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ABSTRACT

PRE-AND POST-BUCKLING BEHAVIOR

OF PLATES OF VARIABLE STIFFNESS

USING FINITE DIFFERENCES

By

M. Ali Barkhordari

The Von Karman large deflection equation is applied to plates

of variable stiffness. Equilibrium equations and the in-plane

compatibility equation are derived. The ordinary finite difference

technique is employed to solve the nonlinear coupled partial differental

e(Nations. Iva different methods of formulation are considered:

a) In terms of lateral displacement w and a stress function,

5) In terms of displacement components u, v and w.

Stiffness variation can be implemented in two different ways, either

by varYiug the thickness of the plate with constant E, or by taking

a uniform thickness plate of variable E. Both types of stiffness

variation are considered. The nature of in-plane displacements on

the boundary is a significant factor in postbuckling. This effect

is examined by considering plates with different in-plane displacement

boundary conditions.

Several problems with different stiffness variation and

bOundary conditions are solved. The applicable computer program is

utilized to carry out the numerical solutions. In each case the

problem is investigated for different stages of loading as follows:

 

 





a). Membrane solution analyzes the behavior of in—plane

forces and displacements for undeflected plates,

b) Stability analysis investigates the buckling and effect

of stiffness variation on critical loads and buckling

modes,

c) Postbuckling discusses the behavior of various aspects

of the problem due to edge loads or displacements higher

than critical values.

For clarity, the results are always accompanied by graphical illustrations

of membrane and bending stress as well as displacement components.

The accuracy of the solution is evaluated by comparison of the results

obtained with results from past studies and exact results, where

these results are available. The influence of the grid-spacing on

the accuracy of the results is investigated by taking successively

finer grid-spacings. The numerical results are analyzed and the effect

of stiffness variation on different aspects of the problem discussed.

One objective is to design a plate with stiffness variation

such that it be optimum in some respect. Some possible cases of

optimization are discussed and,as examples,some problems related to

buckling are solved. The results indicate that a considerable weight

and/or material savings can be achieved by using an efficient stiffness

variation pattern.
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CHAPTER I

INTRODUCTION

1.1 GENERAL REMARKS

The widespread use of plate elements in many engineering

structures such as buildings, bridges, pavements, missiles, containers,

ship structures and space structures has made plate analysis the

subject of scientific investigation for more than 200 years. Because

of their two dimensional action, the mechanical behavior of plates

under thrust loads is completely different from beam elements. In

contrast to beam elements, in which buckling is usually associated

with collapse of the structure, the buckling of a plate is not an

end point in the serviceability of the structure.

The capability of a plate to carry load after buckling

is an interesting subject which has motivated many investigators

to study posbuckling behavior of plates, especially in connection

with weight-sensitive space applications. Most of the plate analyses

involve-uniform stiffness plates. However, elastic plates of variable

stiffness are used in many engineering structures such as aircraft

wings, turbine disks, etc. The need to conserve material and/or

minimize weight motivates the designers to make optimum.use of

the material.
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From the structural point of view, knowledge of critical

buckling loads is of great importance. To make an optimum design

with respect to some variables, an extensive analysis of the variable-

stiffness plate is necessary. The failure strength of a thin plate

can exceed the buckling strength appreciably. In many cases, the

structure is not sensitive to large deflection. Thus, it is of

technical importance to consider the postbuckling behavior of plates

(especially the variable stiffness plate) in order to optimize

the design.

Although a considerable amount of work has been done in

the area of variable stiffness plates, most studies have achieved

solutions by analytical methods which are restricted to some specific

geometry and boundary conditions. (See Section 1.2)

The purpose herein is to investigate the behavior of a'variable

stiffness plate so that a full history of the stress and strain

components of plates with different stiffness variation can be

presented. Such a history will help give the designer a better

understanding of the behavior of the plate and the effect of stiff-

ness variation on various aspects of the problem so that a more-

nearly optimum design may be achieved. Two different types of

variation in stiffness are possible: one with uniform thickness and

varying E, such as reinforced concrete or fiber-reinforced plastic.

The other has variable thickness and constant E. Both cases are

considered and analyzed.
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1.2 PREVIOUS DEVELOPMENTS
 

The study of plate theory began in the l7601s. Euler (17)

presented the first mathematical approach to plate studies in

1766.

In 1815, Sophie Germain (22) presented a fairly satisfactory

fundamental equation for the flexural vibrations to the French

Institut as the result of her investigation during the 1809 to 1815

period. Within the same period (in 1811), Lagrange arrived at his

equation, which is known, therefore, as Lagrange's equation for the

flexure and the vibration of plates. Kirchhoff (1824-1887) is

considered the founder of the extended plate theory which takes into

account combined bending and stretching. In 1910, Von Karman

introduced a set of differential equations valid for plates subject

to large deflection. These equations are referred to in the liter-

ature as the large deflection equations.-

The development of the modern aircraft industry directed

the attention of many scientists and researchers toward the study

of plate vibration, plates subject to in-plane loads and postbuckling

behavior of plates. The earliest solution of a flat plate stability

problem apparently was given by Bryan (lO)in 1891.

The ability of a plate to carry additional load after

buckling was apparently discovered in the late 1920's through

experimental studies made in connection with the design of air-

planes. In 1929, wagner (49) studied a shear web and based on his

findings, established a criterion for postbuckling strength of

the web. In 1942, Levy (29) presented solutions to the plates with
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large deflections under combined edge compression and lateral

loading. His investigation was based on analytical solutions using

Fourier series. He also considered postbuckling analysis of plates.

In 1970, Supple (42) analyzed a rectangular plate with constant

in-plane compressive loads on opposite edges using the out-of—plane

deflection, w, and the Airy stress function as variables.

A considerable amount of work has been done on plate

analysis by different methods; among these are solutions of the

equilibrium equations by series expansion, energy methods , and Vlasov's

method (46). Until relatively recent times, however, the investigations

have centered on analytical solutions, which are in most cases limited

to relatively simple geometry, load, and boundary conditions.

In many particular cases where these conditions are more complex,

the analysis via the classical route becomes increasingly difficult

and is often impossible. In such cases, the use of an approximate

approach becomes more practical due to the flexibility and quick

results.

Near the end of World War II, the invention of digital

computers,with their capability of processing large numerical

problems, caused rapid development of various numerical techniques.

Of these, the finite element, finite difference and boundary integral

methods are of most general use.

Although previous analysis of variable stiffness plates

has been limited, there has been a considerable amount of work

done on uniform stiffness plates using finite element techniques,

and dealing with stability and postbuckling of plates. The finite

 



element method waSintroduced by Turner, Clough, Martin, and Topp

(45) in 1956. Argyris (A) and Zienkiewicz (53) have made numerous

contributions in this field. Gallagher (20) and Hartz (24) also

have made great contributions in improving the method and including

nonlinear terms. A series of studies considering postbuckling

behavior of plates was made in the 1970's (13, 19, 52) using the

finite element technique. Murray and Wilson (31) have conducted

research on postbuckling of plates,considering various aspect

ratios and applying the finite element method. Other significant

 

contributions include papers by Conner (l4) and Yang (52). They

applied the finite elementnethods to solve postbuckling plate problems.

The finite difference method is also one of the general

numerical solution techniques which has been frequently used. The

finite difference method was first used by N. J. Neilsen (33) for

analysis of plates in 1920.

The first finite difference solution of the large deflection

of plates is due to Kaiser (26). More recently, Basu and Chapman  
(5) contributed to this study. Kaiser also carried out some ex-

perimental tests which verified the theoretical results. Both

aforementioned investigations were formulated in terms of lateral

deflection, w, and a stress function. The finite difference ap-

proach to large deflection of plates was also used by Brown and

Harvey(9) who have studied large deflection of plates subject to

lateral pressure combined with different ranges of edge loadings.

More recently a new method of solving finite difference equations—

namely,the dynamic relaxation method was described by Otter (35). The

————_—l



 



basis of the method is to add dynamic terms to the equations. The

addition of dynamic terms such as acceleration and viscous damping

makes the problem analogous to a vibration problem. The damping

coefficients are taken corresponding to critical damping resulting

in a motion which dies out quickly. Thus, the solution to the

static problem is obtained. Rushton (38,39,40) has published papers

applying the dynamic relaxation method to large deflection of plates

subject to lateral load and to postbuckling of plates under in-plane

loads. Since the method is an alternative technique to solution

of the finite difference equations, it has the advantage that

variations in stiffness can be included. Rushton has stated that,

with appropriate time increment and damping coefficient, a solution

can be obtained with no difficulties.

The Boundary integral equation (BIE) method has also proved

to be successful in solving plate bending problems. Jaswon (25)

and Haiti (30) introduced the direct method of solution and recently

.Altiero and Sikarskie (3) presented the indirect method of solution

fifliich proved to be more efficient. In 1980, Wu (50) modified the

“method by moving the integration contours outside the real boundaries.

Tile plate of interest is embedded in a fictitious plate for which

Ifle Green's function is readily known. Fictitious forces and moments

ire then applied outside the real boundary and the solution can be

>btained by finding the magnitude of these fictitious loads such

111st the original boundary conditions are satisfied. The method

r213 proved to be very efficient in general plate bending problems.

 

  



Particularly pertinent to this study is a paper by Prabhakara

.). In his paper, he considered postbuckling of orthotropic

xtes. Recently (in 1980), Kennedy and Prabhakara (27) have

1died the postbuckling behavior of orthotropic skew plates and

:ained solutions to some problems using a series expansion method.

 

 

 





L.3 PRESENT INVESTIGATION
 

In the study of thin plates subject to lateral and edge

loading, especially in the postbuckling range where the deflections

are not small, the Kirchhoff theory (which neglects stretching and

shearing in the middle surface) can not yield satisfactory results.

In this case the Von Karman large deflection equation can be employed

to obtain more accurate results.  
In Chapter II, a brief review of the theoretical background

is given and the derivation of the compatibility and equilibrium

equations is first presented. Next, by applying the ordinary finite

 

difference method, the required operators are derived and the pro-

cedures for solution of different problems are briefly discussed.

Two different alternative methods of formulation are considered:

a) in terms of lateral displacement, w, and a stress function,

b) in terms of the displacement components, u, v, and w.

Yhe solution procedures for both methods are also discussed. A few

imamples of practical boundary conditions are listed and theoretical

ialations for each boundary condition are mentioned.

Chapter III includes numerical solutions and analysis

f the results. A computer program and the required subroutines

iseee computer program in Appendix C) have been developed to facilitate

P1>lication of procedures discussed in Chapter II.

In order to provide a more complete view of the variable

tiliffness plate and it's behavior relative to the uniform stiff-

3538 plate, several different types of variation in stiffness are

)rlsidered. Uniform stiffness plate results are given for comparison.

_-——!QM



 

For clarity, in the procedure presented, the results are always

accompanied by graphical illustrations of membrane and bending stress

as well as displacement components. The behavior of those graphs

and their relations with applied load is discussed.

The accuracy of the solutions is evaluated by comparison

of the results obtained with results from past studies and exact

results, where these results are available.

Convergence of the solutions is examined by using different

umsh sizes with extrapolation.

Results obtained for the effect of stiffness variation on

in-plane forces, bending moments, in-plane displacements and lateral

deflection, provide a good source of information for optimization

in each case. Although the optimization procedure is straight-forward,

the stability optimization with respect to amount of material used

is presented as an example. Two computer programs are provided,

One for force boundary conditions and the other for displacement

‘50undary conditions. Both programs are listed in appendix (C).

It was found that convergence was easily obtained for the range of

lxaading less than the second critical load because the assumed

Single-wave buckled shape is the only possible pattern of stable

equilibrium other than the flat plate. For loading beyond the

E3€=cond critical load, due to different possible equilibrium states,

time problem does not converge easily. For solution beyond that

range a proper deflection shape must be enforced, as appropriate

:EKDr the physical conditions of the problem.
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NOTATIONS

The symbols are properly identified when first introduced;

for the reader's convenience, symbols are tabulated here.

Side length of square platea

c1,c2,.. Constants

Et3

D =-———-—7f- Flexural rigidity of the plate

12(1-v )

D Stiffness of a uniform stiffness, unit thickness .}

0 plate

Dr Reference stiffness = stiffness at center of the plate

E Young's modulus

F Force function

h,k' Mesh intervals in x and y

K = Et Membrane rigidity

Kr Reference membrane stiffness = Et at center of the

plate

K3 Membrane rigidity of a uniform stiffness, unit

thickness plate

*1 ,M.,M Bending and twisting moments per unit width

1‘ y xy
of plate

 

“ 2

(D1 - M ; M ) = (Dat )(Mx; M.; M ) Dimensionless moments per

1 y unit width

be Applied edge force per unit width of plate

In-plane stress resultants per unit width of plate

2
5e

(1W - N*; N* ) = (%—)(N ; N ; N ) Dimensionless membrane forces

0 x y xy per unit width of plate

(IV - ". " = . .
N , N ) (Nx’ Ny’ ny)/N Membrane force ratios
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(N;; N'; N; ) = (Nx; Ny; ny)/Ncr Membrane force ratios

 

 

Y

q Lateral distributed load per unit area of plate

6': qaa/Doti Dimensionless lateral load per unit width of plate

Q Transverse shear per unit width of plate

_ edge stiffness .

- central stiffness Stiffness ratio

_ edge thickness . .

- central thickness Thickness ratio

t Plate thickness

ti Unit thickness

T Temperature

15v,w Displacement components in x,y, and 2 directions

3 Volume

uo Edge displacement

(U; V) = (u; v) a/t2 Dimensionless displacement

i .

U a

U/Ucr

9 KO

U a ”if Dimensionless displacement

U0 Dimensionless edge displacement

[1* = U

cr

W a 55—— Dimensionless lateral deflection

i

":37,z Cartesian coordinates

(I(; Y) = (x; y)/a Dimensionless coordinates

0'- ==£~ Grid size ratio

81 = 51- Membrane stiffness ratio

Kr

oflr Coefficient of thermal expansion

6 Di

1 § -D—— Flexural stiffness ratio
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.1,A2,... Eigenvalues

Ll,A2,... Eigenvectors

,s ,8 Strain components

{ Y KY

,0 Components of normal stress

i Y

2

'. ' = a . o 0

3x, 0y) (D t.)(ox’ 0y) Dimen51onless stress components
 

,T ,... Shear stress components
Ky xz

= t@' Stress function

Airy's stress function

 

= cp/Na2 Dimensionless stress function

i] Coefficient matrix for m

1w], [bw] Coefficient matrices for w

:Aw]; [Bw]) - ([aw]; [bw])xh4 Coefficient matrices for w

 

.u], [Bu] Coefficient matrices for u

v], [Bv] Coefficient matrices for v

ul], [AuZ] Coefficient matrices for u

V1], [Av2] Coefficient matrices for v

 

 



 

CHAPTER II

THEORETICAL DERIVATIONS

 2.1 General

In this chapter, the equilibrium and compatibility equations

of the plate based on the theory of elasticity are first derived. Then,

 

the finite difference approximationsto these equations are developed.

These will be used to facilitate numerical solutions of those equa-

tions,for which,in most of the cases, closed form solutions,if not

impossible,are very tedious.

Thin plate theory is applied and homogeneous, isotropic

material is assumed.

Depending on the boundary conditions, two different approaches

are possible. Here, both approaches will be diScussed.

Geometrical and material nonlinearity can arise in plate

Prxiblems. In this study only geometrical nonlinearity will be con-

Sidered.

Figure (2.1) shows the geometry and orientation of a plate

it: the cartesian coordinate system. The x-y plane lies in the middle

Filaine of the plate and z is normal to the middle plane.

Internal forces and moments acting on the edges of a dx by dy

pl«ate element, as shown in Figure (2.2), are related to the internal

Stresses by the equations:

13
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t/Z t/z

Nx = f oxdz N = f 0 dz

-t/2 y ’t/z y

t/ t/
2 2

N 8 f T dz N = f I dz (2.1)

t/2 t/z

Q =f r dz Q =[ r dz
x -t/2 XZ y -t/2 yz

’ t/z t/z

Mx = f oxzdz My = f o zdz

't/Z -t/2

t/2 t/

2

M =f ‘I zdz M =f r zdz

xy -t/2 xy yx -t/2 yx

where Nx’ N , N , Nyx = in-plane normal and shearing stress resultants.

Qx’ Qy = transverse shearing stress resultants.

M , M = bending moments.

X Y

M , M = twisting moments.

KY YX

2.1.1 NONLINEAR EQUILIBRIUM EQUATIONS

In the literature, nonlinear behavior is commonly classified

as either

1) Material nonlinearity

2) Geometric nonlinearity

Material nonlinearity may arise in case of time-dependent

lfilteria]. or materials with nonlinear stress-strain relations (plastic,

tlastoplastic, viscoe'lastic, etc.) .

Geometric nonlinearity is usually associated with large

iJBplacements. It may also occur for small displacement if the
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Figure 2.1 Rectangular flat plate

 

 
Figure 2.2 Plate element dxdy in undeformed configuration
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behavior is such that variation in the applied load alters the

distributions of displacement.

In this report only geometric nonlinearity is considered

and the material is assumed linear elastic, isotropic,

To determine equilibrium equations applicable to moderately

large deformations, they must be derived using slightly deformed

configurations. Figure (2.3) represents stress resultants and

internal moments for an element dx by dy in the deformed con-

figuration. B and B are rotations in the xz

x 3’ 3N
x

-—-dx etc.

3x

and yz planes

 respectively, and N: denotes Nx +

Summation of forces in the x-direction gives:

8N

__§
-Nxdy + (Nx + 3x

3N

_ +.__Z§_ a
dx)dy Nyxdx + (Nyx 3y dy)dx 0

which simplifies to

  

aux 3N x

—3—}—{ +—X-ay =0 (2.2)

Similarly, summation of forces in the y-direction leads to:

EN EN

is); +—]—3y =0. (2.3)

Fromsummation of forces in the z-direction, we obtain

3Q 3Q 2 2 2

- x-—1=q+N3—1"—-+N a"’+2N3—"—- (2.4)
EX 3y x ax2 x ay2 Ky 3x3y

SLnnmation of moments about x and y axes will result in:

 

and homogeneous.
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3M 3M

Qy 3 3y + 3x

BMX 6M x

Q = + —X—
(205)

x 3x 3y

 
Figure 2.3. Schematic illustration of internal forces and moments

on the element of middle surface in deformed configuration.
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2.1.2 Relation between stress resultants and displacements.
 

From Hooke's

where:

For moderately large

law, we have

 

 

N = (e + v e )

x l-v2 x y

Ny — Et (5 + v ex)

1-v

xv YX2(l+v) xy

_ Bu 22.2

8x - 3x + l/2(8x)

3v 3w 2
=-——+12_

6y 8y / (3y )

_ Bu 3v 3w 3w
Y .___ .__. .___

xy ‘ ay 3x 3x 3y

displacements, the relations between moments

and lateral displacement are:

 

32w 32

M = -D(—— +v—3)
x 2 2

9x 8y

2

M = 4,49% + 1%)

y 3y 3x

M = M =-1)(1-\»)32w
xy yx 3x3y

Et3
where D = —-—-—2- is the flexural rigidity of the plate.

12(l-v )

 

(2.6)

(2.7)

(2.8)
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2.2 Formulationimxterms of stress function and w
 

By substitution of Equation (2.8) into (2.5) and (2.4),

we obtain the equilibrium equations in the z-direction in terms of

membrane resultants and lateral displacement w:

 

2 2 32D 32w 32D 32w 32D 32w

V (W w) ‘ (1“) ‘2—3 ‘2 3x3 3x3 2 2
8x 3y y y 3y 3x

2 2 2

_ 8 w 3 w 3 w

3x By

The compatibility equation for mid—plane strains is:

  

2 2 ' 2
3 Ex 3 e a Y 32w 2 82W 32W

8y2 + 2 - Bxay = (axay) - 2 2 (2'10)

3x 3x By

and from (2.6), theastrainsin terms of membrane forces are

0
) ll

1

Et (Nx-vNy)

x

e = JL—-(N -vN ) ' (2 11)

y Et . y x '

- 5.131.

ny Et ny

Now, we define a stress function, Q, similar to Airy's

stress function, so that:

2

N .152

x 2

8y

32

N -——‘§ (2.12)

y 3x

2

N -12..

    



    

\

l

I
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The Airy's stress functions is defined as

2.52.
O a

x 2

3y

32 '
0y = ——‘§L (2.13)

8x

- - 239:
Txy 3x3y

are N = t ox = t-BJEE etc.

X By

is is suitable for a uniform thickness plate. However, in the case of

:iable thickness, if we define m', as (2.13), it will complicate

a formulation. For example, substitution in equilibrium equations

.2), would result in

‘33—:32 2 J" 2 3:3 ‘ta 2=0
3y axay y axay axay

[ch in the case of uniform thickness, leads to 0 = 0.

For our purpose the definitions of (2.12) will be used.

)stitution of (2.12) into (2.9), will result in the equilibrium

Jation,in terms of m and w, as

  

2 2 32D 32w 32D 82w 82D 32w

V (nv ‘0 - (I'V) 77 "'2 axay axay + —-2' "-2
3x 3y 3y 8x

_ 329 32w+ azgz3w 322 32w

- Q+ .__2+ 2 3y2 2 Bxay axay ° (2'14)
3y 3x 8x

substitution of (2.12) into (2.11) and then into (2.10), we

tain the compatibility equation in terms of m and w:
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2 2
3 a 2(l+v)

ayz [t yy xx aXZE 3X y fipxy

Z 2 2

3x3y2 3 2 3y2

32

where cp .- __52 , etc.

xx 3x2

2;; Formulation in terms of 3 displacements u,v,gand w

Substituting equation (2.7) into (2.6) and then into (2.2)

and (2.3),along with substitution of (2.8) into (2.5) and then into

(2.4),results in 3 equilibrium equations in terms of u,v, and w.

The equation of equilibrium in the x. direction (2.2)

 

  

becomes

2 2

Et 1:... 32Vwit-k v(32v + 32w 3):) l-v Et 3 u 8 v

2l-v2 3x2 3x2 3:: My axay ay 2 1w 3y2 3an

2 2

+§ifl+flu +_}___9EE)_ _3_1_1_+_];(_3_w>24. \)g_(E)... %(_:_W_)2

 

axay 3y ax 3y2 1_\)2 ax ax 2 3x

+ 1"“2 30%) fl+fl+flflJ .. 0. (2.16)
2(1_\, ) 3y 3y 3)! 3}! 3y

Similarly, the equation of equilibrium in the y-direction (2.3),

 

 

 

 
 

becomes

Et 32v 32w aw azu 32w aw l-v Et 32v azu

2 2 + 2 a—y ”(any + axay E) 2 2 2 + axay
1"v 33' 3y l-v ax

82w aw aw 32w 1 3(Et) 3v 1 3w 2

+axa E+T—2’+ 2 7+2?) +y 3,, 1_\, 3y 5* Y

Bu v 3w 2 l-v 3(Et) 8V 311 3W W
+—-— -— —— -— —— Iv5 2(3x) :] +2(1-v2) 3x [3x + 3y + 3:: 3y] 0 (2.17)
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Interchanging u and x with v and y respectively in

equation (2.17) results in equation (2.16).

The equilibrium equation in the z-direction (out of plane)

can be expressed in terms of 3 displacements by substituting (2.7)

into (2.6) and then the results into (2.9). We obtain:

2 2 2 2 2

  

 

2
2 2 3 D 8 w 3 D 8 w 8 D 8 w
V(DVw)-(l—v)—--—-- +——-

3x2 ay2 axay 3x3y 3y2 3x2

2
Et Bu 13w2 av v3w2 3w Et 3v 13w2

=q+—— —-+—(—-—) +v—+—(-— ]—+—[—+-(—)

1_\’2 [3x 2 8x 3y 2 3y 3x2 1-v2 8y 2 3y

+ Bu +3(__3_3)2 32w + Et(l-v)fl1_+_ay_+_3l§3 32w (2 18)

3x 2 3x 3y2 l-v2 3y 3x 3x 3y axay °

NOte: Since in this approach we are working with displacements,

compatibility need not be checked.

.L-é FINITE DIFFERENCE APPROXIMATION

So far we have derived the necessary equations for analysis

of tflle plate, but solving these coupled nonlinear partial differential

equations analytically may be difficult.

Here we employ finite difference techniques to transform

the differential equations into ordinary algebraic equations in terms

of values of the functions themselves at certain specified points.

'ggizl;‘flgrinciple of finite differences

The derivation of finite difference expressions is based on a

Tayl‘DIT series expansion. We expand the function at some

successive
grid points, truncate higher order terms, and

. 801.

"ee for desired derivatives, we can obtain approximate expressions
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for first, second, or higher order derivatives in terms of values

of function at the discrete points.

Y

f’,. f(x)

    
 

m;2 m-l m m+1 m+2

AL»

Figure 2.4. Function f(x).

19 one dimensional cases we obtain the following approximation of

the derivatives of the function:

. ._1_ - - l 2 m
f'(x)m 2(Ax) (f1n+1 fm—l) 6(Ax) fm +....

n _1__ _ _ l— 2 .V
f (x)m a 2 (Em+1 2£m + fm_l) 12(Ax) f; + (2.19)

(AX)

' ._l;___ - _ _ l_ 2 v

f"(x)m 3 (fm+2 2 fIn+l + me-l fm-Z) 4(Ax) fm +...

2(Ax)

iv
1

f(x)In - 837; (fm+2 -4 fm+l + 6 fm - 4 fm_1 + fm-Z)

l 2 vi

-g(Ax) fm + ....
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 In practice, we truncate the terms following the parentheses.

These represent the error in the approximation. We will refer to these

error terms later in the discussion of accuracy.

x

NN

O

I

l

'N
Y NW:|3— ——O———ONE

I, I

I l l

| I

wwo———‘"O———Oo——-(l)§-— 05:
l I I

I l

I ., !
Sw3——_¢_)_..._ SE

l

|

555 b

Figure 2.5

To determine the finite difference approximation for two dimensional

problems, we consider Figure (2.5), and the fact that similar re-

lations for the approximations to the derivatives in the X-direction

hold also in y-direction.

Thus,we will be able to derive expressions for any order

of derivatives in x and y and combinations of x and y derivatives.

For example, if we consider grid points of Figure (2.5) ,

the derivatives with respect to x and y at point 0 are

l

fx- 2h (fE-f
)

W

 

 



fy g'2k (f8 - fN)

f = i— (f -2f + f )
xx 2 E 0 W

h

fyy = 7 (fS-ZfO-l- fN)

h

f _ 1

xy ' 4hk (fSEfsw'fNE+ wa)

or if £ = a then

fxy = F (fSE-fSW-fNE + wa) etc.

Often, these formulas for derivatives are represented

geometrically by stencil patterns, such as in Figure 2.6.

--—®

igure 2.6. Two dimensional operator for fx

(9---®--j®

772- CD"(ID--(:9

C9-- {'9

(2.20)
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2.4.2 FINITE DIFFERENCE APPROXIMATION OF METHOD DISCUSSED IN SECTION(2.2)

In section (2.2), we derived equations of equilibrium and

compatibility as well as the components of internal forces and dis-

placements, in terms of lateral displacement, w, and stress function,

Q. In this section, we will discuss numerical solution of those

equations using finite difference techniques.

To find a solution to a plate problem, we must satisfy

both equilibrium in the z direction, and compatibility.

a) Equilibrium Ermation
I

For this purpose, we will apply relations (2.20) to equilibrium

equation (2.14), and the results will be represented in two dimensional

Operator form. Introducing

Dr *3 flexural stiffness of the plate at some reference point

(center of the plate in this case),

U

- __i_

61 ‘ D
r

A finite difference operator for the left hand side of the equilibrium

6.and6

c
e‘l'aation (2.14) is given in Figure 2.8 where Ga, 6,), (1

refer to midpoints a, b, c and d of Figure (2.7) as explained in

reference ( 8).
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Figure 2.7

Note: All terms in the operator of Figure (2.8) are coefficients of w.

If the grid spacing is the same in the x and y directions (a = l),

oPet'ator (2.8) will be simplified to the operator given in appendix

(A. 1) .

In case of a uniform stiffness plate, where 6, =- D— = 1

for all points, the operator reduces to the usual finite difference

OI’erator for V4w, as given in appendix (A.2).
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For the right hand side, if cp values are known, we can

derive the finite difference operator as coefficients of w, as

shown in Figure (2 .9 .a) , where

32 .. (FE-2'90 + W
 

  

   

<9 = —%
xx 3x h2

2

fie .. (phi-2'90 + CPS _ 0‘ (IN-2'90 + c"3) (2.21)

‘Pyy ' ‘ 2 ‘ 2
3y k h

a 3259 .. CPSE + (PNw'cpsw'cPNE g c‘(CPSE + ¢NW-¢SW_CPNE)

.2ny axay 4hk 2
4h

For a = l, we get the expression shown in Figure 2.9(b).

flLUTION OF THE EQUILIBRIUM EQUATION

To solve the equilibrium equation for w, we must have either

t _he cp values, or the in plane forces (cpxx, cpy and cpxy).

Y

Substitution of these values into the operator of Figure

2.9 (a) or (b) will result in a known Operator at each node.

By applying the operator at each node, we will be able to

5011:: a matrix of coefficents of w, which along with the qi vector

will form the right hand side of equation (2.14) as

{q} + wa] {w}

where {q} is the lateral load vector and [bw] is the coefficient matrix

containing constants. Similarly, application of the operator

of Figure (2.8) will result in the formation of matrix DranHw} in

the left hand side of equation (2.14). [aw] is a constant coefficient

matrix.

Therefore, we can represent the equilibrium equation in

numerical form as :
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I I I

I I I
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FIG 2.9 DIFFERENCE OPERFITOR FOR RIGHT HFINU SIDE OF

EQUILIBRIUM EQUFITION 2.14
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Drfaw]{w} = {q} + [bw]{w}. (2.22)

In complete matrix form we can write

 

 

  

 

  

  

  

Dran]{w} = [IJIQI + [bw]{w} . (2.23)

Both [aw] and [bw] havea factor of —1Z; so, we can rewrite

h

DrEAwJIw} = IIJIqh“) + [Bw]{w} (2.24)

4 4
where [Aw] = [anh , [Bw] = h [bw]

or

1 {qh4}
{[Aw] - D—- [Bw]}{w} = D (2.25)

r r

We will discuss solution of this equation later.

5) Compatibility Equations.

To approximate the right hand side of the compatibility

ecluation (2.15), we apply relations (2.20) to get

32w 3 w3E: + wW-WSW-WNE

axay 4hk

32w wE-Zwo + WW

2 = 2 (2.26)

3x h

32w - wN-Zwo + wS

ayz k2

In order to obtain a finite difference operator representing

the left hand side of equation (2.15), we will differentiate and

ngroup terms, resulting in
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2
Livl'cp __2_[8_(__Et) a-—(v2<p) + aggt) 3%(V2‘PH’H'ELE 3 (Et) _ 2 ,23(Et)))

 

 
 

Et Et 3x 3x2 (1302‘ ex

2 2

(J -v Jn-[<31 32(39- 2 2<3§Et'>2ML; -v a—%>J (2.27)
3x2 3y2 3y (Et) y 3y 3x

+ zuwflagit) 3(Et) 2 _ _1_ a 2(Et)3329 }.

3y (Et)2 Et Bxay ax3y

Now by applying relations (2.20) and adding all contributions

at each node, we will obtain the finite difference operator of

Figure (2-10):

‘where

Kr: Et = in-plane rigidity of the plate at center.

K1 = in-plane rigidity at point i.

If a --£-- 1, this operator will be simplified to the one

given in Appendix (A.03)

An alternate approximation to the compatibility equation

(Z-dlS) in finite difference form can be developed.

Denoting

1

Fl - K ((Pyy “V (9“)

F=-1-(<p wt?) (228)
2 K xx yy °

1

F3 - K wxy
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Equation (2.15) can be written as

 

 

2 2 2

a F 3 F a F 2 2 2

1 2 3 3 w 2 3 w 3 w

8y?" ax2 8x8y axay 8x2 3y2

Now we can approximate derivatives of F1, F2, F3 as

a2Fl F1 -2Fl + F1N

. S 0 etc. , where Fl , according to (2.27),can be

ayz k2 S

approximated as

cp-ZCP +4) (C? -2v +2)

[53 S 41-» SE 3 SW ,etc.
1

F = _—

K k2 h2

l

S S

For a = £ = 1, this approximation results in the operator

given in Appendix (AA)

WTO THE COMPATIBILITY EQUATION

To be able to solve the compatibility equation, we must have

Values of w at nodal points. Then, we are able to compute the

right hand side at each node using expressions (2.26).

To determine the left hand side, we apply the operator of

Figure (2.10) or the one in Appendix (A.3) or (A4) at each node.

By adding all contributions, a coefficient matrix will be

formed, Thus, we have:

[A]{cp} = {w} (2.30)

where the w vector is known, and solutions of this system of

equations results in the cp values at prescribed nodes.
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c) Approximation to other equations

After solving equilibrium and compatibility equations, we

may be interested in calculating in-plane forces and displacements

as well as bending stresses. Finite difference approximation to

some of these equations will be discussed below.

Insplane forces

By definition (2.12) we have:

- L22 - q’8‘2“’o + ‘PN 

 

 
 

N

x ayZ k2

322 cpE-Zcpo + qu
N = 2 = 2 (2.31)

y 3x h

__ 32g) __. c"SE + ‘PNwfi'Sfi (PNE

xy axay 4hk

lgfiplane Displacements

Comparing equations (2.7) and (2.11)

-_32.+_1_1V12 l

E:x - 3x 2(3x) a Et<Nx-vNy)

OI’

Bu 1 1 3w 2

_- (Nx-VNY) - 2 (E

3x Et

'rhc right hand side of this equation is known. By approximating the

Zleft hand side in finite difference form we have
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l 1 3w 2

2h Et(Nx-VNy)- 2(3x)

or

1 1 3w 2

uE-uw - 2h[Et(Nx-vNy)- 2(3x) ] (i)

similarly, for v displacement, we obtain (2.32)

_ _1_ £312 ..
vS-vN - ZREEt(Ny va) 2(ay) J (11)

If we apply the operator of the left hand side of equations

(2.32) (i) and (ii) at each node and add all contributions, we can

form two coefficient matrices for u and v as

[Au]{u} {Bu} (2.33)

[Av]{v} {Bv}. (2.34)

Where [Au], [Bu], [Av] and [Bv] consist of constants only.

Solving these systems of equations, we obtain u and v, the

displacements at each node.

Note:

In order to get compatible displacements, we need to have

some points at which u, v or both are known. Points of this nature

can be found on boundaries or lines of symmetry.

BENDING MOMENTS

Having the solution for w displacement, we use approximations

(2-20) to compute bending moments according to equations (2.8) .

 _‘_—._





 

  

2 .
w

Mx = -1)(——8‘2’ + a g) - -D[ E g +v 3 2° N]

3x 3y h k

2 2 w -2w +w w -2w +w
s o w o w

M = -D(§-—‘"2- + a ‘2') = -n[—-—-—§-— + v-—E-—-2——] (2.35)

y 3y ax k h

2 w +w -w -w

a w SE NW sw NE
Mm- -D(l-v)ax3y D(1-v)( 4hk )

where D is already defined.

2.4.3 FINITE DIFFERENCE APPROXIMATION OF METHOD DISCUSSED IN SECTION

(2.3)
 

In this method, 3 equilibrium equations in the x, y and z

directions, as derived in (2.16), (2.17) and (2.18) respectively,

flmst be solved. In this section, the finite difference approximation

Of each equation will be derived.

glgEquilibrium,in x-direction

Considering the equilibrium equation (2.16) and regrouping

Variables results in

82u + K(1-v) azu + @5333 + 1-v 8K an]

2 2 2 3x 3x 2 $73—37
3x By

[K

---J + (i)

2
[Kgl-i-vzav +v§§§x+l-v_3_1g3v

2 Bxay 8x 3y 2 8y 3x

32w fl K(l+v) 32w _a_w_ + K(l-v) 32w 1%:
{K +

ax2 8x 2 Bxay 8y 2 3y2 8x

13K awz 312 l-vglgflfl_

23'£[(ax) +"(3y) 1+ 2 Syaxay} 0

‘where K = Et and both sides of equation (2.16) have been multiplied

by (l-vz)

Now, the difference approximations,(2.20), will be applied

and the! results will be represented as finite difference operators.
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The operator representing the u contribution to this equation

is given in Figure (2.11-a). Similarly, difference approximation

to 'v results in operator Figure (2.11-b).

The contribution of w to this equation can be approximated

  

 
      

 
 

as

WE-2W’+W’ w -w w +w w -w

xw function = K (E 0 w)( E w)+(liy')K02( SE NWWSWw—NEHSN)
0 2 2h 2 O 2 2h

h 4h

w -2w +W’N wE - w -w

l-v 2 s o _1_( 2:w 2 s N 2

K - wS -w

l-v 2 S KN N

+<—2)a< 2h )[(wE :‘W 211)]

Therefore, the equilibrium in the x—direction can be schematically

shown as.

(u-operator) u + (v-operator) v + xw function = O (2.36)

Note: In this case, because of the absence of body force in the

x-direction, the right hand side of the equation is always zero; thus

 

the equation is first divided by ( 12).

l-v

b) Equilibrium ingy-direction

The same procedure will be followed to derive operators

representing finite difference approximations to equilibrium in the

y—direction.

Equilibrium equation (2.17) can be rewritten (after regrouping

 variables u, v and w,              
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b) V—OPERHTOR

FIG 2.11 OPERRTORS FUR X-EQUILIBRIUM

 

 

 

   

 

  
 

 

  
 

 

  
 

 

  
 

EQ.(2.16)
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2

 

 

  

(l+v) 3 u l—v 3K Bu 8K Bu
.___—_+ _—

[K 2 axayJr 2 3x 3y " ay 3x]+

2 2
K(l-v) a v 3 v l-v 3K 3v 3K 3v

E 2 2”"‘2”??? 3‘3“]
3x 3y y y

{K 32w‘§3'+ K(l+v) 32w .§HL+ K(l-v) 82w‘§!.+ (2 37)

3y2 8y 2 Bxay 3x 2 3x2 3y

1 3K 3w 2 3w 2 l—v 3K 3w 3w' _

2 3y{(3y) + v (3x) 1 + 2 axiax 3y} - 0

By finite difference approximation, we obtain the operator of

Figure (2.12-a) to represent the u-contribution and (2.12-b) as the

v-operator.

Terms including w can be approximated as:

a2K0(l+v) w K0 (l-v) w -2w +w w -w
SEWNw'wsw'wNE WE'ww
 
 

 
 

YV function = 2 [( 4h2 )( 2h )}+ 2 [( E 3 W)( 2h N)]+

- h

-2w +w w -w . - w -w w -w

3 ws 0 N s N 1- K15% E w s N
K0a[( 1.2 )< 2h>1+<—2¥>(——§-fi—>a< 2h>(2h )+

K -K 2 w dw w -w

S N a S N 2 v E W 2

a(——§H—)D§‘G‘jfir§ +'§( 2h ) J
 

Finally, the equilibrium equation in the y-direction can

{be represented in the following operator scheme:

(u-operator) u + (v-operator) v + yw function = 0 (2.38)

‘22~§Eugilibrium in z-direction

The equation of equilibrium in the out-of-plane direction

1

s 1Jltroduced in Equation (2.18).
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, I I I
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b) V-OPERRTOR

FIG 2.12 OPERHTORS FUR Y-EQUILIBRIUM EQ.(2.17)
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Approximation to the left hand side of this equation has

already been explained in Section (2.3.2-a).

As for the right hand side, we approximate the derivatives

of displacements to get

-v 2 w -w

  

 

 

(RHS) = q + -—K—21{[(—-u-§—huw) +-12— (32-21% + w (vfih N) + V—g‘ (3h “>21

<-5::9-+:-) + [a(——S——N-h> +£33- (%)2+ «3%?» +3 <———-wfih”)23

a2(——$-::-w§9-:) + (l-v) [a(:_‘::1”) + (3%?) + a(wE;:w)(w§;wN)J

a(WSE+WN:;:sw’wNE)} (2.39)

Finally, equilibrium in the z-direction can be represented

[Aw]{w} = RHS (2.40)

where matrix [Aw] consists of mutants.

<1) Solution_procedure using this method

 

In order to perform numerical analysis in computer programs,

we arrange the equations in suchaway that the equations can be

represented in matrix form.

To find a solution by this method, we must satisfy all three

equilibrium equations. These contain three unknowns, u , v, and w.

There is no simple technique providing a direct solution to these

coupled nonlinear equations; thus, we employ an iterative technique

to solve them.

If w is known (or assumed),the first two equations of

e

quilibrium will become two uncoupled equations in u and v

¥ __
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and can be solved as follows.

Applying the u—operator corresponding to equilibrimn in x

at each node and adding the contributions, and doing the same to the

v-operator, we get a matrix representation. of equation (2.16) as

[AulJNxN{u}le + [AvlleN {v}le = -{xw Function}le (2.41)

Repeating the same procedure for y-equilibrium equation (2.17) we

obtain

[AuZJNXN{u}NXI + [Av2]NxN{v}le = -{yw Function}le (2.42)

Where [Aul], [Avl], [Au2] and [Av2] are constant coefficient matrices.

Both equations are coupled in u and v, and each contains

N equations in 2N unknowns.

(One way of approaching this problem is to try to solve the

equations by iteration until reaching a solution that satisfies

both equations.

An easier approach can be employed if we realize that,

although the equations are coupled in u and v, there are no

In"Lited terms containing both u and v.

Therefore, we can combine the two, to get

Aul Avl u xw Function

-------- ' ' ---------- (2.43)

Au2 Av2 v yw Function

J

which is not only more efficient in computer programing but leads

t

o a. unique solution for the u and v displacements at specified

11 .

Ode points,based on an assumed (or known) w.
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To solve the z-equilibrium equation, we substitute values

of u, v and w, in the right hand side (2.39), and solve equation

(2.40) for new values of w. The iteration will continue until the

new values of u, v and w, are equal to or very close to old ones.

A practical use of this method, including the details, will be dem-

onstrated in chapter 3.

POST SOLUTION DETAILS

After a solution is found for the three displacements

11, v and w, any components of stress and strain can be computed.

Average strain

Average strain at each node can be found by the finite

difference approximation of equations (2.7).

“E'uw 1 "E'ww 2

5 3 2h +‘2'(,2h )X

vs"'N a2 wS'WN 2

6y "2?:— +"2‘ (‘73—) (“4)

uS-uN V 'VW W -‘Ww W'“W

E + a E M 3 N) 
ny=°‘(2h )+ 2h (2h 2h

EEEEEQEane Forces

Substitution of equations (2.7) into (2.6) and approximating

the derivatives by finite differences, will result in

  

    

 
 

u- w-w v-v zw-w

N a K Eu” $2.912 L! W: 8 N2

X l_v2[2h +2(2h)+w(2h)+2(2h)]

v-v 2w-w - w-w

N a_BK sN g_ 5 N2 “E“w 3 sz (2.45)
y Hzm 2h>+2 (Zh > +v(-——2h)+2<2h >1

u-u V-‘V W'W W‘W

N aRSI-v) S N EW Ew S N

20 2) [a(-——2h)+(2h )+a( 2h )( 2h )]

-\)
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BENDING MOMENTS

The bending moment approximation is given in equations (2.35).

2. 5 BOUNDARY CONDITIONS

In the small deflection theory of.plates, we consider only

out of plane (or flexural) boundary conditions because the effect

of in—plane displacements on the boundary is negligible. However,

-they become the chief factor in large deflections behavior and in

the postbuckling range. Thus, we discuss in-plane boundary conditions

as well as out of plane conditions.

The flexural boundary conditions, as commonly discussed in

elementary plate theory, are:

a) Simply-supported boundary

w=0

32

M =—D (.__w_ +

x 2

8x

2

v 2-12') = 0 (on boundaries parallel to y)

3y

b ) Fixed boundary :

w=0

3w
(n, normal to the boundary)

_go

an

c) Free boundary :

d) Others, such as elastic support, or partially fixed support, etc.
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For the in-plane boundary conditions, there is a variety of

possible combinations that may occur in the postbuckling range.

On each edge, either 11 or v displacements can either be unrestrained

or have some specified values; also, there could be restrictions on

derivatives of either u or v, or both.

In terms of in-plane boundary conditions, we can classify

the problem in three major types.

1) - Force boundarx conditions (i.e. in—plane forces are specified

on the boundary).

If applied forces Nx’ Ny and N are known, we can use

to choose values of the Q functions on the

A practical

relations (2.12)

boundary points so that they satisfy boundary conditions.

example of this nature is discussed in chaper 3.

2; Displacement boundary condition Some possible cases are:

u and/or v are specified on the boundary,in which case thea)

vallies of displacements would be '

x 

assrlgned to boundary points.

 
 

 

b) Edge remains straight and parallel to y. (u-displacement is

constant all along the x = O edge).

e) Edge remains straight with no shear force along the edge; in this

Case, from equations (2.7) and (2.6), we have along edge x a 0,
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.__E_t__ 22 a_v 3122 a
ny 2(l+v) [3y + 3x + 3x 3y] 0 (2°46)

On supported edges (fixed or hinged), 33;“ 0, thus

.. A! . 22 . (1)

3x 3y

If the x-edge (x = constant) is straight with u constant, then

Bu 8v

-53; = 0; therefore, equation (1) results in 3;-= 0 along the edge-

d) Other conditions include possible restrictions on u, v or

their derivatives which lead to particular relations between

displacements or their difference approximations. For

example,the edge can be subjected to thermal expansion

(see section 3.2) such that %§" ex - constant along edge y = 0.

1). - Mixed boundary conditions. i.e.,case 1 applies to part of the

boundary, while the rest of the boundary is defined by case 2.

The computer program developed can solve either case 1 or 2.

Therefore, to handle a problem with mixed boundary conditions, we

can solve the problem by trial and error, as follows.

i) Assign some fictitious displacement values to the points

at which forces are specified, and solve the problem as

one with displacement boundary conditions.

ii) Compute forces at the boundary points.

iii) Compare with actual forces at the points.

iv) Correct previous fictitious displacements in such a way

that the solution is improved.

v) Repeat steps (ii) to (iv) until the computed forces are

equal to or close enough to the actual ones.
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2.5.1 SOME EXAMPLES OF PRACTICAL B.C.
 

subject

1.

2.

Following is a list of some practical examples of plates

to various loading and boundary conditions.

Window glass can undergo large-deflection under lateral

wind pressure; the out-of-plane boundary condition is in

most cases simply-supported or sometimes built-in. Either

case may be accompanied by:

a) in-plane displacement possible.

b) in-plane displacement restricted.

Plates on stringers forcing the plate edges to remain straight,

as in many ship and aircraft sections surrounded by stringers.

Mechanical and instrumental plate elements subject to teme

perature change will be subjected to tension or compression

on some or all edges due to temperature change in surrounding

elements. Various combinations of boundary conditions are

possible.

The webs of structural steel profiles used in construction can

be categorized as plates subject to in-plane shear and normal

forces along the edges.

6 SUMMARY
\—

We will summarize the theoretical formulations discussed

11‘ ‘211apter 2, and mention procedures of solving some problems.

.Among several types of problems which can be solved numerically

based on the finite difference approximations shown, and using the

computer program which has been written, are:
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2.6.1 MEMBRANE SOLUTION

For flat plate with w = 0 everywhere, the equilibrium in the

z-direction (normal to the plane of the plate) is trivial; to

find a solution for in-plane resultants and displacements,

a) In the case of force boundary condition, we solve compat-

ibility equation (2.30) with the w vector equal to zero.

[AJICPI = 0 (2-47)

The solution results in (9 values at discrete nodes, which can be

used in equations (2.31), (2.32), and (2.33) to find in-plane forces

and displacements.

b) If the displacements are specified on the boundaries, we

solve equation (2.43). Considering w - 0 everywhere,

we have

...... <..- =<...> (2.48)

     

for which the solution results in displacement values at the nodes.

Application of equation (2.45) then leads to the membrane resultants.

2-\6.2 LATERAL LOADING

a) Force boundary conditions.

1) Small displacement.In this case, the (9 values and

in—plane resultants are known from (2.5.1), so we can

solve the equilibrium equation (2.25) to obtain w.

Then (2.33), (2.34) and (2.35), can be applied to

‘_—;_g____
A



50

compute in—plane resultants, displacements and bending

moment3 0

ii) Large deflection.

Compatibility equation (2.30)-and equilibrium equation

(2.24) could be solved iteratively, and the force resul-

tants and displacements can be calculated as discussed in a).

b) Displacement boundary conditions

i) For small deflections, we can solve equation (2.48),

neglecting the effect of w on in-plane solutions; then,

solve the z-equilibrium equation (2.40) for w, by ignoring

wbterms in the RHS.

ii) Large displacement problem - this requires an iterative

solution of equations (2.40) and (2.43) as discussed

in 2.3.3 (d).

LE3 STABILITY ANALYSIS

a) Force boundary conditions.

The in-plane forces and m values are known from part

2'5-1 -a; then,we can use the equilibrium equation (2.25). If

q " 0, this will result in a characteristic matrix, the eigenvalues

of Which lead to the critical forces and the eigenvectors represent

the buckling modes.

1)) Displacement boundary condition.

Using in-plane resultants and displacements obtained from

(2""5-1.b) and forming the R.H.S. as a coefficient matrix for w,

with _ 0

q ~ , results in the characteristic matrix equation
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{[Aw] - [Bw]} {w} = 0, (2-49)

for which the eigenvalues and eigenvectors lead to critical

boundary displacements and the mode shapes, respectively.

2.6.4 POSTBUCKLING

Since after buckling the plate takes on a state of stable

equilibrium, we can analyze the plate as a regular large deflection

C388 .

a) Force boundary condition.

We solve the equilibrium equation (2.24) and the

compatibility equation (2.30) iteratively.

b) Displacement boundary condtions.

In this case we employ the iteration technique to solve

the z-equilibrium equation (2.40) and the in-plane

equilibrium equation (2.48).



CHAPTER III

APPLICATION AND RESULTS

In this chapter, the theory and the methods developed in the

preceding chapters are applied to a variety of problems. A computer

program has been developed which is applicable to rectangular plates

with different boundary conditions and variation in stiffness. The

objective is to illustrate the application of the method to plates with

several types of variations in stiffness, as well as ‘to the uniform stiff-

ness plates. Since solutions to the uniform stiffness plate are

known, it provides a good measure for “verifying the accuracy of the

SOlution procedure. For the plates considered, the solution is

Obtained for a few problems for all successive steps of loading from

zero load up to secondary buckling and the results are analyzed.

Convergence of the solution is checked and accuracy of the results

13 examined via comparison with known results when possible. Some

oPtilnization problems are presented at the end of each section.

Chapter III is divided into two sections. Section 3.1

deals with force boundary conditions . In section 3.2, plates with

displacement boundary conditions are considered.

A square plate with a symmetrical variation in stiffness is

considered. Stiffness is symmetric with respect to both centerlines

a

nd diagonals as shown in Figure 3.1; thus only a quadrant of the

Pl

ate will be considered. The variation in stiffness is such that

52
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in quadrant (I) of the plate (see Figure 3.1) the stiffness is a

function of x only. For example,in section 3.1 a parabolic variation

in stiffness is considered; the flexural stiffness can be

represented by a parabolic equation:

D(x) - DrER + 4(l-R) ($21 (3.1)

where D is stiffness at point x

Dr is stiffness at center of the plate

R is ratio of edge stiffness to center stiffness

a is length of each edge of square plate

Ekate:

: Et3

Since bending stiffness, D =-—————-—- , and membrane stiff-

12(l-v )

ness, K - Et, are both present in the plate equations, it will make a

difference whether the stiffness variation is due to a variation in

13 car in t.

a) For the variation in E, with t constant, the D

variation and K variation will have the same pattern.

K1
Let Bi - Kf" the ratio of membrane stiffness at point

r

i to membrane stiffenss at reference point, and let

D

6 = -2- be the bending stiffness ratio at corresponding
i D

r

points. Then,

81 Bit/Er:

a a 3 3 a 1 °r 81 ' 51
i E t /E t

i r
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D
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t, with E constant,

Et

4-3
Et t

r I'

Eti

12(l-v2)

Et3
r

12(1-v2)

Both cases can be considered without any major difficulties.

In section 3.1 (excluding 3.1.4) case (a) is assumed,

and in 3.1.4 and the entire section 3.2, the variable thick-

ness case (b) is considered.

In terms of boundary conditions, two separate classes of

PrOblems are considered :

1 - Force boundary condition

2 - Displacement boundary conditon

In order to avoid computational difficulties,the following

not1‘-dimensional variables are introduced and frequently used in the

analYSis .

t'-
t/ti

== 3

D a

DI

1{/a

‘Y " lfla

w a w/ti

where t = unit thickness.

flexural stiffness of a uniform stiffness, unit thickness plate.

Imembrane rigidity of a uniform stiffness, unit thickness plate.
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K0
'-

U “N"

8 2
V va/ti

N'; N '; N' = - -( x y xy) (Nx, Ny, ny)/Ncr

* * k 2
N. N' N )=(a_.)(N. N' N )

( x’ y’ xy Do x’ y’ xy

N- N; N = N; N; N N(x. y xy> (,2( y WM

—0 -o - = a o o

(Mx, My, MU) (Doti)(Mx’ My. Mxy)

a2

0' = ( )0

Doti

‘6'= qaalD t
o i

<9 cp/Nz

3.1 Force Boundary Condition

The previously mentioned plate case (a) is considered sub-

ject to a compressive normal in-plane force 'N' on all edges

(at):restrainton.in-plane displacements).The solution is obtained

for: three successive ranges of loading (membrane, buckling, and

POStbuckling), for different variations in stiffness, and for both

sinlPly'supported and fixed edges. The effect of a transverse load

is also examined.

The behavior of the plate within each range is observed.

For each range the in-plane stress resultants, the in-plane dis-

plaCements and the out-of—plane displacement are calculated and

Plots are given. The results of solution for variable stiffness

plates are compared with those for the uniform stiffness plate.

S

ection 3.1 deals with different phases of the behavior, as follows:

3.1.1 Membrane solution

3.1.2 Stability analysis

3.1.3 Postbuckling behavior
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In order to have a common base in different cases of stiff-

ness variation for comparison of the results, the reference stiff-

ness, Dr’ is taken such that the volume under the stiffness curve

be constant for all cases. (i.e.,mean stiffness is constant)

The stiffness variation in this section is

 

x 2

D(x) - DrER + 4(l-R) (E) J a/2

I——-—I

as introduced in equation X

(3.1). The volume under

a/ 2

the curve over a quadrant II.

of the plate (see Figure

3/2

3.2) is vol.- 2] 9. D(x)dx

 Substituting for 2 and Ir

90‘) we obtain De].- [D

D(x ra/
vol . ZDI 2("a~X)[R+4(1-RX£)2]dx.

r o 2 a

Integrating produces Figure 3.2

2

V°1 =- ————aDr (1 + SR
24 )'

This volume is to be constant for all cases; thus, the variation of

Dr W1th R must have the form,

D a constant

r l+5R

D
'I'

he base stiffness is chosen to be 63

o

= l for a uniform stiffness

plate. and the Dr for different stiffness ratios are tabulated below:



1/10

1/2

10

3.1 .l Membrane Solution
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1.7142857

.117647058

In this part, a flat plate with no initial deflection is

considered and the solution obtained. Since w is zero, the solution

can be obtained by solving the compatibility equation (2.47) only.

Boundary Conditions

To determine the value of the stress function, <9, along

the boundary, recall Equations (2.12); along the x-edges, we have:

32

NX III J2 s-N (1)

3y

N 3.2};

KY “3x33: 8 0 (11)

From (1) we have

a
3 (~33) = -N

integ:ating

a

I; ‘ ~Ny+cl +f1(x)

2

(P ‘3 lNZ + c1

b
“t from (11)

y + y fl(x) + f2(x) + c2
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3.352.. 29.
By (3x) 0 + 3x constant along the edge.

df1(x) + df2(x)

dx dx

 

.-. _nggy
= constant

8x

From the above we can conclude:

2

=-N — _—
¢ -%-- + cly + c2

similarly, along y-edges, we will get:

-N 2

m = g + c3x + c4
 

The constants must be chosen such that the given boundary

conditions are satisfied. Since the second derivatives of Q

determine the resultants, and, in this case, the plate is symmetrical

with respect to its centerlines, m can be chosen such that it will

be symmetric about both centerlines. Thus, arbitrarily choosing

w - 0 at the corners leads to:

along edge yi= 0

since at corner x = 0, w = 0, and at corner x = a, m — 0

or

¢ =«g-(ax - x2) (3,2)
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figfi -
3x 2 (a 2x)

A‘E=N_a =
8x 2 at x O

fla-flé. =

8x 2 at x a

similarly, along edge x = 0 we get:

N 2

<P=§(aY-y) (3.3)

.352
Since 3x is constant all along this edge, and from Equation

(3.2) above,is equal to 4§§- at the corner, ‘%¥'=-%% all

along the x - 0 edge; therefore (x = 0, %¥-= §§> and (x = a,%¥ = - 5%);

similarly from equation (3.3) (y = 0, g; = if) and

(y =

Now, we are able to compute (p values at each boundary

node. Figure 3.3 (a) shows the geometry of the plate and location

of node points.

The <Q values at nodes A,B, and C according to Equation (3.3) are:

 

2
N a a 2 _ Na

TA ='§'[a(§) - (29 3 --EF-

= 5t (3) - (3)2] = 3&2
‘PB 2 al4 4 32

¢C=0

The value of Q at some imaginary exterior points such as

a and b 2h; Figure (3.3.b) are needed because when the difference

operator is applied at the first interior point, such as (2),
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(b) Q function

Figure 3.3. Geometrical plan and Q function.
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the value of Q at the first exterior point, a, is required. This

can be determined from the boundary condtions. We already determined

that along edge x = 0, the slope g;- is equal to -%?.

Among the -EQ' approximations which may be used are:
3x

1) Two point difference,using known slope at edge and QA:

(is) -2212;
3x A h

or

= - if = _ Fa
cpa 42A h(3x)A cpA h(2)

- _ £12
Qa-QA h(2) (3.4)

a Na2

For h =-z-, Qa = QA --—§- , where 'QA is already determined.

2) Two point,using known slope at A and the central difference

operator:

(3(2) anZ-wa N_a.=CPZ-q’a

3x 2h ’ 2 2h

A

or

(Pa = (92 ' h(Na) (3.5)

2

a _ _ Fa...
For case b = 4" Ta ‘ 92 4

Both of these approximations were tested for the plate of constant

stiffness. Approximation (2) led to values of Nx - Ny - N at all

points in the plate but approximations (1) did not.

Al
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Approximation (2) was used for the first derivative in

this case. In this example the values at exterior points are:

= -2123
cPa C?2 4

2

_ Na

‘Pb’q’3‘T

Next, the finite difference operator Figure (A.4 ) which

represents the compatibility equation (2.15) was applied at each

interior node. The right hand side of equation is zero, since

w = 0.

3.1.1.a The Square Plate With h = %-, R = 1/10

Stiffness of the plate at each node and intermediate nodes

is shown in Figure (3.4). I

Application of operator to all nodes results in the following

system of linear equations

P

1 r W

34.802542 -57.451238 10.341004 QlI -l.5384615

-14.3628095 93.0717725 -58.708963 Q2>=' 5.9879807 Na

A V

N

     
2.5852510 -58.708963 122.8929425 Q3

L m ‘

£11.4951922)
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6- 10.

I 1.649484
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Figure 3.4. Stiffness ratio at nodes and intermediate nodes

square plate R = 1/10.
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solving the equations, we get:

The membrane resultants can be computed using Equation (2.12)

  

For example:

N

x(3)

”.28204873

7 v2 ? < .23348206

.199145001

 \

 

3y2 (3) h2

1.136927044N

Na2

= .233482-2(.l99l45)+3/32
 

a 2

(29

<Na2> =

similarly, stress resultants at each node are calculated;the results

for nodes shown, are given in Table 3.1.

Table 3.1 Stress function and stress resultant ratios at each.node.

 

 

      
 

 

   

Square plate with R = 1/10, v = .25, h = a/4.

Stress function

Node Q/Na2 Nx/N Ny/N ny/N

1 .28204873 1.55413 1.55413 0.0

2 .23348206 1.09879 .95865 0.0

3 .100145001 1.13693 1.13693 .03205

4 .12500 1.0 .52857 0.0

5 .0937500 1.0 .67636 0.0

6 0 1.0 1.00 0.0

6

5 3

4 1
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Equilibriumis satisfied along any section of the plate.

For example, along x = .25a, using the block approximation:

P = (Nx)5(%)(2) + (Nx)3(%)(2) + (Nx)2(-:‘-) = -.9999999 Na 3 -Na

and along x = .5a:

p = (Nx)4(%)(2) + (Nx)2(%)(2) + (Nx)l(%) = -.9999999 Na

which are both very close to in-plane resultant at the edge of the

block along x = O:

P = -N x a = -Na

3.1.1.b The Same Problem With R - .5

The same square plate is considered except the ratio of

g edge stiffness a 5

stiffness 13’ R center stiffness

Resulting values of the stress function Q, and the calculated

in-plane stress resultants at the nodes shown below, are listed in

Table 3.2.
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Table 3.2 Stress function and membrane forces

(R = .5, h = a/4, v = .25)

 

 

Stress function

P°int ijaz Nx/N Ny/N ny/N

1 .26057639 1.19625 1.19625 0.0

2 .22319361 1.04536 .97297 0.0

3 .19052623 1.02574 1.02574 9.01058

4 .125000 1.000 .8578 0.0

5 _.0937500 1.000 .90316 0.0

6 0.00000 1.000 1.000 0.00       
As in the preceding problem, equilibrium is satisfied along all

sections of the plate.

3.1.l.c Uniform Stiffness Plate (R = 1)*

It is anticipated that as the stiffness of the plate approaches

uniformity, the solution will converge to the known results for uni-

form stiffness plate. Thus, this case is considered as a measure

of verification. The results shown in Table 3.3, are as expected.

The membrane resultant ratios are equal to 1.0 everywhere and

shear stress is zero; these are exact values.

*Both E and thickness are uniform all over the plate.
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Table 3.3 Stress function and in-plane resultant ratios.

(R - 1, h =-%)

 

 

    

Point Q/Naz Nx/N Ny/N ny/N

1 .2500000 1.00 1.00 0.0

2 .21875000 1.00 1.00 0.0

3 .1975000 1.00 1.00 0.0

4 .125000 1.00 1.00 0.0

5 .0937500 1.00 1.00 0.0

6 .0000 1.00 1.00 0.0  
 

Ll.l.d The Same Problem as in 3.1.1.a With R = 10

In contrast to the previous problems, in this case the

stiffness is increasing from center to edges and at the edges it

Results are shown in Table 3.4.18 ten times stiffer than at the center.

 

   

 

 

 

Equilibrium is satisfied along all sections. 2

4 2 1

Table 3.4 Stress function and membrane force ratios, square plate

R " 10, h a % 9 V a '25

\

._Eflegunt Q/Naz Nx/N Ny/N ny/N

.1 .21667651 .32022 .32022 0.0

2 .20666961 .78443 1.14660 0.0

3 .18215623 1.02229 1.02229 -.03332

4 .125000 1.00 1.38657 0.0

5 .09375000 1.00 1.171 0.0

L“‘~:i .000 1.00 1.00 0.0     
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Improvement of the solutions

Since this is an approximate method, it is desirable to study

the convergence of the solution with increasing numbers of node points

(decreasing grid spacing). In this section the same

problems are solved using finer grid spacings (h = g (I h = i— .

Solutions to all four problems are obtained. The node arrangements

are shown in appendices 3.1 and 3.2.

The convergence of the solution for the case R = 1/10

is shown in Table 3.5 and illustrated in Figure 3.8.

Table 3.5 Convergence of the solution, square plate R . 1/10, v = .25

 

 

   

Grid Q -values by extra) N , at extrapolation 3 pt.

spacing at node 1 olation node 1 results * extrap-

h/a olation

% .28204873 1.55413

.27472129 1.59060

% .27655315 1.58149 1.59026

.27465677 1.59028

T16 . 27513087 1 . 58809

I‘\ _l    
 

* I{Ilczhardson's extrapolation.
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2 .
Q/Na Nx/N

.28 «-

«1.65

9 i
.275 ~ 1.6

NX

«1.55

.27 3

4 8 l6 a/h

Figure 3.5 Convergence of membrane solution

§;J;Ll:l. Analysis of Results from.Membrane Solution.

i) Uniform stiffness plate (R = 1)

Compared to theoretical values, in this case the finite

difference solution gives accurate results. The

difference operators agree exactly with the usual

difference operator for uniform stiffness plate.

Since the Q function is parabolic in this case, the

difference approximatiousto the second and higher

derivatives of' Q are exact, and the solution is exact,

a

even for h =-Z. The in-plane stress resultants are uniform
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over all the plate and there is no shear stress, as

expected. Distribution of Nx/N is shown in Figure

(3.6). The displacements vary linearly from the symmetric

centerlines (see Figure 3.7), and the strain is constant,

which agrees with elasticity theory. The solution

obtained with the grid-spacing, h =-% is exact, as are

solutions with finer grid-spacings.

 
 

(IREICCE

N/N=1
X

 

        
(a) Plan ' (b) Contours of Nx/N

IT — I“ m r-

          
9-9 8-3 C-C D-U E-E

N

(c) Profiles of-i?

2 1 -

SCHLE

FIEUINe 3.6. Force distribution for undeflected square plate R = 1,



Figure 3.7. Contours of in-plane displacement (U' =

ii)
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.375 .28 .1875.094 0.

K

N) for
 

undeflected square plate, R = 1, v = .25.

Square plate with R = 1/10.

In this case, because of variation in stiffness, the

stresses vary over the plate. Thus,the Q function

is not a smooth, parabolic one as it was in the uniform

stiffness case and the solution would be an approximate

one. Solutions with finer grid spacing were compared

(see Table 3.5) and they show fairly good convergence.

Study of in-plane resultants in Figure (3.8) shows the

expected behavior,with a shifting of the load toward

the stiffer parts of the plate.

Equilibrium is satisfied along any arbitrary section

of the plate. Shear stress is zero at points of symmetry

but at nonsymmetric points, because of the load shifting

process, there is a small shear force created, as expected..
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igul‘e 3.8. Distribution of in-plane force (Nx/N) and displacement

K

(U' = U 3;) square plate, R = 1/10.
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In-plane displacement patterns are illustrated in

Figure(3-8 d)-It is observed that the displacement

normal to the edge is increasing as we approach the corners,

at which stiffness is less than at the center. This behavior

seems reasonable since there is no displacement restraint

along the edges.

iii) Square plate with R = 1/2

iv)

This problem can provide a good check on solutions,

because it lies between two previous cases. As

we go from the R = 1/10 case to the uniform stiffness

case (R = 1), we would expect the solutions to approach

the uniform stiffness results. Investigation of the

results in Figure(3.9) along with the results found by different

grid-spacings and comparing with cases (i) and (ii), indicates:

a) The convergence as the grid spacing becomes finer

b) Results for the stresses and displacements trend

toward those for the uniform thickness case as R is

changed from 1/10 to 1/2.

Square plate with R = 10.

Solution for this case shows convergence as the grid

spacing is decreased, and it also agreeswith previous

results in that:

a) Load in the plate shifts toward the edges which

are stiffer as illustrated in Figure (3.10).

.b) Displacement normal to the edge is a little larger

at center of the edge and decreases toward the

corner; (see Figure 3.10 d).
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3.1.2 Buckling
 

To study buckling and determine the critical value of the

applied compressive force, NC , the equilibrium Equation (2.14)

r

is employed. The left hand side of this equation is approximated

by the operator Figure (2.8) and the right hand side is represented

by the difference operator Figure (2.9). The stress function,

Q, values obtained in the membrane solution for the plate with

no lateral displacement are used in the equilibrium equation. This

is acceptable,because in the stability analysis we are seeking

bifurcation of an initially undeflected plate.

Boundary conditions
 

In the case of buckling and postbuckling, the out-of-plane

displacement, w, has a considerable effect on the solution and

out-of-plane boundary conditions must be considered. In the simply

supported case, along edge x = 0, we have:

  

i) w = 0

82w 32w

11) M --D(—-+ 9 —) = 0
x 2 2

3x 8y

But --—5 = 0, so that (ii) becomes ——§-= 0. Using a difference

3y 3x

approximation,

32w _ W1+1 ' 2"1 + w1-1

8x2 h2

we will get at point B (Figure 3.3),



since wB

In the case of fixed support, the conditions are:

i) w B 0

11) gg=o

using a central difference approximation for slope we have:

8x 2h b

 

3.1.2.a Buckling of Plate with R = 1/10.

Let us consider problem a) again (R

supported edges and h 31%.

= 1/10) with simply

In the right hand side of equation (2.14) the Q values have

already been obtained for the initially flat plate.

Applying operator Figure (2.8) at each point, and substituting

Q values in the right hand side, the following eigenvalue problem

is obtained.

P

    
1.071875 -5.5375 6.5725 w3

 _j I J b

2

or: calling 1 = 32-
D
r

r

14.9375-.38853321 ’ -20.52500+ .38853321 4.2875 1

 L 1.071875+30040061 -5.5375+ .14211581

-5.13125+.0686741A 10.86875- .25717881 -5.5375+ .11983.61

F' 1
14.9375 -2o.52500 4.28751rw 3.885332 -.3885332

-5.l3125 10.86875 -5.5375 <w2>=r -.0686741 .2571788

-.0040060 -.l421158

 
6 . 57 25- . 284231?

0 -I w

.1198306

.2842316

W

W

l

2

3
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Solving leads to these eigenvalues,

,

5.20748

20.42753>
4 II

A

46.71190 \

01'

5.20749

N =1—‘2' = 20.42753

N
I
”

46.71190

The corresponding eigenvectors are:

11_ .11. .11.

1.0 1.0 -.69810

.84441 .36007 1.0

.63179 -.57565 .03122

To check convergence, the same problem was solved with finer grid

a a
spacings, (h -'5) and (h 16).

The eigenvalues shown in Table 3.6 were obtained. The con-

vergence is fairly good and extrapolation flnproves the results

 

 

further.

Al 6.

5. ~—————___11 ._1

4._

'r, . 2

4 8 16

Figure 3.11. Convergence of eigenvalue, R = 1/10.

a/h
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Table 3.6 Eigenvalues of s-s square plate, R = 1/10,with different

grid spacings.

 

h/a A1 2 pt. extrapolation 3 pt. extrapolation
 

I
1/4 5.20748

4.727158

1/8 4.84724 4.855814

4.847773

1/16 4,84764     
 

The first mode shapesin the three solutions are very close to each other.

3.1.2.b Buckling of Uniform Stiffness Plate

As before, a plate with uniform stiffness is considered;

the solution can be used for an accuracy test since the exact solution

is known. The first eigenvalue obtained using different grid

spacings is tabulated below and compared with the exact solution.

Table 3.7 Comparison of first eigenvalues of different solution (R - l)

 

h/a A1 11 exact difference 2 Pt. extrqr- 3 Pt. extrap-

olation Aolation
 

1/4 18.74517 19.7392088 5%

19.734057

1/8 19.48684 1.2 N 19.739197

19.738873

1/16 19.67587 .3%        
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It can be seen that the results are very close to the exact values

given in Reference (44);

Na 2

N = Zn or, A =-——— = 2N = 19.7392088

The solution is satisfactorily converging to the exact value.

Three point extrapolation results in an error of less than 10—6.

Table (3.8) shows the critical loads obtained for two dif-

ferent loading cases and gives comparison with previous work as

well as exact values. It can be seen that even with 8 x 8 nodes

the results are satisfactorily within engineering accuracy. Mbre

accurate results can be obtained by extrapolation. In Table 3.8,

the results given by Clough and Felippa are obtained by the finite

element method and Dawe used the "discrete element displacement

method", which in principle is the same as finite element method.

Eigenvalue problems for other cases (R = 10, and R = 1/2)

were solved, and the convergence was examined with increasingly

finer grids. Details will be discussed later.

3.1.2.1 General Buckling
 

So far, the problem was considered symmetric with respect

to both centerlines and the diagonals. Therefore, the solutions

are limited to symmetrical modes of buckling only and nonsymmetrical
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modes are absent. This means that 12 in this solution is not

the eigenvalue corresponding to the second mode, but it represnts

the eigenvalue corresponding to the second symmetric mode of buckling.

In this particular case the 2nd symmetric mode corresponds to the

5th general buckling mode.

To obtain more accurate results, the plate was considered

without imposing any symmetry. Thus, all possible degrees of

freedom were allowed, within the restrictions imposed by the choice

of grid spacing. The solution for each case was Obtained and the

buckling modes and corresponding critical loads are studied in the

next section.

3.1.2.143 General Buckligg_of Square Plate with R = 1/10.

1) Simply-supported boundaries.

Problem a is solved for general buckling (no

symmetry imposed) with h = a/8 and assuming simple

support along all edges. The first few modes of buckling

and the corresponding eigenvalues are shown in Figure

(3.12)

ii) Clamped edge.

The same problem as in (i), but with all edges clamped,

was solved. The first six modes of buckling and the

corresponding eigenvalues are shown in Figure (3.13).
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‘I’ .—

* * 3 44 * 44N1 = 19.39 N2 9. N3 39.

+ _ + _

+ +

- +

* 61,61 N* 75 15 N* 76 52N4 . 5 . 6 .

Figure 3.12. Modes of buckling of square plate, R = 1/10,simp1y supported.
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* 42 24 N* - 66 60 N* — 66 60N1 0 2 . 3 .

+

+ - + _ +

_ + - + _

* 91 60 N* 103 32 * 1N4 . 5 . N6 . 118.28

Figure 3.13. Modes of buckling of square plate, R = 1/10, clamped,

(N* - NaZ/Do).
cur
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+

+ + -

* 20 04 N* 46 73 N* 46 73N1 . 2 . 3 .

+

+ - "I'

— + +

N* 74 79 N* - 88 78 N* - 89 284 O 5 _ O 6 - 0

Figure 3.14. Modes of buckling of square plate, R = l/2,simply supported.

   

         

   

 

          

- +

+ +

N* 49 56 N* 82 0 *1 . . 2 . 3 N3 - 82.03

+ +
+ —

"' " +

* 114 20 N* 12 o *N4 . 5 7.3 N6 = 137.84

Figure 3.15- Mbges of buckling of square plate, R = 1/2, clamped,

(N a NaZ/Do).
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Figure 3.16. Mbdes of buckling of square plate, R = 1,simp1y supported.
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N4 = 112.693 N5 = 124.778 N6 = 137.127

Figure 3.17. Moges of buckling of square plate, R = l, clamped,

(N a NaZ/Do).
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= 18.42

 

 

    
* 70 04N4 .

Figure 3.18. Mbdes of buckling of square plate R = 10,simply supported.

 

  
 

* 52 09Nl .

 

 

    
N* 101 784 .

Figure 3.19. Modes of buckling of square plate,R =

(N* = NaZ/Dol
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3.1.2.1(b,c,d)
 

The plates with R = 1/2, R = l and R = 10 were solved

for both simply supported and clamped boundaries; the buckling

modes and critical loads are illustrated in Figure (3.14)

through (3.19).

3.1.2.2 Analysis of the Results

A. Simply-supported edges:

i) Uniform stiffness plate.

As discussed earlier, the critical load obtained for

this problem agrees very well with the exact solution.

Mbdes of buckling based on theoretical solutions are

combinations<mfone or more half-sine waves in each

direction. The first mode shape is one half-sine wave

in each direction, x and y.

The first mode obtained by the difference solution was

examined and the deflected plate after buckling was

found to consist exactly of one half—sine waves in both

directions. First mode deflected shapes are shown on

Figure (3.20).

‘The second and third modes had two half-sine waves

in one direction and one half-sine in the perpendicular

direction.

ii) Square plate with R = 1/10.

If we investigate mode shapes and critical loads and

compare with the uniform stiffness case, the following



iii)
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properties are observed:

1. First mode of buckling is not a half-sine shape,

but it is flatter at the center where the plate is

stiffer and more curvature appears near the edges

where the stiffness decreases. This phenomenon could

be predicted, based on the nature of the plate.

In the higher modes, in contrast to the uniform stiff-

ness case, in which the modes are formed by two or

more half sine waves in one or two directions, there

is a flat region around the stiff center of the plate

and larger bending near the edges. See Figure (3.20).

. The second eigenvalue in the uniform stiffness case

is about 2.42 times the first one, while in the present

case the ratio of second to first eigenvalue is

2.03. This can be interpreted as follows:

The first mode shape has greater curvature in the

central region, while the second mode has zero cur-

vature in the center. Therefore, it is expected that

plates with more flexible edges correspond to lower

second eignevalue.

Case R = 1/2.

Since this problem lies between the two previous cases,

mode shapes are something in between which supports the

aforementioned ideas. The ratio of second to first eigen-
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values is 2.33, which lies between 2.44 for case (i)

and 2.03 for case (ii).

 

 

 

 

iv) Case R = 10.

In this case, the variation of stiffness is reversed,

with the plate being stiffer near the edge. Investigation

of the mode shapes indicates more bending in the less stiff

lcentral region and flat curvature near edges where the

plate is stiffer, supporting the ideas introduced above.

c:

C)

("3'-1 Simply-supported edges

—-—-—Clamped edges, R = 1

E:

X/0

90.00 0.25 0,50 01.75 11.00
ca‘

c>

°. 10

"I" 1

1/2

1/10

Figure 3.20. Deflected shape for s-s and clamped plate.

(N = 2.40 Ncr)
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B. Clamped Boundaries.

1) Uniform stiffness plate.

The first eigenvalue is found to be 49.56763 which

is very close to the exact value, obtained by Levy (28),

of 5.0370 2 = 49.71319.

Table 3.9 shows convergence and accuracy of the results,

and gives comparison with some previous works and the exact value.

Extrapolation of the results shows an accuracy of about .22.

Table 3.9. Critical load ‘N* = N

2
a

cr NZD

bi-axial uniform load, R = 1, v = .316.

of clamped square plate under

 

 

      

Grid-spacing» A Extrapolation Levy (28) Clough & Classical

(hlg) 1 Felippa Solution

1

‘2 5.625

.% 5.02225 5.037 5.399 5.31

5.29921

1

IE’ 5.22997

 

The first buckling mode agrees almost exactly with the theoretical

mode shape (1- cos 22E0, for m = 1.

ii) Case R = 1/10.

111)

See dashed curve in Figure (3.20).

Similar to the s-s case, in the central region the plate

remains flat and sharper curvature occurs near the edges.

Case R = 1/2.

As anticipated, results obtained for this problem lie

between cases (i) and (ii) supporting the validity of

the solutions.
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iv) Case R = 10.'

As before, sharp curvature is observed in the central

region of the plate due to smaller stiffness of that

region.
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3.1.3 POSTBUCKLING

3.1.3.1 General Procedure
 

As discussed in the preceding chapter, a plate will stabilize

after first buckling. Immediately after buckling, the plate would I

be in a state 0f Stable equilibrium with moderately large deflection.

Therefore, the large deflection theory discussed in chapter 2 can

be employed to study postbuckling behavior of the plate up to the

secondary buckling point.

In this section, the procedure followed will be discussed

and the results will be analyzed.

For a solution to the large deflection behavior of a plate,

the equilibrium and compatibility conditions must be satisfied;

both equations are coupled in w and Q. In this case, in addition

to the variation in stiffness, geometrical nonlinearity caused by

large deflection will also be involved.

To solve these coupled, nonlinear equations, an iterative

technique is employed. A schematic flow chart of the procedure

is given in Figure (3.21). The steps of the procedure in Figure (3.21)

are as follows:

Step 1 - Solve the equilibrium equation (2.14)

The left hand side is approximated by the operator of Figure

(2.8),which will be applied at each node to form the matrix

[Aw]. To calculate the right hand side of this equation,

initial values for Q and w are needed. w is assumed

consistent with the first buckling mode shape, and the
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Apply load N, (N > Ncr)

  

 
 

Input Q and w based on previous

’ solutions

   

 
 

Solve equilibrium equation

(2.14)

   

 
 

   

A A Get new w

 
 

Solve compatibility equation

(2.15)

   

  

  

Get new Q

‘ no ////:::{:\\\\\g Yes
+1

convergenc

 

 
  

Increase Load

    N = N + AN

Yes N<N
I:

max

No
 

  

Stop

 

Figure 3.21. Flow chart of iterative procedure.
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Q values calculated for the undeflected plate are used.

Second derivatives of Q and w can be approximated by

finite differences to obtain the known vector {01}.

Then the linear system of equations, [Aw]{w} = {Q1}, is

solved and the new values of W, calculated.

Step 2 - Solve compatibility equation

To solve compatibility equation (2.15), the difference

operator,Figure (2.10),which represents equation (2.15),

is applied at each node and matrix [A] formed.

The right hand side of this equation includes derivatives

of w only. The values of {w} computed in step 1

are used along with the finite difference approximation

to the derivatives to form the right hand side vector,

{B}. The linear system of equations [A]{Ql} = {B}

is solved, resulting in new values for the stress function,

@1-

Step 3 - Taking the new values of w' and Q1, steps 1 and 2 are.repeated.

1

Step 4 - Convergence

Aftereach iteration, the new values are compared with

the old ones. If they are close enough,the iteration will

be stopped and the last computed values of Q and w

will be accepted as the final solution for the given

load. If the new values are not satisfactory, the iteration

procedure will continue. The convergence was accelerated by

using the convergence—inducing technique using 3 successive

values, as discussed in reference (53) and it proved to

be very useful.
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Step 5 - The applied load is increased by a small amount,

AN, and steps 1 to 4 repeated again to get the solution

corresponding to load N + AN.

The above iterative procedure was continued until the

applied load approached the second critical load. Near

the second critical load, the equilibrium approaches in-

stability and it was observed that the solution would not

converge.

Mbre details of the numerical solutions are discussed in

the following sections.

3.1.3.2 Numerical Solutions
 

In this section some problems will be solved and the results

analyzed.

8) Square plate with R = 1/10, h = a/8

D

A square plate with R = BEQBE-—- = l/lO

center

subject to an in-plane load, N, on all four edges,

2.

8

considered and later the problems were solved with the

was considered. A grid spacing of h - was first

grid spacing of h a %E' for more accuracy.

The first critical load was found in (3.1.2 a) to be

N = 4.84724 2%- and the Q values are known from Table

a

(3.1). A deflected shape, w, was assumed based on the

first mode shape obtained from the buckling solution.
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D

Initially, N = 5.1—; was assumed; this is slightly

a

above the critical load. The transverse load, q, was

taken to be zero.

The iteration was continued until the new values of Q

and w differed from the previous values by not more

I
A

w -w

than a predetermined tolerance of .52; (I-éf—-| .005).

The last values of Q and w were accepted as converged

values and based on them the in-plane forces and

displacements, as well as the bending moments and

.bending stresses, were computed.

In the very first step, convergence depends greatly

on first input values; in the choice of these, ex-

perience will play a major role. In the following steps,

convergence was achieved after about ten to twenty

iterations - depending on the size of load increment.

D

_29

a

which is ten percent of initial load. Variation with

In this case, the load increments were taken as .5

load of the lateral deflection, w; inéplane displacement, u:

membrane force, Nx and bending moment, Mx’

are plotted in Figure (3.22).

At the end of each step, having Q and w at each

node, we can calculate in-plane stress resultants from

the difference approximations of equations (2.31) and
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the bending moments from the difference approximations

of equations (2.35).

So far, we have enough information at each node to

illustrate the behavior of in-plane forces, bending

moments and principal stress; they are plotted along

the centerline of the plate in Figure (3.23), for three

different load levels. The variation of maximum

principal stress with load increase is also plotted

in 3.23 d.

N

Contours of the in-plane force ratio, 3%, at the three

different levels of loading are shown on Figure (3.24),

and the distribution along various sections of the plate

is shown on Figure (3.24 e). The variation of the

in-plane force at the plate center with load increase

can be seen on Figure (3.22 c).

It should be noted that Ny can be determined from Nx

plots by considering symmetry.

To investigate in-plane displacements, equations (2.33)

and (2.34) can be used.

We have already determined Nx and Ny, and the derivatives

of w can be easily obtained by difference approximations;

we are thus able to compute ux ='§E and v --§!

3x y 3y

at each node. Then (RE). 8 (bu) and (2!) - (bv)

8x 1 1 8y 1 1’

where the right hand sides (bu) and (bv) are computed

constant values. Applying the difference operator to

the left hand sides will give:
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[Au] {u} {bu}

[Av] {v} {bv}

In order to obtain a solution to these equations, we

need to know some boundary values of u and v.

In this case, we will take advantage of symmetry. Since

the geometry and the loading is symmetric, we can conclude

the following (see Figure 3.3):

1) Because of symmetry in x, the u displacements

along the axis x = 3’ will be zero.

ii) Because of symmetry in y, the v displacements

. along axis y = %- will be zero.

iii) Symmetry about diagonals implies that u = v along

the diagonal, x = y, at nodes 1, 3, and 6 in Figure (3.4).

Taking advantage of these assumptions enables us to solve

a system of linear equations and obtain the u and v

values for each node.

The patterns of u displacements at each load step

and the contours of equal displacements are given in

Figure (3.25). The v displacement behavior can be

easily visualized considering symmetry.

The variation of in-plane displacement with load at some

specific points is illustrated in Figure (3.22 b).
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Figure 3.22. Plots of w,U,Nx, and Mx; square plate, s-s, R = 1/10
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To compare the behavior of an imperfect plate, a small

initial deflection was imposed by applying a small

transverse load, q, at node 1 only. The plot of w

vs load is shown in Figure (3.22 a).

Convergence of the solution was checked by solving the

problem using two different grid spacings (h/a = 1/8

and h/a = 1/16) and the results proved to be very close.

For example, corresponding to N = 1.5Ncr the central

deflection was found to be 3.335299 for h =‘%- and

3.3735 for h 8 fig- 3 difference of only 1%. For more

accurate results in all succeeding analyses, solutions

a

with h 16 are given.

 
 
 

    

 

 I
 
 

 
 

.5.'4.’3.2 .1 0 4.3.2.1. 0 50. 710. 0.

a) Undeflected plate b) Buckled (N/Ncr=l.15) c) Buckled (N/Ncr-2.0)

Figure 3.25. In-plane displacement (U - ua/ti), square plate, simply-

supported, R = l/10.
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Square plate with uniform stiffness, R = 1.

As before, this problem, for which solutions have al—

ready been published, is undertaken in order to investigate

the accuracy of the difference method.

Justas in problem (a), the iteration procedure was fol-

Dr

lowed, starting with the load N ' 20'—§’6 WhiCh is

a

g
2 O

a

load increment was taken as 2.5, which is about 12.5%

slightly above the critical load, Ncr = 19.48 The

of the initial load and the tolerance range was taken

as .52. Convergence was usually achieved after

7 or 8 iterations.

Graphs of the w and u displacements versus load are

given in Figure (3.26).

Plots of the membrane forces, bending moments, principal

stress along the centerline (y ..%), and principal

stress versus load are shown in Figure (3.27).

For further illustration, the contours of in-plane

N

force ratio, —E- and its distribution along various
N

sections of the plate are shown in Figure (3.28).

Figures (3.26 c) and (3.26 d) show the variation with

load of membrane force and bending moments at the center

of the plate. In-plane displacement, u, is illustrated

by the contours in Figure (3.29).
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a) Undeflected plate b) Buckled (ulN = 1.15) c) Buckled (N/N = 2 30)

cr
cr °

Figure 3.29. In-plane displacement (U = ua/ti), square plate, simply-

supported, R = 1.
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Comparison of the results
 

In order to compare the results obtained by the iterative

difference method with some currently available results,

a square plate under uniform lateral load, q, was solved,

and the results compared with those of Kaiser [26] and

Basu [5].

Figure (3.30) demonstrates the very close agreement with

the previous works.

  

c:

c?

‘r7

:3

c?
m“

c:

c:

3“? A Kaiser

D Basu

--Present result

c:

c? .

c:
c:

' 1

c33.00 1'0.00 2'0.020 $0.00 40.00

qalI/Doti x10

Figure 3.30. Square plate under uniform load, boundary free of

any in-plane force, simply supported v 8 .316.
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c,d) R = 1/2 and R = 10.

Problems c and d were also solved similarly and

corresponding graphs are illustrated in Figures (3.31)

to (3.38).
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Figure 3.34. In-plane displacement (U = ua/gi), square plate, simply-

supported, R = 1/2.
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Figure 3.38. In-plane displacement (U = ua/ti), square plate, simply-

supported, R - 10. -
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3.1.3.3 ANALYSIS OF POSTBUCKLING RESULTS

3.1.3.3.1 SIMPLY SUPPORTED EDGES
 

a) Uniform stiffness plate:

Lateral Deflection
 

The plot of w-displacement versus edge load,Figure

(3.26aOshows a rapid increase in w immediately

after buckling, continuing in a smooth manner.

Consider the plate under combined loading (bending

— .__L.

Kb Aw center’

the slope of the curve is the instantaneous stiffness.

and membrane) and introduce

Before buckling, w at the center of plate is

increasing almost linearly. As the critical load is

approached, the stiffness, Rfi, begins to decrease

rapidly. Finally, after passing the buckling range,

it increases again and remains almost constant but less

than the initial stiffness.

This reaffirms that, in contrast to beams, the plate

has the capability of carrying load after buckling, but

with a lower equivalent bending stiffness. This be-

havior is in agreement with previous research and results

published.
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Convergence of the Solution
 

To check variation of the solution with grid spacing, the

problem was solved with different mesh sizes and the w

results for each solution are shown in Figure (3.39).

Study of the plots leads us to the conclusion that:

i) the solution converges with decreasing mesh size.

a

ii) solution obtained with grid spacingh = 8 is reasonably

accurate for engineering purposes.

Investigation of membrane forces, bending moments, and

in-plane displacements also indicates convergence, but the

rate of convergence in bending moments is much greater

than the others. This is attributed to the fact that the

w function is very smooth.

 

  

= a/8

= a/12

-— r" h = a/l6

O

“3
04

D

c.’

‘0 .00 1'00 2'.00 3 .00 41.00

Figure 3.39. Convergence of the solution with mesh size.
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In-Plane Stress Resultants
 

In the uniform stiffness plate, because of symmetry in

loading (hydrostatic), Nx and N& are equal to N every-

where before buckling.

After buckling, there is a change in distribution of the

in-plane resultants as illustrated in Figure (3.26),which

shows a tensile stress resultant at the center of the plate.

This can be explained as follows:} due to buckling, the

plate will deflectailarge amount - especially in this case with

free in-plane displacement and no restraint on lateral slope.

In this deflected position, the plate is analogous or similar

to a shallow spherical shell with horizontal load applied

all around the edges. _4,/”"'——_—_———““\\;

7 ‘

The variation of membrane resultants

agrees,qualitatively, with that of a shell. Shell analysis

shows that, due to this type of loading, N¢ (which is analogous

to Ng) along the axis, y = g, has its maximum near the edge,

decreases towards the center and sometimes becomes tensile

at points far from the edge as discussed in reference ( 7).

N6, the membrane resultant in the direction of the parallels,

will be the major load carrying element and will have values

much greater than N0, the meridional resultant, near the

edge. In this case, Ny along the axis y 8 a/2 is the

counterpart of N in a shell and shows similar behavior.
0

Equilibrium was examined along different arbitrary sections
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and the results were very good.

Referring to the paper by Kennedy and Prabhakara [27],

although the conditions are different, their results show the

existence of a tensile force at the center of a plate under

edge compression:1 Figure (3.26 c) illustrates the variation

of the membrane resultant Nx at the central point. It

shows that before buckling, in a flat plate or the small

deflection case, the compressive in-plane resultant is in-

creasing in proportion to the applied load. After buckling,

however, it will start to decrease (sharply in a flat plate

and smoothly in the small imperfection case) with an increase

in the edge load and subsequently the deformation behavior

of the plate is similar to that of a shallow shell.

Bending

Since the bending moment is a function of curvature, immedi-

ately after buckling, when considerable deflection occurs,

bending moments will be developed within the plate. The

Figure (3.27 b) shows the variation of moment along the

centerline, y = a/2, corresponding to different loading stages.

At the beginning, maximum Mi is at center, but as the

deflection increases and a flat region is formed around the

center, the location of Mg maximum shifts toward the edges.

k

1This phenomenon was studied by W.A. Bradley, (author's adviser),

using a frame-work approximation (or analogy) and the behavior proved

to be qualitatively in agreement with the above result.
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Principal Stress
 

Due to dependence of principal stress on both in-plane

forces and bending moments, it is varying with load both

in distribution and magnitude. Since maximum stress is one

of the major keys to design problems, the maximum principal

stress is plotted versus load and the point at which the

maximum is located is shown on Figure (3.27 c). It is

seen that due to edge loads appreciably above

critical load, the maximum principal stress is located

at the middle point of the edges in the postbuckling range,

while in membrane analysis it is uniform all over the plate.

The principal stress is a function of both membrane and

bending stresses and these two are functions of thickness

in different degree. Thus, the principal stress would vary

with reference thickness and the values given here are

valid only for this case, (i.e.,unit thickness plate with

E varying).

In—Plane Displacements
 

Study of graphs (Figure 3.29) shows that before buckling,

displacements are linear as expected (constant strain).

However, after buckling, geometrical nonlinearity caused

by w introduces some changes in their patterns. As

illustrated in (3.29), along edge x - 0, the u displacement

(normal to the edge) is increasing from the corner towards
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the center, which is consistent with lateral bulging. The

v displacement along the x = O edge (same as the u

displacement along the y a 0 edge) shows larger compressive

strain at center and smaller strain near corner; this is

caused by the considerable compressive membrane force in

this direction near the middle of the edge..

The in-plane displacement is illustrated in (3.26). It

shows that:

Before buckling, the edge displacement is linear

with respect to applied load.

After buckling, the rate of in-plane displacement u,

will increase at the corners. Define-A—N-————- - K the
m ’

corner

equivalent ineplane stiffness; it will decrease with in-

crease in deformation. Also, there will be much greater

reduction in IE; at the middle of the edge (x = 0, y = a/Z),

than at the corner.

Variable stiffness plate R = 1/10

Lateral Deflection
 

According to graph (3.40), in this case the lateral de-

flection w, follows the same pattern as in the uniform

stiffness case. However, when the lateral deflection gets

moderately large, a wide flat region occurs at the center

where the plate is stiffer and there is sharper curvature

near the edges, because of the smaller stiffness.
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Membrane Resultants

Study of Figure (3.22, 23, 24) shows similar behavior in

membrane resultant as for case (a) the uniform stiffness plate.

Bending

Figure (3.23.b) shows bending moment behavior similar to

that of the uniform stiffness plate. The only noticeable

difference is that the location of the maximum Mk moment

is closer to the edge because of the greater curvature

near the edge, although the moment is a function of stiffness

as well as curvature.

Principal Stress
 

The maximum principal stress is found to be located at a

point close to the edge in the postbuckling range; whereas,

before buckling and during the first stages of postbuckling,

the maximum stress was at the center.

In-Plane Displacements
 

The graphs of Figure (3.25) show that along the edges, the

displacement normal to edge is almost constant, as in the

uniform stiffness case. As we move towards the center,

however, we observe a change in the pattern which can be

explained on the basis of the force distribution and the

stiffness. Along sections parallel to y, near the center

x z a/2 and moving toward the edges, the reduction in stiffness
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is greater than the reduction in the membrane forces.

Therefore, there is less displacement at the center and

larger displacement near the edge.

As a quantitative example, as seen in Figure (3.24.a), along

aa a

the section, x a-Z, at point (x = 23 y = 29’ Nx = 1.12N,

and the in-plane stiffness Et 8 ’325(ET)r° At point

. %3 y a 0) on the edge, Nx = .64 while Et 3 .1(Et)r.

Thus:

N

e x 3 1.12N g_ a)N .

3.446 Etr at p01nt (
x = i3? .325031)r 4 ’ 2

x Et .1 Et Et

N

e = —- = —- = 6.4 —- at point (2 , 0) on the edge

r r 4

(Note: Poisson's ratio will not cause a major change.)

After buckling, there is also a change in displacement normal

to the edge, similar to that explained in case (a).

R-1/2

This case is between cases (a) and (b); thus, we expect

the results to be so. All results obtained do lie between

the two previous cases and exhibit behavior already

explained.

R = 10

Lateral Deflection

The graph of Figure (3.35a) shows the general behavior of the

center deflection to be similar to that of the uniform stiff-

ness case; for the lateral deflection along the center line,
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Figure (3.40) shows an expected difference compared to previous

cases, in line with the stiffness variation. There is greater

curvature in the central region in contrast to case (b), which

has a flat region in the center.

Membrane Resultants
 

The overall effect of large deflection after buckling is

similar to that in previous cases.

Principal Stress

The maximum principal stress always occurs at the middle

point of the edges.

Bending

Studying graph (3.36 b), we observe that Mx maximum, occurs at

a point closer to the center, where considerable curvature

takes place.

In contrast to previous cases, My reaches its maximum not

at the center but at some midpoint. This is because

the stiffness is minimum there and My is a function of

both D and curvature, although the curvature in y-direction

is maximum at the center.



128

In-Plane Displacement

Before buckling, in contrast to case ( b), we observe a

smaller u—displacement in the vicinity of the centerline

(y I g). This is consistent with the in-plane force dis-

tribution and the stiffness distribution as calculated in

case (b).

After buckling, the in-plane displacements due to N are

increased by the effect of large lateral deflection; also,

the region having more closely-spaced contours is moved

away from the center toward the edge.
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3.1.3.3.2 CLAMPED EDGES

The same stiffness variations discussed for plates with

simply-supported edge are considered in this section, but

for plates with clamped edges. The corresponding plots are

given in Figures (3.41) to (3.56), which show the displace-

ments and stress resultants. The behavior is largely

similar to that for the simply-supported plate; notable

differences are mentioned in the following.

In-plane Stress Resultant

Overall behavior of the in-plane forces is similar, but in

the simply-supported case they decrease more rapidly at the

center. For example, compare Figure (3.26c) with (3.45c)

for the uniform stiffness plate. The plate with simple

support shows a much greater drop in Nx at the center

corresponding to edge load of two times the critical load.

Bending;gbments

Bending moments exhibit the greatest differences between

clamped and simply-supported boundary conditions. Their

magnitudes and distributions are appreciably different

as a comparison of Figures 3.22 d and 3.23 b with

Figures 3.41 d and 3.42 b, for example, shows.
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Ineplane Displacements

The in-plane movement of the plate in the postbuckling range

follows almost the same patterns for the simply-supported

and clamped cases. However, the plate with clamped edges

undergoes smaller displacement along the edges. Compare

Figures (3.25) and (3.44).
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Figure 3.56. In—plane displacement (U = ua/ti), square plate, clamped

edges, R = 10.
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3.1.4 OPTIMIZATION
 

The main purpose of this study is to investigate the ap-

plication of the difference method to the variable stiffness plate.

The goal is to design a plate with a stiffness variation such

that it be optimum in.some respect.

For example, we may be concerned with weight or the amount

of material used.as is the case in most space structures, aircraft,

etc. In these cases, we are seeking the form of variation in thick-

ness of the plate for which the plate will be most efficient from

the point of view of either stress or displacement. Following

are some examples:

a) In case of a flat plate (membrane solution), we may

want to use a certain volume of material to construct

a plate which will result in minimum in-plane displace-

ment at some edge point, or in a minimum stress at some

point. It might also be desired that due to nonuniform

load, the stress be almost equal everywhere, or the

maximum stress be minimized.

b) In stability analysis, we may want to utilize a constant

amount of material to achieve maximum critical load,

or to minimize the center deflections immediately

after buckling.

c) In the postbuckling range, there is the possibility

of many different forms of optimization. For example,

corresponding to some combination of lateral and edge
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loads within some range, we may wish to maintain an almost

uniform principal stress to prevent local yielding. Also,

it may be desirable to minimize the central deflection.

OPTIMIZATION EXAMPLE 1
 

Consider the square plate of
 

 

   

I. a 4:%

Figure (3.57) with thickness

varying from the edge toward

the center as shown. We __— ____. . x ____ ____

want to find the optimal &

slope (ratio of £5) so that

the critical load under bi- 1——->x

axial compression téI Itc

. t(x)

be maximum for a

Figure 3.57.

constant amount of material.

For a square plate of thickness, t, and sides, a, the total

volume of material used is

?'= a2t-

For a variable thickness plate, if the variation in thick-

ness is linear, the thickness t(x) at point x is

t-t

c e

t(x) te + a/2 x

where

tC = thickness at center
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te = thickness along the edges

I:

Let '52 = RIO Ratio of edge thickness to thickness at

c

center. Then:

_ £15
t(x) - tCERT + (1-RT) a

and the volume is

 

a

- 5. 2x 2x

v 4 f0 (a-Zx)tc(RI+-:r--RT:;9dx

azt

_._ 2 1 + ZRT _ c
v - 4a tCG-jf§- )- 3 (l + ZRT). (i)

If the volume is limited to the original value, then

t —7I;2L__— ; for '3 = azti (ti = unit thickness)

c a (1+2RT)

3t1

t:c a (1+2RT) (11)

To maintain a constant volume, the center thickness must

vary with ratio RT, according to equation (ii).

For example:

 

RI tc/t1 v

2

.l 2.5 a T1

.1. 2 u

2 2

1. 1. "

2 .6 II
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It is evident that as the ratio, RT, and the center thickness,

tc, change, the in-plane and flexural stiffness of the

plate at each node will change.

A subprogram is PrOVidEd to compute center thickness and

stiffness at each node in each trial for a given RT.

The buckling problems were solved for a family of given

ratios, and the variation of critical load with ratio RT,

is shown in Figure (3.58). In this problem the plate is

simply supported along all edges and v = .316.

Graph (3.58 a) indicates that the maximum critical edge

load for a given volume of material occurs with RT : .2._

To find a more accurate value, the trial is continued with

finer intervals between RT = .15 and RT - .25. The larger

scale graph (3.58 b) shows that the maximum

critical load is (N* )cr imun = 25.66, corresponding

n
l

n

m

to RT= = .22. Thus, consider a simply supported square

C

plate under bi-axial compression.

From the stability point of view,the minimum material can

be used if RT O .22 for the linear thickness variation

25.66-19.48

19.48

over the buckling load for a uniform thickness plate of the

introduced in Figure (3.57). An increase of - 31.6%

same volume results.
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11935

i) The result obtained above is not the absolute optimum.

For the given amount of material, a still greater critical

edge force could no doubt be obtained with a thickness

variation other than linear. This form was used for

practical simplicity.

ii) For other types of loading or boundary conditions,

appropriate forms could be proposed and analyzed by

trial.

EXAMPLE 2

The plate in this example is the same as in example 1,

but with clamped edges; results are shown in Figure (3.59) .

In this case, the maximum critical load is found for an RT

of approximately 0.8.

Figure (3.59 b) is obtained by taking finer intervals

(ARTIO .01) between .6 and .8. This graph indicates the maximum

critical load is (Nzr)max. = 473.962, corresponding to RT =.71.

51.20-49.56

49.56

over the plate of uniform thickness. In the case of fixed support,

The results show an increase of = 3.3%

from the stability point of view, it is not worthwhile constructing

-a plate of variable thickness. The effect of variation in thickness

on other aspects of the problem such as internal forces, bending

moments and lateral deflection will be analyzed later in this chapter.
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3.1.5 SUMMARY
 

In Section 3.1 a method was developed for force boundary

condition problems, and the related computer program was applied to

a variable stiffness plate and the results were discussed extensively.

It seems necessary to emphasize that the plates discussed

in Section 3.1.1 through 3.1.3 have uniform thickness with varying

E, so that patterns of membrane and bending stresses follow exactly

the pattern of in-plane forces and bending moments respectively.

Solutions to similar problems are not available in the literature;

however, comparison with the uniform stiffness p1ate,as a special

case, supports the accuracy of the solutions. Convergence

of the solutions with an increasing number of nodes strengthens con-

fidence in the method.

In Section 3.1.4 the weight-saving advantage of a variable

thickness p1ate,from the stability point of view, was demonstrated as

an example. However, one can apply the optimization to any possible

aspects of stress or strain as desired.

Figure (3.60) shows variation of central deflection with load

for all cases. The graphs show that the plates with less stiff

edges undergo larger lateral deflection because,in the postbuckling

range,the main portion of the in-plane load is carried by portions

of the plate near the edges.
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3.2 DISPLACEMENT BOUNDARY CONDITION

In this section, problems with specified in-plane displace—

ments along the boundaries will be considered.

A.computer program hasbeen developed to solve this type of

problem based on the procedure discussed in section 2.3.

Plates with uniform thickness are analyzed, as well as variable

thickness plates. The results are compared with previous works or

exact solutions when they are available. As an example, optimization

of the thickness variation, from the stability point of view, is

also considered.

a - Geometry and Loading4Conditions

For an example, let us take a plate under uniform edge

displacement due to thermal load, and examine the membrane, buckling,

and postbuckling behavior of plates of different thickness variation,

‘with both simply-supported and clamped 'boundaries. Figure (3.61)

shows a plate, surrounded by a

 

 

 

    
 

Li 0 .4

rigid frame that undergoes a r‘ ’T

////////j//Z I "

temperature change of either / /

/ /

expansion or contraction. g a

/ /

The strain in the frame will a 5

M /

impose a state of displace- 5 j

/ /

ment on the plate edges. //////[///[]/ I

The strain in the frame is  
5 = 01,1(AT)

Figure 3.61. Plan
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where aT= coefficient of thermal expansion of the frame and

AT a temperature change.

0313

i) It is assumed that the effects of the reaction forces

of the plate edges are negligible, so that the stresses

created within the frame have negligible effect on the

strain and displacements of the frame.

ii) Because of symmetry, we analyse only a quadrant of

 

 

 

 

the plate.
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29L__211 13 14 15 15

1

1

28i..__12 17- 7 8 9

1

|

27 I 18r—-- 11 6 3 4

l

I

264 17. 1o 5 2 1 _       
Figure 3.62. Node arrangement, square plate, h = a/8

Since, because of symmetry, the centerlines of the

plate will not move, displacements enforced along the

edges will be as follows:

1 - Along edge x - 0, u displacement would be constant

0.

and equal to - ETaAT.



Table 3.10 .

2 — Because of constant strain (in frame),

158

the v-displace-

ment along x-edge will 'be linear with respectto

y, so that v OGTAT(y - g).

The boundary displacements are tabulated in Table

(3.10).

Boundary displacementfbr square plate of Figure 3.62

 

 

Point u/-JamTAT v/- aaTATfi

__7r—_ “3F“

17 1. 0.

18 1. .25

19 l. .5

20 1. .75

21 1. l.

22 .75 l.

23 .5 l.

24 .25 l.

25 0. 1.

Based on the given data,

analysed step-by step in the following pages.

the problem is solved and the results
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3.2.1 MEMBRANE SOLUTION
 

In the solution for in-plane forces and displacements,

assuming zero w-displacement, the in—plane equilibrium equations

can be approximated by finite differences to obtain a set of linear

equations in u and v. (See equation (2.43)).

The equations are solved and in-plane forces and displace-

ments lead us to following conclusions.

a) In case of a uniform thickness plate, the equilibrium

equations (2.16) and (2.17) are linear differential

equations, and in this symmetric case the solution leads

to exact values of membrane stress resultants and dis-

placements, even with very coarse mesh sizes.

The theoretical solution predicts constant strain in both

 
" directions.

-uo -2uo a

.y = O. = .72“ = T <F°r (W i 5)

and the in-plane stress resultants are

  

 

 

 

 

 

-2uo _ 110

N = N a Etz [5 + ve ] = Et [(1+v)(————)] = ZEt --

y X l-V x y 1_v2 a (l-v) a

* 32 -2Eti no 82 (1-V2)12 “ca

3 N —— = __ = _ _—

Nx x Do (l-v) a. ( 3 ) (1+v)(24) t2

E01 1

uoa

or, calling -—§-= UO

‘1
0

Nx

U0 = -24(l+v) *

N

and for v = .316, x = 31.58

C
.
‘

O
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Similarly,

N:
I = -31.58

N = 0

X?

and

a 2nO a

u = u(x) = 8(3 -x) = T (-2- -x)

a 2v0 a

v = v<y1= e13 -y1= 71; -y)

These values agree exactly with the solution obtained with

the computer program listed in Appendix:C. Contours of the membrane

force, N* , the principal stress and U-displacement are shown in Figure

(3.63). N& and v-displacement can be obtained considering symmetry.

   

            

N; = 31.58 o'= 31.53

U0 U0

1. J5 50 25 o

01 051100005 00005.0:2/11o b1 001001001 310550 <1'/Uo c) 0-0150100511501

FIGURE 3-63.CONTOURS OF HEHSRRNE FORCE,PRINCIPRL STRESS,RND U-DISPLRCEHENT

UNOEFLECTED SOURRE PLRTE. RT=I.
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SOLUTION OF PLATES WITH VARIABLE THICKNESS

To observe the behavior of a variable thickness plate,two

different problems were solved. One with RT = .25, and the other had

RT - 2, and the results studied. Parameter RT =

edge thickness

center thickness

is the thickness ratio.

b) Square plate with RT 8 l/4

Figure (3.64) illustrates membrane forces, principal

stresses and in-plane displacements;from the figures, we can

conclude the following.

i)

ii)

iii)

Figure (3.64 a) shows shifting of the load carrying

toward the center where the plate is thicker. The

shifting of the load becomes greater as we move

toward the center, and it is nearly uniform along

the edge.

Although there are larger in-plane stress resultants

in the central region, because the thickness is

large,the stress is smaller. Figure (3.64 b) shows

the principal stress within the plate. It is

observed that the minimum stress exists at the

center and it becomes larger toward the thin edges.

In Figure (3.64 c), the wide-spacing of contours of in-

plane displacement U in the central region, indicates

small strain corresponding to smaller stress in that

region.
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l. .75 .50 .25

C) U-D ISPLRCEHENT

FIGURE 364. CONTOURS OF HEHSRRNE FORCE.PRINCIPRL STRESS.RND U-DISPLRCEHENT

UNDEFLECTED SOURRE PLRTE. RT=I/4

0) Square plate with RT - 2.

The same problem is considered except with

RT . edge thickness

center thickness

are shown in Figure (3.65).

- 2. and the results obtained

following conclusions.

This leads to the

1) Supporting discussion ofthe preceding section, less

load is carried by the thin central region, and as

we move toward the edges, more load is transmitted.

11) Figure (3.65 b)

region.

shows larger stresses in the central

iii) Contours of in-plane displacements are consistent

with part (11% i.e.,larger strain occurs in the central

region,due to larger stresses.

Clearly, the out—of—plane support condition has

no effect on the membrane solution of the plate.
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It should be noted that Figures (3.63), (3.64) and (3.65)

correspond to plates with RT = 1, 1/4 and 2, respectively,

but with thickness such that total material volume is the

same in each case.

   

      
  

//’-_______.——~r—135
IIIFF“‘30

30
35

A 25 , f 40 _
1 . .75 .5 .25

 
 

01 1151100005 F°R°E"‘;/Uo b1 001001001 310530 o'/U° c1 0-0100100511501

FIGURE 3.65.CONTOURS OF HEHSRRNE FORCE.PRINCIPRL STRESS.RNO U-DISPLRCEHENT

UNDEFLECTED SOURRE PLRTE. RT=2.
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3.2.2 BUCKLING SOLUTION
 

As is discussed in Section (3.1), the buckling solution

is based on the eigensolution of the out-of-plane equilibrium

equation (2.40) (h1the right hand side of this equation,the effect

of w on in-plane forces is considered to be zero. Thus, in the matrix

[Bw] of Equation (2.49), the in—plane forces obtained from the

membrane solution of the unbent plate will be used. The eigenproblem  
will be solved, giving the critical edge displacements and the

corresponding buckled mode shapes.

Following-are solutions to some stability problems.

3.2.2.1 Convergence Check and Comparison

In order to check the convergence and consequently the

accuracy of the buckling solution, a uniform thickness plate

(problem 3.2 a) was solved using different mesh sizes. The critical

loads obtained in each solution are shown in Table (3.11) for

s-s boundaries. Also,the values of critical displacements are

compared to exact values.

Convergence of the solution is graphically illustrated in

Figure (3.66) for s-s boundaries.

Table (3.12) and graph (3.67) show the convergence pattern

of critical displacement for the case of boundaries fixed against

out-of—plane displacement.

The convergence tables show that the result obtained using

h 8:- in the simply supported case and h - {12- in the clamped

case are sufficiently accurate for engineering purposes.
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More accurate results can be predicted by extrapolation.

The critical edge displacement obtained from extrapolation of the

last 3 lines has an accuracy of £H)0016 in the simply-supported

case and .0013 in case of clamped edges, compared to exact results.

Table 3.11 .

using different mesh sizes.

Critical displacements for a simply-supported plate

Uniform stiffness plate.

 

 

     
 

 

  

v = .316.

Mesh size Present solution Exact(1) Difference Two point 3 point

(h/a) Uo % extrap- extrap-

ér olation olation

1- 5935 54 .

.6248

§ .61698 1.2 .624972

.62497 .62495

1

"1‘2— “62141 5 .62498

.624975

1

16' .62297 .3

ID

0

61

. . . . Exact

O

(D

o.‘
//_——‘

1:

3
O"

8

“0.00 4100 0100 12.00 {0.00 a/h

Figure 3.66. Convergence of buckling solution.
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Table 3. 12 . Critical displacements for a clamped square plate

using different mesh sizes. Uniform stiffness. v = .316.

Mesh size Present Solution Exact (1) Difference 2 point 3 point

(h/a) Ufi Z extrap- extrap-

r 'olation olation

% 1.34062 19.2

1.6456

.1.
8 1.56939 5.4 1.65620

1.6593 1.6550

If 1.61697 2.5 1.65709

1.6566

1. 1.6343 1.5

16

2

£1

Exact

ID

"3.

2

3

ID

‘3 .
Ob.oo 4100 0100 12.00 10.00 a/11

Figure 3.67. Convergence of buckling solution.

(1)The exact value of critical displacement is derived on page 167.
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Since it is assumed that the plate is perfectly flat before

buckling, the in-plane displacements are linear within the entire

plate (constant strain), and the membrane forces will be the same at

all points. Thus, critical displacements can be related to edge

forces as

along x-edges

1

ex Et [Nx - vNy]

but in this case

 

-u

cr _ g

(Ex)cr a/2 ’ and Nx - Ny Ncr

therefore

-a

ucr 2Et [l-VJNcr

202Dr

For s-s square plate under bi-axial compression Ncr O --§—-.

a

[see Table 3.8]

Thus

u :3 l2 D— (l-v) = fl..— .

or a Et 12a(l+v) ’

u a__= .822467 .

or t2 1+V

.822467

Uo = -I:;- or for v 8 .316, UO = .62497

or cr

02Dr

similarly, considering Ncr = 5.31 2 for clamped boundaries

a

[see Table 3.9 ],the critical edge displacement is

Uo = 1.6593 for v = .316

cr  



"I“.
l
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EXAMPLE 1

Tofurther check the accuracy of the method, the solution

to problem (9.13) of Reference (44 ) is examined. In this example,

along the edges x = 0, and x = a, the

 

u-displacement is prevented. In the

y-direction, constant strain, 5,

is assumed. Therefore, v = 5(3 - y) and

assuming that centerlines of the plate

coincide with axes of symmetry

during deformation, (5 a 353-. /

--_-—————— 
 

 No u-displacement is

Y

allowed alon ed es = 0,

g g y Figure 3.68. Plan

and y = a, and with regard

to out of plane displacements, all edges are taken as simply supported.

The boundary data.are tabulated below. For the node arrange-

ment, see Figure ( 3.62).

 

Node u v w

17 0 0 0

l8 0 .25vo 0

l9 0 .5 v0 0

20 0 .375vo 0

21 0 v0 0

22 0 v0 0

23 0 v0 0

24 0 v 0

25 0 v 0
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Using the data for input, the buckling solution was obtained.

The critical uniaxial edge displacement was found to be

2

v0 = 1.23033 Ea— .

cr

This is to be compared to Timoshenko's results (44), obtained by

au1 energy method. Remember that he was taking the total edge strain to be

2v

ey, while in our case the compressive strain e = ——9
9

er a
2

e . 2v = 2.46066 L.
cr __.°cr 2

a a 2

1 _ h

Timoshenko found ecr - .632 —a—2 but he used a plate

 
of sides 2a=§'and thickness h. By substituting t. for h, and

-' 2 2

éfora in Timoshenko's result it becomes e = .632 h— - .632 t—-—-— O

2 2 cr 2 - 2

1:
«'8 (a/2)

2'528::2 . The results differ by 2.6%, fairly close

a

for such a coarse mesh size (h = 3).

3.2.2.2 Optimization Analysis

Using the same data as in problem 3.2.a, and solving for

the eigenvalues, two series of solutions are obtained for simply-

supported and for fixed out-of—plane boundary conditions—considering

different thickness variations. The variation in thickness is

taken to be linear, as in Section 3.1.4. The variation in thickness

is to be optimized in order to give the greatest edge displacement

at buckling for a given volume of material.

In the case of the simply-supported edge, Figure (3.69 a)

shows that the optimum variation corresponds to

a edge thickness

center thickness

 

RT = .15, with an increase in buckling displacement
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Figure 3.69. Variation of critical displacement versus RT.
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Figure 3.70. Variation of critical displacement versus RT.

 

 



172

of '8119igiiél6 = 33% with respect to uniform thickness plate

of the same volume.

 

Figure (3.69 b) illustrates the variation of critical displace-

ment with respect to thickness variation for a clamped square plate.

The maximum critical displacement can be achieved if the edge thickness

1.589-1.569

1.569

over the critical edge displacement for the plate of uniform thickness.

is .85 times the center thickness with an increase of a 1.2%

To check the buckling behavior of the plate, within a wider

range of variation in thickness, the critical displacement for

different RT values up to 20 is obtained and plotted in Figure (3J0 );

the plot shows a decrease in critical displacement all the way up

‘to RT = 20,

Note: Examination of mode shapes shows that as the center of the

plate gets thinner, beyond some point, the buckling mode associated

with the lowest critical displacement is not a single concave shape. The

1buckling mode corresponding to the lowest eigenvalue for a clamped plate

with RT > 2.2 consists of more than one buckled wave. These results are

not shown in this thesis.

3.2.2.3 Analysis of Buckling_Modes

In this section, the shape of buckling modes will be reviewed

and compared with the exact shape in those cases where the exact

solutionsare available.

Up to this point, all solutions were based on the assumption

of symmetry about both axes of the plate. Thus, only a quarter of the

plate was considered.  
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Therefore, the nonsymmetric modes are missing. To obtain

all modes of buckling, a solution is obtained by considering every

node as an independent degree of freedom, from the out-of—plane displace-

ment point of view, while symmetry and anti-symmetry in u and v

are assumed, as before. Solution for the simply-supported plate

of uniform thickness shows the first mode shape to consist of half-sine

waves in both directions, and the second mode to consist of two

half-sine waves in one direction and one in the perpendicular direction.

The first few mode shapes for the simply-supported plate

are shown in Figure (3.71) and for clamped edges in Figure (3.72) .
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Figure 3.71. Buckling modes of simply supported square plate, RT= 1.
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Figure 3.72. Buckling modes of clamped square plate, RT = 1.
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3.2.3 POSTBUCKLING
 

In this section, a study is made of the postbuckling behavior

of uniform and variable thickness plates under uniform bi—axial edge

displacement compressed beyond the critical displacement. Convergence

of the solution is examined by solving the problem with different

mesh sizes. Variation of in-plane forces as well as in-plane displace—

ments is also studied.

3.2.3.1 Uniform Thickness Plate, s-s Boundaries
 

A simply-supported uniform thickness plate is compressed

beyond the critical displacement. and the solution is obtained.

Following are some results from the solution.

a) anvergence of the solution
 

The problem is solved,successively taking

h/a = 1/4, 1/8, 1/12 and 1/16, and the results

are compared. Table (3.E3) shows the central deflection

of the plate due to edge displacements of 1.26 E;—, which

is almost two times the critical displacement.



Table 3.13 .

176

Convergence of postbuckling solution with mesh size

 

 

Mesh size lfl-center Difference Z Extrapolation N:-center Mgécenter

(h/a)

%- .96795 -118.99 100.80

9.7 .853016

%- .88175 -130.17 98.55

1.5 .8643366

%5- .86869 -132.98 98.27

.1 .8701166

%g" .86976 -136.74 98.88      
 

Review of Table (3.13 ) indicates that the solution obtained

by only 8 x 8 nodes is satisfactorily close to the converged solution,

keeping in mind that the accuracy of the iterative solution is set

to be one percent.

is small.

Figure 3.73.

O
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The results can be improved by extrapolation.
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The difference for mesh sizes finer than 8 x 8

Convergence of center-deflection, s-s square plate.

(U = 2 U
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r)
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Stress Analysis

The distribution of the membrane forces will change

as the lateral deflection becomes larger.

Also,the bending moments will vary with variation of the

deflected shape of the plate.

Graphs of IFigures (3.74 a) and (3.74 b) show the variation of

center-line membrane forces and bending moments as the

edge compression varies. Study of these graphs leads

to the following conclusions.

i) As the center of the plate deflects transversely,

ii)

iii)

iv)

the in—plane load shifts with more of the load

being carried by the portion of the plate near the

edges.

The bending moment, which is maximum at the center,

is increasing with the increase in deflection w.

Along the centerline parallel to x, the membrane

force Ny is increasing toward the edge, while Nx

is almost constant.

Bending moments Mx and My both are maximum

at the center and dimimish to zero along the edges,

as expected.

Infplane displacements
 

The distribution of in-plane displacements in the plate

is shown in Figure.(3. 75) at different stages of loading.



179

Analysis of these leads to the following conclusions:

1) Before buckling, the plate is perfectly flat.

Since there is no w effect, in-plane displacements

are linear, as expected.

ii) After buckling, the plate will undergo more contraction

near the edges and the central region carries less

compressive load; less inrplane displacement

occurs there.

iii) As the load increases this phenomenon becomes more

visible, so that at large edge displacements, the

curves show very little u and v displacement

in the central regions.

  
 

 

             
 

.625 .468 .312 .156 0 J5 50 .25 .1. 0 1.5 1. .5 .25 0

a) Undeflected (U/Ucr=1'0) b) Buckled (u/Ucr=1'20) c) Buckled (U/Ucr=2.40)

Figure 3.75. In-plane displacement (U = ua/ti), square plate,

simply-supported, RT = 1.
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d) simply—supported, square_plate, loaded by uniform

normal pressure
 

To check the reliability of the method by comparing with

previous results, a problem similar to one presented by

Levy is considered. In Reference (29), Levy has solved

a square plate under a uniform normal pressure, with zero

in-plane displacement along the edges. iLevy applies the large

deflection equations and uses the series expansion method.

In this section, a solution is obtained for the same

problem to compare with Levy's. The plot of (3.76 )

shows the variation of w with lateral load as deter-

mined by Levy and by the difference method.

 

  

c:

C)

‘¢_

Present result

c:

c3

c6“ A Levy's result

:3

c:

2.3“,-

c:

c?

c:

c?
I

°0.00 10.00 20.020 30.00 70.00

x10

4

_£Ei__

D t

o 1

Figure 3.76. Square plate under uniform lateral load;no in-plane

displacements on boundary;v = .316.
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3.2.3.2 Simply Supported Square Plate of Variable Thickness

To study the variable thickness plate, a solution was obtained

edge thickness

center thickness

 

for two different cases. In the first, RT = = %3

for which the membrane stiffness at the edge is l-that at the center,
4

while the flexural stiffness at the edge is %z-of the center stiffness.

In the second, RT - 2, with the edge flexural stiffness being-g-of

the central stiffness. These two opposite variations are chosen

so that the results, along with those for the uniform thickness

plate, would give an idea about the effects of variation in thick-

ness.‘ The discussion follows.

Figure (3.77 ) shows the central deflection of the

plate with variable thickness and also the result for a uniform

thickness plate. Comparison of the three plots leads to the conclusion

that, corresponding to the same edge compression, less deflection

occurs in the plate with RT 8 %-and the plate with RT - 2 under-

goes larger deflection. It should be noted that all these plates

contain the same volume.

This behavior is expected because, in a simply-supported

plate, more bending is occurring in the central region. Thus, plates

with thicker central region will experience less deflection and

plates with thin central regions are more likely to have greater

curvature and deflect large amounts.
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Figure 3.77. Central deflection versus edge displacement for different

a)

b)

RT values, simply supported square plate.

Solution Procedure

In (3.2.3.1 a) it was shown that a grid spacing of

h =‘%g-will be accurate enough for engineering design

use. Both problems were solved with a grid spacing

of h =-%g- in determining the results plotted.

Stress Analysis

Distribution of in-plane forces, bending moments and

principal stress,along axes of the plate, are shown

1
in Figure (3.78 ) for RT = 2"

The Graph of Nx and Ny shows a decrease in membrane

forces with an increase in edge displacement in the central
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region, while in a region close to the edge, Ny is large.

As discussed before, the central region will carry less

load because of the transverse deflection and the load

will be shifted toward edges.

The moments are maximum at the center and vanish at

the edge, but fairly large moments occur at almost

halfway from center to edges. This is due to the relatively

larger thickness at center. Because most of the bending will

occur in the outer region, creating large curvature and

resulting in large moments.

Since we are concerned with the state of stress within

the plate and not necessarily membrane force or bending

moments individually, in Figure (3.78c) , the variation

of principal stress along the axis of plate is plotted

The curve shows maximum stress occuring approximately at a

point x =-%- on this axis. It should be noted that this

stress is also the absolute maximum for the entire plate.

Figure (3.79 ) show the same variables for a plate

with RT = 2.

In this case. because of the thicker edge region, beyond

buckling, the membrane load is sharply shifted toward

the edges.
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The bending moments have a completely different pattern

than for the case RT =-%, because the more flexible

central region results in maximum curvature and maximum

moments in this central region. Also, because of smaller

thickness and smaller flexural rigidity, the maximum

principal stress is always at the center point. In

Figure (3.80 )shows the variation of the maximum principal

stress with postbuckling edge compression for the

different variation in thickness. It can

be seen that the least stress occurs for the uniform

thickness p1ate,and the plate with RT a-l- is subject to
4

largest stress at points away from center.

c)Ineplane Displacements
 

Contours of the in-plane displacement u, in Figure (3.81 )

for RT 8 %-, and Figure (3.82 ) for RT - 2., show

a decreasing displacement in the central region due to

w deflection and corresponding decrease in membrane

forces. In the case of RT- %, we observe very small

displacements in the central region, while the more

closely-spaced contours in the vicinity of the edge

indicate very large strain in this region.

Comparison with the uniform thickness plate shows it

to be between these two variations, as expected.
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Figure 3.81. In-plane displacement (U=ua/t:), square plate, simply-supported,
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a) Undeflected (U/Ucr= 1.) b) Buckled (U/Ucr-l.30) c) Buckled (UfUcr-l.85)

Figure 3.82. In-plane displacement (U - ua/ti), square plate, simply-

supported, RT = 2.
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3.2.3.3 Uniform Thickness Plate, Clamped Boundaries

The problem studied in 3.2.3.1 was solved with clamped

boundaries, and the results of the solution are as follows.

a) Convergence of the solution.

Table<314) presents results for different mesh sizes corresponding

to a boundary displacement of (£1259 = 1.93 times the
 

critical displacement.)

Table 3.14. Convergence of postbuckling solution with grid spacing:
 

 

 

311.13.21.13 w-center Difference Extrapolation 111 -center H -center

hla % x x

%. 1,9657 , 314.73 295.45

34.4 1.295366

-% 1.4632 _ 277.99 263.23

4.6 1.376613

-%5 1.39826 289.56 262.96

2.2 1.357113

'%5 1.3674 285.00 260.576     
 

Considering that the accuracy test of the iterative solution

was set at 12 in successive trials, the convergence as illustrated

in graph (3. 83) is good.

Plot of central deflection with edge compression is shown

in Figure (3.84).
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b) Stress Analysis
 

Distribution of membrane forces, bending moments, and

principal stress along the axis of the plate, are plotted

in Figure (3. 85). These figures show:

i)

ii)

iii)

Larger membrane force occurs at the edge and the

central membrane forces decrease with an increase

in postbuckling edge compression.

Bending moment, Mx’ is positive at the center and

along the edge it is negative with an absolute

value larger than the central moment for the larger

deflection.

Principal stress is almost equal at center and edge

in the early postbuckling stage, increasing on the

edge with larger deflection.

c) Ineplane Displacements
 

Contours of in-plane displacement, u, shown in Figure

(3.86 ) indicate the following.

i)

ii)

iii)

Before buckling, in the flat plate, in-plane dis-

placements are linear everywhere as expected.

Immediately after buckling, as the deflection starts to

increase, the u-displacement tends to decrease in the

central region.

The pattern of displacement is qualitatively similar

to that for the simply supported case.
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edges, RT - l.
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3.2.3.4 Clamped Plate with Variable Thickness

Again,the plates discussed in Section 3.2.3.2 (RT = 21;, and

RT = 2)are solved with clamped boundaries along all edges.

For comparison,the variation of w with edge compression

is plotted in.Figure 3.84 for plates with RT =-l- and RT = 2,
4

along with uniform thickness plate.

It can be seen that in the case of the clamped plate, due to

edge displacement appreciably greater than critical displacement,

the plate with RT =-% undergoes less deflection than either of the

plates with RT = l and RT = 2. This is similar to the case of

simple support, but in the early stages of postbuckling, the plate

with RT = 1 has the smaller lateral displacement.
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a) Stress Analysis
 

Figure €3.87) illustrates the distribution of membrane

forces, bending moments, and principal stresses for' the

1

plate with RT = 2:. Analysis leads to the following

conclusions:

1)

ii)

iii)

iv)

While the membrane forces are decreasing with in-

crease in edge displacement at the center, these forces

increase sharply on the edges.

Bending moments are maximum.at the center, and the

negative moments along the edge are small because

of small flexural rigidity.

Principal stress is maximum on the edge and in-

creases with an increase in edge displacement.

Maximum principal stress occurs at the center of

the edge.

Study of membrane forces, bending moments, and principal

stresses for' the plate with RT = 2, in Figure (3.88), results

in the following observations.

1) Ny decreases in the central region as the edge

displacement increases,while it increases sharply

near the edge.

ii) Nx also decreases at the center and decreases along

the edge.
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iii) Bending moments increase in magnitude at the

center and edges as the edge displacement increases,

as expected. The negative moments at the edges are

much larger, because the flexural rigidity is larger there.

iv) The graph of the principal stress shows an increase everywhere

as the edge displacement increases,but it is alwaysaa

maximum at the center of the plate.

v) Figure (3. 89) shows the variation of maximum

principal stress with edge compression, u , for the

three different RT values and for plates of constant

volume.

It can be seen that the plate with RT = %—

always undergoes larger stress. Although the

uniform thickness plate is less highly stressed

than the case RT = 2 for smaller edge displacements,

in the higher range of edge compression it is more highly

stressed than the plate with RT = 2.

NOte: It should be noted thatfor RT = l, and RT =~£,

the maximum.principa1 stress is located at the center of the

edge while for case of RT = 2, the location is .at the center

of the plate.
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b) Ineplane Displacements

Contours of in-plane displacement, U, are plotted in

Figure (3.90 ) for plate with RT = %-, and in Figure

(3.91 ) for plate of RT = 2. These contours show the

following:

1) Before buckling, the contours are exactly the same as

those for simple support, because in the undeflected

position the out-of—plane boundary condition has no

effect on the solution.

ii) After buckling, as usual, the in-plane displacement

in the central region is smaller compared to undeflected

case (i.e.,the contours are expanding at the center

and compacted contours are located away from center

toward the edge depending on the RT values.)

iii) In the case RT = %- closer contours are located

in the vicinity of the edge, while for the plate

RT = 2, because of stiff edges these concentrated

contours are seen to be close to the center.

iv) The behavior of the uniform thickness plate falls between

the cases RT =-%- and RT = 2.
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Figure 3.90. In-plane displacement (U = ua/ti), square plate, clamped,

 
 

 

  
 

             

RT = 1/4.
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a) Undeflected (Uflucfll') b) Buckled (UflJcr-l.25) c) Buckled (UYUcr-2.15)

Figure 3.91. In-plane displacement (U - ua/ti), square plate, clamped,

RT = 2.
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3.3 COMPARISON OF TWO METHODS
 

In order to compare results from the two methods discussed-

formulation in terms of the stress function or in terms of displacements-

two problems are solved by both methods and compared. Their results

can also be used as a measure of the accuracy of either of the methods.

a) Simply Supported
 

i) A simply-supported uniform stiffness plate, with

ii)

iii)

no restraint on in-plane boundary displacement and

loaded beyond the critical load was solved using the method

discussed in Section (2.2) (in terms of m and w).

The solution includes in-plane displacements, u

and v, on the boundary.

The problem is solved using the method of Section (2.3)

(in terms of three displacements, u, v and w),

by applying ‘the boundary displacements obtained in (i)

as boundary conditions.

If both methods are correct, we expect (1) and

(ii) to result in the same solutions, and.they did

turn out to be very close. The central deflection (w/t)

is .9613 in (i) and .9736 in (ii), witha difference

of 1.3% . This is very good agreement. Other

components of stress and displacement are also

very close.



b)
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Clamped Edges
 

A uniform stiffness plate with clamped boundaries was

also examined in the same way as discussed in part (a).

The central deflection (w/t) was found to be 1.67121,

using the method of Section 2.2 (i.e.,formulation in

terms of stress function). It was 1.68578 using the formulation

in terms of displacements, with a difference of only .82.

The results are considered to be very good.



CHAPTER IV

CONCLUSION

4.1 THE PROBLEM SUMMARY

In the preceding chapters, the behavior of variable stiffness

plates was studied in the prebuckling and postbuckling range. In-

stability criteria were also examined. The work used the ordinary

finite difference technique. No results for similar variable stiffness

plates are available in the literature to confirm the validity of the

solutions. However, a uniform stiffness plate was included in each

case to serve as a control problem, and the results obtained by the

difference method were compared with those of analytical solutions

and other published results.-

Since the main purpose of varying stiffness is to optimize

the plate with respect to some design variables, some optimization

examples were presented in the buckling analyses.

In order to provide a better perspective on the change in

behavior of plates due to stiffness variation, the different problems

considered were assumed to contain a constant mean stiffness

or a constant amount of material (see Section 3.1.4). Two different

approaches were discussed:

1 Formulating in terms of stress function, Q, and the lateral

deflection, w.

204
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2. Formulating in terms of three displacement components,

u, v and w.

First the applicable difference operators were worked out; then

the solution procedures were presented in detail. Finally, an

increasing number of nodes were used to check the convergence of

the solutions and also to provide guidance in selecting an

appropriate mesh size to obtain the desired accuracy.

The behavior of different stress and displacement components

was illustrated in suitable graphs and the results were analyzed.

In Section (3.1.1), uniform thickness plates with different

variations in E were considered,and the behavior of in-plane forces

and displacements was analyzed in Section (3.1.1.1). The buckling

of those plates was considered in Section (3.1.2.1) and the effect of

variation in stiffness on stability criteria was discussed in Section

(3.1.2.2),In Section (3.1.3), postbuckling behavior of those plates

‘was examined and the results were analyzed in Section (3.1.3.3).

Sections (3.1.4) and (3.2.2.2) deal with optimization of

variation in thickness from the stability point of view. The remainder

of Section 3.2. shows the effect of variation in thickness (with

constant E) on displacement, forces and moments as well as buckling

behavior.
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4.2 CONCLUSION
 

The comparison of problems solved in Section 3.1 (with free

in-plane movement on the boundaries) with those of Section 3.2

(restricted in-plane displacement on the boundaries), shows the

great effect of in-plane boundary restraints in the postbuckling state.

Study of figures (3.60), (3.77) and (3.84), leads to

the conclusion that the behavior of central deflection due to vari-

ation in stiffness is not only dependent on the out of plane boundary

conditions but also greatly affected by in-plane boundary conditions.

Figures (3.60), (3.77) and (3.84) show that the trend of

central deflection of plates with different variation in stiffness

is not the same for all postbuckling ranges. For example, in Figure

(3.77), we observe that corresponding to the same load, a simply

supported plate with RT = l undergoes larger deflection than a plate

with RT =-% . Study of Figure (3.84) shows that the same plates

with clamped boundaries exhibit different behavior. (Although, for highly

compressed edges, less deflection is observed for the plate with

RT = %3 when the edge compression is only slightly above critical

displacement, the larger deflection corresponds to plate with RT = %).

The method and corresponding computer program utilized for

force boundary condition (Section 2.2) has been shown to give more

accurate results than that developed for the displacement boundary

condition (Section 2.3). This is due to the difference in the order of

derivatives involved in the formulation. In the force boundary

condition formulation, only second and higher order derivatives

of the two functions, m and w, are involved in the equilibrium and
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compatibility equations (equation (2.14) and (2.15). The displace-

ment formulation, however, involves first and higher order derivatives

of the three functions, u, v, and w. Hence accumulative errors

could be expectedfiln difference approximation equations (2.19), the first

error term in the first order derivative includes the third derivative

of the function, and the error term in the second derivative includes

the fourth derivative of the function, etc).

Investigation of convergence indicates that for engineering

purposes, grid spacings for h =-% in the force formulation (see

Figure 3.39) and h =-%§ in the displacement formulation (see Table

3.13) are reasonably accurate; more accurate results can be obtained

by using finer grids and applying Richardson's extrapolation to the

results. Comparison of the results with known values supports the

reliability of the solutions.
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4.3 RECOMMENDATIONS

The objective of this work was to examine application of the

two formulations in general, and to investigate the behavior of plates

with different boundary conditions and stiffness variations. Re-

finements and extensions of the method which are possible and de-

sirable include:

1. Application of improved difference methods involving

more accurate approximations to the derivatives.

Inclusion of more nonlinear terms in the strain components

and a study of their effect on the results.

The difference operators can be revised to make them

applicable to orthotropic plates, and the computer

program improved so that it can be applicable to orthotropic

and nonhomogeneous materials.

Due to the absence of experimental sources to guarantee

the accuracy and practicability of the results,and re-

cognizing the advantages in the use of variable stiffness

plates, an experimental study of such plates from the

stability point of view and in the postbuckling range

should be very useful.

The computer programs developed here were mainly aimed

to solve particular problems. Although they are

more general than needed for the problems solved here,for

applications to loading and geometry different from the

ones presented here, the programs should be used with

caution and appropriate changes made. Also, the efficiency

of the programs can be improved.
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Application of other methods such as the finite element

method using:

a) Elements with variable stiffness within the element.

b) Constant stiffness within an element but variation

of stiffness from element to element,

The boundary integral method might also be considered.

Consideration of the same cases and comparing numerical

results, convergence, computer cost, etc., would be of

interest.
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The plan and node arrangement on the portion of plate considered

in each case is shown. It should be noted that the second rows of

exterior nodes are auxiliary nodes for defining the K vector at edge

nodes only, and those nodes do not: participate in any calculations. Thus,

'tlie node number for them could be any number or repetition of previous

Ones.
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APPENDIX C

COMPUTER PROGRAMS

C.l DESCRIPTION OF THE PROGRAMS

A listing of the computer programs is presented in this

appendix. In the following a brief description of the main programs

and subroutines is given.

There are two programs, PLATE 1 and PLATE 2, corresponding

to Sections 3.1 and 3.2, respectively. Program PLATE 1 consists

of a main program and seven subroutines. Main programs direct the

flow of the computations by calling the appropriate subroutines,

in addition to reading data and performing minor calculations.

The subroutine FEOPRT computes values of the operator for the compat—

ibility equation (2.30) as well as the contribution of each node

considering the node number and the boundary condition. The sub-

routine AMATRX forms the coefficient matrix [A] by adding the

contribution of nodes. It also forms the vector {B}, the right-

hand side of compatibility equation (2.15). Formation of the operator

for the right-hand side of equilibrium equation (2.22) is accomplished

by subroutine WOPRT. The subroutine BWMAT forms the right-hand side

of equilibrium equation (2.22) as matrix [Bw]. The subroutine

AXLOAD is provided to calculate stress components and the subroutine

I
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DISPLMT computes in-plane displacements. Subroutine WRITE controls

the arrangement of the large matrices in the write-outs.

Program PLATE 2 consists of a main program and subroutines

AMATRX, WOPRT and WRITE, in addition to six other subroutines as

follows:

The subroutine UVOPRT computes numerical values for the u and v

operators in equations (2.36) and (2.38). The subroutine AUVMAT

forms the coefficient matrices [Aul], [Au2], [Avl] and [Av2]

which are assembled as in equation (2.43) by subroutine ASSMBL.

In subroutine WFUNCT, the derivatives of w are calculated and vectors

[Buvl] and [Buv2], the right-hand side of equation (2.9), are

formed. The subroutine KKVECT stores a nine node operator based

on a 13-node operator and subroutine RSHW is designed to compute

the vector {Bw} , the right-hand side of the equilibrium equation

in the z-direction. The subroutine BWBUCKL forms the right-hand side

of equation (2.24) for the eigensolution.
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C.2 VARIABLES USED IN THE PROGRAMS

The variable names used in the Programs are defined below

in the order they appear in the Program:

PROGRAM PLATE 1
 

NSOLN Number of problems solved in one run;

ITYPE Variable controlling solution type. If EQ. 1,

membrane solution only. If EQ. 2, solve also

the eigenvalue problem. If EQ. 3, postbuckling

solution (skip eigensolution). If EQ. 4,

solve all steps;

RATIOl R or RT values (stiffness or thickness ratios);

RINCR R or RT increment for optimization;

Ll Number of trials for optimization;

N Number of real nOdes;

NPR Number of interior nodes;

NOUT Number of imaginary exterior nodes;

NA Number of intermediate nodes;

POS Poisson's ratio;

H Grid spacing;

E Modulus of elasticity;

T Reference thickness;

DF(I) Degree of freedom. If EQ. 1, interior node.

If EQ. 0, boundary node.

node.

If EQ. -l, exterior
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IBC(I) Variable defining the out-of-plane boundary

condition. If EQ. 1, clamped. If EQ. 2,

simply supported;

NSYM(I) Variable defining in-plane displacement symmetry.

If EQ. 1, node of antisymmetry for u. If

EQ. 2, pole of antisymmetry for v. If EQ.3,

pole of antisymmetry for both u and v. If

EQ. 4, node of diagon of symmetry (u ).= v

south west

If EQ. 5, u-displacement zero (on boundary)

 

If EQ. 6, v = 0. (on boundary);

K

DEL(I)==%f— t E;-= Membrane stiffness ratio;

1 i

DELA(I) = Membrane stiffness ratio for intermediate nodes;

FEE(I) = The difference between stress function at

exterior nodes, and first interior nodes (i.e.

in Figure (Cl), $9 + (FEE)

218 ' 18‘

LP(I) = Interior node corresponding to each exterior

node in Figure Cl, node 9 is LP(18);

 

 

 

 

       
Figure Cl. Node numbers.



K(I,J)

TC

RK

DR

FE(I)

A(I,J)

AW(I,J)

BW(I,J)

B(I)

PA(I,J)

EIGVAL(I)

NTRY

228

= Vector defining the nodes participating in

operators at each node, ordering from top node

downward and rightward as shown on Figure C2;

1
 

 

 

10 ll 12
 

13
      

Figure C2. Arrangement of vector K.

= Central thickness (calculated);

a Reference membrane stiffness;

= Reference flexural stiffness;

3 Stress function Q;

= Coefficient matrix for compatibility equation;

= Coefficient matrix for left hand side of

equilibrium equation;

= Coefficient matrix for right hand side of

equilibrium equation;

= Vector in right hand side of compatibility

equation;

3 Auxiliary matrix;

a Eigenvalues (output);

= Number of loading steps required in iterative

procedure;



NITR

FORC

FORICR

DIF = s

Q(I) =

QINCR(I) = AQ

SUBROUTINE FEOPRT
 

R(I)

m.» =

SUBROUTINE AXLOAD
 

XN =

YN =

SIGMAX

SIGMAY

SIGMANX

SIGMANY =

PRSTRES

SUBROUTINE DISPLMT
 

U(I). V(I)

229

Max. number of iterations allowed;

In-plane load N per unit width;

Load increment, AN;

Tolerance of convergence check;

Nodal lateral load vector;

= Lateral load increment;

Operator for compatibility equation;

Matrix defining contribution of each node based

on the position of the node;

Nx/N = Force ratio in x-direction;

Ny/N = Force ratio in y-direction;

ny/N = In-plane shear force ratio;

Mi = Bending moment in x-direction;

M? = Bending moment in y-direction;

Mky = Twisting moment;

Bending stress at extreme fibers in x-direction;

Bending stress at extreme fibers in y-direction;

In-plane stress in x-direction;

In-plane stress in y-direction;

Mbhr's circle radius

Maximum principal stress, ignoring transverse

shears;

In-plane displacements;

 



PROGRAM PLATE 2
 

AUl(I,J); AVl(I,J)

AU2(I,J); AV2(I,J)

AUV(I,J)

BUV(I)

UINCR

VINCR

31(1); B2(I)

SUBROUTINE UVOPRT
 

RU1(I,J); RV1(I,J)

RU2(I,J); RV2(I,J)

DU(I,J); DV(I,J)

SUBROUTINE AUVMAT
 

KK(I,J)

230

Sub-matrices representing contributions

of u and v in x-equilibrium equation;

Sub-matrices representing contributions

of u and v in y-equilibrium equation;

Coefficient matrix obtained by assembling

[Avl], [AVI], [AUZJ and CAVZ];

Right hand side of in-plane equilibrium

equations;

Increment of edge-displacement u;

Increment of edge-displacement v;

Sub-matrices on the right-hand side of

in-plane equilibrium equations;

Operators representing u and v con-

tributions in x-equilibrium equation;

Operators representing u and v con-

tributions in y-equilibrium equation;

Contributions of u and v at each

node considering node number, symmetry

and boundary conditions;

Vector containing nodes contributing to

operators of u and v contribution as

shown on Figure C3;
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1 2 3

4 5 6

7 9  
Figure C3. Arrangement of nodes in vector KK.

SUBROUTINE WFUNCT
 

BWl(I), BW2(I) = Contributions of w on the right-hand

side of x and y-equilibrium equations,

respectively;
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C.3 COMPUTER PROGRAM

PROGRAM PLATE1(INPUTQOUTPUToTAPE5=INPUTQTAPE6=OUTPUT1

not...onotoooeoeoeeoootteooococoooooooooeooootoooooe«cocoa...

THIS PROGRAM USES FINITE DIFFERENCE TO ANALYZE PRE-OUCKLING

BUCKLING AND POSTOUCKLING OF VARIABLE STIFFNESS PLATES.

SUITABLE FOR FORCE BOUNDARY CONDITIONS (NO RESTRICTION ON

DISPLACEMENTS ALONG THE BOUNDARIES}.

itii...tfitfifiittttfififitiiit...OOQOQQtDIOQQQQOOOOOQOIQGI’QQQQQOOI

a
n
n
n
n
n
n
a

DIMENSION UKAREACSO)9ALFR(50)0ALFI(50)OBETA(50)oITER(50)

DIMENSION EIGVAL(SO).Z(50950)9 LP(65190(50)0PB(50)9PA(50.50)

DIMENSION P81(50)9ABU(50050)9 BU1(501001(501093(50050)

DIMENSION FElCGS). FESCSOOTS)OFEE(65)9U1(65)

COMMON/ll POSOBBOCC'HONONPRODROTORK

CO"H0~/2/K(13950)’MH(905°)QDEL(60,0DELA‘SD’ONSYH‘SO)

COMMON/3/OF!75)QO(13913).IBC(60)9R(1319FE(75)

COMMON/A/A(50950)98(50)

COMMON/SIAU(50950)QBU(50950 )9RH(13)oOELTCéO)oDELTA(50)QH(65)

INTEGER AMoOF

II

c........READ INPUT DATA.

fl

READ (59') NSOLN

DO 99 JJ=10NSOLN

READ (59*) ITYP

READCSoI) RATIOIQRINCRQLI

READCSQI) NQNPRQNOUTQNAQPOSQH'EOT

NT=NONOUT

NPl=N01

NP2=NPR01

REAOCSQ')(DF(I)9I=10NT)

READ (50*) (IBC(J)9J=NP20N)

REAO(59*) (NSYM(I)0I=19N)

REAO(500)(OEL(J)9J=19N)

READC59*)(OELA(I)0I=10NA)

READCSQ‘) (FEE(I’QI3NP29NT)

READ(59" (LP(I)9I=NP10NT)

DO 300 L=N929NT

FE(L)=FEE(L)

300 CONTINUE

BB=loOPOS

CC=1.-POS

DO 401 I310N

OELTCI)=1./OEL(I)

001 CONTINUE

DO 402 J=loNA

DELTACJ)=lo/DELA(J’

902 CONTINUE

URITECGQSOI)

URITE(69502)

URITEC69503) NoNPRoNOUToNAoPOSoHQDRoT

HRITEC69504)

URITEC60505)(DF(I’OI319NT)

URITEC69511)

DO 3 I=loN

READCSQQ) LQCKCJQI’9J=1913’Q(AM(JQI)QJ=1Q4)

URITECéQA) IQCKCJoIioJ=loISDQ(AM(J9I)9J=100)

3 CONTINUE

DO 999 LL=19L1

RK=EtT

DR=EOTfifi3I(120'BB'CC)
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URITE(60506)

URITEC60507) (DEL(J).J=1.N)

URITE¢69508)

URITE‘60507) (DELA(J’OJ310NA’

URITEC69998) LLORATIOQRKODROT

998 FORMAT(I///.0TRIAL NO '.I$.* R=toF5.3.* ET CENTER=*.F8.3* D CENT

SER=*QF8.39* CENTRAL THICKNESS: *9F8.5)

DO 65 I=loNPR

FE(I)=B(I)=01(I)=0.0

DO 66 J=19NPR

Z(IOJ1=0.0

A(I.J)=AU(I.J)=BU(I.J):0.0

66 CONTINUE

65 CONTINUE

DO 10 M=loNPR

In

C........CALCULATE OPERATOR FOR COMPATIBILITY EQUATION AT EACH NODE.

I.

CALL FEOPRTIM)

I

C........FORM'COEFFICIENT MATRIX A IN LEFT HAND SIDE OF COMPATIBILITY EQUATION.

M

CALL AMATRXCM)

10 CONTINUE

HRITE‘60213)

DO 53 J=loNPR

HRITEI69214) B(J)

PBCJ)=B(J)

DO 51 I=19NPR

PAIIQJD=AII9JI

51 CONTINUE

53 CONTINUE

DO 27 J=NP29NT

IF(FEE(J) .NE. 0.) GO TO 28

27 CONTINUE

GO TO 67

I

C........SOLVE COMPATIBILITY EOUATION.FOR LARGE MATRICES APPROPRIATE BANDEO

C MATRICES AND PROPER SOLUTION ROUTINES MUST BE USED.

I

28 CALL LEOTIFI A.1.NPR95098.8.UKAREAQIER)

DO 54 I=19NPR

FE(I):B(I)

54 CONTINUE

67 URITET69216)

DO 56 J=NP19NT

FE(J)=FEE(J)OFE(LP(J))

56 CONTINUE

DO 55 J=19NT

URITE‘60217) J9FE‘J)

FE1(J)=FE(J)

UCJ)=0.0

55 CONTINUE

FORC1=10

I

C........COMPUTE IN-PLANE FORCESOBENDING MOMENTS AND PRINCIPAL STRESSES.

m

CALL AXLOADTFEIQFORCIQFEE)

M

C........COMPUTE IN'PLANE DISPLACEMENTSQU AND V.

I'll
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CALL DISPLMTCFEI)

IF(ITYP .EQ. 1) GO TO 99

DO 19 1:1!NPR

DO 2 J=10NPR

A(IQJ)=0.0

2 CONTINUE

19 CONTINUE

DO 403 M=1.NPR

M

C........CALCULATE OPERATOR FOR LEFT HAND SIDE OF EQUILIBRIUM EQUATION.

[I

CALL HOPRT(M)

M

C........COMPUTE COEFFICIENT MATRIXQAU. FOR EQUILIBRIUM EQUATION.

M

CALL AMATRXCM)

m

C........FORM MATRIXQBUQ IN RIGHT HAND SIDE OF EQUILIBRIUM EQUATION.

M

CALL BUMATCM)

403 CONTINUE

DO 404 IzloNPR

DO 405 J=10NPR

AU‘IQJ)=A(IQJ)

405 CONTINUE

404 CONTINUE

IFCITYP .EQ. 3) GO TO 18

M

C........COMPUTE EIGENVALUES AND EIGENVECTORS.

M

CALL EQZQFCA QSOOBHQSOONPROZQSO’

CALL EQZTFCA .50.BU950oNPR.EPSA.EPSB.Z.50.IER1

CALL EQZVFTA 050QBHQSOONPRoEPSAoEPSBoALFRoALFIQBETAQZQ501

URITEC6925)

DO 41 I=loNPR

EIGVAL(I)=ALFR(IDIBETACI)

URITEC6026) ALFR‘I’OALFI‘I’OBETA(I)OEIGVAL‘I)

41 CONTINUE

18 CONTINUE

M

C........READ INITIAL VALUES FOR POSTBUCKLING TRIALS.

M

READC5911) NTRYoNITRQFORCQFORICR'DIF

READ (5..) (QCIIQI=10NPR)

READ(59*1 QINCR

REAO(59*1 (FE111101319NPR)

READ(5.*) (UCI).I=10NPR)

NN=0

URITE‘69224)

URITE169521)

URITEC69522)NTRYQNITRQFORCQFORICRODIFQH

URITEC60523)

URITEC60524) (QTI)QI=I.NPR)

DO 5 M310NTRY

FORC1=CFORC*NN*FORICRD*DR

DO 6 I=loNPR

QCI)=Q(I)¢QINCR

P81(I)=PB(I)iFORC1

6 CONTINUE

DO 20 I=NP2 9N

FE1¢II=FEECI19FORC1



235

FE(I)=FE1(I)

20 CONTINUE

NN=NN¢1

HH=0

MHH=1

URITE (6.224)

URITE (6.221) NNvFORCI

DO 7 L=1.NITR

MMl:MM-1

nnzznn-z

IFiMM-SfiMMM) 226.225.226

225 MMMzMMMOI

m

C........APPLY CONVERGENCE-INDUCING TECHNIQUE.

m I

DO 60 I=1.NPR

IF((FESIMMol)-FE3(MM1.I)10(FESCMM1.I)-FE3(MM2.I)).GE. 0.160 TO 60

FE!I)=(FE3¢MMI.1)fit2-FESIMM01)fiFESKMM2cI))l(2.'FE3(MM1.I)-FE3(MM.

OI)-FE3(MM2.I))

B(I)=(U3(MM1.I)002-HS(MM.I)IUSCMM2.I))I(2.'US(MMloI)-H3(MM011-93t

OMMZQI’) _

60 CONTINUE

GO TO 61

226 D0 49 I=1.N

FE(I)=FE1(I)

49 CONTINUE

61 MMzMMol

DO 58 I=19NPR

DO 59 J=1.NPR

BU(I.J)=0.0

59 CONTINUE

58 CONTINUE

n

C........CALCULATE RIGHT HAND SIDE OF EQUILIBRIUM EQUATION.

a

 

DOB I=19NPR

CALL BUMATCI)

01(113000

8 CONTINUE

DO 50 I=19NPR

DO9 J=loNPR

ABU(I.J)=AU(I.J)

A(IQJ13PACI0J)

Ql(1)=Ql(I)¢BH(I.J)98(J)

9 CONTINUE

QlCI)=(Ql(I)¢Q(I)thfi4)/OR

U1(I1=U(I)

50 CONTINUE

m

C........SOLVE EQUILIBRIUM EQUATION.GET NEH U.

I“.

CALL LEQTIFCABUQloNPR0500Q1989UKAREAoIER1

DO 12 I=19NPR

HTI)=QI(I)

12 CONTINUE

DO 14 J=10NPR

C........COMPUTE RIGHT HAND SIDE OF COMPATIBILITY EQUATION BASED ON NEH VALUES.

6:0 .0

UFAC1=(H(K(12.J1)¢U(K(2.J))-U(K(10.J))-U(K(4.J)))I4.

UFAC2=U(K(80J1)OHCKT6OJ11-2.*U(K(79J11

HFAC3=U(K(3.J))OH(K(11.J))-2.0H(K(7.J)1

 



14

m

236

G=GOHFAC1"2-HFAC2*UFAC3

BUICJ1=GORKOP81(J1

CONTINUE

C........SOLVE COMPATIBILITY EQUATION.GET NEH FEE VALUES.

15

17

3

CALL LEQT1F( A91QNPRQSDQBUIQBQUKAREAQIER1

DO 15 I=IQNPR

FE1II’=BU1(I)

CONTINUE

00 17 I=19N

FE3¢MM9I)=FE1(I)

USIHHQII=UIII

CONTINUE

C........CHECK CONVERGENCE.

16

7

72

71

64

63

a

DO 16 J=10NPR

IFIABS((U1(J)-U(J)IIUIJ11 .GT. 01F) GO TO 7

CONTINUE

GO TO 72

CONTINUE

URITEC69222) MM

00 71 I=1oN

HRITEC6913) FE1(I)oU(I)

CONTINUE

DO 63 J=NP1vNT

FE1¢J1=FEEIJ10FORC10FE1(LP(J)1

CONTINUE

C........CALCULATE IN-PLANE FORCES AND DISPLACEMENTS.

5

999

99

1

q

11

13

25

26

211

212

213

214

216

217

218

220

221

222

224

501

502

CALL AXLOA0(FE19FORC10FEE)

CALL DISPLMTCFEI)

CONTINUE

CONTINUE

CONTINUE

FORMAT(4I59F5.303F10.5)

FORMATI1814)

FORMATI21504F10.5)

FORMATC10X0F15.805X9F15.8)

FORMATI/II/.10X.IALFA REALI.5X.0ALFA IMAGOoBX998ETAto10X.tEIG

4ENVALUES'1

FORMAT(I910X.F10.595X.F10.595X.F10.595X.F12.41

FORMATI1H1.20X¢*ELEMENTS OF COEFFICIENT MATRIX-COLUMNSOOIZc' TO 0

90121

FORMATI/95X010F10.5)

FORMATI/IOBXQ‘B VECTOROII)

FORHATI§X9F12oBI

FORMATI'O'leXo'FE VALUES AT EACH NODE’)

FORMAT(/95X9I208X9F12.8)

FDRMATIIII/920X90ELEMENTS OF MATRIX AU.)

FORMAT(III/020X99EIGENVECTORS CORRESPONDING TO EACH EIGENVALUE-

0VECTORS'9I29'TD *0I2)

FORMATIIIIIQSOXofiLOAD POINT N0 00I395X9'LOA0340F8.2)

FDRMAT(I/.0ITERATION NO *0I202X0' FE *010X9'U!)

FDRMAT(III/930X09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'I

FDRMATI/Iy20Xo'DOOOO GEOMETRICAL INPUT DATD 0000001

FORMATC/IQ'NO OF NODES'QZXQ'NO OF INTERNAL NDDES'QZXQ'NO OF EXTERI

00R NODES‘OZXofiNO OF INTERMEDIAT NODES'Q2X0'POISON S RATIO'oZXo

4*GRID SPACING REF STUFNESS THICKNESS')  
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503 FDRMATII93X9I5012XoI5915XOI5015X0I5020X.F5.3910X03F10.51

504 FORMATI/l/92OXQ*OEGREES OF FREEDOM FOR EACH NODE *1=INTERIOR0 0:80

*UNDARY PDINTo-1=EXTERIOR NODE...)

505 FORMAT(/05X940I3)

506 FORMATCIl/920X9'1/8ETA=DR/Dfi)

507 FORMAT(5(5X910F10.5/))

508 FDRMATC/l/Q20Xo'1/BETA FOR INTERMEDIATE POINTS.)

511 FORMAT!II/gZOXQOCDRRESPONDING POINTS PARTICIPATING IN EACH NODE O

OPERATOR'I) '

521 FORMATI/I/vSXo'NO OF LOAD POINTS‘QZXQ'NO OF ITERATION*92X9*FORCE*9

OZXQOFORCE INCREMENTOQZth0IFFERENCEi92X00H=AINfi)

522 FORMATII012X9I5912X9I505X9F9o308X4F6o3910X9F6o395X9F6o3)

523 FORMATI/ICZOXO'EXTERNAL TRANSVERS LOAD.)

524 FORMAT(5(5X010F6.3/))

END

SUBROUTINE FEOPRT‘M)

COO...tttfiittittttit.ttfiitttittttttttttItitfifittfittttttttthtti

THIS ROUTINE CALCULATES THE VALUES OF OPERATOR FOR COMPATIBILITY

EQUATION AND DETERMINES THE CONTRIBUTION OF EACH NODE BASED ON

NODE NUMBERS (MATRIX D 1

it.ti.Q.fit.Qfifitfiifi0..0......ttttflfififififitfifiififitttifit...0.0.0...

COMMON/ll POSQBBQCCQHQNQNPR'DRQT

COHHON/Z/K‘1305070AHI4050’ODELCGOIODELAC50)QNSYMISO)

COMMON/3/DF(75)QD(130131013CIBOIQR(13’9FEI75)

COMMON/4’AC50050’QB(50)

COHMON/5/AHI50950)QBUC50050 IORHCIJIoDELTC60100ELTAISOIoH(65)

INTEGER AMQDF

R(I)=DEL(K(39M))

R(2)=‘(DEL(KI39H))00EL(K(69H)I19P0592.488.DELA(AH(30H)I

R(313-204CC¢(0EL(K(70H)I‘DELIKCSQHI1"2.*88'(0ELA(AH(39H)IODELACAH

9(49M111

R(903‘POS'IDELIKC3QH))ODELIK(89H)I102.438.0ELAIAHI4gH11

R(5120ELCKI60H11

R(613'209CC*(0EL(K(79H))00ELIKCGOH)11-2.988*(0ELA(AH(24H1I’DELA‘AH

0(3QHII)

R(70306L0K039H’)‘DEL‘K‘GQH’,.DELEKIBO")I’DEL(K(119H),.BOPCCPDELEK

4‘79"))02.988*IDELA(AH(10",)0DELA(AH (20H)I’DELAIAHISQH1140ELACAH(

O49M171

R(B)=-2.'CC4(0EL(K(7QH)14OELIKIBQH11)-2.‘BB*(DELA(AH(1.H)IODELACAH

OCQQHIII

RC9I=DELIKIBQH11

RIIO)=-(DEL(K(6QH))ODELCKIIIQHIIIOPOS02.OBB*DELA(AH(29H)1

R(11)=‘2.'CC*(DEL(KI7OH)1*0EL‘KI114HI)1‘2.’BB‘(0ELA(AH(19H)I’DELA

0(AHC2cH111

R(12)=-CDEL(K(80H1IODELIKIIIQH)1)‘POSOZ.PBB*DELA(AH(19H)1

R(13110EL(K(114H11

ooooooooCONSTRUCT D HAIRIX AT EACH POINT.

DO 72 J=1913

DO 71 I=1o13

D(IQJ)=0.0

71 CONTINUE

72 CONTINUE
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D(7.7)=1.0

IF(0F(K(10M)) .NE. -1 .AND. DF(KC59M)’ .NE. -1) 0(2921=1.0

IF‘DFIKIIOMI) .NE. -1 .AND. DF(K(99M1) .NE. '1) 0(4v4):1.0

IF‘DFIKI59M1) .NE. -1 .AND. DF(KI13vM)) .NE.-11 0(10910131.0

IFIDFIKI99M)1 .NE. '1 .AND. DF(KC130M11 .NE.-1) 0(12.12)=1.0

IFIDF(K(19M111 10001010102

100 0(701121.0

B(M)=B(H1-R(2)'FE(K(29MI1-RI3)*FE(K(50M))-R(4)*FE(K(4QM))-R(1)*FE

OIKCIQMII

GO TO 40

102 0(101)=1.0

101 0(3v3)=1.0

IFIDFCKIIoM’) .EQ. 0) B(H)=B(H)'R(110FE(K(19HI)

40 IF(DF(K(50M)1) 11091110112

110 0(795)=1.0

B(M)=BCMI-R(6)*FE(K(69H))-R(101*FE(K(10.MII-RCSIOFECKISQH)7

IFIDF(K(10M)) .NE.-1) B(M)=B(M)-R¢2)*FE(K(29M))

GO TO 41

112 0(595)=1.0

111 0(606)=1.0

IFIDFIKCSQM)’ .EQ. 0) B(H)=B(M)'R(5)*FE(K(50H)7

41 IFCDF(K(9!M)) 1 12091219122

120 0(799)=1.0

B(M)=B(M)-R(81'FE(K(8vM)1-RI914FEIKI9QM))-R(12)*FE(K(129M)1

IF(DF(K(19M)) .NE. ’1) B(M1=B(H)-R(4)0FE(K(4OM1I

GO TO 42

122 D(9v9):1.0

121 0(898)=1.0

IFIDFIK‘9QM)’ .EQ. 0) B(M)=B(M)-R(9)*FEIK(99H)1

42 IF(DF(K(13QM)) 1 13091310132

130 0(7013)=1.0

B(M)=B(M)-R(111tFEIKC119M11-RC13)0FE(K(139M)1

IFCDFIKISOH71 .NE. '1) B(M)=B(M)'R(10)'FE(K(10'")I

IFCDFCKI99H)’ .NE. '1) B(M7=B(H)'R(121*FEIKCIZQM)7

GO TO 43

132 0(13913)=1.0

131 0(11911):1.0

IFIDFCKI130M11 .EQ. 0) B(M)=B(M)-R(13)*FE(K(139M))

43 RETURN

END

III

III

M

m

III

SUBROUTINE AMATRXIH)

M

C 6....tint...it.occccocggtcccgfigo..o.ctto........atot.o...tt..

C........CALCULATE COEFFICIENT MATRIX FOR COMPATIBILITY EQUATION.

C t...ttttttittttatttfittittitttfittfitiOttttttittttttittfittifitto.

M

COMMON/1’ POSvBBoCCoHoNONPRvDRoT

COMMON/2’KC13950)cAMC4o50).DELC60)oDELAISOIQNSYM¢501

COMMON/3/DFI7SIQDI13Q13)oIBCI6019R11310FEC751

COMMON/4/A(50950108(50)

DO 51 J: 1013

DO 52 L=lo13

IFIKILQM) .GT. NPR) GO TO 52

A(MvKILoM)1=A(MvK(L9M1140(L9J10R(J1

52 CONTINUE

51 CONTINUE



a
n
n
n
n
a

I

C...

I

0
3

71

72

100

1001

1002
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RETURN

END

SUBROUTINE HOPRT(M)

tittittitfii.titttfittttittfit.OttfittitlfittfiiOOiittfitt.tQOttttt!

THIS ROUTINE CALCULATES OPERATOR FOR EQUILIBRIUM EQUATION AND

CONTRIBUTION OF EACH NODE BASED ON NODE NUMBERS.

O‘COOOQCQOOOiii......OifiiiitittififiififitfitifittitiifiiiflQflttfiitii

COMMON/1’ POSOBBOCCOHONONPROOROT

COMMON/2/K(13050)0AM(4050)00ELI60)0DELA(501

COMMON/3iDFI75)00(1301310IBC(6010R(1310FE(751

COMMON/5’AUC50050)0BUC50050 )0RUI13)00ELT(60100ELTA(50)

INTEGER AM0DF

.....CALCULATE OPERATOR AT EACH NODE USING FIGURE A1.

RU(1)=DELT(K¢30M)) ,

RH(21=2.*CCtDELTA(AM(30M))OPOSt(0ELT(K(60M))OOELT(K(3.M))1

RUI3)=-2.0(880(OELT(K(70M))OOELT(K(3.M)1)OCC*(OELTA(AM(30M))0

ODELTAIAM¢40M))))

RU(4)=2.0CCtOELTA(AM(4.M))OPOSttOELTtKC3oM))ODELTCKteoM))1

RU(5)=OELT(K(6.M)) .

RU(6)=-2.t(88*(OELT(K(70M))¢OELT(K(60M)1)OCC*(DELTA(AM¢20M)1+

OOELTAIAMt3.M))))

RH(71=8.088¢DELT(K(7.M))OOELT(K(8.M))ODELT(K(6.M))ODELT(K(3.M))0

OOELT(K(110M))+2.*CC~(DELTA(AM(10M))OOELTA(AM(20M))OOELTA(AM(30M))

*ODELTACAM(4.M)))

RH(8)=-2.t(88*(OELT(K(70M))00ELTIKC80M)1)0CCO(DELTA(AM¢1.M))O

OOELTA!AM(4.H)1)1

RU¢91=OELT(K(8.M))

RH!101:2.0CCtDELTAtAM(2.M))OPOSO(OELT(K(11.M))OOELT(K(6.M)))

RHt11)=-2.O(BBt(DELT(K(70M))OOELT(K(110M13)OC00(OELTA(AM(1.M))¢

+OELTA(AM(20M))))

RH(12)=2.¢CC*DELTA(AM(10M))OPOS*(DELT(K(8.M)DODELT(K(11.M)11

RUI131=OELT(K(11.M))

CONSTRUCT 0 MATRIX AT EACH POINT

DO 72 J=1013

DO 71 I=1013

D(IOJ7=0.0

CONTINUE

R(J13RUCJ1

CONTINUE

0079703100

IFIDFIKC10M11 .NE. -1 .AND. DF(KC50M)’ .NE. '1) 0(202121.0

IFCDFIK‘10M11 .NE. '1 .AND. DF(KC90M1) .NE. ‘1) 0(404131.0

IFCDFCKC50M1) .NE. '1 .AND. DF(KI130M1) .NE.-1) D(l0010):1.0

IF‘DFIKC90M1’ .NE. ‘1 .AND. DF(K(130M)) .NE.-1) 0(12012)=I.O

IFIDF(K(10M))) 10001010102

IFCIBCIKI30M11-2) 10010100201002

0(701):1.0

GO TO 40

0(70113'1o0

GO TO 40

 



102

101

110

1101

1102

112

111

120

1201

1202

122

121

130

1301

1302

132

131

43

3
0
6
0
0
3
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0(1011=1.0

0(3031:1.0

IF(0F(K(50M111 11001110112

IFIIBC(K(60M11-21 11010110201102

0(7051=I.O

GO TO 41

0(70512-1.0

GO TO 41

0(5051=1.0

0(6061=1.0

IF‘DFCKI90M11 1 12001210122

IFCIBC(K(80M11-21 12010120201202

0(7091=1.0

GO TO 42

0(70913-1.0

GO TO 42

0(9091=1.0

0(808131.0

IF(DF(K(130M11 113001310132

IFIIBCCKC110M11-21 13010130201302

01701313100

GO TO 43

0(70131=-1.0

GO TO 43

01130131=1.0

0(110111=1.0

RETURN

END

SUBROUTINE BUMATCJ)

00009009000000.0009000000000009.00.00.000900000000000.0.0.990

THIS ROUTINE IS UTILIIZED TD CALCULATE RIGHT HAND SIDE OF

EQUILIBRIUM EQUATION.

Otfiififittfiiflfi.09....9..QOQQCQQOitfiitiiiifitflitfiititifitfififitltifii

COMMON/1’ PDSOBBOCCOMONONPRODROT

COMMON/2/K(1305010AM‘405010DEL(6010DELA(5010NSYMC501

COMMON/3’0FI75100(1301310IBCI6010RC1310FEI751

COMMON/5/AUI5005010BUI50050 10RUI1310DELT¢60100ELTA¢501

FEFAC1=FE(K(110J11-2.4FE(KI70J114FE(K(30J11

FEFAC2=FE(K(80J11-2.9FE(K(70J110FECKI60J11

FEFAC33-(FEIKI120J11¢FE(K(20J11-FE(K(100J11‘FE(K(40J111/8.

IF(K(20J1 .GT. NPR1 GO TO 1

BUIJ0K‘20J11=BU(J0K(20J11¢FEFAC3

IF(K(30J1 .GT. NPR1 GO TO 2

BUIJ0KC30J11=BUIJ0K(30J11OFEFAC2

IFCKI40J1 .GT. NPR1 GO TO 3

BUCJ0K¢40J11=BH(J0K(40J11-FEFAC3

IF(K(60J1 .GT. NPR1 GO TO 4

BUIJ0KC60J11=BUIJ0KI60J110FEFAC1

IFIK(70J1 .GT. NPR1 GO TO 5

BHIJQKI70J11=BUCJ0K(70J11-2.*FEFAC1-2.OFEFAC2

IF(K(BOJ1 .GT. NPR1 GO TO 6

BUIJ0K¢80J11=BHCJ0K(80J11OFEFAC1

IF(K(100J1.GT. NPR1 GO TO 7

BHIJ0KI100J11=BH(J0K(100J11-FEFAC3

 



3
0
7
1
0
0
3
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7 IFIKI110J1.GT. NPR1 GO TO 8

BHIJ0K(110J11=BHIJ0KI110J11OFEFAC2

8 IF(K(120J1.GT. NPR1 GO TO 9

BU(JOK(120J11=BUCJOK(120J114FEFAC3

9 RETURN

END

SUBROUTINE AXLOADIFE10FORC10FEE1

000000000000000.000.000.000.00.000000000000000000000000000000

THIS ROUTINE COMPUTES IN-PLANE FORCESOBENDING MOMENTS AND

PRINCIPAL STRESSES AT EACH NODE.

i.0..O.C....QOQOQOC.9........§...i0900.0..00.00.0.9..tfitifififii

DIMENSION FE1(7510FEE(651

COPMON/I/ POS0BB0CC0H0N0NPR00R0T

COMMONIZ/K‘1305010AM(405010DEL(60100ELA(5010NSYM(501

COMMON/3/DFI75100(1301310IBCI6010R(1310FE(751

COMMON/5/A0(500501080(50050 10RH¢13100ELTI60100ELTA(501.H(651

NP2=NPR91

MM=N-1

URITE (60211

21 FORMATII/l/010X0'STRESS RESULTANT RATIO AT EACH NODE *1

DO 1 M=NP20N

HF=10

IF‘IBC‘HI .EQ. 2, UF3-10

IFINSYMIM1-61 35036037

35 U(K(60M11=UF*U(K(80M11

UIK(100M11=UF*H(K(120M11

GO TO I

37 UIK¢60M11=HF00(K(80M11

U(K(20M11=UF00(K(120M11

36 U(K(30M11=UFOU(K(110M11

U(K(40M11:HFOU(K(120M11

1 CONTINUE

URITEC60221

22 FORMATCIII/02X0*NOOE'05X0'NX/N'06X0'NY/N'05X0tNXY/Nt0 9X00MX00

*8X0tMY'07X0'MXY'011X0'MXT/21‘05X0'NX/T'010X0'MYT/21'05X0'NY/T PRI

ONCIPAL STRESS.)

DO 10 I=10N

IFINSYM(I1 .EQ. 71FE1(K(20I11=FE1CKI12011102.*FEE(K(60I11*FORC1

XN:-(FE1(K(110I11OFE1(K(30111-2.0FE1(K(70I111/(H902iFORC11

YN=-(FE1(K(60I11OFE1(K(80I11-2.tFE1(K(70I111/(H0t2-FORC11

XYN=¢(FE1(K(20I11¢FE1(K(120I11-FE1(K(40I11-FE1IKC100I111/(4.'H'*2

9*FORC11

UXX:(H(K(60I11+U(K(80I11-2.OU(K(70I111IH002

UYY=IUIKI110I1140(KC30I11-2.'H(K(70I111/H002

UXY=(U(K(40I1190(K1100I11-UCKC120I11-U(K(20I111/(4.'Ht*21

DP=DR90ELTII1

XM:-DP*(UXX¢POSOHYY1

YM=-DP*(UYYOPOS'UXX1

XYM:DP*CC*UXY

SIGMAx=XM06./T002

SIGMAY:YM06.IT**2

SIGMANx=XNiFORC1lT

SIGMANY=YN0FORC1IT

XSIGMAX=ABS(SIGMAX1OABS(SIGMANX1
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YSIGMAX3ABSISIGMAY1‘ABSISIGMANY1

RAD=SQRT(‘(XSIGMAX-YSIGMAX1/2.1"2¢(XYN*FDRC1/(2.*T110.21

PRSTRES =(XSIGMAXOYSIGHAX1/2.ORAD

HRITEI60231 IOXNOYNOXYNOXMOYMOXTMOSIGMAXOSIGMANXOSIGMAYOSIGMANY

$0PRSTRES

23 FORMATII/02X01202X03F10.504X03F10.302(2X0F10.30F12.310F12.31

10 CONTINUE

RETURN

END '

3
3
5
3
3

3

SUBROUTINE DISPLMTIFE11

OtfififiitfiifiifitfififififififlfiCQQIQOIQOI.Oiifiitiiittfififitfiiflififi.t.00...

THIS ROUTINE COMPUTES IN-PLANE 0ISPLACEMENTS0U AND V AS

DESCRIBED IN SECTION 3.1.3.2.

fitt...Q...Ofiifitfitfifitit.IOOQQQOQIQOOOQOOOOQOC0......0.0.0....

a
n
n
n
n
a

DIMENSION AU(5005010AV(50050108U(50108V(5010FE1¢7510HKAREA(501

DIMENSION NU(501.NV(5010AUU(5005010AVV(500501088U(501088V(501

COMMON/II POSOBBOCCOHONONPRODROTORK

COMMON/2/K(1305010AM(4050100EL(60100ELA(5010NSYM(501

COMMON/3/DF(75100(1301310IBC¢6010R¢1310FE(7S1

COMMON/5/Aut500501080(50050 10RH(13100ELT¢60100ELTA(50100(651

INTEGER OF

00 1 I=10N

DO 2 J=10N

AUII0J1=AVII0J1=0.0

2 CONTINUE

88U(I1=88V(I1=0.0

1 CONTINUE

C........IHPLY OUT'OF'PLANE BOUNDARY CONDITION.

NP2=NPR41

DO 22 M=NP20N

HF=10

IFCIBCIM) .EQ. 21 HF:-1.

IFINSYMCM1-61 35036037

35 U(K(60M11=UF0U(K(B0M11

UIKI30M11=UFtUIKIIIOM11

GO TO 22

37 U(K(60M11=UF*U(K(80M11

U(K(20M11=UF4U(K(120M11

36 U(K(30M11=HFOU(K(110M11

22 CONTINUE

N1=N2=0

DO 3 M=10N

UX=(U(K(R0M11-U(K(60M111/(2.*H1

UY=(H(K(30M11-UIKC110M111/(2.4H1

XN=IFE1IKC110M11*FE1(K(30M11-2.4FE1(KI70M111/(H0'21

YN:(FE1(K(60M11¢FE1(K(80M11-2..FE1(K(70M111/(Hfi‘21

C1=.5*HX**2

C2=.5'UY**2

C........CONSIOERING SYMMETRY AND BOUNDARY NODES 0FORM COEFFICIENT MATRICES.

IFINSYMCM) .NE. 01 GO TO 6

25 N1=N101

N2=N2+1

NU(N11=M

NVIN21:M
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IF(NSYM(K(80M11 .EQ. 1 .OR. NSYM(K(80M11 .EQ. 41 GO TO 18

AU(N10K(70M11=AU(N10K(70M11-1./H

AU(N10K(80M11:AU(N10K(80M11+1./H

GO TO 19

18 AU(N10K(70M11:AU(N10K(70M11-1./H

19 AV(N20K(70M11=AV(N20K(70M11¢1./H

AV(N20K(110M11=AV(N20K(110M11-1./H

BU(N11=DEL (M1*(XN-POS*YN1IRK-C1

BV(N21=0EL (M 1*(YN-POS‘XN1/RK-C2

GO TO 3

6 GO TO(70B030150250250251 NSYM(M1

7 N2=N241

NV(N21=M

IF(DF(K(30M11 .EQ.-11 GO TO 20

AV(N20K(30M11=AVIN20K(30M110.5/H

AV(N20K(110M11=AV(N20K(110M11-.5/H

GO TO 21

20 AV(N20K(70M11=AV(N20K(70M1141./H

AV(N20K(110M11=AV(N20K(110M11'1./H

21 BV(N21=OEL (M 1*(YN°POS*XN1/RK-C2

GO TO 3

8 N1=N141

NU(N11=M

AU(N10K(80M11=AU(N10K(80M11¢1./H

AU(N10K(70M11=AU(N10K(70M11-1./H

8U(N11=0EL (M1*(XN-POS'YN1/RK-C1

GO TO 3

15 N2=N2¢1

NV(N21=M

AV(N20K(70M11=AV(N20K(70M1191./H

AV(N20K(110M11=AV(N20K(110M11-1./H

BV(N21=0EL (H 19(YN-POS*XN1/RK-C2

3 CONTINUE

DO 5 I=10N1

DO 4 J=10N1

AUU(I0J1=AU(I0NU(J11

4 CONTINUE

5 CONTINUE

OO 17 I310N2

DO 14 J=10N2

AVV(IOJ1=AV(IONV(J11

14 CONTINUE

17 CONTINUE

C........SOLVE FOR V‘OISPLSCEHENT.

CALL LEQT1F(AVV010N20500BV080HKAREA0IER1

DO 10 J=10N2

88V(NV(J11=BV(J1

10 CONTINUE

NN=0

DO 23 M=10N

IF(NSYM(M1 .EQ. 1 .OR. NSYM(M1 .EQ.31 GO TO 23

IFINSYM(M1 .EQ. 41 GO TO 24

NN=NN+1

IF(NSYM(K(80M11 .NE. 41 GO TO 23

BUINN1=8U(NN1+BBV(K(80M11/H

GO TO 23

24 BBU(M1='BBV(M1

23 CONTINUE

c........SOLVE FOR U‘OISPLSCEHENT.

CALL LEQT1F(AUU010N10500BU080HKAREA0IER1

DO 9 I=10N1

 

 



m
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BBU(NU(I11=BU(I1

9 CONTINUE

BBU(N1=-BBV(N1

HRITE (60111

11 FORMAT(////010X0*NODE U-OISPLACEMENT

DO 16 I=10N

URITE(60121 IOBBU(I10BBV(I1

12 FORMAT(11X01203X0F12.608X0F12.61

16 CONTINUE

RETURN

END

SUBROUTINE URITE(NPR0A1

V-DISPLACEMENTfi0/l1

OfififiitttItitt...titiittfifittfit.tfifitfittfifitifiiii0.......ititiitt

C........THIS ROUTINE ARRANGES THE URITE- OUT OF LARGE MATRICES.

C.O...Ottitifitittfifit.tfififififii.Ittitfiitiifiitifittfifiififit.Qtttttti

DIMENSION A(500501

NMATzNPR/lo‘l

DO 57 11:10NMAT

Ill=10¢(11-11¢1

I12=10¢II

IF‘IIZ .GT.,NPH) 112=NPR

IF(111 .GT. NPR1 GO TO 57

URITE(6031 1110112

3 FORMAT(III/.SOX'Q--------------- COLUMNS ..12.. ‘0 ..12.. --------

$-------‘0//1

DO 52 I=10NPR

HRITE(6041 (A(I0J10J=1110I121

4 FORMAT(/05X010F12.51

52 CONTINUE

57 CONTINUE

RETURN

END
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PROGRAM PLATE2(INPUT0OUTPUT0TAPE5=INPUT0TAPE6=OUTPUT1

Qfifittfitiiifiifittifitfifitifififiifiit.Otififiititfitfiififififit...fittifitflfifi

THIS PROGRAM IS UTILIZED TO SOLVE PRE-BUCKLING0BUCKLING AND

POSTBUCKLING OF VARIABLE STIFFNESS PLATES SUITABLE FOR

DISPLACEMENT BOUNDARY CONDITIONS.

THIS PROGRAM USES THE GIVEN SUBROUTINES IN ADDITION TO THREE

ROUTINES (AMATRX0UOPRT AND URITE) AS GIVEN IN PROGRAM PLATE1.

0..tfiifittttfi.00....ifiifiitiifiiifititfififiiit....OOOOOOOOQIOOOQOQI

a
n
n
n
n
n
n
n
a

DIMENSION Q(811080(8110A(128012810B(12810UINCR(8110VINCR(811

DIMENSION AHH(6406410UH(6402510UKAREA(1281

DIMENSION EIGVAL(6410ALFR(641.ALFI(6410BETA(64102(640641

COMMON/IIPOS0BB0CC0K(1308110DEL(8110DF(10110H0NSYM(8110DR0RK

COMMON/2/0U(90910DV(90910KK(906410RU1(910RU2(910RV1(910RV2(91

COMMONI3/Bl(651082(6510U(8110V(8110BUI(6410BU2(6410H(1001

COMMON/4] AU1(6406410AU2(6406410AV1(6406410AV2(6406410AUV(12801281

COMMON/5i BUV1(6410BUV2(6410BUV(1281

COMMON/6/DELT(8110DELTA(8 10AM(408110DELA(8 10IBC(811

COMMON/7/RH(1310DU(1301310AU(6406410BUB(640641

COMMON/8/XNX0YNY0XNY

INTEGER AM0DF

m

COOOOCOOORE‘O INPUT DATA.

m

READ (50*1NSOLN

DO 99 NO=10NSOLN

REA0(50*1 ITYP

READ(50*1 RATIO10RINCR0L1

READ (5011 N0NPR0NOUT0NA0POS0ALFA0H0E0T

NP2=NPR41

NT=N4NOUT

READ (5001 (IBC(I10I=NP20N1

READ (50'1 (DF(I10I=10NT1

READ(50*1 (NSYM(I10I=10N1

READ (50.1 (U(I10I=NP20N1.

READ (50*1 (V(I10I=NP20N1

DD 100 I=10N

READ(5.41 L0(K(J0I10J=10131 0(AM(J0I10J=1041

HRITE(6041 I0(K(J0I10J=10131 0(AM(J0I1 0J=1041

100 CONTINUE

88:1.4POS

CC=1.°POS

URITE(60501)

READ(50*T (U(J10J=10N1

READ (5041 (Q(I10I=10N1

URITE(605111

URITE(605021

URITE(605031 N0NPR0NOUT0NA0POS0H0DR0T

URITE(605041

URITE(6.5051(DF(I10I=10NT1

N2=24NPR

CALL KKVECT(NPR1

DO 999 LL=10L1

CALL DESIGN(RATIOl0RINCR0N0LL0TC0RATIO0NA1

T=TC

OR=E0T003/(12.0BBtCC)

RK=E0T

URITE(605061

URITE(605071 (DEL(J10J=10N1

URITE(605081
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URITE(6.SO71 (DELA(J10J=10NA1

HRITE(609981 LL0RATIO0RK0DR0T

998 FORMAT(////.*TRIAL NO 0.13.0 R=O.F5.3.* ET CENTER=0.F8.3* O CENT

SER=O.F8.30* CENTRAL THICKNESS: '0F8.51

DO 103 I=I0NPR

81(1)=82(I1=0.0

00 104 J=10NPR

AU1(I0J1=AU2(I0J1=AV1(I0J1:AV2(I0J1=AU(I0J1=BHB(I.J1=0.0

104 CONTINUE

103 CONTINUE

Ill

C........CALCULATE OPERATORS AND FOR" THE MATRICES FOR IN'PLANE

C EQUILIBRIUM EQUTIONS.

m

00 110 M=10NPR

CALL UVOPRT(M1

CALL AUVMAT(M0NPR1

01

C........COMPUTE U-OPERATOR FOR OUT-OF-PLANE EQUILIBRIUM EQUATION.

m

CALL UOPRT(M1

M

C........CALCULATE CONTRIBUTION OF H IN RIGHT HAND SIDE OF IN-PLANE

C EQUILIBRIUM EQUATIONS.

u

CALL UFUNCT(ALFAOM1

m

C........FORM COEFFICIENT MATRIX FOR OUT-OF-PLANE EQUILIBRIUM EQUATION.

m

CALL AMATRX(M0NPR1

110 CONTINUE

m

C........ASSEMBLE U AND V COEFFICIENT MATRICES.

m

CALL ASSMBL(NPR1

URITE(602651

URITE(602401

DO 115 I=10N2

B(I1:BUV(I1

115 CONTINUE

DO 117 I=10N2

DO 116 J=10N2

A(I0J1=AUV(I0J1

116 CONTINUE

117 CONTINUE

(I

C........SOLVE IN-PLANE EQUILIBRIUM EQUATIONS.

C NOTE. FOR LARGE MATRICES PROPER BANDED MATRICES MUST BE

C FORMED AND APPROPRIATE SOLUTION ROUTINES USED.

m

CALL LEQT1F(A010N20128080800KAREA01ER1

DO 150 I=10NPR

U(I):3(I)

NPV=I*NPR

V(I1=B(NPV1

150 CONTINUE

URITE(602011

DO 156 M:10NPR

ITRENO=1

m

C........CALCULATE RIGHT HAND SIDE OF OUT-OF-PLANE EQUILIBRIUM EQUATION.
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ID

CALL RHSU(M0Q0ALFA0BU0NPR0N0ITREND)'

n

C........FORM COEFFICIENT MATRIX IN RIGHT HAND SIDE OF OUT-OF-PLANE

C EQUILIBRIUM EQUATION.

m

CALL BUBUCKL(M0NPR1

DO 154 I=I0NPR

AUH(MOI1=AU(MOI1

154 CONTINUE

156 CONTINUE

IF(ITYP .EQ. 11 GO TO 99

IF(ITYP .EQ. 31 GO TO 119

00 131 I=IONPR

DO 132 J=10NPR

AU(I0J1=AU(I0J1-DR/Htta

132 CONTINUE

131 CONTINUE

HRITE(602611

 
C........SOLVE EIGENVALUE PROBLEM.

"I

 

CALL EQZQF(AU0640BUB0640NPROZ0641

CALL EQZTF(A00640BUB0640NPR0EPSA0EPSB0Z0640IER1

CALL EQZVF(A00640BUB.64.NPR0EPSA0EPSB0ALFR.ALFI0BETA0Z0641

URITE(60251 ‘

DO 41 I=10NPR

EIGVAL(I1=ALFR(I1/BETA(I1

URITE(60261 ALFR(I10ALFI(I10BETA(I10EIGVAL(I1

41 CONTINUE

999 CONTINUE '

119 IF(ITYP .EQ. 21 GO TO 99

C........READ INITIAL VALUES FOR POSTBUCKLING TRIALS.

READ(50*1 (U(I10I=10NPR1 '

READ (50*1 (UINCR(I10I=NP20N1 0DIFONTRYONITR

READ (50*1 (VINCR(I10I=NP20N1

READ(50'1 QINCR

URITE(602241

HRITE(605211

URITE(605221NTRY0NITR0FORC0FORICR0DIF0H

HRITE(605231

URITE(605241 (Q(I10I=10NPR1

HRITE(605251 QINCR

DO 111 II=10NTRY

IF(II .EQ. 11 GO TO 118

00 121 I=IONPR

0(11=a(I)OOINCR

121 CONTINUE

m

C........INCREASE EDGE DISPLACEMENTS.

m

00 112 L=NP20N

U(L1=U(L1'(1.O(II-11*UINCR(L11/(1.4(II-21*UINCR(L11

V(L1=V(L1*(1.+(II-11*VINCR(L11/(1.9(II-21*VINCR(L11

112 CONTINUE

118 URITE(602621 IIOQ(11

JJJ=1

DO 120 JJ=10NITR

ITREND=0
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00 114 I=10NPR

81(I1=82(I1=0.0

DO 2 J=10NPR

AU1(I0J1=AU2(I0J1=AV1(I0J1=AV2(I0J1=0.0

2 CONTINUE

m

C........FORM COEFFICIENT MATRICES IN RIGHT HAND SIDE OF IN-PLANE

C EQUILIBRIUM EQUATIONS.

m

CALL UVOPRT(I1

CALL AUVMAT(I0NPR1

m

c........CALCULATE RIGHT HAND SIDE OF IN'PLANE EQUILIBRIUM EQUATIONS.

III

CALL UFUNCT(ALFA011

114 CONTINUE

m

C........ASSEMBLE U AND V COEFFICIENT MATRICES.

RI

CALL ASSMBL¢NPR1

DO 42 I=10N2

00 43 J=10N2

A(I0J1=AUV(I0J1

43 CONTINUE

42 CONTINUE

Ill

C........SOLVE IN-PLANE EQUILIBRIUM EQUATIONS.

m

CALL LEOTIFTA.10N201280BUV080UKAREA01ER1

DO 44 I:I.NPR

L:I+NPR

U(I1=BUV(II

V(I1=8UV(L1

44 CONTINUE

DO 68 J=10NPR

n

C........CALCULATE RIGHT HAND SIDE OF IN-PLANE EQUILIBRIUM EQUATIONS.

m

CALL RHSU(J0Q0ALFA0BU0NPR0N0ITREND1

68 CONTINUE

DO 45 J=10NPR

DO 46 L=10NPR

AU(JOL1=AUU(JOL1

46 CONTINUE

45 CONTINUE

M

C........SOLVE OUT-OF-PLANN EQUILIBRIUM EQUATION.

m

CALL LEQT1F(AU 010NPR0640BU080UKAREA0IER1

DO 151 I=10NPR

U(I1=UU(IOJJ1=BU(I1

151 CONTINUE

JJ1=JJ-1

JJ2=JJ-2

IF(JJ .EQ. 11 GO TO 120

m

C........CHECK CONVERGENCE.

a

DO 152 J=10NPR

IF(UH(J0(JJ-111 .EQ. 0.1 GO TO 152

IF(ABS((HU(J0JJ1-HH(J0(JJ-1111/UU(J0(JJ-1111 .GT. DIF1 GO TO 160
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152 CONTINUE

GO TO 1111

160 IF(JJ-3'JJJ112001580120

158 JJJ=JJJ41

DO 159 I=10NPR

m

C........APPLY CONVERGENCE -INDUCING TECHNIQUE.

fl'l

IF((UH(I0JJ1-UU(I0JJ111*(UU(I0JJ11-UU(I0JJ211 .GT. 0.1 GO TO 159

U(I1=(HU(I0JJ11*42-UU(I0JJ1’UU(I0JJ211/(2.*UH(I0JJ11-HU(I0JJ1-UU(

SIOJJ211

159 CONTINUE

120 CONTINUE

1111 ITREND:1

URITE(602631 JJ

URITE(602511

DO 153 L=10N

URITE(602521U(L10V(L10U(L1

153 CONTINUE

URITE(602011

DO 688 J=10N

M

C........CALCULATE IN-PLANE FORCESOBENDING MOMENTS AND PRINCIPAL STRESSES.

I

CALL RHSU(J0Q0ALFA0BU0NPR0N0ITREND1

688 CONTINUE

111 CONTINUE

99 CONTINUE

1 FORMAT(41502F5.30F15.1202F10.31

4 FORMAT(18I41

5 FORMAT(//01509F7.405X09F7.41

6 FORMAT (I05X09F3.0010X09F3.01

25 FORMAT(////010X0'ALFA REAL'05X0'ALFA IMAG'0BXO'BETA'010X0'EIG

4ENVALUES'1 ‘

26 FORMAT(/01DXQFID.505X0F10.505X0F10.505X0F10.51

201 FORMAT(III/04X0‘NODE'07X0‘NX'08X0‘NY407X00NXY'016X04MX408X04MY*

507X04MXY*07X0*MAX STRESS IN X'02X0'MAX STRESS IN Y PRINCIPL STRES

5501

220 FORMAT(III/020X0'EIGENVECTORS CORRESPONDING TO EACH EIGENVALUE'1

224 FORMAT(////030X0'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')

240 FORMAT(////05X0*ELEMENTS OF BUV-VECTOR‘)

250 FORMAT(/010XOF10.51

251 FORMAT(////08X0*U-DISPLACEMEMENT*09X0'V'DISPLACEMENT4012X0'U-DISPL

4ACEMENT'1

252 FORMAT(/08X0F10.5015X0F10.5015X0F10.51

261 FORMAT(///I020X040(1HS10' MATRIX BU 4040(1HS1/I1

262 FORMAT(///020X040(1HS10' LOADING STEP NO .0130. Q340F10.2040(1H$11

263 FORMAT(I/I/0'----'----¢‘-------- ITERATION NO*.I30*-------------41

265 FORMAT(////020X040(1HS10* MATRIX AUV 4040(1HS1II1

501 FORMAT(//020X0‘OOOOO GEOMETRICAL INPUT DATD 00000.1

502 FORMAT(//0*NO OF NODES'02X0'NO OF INTERNAL NODES'02X0'NO OF EXTERI

00R NODES'02X0‘NO OF INTERMEDIAT NODES'02X0'POISON S RATIO'02X0

O'GRID SPACING REF STUFNESS THICKNESS'1

503 FORMAT(/03X0I5012X0I5015X0I5015X015020X0F5.3010X03F10.51

504 FORMAT(///020X0*DEGREES OF FREEDOM FOR EACH NODE 41=INTERIOR0 0=BO

OUNDARY POINTO-1=EXTERIOR NODE4001

505 FORMAT(/05X04OI31

506 FORMAT(I//020X0'1/BETA=DR/D*1

507 FORMAT(5(5X010F10.5/11

508 FORMAT(///020X0'1/BETA FOR INTERMEDIATE POINTS.)

511 FORMAT(l/I020X0'CORRESPONDING POINTS PARTICIPATING IN EACH NODE O
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OPERATOR4/1

521 FORMAT(///05X0‘NO OF LOAD POINTS‘02X0'NO OF ITERATION‘02X09FORCE'0

92X0‘FORCE INCREMENT‘02X0'DIFFERENCE'02X0'H3A/N'1

522 FORMAT(I012X9I5012X01505X0F9.308X0F6.30IOX0F6.305X0F6.31

523 FORMAT(//020X0’EXTERNAL TRANSVERS LOAD.)

524 FORMAT(5(5X010F12.2/11

525 FORMAT(//020X0.'-"-'-LATERAL LOAD IHCREMENT=*0FB.20"----------*1

STOP

END

M

M

(I

a

M

SUBROUTINE UVOPRT(M1

M

C 0.0000000000000000.0.0.00.0.0.00....000000000000000000.0.0000

C THIS ROUTINE CALCULATES OPERATORS FOR U AND V FOR IN'PLANE

C EQUILIBRIUM EQUATION AND THE CONTRIBUTION OF EACH NODE.

C 0.000.000.00000.00.000.00.000..0000000000000000.00.00.00.000.

M

COMMON/IIPOSOBBICCOK(130811OOEL(81IOOFIIOIIQHQNSYH(BI1QORORK

COHNON/Z/OU(9091OOVI909)0KK(906410RU14910RUZI910RVII910RV2I91

COMMON’3/BI(651082(651OU‘BI)QVIBIAOBHIIOOIOBHZIO410HIIOO’

INTEGER OF

00 1 I=I09

RUIII1=RU2(I1=RVI(I1=RV2(I1=0.0

DO 2 J=109

OU(IOJ1=OV(IOJ1=0.0

2 CONTINUE

1 CONTINUE

X131./DEL(KK(50M11

XZ:I./OEL(KK(60N11'1./OEL(KK(40H1’

X3=I.IOEL(KK(80M11'1.’OEL(KK(20N11

III

C........CALCULATE OPERATOR FOR U1 IN X' EQUILIBRIUM

I.

RUII2’=.5‘CC'(XI'.25*X31

RU1(41=X1'X2/4.

RUI‘51=(POS'3.1.X1

RU1(61=X1.X2’4.

RU1081:.5.CCP(XI.X3I4.1

(I

c........CALCULATE OPERATOR FOR U2 IN Y’EQUILIBRIUH

(I

RU2(11=RU2(91=0.5'BB*X1

RU2(21=‘.59CC'X2

RU2(31=RU2(71='RU2(11

RU2(41='ROS'X3

RUZ‘61='RU2(41

RU2481=-RU2(21

In

C........CALCULATE OPERATOR FDR V1 IN X-EQUILIBRIUM

m

RV1(11=RV1(91=RU2(11

RVII21:-POS'X2

RV1(31=RV1(71=-RV1(11

RV1(41=‘.5‘CC‘X3

RV10613'RVII41

RV1(81:-RV1(21

g...
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C........CALCULATE OPERATOR FOR V2 IN T'EQUILIBRIUM

3
3
0
3
3

3
3
3
3
3

n
n
n

20

21

22

23

24

RV2(21=X1'.25*X3

RV2(41=CC'(.5 'XI'.125*X21

RV2(51=(POS'3.14X1

RV2(6)=CCt(.54X1O.125tX21

RV2(B1=X1.X3/4.

DO 3 J=109

IF(NSYH(M1 .NE. 01 GO TO 21

DU(JOJ1:OV(JOJ1=1.0

GO TO 3

IF(NSYM(M1-21 22023024

DU(1031=DU(4061=DU(7091=‘1.0

DU(1011=DU(2021=DU(4041=OU(5951=DU(7071=DU(BOB)=1.0

DV(JOJ1=1.0

GO TO 3

DV(1071=DV(2081=DV(3091=-1.0

OV(1011=DV(2021=DV(3031=DV(4041:DV(5051=DV(606):1.0

DU(JOJ1=1.0

GO TO 3

DU(1031=DU(4061=DU(7091='100

DV(1071=DV(20B1=DV(3091=-1.0

DU(1011=DU(2021=DU(4041=DU(5051=OU(7071=OU(B0B131.0

DV(1011=DV(2021=DV(3031=DV(4041=OV(5051=DV(6061=1.0

CONTINUE

RETURN

ENC

SUBROUTINE AUVMAT(M0NPR1

CALCULATES SUB-MATRICES FOR IN-PLANE EQUILIBRIUM EQUATIONS.

COMMON/2/DU(90910DV(90910KK(906410RU1(910RU2(910RV1(910RV2(91

COMMON/3/81(651082(6510U(8110V(8110801(6410302(6410U(1001

COMMON/4i AU1(640641.AU2(6406410AV1(6406410AV2(6406410AUV(12801281

.fififfifitififl It'.....*....OOCQAOCOOOOOCQOOOOQOOOQOfiii....OOOQCOOQ

CALCULATE A-MATRIX FOR U IN X EQUILIBRIUM

.fitffiflfiifltfi iiiiifiifiififiQ......tfifiififltfifitfiti.itifi0.......O.....*.

DO 2 L=109

IF(KK(L0M1 .GT. NPR1 GO TO 3

DO 1 I=109

AU1(M0KK(L0M11=AU1(M0KK(L0M11+0U(L0I1tRU1(I1

AU2(M0KK(L0M11=AU2(M0KK(L0M11+DU(L0I1*RU2(I1I4.

AV1(M0KK(L0M11=AV1(M0KK(L0M11+0V(L0I19RV1(I1/4.

AV2(M0KK(L0M11=AV2(M0KK(L0M114DV(L0I1*RV2(I1

CONTINUE

GO TO 2

DO 4 J=109

81(M1=81(M1-DU(L0J1'RU1(J1'U(KK(L0M11-DV(L0J10RV1(J1'V(KK(L0M11/4.

82(M1=82(M1-0U(L0J1tRU2(J1OU(KK(L0M11/4.-0V(L0J1tRV2(J1OV(KK(L0M11

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE ASSMBL(NPR1

itfiitfi...tfittittfitifitfiifiiiitfifiOiiittflfitfiitififiitfifiifiiQtttttiifi

ASSEMBLE MATRICES FOR IN-PLANE EQUILIBRIUM EQUATIONS.

Q.OtifitflfiiiiiififitiififitiitififtflIfifiiittfltfitii.fifiiifififitfitfiiii...

COMMON/4’ AU1(6406410AU2(6406410AV1(6406410AV2(6406410AUV(12801281

COMMON/5i BUVI(641.8UV2(6410BUV(1281

- DO 1 I=10NPR

NPI=I+NPR

auvcx)=euv1(x)

8UV(NPI1=8UV2(I1 -

DO 2 J=10NPR ‘

anzszaoa '

AUV(I0J1=AU1(I0J)

AUV(I0NPR21=AV1(I0J1

AUV(NPI.J)=AU2(I.J)

AUV(NPI.NPR21=AV2(I0J1 LE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE UFUNCT(ALFA0M1

.QOOOQQQOOQQOOOOOOAO.fltfit...ititfifittfiiiitfitiifltittfiifitttttiflfi

CALCULATE RIGHT HAND SIDE OF IN-PLANE EQUILIBRIUM EQUATIONS.

.OGQOQCQQOGOQQOOOQQOOQOOOffififfifitfitifiOiffifitififiififitifiiOitfiiflti.

COHHON/I/POS.BB.CC.K(13.811.0ELT81).OF(IOI1.H.NSYM(811.DR.RK

COHHON/S/BlT651.82(65).U(811.VC811.801(64)0802(6410UIIOOI_

COMMON/SI BUV1(64)08UV2(64)08UVT128)

UX=.5*(U(K(8.M))-U(K(6.M)))IH

HY:.5«ALFA~(UCK(11.H))-U(K¢3.M)1)lH

UXX:¢U(K(8.H)10H(K(60M)1-2.0H(K(7.M)))IH0-2

UYY=ALFA902*(U(K(3.H)190(K(110H)1-2.'U(K(7.H)))IHotz

UXY=.250ALFA0(U(K(2.M))-U(K(4.H))-H(K(IO.H)100(K(12.H111/H002

X1=1.IOEL(K(7.M))

x2=.50(1./OEL(K(8.M))-1.IOEL(K(6.H)1DIH

x3=.50ALFAt¢1.IDEL(K(11.H))-1./DEL(K(3.H)))IH

901(H)=x1-uxx.uxo.5cx1o(aacuxv-uvocc-uvvtux)+.5.x2-(UXo-zopos-

SOY-'21OCCOX3*UX¢UYO.5 '

802(M)=.50x1tBBtHXY-UXO.SOXIOCCOHXX*UYO.5-Cch2*HXtUY0.50x3-(HY-t2

SOPOSOUx00210x1tHYYtHY

8UV1(M1=81(M1-8H1(M1*H*i2

BUVZTH)=82(M1-802(M)0H002

RETURN

END
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SUBROUTINE KKVECT(NPR1

m

C 0.0.0....0000000000.00.0000....00....0.....00.0.00000.0.0.000

C........STORES A 3 BY 3 STENCIL PATTERN FROM USUAL 13 NODE STENCIL.

C 00.0000.000000000000000000000000.000000000000000000000.00....

NI

COMMON/I/POS0BB0CC0K(1308110DEL(8110DF(10110H0NSYM(8110DR0RK

COMMON/2/DU(90910DV(90910KK(906410RU1(910RU2(910RV1(910RV2(91

DO 1 J31 0NPR

KK(10J1=K(20J1

KK(20J1=K(30J1

KK(30J1=K(40J1

KK(40J1=K(60J1

KK(50J1=K(70J1

KK(60J1=K(BOJ1

KK(70J1=K(100J1

KK(80J1=K(110J1

KK(90J1=K(120J1

1 CONTINUE

RETURN

END

m

(I

(N

In

M

SUBROUTINE RHSU(MOQOALFAOBUONPRONOITREND1

m

C 0.00.000000000000000000.0.0...00000000000000.0000...0000.000.

C THIS ROUTINE CALCULATES RIGHT HAND SIDE OF OUT-OF-PLANE

C EQUILIBRIUM EQUATION AS HELL AS IN-PLANE FORCESOBENDING

C MOMENTS AND PRINCIPAL STRESSES.

C 000000.000.0000000000000000...00.00.000.00t0g000000000.00000.

IR

DIMENSION Q(8110BU(811

COMMON/l/POS0BB0CC0K(1308110DEL(8110DF(10110H0NSYM(8110DR0RK

COMMON/3/Bl(651082(6510U(8110V(8110BU1(6410BHZ(6410U(1001

C0MMON/6/DELT(81100ELTA(8 10AM(408110DELA(8 10IBC(811

COMMON/8/XNX0YNY0XNY

IF(NSYM(M1 .NE. 01 GO TO 104

UX3.5.(U(K(B0M11'U(K(60M111/H

VY=ALFA4.5'(V(K(110M11-V(K(30M1111H

GO TO 20

104 GO TO (110120130140150160171 NSYM(M1

11 UX=-U(K(60M11/H

VY=ALFA'.5*(V(K(110M11-V(K(30M111/H

GO TO 20

12 UX=.5*(U(K(80M11-U(K(60M111/H

VY3'ALFA'V(K(30M11/H

GO TO 20

13 UX='U(K(60M11IH

VY=-ALFA4V(K(30M11IH

20 UY=ALFA*.50(U(K(110M11-U(K(30M111/H

VX305.(V(K(B0M11-V(K(60M111/H

14 GO TO 25

15 UX3(U(K(B0M11‘U(K(70M111/H

VX:(V(K(80M11-V(K(70M111/H

UY=ALFA'.5'(U(K(110M11-U(K(30M111/H

VY=ALFA*.5*(V(K(110M11'V(K(30M111/H

NP2=NPR¢1

IF(M .EQ. NP21 VY=ALFA*(V(K(70M11'V(K(30M111/H
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16

17

21

25

202

254

IF(IBCTM) .EQ. 2) 60 TO 22

H(K(20M11=U(K(40M11

U(K(6.M11=U(K(80M11

u¢x¢1o.n»::u¢x¢12.H))

so TO 25

U(K(100M11=-U(K(120M11

U(K(20M11=-U(K(40M11

U(K(60M11=-U(K(8.M11

so TO 25

UY:ALFA*(U(K(110M11-U(K(70M111/H

VY=ALFA0(V(K(110M11-V(K(70M111IH

UX=.50(U(K(8.M11-U(K(60M111/H

IF(M .EO. N1 UX=(U(K(70M11-U(K(6.M11)lH

VX=.5'(V(K(80M11-V(K(60M111/H

UIKI4.M11=H(K(120M11

IF(IBC(M1 .EQ.'21 U(K(40M11=-U(K(120M11

GO TO 25

UX=(U(K(80M11-U(K(7.M111/H

VX=(V(K(8.M11-V(K(7.M1)1/H

UY=ALFA0(U(K(110M)1-U(K(70M)11/H

VY:ALFA*(V(K(110M11-V(K(70M111IH

IF(IBC(M1 .EQ. 2) GO TO 21

H(K(6.M11=U(K(8.M))

U(K(30M11=U(K(110M11

U(K(20M)1=H(K(40M11=U(K(120M1)

so to 25 ‘

U(K(60M11:-0(K(80M11

IU(K(30M11=-U(K(110M11

U(K(2.H))=U(K(4.H)1=-U(K(12.H))

UX=.50(H(K(8.M1)-U(K(6.H)11/H

HY=.5tALFA0(H(K(II.H))-UTK(3.H)))lH

UXX=(U(K(80M1100(K(60M11-2.*H(K(70M1)1/Htt2

UYY=ALFAt020(H(K(3.H)TOHTK(110M)1-2.-U(K(7.H)))lHrtz

UXY=.250ALFA0(H(K(2.M11-H(K(4.H)1-H(K(10.M1)0H(K(12.M)))lHt-Z

x1=I./OEL(K(1.H1)

XNx=x10RKt(UXO.5*Ux0-20POSOVY¢.5*POScUY002)[(88.66)

YNY=x1-RK¢(VYO.5*HY0*20P050UX+POS*.5fiUXttZ)/(88tCC)

XNY=.StX1'RK0(UY0VX¢UXOUY1IBB

IF(ITREND .60. 01 GO TO 2

DP=DR00ELT(H)

XM=-DP0(HxxoPos-UYY)

YH=-OP0(HYY0POS'HXX)

XYM=OP*CC*UXY

T2=12.9880CCtDP/(x10RK1

T:SORT(T2)

SIGMAX=6.0XM/T2

SIGMAY=6.0YHITZ

SIGMANX=XNXIT

SIGMANY=YNYIT

XSIGMAx=ABSISIGMAx10ABSTSIGHANX)

YSIGHAX:ABS(SIGHA¥)+ABS(SIGHANY)

RA0=SQRT(((XSIGMAX-YSIGMAX1IZ.1'420(XNY/(2.*T11.021

PRSTRES=(XSIGHAX¢YSIGMAXTI2.+RAO

HRITEt6.202) H.XNX.YNY.XNY.XH.YH.XYH.XSIGMAX.YSIGMAX.PRSTRES

FORMAT!//.5x.IZ.3X.3F10.4.5X.3F10.4.10x.2F12.4.5X.F12.4)

BU(M1=Q(M1¢XNX40XXOYNYtUYY¢2.*XNYtHXY

BU(M)=BU(M1*H*¢4IDR «

RETURN

END



255

(I

I

.

SUBROUTINE BHBUCKL(M0NPR1

C 0.0.00.0.000.0.0.0...0000.00.00.00...0000.000.0.0000000000000

C........FORM COEFFICIENT MATRIX IN RIGHT HAND SIDE OF Z-EQUILIBRIUM EQUATION.

C 000000....000.000.000.00000000000000.000.00.000000000000.000....

I

COMMON/IIPOS0BB0CC0K(1308110DEL(8110DF(10110H0NSYM(81100R0RK

COMMON/7/RU(1310DU(1301310AU(640641.BUB(640641

COMMON/8’XNX0YNY0XNY

IF(K‘20") .GT. NPR1 GO TO 2

BUB(M0K(20M11=BHB(M0K(20M11OXNY/(2.*Hi*21

2 IF(K(30M1 .GT. NPR1 GO TO 3

BUB(M0K(30M11=BU8(M0K(30M11OYNY/H**2

3 IF(K(40M1 .GT. NPR1 GO TO 4

BUB(M0K(40M11=BHB(M0K(40M11-XNY/(2..H4021

IF(K(60M1 .GT. NPR1 GO TO 5

BUB(M0K(60M11=BUB(M0K(60M11OXNXIH002

5 IF(K(70M1 .GT. NPR1 GO TO 6

BHB(M0K(70M11=BUB(M0K(70M11-2.*(XNXOYNY1/Ht*2

6 IF(K(80M1 .GT. NPR1 GO TO 7

BUB(M0K(80M11=BUB(M0K(80M11+XNXIH4*2

7 IF(K(100M1 .GT. NPR1 GO TO B

BUB(MOK(100M11=BUB(MOK(100M11-XNY/(2.*H*'21

IF(K(110M1 .GT. NPR1 GO TO 9

BUB(M0K(110M11=BUB(M0K(110M11¢YNYIH042

9 IF(K(120M1 .GT. NPR1 GO TO 10

BUB(M0K(120M11=BUB(M0K(120M11OXNY/(2.4H9*21

10 RETURN

END

O
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