with (v', 2) <= (v, 2) has F(y,

v', z) < 1. Alternately, define an

input bundle (v, z) to be efficient for

an input requirement set V(y) if any

distinct input bundle (v', z) with (v',

2) <= (v. 2) has (V'. 2) ¢ V(YI-

[McFadden, 1978, page 30; z's added]

What gets lost in this scaling is the corresponding expec-

ted changes in marginal physical products. However, this

frontier function, or "efficient set" is slightly dif-

ferent than the frontier in Chapter Two. In including a

reference to a graph of an isoquant (see McFadden, 1978,

page 17), McFadden indicates that "inefficient" points are

points 23 the isoquant. Since the distance function moves

all "interior" points to the isoquant by free disposal,

the inefficient points must be points that are not on the

expansion path for a given level of output.

McFadden developes distance functions chiefly as one

way to prove duality between production functions (exclu-

ding Stage III) and cost functions. The one to one cor-

respondence between prices and inputs, between physical

quantites and their values, is summarized in the defini-

tion of the polar reciprocal sets that were discussed in

Chapter Three. Polar reciprocal sets prove there is no

possible distinction between technical and price efficien-

cy.

5.4. OTHER LITERATURE

The foregoing has dwelt on the literature important

in establishing the erroneous theory of frontier produc-
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tion functions. There is a growing volume of other lit-

erature that may be grouped into three categories: (1)

methods for estimating frontier production functions, (2)

applications of frontier production functions, and (3)

miscellaneous or related concepts. This other literature

will be dealt with only briefly since it does not focus on

the development of the theory of frontier production

functions per se, but rather accepts the premise that

frontier production functions exist.

The first group concerns itself with how one might

estimate frontier production functions, or measure tech-

nical and price efficiency between firms. This literature

would be of more value if it focused instead on issues of

specification error or aggregation error which together

constitute the discrepanies between firms that are mis-

takenly attributed to differences in technical efficiency.

The contributions of Boles (1966, undated) within the con-

text of linear programming, or activity analysis, has been

alluded to above. Timmer (1971) attempted to measure

"technical efficiency" using a specific functional form

and a mathematical programming algorithm. It marks one of

the first attempts to measure "technical efficiency" para-

metrically. The more recent literature attempts to de-

velop a method of estimating frontier production functions

parametrically using an econometric approach [Forsund,

Lovell, and Schmidt, 1979, Forsund and Hjmalmarsson, 1974,

Forsund and Hjmalmarsson, 1979, Schmidt and Lovell, 1977,
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Schmidt and Lovell, 1978]. The focus of this literature

is on the specification of the error term, which has

either a one sided distribution (all the errors are of one

sign), or is divided into two components, one representing

the usual error term while the other is one sided repre-

senting differences due to "technical inefficiency."

Despite the attention to the development of the

theory of, and methods for estimating, frontier production

functions, there have been few attempts to apply frontier

production functions [Bravo-Ureta, 1983, Hall and LeVeen,

1978, Lesser and Greene, 1980, Seitz, 1966]. Most appli-

cations have used a non—parametric method, while applica-

tions using a parametric method have served chiefly as

examples of a new or improved method.

The last group contains literature that does not

always refer explicitly to frontier production functions

but clearly offer theories of management or decision-

making that are closely akin to the concept of a frontier

production function [Charnes, Cooper, and Rhodes, 1978,

Charnes, Cooper, and Rhodes, 1981]. The best known, and

prehaps best example of this literature, is Leibenstein's

theory of "X-Efficiency" [ Leibenstein, 1966]. The theory

of X-Efficiency suggests that different firms using the

same inputs to produce the same output will have different

degrees of efficiency depending on how the production

process is organized in practice. While the concept may

be useful to a decision-maker in a very applied sense, in

the strictest sense, it violates the definition of homo-
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geneous inputs given in Appendix Two as the inputs are not

time, form, and location specific and ignores the costs

and returns involved in investing and disinvesting.

5.5. SUMMARY

Perhaps the oddest aspect of the frontier production

literature is that it appears to be a theory developed as

a consequence of a technique (linear programming), rather

than the other way around. In the earliest literature,

dealing with activity analysis, what is called technical

efficiency is assumed or postulated without a clear des—

cription of what technical efficiency means, or how it

differs from the traditional concept of economic efficien—

cy. Since there is no explicit discussion that would

suggest that an isoquant can be represented as a plane,

one would expect more suspicion of an "unit isoquant"

which creates a plane by dealing in average production,

rather than the more traditional focus of 3933; produc-

tion.

Implicit aggregation and specification error is evi-

dent from a careful reading of Farrell [Farrell, 1957,

Farrell and Fieldhouse, 1962], and several successors,

including Bressler (1966), Nerlove (1965), and Yotopoulos

(1974). Despite this, each author eventually (uncritical—

ly) accepts the existence of a frontier production

function without attempting to specify it in a proper

manner. Thus, the concepts of frontier production
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functions have been uncritically incorporated into state—

ments of microeconomic theory [Henderson and Quandt, 1971,

Malinvaud, 1972, McFadden, 1978, Quirk and Saposnick,

1968, Varian, 1978]. Ironically, McFadden's effort to

prove duality mathematically provides the theoretical

refutation of the existence of frontier production

functions by describing the characteristics of distance

functions and polar reciprocal sets [McFadden, 1978].

None—the-less, he simultaneously maintains the logically

inconsistent notion of "technical efficiency." This in-

consistency appears to be the result of his discounting

the importance of those aspects of traditional theory that

are commonly considered to be 'economically irrelevant;'

i.e., Stages III, because normally all the points in

Stages III are inefficient [McFadden, 1978]. Unfortun-

ately, this oversight by McFadden (1978) creates ambiguity

in those aspects of the theory that he preserves.

Finally, there is the other literature described in

5.4 above, which adds little to the debate of whether or

not frontier production functions exist, but if properly

directed, might provide methods for dealing with the prob-

lems of specification and aggregation error and lead to

incorporation of investment/disinvestment theory.



CHAPTER SIX

CONCLUSION

Frontier production functions are supposed to be

different from, and better than, traditional production

functions. They are supposed to represent the "best per-

formance" obtainable by a firm given some set of endow-

ments and some given technology. They do this by distin—

guishing between the "technical" and "price" efficiency of

the 'best performer' and the other firms included in the

comparison. This dissertation maintains that rather than

measuring "best performance," frontier production

functions measure specification and/or aggregation error.

This is because the theoretical basis upon which frontier

production functions identify "best performance" is in-

valid.

6.1. VARIATIONS IN DATA IN APPLIED WORK

In any applied work there will be variation in the

data one collects. The real world does not conform to

theoretical conditions of homogeneity, perfectly cOmpeti-

tive markets, etc. This lack of conformity does not mean

that microeconomic theory is failing to explain reality.

Microeconomic theory, like all theory, is a guide to

analysis after one has decided what is important and what
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is unimportant to the issue being investigated. One must

take a preliminary step of using one's judgement as to

what constitutes "sameness" and what constitutes "close

enough" when specifying a sub-production function and

aggregating data across observations for the purposes of

the investigation. Once the degree of "sameness" and

"closeness" has been determined, the remaining variation

in the data is implicitly "unimportant" and irrelevant to

the inferences to be drawn from the analysis. The statis-

tical properties assumed to be exhibited by the data as

specified and aggregated serves as a means of filtering

out the remaining variation. The remaining "noise" is

assume to be captured in an "error term" and estimation is

done at the mean, or average value, of the data.

The variation that remains means that if one plots

the data there is a scattering of points, a distribution

of the observations. The question examined in this dis-

seration is essentially which observations in this distri-

bution should serve as the bench mark from which compari-

sons of the observations might be made. As such, it

examines the nature of the remaining variation; it ex-

plains what causes the variation one observes between

observations after one has specified a common functional

representation for the technical relationship among the

specified and aggregated variables of production. If one

chooses the traditional bench mark of the data's mean,

then one is implicitly assuming that the remaining varia-

tion is due to random unexplainable and inconsequential
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phenomena, that the variation that remains is simply due

to the "unimportance" of measuring and explaining the

remaining imperfections of the real world.

If one chooses the theory of frontier production

functions, then one is assuming a bench mark of one

extreme of the observations, which is an implicit as-

sumption that the remaining variation is systematic and

due to consequential and measureable causes, "technical

efficiency" and "price efficiency." Therefore, the "less

efficient" observations all lie within the interiors of

the isoquants of the extreme observations.

6.2. ISOQUANTS DO NOT HAVE INTERIORS

Chapter Two, Three, Four, and Five discuss the fron-

tier production function and traditional theory explana-

tion of these interiors to isoquants.

Chapter Two is a summary of the characteristics of

frontier production functions that make them different

from traditional production functions. Frontier produc-

tion functions originated from the concept of the "unit

isoquant." Certainly plotting real production data, with

its inherent "remaining" variation, on a per unit of input

to per unit of output basis will reveal a scattering of

the observations, as was suggested above. Two cases for

inferring that this scatter of observations represent

solid production sets was discussed. It was shown that

both cases of these frontier production functions were a



12S

violation of traditional microeconomic theory due to

specification and/or aggregation error in identifying the

frontier production function.

Chapter Three explored the critical case of whether

or not frontier production functions are accurate repre-

sentations of distance functions. Superficially, they

appear to be the same. They have the same basic as-

sumptions of concavity and monotonicity, and they both

have 'interiors.‘ The issue is whether or not the unit

isoquant is the same as an input requirement set. Using

the principles of the duality theory that distance

functions serve to prove [McFadden, 1978] and the free

disposal that is simultaneously assumed for both produc-

tion and cost space, it was proved by contradiction that

frontier production functions are a violation of the

theory of distance functions. This was accomplished by a

careful accounting of what is in the 'interior' of a dis-

tance function (higher isoquants) compared to the interior

points conceived to be within the surface of a frontier

production function.

Chapter Four presented a new case of an unit iso-

quant. It explained what the unit isoquant demonstrates

in reality. It returned to the original formulation of

the frontier production function and correctly inteprets

the fact that observations on production on a per unit of

input to per unit of output basis provides an unit iso-

quant with an 'interior.‘ It pointed out that "technical

efficiency" would identify the point of maximum average
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physical output, the boundary between Stages I and II on a

production function with both stages in the production of

firms in long-run perfectly competitive equilibrium. As

such, "technical efficiency" is identical to traditional

economic efficiency.

Chapter Five reviewed the salient frontier production

function theory revealing that the proponents of this new

theory repeatedly and consistently reveal the apparent

interior points of frontier production functions to be due

to specification and/or aggregation error yet do not

explore the theoretical consequences of such revelations.

6.3. THE INTERIORS IN FRONTIER PRODUCTION FUNCTION THEORY

AND ”TECHNICAL EFFICIENCY"

Frontier production functions represent not just a

change in the "bench mark" observations in applied work

from the mean points of the data to the extreme points of

the data. Frontier production function theory is ques-

tionable as the apparent 'interior' points result from

specification and/or aggregation errors.

The traditional view of the world is that identical

circumstances result in identical outcomes (see Appendices

One and Two). It is this stability of the real world that

makes events predictable. By contrast, the fundamental

postulate of frontier production function theory is that

identical circumstances may result in different outcomes

and that the differences are not attributable to chance

variations in uncontrolled variables. This is what
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explains an interior to frontier production functions that

is non—existent in physical reality.

Frontier production function theory suggests that two

production events can differ in their degree of "technical

efficiency" and that a "technically less efficient" pro-

ducer can become more "techncially efficient." The new

theory does not explain how this can be accomplished. If

one is to improve one's "technical efficiency," then one

presumably must "improve" or change one's initial circum-

stance in some way. But frontier production functions

assume there is no difference in the initial circumstances

of the "technically efficient" and "technically ineffi-

cient" producers; they have the same inputs; the same

output, and the same technology. If the change involves

changing the time, form, or location of some aspect of

production (other than the differences in time, form, or

location that are assumed to be "unimportant"), then a

specification and/or aggregation error has been committed

in identifying the differences in "technical efficiency."

If one is to change one's "technique" then one must change

the sub—production function one is using in production,

and "techncial efficiency" becomes an incomplete compari-

son across sub-productions.

The error involved in conceiving that frontier pro-

duction functions have interiors which can be technically

corrected is that of ignoring the contribution and oppor—

tunity cost of changing sub-production functions by inves—
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ting or disinvesting in "fixed" inputs.

6.4. INTERIORS TO FRONTIER PRODUCTION FUNCTIONS

WOULD MEAN ”TE" t "PE"

If gig points of equi-production are on an isoquant,

then a producer cannot be "price efficient" without simul—

taneously being "technically efficient." Being "price

efficient" means being on the expansion path of produc-

tion. Moving along the expansion path of a full produc-

tion function means changing sub-produciton functions by

investing or disinvesting in fixed inputs. This means

that the fixed inputs are temporarily variable inputs. In

order to completely account for "price efficiency" one

must account for the prices (opportunity costs) of the

fixed inputs (see Edwards, 1958).

Can a firm be "technically efficient," but not "price

efficient" by being on the same isoquant as the "price

efficient" firm, but off the expansion path? If the

prices paid for all inputs are different for the two

firms, then in a world in which duality is assumed to

exist, both firms will be "price efficient" if they are

both "technically efficient," as was demonstrated in Chap-

ter Three. If prices are the same for both firms then the

firm that is not "price efficient" is not "technically

efficient," since it can achieve more output with its

resources by selling and/or buying its inputs without

changing its total investment or expenditures. That is.

the "price inefficient" firm will pay a greater cost for
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its bundle of inputs, so that its bundle of inputs has a

greater value. That is, the firm implicitly has a greater

budget constraint. By trading some of its inputs for more

of the other inputs in the market place it can "cost-

lessly" rearrange its bundle to be a "price efficient"

bundle still of greater value than the bundle of the

originally "price efficient" firm. Thus, the adjusting

firm will be implicitly able to produce a greater output,

since it will have more of all inputs due to its larger

constraint.

The opportunity cost principle means that physical

quantities of commodities are inseparable from their value

(prices). The measure of thermal efficiency (an example

of "technical" efficiency in engineering) is defined as

useful output to costly input. In this treatment both

inputs and outputs are measured in a common physical

denominator. When this ratio is unity, efficieny is 100

percent. Similarly, economic efficiency is marginal reve-

nue product to marginal factor cost. When this ratio

equals unity for all inputs, including fixgg inputs, effi-

ciency is 100 percent. In this definition both commdities

are measured in a common denominator of prices. When one

finds the profit maximizing point by equating ratios of

marginal physical products to the corresponding price

ratios, one is implicitly comparing useful output to

costly input where a common denominator measurment that is

either physical or value is lacking.
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6.5. THERE IS ONLY ONE TYPE OF EFFICIENCY

Production efficiency is measurable only within some

clearly defined set of circumstances or constraints. If

the preconditions for comparing the efficiency of two or

more firms are identified, the decisions made as to what

constitues "sameness" and "close enough," then efficiency

can be measured. This efficiency can not be separated

into "technical efficiency" and "price efficiency" since

the two are identically equal. If they were not equal, as

suggested by frontier production function theory, then

some aspect of the established preconditions has been

violated, either in theory, or in practice. Efficiency is

efficiency which is a maximizing of profit, when inputs of

given value are used to produce the greatest value.

6.6. FINAL CONSIDERATIONS

There are three issues that might deserve further

attention.

(1) For expediency, the economics of making input

fixity and variability endogeous to the input requirement

set has been avoided in this work. That one can endo-

genize decisions to invest and disinvest fixed inputs has

been established by Edwards (1958). That so doing does

not alter the conclusions about efficiency has been postu-

lated, rather than proved. The fixed inputs were not made

endogeneous lest they become confused with variable

inputs. Even when they are endogeneous, they behave as
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fixed inputs, not as variable inputs.

(2) The methods for separately measuring "technical

efficiency" and "price efficiency" on frontier production

functions clearly do not do so. What is actually measured

is specification error and/or aggregation error when pro-

duction function analysts measure technical inefficieny.

Both of these errors create significant problems in

applied work since both bias estimates of a system's

parameters. Proper identification and measurement of

these errors might allow one to aggregate or disaggregate,

specify and respecify, production relationships in applied

work in order to minimize, or at least explicitly account

for, the degree of specification or aggregation error

present in the analysis.

(3) Finally, more attention should be paid to whether

or not the proof of duality theory requires free dispo-

sal, input requirement sets, and distance functions when

nonstochastic interior points are known to be absent for a

production function. These three concepts assist proving

duality theory by excluding Stage III of the production

function and by eliminating possible 'interior' points.

Aside from this they add little if any insight into pro-

duction theory. They are often misunderstood, and conse-

quently, researchers attempt to introduce the concepts

into the analysis of applied problems resulting in ques-

tionable inferences, and misleading prescriptions.

Free disposal, which has no counterpart in reality,

is especially misleading. Without free disposal there can
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be no input requirement sets and distance functions. Free

disposal is accomplished mechanically by introducing a

scalar into the analysis. The scalar, is the factor by

which all additional inputs have to be reduced to sink to

the bounding lowest isoquant, within a given input re-

quirement set, the 'scale' by which 21; the output and

input levels must be scaled back to shrink production to

the level of the lowest isoquant. It is a measure of the

"distance" between the two isoquants. Thus, by using free

disposal, within the context of a distance function, one

can make any two sub-production functions identical simply

by reducing one to the other by scalar multiplication.

The only means for determining the scalar is as a function

of what needs to be disposed in order to eliminate any

difference between two sub-production functions, or two

isoquants. The scalar has no counterpart in physical

reality, and suggests consequences that obscure the true

differences between two sub-production functions or iso—

quants, and what accounts for those differences.
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APPENDIX ONE

EFFICIENCY AND THE LAWS OF THERMODYNAMICS

Economic theory is largely a theory about the be-

havior of people. It focuses on how people make choices,

and offers guidance in selecting the best among competing

choices. Each choice represents an opportunity; an oppor-

tunity to experience the utility embodied in that choice.

To say that something has utility means that it has value

for the consumer. That is, if a commodity can provide

utility it has value. In economics the value of an oppor-

tunity (in some sense a measure of utility) is captured by

the concept of opportunity cost. In physics the concept

of utility is captured in the concept of work. Because

work can provide utility it has value.

In production economics one speaks of transforming

"inputs" into "outputs." Production is a cycle, wherein

energy is transformed. It is assumed that one is able to

derive utility from the output. Since the transformation

is usually physical in nature, and often involves changes

in the gpgpg of the production system, technical efficien-

cy is relevant. Thermal efficiency, hereafter treated as

synonomous with technical efficiency, is one of several

types of technical efficiency. By examining what thermal

efficiency is, one can appreciate what technical efficien-
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cy means in general.

This chapter will first define the terms and rela-

tionships of thermodynamics that are pertinent to economic

production theory as it relates to efficiency. The second

section presents the fundamental definitions. The third

section will focus particularly on the first and second

laws of thermodynamics and demonstrate that the "technical

efficiency" of frontier production functions cannot exist.

The fourth section will define and explain technical effi-

ciency, or thermal efficiency, as it is used in thermo-

dynamics. It will be shown that technical efficiency in

thermodynamics is the same as economic efficiency. The

last section will explain specifically how and why TE and

PE are inconsistent with thermodynamic theory.

A1.1. DEFINITIONS FROM THERMODYNAMICS

The laws of thermodynamics are observations on the

physical relationships in the transformation of energy

from heat to work or vice versa. Energy is the ability to

do work. There are two types of energy; energy that is

stored and energy that is in transition. Work and heat

are energy in transition.

The laws of thermodynamics explain the work (heat)

that can be obtained from resources, and some of the

restraints for doing it. The first law is the well known

principle of the conservation of energy. The second law

deals with the the amount of thermal energy that will

become "useful" work by means of a given cycle. It leads
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to a definition of thermal efficiency which is a type of

technical efficiency.

A1.1.1. SYSTEMS:

In thermodynamics, one investigates the nature and

behavior of physical systems. Systems interact with each

other, or their environment, producing work or heat in the

process; energy is transformed. In order to study the

interaction between two systems, they must be insulated

from the environment so that no thermal energy escapes

into the environment and is thereby unaccounted for in the

interaction between the two systems. This is called an

adiabatic system. In order to simplify the investigation

of the principles of thermodynamics, it will be assumed

that one has a system and its environment (which is in

effect another system) and that together they represent an

adiabatic system.

A system is either a particular collection of

matter, a gloseg:system, or a particular region of space,

an open system. Briefly, in a closed system no matter can

cross the system boundary, while in open system matter can

cross the boundary. Interactions will occur when the

gpppg of the system is out of equilibrium with the state

of the environment, and the system is not insulated from

the environment; when there is no barrier to the exchange

of energy between the system and the environment. When

there is an exchange of energy between a system and its
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environment, the energy is transformed such that the sys-

tem may change state, and/or some of the energy is

transformed into heat and/or work. This appendix will be

confined to exploring the characteristics of closed sys-

tems for the sake of brevity. All of the principles

governing the characteristics and behavior of closed sys-

tems can be easily assigned to open systems.

A1.1.1.1. STATES:

The state of a system is evaluated by its eguation-

of state. In a very simple case, for an ideal gas, this

relationship might take the form,

(A1.1) pv = RT

where

p = PRESSURE

v = VOLUME

:
0 II CONSTANT; USUALLY A CONSTANT ASSO-

CIATED WITH A PARTICULAR GAS

T = ABSOLUTE TEMPERATURE

When a system exchanges energy with its environment, it

often results in a change in the values of the variables

in the equation of state. For example, for a change in

state of a system (A1.1), P, v, or T would change in

value.
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A1.1.1.2. PROCESS:

The path which describes the exchange of energy

between a system and its environment is called a process.

A process is any transformation of

a system from one equilibrium state to

another. A complete description of a

process typically involves specifica-

tion of the initial and final equilib-

rium states, the path (if identifi-

able), and the interactions which take

place across the boundaries of the

system during the process. Path in

thermodynamics refers to the specifica—

tion of a series of states through

which the sytem passes. [Wark, 1983,

page 10]

In thermodynamics, a process transforms a system from one

state to another state. A process is a path function

since it encompasses the system's changing states from its

inital to its final state. The values of the initial and

final states of the system in thermodynamics may, or may

not, be equal. That is, the system may return to its

initial state. If the initial and final state of the

system are equal then the inital state does not equal the

final state for the system's environment. That is, either

the state of the system changes, or the state of the

environment changes, or both. The change occurs because

energy has been exchanged between the two. It is the work

and the final states of both the system and its environ-

ment that correspond to output in economics.



138

A1.1.1.3. PROPERTY:

A property of a system is a characteristic, or para-

meter, of the system. It is a ppint fppctigp, since it is

the value of a property at a point. Examples of proper—

ties are pressure, volume, temperature, energy, mass, and

entropy, but not heat nor work (the difference between

temperature and heat is explained below). In Figure A1.1,

a system may change state, from $1 to 82, by either Pro-

cess A or Process B. In either case, the properties of Si

and 82 respectively are the same; they are not tuniquely

determined by A nor B. The properties p,v, and T, become

the means whereby the change in the state of the system

can be measured.

When the properties of the system are different than

those of its environment, i.e. it is out of equilibrium

with its environment, the system can

...interact with the environment and

produce work until the system reaches a

state where such potential differences

do not exist. For any system, this

state is called the dead state because

the system can do nothing more. [Dixon,

1975, page 231]

Whenever a system is out of equilibrium with its environ—

ment, the two states differ, there is the potential for an

exchange or transfer of energy between the two which will

result in work becoming heat or vice] versa, until the

system reaches its dead state.
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A1.1.1.4._§OMOGENEITY:

Properties of a system are classified as either ex—

tensive or intensive. The distinction is important since

it has a bearing on the definition of homogeneity in

economics. The distinction is as follows:

Imagine a whole system divided into a

number of parts. If the value of a

property for the whole system is equal

to the sum of its values for the

various parts of the system, then it is

called extensive. ...intensive proper-

ties have meaning at a point or local-

ly. That is, we can talk about the

local pressure or temperature but not

about the local mass or volume because

the latter have no meaning. [Dixon,

1975, page 59-60]

Examples of extensive properties are mass (M) and volume

(V), while examples of intensive properties are pressure

(p) and temperature (T). Extensive properties may be

effectively converted into intensive properties by divi—

ding them by mass, which then equals an

average specific property, and finding the limiting value

of this quotient at a point, which is called a local

specific property. For example, the local specific volume

of a system is:

(A1.2) v :- lim (A V/AM)

£5V-+ 0

where

v = LOCAL SPECIFIC VOLUME OF THE SYSTEM

V 2 VOLUME OF THE SYSTEM

M = MASS OF THE SYSTEM
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Extensive properties are such that they cannot vary within

the system: they are the same everywhere. If the same is

true for the local specific properties, the system is said

to have uniform properties throughout. A system whose

properties are uniform throughout is homogeneous. It will

be assumed throughout that all systems are homogeneous.

This is the same as assuming that all inputs, both vari—

able and fixed, into a production system are homogeneous.

A1.;$l.5. REVERSIBILITY:

Thus far there has been no discussion of the direc—

tion of change when a system changes state. If one starts

with state S1 in Figure A1.1, and arrives at state 82 by

means of process A, and then 'backs up' from S2 to Si by

means of reversing process A, then the process is called

reversible.

A process executed by a system is

called reversible if the system 33g ipg

envirgpment can be restored to their

initial states and leave no other ef—

fects anywhere. Another term for re-

versible might be completely restor-

able. The definition requires that

work and heat exchanged between a sys-

tem and its environment in a reversible

process can be restored to each in

exactly the same form so that both [the

system and its environment] are re-

turned completely to their their ini-

tial states. [Dixon, 1975, page 174]

A process is reversible if its effects on a system and the

system's environment can be completely returned without
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52

Process A 2

2 Process B

51

FIGURE A1.1

THE CHANGE IN THE STATE OF A SYSTEM (81 TO 82)

BY MEANS OF EITHER PROCESS A OR B
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additional inputs. In reality, no 32;; process is rever—

sible, as a consequence of the second law. As an example,

consider a block sliding down an incline. As it does, it

produces heat, i.e., the 'environment becomes hotter.' If

one were then to slide the block back up the incline, the

environment does not become cooler; that is, the process

is not reversible.

A1L131.6. CYCLE:

A gyglg is a sequence of processes operating on a

system such that the final state is identical to the

initial state. Figure A1.2 is a cycle, since it takes the

system from $1 to 82 where 51 = $2. Recall that although

there is no change in the initial and final states of the

system, there is necessarily a change in the state of its

environment, since real cycles are not reversible. As

will be seen later, the development of the second law

requires that one can "imagine" a reversible cycle. In

particular, the definitions of technical efficiency

require using the hypothetical reversiblity of a cycle in

order to measure thermal, or technical, efficiency.

A1.1.2. WORK AND HEAT:

A1.1.2.1. WORK:

As was noted above, work and heat are not properties

of a system. Work is defined at the boundary of the

system. Work is a form of energy, commonly measured as
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51, $2

Cycle

 

FIGURE A1.2

THE CHANGE IN THE STATE OF A SYSTEM (51 TO 82)

BY MEANS OF A CYCLE
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force times distance:

(A1.3) w =fr dx

where

8 II WORK IN FOOT POUNDS

m I
I

FORCE IN POUNDS

X = DISTANCE IN FEET

In order that the relationship between a system, its

environment, and work are explicitly clear, the following

definition of work will be used.

Work is done by a system (on another)

when the sole effect external to the

system could be the rise of a weight.

The amount of work done is the product

of the weight (force) times the

distance lifted. By convention, work

done py a system (which could lift

weights in the environment) is taken as

positive for that system; work done pp

a system (the environment lifts weights

within the system boundaries) is taken

as negative. [Dixon, 1975, page 106]

Clearly, there are a number of different types of systems

that can do work. The type of work as measured by (A1.3)

is linear mechanical work. Table A1.1 is a partial list

of other types of systems and the types of work they do

and how that work is measured. Notice that none of the

WORK equations are expressed as inequalities; they are all

equalities. That is, a given system cannot be "technical-

1y inefficient," as the terms are used in the frontier

production literature, in performing work given the same

processes. The amount of work produced by the system is
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TABLE A1.1

SUMMARY OF VARIOUS WORK EQUATIONS

SYSTEM FORCE DISPLACEMENT WORK

LINEAR MECHANICAL FORCE(F) DISTANCEIdX) dW = F dX

ROTATIONAL

MECHANICAL TORQUE(T) ANGLE(d«) dW = T’du

ELECTRICAL CHARGE VOLTAGE(e) COULOMBS(dQ) dW = —e dQ

ELECTRICAL FIELD VOLT/METER(E) POWER(dP) dW = -VE dP

MAGNETIC FIELD AMPERE/METER(H) WEBER/METER2(dM) dW -VH dM

SOURCE: DIXON

exactly determinant for a given cycle, and does not vary.

One system can be technically inefficient in performing

work as compared to a different system given the same

cycle, or one cycle can be technically inefficient in

performing work as compared to a different cycle given the

same system. Given two identical systems, and identical

cycles, the same force and the same displacement (the same

inputsand the same technology), one will not get different

amounts of work from each; the energy of one system will

not be less efficient than the other.

A1.1.2.2. HEAT:

Heat is another form of energy. It may provide
 

utility and be obtained by transforming work energy. Like

work, heat is measured at the boundary of the system and

its environment and therefore is not a property of the
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system or its environment. It is thermal energy in tran-

sition due to a temperature difference. Typically, heat

is defined operationally in Btu's; the energy required to

raise the temperature of one pound of water at atmospheric

pressure from 59.5 to 60.5 degrees Fahrenheit. It should

be noted that the temperature of a system may change

without heat being transferred either to or from the

system, e.g., by a change in pressure. One should also be

careful to distinguish between a difference in temperature

between a system and its environment, and a change in

temperature within a system. These two points emphasize

that heat is an interaction between a system and its

environment and not a property of either.

A1.1.3. SUMMARY OF DEFINITIONS:

Energy in most forms is a property of a system, while

work and heat are not. Energy is exchanged between a

system and its environment in the form of work or heat.

Thus, work and heat are defined at the boundary of the

system. A process is the means by which the transfer of

energy is effected between a system and its environment.

Work may be transformed into heat, and vice versa, by a

process. Except in the case of a cycle, the results of a

process acting on a system are changes in the state of the

system. Since real processes are not reversible there is

either a change in the state of the system or in the state

of its environment, or both, in all cases of a real pro-
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cess acting on system. In production economics, the

inital states of the system and the environment corres—

ponds to the inputs, the production function corresponds

to cycle, and work or heat and the change in the state of

either the system and/or its environment corresponds to

output.

A1.2. THE LAWS OF THERMODYNAMICS

A1.2.1. THE FIRST LAW:

The first law defines the well known principle that

in the absence of nuclear changes or approaching the

velocity of light, energy is neither created nor

destroyed. Energy can be transferred or exchanged between

a system and its environment in the form of work or heat

by means of a cycle. Within the cycle, work may be

transformed into heat or vice versa. But, neither within

the cycle, nor as a result of the cycle, is there a change

in the sum of the energy of the system and its environ—

ment. Therefore, the first law can be stated as:

(A1.4) f(dQ - dW) = 0

where

:6 INTEGRATION OVER A CYCLE

HEAT IN JOULES

W 8 WORK IN JOULES

This suggests that input = output. Given two identical

cycles acting on two identical systems, there can be no
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differences between them: there is no difference in

technical efficiency between them. Given the same inputs,

gpg pip; ggmg production function pp; always gets the same

output.

If work is energy that provides utility, i.e., work

has value, then technical (physical) efficiency must

implicitly be a comparison of values. Therefore, there is

no basis for a difference between technical (physical)

efficiency and price (value) efficiency.

A1.2.2. THE SECOND LAW:

The second law accounts for the energy that is "lost"

when energy is exchanged between a system and its environ—

ment. Due to the first law, the energy is not truly lost;

rather it is degraded in quality so that it is no longer

available to become work, and therefore loses its value.

This is called degradation of energy. By observation of

the real world:

(A1.5) fid'Q/T < 0

where

Q = HEAT FLOW IN THE SYSTEM OR ENVIRON-

MENT

T = ABSOLUTE TEMPERATURE AT WHICH THE HEAT

FLOWS

This is the Clausius Ineguality. If a cycle were rever—

sible, then in conformance with the above,

IA1.6) fd'Q/T = o
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where

Q = HEAT FLOW IN THE SYSTEM

T = ABSOLUTE TEMPERATURE AT WHICH THE HEAT

FLOWS

The Clausius Inequality is statement of the fact that in

reality no process is reversible so that,

(A1.7) éd'Q/T <= 0

where

Q = HEAT IN THE SYSTEM

T = ABSOLUTE TEMPERATURE AT WHICH THE HEAT

FLOWS

and

THE EQUALITY HOLDS FOR HYPOTHETICALLY REVER-

SIBLE CYCLES

THE INEQUALITY HOLDS FOR REAL CYCLES

Equation (A1.7) is a statement of the second law. It

reveals the existence of another property of systems known

as entropy (8). Since entropy is a property it is not a

function of the process, but a function of the end states

of the system. It is defined as:

(A1.8) ds = d'Q/T

where

ENTROPY IN THE SYSTEM OR ENVIRONMENT

HEAT FLOW IN THE SYSTEM OR ENVIRON-

MENT

D

II

V
-
J

II ABSOLUTE TEMPERATURE AT WHICH THE HEAT

FLOWS

when the process is reversible. While 8 is always a
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property, in general d'Q/T is pp; a property, because of

(A1.5), the Clausius Inequality: it is a property only in

the limiting cases of a reversible process. One must

imagine a reversible process in order to measure the

change of entropy in the system and/or environment. Since

entropy is a property, it may increase or decrease within

a system, or within its environment. But since in reality

any process goes only in one direction, due to the

Clausius Inequality, the change in the total entropy of a

system and its environment must be positive. Therefore,

in general, for real systems:

(Al.9) ds > d'Q/T

OI‘

(A1.10) ds > O

in an adiabatic real process since dQ = 0, due to the

definition of adiabatic, and T > 0.

A1.2.3. SUMMARY OF FIRST AND SECOND LAWS:

The first law means that the amount of total energy

in a system and its environment does not change. The

second law means that when a real process acts on a system

the total entropy in the system and its environment in-

creases; that there is some amount of energy that becomes

"bound up" as the increase in entropy, and is unavailable

to be transformed into work. If one can imagine a rever-

sible cycle and one can imagine a zero heat flow, then one
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can imagine a situation where there is no change in en-

tropy for a closed system. In such a situation, all the

energy exchanged between the system and its environment

would be in the form of work. If there is either heat

flow or a reversible cycle, then one can measure thermal

(technical) efficiency.

Technical efficiency can be defined when one has a

reversible cycle using heat as an input and work as an

output. The measure of work output to heat input is the

measure of technical, or thermal, efficiency.

A1.3. TECHNICAL EFFICIENCY

In thermodynamics the definition of efficiency is a

relationship between values; it is a ratio of value.

Efficiency here means the useful output

divided by the the costly input, both

expressed in energy units. [Dixon,

1975, page 15]

In this definition one can substitute "work" for "useful

output." 1p; definition glppg eliminates gpy possible

distinction between "technigpl efficiency" gpg "price

efficiency" pg gpgy Egg pggg ip pp; frontier production

function literature. Since technical efficiency in ther-

modynamics deals with work energy it implicitly deals with

changes in value since work by definition has value: i.e.

provides utility. "Costly" is used in the opportunity

cost sense, since the input has an opportunity cost.

Consequently, in thermodynamics there is no difference
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between technical efficiency and price efficiency; they

are identical.

Recognizing that the second law is a reality, that

some energy is "lost" when a system interacts with its

environment, technical efficiency becomes a function of

the work, which is a function of the cycle in the exchange

of energy. In order to be perfectly clear that thermal

efficiency is a function of the cycle, one must avoid

misunderstanding another concept in thermodynamics, that

of potential work, sometimes called optimum work, maximum

work, or reversible work. Potential work is a function of

the properties of the system and therefore is not a

function of a process, nor heat nor work.

Potential work is a measure of energy availability

within a specific system. That is, it is a function of

the magnitudes of the properties which determine the

states of the system, measured between two different

states.

The maximum possible work output

that can be produced by a system from a

given state to its dead state is what

is called, appropriately enough, the

work potential. The term availability

is also used.

It should be noted by students

that, for a given environment, work

potential is a property of systems.

...it should be clear at this point

that the maximum work that can be pro-

duced by a system is not a function of

the process. The actual work, of

course, will be a strong function of

the process but the maximum is the

maximum regardless of how it is ob-
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tained. Hence work potential is a

property. [Dixon, 1975, page 232]

Two things should be evident from this definition of

work potential. The first is, that two systems with the

same properties have the same work potential. Secondly,

given that the second law and entropy account for a "loss"

of some of the energy in a system when it changes state,

the measure of potential work is less than the pppgl

energy in the system.

The definition of potential work suggests that one

might measure efficiency by taking the ratio of work

potential to the amount of work one actually observes

given the operation of one process. This might appear to

be a means of evaluating the "technical efficiency" of a

system. Unfortunately, in the case of a cycle the measure

of work potential equals zero, since in a cycle the system

returns to its initial state. This eliminates any dif-

ferences between the initial and final properties of the

system with which to calculate a measure of work poten-

tial. Therefore, efficiency is a measure of 211 the

processes which use heat input and produce work output

during the cycle.

During a cycle some processes will have positive net

work in and some will have negative net work in. If the

cycle produces positive net work, it will use positive net

heat in a greater amount due to the second law,. even if

the cycle is reversible. Therefore, the measure of effi-

ciency will be less than 100%. Nevertheless, in the case
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of a reversible cycle one will have a measure of the

maximum efficiency possible. The technical efficiency of

a non-reversible (real) cycle will be less, but always the

same given the same inputs and the same processes, ceteris

paribus.

A1.4. WHAT IS WRONG WITH FRONTIER PRODUCTION FUNCTIONS

FROM THE PERSPECTIVE OF THERMODYNAMICS:

Within the context of thermodynamics thermal effi-

ciency, or technical efficiency, has been defined. Does a

comparison of firm P to firm Q, in Figure 2.1, reflect

this type of technical efficiency? If it does then one of

two situations must exist.

A1.4.1. THE FIRST SITUATION:

In Figure 2.1, P and Q are clearly supposed to be

within the same input requirement set, or sub-production

function, so they are using the same cycle. Firms P and Q

also use the same homogeneous inputs in the same pro—

portions since they are both on a ray from the origin.

Therefore, one can conclude that P and Q have the same

properties in their initial states with the only dif-

ference being that P is some scalar 5 times greater in

quantity than Q. This corresponds to the situation of

getting the same quantity of useful output with different

amounts of the same inputs in the same proportions. Since

they are not on the same unit isoquant in their end

states, assumed to be a dead state, then their end states
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differ by some factor g; # 3. That is, if the amount of

useful work is the same, then the amounts of waste in the

two systems must be different. Specifically, firm P's end

state will have a higher value of entropy. This means

that the properties in the end states are not the same, so

that the output from the two systems are not the same.

This situation cannot be due to the processes since the

states are by definition not a function of any of the

processes. Therefore, the difference in the end states

must be due to g: the properties in P's end state that are

different than the corresponding ones in Q must be a

function of p. Thus, g, the factor of proportionality,

would have to be an argument in the equation of state,

which it is not in thermodynamics.

A1.4.2. THE SECOND SITUATION:

If the initial states of the two systems are the same

and the amounts of useful output are different, then one

has the situation of two sets of identical inputs pro—

ducing different output. The difference between P and Q

is the amount of actual work done by them. This is not a

function of the properties of either their initial states

or their and states, as was discussed above, but of the

processes each uses. Specifically, if there is a differ-

ence in the amounts of actual work, then in keeping with

the laws of thermodynamics it must be due to each system

using different processes. Using different processes
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means opoerating with different fixed inputs, i.e.,

following different cycles or being on different sub-

production functions. Comparing the two firms P and Q

using a unit isoquant under these circumstances consti-

tutes an error of specifying the same fixed inputs or

process when in fact they are different.

A1.5. SUMMARY

Given identical systems and identical processes, the

measures of efficiency will always be identical. One

cycle may be less efficient than another cycle given the

same system since it is a different pgph from state to

state, thereby producing different levels of net heat in

and different levels of net work out as the system's

properties assume different values at each ppipp along the

path. Similiarly, two systems might differ in technical

efficiency using identical processes since the states for

each system will differ initially and consequently at each

ppgpp (state) along the path from initial to final state.

Therefore, if one observes two different production situa-

tions that differ in efficiency, either the systems are

different (non-homogeneous inputs) or the processes differ

(different sub-production functions).

Two things should be clear from considering thermal

efficiency in thermodynamics. The first is that there is

no difference between technical efficiency and price effi-

ciency since efficiency measures the ratio of value of
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output to the value of input. The second is that "tech—

nical efficiency" as used in the frontier production

function literature cannot exist. If one uses identical

inputs and the identical process, then one must get the

identical output. Therefore, if in Figure 2.1, the pro-

cess used by points Q and P are identical, point P can be

less efficient than point Q only if P is producing a

different level of output. Alternatively, if P and Q are

producing identical output, then they it must be the

result of Q and P using different processes. In either

case, the laws of thermodynamics makes it clear that the

frontier production function distinction between "TE" and

"PE" are not valid without violating the basic as-

sumptions of the theory. Therefore, frontier production

functions are the result of either specification error,

and/or aggregation error.



APPENDIX TWO

EFFICIENCY IN ECONOMIC THEORY

To understand much of the frontier production

function literature one must be familiar with the "set

theory" approach to microeconomic theory. Frontier pro-

duction functions are sometimes conceived in that litera—

ture as "distance functions" displaying "strong dispos-

ability," [Kopp, 1981b, Kopp and Diewert, 1982] .

The first section of this chapter will define of

terms. The next section will present the usual as-

sumptions made about production sets and the implications

of the more important two, concavity, which indirectly

suggests the importance of fixed inputs, and monotonicity,

which implies free disposal. Fixed inputs are frequently

ignored in the frontier production function literature

which may explain why aggregation and/or specification

error have been identified as "technical efficiency" in

frontier production functions. In Chapter Three free

disposal and duality theory were used to show that fron-

tier production functions cannot exist if they are dis—

tance functions that display strong (free) disposability.

The third section correctly defines efficiency in relation

to profit maximizing behavior, to clarify the insepar-

ability of the physical and value aspects of production.

158
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Finally, as a result of the first three sections, the

explicit inconsistencies of frontier production function

theory will be explained.

A2.1. PRODUCTION THEORY

A production relationship maps inputs to outputs,

where input is the range and output the domain. One

should bear in mind at the outset that production is by

definition the creation of value -- production processes

are implicitly normative. Production pg§p§ creating

utility by changing the time, space, or form of commodi-

ties. Prehaps for this reason alone, one cannot consider

physical (TE) and value (PE) efficiency separately.

A2.1.1. WHAT ARE INPUTS AND OUTPUTS:

Inputs are the commodities and services with which

one starts while outputs are the commodities and services

with which one ends a production process even if there is

no change in time, form (quality), or space. Thus, "left

over" inputs are part of the output. Left over inputs

would result from a system that changes state but does not

reach its dead state. In this simple analysis, inputs and

outputs are assumed to be individually homogeneous (have

the same properties), and completely divisible. Addi-

tionally, homogeneous means that each input or output

identified is defined to be alike with respect to time,

place, and form. Therefore, the individual units of a

quantity of identical input or output are indistinguish-
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able from each other under any and all circumstances, and

in particular, in the way they behave in production.

Notice that this means that the processes becomes a

function of the system and vice versa. One cannot differ—

entiate between units of the same inputs, except with

respect to order in which they are added to production.

This means each pound in ten pounds of the input V(j) is

exactly like any other one pound of that input V(j) in all

its descriptive characteristics. Divisiblity means that

the functional nature of the input (output) is independent

of the units in which it is measured. Five pounds of the

input V(j) added in one pound units will have the same

affect on the output as five pounds of V(j) added in ten

one half pound units.

The law of diminishing utility indicates that the

utility of any particular input (output), will change at

the margin as it becomes increasingly scarce or plentiful.

Indeed, a good that is not scarce does not have exchange

value. This issue of changing marginal value will be side

stepped for the purposes of this disseratation by assuming

atomistic competition so that inputs and outputs can be

treated as having constant prices. In order that there be

no confusion, the part of output that has net positive

value will be called product, that part that has zero net

value will be called waste, and that part that has nega-

tive net value will be called pollutant. Either utils or

dollars are treated as being adequate common denominators
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of value.

A2.1.2. PRODUCTION SETS:

Output is produced by transforming inputs. From the

laws of thermodynamics it is clear that there is a single

valued relationship between the quantities of inputs

transformed and the quantity of product generated, given

specific processes. That is, using given processes and

specific quantities of homogeneous input, only one quanti-

ty of product will result, ceteris paribus. Because of

this relationship the terms output and product can be used

interchangeably in most situations. For a particular

producing unit, or firm, there is some finite set of

production possibilities, that is described by the collec-

tion of all possibile input bundle combinations and the

quantities of product that result from their transforma-

tion. A vector of input and output quantities can be

variously called a production plan, activity vector, or

netput.

Suppose the firm has n possible

goods to serve as inputs and/or out-

puts. We can represent a specific

production plan by a vector y in Rn

[the positive quadrant of euclidean

hyperspace] where y(i) is negative if

the i h good serve: as a net input and

positive if the it good serves as a

net output. Such a vector is called a

netput vector. The set of all feasible

production plans — netput vectors - is

called the firm's production possibili-

ties set and will be denoted by Y, a

subset of R“. [Varian, 1978, page 3]
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A2.1.2.1 PRODUCTION POSSIBILITIES SETS:

A producpgon_possibilities set is the collection of

all feasible input/output vectors for some output vector

Y. As such, it represents the technology for Y. The

production possibilities set is:

(A24) Y = (y(I). 31(2). y(3). y(M). V(l).

VIZ). V(3)..... MM. 2(1).

2(2). 2(3). .... ZIP). 0(1).

(1(2)! ”(3)1000: U(Q))

where

y(I) = PRODUCTS FOR I=1 TO M

V(J) = v(J,I) FOR INPUTS J=1 TO N AND

PRODUCTS I=1 TO M

Z(K) = z(K,I) FOR INPUTS K=1 TO P AND

PRODUCTS I=1 TO M

U(L) = u(L,I) FOR INPUTS L=1 TO Q AND

PRODUCTS I=1 TO M

It is worth reiterating that this set is a feasible set,

or set of those production plans that are physically

possible, e.g., the set of netput vectors that conform to

the laws of thermodynamics.

A2.1.2.2. TECHNICAL:CHANGE:

Usually, technical change means that the original

production possibilities set has been expanded by adding

new input:output vectors, or by adding a dimension to the

existing vectors. This is equivalent to adding a prev—

iously unknown input, or unknown way of combining known

inputs (processes), to create new vectors, or a new dimen-
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sion, to the production possibilities set. Note that this

new input, or new way of combining old inputs, can be used

in various amounts, which is why the change adds more than

one vector to the set.

If this new input results in the possibility of a

given amount of product y being produced at a lower cost,

then one can conclude that the new production possibil-

ities set is more efficient. To ignore the new activity

bundles (to operate only with the opportunities of the old

production set) would indeed be inefficient. Efficiency

is achieved by making an economic adjustment resulting

from comparing the cost of using the new input bundles as

opposed to any of the original bundles. Strictly

speaking, this means not only their cost in operation, but

also the cost of switching from one set to the other by

investing or disinvesting. If adopting or using the new

input results in a lower net value from production, the

new technology is less efficient than the old technology.

Determining efficiency is a question of evaluating cost;

the ratio of the value of useful work to the cost of the

input.

Exactly what causes technical change and how techni-

cal change is accomplished are two complex issues that are

beyond the scope of this dissertation.

A2.1.2.3. PRODUCTION FUNCTIONS:

A production possibilities set may contain one or

more production functipns or processes. The production
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function specifies a functional relationship between in—

puts and an output such that for any given vector of

inputs there is one, and only one, vector of output. That

is, one cannot have two netputs in the same production

function where:

(A2 2) Y*(I) <> y(I)

and

(AZ-3) (V*(J). Z‘(K). 0*(LII = (V(J). ZIK). U(L))

In addition there is a distinction made between the groups

of inputs in that the V(J)'s are variable inputs,the

Z(K)'s are fixed:inputs, and the U(L)'s are random var-

iable inputs. These distinctions are critical.

A2.1.2.3.1. SUB-PRODUCTION FUNCTIONS:

A sub3prpdugtion:£pngtigp is a "restricted" subset of

the production possibilities set. It is restricted in the

sense that there is only one product, y(I), and some

subset of the inputs remain fixed or constant over the

entire range of production possibilities. The sub-produc-

tion function defines the technical relationship between

inputs and output. It is one technigpe within the tech-

nology for Y. It defines the physical transformation of

inputs into output. It is the totality of the processes

that act on the inputs, or system, resulting in useful

work, or output.
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(A24) f(YI = MN”). VIZ). v(3)..... NM.

2(1). 2(2). 2(3). 2(P). 11(1).

11(2). u(3). 11(0)) I (Y. v.

z, u) 6 Y]

where

y = VECTOR FOR A PRODUCT I

V(J) = VARIABLE INPUTS FOR J=1 TO N

FOR PRODUCT I

2(K) = FIXED INPUTS FOR K=1 TO P

FOR PRODUCT I

u(L) = RANDOM VARIABLE INPUTS FOR L=1 TO Q

FOR PRODUCT I

Variable inputs, V(J), are inputs over which the

manager has control, and for which the manager may vary

the quantities of the input in the sub-production pro-

cesses within one production period. Variable inputs will

be varied in the amounts used within the production pro—

cesses as a result of assessing their costs, relative to

the value of production within the firm, and relative to

the value of production outside the firm. Their acquisi-

tion prices and their salvage values are always equal.

Their within firm opportunity cost is the same as their

out of firm opportunity cost. Within firm opportunity

cost changes acquisition price and their salvage values

and all three remain equal. Therefore, when product or

variable input prices change, the amount used will neces-

sarily be adjusted upward or downward in order to maintain

efficiency.

Fixed inputs, z(K), are those inputs over which the

manager may have control, but which are not varied in the
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amounts used within the production processes. They are

defined for commodities and inputs for which acquisition

costs exceed salvage values. The amount of a fixed re-

source acquired by the firm initially is to be determined

after assessing its value in production. The fixed

resource will be acquired up to the point that its mar-

ginal acquisition cost equals its value in production both

expressed as stocks or services. Once acquired by the

firm, its quantity is fixed in production so long as its

within firm opportunity cost, or shadow price, is bounded

by its acquisition and salvage value. That is, having

been acquired, its acquisition price is greater than its

salvage price. Therefore, a change in the fixed input's

acqusition cost or salvage value, the latter reflecting

out of firm opportunity costs, will not necessarily lead

to an adjustment in the amount used, investment or disin-

vestment, by the firm. That is, the input is fixed in

production.

Some fixed inputs are specialized in the sense that

they have no within firm opportunity cost, i.e., they

cannot be used to produce more than one product. The

number of products they can produce is one, the Ith. If

one considers unspecialized inputs capable of contributing

to the production of more than one product, then such an

input may be fixed to the firm, but not within the sub-

production function for one product, since its amount

might be varied between two, or more, sub-production

functions for the multiple products it can produce in the
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firm. It should be noted that the fixity of inputs can be

made endogeneous [Edwards, 1958] without changing the

conclusions to be drawn regarding either the contribution

of the fixed input to the production processes or to the

definition of efficiency.

Thus, the optimal amount of an input whose acquisi-

tion price equals its salvage price always changes with

its gpg price. However, the optimal amounts of inputs

whose acqusition costs exceed their salvage values do not

always react to changes either in their acquisition cost

or salvage value. Indeed, if the within firm opportunity

cost is between the input aquisition and salvage prices

expressed as flow prices then the optimal amount to use

will not vary and the input is fixed.

Random variable_inputs, u(L), are inputs over which

the manager has no control, and whose quantities (or

quantities) vary randomly among firms and for individual

firms from some normal, or average specification. This

average quantity (or quantity) is usually the first moment

of the distribution from which the quantities of u(L) are

drawn. This average quantity is fixed. Examples would be

inches of rain fall, number of hours of sun light per day,

quantity or land, labor of capital; or air temperature.

Since the random variable inputs are usually measured as

deviations from their averages in any given production

period the expected value so measured is equal to zero.

Since the random variables are outside the control of the
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manager, and because their expected value is zero, the

average value from which they deviate is fixed. This

assures "average conformity" with the laws of thermo-

dynamics. Unless otherwise noted, fixed inputs and the

average value of random variable inputs are treated in the

same manner.

The sub-production function does three things to a

subset of the production possibilities set; it (1) holds

the quantites and qualities of a subset of the inputs, the

z(K)'s, at a constant level, absolutely or on the

averages, for all the input vectors in the set, and (2)

fixes the distribution from which the random variable

inputs, the u(L)'s, are drawn, and (3) fixes the func-

tional relationship or processes, the f(....), between the

inputs and the output. Notice that this means that the

sub-production function changes if the quantities or

qualities of the fixed inputs change, or the average

quantities or qualities of the random variable inputs

change. Note that the levels of the fixed inputs are held

constant; this means as one increases variable inputs, not

necessarily in proportion, the constraining influence of a

fixed input or an average random variable input may

change.

A2.1.2.3.2. INPUT REQUIREMENT SETS:

A collection of all input vectors capable of pro-

ducing g; least some given level of y is called the input

reguirement set, V(y) [Varian, 1978].
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(A2-5) V(y) = [(v. z) I (v. v. z) E Y and Y <= 3"]

That is, if (v, z) is in V(y) and (v', 2) >= (v, 2) then

(v', z) is in V(y), but (v, z) V(y'). Notice that this

means that a sub—production plan (v', 2) that is in V(y)

will produce y', where y' > y, and still be in y's input

requirement set. Notice too, that the 2's are fixed in

identical quantities for all the sub-production plans in

the set V(y); if the quantity of one or more z's changes,

one implicitly changes input requirement sets and sub-

production functions.

A2.1.2.3.3. ISOQUANTS:

The collection of sub-production plans that produce

exactly y are called isoquants, Q(y).

(AZ-6) Q(Y) = (V. 2) I (v. 2) V(Y) but

(V. 2) t V(Y')

where

(A2.7) y' > y

All of the input vectors (v', z) > (v, 2) such that (v',

z) e V(y) are not members of Q(y). This definition of

isoquants should make it clear that input requirement sets

are conceived to be, basically, a collection of isoquants.

That is, that the input requirement set V(y) is the iso-

quant Q(y), and all the isoquants Q(y'), where y' > y.

That means that Q(y) acts like a "frontier" in V(y),

within which all the higher valued isoquants lie. Notice
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that this means a point can be an 'interior' point to an

isoquant and still be in the same input requirement set as

the isoquant. These 'interior' points are not on the

isoquant, because they produce y' > y, but that they are

members of the same input requirement set, V(y). It is

especially important to appreciate that these 'interior'

points are fundamentally different than those of a unit

isoquant or frontier production function (see Chapter

Two).

A2.1.2.4. DISTANCE FUNCTIONS:

McFadden uses the concept of free disposal (discussed

in a following section) to expand, modify, or generalize,

the concept of a production function to what he terms a

gistance fpnction.

The concept of a distance function

comes from the mathematical theory of

convex sets, and was introduced into

economics by Shephard (1970). While

the reformulation of duality in terms

of distance functions is potentially

useful in applications, its primary

appeal comes from the fact that it

allows us to establish a full, formal

mathematical duality between [produc-

tion] and cost functions, in the sense

that both can be thought of as drawn

from the same class of functions and

having the same properties. [McFadden,

1978, page 24]

Formally, the definition of a distance function is:

(AZ-8) F(Y.V. 2) = Max (a > 0 l (1/a * (V. 2) E V(y))
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This is essentially an application of the implicit-

function theorem [Chiang, 1974]. One should note that

implicit-functions of mathematics do not correspond with

real world production processes. Implicit-functions are,

in this respect, similiar to reversible processes in

thermodynamics; neither can exist in reality due to the

second law.

Figure A2.1 represents a distance function.

As illustrated in [Figure A2.1], the

value of F(y,v, z) is given by the

ratio of the length of the vector (v,

z) to the length of a vector (v‘, 2)

defined by the intersection of the "y-

isoquant" and the ray through (v, z).

[McFadden, 1978, page 25; 2'8 added]

Note what this does: "a," in (A2.8), is an adjustment or

scaling factor that reduces all input bundles on the

isoquants greater than y* (in the interior of y*) to

values equal to the bundles pp the isoquant y*. Clearly,

"a" needs to be a vector, with 1's corresponding to the

2's so the 2's are unchanged in value. Only that portion

of the input bundle (v, 2) equal to (v‘, 2) remains after

scaling, where (v, z) > (v*, z); i.e., (v, z)/a = (v*, 2).

Note: this does not mean that (v, z) is getting less

output from the same inputs as (v*, 2), since both the

inputs and the corresponding output are adjusted for (v.

2). In effect, the distance function finds a scaling

factor that takes any input bundle within the 'interior'

of the lowest isoquant of an input requirement set and

moves it back to that lowest isoquant; it transforms the
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FIGURE A2.1

A DISTANCE FUNCTION.
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'interior' so that the 'interior' lies on its boundary.

The physical quantities of "excess" input and the cor—

responding "excess" output, are entirely and completely

removed and eliminated from consideration. It eliminates

the 'interior' for all practical purposes.

There are three facts which must be noted. (1) Dis-

tance functions are made possible, conceptually, with free

disposal. Consequently, the concept of free disposal is

very important and therefore will be dealt with in a

following section. (2) The distance function eliminates

any 'interior' points within the lowest isoquant of an

input requirement set while retaining the input require-

ment set's mathematical properties of convexity. The

convexity conditions are necessary for McFadden to develop

a concise mathematical proof to duality theory. These

conditions would also be met in a monotonic production

function, or in an analysis confined to Stage II (the

rational area) of a traditional production function, as

contrasted to a production solid. Thus free disposal

appears necessary to deal with the 'interior' points of

production solids. (3) McFadden's (1978) original formu-

lation of distance functions did not include fixed inputs,

the duality theory they are used to prove is valid only

for production sets that exclude Stage III of production.
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A2.2. ASSUMPTIONS ABOUT PRODUCTION SETS

Theories of production often postulate three funda-

mental assumptions. (1) The first is that production is

regplar or ipput regular. The set of all possible produc-

tion plans for some output or group of outputs is non-

empty (you cannot get positive output from zero inputs),

and closed (there is some bounded and describable set of

feasible production plans). This is the standard economic

assumption that there is "no free lunch." (2) production

sets are concave functions, which means one can obtain

input requirement sets that are convex sets. Input re-

quirement sets are convex sets because the lowest isoquant

within the set is a "boundary" to all the higher iso-

quants. Isoquants are not convex sets; they are convex

functions (See Chiang, 1974). The distinction is critical

since it is within the context of convex sets rather than

convex functions that one may provide a proof of duality

[McFadden, 1978]. In practice, this assumption is always

further restricted so that input requirement sets are

strictly convex sets and isoquants are strict convex

functions. This assures that the isoquants are "well be-

haved" (no flat spots). This means, in effect, that

perfect substitutes and perfect complements are ruled out

or are combined into single inputs. Additionally,

Malinvaud (1972) points out that convexity implies that

the bundles of resources used to produce any given level

of output display conditions of additivity and divisibili-
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ty. This means changes in input quantites can be con—

sidered in infinitesimal amounts. This in turn suggests

that sub-production plans would necessarily display con-

stant returns to scale except for the presence of some

fixed resource [Malinvaud, 1972]. This is why the con-

sequences of fixed inputs in production is very important

and will be dealt with in the following section. (3)

Production displays ponotonicity among the variable in-

puts; that is, additional variable inputs will yield addi-

tional output(s) within the constraint of the fixed in—

put(s). This assumption assures that isoquants will not

converge. This means points of equi-production are on the

same isoquant. This assumption also implies free disposal

among the variable inputs.

While many set theoretically inclined microeconomic

theorists note that only the assumption that production is

regular is essential for most of the important results of

microeconomic theory, concavity (assumption two) and mono-

tonicity (assumption three) are critical to the formal

proofs of gpglity theory, which receives major emphasis in

the more abstract forms of production theory currently

taught in general economics departments (for example see

Varian 1978).

Duality simply means that every point in production

space (excluding Stage III) is associated, by a one to one

mapping, with a corresponding point in cost space (polar

reciprocal sets). Since value and technical relationships

are inseparable, this one to one correspondence is intui-
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titively obvious. This means the apparent difference

between physical quantity and price is nothing more than a

mathematical transformation, a difference in the units of

measure. Input requirement sets that conform to these

three assumptions are called input-conventional input re-

guirement sets.

A2.2.1. CONSEQUENCES OF FIXED INPUTS:

Fixed inputs play a very important role since they

act as constraints on the amount of total product one can

achieve from adding more variable inputs. They determine

the sub-production function one is using. Thus, the fixed

inputs determine which technical relationships will exist

among the factors of production and output, i.e., which

sub-production function is relevant and, hence, the mar-

ginal physical products (MPP) for the various variable

inputs.

One cannot ignore fixed inputs, especially in empir-

ical work, because without some input fixed in the produc-

tion processes, constant returns to scale would apply and

one could continuously increase (variable) inputs in fixed

proportions and obtain proportionate increases in physical

output. In particular, the law of diminishing returns (or

law of variable proportions) would not apply and marginal

physical products (if not marginal value products) would

always be positive and constant. The second partial deri-

vatives of the production function are negative in all of
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Stage II and part of Stage I, which means that marginal

physical products are decreasing, giygp that all the other

inputs become fixed. The absence of the law of dimin-

ishing returns, and marginal physical products that can be

negative, result in an incomplete production function, a

production function without Stage I and III, so that pro—

duction can never reach a maximum. The three topics of

constant returns to scale, the law of diminishing returns

(or law of variable proportions), and the stages of pro-

duction, will be reviewed in turn, demonstrating how they

are important to a definition of efficiency.

A2.2L1.1. CONSTANT RETURNS TO SCALE:

Constant returns to scale means that there will be

proportionate increases in output resulting from propor-

tionate increases in all the inputs. Therefore, in

theory, constant returns to scale will exist when there

are no fixed inputs. The relationship between height,

width, volume and mass may also make strict constant

returns to scale physically impossible in reality. Though

this relationship does not fix any inputs, but it does

prevent expansion of all inputs in constant proportions.

Under constant returns to scale (no fixed inputs),

and with prices constant, production will never reach a

maximum, so all production levels are equally efficient.

One can discuss differences in efficiency only within one

of two sets of circumstances; (1) where output is prede-

termined, or fixed, or (2) where the total amount of
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resources available, the budget constraint, is prede-

termined, or fixed. In the first case, the level and

combinations of variable inputs that achieve minimum cost

for producing the given level of output are efficient. In

the second case, the set of given resources determines the

input requirement set, and the maximum output possible.

With constant returns to scale there is only one sub—

production function, since all inputs are variable. Gen-

erally, one sub—production function may be less efficient

than another, i.e., unable to produce as many units of

value per unit of value consumed in the production proces-

ses as another sub—production function. When one con-

siders changing sub-production functions, one is asking

whether or not is would pay to vary some hitherto fixed

input. The economics of investment and disinvestment was

developed by Edwards (1958). In order to understand why

one sub-production function might be more efficient than

another, one must understand the law of diminishing

returns.

A2.2.lg2. THE LAW OF DIMINISHING RETURNS:

The law of diminishing returns (or law of variable

proportions) states that as one adds to production succes-

sively more equal units of a given variable input while

holding one or more other inputs fixed, the marginal

physical product of the variable input first increases at

an increasing rate, then increases at a decreasing rate,
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then decreases absolutely. The law of diminishing returns

presumes the existence of fixed inputs. In the case

above, under constant returns to scale, efficiency was

determinable only after something other than inputs became

fixed, because otherwise marginal physical products

remained constant and equal to average physical product.

The laws of diminishing returns, and/or diminishing utili—

ty, influence efficiency since the former affect the mar-

ginal physical products and the latter the value of the

product.

Because of the laws of thermodynamics (see Appendix

One) if one has identical processes using identical vari-

able inputs and the identical quantity of identical fixed

inputs, the marginal physical products will be identical

for every identical marginal change in the variable in—

puts. Consequently, if one observes two production pro-

cesses using identical quantities of identical variable

inputs to achieve different quantities of identical out—

put(s), then the marginal physical products for some in-

put(s) must be different. This can only be true if the

amount of fixed input(s) is different for the two sets of

processes. That is, the sub-production, or processes,

with the lower level of fixed input(s) constrains the

marginal physical product for some variable input(s) and

thus constrains output.
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A2.2.1.3. STAGE III OF PRODUCTION:

One last consequence to the inclusion of fixed inputs

in sub-production function is Stage III, a region where

product declines after reaching a maximum. Stage III is

particularly important since many contemporary theorist

maintain:

A production plan y in Y is called

efficient if there is no y' in Y such

that y' >= y; that is, a production

plan is efficient if there is no way to

produce more [product] with the same

inputs or to produce the same output

with less inputs. [Varian, 1978, page

One can produce more useful product with less input if one

is in Stage III, i.e., by moving from point D to point B

in Figure A2.2. but staying on the same isoquant. The

monotonicity assumption means that more variable input

always produces more output, but in Stage III the addi-

tional output is waste or pollutant. For example, water

is a necessary input to crop production but too much water

results in reduced product. What happens in Stage III is

that the additional variable input(s) begins to block the

ability of some other input to contribute to the produc-

tion process thereby reducing useful output. When too

much water is added to crops, the roots are unable to get

as much oxygen as previously and this reduces useful

output. This is anexample of the law of diminishing

returns since one input is blocking the other(s) from

contributing, e.g., due to the lack of space for both to
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FIGURE A2.2

ISOQUANT SHOWING STAGE III
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operate effectively. One should note that this is not a

change in sub—production function since the levels of the

fixed inputs remains constant. Ignoring Stage III means

the production possibilities set is incomplete; that it

does not contain all the feasible production plans.

In production theory, Stage III is often precluded or

avoided since it is outside the range of "rational" pro—

duction. In Figure A2.2, ABCDA is the full isoquant for

some level of production. Usually, only ABC is considered

rational since the portion ADC is in Stage III. If one

where to observe a point D, one could conclude that one

could achieve the same level of output using less of the

same variable inputs, and conclude that point D was a

point of "technical inefficiency;" that point D was in the

interior of the isoquant ABC. Clearly, D is not in the

interior of the isoquant but is on the isoquant and is

inefficient for exactly the reason that Stage III is

outside the range of rational production; net value of the

output is not at a maximum.

A2.2.2. CONSEQUENCES OF MONOTONICITY:

A2.2.2.1. FREE DISPOSAL:

Free disposal arises as a consequence of the as-

sumption of monotonicity [Varian, 1978]. Monotonicity

implies that if a set of resources (A) is greater than

another similiar set of resources (B) then the former set

(A) can produce pp least as much output(s) as the latter
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set(B).

The idea is clear: if we can

produce y with a certain input bundle

v, we should be able to produce y if we

have more of everything. This is some-

times referred to as the hypothesis of

"free disposal." For if we can always

costlessly dispose of anything we don't

want, our technology must certainly

satisfy the monotonicity assumption.

[Varian, 1978, page 6]

The "anything we don't want" is both input and output.

Due to the laws of thermodynamics and the one to one

relationship between input and output, it is especially

important to remember that despite the fact that input

requirement sets are defined in terms of inequalities, in

reality one is dealing with sets of equalities. Free

disposal is the means of reconciling the appearance of

producing exactly y with the input bundle (v', z) in-

cluded in V(y), when (v',z) in fact produces exactly y', y

< y'. The input requirement set for a particular isoquant

includes the input bundles for that isoquant and all the

input bundles for all the isoquants at higher levels of

production. The input requirement sets for higher levels

of production are proper subsets of the input requirement

sets of lower levels of production [McFadden, 1978]. It

means that all of the isoquants "within" a given isoquant

y are within the input requirement set for that given

isoquant y. Free disposal does not require that the pro-

duction function is a solid instead of the surface one

ordinarily associates with a production function. The
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concept of free disposal does not mean that an isoquant

has interior points that are at the same level of output.

Suggesting this is a misunderstanding of what constitutes

free disposal, i.e. a violation of monotonicity.

The notion of free disposal is often misunderstood

which is to be expected as it has no counterpart in the

real world. The nearest exception to this is approached

as two inputs approach perfect complemenatary. McFadden

(1978) suggests that free disposal is essentially a gim-

mick to provide the conditions for the derivative condi-

tions necessary to provide a rigorous mathematical treat—

ment of the theory.

However, the importance of [free

disposal] in traditional production

analysis lies in [its] analytical con-

venience rather than in [its] economic

realism; [it] provide[s] the groundwork

for application of calculus tools to

the firm's cost minimization problem.

[McFadden, 1978, pages 8 & 9]

Free disposal means one may "throw away' commodities

without using up inputs in the disposal process [Pachico,

1980]." This does not mean using up additional inputs,

instead it means that free disposal removes some amount of

input, and its counterpart in output, from production.

The freely disposed input/output is in no sense part of

the production processes. When the additional output y' -

y is freely disposed, the additional resources (v', z) —

(v, z) are also disposed. One must remember that inputs

cause output by being consumed in the processes. Freely
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dispOsed inputs are not consumed, which is what Varian

(1978) means by "costlessly disposed." Because an input

is never consumed it is never paid for nor does it have an

opportunity cost. Proper accounting in production will

only record those inputs consumed in production.

Free disposal means that one can move from a higher

isoquant to a lower isoquant githout cost, by the free

disposal of the additional output. It also means that

'interior' points of production functions can be swept

out. The inputs that created the output thrown are also

treated as costless in polar reciprocal sets. In the

definition or a distance function, the scaling factor, Q,

is the mechanical means of performing "free disposal."

This scaling factor is needed in Figure A2.1 to transform

(v, 2) so that (v, 2) will produce exactly y*, and not y,

where y > y*, in keeping with the laws of thermodynamics.

Those excess amounts of the inputs in the input bundle (v,

z) are freely disposed, otherwise they would create output

in excess of y‘ if used in production. The output is

reduced precisely because the quantities of inputs used

are reduced.

A2.2.3. DUALITY THEORY AND POLAR RECIPROCAL SETS:

The duality theory proved by McFadden (1978) excludes

Stage III of production since he assumes that all marginal

physical products must be non—negative. Duality means

that all the points in a input-conventional input require—
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ment set have a unique correspondence to points in the

associated cost space. Therefore, in duality theory the

input-conventional input requirement sets of distance

functions have an analogous counterpart in cost functions,

called factoreprice reqpirement sets, R(y) [McFadden,

1978]. Factor-price requirement sets are defined as:

(A2.9) R(y) = [r >= 0 | r * (v, 2) >= F(y, v, z)

for all positive (v, 2)]

where

r = VECTOR OF PRICES FOR ALL INPUTS

This means that the prices in the factor-price requirement

set satisfy the condition that when multiplied by the

input bundles in the corresponding input requirement set,

the inner product is at least as large as the value of the

relevant distance function F(y, v, 2), which was defined

earlier. This property means that that not only do

input-conventional input requirement sets and factor-price

requirement sets have a unique one-to-one mapping from one

set into the other, but pppp pisplay the property pf gppp

disposal. The logical consequence of this is that for any

point within the "interior" of an isoquant, there is a

mapping of this point into the "interior" of a isocost;

i.e., if one is on a higher isoquant, one is producing at

a greater cost. Inputs have an opportunity cost. If by

invoking free disposal one ignores the additional output

created by additional inputs in production space, then ppp

must necessarily ignore the additional cost for those
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inputs in cost space. If one can move from a higher

isoquant to a lower isoquant by free disposal, then one ip

necessarily moving from a higher isocost to a lower iso-

cost in cost space, by the same free disposal.

A2.3. MAXIMIZING BEHAVIOR:

Maximizing behavior defines efficient behavior. It

involves both technical (physical) and price (value)

information. The most efficient production is seldom the

maximum average production. Efficiency deals with the

question of relative costs; inputs are used efficiently

when they are used in least cost combination. This is

obvious from the decision rule equating marginal cost with

marginal revenue. This is identical to equating the

ratios of marginal physical products to the ratios of the

respective prices for all the inputs, where the marginal

physical products represent the technical aspect of

production and the prices represent the opportunity cost

aspect. Some of the prices are internal opportunity costs

for unspecialized inputs or "shadow prices" for spe-

cialized fixed inputs [Edwards, 1958]. Notice that this

is identical to the definition of efficiency used in

thermodynamics, i.e, the ratio of useful output to costly

input [Dixon, 1975].

(AZ-1°) MPPIV1I/P(V1) = MPP(v2)/P(v2) =

= "P? (Vn) /P (vn)

Take the case of two inputs with different marginal phys-
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ical products. One input is necessarily being used in-

efficiently when compared to the other only if the two

inputs have the same price or opportunity cost. One cannot

allocate resources using marginal physical products alone

or prices alone. If technology could be separated from

value, it would seem reasonable to expect that there would

be a rule for maximizing efficiency by equating marginal

physical products without reference to their values and

vice versa. This would suggest that one could allocate

resources solely on technical or price criteria. What

those criteria might be is unclear.

A2.4. WHAT IS WRONG WITH FRONTIER PRODUCTION FUNCTIONS

FROM THE PERSPECTIVE OF ECONOMIC THEORY

First, the analysis of frontier production functions

deal with averages. Recall Figure 2.1. The unit isoquant

represents average input per unit putput. Bressler (1966)

notes that the price line represents "average cost." Both

technical and price efficiency are found by using average

input and average cost rather than marginal input and mar-

ginal cost. This surely conflicts with conventional pro-

duction theory wherein one equates marginal cost to mar-

ginal revenue to find the most efficient point of produc-

tion. Indeed, only in the context of perfect competition

is it true that average revenue equals marginal revenue.

Only in the case of constant returns to scale and fixed

input prices is it true that average cost equals marginal

cost over the whole range of output. Consequently, the
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only case imaginable where it might be legitimate to

define efficiency in terms of averages would be for con-

stant returns to scale under perfect competition, a very

restrictive and unrealistic case.

Even in the special case of constant returns to scale

in perfectly competitive equilibrium, a firm P would not

be within the interior of the unit isoquant. Firm P uses

more of the variable inputs given the same amount of fixed

input than a firm on the unit isoquant. The assumption of

monotonicity means there must be more output. Constant

returns to scale means that for additional input there is

proportionate increases in output. So, in terms of the

output per unit input, P must lie on the unit isoquant, or

violate constant returns to scale, or use a different

amount of the fixed input. Recall that with any fixed

input, constant returns to scale only exists only within

an infinitely small neighborhood around the point on the

production function where average product equals marginal

product for all inputs.

Assume for a moment that one observes a firm Q and a

firm P both using the same identical sub-production

function. If P is using more variable inputs then it is

in fact producing more output. If P is getting less

output per unit input than Q, it is because P is on a

higher isoquant where the marginal physical products for

the variable input are smaller due to the law of dimin—

ishing returns. In this case, the higher output of P is
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obscured by the averaging process in finding the unit

isoquant. It is also true that P may be inefficient. P

might be a dairy farmer who continues to feed his cows

beyond the point where the return for the additional milk

produced is greater than or equal to the cost of the

additional feed. The inefficiency is due to value as well

as physical considerations.

If P is producing more output than Q, can one invoke

free disposal to make a comparison of the two firms, and

the inputs they use to achieve the same output, and con-

clude that P is less efficient? No, because if one

ignores the additional output then by duality one must

ignore the cost of the additional output. By duality,

free disposal in production space must be associated with

free disposal in cost space. Therefore, if output is

freely disposed in production space, the cost for the

inputs that produced that output must be freely disposed

in cost space, which makes those inputs free goods, and

economically irrelevant. If one ignores the cost of the

additional output, then by duality one must ignore the

additional inputs. That is, if one includes inputs in the

production accounting, then in order to make the produc-

tion "ledger" balance one must also take account of the

output produced by those inputs. Conversely, if the out—

put is ignored by free disposal, then the corresponding

input must also be ignored, or freely disposed. The

inputs are irrelevant technically and economically because

one has freely disposed of their output. In order to
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maintain the 1:1 ratio of energy input to energy output

demanded by the law of thermodynamics, if one erases an

amount from one side of the equation (output), one must

erase an equal amount from the other side of the equation

(input). If one were to maintain that in freely disposing

of the output one were converting it from work output to

waste output, then one is implicitly changing sub-produc—

tion functions, or processes, ceteris paribus.

Finally, the quotation:

But [P] uses more of both inputs than

[Q] to produce the same level of out-

put. [Timmer, 1971, page 777]

exemplifies an error repeatedly asserted in the frontier

production function literature; namely that Q produces the

same amount of output as P with fewer inputs. That P

might actually be producing more output, which is freely

disposed, has been discussed above. Suppose that P and Q

are in fact producing the same amount of the same output.

Figure 2.1 suggests that Q uses fewer inputs. This indi-

cates an inherent indexing problem since in this case the

23 for Q is not the same as the 23 for P. That is, Q uses

fewer variable inputs, but can only get more output at the

margin with them if Q has pppp gippp input, due to the

laws of thermodynamics and the law of diminishing returns

to scale. One can compare the "size" of the two input

bundles by evaluating them with respect to their oppor-

tunity costs. This would indicate that economic efficien-
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cy is identical to "price" efficiency, and that the fron-

tier production function distinction between "price" effi-

ciency and "technical" efficiency is meaningless.

A2.5. SUMMARY

In economics, as in thermodynamics, it is impossible

to separate the physical aspect of production from the

price aspect of production. Efficiency is defined with

respect to the relationship between the two; i.e., effi-

ciency means equating marginal value products with their

respective opportunity costs, or useful output to costly

input.

In production theory the role that fixed inputs play

in determining the technical relationships between all the

inputs in the production process is critical. Indeed, the

level of fixed input determines the sub-production

function. Because some inputs are fixed, the law of

diminishing returns operates, leading to variable returns

for different levels of input, both variable input and

fixed input. Constant returns to scale is a special case

where no input is fixed, and where, consequently, there is

nothing endogeneous to the production system that affects

efficiency unless prices become functions of quantities.

Stage III may result from fixing input and means that MPP

>=< 0. This implies that efficiency is associated with

the location on the isoquant at which one is producing.

It also raises the question of whether or not isoquants

can have "interiors."



193

Free disposal deals with the issue of the 'interior'

to an isoquant. Free disposal is a necessary in order to

understand that input requirement sets are a collection of

upper level isoquants for "one" level of production:

Clearly a paradox. Free disposal is often not clearly

understood, since it has no observable counterpart in the

real world. It serves only to reconcile the paradox that

an input requirement set implies being on and off the

isoquant at the same time. This reconciliation allows one

to define a distance function and give a rigorous mathema-

tical proof to duality (excluding Stage III). Duality is

demonstrated by polar reciprocal sets. Duality means that

the physical aspects of production, marginal physical

products, are inseparable from the value aspects of pro-

duction, prices, through their one to one mapping from

input space (excluding Stage III) to cost space.

Since the physical aspect of production is insepar-

able from the price aspect of production, the notion of

"technical inefficiency," as used in frontier production

functions, has no logical basis. Since an isoquant does

not have a pppp interior at the same level of ouput there

is no theoretical basis for the definition of "TE" as it

is used in the frontier production function literature.

The definition of a frontier production function is a

violation of the tenets of microeconmic theory.
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