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ABSTRACT
PRE-AND POST-BUCKLING BEHAVIOR
OF PLATES OF VARIABLE STIFFNESS
USING FINITE DIFFERENCES
By

M. Ali Barkhordari

The Von Karman large deflection equation is applied to plates

of variable stiffness. Equilibrium equations and the in-plane

compatibility equation are derived. The ordinary finite difference
technique is employed to solve the nonlinear coupled partial differental
equations. Two different methods of formulation are considered:
a) In terms of lateral displacement w and a stress function,
b) 1In terms of displacement components u, v and w.
Stiffness variation can be implemented in two different ways, either
by varying the thickness of the plate with constant E, or by taking
a uniform thickness plate of variable E. Both types of stiffness
variation are considered. The nature of in-plane displacements on
the boundary is a significant factor in postbuckling. This effect
is examined by considering plates with different in-plane displacement
boundary conditions.
Several problems with different stiffness variation and
boundary conditions are solved. The applicable computer program is
utilized to carry out the numerical solutions. In each case the

Problem is investigated for different stages of loading as follows:







a) Membrane solution analyzes the behavior of in-plane
forces and displacements for undeflected plates,
b) Stability analysis investigates the buckling and effect
of stiffness variation on critical loads and buckling
modes,
c) Postbuckling discusses the behavior of various aspects
of the problem due to edge loads or displacements higher
than critical values.
For clarity, the results are always accompanied by graphical illustrationms
of membrane and bending stress as well as displacement components.
The accuracy of the solution is evaluated by comparison of the results
obtained with results from past studies and exact results, where
these results are available. The influence of the grid-spacing on
the accuracy of the results is investigated by taking successively
finer grid-spacings. The numerical results are analyzed and the effect
of stiffness variation on different aspects of the problem discussed.
One objective is to design a plate with stiffness variation
such that it be optimum in some respect. Some possible cases of
optimization are discussed and, as examples, some problems related to
buckling are solved. The results indicate that a considerable weight

and/or material savings can be achieved by using an efficient stiffness

variation pattern.
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CHAPTER I
INTRODUCTION

1.1 GENERAL REMARKS

The widespread use of plate elements in many engineering
structures such as buildings, bridges, pavements, missiles, containers,
ship structures and space structures has made plate analysis the
subject of scientific investigation for more than 200 years. Because
of their two dimensional action, the mechanical behavior of plates
under thrust loads is completely different from beam elements. In
contrast to beam elements, in which buckling is usually associated
with collapse of the structure, the buckling of a plate is not an
end point in the serviceability of the structure.

The capability of a plate to carry load after buckling
is an interesting subject which has motivated many investigators
to study posbuckling behavior of plates, especially in connection
with weight-sensitive space applications. Most of the plate analyses
involve -uniform stiffness plates. However, elastic plates of variable
stiffness are used in many engineering structures such as aircraft
wings, turbine disks, etc. The need to conserve material and/or

minimize weight motivates the designers to make optimum use of

the material.







From the structural point of view, knowledge of critical
buckling loads 1is of great importance. To make an optimum design
with respect to some variables, an extensive analysis of the variable-
stiffness plate is necessary. The failure strength of a thin plate
can exceed the buckling strength appreciably. In many cases, the
structure is not sensitive to large deflection. Thus, it is of
technical importance to consider the postbuckling behavior of plates
(especially the variable stiffness plate) in order to optimize
the design.

Although a considerable amount of work has been done in
the area of variable stiffness plates, most studies have achieved
solutions by analytical methods which are restricted to some specific
geometry and boundary conditions. (See Section 1.2)

The purpose herein is to investigaée the behavior of a variable
stiffness plate so that a full history of the stress and strain
components of plates with different stiffness variation can be
presented. Such a history will help give the designer a better
understanding of the behavior of the plate and the effect of stiff-
ness variation on various aspects of the problem so that a more-
nearly optimum design may be achieved. Two different types of
variation in stiffness are possible: one with uniform thickness and
varying E, such as reinforced concrete or fiber-reinforced plastic.

The other has variable thickness and constant E. Both cases are

considered and analyzed.
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1.2 PREVIOUS DEVELOPMENTS

The study of plate theory began in the 1760fs. Euler (A7)
presented the first mathematical approach to plate studies in
1766.

In 1815, Sophie Germain (22) presented a fairly satisfactory
fundamental equation for the flexural vibrations to the French
Institut as the result of her investigation during the 1809 to 1815
period. Within the same period (in 1811), Lagrange arrived at his
equation, which is known, therefore, as Lagrange's equation for the
flexure and the vibra£ion of plates. Kirchhoff (1824-1887) is
considered the founder of the extended plate theory which takes into
account combined bending and stretching. In 1910, Von Karman
introduced a set of differential equations valid for plates subject
to large deflection. These equations are referred to in the liter-
ature as the large deflection equations..

The development of the modern aircraft industry directed
the attention of many scientists and researchers toward the study
of plate vibration, plates subject to in-plane loads and postbuckling
behavior of plates. The earliest solution of a flat plate stability
problem apparently was given by Bryan (10)in 1891.

The ability of a plate to carry additional load after
buckling was apparently discovered in the late 1920's through
experimental studies made in connection with the design of air-
Planes. In 1929, Wagner (49) studied a shear web and based on his

findings, established a criterion for postbuckling strength of

the web. 1In 1942, Levy (29) presented solutions to the plates with
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The study of plate theory began in the 1760fs. Euler (17)
presented the first mathematical approach to plate studies in
1766.

In 1815, Sophie Germain (22) presented a fairly satisfactory
fundamental equation for the flexural vibrations to the French
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the web. In 1942, Levy (29) presented solutions to the plates with

___.—‘.



large deflections under combined edge compression and lateral
loading. His investigation was based on analytical solutions using
Fourier series. He also considered postbuckling analysis of plates.
In 1970, Supple (42) analyzed a rectangular plate with constant
in-plane compressive loads on opposite edges using the out-of-plane
deflection, w, and the Airy stress function as variables.

A considerable amount of work has been done on plate
analysis by different methods; among these are solutions of the
equilibrium equations by series expansion, energy methods, and Vlasov's
method (46). Until relatively recent times, however, the investigations
have centered on analytical solutions, which are in most cases limited
to relatively simple geometry, load, and boundary conditioms.
In many particular cases where these conditions are more complex,

the analysis via the classical route becomes increasingly difficult

and is often impossible. In such cases, the use of an approximate
approach becomes more practical due to the flexibility and quick
results.

Near the end of World War II, the invention of digital
computers,with their capability of processing large numerical
problems, caused rapid development of various numerical techniques.
0f these, the finite element, finite difference and boundary integral
methods are of most general use.

Although previous analysis of variable stiffness plates
has been limited, there has been a considerable amount of work

done on uniform stiffness plates using finite element techniques,

and dealing with stability and postbuckling of plates. The finite




element method was introduced by Turner, Clough, Martin, and Topp
(45) in 1956. Argyris (4) and Zienkiewicz (53) have made numerous
contributions in this field. Gallagher (20) and Hartz (24) also
have made great contributions in improving the method and including
nonlinear terms. A series of studies considering postbuckling
behavior of plates was made in the 1970's (13, 19, 52) using the
finite element technique. Murray and Wilson (31) have conducted
research on postbuckling of plates,considering various aspect

ratios and applying the finite element method. Other significant

contributions include papers by Conner (14) and Yang (52). They
applied the finite element methods to solve postbuckling plate problems.
The finite difference method is also one of the general
numerical solution techniques wﬁich has been frequently used. The
finite difference method was first used by N. J. Neilsen (33) for
analysis of plates in 1920.
The first finite difference solution of the large deflection

of plates is due to Kaiser (26). More recently, Basu and Chapman

(5) contributed to this study. Kaiser also carried out some ex-
perimental tests which verified the theoretical results. Both
aforementioned investigations were formulated in terms of lateral
deflection, w, and a stress function. The finite difference ap-
proach to large deflection of plates was also used by Brown and
Harvey(9) who have studied large deflection of plates subject to
lateral pressure combined with different ranges of edge loadings.
More recently a new method of solving finite difference equations-—

nahely,the dynamic relaxation method was described by Otter (35). The
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basis of the method is to add dynamic terms to the equations. The
addition of dynamic terms such as acceleration and viscous damping
makes the problem analogous to a vibration problem. The damping
coefficients are taken corresponding to critical damping resulting
in a motion which dies out quickly. Thus, the solution to the
static problem is obtained. Rushton (38,39,40) has published papers
applying the dynamic relaxation method to large deflection of plates
subject to lateral load and to postbuckling of plates under in-plane
loads. Since the method is an alternative technique to solution
of the finite difference equations, it has the advantage that
variations in stiffness can be included. Rushton has stated that,
with appropriate time increment and damping coefficient, a solution
can be obtained with no difficulties.
The Boundary integral equation (BIE) method has also proved
to be successful in solving plate bending problems. Jaswon (25)
and Maiti (30) introduced the direct method of solution and receﬁtly
Altiero and Sikarskie (3) presented the indirect method of solution
which proved to be more efficient. In 1980, Wu (50) modified the
me thod by moving the integration contours outside the real boundaries.
"he plate of interest is embedded in a fictitious plate for which
“he Green's function is readily known. Fictitious forces and moments
ire then applied outside the real boundary and the solution can be
>b tained by finding the magnitude of these fictitious loads such

-hat the original boundary conditions are satisfied. The method

'as proved to be very efficient in general plate bending problems.




Particularly pertinent to this study is a paper by Prabhakara
). In his paper, he considered postbuckling of orthotropic
ites. Recently (in 1980), Kennedy and Prabhakara (27) have
idied the postbuckling behavior of orthotropic skew plates and

rained solutions to some problems using a series expansion method.







L.3 PRESENT INVESTIGATION

In the study of thin plates subject to lateral and edge
loading, especially in the postbuckling range where the deflections
are not small, the Kirchhoff theory (which neglects stretching and
shearing in the middle surface) can not yield satisfactory results.
In this case the Von Karman large deflection equation can be employed

to obtain more accurate results.

In Chapter II, a brief review of the theoretical background
is given and the derivation of the compatibility and equilibrium

equations is first presented. Next, by applying the ordinary finite

difference method, the required operators are derived and the pro-
cedures for solution of different problems are briefly discussed.

Two different alternative methods of formulation are considered:

a) 1in terms of lateral displacement, w, and a stress function,

b) in terms of the displacement components, u, v, and w.

'he solution procedures for both methods are also discussed. A few
xamples of practical boundary conditions are listed and theoretical

elations for each boundary condition are mentioned.

Chapter III includes numerical solutions and analysis
f the results. A computer program and the required subroutines
See computer program in Appendix C) have been developed to facilitate
Pplication of procedures discussed in Chapter II.

In order to provide a more complete view of the variable
t1ffness plate and it's behavior relative to the uniform stiff-
=Ss plate, several different types of variation in stiffness are

>Nisjdered. Uniform stiffness plate results are given for comparison.
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For clarity, in the procedure presented, the results are always
accompanied by graphical illustrations of membrane and bending stress
as well as displacement components. The behavior of those graphs
and their relations with applied load is discussed.

The accuracy of the solutions is evaluated by comparison
of the results obtained with results from past studies and exact
results, where these results are available.

Convergence of the solutions is examined by using different
mesh sizes with extrapolation.

Results obtained for the effect of stiffness variation on
in-plane forces, bending moments, in-plane displacements and lateral
deflection, provide a good source of information for optimization
in each case. Although the optimization procedure is straight-forward,
the stability optimization with respect to amount of material used
is presented as an example. Two computer programs are provided,
one for force boundary conditions and the other for displacement
boundary conditions. Both programs are listed in appendix (C).

It was found that convergence was easily obtained for the range of
loading less than the second critical load because the assumed
S81ingle-wave buckled shape is the only possible pattern of stable
€quilibrium other than the flat plate. For loading beyond the
Second critical load, due to different possible equilibrium states,
Tthe problem does not converge easily. For solution beyond that

Tange a proper deflection shape must be enforced, as appropriate

for the physical conditions of the problem.
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NOTATIONS

The symbols are properly identified when first introduced;

for the reader's convenience, symbols are tabulated here.

Side length of square plate

a

CpsCoseee Constants
Ec3
D = Flexural rigidity of the plate
12(1-v7)

D Stiffness of a uniform stiffness, unit thickness ;

° plate

Dr Reference stiffness = stiffness at center of the plate
E Young's modulus

F Force function

h,k Mesh intervals in x and y

K = Et Membrane rigidity

Kr Reference membrane stiffness = Et at center of the

plate
Ko Membrane rigidity of a uniform stiffness, unit
thickness plate
5%{,M M Bending and twisting moments per unit width
yxy of plate
€] ; ﬁ'; M) = (Béé—)(M 3 M ; M_ ) Dimensionless moments per
xy ox oft * Y ¥ unit width

N Applied edge force per unit width of plate

x’Ny’ny In-plane stress resultants per unit width of plate
N>, * a2 .

x5 N ; N ) = (B—)(Nx; N ; N ) Dimensionless membrane forces
xy o per unit width of plate

(N . ¥.% ) = C N s
N; N ) (Nx, Ny’ ny)/N Membrane force ratios
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(N;‘; N}',; N!' ) = (Nx; Ny; ny)/Ncr Membrane force ratios

Xy
q Lateral distributed load per unit area of plate
a = qal‘/Doti Dimenéionless lateral load per unit width of plate
Q Transverse shear per unit width of plate

_ edge stiffness

central stiffness Stiffness ratio

_ edge thickness

RT central thickness Thickness ratio
t Plate thickness
ti Unit thickness
T Temperature
u,v,w Displacement components in x,y, and z directions
v Volume
u, Edge displacement
(U; V) = (u; v) a/t2 Dimensionless displacement
— i .
U =
U/Ucr
1] K0
U' = by Dimensionless displacement
U, Dimensionless edge displacement
U* =U
cr
W = :— Dimensionless lateral deflection
i
X5¥y,2 Cartesian coordinates

(X3 Y) = (x; y)/a Dimensionless coordinates

@ ‘-% Grid size ratio
Si = ﬁ Membrane stiffness ratio
K
Q'I‘ Coefficient of thermal expansion
S Di
i = o Flexural stiffness ratio
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‘1,12,... Eigenvalues
1,A2,... Eigenvectors
sE 5 € Strain components
Yy Xy
<’°y Components of normal stress
a2
', 1y = . :
T oy) (D ti)(ox, oy) Dimensionless stress components
2T seee Shear stress components
Ky’ xz
= te' Stress function

Airy's stress function

= qn/Na2 Dimensionless stress function

A\ ] Coefficient
w], [bw] Coefficient
adl; [BwD) = ([awl; [bwl)xh®
ul], [Bu] Coefficient
v], [Bvl] Coefficient
ul], [Au2] Coefficient

v1], [Av2] Coefficient

matrix for ¢
matrices for w
Coefficient matrices for w
matrices for u
matrices for v
matrices for u

matrices for v




CHAPTER II

THEORETICAL DERIVATIONS

2.1 General

In this chapter, the equilibrium and compatibility equations

of the plate based on the theory of elasticity are first derived. Then,

the finite difference approximationsto these equations are developed.

These will be used to facilitate numerical solutions of those equa-

tions, for which, in most of the cases, closed form solutions,if not

imposgible, are very tedious.
Thin plate theory is applied and homogeneous, isotropic

material is assumed.
Depending on the boundary conditions, two different approaches

are possible. Here, both approaches will be discussed.

Geometrical and material nonlinearity can arise in plate

Problems. In this study only geometrical nonlinearity will be con-

Sidered.
Figure (2.1) shows the geometry and orientation of a plate

in the cartesian coordinate system. The x-y plane lies in the middle

Plane of the plate and z 1is normal to the middle plane.

Internal forces and moments acting on the edges of a dx by dy

Plate element, as shown in Figure (2.2), are related to the internal

Stresgges by the equations:

13
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t/z t/2
Nx = oxdz Ny = f oydz
-t/ -t/
2 2
J’t/Z ft/z
N _ = Tt _dz N = T dz (2.1)
Xy _t/2 Xy yxX _t/z yX
t/o t/o
Q =/ T dz Q =/ T dz
X _ XZ y _ yz
t/z t/2
M= / o zdz M = / 0 zdz
—t/z —t/z
t/2 t/
2
M _ = f T__zdz M = f T__zdz

where Nx’ N, N _, N _ = in-plane normal and shearing stress resultants.
Qx’ Qy = transverse shearing stress resultants.

bending moments.

=
<=
[ ]

M , M = twisting moments.
Xy yx

2.1.1 NONLINEAR EQUILIBRIUM EQUATIONS

In the literature, nonlinear behavior is commonly classified

as either

1) Material nonlinearity

2) Geometric nonlinearity

Material nonlinearity may arise in case of time-dependent
a terial or materials with nonlinear stress-strain relations (plastic,
Lastoplastic, viscoelastic, etc.).

Geometric nonlinearity is usually associated with large

isplacements. It may also occur for small displacement if the
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Figure 2.1 Rectangular flat plate

Fi81..11:'e 2.2 Plate element dxdy in undeformed configuration
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behavior is such that variation 1in the applied load alters the

distributions of displacement.

In this report only geometric nonlinearity is considered

and the material is assumed linear elastic, isotropic, and homogeneous.

To determine equilibrium equations applicable to moderately

large deformations, they must be derived using slightly deformed

configurations. Figure (2.3) represents stress resultants and

internal moments for an element dx by dy in the deformed con-

figuration. B. and B_ are rotations in the xz
x y oN

X
—— dx etc.
ax

and yz ©planes

+
respectively, and Nx denotes Nx +

Summation of forces in the =x-direction gives:

aN oN
- X - D 2.5 =
Nxdy + (Nx + % dx)dy Nyxdx + (Nyx + 3y dy)dx = 0

which simplifies to

aNx oN x
% + _Y—ay =0 (2.2)
similarly, summation of forces in the y-direction leads to:
aN 3N
—’—‘Y—ax + 5y =0. (2.3)
From summation of forces in the z-direction, we obtain
3Q aQ 2 2 2
X _ = 9w I w I w
= _lay q+ N 2 + N ay2 + mxy-_axay (2.4)

Summation of moments about x and y axes will result in:
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M aM
Qy - _8%' T Tx
Qx = % + 3y (2.5)

Pigure 2.3. Schematic illustration of internal forces and moments

on the element of middle surface indeformed configuration.
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2.1.2 Relation between stress resultants and displacements.

From Hooke's law, we have

Nx = ifvz (ex + v ey)

Ny = I%ff (sy + v ex)

Ny Nyxgz-?LT) Txy
where:

e, = 2y 17282

€y, = -g—;’— + 1/2(‘2‘;—)2

du L 3v L w 3w

ny - dy 9x ox  dy

For moderately large displacements, the relations between moments

and lateral displacement are:

2
M= -D(—a——‘z’- +v3—"2’)
Ix dy
2 2
o= -p ¥ +v2Y
y Jy ax
_ _ 3w
My, = M= -DU-Vg
Et3
where D = 7 18 the flexural rigidity of the plate.
12(1-v°)

(2.6)

(2.7)

(2.8)
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2.2 Formulation in terms of stress function and w

By substitution of Equation (2.8) into (2.5) and (2.4),
we obtain the equilibrium equations in the z-direction in terms of

membrane resultants and lateral displacement w:

2. .2 2 2 2 2
2 2 3D 3w 3D dw 3D 9w
(VW) - (1-v) | — — -2 + ]
ax2 ay2 9x3y 0x3y ayZ 3x2
2 2 2
=q+Nx3—‘2—’+N a—¥+2N %—-;’— (2.9)
ax” Y gy Xy oxoy
The compatibility equation for mid-plane strains is: I
t
2 2 2
3 € N 3 €y ) 9 Yy . (32w )2 ) azw 32w (2.10)
9y2 ax2 dxady 9xdy ax2 8y2

and from (2.6), the strainsin terms of membrane forces are

1
€ Et (Nx-vNy)

X
e = 2 (N -wN) . (2.11)
y Et Uy Tx )
- 2(1+v) N
Xy Et Xy

Now, we define a stress function, ¢, similar to Airy's

8tress function, so that:

2
N =22
X 2

3y

82
N -—‘5‘3 (2.12)
y 9x

2

N - E_SL..




~
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The Airy's stress functions is defined as

g =22 (2.13)

re N =t oo =tlg— etc.
X x
is 1s suitable for a uniform thickness plate. However, in the case of
-iable thickness, if we define ¢', as (2.13), it will complicate
> formulation. For example, substitution in equilibrium equations

,2), would result in

2' 3| 2' 3’
dy X3y yaﬁy X3y

ich in the case of uniform thickness, leads to 0 = 0.
For our purpose the definitions of (2.12) will be used.
ystitution of (2.12) into (2.9), will result in the equilibrium

iation, in terms of ¢ and w, as

2,02 o%p 2% _, a%p 2%, 3D a%w
7E(DVW) - (1-v) 7 2 "2 9Xdy 9x93y T2,
ax” 3y 8y ax
a2 22w , a9 2%w _, 2% a%w
=at 5 t T T2 7% oy ey (2-14)
3y~ ox 9x 3y

subgstitution of (2.12) into (2.11) and then into (2.10), we

tain the compatibility equation in terms of ¢ and w:
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2 2 2

|1 3 {1 _ 3 2(1+v)

3y2 [Et(cpyy vq)xx)] + 3 2 [Et(chx Wpyy)] + X0y [ xy

2 Y
(23_ )2 - 325 w_ (2.15)
9xdy ax’ ay
32
where QXX - ;;g , etc.

2.3 Formulation in terms of 3 displacements u,v, and w

Substituting equation (2.7) into (2.6) and then into (2.2)
and (2.3),along with substitution of (2.8) into (2.5) and then into
(2.4),results in 3 equilibrium equations in terms of u,v, and w.

The equation of equilibrium in the x direction (2.2)

becomes
2
e uy w0l ol el 1oy B | a%, 8%y
2
1-y ax 2 5x X3y axa3y ay 2 l_vz ayz X3y
azw w , w 32 1 5(Et) | 3u aw, 2 av
+ relewe o e ( Y TG g 2u)2
2
dX3y 3y  ox ayz 1-2 3% X *3 2%y
1-y
+ 3§E"2 gu _‘;'4. CLAN-L A B (2.16)
2(1_\) ) y y o oxX 9y
Similarly, the equation of equilibrium in the y-direction (2.3),
becomes
2
Et ) \27 + 32w ﬂ+v(32u + azw ﬂ) l1-v Et ezv + 32u
2
1-v° | oy 3y y XYy X3y X 2 1_\)2 axz 39X 3y
2

vﬂ.l.ﬂ(ﬁ)z] +.1:_\£23_(B.2. [ﬂq.ﬂ-}-ﬁﬁ]- 0 (2.17)
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Interchanging u and x with v and y respectively in
equation (2.17) results in equation (2.16).

The equilibrium equation in the z-direction (out of plane)
can be expressed in terms of 3 displacements by substituting (2.7)

into (2.6) and then the results into (2.9). We obtain:

2. .2 2 2 2.2
LT [ LR B

ax"~ dy y y Iy~ ¥x

2
Et ou , 1 ow, 2 Bv vV, W Et: l dw, 2
=q +— +2ED + v + 2 J [ T vy )
1_\’2[ 2°3x 2 oy ax2 l-vz 23
+ du + X(Q)Z 32 Et(l-\)) du +_3 b v w ow 82w (2.18)

Vox | 2'9x a}'2 1-v2 dy | 9x  ox ay | oxay )

Note: Since in this approach we are working with displacements,
compatibility need not be checked.

2.4 FINITE DIFFERENCE APPROXIMATION

So far we have derived the necessary equations for analysis
of the plate, but solving these coupled nonlinear partial differential
equationg analytically may be difficult.

Here we employ finite difference techniques to transform
the ddi fferential equations into ordinary algebraic equations in terms

of Valyes of the functions themselves at certain specified points.

2'4’\-1~I’1':l.r1czl.ple of finite differences

The derivation of finite difference expressions is based on a
Ta
Ylox series expansion. We expand the function at some
uc
Qess:i.ve grid points, truncate higher order terms, and

. 8ol
Ve for desired derivatives, we can obtain approximate expressions
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for first, second, or higher order derivatives in terms of values

of function at the discrete points.

£(x)
T

m2 m-1 m ml m+2

Xy

Figure 2.4. Function f(x).

In one dimensional cases we obtain the following approximation of

the deriyatives of the function:

£, " 7o Cmfay) - @RI+

) . g (Eg2 £ ) - 0P L (2.19)
(ax)

') = rix? (f02 £ +2f - £ ) - %(Ax)zfz +...

fg:)m - -(:7 (£, -4 £ +6E ~hE  +E )

1 2 _vi
-E(Ax) fm + ....
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In practice, we truncate the terms following the parentheses.

These represent the error in the approximation. We will refer to these

error terms later in the discussion of accuracy.

NN
(o}
I
!
I
Y NW"D— — =0t —_one
I, 1

I | |
| |
wwo— Y6 — 0% __de _ o
|
!
|

Sw'-_._ S
o) Q> — —OSE

Figure 2.5

To determine the finite difference approximation for two dimensional
Problems, we consider Figure (2.5), and the fact that gimilar re-
lations for the approximations to the derivatives in the x-direction
holq a1s0 1n y-direction.
Thus,we will be able to derive expressions for any order
Of gerivatives in x and y and combinations of x and y derivatives.
For example, if we consider grid points of Figure (2.5),

The derivatives with respect to x and y at point 0 are

f=1

x=m ¢

g~ £
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1
fy 2k (fS - fN)

Hh
|

1 :
xx - hz (fE-2f0+ fw)

Hh
]

vy ;E (fs-2f0+ fN)

1
fy =k Cspfsw et I

or if = o then

==

£ =2 (f. ~f. -f_ +f

etc.
Xy 42 SE SWONE

NW)

Often, these formulas for derivatives are represented

geometrically by stencil patterns, such as in Figure 2.6.

-

Figure 2.6. Two dimensional operator for fx

O-—-0O---O
R EOeO©
O---O--0O

(2.20)
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2.4.2 FINITE DIFFERENCE APPROXIMATION OF METHOD DISCUSSED IN SECTION(2.2)

In section (2.2), we derived equations of equilibrium and
compatibility as well as the components of internal forces and dis-
placements, in terms of lateral displacement, w, and stress function,
®. In this section, we will discuss numerical solution of those

equations using finite difference techniques.

To find a solution to a plate problem, we must satisfy
both equilibrium in the 2z direction, and compatibility.

a) Equilibrium Equation ‘

For this purpose, we will apply relatioms (2.20) to equilibrium
equation (2.14), and the results will be represented in two dimensional

operator form. Introducing
Dr = flexural stiffness of the plate at some reference point

(center of the plate in this case),
6 = oL
i D
r

A finite difference operator for the left hand side of the equilibrium

€qQuation (2.14) is given in Figure 2.8 where Sa, 6b’ Gc. and Gd

Tefer to midpoints a, b, ¢ and d of Figure (2.7) as explained in

Teference ( 8).
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Figure 2.7

Note: All terms in the operator of Figure (2.8) are coefficients of w.

If the grid spacing is the same in the x and y directions (a = 1)
°Perator (2.8) will be simplified to the operator given in appendix

(A.l).

D
In case of a uniform stiffness plate, where 61 = D—i =1
T

for all points, the operator reduces to the usual finite difference

®Perator for \74w, as given in appendix (A.2).
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For the right hand side, if ¢ values are known,we can
derive the finite difference operator as coefficients of w, as

shown in Figure (2.9.a), where

o = azcg Uty
X o h2
o = a2 | P29 * ¥ « (929, + @) (2.21)
vy " o 2 2
2o PsE Y PP PE  *(Psp * Py Py Pye)
Py = oxay 4hk = 2

4h

For o = 1, we get the expression shown in Figure 2.9(b).

SOLUTION OF THE EQUILIBRIUM EQUATION

To solve the equilibrium equation for w, we must have either

the ¢ values, or the in-plane forces (cpxx, (Pyy

Substitution of these values into the operator of Figure

d .
an cpxy)

2.9 (a) or (b) will result in a known operator at each node.

By applying the operator at each node, we will be able to
form a matrix of coefficents of w, which along with the q; Vector
Wil]l form the right hand side of equation (2.14) as

{q} + {bw] {w}
Where {q} 1s the lateral load vector and [bw] is the coefficient matrix

°°'~1taining constants. Similarly, application of the operator
of Figure (2.8) will result in the formation of matrix Dr[aw]{w} in
the jeft hand side of equation (2.14). [aw] 1is a constant coefficient
Datyix.

Therefore, we can represent the equilibrium equation in

Qumerical form as:
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2 <pxy Prx 2 "ny
I 1 I
| | |
) \ 1
- + o
Pyy 2(<{)yy e ) Cyy
T 1 |
| | |
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+ o 2 - a @
2 ¥y o Py — = 2 *xy
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- 3(PsE e~ PEm2%, Py R R R Y
T | I
| ] |
| ) |
=2 (gt e Heg)
- -2 (% NYs) L ) =2
P29, P + B 4 P2t
T | T
| | |
| ) |
1 | - | _ L - -
8 WP\ PNE Ysw Ppm2%,tey 3 P PN

(b)

FIG 2.9 DIFFERENCE OPERATOR FOR RIGHT HAND SIDE OF

EQUILIBRIUM EQUATION 2.14
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D Caw]{w} = {q} + [bwl{w}. (2.22)
In complete matrix form we can write
D lawl{w} = [I1{q} + [bwl{w}. (2.23)

Both [aw] and [bw] havea factor of —12; so, we can rewrite
h

D_fAw]{w} = [I1{qh*} + [Bwl{w} (2.24)
where [Aw] = [aw]hl', [Bw] = ha[bw]
or
1 {qh*}
{[aw] - == [Bw]lHw} = J];— (2.25)
r r

We will discuss solution of this equation later.

b) Compatibility Equations.

To approximate the right hand side of the compatibility

€quation (2.15), we apply relations (2.20) to get

2% YsE ¥ Ve Vsw VnE
X9y 4hk

2 - 5 (2.26)
X h

a2w . wN-Zwo + ws

3y2 k2

In order to obtain a finite difference operator representing
the left hand side of equation (2.15), we will differentiate and

regroup terms, resulting in
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l_{V4(p __2_[8(Et) 9 2y cp) 3(Et) 8 (\7 ) I- [(1 ) (Et) 2 ,B(Et)) )

Et Et ox dy 3x2 (Et)z\ 9x

2
i N TS N - N BTG BN (2.27)
wt oy 3y E)° Y 3 ax

+ 2(1+v )[a(ic) 3(Et) _ 2 1 3 (Et)] gp_ ;.

y (Et)2 Et 9x3y X3y

Now by applying relations (2.20) and adding all contributions
at each node, we will obtain the finite difference operator of
Figure (2.10),

where

Sala

Kr- Et = in-plane rigidity of the plate at center.

Ki = in-plane rigidity at point 1i.

If o= E— = ], this operator will be simplified to the one
81iven in Appendix (A.03)

An alternate approximation to the compatibility equation
(2.15) in finite difference form can be developed.

Denoting

Yy XX
F=l(cp -v e ) (2.28)
2 K ""xx yy :
1
F3 chxy
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Equation (2.15) can be written as

2 2 2
o F 3 F 3°F 2 2 2
» §+ 22 + 2(1+v) 8x33 = (gxg )2 -2 ‘2' > ; ‘ (2.29)
oy ex y v ax” dy
Now we can approximate derivatives of Fl’ FZ’ F3 as
aZFl Fl --2Fl + FlN
5 = S (2) , etc., where F1 , according to (2.27),can be
) k S

approximated as

1
f1 7k
s s

- 2

[ P 2Pt Py (Pop29 + cpsw)]
2 , etc.
k h

For a = % = 1, this approximation results in the operator
given in Appendix (A.4)

SOLUTION TO THE COMPATIBILITY EQUATION

To be able to solve the compatibility equation, we must have

values of w at nodal points. Then, we are able to compute the

right hand side at each node using expressions (2.26).

To determine the left hand side, we apply the operator of
Figure (2.10) or the one in Appendix (A.3) or (A.4) at each node.

By adding all contributions, a coefficient matrix will be

formed . Thus, we have:
[Ad{@} = {w} (2.30)

vhere the w vector is known, and solutions of this system of

e
Uationg results in the ¢ values at prescribed nodes.
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c) Approximation to other equations

After solving equilibrium and compatibility equations, we
may be interested in calculating in-plane forces and displacements
as well as bending stresses. Finite difference approximation to
some of these equations will be discussed below.

In-plane forces

By definition (2.12) we have:

_ 32¢ ) @S—2¢0 + Py

X ay2 k2

N

2, Pg29,te
N = 3‘5. E 20 i (2.31)
y ox h
I 2% _ Pse t Py % e
Xy  9X0y 4hk

In-plane Displacements

Comparing equations (2.7) and (2.11)

du , 1,9w,2 1
€x T ox + 2(8x) Et(Nx—vNy)
or
ou 1 1, 0w, 2
x - BNV - G

The right hand side of this equation is known. By approximating the

left hand side in finite difference form we have
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u,-u
E W 1 1,3w, 2
2h Et(Nx_vNy)- 2(ax)

or

3w, 2

PR I |
ugmuy = ZlgE(N )= 367 (1)

E W
similarly, for v displacement, we obtain (2.32)

1 1,0w, 2 .
vy 2k[Et(Ny-va)- 2(3y) ] (11)

If we apply the operator of the left hand side of equations
(2.32) (1) and (ii) at each node and add all contributions, we can

form two coefficient matrices for u and v as

(Aul{u}

{Bu} (2.33)

[Av]{v}

{Bv}. (2.34)
where [Au], [Bul, [Av] and [Bv] consist of constants only.

Solving these systems of equations, we obtain u and v, the
displacements at each node.
Note:

In order to get compatible displacements, we need to have
some points at which u, v or both are known. Points of this nature

can be found on boundaries or lines of symmetry.

BENDING MOMENTS

Having the solution for w displacement, we use approximations

(2.20) to compute bending moments according to equations (2.8).

—
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2 2 w_—2w_+w ws-2w +w

h W
M = -D(é—% + vé—g) = -p(-E g +v 20 N,
9xX oy h k
2 2 Wo=2wntwW W =2wn+wW.
0w 0w
M = —D(a—‘2’+ vé—;) - -p[= T+ v E — (2.35)
y 3y ax k h
2 W W =W W,
oW SE "NW "SW "NE
Mxy— ‘D(l"’)axay D(1-v)( Zhk )

where D 1s already defined.

2.4.3 FINITE DIFFERENCE APPROXIMATION OF METHOD DISCUSSED IN SECTION

| (2.3)

y In this method, 3 equilibrium equations in the x, y and z

’ directions, as derived in (2.16), (2.17) and (2.18) respectively,
mst be solved. In this section, the finite difference approximation
of each equation will be derived.

a) Equilibrium in x-direction

Considering the equilibrium equation (2.16) and regrouping

variables results in

32u K(1-v) Bzu 9K du , 1-v 3K du
K+ = 2% ex T 72 3y 3y’
ax 3y y oy
2
K(1+v) 9 v 9K ov 1-v 3K v )
o oy TV ox 3y T2y axs t (1)
2 2 2
3w aw | K(1+v) 3w 3w , K(1-v) 3w ow
K=t 2 smyyoy ' 2 2 9x T
9x y oy y
1 3K, ,ow,2 ow, 2 l-v 3K 3w 3w, _
2 3;{(ax) + “(ay) 1+ 2 Jy ax ay} =0

where K = Et and both sides of equation (2.16) have been multiplied

by (1-v2)
Now, the difference approximations, (2.20), will be applied

and the results will be represented as finite difference operators.
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The operator representing the u contribution to this equation
is given in Figure (2.11-a). Similarly, difference approximation
to v results in operator Figure (2.11-b).

The contribution of w to this equation can be approximated

as
w 2w W wW_-w w_ v -w W _-W
v function = K. (B0 W E w)+(l+")ng( SE "NW "SW_ NE)( S N,
0 2 2h 2 2 2h
h 4h
w_-2w +w w - w.-w
1-v, 2. Y™ %% 1KEKw 2 ¥s 7N, 2
5D oK h2 N B, 3¢ (Zh)+va(—2h)]
K
+d5Ye? S K“ iy 55y

Therefore, the equilibrium in the x-direction can be schematically

shown as.

(u-operator) u + (v-operator) v + xw function = 0 (2.36)

Note: In this case, because of the absence of body force in the

x-direction, the right hand side of the equation is always zero; thus

the equation is first divided by ¢ 12).
1-v

b) Equilibrium in y-direction

The same procedure will be followed to derive operators
representing finite difference approximations to equilibrium in the
y—direction.

Equilibrium equation (2.17) can be rewritten (after regrouping

variables u, v and w,

2))88
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L K - W — — —Ko[-z-az(l-v)] — — - K+ o
2 4 o+
| T T
I I |
] I 1
K.-K
2,1- S N
0 - = P KE S T ] 0
al U-OPERATOR
14+v L L 1+v
& % v gy ~G) K
| | I
I I I
| l |
1-v I ] l-v
= -5 (Kg-K) 0 (5 XKgKy)
4h | | T
I I |
_1 1 |
1
AT e BERC SR ot B RS

b} V-OPERATOR

FIG 2.11 OPERATORS FOR X-EQUILIBRIUM EQ.(2.16)
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2
(1+v) 3w, 1-v 3K 3u 3K du

[k 2 X9y 2 93x 9y v dy ax] M
K(1-v) 32y 3%y . 1-v 3K 3v , 9K av
(== 2t St T o T ayay
ax oy X y oy
(& 2% aw , K(1+v) 22w aw . K(1-v) azw w (2.37)
Byz 3y 2 9X9dy X 2 ax2 oy
1 3K ow, 2 1-v 3K 9w 3w, _
23}7{:() ()] 23xaxay-0

By finite difference approximation, we obtain the operator of
Figure (2.12-a) to represent the u-contribution and (2.12-b) as the
v-operator.

Terms including w can be approximated as:

a K (l+v) w W~ K, (1-v) w,-2w 4w -w
yw function = 7L SE NW2 SW_ NE)( EZhW)] 3 [(E (2) W)( 51+
4h : h
Wo—2W, W Wo=W.
0
ko L0 (8 0 3 CE o (T D +

h

KN A A B
)[—( ) +‘§( 2h)]

Finally, the equilibrium equation in the y-direction can

be represented in the following operator scheme;

(u-operator) u + (v-operator) v + yw function = 0 (2.38)

EQﬁgl:l.librimn in z-direction

The equation of equilibrium in the out-of-plane direction

: §
8 Introduced in Equation (2.18).
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Approximation to the left hand side of this equation has

already been explained in Section (2.3.2-a).

As for the right hand side, we approximate the derivatives

of displacements to get
2 w.-w

u - W, -W Vv .=V

K W, 1 YE Vw2 s™N va® sV, 2

W, —-2w 4w v -V 2 w_ -w T W_-w
E "0 W S N, , a° /'S N2 E'W, , v, E W2
( 2 )+ Lol + 57 ()7 + Vi) + 5 ()]

2 Wgm 2wty Us=Yy VW YE™Vw. s, .

G+ () Ll + ) el ()]

w . -Ww__ -w

o (SE_NW st NE, | (2.39)

4h

Finally, equilibrium in the z-direction can be represented

[Aw]l{w} = RHS (2.40)

Where matrix [Aw] consists of contants.

) Solution procedure using this method

In order to perform numerical analysis in computer programs,
We arrange the equations in sucha way that the equations can be

Tepresented in matrix form.

To find a solution by this method, we must satisfy all three

€quilibrium equations. These contain three unknowns, u, v, and w.

There is no simple technique providing a direct solution to these

QQ‘-lpled nonlinear equations; thus,we employ an iterative technique

to  solve thenm.

If w 1is known (or assumed), the first two equations of

equZilzl.brium will become two uncoupled equations inu and v

- o
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and can be solved as follows.

Applying the u-operator corresponding to equilibrium in x
at each node and adding the contributions, and doing the same to the

v—operator,we get a matrix representation of equation (2.16) as
[Aul]NxN{u}Nxl + [Avl]NxN {V}le = ~{xw Function}le (2.41)

Repeating the same procedure for y-equilibrium equation (2.17) we

obtain

[AuZJNXN{u}le + [AvZ]NxN{v}le = -{yw Function}le : (2.42)

where [Aull, [Avl], [Au2] and [Av2] are constant coefficient matrices.
Both equations are coupled in u and v, and each contains

N  equations in 2N unknowns.

One way of approaching this problem is to try to solve the

€quations by iteration until reaching a solution that satisfies

both equations.

An easier approach can be employed if we realize that,
a~1though the equations are coupled in u and v, there are no
Mmixed terms containing both u and v.

Therefore, we can combine the two, to get

Aul Avl u xw Function
——————— —— R T — (2.43)
Au2 Av2 v yw Function

which is not oniy more efficient in computer programming but leads

t
© a unique solution for the u and v displacements at specified

n _
Cde points,based on an assumed (or known) w.
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To solve the z-equilibrium equation, we substitute values
of u, v and w, in the right hand side (2.39), and solve equation

(2.40) for new values of w. The iteration will continue until the

new values of u, v and w, are equal to or very close to old ones.

A practical use of this method, including the details, will be dem-

onstrated in chapter 3.

POST SOLUTION DETAILS
After a solution is found for the three displacements

u, v and w, any components of stress and strain can be computed.

Average strain
Average strain at each node can be found by the finite

dif ference approximation of equations (2.7).

YsTUy 1 YETYw 2
& " t7 )

X
IS o Sy 2.44
& = “2n 2 T (2.44)
us -uN VE ‘Vw WE -ww Wrs"'wN
Yy = o)t el ()

Membrane Forces
Substitution of equations (2.7) into (2.6) and approximating

the gerivatives by finite differences, will result in

N _-_k JE%W_ 1 Y"E"2 YsTVN, . w? sy, 2
x =gl fr G e G Ty )
VLV 2 w.-w - W, -
N _.K SN, , a° sT'N.2 “E W, L v ETW, 2 (2.45)
N _K@-v) o MsTUN L VE W YE""W, S "N
S TR ) ¥ s ()
-v
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BENDING MOMENTS
The bending moment approximation is given in equations (2.35).

2.5 BOUNDARY CONDITIONS
In the small deflection theory of plates, we consider only

out of plane (or flexural) boundary conditions because the effect

of in-plane displacements on the boundary is negligible. However,

-they become the chief factor in large deflections behavior and in

the postbuckling range. Thus, we discuss in-plane boundary conditions

as well as out of plane conditions.

The flexural boundary conditions, as commonly discussed in

el ementary plate theory, are:

a)  Simply-supported boundary

w=20
32w 82w
M=-D(—+v—) =0 (on boundaries parallel to y)
X ax2 3y2

b) Fixed boundary:

3w (n, normal to the boundary)

<) Free boundary:

M =0
x

= X -
Ve = t 5y 0

4> Others, such as elastic support, or partially fixed support, etc.
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For the in-plane boundary conditions, there is a variety of

possible combinations that may occur in the postbuckling range.
On each edge, either u or v displacements can either be unrestrained

or have some specified values; also, there could be restrictions on

derivatives of either u or v, or both.

In terms of in-plane boundary conditions, we can classify

the problem in three major types.

Force boundary conditions (i.e. in-plane forces are specified

1) -

on the boundary).

If applied forces Nx’ Ny and N__ are known, we can use

relations (2.12) to choose values of the ¢ functions on the

boundary points so that they satisfy boundary conditions. A practical

example of this nature is discussed in chaper 3.

2) Displacement boundary condition Some possible cases are:

a) u and/or v are specified on the boundary, in which case the

Values of displacements would be '
X

assigned to boundary points.

b> Edge remains straight and parallel to y. (u-displacement is

constant all along the x = 0 edge).
< Edge remains straight with no shear force along the edge; in this

Casge, from equations (2.7) and (2.6), we have along edge x = 0,
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. _Et [Bu av 3waw),
ny 2(1+v) [ay t o o ay] 0 (2.46)
On supported edges (fixed or hinged), g—‘; = 0, thus
-8v _du (1)

ax a_y
If the x-edge (x = constant) is straight with u constant, then

g—;— = 0; therefore, equation (i) results in g—:- = 0 along the edge..

d) Other conditions include possible restrictions on u, v or
their derivatives which lead to particular relations between

displacements or their difference approximations. For

example,the edge can be subjected to thermal expansion
du

(see section 3.2) such that —— = €, = constant along edge y = 0.

24
3) — Mixed boundary conditions. i.e.,case 1 applies to part of the

boundary, while the rest of the boundary is defined by case 2.

The computer program developed can solve either case 1 or 2.

Therefore, to handle a problem with mixed boundary conditions, we
can golve the problem by trial and error, as follows.

i) Assign some fictitious displacement values to the points
at which forces are specified, and solve the problem as
one with displacement boundary conditionms.

1i) Compute forces at the boundary points.

iii) Compare with actual forces at the points.

iv) Correct previous fictitious displacements in such a way

that the solution is improved.

v) Repeat steps (ii) to (iv) until the computed forces are

equal to or close enough to the actual ones.




48

2.5.1 SOME EXAMPLES OF PRACTICAL B.C.

Following is a list of some practical examples of plates
subject to various loading and boundary conditions.
1. Window glass can undergo large. deflection under lateral
wind pressure; the out-of-plane boundary condition is in
most cases simply-supported or sometimes built-in. Either
case may be accompaniedby:
a) 1in-plane displacement possible.
b) 1in-plane displacement restricted.
2. Plates on stringers forcing the plate edges to remain straight,
as in many ship and aircraft sections surrounded by stringers.
3. Mechanical and instrumental plate elements subject to tem—
perature change will be subjected to tension or compression
on some or all edges due to temperature change in surrounding
elements. Various combinations of boundary conditions are
possible.
4. The webs of structural steel profiles used in construction can
be categorized as plates subject to in-plane shear and normal

forces along the edges.

2.6 SUMMARY

We will summarize the theoretical formulations discussed
in Chapter 2, and mention procedures of solving some problems.
Among several types of problems which can be solved numerically
based on the finite difference approximations shown, and using the

Somp .y ter program which has been written, are:
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2.6.1 MEMBRANE SOLUTION

For flat plate with w = 0 everywhere, the equilibrium in the
z—direction (normal to the plane of the plate) 1is trivial; to
find a solution for in-plane resultants and displacements,

a) In the case of force boundary condition, we solve compat-

ibility equation (2.30) with the w vector equal to zero.
[Al{g} =0 (2.47)

The solution results in ¢ values at discrete modes, which can be
used in equations (2.31), (2.32), and (2.33) to find in-plane forces
and displacements.
b) If the displacements are specified on the boundaries, we
solve equation (2.43). Considering w = 0 everywhere,

we have

Aul Avl u 0

S [/ v S (2.48)

Au2 Av2 v 0

for which the solution results in displacement values at the nodes.
Application of equation (2.45) then leads to the membrane resultants.

2.6 .2 LATERAL LOADING

a) Force boundary conditions.
i) Small displacement.In this case, the ¢ values and
in-plane resultants are known from (2.5.1), so we can
solve the equilibrium equation (2.25) to obtain w.

Then (2.33), (2.34) and (2.35), can be applied to

_*; L ———
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compute in-plane resultants, displacements and bending

moments.
ii) Large deflection.

Compatibility equation (2.30)‘ and equilibrium equation
(2.24) could be solved iteratively, and the force resul-
tants and displacements can be calculated as discussed in (1).
b) Displacement boundary conditions

i) For small deflections, we can solve equation (2.48),
neglecting the effect of w on in-plane solutions; then,
solve the z-equilibrium equation (2.40) for w, by ignoring
w-terms in the RHS.

ii) Large displacement problem - this requires an iterative
solution of equations (2.40) and (2.43) as discussed
in 2.3.3 (d).

2.6.3 STABILITY ANALYSIS

a) Force boundary conditions.
The in-plane forces and ¢ values are known from part
2.5.1 -a; then,we can use the equilibrium equation (2.25). 1If
9 = O, this will result in a characteristic matrix, the eigenvalues
of Which lead to the critical forces and the eigenvectors represent
the buckling modes.
b) Displacement boundary condition.
Using in-plane resultants and displacements obtained from
(2‘“5'-1.b) and forming the R.H.S. as a coefficient matrix for w,

wi th
q =0, results 1in the characteristic matrix equation
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{{Aw] - [Bwl} {w} =0, (2.49)

for which the eigenvalues and eigenvectors lead to critical

boundary displacements and the mode shapes, respectively.

2.6.4 POSTBUCKLING

Since after buckling the plate takes on a state of stable

equilibrium, we can analyze the plate as a regular large deflection

case.

a) Force boundary condition.

We solve the equilibrium equation (2.24) and the

compatibility equation (2.30) iteratively.

b) Displacement boundary condtions.
In this case we employ the iteration technique to solve
the z-equilibrium equation (2.40) and the in-plane

equilibrium equation (2.48).



CHAPTER III

APPLICATION AND RESULTS

In this chapter, the theory and the methods developed in the

preceding chapters are applied to a variety of problems. A computer

program has been developed which is applicable to rectangular plates

with different boundary conditions and variation in stiffness. The

objective is to illustrate the application of the method to plates with
several types of variations in stiffness, as well as to the uniform stiff-
ness plates. Since solutions to the uniform stiffness plate are

known, it provides a good measure for verifying the accuracy of the

Solution procedure. For the plates considered, the solution is

obtained for a few problems for all successive steps of loading from

Zero load up to secondary buckling and the results are analyzed.

ConVergence of the solution is checked and accuracy of the results

is €examined via comparison with known results when possible. Some

OPtimj{zation problems are presented at the end of each section.

Chapter III is divided into two sections. Section 3.1

deals with force boundary conditioms . In section 3.2, plates with

displacement boundary conditions are considered.

A square plate with a symmetrical variation in stiffness is

consIl-cler:ed. Stiffness is symmetric with respect to both centerlines

a

nd diagonals as shown in Figure 3.1; thus only a quadrant of the
P

late will be considered. The variation in stiffness is such that

52
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in quadrant (I) of the plate (see Figure 3.1) the stiffness is a
function of x only. For example, in section 3.1 a parabolic variation
in stiffness is considered; the flexural stiffness can be

represented by a parabolic equation:

D(x) = D_[R + 4(1-R) 7] (3.1)
where D 1is stiffness at point x

Dr is stiffness at center of the plate

R 1is ratio of edge stiffness to center stiffness

a 1is length of each edge of square plate

Note:
. Et3
Since bending stiffness, D = ————— , and membrane stiff-

12(1-v?)

nesg, K = Et, are both present in the plate equations, it will make a
dif ference whether the stiffness variation is due to a variation in
E or in t.

a) For the variation in E, with t constant, the D

variation and K variation will have the same pattern.
K
Let Bi = E—i- » the ratio of membrane stiffness at point
r
i to membrane stiffenss at reference point, and let
D
§, = 2 be the bending stiffness ratio at corresponding

i D
r

points. Then,

B

By Eit/Ert
8y

3 3
E t /Ert
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t, with E constant,

o
Et T

r r
Et3

1

2 3 [e\3

i N I R R
Et t r

r r

12(1-v?)

Both cases can be considered without any major difficulties.

In section 3.1 (excluding 3.1.4) case (a) is assumed,

and in 3.1.4 and the entire section 3.2, the variable thick-

ness case (b) is considered.

In terms of boundary conditions, two separate classes of

Problems are considered:

1 - Force boundary condition

2 - Digplacement boundary conditon

In order to avoid computational difficulties, the following

nNon-dimensional variables are introduced and frequently used in the

8nalygis.

t' -
t/ti

D'

D .
o]

K -
(o]

¥ - yY/a

W= W/ti

= 3
D/ti,

where t:i

= unit thickness.

flexural stiffness of a uniform stiffness, unit thickness plate.

membrane rigidity of a uniform stiffness, unit thickness plate.



U= ua/ti 36

K
0

! =
Ut = Uy
- 2
' va/ti
Nl. N '; N' = . .
(N2; Ny ) = (N N3 N /N

* a
H ny) (Do)(Nx, Ny, ny)

%*
N
y
(N_; Ky; N_)=(N; N; N_)/N
y
2

3.1 Force Boundary Condition

The previously mentioned plate case (a) is considered sub-
ject to a compressive normal in-plane force 'N' on all edges
(no restrainton ;I.n-plane displacements). The solution is obtained
for three successive ranges of loading (membrane, buckling, and
POstbuckling), for different variations in stiffness, and for both
Simply supported and fixed edges. The effect of a transverse load
is algo examined.

The behavior of the plate within each range is observed.
For €ach range the in-plane stress resultants, the in-plane dis-
plac&ments and the out-of-plane displacement are calculated and
Plots are given. The results of solu.tion for variable stiffness
Plateg are compared with those for the uniform stiffness plate.
section 3.1 deals with different phases of the behavior,as follows:

3.1.1 Membrane solution

3.1.2 Stability analysis

3.1.3 Postbuckling behavior
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In order to have a common base in different cases of stiff-
ness variation for comparison of the results, the reference stiff-

ness, Dr’ is taken such that the volume under the stiffness curve

be constant for all cases. (i.e.,mean stiffness is constant)

The stiffness variation in this section 1is

X, 2
D(x) = D_[R + 4(1-R) ()] a/2
p—
as introduced in equation X
(3.1). The volume under
a/2
the curve over a quadrant Iﬂ

of the plate (see Figure
3/2
3.2) is vol.= 2f 2 D(x)dx

h =3 _,a22_
vhere g =35 -y =73 - x.

Substituting for £ and

Y
D(x) we obtain DeI :ﬂg ]:D
D(x r

a/
vol = 2p [ 2(3-x) [R+4(1-RXE) 2 1dx.
', 2 a
Integrating produces Figure 3.2
vol azDr
3‘7—_ (1 + 5R).
Thig volume is to be constant for all cases; thus, the variation of

Dr With R must have the form,

D = constant
r 1+ 5R
The Dr
bage stiffness is chosen to be D =1 for a uniform stiffness
o

plate, and the Dr for different stiffness ratios are tabulated below:
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1/10
1/2

10

3.1.1 Membrane Solution

1.7142857

.117647058

In this part, a flat plate with no initial deflection is

considered and the solution obtained.

Since w 1is zero, the solution

can be obtained by solving the compatibility equation (2.47) only,

Boundary Conditions

To determine the value of the stress function, ¢, along

the boundary, recall Equations (2.12); along the x-edges, we have:

2
Nx - L‘g. =N (1)
oy

2
N =_29
Xy X9y 0 (11)

From (1) we have

% (%;'g) = -N
intQSrating

%? = =Ny + c, + fl(x)

4 ‘\L_NZ +c
2 1

b
Ut from (i1)

y+y fl(x) + fz(x) + ¢,
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3 9
3y (535 =0 > %3 = constant along the edge.
O T Lo A

ax 7 T dx dx constan

From the above we can conclude:

S
P = 2 + ey + <,

similarly, along y-edges, we will get:

-Nx2
¢ = ——5—— + c3x + c4

The constants must be chosen such that the given boundary
conditions are satisfied. Since the second derivatives of P
determine the resultants, and, in this case, the plate is symmetrical
with respect to its centerlines, ¢ can be chosen such that it will
be symmetric about both centerlines. Thus, arbitrarily choosing

@ = 0 at the corners leads to:

along edge y = 0

since at corner x = 0, ¢ = 0, and at corner x = a, ¢ =0

or

@ = % (ax - x%) (3.2)
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ﬂ=%(a-2x)

X
%2=% at x=0
-g—:%=-% at x = a

similarly, along edge x = 0 we get:

N 2
‘P=E(ay-}’) (3.3)
Since %5 is constant all along this edge, and from Equation
(3.2) above,is equal to N_2a at the corner, %3 = %‘3 all
9 Na 9 Na
along the x = 0 edge; therefore (x = 0, ¥ = ) and (x = af = - 3
similarly from equation (3.3) (y =0, % = Eza_) and
g 2. _Na
(y = a, 3y 20

Now, we are able to compute ¢ values at each boundary
node. Figure 3.3 (a) shows the geometry of the plate and location

of node points.

The ¢ values at nodes A,B, and C according to Equation (3.3) are:

2
N a a,2 Na

9, =7 3@ - P =

N @y - @Py .
g =7 2% A 32

% =0

The value of ¢ at some imaginary exterior points such as
a and b in Figure (3.3.b) are needed because when the difference

operator is applied at the first interior point, such as (2),
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h
—_—
B A B
c C
b B 3 2 ¢]
a A 2 1 2
B 3 2 3
c A B
y é) Geometry and node labels

R § .

(b) ¢ function

Figure 3.3, Geometrical plan and ¢ function.
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the value of ¢ at the first exterior point, a, is required. This

can be determined from the boundary condtions. We already determined

that along edge x = 0, the slope %g- is equal to %;.
Among the s approximations which may be used are:

9x

1) Two point difference, using known slope at edge and QA:

(PA-
h

Pa

3%y o
(ax)A

or

- - 3Py _ _ Na,
Py = % h(ax)A Py - h )
N
- n O (05

2
For h =‘% > Py =Py - H%— s Where ‘@A is already determined.

2) Two point,using known slope at A and the central difference

operator:
(355 - $2 " % Na $2 - %
9x 2h ’ 2 2h
A
or
¢, = ¢, - h(Na) (3.5)
2

For case h = % ’ @a = ?2 - E%—

Both of these approximations were tested for the plate of constant
stiffness. Approximation (2) led to values of Nx = Ny = N at all

points in the plate but approximations (1) did not.
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Approximation (2) was used for the first derivative in

this case, 1In this example the values at exterior points are:
o N
P TP 4
2
Na
L £ W

Next, the finite difference operator Figure (A.4 ) which
represents the compatibility equation (2.15) was applied at each

interior node. The right hand side of equation is zero, since

w =0,

3.1.1.a The Square Plate With h = %-, R =1/10

Stiffness of the plate at each node and intermediate nodes
is shown in Figure (3.4).
Application of operator to all nodes results in the following

system of linear equations

34.802542 -57.451238 10.341004 P -1.5384615

-14.3628095 93.0717725 -58.708963 P/ 5.9879807 Na2

2.5852510 -58.708963 122.8929425 P, 11.4951922



64

10 9 8 7
9 6 4 g 6
Il Il [ Il
8 3 ; 3 S
Il [ I [
7 4 2 1 Jz 4
Il I [ ’ Il
) 3 2 3 S
1 11 11 I
) 5 4 =) 3]
K
Node No l— = EE
By K
1 1.
2 3.07692
3 3.07692
L\/j 4 10.
5 10.
6: 10.
I 1.649484
II 6.4

Figure 3.4. Stiffness ratio at nodes and intermediate nodes

square plate R = 1/10.
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solving the equations, we get:

Py . 28204873
?, .23348206
Py .199145001

The membrane resultants can be computed using Equation (2.12)

For example:

Na2

- +233482-2(.199145)+3/32

N - e, (2Tt
X3 sy (2 h?

1.136927044N

a,2
(zﬁ

(Na?) =

similarly, stress resultants at each node are calculated; the results

for nodes shown, are given in Table 3.1.

Table 3.1 Stress function and stress resultant ratios at each node.

Square plate with R = 1/10, v = .25, h = a/4.

Stress function
[Node cp/Na2 Nx/N Ny/N Nxy/N

1 .28204873 1.55413 1.55413 0.0
2 .23348206 1.09879 .95865 0.0
3 .100145001 1.13693 1.13693 .03205
4 .12500 1.0 .52857 0.0
5 .0937500 1.0 .67636 0.0
6 0 1.0 1.00 0.0

6

5 3

4 1
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Equilibrium is satisfied along any section of the plate.

For example, along x = .25a, using the block approximation:

P = (N) (32 + () () + () (§) = -.9999999 Na ~ -Na
5 3 2
and along x = .5a:

P = (0, 3 (2) + (00,2 + (%), ) = -.9999999 Na

which are both very close to in-plane resultant at the edge of the

block along x = O:

P =-Nxa=-Na

3.1.1.b The Same Problem With R = .5

The same square plate is considered except the ratio of

- edge stiffness = .5.

stiffness 1s, R = — = = ffness

Resulting values of the stress function ¢, and the calculated

in-plane stress resultants at the nodes shown below, are listed in

Table 3.2.
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Table 3.2 Stress function and membrane forces

(R=.5 h=al4, v=.25

Stress function

Point o/Na? Nx/N Ny/N Nxy/N
1 .26057639 1.19625 1.19625 0.0
2 .22319361 1.04536 .97297 0.0
3 .19052623 1.02574 1.02574 -.01058
4 .125000 1.000 .8578 0.0
5 0937500 1.000 .90316 0.0
6 0.00000 1.000 1.000 0.00

As in the preceding problem,

sections of the plate.

3.1.1.c Uniform Stiffness Plate (R = 1)*

equilibrium is satisfied along all

uniformity, the solution will converge to the known results for uni-
form stiffness plate.

of verification.

It is anticipated that as the stiffness of the plate approaches

Thus, this case is considered as a measure

The results shown in Table 3.3, are as expected.

The membrane resultant ratios are equal to 1.0 everywhere and

shear stress is zero; these are exact values.

*Both E and thickness are uniform all over the plate.
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Table 3.3 Stress function and in-plane resultant ratios.

(R =1, h-%)

Point @/ Na2 Nx/N Ny/N Nxy/N
1 . 2500000 1.00 1.00 0.0
2 .21875000 1.00 1.00 0.0
3 .1975000 1.00 1.00 0.0
4 .125000 1.00 1.00 0.0
5 .0937500 1.00 1.00 0.0
6 .0000 1.00 1.00 0.0

3.1.1.d The Same Problem as in 3.1.1.a With R = 10

In contrast to the previous problems, in this case the
stiffness is increasing from center to edges and at the edges it

18 ten times stiffer than at the center. Results are shown in Table 3.4.

6
Equilibrium is satisfied along all sections. 5 3
4 " 1
Table 3.4 Stress function and membrane force ratios, square plate
R=10, h=7, v=.25
[ —
- Point @/Na? Nx/N Ny/N Nxy/N
1 .21667651 .32022 .32022 0.0
2 . 20666961 .78443 1.14660 0.0
3 .18215623 1.02229 1.02229 -.03332
4 .125000 1.00 1.38657 0.0
5 .09375000 1.00 1.171 0.0
\6 .000 1.00 1.00 0.0
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Improvement of the solutions

Since this is an approximate method, it is desirable to study

the convergence of the solution with increasing numbers of node points

(decreasing grid spacing).
problems are solved using finer grid spacings (h = % ¢ h =

Solutions to all four problems are obtained.

are shown in appendices B.l and B.2.

In this section the same

a
T6_) .

The node arrangements

is shown in Table 3.5 and illustrated in Figure 3.8.

The convergence of the solution for the case R = 1/10

Table 3.5 Convergence of the solution, square plate R = 1/10, v = .25

Grid ; ~values | by extrap N_, at extrapolation 3 pt.
spacing | at node 1 olation | node 1 results * extrap-
h/a olation
% . 28204873 1.55413
.27472129 1.59060
% .27655315 1.58149 1.59026
.27465677 1.59028
ic  |-27513087 1.58809
L\

* Richardson's extrapolation.
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2
@/Na Nx/N
.28 +
+1.65
275 4 g 11.6
X
"1055
27 T
4 8 16 a/h

Figure 3.5 Convergence of membrane solution

3.1.1.1 Analysis of Results from Membrane Solution.

1)

Uniform stiffness plate (R = 1)

Compared to theoretical values, in this case the finite
difference solution gives accurate results. The
difference operators agree exactly with the usual
difference operator for uniform stiffness plate.

Since the ¢ function is parabolic in this case, the
difference approximatiomsto the second and higher
derivatives of ¢ are exact, and the solution is exact,

a
even for h = Z The in-plane stress resultants are uniform
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over all the plate and there is no shear stress, as
expected. Distribution of Nx/N is shown in Figure
(3.6). The displacements vary linearly from the symmetric
centerlines (see Figure 3.7), and the strain is constant,
which agrees with elasticity theory. The solution
obtained with the grid-spacing, h =-% is exact, as are

solutions with finer grid-spacings.

@
na]lcce

Nx/N=l
G |
A B C E
(a) Plan : (b) Contours of Nx/N
— m u u u
| ] | [ |
A-A B-B c-C D-D E-E
N
(c) Profiles of .ﬁi
2 1 -1 -
SCALE

Fig“’:e 3.6. Force distribution for undeflected square plate R = 1,
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.375 .28 .1875.094 0.

K
Figure 3.7. Contours of in-plane displacement (U' = Uji) for

undeflected square plate, R =1, v = .25,

ii) Square plate with R = 1/10.
In this case, because of variation in stiffness, the
stresses vary over the plate. Thus,the ¢ function
is not a smooth, parabolic one as it was in the uniform
stiffness case and the solution would be an approximate
one. Solutions with finer grid spacing were compared

(see Table 3.5) and they show fairly good convergence.

Study of in-plane resultants in Figure (3.8) shows the

expected behavior,with a shifting of the load toward

the stiffer parts of the plate.

Equilibrium is satisfied along any arbitrary section
of the plate. Shear stress is zero at points of symmetry
but at nonsymmetric points, because of the load shifting

process, there is a small shear force created, as expected.
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| — <
.75
VST 1.0
\ i .
\ Vl.zs
\
s | . i.s0
A B ¢ O E
a) Plan b) Contours of Nx/N
A-A B-B c-C 0-0 E-E
¢) Profiles of Nx/N
2 1 -
SCALE

S543.2 .1

d) U'-displacement

F
igure 3.8. Distribu}:(ion of in-plane force (Nx/N) and displacement
(U' =10 -ﬁi) square plate, P. = 1/10.
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In-plane displacement patterns are illustrated in
Figure (3.8 d). It is observed that the displacement
normal to the edge is increasing as we approach the corners,
at which stiffness is less than at the center. This behavior
seems reasonable since there is no displacement restraint
along the edges.
iii) Square plate with R = 1/2
This problem can provide a good check on solutions,
because it lies between two previous cases. As
we go from the R = 1/10 case to the uniform stiffness
case (R = 1), we would expect the solutions to approach
the uniform stiffness results. Investigation of the
results in Figure(3.9) along with the results found by different
grid-spacings and comparing with cases (i) and (ii), indicates:
a) The convergence as the grid spacing becomes finer
b) Results for the stresses and displacements trend
toward those for the uniform thickness case as R 1is
changed from 1/10 to 1/2.
iv) Square plate with R = 10.
Solution for this case shows convergence as the grid
spacing is decreased, and it also agreeswith previous
results in that:
a) Load in the plate shifts toward the edges which
are stiffer as illustrated in Figure (3.10).
'b) Displacement normal to the edge is a little larger
at center of the edge a&d decreases toward the

corner; (see Figure 3.10 d).
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A-A B-8B Cc-C

c) Profiles of Nx/N
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d) U'-displacement

Figure 3.9. Distribution of in-plane force (N
K
(U' =vu 7§) square plate, R = 1/2.

0-D

b) Contours of N%/N
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1.25

L
\\\-
\
\
\\
1.0
.75
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| -

b) Contours of Nx/N

a) Plan
a-A B-8B c-c D-0 E-E
c) Profiles of N /N
X 2 1 d -1 -i

SCALE

.3 20 .1

d) U'displacement

Figure 3.10. Distribution of in-plane force (Nx/N) and displacement
K

o
(T' =vU ) square plate R = 10.
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3.1.2 Buckling

To study buckling and determine the critical value of the

applied compressive force, Nc , the equilibrium Equation (2.14)
r

is employed. The left hand side of this equation is approximated
by the operator Figure (2.8) and the right hand side is represented
by the difference operator Figure (2.9). The stress function,
¢, values obtained in the membrane solution for the plate with

no lateral displacement are used in the equilibrium equation. This
is acceptable,because in the stability analysis we are seeking

bifurcation of an initially undeflected plate.

Boundary conditions

In the case of buckling and postbuckling, the out-of-plane
displacement, w, has a considerable effect on the solution and
out-of-plane boundary conditions must be considered. 1In the simply

supported case, along edge x = 0, we have:

i) w=0
2 2
1) M =0 Z+v2% .
p'e 2 2
oxX dy
a2 82
But ——% = 0, so that (ii) becomes ——%-= 0. Using a difference
ay ax
approximation,
R A T T
axz h2

we will get at point B (Figure 3.3),



since wp =0, W, = -Ww_.

In the case of fixed support, the conditions are:
i) w=20
ow
1i) = 0
using a central difference approximation for slope we have:

w 3T
9x 2h b 3

3.1.2.a Buckling of Plate with R = 1/10.

Let us consider problem a) again (R = 1/10) with simply
supported edges and h --%.

In the right hand side of equation (2.14) the ¢ values have
already been obtained for the initially flat plate.

Applying operator Figure (2.8) at each point, and substituting
¢ values in the right hand side, the following eigenvalue problem
is obtained.

14.9375 -20.52500 4.2875| |w 3.885332 -.3885332 0 .1 w

1
2
-5.13125 10.86875 =5.5375|¢( w =%¥L- -.0686741 .2571788 .1198306|( w

-

2 2
T
1.071875 -5.5375 6.5725 LA [:.0040060 -.1421158 .2842316 wq
2
or: calling X = %2—
T
14.9375-.3885332» ° -20.52500+ .3885332) 4.2875 vy
-5.13125+.0686741\ 10.86875- .2571788x -5.5375+ .11983. v, )= 0

1.071875+.004006%  -5.5375+ .1421158\ 6.5725- .2842316\|w
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Solving leads to these eigenvalues,

5.20748

A= (20.42753

46.71190
or
5.20749
D D
r r
N = >‘_2 = 20.42753 -3
a a
46.71190
The corresponding eigenvectors are:
AL A2 A3
1.0 1.0 -.69810
.8444]1 .36007 1.0

.63179 -.57565 .03122

To check convergence, the same problem was solved with finer grid

a_
16”°°

The eigenvalues shown in Table 3.6 were obtained. The con-

spacings, (h = %) and (h =

vergence is fairly good and extrapolation improves the results

further,
Al 6.
5. I
4. .
[ , N
4 8 16 a/h

Figure 3.11, Convergence of eigenvalue, R = 1/10.
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Table 3.6 Eigenvalues of s-s square plate, R = 1/10,with different

grid spacings.

h/a ! 2 pt. extrapolation | 3 pt. extrapolation
1/4 5.20748
4.727158
1/8 4.84724 4.855814
4,847773
1/16 |4.84764

The first mode shapesin the three solutions are very close to each other.

3.1.2.b  Buckling of Uniform Stiffness Plate

As before, a plate with uniform stiffness is considered;
the solution can be used for an accuracy test since the exact solution
is known. The first eigenvalue obtained using different grid

spacings is tabulated below and compared with the exact solution.

Table 3.7 Comparison of first eigenvalues of different solution (R = 1)

h/a A A; exact difference |2 Pt. extrap-|3 Pt. extrap-
olation olation
1/4 18.74517 19.7392088 5%
19.734057
1/8 19.48684 1.2% 19.739197
19,738873
1/16 | 19.67587 3%
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It can be seen that the results are very close to the exact values

given in Reference (44);

2D
NCI‘ 2m —2
a

or, A, =3 - 2.2 . 19.7392088
The solution is satisfactorily converging to the exact value.
Three point extrapolation results in an error of less than 10_6.
Table (3.8) shows the critical loads obtained for two dif-
ferent loading cases and gives comparison with previous work as
well as exact values. It can be seen that even with 8 x 8 nodes
the results are satisfactorily within engineering accuracy. More
accurate results can be obtained by extrapolation. In Table 3.8,
the results given by Clough and Felippa are obtained by the finite

element method and Dawe used the '"discrete element displacement

method'", which in principle is the same as finite element method.

Eigenvalue problems for other cases (R = 10, and R = 1/2)
were solved, and the convergence was examined with increasingly

finer grids. Details will be discussed later.

3.1.2.1 General Buckling

So far, the problem was considered symmetric with respect
to both centerlines and the diagonals. Therefore, the solutions

are limited to symmetrical modes of buckling only and nonsymmetrical
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modes are absent. This means that AZ in this solution is not
the eigenvalue corresponding to the second mode, but it represnts
the eigenvalue corresponding to the second symmetric mode of buckling.
In this particular case the 2nd symmetric mode corresponds to the
5th general buckling mode.

To obtain more accurate results, the plate was considered
without imposing any symmetry. Thus, all possible degrees of
freedom were allowed, within the restrictions imposed by the choice
of grid spacing. The solution for each case was obtained and the

buckling modes and corresponding critical loads are studied in the

next section.

3.1.2.1.a General Buckling of Square Plate with R = 1/10.

i) Simply-supported boundaries.
Problem a 1is solved for general buckling (no
symmetry imposed) with h = a/8 and assuming simple
support along all edges. The first few modes of buckling
and the corresponding eigenvalues are shown in Figure
(3.12)

ii) Clamped edge.
The same problem as in (i), but with all edges clamped,
was solved. The first six modes of buckling and the

corresponding eigenvalues are shown in Figure (3.13).
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N, = 19.39

* 44
N, = 39.

* '
N4 = 61.61

Figure 3.12. Modes of buckling of square plate, R = 1/10,simply supported.

N® = 75.15
5 L]

NT = 76.52
. i

-f

*
Nl = 42.24

N = 66.60
; )

*
N3 = 66.60

+

)

4

Figure 3.13. Modes of buckling of square plate, R = 1/10, clamped,
(N* = Na2/D ).

*
N, = 91.60

N' = 103.32
; )

N = 118.28
. )
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+
+ + -

* 04 N = 46.7 N = 46.73

Ny = 20. , = 46.73 ; i
+

+ - +
- + +

* . 74.79 N' = 88.78 N = 89.28
N, X t - 88 . .

Figure 3.14. Modes of buckling of square plate, R = 1/2,simply supported.

- +
+ +
* = 49.56 N = 82.03 * = 82
Ny ) , ; ) N, = 82.03
+ +
+ -
+ - +
* = 114.20 N: = 127.30 *
N4 . 5 . N6 = 137084

Figure 3.15. Mbges of buckling of square plate, R = 1/2, clamped,
(N* = Na2/D ).
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*
NI = 19.48684 N; = 47.23375 N, = 47.23375
+ - + +
- +
+
* * *
N, = 74.98066 Ny = 88.75994 N, = 88.75994

Figure 3.16. Modes of buckling of square plate, R = 1l,simply supported.

+
+ + -
N = 49.567 NS = 82.131 N® = 82.131
X i ; i ) ]
+ - M +
- + +
%* * *
N, = 112.693 N = 124.778 N = 137.127

Figure 3.17. Moges of buckling of square plate, R = 1, clamped,
(N* = Na2/D).
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N, = 18.42

* - 70.04
N, )

Figure 3.18. Modes of buckling of square plate R = 10, simply supported.

+

NS = 47.00
2 - Y
+
+

N® = 83.01
: X

i/\:'[.

* = 52.09
Ny )

N* 101.78
4 .

+
N, = 81.37
+
+
NS = 113.02
s 3.

*
N, = 47.00

N* = 90.24
p )

Ny = 81.37
J = 8L.3

N*
6 = 133.16

Figure 3.19. Modes of buckling of square plate R = 10, clamped,

(8* = Na2/D ).
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3.1.2.1(b,c,d)

The plates with R =1/2, R=1 and R = 10 were solved
for both simply supported and clamped boundaries; the buckling
modes and critical loads are illustrated in Figure (3.14)

through (3.19).

3.1.2.2 Analysis of the Results

A, Simply-supported edges:
i) Uniform stiffness plate.
As discussed earlier, the critical load obtained for
this problem agrees very well with the exact solution.
Modes of buckling based on theoretical solutions are
combinations of one or more half-sine waves in each
direction. The first mode shape is one half-sine wave

in each direction, x and vy.

The first mode obtained by the difference solution was
examined and the deflected plate after buckling was
found to consist exactly of one half-sine waves in both
directions. First mode deflected shapes are shown on
Figure (3.20).
The second and third modes had two half-sine waves
in one direction and one half-sine in the perpendicular
direction.

ii) Square plate with R = 1/10.
If we investigate mode shapes and critical loads and

compare with the uniform stiffness case, the following
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properties are observed:

1.

First mode of buckling is not a half-sine shape,

but it is flatter at the center where the plate is
stiffer and more curvature appears near the edges
where the stiffness decreases. This phenomenon could
be predicted, based on the nature of the plate.

In the higher modes, in contrast to the uniform stiff-
ness case, in which the modes are formed by two or
more half sine waves in one or two directions, there
is a flat region around the stiff center of the plate
and larger bending near the edges. See Figure (3.20).
The second eigenvalue in the uniform stiffness case

is about 2.42 times the first one, while in the present
case the ratio of second to first eigenvalue is

2.03. This can be interpreted as follows:

The first mode shape has greater curvature in the
central region, while the second mode has zero cur-
vature in the center. Therefore, it is expected that

plates with more flexible edges correspond to lower

second eignevalue.

Case R =1/2.

Since this problem lies between the two previous cases,

mode shapes are something in between which supports the

aforementioned ideas. The ratio of second to first eigen-
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values is 2.33, which lies between 2.44 for case (i)
and 2.03 for case (ii).

iv) Case R = 10.
In this case, the variation of stiffness is reversed,
with the plate being stiffer near the edge. Investigation
of the mode shapes indicates more bending in the less stiff
central region and flat curvature near edges where the

plate is stiffer, supporting the ideas introduced above.

o
o
o] Simply-supported edges
— — —Clamped edges, R =1
=
o X/a
a0].00 0.25 0.50 0.75 1.00
o 1 1 1 )
()
o
< 10
T

1/2
1/10

Figure 3.20. Deflected shape for s-s and clamped plate.
(N=2.40N_ )
cr
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B. Clamped Boundaries.

i) Uniform stiffness plate.
The first eigenvalue is found to be 49.56763 which

is very close to the exact value, obtained by Levy (28),

of 5.037m2 = 49.71319.

Table 3.9 shows convergence and accuracy of the results,
and gives comparison with some previous works and the exact value.

Extrapolation of the results shows an accuracy of about .23%.

2
Table 3.9. Critical load ’ﬁ* = Ncr-%iﬁ of clamped square plate under

bi-axial uniform load, R = 1, v = .316.

Grid-spacin A Extrapolation Levy (28) |[Clough & [Classical
(h/a) L Felippa |Solution
1
% 5.625
% 5.02225 | s.037 5.399 5.31
5.29921
1
16 5.22997

The first buckling mode agrees almost exactly with the theoretical

2
mode shape (1- cos —25), for m = 1. See dashed curve in Figure (3.20).

ii) Case R = l/iO.
Similar to the s-s case, in the central region the plate
remains flat and sharper curvature occurs near the edges.
ii1) Case R =1/2.
As anticipated, results obtained for this problem lie
between cases (1) and (ii) supporting the validity of

the solutions.
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iv) Case R = 10.
As before, sharp curvature is observed in the central

region of the plate due to smaller stiffness of that

region.
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3.1.3 POSTBUCKLING

3.1.3.1 General Procedure

As discussed in the preceding chapter, a plate will stabilize
after first buckling. Immediately after buckling, the plate would |
be in a state of stable equilibrium with moderately large deflection.
Therefore, the large deflection theory discussed in chapter 2 can
be employed to study postbuckling behavior of the plate up to the

secondary buckling point.

In this section, the procedure followed will be discussed
and the results will be analyzed.
For a solution to the large deflection behavior of a plate,
the equilibrium and compatibility conditions must be satisfied;
both equations are coupled in w and ¢. In this case, in addition
to the variation in stiffness, geometrical nonlinearity caused by
large deflection will also be involved.
To solve these coupled, nonlinear equations, an iterative
technique is employed. A schematic flow chart of the procedure
is given in Figure (3.21). The steps of the procedure in Figure (3.21)
are as follows:
Step 1 - Solve the equilibrium equation (2.14)
The left hand side is approximated by the operator of Figure
(2.8), which will be applied at each node to form the matrix
[Aw]. To calculate the right hand side of this equation,
initial values for ¢ and w are needed. w is assumed

consistent with the first buckling mode shape, and the
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Apply load N, (N > Ncr)

3

Input ¢ and w based on previous

solutions

Solve equilibrium equation

(2.14)

LA

Get new w

Solve

compatibility equation
(2.15)

ar
«0

Get new o

Yes

Increase Load
N =N+ AN

max

No

Stop

Figure 3.21. Flow chart of iterative procedure.
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@ values calculated for the undeflected plate are used.
Second derivatives of ¢ and w can be approximated by
finite differences to obtain the known vector {Ql}.

Then the linear system of equations, [Awl{w} = {Ql}, is
solved and the new values of W calculated.

Step 2 - Solve compatibility equation

To solve compatibility equation (2.15), the difference
operator, Figure (2.10),which represents equation (2.15),
is applied at each node and matrix [A] formed.

The right hand side of this equation includes derivatives
of w only. The values of {w} computed in step 1

are used along with the finite difference approximation
to the deriyatives to form the right hand side vector, -
{B}. The linear system of equations EA]{QI} = {B}

is solved, resulting in new values for the stress function,
Py

Step 3 - Taking the new values of w

1 and 9, steps 1 and 2 are repeated,

Step 4 - Convergence
After each iteration, the new values are compared with
the old ones. If they are close enough, the iteration will
be stopped and the last computed values of ¢ and w
will be accepted as the final solution for the given
load. If the new values are not satisfactory, the iteration
procedure will continue. The convergence was accelerated by
using the convergence-inducing technique using 3 successive
values, as discussed in reference (53) and it proved to

be very useful.
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Step 5 - The applied load is increased by a small amount,

AN, and steps 1 to 4 repeated again to get the solution

corresponding to load N + AN,

The above iterative procedure was continued until the

applied load approached the second critical load. Near

the second critical load, the equilibrium approaches in-

stability and it was observed that the solution would not

converge.

More details of the numerical solutions are discussed in

the following sections.

3.1.3.2 Numerical Solutions

In this section some problems will be solved and the results

analyzed.

a)

Square plate with R = 1/10, h = a/8

D
A square plate with R = BEQEE—— = 1/10
center
subject to an in-plane load, N, on all four edges,

was considered. A grid spacing of h = %- was first
considered and later the problems were solved with the
grid spacing of h = %E for more accuracy.

The first critical load was found in (3.1.2 a) to be

N = 4.84724 2%- and the ¢ values are known from Table
a

(3.1). A deflected shape, w, was assumed based on the

first mode shape obtained from the buckling solution.
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D
Initially, N = 5. —% was assumed; this is slightly
a

above the critical load. The transverse load, q, was

taken to be zero.

The iteration was continued until the new values of ¢

and w differed from the previous values by not more
W, =W

than a predetermined tolerance of .5%; (| | < .005).

w

The last values of ¢ and w were accepted as converged
values and based on them the in-plane forces and
displacements, as well as the bending moments and

. bending stresses, were computed.

In the very first step, convergence depends greatly

on first input values; 1in the choice of these, ex-
perience will play a major role. ;n the following steps,
convergence was achieved after about ten to twenty

iterations - depending on the size of load increment.
D

—2’
a

which 1is ten percent of initial load. Variation with

In this case, the load increments were taken as .5

load of the lateral deflection, w; in=plane displacement, u:
membrane force, Nx and bending moment, Mx’

are plotted in Figure (3.22).

At the end of each step, having ¢ and w at each
node, we can calculate in-plane stress resultants from

the difference approximations of equations (2.31) and
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the bending moments from the difference approximations

of equations (2.35).

So far, we have enough information at each node to
illustrate the behavior of in-plane forces, bending
moments and principal stress; they are plotted along
the centerline of the plate in Figure (3.23), for three
different load levels. The variation of maximum
principal stress with load increase is also plotted

in 3.23 d.

N
Contours of the in-plane force ratio, 7?, at the three

different levels of loading are shown on Figure (3.24),
and the distribution along various sections of the plate
is shown on Figure (3.24 e). The variation of the
in-plane force at the plate center with load increase

can be seen on Figure (3.22 c¢).

It should be noted that Ny can be determined from Nx

plots by considering symmetry.

To investigate in-plane displacements, equations (2.33)

and (2.34) can be used.

We have already determined Nx and Ny’ and the derivatives
of w can be easily obtained by difference approximations;

we are thus able to compute u, = i and v_ = v

9x y 9y
at each node. Then (pg). = (bu) and (EX) = (bv)
X’y i Yy 4 i’
where the right hand sides (bu) and (bv) are computed

constant values. Applying the difference operator to

the left hand sides will give:
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(AU] {u} = {bu}

(Av] {v} = {bv}

In order to obtain a solution to these equations, we

need to know some boundary values of u and v.

In this case, we will take advantage of symmetry. Since
the geometry and the loading is symmetric, we can conclude

the following (see Figure 3.3):

i) Because of symmetry in x, the u displacements
along the axis x = %» will be zero.
ii) Because of symmetry in y, the v displacements
. along axis y = %- will be zero.
iii) Symmetry about diagonals implies that u = v along

the diagonal, x = y, at nodes 1, 3, and 6 in Figure (3.4).

Taking advantage of these assumptions enables us to solve
a system of linear equations and obtain the u and v

values for each node.

The patterns of u displacements at each load step
and the contours of equal displacements are given in
Figure (3.25). The v displacement behavior can be

easily visualized considering symmetry.

The variation of in-plane displacement with load at some

specific points is illustrated in Figure (3.22 b).
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To compare the behavior of an imperfect plate, a small
initial deflection was imposed by applying a small
transverse load, q, at node 1 only. The plot of w

vs load is shown in Figure (3.22 a).

Convergence of the solution was checked by solving the
problem using two different grid spacings (h/a = 1/8
and h/a = 1/16) and the results proved to be very close.
For example, corresponding to N = l.SNcr the central
deflection was found to be 3.335299 for h = = and

8

3.3735 for h = %E a difference of only 1%Z. For more

accurate results in all succeeding analyses, solutions

with h =2 are given.

16
!
\
\ !
1
| | -
5.4.3.2 .1 0 4.3.2. 1. 0 50. 10. 0.
a) Undeflected plate b) Buckled (N/Ncr=1.15) c) Buckled (N/Ncr-Z.O)

Figure 3.25. In-plane displacement (U = ua/ti), square plate, simply-
supported, R = 1/10.
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b) Square plate with uniform stiffness, R = 1.
As before, this problem, for which solutions have al-
ready been published, is undertaken in order to investigate

the accuracy of the difference method.

Just as in problem (a), the iteration procedure was fol-

Dr

lowed, starting with the load N = 20 =5 , which is
a

slightly above the critical load, N__ = 19.48 % .

a
load increment was taken as 2.5, which is about 12.5%

The

of the initial load and the tolerance range was taken
as .5%. Convergence was usually achieved after

7 or 8 iterations.

Graphs of the w and u displacements versus load are
given in Figure (3.26).

Plots of the membrane forces, bending moments, principal
stress along the centerline (y = %), and principal

stress versus load are shown in Figure (3.27).

For further illustration, the contours of in-plane

force ratio, 2? and its distribution along various
sections of the plate are shown in Figure (3.28).
Figures (3.26 c¢) and (3.26 d) show the variation with
load of membrane force and bending moments at the center

of the plate. In-plane displacement, u, is illustrated

by the contours in Figure (3.29).
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1.0 .5 0. 1.51.0 .25 0 15.10.5. 0 0
a) Undeflected plate b) Buckled (N/Ncr = 1.15) c¢) Buckled (N/th = 2.30)

Figure 3.29. In-plane displacement (U = ua/ti), square plate, simply-
supported, R = 1.
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Comparison of the results

In order to compare the results obtained'by the iterative
difference method with some currently available results,

a square plate under uniform lateral load, q, was solved,
and the results compared with those of Kaiser [26] and

Basu [5].

Figure (3.30) demonstrates the very close agreement with

the previous works.

o
e
~]
o
i
m—i
(=]
[e=]
=5 A Kaiser
0 Basu
—— Present result
o
< .
o
e
.00 10.00 20.00 30.00 40.00
qaa/Doti =10

Figure 3.30. Square plate under uniform load, boundary free of

any in-plane force, simply supported v = .316.
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c,d) R=1/2 and R = 10.
Problems c¢ and d were also solved similarly and

corresponding graphs are illustrated in Figures (3.31)

to (3.38).
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Figure 3.34. In-plane displacement (U = ua/gi), square plate, simply-
supported, R = 1/2.
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Figure 3.38. In-plane displacement (U = ua/ti), square plate, simply-
supported, R = 10, :
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3.1.3.3 ANALYSIS OF POSTBUCKLING RESULTS

3.1.3.3.1 SIMPLY SUPPORTED EDGES

a) Uniform stiffness plate:

Lateral Deflection

The plot of w-displacement versus edge load, Figure
(3.26 a)shows a rapid increase in w immediately

after buckling, continuing in a smooth manner.

Consider the plate under combined loading (bending

T mw—ON
Kb Aw center’

the slope of the curve is the instantaneous stiffness.

and membrane) and introduce

Before buckling, w at the center of plate is
increasing almost linearly. As the critical load is
approached, the stiffness, E£, begins to decrease
rapidly. Finally, after passing the buckling range,
it increases again and remains almost constant but less

than the initial stiffness.

This reaffirms that, in contrast to beams, the plate

has the capability of carrying load after buckling, but
with a lower equivalent bending stiffness. This be-
havior is in agreement with previous research and results

published.
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Convergence of the Solution

To check variation of the solution with grid spacing, the
problem was solved with different mesh sizes and the w

results for each solution are shown in Figure (3.39).

Study of the plots leads us to the conclusion that:
i) the solution converges with decreasing mesh size.
a

1i) solution obtained with grid spacingh = 3 is reasonably

accurate for engineering purposes.

Investigation of membrane forces, bending moments, and
in-plane displacements also indicates convergence, but the
rate of convergence in bending moments is much greater
than the others. This is attributed to the fact that the

w function is very smooth.

o

Q

=

o

w

=

o h = a/8

o

'_0'_ ———==h = a/lZ
—-— h = a/l16

o

w

o

o

e

%00 1.00 2.00 3.00 4.00

Figure 3.39. Convergence of the solution with mesh size.
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In-Plane Stress Resultants

In the uniform stiffness plate, because of symmetry in
loading (hydrostatic), Nx and Ny are equal to N every-

where before buckling.

After buckling, there is a change in distribution of the
in-plane resultants as illustrated in Figure (3.26),which

shows a tensile stress resultant at the center of the plate.
This cén be explained as follows: due to buckling, the

plate will deflect a large amount - especially in this case with
free in-plane displacement and no restraint on lateral slope.
In this deflected position, the plate is analogous or similar

to a shallow spherical shell with horizontal load applied

all around the edges. L~

The variation of membrane resultants

agrees, qualitatively, with that of a shell. Shell analysis
shows that, due to this type of loading, N¢ (which is analogous
to Nx) along the axis, y = %, has its maximum near the edge,
decreases towards the center and sometimes becomes tensile

at points far from the edge as discussed in reference ( 7).

Ne, the membrane resultant in the direction of the parallels,
will be the major load carrying element and will have values
much greater than N¢, the meridional resultant, near the
edge. In this case, Ny along the axis y = a/2 1is the

counterpart of N. in a shell and shows similar behavior.

6

Equilibrium was examined along different arbitrary sections
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and the results were very good.

Referring to the paper by Kennedy and Prabhakara [27],
although the conditions are different, their results show the
existence of a tensile force at the center of a plate under
edge compression.1 Figure (3.26 c) illustrates the variation
of the membrane resultant Nx at the central point. It
shows that before buckling, in a flat plate or the small
deflection case, the compressive in-plane resultant is in-
creasing in proportion to the applied load. After buckling,
however, it will start to decrease (sharply in a flat plate
and smoothly in the small imperfection case) with an increase
in the edge load and subsequently the deformation behavior

of the plate is similar to that of a shallow shell.

Bending

Since the bending moment is a function of curvature, immedi-
ately after buckling, when considerable deflection occurs,
bending moments will be developed within the plate. The
Figure (3.27 b) shows the variation of moment along the

centerline, y = a/2, corresponding to different loading stages.

At the beginning, maximum M_ is at center, but as the
deflection increases and a flat region is formed around the

center, the location of M% maximum shifts toward the edges.

lThis phenomenon was studied by W.A. Bradley, (author's adviser),
using a frame-work approximation (or analogy) and the behavior proved
to be qualitatively in agreement with the above result.
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Principal Stress

Due to dependence of principal stress on both in-plane
forces and bending moments, it is varying with load both

in distribution and magnitude. Since maximum stress is one
of the major keys to design problems, the maximum principal
stress is plotted versus load and the point at which the
maximum is located is shown on Figure (3.27 c). It is

seen that due to edge loads appreciabl§ above

critical load, the maximum principal stress is located

at the middle point of the edges in the postbuckling range,

while in membrane analysis it is uniform all over the plate.

Note
The principal stress is a function of both membrane and
bending stresses and these éwo are functions of thickness
in different degree, Thus, the principal stress would vary
with reference thickness and the values given here are
valid only for this case, (i.e., unit thickness plate with

E varying).

In-Plane Displacements

Study of graphs (Figure 3.29) shows that before buckling,
displacements are linear as expected (constant strain).
However, after buckling, geometrical nonlinearity caused

by w 1introduces some changes in their patterns. As
illustrated in (3.29), along edge x = 0, the u displacement

(normal to the edge) 1s increasing from the corner towards
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the center, which is consistent with lateral bulging. The
v displacement along the x = 0 edge (same as the u
displacement along the y = 0 edge) shows larger compressive
strain at center and smaller strain near corner; this is
caused by the considerable compressive membrane force in

this direction near the middle of the edge.'

The in-plane displacement is illustrated in (3.26). It
shows that:
Before buckling, the edge displacement is linear

with respect to applied load.

After buckling, the rate of in-plane displacement u,

will increase at the corners. DefineéE——————— =K the

’
corner n

equivalent in-plane stiffness; it will decrease with in-
crease in deformation. Also, there will be much greater
reduction in E; at the middle of the edge (x =0, y = a/2),
than at the corner,

Variable stiffness plate R = 1/10

Lateral Deflection

According to graph (3.40), in this case the lateral de-
flection w, follows the same pattern as in the uniform
stiffness case, However, when the lateral deflection gets
moderétely large, a wide flat region occurs at the center
where the plate is stiffer and there is sharper curvature

near the edges, because of the smaller stiffness.
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Membrane Resultants
Study of Figure (3.22, 23, 24) shows similar behavior in

membrane resultant as for case (a) the uniform stiffness plate.

Bending
Figure (3.23.b) shows bending moment behavior similar to

that of the uniform stiffness plate. The only noticeable
difference is that the location of the maximum M% moment

is closer to the edge because of the greater curvature

near the edge, although the moment is a function of stiffness

as well as curvature.

Principal Stress

The maximum principal stress is found to be located at a
point close to the edge in the postbuckling range; whereas,
before buckling and during the first stages of postbuckling,

the maximum stress was at the center.

In-Plane Displacements

The graphs of Figure (3.25) show that along the edges, the
displacement normal to edge is almost constant, as in the
uniform stiffness case. As we move towards the center,
however, we observe a change in the pattern which can be
explained on the basis of the force distribution and the
stiffness. Along sections parallel to y, near the center

x & a/2 and moving toward the edges, the reduction in stiffness
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1s greater than the reduction in the membrane forces.

Therefore, there is less displacement at the center and
larger displacement near the edge.

As a quantitative example, as seen in Figure (3.24.a), along
the secti =2 at point ( =2 = 2) N = 1.12N
ection, x = 7 poin X=20 Yy =30 Ny . s

and the in-plane stiffness Et = '325(ET)r' At point

(x - g’ y = O) on the edge, Nx = .64 while Et = nl(Et)r-

Thus:
N 112N N a a
€x = E = ————0325(Et)r = 3,446 —Etr at point (Z , '2—

N
X .64 N N a
Ex TEt 1 Et_ 6.4 Et; at point (Z', 0) on the edge

(Note: Poisson's ratio will not cause a major change.)
g

After buckling, there is also a change in displacement normal

to the edge, similar to that explained in case (a).

R =1/2
This case is between cases (a) and (b); thus, we expect
the results to be so. All results obtained do lie between
the two previous cases and exhibit behavior already
explained.

R =10

Lateral Deflection

The graph of Figure (3.35a) shows the general behavior of the
center deflection to be similar to that of the uniform stiff-

ness case; for the lateral deflection along the center line,
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Figure (3.40) shows an expected difference compared to previous
cases, in line with the stiffness variation. There is greater
curvature in the central region in contrast to case (b), which

has a flat region in the center.

Membrane Resultants

The overall effect of large deflection after buckling is

similar to that in previous cases.

Principal Stress

The maximum principal stress always occurs at the middle

point of the edges.

Bending

Studying graph (3.36 b), we observe that Mx maximum, occurs at
a point closer to the center, where considerable curvature

takes place.

In contrast to previous cases, My reaches its maximum not
at the center but at some midpoint. This is because

the stiffness is minimum there and My is a function of

both D and curvature, although the curvature in y-direction

is maximum at the center.
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In-Plane Displacement

Before buckling, in contrast to case (b ), we observe a

smaller u-displacement in the vicinity of the centerline
(y = %). This is consistent with the in-plane force dis-
tribution and the stiffness distribution as calculated in

case (b).

After buckling, the in-plane displacements due to N are
increased by the effect of large lateral deflection; also,
the region having more closely-spaced contours is moved

away from the center toward the edge.

o X/a
c0|.00 0.25 0.50 0.75 1.00
. | 1 1 —)

10

1/2
1/10

Figure 3.40. Deflected shape for various R values.

Simply-supported edge; N/Ncr = 2.40.
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3.1.3.3.2 CLAMPED EDGES

The same stiffness variations discussed for plates with
simply-supported edge are considered in this section, but
for plates with clamped edges. The corresponding plots are
given in Figures (3.41) to (3.56), which show the displace-
ments and stress resultants. The behavior is largely
similar to that for the simply-supported plate; notable

differences are mentioned in the following.

In-plane Stress Resultant

Overall behavior of the in-plane forces ig similar, but in
the simply-supported case they decrease more rapidly at the
center, For example, compare Figure (3.26c) with (3.45c)
for the uniform stiffness plate. The plate with simple
support shows a much greater drop in Nx at the center

corresponding to edge load of two times the critical load.

Bending Moments

Bending moments exhibit the greatest differences between
clamped and simply-supported boundary conditions. Their
magnitudes and distributions are appreciably different
as a comparison of Figures 3.22 d and 3.23 b with

Figures 3.41 d and 3.42 b, for example, shows.
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In-plane Displacements

The in-plane movement of the plate in the postbhuckling range
follows almost the same patterns for the simply-supported
and clamped cases. However, the plate with clamped edges
undergoes smaller displacement along the edges. Compare

Figures (3.25) and (3.44).
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Figure 3.44. In-plane displacément (U = ua/ti), square plate, clamped
edges, R = 1/10.
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a) Undeflected plate b) Buckled (N/Ncr = 1.10) c) Buckled (N/Ncr =2.90)

Figure 3.48. In-plane displacement (U = ua/ti), square plate, clamped
edges, R = 1,
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Figure 3.52. In-plane displacement (U = ua/ ti), square plate, clamped
edges, R = 1/2,
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Figure 3.56. In-plane displacement (U = ua/ti), square plate, clamped
edges, R = 10.
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3.1.4 OPTIMIZATION

The main purpose of this study is to investigate the ap-
plication of the difference method to the variable stiffness plate.
The goal is to design a plate with a stiffness variation such
that it be optimum in .some respect.

For example, we may be concerned with weight or the amount
of material used, as is the case in most space structures, aircraft,
etc. In these cases, we are seeking the form of Yariation in thick-
ness of the plate for which the plate will be most efficient from
the point of view of either stress or displacement. Following
are some examples:

a) In case of a flat plate (membrane solution), we may

want to use a certain volume of material to construct
a plate which will result in minimum in-plane displaée-
ment at some edge point, or ir a minimum stress at some
point. It might also be desired that due to nonuniform
load, the stress be almost equal everywhere, or the

maximum stress be minimized.

b) In stability analysis, we may want to utilize a constant
amount of material to achieve maximum critical load,
or to minimize the center deflections immediately

after buckling.

c) In the postbuckling range, there is the possibility
of many different forms of optimization. For example,

corresponding to some combination of lateral and edge
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loads within some range, we may wish to maintain an almost
uniform principal stress to prevent local yielding. Also,

it may be desirable to minimize the central deflection.

OPTIMIZATION EXAMPLE 1

Consider the square plate of

a -
Figure (3.57) with thickness
varying from the edge toward
the center as shown. We . \ < R
want to find the optimal @
slope (ratio of %g) so that
the critical load under bi- ‘ —X
axial compression t:e]: Itc
o \e(x)

be maximum for a
Figure 3.57.

constant amount of material.
For a square plate of thickness, t, and sides, a, the total

volume of material used is

For a variable thickness plate, if the variation in thick-
ness is linear, the thickness t(x) at point x is

t -t

c e
t(x) t, + al2 X

where

tc = thickness at center
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te = thickness along the edges
t

Let ?3 = RT= Ratio of edge thickness to thickness at
c

center. Then:

2x
t(x) = tc[RT+(l-RT)-;-]

and the volume is

a
- 2 2x 2x
v=4 fo (a-2x)t_(RT+ = -RI-)dx
a2t
— 2,1 + 2RT,_ c
vV = 4a tc( 12 )= 3 (1 + 2RT). (1)

If the volume is limited to the original value, then

€, : 3v . for v = azti (t; = unit thickness)
a” (1+2RT)
3ti

te = (1+2RrD) ()

To maintain a constant volume, the center thickness must

vary with ratio RT, according to equation (ii).

For example:

RT tc/ti v
2

.1l 2.5 a T1

1 3 "

2 2

1. 1. "

2 .6 ”

10

|-
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It is evident that as the ratio, RT, and the center thickness,
tc’ change, the in-plane and flexural stiffness of the

plate at each node will change.

A subprogram is provided to compute center thickness and

stiffness at each node in each trial for a given RT.

The buckling problems were solved for a family of given
ratios, and the variation of critical load with ratio RT,
is shown in Figure (3.58). In this problem the plate is

simply supported along all edges and v = ,316,

Graph (3.58 a) indicates that the maximum critical edge
load for a given volume of material occurs with RT 3 .2.
To find a more accurate value, the trial is continued with
finer intervals between RT = ,15 and RT = ,25. The larger

scale graph (3.58 b) shows that the maximum

. * .
critical load is (Ncr)maximum 25.66, corresponding
t
to RT= EE = ,22. Thus, consider a simply supported square
c

plate under bi-axial compression.
From the stability point of view,the minimum material can

be used if RT = .22 for the linear thickness variation

25.66-19.43
19.48

over the buckling load for a uniform thickness plate of the

introduced in Figure (3.57). An increase of = 31.67%

same volume results.
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Note
i) The result obtained above is not the absolute optimum.

For the given amount of material, a still greater critical
edge force could no doubt be obtained with a thickness
variation other than linear. This form was used for
practical simplicity.

ii) For other types of loading or boundary conditions,
appropriate forms could be proposed and analyzed by

trial.

EXAMPLE 2
The plate in this example is the same as in example 1,
but with clamped edges; results are shown in Figure (3.59).
In this case, the maximum critical load is found for an RT
of approximately 0.8.
Figure (3.59 b) is obtained by taking finer intervals
(ART= .0l) between .6 and .8. This graph indicates the maximum
critical load is (N:r)max. = 473.962, corresponding to RT =.71.

51.20-49.56
49.56

over the plate of uniform thickness. In the case of fixed support,

The results show an increase of = 3,37

from the stability point of view, it is not worthwhile constructing
a plate of variable thickness. The effect of variation in thickness
on other aspects of the problem such as internal forces, bending

moments and lateral deflection will be analyzed later in this chapter.
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Figure 3.58. Critical load vs RT,for a simply supported square
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Figure 3.59. Critical load vs RT= for square plate of constant
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3.1.5 SUMMARY

In Section 3.1 a method was developed for force boundary
condition problems, and the related computer program was applied to
a variable stiffness plate and the results were discussed extensively.

It seems necessary to emphasize that the plates discussed
in Section 3.1.1 through 3.1.3 have uniform thickness with varying
E, so that patterns of membrane and bending stresses follow exactly
the pattern of in-plane forces and bending moments respectively.
Solutions to similar problems are not available in the literature;
however, comparison with the uniform stiffness plate,as a special
case, supports the accuracy of the solutions. Convergence
of the solutions with an increasing number of nodes strengthens con-
fidence in the method.

In Section 3.1.4 the weight-saving advantage of a variable
thickness plate,from the stability point of view, was demonstratéd as
an example. However, one can apply the optimization to any possible
aspects of stress or strain as desired.

Figure (3.60) shows variation of central deflection with load
for all cases. The graphs show that the plates with less stiff
edges undergo larger lateral deflection because,in the postbuckling
range,the main portion of the in-plane load is carried by portions

of the plate near the edges.
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Fj4§ure 3.60. Central deflection for different R values, s-s and

clamped edges.
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3.2 DISPLACEMENT BOUNDARY CONDITION

In this section, problems with specified in-plane displace-
ments along the boundaries will be considered.

A computer program has been developed to solve this type of
problem based on the procedure discussed in section 2.3.

Plates with uniform thickness are analyzed, as well as variable
thickness plates. The results are compared with previous works or
exact solutions when they are available. As an example, optimization
of the thickness variation, from the stability point of view, is

also considered.

a - Geometry and Loading Conditions

For an example, let us take a plate under uniform edge
&isplacement due to thermal load, and examine the membrane, buckling,
and postbuckling behavior of plates of different thickness variation,
with both simply-supported and clamped boundaries. Figure (3.61)

shows a plate, surrounded by a

[ a -t
v —

rigid frame that undergoes a

2Ll L

temperature change of either

AN\

expansion or contraction.
The strain in the frame will

impose a state of displace-

SO NNNANNSSSSS

SO ANNNNNN

ment on the plate edges. 7777777777777

The strain in the frame is

E = a{AT)
Figure 3.61. Plan



where «

T
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= coefficient of thermal expansion of the frame and

AT = temperature change.

Note

1)

i1)

It is assumed that the effects of the reaction forces
of the plate edges are negligible, so that the stresses
created within the frame have negligible effect on the
strain and displacements of the frame.

Because of symmetry, we analyse only a quadrant of

the plate.

31 _ _32__ _33___3 35 36
r T I T-—7--%%
: | I I : i

0L -2 2l 5 24125
|
|
|

29, __20 13 14 15 16
|
|

28 i___lg 12 7 8 9
[
|

27 1
| _ 18 11 6 3 4
|
|

26, 17 10 5 2 1

Figure 3.62. Node arrangement, square plate, h = a/8

Since, because of symmetry, the centerlines of the
plate will not move, displacements enforced along the
edges will be as follows:

1 - Along edge x = 0, u displacement would be constant

%1
and equal to - 3 aAT.



158

2 - Because of constant strain (in frame), the v-displace-
ment along x-edge will be linear with respectto

y, so that v =°TAT(y - %).

The boundary displacements are tabulated in Table

(3.10).

Table 3.10 . Boundary displacement for square plate of Figure 3.62

Point u/- if%ﬁi v/- ff%ff
17 1. ' 0.
18 1. .25
19 1. .5
20 1. .75
21 1. 1.
22 .75 1.
23 .5 ’ 1.
24 .25 1.
25 0. 1.

Based on the given data, the problem is solved and the results

analysed step-by step in the following pages.
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3.2.1 MEMBRANE SOLUTION

In the solution for in-plane forces and displacements,
assuming zero w-displacement, the in-plane equilibrium equations
can be approximated by finite differences to obtain a set of linear
equations in u and v. (See equation (2.43)).

The equations are solved and in-plane forces and displace-

ments lead us to following conclusions.

a) In case of a uniform thickness plate, the equilibrium
equations (2.16) and (2.17) are linear differential
equations, and in this symmetric case the solution leads
to exact values of membrane stress resultants and dis-

placements, even with very coarse mesh sizes.

The theoretical solution predicts constant strain in both

dirgcfions.

=— (For (x,y) < %)

and the in-plane stress resultants are

-2u u,
N =N = Etz (e +ve ]l = Et L (1+v) ( °)] - 2Bt _°
y X 1-v X y l—\)z a (l‘\)) a
* a2 _ "2t u, 200312 uod
N=ND a7 ¢ )= -(1+v) (24) —-
o 3 t
Eti i
uoa
or, calling — = U,
ty
*
N
Ux = =24 (1+v)
o N*
and for v = .316, X = 31.58
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Similarly,
X,
ﬁ: = -31.58
N =0
Xy
and
a 2uo a
u=u(x) =G -x) =— (5 -x)
a 2v° a
v=vy) =eG-y) =—/— G-y

These values agree exactly with the solution obtained with
the computer program listed in Appendix C. Contours of the membrane
force, Nx , the principal stress and U-displacement are shown in Figure

(3.63). Ny and v-displacement can be obtained considering symmetry.

N; = 31.58 o' = 31.58
U U,
1. 75 50 25 0
a) MEMBRANE FORCE.N’:{/Uo b) PRINCIPAL STRESS 0"/U° ¢) U-DISPLACEMENT

FIGURE 3.63. CONTOURS OF MEMBRANE FORCE,PRINCIPAL STRESS, AND U-DISPLACEMENT
UNDEFLECTED SQUARE PLATE. RT=1,
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SOLUTION OF PLATES WITH VARIABLE THICKNESS

To observe the behavior of a variable thickness plate, two

different problems were solved. One with RT = .25, and the other had

edge thickness

RT = 2, and the results studied. Parameter RT = center thickness

is the thickness ratio.

b) Square plate with RT = 1/4

Figure (3.64) illustrates membrane forces, principal
stresses and in-plane displacements; from the figures, we can
conclude the following.

i) Figure (3.64 a) shows shifting of the load carrying
toward the center where the plate is thicker . The
shifting of the load becomes greater as we move
toward the center, and it is nearly uniform along
the edge.

ii) Although there are larger in-plane stress resultants
in the central region, because the thickness is
large,the stress is smaller. Figure (3.64 b) shows
the principal stress within the plate. It is
observed that the minimum stress exists at the

center andit becomes larger toward the thin edges.

iii) 1In Figure (3.64 c), the wide-spacing of contours of in-
plane displacement U 1in the central region, indicates
small strain corresponding to smaller stress in that

region.
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= 20 ~————50
— 140
25
30
30
F 35 ‘ 20
50 40 1. .75 .50 .25
a) MEMBRANE FORCE.N; /Uo b) PRINCIPAL STRESS O"/ Uo €) U-DISPLACEMENT

FIGURE 3.64.CONTOURS OF MEMBRANE FORCE.PRINCIPAL STRESS.AND U-DISPLACEMENT
UNDEFLECTED SQUARE PLATE. RT=1/4

¢c) Square plate with RT = 2,

The same problem is considered except with

edge thickness
center thickness

RT= = 2. and the results obtained

are shown in Figure (3.65). This leads to the
following conclusions.
i) Supporting discussion of the preceding section, less
load is carried by the thin central region, and as
we move toward the edges, more load is transmitted.
ii) Figure (3.65 b) shows larger stresses in the central
region.
iii) Contours of in-plane displacements are consistent
with part (ii); 1i.e.,6larger strain occurs in the central

region,due to larger stresses.

Clearly, the out-of-plane support condition has

no effect on the membrane solution of the plate.
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It should be noted that Figures (3.63), (3.64) and (3.65)
correspond to plates with RT = 1, 1/4 and 2, respectively,

but with thickness such that total material volume is the

same 1n each case.

P —— 30
30 35
dss (140 ,
1. 75 S5 25

Q@) MEMBRANE FORCE.Ny/U_ b) PRINCIPAL STRESS 0" /U €) U-DISPLACENENT

FIGURE 3.65.CONTOURS OF MEMBRANE FORCE.PRINCIPAL S8TRESS.AND U-DISPLACEMENT
UNOEFLECTED SQUARE PLATE, RT=2.
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3.2.2 BUCKLING SOLUTION

As is discussed in Section (3.1)? the buckling solution
is based on the eigensolution of the out-of-plane equilibrium
equation (2.40). Cn the right hand side of this equation,the effect
of w on in-plane forces is considered to be zero. Thus, in the matrix
[(Bw] of Equation (2.49), the in-plane forces obtained from the
membrane solution of the unbent plate will be used. The eigenproblem
will be solved, giving the critical edge displacements and the
corresponding buckled mode shapes. '

Following are solutions to some stability problems.

3.2.2.1 Convergence Check and Comparison

In order to check the convergence and consequently the
accuracy of the buckling solution, a uniform thickness plate
(problem 3.2 a) was solved using different mesh sizes. The critical
loads obtained in each solution are shown in Table (3.11) for
s-s boundaries. Also,the values of critical displacements are
compared to exact values.

Convergence of the solution is graphically illustrated in
Figure (3.66) for s-s boundaries.

Table (3.12) and graph (3.67) show the convergence pattern
of critical displacement for the case of boundaries fixed against
out-of-plane displacement.

The convergence tables show that the result obtained using
h = g- in the simply supported case and h = 2 in the clamped

12

case are sufficiently accurate for engineering purposes.
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More accurate results can be predicted by extrapolation.
The critical edge displacement obtained from extrapolation of the
last 3 lines has an accuracy of .)00016 in the simply-supported

case and .0013 in case of clamped edges , compared to exact results.

Table 3.11 . Critical displacements for a simply-supported plate

using different mesh sizes. Uniform stiffness plate.

v = ,316.
Mesh size|Present solution|Exact (1)|Difference |Two point |3 point
(h/a) U, % extrap- extrap-
eér olation olation
1
7 5935 5
. 6248
: .61698 1.2 .624972
. 62497 .62495
1 .
IV R 5 .62498
. 624975

1
16 . 62297 .3

@

o

- . . - Exact
]
o‘.
=

8

o'-

2

.00 4.00 8.00 12.00 16.00 a/h

Figure 3.66. Convergence of buckling solution.




Table 3.12 .
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Critical displacements for a clamped square plate

using different mesh sizes. Uniform stiffness. v = .316.
Mesh size |Present Solution | Exact (1) |[Difference | 2 point |3 point
(h/a) U& % extrap- |[extrap-
r ‘olation| olation
% 1.34062 19.2
1.6456
1
) 1.56939 5.4 1.65620
1.6593 1.6550
i—z 1.61697 2.5 1.65709
1.6566
1 1.6343 1.5
16
e
-
Exact
8
o}
3
8
“b.00 4.00 8.00 12.00 16.00 a/h

Figure 3.67.

Convergence of buckling solution.

(I)The exact value of critical displacement is derived on page 167.
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Since it is assumed that the plate is perfectly flat before
buckling, the in-plane displacements are linear within the entire
plate (constant strain), and the membrane forces will be the same at
all points. Thus, critical displacements can be related to edge

forces as

along x-edges

1
€ = Tt [Nx - VNy]

but in this case

-u
cr
(ex)cr a/2’ and Ny Ny Ner
therefore
-a
Yer 2Et [l-v]Ncr
ZwZDr
For s-s square plate under bi-axial compression Ncr ==
a

[see Table 3.8 ]

Thus
u = 1'[—2- D— (l—\)) = L .
cr a Et 12a(1+v)
2 a .822467
cr t2 1+v
822467
v, = —q+v °r for v = .316, U, = .62497
cr cr
nzDr
similarly, considering Ncr = 5.31 2 for clamped boundaries
a

[see Table 3.9 1, the critical edge displacement is

U° = 1.6593 for v = .316
cr
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EXAMPLE 1
To further check the accuracy of the method, the solution
to problem (9.13) of Reference (44 ) is examined. In this example,

along the edges x = 0, and x = a, the

u-displacement is prevented. In the

y-direction, constant strain, €,
is assumed. Therefore, v = e(% - y) and
assuming that centerlines of the plate

coincide with axes of symmetry

o /
during deformation, (e a72”

No u-displacement is

llowed along edges =0

atow g edg y ’ Figure 3.68. Plan

and y = a, and with regard

to out of plane displacements, all edges are taken as simply supported.

The boundary data are tabulated below. For the node arrange-

ment, see Figure (3.62).

Node u v w

17 0 0 0

18 0 .25v° 0

19 0 S v 0
o

20 0 .375v° 0

21 0 v 0
o

22 0 v, 0

23 0 v 0
o

24 0 v 0

25 0 v 0




The

[ros)
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Using the data for input, the buckling solution was obtained.

The critical uniaxial edge displacement was found to be
2
v, =1.23033 <-.
cr

This is to be compared to Timoshenko's results (44), obtained by

an energy method. Remember that he was taking the total edge strain to be

2v
ey, while in our case the compressive strain ecr = —;9 s
2
e =2v = 2.46066 = .
cr ___°cr 2

a

2
_ h
Timoshenko found e = .632 2 but he used a plate

of sides 2a=a and thickness h. By substituting t for h, and

- 2 2
Z2fora in Timoshenko's result it becomes e _ = .632 h_ o .632 L.
2 2 cr — a2

. a (a/2)
2,528 == - The results differ by 2.6%, fairly close

a

for such a coarse mesh size (h = %).

3.2.2.2 Optimization Analysis

Using the same data as in problem 3.2.a, and solving for
the eigenvalues, two series of solutions are obtained for simply-
supported and for fixed out-of-plane boundary conditions-considering
different thickness variations. The variation in thickness is
taken to be linear, as in Section 3.1.4. The variation in thickness
is to be optimized in order to give the greatest edge displacement
at buckling for a given volume of material.

In the case of the simply-supported edge, Figure (3.69 a)

shows that the optimum variation corresponds to

- edge thickness
center thickness

RT = .15, with an increase in buckling displacement
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Variation of critical displacement versus RT.
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1
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0.60
1
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.00 4.00 8.00 .00 16.00 20.00 24.00
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a) Simply supported
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.80

12
RT
b) Clamped

Figure 3.70. Variation of critical displacement versus RT.
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of 4§l12%§i§%lé- = 33% with respect to uniform thickness plate

of the same volume.
Figure (3.69 b) illustrates the variation of critical displace-
ment with respect to thickness variation for a clamped square plate.

The maximum critical displacement can be achieved if the edge thickness

1.589-1.569
1.569

over the critical edge displacement for the plate of uniform thickness.

is .85 times the center thickness with an increase of = 1.27%
To check the buckling behavior of the plate, within a wider

range of variation in thickness, the critical displacement for

different RT values up to 20 is obtained and plotted in Figure (370 );

the plot shows a decrease in critical displacement all the way up

to RT = 20,

Note: Examination of mode shapes shows that as the center of the

plate gets thinner, beyond some point, the buckling mode associated

with the lowest critical displacement is not a single concave shape. The
'buckling mode corresponding to the lowest eigenvalue for a clamped plate

with RT > 2.2 consists of more than one buckled wave. These results are

not shown in this thesis.

3.2.2.3 Analysis of Buckling Modes

In this section, the shape of buckling modes will be reviewed
and compared with the exact shape in those cases where the exact
solutionsg are available.

Up to this point, all solutions were based on the assumption
of symmetry about both axes of the plate. Thus, only a quarter of the

plate was considered.
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Therefore, the nonsymmetric modes are missing. To obtain

all modes of buckling, a solution is obtained by considering every

node as an independent degree of freedom, from the out-of-plane displace-

ment point of view, while symmetry and anti-symmetry in u and v

are assumed, as before. Solution for the simply-supported plate

of uniform thickness shows the first mode shape to consist of half-sine

waves in both directions, and the second mode to consist of two

half-sine waves in one direction and one in the perpendicular direction.
The first few mode shapes for the simply-supported plate

are shown in Figure (3.71) and for dlamped edges in Figure (3.72).
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+
+ + -
Ut = .619 Ut o= 1.51 * - 1.51
T - > = 1. u; = 1.
+
+ -
+ - +
- +
ur = 2.458 vt = 2.75 ur = 2.95
5 . 6 - . 6 .

Figure 3.71. Buckling modes of simply supported square plate, RT= 1.

vt = 1.56 * - 2.58 * 2 2.58
=L Uy = 2. Uy = 2.
+
+
+ -
- + +
u* = 3.55 Ut = 3.94 * = 4.30
;= 3. ;= 3. ug = 4.

Figure 3.72. Buckling modes of clamped square plate,RT = 1.
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3.2.3 POSTBUCKLING

In this section, a study is made of the postbuckling behavior

of uniform and variable thickness plates under uniform bi-axial edge

displacement compressed beyond the critical displacement.

Convergence

of the solution is examined by solving the problem with different

mesh sizes. Variation of in-plane forces as well as in-plane displace-

ments is also studied.

3.2.3.1 Uniform Thickness Plate, s-s Boundaries

A simply-supported uniform thickness plate is compressed

beyond the critical displacement and the solution is obtained.

Following are some results from the solution.

a) Convergence of the solution

The problem is solved, successively taking

h/a = 1/4, 1/8, 1/12 and 1/16, and the results

are compared. Table (3.3 ) shows the central deflection

2

t
’

of the plate due to edge displacements of 1.26 Y which

is almost two times the critical displacement.



Table 3.13 .
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Convergence of postbuckling solution with mesh size

Mesh size |W-center |Difference % | Extrapolation N;;center Mx4center
(h/a)
%- .96795 -118.99 | 100.80
9.7 .853016
% .88175 -130.17 98.55
1.5 .8643366
%5 .86869 -132.,98 98.27
1 .8701166
%g' .86976 -136.74 98.88

Review of Table (3.13) indicates that the solution obtained

by only 8 x 8 nodes is satisfactorily close to the converged solution,

keeping in mind that the accuracy of the iterative solution is set

to be one percent.

is small.

Figure 3.73.

e
e
-

'l

P86

.oo

4.00

8.00

12.00 16.00

The results can be improved by extrapolation.

a/h

The difference for mesh sizes finer than 8 x 8

Convergence of center-deflection, s-s-square plate.

(u=2 Ucr)
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b) Stress Analysis

The distribution of the membrane forces will change
as the lateral deflection becomes larger.
Also, the bending moments will vary with variation of the

deflected shape of the plate.

Graphs of Figures (3.74 a) and (3.74 b) show the variation of
center-line membrane forces and beﬁding moments as the
edge compression varies. Study of these graphs leads
to the following conclusions.

i) As the center of the plate deflects transversely,
the in-plane load shifts with more of the load
being carried by the portion of the plate near the
edges.

ii) The bending moment, which is maximum at the center,
is increasing with the increase in deflection w.

iii) Along the centerline parallel to x, the membrane
force Ny is increasing toward the edge, while Nx
is almost constant.

iv) Bending-moments Mx and My both are maximum
at the center and dimimish to zero along the edges,

as expected.

c¢) In-plane displacements

The distribution of in-plane displacements in the plate

is shown in Figure.(3.75) at different stages of loading.
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Analysis of these leads to the following conclusions:
i) Before buckling, the plate is perfectly flat.
Since there is no w effect, in-plane displacements
are linear, as expected.

ii) After buckling, the plate will undergo more contraction
near the edges and the central region carries less
compressive load; 1less in-plane displacement
occurs there.

11i) As the load increases this phenomenon becomes more
visible, so that at large edge displacements, the
curves show very little u and v displacement

in the central regions.

.625 .468 ,312 ,156 O J5 50 25 .1 0 1.5 1. S5 .25 0
a) Undeflected (U/Ucr= 1.0) b) Buckled (U/Ucr=1.20) c) Buckled Q.!/Ucr=2.40)

Figure 3.75. In-plane displacement (U = ua/ti), square plate,
simply-supported, RT = 1.
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d) simply-supported, square plate, loaded by uniform

normal pressure

To check the reliability of the method by comparing with
previous results, a problem similar to one presented by

Levy 1is considered. In Reference (29), Levy has solved

a square plate under a uniform normal pressure, with zero
in-plane displacement along the edges. Levy applies the large

deflection equations and uses the series expansion method.

In this section, a solution is obtained for the same
problem to compare with Levy's. The plot of (3.76 )
shows the variation of w with lateral load as deter-

mined by Levy and by the difference method.

4000

Present result

3.00

4 A Levy's result

2.00

1.00

.00

.00 10.00 2'0.020 30.00 40.00

Doti

Figure 3.76. Square plate under uniform lateral load;no in-plane

displacements on boundary;v = .316.
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3.2.3.2 Simply Supported Square Plate of Variable Thickness

To study the variable thickness plate, a solution was obtained

edge thickness _ 1
center thickness 4’

for two different cases. In the first, RT =

for which the membrane stiffness at the edge is l-that at the center,

4
while the flexural stiffness at the edge is %Z-of the center stiffness.
In the second, RT = 2, with the edge flexural stiffness being'% of

the central stiffness. These two opposite variations are chosen
so that the results, along with those for the uniform thickness
plate, would give an idea about the effects of variation in thick-
ness. The discussion follows.

Figure (3.77) shows the central deflection of the
plate with variable thickness and also the result for a uniform
thickness plate. Comparison of the three plots leads to the conclusion
that, corresponding to the same edge compression, less deflection
occurs in the plate with RT = %-and the plate with RT = 2 under-

goes larger deflection. It should be noted that all these plates

contain the same volume.

This behavior is expected because, in a simply-supported
plate, more bending is occurring in the central region, Thus, plates
with thicker central region will experience less deflection and

plates with thin central regions are more likely to have greater

curvature and deflect large amounts.
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2.00

Rrgl/*

7, tp e’*l

.00

.00 0.50 i}oo 1.50 2.00

Figure 3.77. Central deflection versus edge displacement for different

a)

b)

RT values, simply supported square plate.
Solution Procedure

In (3.2.3.1 a) it was shown that a grid spacing of
h = %E will be accurate enough for engineering design
use . Both problems were solved with a grid spacing

of h= %E in detérmining the results plotted.

Stress Analysis

Distribution of in-plane forces, bending moments and
principal stress,along axes of the plate, are shown
1

in Figure (3.78 ) for RT = i e

The Graph of Nx and N shows a decrease in membrane

forces with an increase in edge displacement in the central
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region, while in a region close to the edge, Ny is large.

As discussed before, the central region will carry less
load because of the transverse deflection and the load

will be shifted toward edges.

The moments are maximum at the center and vanish at

the edge, but fairly large moments occur at almost

halfway from center to edges, This is due to the relatively
larger thickness at center. Because most of the bending will
occur in the outer region, creating large curvature and

resulting in large moments.

Since we are concerned with the state of stress within

the plate and not necessarily membrane force or bending
moments individually, in Figure (3.78c), the variation

of principal stress along the axis of plate is plotted

The curve shows maximum stress occuring approximately at a
point x = %- on this axis. It should be noted that this

stress 1s also the absolute maximum for the entire plate.

Figure (3.79 ) show the same variables for a plate

with RT = 2.

In this case, because of the thicker edge region, beyond
buckling, the membrane load is sharply shifted toward

the edges.
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The bending moments have a completely different pattern
than for the case RT = %3 because the more flexible
central region results in maximum curvature and maximum
moments in this central region. Also, because of smaller
thickness and smaller flexural rigidity, the maximum
principal stress is always at the center point. 1In
Figure (3.80 ) shows the variation of the maximum principal
stress with postbuckling edge compression for the
different variation in thickness. It ca&

be seen that the least stress occurs for the uniform
thickness plate,and the plate with RT = 1 is subject to

4

largest stress at points away from center.

c) In-plane Displacements

Contours of the in-plane displacement u, in Figure (3.81 )
for RT = %-, and Figure (3.82 ) for RT = 2., show

a decreasing displacement in the central region due to

w deflection and corresponding decrease in membrane
forces. In the case of RT= %3 we observe very small
displacements in the central region, while the more

closely~spaced contours in the vicinity of the edge

indicate very large strain in this region.

Comparison with the uniform thickness plate shows it

to be between these two variations, as expected.
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Figure 3.80. Principal stress versus edge displacement for different

RT values, simply-supported square plate.
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1/

a) Undeflected (U/Ucr-l.) b) Buckled (U/Ucr-l.SO) ¢) Buckled (U/Ucr=2.50)

.8 ;6 A0 L2 0 0 2. 1. .50 .25 0

Figure 3.81. In-plane displacement (Uaua/ti), square plate, simply-supported,

1
RT Z .
.54 400,27 .13 O J .6 4 2 0 1. .75 50 .25 0

a) Undeflected (U/Ucr= 1.) b) Buckled (U/Ucr-1'3o) c) Buckled (U/Ucr-1.85)

Figure 3.82. In-plane displacement (U = ua/ti), square plate, simply-
supported, RT = 2.
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3.2.3.3 Uniform Thickness Plate, Clamped Boundaries

boundaries,

a)

Convergence of the solution.

and the results of the solution are as follows.

The problem studied in 3.2.3.1 was solved with clamped

Table 314) presents results for different mesh sizes corresponding

to a boundary displacement of (

3.2

critical displacement.)

1.659

= 1.93 times the

Table 3.14. Convergence of postbuckling solution with grid spacing.
Sﬁégmg w-center |Difference | Extrapolation ﬁ* -center |M_-center
h/a yA x x
= 1.9667 314.73 | 295.45
34.4 1.295366
1 1.4632 277.99 | 263.23
4.6 1.376613
= 1.39826 289.56 | 262.96
2.2 1.357113
= 1.3674 285.00 | 260.576

Considering that the accuracy test of the iterative solution

was set at 17 in successive trials, the convergence as illustrated

in graph (3. 83) is good.

Plot of central deflection with edge compression is shown

in Figure (3.84).
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b) Stress Analysis

Distribution of membrane forces, bending moments, and

principal stress along the axis of the plate, are plotted

in Figure (3. 85). These figures show:

i)

ii)

iii)

Larger membrane force occurs at the edge and the
central membrane forces decrease with an increase

in postbuckling edge compression.

Bending moment, Mx, is positive at the center and
along the edge it is negative with an absolute
value larger than the central moment for tlie larger
deflection.

Principai stress is almost equal at center and edge
in the early postbuckling stage, increasing on the

edge with larger deflection.

c) In-plane Displacements

Contours of in-plane displacement, u, shown in Figure

(3.86 ) indicate the following.

i)

ii)

i1id)

Before buckling, in the flat plate, in-plane dis-

placements are linear everywhere as expected.

Immediately after buckling, as the deflection starts to

increase, the u-displacement tends to decrease in the
central region.
The pattern of displacement is qualitatively similar

to that for the simply supported case.
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1.66 1.25 .83 .41 0 2. 1. 0 3. 2. 1. .5 0
a) Undeflected (U/Uc;.l') b) Buckled (U/Ucr=l.20) ¢) Buckled (U/Ucr=2.2)

Figure 3.86. In-plane displacement (U = ua/ti), square plate, clamped
edges, RT = 1.
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3.2.3.4 Clamped Plate with Variable Thickness

Again,the plates discussed in Section 3.2.3.2 (RT = %3 and
RT = 2)are solved with clamped boundaries along all edges.

For comparison,the variation of w with edge compression
is plotted in Figure 3.84 for plates with RT -1 and RT = 2,

4
along with uniform thickness plate.

It can be seen that in the case of the clamped plate, due to

edge displacement appreciably greater than critical displacement,
the plate with RT =-% undergoes less deflection than either of the
plates with RT =1 and RT = 2. This is similar to the case of
simple support, but in the early stages of postbuckling, the plate

with RT = 1 has the smaller lateral displacement.
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a) Stress Analysis

Figure (3.87) 1illustrates the distribution of membrape
forces, bending moments, and principal stresses for the
plate with RT = %. Analysis leads to the following
conclusions:

i) While the membrane forces are decreasing with in-
crease in edge displacement at the center, these forces
increase sharply on the edges.

ii) Bending moments are maximum at the center, and the
negative moments aloﬁg the edge are small because
of small flexural rigidity.
iii) Principal stress is maximum on the edge and in-
creases with an increase in edge displacement.
iv) Maximum principal stress occurs at the center of
the edge.
Study of membrane forces, bending moments, and principal
stresses for the plate with RT = 2, in Figure (3.88), results
in the following observations.

i) Ny decreases in the central region as the edge
displacement increases,while it increases sharply
near the edge.

i1) Nx also decreases at the center and decreases along

the edge.
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iii) Bending moments increase in magnitude at the
center and edges as the edge displacement increases,
as expected. The negative moments at the edges are
much larger, because the flexural rigidity is larger there.
iv) The graph of the principal stress shows an increase everywhere
as the edge displacement increases,but it is always a
maximum at the center of the plate.
v) Figure (3. 89) shows the variation of maximum
principal stress with edge compression, u , for the
three different RT values and for plates of constant

volume.

It can be seen that the plate with RT = %

always undergoes larger stress. Although the

uniform thickness plate is less highly stressed

than the case RT = 2 for smaller edge displacements,

in the higher range of edge compression it is more highly

stressed than the plate with RT = 2.

Note: It should be noted that for RT = 1, and RT =~l,

the maximum principal stress is located at the center of the
edge while for case of RT = 2, the location is at the center

of the plate.
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b) In-plane Displacements

Contours of in-plane displacement, U, are plotted in

Figure (3.90 ) for plate with RT = l-, and in Figure

A

(3.91 ) for plate of RT = 2. These contours show the

following :

1)

ii)

iii)

iv)

Before buckling, the contours are exactly the same as
those for simple support, because in the undeflected
position the out-of-plane boundary condition has no
effect on the solution.

After buckling, as usual, the in-plane displacement

in the central region is smaller compared to undeflected
case (i.e.,the contours are expanding at the center
and compacted contours are located away from center

toward the edge depending on the RT values.)

In the case RT =~% closer contours are located
in the vicinity of the edge, while for the plate
RT = 2, because of stiff edges these concentrated
contours are seen to be close to the center.

The behavior of the uniform thickness plate falls between

the cases RT = %— and RT = 2,
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1.25 1. .5 .25 0 1.5 1. .50 0 3

0

a) Undeflected (UﬁUc£=l.) b) Buckled (UAUcr=1.35) c) Buckled (U/Ucr-2.30)

Figure 3.90. In-plane displacement (U = ua/ti), square plate, clamped,
RT = 1/4. '

1.40 1.05 .70 .35 O 1.50 1. .50 0 3. 2. 1. 0
a) Undeflected (U/Uc;'l.) b) Buckled (Uﬂ]cr-l.ZS) ¢) Buckled (U/Ucr=2.15)

Figure 3.91. In-plane displacement (U = ua/ti), square plate, clamped;
RT = 2.
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3.3 COMPARISON OF TWO METHODS

In order to compare results from the two methods discussed -

formulation in terms of the stress function or in terms of displacements-

two problems are solved by both methods and compared. Their results

can also be used as a measure of the accuracy of either of the methods.

a) Simply Supported

i) A simply-supported uniform stiffness plate, with

ii)

iii)

no restraint on in-plane boundary displacement and
loaded beyond the critical load was solved using the method
discussed in Section (2.2) (in terms of ¢ and w).
The solution includes in-plane displacements, u

and v, on the boundary.

The problem is solved using the method of Section (2.3)
(in terms of fhree displacements, u, v and w),

by applying the boundary displacements obtained in (i)
as boundary conditions.

If both methods are correct, we expect (i) and

(i1) to result in the same solutions, and they did

turn out to be very close. The central deflection (w/t)
is .9613 in (i) and .9736 in (ii), with a difference

of 1.3Z . This is very good agreement. Other
components of stress and displacement are also

very close.
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Clamped Edges

A uniform stiffness plate with clamped boundaries was

also examined in the same way as discussed in part (a).

The central deflection (w/t) was found to be 1.67121,

using the method of Section 2.2 (i.e., formulation in

terms of stress function). It was 1.68578 using the formulation
in terms of displacements, with a difference of only .87%.

The results are considered to be very good.



CHAPTER IV
CONCLUSION

4.1 THE PROBLEM SUMMARY

In the preceding chapters, the behavior of variable stiffness
plates was studied in the prebuckling and postbuckling range. In-
stability criteria were also examined. The work used the ordinary
finite difference technique. No results for similar variable stiffness
plates are available in the literature to confirm the validity of the
solutions. However, a uniform stiffness plate was included in each
case to serve as a control problem, and the results obtained by the
difference method were compared with those of analytical solutions
and other published results. -

Since the main purpose of varying stiffness is to optimize
the plate with respect to some design variables, some optimization
examples were presented in the buckling analyses.

In order to provide a better perspective on the change in
behavior of plates due to stiffness variation, the different problems
considered were assumed to contain a constant mean stiffness
or a constant amount of material (see Section 3.1.4). Two different
approaches were discussed:

1. Formulating in terms of stress function, @, and the lateral

deflection, w.

204
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2. Formulating in terms of three displacement components,
u, v and w.
First the applicable difference operators were worked out; then
the solution procedures:were presented in detail. Finally, an
increasing number of nodes were used to check the convergence of
the solutions and also to provide guidance in selecting an
appropriate mesh size to obtain the desired accuracy.

The behavior of different stress and displgcement components
was illustrated in suitable graphs and the results were analyzed.

In Section (3.1.1), uniform thickness plates with different
variations in E were considered, and the behavior of in-plane forces
and displacements was analyzed in Section (3.1.1.1). The buckling
of those plates was considered in Section (3.1.2.1) and the effect of
variation in stiffness on stability criteria was discussed in Section
(3.1.2.2).In Section (3.1.3), postbuckling behavior of those plates
was examined and the results were analyzed in Section (3.1.3.3).
Sections (3.1.4) and (3.2.2.2) deal with optimization of
variation in thickness from the stability point of view. The remainder
of Section 3.2 . shows the effect of variation in thickness (with
constant E) on displacement, forces and moments as well as buckling

behavior.
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4.2 CONCLUSION

The comparison of problems solved in Section 3.1 (with free

in-plane movement on the boundaries) with those of Section 3.2
(restricted in-plane displacement on the boundaries), shows the
great effect of in-plane boundary restraints in the postbuckling state.
Study of figures (3.60), (3.77) and (3.84), leads to
the conclusion that the behavior of central deflection due to vari-
ation in stiffness is not only dependent on the out of plane boundary
conditions but also greatly affected by in-plane boundary conditioms.
Figures (3.60), (3.77) and (3.84) show that the trend of
central deflection of plates with different variation in stiffness
is not the same for a;l postbuckling ranges. For example, in Figure
k3;77), we observe that corresponding to the same load, a simply
supported plate with RT = 1 undergoes larger deflection than a plate
with R ='% . Study of Figure (3.84) shows that the same plates
with clamped boundaries exhibit different behavior. (Although, for highly
compressed edges, less deflection is observed for the plate with
RT = %3 when the edge compression is only slightly above critical
displacement, the larger deflection corresponds to plate with RT = %).
The method and corresponding computer program utilized for
force boundary condition (Section 2.2) has been shown to give more
accurate results than that developed for the displacement boundary
condition (Section 2.3). This is due to the difference in the order of
derivatives involved in the formulation. In the force boundary
condition formulation, only second and higher order derivatives

of the two functions, ¢ and w, are involved in the equilibrium and
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compatibility equations (equation (2.14) and (2.15). The displace-

ment formulation, however, involves first and higher order derivatives

of the three functions, u, v, and w. Hence accumulative errors

could be expected(In difference approximation equations (2.19), the first
error term in the first order derivative includes the third derivative

of the function, and the error term in the second derivative includes

the fourth derivative of the function, etq).

Investigation of convergence indicates that for engineering
purposes, grid spacings for h --% in the force formulation (see
Figure 3.39) and h = %E in the displacement formulation (see Table
3.13) are reasonably accurate; more accurate results can be obtained
by using finer grids and applying Richardson's extrapolation to the

results. Comparison of the results with known values supports the

reliability of the solutions.
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4.3 RECOMMENDATIONS

The objective of this work was to examine application of the
two formulations in general, and to investigate the behavior of plates
with different boundary conditions and stiffness variations. Re-
finements and extensions of the method which are possible and de-
sirable include:

1. Application of improved difference methods involving

more accurate approximations to the derivatives.

2. Inclusion of more nonlinear terms in the strain components
and a study of their effect on the results.

3. The difference operators can be revised to make them
applicable to orthotropic plates, and the computer
program improved so that it can be applicable to orthotropic
and nonhomogeneous materials.

4, Due to the absence of experimental sources to guarantee
the accuracy and practicability of the results,and re-
cognizing the advantages in the use of variable stiffness
plates, an experimental study of such plates from the
stability point of view and in the postbuckling range
should be very useful.

5. The computer programs developed here were mainly aimed
to solve particular problems. Although they are
more general than needed for the problems solved here,for
applications to loading and geometry different from the
ones presented here, the programs should be used with
caution and appropriate changes made. Also, the efficiency

of the programs can be improved.
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Application of other methods such as the finite element

method using:

a) Elements with variable stiffness within the element.

b) Constant stiffness within an element but variation
of stiffness from element to element,

The boundary integral method might also be considered.

Consideration of the same cases and comparing numerical

results, convergence, computer cost, etc., would be of

interest.
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APPENDIX B
The plan and node arrangement on the portion of plate considered
i n each case is shown. It should be noted that the second rows of
exterior nodes are auxiliary nodes for defining the K vector at edge
nodes only, and those nodes do not participate in any calculations. Thus,

the node number for them could be any number or repetition of previous

ones,
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APPENDIX C
COMPUTER PROGRAMS
C.1 DESCRIPTION OF THE PROGRAMS

A listing of the computer programs is presented in this
appendix. In the following a brief description of the main programs
and subroutines is given.

There are two programs, PLATE 1 and PLATE 2, corresponding
to Sections 3.1 and 3.2, respectively. Program PLATE 1 consists
of a main program and seven subroutines. Main programs direct the
flow of the computations by calling the appropriate subroutines,
in addition to reading data and performing minor calculations.
The subroutine FEOPRT computes values of the operator for the compat-
ibility equation (2.30) as well as the contribution of each node
considering the node number and the boundary condition. The sub-
routine AMATRX forms the coefficient matrix [A] by adding the
contribution of nodes. It also forms the vector {B}, the right-
hand side of compatibility equation (2.15). Formation of the operator
for the right-hand side of equilibrium equation (2.22) is accomplished
by subroutine WOPRT. The subroutine BWMAT forms the right-hand side
of equilibrium equation (2.22) as matrix [Bw]. The subroutine

AXLOAD is provided to calculate stress components and the subroutine

7/
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DISPLMT computes in-plane displacements. Subroutine WRITE controls
the arrangement of the large matrices in the write-outs.

Program PLATE 2 consists of a main program and subroutines
AMATRX, WOPRT and WRITE, in addition to six other subroutines as
follows:
The subroutine UVOPRT computes numerical values for the u and v
operators in equations (2.36) and (2.38). The subroutine AUVMAT
forms the coefficient matrices [Aull, [Au2], [Avl] and [Av2]
which are assembled as in equation (2.43) by subroutine ASSMBL.
In subroutine WFUNCT, the derivatives of w are calculated and vectors
[Buvl] and [Buv2], the right-hand side of equation (2.9), are
formed. The subroutine KKVECT stores a nine node operator based
on a 13-node operator and subroutine RSHW is designed to compute
the vector {Bw} , the right-hand side of the equilibrium equation
in the z-direction. The subroutine BWBUCKL forms the right-hand side

of equation (2.24) for the eigensolution.
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C.2 VARIABLES USED IN THE PROGRAMS

The variable names used in the Programs are defined below

in the order they appear in the Program:

PROGRAM PLATE 1

NSOLN

ITYPE

RATIO1

RINCR

NPR
NOUT
NA

POS

DF(I)

= Number of problems solved in one run;

= Variable controlling solution type. If EQ. 1,

membrane solution only. If EQ. 2, solve also

the eigenvalue problem. If EQ. 3, postbuckling

solution (skip eigensolution). If EQ. 4,

solve all

= R or

= R or

= Number

= Number

= Number

= Number

= Number

RT

RT

of

of

of

of

of

= Poisson's

steps;
values (stiffness or thickness ratios);
increment for optimization;
trials for optimization;
real nodes;
interior nodes;
imaginary exterior nodes;
intermediate nodes;

ratio;

= Grid spacing;

= Modulus of elasticity;

= Reference thickness;

= Degree of freedom. If EQ. 1, interior node.

If EQ. O, boundary node. If EQ. -1, exterior

node.
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IBC(I) = Variable defining ﬁhe out-of-plane boundary
condition. If EQ. 1, clamped. If EQ. 2,
simply supported;

NSYM(I) = Variable defining in-plane displacement symmetry.
If EQ. 1, node of antisymmetry for u. If
EQ. 2, pole of antisymmetry for v. If EQ.3,
pole of antisymmetry for both u and v. If

EQ. 4, node of diagon of symmetry (u ).

= Vv
south west

If EQ. 5, u-displacement zero (on boundary)

If EQ. 6, v = 0. (on boundary);

K
DEL(I)= IR Membrane stiffness ratio;
B8 K
i i
DELA(I) = Membrane stiffness ratio for intermediate nodes;
FEE(I) = The difference between stress function at
exterior nodes, and first interior nodes (i.e.
in Figure (Cl), P18 = @t (FEE)IS;
LP(I) = Interior node corresponding to each exterior

node in Figure Cl, node 9 is LP(18);

16 11| 7] 4 2 1

Figure Cl. Node numbers.



K(I,J)

TC

RK

DR
FE(I)
A(1,J)

AW(I,J)

BW(I,J)

B(I)

PA(I,J)

EIGVAL(I)

NTRY

228

= Vector defining the nodes participating in
operators at each node, ordering from top node

downward and rightward as shown on Figure C2;
1

10| 11 12

13

Figure C2. Arrangement of vector K.
= Central thickness (calculated);
= Reference membrane stiffness;

= Reference flexural stiffness;

= Stress function ¢;

= Coefficient matrix for compatibility equation;

= Coefficient matrix for left hand side of
equilibrium equation;

= Coefficient matrix for right hand side of
equilibrium equation;

= Vector in right hand side of compatibility
equation;

= Auxiliary matrix;

= Eigenvalues (output);

= Number of loading steps required in iterative

procedure;



NITR
FORC
FORICR
DIF = ¢

QD)

QINCR(I) =

SUBROUTINE FEOPRT

R(I)

D(I,9)

SUBROUTINE AXLOAD

XN

YN

XYN

SIGMAX

SIGMAY

SIGMANX

SIGMANY

PRSTRES

SUBROUTINE DISPLMT

u(I), V(1)

AQ
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Max. number of iterations allowed;
In-plane load N per unit width;
Load increment, AN;

Tolerance of convergence check;
Nodal lateral load vector;

= Lateral load increment;

Operator for compatibility equation;

Matrix defining contribution of each node
on the position of the node;

Nx/N = Force ratio in x-direction;
Ny/N = Force ratio in y-direction;
ny/N = In-plane shear force ratio;
Mi = Bending moment in x-direction;
My = Bending moment in y-direction;

M = Twisting moment;
Xy

based

Bending stress at extreme fibers in x-direction;

Bending stress at extreme fibers in y-direction;

In-plane stress in x-direction;
In-plane stress in y-direction;

Mohr's circle radius

Maximum principal stress, ignoring transverse

shears;

In-plane displacements;




PROGRAM PLATE 2

AU1(I,J); AV1(I,J)

AU2(I,J); AV2(I,J)

AUV(I,J)

BUV(I)

UINCR

VINCR

B1(I); B2(I)

SUBROUTINE UVOPRT

RU1(I,J); RV1(I,J)

RU2(I,J); RV2(I1,J)

DU(I,J); DV(I,J)

SUBROUTINE AUVMAT

KK(I,J)

230

Sub-matrices representing contributions
of u and v in x-equilibrium equation;
Sub-matrices representing contributions
of u and v in y-equilibrium equation;
Coefficient matrix obtained by assembling
[Aul]l, [Avl], [AU2] and [AV2];

Right hand side of in-plane equilibrium
equations;

Increment of edge~displacement uj;
Increment of edge-displacement v;
Sub-matrices on the right-hand side of

in-plane equilibrium equations;

Operators representing u and v con-
tributions in x-equilibrium equation;
Operators representing u and v con-
tributions in y-equilibrium equation;
Contributions of u and v at each
node considering node number, symmetry

and boundary conditions;

Vector containing nodes contributing to
operators of u and v contribution as

shown on Figure C3;
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1 2 3
4 5 6
7 9

Figure C3. Arrangement of nodes in vector KK.

SUBROUTINE WFUNCT

BW1(I), BW2(I) = Contributions of w on the right-hand
side of x and y-equilibrium equations,

respectively;
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C.3 COMPUTER PROGRAM

PROGRAM PLATEL1CINPUTOUTPUTTAPES=INPUTeTAPE6=0UTPUT)

L R R I R R I
THIS PROGRAM USES FINITE DIFFERENCE TO ANALY2E PRE=-BUCKLING
BUCKLING AND POSTBUCKLING OF VARIABLE STIFFNESS PLATES.
SUITABLE FOR FORCE BOUNDARY CONDITIONS (NO RESTRICTION ON
DISPLACEMENTS ALONG THE BOUNDARIES).

A A2 AR SRR AR 2222 22 R X2 2 R 222222222 R2SRRSSZ R X )

E s NN NN Ne i |

DIMENSION WKAREA(SO)9ALFR(SO)eALFI(SO0)¢BETA(S0)4ITER(S0)
DIMENSION EIGVAL(S0)¢2¢S50¢50)9 LP(65)9Q(50)¢PB(S0)¢PA(S0450)
ODIMENSION PB1(50)¢ABW(S50+50) BW1(50)9Q1(50)4W3(50450)
DIMENSION FE1(65)¢ FE3(50075)¢FEE(65) o W1(65)
COMMON/1/ PO0SeBBeCCoHoNoNPR9DRoToRK
COMMON/2/K(13950) ¢AM(4950) ¢DEL(60)¢DELACSO) yNSYM(50)
COMMON/ 3/DFC(T75)9DC13013)9IBC(60)eR(13)eFE(TS)
COMMON/A/ACS0¢50)¢8(50)
COMMON/S/AW(S50950) 9BW(S0¢50 D)eRW(13)¢DELT(60)¢DELTA(S50)oW(65)
INTEGER AM,DF
m
CececoeeeREAD INPUT DATA.
m
READ (S5¢+¢) NSOLN
DO 99 JJ=1¢NSOLN
READ (Se+) ITYP
READ(Se*) RATIO14RINCRsL1
READ(S9e1) NoNPReNOUT¢NA9POSeHeES T
NT=NeNOUT
NP1=Ne1l
NP2=NPR+1
READ(Se*)(DF(I)9I=14NT)
READ (Se*) (IBC(J)eJ=NP2eN)
READ(Ser) (NSYM(I)oI=14N)
READ(Se*) (DELCJ) 9J=14N)
READ(Se*) (DELACI)oI=19NA)
READ(Se*) (FEE(I)oI=NP24NT)
READ(Se*) (LP(I)sI=NP1eNT)
DO 300 L=NP2¢NT
FECLI=FEE(L)
300 CONTINUE
RB=1.+P0S
CC=1.-P0OS
DO 401 I=1N
DELT(I)=1,/DEL(I)
401 CONTINUE
DO 402 J=1eNA
DELTA(J)=1./DELAtY)
402 CONTINUE
WRITE(64501)
WRITE(6+502)
WRITEC(69503) NoNPRoeNOUToNAgPOSeHeDR T
WRITE(64504)
MRITEC69S505)(DF(I)eI=1eNT)
WRITE(6+511)
DO 3 I=1eN
READ(Se48) Lo(K(JUoI)oJ=1913)e(AM(Je])ou=1,4)
WRITE(6e4) I4(KC(JoI)oU=1913)9C(AM(JeI)oJU=1y4)
3 CONTINUE
DO 999 LL=1,L1
RK=E«T
DR=E«T*¢3/(12,+*BB+CC)
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WRITE(64506)
WRITE(6¢507) (DEL(J)eJ=1eN)
WRITE(64508)
WRITE(6¢507) (DELACJIeJ=14NA)
WRITE(69998) LLoRATIOWRK9DRT
998 FORMAT(////+9*TRIAL NO *#9I3¢* R=#¢FS5e39% ET CENTER="o4F843+ D CENT
SER=*9FBe39* CENTRAL THICKNESS= #9F845)
DO 65 I=1e4NPR
FEC(I)=B(I)=31(1)=0,0
DO 66 JU=1¢NPR '
Z(IeJ)=0e0
ACToJ)=AW(IeJ)=BUW(I9J)=0.0
66 CONTINUE
65 CONTINUE
DO 10 M=14NPR

m
Ceeeeoeee CALCULATE OPERATOR FOR COMPATIBILITY EQUATION AT EACH NODE.
m
CALL FEOPRT(M)
L]
CeescoeoeeFORM COEFFICIENT MATRIX A IN LEFT HAND SIDE OF COMPATIBILITY EQUATION.
m
CALL AMATRX(M)
10 CONTINUE
WRITE(6+213)
DO 53 J=1¢NPR
WRITE(64214) B(J)
PB(J)=B(Y)
DO 51 I=14NPR
PACIgJ)I=A(I o))
51 CONTINUE
53 CONTINUE
DO 27 J=NP2eNT
IF(FEEC(J) oNE. 0o) GO TO 28
27 CONTINUE
GO TO 67
m
CeccoeceeeSOLVE COMPATISILITY EQUATION.FOR LARGE MATRICES APPROPRIATE BANDED
Cc MATRICES AND PROPER SOLUTION ROUTINES MUST BE USEDe.
]
28 CALL LEQT1FC( Ag1eNPR¢50¢Be8¢WKAREASIER)
DO 54 I=14¢NPR
FECI)=B(I)
54 CONTINUE
67 WRITE(6+4216)
00 56 J=NP1eNT
FECJUI=FEEC(J)+FECLP(J))
56 CONTINUE
DO S5 J=1eNT
WRITEC69217) JoFE(U)
FE1C(JI=FE(J)
W(J)=0.0
55 CONTINUE
FORC1=1.
L]
CeeeeeeeoCOMPUTE IN=-PLANE FORCES9BENDING MOMENTS AND PRINCIPAL STRESSES.
m
CALL AXLOAD(FE14FORC1,4FEE)
m
CoecoeeceoeoeeCOMPUTE IN=-PLANE DISPLACEMENTSoU AND V.
m
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CALL DISPLMT(FEL)
IFCITYP «EQe 1) GO TO 99
DO 19 I=14NPR
DO 2 J=1¢NPR
ACIoeJ)=0e0
2 CONTINUE
19 CONTINUE
DO 403 M=1,4NPR
m
CeoesoeoeeCALCULATE OPERATOR FOR LEFT HAND SIDE OF EQUILIBRIUM EQUATION.
m
CALL WOPRT(M)
m
CecoeoeesCOMPUTE COEFFICIENT MATRIXoAWe FOR EQUILIBRIUM EQUATION.
m
CALL AMATRX(M)
m
CeecooeseeFORM MATRIX9eBWe IN RIGHT HAND SIOE OF EQUILIBRIUM EQUATION.
m
CALL BWMAT(M)
403 CONTINUE
DO 404 I=14NPR
D0 405 J=1¢NPR
AUCT 9J)=A(I o)
405 CONTINUE
404 CONTINUE
IFCITYP EQe 3) GO TO 18
m
Ceoeeeoee COMPUTE EIGENVALUES AND EIGENVECTORS.
m
CALL EQZQF (A ¢S50¢BWeS0eNPR92Z450)
CALL EQZTF(A ¢50¢BWeS09NPRIEPSAGEPSB92¢504IER)
CALL EQZVF(A 9509BuUeSO09NPRIEPSAIEPSBeALFReALFIWBETA92Z+50)
WRITE(64¢25)
DO 41 I=14NPR
EIGVALCI)=ALFR(I)/BETA(I)
WRITE(6926) ALFRCID9ALFICIDGBETACIIGEIGVALC(D)
41 CONTINUE
18 CONTINUE
m
CeoesecoeoeREAD INITIAL VALUES FOR POSTBUCKLING TRIALS.
m
READC(S5911) NTRYJNITReFORCeFORICRoDIF
READ (Se*) (Q(I)eI=14¢NPR)
READ(Se*) QINCR
READ(Se*) (FEL1CI)oI=14NPR)
READ(Se*) (W(I)eI=19¢NPR)
NN=0
WRITE(69224)
WRITE(69521)
WRITE(69522)INTRYINITR9FORCoFORICRoDIFoH
WRITE(6+4523)
WRITE(6¢524) (QCI)oI=14NPR)
DO 5 M=1¢NTRY
FORC1=(FORC*NN*FORICR) «DR
DO 6 I=14NPR
QCI=QCI)*QINCR
PBL(I)=PB(I)*FORC1
6 CONTINUE
D0 20 I=NP2 4N
FE1C¢I)=FEE(I)+FORC1
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FECI)=FEL1(])
20 CONTINUE
NN=NNe1
MM=0
MMM=1
WRITE (64229)
WRITE (69221) NN,FORC1
DO 7 L=1¢NITR
MM1=MM=1
MM2=MM=2
IF(MM=3+MMM) 22642254226
225 MMM=MMMe+1
m
CeeccooceAPPLY CONVERGENCE~-INDUCING TECHNIQUE.
m y
D0 60 I=14NPR
IFCCFES(MMoI)=FE3I(MM19I)) *(FES(MML1oI)=FE3S(MM241I))eGEe 0e)GO TO 60
FECI)=(FES(MM]lgI) e 2 2«FES(MMoI)eFES(MM29I)) /(2 +FES(MMLoI)=FE3(MM,
*I)=FE3(MM2,1))
WCIIS(WI(MML G I) e o2y (MMeI) o UI(MM29I))/(2e*W3I(MMLoI)=WI(MMyI)=W3(
*MM2,4,1))
60 CONTINUE
GO TO 61
226 DO 49 I=1¢N
FECI)=FEI(D)
49 CONTINUE
61 MM=MMe1}
DO S8 I=14NPR
DO S9 J=1¢NPR
SW(IeJ)=0.0
59 CONTINUE
58 CONTINUE

L ]
Ceeeooeee CALCULATE RIGHT HAND SIDE OF EQUILIBRIUM EQUATION.
m
D08 I=1¢NPR
CALL BWMAT(I)
Q1¢I)=0.0
8 CONTINUE
DO 50 I=1¢NPR
009 J=14NPR
ABU(IoJ)=AW(IoJ)
ACIoJI=PA(IoJ)
Q1CIN=QICI)*BU(I oJI)*W(J)
9 CONTINUE
Q1CIN=CQ1C¢I)+Q(I)vHeea) /DR
W1CId=w(l)
S50 CONTINUE
m
CoeeceoeeoeSOLVE EQUILIBRIUM EQUATIONSGET NEW Ve
m
CALL LEQTIF(ABW9e19NPR9509Q19B8eWKAREASIER)
DO 12 I=1¢NPR
WeId)=Q1(I)
12 CONTINUE
DO 14 J=1e¢NPR
CeeseeceoeCOMPUTE RIGHT HAND SIDE OF COMPATIBILITY EQUATION BASED ON NEW VALUES.
G=0.0
WFACI=(W(K(129J))*W(K(20J))=W(K(10oU))=U(K(AGJI))/A,
WFAC2=W(K(BeJ))*U(K(69J))=2.2W(K(ToJ))
WFAC3=W(K(3oJ))eW(K(110U))=2,2W(K(ToJ))
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G=GeWFAC1**2=-YFAC2¢WFAC3
8W1(J)=G*RK+PB1(J)
14 CONTINUE
m
CecoccoeeSOLVE COMPATIBILITY EQUATIONCGET NEW FEE VALUES.
m
CALL LEQT1F( A9y19NPR¢S09BW19B8sWKAREAGIER)
D0 15 I=1eNPR
FE1CI)=BW1(I)
15 CONTINUE
D0 17 I=1eN
FEJ(MMeI)=FEI(])
W3(MMe I = (])
17 CONTINUE
L]
c........cHEcK coNvERGENCE.
m
00 16 J=1¢NPR
IFCABSC(WICI)I=W(JIDI/W(J)) oGTe DIF) GO TO 7
16 CONTINUE
GO TO 72
7 CONTINUE
72 WRITE(64222) MM
DO 71 I=1,4N
WRITE(6913) FEL1C(ID)ou(I)
71 CONTINUE
64 DO 63 JU=NP1GNT
. FEL1C(J)=FEE(J)«FORC1+FEL(LP(J))
63 CONTINUE
[ ]
Ceoeeeeee CALCULATE IN-PLANE FORCES AND DISPLACEMENTS.
m
CALL AXLOADC(FE1¢FORC1oFEE)
CALL DISPLMT(FEL)
S CONTINUE
999 CONTINUE
99 CONTINUE
1 FORMAT(AIS¢FSe393F1065)
4 FORMAT(1814)
11 FORMAT(2IS5¢4F10.5)
13 FORMAT(10XeF15.8¢5X9F15.8)
25 FORMAT(////7+10Xe*ALFA REAL*¢SXo#ALFA IMAG*o8X9oBETA%910Xy*EIG
¢ENVALUES*)
26 FORMAT(/910XoF10e5¢5X9F10e595X9F10e595X9F1264)
211 FORMAT(1H1 920X o*ELEMENTS OF COEFFICIENT MATRIX=COLUMNS®gI24+ TO «
*912)
212 FORMAT(/9S5X910F10.5)
213 FORMAT(//¢8X9*B VECTOR®//)
214 FORMAT(5XeF12.8)
216 FORMAT(»0e910Xo*FE VALUES AT EACH NODEw®)
217 FORMAT(/95X91298X9F12.8)
218 FORMAT(////7¢20Xo+ELEMENTS OF MATRIX AWe)
220 FORMAT(////+20X¢*EIGENVECTORS CORRESPONDING TO EACH EIGENVALUE-
SVECTORS*9124¢T0 #o12)
221 FORMAT(///7/7¢50X9*LOAD POINT NO ¢9I3¢45XeeLO0AD=*9F8.2)
222 FORMAT(//9=ITERATION NO *¢1292Xe* FE #910Xeeye)
2284 FORMATC////930Xe*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASR)
501 FORMAT(//420X9*00000 GEOMETRICAL INPUT DATD 00000¢)
502 FORMAT(//9eNO OF NODES*¢2Xe*NO OF INTERNAL NODES*¢2X¢*NO OF EXTERI
*0R NODES*92Xe*NO OF INTERMEODIAT NODES*¢2Xe*POISON S RATIO®y2X,y
¢eGRID SPACING REF STUFNESS THICKNESS*)

warfu
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503 FORMAT(/93XeIS5912XeIS5915XeI5e15Xe15020XeF5e¢3910Xe3F10.5)

504 FORMAT(///4+20Xe*DEGREES OF FREEDOM FOR EACH NODE ¢1=INTERIORe 0=80
¢*UNDARY POINTo=1=EXTERIOR NODEeer)

505 FORMAT(/¢5X94013)

506 FORMAT(///920X9*1/BETA=DR/D¢)

507 FORMAT(S(SXy10F10.5/))

S08 FORMAT(///920Xe*1/BETA FOR INTERMEDIATE POINTSe)

511 FORMAT(///¢20X9*CORRESPONDING POINTS PARTICIPATING IN EACH NODE O
*PERATOR®*/) :

521 FORMAT(///¢SXe*NO OF LOAD POINTS#92Xe*NO OF ITERATION#¢2Xe*FORCE®,
*2Xe*FORCE INCREMENT*42Xo*DIFFERENCE# 92X 9*H=A/N?)

522 FORMAT(/012X0e15012X0IS595XeF9e398XeF6e3010XeF6e395XeF6e3)

523 FORMAT(//920Xe*EXTERNAL TRANSVERS LOAD®)

524 FORMAT(S5(SXe10F6e37))

END
n
m
[ ]
m
m

SUBROUTINE FEOPRT(M)
m
c R R I T TR TIT
c THIS ROUTINE CALCULATES THE VALUES OF OPERATOR FOR COMPATIBILITY
c EQUATION AND DETERMINES THE CONTRIBUTION OF EACH NODE BASED ON
c NODE NUMBERS (MATRIX D )
c R R R N R S TR I
m

COMMON/1/ POSeBBeCCoHoeNoNPRoDRoT
COMMON/2/K(13¢50)9AM(4950)9DELC60) ¢DELACS0) ¢yNSYM(S50)
COMMON/3/DF(75)9DC(13¢13)¢IBCC60)4R(13)$FE(TS)
COMMON/4/A(50¢50)4B(50)
COMMON/S/AM(S50950) ¢BW(S50050 JoRUWC(13)¢DELT(60)¢DELTA(S0) oW (ES)
INTEGER AM,DF
RC1)=DEL(K(3¢M))
RC€2)==(DEL(K(3oM))+DEL(K(E69M)))I2POS*2,#BB+DELACAM(3IoM))
R(3)==2+CCr(DELI(K(ToM)ISDELAK(IoM)))=2,+BB+(DELACAM(3IoM))*DELACAM
*+(agM)))
RC4)==POS*(DEL(K(39M))*DELA(K(B8eM)))*2,¢BB*DELACAM(A4M))
R(S)I=DEL(K(69sM))
R(6)==2¢*CCo(DEL(K(ToM))I*DEL(K(6oM)))=2,*BB*(DELACAM(2oM))I*DELACAM
*+(34M)))
RCTI=DELCK(3oM))*DEL(K(O69M))*DELC(K(BoM))*DEL(K(119M))*B,+CC*DEL(K
*(ToM))*2, BB (DELACAMCIoM))ISDELACAM (29M))*DELACAM(3oM)) ¢DELACAMC
*4oM)))
R(B8)==2,+CCe(DEL(K(7oM))+DEL(K(89M)))=2,*BB+(DELACAM(1sM))I+DELACAM
*(aeM)))
RCII=DEL(K(8yM))
RC10)==(DEL(K(69M)I*DELUK(11¢M)))2POS+2,*BB+DELACAM(24M))
RC11)=<2,+CCo(DELCKCToM))*DEL(KCL119M)))=2,+BB*(DELACAM(19M))*DELA
*(AM(24M)))
R€C12)==(DEL(K(8oM))*DEL(KC(119M)))2POS+2,+BB+*DELACAM(1¢M))
RC13)=DEL(K(11¢M))
L]
CeoveeeeeeCONSTRUCT D MATRIX AT EACH POINT.
[ ]
DO 72 J=1913
DO 71 I=1413
DC(IoJ)=0.0
71 CONTINUE
72 CONTINUE
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D(747)=1.0

IFC(DF(K(19M)) oNEe =1 oANDe DF(K(S¢M)) oNEe. =1) D(242)=1.0
IF(DF(K(1eM)) oNEe =1 oANDe DF(K(99M)) oNEe =1) D(494)=1.0
IFCDF(K(5¢M)) oNEe =1 oANDe DF(K(13¢M)) oNEe=1) D(10910)=1.0
IF(DF(K(9eM)) oNEe =1 oANDe DF(K(134M)) oNEe=1) D(12412)=1.0
IF(DF(K(1eM))) 10091014102

100 D(741)=1.0
BIM)=B(M)=R(2)*FE(K(2¢4M))I=R(3IILFE(K(IgM))I=R(A)+FE(K(AgM))=R(1)«FE
*+(K(1eM))
GO TO &0
102 D(1e1)=1.0
101 D(3¢3)=1.0
IF(DF(K(19M)) oEQe 0) BI(M)=B(M)=R(1)*FE(K(1¢M))
40 IF(DF(XK(SeM))) 11091114112
110 D(745)=1.0
B(M)=B(M)=R(6)*FE(K(69MII=RC(10)+FE(K(I10oM))=R(S)IeFE(K(SeM))
IF(DF(KC(19M)) oNEe=1) B(M)=B(M)=R(2)+FE(K(24M))
GO 7O 41
112 0(5¢5)=1,0
111 D(646)=1.0
IF(DFE(K(SeM)) <EQe 0) BC(M)=B(M)=-R(S)I*FE(K(SsM))
41 IF(DF(K(9¢M)) ) 12041214122
120 D(749)=1.0
B(M)=B(M)=R(B)*FE(K(B8oM))=R(9)*FE(K(IeM))=R(12)*FE(K(124M))
IF(DF(KC19M)) oNEo =1) B(M)=B(M)=R(4)*FE(K(AoM))
GO TO 42
122 N(9+¢9)=1,0
121 D(8+8)=1.0
IF(DF(K(99¢M)) oEQe 0) B(M)=B(MI=R(I)*FE(K(I9yM))
42 TF(DF(K(134M)) ) 13041314132
130 D(7913)=1.0
B(M)=B(M)=RC11)*FE(K(119M))I=R(13)+FE(K(13oM))
IF(DF(K(SeM)) oNEe =1) B(M)=B(M)=R(10)+FE(K(10eM))
IF(DFC(K(99M)) oNEe =1) B(MI=B(MI=R(12)+FE(K(124M))
GO TO 43
132 D(13413)=1.0
131 D0(11e11)=1,.0
IFC(OF(K(13eM)) oEQe 0) B(M)ZSB(M)=R(13)*FE(K(13eM))
43 RETURN
END
m
m
m
m
m
SUBROUTINE AMATRX(M)
m
c R R R I ITmnImnmmnrTIIInmmnmmTIImmMmMmMIIIIII ™™™
CeoosceeeCALCULATE COEFFICIENT MATRIX FOR COMPATIBILITY EQUATION.
[ R R I I I Iy
m
COMMON/1/ POSyBBeCCoHyNeNPR9ORe T
COMMON/2/K(13¢50)9AM(4950) ¢DELC60) ¢DELACSO) yNSYM(SO)
COMMON/3/0F(75)9D(13413), IBC(GO),R(IS)OFE(75)
COMMON/4/A(50950)4B(S0)
DO 51 J=1613
D0 52 L=1013
IF(K(LeM) «GTe NPR) GO TO 52
A(MoKC(LOIM)IZAIMeK(LIM)I*D(LoJ)*R(U)
52 CONTINUE
S1 CONTINUE
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RETURN
END

SUBROUTINE WOPRT(M)

L R R I I I
THIS ROUTINE CALCULATES OPERATOR FOR EQUILIBRIUM EQUATION AND
CONTRIBUTION OF EACH NODE BASED ON NODE NUMBERS.

\AAA R R AR AR A AR AR 2 2 2 2 2 R X X R R X R R R R R R X Y R R R R R 22 R}

COMMON/1/ POSeBBeCCoHoNyNPR9DRoT
COMMON/2/KC13950)9AM(49S50)9DEL(60) ¢DELA(S0)
COMMON/3/7DF(75)¢0(13e13)9IBC(60)4R(13)4FE(TS)
COMMON/S/AW(S50950) ¢BW(S0¢50 )eRW(13)eDELT(60)¢DELTA(SO)
INTEGER AM,DF

eeeesCALCULATE OPERATOR AT. EACH NODE USING FIGURE Ale

RUCLI=DELT(K(3oM)) .
RW(2)=24+CCADELTACAM(3¢M))*POS*(DELT(K(69M)I)*DELT(K(3I9M)))
RU(3)==2,o(BB(DELT(K(7oMI)*DELT(K(39M)))*CCH(DELTACAM(IoM) )«
*DELTACAM(A4M))))
RUCA)=2,+CCoDELTACAM(44M))+POSe(DELTI(K(IoM)I)*DELTI(K(84M)))
RW(S)=DELT(K(64M))
RUCE6)==24# (BB (DELT(K(ToM)I*DELTI(K(E6E94MIIISCC(DELTACAM(29M) )+
+DELTACAM(34M))))
RUCTI=8.+BBDELT(K(ToM))+DELT(K(BoM))+DELT(K(69M))ISDELT(K(IgM) )+
*DELT(K(119M) )42, #CCo(DELTACAMC19M))I*DELTACAM(29M))+DELTACAM(3oM))
*+DELTACAM(A4M)))
RW(B)==2,2(BB*(DELT(K(ToM))+DELT(K(ByM)I)I)I+CCe(DELTACAM(L M) )
SDELTACAM(G4M))))
RW(II=DELT(K(BosM))
RU(C10)=2,2CC+DELTACAM(29M))*POS*(DELT(K(114M)I*DELT(K(69M)))
RW(11)==2,¢(BB*(DELT(K(ToM)I)I*DELTI(K(119M)))+CCo(DELTACAMCL4M) )+
*DELTACAM(24M))))
RW(12)=2,+CC*DELTA(AM(1¢M))I*POSe(DELT(K(B8oM)I*DELT(K(119M)))
RUC13)=DELT(K(11sM))

CONSTRUCT D MATRIX AT EACH POINT

DO 72 J=1,13

DO 71 I=1413

D(IeJ)=0.0

CONTINUE

RC(JI=RY(J)

CONTINUE

DC7¢7)=1.0

IF(DF(K(l'"’) ONE. °1 .‘ND. DF(K(SO")) .NEO -l) 0(2'2)3100
IFCOF(K(19M)) oNEe =1 «ANDe DF(K(9eM)) oNEe =1) D(494)=1.0
IFCDF(K(S9M)) oNEe =1 o¢ANDe DF(K(13¢M)) oNEe=1) D(10010)=1.0
IFCDF(KC(9eM)) oNEse =1 ¢ANDe DF(K(139M)) oNEe=1) D(12412)=1.0
IF(DF(K(14M))) 10001010102

IFCIBC(K(394))=2) 10019100241002

D(741)=1.0

GO TO 40

DCT791)==1.0

GO TO &0
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110
1101

1102

112
111

120
1201

1202

122
121
42
130
1301

1302
132

131
43
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D(1e1)=1.0

D(3¢3)=1.0

IF(DF(K(SeM))) 110e1119112
IFCIBC(K(69M))=2) 11014110251102
D(7¢5)=1.0

GO TO 41

D(7¢5)==1.0

GO TO 41

D(SeS5)=1.0

D(6+6)=1.0

IF(DF(K(9¢M)) ) 12041214122
IFCIBC(K(8eM))=2) 1201¢120291202
D(7¢9)=140

GO TO 42

D(799)==1.0

GO TO 42

D(9+9)=1.0

D(8+8)=1,0

IF(DF(KC13eM)) )13001310132
IFCIBC(K(11eM))=2) 13019130241302
D(7413)=1.0

GO TO 43

D(7¢13)==1.0

GO TO 43

D(13¢13)=1.0

D(11e11)=1.0

RETURN

END

SUBROUTINE BWMAT(J)

R Iy
THIS ROUTINE IS UTILIIZED TO CALCULATE RIGHT MAND SIDE OF
EQUILIBRIUM EQUATION.

222X 22X EZRXRERRZAZZ SRR AZACRAA 22 XA AR R A2 R0 2R 2]

COMMON/1/ POSeBBeCCoHoNoeNPRoDRoT
COMMON/2/K(13¢950)9AM(4950) ¢DELC60)¢DELACSO) ¢NSYM(50)
COMMON/3/DF(75)¢0(13913)9IBCC60)R(13IIGFE(TS)
COMMON/S/AWN(S50950)9BW(50050 D)eRWI13)¢DELTC60)¢DELTA(SO)
FEFACI=FE(K(119J))=2,+FEC(K(ToJ))SFE(K(39J))
FEFAC2=FE(K(B8¢JU) ) =2 +FE(K(ToJ))*FE(K(69J))
FEFAC3==(FE(K(12¢J))*FE(K(29J))I=FE(K(L100J)I=FE(K(49J)))/8B0
IF(K(29J) oGTe NPR) GO 7O 1
BY(JoK(20J))=BW(JeK(29J))+FEFAC3

IF(K(39J) «GTe NPR) GO TO 2
BW(JeK(3eJ))=BWCJeK(39J))*FEFAC2

IF(KC4oJ) oGTe NPR) GO TO 3
BWC(JoK(A4oJ))=BUW(JeK(49J))=FEFAC3

IF(Kt69J) «GTe NPR) GO TO &
BWCJoK(6eJ))=BW(JeK(6sJ))+FEFACL

IF(K(T9J) «GTe NPR) GO TO S
BW(JeK(TeJ)I=BW(JoK(ToJ))=2e+FEFACL1=-2.+FEFAC2
IF(K(8eJ) «GTe NPR) GO TO 6
BW(JoK(89J))I=BW(JeK(8eJ))+FEFAC]

IF(K(109J)eGTe NPR) GO TO 7
BU(JoeK(109U))=BW(J9K(109J))=FEFAC3
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7 IF(K(119J)eGTe NPR) GO TO 8
BW(JeK(119J))=BW(J9K(11eJ)IeFEFAC2
8 IF(K(12eJ)eGTe NPR) GO TO 9
BW(JoK(12¢J))=BUW(JeK(124J)I*FEFAC3
9 RETURN
END

SUBROUTINE AXLOAD(FE19FORC1,4FEE)

L R N R I
THIS ROUTINE COMPUTES IN-PLANE FORCES¢BENDING MOMENTS AND
PRINCIPAL STRESSES AT EACH NODE.

(AR A AR AR A2 A2 A2 2 XA R R R R R 2 2 R R R R R S R R R X Y R R R R X2 2%

DIMENSION FE1(7S)4FEE(6S5)
COMMON/1/ POS¢BByCCoHoyNeNPR9DRT
COMMON/2/KC13950)9AM(49S50)9DELC60) ¢DELACSO) ¢NSYM(S0)
COMMON/3/DF(75)¢D(13¢13)9IBC(60)eR(13)$FE(TS)
COMMON/S/AN(S0450) ¢BW(S0¢50 IeRW(13)¢DELT(60)¢DELTA(S0)9W(65)
NP2=NPRe1
MM=N=-1
MRITE (6421)

21 FORMAT(////410X9*»STRESS RESULTANT RATIO AT EACH NODE )
D0 1 M=NP2eN
WF=1,
IF(IBC(M) EQe 2) WF==1,
IFI(NSYM(M)=6) 35936037

35 W(K(6oMII=WFeWY(K(BeM))
WEK(10oM))=WFoW(K(124M))
GO TO 1

37 WIKC6oM))=WF+W(K(BoM))
WIKC(29M))=WFeW(K(124M))

36 WIK(3eM))I=WFeW(K(119M))
WIKCAoM)I=WFeW(K(12eM))

1 CONTINUE

WRITE(6¢22)

22 FORMAT(/// /92X 9goNODE*9SX o *NX/NegbX 9eNY/N#gSXog*NXY/Neg IX gwMXey
*BXetMY O T X oo MXY* ol 1Xo*MXT/2I29SXewNX/Teol0Xe*MYT/2]I0¢5Xe*NY/T PRI
eNCIPAL STRESS*)

D0 10 I=1,N

IF(NSYM(I) oEQe 7IFEI(K(20I))I=FELC(K(1291I))22,+FEE(K(69I))*FORC1

XN==CFE1C(KC119I))¢FELCK(39I))=2,*FEL(K(ToI)))/(Hev24FORC1)

YNS=(FEI1(K(H9I))oFEI(K(B8eI))=2¢oFEL(K(ToI)))/(Hee2«FORC1)

XYNSS(FEL1(KC(2¢I))*FEL(K(120I))=FEL1(K(AQI))=FEL(K(109I)))/(AorHew2
++FORC1)

WUXXS(WCK (69l I eW(K(BoI)) =20 W(K(T9I)))/Hen2

MYYSC(WCKCLI19I)) @WK (39I))=2oW(K(ToI)))/Hee2

WXYSC(WCKCOoI))oW(K(L100I))=W(K(129I))=W(K(2¢I)))/(AovHee2)

DP=DR«DELT(I)

XM==DP+ (UXX+POS*WYY)

YM==DPe(WYY+POS*WXX)

XYM=DP+CCo*WXY

SIGMAX=XM#Ge/Tee2

SIGMAY=YM#g,/Tee2

SIGMANX=XN«FORC1/T

SIGMANY=YN«FORC1/T

XSIGMAX=ABS(SIGMAX)+ABS(SIGMANX)
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YSIGMAX=ABS(SIGMAY)+ABS(SIGMANY)
RAD=SQRT(((XSIGMAX~YSIGMAX)/24)#42¢(XYNeFORC1/(2,9T))ee2)
PRSTRES =(XSIGMAX+YSIGMAX)/2,¢RAD
WRITE(6923) IoXNoYNeXYNoXMoYMoXYM9SIGMAX9SIGMANXeSIGMAYe SIGMANY
$ 9PRSTRES

23 FORMAT(//92X91292X93F10e504X93F10e392(2X9F10e39F1243)¢F12.3)

10 CONTINUE
RETURN
END '

SUBROUTINE DISPLMT(FEL)

L R R I ™M
THIS ROUTINE COMPUTES IN<-PLANE DISPLACEMENTSsU AND V AS
DESCRIBED IN SECTION 3ele3e2e

LA A A AR AR A A A 2 XX X222 RS2 RS R R

E s NeRo Nl ]

DIMENSION AUCS50¢50)9AV(S50950)9¢BUCS0) ¢BV(S50)¢FEL(TS)9WKAREA(S0)
DIMENSION NU(S50) ¢NV(S0)eAUUCS50¢50) 9AVV(S0950)¢BBUCSO)¢BBV(S50)
COMMON/1/ POS¢BBeCCoeHeNeNPReDR¢T oRK
COMMON/2/K(13¢50)9AM(4950)9DELCH60) ¢ DELACSO) ¢NSYM(50)
COMMON/3/DF(T75)eN(13913)¢IBCL60)9R(13)4FE(CTS)
COMMON/S/AW(S0950) ¢BW(S09e50 )eRWI(L13)9DELT(60)9DELTA(SO) oW (65)
INTEGER OF
DO 1 I=1eN
DO 2 J=1N
AUCT 9J)=AV(IeJ)=0,0

2 CONTINUE
BBU(CI)=BBV(I)=0.0

1 CONTINUE

Coeocovecee IMPLY OUT=-0F=-PLANE BOUNOARY CONDITION.

NP2=NPR+1
D0 22 M=NP24N
WF=1.
IFCIBC(M) oEQe 2) WF==1l.
IF(NSYM(M)=6) 35436937

35 W(K(69MIIZUF W (K(BoM))
WEKC3oM))=WFoW(K(119M))
60 TO 22

37 W(K(6eM)II=WUF*W(K(8oM))
WCK(24M))=WFeW(K(124M))

36 WCK(3eM))I=UF+W(K(114M))

22 CONTINUE
N1=N2=0
DO 3 M=1eN
WXSCW(KCBIM))=W(K(6E9M)I))/ (26 2H)
WYS(WCK(3eM) ) =W(K(114M)))I/(2,2H)
XNS(FELIC(KCI1oMIDGFEL(K(IgM)I=22FEL(K(ToM)I)/(Hee2)
YNS(FELC(K(OoM))ISFEL(K(BoM)II=22FEL(K(ToM)) )/ (Hew2)
ClzeSeuxesr2
C2ze50WY®r2

CeoseoeosCONSIDERING SYMMETRY AND BOUNDARY NODES oFORM COEFFICIENT MATRICES.

IF(NSYM(M) NEe 0) GO TO 6

25 N1=N1e+1
N2=N2+1
NUCN1) =M
NV(N2) =M
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IF(NSYM(K(BsM)) oEQe 1 oORe NSYM(K(84M)) .EQ. &) GO TO 18
AUCN1oK(ToM))IZAUCNLoK(ToM))=1e/H
AUCNL1oK(BoM))=AUINL9K(BoM))el,/H
GO TO 19
AUCNL1oK(ToM))=AUINL9K(ToMI)=16/H
AVIN2eK(ToeM)ISAVIN24K(ToM))*1e/H
AVIN2¢eK(119M))I=AV(N24K(114M))=1,/H
BUCN1)=DEL (M)« (XN=-POS*YN)/RK=C1
BV(N2)=DEL (M )~ (YN=POS*XN)/RK=C2
G0 70 3

GO TO(7+893+15025¢25¢25) NSYM(M)
N2=N2+1

NVIN2) =M

IF(DF(K(34M)) oEQe=-1) GO TO 20
AVIN29K(39M)I=AVIN2¢yK(39M) D¢ ,5/H
AVIN2eK(11eM)DISAVIN2¢K(119M))=e5/H
G0 TO0 21
AVIN29yK(ToM)IZAVIN29yK(ToM))e1s/H
AVIN29K(119M))I=AVIN2¢K(119M))=14/H
BVIN2) =DEL (M )*(YN=-POS*+XN)/RK=C2
GO TO 3

N1=Nlel

NU(N1)I=M
AUCN1¢K(BoM))I=AU(NLoK(89M))*1e/H
AUCNL o K(T79M))=AUCNLIK(ToM))=1o/H
BUCN1)Y=DEL (M)~ (XN=-POS*#YN)/RK=C1
GO TO 3

N2=N2e1

NVIN2)=M
AVIN2oK(ToM)DI=AVIN2eK(ToM))e1,./H
AVIN29K(11¢M))I=AV(N24K(119M))=1e/H
BV(N2)=DEL (M )e(YN-POS*XN)/RK=C2
CONTINUE

DO S I=1eN1

DO & J=1,N1

AUUCToJ)=AUCTIWNUCY))

CONTINUE

CONTINUE

D0 17 I=14N2

D0 14 J=1eN2

AVV(IeJ)=AV(IeNV(J))

CONTINUE

CONTINUE

CeecoceeeSOLVE FOR V=-DISPLSCEMENT.

10

24
23

CALL LEQT1F(AVYVe19N2950¢BVeBeWKAREAJIER)
D0 10 J=14N2

BBVINV(J))=BV(J)

CONTINUE

NN=0

DO 23 M=14N

IF(NSYM(M) EQe 1 <ORe NSYM(M) .EQ.3) GO TO 23
IF(NSYM(M) .EQe 4) GO TO 24

NN=NNe1

IF(NSYM(K(B9sM)) «NE. &) GO TO 23
BUCNN)=BUCNN) +BBV(K(8yM))/H

GO TO 23

BBU(M)==BBV(M)

CONTINUE

Coo......SOLVE FOR U=-DISPLSCEMENT.

CALL LEQT1F(AUUs19N19S0eBU9BsWKAREALIER)
DO 9 I=1eN1
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8BUINUCI)I=BU(D)
9 CONTINUE
BBU(N)==BBV(N)
WRITE (6+11)
11 FORMAT(////¢10Xe*NODE U=-DISPLACEMENT V=DISPLACEMENT*4//)
DO 16 I=1eN
WRITE(6912) I4BBUCID«BBVI(I)
12 FORMAT(11XeI293XeF12¢698X9F1246)
16 CONTINUE

RETURN
END
m
m
m
m
m
SUBROUTINE WRITE(NPReA)
m
c R R R R R R R R YRR R P T R S R R T R R R T T T 2

Co-ooooo.THlS ROUTINE ARRANGES THE WRITE=OUT OF LARGE MATRICES.
R T
m

DIMENSION A(50450)
NMAT=NPR/10+1
DO S7 Il=1eNMAT
I11=10+(J11=1)+1
112=10+1I1
IF(I12 «GTe NPR) TI12=NPR
IFC(I11 «GTe NPR) GO TO S7
WRITE(6¢3) I11,e112

3 FORMAT(//// 930Xyt =wmcccccacacace COLUMNS #¢]12¢¢ TO #9[2¢¢ mcecccce=-

$omecan=ty//)

DO 52 I=1¢NPR
WRITE(608) (A(IeJ)eJd=I119I112)

4 FORMAT(/9¢S5X9e10F12.5)

52 CONTINUE

ST CONTINUE
RETURN
END
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PROGRAM PLATE2(INPUTeOUTPUTTAPES=INPUT¢TAPE6=O0UTPUT)

R R R I R R R R R R R R R R R R T T R T T
THIS PROGRAM IS UTILIZED TO SOLVE PRE~BUCKLING+BUCKLING AND
POSTBUCKLING OF VARIABLE STIFFNESS PLATES SUITABLE FOR
DISPLACEMENT BOUNDARY CONDITIONS.

THIS PROGRAM USES THE GIVEN SUBROUTINES IN ADODITION TO THREE
ROUTINES (AMATRX¢WOPRT AND WRITE) AS GIVEN IN PROGRAM PLATEl.

(122 XXX 2R EEAR AR R R A2 RRAZ2RZRZ2 X222 R 22l R RN

DIMENSION QCB81)9BW(B1)9A(1289128)98B(128)9¢UINCR(81)9VINCR(81)
DIMENSION AWW(64964)9WW(64925) ¢WKAREA(128)

DIMENSION EIGVAL(64)9ALFR(64)9ALFI(64)9BETA(64)92(64964)
COMMON/1/P0S+8BeCCeK(13¢81)¢DELCBL1)9DF(101)¢HINSYM(B81)9DRoRK
COMMON/2/DU(999) 9DV(999) 9 KK(9964) gRUL(II9RU2(I)IsRV1(I)4RV2(9)
COMMON/3/B1(65)¢B2(65)sUCBL1) oV (81)9BUW1(64)¢BW2(64)9W(100)
COMMON/4/ AUL1(64968)9AU2(64964)9AVI(64964)9AV2(64964)9AUV(1284128)
COMMON/S/ BUV1(64)483UV2(64)9BUV(128)
COMMON/6/DELT(81)¢DELTA(B )9AM(4481)9DELA(S )oIBC(81)
COMMON/T7/RW(13)9DW(13913)9AW(64964)¢BUB(64064)
COMMON/B/XNX9YNY 9 XNY

INTEGER AMoDF

eeeoREAD INPUT DATA.

READ (Se*)NSOLN

DO 99 NO=14NSOLN

READ(Se*) ITYP

READ(Se+*) RATIO14RINCR,L1

READ (Sel) NeNPRoNOUTeNAGPOSeALFAeHGE,T
NP2=NPR+1

NT=NeNOUT

READ (Se*) (IBC(I)eI=NP2¢N)

READ (Se*) (DF(I)eI=14NT)

READ(Se*) (NSYM(I)eI=1eN)

READ (Se*) (UCI)oI=NP2¢N) .

READ (Se#*) (VC(I)eI=NP24N)

D0 100 I=1eN

READ(Se4) Loe(K(JoIdoU=1913) o (AM(J9I)eU=144)
WRITECO604) Io(K(JoI)oJ=1913) o(AM(Jel) oJU=194)
CONTINUE

B8B=1,+P0S

CC=1,-P0OS

WRITE(6¢501)

READ(SerY (W(J)ed=1eN)

READ (Se*) (QCI)oI=1eN)

WRITE(64511)

WRITE(6¢502)

WRITEC(69503) NoNPReyNOUToNA9POSeHeDRe T
WRITE(6¢504)

WRITE(69505S)COF(I)oI=1eNT)

N2=2=NPR

CALL KKVECT(NPR)

DO 999 LL=1,lL1

CALL DESIGNC(RATIO1oRINCRoNoLLoTCoRATIOWNA)
T=TC

DR=E«T*23/(12,+BB+CC)

RK=E~T

WRITE(6¢506)

WRITEC69¢507) (DELC(JU)oJ=1eN)
WRITE(64+508)
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WRITE(6¢507) (DELACJU)eJ=19NA)
WRITE(69998) LLoRATIO9RK9DRoT
998 FORMAT(////¢*TRIAL NO #¢I39% R=egFSe39¢ ET CENTER=*o¢F8¢3+ DO CENT
$SER=egFBe3e*» CENTRAL THICKNESS= *o¢F8.5)
DO 103 I=14NPR
B1(I)»=B2(I1)=0.0
DO 104 J=1,NPR
AULCToJ)=AU2(ToJ)=AVI(TeJ)=AV2(I9J)=AW(IoJ)=BUWB(IsJ)=0a0
104 CONTINUE
103 CONTINUE
m
CeoevoeeeCALCULATE OPERATORS AND FORM THE MATRICES FOR IN=PLANE
c EQUILIBRIUM EQUTIONS.
m
DO 110 M=1¢NPR
CALL UVOPRT(M)
CALL AUVMAT(M(NPR)

m
CeeeceeeeCOMPUTE W-OPERATOR FOR OUT=0F-PLANE EQUILIBRIUM EQUATION.
m
CALL WOPRT(™)
m
CooesoeeeCALCULATE CONTRIBUTION OF W IN RIGHT HAND SIDE OF IN=PLANE
c EQUILIBRIUM EQUATIONS.
m
CALL WFUNCTCALFAM)
m
CeeocceeoeFORM COEFFICIENT MATRIX FOR OUT=-0OF=-PLANE EQUILIBRIUM EQUATION.
m
CALL AMATRX(M¢NPR)
110 CONTINUE
m
CeecccoeeeeASSEMBLE U AND V COEFFICIENT MATRICES.
m
CALL ASSMBL(NPR)
WRITE(69265)
WRITE(64240)
DO 115 I=1eN2
B¢IY=BUV(I)
115 CONTINUE
D0 117 I=1eN2
DO 116 J=1¢N2
ACIeJ)=AUV(IeJ)
116 CONTINUE
117 CONTINUE
m
CeeoooeeeSOLVE IN=-PLANE EQUILIBRIUM EQUATIONS.
c NOTE. FOR LARGE MATRICES PROPER BANDED MATRICES MUST BE
c FORMED AND APPROPRIATE SOLUTION ROUTINES USED.
m
CALL LEQT1F(A919N29128¢B¢8¢WKAREAGIER)
D0 150 I=1¢NPR
uCII=8(In
NPV=1+NPR
VCI)=BINPV)
150 CONTINUE
WRITE(6¢201)
DO 156 M=1¢NPR
ITREND=1
m
Ceececeee CALCULATE RIGHT HAND SIDE OF OUT=-OF-PLANE EQUILIBRIUM EQUATION.
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m
CALL RHSW(MyQoALFAsBUWeNPReNe ITREND)
m
CeescooeeFORM COEFFICIENT MATRIX IN RIGHT HAND SIDE OF QUT=OF=PLANE
c EQUILIBRIUM EQUATION.
m
CALL BWBUCKL(MgNPR)
DO 154 I=14NPR
AWW(MeI)=AW(MeI)
154 CONTINUE
156 CONTINUE
IFCITYP .EQs 1) GO TO 99
IFCITYP o«EQe 3) GO TO 119
DO 131 T=14NPR
D0 132 J=1eNPR
AW(IoJ)=AWC(I 9J)*DR/Hews
132 CONTINUE
131 CONTINUE
WRITE(64261)
m
CecececeeeSOLVE EIGENVALUE PROBLEM,
m
CALL EQZQF(AWe649BWRe649NPR924964)
CALL EQ2TF(AW+649BWB964INPRIEPSAIEPSBeZe64yIER)
CALL EQZVF(AW964¢BUB 964 4NPRIEPSAJEPSBoALFRGALFIWBETA92464)
WRITE(6425) )
DO 41 I=14NPR
EIGVALC(I)=ALFR(I)/BETA(I)
WRITE(6426) ALFRCIDQALFICI)¢BETACIISEIGVAL(I)
41 CONTINUE
999 CONTINUE ’
119 IF(ITYP LEQ. 2) GO TO 99
m
CeececeeeREAD INITIAL VALUES FOR POSTBUCKLING TRIALS.
m
READ(Se*) (W(I)eI=14NPR) .
READ (Se#*) C(UINCRCIDoI=NP2eN) ¢DIFoNTRYGNITR
READ (Se*) (VINCRC(I)oI=NP2eN)
READ(S¢+) QINCR
WRITE(6+224)
WRITE(69521)
WRITE(69522I)NTRYoNITReFORCoFORICR¢DIFoH
WRITE(64¢523)
WRITE(69524) (Q(I)eI=19¢NPR)
WRITE(6¢525) QINCR
D0 111 II=1eNTRY
IFC(II .EQ. 1) GO TO 118
DO 121 I=1¢NPR
Q(IN=QGCI)*QINCR
121 CONTINUE
m
Coeoooeceee INCREASE EDGE DISPLACEMENTS.
m
D0 112 L=NP24N
UCLISUCL) 2 (1o +(TT=1)+«UINCRIL))I/C1e¢(I1=2)*UINCR(L))
VILI=VIL)#(1o4(II=1)oVINCR(L))/(1lee(II=2)+VINCR(L))
112 CONTINUE
118 WRITE(60262) [I4Q(1)
JJdJd=1
DO 120 JJ=1eNITR
ITREND=0
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DO 114 I=1,NPR
81(I)=B2(1)=0.0
DO 2 J=14¢NPR
AULCToJ)=AU2CToJ)=AVI(IoJ)I=AV2(I0eJ)=0.0
2 CONTINUE
m

CoeceeceeoFORM COEFFICIENT MATRICES IN RIGHT HAND SIDE OF IN=-PLANE

C EQUILIBRIUM EQUATIONS.
m

CALL UVOPRT(I)

CALL AUVMAT(IeNPR)

m
Ceecceoeeoe CALCULATE RIGHT HAND SIDE OF IN-PLANE EQUILIBRIUM EQUATIONS.

m
CALL WFUNCTCALFALI)
114 CONTINUE
m
Ceeeoeees ASSEMBLE U AND V COEFFICIENT MATRICES.
L)
CALL ASSMBL(NPR)
DO 42 I=1¢N?
DO 43 J=1¢N2
ACloJ)=AUV(IWJ)
43 CONTINUE
42 CONTINUE
m
CeecoceeeSOLVE IN-PLANE EQUILIBRIUM EQUATIONS.
m
CALL LEQT1F(A919N291289BUVe8eWKAREASIIER)
DO 44 [=14NPR
L=1+NPR
ucId)=suvcer)
V(I)=BUV (L)
44 CONTINUE
D0 68 J=1eNPR

L]
CeceeeeeeCALCULATE RIGHT HAND SIDE OF IN-PLANE EQUILIBRIUM EQUATIONS.

m
CALL RHSW(JeQoALFA9BWeNPReNSITREND)
68 CONTINUE
DO 4S5 J=1¢NPR
DO 46 L=19NPR
AWCJoL)=AWMC(JoL)
46 CONTINUE
45 CONTINUE
m
CeceeoeeeSOLVE OUT=-0F=-PLANN EQUILIBRIUM EQUATION.
m
CALL LEQTIFC(AW o91oNPRe649BWeSoWKAREAGIER)
DO 151 I=1eNPR
WCI)=WW (I eJJ)=BW(I)
151 CONTINUE
JJdilz=Ju-1
JJazJdd=2
IF(JJ «EQe 1) GO TO 120
m
CeoceceeeCHECK CONVERGENCE.
L]
D0 152 J=1eNPR
IFCWWCJe(JU=1)) < EQe Oo) GO TO 152
IFCABS((WW(JoJJ)=WUW(Je(JU=1)))/WN(Jg(JU=1)))

eGTe

DIF) GO TO 160
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152 CONTINUE
GO TO 1111
160 IF(JJU=3+JJJ)1204158,4120
158 JJdJzJJdJel
DO 159 I=1¢NPR
m
CeecoeoceoaeAPPLY CONVERGENCE =-INDUCING TECHNIQUE.
m
IFCCUWETaJU)=WWCToUJL)) (WU (T oJU1I=UW(IsJJ2)) oGTe 0e) GO TO 159
WCIIS(WWCT oJU1 )% e2<-WW(IoJJ) 2 WU (I oJJU2))/(2e2WNIIoJUL)=WUW(IoJJ)=WWI(
$1e4J2))

159 CONTINUE

120 CONTINUE

1111 ITREND=1

WRITE(6¢263) JJ
WRITE(64251)
DO 153 L=1eN
WRITE(69252)UCL) oVIL) oW (L)
1353 CONTINUE
WRITEC64+201)
DO 688 J=1,\
m
CeeeoeoeeeCALCULATE IN=PLANE FORCESoBENDING MOMENTS AND PRINCIPAL STRESSES.
n
CALL RHSW(JeQoALFAsBUgNPRg¢NeITREND)
688 CONTINUE
111 CONTINUE
99 CONTINUE
1 FORMAT(ATISe2FSe3eF1561292F10.3)
4 FORMAT(1814)
S FORMAT(//e1599FT7e445X99F7e4)
6 FORMAT (/95X ¢9F 3.0910X¢9F3,0)
2% FORMAT(////7410Xe*ALFA REAL®*9SXe*ALFA IMAG*¢8X9*BETA*el0Xe*EIG
+ENVALUESY) .
26 FORMAT(/ 910X 9F1l0eS95XeF106e5¢5X9F104595XeF10.5)

201 FORMAT(///7/7¢4X 9o NODE# g 7TXo#NX®gBXotNY®gTXoaNXY®gl16XouMX g BXoaMY®
SoTXotMXY*gT7Xg*MAX STRESS IN X#oe2Xoo*MAX STRESS IN Y PRINCIPL STRES
$Se)

220 FORMAT(//7/7/7+20X9e*EIGENVECTORS CORRESPONDING TO EACH EIGENVALUE®)

224 FORMAT(////7+¢30Xe*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY)

240 FORMAT(///7¢SXe«ELEMENTS OF BUV=VECTOR®)

250 FORMAT(/4910XeF10.5)

251 FORMAT(////48X9*U=DISPLACEMEMENT » 99X o*V=-DISPLACEMENT»912Xe*W=DISPL
¢ACEMENT»)

252 FORMAT (/98X oeF1065915X9F1065¢15X¢F10,5)

261 FORMAT(//7/7/7:20X980C1HS) o MATRIX BW *940(1HS)//)

262 FORMAT(//7/920Xe40C1HS) 9% LOADING STEP NO #oI3e* Q=*9F10e2¢40(1HS))

263 FORMAT(////st=ccnea v—- ITERATION NOtgl3gtecccccccacc==r)

265 FORMAT(//7/77+20%X940C1HS) 9» MATRIX AUV #o40(1MS$)//)

501 FORMAT(//420X9+00000 GEOMETRICAL INPUT DATD 00000+)

502 FORMAT(//9*NO OF NODES*92Xe*NO OF INTERNAL NODES*¢2Xe*NO OF EXTERI
¢0R NODES*¢2X9*NO OF INTERMEDIAT NODES*92Xe*POISON S RATIO®g2Xy
¢+GRID SPACING REF STUFNESS THICKNESS*)

503 FORMAT(/e3X9IS¢12XeISe15X9I5915X015920XeFSe3910X93F1065)

504 FORMAT(///¢20X¢*DEGREES OF FREEDOM FOR EACH NODE ¢1=INTERIOR, 0=80
+UNDARY POINT¢=1=EXTERIOR NODEeew)

505 FORMAT(/¢5Xe4013)

506 FORMAT(///¢20Xe*1/BETA=DR/D*)

507 FORMAT(S5(5X910F10.5/))

S08 FORMAT(///920Xe*1/BETA FOR INTERMEDIATE POINTS*)

S11 FORMAT(///9+20Xe*CORRESPONDING POINTS PARTICIPATING IN EACH NODE O
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+PERATOR®*/)

521 FORMAT(///¢5Xe*NO OF LOAD POINTS*92X9*NQO OF ITERATION#*¢2Xe*FORCE®,
¢2Xe*FORCE INCREMENT# 92X o*DIFFERENCE®92Xo*H=A/N»)

522 FORMAT (/012X 9I5¢12X0I595XeF9e398XeF6e3010X9F6e395XeF6e3)

523 FORMAT(//920Xe*EXTERNAL TRANSVERS LOAD»)

524 FORMAT(5(SXe10F12.27))

525 FORMAT(// 920X gt==ece=ee| ATERAL LOAD IHCREMENT=#¢F8i2¢townccccccaas)

sTOP
END
m
m
m
m
m
SUBROUTINE UVOPRT(M)
m
[ R R R R I
C THIS ROUTINE CALCULATES OPERATORS FOR U AND V FOR IN-PLANE
c EQUILIBRIUM EQUATION AND THE CONTRIBUTION OF EACH NODEe.
c R R R s
m

COMMON/1/P0S ¢BBeCCoK(13981)¢DELC(BL)9DF(101)9HeNSYM(81)9DRoRK
COMMON/2/DU(399) eDV(99¢9) 9KK(9964)9sRULLIIeRU2(I)IsRV1(I)sRV2(9I)
COMMON/3/B1(65)9B2(65)9U(B1)9V(81)9BWL(64)¢eBW2(64)4W(100)
INTEGER DF
D0 1 I=149
RULCID=RU2CII=RVI(I)=RV2(I)=0,0
D0 2 J=1+9
DUCI9J)=DV(IeJ)=0.0
2 CONTINUE
1 CONTINUE
X1=1e/DEL(KX(SeM))
X221 /DEL(KK(E69M))=1o/DEL(KK(4gM))
X3=1e/DELC(KK(BoM))=1o/DELIKK(29M))
m
Ceeecooeoe CALCULATE OPERATOR FOR Ul IN X- EQUILIBRIUM
m
RU1(2)=¢S5#CC*(X1=625*X3)
RUL(4)=X1=X2/4,
RUL1(S)=(P0S=3,)*X1
RUL1(6)I=X1eX2/4,
RU1(8)=¢S5¢CCe(X14X3/4,)
m
Ceceeveee CALCULATE OPERATOR FOR U2 IN Y-EQUILIBRIUM
m
RU2(1)=RU2(9)=0,5+B88«X1
RU2(2)==454CC*»X2
RU2(¢(3)=RU2(7)==RU2(1)
RU2(4)==P0SeX3
RU2(6)==RU2(4)
RU2(8)==RU2(2)
m
CeoeoeeoeeCALCULATE OPERATOR FOR V1 IN X-EQUILIBRIUM
m
RV1C€1)=RV1(9)=RU2(1)
RV1(2)==P0S*X2
RV1(3)=RV1(T)==RV1(1)
RV1(4)==,5+CC*X3
RV1(6)==RV1(S)
RV1(8)==RV1(2)
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Ceoeeeeee CALCULATE OPERATOR FOR V2 IN Y=-EQUILIBRIUM

33aona3a 33aas3a

o000

20

21

23

24

RV2(2)=X1=,25+X3

RV2(A)=CCo*(e5 *X1=e125*X2)

RV2(S5)=(P0S=3,) *X1

RV2(6)=CCr(e5+X14,1252X2)

RV2(8)=X1eX3/4,

00 3 J=149

IF(NSYM(M) oNE. 0) GO TO 21

DU(JeJ)I=DV(JeJ)=1a0

GO TO0 3

IFI(NSYM(M)=2) 22,423,424

DUC193)=DUC(4¢6)=0U(749)==1.0
DUC1¢1)=DU(292)=DU(494)=DU(S5¢5)=DU(797)=DU(8¢8)=1.0
DV(JedJd=1,0

GO TO0 3

DV(1497)=DV(2¢8)=DV(349)==1.0
DV(191)=DV(292)=DV(393)=DV(a494)=DV(5¢5)=0V(696)=1.0
DU(JeJ)=1.0

GO T0 3

DUC1e3)=0UC496)=NU(T799)==160
DV(147)=DV(2¢8)=NV(399)==-1.0
DUC191)=0U(2¢2)=DUC(294)=0U(5¢5)=0UC797)=DU(B¢8)=1.0
OV(191)=DV(2¢2)=0V(343)=DV(494)=DV(5¢5)=DV(696)=1.0
CONTINUE

RETURN

ENC

SUBROUTINE AUVMAT(M¢NPR)

CALCULATES SUB=-MATRICES FOR IN=-PLANE EQUILIBRIUM EQUATIONS,

COMMON/2/DU(999) oDV (999)9KK(9964) 9RUL(I) ¢RU2(I)I ¢RV1(9)eRV2(9I)
COMMON/3/B1(65)+B2(65) oUCB1) ¢V (81) ¢BWL1(64) ¢3W2(64) 9 (100)
COMMON/4/ AUL(64+68)9AU2(64968) oAVI(64964)9AV2(64968) 9AUV(1284128)
(22222222 XX R A2 X R A I XX R A X 2 X R E X X X X R R R R N R R X TN R R RN R ]
CALCULATE A=MATRIX FOR U IN X EQUILIBRIUM
[ 222222 X222 R Ll AR E I A SN R R R R R R RN R R FRE R XN RN R RN RN
DO 2 L=1+9
IF(KK(LoM) oGTe NPR) GO TO 3
00 1 I=149
AUL(MeKKCLoM))=AULI(MgKK(LoM))eDU(LyID*RUICI)
AU2CMoKK(LoM) )=AU2(MoKKCLoM))*DU(LoI)*RU2(I) /4,
AVICMoKKC(LOM)IISAVIC(MeKKC(LOM))ISDV(LoI)*RV1I(I) /4,
AV2(MoeKK(LoM))I=AV2(MeKK(LoM))oDV(LoID*RV2(I)
CONTINUE
GO 10 2
DO 4 J=1,9
B1(M)=B1(M)=DU(LoJI*RULICJII*U(KK(LoM))I=DV(LoJI*RVI(J)*VIKK(LOIM))/4,
B2(M)=B2(M)=DUCLoJ)*RU2(J) *U(KK(LIM))/4o=DV(LoJ)*RV2(J)IeV(KK(LIM))
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE ASSMBL(NPR)

IAAARA AR AR AR A A2 R A2 222222222 X222 A 1R 22 X2 X2 X)

ASSEMBLE MATRICES FOR IN=-PLANE EQUILIBRIUM EQUATIONS.

(AR AAAR AR 2R AR 222 X222 22222 A2 2222322 X2 222 X2 2 X2 R 2]

COMMON/4/ AUL(64464)9AU2(64964)9AVI(64¢64)9AV2(64964)9AUV(1284128)
COMMON/S/ BUV1(64)98BUV2(64)9BUV(128)

- DO 1 I=14NPR

NPI=I+NPR

BUV(I)=BUV1(I)

BUVI(NPI)=BUV2(I) :

DO 2 J=1eNPR -
NPR2=NPR+J

AUV(IeJ)zAUL(T s D)

AUVCIoNPR2)ZAVI(Ied)

AUVINPT ) =AU2(T )

AUV INPIGNPR2)=AV2(I¢J) |
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE WFUNCT(ALFAsM)

\AAAA AR A A A AR A A AR AR R 2 A X2 22X 2 X222 222 X222 R X2 R X X )

CALCULATE RIGHT HAND SIDE OF IN=-PLANE EQUILIBRIUM EQUATIONS.

(I AAAAARARAA AR A2 2 222222 222X 222222 X222 R 22 R 22 X2

COMMON/1/P0S 98BoCCeK(13¢81)¢0EL(81)¢DF(101)9eHeNSYM(B81)9DRyRK
COMMON/3/B1(65)¢B2(65) qU(BL1) ¢yV(81)9BW1(64)¢BU2(64)9W(100)
COMMON/S/ BUV1(64)98UV2(64)eBUV(128)
UXZeS*(WIK(B8eM))=W(K(69M)))I/H
WYZoS*ALFA*(W(K(11oM))=W(K(34M)))/H
WUXXZ(MIKCBoM) ) SW(K(6E9M) I =22 W(K(ToM)))/Hee2

WYYSALFA# 220 (UCK(3gMIISW(K(114M))=2,*W(K(ToM)))/Hee?2
WXY=e2S5eALFA® (WK (2oM) ) =W(K(AgM))=W(K(L10qM))eW(K(12¢M)))/Her2
X1=1e/DEL(K(ToM))

X22e5#(1e/DEL(K(89M))=1o/DEL(K(64M)))I/H
X3=eS*ALFA*(1e/DEL(K(114M))=1o/DELC(K(3¢M))I)I/H
BWICM)SX1oWXX*WX®S5oX1w(BBaUXY*WYSCCoUYYAUX) ¢ S5eX2e(WXee24P0SH
SUYe22)oCCaX3ruXoYYe, 5 '

BU2(M) oS X14BB2UXY*UX®o5eX1aCCrUXX* WY SoCCAX2oYUXIYY® S XIa(WYrn2
S+POSHUX**2)eX1nWYYRUY

BUVI(M)=B1 (M)=BW1i(M)e*Hee2

BUV2(M)=B2(M)=BW2(M)*Hee?2

RETURN

END



m
c

253

SUBROUTINE KKVECT(NPR)

(222 XXX R EARAARES A2 A RRZZ2 2222222222 22X 2 RXXR 2 REXZ2 2 2}

CoeceoeeeeSTORES A 3 BY 3 STENCIL PATTERN FROM USUAL 13 NODE STENCIL.

c
m

OO0’

104
11

12

13
20

14
15

L A2 AR AR RS2 AR R R 2R 222222 AR AR XXX 2 X

COMMON/1/P0Se88B¢CCoeK(13981)¢DELC(B81)9eDOF(101)¢HoNSYM(81)¢DRyRK
COMMON/2/DU(999) 90V (9¢9) 9KK(9964)9RULCI)oRU2(9) 4RV1I(9I)4RV2(9)
DO 1 J=1 ¢NPR

KKC1eJ)=K(2eJ)

KK(2eJ)=K(3sJ)

KK(3eJ)=K(89J)

KKCa9J)=K(69J)

KK(SedJd)=K(TeJ)

KKC69JI=K(8BoJ)

KKCToJ)=K(10eJ)

KK(89J)=K(11eJ)

KK(9eJ)=K(124¢J)

CONTINUE

RETURN

END

SUBROUTINE RHSW(MeQeALFAyBWeNPReNg ITREND)

N A NI N R I RN R R NN R IR EE R RO RO PN RN RS PN RO G ORI AN ET SRR ORI RN
THIS ROUTINE CALCULATES RIGHT HAND SIDE OF OUT=OF=PLANE
EQUILIBRIUM EQUATION AS WELL AS IN=PLANE FORCES¢+BENDING
MOMENTS AND PRINCIPAL STRESSES.

(A XA AR A A R AR AR AR AR AR R A A2 222 AR 2R RN Z)

DIMENSION Q¢81)48W(81)

COMMON/1/P0S ¢BBeCCoK(13¢81)90EL(BL1)9DF(101)9HoNSYM(81)9DReRK
COMMON/3/B1(65)9B2(65)oU(81)9V(81)¢BW1(64)9BW2(64)9W(100)
COMMON/6/DELT(81)¢DELTACB )9AM(4¢81)9DELACB )oIBC(81)
COMMON/8/XNX 9 YNY o XNY

IF(NSYM(M) oNEe 0) GO TO 104
UX=eS*(UIK(BeM))I=U(K(69M)))I/H
VYSALFA®#S«(V(K(114M))=V(K(3eM)))I/H

GO TO 20

GO TO €110129139014915916917) NSYM(M)

UX==U(K(69M))/H

VYSALFA*#S«(VI(K(119M))=V(K(39M)))I/H

GO 10 20

UX=eS* (UK (8o M)I=UIK(69M)))I/H

VY==ALFA*V(K(3¢4M))/H

GO TO 20

UX==UCK(6eM))/H

VY==ALFA*V(K(3oM))/H
UYSALFA#*So#(U(KCL11oM)I=U(K(39M)))I/H
VXZeS5*(VIK(BIM)I=V(K(69M)))I/H

GO0 T0 25

UX=CUCK(B9gM))=U(K(T9M)))/H

VXS(V(K(BoM))=V(K(ToM)))/H
UY=ALFA*S2(UCK(119M))I=ULK(3eM)))/H

VYSALFA* S (V(K(11¢M))=V(K(39M)))/H

NP2=NPR ¢1

IF(M oEQe NP2) VYSALFA®(V(K(7oM))I=VI(K(3IosM)))I/H
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17

21

25
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IFCIBC(M) .EQ. 2) GO TO 22

WEK(2oM))=W(K(agM))

WEK(69M)I=U(K(84M))

WEKC109M)I=W(K(129M))

G0 TO 25

W(KC109M) )==W(K(12oM))

MEK(29M) ) ==W(K(agM))

WIKC6oM)I==W(K(ByM))

GO TO 25

UYSALFA*(UCKCL11oM)I=UCK(ToM)))I/H
VYZALFA®(VIKC1YoM)D)=V(K(ToM)I)I)I/H
UXSeS*(U(K(B8eM))=UCK(BEIM)))I/H

IF(M EQe N) UXSCUCK(ToM))I=UCK(69M)))I/H
VXZeS5*(VI(K(BeM)I=V(K(69M)))I/H

WEKCagM)IZWIKCL124M))

IFCIBCIM) oEQe 2) W(K(A9M)I==W(K(124M))
GO TO 25
UX=CUCKCBeM))=UCK(ToM)))I/H
VXZ(VIK(B8gM) )=V (K(T¢M)ID))/H
UYZALFA*(UCKC114M))=UCK(ToM)))I/H
VYZALFA*(VI(KC119M))=V(K(TsM)I))I/H

IFCIBCI(M) <EQe 2) GO TO 21

WCK(69MIIZW(K(B4M))

WCKC3eMII=WIKC(L114M))
WCK(2oM)I=MIKCAgM)I=W(K(129M))
GO TO 25
W(K(H69M))==W(K(ByM))

VIK(SeM))==U(K(119M))
WEK(2oM))I=UCK(AgM)I==W(K(124M))

UXZ eS¢ (UK (BoM))=W(K(69M)))/H

WY=oSeALFA* (W(K(11oM)D)=d(K(34M)))I/H
UXX=S(M(KCBoM)) *U(K(69MI D=2, ¢W(K(ToM)))/Hue2
WYYSALFA* 20 (WK (39M)DSWCKCLLgM) D=2 #W(K(TgM)))/Hew2
WXY=e25¢ALFA®CN(K(29M))=W(K(AgM)DI=W(K(10oM)ISU(K(L124M))) /Hee2
X1=1e/DEL(K(TeM))

XNX=X14RKe (UX®oSeUXe224POSeVY+,S#POSeYY*#2)/(BB*CC)
YNY=X14RK*(VY®,S5eWYee24P0S*UX+POS*52WX*22)/(BB+CC)
XNY=S*X1*RKe(UYeVXeUWXaYY)/BB

IFCITREND <EQe 0) GO TO 2

DP=DR*DELT (M)

XM==DP+ (WXX+POS*WYY)

YM==DP«(YYY+POS*WXX)

XYM=0DP+CC*WXY

T2=12,+#BB«CC+DP/(X12RK)
T=SQRT(T2)

SIGMAX=6e*XM/T2

SIGMAY=649YM/T2
SIGMANX=XNX/T

SIGMANY=YNY/T

XSIGMAX=ABS(SIGMAX)+ABS(SIGMANX)
YSIGMAX=ABS(SIGMAY)+ABS(SIGMANY)
RAD=SQRT(C(XSIGMAX=YSIGMAX)/2s) 2024 (XNY/(2:%T))es2)
PRSTRES=C(XSIGMAX+YSIGMAX) /2. +RAD

WRITEC69202) MoXNXoYNY 9XNY oXMoYMoXYMoXSIGMAXoYSIGMAX9PRSTRES
FORMAT(//e5X9T12¢3X93F10e495Xe3F10e4910X92F12495X9F1244)
BW(M)I=Q(M) o XNX*WXXEYNY*WYY 42, aXNY*WXY
BW(M)=BW(M)*eHeea/DR

RETURN

END
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SUBROUTINE BWBUCKL(MyNPR)

c P NN N N R N RPN RN SRR NS N R E N RN RSN AR RO AN SN RN RN IR IR SO NN R R
CeoeeceooFORM COEFFICIENT MATRIX IN RIGHT HAND SIDE OF 2-EQUILIBRIUM EQUATION.
c D )

n
COMMON/1/P0S¢+BBeCCoK(13¢81)¢DEL(81)¢OF(101)¢HeNSYM(81)¢DRoRK
COMMON/T/RUWC13)¢DW(13913)9AWC64964)+BUB(64+64)
COMMON/B8/XNXeYNY9 XNY
IF(K(29M) <GTe NPR) GO TO 2
BUB(MoK(29M))=BUB(MoK(29M))eXNY/(2s¢H"*2)

2 IF(K(3¢M) «GTe NPR) GO TO 3
BWB(MoK(34M))=BWB(MeK(39M))eYNY/Hew2

3 IF(K(4¢M) oGTe NPR) GO TO 4
BUB(MoK(49M))=BUB(MoK(AyM)I=XNY/(2,0He+2)

4 IF(K(6eM) oGTe NPR) GO TO S
BUB(MoK(6oM))=BUB(M9gK(69M)) ¢ XNX/Hee2

S IF(K(TeM) .GT. NPR) GO TO 6
BUB(MeK(ToM))I=BUB(MeK(ToM))I=2o# (XNX®YNY)/Hee?2

6 IF(K(B8eM) .GTe NPR) GO TO 7
BWB(MoK(B9M))=BWB(MyK(89M))+XNX/Hee2

7 IF(K(104M) .GT. NPR) GO TO 8
BWB(MeK(109M)I=BUWB(M9K(10oM))=XNY/(2,*Hwe2)

8 IF(K(11eM) oGTe NPR) GO TO 9
BUB(MoK(119M))=BUB(MeK(129M))*YNY/Hre2

9 IF(K(12¢M) «GTe NPR) GO TO 10
BUB(MeK(129M))=BWB(MeK(129M))+XNY/(2o0H**2)

10 RETURN
END







