A COMPUTER-INTERACTIVE BIPOLAR PULSE CONDUCTANCE SYSTEM

Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY KEITH JOSEPH CASERTA 1974

LIDD ID!

Middigan State

University

1. 30

ABSTRACT

A COMPUTER-INTERACTIVE BIPOLAR PULSE CONDUCTANCE SYSTEM

By

Keith Joseph Caserta

A computer-interactive conductance measurement system has been developed which utilizes the bipolar voltage pulse technique for conductance determination. The entire measurement system is controlled by a dedicated minicomputer. Within the system the computer exercises control over the pulse width, the pulse height, the amount of offset current applied, and the tracking amplifier gain. The computer also controls the triggering of the bipolar pulse perturbation and the pulse repetition frequency. It monitors the conductance signal produced by the sum of the cell and offset currents, and stores and analyzes this data. Discrete conductance measurements may be made as often as every thirty microseconds. The dynamic range of measurable conductances extends from 0.22 to 1.8 x $10^{-7}\Omega^{-1}$.

Signal-to-noise ratios for this instrumental system vary from $^{6.40} \times 10^2$ to 6.70×10^3 over the operating range, for single bipolar pulse perturbations. Averaging up to 2000 perturbations per point increases these values to 1.18×10^3 to 6.40×10^5 over the operating range. The conductance measurement is unaffected by parallel cell capacitances at least as high as 1000 pF. Accuracy within the operating

Second Second

range has been found to vary from 0.38 to 0.0037 percent for a series capacitance of 10 μF . Increased accuracy is obtained at larger series capacitance values.

The conductance system is capable of measuring temperature simultaneously by means of a separate analog temperature monitor and digital conversion circuit. Software has been written which utilizes this measured temperature for correction of conductance data for temperature fluctuations. This is done by curve-fitting a temperatureconductance profile obtained by changing the temperature of the system to be studied over the temperature range of interest, while acquiring conductance and temperature data. The coefficients of the fitted curve are used to calculate temperature-corrected conductance within various data analysis routines. In addition to the correction features, a record of the temperature-conductance behavior of a particular system may be obtained. This behavior has been investigated for several electrolytes in aqueous media, and several in non-aqueous media. The curves thus obtained have indicated that the temperature coefficient Of Conductance will often change sign over a few degrees temperature change. This preliminary work has indicated that such profiles may be both qualitatively and quantitatively useful.

Other programs within the computer-interactive conductance system software set enable the system to acquire and analyze data for conductometric titrations, stopped flow kinetic experiments, dissociation constant determinations, absolute conductance measurements, chromatography monitoring, instrumental performance characterization, and instrumental self-testing. In addition, a computer-interactive instructional package has been developed for teaching operation of the system. It includes

text messages, interactive dialog, and graphic displays. This facility provides the novice operator with most of the information required to operate and understand the system. It also provides a continual reference source for the more experienced user.

A number of aqueous and non-aqueous titrations have been investigated with the system. The chemiluminescence reaction of luminol with base in DMSO and 1:1 DMSO-EtOH has also been studied with the system by monitoring the conductance, temperature, and chemiluminescence changes.

The computer-interactive conductance system has been shown to be a versatile and powerful measurement tool which is capable of monitoring those conductance changes which are too small for, too fast for, or beyond the operating range of conventional instruments.

A COMPUTER-INTERACTIVE BIPOLAR PULSE CONDUCTANCE SYSTEM

Ву

Keith Joseph Caserta

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

I dedicate this Dissertation to my sons, Keith and Kevin.

May they love to learn, be strong but gentle,

and be free to dream and create and be happy.

1,0 ZT. (M) + i, rin à (a া ÷ . Š i. r;

14

ij

1

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to Professor C. G. Enke for his help and guidance during the entire project presented in this Dissertation. Professor Enke succeeded not only in providing technical aid when it was needed but, equally importantly, helped me develop an appreciation of the broader perspective of analytical measurement and scientific technique.

I wish to thank the fellow members of Professor Enke's research group for the interaction and comradeship which developed between us during my studies at Michigan State. I especially want to thank Brian Hahn and Tim Nieman for their friendship, interest, and help during the past three years. I wish to express appreciation to Professor S. R. Crouch for his aid during the project, and the other members of my Guidance Committee for their comments and interest. Professor R. N. Hammer deserves special thanks for his contributions to my overall graduate education.

I want to thank my parents and grandparents who continuously provided the guidance and encouragement which lead to whatever successes I've enjoyed in my studies and research. Special thanks go to my father who has supported me in everything I've done, all my life, and who probably knows me best of all.

Most importantly, I want to express my deepest thanks to my beautiful wife, Connie. She has stood with me throughout these last four years of study, during days when my work has kept me at the laboratory and left her alone with the children for long hours at a time. She has been a daily inspiration to me to pursue my work with determination. And, finally, she

typed the initial draft of this entire Dissertation while taking care
of our two sons and our apartment, and preparing our meals and our move
to a new city and a new life.

TABLE OF CONTENTS

				Page
LIST OF	TABI	LES		ix
LIST OF	FIG	JRES		×
INTRODUC	CTIO	V		1
		A.	User-Oriented Laboratory Instrumentation	1
		В.	Expanding the Application of Classical Measurement Techniques Through Laboratory Automation	3
CHAPTER	1.		eral Description of the Computerized ductance System	6
		A.	Philosophical Overview	6
		В.	The Computer-Interactive Conductance System	7
		C.	The Computerized System Employed in the Computerized Conductance System	8
		D.	The Computer-Interactive Conductance System Block Diagram	10
		Ε.	The Computerized Conductance System Software Library	13
CHAPTER	2.	The	Analog Measurement of Conductance	20
		A.	Early use of the AC Bridge Technique	20
		В.	Later Improvements in the AC Bridge Technique	23
		C.	The Bipolar Pulse Technique	26
		D.	The Analog Circuits of the Computerized Conductance System	32
		Ε.	The Power Suyplies of the Computerized Conductance System	40
CHAPTER	3.	Tota	lementation of a Dedicated Computer for all Digitization of the Conductance Mea- ement Sequence	43

Chapter			Page
	Α.	Interfacing the Digital Computer for Chemical Applications	43
	В.	Digital Conversion and Control of Analog Signals	49
	C.	Digital Sequencing of the Bipolar Pulse Measurement	55
CHAPTER 4.		gramming the Computerized Conductance tem for Optimized Measurement	63
	Α.	Creating a Software Library for Labora- tory Instrumentation	63
	В.	Laboratory Computer Languages	64
	C.	Programming with Commonly Provided Languages	67
	D.	The DEC OS/8 Operating System	68
	Ε.	Creating an Experimentally Flexible Software Set	73
	F.	Determination of the Optimum Measure- ment Parameters for the Computerized Conductance Instrument	74
	G.	The Preliminary Scan Routine	75
	н.	The Averaging Routine	80
	I.	The Timed Data Acquisition Routine	82
CHAPTER 5.	Tes	formance Characteristics and Self ting Ability of the Computerized ductance System	91
	Α.	Performance Characterization Via the System Software	91
	В.	Determination of System S/N, Precision, and Resolution	91
	c.	Determination of System Accuracy	98
	D.	Optimum Pulse Width Selection	105
	Ε.	Scale Change Corrections in the Computerized Conductance System	108
	F.	Linearity, Range and Speed Charac- teristics	110

Chapter		Page
	G. System Diagnostic and Exerciser Facility	111
CHAPTER 6.	Temperature Measurement and Compensation in the Computerized Conductance System	119
	A. The Temperature Monitor	119
	B. The Software set for the Determination of the Thermistor Response Coefficients of Conductance	126
	C. Conductance Data Enhancement Through Temperature Variation Correction	139
	D. Some Comments on the Shape of Conductance-Temperature Profiles	148
CHAPTER 7.	Application of the Computerized Conductance System to Titration Monitoring and Analysis	152
	A. Specific Software and Hardware for Titration Experiments	152
	B. Titration Data Analysis and Display Software	156
	C. Early Studies with the Computerized Conductance System: Precipitation Titration of Ag ⁺ with KCl	161
	D. Some Observations Concerning the End Point Phenomenon Associated with Certain EDTA Titrations	163
	E. Determination of Small Amounts of NaOH in the Presence of Large Quantities of Sodium Phenolate	174
	F. Titration of Phthalic Acid in 1:1 DMS0- EtOH	180
CHAPTER 8.	Application of the Computerized Conductance System to Kinetic Studies: Preliminary In- vestigation of the Luminol Reaction	184
	A. Specific Software for Kinetic Experiments	184
	B. Specific Hardware for Kinetic Experiments	187
	C. Previous Investigation of the Luminol Reaction	191

Chapter		Page
	D. Stopped-flow Study of the Luminol Re- action	195
	E. Conclusions from the Preliminary Investigation of the Luminol Reaction	208
CHAPTER 9.	CBHELP: The System Instructional Package	212
	A. Use of the Computerized Conductance System by Future Workers	212
	B. Creating the CBHELP Program	213
	C. Using the CBHELP Program	224
CONCLUSION		230
REFERENCES		231
APPENDIX	Selected Program Listings	234
	A. CBTSLS B. CBPSLT C. CBTCLH D. CBTALR E. CCLALF F. CDTALC G. CFPTLI H. CCLMLT I. CDPMLT J. FILEII K. CBHELP	234 250 262 274 282 287 290 291 297 305 310

LIST OF TABLES

Table		Page
1.	Computerized conductance system instruc-	
	tion set.	48
2.	Performance characteristics.	99
3.	Accuracy for various conductance-series	
J.	capacitance combinations	104

LIST OF FIGURES

Figure		Page
1	Computer System Block Diagram	9
2	Computerized Conductance System Block Diagram	11
3	Computerized Conductance System Software Set Flowchart	14
4	AC Conductance Bridge Circuit	21
5	DC Coupled Lock-in Detector Conductance Measurement Circuit	25
6	Bipolar Pulse Conductance Device	27
7	Schematic Diagram of the Computerized Conductance System Analog Circuits	33
8	Photograph of the Analog Circuits	39
9	Photograph of the Conductance Instrument Power Supply	41
10	Schematic Diagram of the +24 Volt Relay Power Supply	42
11	PDP/8 Computer Functions Available with the Heath EU-801E Interface System	47
12	Signal Sampler and Converter Schematic Diagram	51
13	Control Circuits Schematic Diagram	54
14	Measurement Sequencer Schematic Diagram	57
15	Photograph of the Digital Circuits Compart- ment	60
16	Photograph of the Control Circuits for Offset and Gain	61
17	Photograph of the Control Circuits for Pulse Height and the Analog Temperature Monitor Circuit	62
18	Simplified Preliminary Scan Flowchart	77

Figure		Page
19	Preliminary Scan Routine Output	79
20	Averaging Routine Flowchart	81
21	Averaging Routine Output	83
22	Timed Data Acquisition Routine Output	84
23	Simplified Timed Data Acquisition Routine Flowchart	85
24	Simplified Reset Routine 1 Flowchart	88
25	Simplified Reset Routine 2 Flowchart	90
26	Random System Noise Profile (Plot)	94
27	Reduction of System Noise to Quantization Level (Plot)	95
28	Ensemble Averaging Improvement in S/N and Resolution (Plot)	97
29	CBPSLT Program Flowchart	101
30	Percent Relative Error vs. Log (R) for a Series Capacitance of 5.0 μF (Plot)	107
31	Conductance-Time Profile for Cooling of a Sulfuric Acid-Water System, Raw and Scale Change Corrected Data (Plot)	109
32	CBTCLH Program Flowchart	113
33	Test Probe Schematic Diagram	114
34	Temperature Monitor Schematic Diagram	122
35	Temperature Monitor Response vs. Thermistor Conductance (Plot)	125
36	Thermistor Response - Conductance Profiles for Luminol, PotassiumTertiary Butoxide, and Reaction Products in DMSO (Plot)	128
37	CBTALR Array Arranger Program Flowchart	130
38	Array Arranged Data from Figure 36 (Plot)	133
39	CCLALF Program Flowchart	134

1 ij Ħ ! ij ŗ ij ; 7 :

Figure		Page
40	Curve Fitting Program Flowchart	136
41	CFPTLI Program Flowchart	138
42	Temperature - Conductance Profile and Cubic Fitted Curve for a Sulfuric Acid-Water System (Plot)	140
43	Conductance - Time Profile for Cooling a Sulfuric Acid - Water System, Raw, Scale Change and Temperature Corrected Data (Plot)	141 141
44	Conductance Profile for Addition of Concentrated Sulfuric Acid to Water. Raw and Temperature Corrected Data (Plot)	144
4 5	Temperature Change When DMSO and EtOH are Mixed in the Stopped Flow. Tempera-ture Change During a Reaction of Luminol in DMSO and KOH in EtOH (Plot)	145
46	Stopped-Flow Study of the Luminol System. Raw and Temperature Corrected Conductance vs. Time (Plot)	147
47	Automatic Burette Interface Schematic Diagram	154
48	Simplified CCLMLT Program Flowchart	157
49	Simplified CDPMLT Program Flowchart	160
50	Conductometric Titration of Ag^+ with KC1 (Plot)	162
51	Conductometric Titration of Ca ⁺⁺ with EDTA in NH ₃ /NH ₄ + Buffer Showing End Point Anomaly (Plot)	165
52	Conductometric Titration of 2.3 x 10^{-5} M Ca ⁺⁺ with 2.0 x 10^{-4} M EDTA in NH ₃ /NH ₄ + Buffer (Plot)	169
53	Induced Conducticator Effect for Titration of Ca ⁺⁺ with EDTA in NH ₃ /NH ₄ Buffer Before and After Scrubbing the Cell (Plot)	172

Figure		Page
54	Conductometric Titration of NaOH with Phenol in the Presence of Sodium Phenolate (Plot)	177
55	Conductometric Titration of NaOH with HCl in the Presence of Sodium Phenolate (Plot)	179
56	Conductometric Titration of Phthalic Acid with KOH in 1:1 DMSO-EtOH (Plot)	181
57	Photograph of the Early Hacker Stopped- Flow Apparatus	186
58	Luminescence Data Monitor	190
59	Conductance Curve of the Luminol- Potassium Tertiary Butoxide Reaction in DMSO (Plot)	196
60	Temperature Profile Due to Mixing two DMSO Solutions of Luminol and Potassium Tertiary Butoxide in an Unthermostated Cell (Plot)	197
61	Conductance Change with Increasing Con- centration of KOH in 1:1 DMSO-EtOH (Plot)	201
62	Equivalent Conductance vs. (Concentration) $^{1/2}$ for KOH in 1:1 DMSO-EtOH (Plot)	202
63	Conductance and Chemilumenescence Curves for a Reaction of Luminol in DMSO with KOH in EtOH (Plot)	206
64	Conductance Change for the Reaction of Luminol in DMSO with KOH in EtOH Corrected for Background Effects (Plot)	207
65	FILEII Program Flowchart	218
66	Photograph of CBHELP-Generated Scope Display of the System Block Diagram	221
67	X-Y Plotting of a CBHELP-Generated Graphic Display Depicting Pulse Width Selection Curves	222
68	Program Set Selection Options in the CBHELP Program	226

Figure		Page
69	CBHELP-Generated Program Flowchart for Temperature-Conductance Profile Measurement and Analysis	227

INTRODUCTION

A. USER-ORIENTED LABORATORY INSTRUMENTATION

A significant portion of the research effort in analytical and physical chemistry, in recent times, has been directed toward development of instrumentation and instrumental techniques for chemical analysis and basic physical measurement. This research has not only resulted in faster, more accurate, and more precise measurements, but also in the ability to perform measurements which were not previously possible.

Perhaps the greatest problem associated with the use of this new and sophisticated instrumentation is that most of these measurement systems require equally sophisticated operators to insure that they will be utilized to the fullest extent. This situation has resulted in the emergence of specialists in NMR, far IR, interferometric, ESR, and ESCA spectroscopic techniques, as well as in mass spectrometry, conventional voltametry, coulostatics, and so forth. These groups of specialists have been needed in order to operate these instruments in the various modes which have been designed into them and to interpret the extraordinary amounts of data, which these techniques produce. The conventional laboratory chemist does not usually possess the time or the inclination to familiarize himself with the details of operation and data interpretation for more than a few of these methods. Thus, the caliber of the experimentation, which he is able to realize through the use of these techniques, is very much dependent upon his ability to communicate his desires and goals to the specialists. Unfortunately, the necessary "meeting of minds" often fails to occur, resulting in a

poorly designed experiment and only minimal utilization of the power of a particular measurement technique.

Problems associated with optimum utilization of an analytical method are not confined to those techniques which have a significant group of specialists dedicated to them. In addition to these, there are numerous other techniques which are commonly used by the laboratory chemist to solve analytical problems. These techniques are rarely utilized to their maximum capabilities because there seldom is an individual present who possesses the necessary expertise to take full advantage of the method. What appears to be needed in the case of the specialized instruments and the less complex but more commonly used techniques is a system through which any operator, with a reasonable technical background, can realize the best measurement possible with a particular analytical technique, for each experiment which he designs and executes himself.

Fortunately, the introduction of monitoring and control computers into laboratory instrumentation in the past eight years does, at least, hold the promise of not only greatly enhancing the sophistication of instrumental techniques, but also adapting easily to operators who are relatively unfamiliar with the intricacies of these methods.

Nevertheless, this goal can be accomplished only if the computer interaction is properly implemented, not only from a hardware standpoint, but also from a philosophical one. Since computer-interactive instrumentation has the ability to perform both unique and delicate experiments as well as to produce voluminous amounts of data, there exists a very real danger of building such instrumentation in a manner in which the overall instrumental system (instrument, computer, peripherals, etc.)

::]*t2t]

Fill as

ing i

zactive

i reconic

simed fo

t ereci

Trection

/ inte

e, the

"Imrai

ar:tor

ikia)

: ::';'e

新的

79. 85, 1

Je.

₹,

Re Roman

≿η;

ing

ite.

has a greatly increased "apparent" complexity (as it appears to the operator) as opposed to more conventional systems.

From a chemist's viewpoint, then, the goal in designing computerinteractive instrumentation should be to permit maximum utilization of a technique. This should be done regardless of the complexity required for any component of the system. However, an equally important consideration is that which requires the measurement system-operator interaction to be such that the experiment performed with the system will appear to be only as complex as the chemistry involved. Furthermore, the final form of the data produced by such a system should make interpretation as simple as possible. If any analytical technique is incorporated into such a system, the result will be a user-oriented laboratory measurement device which is not dependent upon operation by a specialist. If properly designed, the device will be sufficiently flexible to move from one analysis problem to another totally different one with little modification beyond that of changing the operating program. The instrument can then be "time shared" among many different users, much as the computer itself can be utilized in the time sharing mode.

B. EXPANDING THE APPLICATION OF CLASSICAL MEASUREMENT TECHNIQUES THROUGH LABORATORY AUTOMATION

Recently, there has been a renewed interest in those measurement techniques which monitor the bulk properties of solutions. These techniques do not differentiate between chemical species but are responsive to some overall physical property. Conductance measurement, with which this thesis is concerned, is, of course, one of these

classical bulk property techniques. It has traditionally been utilized for titration monitoring, where a specific chemical reaction between analyte and titrant is chosen such that a chemically specific analysis method need not be used. Chromatographic monitoring is another area in which conductance instruments are being used as detectors. Finally, as will be demonstrated later in this manuscript, reaction mechanisms can be studied with conductance techniques alone, or by coupling these measurements with other, more chemically specific, methods.

Conductance methods, although certainly in widespread use, have been generally ignored by analysts. This is due both to the lack of understanding of interferences present in real systems when these measurements are made and to the application problems associated with the use of classical conductance instruments. The problems include the necessity of platinizing electrodes, delicately balancing bridge and grounding circuits, gross dependence of the property measured on temperature, and the calculations necessary for correction of conductance data for interferents, for analysis of chemical systems, and for plotting meaningful data. The measurement of conductance, although often utilized in laboratories concerned with widely diverse studies, has usually not been performed in an optimum manner, and has seldom been exploited for its maximum capabilities. This is the direct result of the problems mentioned above, as well as the lack of measurement speed from which the technique has traditionally suffered. Thus, Conductance techniques fit easily into the category of research techniques which lack a widespread group of routine applications specialists to oversee the modernization of the technique.

It is the purpose of this thesis to demonstrate how the application

		4
		5
		_
		:
		:
		;
		:
		,
		:

of a dedicated computer to the monitoring and control of the entire conductance measurement process results in a dynamic laboratory measurement system which overcomes most of the problems associated with the conventional application of the conductance technique. In addition, the use of the computer-interactive system expands the application possibilities of conductance measurement into areas where it has not previously been used at all, or only used conservatively. Finally, the system described here enables an unsophisticated operator to perform experiments which make the maximum use of conductance measurement and produce the maximum useful data automatically, without regard to the operator's degree of understanding of the intricacies of the measurement being performed.

CHAPTER 1

GENERAL DESCRIPTION OF THE COMPUTERIZED CONDUCTANCE SYSTEM

A. PHILOSOPHICAL OVERVIEW

The thoughts presented in the Introduction to this manuscript could certainly serve as a basis for design of any computerized measurement system. The fact that they were, as will be seen, important considerations in the design of the computerized conductance system does demonstrate that they are definite principles which can be implemented in the design of user-oriented laboratory measuring apparatus. However, these principles are, in themselves, of little value to the researcher unless he is directed toward the chemical problems which this approach to instrumentation is strategically designed to solve. To one who would be a chemist, the development of instrumentation performing no unique chemical measurement would appear to be a foolish pursuit. The author feels certain that this is the case.

The author wishes to stress, at the beginning of the discussion of the actual research presented in this thesis, that the work to be presented here did <u>not</u> involve the building of a unified conductance instrument. The group of circuits which perform conductance measurement per se do not constitute an independent instrument. Except for an on-off switch they possess no dials or dial settings and no switches or indicators which would enable them to be operated in the way that any other instrument might be. They constitute several functional blocks out of many separate blocks which, when properly combined in implementation, are the viable chemical measurement tool referred to

			5
			.v
			ţ
			7
			į
			,
			•

here as the computer-interactive conductance <u>system</u>. Other functional blocks, such as the temperature monitor, real-time clock, and display devices, are of nearly equal importance when the overall operation of the system in a chemical measurement application is considered. The entire system is welded into a functional unit through a series of interfaces and a collection of flexible software, all of which are rendered interactive through the power of the controlling computer. The author can assume considerable responsibility for the design, construction, and ultimate operation of many of these functional blocks but not, by any means, all of them. However, the unique manner in which these blocks are combined to create a laboratory measurement system which is user-oriented, and the chemical measurements which have been made with this system to the present time, are the direct subject of this thesis and the author's contribution to chemical research.

B. THE COMPUTER-INTERACTIVE CONDUCTANCE SYSTEM

The computerized conductance system itself is constituted from three interacting elements, the computer and its peripherals, the conductance instrument (referring, now, to the group of circuits which, when placed in the system, perform conductance measurement), and the software. The computer intimately takes part in the operation of the conductance instrument through the logical flow of the programs. The experiment, monitored most directly by the conductance instrument itself, is under the supervision of the measurement system at all times. This four-way involvement, software-computer-instrument-experiment, results in experiments which are modified during their execution by the

measurement system in such a way that the best measurement attainable for that particular chemical process is obtained. Furthermore, the operator, having set up the experiment, need have no further knowledge of the intricacies of the bipolar pulse measurement technique because the system <u>does</u> possess that "knowledge" through the logical sequencing and decision processes performed by both the hardware and the software throughout the experiment and subsequent data analysis. Finally, the computerized conductance system itself, has become capable of supplying the operator with much desired information concerning the theory, operation, adjustment, and trouble-shooting of, as well as program selection for the computerized conductance system (Chapter 9).

C. THE COMPUTER SYSTEM EMPLOYED IN THE COMPUTERIZED CONDUCTANCE SYSTEM

The computer system which was available for use with the computerized conductance system is shown in Figure 1. It has proven to be an extremely powerful system for laboratory use. This arises from both the standard peripherals it includes and the specialized peripherals interfaced in this laboratory.

The computer is a Digital Equipment Corporation (DEC) PDP-8/I minicomputer with 12K of memory. 8K of this memory is standard core memory and 4K is a solid state memory block manufactured by Calcomp Galaxies Inc. The standard computer peripherals include an extended arithmetic element (EAE) for fast, hardware multiplication and division, dual magnetic tape units (DECTAPE), a high speed paper tape reader and punch (all made by Digital Equipment Corporation) and an ASR 35

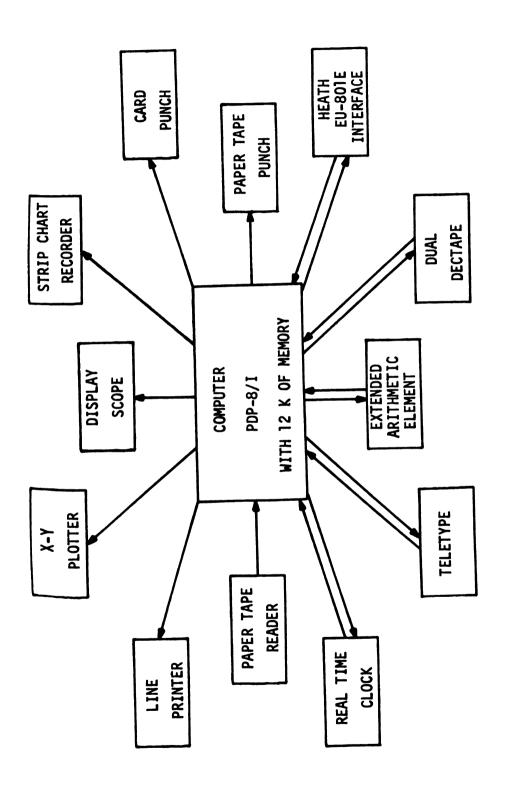
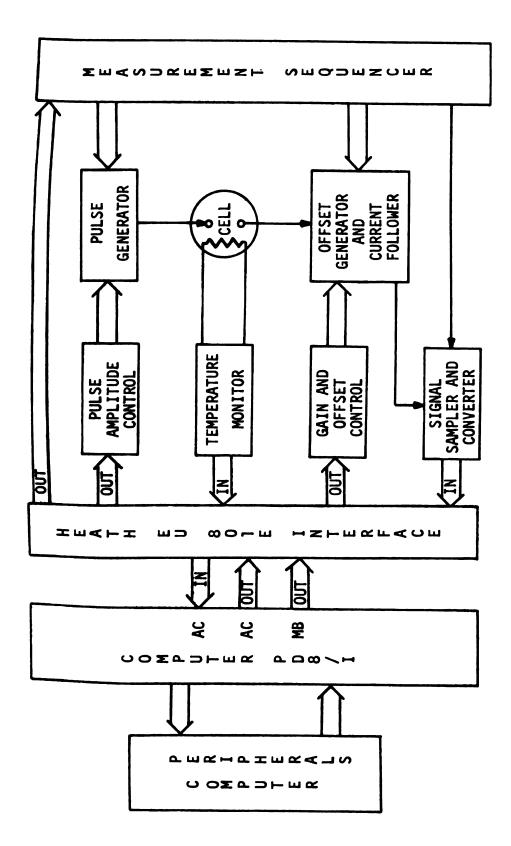


Figure 1. Computer System Block Diagram.

	:
	7
	nv
	;
	<u>;</u>
	•
	:
	;
	:
	•


teletype. In addition, several non-DEC peripherals have been interfaced to the PDP-8/I in this laboratory. These include an RCA-301 line printer (1), a card punch (2), a Varian F-80 X-Y plotter and a Tektronix 535A display scope (3) with a character generating capability (4), and a Heath EU-205-11 strip chart recorder (3). Finally, there is an extremely versatile mainframe real-time clock, as described by Hahn and Enke (5).

The Heath EU-80lE interface system (6) (described in detail in Chapter 3) was used for interfacing the above peripherals as well as all components of the conductance instrument itself. The bipolar pulse conductance instrument, which was made functional through this computer system, was structured to take advantage of the interactions available with it.

D. THE COMPUTER-INTERACTIVE CONDUCTANCE SYSTEM BLOCK DIAGRAM

The bipolar pulse conductance measurement technique will be examined in detail in Chapter 2. Briefly, it involves the application, to a cell, of two voltage pulses of equal magnitude and duration but opposite polarity, followed by instantaneous measurement of the cell current at the exact end of the second pulse. Measurement in this way has the effect of eliminating the capacitive interferences associated with real cells, as will be seen, resulting in a much more accurate determination of the true cell conductivity than possible with more classical techniques.

The specific modules which constitute the conductance instrument are shown in the overall conductance system block diagram of Figure 2. The instrument is controlled by data transferred from the computer to

The Computerized Conductance System Block Diagram. Figure 2.

	į	:
	•	••
	:	
		1
		•
		,

the control circuits and the measurement sequencer (both discussed in detail in Chapter 3) through the Heath interface. The computer also supplies the triggering signal to the measurement sequencer which initiates pulsing. The pulse amplitude control receives data which determines the pulse height. It provides the correct positive and negative voltage levels to the pulse generator (Chapter 2). The gain and offset control is set to determine the amplification of the signal produced by pulsing the cell and the amount of that signal offset before amplification (Chapter 2). The measurement sequencer, which supplies the signals that determine the length of the pulses and the timing of the measurement, contains a time base also controlled by the computer. The analog signal produced by combination of the cell and offset currents is tracked, held, and converted (Chapter 3) under control of the measurement sequencer. Finally, the digital signal is driven into the computer upon request and stored for later analysis.

Cell temperature may be simultaneously followed by the temperature monitor which contains its own digital conversion system (discussed in Chapter 6). The temperature measurement is triggered and the data acquired by the computer. This data can be used by the computerized conductance system to correct conductance data for temperature fluctuations in the chemical system under study as well as to provide interesting information on the temperature-conductance behavior of solutions (chapter 6).

E. THE COMPUTERIZED CONDUCTANCE SYSTEM SOFTWARE LIBRARY

The flexibility of the computerized conductance system is realized through the software library which has been developed for it. A flow-chart-style listing of this library appears in Figure 3. All of the programs which perform data acquisition or analysis of directly acquired data are given a six-letter name which codes the operation and use of the program. The six-letters are decoded in the following manner:

Letter 1) A "C" in this position indicates that this program is a conductance system data acquisition, analysis, or test program. All other letters represent plotting or file generation routines. Letter 2) This letter indicates the program sequence position in a group of programs performing acquisition and analysis of the same type of data. The letters run from B to F. The exception to this sequencing is CBTALR, which must follow CBTSLS. However, since CBTALR, as will be seen, creates a "new" data set, it was given a "B" sequence symbol.

Letter 3) This letter indicates the output devices used by the program. A "T" implies use of the teletype only. An "L" implies the use of the line printer and possibly the plotters and teletype also. A "P" implies the use of plotters and the teletype. Letters 4 and 6) These are codes which designate the particular task which the program performs (discussed below).

Letter 5) This letter indicates the memory requirements for the Particular program. An "L" indicates an 8K program, a "C" indicates a 12K program. The exception to this nomenclature, CBHELP, is coded to immediately inform the novice operator of

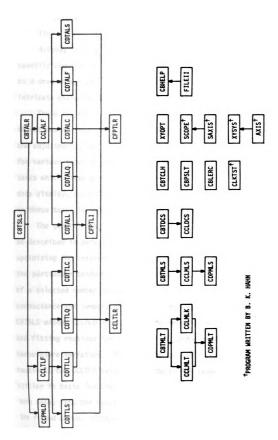


Figure 3. Computerized Conductance System Software Set Flowchart.

the program to call in order to solve problems in system operation.

Although most of these programs were originally written to perform specific chemical or instrumental measurements, when they are considered as a program system, they can accomplish an astounding variety of intricate measurements.

These programs may be divided into six basic groups including titrations and analysis, kinetics and analysis, instrumental tests and adjustments, temperature-conductance profiles and analysis, plotting for various types of analysis, and aid in using the system. The basic tasks which these groups perform are data acquisition, data analysis, data display, and reference. Each group and its particular approach to these tasks is summarized below:

The general data acquisition program for the system CBTSLS will be described in detail in Chapter 4. It includes routines for initially optimizing the instrument with respect to accuracy and resolution for the particular conductance measurement to be made, ensemble averaging of a selected number of points, and timed data acquisition of both conductance and temperature. All of the programs flowcharted from CBTSLS except CCLMLD are temperature-conductance profile analysis and fitting routines for correction of conductance measurements for temperature variation. There are two possible sequences within these routines, the CCLTLF sequence and the CBTALR sequence. They are very similar in basic function, each of them plots conductance vs. temperature data, fits the resulting curve, and outputs the data and plots the fitted curve. CBTALR is, however, a pre-analysis data arranging program (explained in detail in Chapter 6) which enables data to be

fitted without accidental weighting due to a non-linear rate of temperature variation during the measurement of the temperature-conductance profile. Program CCL(T or A)LF outputs the raw or arranged data respectively prior to fitting and sets up the fitting parameters.

Program CDT(T or A)LS performs a fit to a function of the form AX + BX^{1/2} + C. Program CDT(T or A)L(L,Q, or C) performs fits to linear, quadratic, or cubic equations respectively. Program CDTALF can fit data to a fifth order equation. Raw data, fitted data from any program, and residuals may be output on the line printer with CELTLR. Fitted curves of any integer power may be plotted by the faster CFPTLI. This entire group is discussed in detail in Chapter 6.

Program CCPMLD is a data analysis routine for use with CBTSLS. It calculates standard deviation and S/N, as well as plotting raw data, for determination of instrumental performance, as presented in Chapter 5.

The CBTMLT sequence is used in titrations (Chapter 7) and dissociation studies (Chapter 8). Program CBTMLT is a simple modification of CBTSLS which contains instructions for titrator control. Program CCLMLT performs analysis of titration data including scale change, dilution, and temperature correction of such data. Program CCLMLK provides equivalent conductance and concentration data for determination of dissociation constants. Program CDPMLT plots conductance data vs. time (which corresponds to volume of titrant added for a timed data acquisition) for raw data and scale change, dilution, temperature, and dilution-temperature corrected data.

The CBTMLS sequence is used in kinetic studies. Program CBTMLS is a simple modification of CBTSLS which contains the instructions

for the stopped flow apparatus triggering of data acquisition. Programs CCLMLS and CDPMLS are similar to CCLMLT and CDPMLT, but do not include dilution correction provisions.

Programs CBTDCS and CCLDCS are designed to acquire and analyze not only conductance and temperature data but also data from some auxiliary source, such as a spectrophotometer, for kinetic studies. Program CCLDCS is capable of analyzing all three types of data and outputing their values on the line printer. In addition, it can fast plot on the display scope or slow plot on the X-Y plotter all three of these types of data plus the integral of the auxiliary data. These routines are described in detail in Chapter 8.

Programs CBTCLH is the general system exercisor and diagnostic program. It is used for troubleshooting, testing, or adjusting the conductance and temperature monitors. It outputs error messages which help to pinpoint instrument failure. The other testing programs for the conductance monitor are CBPSLT and CBTELC. Program CBPSLT is designed to test the system for accuracy, for use in not only characterizing the system but also in determining the optimum pulsing parameters to be used in a particular conductance region, and in instrument adjustment. Program CBLERC is another random exerciser for the conductance circuits which is no longer often used since CBTCLH has proven to be a more powerful diagnostic tool.

A real time clock testing and exerciser program, CLKTST (7) is included in the computerized conductance system to assure that critical timing of data acquisition will proceed smoothly.

A general utility plotting program, XYOPT, has proven to be a useful routine for plotting data for any calculation purposes. It

accepts scope and plotter scaling parameters and X and Y values input from the teletype. It may then plot those values on the display scope and X-Y plotter as Y vs. X or Y vs. 1/X. It is also capable of plotting axes on the resulting plot.

Four other plotting routines (7) are used for data display in many of the analysis routines described above. Program SCOPE enables fast plotting of data on the display scope. It can be used to point plot or plot straight lines between points. Program SAXIS is used to plot axes on the display scope plots. Programs XYSYS and AXIS are X-Y plotter (and thus, slower) equivalents of SCOPE and SAXIS.

There are three other programs which are not currently functional but may be of use to future workers. Program CBTFLS takes temperature data simultaneously with (not immediately after) conductance data. It results in a savings in time when long pulses must be used. Program CBTFLA was designed to take data in the fastest possible manner, even where the range of data required one or more scale changes, for use in kinetic studies. It hasn't been completed since scale changes appear to be rare for the cell and flow system which have been used. Thus, CBTMLS has proven sufficient. Program CBLCLQ was designed for continuous analysis of slow data, such as slow chromatographic data. It prints out such data as they are acquired and plots them on the strip chart recorder. However, since no such systems have been investigated in the studies done to the present time, this program has not been updated for the latest computerized conductance system changes.

The final operating program in the computerized conductance

system library is CBHELP. Program CBHELP is a rather elaborate attempt

to bridge the gap between experimenter and instrumentalist. It is an operator-interactive program designed to input to the novice user that information which he must know in order to use the computerized conductance system. It can lead an operator from a very shallow understanding of the measurement system to a detailed comprehension of the total operation and theory of the technique. It does this by explanations, questions, graphic displays, and user interactions. These text messages and graphic displays are generated by the FILEII program for use in CBHELP. CBHELP includes virtually all information which an experimenter would need in order to understand, operate, troubleshoot, and maintain the system. Furthermore, a very real effort was made, in writing CBHELP, to make it an enjoyable means of learning the system operation. This was done to enable an operator with no instrumentation or computer orientation to get a "hands on" feel for the computer and the computerized conductance system, thus relieving the often inherent fear of such systems. The author considers CBHELP to be so important to the accomplishment of the overall aim of the work presented here that the entire last chapter will be devoted to discussion of CBHELP goals and implementation.

CHAPTER 2

THE ANALOG MEASUREMENT OF CONDUCTANCE

A. EARLY USE OF THE AC BRIDGE TECHNIQUE

As early as 1926, Morgan and Lammert (8) had stated that, "The present status of our knowledge of methods for measuring the electrolytic conductance of solutions and liquids is such that it is quite necessary for a conscientious investigator, who wishes to make even a small number of determinations with any degree of precision, to have at his disposal a generous supply of both time and equipment." Now, forty-eight years later, conductance measurements are still not a bulk property analysis technique which can be quickly applied to a short-term chemical problem by the casually interested. Conductance has, instead, become the concern of specialists or those willing to invest the time required to master the technique, set up the apparatus, the cell, and the experiment, and perform the measurement. The increased complexity required for the technique to remain "competitive" with new "simpler-to-use" methods has resulted in the disuse of the technique. Many other electrochemical techniques have met similar fates with time.

Conductance measurements were then, as they still are, most often made by the use of a bridge circuit to which an oscillating field is applied to prevent electrode polarization. This technique was first made popular by Kohlrausch (9). Such a bridge circuit is shown in Figure 4 where the conductance cell occupies one arm of the bridge. Kohlrausch was the first investigator to place a capacitor, $C_{\rm S}$ in

		,
		(
		Ì
		(
		:
		1

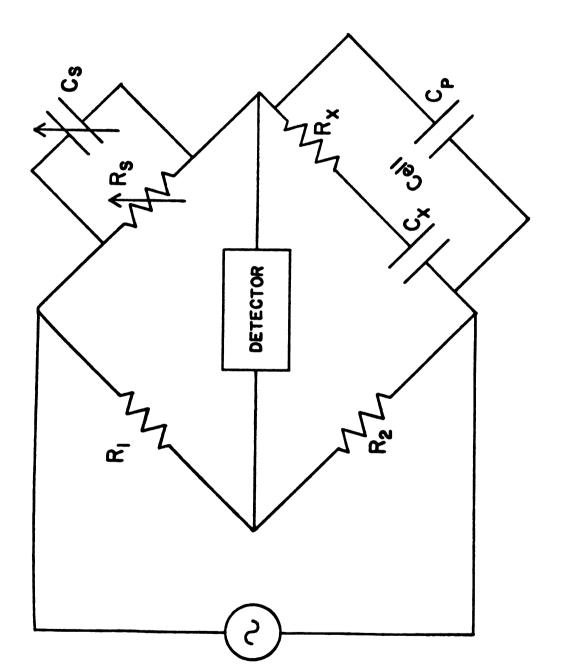


Figure 4. AC Conductance Bridge Circuit.

Figure 4, in parallel with the standard resistance, R_S , to compensate for the reactance caused by the double layer capacitance, the major source of C_X . He did not recognize the parallel cell capacitance, C_p , which results from several cell parameters including the dielectric properties of the solution between the electrode plates and the capacitance associated with the cell leads and their contact with the electrodes.

The relative error associated with measuring conductance in this way (disregarding the pecularities of the instrument employed) results from the effects of the impedances of C_{χ} and C_{p} . For a capacitor, the frequency dependent impedance, X_{c} , is given by:

$$X_C = \frac{1}{2\pi fC}$$

where $2\pi f$ is the angular frequency C is the capacitance in farads

Johnson and Enke (10) have shown that the magnitude of this relative error, for a perfectly balanced bridge obtained by adjusting R_S and C_S in Figure 4, is $(2R_\chi C_\chi \pi f)^{-2}$. The measurement may be compensated for this term if C_χ are f are known. However, as they pointed out, the correction term should be kept small. In order to minimize this correction term in performing a conductance measurement using the AC-bridge technique, one generally tries to make the frequency of the applied field, and the magnitude of the series capacitance, C_χ , both high enough that $X_{C\chi}$ is small compared to R_χ . Likewise, R_χ measured must be kept large enough that $X_{C\chi}$ is insignificant. This places a lower limit on the resistances measurable. On the other hand, as f increases, X_{Cp} also decreases. For large R_χ , significant current may be diverted through

	·
	;
	:
	:
	•
	•
	b
	•
	•
	:
	,
	,
	,

C_p, causing error and placing an upper limit on the value of f employed and the maximum measurable resistance.

B. LATER IMPROVEMENTS IN THE AC BRIDGE TECHNIQUE

Kohlrausch's initial design of the AC conductance apparatus, as well as the design of conductance cells, were improved by later workers. Jones and Bollinger (11) were the first to realize the presence of C_p . Their solution to the problem of the lead and contact capacitance and resistance was to design a cell in which close proximity of parts of opposite polarity is avoided.

Washburn and Bell (12) improved the Kohlrausch bridge by using a stable signal source of 1 KHz with a stable power supply and a tuned "telephone" as the null detector. Washburn (13) did recognize that at high frequencies, C_p contributes significantly to the error in the measurement. Jones and Josephs (14) used a modified Wagner ground which enabled them to measure smaller signals and thus extend the operating range upwards to about 60 K ohms. They also indicated the importance of balancing the reactance in each arm of the bridge to bring the current and voltage into phase in any two adjacent arms. At about the same time, Shedlovsky (15) used a screened bridge to increase the resolution to 1 part in 10^5 .

Various modifications for special tasks were designed into the same basic bridge circuit over the next forty years. The improvement in electronic circuitry has yielded oscillators of increased stability, more sensitive and useful detectors (especially the phase angle voltmeter as discussed by Schmidt (16)), and components with generally improved long term stabilities.

Ouite recently Bentz, Sandifer, and Buck (17) introduced a DC coupled lock-in detector for extension of the dynamic operating range of the bridge to cover nine orders of magnitude (10^2 to $10^{11}\Omega$). Their measurement circuit is shown in Figure 5. The differential input of the operational amplifier serves as a null detector and keeps the circuit in balance regardless of changes in the cell impedance. The currentvoltage phase relationship in the cell can be obtained by resolution of the amplifier output into in-phase (resistive) and quadrature (reactive) components with respect to the signal source. They resolved these components by correlating the amplifier response with square waves that were in phase and 90° out of phase with the perturbation signal. By interchanging $\boldsymbol{R}_{\boldsymbol{M}}$ and the cell they were able to measure admittance rather than impedance. They performed their measurements in the admittance mode. They were able to resolve the quadrature admittance in either quadrature to 1% when it was 100 times smaller than the real admittance. They could then resolve the admittance to 1 part in 104. However, the inphase admittance, which approximates the conductance at high frequencies, could still only be resolved to 1%.

They were able to operate with frequencies on the order of 1000 Hz for conductance determination where the real admittance expression simplified to $1/R_{\chi}$. They claimed an accuracy of 1% from 10^2 to $10^8\Omega$ and 3% from 10^8 to $10^{11}\Omega$.

It can be seen that a number of workers made significant contributions to the enhancement of conductance measurement by modification of the AC bridge. Nevertheless, these applications of the traditional AC techniques all suffered from the complication of the instrument as it appeared to the experimenter, the confusing criteria developed for

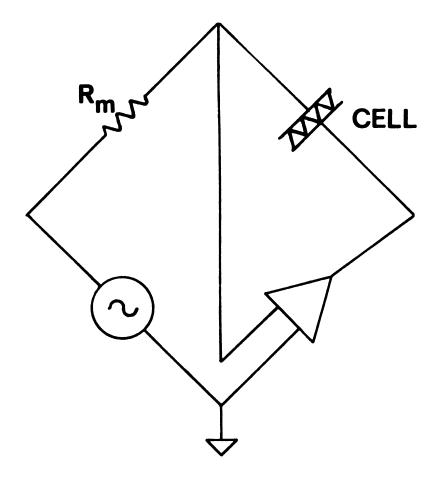


Figure 5. DC Coupled Lock-In Detector Conductance Measurement Circuit.

cell design, the necessity of platinizing the electrodes to increase C_{χ} and the amount of time required for the actual measurement. Furthermore, the chemist's attention began to be drawn toward specific rather than bulk property techniques. It has only been in the past few years that more specific chemical reactions or separations, such as those employed in chromatographic analysis, have given rise to a rebirth of interest in bulk property detection techniques such as conductance. The first real breakthrough in fast and accurate conductance measurements, in which the AC bridge was finally put aside altogether, occurred in 1970.

C. THE BIPOLAR PULSE TECHNIQUE

In 1970 Johnson and Enke (10) introduced the bipolar pulse technique for rapid and accurate measurement of conductance. The technique involves the sequential application of two voltage pulses of equal magnitude and duration but opposite polarity to a cell, followed by measurement of the instantaneous cell current at the exact end of the second pulse. The effects of the capacitances are minimal at this time because the voltage across the series capacitance of the cell electrodes is nearly zero and the parallel capacitances associated with the conductivity cell and connections are drawing essentially no current. A determination of the cell current/voltage ratio at this time, therefore, allows an accurate measurement of the cell resistance. The sequence of events, illustrated in Figure 6 (10) proceeds as follows:

At the instant the first pulse is applied to the cell, C_p , being small, will charge quickly to the first potential, E_1 , causing a spike in the cell current. T, the length of one pulse, must be chosen such

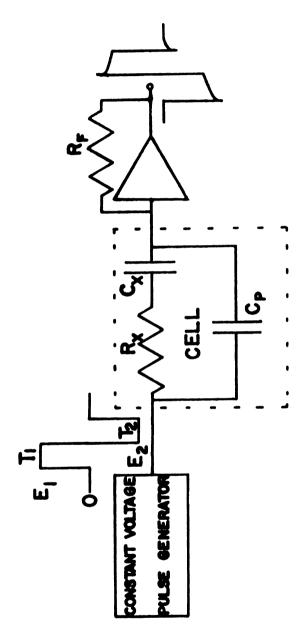


Figure 6. A Bipolar Pulse Conductance Device.

that $R_\chi C_\chi^2 > T > R_0 C_p$ where R_0 is the output impedance of the pulse generator. If this is true, C_χ will develop only small polarization during the pulse and will charge approximately linearly with time. Thus at the end of the first pulse, C_p is fully charged to E_1 and is drawing no current, and C_χ is charged to some potential less than E_1 . When the polarity reverses, C_p will again quickly charge to the new potential, E_2 (- E_1). C_χ will begin to discharge approximately the same number of coulombs that it charged during the first pulse. At the exact end of the second pulse, the voltage across C_χ is nearly zero and C_p is again drawing no current. Thus the instantaneous current measured at this time is only that current due to the voltage drop across R_χ . The effects of C_χ and C_p are not just reduced but are virtually eliminated when pulses of the appropriate duration are chosen. The measurement itself is therefore subject only to the limitations of the particular instrument and not to the cell design, chemical application, or solvent system employed.

Johnson and Enke showed that the theoretical relative error, Q, for this measurement technique is given by:

$$Q = b(a - 1) - b^{2}[a(d + 2) - 1]/2 + b^{3}[a(d^{2} + 3d + 3) - 1]/6 - ...$$
 where $a = -E_{1}T_{1}/E_{2}T_{2}$
$$b = T_{2}/R_{X}C_{X}$$
 and $d = T_{1}/T_{2}$

If the pulses are truely symmetrical (E_1 =- E_2 and T_1 = T_2), Q~- b^2 . Since pulses as short as 10 µseconds can be easily utilized with state-of-the-art electronic circuitry, even for R_χ =100 ohms and C_χ =10 µF, Q \approx 10⁻⁴ or 0.01% relative error. There is no theoretical dependence on C_p as long as C_pR_0 (R_0 is the output impedance of the pulse generator) <5 T_2 .

For ·

erty . , mi

Tije, a

iler i

do vi CC an

Me ex

;e;

TE IN

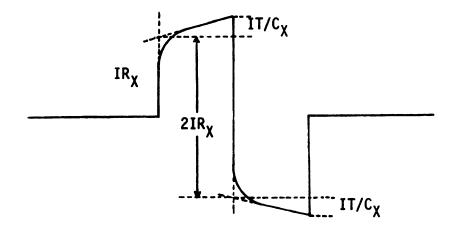
j j

Prent

``} ;;

∵;;

(18), (18),


Ų.

jė ł

For their prototype instrument, Johnson and Enke reported 0.01% linearity, no dependence on C_p (<0.0004%), the predictable dependence on C_χ which was always less than that obtained using the conventional bridge, and a dynamic range also superior to that of the bridge. For a later instrument, with analog interactions similar to the instrument which will be reported here, Johnson (18) claimed accuracies of up to 0.01% and sensitivities of up to 1 part per million over a dynamic range extending from $0.1\Omega^{-1}$ to $10^{-7}\Omega^{-1}$.

Recently, Daum and Nelson (19) announced an interesting variation on the Johnson-Enke bipolar pulse technique. They claimed to have overcome the problem of series capacitance effects, to which the Johnson-Enke method is still susceptible at low resistances, by controlling the current in the cell through the application of bipolar current pulses. The resistance of the cell can then be determined in either of two ways. The cell voltage at the end of the second pulse (equal to the product of R_χ and the current supplied) can be sampled, or the cell voltage during both pulses can be rectified and integrated. They showed that for the second method, the integral was proportional to R_χ . They chose this method of analysis for its expected improvement in signal-to-noise ratio. They claimed excellent results in the area of conductance greater than $10^{-2}\Omega^{-1}$, where the bipolar voltage pulse technique encounters its most serious series capacitance effects. They felt they could obtain accuracies of 10% for conductances as high as $10\Omega^{-1}$.

The potential of the cell during the current pulse is shown in the following waveform:

At the beginning of the current pulses, the potential across the cell will rise very rapidly, but not instantly, due to the current required to charge C_p to the voltage IR_χ . Later in the pulse, the voltage increases due to the charging of the series capacitance C_χ . The charging of C_p is a function of the $R_\chi C_p$ time constant which is, of course, smaller for small R_χ . If the polarity of the current pulse should be reversed before C_p is significantly charged, the IR_χ drop and the amount of charging of C_χ will diminish and the voltage at the end of the second pulse will be somewhat less than it should be. The current pulse must, therefore, last long enough to cause the potential change in the cell to be predominately a function of IR_χ and the charging of $C_\chi(IT/C_\chi)$. Longer current pulses are required as R_χ increases due to the slower charging of C_p through larger R_χ .

As mentioned previously, the bipolar voltage pulse technique requires that as the series resistance and capacitance get smaller, the pulse width must decrease to prevent significant charging of C_χ from affecting the measurement. This results from the predominant term, b, in the error equation. A decrease in R_χ causes b to increase. This increase must be offset by a decrease in pulse width, T, to maintain an accurate

measurement. There is virtually no effect of the parallel cell capacitance on the measurement.

Thus, it can be seen that the bipolar current technique essentially exchanges the C_χ dependence of the bipolar voltage technique for a C_p dependence. Better results at low R_χ are obtained at the expense of measurement speed at high R_χ . Both techniques have distinct advantages in particular conductance regions. However, for solutions normally encountered in conductometric studies, the cell resistance rarely is below 100Ω . One possible exception to this might be highly buffered solutions required in biological studies. Nevertheless, the bipolar voltage pulse technique appears to provide the most useful operating region as well as the theoretical ability to measure more rapidly throughout this region as compared to the bipolar current technique.

The difficulties in the application of conductance measurement to real chemical problems, which the non-expert finds discouraging, are largely eliminated through the use of the bipolar voltage pulse technique. The cell design becomes relatively unimportant due to the expanded dynamic range of operation. Since C_χ is no longer an interferrent, platinization of the electrodes is not necessary. By clever use of a four cell lead system, Johnson and Enke reduced the effect of contact resistance, making cell connections less critical. However, selection of the various measurement parameters incorporated in the new instrument (18) was certainly time consuming and required significant expertise. Training was required in both the use of the instrument and its application to solving particular chemical measurement problems. Conductance determination, as a step toward chemical determination, had been brought closer to the experimenter. Nevertheless, the interaction between the

s**x****e***

pite com

: HE /

ine

inst inst

is, it 1

init.

¥ piscu

ÿ ⊅e p

Fig

21 the 37 tub

301:a

391

ંગ્રફ્

2):510

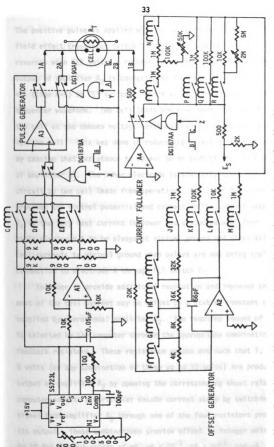
'F pre

J.H

in.

inger!

i∻ cho


ing.

experimenter, the instrument, and the chemical process might still be quite complex.

D. THE ANALOG CIRCUITS OF THE COMPUTERIZED CONDUCTANCE SYSTEM

The computerized conductance system has been developed to overcome these application problems and the others previously discussed. Since the instrument was specifically designed for computer control and monitoring, it was possible to simplify the analog circuits by use of digital circuit adjustment techniques and a digital data acquisition system to be discussed in Chapter 3.

Figure 7 is a schematic diagram of the analog circuits. It consists of the precision power supplies, the pulse generator, the offset generator, and the current follower. Because the pulses must be exactly equal in magnitude for the technique to be free of dependence on the series capacitance and because reproducibility is a function of the long term stability of these signals, the sources of the positive and negative voltages were chosen with care. The precision +5 volt signal is produced by a Signetics S5723L regulator. This signal is inverted by operational amplifier A_1 , an ultra low drift amplifier set to give a gain of -1. The precision +5 and -5 volt signals are fed to the two voltage divider circuits of the pulse amplitude control. The computer selects the pulse height to be either ± 5 , ± 0.5 , or ± 0.05 volts by switching one of the three DPDT reed relays at the outputs of the divider. The pulse generator, operational amplifier $A_{\rm Q}$ connected as a fast voltage follower, applies the chosen positive and negative pulses to the cell. Pulsing occurs during the timing sequence A-B-C, shown on the waveforms in Figure 7.

Schematic Diagram of the Computerized Conductance System Analog Circuits. Figure 7.

The positive pulse is applied when the measurement sequencer causes field effect transistor switch X to change state at time A. The polarity reverses when FET switch X returns to its initial state at time B. The output of amplifier A_3 is connected to the cell during the pulsing interval (time A-C) by FET switch Y, which is also controlled by a measurement sequencer waveform. Two cell leads are used here, contact 1A to maintain the cell at the chosen voltage level and contact 2A to supply current for the cell. This was done to reduce the effect of contact resistance by causing that resistance to appear to be part of the input impedance of amplifier A_3 . The other electrode is similarly connected to the circuit by two cell leads from operational amplifier A_4 ; contact 1B provides the control potential and contact 2B the current path. Amplifier A_4 is the very fast current follower and grounding amplifier. It controls electrode B to be always at virtual ground and sinks all spurious cell currents to virtual ground when pulses are not being applied by its connection to electrode A through FET switch Y.

In order to provide additional resolution and improved sensitivity, most of the cell current may be offset by a stable, constant current supplied by operational amplifier A_2 . The required amount of offset is selected by the computer through the appropriate combinations of feedback resistors. These resistance values are such that 1, 2, 4, and 8 volts (or any combination of these up to 10 volts) are produced at the output of amplifier A_2 by opening the corresponding shunt relays. The computer selects a particular decade current scale by switching the signal from amplifier A_2 through one of the four resistors provided at its output. These combinations provide offset in integer units from 0 to 10 for current scales of mA, mA x 10^{-1} , mA x 10^{-2} , and μ A. Thus

		;
		;
		:
		:
		:
		:
		:
		:
		:
		;
		,
		,
		;
		:
		;
		;
		:
		:

up to four additional most-significant bits of resolution are added, by the analog circuit, to the 12 bits of the conductance A/D converter.

The cell and offset currents are summed at the inverting input of amplifier A_4 . During the positive pulse, the cell and offset currents are both positive resulting in a large positive current at amplifier A_4 . Since the current output of the cell is not being monitored at that time, a 500Ω resistor is switched into the feedback loop of amplifier A_4 by FET switch Z to insure that the inverting input will be at virtual ground by preventing amplifier saturation. During the negative pulse (time B-C), when the cell current is being sampled, the appropriate computer-selected feedback resistance is switched into the circuit by FET switch Z under control of the measurement sequencer. The available feedback resistances allow a 10 volt output signal to be produced by amplifier A_4 for input signals of lmA, $100~\mu\text{A}$, $10~\mu\text{A}$, and $1~\mu\text{A}$. For the highest gain, a "TEE" circuit (20) equivalent to $10\text{M}\Omega$ is used for greater precision and shorter response time than could be obtained from a $10\text{M}\Omega$ resistor.

The current follower output is divided to give a signal to the sample-and-hold module of the signal sampler and converter, E_S , which is 4/5 of the actual output. To the analog circuit, then, the 0-10 volt A/D converter actually looks like a 0-12.5 volt converter. This was done to provide overlap at scale changes which eliminates the need for precise scale adjustments, as will be explained in Chapter 5. The voltage output, E_S , is tracked during B-C and held at exactly time C by the signal sampler and converter.

The net voltage, E_S , produced by the analog circuits can only represent the true signal to the extent which the various components

<u>'</u>ii Ĩ, ÷ (ų. . Į;; e. it | ેક્ફ ë th 3 26 je ep i je ren (i'€ AI ia_{r r}

**

1

of the circuit approach their ideal true values. The choice of components is critical to the production of an accurate, sensitive, fast instrument. Some comments about the components used in the analog circuits are necessary for an understanding of how these goals are successfully accomplished.

The precision positive voltage is regulated to 0.01% by the S5723L regulator which will drift a maximum of 0.01% per 1000 hours of operation. Amplifier A_1 , which produces the precision negative voltage, does not have to be fast, but it must be constant and steady. The amplifier chosen (Analog Devices 184J) has an initial offset not greater than $\pm 50\mu$ Volts and will drift a maximum of $\pm 3~\mu$ V/month and $\pm 1.5~\mu$ V/°C. Amplifier A_2 must be somewhat fast since the offset may be expected to change quickly and settle quickly during an experimental run. It must also be stable as any error produced by drift will directly affect the measured conductance. The amplifier which was chosen (Analog Devices 148B) will slew at 50 V/ µsec and settle to within 0.01% of the true value in 1 µsecond. It can be trimmed to zero initial offset voltage and has a maximum drift of $\pm 50~\mu$ V/day and $\pm 20~\mu$ V/°C.

The pulsing amplifier, A_3 , must be stable in order to provide the true voltage signals to the cell. It must have minimal offset voltage as this would result in asymmetrical pulses and subject the measurement to series capacitance effects. It must also be fast in order that it be able to switch between positive and negative input signals and settle to its new value quickly. Finally, it must provide sufficient current when cell conductivity is high. At the time the instrument was built, the Analog Devices 149B had the best of these characteristics with a slew rate of 100V/ μ sec, settling to within 0.01% of true value in 1.5 μ sec.

Its offset can be trimmed to zero and its maximum drift is $\pm 50~\mu\text{V/day}$ and $\pm 15~\mu\text{V/C}$. It can supply up to 20 mA at $\pm 10~\text{Volts}$ output. Amplifiers which are still better suited to this use are available now. However, no serious problems have been encountered with the use of this amplifier which would warrant its replacement.

Some problems were encountered with the use of this same type of amplifier as the current follower. The current follower is probably the most critical component in the analog circuit. It must not only supply the final composit signal to the signal sampler and converter, but also provide a controlled, stable cell ground. In addition it must track the signal in the time periods of the shortest pulse widths, sometimes being slowed by large feedback resistors. It must also quickly sink all spurious cell currents to ground in the brief interval (as short as 10 µseconds) between discrete pulsing sequences to prevent a build-up of charge in the cell which would result in gross nonlinearity and measurement error. Therefore, a very new, fast amplifier (Analog Devices 50K) slewing at 500 V/µsec and settling to 0.1% in 200 nseconds was substituted for the 149B. It can be trimmed to zero initial offset voltage and has a maximum drift of ±500 µV/month and ±25 µV/°C.

Relays C, D, and E are DPDT reed relays (Electrol RA 30212241) which were fastest available (150 µsec on plus 150 µsec bounce, 20 µsec off) with low contact resistance (0.1 Ω). Relays were chosen over FET switches for these applications because the significantly larger contact resistance of FET switches would cause serious measurement errors which could only be eliminated by trimming the circuit at each control point. The "on" resistance of FET switch Z, in series with the selected feedback resistance of amplifier A_A , is significant for the 10 K Ω

feedback resistor. Therefore, provisions are made for trimming the circuit at this point. Relays F-R are SPST reed relays (Electrol RA 30211241), which have specifications identical to relays C-E.

All resistors less than $1M\Omega$ in the pulse generator, offset generator and current follower are fast response, 0.01% Vishay metal film resistor (S102 or S106). All 1 $M\Omega$ resistors are General Resistance fast, wirewound, 0.01% "Nanistors". All FET switches are monolithic N-channel junction FETS with TTL compatible drivers made by Siliconix. In the application where FET switch Z is used, small leakage currents could cause significant errors for measurements of low conductivities. Therefore a special military-grade switch was used with a maximum leakage current of less than 1 nA.

For the purpose of noise reduction through shielding, the instrument itself and its power supplies were built in two separate modules. Within the instrument module, two compartments are arranged, one on top of the other. Most of the digital circuits and the interface, which will be described in Chapter 3, are located in the large compartment. The smaller compartment below it is divided into three sections. The outer sections contain the control circuits and relays which are shielded from the other circuits. The center section, shown in the photograph of Figure 8, contains the analog circuits described above. These circuits are mounted directly above the signal sampler and converter, in the large compartment on the other side. In this way the signal, E_S , from the current follower must be sent only a very short distance to the sampler. The circuits in each section receive the signals from other circuits by wires which run through the aluminum shielding walls of each section.

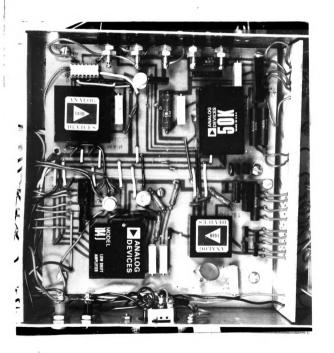


Figure 8. Photograph of the Analog Circuits.

The connection of the instrument to the cell is made by four leads from the analog circuits to gold plated banana jacks on the chassis.

A gold-plated "Kelvin Klip" probe assembly (made by ESI) plugs directly into these jacks. This probe clips directly onto the cell leads to complete the circuit.

E. THE POWER SUPPLIES OF THE COMPUTERIZED CONDUCTANCE SYSTEM

An early production model Heath 181-75 ±15 volt power supply card is used to provide ±15 volt signals to various parts of all circuits. The +5 volt signal for the digital circuitry is produced by a prototype Heath 181-74 +5 volt power supply card. A Heath 54-206 transformer was used to supply both of these cards. The entire assembly is mounted in the power supply module shown in the photograph of Figure 9.

The +24 volt relay power supply is also mounted in this module.

A schematic diagram of this circuit appears in Figure 10. It consists of a second Heath 54-206 transformer, a rectifier, and the two transistors which constitute the 24 volt regulator. It can supply up to 1A at 24 volts. It would, however, not have to supply more than 320 mA to the relays at any given time.

The power supplies, circuit common, and chassis ground are all connected to the instrument through shielded cable which is grounded at the power supply end only, for noise reduction. In addition, a separate high quality ground line is provided for directly connecting the ground for the precision signals in the measurement to the power supply. Using this technique, noise signals generated on the ground which parallels the power supply lines for the various components has only minimal effect on the precision signals.



Figure 9. Photograph of the Conductance Instrument Power Supply.

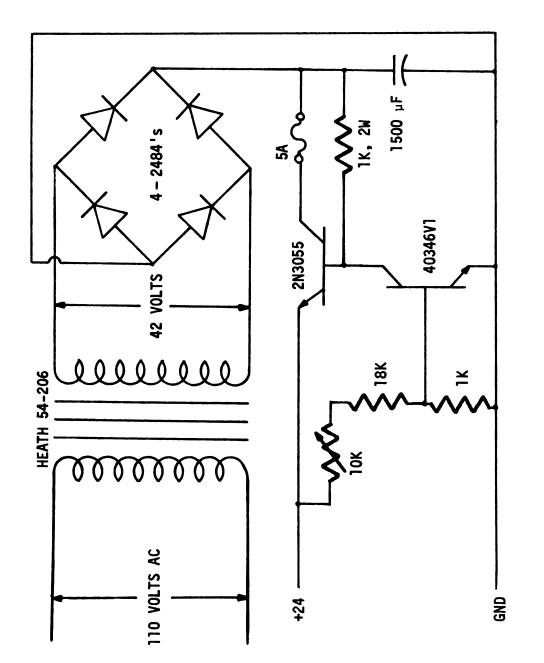


Figure 10. +24 Volt Relay Power Supply Schematic Diagram.

CHAPTER 3

IMPLEMENTATION OF A DEDICATED COMPUTER FOR TOTAL DIGITIZATION OF THE CONDUCTANCE MEASUREMENT SEQUENCE

A. INTERFACING THE DIGITAL COMPUTER FOR CHEMICAL APPLICATIONS

During the past ten years the digital computer has become an increasingly important tool in performing chemical analysis. Looking back over this period, it is possible to identify at least five steps through which computer-instrumentation interaction has passed. These interactions became increasingly intimate as the computer assumed greater responsibilities for control of the measurement process. They might be summarized as follows:

- 1) Analysis of experimental data by a computer isolated from the data source, after the data has been produced.
- 2) Direct acquisition of experimental data by a computer at the instrumental site, during run time, followed by analysis.
- 3) On-line acquisition and analysis of experimental data during run time with the computer exercising control of the measurement parameters as a result of the quality of that data.
- 4) In addition to on-line analysis and parameter control, initiation and control of the entire measurement sequence by the computer.
- 5) Computer generation of the perturbation signal in addition to control of the measurement sequence and parameters.

In his review article on computer applications in the chemistry laboratory, Perone (21) has pointed out that the earliest laboratory

uses of digital computers involved the collection and analysis of the extraordinary amounts of data produced by mass spectrometry. The earliest examples of computer control over instrumental parameters and generation of the perturbing waveform came in the area of electroanalytical chemistry.

Eventually chemists became aware that new or previously impractical chemical measurement techniques could now easily be implemented in the laboratory through computer-interactive instrumentation. Unfortunately, the programmers who set up the experimental software and the electronic specialists who designed the instrumental systems had little chemical intuition which would have enabled them to provide the optimum chemical measurement system. Thus, the chemist was forced to become active in these fields. Frazier (22) argued that it was important for the chemist to be involved in actually programming the experiment if he wished to realize the maximum benefit and flexibility of his computer system. He indicated that if there is anything more difficult than interfacing a computer and an instrument, it is interfacing the chemist with the programmer, who has no knowledge of experimental laboratory operations.

Probably the greatest problem of using the computer in the laboratory in the early years was the enormous cost of custom built interfaces supplied by computer manufacturers for chemical systems as indicated by Venkataraghvan, Klimowski, and McLafferty (23) at the time. They also felt that these costs could be brought under control by having the chemist himself assume a greater responsibility in development of interfacing techniques.

Discussion of programming, digital circuitry, and interfacing techniques began to appear in chemical journals. An article by Dessy and Titus (24) was one attempt to familiarize the chemist with the

fundamental building blocks of interfacing systems. They explained standard logic circuits, A/D and D/A converters, multiplexers, clocks, and general computer functions. Their discussion was intended for the chemist interested in becoming involved in computer applications with little background in these techniques. In their later article (25) they presented a system through which laboratory automation could be achieved in a minimum amount of time.

Other systems have been developed in the last few years in an attempt to bring the computer into operation in the laboratory with the same ease with which oscilliscopes have been used for some time. Ramaley and Wilson (26) interfaced an H-P 2115A computer using Raytheon hardware. Their setup consisted of a real time clock, two D/A converters, a data storage register and a sequencer. A fast A/D converter was supplied through an eight channel analog multiplexer. Two of these channels contained sample and hold amplifiers to take X-Y data with no time skew. They claimed their system could be used as a "black box" and programmed by those with no experience in electronic design.

Parker and Pardue (27) have gone as far as developing an in-house micro-computer using a Texas Instruments 74181 arithmetic logic unit as the central processor and equipping it with various external peripherals. These include an A/D converter, a logarithmic amplifier module with temperature compensation, a sample-and-hold amplifier, and display facilities. This micro system was used with considerable success for single component analysis, two component analysis and simulated response. They estimated that it could be duplicated for \$300.

DeVoe, et al. (28) used a parallel data bus to provide a computer utility to a series of labs by connection to a medium size UNIVAC

computer. They stressed the ease with which the chemist in the laboratory could connect his instruments to the system, interact with his own programs, and receive his analysis and data display in his own lab.

One of the most flexible interfacing systems, with respect to laboratory applications, which has been developed at this time is the Heath EU-801E interface for the PDP-8 computers, diagramed in Figure 11 (6). This interface provides 12 input lines to the single 12-bit accumulator (AC) of the PDP-8, 12 buffered AC out lines, and 12 buffered memory buffer (BMB) lines. It also permits control of external sequences and gating of data transfer by means of device select (DS) lines, input-output transfer pulses (IOP), and skip (SKP), program interrupt (PI), initialize (INIT) and run lines. Access to these functions is made by connection of an interface buffer box to the computer bus. Connections of the Heath EU-801-21 I/O cards (29) to this buffer box bring the signals, in parallel, to the instrument. Since the system was partially developed in this laboratory, it was available for incorporation into the computerized conductance system from the earliest design stages.

The computerized conductance system requires two I/O cards, one providing AC in and the operating controller functions, one providing AC out and these same functions. The I/O cards also provide BMB bits 3-8 which form the device select code. These bits are decoded in the instrument by a prototype of the Heath EU-800SA dual octal decoder card (29) and a series of NOR gates to give device select codes 32, 33, 34, 35, and 36. These are combined with IOP pulses 1, 2, and 4 to perform the various instrumental functions shown in Table 1. These functions will appear on the diagrams which follow.

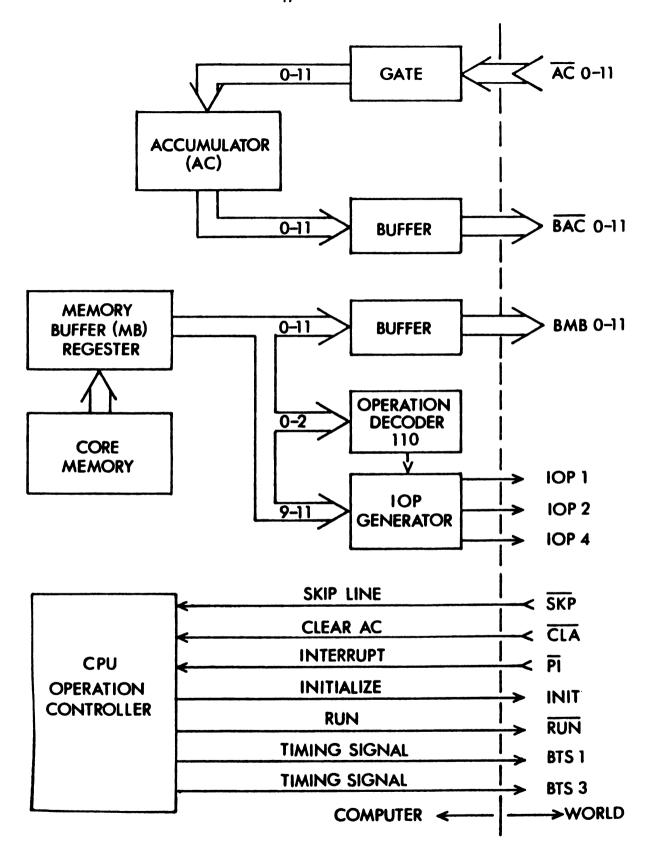


Figure 11. PDP-8 Computer Functions Available with the Heath EU-801E Interface System.

Table 1. Computerized conductance system instruction set.

Device Select (DS)	IOP Pulse	Function
32	1	Clear conductance circuit flag; clear conductance program interrupt ability
32	2	Gate conductance circuit driver
32	4	Enable conductance circuit program interrupt
33	1	Test conductance circuit flag
33	2	Turn off pulse sequence
33	4	Trigger pulse sequence
34	1	Test temperature circuit flag
34	2	Latch accumulator into relays F - Q
34	4	Latch accumulator into relays C - E, Time base
35	1	Enable temperature circuit program interrupt
35	2	Clear temperature circuit flag; clear temperature program interrupt ability; gate temperature driver
35	4	Trigger temperature A/D conversion
36	1,2,4	Available to control peripheral devices such as titrators, flow systems, etc.

B. DIGITAL CONVERSION AND CONTROL OF ANALOG SIGNALS

One of the first examples of an attempt to create a general purpose laboratory data acquisition and control system was that described by Lauer and Osteryoung (30), for the PDP-8 computer. Their system consisted of an A/D converter, three D/A converters, a real time clock, a relay controller, a solenoid controller, four solid state switches, an interrupt control, and a plotter. They used the system for electrochemical studies, producing the waveform, triggering the measurement sequence, and tracking, analyzing and outputting the data through the computer. Perone, Jones, and Gutknecht (31) used another system built around an H-P 2115A computer to optimize the measurement parameters in another electrochemical system during actual run time. Keller and Osteryoung (32) were able to perform measurements which would otherwise have been impossible by use of a computerized electrochemical system for pulse polarography.

Daum and Nelson (19) demonstrated the only previous use of digital conversion techniques in conductance measurement systems. Since they had chosen to integrate over the entire pulsing period, they were able to use digital counters at the integrator output to provide automatic A/D conversion of this signal. Their data could then be displayed directly as a 3 digit BCD nixie tube display or stored as BCD data in MOS-LSI shift registers. This provided them with a digital means of storing data from rapid changes in conductance such as kinetic studies. A D/A converter was also provided in order that the data could be read out of memory and recorded in analog form on a slow time scale.

The analog circuits of Chapter 2 were designed for use with computer control and monitoring only. No other means of external

ភ
•
_
.5
7
:
i)
•
:
•
Ţ
;
t
:
;
5
3
3
· ·
;
•
*}
)
•

control or measurement were provided. In developing an instrument with this type of computer dedication, circuitry which would be found in conventional instruments to provide repeatable pulsing, analog temperatures compensation, signal conditioning for output to plotters, integration, etc., could be eliminated since the computer, coupled with several digital circuits, could assume these tasks. Another major advantage of the computerized system is its ability to make a discrete measurement at the completion of each pulsing sequence (each "scan"). Each data point can then be ensemble averaged with any number of subsequent scans for signal improvement, or stored separately to provide a picture of a rapidly changing conductance pattern. In order to provide measurements at this rate, the signal sampler and converter of Figure 12 was designed.

The signal, E_S, from the divider at the current follower output, is sent, along with the quality analog ground, to the sample-and-hold module of Figure 12. The tracking/holding sequence of this module is controlled by measurement sequencer waveform Z. Thus, at the beginning of the second pulse (time B), the module is placed in the tracking mode and follows the signal produced by the analog circuits. At the exact end of the second pulse (time C), waveform Z returns to zero, causing the module to hold the signal which existed at that time, as required by the bipolar pulse technique.

The falling edge of waveform Z also triggers a 1.5 μ second monostable. The monostable pulse, initiated at time C, resets the A/D converter on its rising edge and causes conversion to begin on its falling edge at time D. When conversion begins, the A/D status output goes high and remains high until conversion is complete at time E. The A/D converter performs the conversion on the analog signal held by

		;
		4
		•
		3
		·
		\. \.
		14
		:

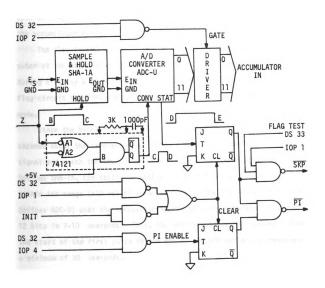


Figure 12. Signal Sampler and Converter.

the sample and hold module. When the status output returns to zero upon completion of conversion, it sets a flag and may cause a program interrupt if this function had been previously enabled. The computer, upon testing the flag, will gate the information at the A/D output into the accumulator for storage and analysis.

The flag is initially cleared by an INIT pulse issued by the computer at the start of each program. It is cleared by the computer during a run by a DS-IOP signal. The computer can also enable the flag circuit to produce an interrupt if it is desired to run in this mode.

Since the bipolar perturbation pulses can be as short as 10 $\,\mu$ seconds each, the sample-and-hold module must be able to track the signal and reach the true value quickly. The module chosen, Analog Devices SHA-1A, can settle to within 0.01% of true value anywhere within its range (± 10 volts) in 5 $\,\mu$ seconds. The A/D converter (Analog Devices ADC-U) uses the successive approximations technique to convert 12 bits in 7-10 $\,\mu$ seconds. Thus, the entire measurement sequence, from the start of the first pulse to the end of the A/D conversion requires a minimum of 30 $\,\mu$ seconds.

The gated driver is a prototype of the Heath EU-800-JL gated driver card (29). It contains 12 open collector buffers which are gated to provide input to the accumulator of the information from the A/D conversion.

In order to overcome the time delay involved in setting the measurement timing and the analog circuit parameters, the computer has been given complete control over the 3888 possible combinations of pulse width, pulse height, offset, and current follower gain. Since many of

these combinations are redundant with respect to the output voltage, E_S , which they produce, the computer is also allowed to make the decision as to which circuit setting provides the optimum resolution and accuracy. In this way the system relieves the operator of the task of setting up the measurement system parameters, and does so more quickly and correctly than the operator could himself. The computer can then check the data which it receives during a run to assure that the optimum measurement continues to be made. If a change of circuit parameters is required at this time, the computer can effect such a change quickly.

The analog circuit parameters of pulse height, offset, and gain are set by the state of the relays of Figure 6. The relays, in turn, are controlled by the series of latches, drivers, and gates of Figure 13. The proper logic level for each controlling bit is set in the accumulator by the program. Two words, one of 12 bits and one of 6 bits, are required. The 12 bit word controls offset unit steps (0-10), decade steps, and current follower gain. It is transferred to three latches of the control circuit by a DS-IOP combination. The six bit word is similarly transferred by a separate DS-IOP signal, controlling the pulse height and width. The latches turn drivers on (logic "0") or off (logic "1"), which in turn open or close the relays respectively. The other latch controls the time base of the measurement sequencer through a multiplexer described in the next section.

The latches used are 7475 TTL quad latches. The three latches which control offset and gain had a tendency to unlatch when computer generated noise appeared on the I/O lines. This problem was minimized by use of a 7437 NAND buffer, with greater fan out than the 7400, for the gate and by a small, 220pF capacitor connected between the IOP

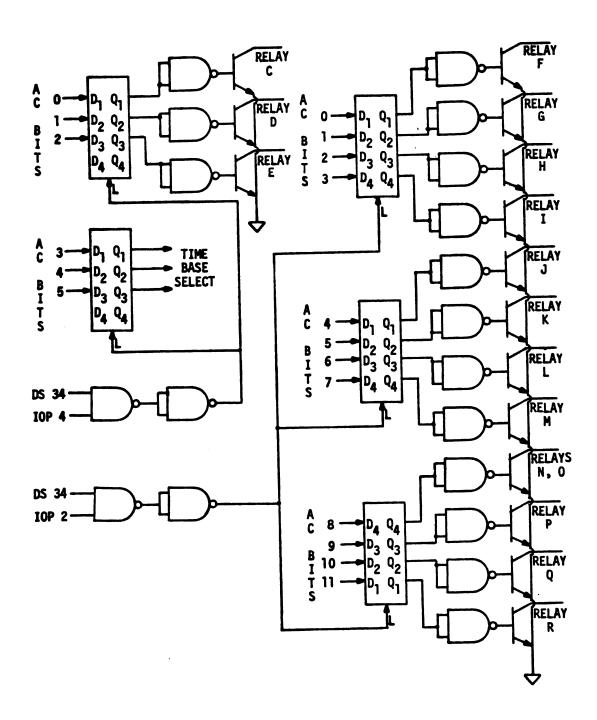


Figure 13. Control Circuits Schematic Diagram.

		- -
		,
		ř
		į
		;
		:
		;
		:
		:
		;

pulse line and ground to absorb short noise pulses. The problem still occurs, although never during a run, when a peripheral device which uses the conductance instrument interface is being set up.

The relay drivers are 75451 dual positive AND drivers. They can switch up to 35 volts and continuously dissipate up to 300 mA of current. When the signal from the latch connected to a driver goes high, the driver base voltage goes low causing the 24 volts at the collector to be applied to the relay coil, closing the relay. Inversely, a low signal from the latch causes the driver transistor to turn on, the 24 volts at the collector is dropped across the transistor and not the relay coil, and the relay is opened.

C. DIGITAL SEQUENCING OF THE BIPOLAR PULSE MEASUREMENT

In their earliest bipolar conductance instrument, Johnson and Enke (10) utilized a series of monostables to produce the switching waveforms which control the critical timing of the bipolar pulse measurement. Their trigger for the sequence could be an internal unijunction oscillator, line frequency via this oscillator, or some external trigger source. Because the timing of pulses is most critical to the successful application of the bipolar technique, Johnson (18) used a more precise timing circuit in his later instrument. He used a crystal oscillator to provide the time base and a set of flip flops and logic gates to produce the switching waveforms. Pulses could also be repeatedly triggered by this circuit at precise intervals which could be varied. Pulsing could also be initiated by an external trigger. Daum and Nelson (19) used a similar circuit to generate the switching waveforms and repetition frequency signal for their bipolar current instrument.

During the early design stages of the computerized conductance instrument, two different means of timing the measurement were considered. The first, which initially seemed the most attractive, was to program the computer to produce the switching waveforms by DS-IOP signals to external counters. The computer would also provide the voltage levels for the pulses by control of a fast D/A converter. The second method was to produce the timing signals and bipolar perturbation pulses within the instrument itself. The first method would have resulted in extremely flexible measurement timing as well as pulse heights which were variable in small steps over the operating range. Unfortunately, this method had to be discarded because of the timing errors it introduced.

The PDP-8/I has inherent cycle time uncertainties which would have caused these errors. Furthermore, there is a variable delay of up to 6 pseconds from the time the computer responds to a flag to the time it issues a DS-IOP signal to an external device. This same delay would have affected transfer of data from the computer to a D/A converter producing the pulses. Even if the mainframe real time clock (as described by Hahn and Enke (5)) had been equipped with Schmidt triggers for direct external triggering, an uncertainty of up to ± 1 psecond would have existed in the pulse width for each pulse. This would have yielded a pulse assymmetry of up to 20% for the 10 μ second pulse. It was thus decided to take the second approach, which avoids the large error in pulse width but allows a small error in repetition rate as will be seen below. The computer is still able to provide control and increased flexibility compared to previous sequencing circuits. The measurement sequencer, shown in Figure 14

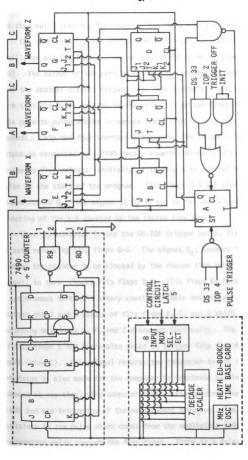


Figure 14. Measurement Sequencer Schematic Diagram.

was thus built into the instrument. Its functions are described below:

The time base for the measurement sequencer consists of the 1 MHz oscillator and its 7 decade scaler on a Heath EU-800KC time base card (29). The output of the card is set by the computer through latch 5 of the control circuit (Figure 13). The timing circuit is arranged such that the pulse applied to the cell will be ten times this output. This permits pulse widths in decade steps from 10 μ seconds to 100 seconds. Only the four shortest are used by the system. The time base output is connected to a 7490 decade counter, wired to give a gated divide-by-five output. Initially, flip flop A is cleared by an INIT pulse at the start of the program. Flip flops B-G are cleared by their connection to $Q_{\rm A}$. The signal at $Q_{\rm A}$ is set to "1" which inhibits the clocking of the \div 5 counter by the chosen time base.

When the computer issues the DS-IOP trigger pulse, flip flop A is set, releasing flip flops B-G. The signal, QA, becomes "O" which enables the counter to be clocked by the chosen time base. The counter output, in turn, clocks flip flops B-G. Flip flops B, C, and D form a synchronous three-bit binary counter. Their outputs are used to inhibit the J and K inputs of flip flops E, F, and G which produce the switching waveforms X, Y, and Z discussed previously. The Q outputs of flip flops B and D are also gated to trigger flip flop A on the fifth count (time C). This signal returns the sequencer to its initial state. Provision is also made for the computer to terminate pulsing by a DS-IOP command at any time. The computer thus retains control over the pulse width and the triggering of the measurement sequence. The only uncertainty in the pulse width comes from the negligible (<40 nsec).

4.5 µseconds in triggering the sequences due to the DS-IOP signal interval. Also, since the \div 5 counter will only clock on a $1 \to 0$ transition at its input from the time base, an additional triggering delay error which can be as large as one time base cycle is added. This results from the uncertainty in the state of the time base output at the instant of triggering.

When the measurement sequencer was originally designed, the outputs of the synchronous counter were simply gated to produce the necessary waveforms. This approach was found to be unsatisfactory. The response of the gates was sufficiently faster than the propagation time of flip flops B, C, and D that the waveforms produced by the gates contained glitches at the transition times of these flip flops. These glitches caused the FET switches of the analog circuit to momentarily change state, greatly disturbing the pulsing and signal tracking. Bypass capacitors failed to remedy the situation. The circuit was reconstructed as described above. No significant glitches are present in it.

The computer interface, the signal sampler and converter, the two latches which control pulse width and pulse height, and the measurement sequencer are contained on Heath compatible circuit cards in the large compartment of the instrument module. They are shown in the photograph of Figure 15. These cards all plug into the main digital board which provides the interconnections between them. Thus they can easily be removed for inspection. The other section of the control circuits, shown in the photographs of Figures 16 and 17, are mounted, with the relays they control, in the two end sections of the other compartment of the module. They also lift up for easy inspection.

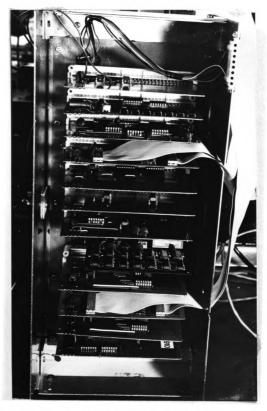


Figure 15. Photograph of the Digital Circuits Compartment.

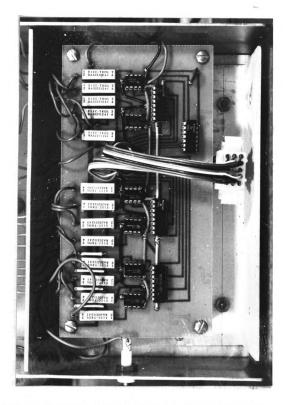


Figure 16. Photograph of the Control Circuits for Offset and Gain.

	-so		i
	•		
,			
			·

•

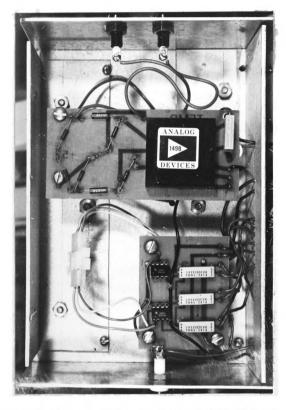


Figure 17. Photograph of the Control Circuits for Pulse Height and the Analog Temperature Monitor Circuit.

CHAPTER 4

PROGRAMMING THE COMPUTERIZED CONDUCTANCE SYSTEM FOR OPTIMIZED MEASUREMENT

A. CREATING A SOFTWARE LIBRARY FOR LABORATORY INSTRUMENTATION

From the references discussed in Chapter 3 it is evident that considerable work has been done by chemists interested in simplifying applications of computer interfacing hardware in the chemical laboratory. This work has resulted in increased availability of standard, inexpensive interfaces and digital hardware for laboratory uses. Unfortunately, at the present time only a small amount of work has been done to relieve similar problems in programming the systems which have been interfaced. Consequently the experimenter often spends an amount of time programming which is equal to or exceeds the time spent designing and building the instrument. This situation affected the rate of the implementation of the computerized conductance system as is described below.

There are three approaches to solving the problem of creating a flexible software set for a particular instrumental system. The first is for the chemist to hire a programmer to perform the task for him. The danger in this approach was mentioned in Chapter 3. It is often more difficult for the chemist to communicate his exact wishes concerning experimental operation and data analysis to the programmer than it would be for him to do the programming himself. Furthermore, should the nececessity of altering the program arise after the programmer is gone, the chemist is faced with the double task of decoding the original program and rewriting it to suit his new idea. Nevertheless, this method is definitely attractive, especially for those systems where

changes are to be infrequent.

The second, and most gallant, attempt to solve the programming problem involves the creation of a computer language or subroutine set which is specifically oriented toward laboratory operations. Very few workers have implemented this approach (three references are presented below). Their systems are not yet capable of solving sophisticated research problems, but they do indicate a direction in which computer application programming must proceed if the researcher is to realize the maximum experimentation possible from the time he is willing to devote to measurement system development. The third approach to programming, which will be discussed later, involves the chemist intimately in the software development.

B. LABORATORY COMPUTER LANGUAGES

The earliest of the attempts to create a laboratory-specific computer language involved a scheme to introduce digital computer applications into undergraduate laboratories. Perone and Eagleston (33) wished to effect this introduction without significant alteration of the sophistication of the experiments which might result if the students were also required to spend large amounts of time programming. They therefore developed a series of data acquisition and control subroutines for use with the BASIC language. They chose BASIC because it is easy to learn, is an algebraically-oriented conversational language, and because it is interactive, interpreting and executing programs line-by-line. It is also available on most computers, providing more widespread use. Their new subroutines performed data acquisition, experimental control, and timing through control of such peripherals

as D/A and A/D converters, clocks, and trigger lines. The interactions between experimenter and instrument, through the development of software, were thus greatly simplified. However, their routines did nothing to simplify programming for data analysis or manipulation which is usually a much more complex task. The BASIC language itself does, to some extent, simplify data analysis. However, because it is an interpretive language, available core space in a minicomputer using BASIC is limited. BASIC therefore lacks the power and speed to perform data analysis of the complex systems often encountered in research.

The next attempt involved the development of an interpretive laboratory computer language, LABTRAN, by Toren, Carey, Sherry and Davis (34). LABTRAN was designed for use with the ELLA system (35) for clinical analysis. LABTRAN consists of nine statements, each of which causes performance of a specific task such as pipetting, measuring reaction rate, pausing, and so forth. The commands are decoded by the computer into a series of instructions which performs these tasks. The only instruction which required the computer to make a decision was the instruction to compare analyses to determine whether or not to terminate the run. The comparison criteria were input by the experimenter. The net result was a neat system of performing routine analysis. An experiment could be designed by a person with no programming background at all. The experimenter would simply list the tasks (not the decisions!) he would perform if he were doing the experiment himself. The computer acted as an elaborate sequencer. The use of the computer's decision making abilities was neglected as LABTRAN contained no provisions for branching, altering tasks, etc. The research applications of LABTRAN could only include those types of measurements and analyses which

must be mechanically duplicated often for bulk data compilation.

The most sophisticated laboratory-oriented language which has yet been developed is the MIRACL language presented by Keller, Courtois, and Keller (36). MIRACL (Macro Implimented Real-time Analytical Chemistry Language) is a macro assembler built around a modified PAL-11 assembler for use on a PDP-11 computer with a floating point processor and 8K of memory. It makes use of macros, coded statements which usually are designed for a specific task, in performing laboratory operations. When a macro statement is encountered by the assembler, the statement is translated into a pre-arranged set of machine language instructions and a set of constants corresponding to the argument of the macro. Examples of nine macro statements which MIRACL uses were presented. They included branching macros with arguments which could be data tests, printing macros, assignment macros, etc. An interesting macro was the AT TIME statement which initiated a block of statements to be executed whenever the clock time was equal to the time variable argument of the macro. Complex timing algorithms could thus be created by nesting such statements.

The authors indicated three basic defects in the use of MIRACL in research. These were the slowness of their floating point processor (all MIRACL functions were performed in floating point arithmetic), limitation by available core space to 36 variables, and lack of a plotting facility and corresponding macros. These problems were to be remedied in a later version of MIRACL.

It became evident throughout the article that the MIRACL system suffered from lack of computer power. Looking ahead toward future developments one might envision a multi-level system, both in software

and hardware. Laboratory job descriptions of a series of tasks, including branching and decisions jobs, could constitute a super-compiler laboratory language. Once the order of such tasks had been determined by the experimenter, a large batch processor would translate the jobs, compile the resulting program, and assemble a machine language program suitable for operation on the particular laboratory mini or micro computer which was to be used for actual operation of the experiment. The assembled program could also be optimized for core space and run time by the large processor. Programming could thus be done in the same modular way in which interfacing is done in the Heath system described in Chapter 3. The amount of time which the experimenter would save as a result would be comparable to the savings realized by using a modular interface as opposed to designing and building an interface each time a different experiment was performed. Such a system does not yet exist but its creation would seem inevitable.

C. PROGRAMMING WITH COMMONLY PROVIDED LANGUAGES

The third approach to programming is, of course, for the chemist to do it himself. This is the approach which was taken with the computerized conductance system. The basic problem is obvious; the experimenter's time is channeled toward software development rather than experiment design. It should, however, be noted that such programming can be greatly simplified by use of a higher level language, such as FORTRAN, wherever possible. Furthermore, after the initial time spent learning software techniques and writing the first programs, it was found that the experimenter became sufficiently "fluent" in the language

employed that the time required to create new programs or alter old ones decreased considerably. For example, all operating programs for the computerized conductance system presented in this thesis, with the exception of the data treatment program for determination of S/N discussed in Chapter 5, were completely written or derived from extensively modified programs in only four months. This was, of course, the direct result of over a year's previous exposure to programming the system, which constituted the necessary learning experience. As a consequence one of the most sophisticated and intricate program sets in the computerized conductance system was created by extensive modification of existing programs in a single day. This was the program set written for simultaneous acquisition and analysis of conductance, temperature, and luminescence data, discussed in Chapter 8. This indicates that once the chemist masters the intricacies of programming, the subsequent time devoted to programming becomes reasonable compared to the experimental time, when a sufficiently powerful, general-purpose compiler system (such as the DEC OS/8 system described below) is available.

D. THE DEC OS/8 OPERATING SYSTEM

All programs for the computerized conductance system were written using the Digital Equipment Corporation OS/8 operating system (37). This system is based on a Keyboard Monitor which allows the user to control the flow of programs. A Symbolic Editor (EDIT) is provided for creation or modification of source files. A Peripheral Interchange Program (PIP) enables the user to transfer files between system devices. An absolute assembler (PAL-8) and loader as well as a relocatable

assembler (SABR) and loader are included. FORTRAN II is available. The FORTRAN compiler translates FORTRAN source files into SABR, permitting mixing of these two languages. This enables the programmer to write the necessary instrumental control and monitoring routines in assembler language, while performing data manipulation and system device I/O in FORTRAN. This combination of FORTRAN and SABR is exclusively used in the computerized conductance system programs presented in this thesis.

The OS/8 system does contain several idiosyncracies which were discovered during development of these programs. The more important of these are discussed below to prevent future workers desiring to expand this program set from repeating mistakes or encountering problems which have previously been resolved.

Because of the limited core space available in the 12K PDP-8/I it is impossible for both data acquisition and analysis routines to be resident in memory at the same time, except for the few very simple programs. It is, therefore usually necessary to write the data obtained during an acquisition onto tape at the completion of a run, for later analysis. Initially, it had been decided to write file-structured data blocks on tape by use of the device independent I/O command OOPEN in FORTRAN (38). The acquisition program would then use the CHAIN command (38) to call the first analysis program. For some reason, however, these routines failed to work with the programs which had been written for the computerized conductance system. Consultation with DEC software specialists failed to resolve the problem. Fortunately, the eventual solution provided a better means of bulk data storage than that first sought.

It was found that the best method for transfer of data from memory to DECTAPE and vice versa was to use the non-file structured I/O commands WTAPE and RTAPE in FORTRAN (39). With these routines the absolute block number on the DECTAPE where data transfer is to begin is input to the routine as an argument. The computer proceeds immediately to that location and transfers the data. No consultation with the DECTAPE directory is necessary, as in the case of OOPEN and IOPEN, resulting in considerably faster data transfer.

It is now suspected that the problem with OOPEN and CHAIN arose from the use of certain page zero locations (74 to 103) by the computerized conductance system programs. It was discovered (40) that these locations are used by the PS/8 operating system (which preceded OS/8) for device independent I/O pointers. OS/8 was to have been configured in such a way that these locations would be freed. However, it is suspected that this has not been the case. In any event, there is no desire to return to the use of these device independent I/O routines because of the higher speed at which WTAPE and RTAPE operate. It should be noted, however, that WTAPE and RTAPE can only be used with the TCO8 direct memory access (data break) tape controller. These routines will not function with a tape controller, such as the TD8E, which does not transfer data by direct memory access. Transfer of the computerized conductance system to a computer system with such a controller would necessitate use of OOPEN and IOPEN for data transfer.

One feature which the FORTRAN II compiler supplied with the OS/8 system lacks and which would prove extremely useful is the ability to use the extended arithmetic element (EAE) in its math routines. This FORTRAN package performs all mathematic operations by means of software,

even where an EAE is available. A considerable improvement in speed would result from use of the EAE instead, for fast hardware multiply, divide, and shift functions. Unfortunately, since a SABR listing of the FORTRAN II compiler was not available, it has not been possible to incorporate the EAE into the FORTRAN package.

The SABR language allows the programmer to be rather careless in core location assignment and paging, by supplying indirect statements and page pointers, where needed, itself. However, this convenience can inhibit smooth operation in some applications. For example, SABR inserts a CDF (change to data field zero) instruction each time it encounters an instruction which uses the indirect addressing mode. This not only results in loss of core space and time but can be catastrophic in a program sending information into other data fields under command of the source program. This problem is circumvented in the computerized conductance system in two ways. One is to define an absolute address pointer on page zero. This pointer is then loaded with the address to or from which data is to be transferred. The actual octal instruction is then used in the program to reference indirectly the page zero location. The assembler is "fooled" without further incident.

Another method, employed only in the timed data acquisition routine, is that suggested by DEC concerning optimization of SABR code (41). This is to define a series of indirect statements (e.g. OPDEF TADI 1400) which are equivalent to the PDP-8 memory reference instructions but contain an indirect bit. These statements will work, if used sparingly, but they <u>do</u> precipitate an (illegal character) error message from the assembler. When such an error occurs in

assembly, the assembler will <u>not</u> call the LINKING LOADER to load the program but will return control to the Keyboard Monitor when assembly is complete. Therefore it is necessary to have saved the relocatable file generated by SABR so that the LINKING LOADER may be called by the user to load the program. Once this is done, the program will run properly, ignoring the error statements.

The final problem with the use of the OS/8 system, which has not been overcome, is that one cannot make use of the program interrupt facility with it. This appears to result from part of the system subroutine calls occupying the first few locations on page zero, including location zero. Location zero is the address to which the PDP-8 computers jump for the interrupt service routine pointers when an interrupt is sensed. According to the DEC literature (42), locations 0 to 6 on page zero in each field are available to the user. However, it has been found in operation that this is not the situation. Thus the computerized conductance system has never been operated in the interrupt mode although its hardware is capable of doing this.

Despite these few defects, the OS/8 system has enabled the sophisticated programming of the computerized conductance system, for both data acquisition and analysis, to be completed and implemented with relative ease. It seems most instructive to discuss the particulars of each of these programs in the chapters that present the chemical measurements which these programs perform and analyze (Chapters 5-8). However, three routines which appear often in the data acquisition programs are sufficiently important and general to be discussed separately. These programs are presented in the following sections. They are all contained in the example system program CBTSLS in the Appendix.

E. CREATING AN EXPERIMENTALLY FLEXIBLE SOFTWARE SET

The component circuits of the instrument provide the sequence of events necessary to perform a bipolar pulse measurement of conductance. These blocks are hardware combined only to the extent required by these sequences. This was done with the intention of producing an instrument with the highest degree of internal flexibility, both in combination of functions and in timing these functions. The use of digital measurement and timing techniques places the computer's decision-making abilities within the instrumental framework. This encourages the use of "intelligent" rather than fixed interactions between the various separate circuits. In this way, the experiment itself may be "designed" during run time such that the data received as a result of the software-instrument-chemistry correlation are the optimum data attainable by the technique.

If these design philosophies are properly implemented, a system which is user-oriented results. Any experiment, even one designed by the most novice operator, will yield the maximum amount of information because the computer will be programmed to automatically optimize the entire measurement sequence. Thus, if a chemist designs a significant "chemical" experiment, even though he has no knowledge of the intricacies of measurement which the computerized conductance system employes, he is guaranteed to receive data which is of a quality commensurate with the quality of the chemistry involved. The only assumption is that the experimenter have sufficient knowledge of the parameter he wishes to measure to enable him to decide that a conductance measurement is suitable. It will be seen in Chapter 9 that the computerized conductance system is even capable of providing this information.

F. DETERMINATION OF THE OPTIMUM MEASUREMENT PARAMETERS FOR THE COMPUTERIZED CONDUCTANCE INSTRUMENT

For the circuit presented in Figure 6 the cell conductance, \mathbf{G}_{CELL} , in MHOS, is given by:

$$G_{CELL} = \frac{R_T}{R_D} \left(\frac{R_F}{R_{IN}R_I} - \frac{E_S}{E_{IN}R_V} \right)$$

where R_T is the total divider resistance (10000 Ω), R_D is the divider resistance to ground, R_F is the offset amplifier feedback resistance, R_{IN} is the offset amplifier input resistance (20000 Ω), R_I is the offset current producing resistance, R_V is the current follower feedback resistance, E_{IN} is the precision -5 volt power supply level (-5.000 Volts), and E_S is the sampled voltage (on a scale of 0 to 12.5 volts).

It was indicated in Chapter 3 that certain arrangements of the circuit settings (for a given conductance measurement) will produce values of the output signal, E_S , equivalent in magnitude. It was desirable to design the software in such a way that each time the computer set the circuit, the minimum instrumental error and noise level and the maximum resolution resulted. Since the tolerance for each component, C_i , of the above equation is known, the maximum error in G_{CELL} (corresponding to all component deviations being in the same direction), dG_{CELL} , is given by:

$$dG_{CELL} = \sum_{i=1}^{8} \left| \left(\frac{\delta G_{CELL}}{\delta C_i} \right) \right| dC_i + QUANTIZING ERROR$$

The quantizing error is the error due to digitization of the signal as a result of the A/D conversion, as discussed by Kelly and Horlick (43). It is the resolution limit of the instrument for a single measurement, equal to or less than $\pm 1/2$ of the least significant bit (LSB) of conversion. For one discrete A/D conversion of 12 bits with no offset applied, the maximum quantizing error of G_{CELL} is the product of cell current and R_V divided by 8192 (1/2 digital value of LSB). A program was written to solve for the error fraction, G_{CELL}/G_{CELL} , for all circuit settings and various sampled voltages, E_S . It was found that maximum accuracy was obtained at maximum pulse height, minimum current follower feedback resistance, and maximum offset. The error also decreased as E_S increased. Since maximum offset also corresponds to maximum resolution, no trade-off between accuracy and resolution was necessary.

In summary, then, the sequence of events for the computer to follow in setting the circuit for optimized measurement is:

- l) Maximize the pulse height to make $E_{\hat{S}}>12.5$ volts if possible.
- 2) If necessary, increase R_V to make $E_S>12.5$ volts.
- 3) Apply the maximum offset possible to bring E_S within the range of 0 to 12.5 volts.

G. THE PRELIMINARY SCAN ROUTINE

In order to set up the system for data acquisition, it is necessary for the computer to determine the conductivity region in which the measurement is to occur and to establish the optimum circuit settings for measurement in that region. To accomplish this, all data acquisition routines in the computerized conductance system utilize

the preliminary scan routine for measurement initialization. This routine is flowcharted in Figure 18. A complete listing of the routine appears in the CBTSLS program in the Appendix.

The preliminary scan sequence begins when a "G" is entered on the teletype. The computer initially selects the 10 μ second pulse width. It sets the circuit in its widest possible range. This corresponds to minimum pulse height ($R_D = 100$), minimum current follower gain ($R_V = 10^4$), and no applied offset current (R_{I} = 0, R_{F} = 4000). These values are latched into the control circuit. The computer waits for the relays to close, then measures. The measurement is tested to determine if the A/D converter is reading full scale. If it is not, the pulse height is increased (R_{D} increased ten-fold) until the converter reads full scale or the maximum pulse height is reached. If the A/D converter still does not read full scale, the gain of the current follower is increased ($R_{\rm V}$ increased ten-fold) until it does or until the maximum gain is reached. If, at maximum gain, the A/D converter still does not read full scale, the computer outputs a resolution error, stores the scale settings and takes and outputs the measurement, and proceeds to the next pulse width. The resolution error indicates to the operator that the conductance was too small to permit offset to be applied, thus eliminating the extra bits of resolution which the offset provides.

As soon as the A/D converter output becomes equal to full scale, the computer begins to apply offset to bring the signal within the 0 to 12.5 volt range of the converter. The computer sets the proper decade scale of offset ($R_I = R_V/10$), latches in one offset unit on this scale, and measures. The computer continues to apply offset until the A/D converter reads less than full scale. At this time the computer

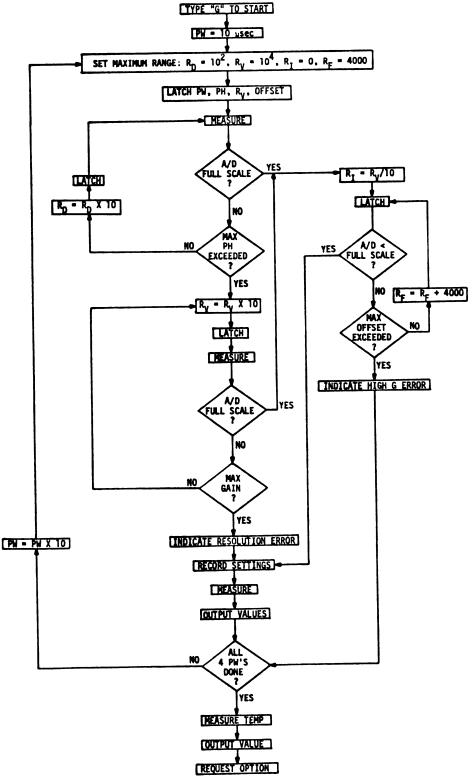


Figure 18. Simplified Preliminary Scan Routine Flowchart.

records the settings, measures, outputs the measurement parameters, and goes on to the next pulse width.

If, on the initial measurement of the sequence, the A/D converter had read full scale and the computer could not apply sufficient offset to bring it on scale, the computer outputs a high conductance error, which indicates that the conductance is greater than $0.22\Omega^{-1}$ and, thus, beyond the operating range of this instrument. The measurement is skipped and the computer proceeds to the next pulse width.

Typical computer output from the preliminary scan routine is shown in Figure 19. After the parameters for the first pulse width measurement are determined, the computer, having measured the conductance at these circuit settings, outputs the chosen pulse height (PH), pulse width (PW), offset units applied (UNITS), and the current follower feedback resistance (RV). The computer also outputs the magnitude of the voltage signal from the current follower (ES), the calculated cell resistance (RCELL), and conductance (CCELL).

When the sequence has been repeated for the next three pulse widths, the computer measures the response of the temperature sensor, as will be discussed in Chapter 6, and outputs the value. Finally, the computer prints the available measurement options and waits for selection of one of them.

The circuit parameters determined by the preliminary scan routine are stored in two ways. The instruction words, which, when output to the instrument, cause the circuit to be set in that particular optimum mode, are stored intact, one set for each pulse width. These are later used to set the circuit in the correct initial state when an option routine is called. In addition, a single parameter word is

TYPE "G" TO START

G
PH = 0.5000E+01 VOLTS
PW = 0.1000E-01 MSEC

UNITS = 0.9000E+01

RV = 0.1000E+06

SAMPLED V = 0.729980E+01

RCELL = 0.513876E+04 OHMS

CCELL = 0.194600E-03 MHOS

PH = 0.5000E+01 VOLTS PW = 0.1000E+00 MSEC UNITS = 0.9000E+01 RV = 0.1000E+06 SAMPLED V = 0.741272E+01 RCELL = 0.513280E+04 OHMS CCELL = 0.194825E-03 MHOS

PH = 0.5000E+01 VOLTS PW = 0.1000E+01 MSEC UNITS = 0.9000E+01 RV = 0.1000E+06 SAMPLED V = 0.721130E+01 RCELL = 0.514343E+04 OHMS CCELL = 0.194423E-03 MHOS

PH = 0.5000E+01 VOLTS PW = 0.1000E+02 MSEC UNITS = 0.9000E+01 RV = 0.1000E+06 SAMPLED V = 0.685425E+01 RCELL = 0.516240E+04 OHMS CCELL = 0.193708E-03 MHOS

TEMP RESPONSE = 0.156494E+01

OPTIONS: 1)AVERAGE 2)RESTART 3)TDA 4)CALL EXIT

Figure 19. Preliminary Scan Routine Output.

stored which contains the information as to how the circuit was set. This word is decoded by a special subroutine (DCODE in CBTSLS) where the conductance is calculated from the circuit equation.

In executing the preliminary scan routine, the computer has optimized the circuit setting according to the sequence described above. If the computer should be unable to perform this optimization, appropriate messages inform the operator. Thus, at the end of this routine, the operator may be assured that the measurement of conductance for that particular system has been initially optimized.

H. THE AVERAGING ROUTINE

One of the option routines which the operator may always select is the option to average a specified number of scans (discrete measurements) for a more precise determination of the measured conductance. This routine is flowcharted in Figure 20. A listing of this routine also appears in CBTSLS in the Appendix.

In order to utilize the averaging routine the operator must input the pulse width to be used in the measurement (which is chosen by the criteria presented in Chapter 5), the number of scans, from 1 to 2047, to average, and whether or not double precision data is to be taken. (Double precision data arises from the additional bits of resolution resulting from averaging, as discussed in Chapter 5.) The computer then looks up the instruction words corresponding to the chosen pulse width, sets the circuit, and measures. The measurements are summed as they are taken and stored in two words. When all scans have been taken, the sum is loaded into the EAE and divided. This provides fast, hardware calculation of the average ES. The DCODE subroutine is called

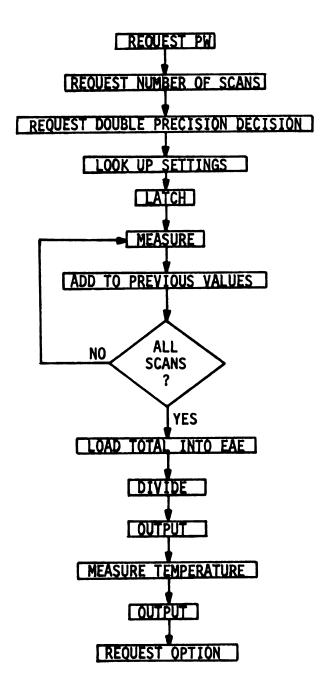


Figure 20. Averaging Routine Flowchart.

to calculate the conductance. The average ES, RCELL, and CCELL are output, the temperature response is measured again and output, and the program returns to the option selection. The printout generated by this routine is shown in Figure 21.

I. THE TIMED DATA ACQUISITION ROUTINE

Most chemical measurements involve the acquisition of data at regular intervals. The timed data acquisition routine (TDA) provides the computerized conductance system with a flexible means of sequencing this experimental interaction, both for conductance monitoring and for control of other peripheral devices used in the experiment. This routine is found in most of the conductance system programs for chemical analysis. It is also listed in the sample program, CBTSLS, in the Appendix.

The computer dialog for this routine is shown in Figure 22; the flowchart appears in Figure 23. Initially, the computer requests the total number of data points to be taken. Up to 500 points may be taken with this routine if temperature and double precision data are taken, up to 1000 points if they are not. Next, the time interval between points is requested. This can be any time from 130 µseconds to 40000 seconds. The computer then requests the number of temperature measurements to average. If zero is input, the temperature measurement is skipped. The computer then outputs the approximate length of time the experiment will require and requests the address of the first tape block on which to write the data accumulated during the run. The operator inputs the pulse width, the number of conductance scans to average (up to 2047) for each point, and whether or not double precision data are to be

OPTIONS: 1)AVERAGE 2)RESTART 3)TDA

4) CALL EXIT

1

AT WHAT PW? (MSEC): .1

NUMBER OF G SCANS TO AVERAGE: 100.

DOUBLE PRECISION? (1=Y,0=N):1

TYPE EXPERIMENTAL INFO (CNTRL G TO END):

CONDUCTANCE MEASUREMENT OF A 0.0001 M SOLUTION OF HCL 3/25/74

AVERAGE OF 100 · SCANS: SAMPLED V = 0 · 60561523E + 01 VOLTS RCELL = 0 · 52052886E + 04 OHMS CCELL = 0 · 19211230E - 03 MHOS

TEMP RESPONSE = 0.168457E+01

Figure 21. Averaging Routine Output.

OPTIONS: 1)AVERAGE 2)RESTART 3)TDA 4)CALL EXIT

3

TOTAL NUMBER OF POINTS:100.

TIME BETWEEN POINTS (SECS):5.

NUMBER OF T SCANS TO AVERAGE:25.

THIS WILL REQUIRE ABOUT 0.8333E+01 MIN

FIRST BLOCK TO WRITE: 200.

AT WHAT PW? (MSEC): .1

NUMBER OF G SCANS TO AVERAGE: 100.

DOUBLE PRECISION? (1=Y.0=N):1

TYPE EXPERIMENTAL INFO (CNTRL G TO END):

TITRATION OF 50.0 MLS OF 0.002 M HCL WITH 0.01 M NAOH CELL THERMOSTATED AT 24.0 C 3/25/74

TYPE "G" TO START G

Figure 22. Timed Data Acquisition Routine Output.

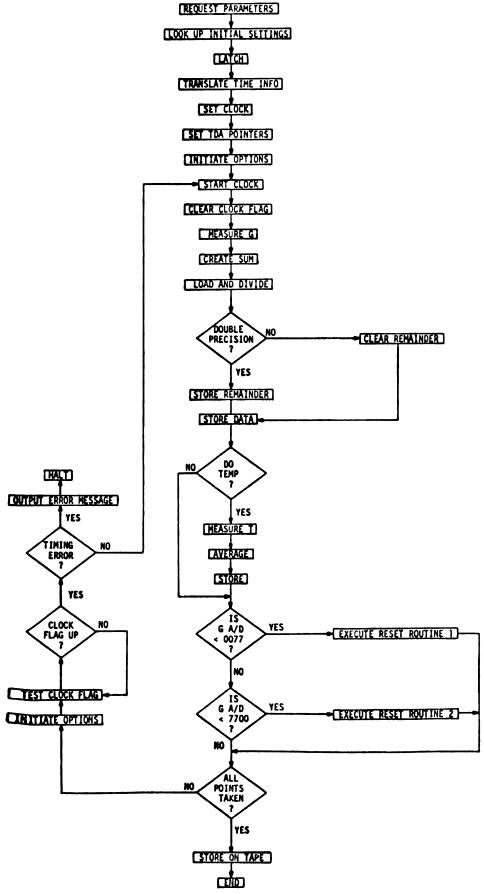


Figure 23. Simplified Timed Data Acquisition Routine Flowchart.

taken. The operator may finally record information about the particular experiment, for future reference, on that printout.

When a "CNTRL G" is entered on the teletype, the computer looks up the initial settings from the preliminary scan and sets the circuit (refer to the flowchart, Figure 23). It translates the timing information, sets the clock, and sets up the software pointers utilized during the run. It then waits for a "G" to be typed before beginning the actual acquisition. Once a "G" is typed, the computer may initiate operation of a peripheral device, such as the triggering of a stopped flow apparatus. It then starts the clock and begins to measure. Averaging is performed as in the averaging routine discussed previously. If double precision data are to be taken, the remainder from the EAE division is saved, to be later re-divided by the analysis routine in floating point format. If double precision data are not requested, the remainder is cleared, increasing storage capacity. In addition, the l2 bit dividend and the parameter word which contains the circuit setting information are stored.

If temperature information is to be taken, it is measured, averaged, and stored in the same manner as the conductance data. No provision for double precision is required as will be seen in Chapter 6.

The conductance measurement which the computer has just acquired is tested to determine if the sampled signal, E_S , is within the proper limits. The criteria for these limits were determined by the hysterisis necessary for scale overlap which will be discussed in detail in Chapter 5. If the A/D converter reads less than or equal to 0077, the computer will execute reset routine 1 to insure that the next measurement will be on scale. If the converter reads greater than or equal to 7700,

reset routine 2 is executed in a similar manner.

If all points are not yet taken the computer may again initiate operation of a peripheral device, such as the addition of the next increment of titrant in a conductometric titration. The computer then waits for the clock to signal time for data to be taken again and proceeds to measure as before. If more than twice the amount of time allowed between points has elapsed, due to a clock error or the time involved in a reset routine, the computer signals that the measurement timing has been destroyed and halts. If all data points have been acquired, the program transfers the data to DECTAPE and returns control to the Keyboard Monitor.

If the conductance has decreased such that the digital value of conversion is equal to or less than 0077, the circuit must be reset according to the optimization rules already discussed. This adjustment is performed in the fastest possible manner by reset routine 1, flowcharted in Figure 24. This routine will cause the offset to be decreased so that the signal to the A/D converter is increased to compensate for decreased cell conductance. If the offset is already 1 unit, the pulse height is increased to enhance the signal. If the pulse height is already at maximum, the current follower gain is increased. Once either the Pulse height or gain have been increased, the offset is set to 10 units which will cause the next measurement to be properly on scale. If the circuit had already been set at maximum gain and 1 offset unit, the Offset is turned off altogether. Finally, the parameter word is reset for the new values of the circuit settings, these values are latched in, and control returns to the main program. Reset routine 2, for resetting the circuit to compensate for increased conductance,

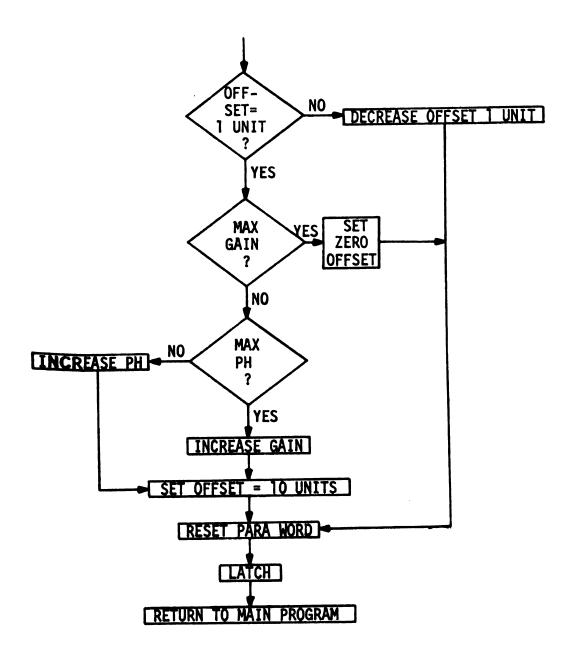


Figure 24. Reset Routine 1. (Simplified)

works similarly. It is flowcharted in Figure 25. These routines insure that the optimum measurement will continue to be made during the entire TDA run.

At the shortest pulse width, the TDA routine allows individual conductance scans to be made every 30 μ seconds. Approximately 100 μ seconds are required to calculate the average and store and test the data between points, if no resetting is required. Reset routines require 300 μ seconds to become "effective" due to the relay closing time. Simultaneous temperature measurement requires the additional time of 6 mseconds per scan.

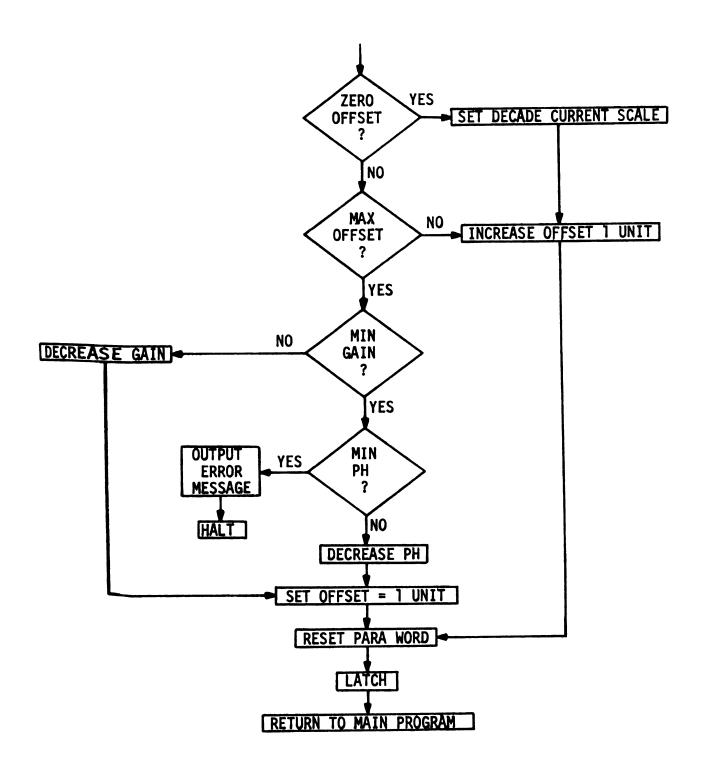


Figure 25. Reset Routine 2. (Simplified)

CHAPTER 5

PERFORMANCE CHARACTERISTICS AND SELF TESTING ABILITY OF THE COMPUTERIZED CONDUCTANCE SYSTEM

A. PERFORMANCE CHARACTERIZATION VIA THE SYSTEM SOFTWARE

An instrumental system, such as the computerized conductance system, in which the computer has complete control over the measurement process and circuit setting is, in itself, the most powerful tool in the determination of its own performance abilities. It is possible, through appropriate software, to determine these characteristics with considerable efficiency and precision. Accuracy, resolution, and precision can thus be measured relatively easily over the entire eight orders of magnitude within the operating range of the computerized conductance system. In addition, the computer may assume the responsibility for making optimum measurements with respect to any of these characteristics for any particular region within this range. The trial and error tedium associated with manually setting a conventional instrument for determination of its optimum measuring abilities is therefore largely eliminated. Finally, performance characteristics which may only be discussed in relatively qualitative terms for many instruments may be quantitatively determined with high precision in the Computerized conductance system.

B. DETERMINATION OF SYSTEM S/N, PRECISION, AND RESOLUTION

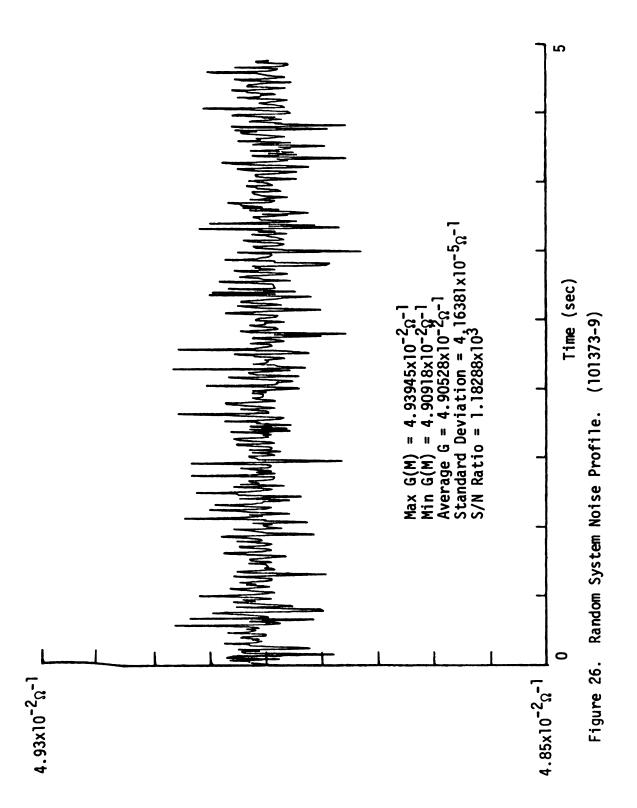
The first performance characteristic which was determined for the computerized conductance system was the signal-to-noise ratio, S/N,

in various parts of the operating range. From these measurements, information concerning precision and resolution were derived.

To determine the S/N the instrument was connected to a standard resistance with, usually, 1 ppm/°C temperature stability (e.g. Vishay metal film resistors type S106 or S102). A TDA routine, such as CBTSLS discussed previously, was utilized to make 500 measurements of this standard at discrete intervals. Each measurement could be a single scan or the average of up to 2047 scans. Standards were used which covered the entire operating range of the instrument. A special data treatment routine, CCPMLD, was written to analyze the data and plot it on the X-Y plotter and the display scope.

The program computes and outputs the maximum and minimum conductances measured during the run. It also calculates the standard deviation, σ , as given by:

$$\sigma = \left(\frac{\sum_{i=1}^{n} (\bar{G} - G_i)^2}{n}\right)^{1/2}$$


where n = the number of points, \vec{G} = the average conductance, and G_{ij} is the measured conductance at point i. Finally, the S/N is calculated from:

$$S/N = \bar{G}/\sigma$$

The program is also capable of calculating G_{MAX} , G_{MIN} , \bar{G} , σ , and S/N for any continuous group of points in the data set. The operator may then select to plot any or all of these points. Such a plot is

shown in Figure 26. This plot represents a worst-case situation for precision in the computerized conductance system. This occurs in the region near the highest measurable conductance, corresponding to the lowest pulse height utilized for bipolar perturbation. The data consist of single scans taken per measurement (i.e. no ensemble averaging). The standard deviation calculated for this situation was 4.6 x $10^{-5}\Omega^{-1}$. The S/N ratio was 1180. The obtainable resolution, in this region, with no ensemble averaging is limited by noise and not by the 12 bit (1 part in 4096) resolution of the A/D converter.

During the initial stages of these resolution determinations, the method used for ensemble averaging was the same as that described in Chapter 4 with the exception that the remainder generated from the EAE division was always discarded; only the 12 most significant bits of the dividend were stored for later treatment. At this time, it was suspected that the attainable resolution would always be limited, by noise, to less than the 12 bits of the A/D converter plus any additional most-significant bits supplied by the offset generator. This quickly proved not to be the case as can be seen in Figure 27. This plot clearly shows the measured signal oscillating between two leastsignificant bit positions for only 16 averages per point in the conductance region around 3 x $10^{-4}\Omega^{-1}$. The resolution has clearly been limited by the 12 bits of the averaging which have been kept for analysis. Increasing the number of averages could do nothing to improve the signal. However, Malmstadt, Enke, Crouch, and Horlick (44) have shown that a level of system noise greater than 1/2 of the quantization level randomizes the quantization error, making S/N enhancement by ensemble averaging possible. Furthermore, once the

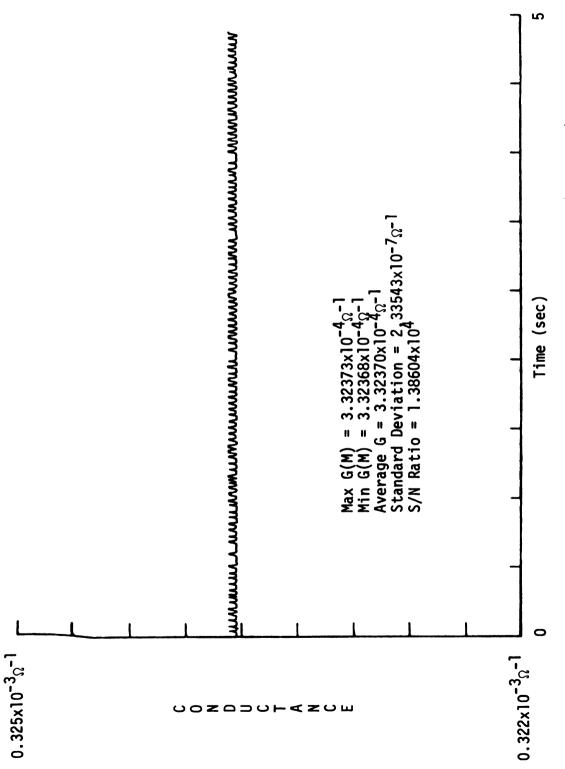
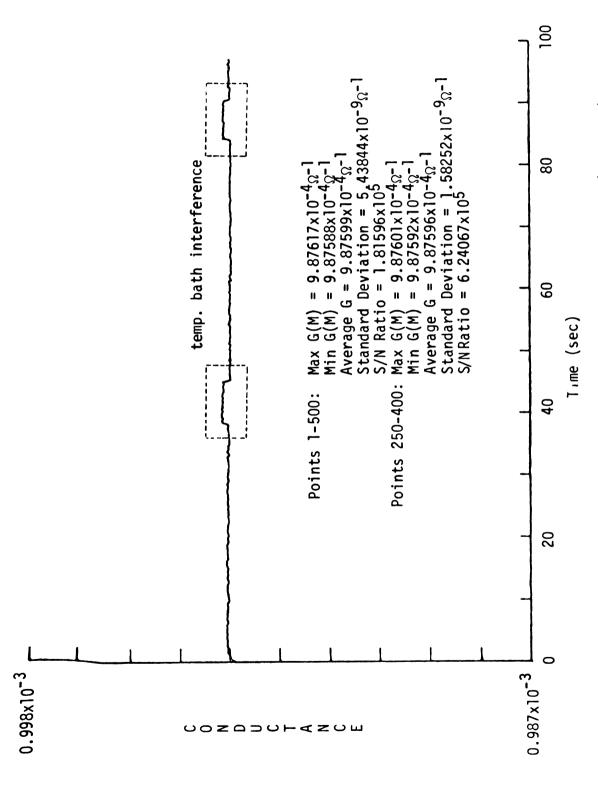


Figure 27. Reduction of System Noise to Quantization Level. (101373-5)


number of averages decreases the system noise to 1/2 of the quantization level, increased resolution beyond the number of bits of the A/D converter will result. For example, if 16 12-bit A/D conversions are totaled, a 16 bit word will result. If the noise on the signal was not greater than 1/2 the value of the least-significant bit when the data were taken, two of the four bits beyond the initial 12 are significant, providing a 14-bit conversion and increasing the resolution by a factor of 4.

It was therefore decided to store the remainder from the EAE division during the TDA run (essentially "double precision") and redivide it by software during the data analysis routine. In this way the predicted improvement in S/N and in resolution could be realized. The effect of this technique is demonstrated rather dramatically in Figure 28.

Figure 28 shows a TDA monitoring of a standard resistance in the region of $1000\Omega(10^{-3}\Omega^{-1})$. Double precision data have been taken (i.e. the remainder is saved and re-divided during analysis) for an average of 2000 scans per point. The two irregularities in the curve were found to be a disturbance caused by the temperature bath heater switching on for 10 seconds, every 35 seconds or so. Although the standard resistor was attached to an aluminum plate with heat sinking grease, a small amount of initial heating can be observed during the first 10-15 points. After this time, the heating by pulsing and cooling by air reach a steady state. Neglecting these recognized interferents, for points 250-400 (2000 scans/point), the standard deviation was found to be $1.58 \times 10^{-9} \Omega^{-1}$ yielding a S/N of 624,000. Thus the option to take double precision data has henceforth been incorporated

F. 25.2

. ...

Ensemble Averaging Improvement in S/N and Resolution. (102373-8) Figure 28.

into all data acquisition and analysis programs.

As shown in Table 2, this region of conductance proved to be the most precise for measurement by the computerized conductance system. For an average of 2000 scans, the noise on the signal totaled only about 1.6 parts per million. In the region of highest conductivity, the S/N was limited by the number of averages which could be performed in a reasonable amount of time. The greater noise is most probably the effect of the relatively higher noise levels on the 0.05 volt Pulsing signal employed here. In the region of lowest conductivity the results obtained during these measurements are somewhat limited by the stability of the standards which were available for use. In addition, at the very low signal levels being detected for these conductances, spurious currents through the glass epoxy printed circuit board become significant compared to the measured signal. Had this problem been anticipated in the design stages, its effect could have been minimized by placing ground loop foil patterns around the cell COntacts on the analog printed circuit board. Since few measurements are made on solutions with a conductivity this low, rebuilding the board to correct this problem has not appeared necessary.

Finally, increasingly long pulse widths must be employed, as will be discussed later, at low conductivities, limiting the number of averages which can be made in a reasonable amount of time.

C. DETERMINATION OF SYSTEM ACCURACY

The response of the computerized conductance system was found to be linear for any particular scale setting. Discontinuities, which were encountered at scale changes (which will be discussed later),

TABLE 2. Performance characteristics.

Conductance	Number of Averages	Standard Deviation	Signal-to- Noise Ratio	Limited By
4.9 x 10 ⁻²	-	4.16 x 10 ⁻⁵	1.18 × 10 ³	Noise
4.9×10^{-2}	2000	2.17×10^{-6}	2.26×10^4	Limit of Averaging
9.4×10^{-3}	_	1.41 × 10 ⁻⁶	6.70×10^3	Noise
9.4×10^{-3}	2000	3.23×10^{-8}	2.92×10^{5}	Limit of Averaging
9.9×10^{-4}	_	1.50×10^{-7}	6.60×10^3	Noise
9.9×10^{-4}	2000	1.54×10^{-9}	6.40×10^{5}	Stability of Standard
3.2×10^{-4}	_	7.45×10^{-8}	4.34×10^3	Noise 66
3.2×10^{-4}	2000	1.52 × 10 ⁻⁹	2.13×10^{5}	Stability of Standard
9.9×10^{-5}	_	6.29×10^{-8}	1.43×10^3	Noise
9.9×10^{-5}	2000	2.30×10^{-10}	4.20×10^5	Limit of Averaging
9.9 x 10 ⁻⁶	_	6.74×10^{-9}	1.47×10^3	Noise
9.9×10^{-6}	2000	3.60×10^{-11}	2.74×10^{5}	Limit of Averaging
8.2×10^{-7}	_	1.27×10^{-9}	6.40×10^{2}	Noise
8.2×10^{-7}	2000	1.05×10^{-11}	7.77×10^4	Stability of Standard
9.0 × 10 ⁻⁸	1000	9.96 × 10 ⁻¹²	9.01×10^{3}	Stability of Standard, Time Scale of Experiment

had no effect on the linearity of measurements made at the same scale setting. Thus, in making absolute conductance measurements, a standard resistance is measured which requires the same instrumental scale settings as the unknown conductance to be determined. Once the computer is given the true value of the standard, it can software-correct any conductance measured at that scale setting since the net error will be constant over that interval. Instrumental drift was found to be an insignificant problem (less than 0.005% per day) over most of the operating range. Accuracy was, rather, found to be predominately a function of the series capacitance associated with the cell.

In order to facilitate the determination of maximum accuracy associated with each conductance region within the operating range of the system, the CBPSLT program, flowcharted in Figure 29 and listed in the Appendix, was developed. CBPSLT provides four option routines. Two of these routines are data analysis and plotting subprograms (options 1 and 2 respectively). The other two are both data acquisition routines, one for accuracy determination (option 4), and one for Pulse width optimization (option 3) which will be discussed in the next section.

The data acquisition routine in option 4 is designed to eliminate or minimize the effects of extraneous signals on the accuracy determination. These effects are most often caused by a build up of charge on the series capacitance due to pulse asymmetry or the short range temperature characteristics of the standard. Option 4 overcomes these effects by allowing the operator to vary the relaxation time between single conductance scans as is necessary. The routine functions as follows:

After selection of a pulse width by the operator the computer

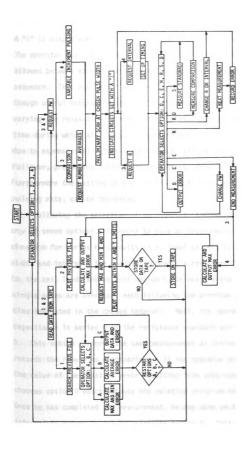


Figure 29. CBPSLT Program Flowchart. (Simplified)

executes a preliminary scan of the system at that pulse width only. A "!" is output when the preliminary scan is successfully completed. The operator may then choose the relaxation interval which is to be allowed between each individual bipolar pulse perturbation-measurement sequence. This may be varied from 10 μ seconds to 40000 seconds (although useful intervals extend only up to about 50 m seconds). By varying the relaxation interval, the operator is able to establish a time during which all excess charge developed on the series capacitance due to asymmetrical pulses may be sunk to virtual ground by the current follower, preventing build-up of this charge from affecting accuracy. Furthermore the heating of the "cell", which is a function of the pulsing rate, can be decreased.

Following the selection of an interval, the operator may choose any of seven options. In order to make an instrumental accuracy determination for series RC circuits (i.e. "real cells") at the chosen pulse width and interval, the operator connects a resistance standard alone to the cell leads and selects option S, to measure the standard. 1000 single scans are averaged, each following the previous scan by the time indicated in the chosen interval. Next, the operator places a capacitance in series with the resistance standard and selects option D. This option performs the same measurement as option S above but records the result as a comparison. If the operator wishes to know the value of the relative error resulting from this comparison, he chooses option 0 which outputs the relative error on the teletype.

Once he has completed the measurement, he may move on to the next interval he wishes to try by selecting option N. This causes the data just taken to be entered inthe program output buffer for later plotting

and analysis. If he desires to change an interval or pulse width

before the data are entered he may select option R or C respectively.

Once all data have been taken, the user selects option E which closes

the output buffer. The buffer is subsequently searched and the computer

calculates and outputs the maximum relative error. Finally, the data

may be stored on tape for more detailed analysis and/or plotting at

a later time. This more detailed analysis is performed by CBPSLT

option 1. It can include calculation of maximum and minimum relative

error, average error for the entire data set, and output of the data

set (% relative error and pulsing interval) on the line printer. The

data may be plotted by CBPSLT, option 2. The operator inputs the desired

X and Y plotting limits. The computer uses this information to generate

a Point plot of % relative error vs. log (pulsing interval).

These accuracy determinations were made for conductances covering the entire operating range with series capacitance of 10, 5, and 1 μ F. These series capacitance values were equal to or less than the series capacitance of most real conductivity cells (i.e. worst case values for implementation of the bipolar voltage pulse technique). The results of these measurements are summarized in Table 3. The presence of effects due to series capacitance, in regions where the bipolar pulse technique should be relatively immune to these effects, arises from pulse height asymmetry due to finite FET switching and amplifier settling times as well as the stability of the ground supplied by the current follower. This stability decreases as the amount of current supplied to the current follower summing point increases. The current reaches a maximum at the highest offset currents, corresponding to conductances of 2 x $10^{-3}\Omega^{-1}$, 2 x $10^{-4}\Omega^{-1}$, etc. This accounts for

TABLE 3. Accuracy (in percent) for various conductance – series capacitance combinations. Allowed relaxation time is 30 μ seconds unless otherwise indicated.

	C(µF)		
$G(\Omega^{-1})$	10	5	1
10-1	0.17	4.4	19
2 x 10 ⁻²	0.0053	0.82	0.057
10 ⁻²	0.0071	0.40	1.4
2 x 10 ⁻³	0.12	0.21	0.38
10 ⁻³	0.026	0.059	0.13
2×10^{-4}	0.074	0.38	0.15
70 ⁻⁴	0.0069	0.0045	0.23
2 x 10 ^{-5[†]}	0.0073	0.0051	0.018
10 ⁻⁵	0.0037	0.0012	0.28
2 × 10 ^{-6‡}	0.049	0.072	0.095
10 ⁻⁶	0.024	0.054	0.18
2 x 10 ⁻⁷	0.25	0.52	0.99
10 ⁻⁷	0.38	0.45	0.76

^{† 9} msec between pulses.

^{†30} msec **between** pulses.

the relatively poorer accuracies in these areas.

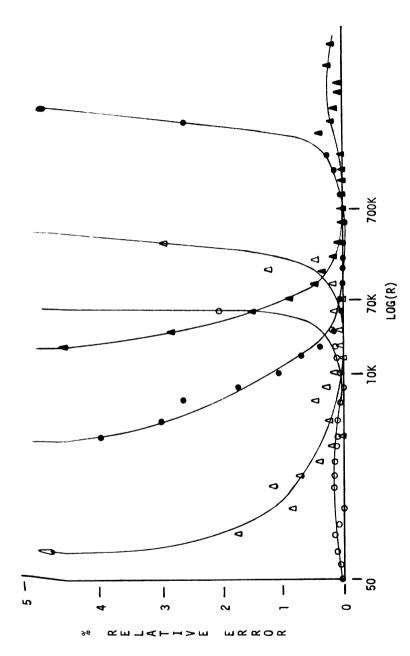
All values in Table 3 represent 30 µseconds allowed relaxation time between pulses except at $2 \times 10^{-5} \Omega^{-1}$ and $2 \times 10^{-6} \Omega^{-1}$ where longer relaxation times were found to increase accuracy. It can be seen that over much of the operating region, accuracies of close to 0.02% or better can be obtained for series capacitances of 10 µF. At lower capacitances, the effects of pulse asymmetry are greater as can be seen. Correspondingly, at the higher series capacitances of many real conductance cells (20 µF), the accuracy would be even closer to that obtained with the resistance standard alone.

Finally, no measurable effect on accuracy by parallel cell capacitances less than 1000pF has been observed. Since real cells normally fall well within this region, any effect of such capacitance has been discounted.

D. OPTIMUM PULSE WIDTH SELECTION

Two factors must be considered in the selection of a particular pulse width for use in a given conductance region. First, the pulse width must be short compared to the time constant for the series RC circuit formed by the conductance cell as discussed in Chapter 2.

Secondly, the pulse width must be long enough to allow the current follower to settle to its true output at the end of pulsing. For low conductances the gain of the current follower must be increased, slowing the response of the amplifier. Thus longer pulse widths must be used at lower conductances.

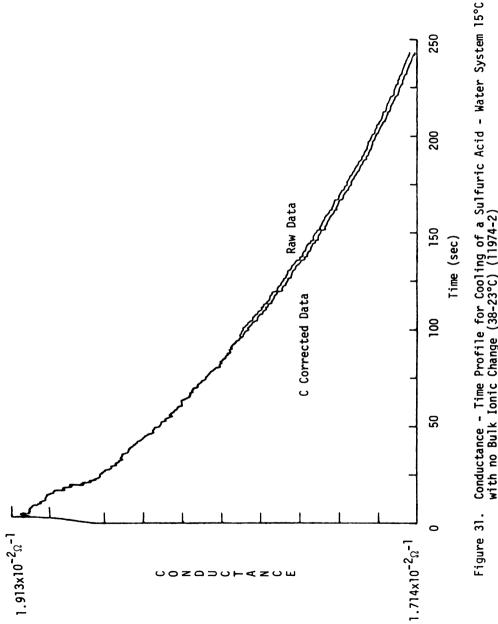

CBPSLT provides, through option 3, a means to determine exactly

In using this option, the operator inputs the chosen pulse width and the number of individual conductance scans to average per measurement.

A preliminary scan is conducted as with option 4. The operator then inputs the true value of the resistance which is being measured. Using the same measurement options which are available in option 4, the operator first measures the standard resistance, then the RC network, and stores the true resistance and the relative error as an X-Y pair.

After each measurement is stored, the value of the next resistance is input and the sequence repeated. When the E option is finally selected, the maximum error is calculated and output. The operator then selects the plotting scale and the data is point plotted as relative error vs. log (true resistance). The data may then be stored on tape for the more detailed analysis provided by option 1 or replotted by option 2.

A composite plot of data obtained in this way for each of the four shortest pulse widths, over the entire operating range of the instrument, appears in Figure 30. This particular plot corresponds to a series capacitance of $5\,\mu\text{F}$. The two factors which contribute to the error, a pulse length that is significant compared to RC and the current follower settling time, are manifest in the rapid increase in error at either end of a particular pulse width region. It can be seen from the Plot that, for the best accuracy, the pulse width should be chosen as follows: Above $10^{-4} \Omega^{-1}$ (<10 K Ω) the shortest pulse width (0.01 msec) is used, between $10^{-4} \Omega^{-1}$ and $1.4 \times 10^{-5} \Omega^{-1} (10 \text{ K} - 70 \text{ K}\Omega)$ the pulse width = 0.1 msec, between $1.4 \times 10^{-5} \Omega^{-1}$ and $1.4 \times 10^{-6} \Omega^{-1}$ (70 K - 700 K Ω) the pulse width - 1.0 msec, and between $1.4 \times 10^{-6} \Omega^{-1}$ and the lower


% Relative Error vs. Log(R) for a Series Capacitance of 5.0 $_{\mu}F.$ Figure 30.

o PW = 0.01 msec, Δ PW = 0.1 msec, \bullet PW = 1.0 msec, Δ PW = 10.0 msec

conductance end of the scale (700 K - 80 M Ω), the pulse width = 10.0 **msec.** A series of such plots were prepared for various other series **capacitances**. They are all in approximate agreement with Figure 30 **concerning** which pulse width to select for a particular conductance **region**.

E. SCALE CHANGE CORRECTIONS IN THE COMPUTERIZED CONDUCTANCE SYSTEM

The instrument, as initially designed, performed well over its entire range except in the regions of scale changes. It was found to be impossible to perfectly align the pulse height, current follower gain, and offset such that there was no overlap or underlap of scales. The problem of underlap was most severe as it resulted in a "dead zone" in which data points were lost altogether, as the computer caused the instrument to oscillate between the lower offset, gain, or pulse height setting full scale conversion and the higher offset, gain, or pulse height setting zero conversion because of the area where the scales failed to meet. All data taken during the underlap interval were lost. In addition, some non-linearity occurred at low voltage level outputs of the current follower, apparently due to pulse asymmetry with insufficient allowed relaxation time. Both problems were solved by providing overlap of the scales through the divider at the current follower output. Hysteresis was provided at both ends of the scale by not permitting an A/D conversion above 7700_8 or below 0077_8 without a scale change. Any discontinuity occurring at the scale change point (see raw data, Figure 31) was eliminated by programming the computer

Conductance - Time Profile for Cooling of a Sulfuric Acid - Water System $15^{\circ}\mathrm{C}$ with no Bulk Ionic Change (38-23 $^{\circ}\mathrm{C}$) (11974-2)

corrected data, Figure 31. The computer performs this correction by calculating the best straight line through the last three points measured on the previous scale setting and from this calculation, predicting the position of the next point. The offset between the predicted position and the actual position of the first point at the scale setting is used to correct all subsequent data. If fewer than three points are taken at a particular scale setting, as may be the case for very rapid conductance changes, scale change correction is not performed by the computer.

After implementation of the hysterisis and scale change correction provisions, it was found that instrumental adjustment was virtually unnecessary. Only infrequent trimming of the current follower, to prevent non-linear response due to pulse asymmetry, power supply adjustment, and adjustments for extremely accurate absolute conductance determinations are performed.

F. LINEARITY, RANGE, AND SPEED CHARACTERISTICS

Many of the operational amplifiers in the analog circuit have

very fast response times and, thus, a tendency to oscillate. A 56 pF

Capacitor in the feedback loop prevents oscillation of the offset am
Plifier but would cause the current follower response to become non
linear if used. The resulting small 10 MHz oscillations of the current

follower are transparent to the measurement and are allowed to occur

since the noise bandwidth of the instrument is upper-limited by the

frequency response of the sample and hold module (500 KHz).

The instrument was found to be linear over its entire operating range, which extends from 0.22 to 1.3 x $10^{-8}\Omega^{-1}$. Above $0.22\Omega^{-1}$, the conductivity is so high that maximum offset is insufficient to put the conversion system on scale. Below 1.3 x $10^{-8}\Omega^{-1}$, as previously mentioned, conduction between the copper foil pattern through the glass epoxy printed circuit board becomes significant compared to the measured conductance.

Finally, the instrument can be completely reset by the computer and settle to its new settings in 300 μ seconds, limited by the relay closing time. Discrete conductance measurements may be made in 30 μ seconds (20 μ seconds for pulsing and 10 μ seconds for relaxation during which Δ D conversion takes place) at the maximum rate.

G. SYSTEM DIAGNOSTIC AND EXERCISER FACILITY

computer systems, software sets were designed specifically for exercising these systems and indicating malfunctions within them. It was found that if such tests were conducted routinely, the system gained a high degree of reliability. This is because many malfunctions can be detected before they become sufficiently serious to effect operation of the entire system. Furthermore, computer systems can become so complex that they are literally impossible to troubleshoot in any other way. Thus, when a computer system is developed, appropriate testing software should also be written. Such software is standard for the computer part of the PDP-8/I system described in Chapter 1. It includes central processor

tests, magnetic tape transfer and transport tests, extended memory test, and EAE tests (45).

This same mode of testing may be extended to non-standard peripherals such as those developed in a chemical laboratory. The computerized conductance system is, of course, such a peripheral. In the interest of a smoothly running system, then, it was desirable to take advantage of the power inherent in software instrument tests. In this way, again, an operator lacking a feel for instrumentation would be able to implement a software test which would pinpoint a particular hardware malfunction. Often, the problem may be solved simply by tightening a circuit card connection or replacing an integrated circuit chip. The software diagonostics can lead the inexperienced operator to these causes. If the problem is more complex, the system can inform the user to seek outside help. The manner in which the operator is taught the use and interpretation of these system tests is described in Chapter 9. The program which performs these tests, CBTCLH, is flowcharted in Figure 32 and listed in the Appendix. Its function is described below:

In order to use CBTCLH to perform instrument tests, the test probe shown in Figure 33 is normally plugged into the instrument cell lead connections. This probe provides series resistances and series and parallel cell capacitances for use in the system tests. These components are available through switches on the probe itself. A BNC connection for oscilloscopic monitoring of the pulses is also provided. For most instrument tests, the 10000 resistance standard with no series or parallel capacitance is chosen. The program is entered by the operator in the normal manner. The operator is asked to choose a pulse width. He normally will select one of the shortest which provides the greatest

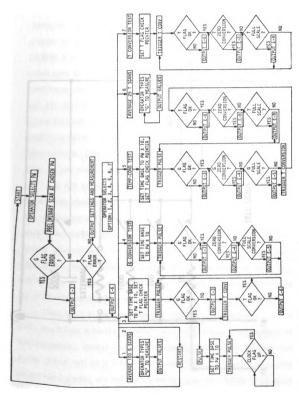


Figure 32. CBTCLH Program Flowchart.

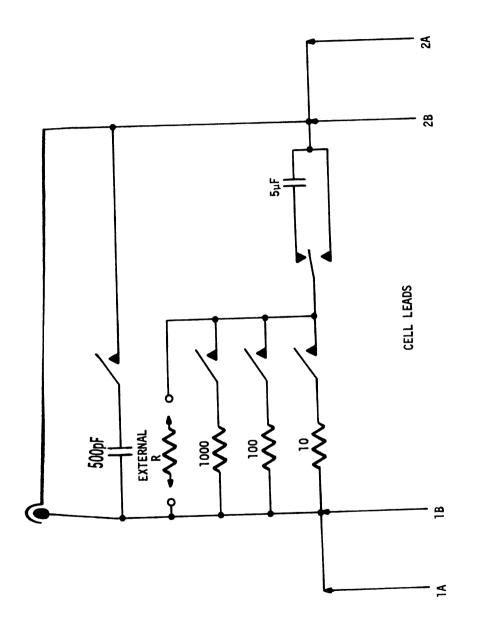


Figure 33. Test Probe Schematic Diagram.

number of tests in the shortest time. A preliminary scan of the resistance standard "cell" begins at the chosen pulse width. If either the conductance or the temperature flag (to be discussed in Chapter 6) fails to appear in the proper amount of time, the appropriate error message (ERROR 3 or ERROR 6 respectively) is given as output. The program will then move to a routine which continuously triggers conductance pulse sequences and temperature measurements, testing for proper flag response at the appropriate time. Error messages will continue to be given for flag failures until the operator is able to correct this problem or until he halts the program manually. If the user is unable to correct the problem, CBHELP (discussed in detail in Chapter 9) will instruct him in the proper troubleshooting procedure to follow.

If A/D conversion problems arise during the preliminary scan, error messages are also given. If the scan is completed successfully, the operator may select any of seven option test routines. Two of these routines involve averaging of measurements; option 1 for 100 conductance scans and option 6 for 25 temperature points. It was found that these routines proved especially useful for testing experimental measurements prior to an actual run or for general tests of reproducibility where an actual quantitative measurement of deviation is unnecessary.

Option 2 allows the operator to restart the program. The other four Options actually exercise and test the hardware functions of the instrument. Option 3 causes the conductance circuit to continuously Pulse the cell at a rate equal to ten times the chosen pulse width.

No error checks are made which would cause the timing to be disturbed. This permits the operator to use an oscilloscope to check the generation of measurement sequencer waveforms, proper amplifier switching, sample

and hold tracking/holding sequence, the A/D triggering monostable signal, the conductance A/D converter status output, and finally, the bipolar perturbation pulses themselves. This routine proved to be invaluable when the hardware was initially being debugged. It is still used when instrument performance indicates failure of a circuit producing one of the above signals.

Option 4 causes the conductance conversion system to be tested.

It assumes that a stable resistance has been placed in the cell position

(as in the test probe) and that a zero or full scale A/D conversion is

not required to measure that particular resistance. The bipolar perturbation pulses are applied at intervals equal to ten times the chosen

pulse width. If the conductance flag fails to raise within this period,

the computer outputs an error message (ERROR 3). If the conductance

A/D converter returns a zero or full scale conversion, the computer

outputs ERROR 4 or ERROR 5 respectively. The probable causes of these

errors are explained by CBHELP (Chapter 9). These causes would include

failure of the A/D triggering monostable, momentary failure of the

latches to hold circuit settings, or failure of the A/D converter itself,

the gated driver, or one of the analog components. CBHELP informs the

user of the components to check for the particular failure circumstances

encountered.

The temperature conversion circuit may be exercised and tested in a similar manner by option 7. Flag, zero conversion, and full scale conversion error messages (ERRORS 6, 8, and 9 respectively) are given.

CBHELP also aids in interpretation of these failures.

Options 4 and 7 are combined into one routine by option 5. This Permits tests of the entire computerized conductance instrument at one

time.

In designing the exerciser routines for the computerized conductance system, no new hardware, specific for testing purposes, was built into the instrument. The only additional implement is the test probe which merely substitutes for the cell. It did not appear desirable to introduce extraneous circuits into the instrument which might possibly interfere with the testing and operation of the instrument in determining its characteristics and in performing chemical measurements, which is the basis of this thesis. However, expanded testing capabilities and increasingly detailed diagnostics could be obtained by the inclusion of several other circuits of varying complexity. These might include:

- 1) Read-out read-in latches. This circuit would enable the computer to test the state of the latches at any time by reading their real settings back into the accumulator and comparing these with the intended settings.
- 2) IOP and DS test circuit. A flag which the computer could set and clear itself could be used to determine if the device select and input-output transfer pulses were, indeed, reaching the instrument and being decoded properly.
- 3) Measurement sequencer test circuit. The waveforms generated by the measurement sequencer could be digitally sampled and measured through reference to the computer mainframe clock. Problems with the circuits which produce each of these signals could then be isolated.
- Pulse generator monitor. The bipolar perturbation pulses
 themselves could be sampled and measured for determination of
 their magnitude, symmetry, etc.

- 5) Gated Driver I/O test circuit. The gated driver inputs could be multiplexed between the A/D converter and a set of computer-controlled latches. The computer could read out to these latches and back in through the driver to determine data transfer errors.
- 6) Power supply level test circuit. The power supply voltage levels could be analog multiplexed and read by an A/D converter to see if they required adjustment.

Inclusion of all of the above circuits (and probably others) would add considerably to the real complexity of the instrument. One could probably argue that failures increase as complexity does. However, the counter argument is that these circuits would make the "apparent" complexity of the instrument considerably less than it currently is by pinpointing errors more exactly. Development of self-testing instrumentation certainly has been the subject of an entire thesis itself (probably not a chemical thesis!). The degree of self testing in the computerized conductance system was thus purposefully limited to those interactions which the measuring circuits themselves already provided.

Finally, it should be mentioned that the computerized conductance system utilizes the real time clock diagnostics written by B. K. Hahn (46) for detection of circuit malfunctions in the computer mainframe real time clock.

CHAPTER 6

TEMPERATURE MEASUREMENT AND COMPENSATION IN THE COMPUTERIZED CONDUCTANCE SYSTEM

A. THE TEMPERATURE MONITOR

The performance characteristics presented in Chapter 5 indicate that the computerized conductance system is essentially unaffected by instrumental drift or parallel cell capacitance and only slightly affected by the series cell capacitance. The single remaining effect which will most influence the quality of data obtained from a computerized conductance system measurement is that of temperature changes in the chemical system under study.

Very little work has been done at this time in providing automatic correction of conductance measurements for temperature fluctuations.

Most workers have been extremely careful to maintain a constant temperature (within 0.01 to 0.001°C) for the duration of a particular conductance measurement process. In order to maintain these temperature stabilities, conductance-based studies of chemical systems with inherent temperature variations had to be avoided. These included reactions which are significantly exothermic or endothermic, solvent systems which have large enthalpy changes associated with mixing, and mixing systems themselves which caused more than a few hundredths of a degree Centigrade temperature change when used. One of the few attempts to compensate Conductance measurements automatically for temperature changes was the circuit employed in Johnson's later bipolar pulse instrument (18).

Johnson assumed that over a narrow temperature range, the conductance of a thermistor and the conductance of the chemical system being

studied vary approximately linearly with temperature. He used this assumption in providing automatic signal feedback compensation in his analog conductance circuit. In this way he was able to boost a conductance signal produced after a drop in temperature proportionately and, likewise, scale a conductance signal obtained after an increase in conductance accordingly. Johnson showed that temperature compensation was possible for his circuit provided that either the temperature coefficients of the thermistor temperature sensor and the chemical system are constant or that they vary in exactly the same way. He assumed that they would be nearly constant over a 1°C temperature change. Since he realized that it is extremely difficult to make a prediction of the temperature coefficient of the chemical system, the circuit settings for temperature compensation for that particular system were determined by varying the temperature over the 1°C range in which the conductance measurement was to be made. The accuracy of the conductance determinations made with this type of correction was improved by one Or two significant figures. Johnson claimed excellent results for 1°C negative temperature deviation correction but positive deviation corrections were not suitable beyond 0.25°C.

In designing the computerized conductance instrument, it was desirable to keep the analog conductance circuit as simple as possible, not encumbering it with those amplifiers and multipliers which were necessary to compensate for temperature variation in Johnson's instrument. In addition, situations could be envisioned in which a record of the actual temperature change itself would be useful. Reaction studies in which heating due to a reaction or mixing would affect the system chemistry is one such example. In order to accomplish both of these

goals, it was decided to include in the computerized conductance system a separate analog temperature measuring and digital conversion circuit for fast monitoring of temperature simultaneously with, but not affecting, the measurement of the conductance signal. The temperature monitor designed for these measurements is shown in the schematic diagram of Figure 34.

The temperature monitor consists of an analog bridge circuit and difference detector to follow the conductance of a thermistor, R_T , and an A/D conversion system with a flag. The precision 5 volt signal produced by the S5723L regulator of Figure 6 is used to provide the stable signal for the bridge. The bridge is designed in such a way that a 10 K Ω thermistor will produce a potential difference between points A and B of about 1 volt. The voltage level at B is subtracted from the level at A by operational amplifier A_5 which also supplies a gain of 5.11 to this difference. The output of amplifier A_5 is connected directly, along with the quality analog ground signal discussed in Chapter 2, to a dual-slope, integrating A/D converter. The A/D converter is triggered directly by a DS-IOP signal from the computer, resetting on the rising edge and initiating conversion on the falling edge. Upon triggering, the STATUS output goes high. When STATUS returns to low, it triggers a flag and possibly a program interrupt. The flag circuit is identical to the conductance flag circuit discussed in Chapter 3. After testing the flag and finding it raised, the computer Will gate the driver and transfer the data to the accumulator.

The analog section of the temperature monitor appears in the photograph of Figure 17. It is mounted directly over the temperature monitor A/D converter which is located in the digital circuit compartment, photographed in Figure 15.

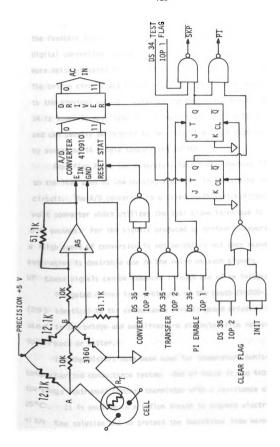


Figure 34. Temperature Monitor Schematic Diagram.

Originally, a temperature sensor which consisted of a thermistor in the feedback loop of an operational amplifier was used with the same digital conversion system. It was found, however, that considerably more noise appeared on the signal for this circuit than could be tolerated. The bridge circuit was therefore built. The results were far superior to the previous method. Noise on the signal for the circuit of Figure 34 is lower in magnitude than 3 least significant bits of conversion and can usually be reduced to less than the least significant bit level by averaging 16 single temperature points.

Amplifier A₅ is the moderately fast Analog Devices 149B, identical to the 149B used as the pulsing amplifier in the analog conductance circuit. The A/D converter is a Teledyne-Philbrick 410910, a 0 to + 10 volt converter which utilizes the dual slope technique to convert in 6 m seconds. For the signals produced by ordinary temperature sensors, a high speed of conversion is not necessary but some means of signal averaging is desirable due to the noise on such signals. The resolution of these signals can be enhanced through use of an integrating converter.

The gated driver is a prototype of the Heath EU-800-JL gated driver (29) identical to the conductance circuit gated driver. The resistors used in the bridge and amplifier are all metal film resistors of 0.1% tolerance or better.

Two thermistors have been used for temperature monitoring in the computerized conductance system. One of these is the 44006 Yellow Springs Instrument Company thermistor with a resistance of 10 K Ω at 25 °C. It is encased in a teflon sheath to prevent electrical contact with the solution and to protect the thermistor from harmful solvents. This thermistor has a time constant of 25 seconds in still air and 2.5

seconds in a "well stirred" oil bath. (The time constant is the time required for a thermistor to indicate 63% of a new impressed temperature). The resistance change for the 44006 thermistor is 4%/°C. It was used for most studies in slowly mixing solutions where response speed was not critical, but mechanical strength was.

For very fast applications, such as temperature monitoring in stopped flow kinetic systems (to be discussed in Chapter 8), the fastest possible thermistor probe was desired. The fastest probe which could be obtained proved to be the 41A40 Victory Engineering Corporation beadin-glass-probe thermistor. This thermistor is extremely fast due to its tiny size (0.02" outside diameter). It has a time constant in still air of 1.4 seconds, in a still oil bath 0.11 seconds, and in still water 0.055 seconds. Its resistance change is 3.9%°C. Faster thermistors are available from the same company (up to a time constant of 300 μ Seconds in still air), but they are not available in a configuration suitable for use as a probe and would be too fragile for use in a liquid flow stream of high velocity.

The response of the temperature monitor, the voltage output of amplifier A_5 , vs. the conductance of the thermistor, is shown in Figure 35. This curve includes the range from 17 to 43 °C for the two thermistors described above. It can be seen that the response is not linear with thermistor conductance, which is proportional to the temperature. This is the result of the design of the monitor analog circuit. The output of this circuit, which is the signal, E_{IN} , which the A/D converter receives is given by:

$$E_{IN} = \frac{25.55R_T}{12100+R_T} - 1.062$$

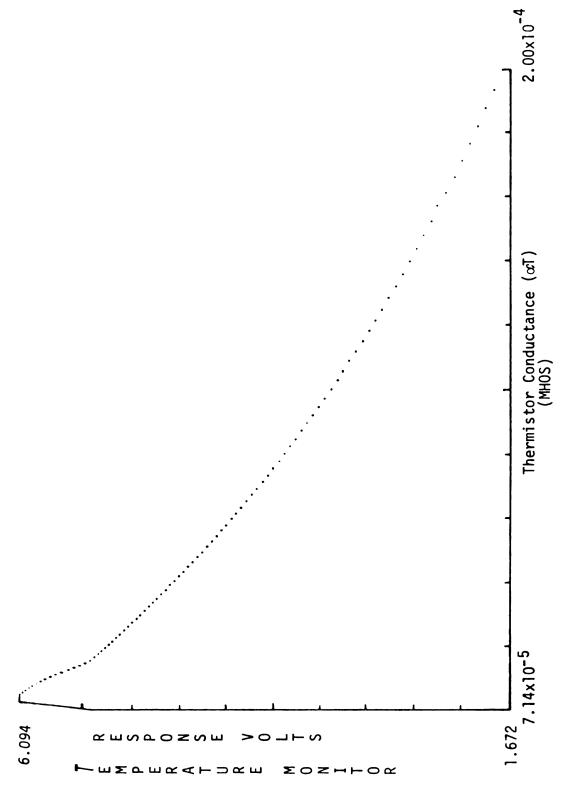


Figure 35. Temperature Monitor Response vs. Thermistor Conductance.

The voltage, E_{IN}, can also be seen to be inversely proportional to temperature. This non-linearity and inverse proportionality have no effect on the implementation of temperature correction in the computerized conductance system. This is because the variation in conductance, as a function of thermistor response (which is the "monitored" function of temperature), is fitted to an equation suitable for describing its behavior. The coefficients of thermistor response are then used in data analysis routines to provide the necessary temperature variation correction of the measured conductance. The details of this correction technique are given below.

B. THE SOFTWARE SET FOR THE DETERMINATION OF THE THERMISTOR RESPONSE COEFFICIENTS OF CONDUCTANCE

In order to perform corrections of measured conductance for changes in temperature in the computerized conductance system, the actual variation of the conductance of a system with temperature variation must be measured in the absence of other effects, such as changes in the ionic character or dielectric properties of the solution. If these other effects should occur the resulting correction parameters will be formed to include them. Implementation of these parameters will eliminate the other effects as well as temperature effects. Since changes in ionic character or dielectric properties are most often the effect which the operator desires to follow, such a "correction" for them would destroy the measurement.

To construct a temperature-conductance profile, the temperature of the chemical system under study is varied over at least the temperature range which would occur during a measurement run. While the

temperature variation is occurring, a TDA routine such as CBTSLS, described previously, is used to monitor both conductance and temperature. The raw data from such a run may be plotted as conductance vs. thermistor response (E_{IN}) by the CCLTLF program which will not be described here. Such raw data is shown in Figure 36 a, b, and c for three systems in dimethyl sulfoxide (DMSO); 4 x 10^{-4} M luminol (36a), 10^{-3} M potassium tertiary butoxide (36b), and the products of the reaction between these species (36c) which will be discussed in Chapter 8. These curves cover a temperature range of 5.4 °C, from 29.9 to 24.5 °C. They have been included in this manuscript because they demonstrate several interesting qualitative aspects of the work done with temperature-conductance profiles which will be discussed later in this chapter.

It can be seen that the temperature change which occurred during the runs in which the data of Figure 36 were obtained was, itself, non-linear. This is evidenced by the accumulation of an increased density of data points near the 24.5°C region of the curve (lower right). The cause of this effect is the way in which the data was generated, by first heating the solutions in the conductivity cell and then plunging the cell into a constant temperature bath at 24.5°C when the data acquisition began. The cooling was, of course, much faster in the early stages of the run. In general, it is common for temperature to change non-uniformally in an experiment. This presents an interesting problem in Curve fitting which is the method employed to construct temperature correction parameters for the conductance of a particular system. If there are more points in one section of a curve than another, the method of least squares will effectively weight that portion of the curve most heavily at the expense of the rest of the curve (unless the

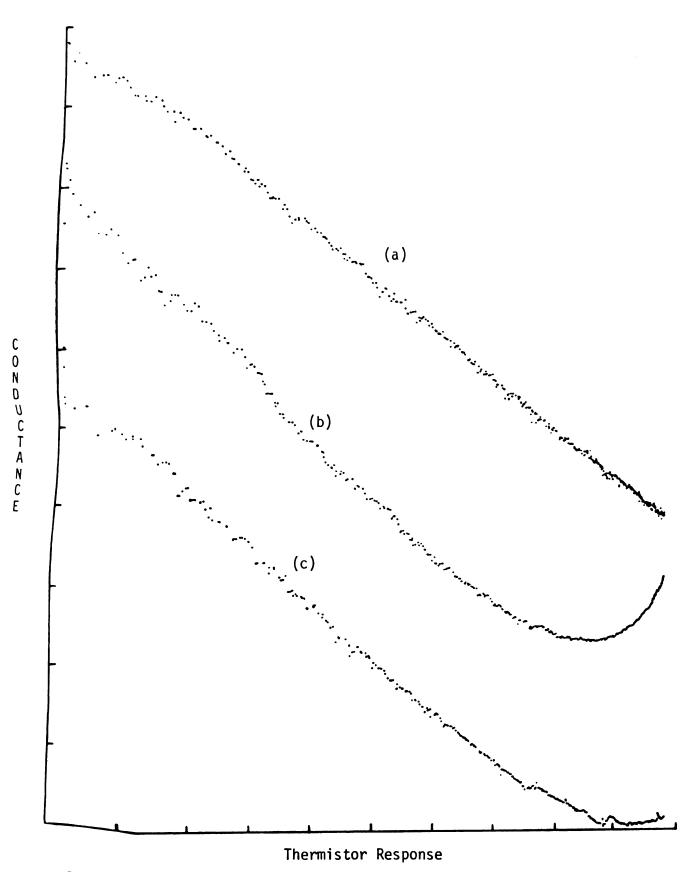
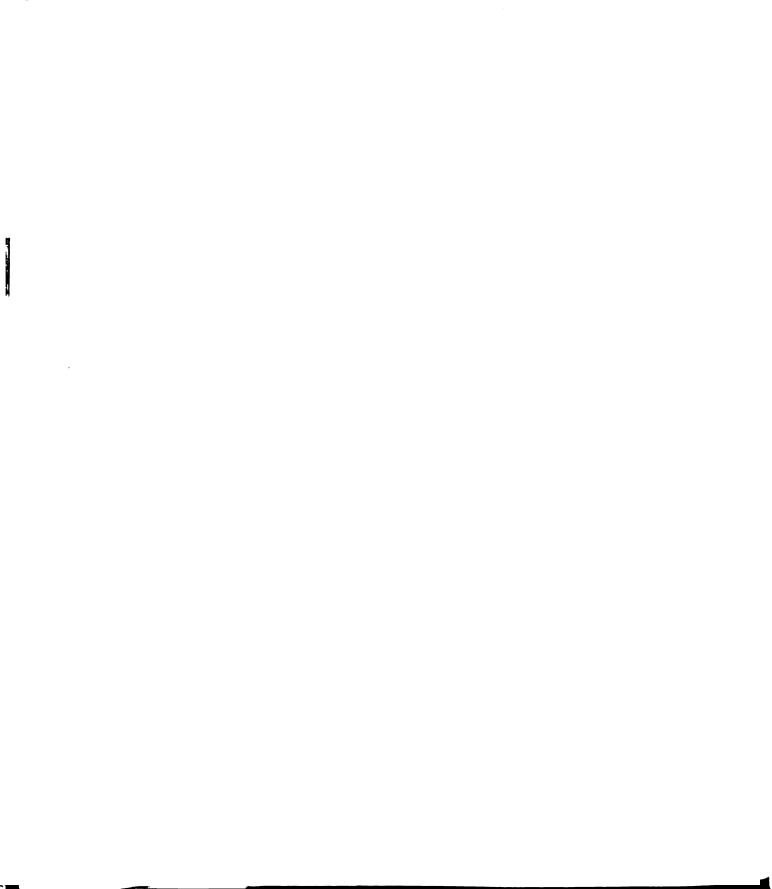



Figure 36. Termistor Response-Conductance Profiles for (a) Luminol, (b) Potassium Tertiary Butoxide, (c) Products of Reaction of (a) and (b) all in DMSO.

curve is perfectly linear).

There are two possible solutions to the problem. One is to program the computer to store measured temperature-conductance data only when the temperature is at a certain value, set up by the initial measurement and a running increment. This method leaves some doubt as to the length of a particular run, what increment to set up, how many points to take, etc. It has the advantage of automatically constructing a data set with points linear in thermistor response.

The other approach was chosen for the computerized conductance system. It involves arranging the raw data set in monotonically decreasing order with respect to thermistor response. Intervals within the array were created by software. Each interval contains a single thermistor response-conductance point which would be the average of all measured points which fell within that interval. The program which performs this "array arranging", CBTALR, is flowcharted in Figure 37 and is listed in the Appendix.

(It should be noted, to avoid confusion for the reader who is also referring to the CBTALR Appendix listing, that the flowchart in Figure 37 is considerably simplified. Many of the operations of CBTALR which are explained in FORTRAN terms in the flowchart are actually manipulations which are done in assembly language in CBTALR for reasons of speed and necessity. These include magnitude comparisons, data switches, array addressing, averaging of thermistor response measurements, and forth).

CBTALR begins by requesting the first block on the DECTAPE where
the data from the TDA routine was written, reads the file, and sets up
the necessary software pointers. The raw data array must consist of a

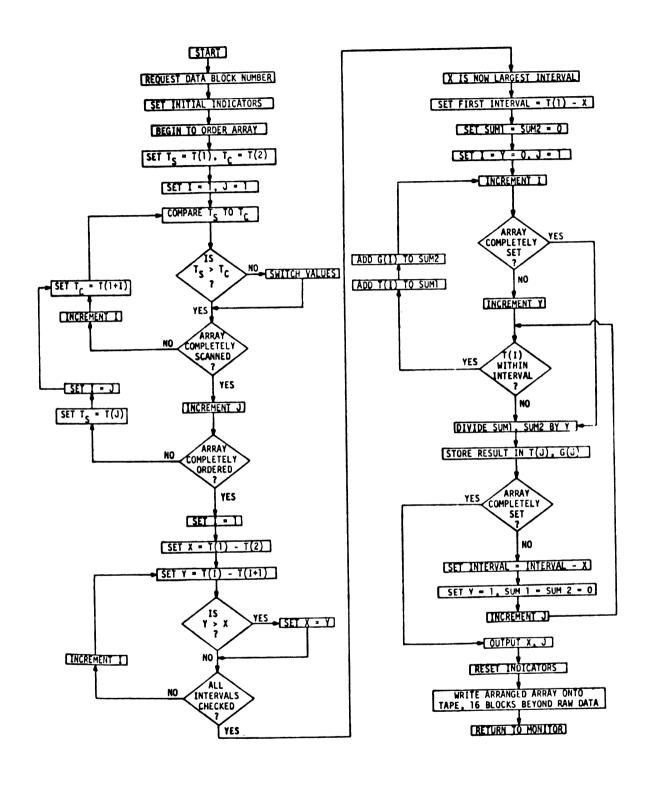


Figure 37. CBTALR, Array Arranger, Program Flowchart. (Simplified)

12 WOT 189 001 (5) If

₩()|

٧d

Æ

th

PO

th

٧à

00

th

CO

ar

th

in

1

đ٢

nÌ

đ٢

tr

Cu

th

12 bit conductance word, the 12 bit division remainder, the parameter word, and the 12 bit, averaged thermistor response word. After CBTALR has completed the array arranging process, the data in the array will consist of the 3-word FORTRAN floating point values of the conductance (scale change corrected) and the 12 bit, averaged thermistor response words. The array arranger begins ordering the array in decreasing value of thermistor response by comparing the first temperature measurement (T(1)) in Figure 37) with all other temperature elements in the array. If a thermistor response is encountered which is larger than T(1). the two measurements are switched in location along with their corresponding conductance values. In this way, at the end of the first pass through the array, the largest thermistor response is in T(1); the other values are in indeterminate order. The second pass through the array compares all remaining values to T(2) so that at the end of this pass the second largest thermistor response is in T(2) and its corresponding conductance value is in G(2). The process is repeated until the entire array is ordered in decreasing thermistor response.

The array arranger next begins to scan the array to determine what the largest interval between thermistor response points (X in Figure 37) in the data set is. Once it has determined this interval it sets up the first boundary in which to average the data by starting at T(1) and going to the value of T given by T(1) - X. It zeros SUM1 and SUM2 which will contain the running summations of thermistor response data and conductance data respectively, within a given interval. CBTALR then checks each thermistor response word to see if it is within the current interval. It continues to sum these T and G values until a thermistor response value is encountered which is outside this interval.

At this point the sums are divided by the number of measurements totaled (Y in Figure 37). The averages are stored back in the array beginning at the location which had corresponded to the first element and continuing to as many locations as needed (given by T(J) and G(J) in Figure 37).

CBTALR then moves the boundary downward by X, resets SUM1 and SUM 2 to zero, and repeats the process beginning with the first point to fall outside the previous interval. When the arranging is complete, there are J points left in the array. Only one point may exist per interval, thus eliminating the apparent "weighting" of points toward one region of the curve. Some points will, of course, be more precise than others. The computer outputs the chosen interval and number of final points in the array, and the new array is stored on tape 16 blocks beyond the raw data array. Arrangement of a 500 point array requires approximately 145 seconds.

The effect of CBTALR on the data of Figure 36 is shown in Figure 38 a, b, and c. The shape of the curves is unaltered. Some of the noise has been reduced by averaging of discrete points. The data are properly suited for fitting by the least squares technique.

The data of Figure 38 were plotted by CCLALF. This is the second analysis program in the temperature-conductance coefficient determining routines which use the array arranger. A series of programs was required due to limited core space in the PDP-8/I. CCLALF is flowcharted in Figure 39 and listed in the Appendix. CCLALF reads the arranged data from tape, outputs it on the line printer if the operator desires, and plots the data on the X-Y plotter and/or the display scope. Plotting options include plotting axes or the data set. The operator may request that any continuous group of points within the data set be plotted.

CONDUCTANCE

Figure 38. Array-Arranged Data From Figure (6-3) (a) Luminol, (b) Potassium Tertiary Butoxide, (c) Products of Reaction of (a) and (b) all in DMSO.

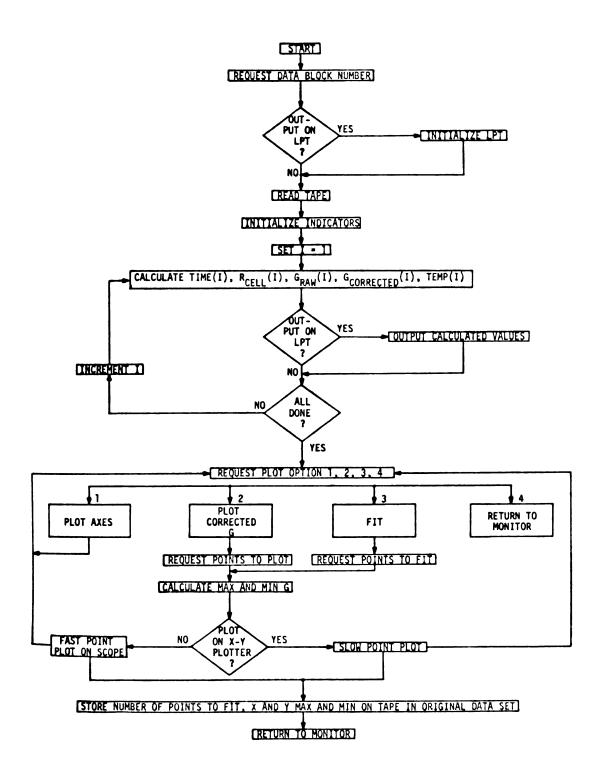


Figure 39. CCLALF Program Flowchart. (Simplified)

In plotting, the program searches the array for the maximum and minimum conductance and thermistor response for that group of points and uses this information to automatically scale the data for output to the plotter and scope. If the operator does not require hard copy of the data, he may fast point-plot it in a second or two on the display scope. Point-plotting on the X-Y plotter requires as much as 20 minutes for 500 points.

When the operator selects the FIT option, he may fit any continuous block of points within the data set. The maximum and minimum conductance and temperature are calculated for the selected group of points and they are plotted. The program then stores, in the indication portion of the data array, the values of the first and last points to be fitted and the calculated plotter scaling parameters. The entire array is retransferred to tape with these new indicators included.

The operator may, at this time, select any of five fitting programs which generate least squares fits to functions of the following forms:

The general form of these fitting programs appears in the flow
chart of Figure 40. The cubic fitting program, CDTALC, is listed in

the Appendix. The chosen fitting program reads the array written onto

tape by CBTALR and CCLALF, initializes software pointers, and proceeds

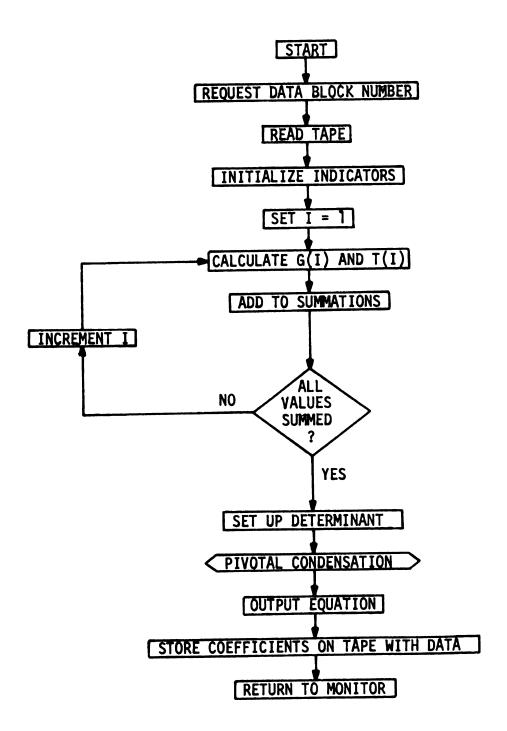


Figure 40. Curve Fitting Program Flowchart.

to cal partic the pr a, b, by a

> funct from

the d

of th

the (

orin from

inte

chay

sca.

griq

equ

to fit

it

ļf

ļ,

to calculate the summations required for the least squares fit to the particular order of equation chosen. Once the summations are complete, the program sets up the determinant to be solved for the coefficients a, b, c, etc. of the chosen fitting equation. The determinant is solved by a pivotal condensation (47), to help reduce roundoff errors, for all functional forms except the linear function which is solved directly from the least squares formulae for slope (a) and intercept (b). Once the determinant is solved, the equation giving conductance as a function of thermistor response is printed on the teletype. The coefficients of thermistor response are stored on tape within the data array to enable the operator to obtain comparison of the real data and the fitted curve. A 100 point cubic fit requires about 9 seconds of PDP-8 run time.

The fitted data, real data, and residuals may be listed on the line printer by CELTLR (not included in the Appendix). The fitted curve from any function may be plotted by CFPTLR. Any function with only integer powers of T may also be plotted by the faster CFPTLI, flow-charted in Figure 41 and listed in the Appendix. CFPTLI reads the T-G coefficients determined by the fitting routine and sets up the plotter scaling parameters determined by CCLALF. It calculates one five-hundreth of the measured thermistor response range for that data set and plots the first point as the conductance calculated from the fitted equation vs. the smallest thermistor response measured. It then proceeds to plot the entire measured thermistor response range according to the fitted equation by incrementing T by 1/500 for each successive point. It plots straight lines between points, producing a continuous curve. If the plot of raw data generated by CCLALF or CCLTLF has been saved on the scope or X-Y plotter, it will, by plotting the fitted curve on the

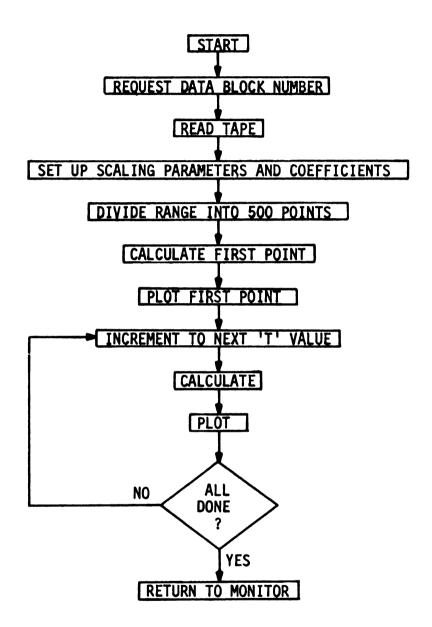


Figure 41. CFPTLI Program Flowchart.

same scale on top of the raw data, allow the user to qualitatively examine the fit. When the entire curve is plotted, the program terminates and returns computer control to the Keyboard Monitor.

It should be noted here that there is an entire series of T-G data analysis routines and fitting programs which run without using the array arranger. These routines were written for the computerized conductance system prior to the implementation of the array arranger. They are essentially analogs of the programs discussed above. They are still useful where temperature variation can be relatively linear although they are seldom used due to the simplicity and speed with which the array arranged data can be manipulated.

C. CONDUCTANCE DATA ENHANCEMENT THROUGH TEMPERATURE VARIATION CORRECTION

Figure 42 shows a raw data set with its corresponding fitted curve as discussed above. The raw data displayed in Figure 42 is the data in the form in which it was acquired by CBTSLS, before array arranging. The fitted curve was calculated for the arranged data. In this case the data was nearly linear, but sufficiently curved so that all terms in the cubic fitting equation were of nearly equal size when the magnitude of T is considered. This particular fit was used to correct the data of Figure 43 for temperature variation. This run was performed to demonstrate the power of this temperature correction technique. The TDA run involved varying the temperature of a dilute sulfuric acid solution 15 °C while no bulk ionic change occurred. Thus, the only conductance change (about 2 x $10^{-3}\Omega^{-1}$) which takes place is that due to the temperature change of the system. The data of Figure 43 are

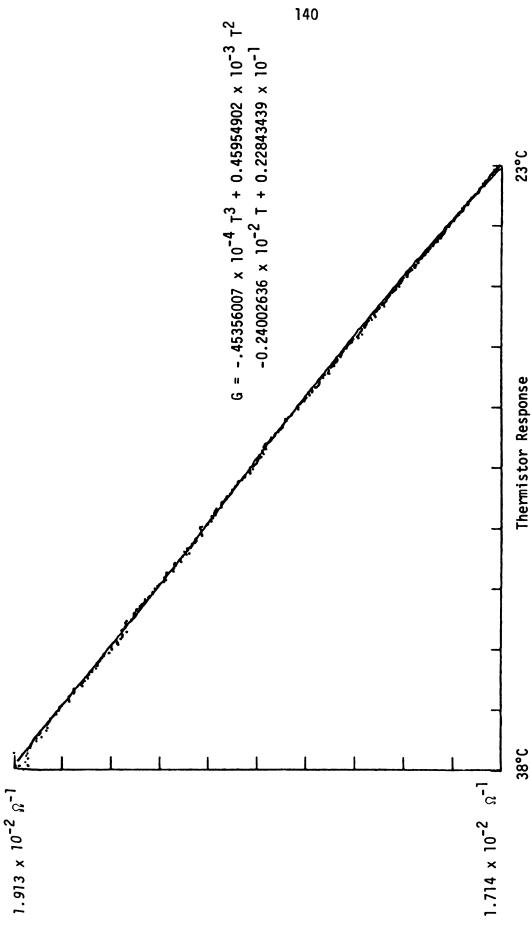
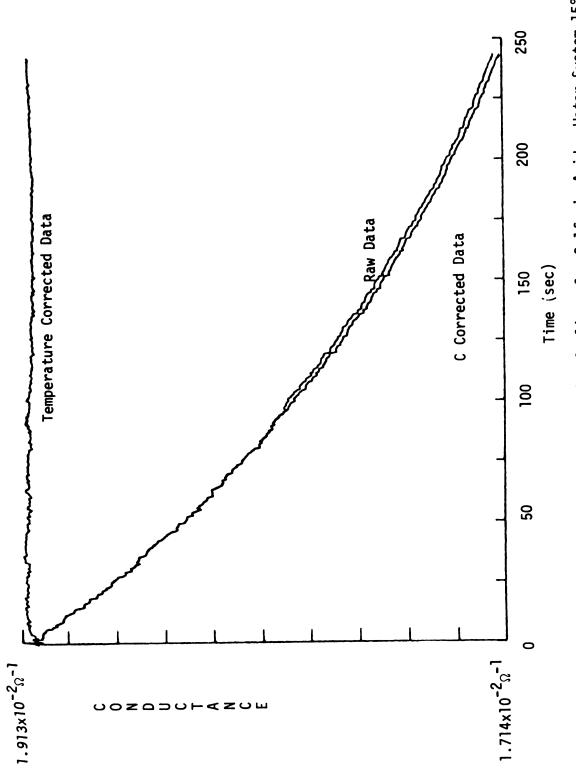
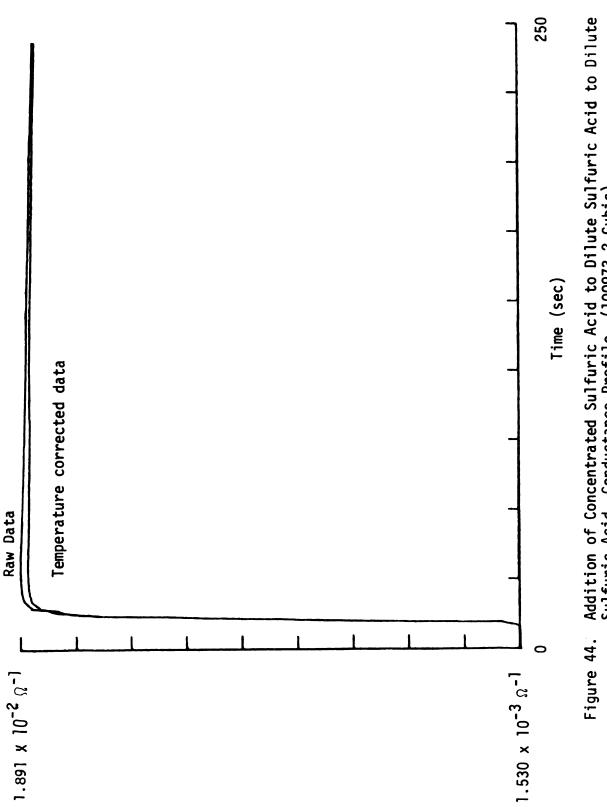
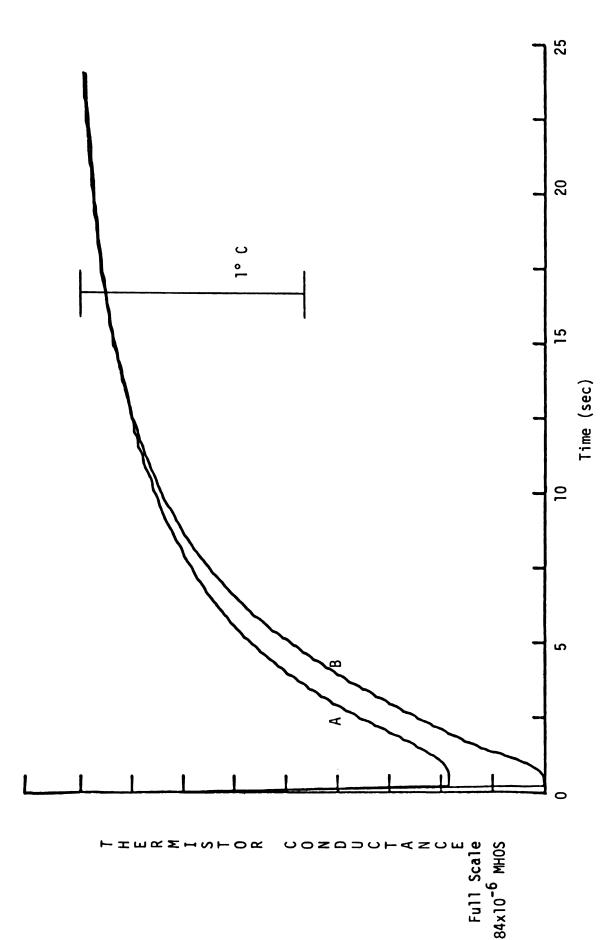



Figure 42. Temperature - Conductance Profile and Cubic Fit for a 15°C Temperature Change for a Predissolved Sulfuric Acid - Water System (38 - 23°C). (11974-3)

Conductance - Time Profile for Cooling of a Sulfuric Acid - Water System 15°C with no Bulk Ionic Change (38-23°C) (11974-2) Figure 43.


corrected for temperature change by inputting the thermistor response coefficients from the fitted equation of Figure 42 to the data analysis routine used to construct the curves of Figure 43. Notice that the effects of temperature (except for the first 9 points out of 500 which were rather random and not well fitted) have been virtually eliminated, even over a 15°C change. The variation of conductance data has been reduced from 1.99 x $10^{-3}\Omega^{-1}$ (10.9% of the signal) to 6.6 x $10^{-5}\Omega^{-1}$ (0.358% of the signal). The noise on the signal is on the order of 2 x $10^{-5}\Omega^{-1}$ which indicates that the temperature correction for this system was good to about 0.15% over the 15°C temperature change.

Fitted curves have been consistently good to 0.1 - 0.01% over as much as a 50°C temperature change. Temperature changes of this magnitude would, of course, not be encountered in normal operation but the shapes of some of these curves have been interesting in themselves. An attempt was made to fit the curves of Figures 36 and 38 b and c with third, fifth, and seventh order equations. The third order equation failed to fit even approximately the rather sharp curvature of the lower end of these curves or the smooth curve in the center of the plot. The fifth order equation fit the data properly except at the end of the sharp curve at temperatures around 24.5°C. The seventh order fitting routine failed altogether. This was apparently because the summations became so large (up to T¹⁴) that significant round-off error was introduced into the determinant coefficients due to the limited precision of the PDP-8 FORTRAN word size. It is suspected that the fifth order equation may also be somewhat affected by round-off error since it had been expected to fit Figures 36 and 38 b respectively easily. Nevertheless, if the entire temperature range represented by these curves was to be used in data


analysis from an actual experiment, the T-G data could be fit in two parts, to two separate equations with no difficulty. The data analysis would also be done in two parts.

The conductance change of a chemical system in which a bulk ionic change is occurring along with a temperature change is shown in Figure The experiment consisted of injection of concentrated sulfuric acid into a solution of dilute sulfuric acid which was being continuously stirred in a conductance cell suspended in a constant temperature bath. A very sharp rise in conductance occurs at the instant sulfuric acid is injected into the solution, due to autoionization of the acid. This dissociation is well known to be exothermic so that the overall curve obtained (see raw data, Figure 44) reflects not only the increase in bulk ionic character but also the conductance change due to an increase in temperature. A temperature profile and cubic fit were performed on the resulting solution and the thermistor response coefficients input to the data analysis program which produced Figure 44. It can be seen that the conductance change due to heating of the solution has been eliminated from the temperature corrected data. The result is a truer picture of the conductance change due only to the change in ionic character of the system.

The author wishes to present one other example of temperature correction on a real system. The preliminary kinetic studies of the liminol reaction, which will be presented in Chapter 8, produced some interesting temperature curves. These curves were encountered during the search for the most suitable solvent for these studies. Figure 45 shows the temperature changes which occurred in the observation cell of the stopped flow apparatus used in these studies when dimethyl sulfoxide (DMSO) and ethanol (EtOH) were mixed, both with and without reactants

Addition of Concentrated Sulfuric Acid to Dilute Sulfuric Acid to Dilute Sulfuric Acid, Conductance Profile. (100973-2 Cubic)

A = Temperature Change When DMSO and EtOH are Mixed in Stopped-flow. B = Temperature change when 0.5 M KOH in EtOH and 0.05 Luminol in DMSO are Mixed in Stopped Flow. Cell Thermostated at 23.5°C Figure 45.

pre

ins

des

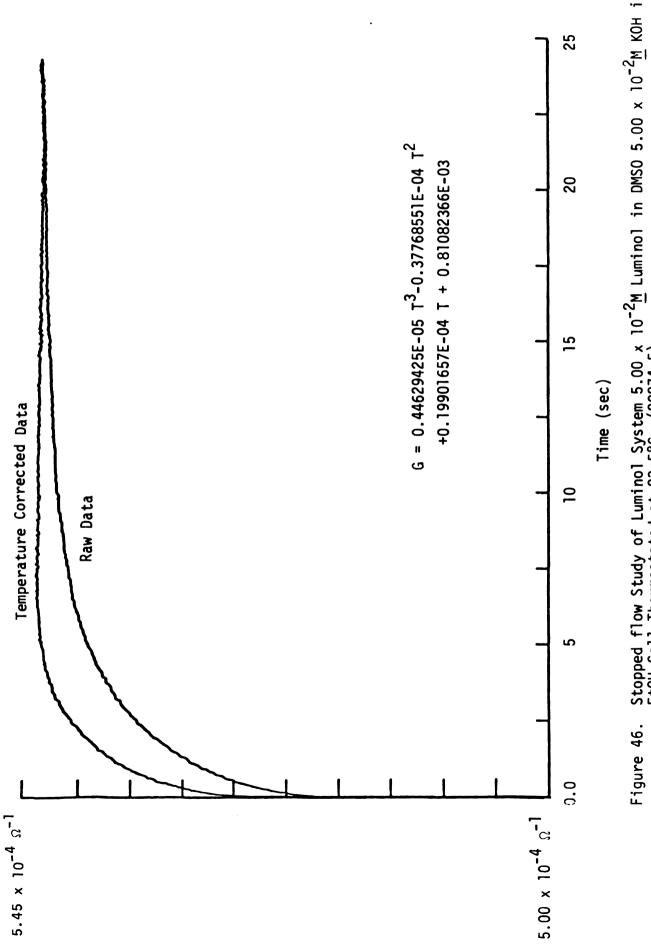
ce

ci

be

wh

C


present. The conductance mointor in the computerized conductance instrument was used to follow the conductance of the fast thermistor described earlier, which was embedded in the wall of the observation cell extending into the flow stream. The cell was thermostated with circulating water from a constant temperature bath at 23.5°C. It can be seen (curve A) that the conductance of the thermistor drops significantly when these solvents are mixed, corresponding to a decrease in cell temperature due to a positive enthalpy of mixing. The temperature change can be seen to be about 1.5°C. The reaction occurring between luminol and KOH is shown by curve B to also be endothermic, causing an additional 0.5°C temperature decrease.

A temperature conductance profile and cubic fit were performed on the products of the reaction. The temperature response coefficients were utilized in the data analysis routine which produced Figure 46. This figure corresponds to a stopped flow run of the luminol-KOH reaction monitored by the conductance change associated with it. The raw data does not reflect the true change of conductance due to the reaction because of the attendant cooling of the system due to mixing and reaction enthalpy changes. The temperature corrected data can be seen to provide the necessary correction in conductance change at the beginning of the reaction, where the temperature effects most strongly influence the measured signal. The two curves approach each other at later stages of the reaction where thermal equilibrium becomes established again.

The solvent system investigated in these figures was used for some of the luminol studies discussed in Chapter 8. However it should be noted that although the conductance curves could be corrected for the

Temporatore Corred feet Data

0.45 × 10 4 0-1

Stopped flow Study of Luminol System 5.00 \times $10^{-2} \underline{\rm M}$ Luminol in DMSO 5.00 \times $10^{-2} \underline{\rm M}$ KOH in EtOH Cell Thermostated at 23.5°C. (20274-5)

conductance change due to cooling, little could be done to correct rate constants calculated from the data obtained during these temperature changes. Nevertheless, the power of the conductance correction for temperature changes by the technique presented here can be clearly seen.

D. SOME COMMENTS ON THE SHAPE OF CONDUCTANCE-TEMPERATURE PROFILES

At the time the initial temperature-conductance measurements were made using the computerized conductance system, it was assumed that the curves obtained would be approximately linear over the few degrees of temperature change investigated. Most of the curvature expected was to be that curving due to the slightly non-linear response of the temperature monitor. It was thought that the real temperature coefficients of conductance (approximately proportional to (thermistor $response)^{-1}$) would always be positive, even where they were not constant. It can be seen from the curves of Figure 36 b and c (and others which could have been presented here) that neither of these expectations proved to be totally correct. In Figure 36 b the temperature coefficient of conductance actually changed sign in the area around 25°C. This behavior was found to be by no means unique. Curves which were approximately sinusoidal were obtained for certain concentrations of sulfuric acid. Curves with plateaus were observed for solutions of NH_3 NH_4^+ buffer at pH 10 when Ca^{++} was present. Other curves measured were nearly linear or curved slightly upward or downward.

Franklin (48) was one of the earliest workers to discover chemical systems which possessed a negative temperature coefficient of conductance.

These included various solutions of an iodide salt in liquid sulfur dioxide. For tetramethylammonium iodide, he discovered a positive temperature coefficient at high and low concentrations and a negative one at intermediate concentrations. Armitage and French (49) also reported negative temperature coefficients of conductance for cupric perchlorate dihydrate in ethyl methyl ketone and in n-propyl ketone over certain ranges of concentration. They believed that the occurrence of this type of phenomena might be more general than had previously been assumed.

Some explanation of these effects and the effects encountered with computerized conductance system measurements might be found in the studies done by Falkenhagen (50). In an attempt to analyze the variation of conductance with temperature for electrolytes, he differentiated the Onsager conductance equation with respect to temperature. He obtained an expression for the equivalent conductance which is the difference between two terms. The first term increases with temperature owing to a decrease in viscosity. The second term, which contains the square root of concentration and the reciprocal of the solvent dielectric constant, also increases with temperature since dielectric constants decrease with increased temperature. Falkenhagen suggested that the measured equivalent conductance will pass through a maximum at a certain temperature. This maximum will be lower for solvents with lower dielectric constants and for higher solute concentrations. For a particular concentration these two terms may balance each other; for higher concentrations, then, the second term will predominate and the temperature coefficient of conductance will become negative. The theory does predict a maximum but no minimum. However, Armitage and French (49)

have pointed out that the presence of the solute itself will offset the dielectric constant of the system. It seems reasonable, therefore, to assume that a point may be reached in a given solution when the effect of an increase in system dielectric constant, due to the presence of solute, outweighs the effect of increased concentration from Falkenhagen's second term. The equivalent conductance might again increase with increasing temperature, causing a minimum in the curve. It is possible that such effects are being observed in the case of the solutes in DMSO of Figures 36 and 38.

A qualitative examination of the curves in Figures 36 and 38 seems to indicate that the T-G curve for the products of the reaction between luminol and potassium tertiary butoxide is the sum of the curves for the reactants. This would appear to be a reasonable assumption, since conductances are approximately additive in dulute solutions, provided that the ionic character of the products in the reaction is similar to that of the reactants. It was previously mentioned that attempts to fit these curves were not entirely successful. However from the equations obtained, the predominating coefficients (which corresponded to the coefficients of the higher order terms) for the two reactants do roughly add to produce the coefficients of the fitting equation for the product. In any event, these results lend some credence to the method of performing the T-G profile run and fit on the products of the reaction in order to compensate for temperature variations which occur during the reaction. In practice, no other approach is possible short of developing correction software which employs differential fitting equations which are, in themselves, functions of the changing ionic character which results from a reaction in progress.

Finally, as a result of the preliminary work presented here, the author is able to state that the T-G profiles appear to be both qualitatively and quantitatively useful. Variation in the fitting functions occurs with both changes in concentration and in the chemical systems investigated. It appears that a significant amount of work could still be done in this area for further elucidation of the mechanism by which these profiles are formed as well as their applicability as an analytical tool. It is possible that the fitting functions of T-G profiles will be shown to be sufficiently diverse to be used for identification of the concentration of solute, the particular solute, and the particular solvent in a chemical system.

CHAPTER 7

APPLICATION OF THE COMPUTERIZED CONDUCTANCE SYSTEM TO TITRATION MONITORING AND ANALYSIS

A. SPECIFIC SOFTWARE AND HARDWARE FOR TITRATION EXPERIMENTS

One of the most popular uses of conductance as a detector for chemical processes has been the determination of titration endpoints. This is the result of titrations, in themselves, being specific chemical techniques where the analyte and titrant are engaged in a specific chemical reaction. If an interferent is present, the endpoint will usually be uncertain regardless of the detection method since the chemistry involved will no longer be specific. Thus, equally pertinent results are obtained for detectors which are monitoring a particular change in the system (such as the change in the absorption at a particular wavelength) as well as detectors which examine the overall bulk properties of the solution, assuming both methods can detect the change. Often, a general, bulk property detection technique, such as conductance, is much more suitable as a detector for a wider variety of analysis-by-titration problems.

Endpoint detection in titrations was the first chemical problem investigated with the computerized conductance system. There are, at the present time, three programs in the system software set specifically designed or modified for use with titrations. Two of these are analysis programs discussed in Chapter 7B. The other program is a data acquisition program, CBTMLT. The program CBTMLT is a modification of the standard acquisition program, CBTSLS, discussed in Chapter 4. Program CBTMLT contains instructions for control of

an E298 Metrohm Motor Burette which has been interfaced to the computer through the peripheral control facility in the computerized conductance system.

During the titration CBTMLT will cause the computer to measure the conductance, measure the thermistor response if the operator desires, and test to see if the conductance system is on scale. If it is not, the instrument will be reset and the measurement for that titrant volume retaken. (This can be done in titrations where measurement timing is not critical). When an on-scale measurement has been made, the computer will immediately signal the titrator to add the next volume of titrant. The computer will then wait for the clock to signal the time for the next data acquisition. During this waiting period, the cell solution will be continuously stirred to assure mixing by the time the next measurement is made. When the computer has completed the titration, data is transferred to tape in the usual manner.

A schematic diagram of the burette interface appears in Figure 47. A DS-IOP command from the computer is gated through 1/2 of a 75451 driver, pulled up to +5 volts, to trigger a 1.5 second monostable. When the monostable is triggered, \bar{Q} goes low, turning "on" the other half of the 75451 driver. This causes the relay to change state, switching the 120 volts AC to the motor driver of the burette. The 1.5 second pulse causes the burette to add 0.2 ml of titrant to the cell when it is in the 1/100 volume increment mode. It will exactly pipette 1/100 of its total volume (1/100 x 20 ml = 0.2 ml) for each computer command signal. The titrator interface may be plugged directly into the conductance instrument module which has provisions

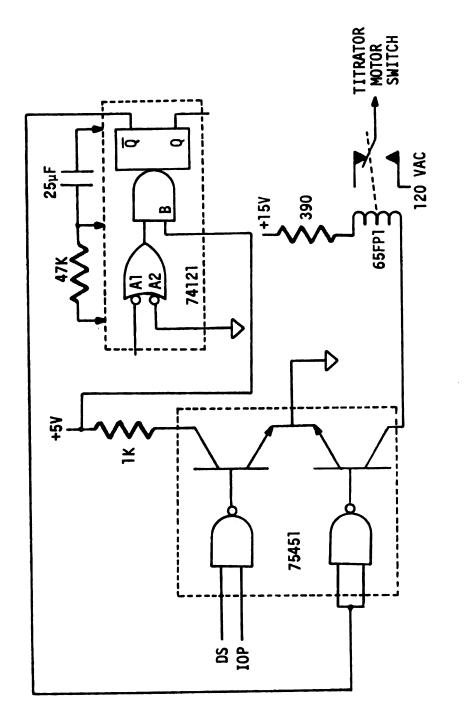


Figure 47. Automatic Burette Interface.

for supplying DS-IOP signals (DS 36, IOP, 1, 2, and 4) to external devices used with the computerized conductance system.

The cell which was used for most of the titrations investigated with the computerized conductance system was constructed from a 100 ml three-neck, round-bottom flash with two platinum wire electrodes mounted in the side, facing each other end to end. There are no platinum discs on the ends of the wires and the wires themselves are not platinized. The side of the flask was idented above the electrodes to provide a "shelf" which shields the electrodes from waves formed on the surface of the solution by the action of stirring. Stirring is accomplished by a 3/4" glass propeller placed in the center of the cell through the central opening of the flask and connected to an overhead stirrer. A glass bushing is provided around the propeller shaft to hold it in place. The burette delivery tip and the thermistor probe are each mounted in ground-glass joint plugs which can be inserted into the other two openings of the cell and held firmly in place. Most of the cell is immersed in a constant temperature bath. The measured cell constant, k, is defined as

 $k = \kappa R$

where κ is the specific conductance of a particular solution in Ω^{-1} cm⁻¹ and R is the measured resistance. The constant, k, for this cell was found to be 1.889±.002 cm⁻¹.

B. TITRATION DATA ANALYSIS AND DISPLAY SOFTWARE

Once the computer has completed a titration and written the data onto DECTAPE, the operator will call CCLMLT, the first of two analysis routines for titration data. Program CCLMLT is flowcharted in Figure 48 and listed in the Appendix. It begins by asking the operator for the first block on tape which contains the data to be analyzed and then reads that data. It determines, from the parameters written into the data set, whether or not temperature and double precision data were taken. If it finds that temperature data were taken, the computer asks the operator to input the coefficients from the temperature-conductance profile fit for that system. (The operator may input zeros for these coefficients if the temperature-conductance run has not yet been performed). Finally, the computer asks for the initial volume in the cell before the titration began so that the data may be corrected for dilution effects, and whether or not the operator wishes to have the data listed on the line printer. If a line printer listing is to be made, the computer will set up the line printer and data table headings. A set of maximum and minimum pointers, for all types of raw and corrected data, equal to the first points in the data set, will be established and the analysis begun. The sampled voltage, ES, the raw conductance measured, G(M), the conductance corrected for scale changes, G(C), and the dilution corrected conductance, G(D), will all be calculated. The quantity G(D) is calculated according to

$$G(D) = (V_i + V_{tit})(G(C))/V_i$$

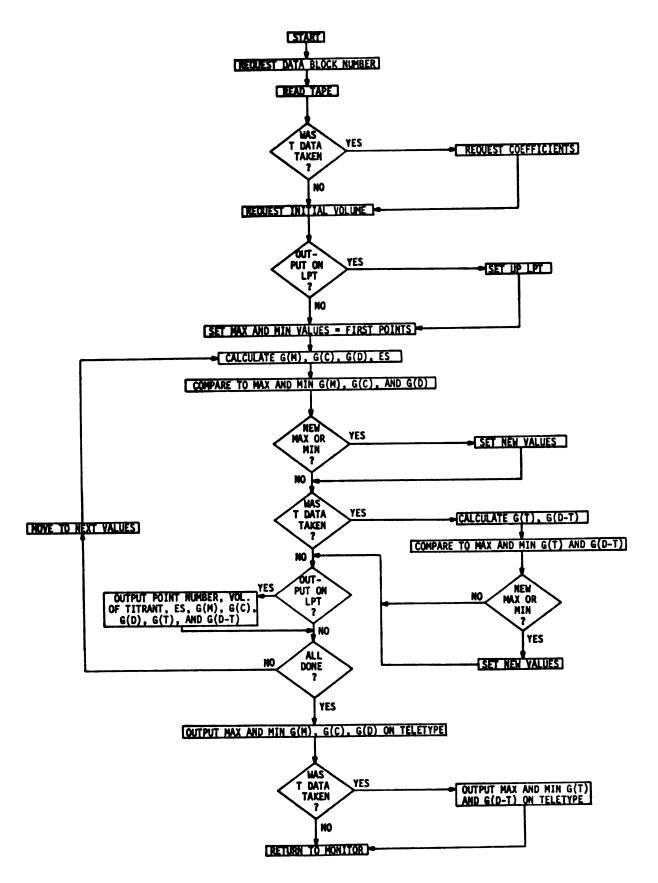


Figure 48. CCLMLT Program Flowchart. (Simplified)

where V_i is the initial volume (input by the operator) and V_{tit} is the volume of titrant added.

The computer will compare each calculated conductance to the corresponding maximum and minimum in the set and reset these limits if a new maximum or minimum is encountered. If temperature data have been taken, the conductance corrected for temperature fluctuations G(T), will be calculated from:

$$G(T) = G(C) + (A_n)(T_s^{n-1} - T^{n-1}) + (A_{n-1})(T_s^{n-2} - T^{n-2}) + ...$$

where A_n is the coefficient of the n-1 power of the thermistor response, T, from the fitted equation (input by the operator) and T_S is a standard reference thermistor response, measured at the beginning of a run, before any temperature change has occurred.

Conductance corrected for dilution and temperature, G(D-T) will be calculated from an expression identical to that for G(D) with G(T) substituted for G(C). Maxima and minima are also calculated for the G(T) and G(D-T) data sets.

If the data are to be listed on the line printer, the computer will output the conductances for each point, G(M), G(C), G(D), G(T) and G(D-T) as they are calculated along with the point number, the volume of titrant added to that point, and the sampled voltage, E_S . Thus, in the few minutes following the actual titration, the computerized conductance system has completed calculations which would require many man-hours of tedious work if the data were taken by conventional means and treated in a conventional manner. Finally, when all the data have been scanned, the maximum and minimum values for all conductances calculated are listed on the teletype for use in setting up the scope

and X-Y plotter boundaries for data display. Computer control returns to the Keyboard Monitor.

The plotting routine for titration analysis, CDPMLT, is flow-charted in Figure 49 and listed in the Appendix. It begins by requesting the first tape block to read, reads the file, requests correction coefficients if temperature data were taken, requests the initial volume, and allows the operator to plot axes, G(M), G(C), G(D), G(T), or G(T-D) vs. volume of titrant, or return to monitor. When the operator selects an option to plot one of the calculated conductances, the program allows him to select the points to be plotted and the upper and lower conductances to be the limits of the plot. The computer then calculates the chosen conductance data point-by-point, scales it for plotting, and plots it on the X-Y plotter and/or display scope, drawing straight lines between points. When the plot has been completed, the routine returns to await the selection of the next option.

It has not yet been necessary to provide a fitting routine to calculate the endpoint of a conductometric titration analyzed by these programs since the endpoints for most of the systems investigated to date have been quite distinct. Furthermore, the conductance change during these titrations is being continuously monitored within the quantization level provided by the titrator (0.2 ml/20 ml). Having 100 connected points to define a curve largely eliminates the uncertainty in the endpoint which some workers have experienced using conductance detection. These persons only obtained a few measurements on either side of the endpoint and draw straight lines through them, taking their intersection as the true endpoint. In fact, one of the most interesting phenomena presented in this chapter (section D)

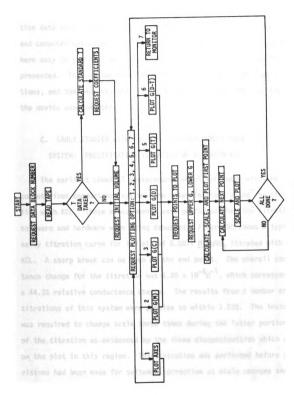


Figure 49. CDPMLT Program Flowchart. (Simplified)

would have been completely unobserved if continuous monitoring of the titrations had not been employed. The use of a TDA routine for titration data acquisition, an automatic titrator under computer control, and computer evaluation of data made all of the titrations presented here easy to perform and analyze for the chemical information they presented. This system makes the performance of sophisticated titrations, and the analysis and display of the data, possible for even the novice experimenter.

C. EARLY STUDIES WITH THE COMPUTERIZED CONDUCTANCE

SYSTEM: PRECIPITATION TITRATION OF Ag⁺ WITH KCL

The earliest chemical measurements which were made with the computerized conductance system were determinations of Ag^+ by titration with KCL. These measurements were performed when the titration software and hardware were being debugged. Figure 50 shows a typical early titration curve for 100 mls of 0.0011 $\underline{\mathrm{M}}$ AgNO $_3$ titrated with 0.010 $\underline{\mathrm{M}}$ KCL. A sharp break can be seen at the end point. The overall conductance change for the titration was 5.20 x $10^{-5}\Omega^{-1}$, which corresponds to a 44.3% relative conductance change. The results from a number of titrations of this system were precise to within 1.23%. The instrument was required to change scale three times during the latter portion of the titration as evidenced by the three discontinuities which appear on the plot in this region. This titration was performed before provisions had been made for software correction at scale changes and overlap of adjacent scales. These discontinuities indicated the need for such corrections which were later implemented. The computerized

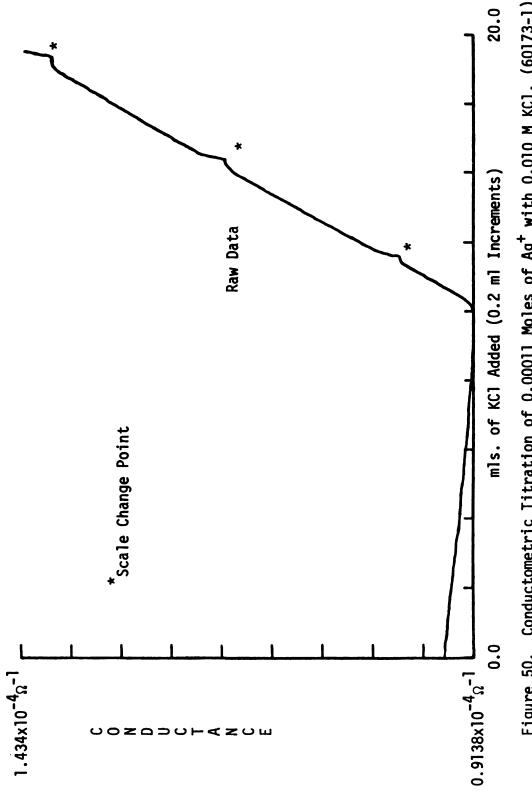
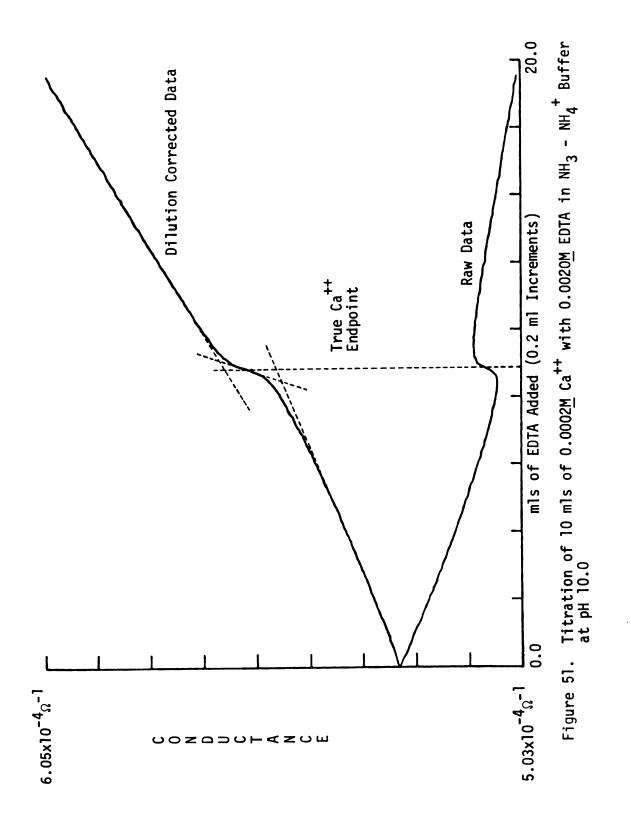


Figure 50. Conductometric Titration of 0.00011 Moles of Ag^+ with 0.010 \underline{M} KCl. (60173-1)

conductance system did, however, demonstrate its ability to measure conductance changes in chemical systems where precipitation occurred. No effects due to silver chloride formation on the electrodes were observed. Concentrations of Ag^+ as low as 10^{-4} M were successfully titrated.

D. SOME OBSERVATIONS CONCERNING THE END POINT PHENOMENON ASSOCIATED WITH CERTAIN EDTA TITRATIONS

During the early chemical measurements with the computerized conductance system, what was assumed to be another "simple" titration was examined, largely to determine titration sensitivity in the presence of a strong background electrolyte. This system was the titration of Ca⁺⁺ with EDTA in ammonia ammonium chloride buffer at pH 10. These titrations were performed at four separate times, in June and August of 1973, and in January and March of 1974. The first two studies were performed to assess the performance of the computerized conductance system in buffered solutions, where there is a large conductance background due to the buffer ions. The later two studies were attempts to investigate and duplicate the end point anomaly observed during the August, 1973 study.


The initial set of titrations, performed in June, 1973, were observed to be normal conductometric titrations with normal end points. During this study, Ca^{++} concentrations as low as $1.25 \times 10^{-4} \, \text{M}$ were determined by titration with EDTA. The buffer present in the calcium solution had an ionic strength of about 0.05. The end points were distinct and the accuracy, 0.625%, was limited by the solutions prepared. The precision was excellent, duplicate experiments

agreeing to within 0.020%. Further titration studies were, however, delayed for about two months while the temperature monitor circuit and software were assembled and integrated into the computerized conductance system.

In August, 1973, the chemical tests were resumed with further investigation of the Ca⁺⁺ - EDTA titration among the experiments to be performed. The results of this series of Ca⁺⁺ - EDTA titrations were totally different from those observed in June. Instead of the normal titration curves previously observed, the region around the endpoint of these new titration curves was significantly altered. One of these curves appears in Figure 51. Two breaks near the endpoint occur where only one existed previously. The instrument was thoroughly checked and the cell thoroughly cleaned but the phenomenon failed to disappear during the entire five days when these runs were made. The phenomenon was found not to be a function of buffer strength, concentrations of Ca⁺⁺, concentration of EDTA, any tested ratio of these concentrations, or any particular instrumental settings. It was found that the true Ca⁺⁺ endpoint was obtained by graphically finding the point half way between both breaks as shown in Figure 51.

It was discovered, at the time, that a number of previous workers had noted similar effects for Ca⁺⁺, Zn⁺⁺, Cu⁺⁺, and other divalent metals with EDTA titrations in buffered solutions. The earliest of these was in the pioneering work of Hall, Gibson, Wilkinson, and Philips (51) who were the first to use conductometric methods for determination of endpoints in EDTA titrations. They noted curvature in most of their titration curves which could not be explained by dilution effects. This curvature was not, however, as dramatic as

		_
		.
		,
		,

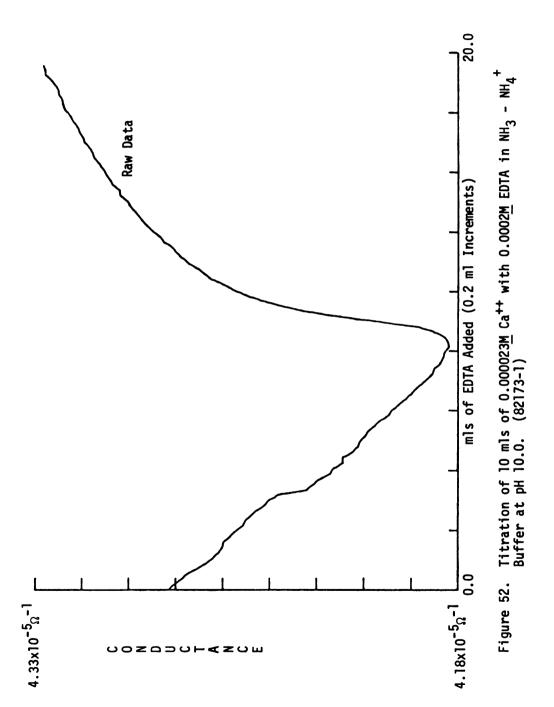
that of Figure 51. Hall et al. discounted this effect which they believed was due to "incomplete buffer action".

Farrow and Hill (52) discovered two endpoints while following titrations of zinc, lead, cadmium, bismuth, manganese, magnesium or calcium with EDTA by potentiometric means. They investigated these effects and claimed the anomaly resulted from the presence of nitrilotriacetic acid (NTA) impurity in the EDTA. They said that the first endpoint they observed was due to EDTA and the second endpoint due to NTA. In the case of Ca⁺⁺, Solochrome black T indicator detected the first endpoint; in the titration of Zn⁺⁺, the second endpoint, corresponding to the NTA endpoint, was detected by Solochrome black T. They showed that commercially available EDTA still contained enough NTA to produce the effect.

Levine and Golden (53) titrated zinc in the presence of manganese using Eriochrome black T as the indicator and photometric endpoint detection. They titrated manganese directly by reducing it with ascorbic acid in ammonical tartrate solution and masking the zinc with KCN. The zinc could then be demasked by addition of formaldehyde and titrated with EDTA. They observed two "endpoints" near the real zinc endpoint (after manganese had been titrated). They assumed the first break corresponded to the beginning of the indicator reaction and the second break to the completion of this reaction.

During the August, 1973 titrations, the author discovered that Johnson and Enke (10) had observed the same phenomenon which these titrations were presenting, during measurements with their earlier bipolar pulse instrument of the titrations of ${\rm Ca}^{++}$ and ${\rm Zn}^{++}$ in ${\rm NH_3} \, / \, {\rm NH_4}^+$ buffer at pH 10 with EDTA. They found that the first break

was proportional to the amount of Ca⁺⁺ or Zn⁺⁺ present while the second break was not. They found the first break to agree to within 0.2% of the Eriochrome black T endpoint. They also noted a sharp conductance increase which leveled off to a more moderate increase even when no Zn⁺⁺ was present, for addition of EDTA to buffer. Johnson (18) proposed the formation of a complex between EDTA and NH₄⁺ after the EDTA concentration built up to significant levels following the Zn⁺⁺ end-point.


Further work by Bauer (54) with Johnson and Enke's same bipolar pulse instrument, in the same laboratory, verified these results. He found that the anomaly occurred for every titration of zinc or calcium with EDTA in NH₃/NH₄⁺ buffer at pH 10 except for the first time the electrodes were used after having been unused for several months (the electrodes were not platinized). Bauer claimed that the second break in the curve was a function of the rate of addition of EDTA (he was continuously adding titrant while following the conductance change on a recorder). He also observed other breaks in the titration curve, much less significant than the second break at the endpoint. He believed that he was observing a non-equilibrium situation. Finally, he proposed further investigation with platinized electrodes to see if the anomaly was a surface phenomenon.

It should be noted that this author observed the anomaly with or without Erichrome black T as did Johnson and Enke and Bauer. During the studies by Johnson, Enke, and Bauer, other research was being done in the same laboratory which involved the use of cyanide complexes. This is a possible connection here with the observations of Levine and Golden about the effect of the presence of KCN in the solution

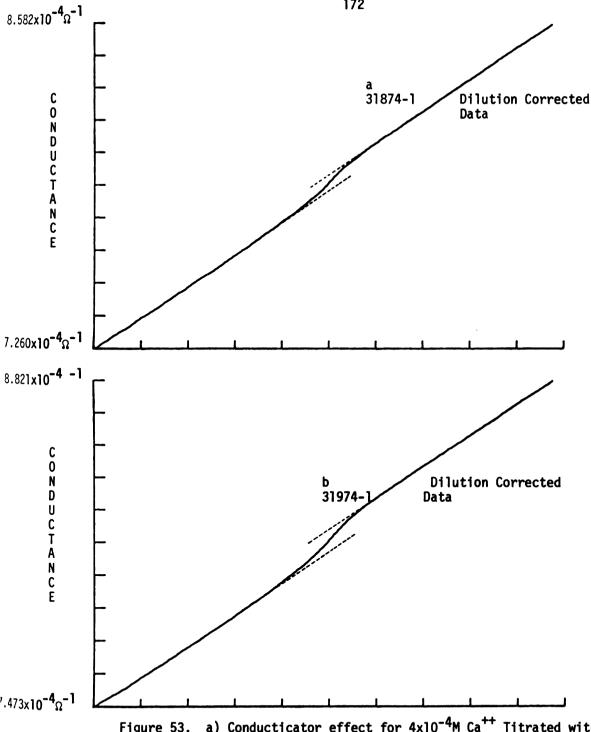
during titration.

In addition to the normal curiosity concerning an unexplained phenomenon, this author was interested in this particular anomaly because it resulted in considerably more distinct endpoints than those which occurred when the anomaly was not present due to the sudden "burst" of conductance at or near the expected endpoint. Thus, the computerized conductance system was able to determine very low concentrations of calcium with relative ease as can be seen in Figure 52. In this titration, a distinct endpoint is observed for the titration of 2.3 x 10^{-5} M Ca⁺⁺ with 2 x 10^{-4} M EDTA in NH_3/NH_4 buffer at pH 10. The lowest previous concentration of Ca^{++} determined by conductance was that reported by Hall et al. (51) of 10^{-4} M Ca^{++} after dilution in the titration vessel. It is obvious, from Figure 52 that much lower Ca^{++} concentrations could be determined with the anomaly present.

Investigation of the anomaly was resumed in January, 1974. Every curve obtained was found to be a normal titration curve with only the single break at the endpoint. The calcium and EDTA solutions had been prepared from the same bottles of stock chemicals as the two previous titration series, discounting the effects of NTA in this case. The ammonium chloride used to prepare the buffer was the same although the ammonium hydroxide solution was not. The results of this series did show, however, that the effect was due to an interferent and not an NH₄⁺ - EDTA complex as Johnson (18) had proposed. This was done by comparing the ratio of the slopes before and after the two "endpoints" and before and between the two "endpoints" with the ratio of the slopes of a normal curve before and after the endpoint. If the second break corresponded to the beginning of the formation of an

 NH_A^+ - EDTA complex, the ratio of the slopes before and between the two endpoints should be the same as the ratio of slopes in the normal curve. If the ratio of slopes before and after the two "endpoints" were the same as the normal curve slope ratio, this would indicate an interferent being titrated between breaks and that the conductance is proceeding to change in a normal manner after this interferent was titrated, due to addition of ionized EDTA. It was found that the ratio of slopes before and after the two breaks in the curve was identical to the ratio of slopes of a normal curve to within 6%. The 6% difference could be explained by slight variation in ionic strength between the anomalous and normal runs. The ratio of slopes before and between the two breaks had no relationship to the ratio of slopes for the normal curve. Therefore, the region between the first and second breaks in the abnormal curve was the result of a release of ions by some interferent which occurred when significant uncomplexed EDTA was present near and after the Ca⁺⁺ endpoint. The interferent had the effect of a "conducticator", a conductance-specific indicator which produced a burst of ions (as opposed to a burst of color for a normal indicator) at the Ca⁺⁺ endpoint. The species which produced these effects had not been isolated but the effect itself appeared to be a useful one. Therefore, an attempt was made to reproduce it in a controlled manner.

Since CN⁻ was present in several of the situations where abnormal curves were observed, it was thought that a complex of CN⁻ and another metal might be responsible. If this complex could be broken up at the calcium endpoint by EDTA, the result would be to release four to six highly mobile ions to the solution per complex, which should


cause a significant increase in conductivity. A reaction of the type:

$$Fe(CN)_6^{-3} + EDTA^{-4} Fe(EDTA)^{-1} + 6CN^{-1}$$

seemed reasonable. The complexation constant of $Fe(CN)_6^{-3}$ is 10^{42} whereas that of $Fe(EDTA)^{-1}$ is $10^{25.1}$. However, both complexation constants would be affected by the presence of NH_3 . In addition, there would be no excess CN^- present and significant amounts of free EDTA at the Ca^{++} endpoint which should cause the above equilibrium to shift to the right.

The amount of $Fe(CN)_6^{-3}$ to be added to try to obtain the conducticator effect was determined by calculation of the approximate amount of interferent present in the anomalous curves. This concentration was calculated to be on the order of 10^{-5} M. A solution of $K_3Fe(CN)_6$ was prepared and the proper amount added to the titration cell to make the concentration 2 \times 10⁻⁵ M. The curve obtained from this titration is shown in Figure 53a. The conducticator effect is clearly present although not as strong as that observed accidentally. In order to try to increase the effect, the concentration of $Fe(CN)_6^{-3}$ was tripled for the next titration. The effect vanished and no endpoint was observed at all. Further titrations at the initial or lower concentrations did contain the conducticator phenomenon. It was found, however, that rinsing the cell with distilled water in order that a standard run without $Fe(CN)_6^{-3}$ present could be obtained was not sufficient to remove the effect. Indeed, the effect was still present after cleaning the cell, the pipettes used, the titrator, and the stirrer with HCl and HF three times and using fresh solutions of Ca⁺⁺, EDTA, and buffer which

a) Conducticator effect for $4x10^{-4}\underline{M}$ Ca⁺⁺ Titrated with 0.002 \underline{M} EDTA in the presence of $2x\overline{10}^{-5}$ \underline{M} K₃Fe(CN)₆ and 0.01 \underline{M} NH₃ NH $\frac{1}{2}$ Buffer at pH 10, (b) Same as (a) but no K₃Fe(\overline{CN})₆ Present, Cell has been Scrubbed three Times with HF and HCl. Figure 53.

were prepared in previously unused glassware. This is reflected in Figure 53b which represents the titration made following the above cleaning. The conducticator effect now appeared to be a surface phenomenon within the titration cell, either on the glass or the platinum electrodes.

The effect was finally eliminated by cleaning the cell with concentrated nitric acid. It was then expected that the effect could be recreated by addition of fresh Fe(CN)₆⁻³ as in the first experiment. However, the effect could not be recreated although the exact experimental conditions and the conditions preceeding them were carefully duplicated. Treating the surface of the cell with HF to remove the outer monolayer of glass, exposing a fresh surface, produced no effect. Treating the cell with concentrated NaOH to restore the Na⁺ balance on the glass (since an ion exchange with the glass surface seemed a reasonable mechanism for the conducticator effect) had no effect. Finally, having the cell re-anealed had no effect. Since other studies with the computerized conductance system had been undertaken at this time, and because of the lack of further results, the investigation was halted.

Several conclusions can be made at this time which might be of use to later workers investigating this effect. They are:

- The conducticator phenomenon is real, having been observed by a number of workers with different instruments under different environments.
- 2) The effect could prove to be valuable in determination of lower concentrations of analyte by conductance than previously possible. However, if the effect is due to complex equilibrium

the chance of finding such a species which could be used in numerous systems, where complexation constants can be quite different, seems to be rather small.

- 3) The effect is due to an interfering species and not to the formation of an EDTA-buffer complex.
- 4) The conducticator phenomenon appears most likely to be a surface effect, possibly an ion-exchange on the glass surface of the cell, rather than an effect resulting from the presence of a species in solution, since careful cleaning of the cell failed to remove the effect.
- 5) CN in some form seems to be a species which will trigger such an effect.
- 6) The equivalent conductance of the ions released to the solution when the phenomenon occurred, per mole of EDTA added (calculated from data in Figure 53b was $579.9\Omega^{-1}$ cm²/mole EDTA. This almost exactly corresponds to three OH⁻ species (total equivalent conductance, $576.0^{-1}\Omega$ cm²).
 - E. DETERMINATION OF SMALL AMOUNTS OF NaOH IN THE PRESENCE OF LARGE QUANTITIES OF SODIUM PHENOLATE

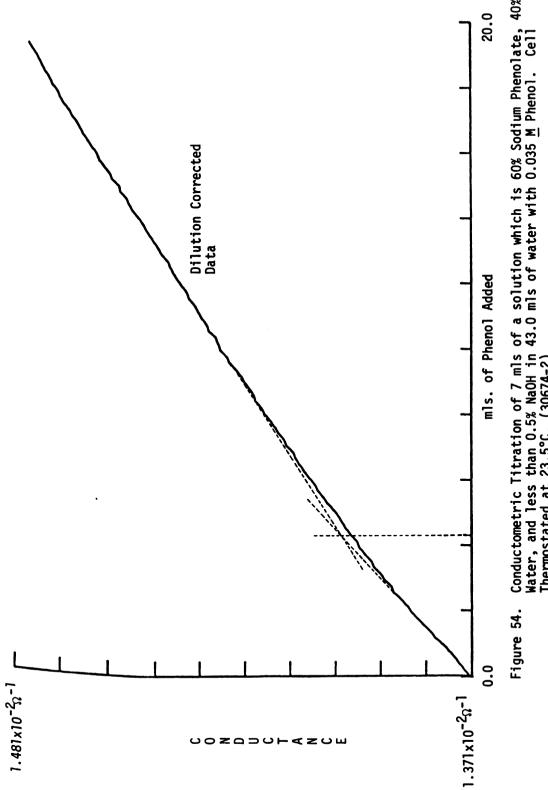
The author became aware of an analysis problem which a chemical company was experiencing while attempting to determine small amounts (<0.5%) of sodium hydroxide in a solution which was 60% sodium phenolate and approximately 40% water. They wished to maintain an excess of NaOH which would insure complete reaction of phenol (ØOH) to sodium phenolate (NaOØ). However, since the process was being performed as one step

in a large batch operation of several steps, they did not want the NaOH concentration to rise above 0.5% because it would not only interfere with later processes, but waste raw materials. The method which they had employed for the determination of the NaOH present was to titrate first the total base (NaOH plus NaOØ) with strong acid. The phenol formed in this reaction was then extracted into another solvent and brominated to form the tribromophenol. The excess bromine was then titrated with iodate. The net result was two rather imprecise large numbers representing total base and that part of the base which was phenolate. These two numbers were then subtracted to yield a small number representing the NaOH concentration. The results they reported were of poor accuracy.

The project seemed to be an ideal one for the computerized conductance system which, because of its excellent resolution, should be able to sense even small endpoint changes. The conductometric method seemed able to provide a direct means of endpoint detection for a direct titration of NaOH where no other indicator was available.

The chemists involved with the analysis believed that sodium phenolate and sodium hydroxide were both nearly equal in strength in this semi-aqueous solution. This would make it impossible to distinguish the NaOH and NaOØ endpoints for a titration with a strong acid. Therefore, the first attempt to titrate NaOH alone was done using phenol as the titrant. It was expected that an endpoint could be observed which corresponded to the reaction:

$$Na^{+}OH^{-} 00H 00^{-} + Na^{+} + H_{2}O$$


Please note: the convention which has been chosen to represent titrations in this manuscript involves placing the titrant over the arrow for the reaction. In this way, the ionic character of the solution before and after titrant is added can easily be represented by the left and right sides of the equation respectively.)

If this reaction occurred with the ionic forms as written above, a decrease in conductance would be expected before the endpoint since $\emptyset0^-$ is being exchanged for the somewhat more mobile OH⁻ (after dilution effects on the conductance are corrected for). After the endpoint the conductance should begin to increase slowly due to very slightly ionized \emptyset OH, assuming dilution effects are eliminated.

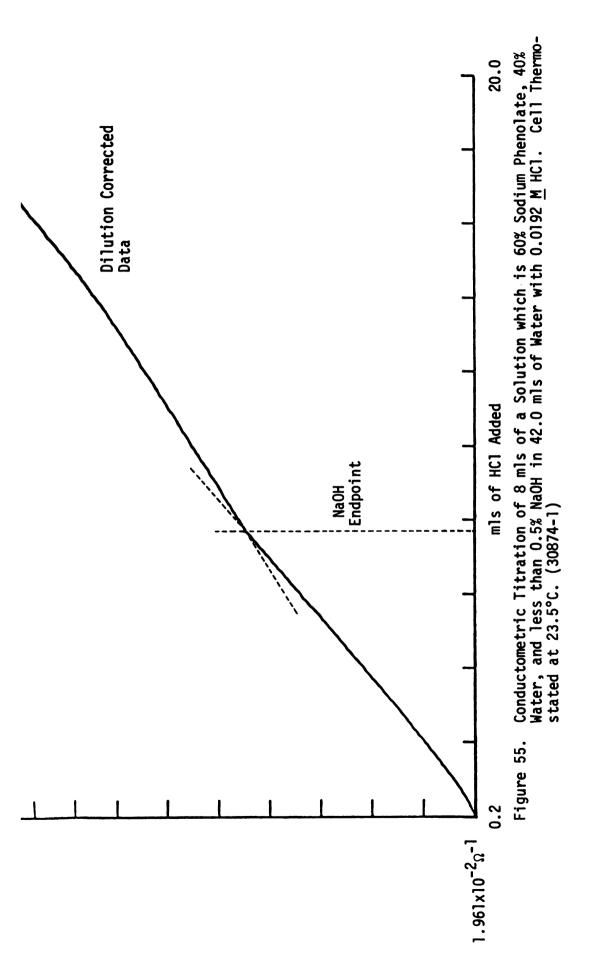
A solution of 90H, NaOH, and water was prepared such that the final weight percents of the reaction products would be 60% NaO9, around 40% water, and less than 0.5% excess NaOH. The solution was prepared in a round-bottom flask which was placed in a heating mantle to maintain the temperature of the contents above 60°C at all times to prevent solidification of the solution. Seven mls. of the solution were pipetted (with some difficulty due to solidification during pipetting) into the titration cell and diluted to 50 mls with distilled water. The resulting solution was about 8.4% NaO9 (0.8M) before dilution by the titrant (0.035M 90H).

The dilution-corrected titration curve is shown in Figure 54.

A small change in slope is observed at the endpoint. The expected decrease in conductance before the endpoint was not observed. Rather, the conductance increased before the endpoint and less slowly afterward. This seemed to indicate that NaOØ was not as strong an electrolyte as the chemists involved with the project had thought. The conductance

Conductometric Titration of 7 mls of a solution which is 60% Sodium Phenolate, 40% Water, and less than 0.5% NaOH in 43.0 mls of water with 0.035 \underline{M} Phenol. Cell Thermostated at 23.5° C. (30674-2)

nges which occurred appeared to be not only decreasing conductance to loss of OH⁻ in the reaction but also, and predominately, an crease in conductance by the release of Na⁺ and ØO⁻ ions due to dution of NaOØ which was a weak electrolyte, plus the introduction free ØO⁻ from the titration reaction. After the endpoint, only ditional Na⁺ and ØO⁻ are formed through increased dilution (since H is a weak electrolyte) so that the increase in conductivity is ower.

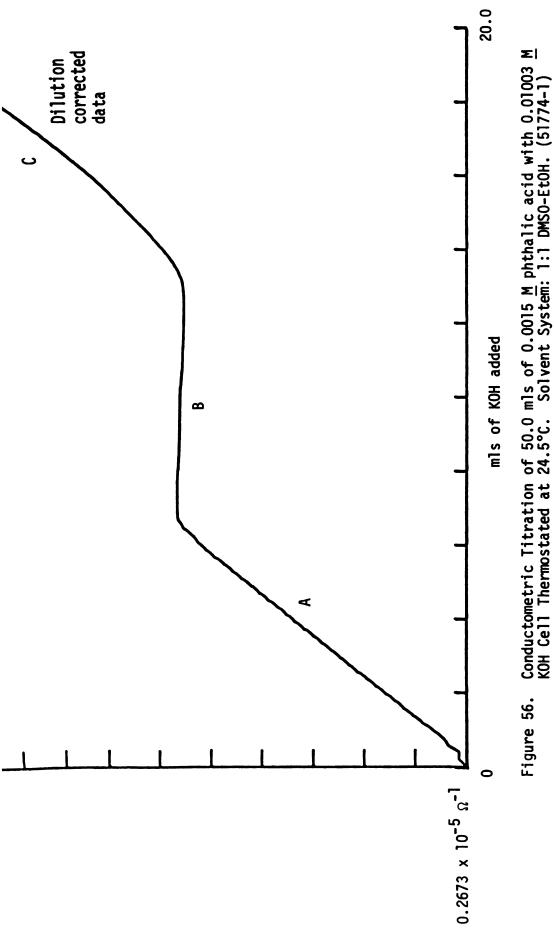

Since this titration indicated that ØONa was a significantly taker base than NaOH, it was expected that NaOH could be titrated irst, with a strong acid such as HCl, which should produce a sharper indpoint. The resulting curve from this titration appears in Figure 5. A sharp endpoint is visible for the titration of the NaOH present in 8 mls of analyte solution, diluted to 50 mls with distilled water, and titrated with 0.0192 M HCl. The curvature of the line is possibly due to ion-pairing effects which become less prominant as the solution is diluted. The reactions which are occurring are:

$$0H^{-} + Na^{+} + Na00 \xrightarrow{H^{+}+C1^{-}} (n+1)Na^{+} + C1^{-} + n00^{-} + H_{2}0$$

before endpoint and

$$00^{-} + Na^{+} + Na00 + C1^{-} \xrightarrow{H^{+}+C1^{-}} 00H + (n+1)Na^{+} + n00^{-} + C1^{-}$$

after the endpoint, where n is the amount of additional NaOØ which dissociates due to dilution. The amount of NaOH present in the 8 ml sample of analyte was 6.07×10^{-3} g $(3.00 \times 10^{-3} \underline{\text{M}} \text{ before dilution})$,


h corresponded to a weight percent of 0.061%.

It was hoped that an actual sample of the solution from the mical plant could be obtained for analysis and comparison with their ti-step analytical method. However, due to unforseen circumstances, s was not possible at the time. It is evident, however, that the agle step method presented here is far superior to the multi-step thod employed previously, not only in accuracy, but especially in eed and ease of application.

F. TITRATION OF PHTHALIC ACID IN 1:1 DMSO-ETOH

The author would like to mention one non-aqueous titration which as performed during the studies of the luminol system to be discussed in Chapter 8. At one point in these studies, some information concerning the behavior of phthalic acid protons in 1:1 DMSO-ETOH, and the relative conductivity of phthalic acid single and di-anions with respect to hydroxide ion in the same solvent, was desired. It is known that non-aqueous titrations can present complex endpoint detection problems to conductance methods due to the low dielectric constant of the medium, low double layer capacitance, and so forth. Nevertheless, by using the computerized conductance system, it was possible to set up, run, and analyze a titration of 50.0 mls. of 0.0015 M phthalic acid (PH₂) with 0.01003 M KOH in 1:1 DMSO-EtOH in about an hour. Much of this time was involved in preparation of standards and in mixing time during the titration. The resulting titration curve appears in Figure 56.

It can be seen that endpoints for both protons are obtained. The

phenomenon associated with each portion of the curve (A, B, and C in Figure 56 is given below:

Region A: The increase in conductance in this region is due to the reaction:

$$PH_2 \xrightarrow{K^+ + 0H^-} PH^- + K^+ + H_20$$

where two ions not previously present (PH^- and K^+) are being formed.

Region B: The conductance in this region of the curve decreases very slightly. The increase in conductance due to the addition of K⁺ (with OH⁻ reacting with the second phthalic proton to yield H₂O) is not seen. In addition, the product formed is of slightly lower conductivity than the PH⁻ species. The reaction which is occurring here should correspond to:

where λ_{PK}^{-} is slightly less than $\lambda_{PH}^{-}.$

Region C: The conductance increase here is due to addition of K^+ and OH^- . Notice that the conductivity increase is not as rapid as that for the formation of K^+ and PH^- in Region A. Two possible conclusions can be drawn. Either $\lambda_{OH^-} < \lambda_{PH^-}$ or some PK_2 forms when excess K^+ is present after the second endpoint. It is quite possible that the first conclusion may be correct due to higher solvation of OH^- by the bulky DMSO molecules present because of its higher charge-to-mass ratio with respect to PH^- .

This titration, along with the others presented in this chapter, demonstrates the versatility of the software and hardware in the computerized conductance system, and the power of its instrumental sensitivity and automatic data analysis, for applications in titration studies. These titration abilities may now be implemented by other workers, who desire to use conductometric monitoring techniques, with a minimum of effort and the anticipated maximum data attainable by the conductance method.

CHAPTER 8

APPLICATION OF THE COMPUTERIZED CONDUCTANCE SYSTEM TO KINETIC STUDIES: PRELIMINARY INVESTIGATION OF THE LUMINOL REACTION

Acknowledgment: All of the actual experimental work and much of the implementation of specialized hardware presented in this chapter was done in conjunction with Timothy A. Nieman to whom the author wishes to express his gratitude.

A. SPECIFIC SOFTWARE FOR KINETIC EXPERIMENTS

One of the greatest differences between the computerized conductance system and conventional conductance instruments is the speed with which data may be acquired and analyzed. At its maximum rate the system can acquire over 33,000 measurements of conductance per second. It was shown in Chapter 5 that these measurements were of good precision and low noise level. If the timing of an experiment permits, ensemble averaging can increase this precision and lower the noise level accordingly. Thus, the system is ideally suited for and, indeed, was intended to be used in, kinetic studies of slow to moderately fast reactions in which an overall ionic change is occurring.

In order to permit use of the system in reaction mechanism and rate studies, some modification of the basic software was required.

As a result, there are currently two sequences of kinetic study programs in use in the system. One of these sequences performs acquisition and analysis of conductance and temperature data (the CBTMLS sequence).

The other sequence (the CBTDCS sequence) is also capable of acquiring and analyzing data from another data source, in addition to acquisition

and expanded analysis of temperature and conductance data.

The program CBTMLS is a simple modification of the basic acquisition program, CBTSLS, discussed in Chapter 4. It contains stopped-flow flag check instructions to permit data acquisition triggering from the stopped-flow apparatus employed in most of the kinetic studies performed to this time. Analysis of the data acquired by CBTMLS is accomplished by CCLMLS. Program CCLMLS is identical to the CCTMLT program used in titration analysis, but does not contain provisions for dilution correction of data. The plotting routine in this sequence, CDPMLS, is identical to CDPMLT used for titration curve plotting with the exception that it lacks provisions for plotting dilution corrected data.

The other kinetic program sequence contains two computerized conductance system programs which require 12 K of memory for operation. Program CBTDCS is a modification of CBTSLS which is capable of acquiring conductance, temperature, auxiliary data, and a baseline for the auxiliary data. It contains additional storage space which enables it to acquire up to 500 points from spectroscopic, electrochemical, or other data sources. It has instructions to trigger the auxiliary A/D converter on the same signal (DS 33, IOP 4) as the bipolar pulsing trigger. It uses DS 36, IOP 2 for a flag check of the stopped-flow apparatus and DS 36, IOP 4 for the data transfer. Data are analyzed and plotted by the 12 K CCLDCS program. This program is an extensive modification and combination of CCLMLS and CDPMLS. In addition to listing the calculated data on the line printer, calculating maxima and minima, and slow plotting raw, scale change corrected and temperature corrected conductances, it will fast plot all of these values on

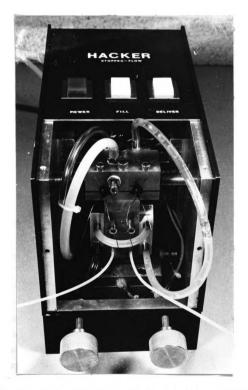


Figure 57. Photograph of the Early Hacker Stopped-Flow Apparatus.

the display scope, list them on the lineprinter, and slow or fast plot thermistor response, auxiliary data, and the integral of the auxiliary data (baseline corrected). The fast plotting option permits an operator to observe his data on the display scope within about a minute of the completion of a run. The only waiting period necessary between completion of data acquisition and plotting (about 45 seconds for a 500 point data set) is that required for the computer to calculate the set of maxima and minima used for scaling of the data on the scope. Plotting of data requires two-to-ten seconds for 500 points. If an operator desires a hard copy, data may be slow-plotted on the X-Y plotter in the normal manner.

B. SPECIFIC HARDWARE FOR KINETIC EXPERIMENTS

The stopped-flow apparatus which was used for the studies to be discussed later in this chapter is shown in the photograph of Figure 57. It is an early version of a custom stopped-flow device built by the Hacker Machine Company. It utilizes compressed air-driven syringes which inject a total volume of about 1.2 ml per trigger. It has been fitted with a combination conductance-temperature-spectroscopy observation cell. The cell has quartz windows at either end to permit monitoring of spectroscopic data. The flow pathway in the cell was bored through four platinum disc electrodes which are sandwiched in Kel-F. The electrodes are spaced such that, by choosing appropriate pairs of electrodes, the distance between conductance monitoring points can be selected as 2, 3, 5, 7, 8, or 10 cm. In addition, all four electrodes could be used at one time with the four-lead computerized conductance system. A thermistor is imbedded in the cell wall, touching

the flow stream, to permit the cell temperature to be monitored.

To minimize temperature changes, provisions are made for thermostating the cell directly or in combination with the rest of the apparatus.

At the time of its use in this study, this apparatus had three problems associated with it which adversely affected its use in kinetic The first was a rather long dead time of about 40 mseconds studies. which prevented its use in initial rate studies of fast reactions. The second problem was that more heating was generated by mixing than would normally be desirable (the exact temperature change depends on the viscosity of the solvent, but is on the order of 0.1 to 0.3°C even with thermostating). Finally, the solution was in electrical contact with the chassis of the instrument at the outlet of the cell. For solutions of high conductance, this causes the measured conductance signal to be intolerably noisy. The noise can only be eliminated by unplugging the apparatus which, of course, rendered it useless since the activation switches are electrical. Grounding the two electrodes closest to the outlet (the left electrodes in Figure 57) did diminish the noise somewhat. Nevertheless, in its condition at the time, the device could not be used for kinetic studies by conductance where the measured resistance between the two right electrodes is less than 20 $K\Omega$. It is hoped that fitting the newer Hacker stopped flow apparatus with a conductance cell will enable these problems to be overcome. However, for the studies presented here, which involved a relatively slow reaction and solutions of low conductivity, the earlier apparatus proved suitable.

In many of the experiments which were performed with the luminol reaction, it was desirable to obtain light data from the

chemiluminescence (CL) of the reaction as well as conductance and temperature data. To implement this measurement, an auxiliary data acquisition system was added to the computerized conductance system as shown in Figure 58. The CL from the reaction was followed by positioning a Heath EU-701-30 photomultiplier module containing a 1P28A photomultiplier tube at the observation cell window. Since only the total light intensity was followed, no monochromator was needed. The current output of the photomultiplier module was amplified and converted to a voltage signal by a Heath EU-701-31 Photometric Readout Module. A supplimentary amplifier, A_6 (Analog Devices 142B) was used to amplify the Photometric Readout Module output to levels near full scale for a 0 to +10 volt A/D converter. The output of amplifier A_6 is sampled by an Intronics FS 201 sample-and-hold module. When the computer outputs a convert command to the A/D converter, the STATUS output of the A/D converter goes high, causing the sample-and-hold module to hold the data until conversion is complete (when STATUS returns to low). The A/D converter, an Analog Devices ADC-12QU, was set in the O to +10 volt conversion range. It can perform a 12 bit conversion in 15 useconds. Since it is being triggered by the same signal which initiates the bipolar pulsing sequence, which requires a minimum of 30 μseconds, no provisions for a flag for this circuit vere **necessary.** The A/D output is transferred to the accumulator hrough a Heath EU-800-JL gated driver, in the same manner as the onductance data discussed in Chapter 3.

A flag is provided for triggering the timed data acquisition equence by the stopped-flow apparatus itself. The stopped-flow evice contains a relay which closes when the drive syringes close

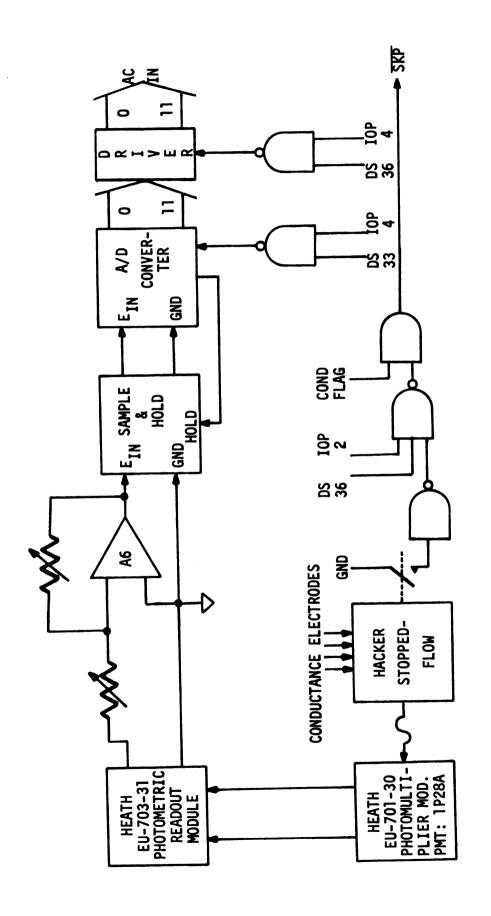


Figure 58. Luminescence Data Monitor.

and which can be used to switch a signal to some external circuitry.

The card containing the logic gates of the flag circuit of Figure 58 was placed in a peripheral control slot available in the digital circuit compartment of the conductance instrument module. When the drive syringes close, the relay closes, which grounds the input to the first NAND gate and places a "l" at the input to the second NAND gate.

A DS-IOP signal will cause the output of this gate to go low, which causes a skip and allows the computer to begin data acquisition. It was necessary to combine this inverse function (SKP) by a logical AND with the corresponding output of the conductance flag circuit in order that one of the I/O cards already within the instrument module could be utilized with the stopped-flow flag. Later workers using the auxiliary acquisition hardware of the computerized conductance system should be able to acquire data other than simple light data with only minor modifications to the conversion system itself.

C. PREVIOUS INVESTIGATION OF THE LUMINOL REACTION

The chemiluminescence reaction of luminol with base was first observed by Albrecht (55) in 1928. Albrecht studied the aqueous reaction of luminol in alkaline solution with hydrogen peroxide in the presence of a catalyst such as potassium ferricyanide. The reaction, in both aqueous and aprotic solvent systems has the highest quantum field (about 5%) of any non-biological CL reaction studied to date. It hough many workers have investigated the CL and fluorescence spectrate this reaction system since Albrecht's initial study of it, little rk has been done to define the complete reaction mechanism.

White and his co-workers (56,57) have shown that the overall reaction appears to be:

They studied the reaction in DMSO containing 30 mole percent water.

The products of the reactions in aqueous, semi-aqueous, and non-aqueous media appear to be the same although the reaction in DMSO is somewhat simplified. In DMSO the reaction takes place with no stronger oxidizing agent than molecular oxygen present; no metal catalyst is required in these solutions at all. White et al. proposed the only complete reaction mechanism which has been suggested to this time for the luminol CL reaction:

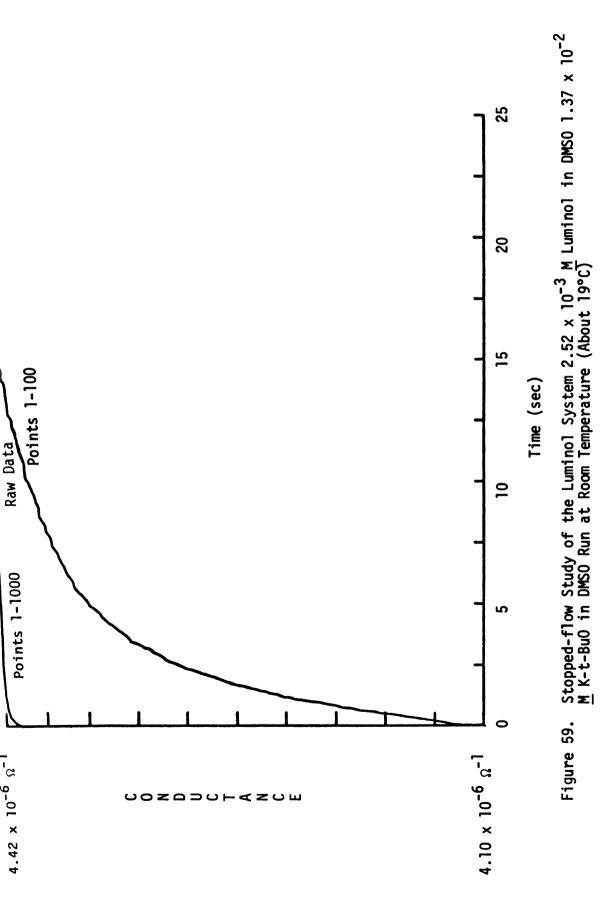
They felt that the initial proton transfer occurred in two steps since, when no excess base was present to remove the second proton, no CL occurred. Thus, the LH⁻ species reacts only very slowly or not at all with 0_2 . They were convinced that $3\text{-}AP^{-2}$ in an excited state was the luminescing species since they found that the CL spectrum of the reaction matched the fluorescence of 3-AP which they were also able to isolate as the almost exclusive product of the reaction. The reaction they studied was found to be first order in luminol, base, and 0_2 . The CL from the reaction in DMSO is dampened by the presence of water. McCapra (58) reports the maximum of this CL to be at 425 mu in water and 485 mu in DMSO.

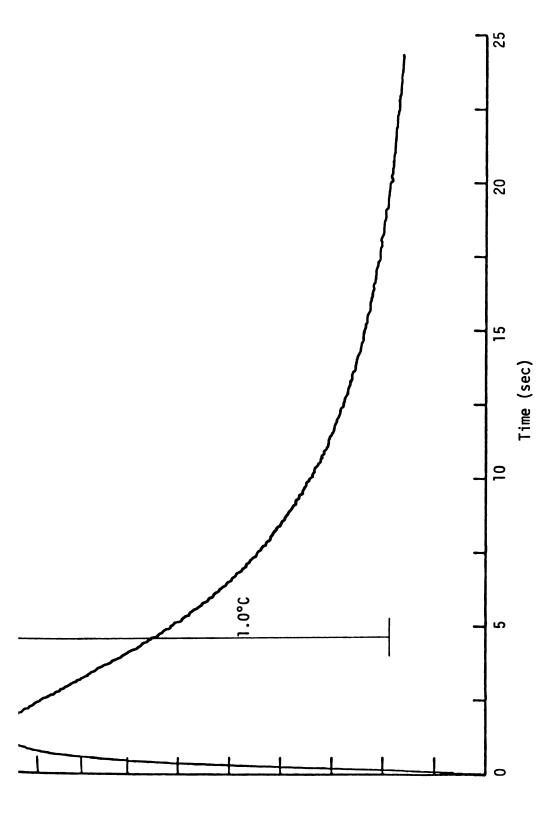
Other workers (59,60,61) have investigated the spectral characteristics of the emitter in the luminol CL reaction. The result of this work has largely been to support the mechanism of the reaction as proposed by White et al. and to reinforce the belief that 3-AP^{-2} in an excited state is the emitting species. Drew and Garwood (62) claimed to isolate a compound from the reaction mixture which contained two oxygen atoms bridged between the two nitrogens of luminol. This lead them to believe that the reaction intermediate formed after the reaction between L^{-2} and 0_2 might be a bridged species. Other workers have stated their belief in this form of an intermediate, although there is some possibility that the species observed by Drew and Garwood is a simple luminol salt, solvated by peroxide. No other intermediates have been proposed.

Gorsuch and Hercules (60) have performed the only stopped-flow tudies of the luminol reaction published at this time. The system hey studied was the reaction between luminol and potassium tertiary

butoxide (PTB) in DMSO with 0 to 40% water present. They found the decay of 3-AP* $^{-2}$ to be very fast and the rate of the CL decay to be determined by either the overall proton transfers, the L $^{-2}$ reaction with 0_2 , or the rearrangement of 10_2^{-2} to form 10_2^{-2} . They assumed that for low concentrations of luminol and excess base and 10_2^{-2} , the proton transfer would be very fast and, thus, not the rate determining step. Since their CL decay curves for low PTB base concentrations became first order after reaching a CL maximum, they were convinced that the rearrangement of 10_2^{-2} was controlling the reaction rate after the CL maximum. Finally, the rate constant which they proposed for this reaction in pure DMSO was $1.2\pm0.3 \times 10^{-1} \, \mathrm{sec}^{-1}$.

Besides the interesting phenomenon associated with the luminol CL, the reaction itself has proven to be a useful analytical tool as indicated by Seitz and Neary (63). The reaction has been used for detection of trace amounts of metal catalysts and oxidants which react with luminol to produce CL. Concentrations of Co (II) as low as $10^{-11} \underline{\text{M}}$, Cu (II), Ni (II), Cr (III), Fe (II), and Mn (II) from 10^{-8} to $10^{-10} \underline{\text{M}}$, and 001^{-1} , 1001^{-1} , and 1001^{-1} , and an analysical content and


Because of its analytical usefulness and the lack of substantiating evidence concerning many of the proposed reaction mechanism steps or eates, it was thought that a study of this CL reaction by other than pectroscopic means could provide additional information unavailable previous workers. Thus, the luminol reaction was investigated with the computerized conductance system.


STOPPED-FLOW STUDY OF THE LUMINOL REACTION BY MONITORING CONDUCTANCE, TEMPERATURE, AND CHEMILUMINESCENCE CHANGES

The first investigations of the luminol reaction with the comsterized conductance system were performed with the CBTMLS program
equence. The basic aim of these early experiments was to determine
f a conductance change which corresponded to the reaction could be
abserved. Potassium tertiary butoxide (PTB) was the chosen base.
Soth luminol and PTB were prepared in pure DMSO. Karl Fisher titration
of DMSO showed the water content to be always less than 260 PPM.

One of the earliest reaction curves obtained from the conductance measurement is shown in Figure 59. This curve resulted from the reaction of 2.52 x 10^{-5} M luminol with 1.37 x 10^{-2} PTB in DMSO. (The concentration of the base was somewhat difficult to determine since there often appeared to be a residue of base remaining after attempts to dissolve it in DMSO. Furthermore, the PTB-DMSO solution would deteriorate as PTB reacted with oxygen present in solvent over the period of about an hour as also observed by Gorsuch and Hercules (60). Figure 59 shows a rapid and smooth conductance change upon mixing the reactants. 1000 points were taken, each every 0.025 seconds, for this run. When the curve is expanded by plotting only the first 100 points, most of the conductance change can be seen to occur during the first 0.25 seconds. This particular run was performed at room temperature (about 19°C) without thermostating the cell. The results appear encouraging, but it was necessary to prove that the curve was not a result of temperature changes or base or solvent dilution effects on the conductance of the species involved in the reaction.

Figure 60 shows the change in conductance of a thermistor in the

Temperature Change Due to Mixing DMSO Solutions of Luminol and K-t-BuO in Stopped Flow Apparatus. Unthermostated. Run at Room Temperature (About 19°C). (12574-2) Figure 60.

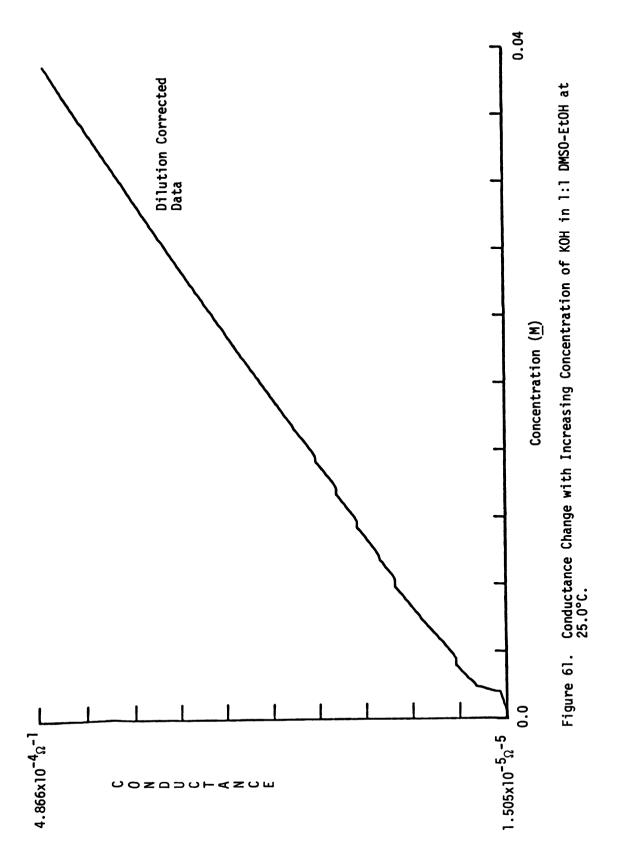
stopped flow cell during a reaction of two DMSO solutions of luminol and PTB in an unthermostated cell. The overall thermistor conductance change corresponded to an increase in temperature of about 0.9°C. For this run the conductance monitor and not the thermistor monitor was used to follow the change in thermistor conductance.

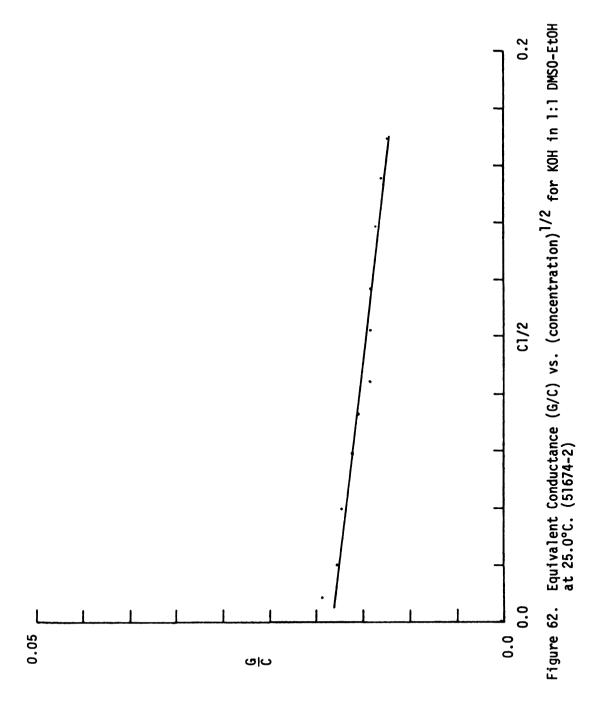
The overall conductance change for the reaction which occurred during the temperature change shown in Figure 60 was 14.04%. A temperature-conductance profile of the products of that reaction was measured. It was found that the conductance of these species changed 1.34%/°C. Since the overall change in temperature for the reaction corresponded to 0.915°C, the conductance should change only 1.23% if the total conductance change is due to temperature changes only. Therefore, of the 14.04% observed conductance change, 87.6% of that change (or a total conductance change of 12.8%) was due to effects other than temperature effects. To eliminate the possibility that solution or mixing effects might have caused the observed conductance change, both syringes were filled with DMSO and the conductance change during stopped flow mixing was followed. No change in conductance was noted. Injecting PTB or luminol into pure DMSO with the cell thermostated produced no significant conductance change. Therefore, the conductance curve which was observed for luminol and PTB in DMSO reflected the conductance change due to the reaction.

At this point in the experimentation, it was decided to thermostat the cell separately from the rest of the stopped-flow apparatus at all times to maintain a cell temperature as constant as possible during a reaction. For the luminol-PTB system, thermostating the cell reduced the temperature change during the reaction from 0.9 to about 0.3°C.

Essentially all of this temperature change was due to the exothermic reaction. This was shown by placing water in both syringes and triggering the stopped-flow apparatus. The temperature changed noted was less than 0.05°C.

The experimental effort was now directed toward a determination of the particular reaction step which was responsible for the observed conductance change. A decision was made to use KOH in ethanol and luminol in DMSO as the reactants rather than PTB and luminol in DMSO for two reasons. There was some doubt concerning the concentration of the PTB since it did not appear to dissolve quantitatively in DMSO. Secondly, the base would deteriorate to one-half to one hour due to reaction with 0_2 in the solvent. KOH is essentially insoluble in pure DMSO. An attempt to use KOH and luminol in 1:1 DMSO-EtOH failed to produce a reaction curve for either conductance or light. The cause of this phenomenon has not been explained. However, what appeared to be a completely suitable reaction curve (with the exception of temperature effects which could be corrected for as demonstrated in Chapter 6) was observed for KOH in EtOH and luminol in DMSO. Although considerable problems with this choice of reactants were eventually realized, the cause of the conductance curve was finally discovered during the work with this system.


The luminol-KOH reaction was endothermic as mentioned in Chapter 6. However, after temperature correction of data, a strong conductance change which was not due to temperature effects was still observed. It was therefore assumed that the system would be a reasonable one for the purpose of this study.


The possibility that the observed conductance increase resulted

from the initial proton transfer was considered. The hypothesis involved the reaction of a relatively weak base, KB (either PTB or KOH in their respective solvent systems), with luminol according to

$$LH_2 + KB \rightarrow K^+ + HB + LH^- \xrightarrow{KB} K^+ + HB + L^{-2}$$
,

where the conductance increase which was being observed was due to the liberation of free K^+ and L^{-2} in the solution where no B^- or K^+ was present to contribute to the conductance before reaction. Since little was known about the base strength of KOH in 1:1 DMSO-EtOH (the final solvent system after mixing), the computerized conductance system was used to investigate it. Figure 61 shows the dilution-corrected conductance curve obtained when 0.1003 M KOH in 1:1 DMSO-EtOH is added to 50 mls of 1:1 DMSO-EtOH. (Dilution correction of the data has the effect of making the X-axis on this plot, which actually corresponds to mls. of KOH added, linear in increasing concentration). The concentration range represented here runs from 0 to 0.01866 M. There is no noticable curvature in the plot at higher concentrations which would occur if KOH were a weak electrolyte. Figure 62 shows a plot of conductance/concentration, G/C (the equivalent conductance, not corrected for cell constant) vs. $C^{1/2}$. For a 1:1 electrolyte such as KOH, the conductance should increase slowly at lower concentrations and intercept the G/C axis if the electrolyte is strong. If the electrolyte is weak, the value of G/C will increase sharply as C gets very small due to increased ionization at low concentrations. No such increase is evident on this plot for concentrations as low as $4 \times 10^{-4} M$. Other such curves were prepared for concentrations as low as $8 \times 10^{-8} \text{M}$. No rapid increase in conductance occurred as infinite

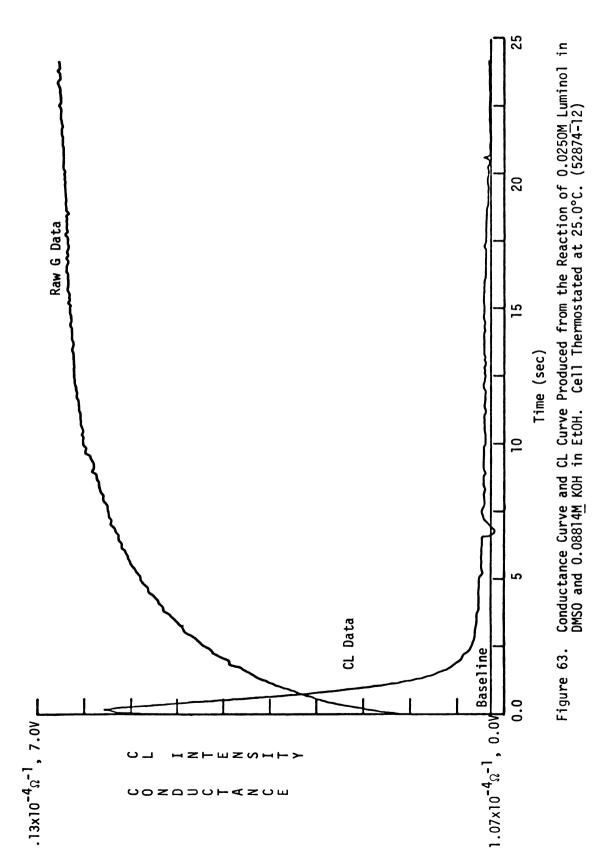
dilution was approached.

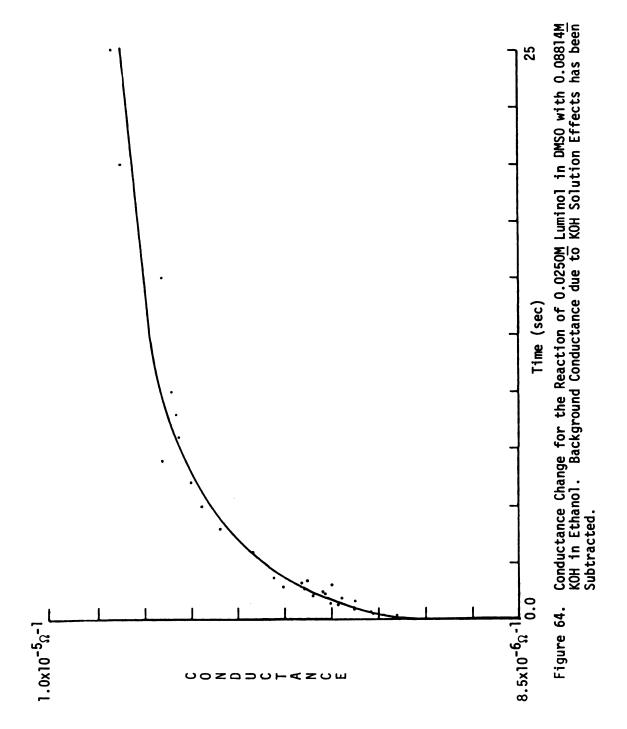
One final experiment was performed to assure the workers that KOH was indeed a strong electrolyte. A solution of KOH was prepared and its conductance measured. A quantity of dicyclohexyl-18-crown-6 sufficient to complex all of the potassium ion present was added. This crown-K⁺ complex is known to be highly preferred in solution and has approximately the same conductivity as K⁺. If KOH were a weak electrolyte, there would be a significant increase in conductivity, due to ionization, when the crown ligand was put into the solution. If the KOH were already completely ionized, addition of crown ligand would, at most, cause a slight decrease in conductance by replacing the solvent modules surrounding K⁺ by the somewhat larger crown ligand. The latter effect was observed experimentally, further indicating KOH to be a strong electrolyte in 1:1 DMSO-EtOH. This disproved the hypothesis that the observed conductance change was due to formation of free K⁺.

Stopped-flow studies of the reaction of phthalic acid and phthalamide with KOH were performed. In these reactions, the only species available to react are protons. In both reactions, an immediate increase in conductivity resulted, which could not be followed using this stopped-flow system. In the case of phthalic acid, both proton transfers occurred in less than 100 mseconds. For the single proton transfer from phthalamide (chemically similar to luminol but with no NH₂ group on the aromatic ring and only a single nitrogen in the heterocyclic ring), the reaction is complete in at least 100 mseconds also. Thus, it appeared certain that the conductance curve being observed for the luminol reaction was not due to proton transfer which was found to be

very fast for species which were chemically similar to luminol, compared to the rate determining step being monitored.

The stopped-flow reaction study performed with phthalamide and KOH indicated that the products of that reaction were more highly conductive than the reactants. This was demonstrated by a definite and immediate conductance increase upon mixing. Since the reaction is given by


the phthalimide anion must be of higher conductance than OH⁻. This is possible due to association of the relatively heavy solvent molecules present with OH⁻ which has a relatively higher charge-to-mass ratio than phthalamide anion. In addition, the charge on OH⁻ is localized, whereas in phthalamide anion, the charge is very likely delocalized, causing phthalamide anion to be even less affected by solvent interaction. If this is the case, it could be expected that the particular form of 3-AP produced in the luminol reaction will be of higher conductivity than the reactants and that this species gives rise to the observed conductance curves.


In order to show that the major portion of the conductance curve for the luminol reaction might correspond to the production of some form of 3-AP, it was desirable to compare the time at which the conductance curve reached its maximum with the time of disappearance of the

CL. Since the CL has been convincingly shown to correspond to the formation of 3-AP*, these two curves should, in time, reflect the same formation.

Figure 63 shows the time relationship between the CL curve and the conductance curve obtained for the reaction of luminol with alcoholic KOH. The CL curve reaches its maximum in about one second and decays to near the baseline in about 2.5 seconds. The conductance curve does not level off until almost 15 seconds has elapsed. These curves were typical of the curves obtained for luminol-KOH reactions. Even with temperature correction, the conductance curve required almost 5 seconds to reach its maximum (see Figure 46, Chapter 6). Furthermore, the overall conductance change for the reaction of luminol and KOH was much greater than that for comparable concentrations of luminol and PTB, and much greater than could be explained by the conductivity differences between the reactants and the 3-AP species formed.

The cause of this phenomenon became apparent when alcoholic KOH was injected into pure DMSO in the stopped-flow apparatus. A conductivity curve similar to the one presented in Figure 63 was obtained, even when no luminol was present. This indicated that, in addition to the recognized temperature effects, there were long-range solution effects which influenced the conductivity of KOH. Subtracting the curve obtained from the run in which no luminol was present during injection from a run in which a reaction occurred produced the curve shown in Figure 64. It can be seen that the overall conductance change (from 8.8 to 9.8 x $10^{-6}\Omega^{-1}$) is much closer to that observed for comparable concentrations of luminol and PTB. Furthermore, the conductance change levels off in about 7 seconds. Temperature correction

causes the conductance to reach its maximum value in about 3 seconds, which corresponds to the complete decay of the CL observed for this run. Thus, what is shown in Figure 64 is the true reaction (plus temperature effects), which is unobservable on the background of the conductance effects of mixing KOH in ethanol with DMSO. For the luminol-PTB reaction, both reactants were dissolved in DMSO. Thus, the mixing effects do not occur and only the conductance change due to the reaction (plus any temperature effects) is observed. In addition, the "true" conductance reaction curve for luminol-KOH or luminol-PTB reaches a maximum at the same time that the CL is completed, substantiating the hypothesis that the conductance curve follows the production of 3-AP in some ionized form.

E. CONCLUSIONS FROM THE PRELIMINARY INVESTIGATION OF THE LUMINOL REACTION

In Section D all of the work which has been done to the present time for the investigation of the luminol reaction with the computerized conductance system was presented. From these investigations, a number of statements may be made concerning the interpretation of the data compiled during these experiments. These conclusions are listed below:

- The computerized conductance system is capable of directly following a true reaction curve for the luminol-PTB reaction in DMSO. Temperature correction of data is all that is necessary to provide a true picture of the conductance change due to the reaction.
- 2) In order for studies to be pursued using PTB as the base, the solutions would have to be prepared, titrated to determine

- true base concentration, and run within one-half to one hour of preparation.
- 3) The signal monitored directly by the computerized conductance system in the luminol-KOH reaction, with luminol in DMSO and KOH in EtOH, is a combination of dissolution effects, reaction effects, and temperature effects with dissolution effects predominating.
- 4) It is possible to examine the true reaction curve for the luminol-KOH reaction by subtracting the KOH dissolution curve from the overall conductance curve. However, some difficulty is encountered in performing this subtraction because of the relatively high noise levels on these two signals. These noise levels are the result of the noise imposed by the stopped-flow apparatus on conductance signals from solutions of relatively high conductivity (such at the KOH solutions used) as discussed earlier. Since the result of this subtraction is a curve two orders of magnitude smaller than either observed curve, this noise can have a significant effect on the reliability of data obtained in this way. However, the computerized conductance system has shown itself capable of resolving these differences easily. Therefore, if a new stopped-flow apparatus, which does not have these inherent noise problems becomes available, this particular reaction system and method of correction might prove to be an especially satisfactory one. This is because there is no problem associated with the quantitative preparation or short-term stability of alcoholic KOH.

- 5) The conductance curve follows the formation of 3-aminophthalate in some form.
- 6) From the titration curve shown in Figure 56 (Chapter 7), it can be seen that phthalic acid, in the presence of excess KOH, will exist as the mono-potassium anion rather than the dianon. Since the only difference between phthalic acid and 3-AP is the NH₂ substitution on the aromatic ring, it is quite possible that the species formed in the luminol reaction is 3APK⁻¹ and not 3-AP⁻². Furthermore, the emitting species might also be 3-APK*⁻¹ and the intermediate may exist as the mono-potassium anion rather than as the dianion. Indeed, the L⁻² species may not exist but, rather, the reactive form of luminol may be the LK⁻¹ complex.
- 7) The work presented here substantiates the hypothesis of Gorsuch and Hercules (60) which states that the two protons transfers from luminol are fast compared to the rate determining step.
- 8) The conductance curve reaches a steady maximum and does not decay after the maximum, which would reflect the presence of an intermediate in the rate determining step. Thus the data produced in this study substantiate the claim of Gorsuch and Hercules that the formation of 3-AP in some excited state form is the rate determining step.
- 9) Finally, the computerized conductance system has shown that it is quite capable of following moderately fast reactions in non-aqueous media. It is expected that future workers using this system will be able to investigate even faster reactions in both aqueous and non-aqueous media with few modifications

to the software and hardware already developed. In addition, the other support software and hardware, for titration, temperature-conductance profiles, and absolute conductance measurements can all be utilized in the space of few minutes to help solve a difficult measurement or data interpretation problem.

CHAPTER 9

CBHELP: THE SYSTEM INSTRUCTIONAL PACKAGE

A. USE OF THE COMPUTERIZED CONDUCTANCE SYSTEM BY FUTURE WORKERS

The preceding eight chapters have discussed the hardware and software design of the computerized conductance system and its application in a number of chemical measurement situations. The system has been shown to be a viable analytical tool, not through its hardware, software, or performance characteristics alone, but also through its successful implementation in these chemical applications. It was stated in Chapter 1 that the computerized conductance system was not developed as a project in itself but, rather, as a means of solving certain chemical problems which included a reasonably wide range of applications. It is certainly true that the largest fraction of the time and effort which was involved in the work presented here was channeled toward development of the system and not the measurement applications discussed in the three later chapters. However, it is felt that these measurement applications were of some significance and that they indicate possible areas of further investigation by later workers. The last task which the author undertook was to insure that such investigation can proceed in a manner which expands upon the work done to this time and avoids the struggles which have already been overcome. The basic premise of this thesis has been not only the development and use of a novel measurement system, but also the creation of a system which can be utilized by both the sophisticated analytical instrumentalist and the person with little or no innovative

instrumentation experience. To insure this continuity and expanded use of the computerized conductance system, the CBHELP program was written.

The CBHELP program is an operator-interactive teaching program which describes both the theoretical and practical considerations that are important in using the computerized conductance system. It attempts to take the operating instructions and basic theory out of equipment manuals, textbooks, and journals and present it to the interested user as he asks for it. It utilizes the power of computerized conductance system display and output devices to make learning the system operation interesting and enjoyable to the student, while giving him a feel for computer-based data systems. Even if he has had no such previous experience, the CBHELP program can guide him through operation of the computerized conductance system, and the background knowledge necessary to make that operation meaningful. Furthermore, he is able to view and interact with much of the computer system while using CBHELP.

It is difficult to convey the impact of such a program, which tries to cover all facets of operation of the computerized conductance system, without actually running it for the reader. However, a valuable insight into its goals, and methods of attaining them, can be obtained by examining the design of the CBHELP program itself, discussed below.

B. CREATING THE CBHELP PROGRAM

There were several real goals to be accomplished in the implementation of the CBHELP program. These were to provide the user with virtually all of the information he would need; a) to operate the computerized

conductance system, b) to troubleshoot and routinely adjust it, c) to understand its operation, and d) to understand its theory if he were so inclined. It was hoped that in using the CBHELP program, the operator would get a feel for the computer and some of the peripheral devices associated with it. In this way the user who lacks previous experience with minicomputer systems could get over any apprehension he might have concerning such systems while his mind was diverted by the learning experience to which he was being exposed.

The possibility of constructing a program which would simply produce reams of text upon command was rejected altogether. The basic aim in using computer-assisted instructional methods is to utilize as much of the power and as many of the features of such a device as possible, in order that this teaching technique realize its maximum potential. Reading text as it is disgorged by a computer is only marginally more interesting than picking up an operation manual and reading it - and considerably more trouble to the occasional user. Because of this, a real attempt was made to allow the user to select his motion through the material by interactive dialog with the computer. He is able to branch to any subject within the knowledge bank of the program with ease. For those subjects which are discussed in several stages of detail, he is able to select the amount of detail to which he desires to expose himself at that particular time. Finally, by equipping CBHELP with a graphics facility and diagramatical output on both the plotter and scope, and a text output on the line printer and teletype, the user benefits from having a diagram, flowchart, or sample data to refer to while reading a particular expalantion. Thus, he is able to become more involved in the operation of other system

peripheral devices.

There were three problems to be overcome or minimized in developing the CBHELP software. These problems were: generating and editing large text files on a minicomputer system, generating and editing files which create graphical displays, and making the delay involved in accessing any given piece of information as short as possible. The solutions to these problems are discussed below:

Generating and editing large text files on the PDP-8 system: From the very inception of the CBHELP program idea, it was known that the entire program would have to be written, debugged, and implemented with only a relatively small expenditure of the time normally devoted to chemical research. Therefore, the author was aware of the necessity of using the basic system software available to him, rather than constructing a complex set of special routines to produce the text messages and graphical displays. It is, of course, quite easy to generate small amounts of text in this computer system, either from assembly language routines or from FORTRAN READ and WRITE statements. However, these routines and statements require the data to be resident in memory when the program is compiled, assembled, and executed. Since the CBHELP program possesses over 60 line printer pages of text messages and ten graphical displays, it would have been impossible to store the total knowledge bank of the program in the computer memory from an assembled program. Thus, it was decided that the program would call text files and plotting files from some bulk storage device (DECTAPE in the system at the present time although a DISC would work just as easily and much faster) for use during the actual program operation. Routines to read data from a teletype keyboard and store

them on tape are usually easy to write since they are often a part of a language's MACROS (e.g. the TEXT command in SABR or MACRO-8) or library programs (such as the READ command for teletype input or the WTAPE and OOPEN commands for writing onto tape in FORTRAN). Unfortunately, using these does not provide the programmer with any editing facilities. If one should make a mistake while inputting characters to a text array, there would be no means of correcting that error without the user himself writing an editor into his text generation program. Writing such an editor is no simple task at all. There was no desire on the part of the author to attempt it.

However, since the OS/8 system possesses a powerful EDITOR itself, the use of this editor seemed the simplest way of generating text files for CBHELP. The original approach to using the EDITOR in this manner was to give the files EDITOR generated the ".DA" extention, used in the FORTRAN device-independent I/O routines OOPEN and IOPEN. The IOPEN routine would then simply be used to read the EDITOR-generated file as though it were an OOPEN file. It was discovered, however, that there is a basic incompatibility between the way in which the OS/8 EDITOR transfers data onto and off of DECTAPE and the way in which such data is transferred by OOPEN and IOPEN. EDITOR transfers 8-bit ASCII characters onto DECTAPE in the format shown below (64):

C)				11
	СН	3	MSBS	CHARACTER 1	
	СН	3	LSBS	Character 2	

Three 8-bit characters are packed into two DECTAPE locations. On the other hand, OOPEN transfers packed ASCII characters to tape as

shown by:

0	11
CHARACTER 1	CHARACTER 2

if A2 format is used with a FORTRAN WRITE statement (65). Two 6-bit packed ASCII characters are generated from the input 8-bit characters. Correspondingly, when files are read with IOPEN, it assumes that it is reading packed ASCII coded as above and attempts to decode it to produce the two extra bits needed for teletype or line printer control. Using IOPEN to directly read EDITOR-generated files proved to be disastrous as IOPEN interpreted the EDITOR files incorrectly, getting illegal characters, and storing blanks in the data array. The text message was lost entirely.

It was not desirable to spend time writing a program to read directly EDITOR files using the USR routines with OS/8. Furthermore, the use of RTAPE to read EDITOR files in the CBHELP program itself was precluded since it was necessary to maintain CBHELP working files, and the program itself, in file-structured form on a single tape. If RTAPE were directly used by CBHELP, any time a text file was modified, CBHELP would have to be altered to account for the file's new location on tape.

The problem was finally solved through the use of a small but clever routine which is part of the FILEII program developed to create CBHELP. FILEII is flowcharted in Figure 65 and listed in the Appendix. The routine to create a text file from an EDITOR-generated file is option 1 of FILEII. In order to use this option, the programmer first writes a text message using the OS/8 EDITOR and stores the message on

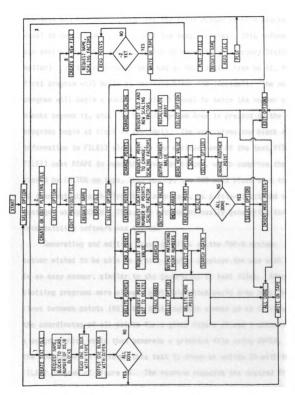


Figure 65. FILEII Program Flowchart.

tape. The programmer must know the absolute block number on tape where the text was stored by EDITOR and the total number of OS/8 blocks (each equal to two DECTAPE blocks) that the text occupies. This information can easily be obtained by using PIP to generate a directory listing (/E option). If the particular tape has an OS/8 System Area on it, the first program will begin at absolute block 112 (decimal). The next program will begin a number of blocks equal to twice the number of OS/8 blocks beyond it, etc. If no OS/8 System Area is present on the tape, programs begin at block 14 (decimal). The user gives the block number information to FILEII along with the desired name of the text file. FILEII uses RTAPE to read the absolute blocks, which comprise the file stored by EDITOR on tape, into memory, one 128 word block at a time. It then outputs each block back onto tape, as a file-structured text message, using OOPEN. Thus, the problem of easily generating text from existing software was solved.

Generating and editing graphics files on the PDP-8 system: The author wished to be able to create graphic displays for use with CBHELP in an easy manner, similar to the generation of text files. Since plotting programs were already available which would draw straight lines between points (66), the best approach seemed to be to input the coordinates of all points for a given figure (X and Y values) to a program which would then generate a graphics file using OOPEN. The routine which performs this task is shown as option 2B with the FILEII program of Figure 65. The routine requests the desired file name and the X and Y scaling factors. The scaling factors enable the graphics designer to construct his display on a convenient sized grid and then scale it up or down to fill the scope screen. The

operator then begins to input the coordinates of all points in his figure. The plotting program accepts all positive integers from 0 to 2047 as valid grid points for the figure. Only two control numbers are needed. An X = -1 serves as a line segment delimiter and X = -2 indicates the end of a file. When a -2 is typed for the X coordinate of an X-Y pair, the program moves the output buffer onto tape. The current size of the buffer in use in FILEII and, consequently, in CBHELP is 300 points. More complex figures may be drawn using more than one file for a given display. Examples of the computer-generated graphics used with CBHELP are shown in Figures 66 and 67.

Figure 66 is a display scope photograph of the computer-generated version of the computerized conductance system block diagram shown in Figure 2 in this manuscript. It is used for a system description explanation in CBHELP much as it was used in Chapter 1. Figure 67 is a computer rendition of the pulse width selection curves appearing in Figure 30 of this thesis, as plotted by the X-Y plotter. Unfortunately, this plotter leaves something to be desired as far as pen response and position reproducibility are concerned. Nevertheless, it shows how curved lines were generated by approximation with straight lines. In addition, Figure 67 was graphically derived from Figure 30. Use of the scaling ability of FILEII enabled it to be scaled to fit the scope or plotter grid size.

Because of the large number of points which must be input to FILEII for creation of figures (Figure 66 required more than 450 points, Figure 67 more than 200 points) a simple editor facility had to be included in it. This was done with relative ease since numbers are more easily manipulated than text. As shown in Figure 65, the

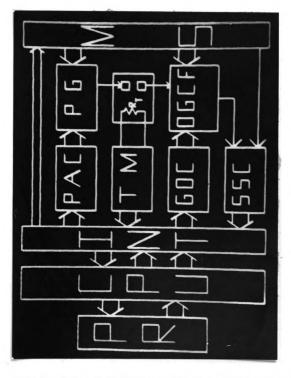


Figure 66. Photograph of CBHELP-Generated Scope Display of the System Block Diagram.

!•

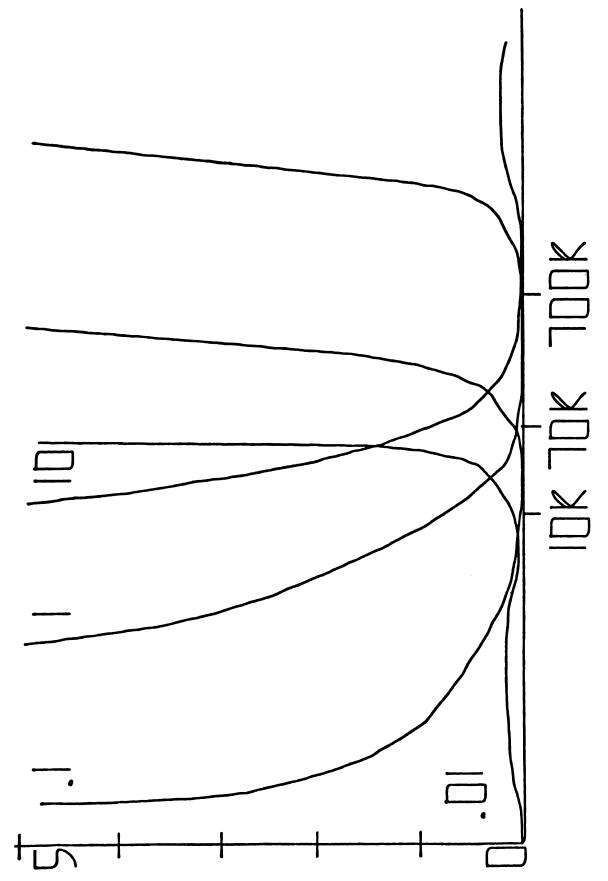


Figure 67. CBHELP Version of Pulse Width Selection Curves.

graphics editor contains provisions for searching the buffer for a given X or Y and outputting any point number where this value is encountered. In addition, editing options for changing points and scaling factors, and inserting or deleting points, are provided. Finally, the graphics files created with FILEII may be test plotted by FILEII option 3.

All of the text and graphics files used in CBHELP were generated with FILEII. There are currently 59 text messages and 10 figures used with CBHELP which were produced and incorporated into CBHELP itself with only the addition of three lines of programming to CBHELP (and, of course, recompilation).

Turn-around time in the use of CBHELP: Because file-structured data sets were used with CBHELP, and because those files are accessed via DECTAPE, the time involved between the selection of an option and its actual appearance to the user can be as long as 20-25 seconds. This lack of high-speed acquisition of files is probably the singular non-pleasing aspect of CBHELP. Faster acquisition could have been achieved with the use of RTAPE, which does not need to consult the directory before reading the tape, but, as mentioned above, this speed would have been achieved at the expense of flexibility and expandibility of the program. This problem will be completely overcome if the program is ever transferred to a disc-based system.

Core requirements: Both FILEII and CBHELP require 12 K of memory for operation.

C. USING THE CBHELP PROGRAM

It is not practical to present a flowchart of the operation of the CBHELP program in this manuscript because of the very large number of cross-interactions and branches available within it. A listing of the CBHELP program itself appears in the Appendix, however, the text messages and graphic displays, because of their large number, have not been included.

CBHELP can probably best be illustrated by guiding the reader partially through the program so that he might develop an insight into its operation.

The canister in which the CBHELP tape is contained holds instructions which should guide even the novice operator through loading the tape and calling the program. When CBHELP first responds, it asks the operator if he would like a list of instructions to follow in using the program. These instructions include turning on the scope, plotter, and line printer, how to type answers to questions, choosing an option within CBHELP, etc. If the operator wishes to view such instructions, he types "YES" and they are given to him. CBHELP follows with an initial dialog, that can be listed on the teletype, line printer, or display scope, or skipped if the operator is already familiar with the program. Next, the major options available with CBHELP are printed and the operator is asked to select one. This dialog is shown below:

PLEASE TYPE THE NUMBER OF THE OPTION YOU WISH TO SELECT:

- 1) GENERAL SYSTEM DESCRIPTION
- 2) DESCRIPTION OF THE INSTRUMENT
- 3) DISCUSSION OF CONDUCTANCE MEASUREMENT

- 4) DISCUSSION OF THE BIPOLAR PULSE TECHNIQUE
- 5) INSTRUCTIONS FOR ROUTINE OPERATION
- 6) INSTRUCTIONS FOR PULSE WIDTH SELECTION
- 7) INSTRUCTIONS FOR ROUTINE ADJUSTMENT
- 8) ERROR MESSAGE SUMMARY AND TROUBLESHOOTING
- 9) SELECTION OF A PROGRAM SET FOR SPECIFIC EXPERIMENTS
- 10) CREATING OR CHANGING A CBHELP FILE
- 11) TERMINATION OF THIS PROGRAM

:9

When the operator types a particular option number, the program branches to that subject and calls the proper files from the knowledge banks on tape for graphics displays and text messages. For example, if the operator selected option 9, because he wishes to utilize the computerized conductance system and its program set to perform a specific experiment, the computer would respond with:

:9
THE NAMES OF THE PROGRAMS IN THE COMPUTERIZED CONDUCTANCE SYSTEM ARE CODED FOR EASY RECOGNITION. WOULD YOU LIKE AN EXPLANATION OF THIS CODE? YES OUTPUT ON LPT=1, ON TTY=0:1

If the operator types "YES" an explanation of the program nomenclature is generated. If he types "NO", the program moves immediately to output the list of available program sets, shown in Figure 68. If the operator were to select, for example, program set 3, CBHELP produces the temperature-conductance program flow chart shown in FIGURE 69. The operator is then asked:

WOULD YOU LIKE AN EXPLANATION OF THE PROGRAM SET?

If the operator answers "YES" such an explanation is produced for him. It is in this way that multi-level explanations are built into CBHELP.

1)A TITRATION

- 2)A DETERMINATION OF DISSOCIATION CONSTANTS, EQUIVALENT IONIC CONDUCTIVITIES, OR THE RELATIVE STRENGTH OF AN ELECTROLYTE
- 3)A TEMPERATURE-CONDUCTANCE PROFILE FOR DETERMINATION OF
 CORRECTION PARAMETERS TO BE USED WITH VARIOUS DATA
 ANALYSIS ROUTINES, OR FOR A QUALITATIVE OR QUANTITATIVE
 EXAMINATION OF THE CONDUCTANCE BEHAVIOR OF AN ELECTROLYTE WITH CHANGES IN TEMPERATURE. THIS SEQUENCE INCLUDES THE ARRAY ARRANGER ROUTINE FOR LINEARIZING A
 NON-LINEAR TEMPERATURE CHANGE TO PREVENT WEIGHTING OF
 DATA IN ANY PARTICULAR TEMPERATURE REGION.
- 4)A TEMPERATURE-CONDUCTANCE RUN AS IN (3) BUT WITHOUT ARRAY ARRANGING THE DATA (USED WHERE THE TEMPERATURE CHANGE HAS BEEN LINEAR).
- 5)A KINETICS RUN IN WHICH ONLY CONDUCTANCE AND TEMPERATURE ARE TO BE MONITORED AND IN WHICH ONLY CONDUCTANCE IS TO BE PLOTTED.
- 6)A KINETICS RUN IN WHICH AUXILLARY DATA, IN ADDITION TO CONDUCTANCE AND TEMPERATURE DATA, IS TO BE TAKEN, OR IN WHICH TEMPERATURE DATA WILL BE PLOTTED.
- 7) CHROMATOGRAPHIC MONITORING
- 8) INSTRUMENTAL NOISE DETERMINATION
- 9) INSTRUMENTAL ACCURACY DETERMINATION
- 10) AVERAGE OF N DISCRETE MEASUREMENTS
- 11) INSTRUMENTAL FUNCTION TEST

Figure 68. Program Set Selection Options in the CBHELP Program.

THIS IS THE PROGRAM FLOW CHART FOR THE TEMPERATURE-CONDUCTANCE DATA ACQUISITION AND ANALYSIS, WHICH USES THE ARRAY ARRANGER, CHTALR, TO PREVENT ACCIDENTAL WEIGHTING OF POINTS DURING THE CURVE FTTING.

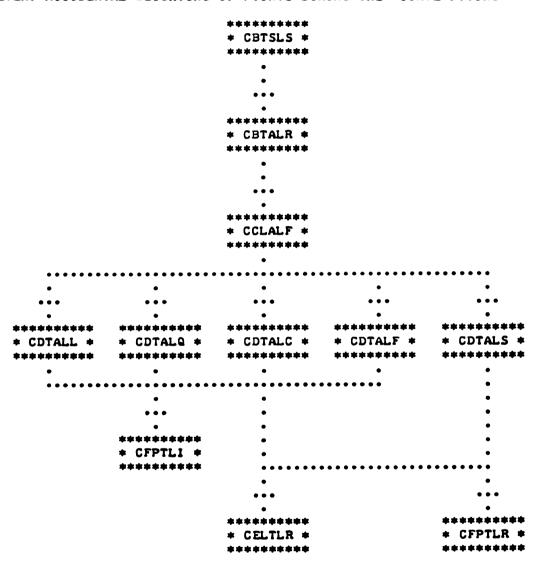
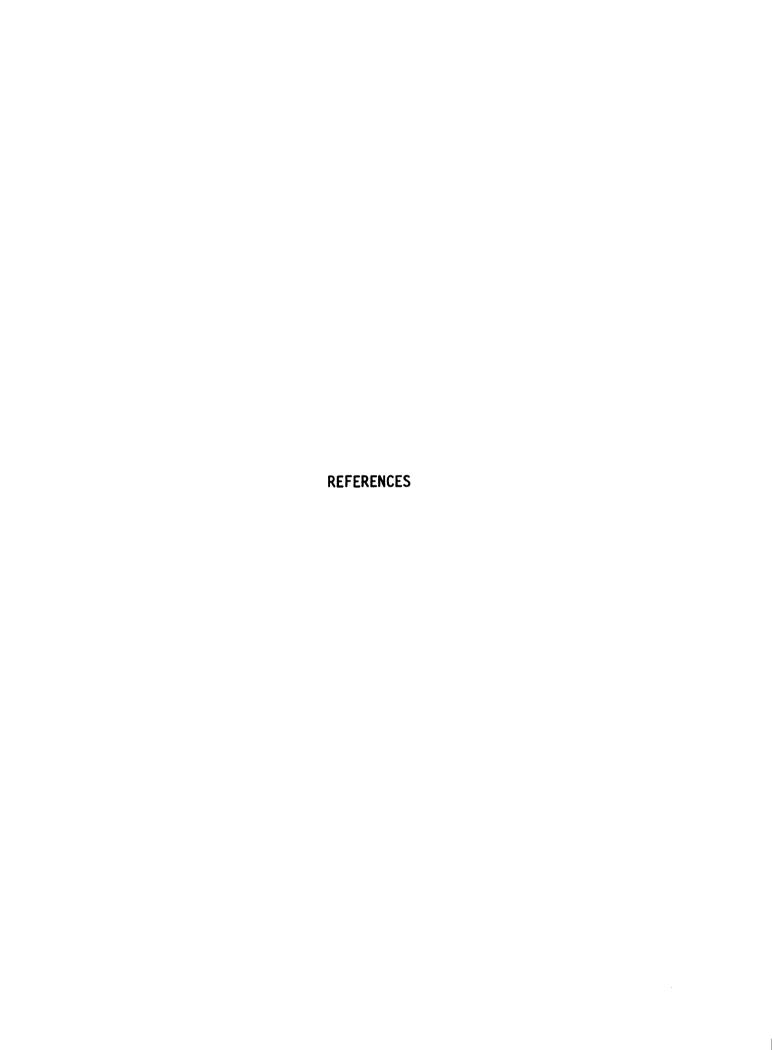


Figure 69. CBHELP-Generated Program Flowchart for Temperature-Conductance Profile Measurement and Analysis.


If the operator types "NO", he is able to select another of the 11 programming options or he may return to the selection of a different one of the major options. If he were to choose other options within the option 9 program selection routine, he might receive flowcharts and explanations for other types of experiments, and even graphic displays depicting a sample titration curve with explanation of its various regions, or a sample strong-weak electrolyte comparison curve and so forth. Any of the other major 11 options produce figures and text and interactive dialog as does option 9. CBHELP will even check to see if the line printer is turned on and tell the operator to activate it if he has requested output on it and has failed to turn it on previously.

It can be seen that most of the subjects which one would be interested in with respect to utilization of the computerized conductance system are included in CBHELP. Admittedly, CBHELP lacks much of the sophistication of many institutional computer-based teaching systems such as, for example, the Plato IV system at the University of Illinois (67). CBHELP does go much further in using the computer system to instruct an operator in the use of the instrumentation controlled and monitored by that computer system than any device which computer-based instrument manufacturers have provided with their systems. It serves an important function by largely assembling the theory and techniques of the computerized conductance system into one package to present to the prospective or veteran user. In addition to this major purpose, it is possible that CBHELP will point the way toward instrumentation systems which are still more interactive with the operator. There is much to be gained in continuity of instrument use,

a steady source of reference material, and user acclimation to a new system by permitting "smart" instrumentation systems to tell their own story to prospective "clients". It seems somewhat short-sighted to build an elaborate and useful computer-interactive laboratory measurement system and provide with it stacks of manuals in conventional form. Such systems are often so complex that it is impossible for a casual user to delve through these mounds of literature, or even for a dedicated user to troubleshoot or expand his use of the system efficiently. Thus, it is hoped that CBHELP will be viewed as movement toward more complete user-system interaction, where the system is capable of that level of interaction.

CONCLUSION

The capabilities of the computerized conductance system have been demonstrated in a significant number of diverse applications. It has proven to be a sufficiently powerful system to arouse the interest of other workers who will benefit from its continued usefulness as a dynamic measurement system. Because of the nature of the system itself, it is impossible to state that either the instrumental work is complete, or that all areas of possible application have been defined. Although the hardware portion of the system has remained relatively unchanged during these studies, it is possible that some modification of the circuitry will be undertaken by later workers to make it operate with other computer systems, expand its operating range, possibly incorporate bipolar current techniques for high conductance measurements and so forth. The author has shown that the system, as it developed over the past three and one-half years, included a number of innovations which give it the flexibility to perform meaningful measurements for operators of various backgrounds and interests. Finally, the success of the project serves to legitimatize the pursuit of instrumentation research for chemists by showing that such research can produce devices which not only perform sophisticated measurements for the scientist with an instrumentation orientation, but continue to be of use to other workers as important laboratory tools after the instrumentation chemist has completed his work with that particular measurement system.

REFERENCES

- Controller design by Hahn, B. K., Interface design by Kelly, T.
- 2. Interface design by Rabb, M., and Hahn, B. K.
- 3. Interface design by Davis, R. and Hahn, B. K.
- Designed by Last, T.
- 5. Hahn, B. K. and Enke, C. G., Anal. Chem. 45, 651A (1973).
- 6. Heath-Schlumberger product bulletin 595-1422. Computer Interface ADD (1972)
- 7. Program written by Hahn, B. K.
- 8. Livingston, J., Morgan, R., and Lammert, O. M., <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 48, 1220 (1926).
- 9. Kohlrausch, F., Wied. Ann. 69, 249 (1893).
- 10. Johnson, D. E. and Enke, C. G., Anal. Chem. 42, 329 (1970).
- 11. Jones, G. and Bollinger, G., <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>53</u>, 411 (1931).
- 12. Washburn, E., and Bell, J., <u>J. Am. Chem. Soc.</u> 35, 177 (1913).
- 13. Washburn, E., <u>J. Am. Chem. Soc.</u> 38, 2431 (1916).
- 14. Jones, G. and Josephs, R., <u>J. Am. Chem. Soc.</u> 50, 1049 (1948).
- 15. Shedlovsky, T., <u>J. Am. Chem. Soc.</u> 52, 1793 (1930).
- 16. Schmidt, K., <u>Rev. Sci. Instr.</u> 47, 671 (1966).
- 17. Bentz, A. J., Sandifer, J. R., and Buck, R. P., <u>Anal</u>. <u>Chem</u>. 46, 543 (1974).
- 18. Johnson, Donald E., Ph.D. Thesis, Michigan State University (1970).
- 19. Daum, P. H. and Nelson, D. F., Anal. Chem. 45, 463 (1973).
- 20. Philbrick Researches, Inc. <u>Applications Manual for Computing Amplifiers</u>, Boston: Nimrod Press Inc., 1966. I.26.
- 21. Perone, S. P., <u>Anal</u>. <u>Chem</u>. 43, 1288 (1971).
- 22. Frazer, J. W., Anal. Chem. 40, 8, 27A (1968).
- 23. Venkataraghavan, R., Klimowski, R. J., and McLafferty, F. W., Accounts Chem. Res. 3, 158 (1970).

- 24. Dessy, R. E. and Titus, J. A., Anal. Chem. 45, 2, 124A (1973).
- 25. Dessy, R. E. and Titus, J. A., <u>Anal</u>. <u>Chem</u>. 46, 3, 294A (1974).
- 26. Ramaley, L. and Wilson, G. S., <u>Anal. Chem</u>. 42, 606 (1970).
- 27. Parker, R. A. and Pardue, H. L., <u>Anal</u>. <u>Chem</u>. 44, 1622 (1972).
- 28. DeVoe, J. R., Shideler, R. W., Ruegg, F. C., Aronson, J. P., and Shoenfeld, P. S., <u>Anal</u>. <u>Chem</u>. <u>46</u>, 509 (1974).
- 29. Heath-Schlumberger equipment bulletin 595-1422, <u>Computer Interface ADD</u>, "Modular Component Cards" (1972).
- 30. Lauer, G., and Osteryoung, R. A., Anal. Chem. 40, 10, 30A (1968).
- 31. Perone, S. P., Jones, D. O., and Gutknecht, W. F., <u>Anal</u>. <u>Chem</u>. 41, 1154 (1969).
- 32. Keller, H. E. and Osteryoung, R. A., Anal. Chem. 43, 342 (1971).
- 33. Perone, S. P. and Eagleston, J. F., <u>J. Chem. Ed.</u> 48, 317 (1971).
- 34. Toren, E. C., Jr., Carey, R. N., Sherry, A. E., and Davis. J. E. <u>Anal</u>. <u>Chem.</u> 44, 339 (1972)
- 35. Hicks, G. P., Eggert, A. A., and Toren, E. C., Jr., <u>Anal</u>. <u>Chem</u>. 42, 729 (1970).
- 36. Keller, H. E., Courtois, G. E., and Keller, J. E., <u>Chem. Instr.</u> 4, 269 (1972).
- 37. Digital Equipment Corporation. <u>Introduction to Programming</u>, Maynard, Mass.: Digital Equipment Corporation, 1972, Ch. 9.
- 38. Digital Equipment Corporation. <u>Programming Languages</u>. Maynard, Mass.: Digital Equipment Corporation, 1972. pp. 13-37 to 13-39.
- 39. <u>Ibid</u>. pp. 13-39 to 13-42.
- 40. <u>Ibid</u>.p. 15-80.
- 41. <u>Ibid</u>. pp. 15-73 to 15-76.
- 42. <u>Ibid</u>. p. 15-80.
- 43. Kelly, P. C. and Horlick, Gary, Anal. Chem. 45, 518 (1973).
- 44. Malmstadt, H. V., Enke, C. G., Crouch, S. R., and Horlick, G. Optimization of Electronic Measurements, Module 4, Menlo Park, Calif., W. A. Benjamin, Inc., 1974.
- 45. Digital Equipment Corporation. "MAINDEC Test", 1968.

- 46. Hahn, B. K., unpublished program. 1972.
- 47. Hildebrand, F. B., <u>Numerical Analysis</u>, New York: McGraw-Hill Book Company (1974). pp. 549-559.
- 48. Franklin, E. C., <u>J</u>. <u>Phys. Chem.</u> 15, 675 (1911)
- 49. Armitage, P. T. and French, C. M., J. Chem. Soc., 743 (1963)
- 50. Falkenhagen, H., <u>Electrolytes</u>, London: Oxford University Press, (1934), pp. 200-201.
- Hall, J. L., Gibson, J. A., Jr., Wilkinson, P. R., and Phillips, H. O., <u>Anal</u>. <u>Chem</u>. 26, 1484 (1954).
- 52. Farrow, R. N. P. and Hill, A. G., Analyst. 90, 210 (1965).
- 53. Levine, S. L. and Golden, H. J., <u>Anal</u>. <u>Letters</u>, <u>1</u>, 39 (1967)
- 54. Bauer, W. E., private communication.
- 55. Albrecht, H. O., Z. Phys. Chem. 136, 321 (1928).
- 56. White, E. H. Zafiriou, O., Kagi, H. H., and Hill, J. M., <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>86</u>, 940 (1964).
- 57 White, E. H. and Bursey, M. M., Ibid., p. 941.
- 58. McCapra, F., Quarterly Reviews, 485 (1966).
- 59. Beck, M. P. and Joo', F., Photochemistry and Photobiology, 16 491 (1972).
- 60. Gorauch, J. D. and Hercules, D. M., Photochemistry and Photobiology, 15, 567 (1972).
- 61. Lee, J. and Seliger, H. H., Photochemistry and Photobiology, 15, 227 (1972).
- 62. Drew, H. D. K. and Garwood, R. F., J. Chem. Soc., 791 (1938).
- 63. Seitz, W. R. and Neary, M. P., Anal. Chem. 46, 188A (1974).
- 64. Digital Equipment Corporation, <u>OS/8 Software Support Manual</u>, Maynard, Mass.: Digital Equipment Corporation, 1972. p. A-5.
- 65. Digital Equipment Corporation, <u>Programming Languages</u>, <u>op. cit. pp. 13-18 to 13-20.</u>
- 66. Hahn, B. K., XYSYS.SB and SCOPE.SB Plotting Routines, unpublished programs.
- 67. Smith, S. G. and Ghesquiere, J. R. <u>Computer-Assisted Instruction in Chemistry</u>, <u>Part B: Applications</u>, ed. Mattson, J. S., Mark, H. B., Jr., and <u>MacDonald</u>, H. C., Jr. New York: Marcel Dekker, Inc., 1974, Chapter 2.

CBTSLS
PROGRAM LISTING

```
8 /PROGRAM NAME!
                            CHTSLS.FT
S /FORTRAY-SABRI KEITH J. CASERTA 1974
S /THIS IS THE GENERAL FORM OF THE BASIC DATA AGJISITION PROGRAM
S /FOR THE COMPUTERIZED CONDUCTANCE SYSTEM.
S /IT BESING 4174 A PRELIMINARY SCAN OF THE CELL, DURING WHICH
8 /THE OPTIMIZED CIRCUIT PARAMETERS FOR EACH OF FOUR PULSE
 /WIDTHS ARE DETERMINED AND STORED.
S THESE VALUES ARE PRINTED. THE AVAILABLE OPTIONS AT THIS POINTS
S /1)AVERAGE OF AN INPUT NUMBER OF SCANS
S /2) RESTART
$ /3)TIMED DATA ACCUSITION OF UP TO 500 POINTS OF UP TO $ / 2047 ACCUSITIONS PER POINT FOR BOTH COND AND TEMP
         IF ZERO IS INPUT AS THE # OF TEMP POINTS, TEMP HEASUREMENT
         IS SCIPPED DURING TOA
S /4) RETURN TO MONITOR
S /DATA IS FINALLY WRITTEN ONTO TAPE FOLLOWING TOA AND S /MAY BE TREATED BY A VARIETY OF ANALYSIS ROUTINES.
         COMMON WARA
         DIMENSION VARA(2046)
         DIMENSION IPARA(4), [PHP(4), IPMP(4), IIVP(4), IUNIT(4)
                                     /CLEAR COND FLAG, CLEAR PI ENABLE /GATE CONDUCTANCE DRIVER
                            5321
         JPDE:
                  SCFP
         J.DE.
                   3CDR
                            6522
                  CCFPD
         JPDE:
                            6323
                                     /CCFP + 3CDR
                                     /ENABLE COND PROGRAM INTERRUPT
/CCFP + GCDR + ECPI
5
         JPDE:
                  ECPI
                            6324
         SPOE?
                   SCFGD
                            6327
5
         SKPD:
                  TCFL
                            6331
                                     /TEST CONDUCTANCE FLAG
         SPREF
                            6332
                                     TURN OFF SEQUENCE TRIGGER
                  TOST
         OPDE:
                  TRIG
                            6334
                                     /TRIGGER SEQUENCE
         SKPD:
                  TTFL
                            6541
                                     /TEST TEMPERATURE FLAG
                  LIVÕ
                            5342
                                     /LATCH 1/V, OFFSET
         SPDE:
                                     /LATCH PH, PH
         JPDE:
                  LPHH
                            6344
                                     PENABLE TEMP PROGRAM INTERRUPT
         Jane:
                            5351
                  ETP!
                  STEPS
                                     /CLEAR TEMP FLAG, PI ENABLE, GATE DRIVER
                            6352
         Jene:
                                     /TRIGGER TEMP A/D CONVERSION
         JPDE-
                  TTAD
                            6354
         JPDE:
                  TFPGT
                            6356
                                     /CTFPG + TTAD
         JPDE:
                  TIT
                            5361
                                     /TITRATE
                  SKPSF
                                     /SKIP ON STOPPED FLON SIGNAL
         SKPD:
S
                            6352
                            6121
                                     /LOAD THE CLOCK PRESET REGISTER
         JPDE:
                  LPSET
                                     /CLEAR THE CLOCK
/INITIALIZE THE COUNTER
                   SLCL
         JPDE:
                            61.22
                  ICHTR
         JPNE:
                            5123
                                     /CLEAR CLOCK AND INITIALIZE COUNTER /LATCH THE COUNTER
         Jane:
                  SLCIC
                            5124
         SPDEF
                            6125
                  LCHTR
                            5126
                                     /READ THE COUNTER LATCH
         Janes
                   RCTRL
                                     FREAD THE COUNTER
         JPDE:
                  RCYTR
                            $127
                                     /LOAD CONTROL REGISTER
         Jene:
                  LCTRL
                            6131
                                     /SKIP ON OVERFLOW
         SKPD:
                   SKPOF
                            5132
                  SKPOE
                                     /SKIP ON OVERFLOW ERROR
         SKPD:
                            6133
                  CLOFE
                            6134
                                     /CLEAR OVERFLOW AND OVERFLOW ERROR FLAGS
         Jabe:
                                     /SKIP ON TIME BASE FLAG
         SKPDF
                   SKPTB
                            6135
                                     /SKIP ON TIME BASE ERROR FLAG
         SKPD:
                   SKTRE
                            5136
         JPDE:
                            6137
                                     /CLEAR T.B. AND T.B. ERROR FLAGS
                   SLTBE
                                     /HULTIPLY
         Jabe:
                            7405
                   YUP
         JPNES
                  DVI
                            7407
                                     /DIVIDE
Š
         JeDE:
                   VMI
                            7411
                                     /NORMAL ! ZE
                  SHL
                                     /SHIFT LEFT
S
         Jene:
                            7413
                                     VARITHMETIC SHIFT RIGHT
         J-DE:
                   ASR
                            7415
                                     /LOGICAL SHIFT RIGHT
S
         JPDE:
                            7417
                   _SR
                   406
8
         JPDE:
                            7421
                                     /LOAD MULTIPLIER QUOTIENT
                                     ASTEP COUNTER LOAD FROM MEMORY
S
         Jene:
                            7403
                   SCL
                                     /STEP COUNTER LOAD INTO AC
9
         Jabes
                            7441
                   SCA
```

```
7301
         JPDEF
                   MOA
                                      /MQ LOAD INTO AC
                                      /ERASE DISPLAY SCOPE /SET SCOPE IN STORE HODE
         SPDE:
                            6054
6057
                   BRASE
                            0400
                                      /INDIRECT AND
         JADE:
                   ANDI
                                      /INDIRECT TAD
         SPOE
                            1400
                   TADI
                            2400
                                      /INDIRECT ISZ
/INDIRECT DCA
         SKPDF
                   ISZI
Š
         JPDE:
                   DCAI
                            3400
         SPOEF
                            4400
                                      /INDIRECT JMS
                   IEML
         JPDEF
                   JMPI
                            5400
                                      /INDIRECT JMP
                                      JAUTO INCREMENT REGISTER
                   AINC
         PYPEA
                            0012
                            0074
                                      /PH POINTER
         ABSYY
                   BHD
         PYZEA
                   PHP
                                      /I/V POINTER
                            0076
         PYEEA
                   IVP
                            0077
                                      JOFFSET JNITS POINTER
                   STINL
         PYSEA
                   ASET
         43844
                            0100
                                      /GENERAL POINTER
                            0101
                                      /PARAMETER POINTER
         43574
                   SPARA
                                      /INDIRECT ADDRESS IN FIELD 1 POINTER /INDIRECT ADDRESS IN FIELD 1 POINTER
         PYPEA
                   gpou
                            0102
                   SPPW
                            0103
         48574
S /
S /THE PRELIMINARY SCAN ROUTINE BEGINS HERE
8 /
5 /
100
         J==0
         _D=0
         XT=0.
         PH=.001
         TAD ATHRE
                            /SET UP 4 PH'S POINTER
         DCA I STHRE
         JAP AAYY
S ATHRE, 7774
S BTHRE, THRE
S AAYY, JAS TYP3
S CLA CLL
                            /30 ASK FOR A "G"
         TAD (02)0
DCA SPARA
                            /SET UP PARAMETER POINTER
         DCA PWP
                            /SET INITIAL PW
S =2,
         SLA SLL
                            ISET PH POINTER
         TAD (0400
         DCA PHP
                            /SET I/V POINTER
S
         TAD (0401
         DCA TVP
TAD (7400
                            ISET UNITS POINTER
         DCA JAITS
         6211
                            /ZERO THE PARA WORD LOC FOR THIS RUN
5
         3501
         5201
         J>=J>+1
  50
         PH=PH+10.
         SEA SEL
S AAJ.
                            /OFFSET=0; I/V: 1MA=10V
$
         IAC
                            /_ATCH OFFSET=01 1/V: 1 MA=10V
3
         LIVO
         ISZ ASET
                            MAIT FOR RELAYS TO SETTLE
S WA,
S WY.
         ISZ ASET
Š
         JYP 4Y
3
         TAD SHE
 AD,
                            12H POINTER
                            /SET PH INSTRUCTION /MAX PH YET.
5
         RAL
SZL
```

```
JYP I QGAIN
                            /YES, INCREASE GAIN OF I/V
3
                            / NO, CONTINUE
8
         IAC
                            /ADD 1
                            /SHANGE TO DATA FIELD 1
8
         5211
                            /ADD P4 INFO TO PARAMETER HORD
$
         1501
Š
         3501
8
                            /CHANGE TO DATA FIELD 0
         5201
         TAD PHP
         TAD PWP
                            ISET PA
                            /_ATCH PH.PH
3
         -PHW
S WB,
         IST ASET
                            MAIT FOR RELAYS TO SETTLE
3
         EL SPL
  wZ.
         IST ASET
         JMP dZ
SLA SLL
5
3
         TRIG
                            / PULSE TRIGGER
                            ITEST FLAG
5
         TCFL
 AE,
         JYP AE
         SCFPO
                            ICLEAR FLAG, GATE DRIVER
3
                            JCHECK INPUT
5
         IAC
                            /IS A/D NEARLY PEGGED.
         SVA
                            /YES. ADD OFFSET /NO. INCREASE PH
3
         JYP OFF
         JYP AD
                            /ADDRESS OF ADD GAIN ROUTINE
S OGAIN, JAIN
  /SUBPROGRAM GAIN
 /THIS SJBPROGRAM INCREASES GAIN OF I/V AMP
3
         PAGE
  BAIN, CLA CLL
5
                            /I/V POINTER
3
         TAD IVP
                            /SET I/V INSTRUCTION
         PAL
                            VIS MAX GAIN APPLIED.
3
         SZL
         JMP 1 PTS
3
                            /YES,GO TELL
         DCA TVP
                            / VJ, CONTINUE
3
                            /4DD 1 TO GAIN POINTER /CHANGE TO DATA FIELD 1
8
 m52.
         TAD SAPT
         5211
                            /SET PARA HORD TO PROPER GAIN VALUE
9
         1501
         3501
5
                            /CHANGE TO DATA FIELD 0
3
         5201
         TAD IVP
AND 40077
8
                            JERASE DUMMY POINTER
3
                            /_ATCH, OFFSET=0; 1/V
/HAIT FOR RELAYS TO SETTLE
3
         LIVO
S WC.
         ISZ ASET
5
         JYP 4C
S WX.
         ISZ ASET
         JYP 4X
3
         SLA
                            /PULSE TRIGGER
3
         TRIG
         TOFL
JMP AF
                            ITEST FLAG
 AF,
$
                            /SLEAR FLAG. GATE DRIVER
2
         SCFPD
                            /CHECK INPUT
/IS A/D NEAHLY PEGGED.
3
         IAC
         SNA
         JAP JEF
JAP BAIN
                            TYES ADD OFFSET
  PTA
                            / NO. INCREASE I/V GAIN
S GAPT. JOO4
                            /3AIN ROINTER TO PARA WORD
  M0077.J077
                            / HASK
        FALT1
                            /MARNING ROUTINE 1
S PTC.
```

```
/SUBPRIGRAM OFFSET
  /THIS SJBPROGRAM APPLIES OFFSET CURRENT
8
3
S OFF.
         SLA SLL
2
         TAD AJ11
                           /SET UNITS INCREMENTER
         DCA J11
3
                           /BRING IN CURRENT SCALE
3
         TAD IVP
                           /4AS4 DUMMY POINTER
8
         AND 40077
         DCA IVP
                           ISTORE
3
         TAD IVP
5
         ATL
                           /SET UP OFFSET CURRENT DECADE SCALE
8
3
         ATL
                           /SET I/V, OFFSET DECADE
3
         TAD IVP
                           1STORE
$
         DCA IVP
  AG,
         SLA SIL
3
                           /IS MAXIMUM OFFSET APPLIED. /NO, CONTINUE
         152 J11
3
         JAP AAI
                           /YES, TELL DEFAULT
         JMS ! PTD
         YOP
9
                           ISKIP YEASUREMENT
8
         JYP AF2
                           ISET OFFSET POINTER TO PARA HORD
3
  AAI.
         TAD KUPT
                           /CHANGE TO DATA FIELD 1
         5211
                           /ADD IN PARA HORD
3
         1501
3
         3501
                           /CHANGE TO DATA FIELD 0
8
         5201
                           /SET OFFSET UNITS POINTER
3
         TAD 47400
         TAD JUITS
                           /ADD PREVIOUS OFFSET
3
S
         DCA JVITS
         TAD IVP
3
                           /SET OFFSET! I/V WORD
5
                           /_ATCH OFFSET, I/V
/4417 FOR RELAYS TO SETTLE
         -IVO
ISZ ASET
3
5
 WD.
3
         JMP 40
S HJ,
         ISZ ASET
8
         LA PML
9
  NU.
         ISZ ASET
         Uh AML
         SLA SLL
5
                           /PULSE TRIGGER
         TRIG
2
         TOFL
JMP AH
                           /TEST FLAG
3
  AH,
3
         SCFPD
                           /SLEAR FLAG, GATE DRIVER
                           JOHECK INPUT
         IAC
8
                           /4/D PEGGED.
5
         SYA
                           /YES, ADD MORE OFFSET
         JAP 48
8
 BEGIN TO SUTPUT DATA FROM THE PRELIMINARY SCAN ROUTINE
5
8
  AN,
S
         SLA SLL
3
         TAD PHP
$
         DCA ENIH
9
         TAD PHP
         DCA ENIA
S
3
3
         DCA =NII
         TAD JUITS
3
         DCA EVIJ
         HIVE ( 9L ) 9H9I
         HINE (QL) QHQI
```

```
IIVP(JP)=NII
         UIN=(CL)TINLI
2
         SLA SLL
        TRIG
                          /PULSE TRIGGER
S
S AP.
         TOFL
                          ITEST FLAG
3
         JYP AP
         SCFPO
                          /CLEAR FLAG, GATE DRIVER
$
3
         TAD 34000
                          JCHANGE TO 2'S COMPLIMENT
3
        SLL
3
        DCA SITORE
         Z=FLDAT(ITORE)
                          /CHANGE TO DATA FIELD 1
3
         6211
                          /PUT PARA WORD IN AC
3
        1501
        5201
                          /CHANGE TO DATA FIELD 0
5
        JMS I ASSDE
5
                          /30 TO DOODE ROUTINE WITH PARA HORD IN AC
         J4P I U71
                          /CHANGE TO 2'S COMPLIMENT ADD IN
S 84000.4000
S XUPT, 5^20
9 AU11, 7765
                          /OFFSET POINTER TO PARA WORD
                          /-11
                          /JNITS INCREMENTER
S U11.
        1200
S PTD.
        FALTE
                          /HARNING ROUTINE 2
S N0077,3077
                          JOUMMY POINTER MASK
S V7400.7400
                          /DFFSET UNITS POINTER
9 U71.
        =71
                          /PARA HORD DECODE SUBROUTINE
S ACODE, DOODE
 71
        VF. IVLX. hq. Hq(Z.1)=TIFh
        FORMAT(/, 'PH = ', =10.4, ' VOLTS', /, 'PH = ', E10.4, ' MSEC', /, 'UNITS
  3
      = ',E10.4./, 'RV = ',E10.4)
         ARITE(1.4)ES. ROEL_. CCELL
        FORMAT('SAMPLE) V = ', E12,6,/, 'RCELL = ', E12,6,' OHMS',/, 'CCELL
     += ',E12.6,' MHOS',/)
3 AF2.
        SLA SLL
                          /ALL FOUR PHIS YET.
S
        ISZ THRE
                          INO, CONTINUE
5
         CA AFL
                          /YES. 30 TO NEXT ROUTINE
         FORI AFL
3
S AO.
        TAD SHP
                          /SET UP FOR NEXT PH
3
        TAD PHER
                          /PW INCREMENT
        DOA PWP
                          ISTORE IN PW POINTER LOC
9
                          /SET UP ADDRESS OF NEXT PARA HORD
        ISZ SPARA
        30 TO 2
                          /3 PH'S POINTER
S THRE, JOOO
                          /PW INCREMENT
S PHCR. J100
9 /
S /THIS SECTION DETERMINES SELECTED OPTION
S
        SLA SLL
TTAD
8
 INOR,
                          /TRISGER TEMP A/D
 CAP1, TTFL
8
                          /TEST TEMP FLAG
        JYP CAP1
3
                          /CLEAR TEMP FLAG, GATE DRIVER
        STEP3
S
                          JOHANGE TO 2'S COMPLIMENT
         TAD (4000
8
        SLL
8
         DCA #ITORE
         Z=FLJAT(!TORE)
        ES=Z=(10./4096.)+5.
         4917E(1.6)ES
         FORMAT(/, TEMP RESPONSE = ',E14.6,//, 'OPTIONSI 1)AVERAGE',/,9X,
6
     +2) RESTART', /, 9x, '3) [DA', /, 9x, '4) CALL EXIT', /)
S
        SLA SLL
```

```
/KEYBOARD STRUCK YET.
S TA1.
         4SF
         JAP TA1
                           /YES, READ CHARACTER
8
         42B
                           /ACKNOWLEDGE IT ON PRINTER
         TLS
         TAD 47517
                           1-261
5
         SVA
JVP AJ
                           /IS IT A "1".
/YES, 30 TO AVERAGE ROUTINE
5
3
                           /\J, ADD =1
/\S |T A "2".
3
         TAD 37777
         SYA
                                    /YES, RESTART
S
         JAP I AT
                           /10, ADD -1
/15 | T A #3#.
         TAD 27777
5
5
         SHA
5
         JHP I CA
                                     YES, GO TO TDA ROUTINE
         SALL EXIT
                           /-261
S v7517,7517
  Q7777.7777
                           1-1
S AT,
                           /RESTART ADDRESS
         4100
S CA,
                           /TDA ADDRESS
         TDAR
5 /
  /THIS ROUTINE PERFORMS AVERAGE OF INPUT NUMBER OF SCANS
3
5
         SLA SLL
S AU,
         481TE(1,51)
         FORMAT(/)
  51
         JSTI <= 0
3
         PAGE
S
         JMS SETJP
                           /30 TO SETUP ROUTINE
         SLA SLL
S
Š
         TAD BLD
S
         SZA
         JMP TAP
5
8
         SLA SLL
         TAD TAM
S
S
         AND (0177
S
         TAD (5200
S
         DCA TAN
                           /BRING IN NUMBER OF SCANS TO AVERAGE
S
  TAP.
         TAD SIPTS
3
         DCA NBAR
8
         TAD YBAR
                           /SET UP # PTS. POINTER
S
         SIA
8
         DCA PBAR
S
         DCA NLS3
                           /CLEAR LSB WORD
                           /JLEAR MSB WORD
S
         DCA NHS3
         SLA SLL
S
  AW,
         TRIG
                           / PULSE TRIGGER
         TOFL
JMP AX
                           /TEST FLAG
5
 AX,
S
                           /CLEAR FLAG, GATE DRIVER
S
         CCFPD
S
         TAD VLS3
                           /ADD IN LSBS
         DCA NESS
9
S
         JAF
                           /SET JP OVERFLOW
                           /ADD IN MSBS
         ESMV DAT
5
         DCA NYSS
IST PBAR
8
S
                           /ALL DONE.
                           /NJ, RETURN FOR NEXT SCAN
8
         LA QPL
                           /YES, SET SET TO AVERAGE
S
         TAD NLS3
S
                           /_DAD NO WITH LSS WORD
         JCF
5
         SEPP DAT
```

```
Dvt
3
                                                                     /DIVIDE
S NBAR.
                       3100
                                                                      ITHE DIVISOR
                        TAD (4000
S TAN.
                        DCA #JSTIK
S TAO.
                        SLA SEL
5
                        ACP
                                                                      /_JAD DIVIDEND INTO AC
                        TAB (4000
                                                                     ICHANGE TO 2'S COMPLIMENT
8
                        SLL
                        DCA =ISTIK
S
                        Z=FLJAT(ISTIK)
                       ZL=F_OAT(JSTIK)
SLA SLL
5
                                                                      /SET UP PROPPER ADDRESS OF PARA WORD
                        TAD SPPT
9
                       TAR BJP
3
5
                       DCA SPPJ
                                                                      /SHANGE TO DATA FIELD 1
                        6211
                                                                      /PUT PROPER PARA WORD INTO AC /CHANGE TO DATA FIELD 0
                       1502
5
                        5201
                        145 I 800DE
                                                                      /30 TO DECODE SUBROUTINE HITH PARA HORD IN AC
                        SLA SLL
                        J4P =72
                                                                      ITHE LEAST SIGNIFICANT BIT HORD
S NLSB, 1000
S NMSB. JOOD
                                                                      /THE MOST SIGNIFICANT BIT WORD
                                                                      /AVERAGE NUMBER POINTER
/JUMP DVER DOUBLE PRECISION LOC
S PBAR, J100
S TAM. TAO
S SPPT. J177
S BCODE, Janna
                                                                      /PARA HORD DECODE SUBROUTINE
              ARITE(1,13)APTS, ES, RCELL, CCELL
FORMAT(//, 'AVERAGE OF ',F5.0,' SCANS: SAMPLED V = ',E16.8,' VOLT
+3',/,29%,'RCELL = ',E16.8,' OHMS',/,29%,'CCELL = ',E16.8,' MHOS',/
     72
              •/}
                                                                      /RETURN, TAKE TEMP POINT, GET OPTION
                        FOFT AME
S
5 /
S /SUBPROGRAM TOAR
S /THIS PROGRAM CONTROLS TIMED DATA ACQUSITION S /OVER AV INCHIPE PERIOD AT INCHIPE THE STATE OF THE PROGRAM OF
Š /
S TDAR, SLA SLL
                        ARITE(1,31)
                       READ(1,200)TRV_,TIBPT,TCTA
FORMAT('TOTAL NUMBER OF POINTS:',E16,8,/,'TIME BETHEEN POINTS (S
20 p
              +ECS): +, E1>.8./, * JM3ER OF T SCANS TO AVERAGE: +, E16.8)
                        1F(TCTA)942,942,943
                        U=TP
                        30 TO 945
943
                        4T=1
945
                        ES=(TRVL+TIBPT)/60.
                        421TE(1.202)ES
                       FORMAT( 'THIS WILL REDUIRE ABOUT ', E10.4, ' MIN')
  202
                        READ(1,946)BL4
946
                        FORMAT('FIRST BLOCK TO WRITE: ',E14,6)
                        IBLK=IFIX(BLK)
                                                                      /30 TO SETUP SUBROUTINE
                        JMS I DAD1
                        JAP 3406
S GAOL, SETUP
                                                                      /ADDRESS OF SETUP SUBROUTINE
```

```
S /THIS IS THE SET UP SECTION FOR CLOCK AND POINTERS OF TDA ROUTINE
8 GADS, SLA SLL
 203
         IF(T1BPT-,004)205,204,204
                          /SLOSK PRESET HODE INDICATOR
S m204. TAD THB
         TAD T1000
                          /SLOCK TB INCREMENTER
         DCA TMB
TIRPT=TI3PT/10.
5
         15Z 2407
9
                          /ALL DONE.
         JMP =203
                          /NO, RETURN
         J4P =205
                          /YES, CONTINUE
S THB.
                          /PRESET MODE INDICATOR /JLOCK TB INCHEMENTER
         3400
$ 71000,1000
8 0A07. 7771
205 TIBP
         TIBPT=T13PT-1000000.
S /THIS IS THE SPECIAL FIX ROUTINE FOR CLOCK SETUP
5 /
         CLA SLL
TAD ETIBOT
S
                          /3RING UP EXPONENT, UPPER MANTISSA
         DCA POT1
3
Š
                          /ZERO YSB WORD
$
         TAD -071
5
                           /MASK SIGN, MANTISSA
         AND 43770
                          /RIGHT JUSTIFY EXPONENT
5
         RTF
         RAF
5
9
         TAD X7600
                          /SET EXPONENT
                          /SET SCALING POINTER
5
         SLL SMA
8
         DCA XPNT
S
         TAD POT1
                          /ERASE ALL BUT UPPER MANTISSA
5
         AND N0037
5
         RTR.
                          /_EFT JUSTIFY
         RTF
8
         DCA POT1
5
         TAD ET13PT#
                          /BRING IN FIRST COMPLETE MANTISSA HORD
                           /MASK LOWER 3 BITS
5
         AND 47770
                          /RIGHT JUSTIFY
5
         RTF
         RAR
S IFA.
         TAD POT1
                          /SET COMPLETE WORD
         ISZ XPNT
S
                          /ALL SCALED.
8
                          /NO. SCALE
         SKP
                          /YES, 30 ON TO NEXT SECTION
5
         JUCE OFL
5
                          ISCALE BY 2
         RAL
         DCA POT1
                          /AILL CONTAIN COMPLETED VALUE /SCALE BY 2
3
         STO DAT
8
         TAL
5
         DC4 POT2
         JAP IFA
                          /RETURN FOR NEXT SCALING
S POT1. 3000
S POT2, 3000
S N3770,3770
$ x7600.7600
S XPNT. JOOD
S N0007.J007
S N7770.7770
```

```
S /SET UP CLOCK PARAMETERS
  GOUN. SLA SLL
                            /SELECTED TB; PRESET MODE
         TAD THE
         _CTR_
                            /_DAD CONTROL REGISTER
         SLA SLL
TAD POT2
                            ISETS UP EXACT INTERVAL
         CIA
                            /_DAD PRESET REGISTER
 SET UP NUMBER OF POINTS POINTER
         ITRV_=IF1x(TRV_)
         TAD SITEVL
                            /SET UP # POINTS
         SIA
S DCA I SHOP
S /SET UP # DF 3 SCANS POINTER
         TAD EIPTS
         DCA I SPAO
         TAD I SPAG
         SIA
                            /SET UP # SCANS
S /SET UP # OF T SCANS POINTER
                            /CHECK TO SEE IF TEMP INFO IS DESIRED
         TAD ENT
         SZA
         TAP 3000
                           /SET UP JMP OVER TEMP AQ INSTRUCTION
         TAD STE44
         AND (0177
         TAD (5200
DCA I STEMS
         JAP STE46
S gouo,
         ITCTA=IFIX(TCTA)
         CLA CLL
         FAD BITCTA
         DCA I STEM2
TAD I STEM2
         CIA
         DCA I STEM1
S /SET UP FOR DOJULE PRECISION S STEM6. CLA CLL
         TAD ELD
         SZA
         JYP SEC
         SLA SLL
         TAD SED
AND (0177
         TAD (523)
DCA CEE
S /SET UP PARAMETER WORD
S CEC.
        SLA SLL
         TAD (0177
                            /SET PARA WORD ADDRESS
S
         TAD =JP
         DCA SPPJ
3
                            /CHANGE TO DATA FIELD 1
/BRING IN PHOPER PARA HORD
         6211
1502
                            /CHANGE TO DATA FIELD 0
         6201
DCA SPARA
                            IN PARA HOLD OF TOA ROUTINE
```

```
$ /BEGIN DATA ACQUISITION SET
                         /30 AS< FOR A "G"
         LAL SHE
                          /SET UP ADDRESS OF FIRST DATA WORD
        TAD (0177
•
        DCA AINC
        JAP 1 SAD9
                         /3EGIN TOA RUN
 ANAO. NAO
                          JUMBER OF SCANS POINTER TO TDA
8 SA09. 2409
                          ISTARTING ADDRESS OF TOA RUN
S SPAQ, PAQ
                          /DIVISOR FOR FLYING AVERAGE
S SNDP. YDP
                          /NUMBER OF POINTS POINTER
8 STEM1, TEM1
S STEM2. TEM2
S STEMS, JLOC
S STEM4.STEM5
S CED.
                          /DOUBLE PRECISION SKIP OVER LOC
        CEF
8 /THIS IS THE TOA DATA ACQUSITION ROUTINE ITSELF
        PAGE
9
9
        -AP
S /A PERIPHERAL CONTROL INSTRUCTION MAY BE INSERTED INTO QADS
S DADS. NOP
        YOP
                          /SLEAR CLOCK AND INITIALIZE COUNTER
S GLO9. SLCIS
                          /INITIATE PULSING SEQUENCE
        TRIG
                          ICLEAR CLOCK AND OVERFLOW ERROR FLAGS
        SLOFE
                          /CLEAR COMPBIP FLAG
        SCFP
$
        SLA SLL
        DCA TLS3
                         /ZERD LSB WORD
        DCA TYS3
                         /ZERD 4SB WORD
                          /SET UP NUMBER OF SCANS POINTER FOR THIS RUN
        TAD NAO
S DCA -NA2
S DA13, TOPL
                          ITEST COMPBIP FLAG
        JMP 2413
                          /INITIATE PULSING SEQUENCE
        TRIG
                          /SLEAR FLAG, GATE DRIVER
        SCFPO'
                          /ADD IN PREVIOUS LSB VALUE
        TAD T_S3
        DCA TLS3
        RAL
                         /SET LINK INTO LSB
        TAD THS3
                         /ADD IN MSB
        DCA THS3
        ISZ _NAD
JMP DA13
                          /ALL N ACQUSITIONS
                          /NO, RETURN FOR MORE
                          TYES, AVERAGE; LAST SCAN IN COMPBIP REGISTER
8
        TAD TESS
                          /_OAD AC INTO MO
        JOL
                          /SET UP TO DIVIDE WITH MSB IN AC
        TAD THS3
                          /DIVIDE
8
        DVI
                          ITHE DIVISOR, SET UP BY # ACQUSITIONS
S PAQ.
        1200
S CEE.
                          /30F 1
        5211
        3412
                          /AUTO-INCREMENT AND STORE REMAINDER
S CEF.
        SLA SLL
                         /_DAD AVERAGE INTO AC /STORE CURRENT DATA IN OVER/JNDER RANGE CHECK LOC
S
         ACF
        DCA CHECK
3
3
        TAD SHECK
        5211
        3412
                          /AUTO-INCREMENT AND STORE DATA
        TAD SPARA
3
                          /AUTO-INCREMENT AND STORE PARA HORD
3
        3412
                          /CHANGE TO DATA FIELD O
        5201
```

```
JCHECK FOR TEMPERATURE POINTS AND TAKE IF INDICATED
                          PREPLACED BY JMP STEMS IF NO T DATA TO BE TAKEN CLEAR FLAG, GATE DRIVER, TRIGGER TEMP AVD
  JLOC. YOP
         TFPGT
                          /DISCARD PREVIOUS MEASUREMENT
        SLA SLL
                          /ZERO LSB WORD
        DCA TLSB
2
        DCA THS3
                          /ZERD 4SB HORD
3
                          INJUBER OF AVERAGES POINTER
$
         TAD TEM1
        DCA _NA3
        TTFL
                          ITEST TEMP FLAG
S ELA.
         JAP ELA
3
        TFPGT
                          /SLEAR FLAG, GATE DRIVER, TRIGGER TEMP A/D
3
5
        TAD TESS
3
        DCA T_SB
        RAL
                          /SET OVERFLOW INTO LSB
5
        TAD THS3
$
        DCA TYS3
        ISZ _NAQ
3
                          /NOT DONE, RETURN FOR MORE
                          /ALL DONE, AVERAGE
         TAD TLS3
         JCF
                          /AC LOAD INTO MQ
        TAD TYSB
                          /DIVIDE
        DvI
S TEM2. 0000
                          /THE DIVISOR, SET UP BY # OF SCANS
        SLA SLL
3
                          /AC LOAD FROM MQ
         ACP
        6211
        3412
                          /AUTO-INCREMENT AND STORE T DATA
         6201
8
 BEGIN CHECK ROUTINE FOR RANGE OVERFLOA
                         /READ IN CURRENT MEASUREMENT
S STEMS, TAD CHECK
        RDA
                          /AC NES, GO CHECK FOR OVERRANGE
         JAP SARA
                          /TEST FOR AC>0077
9
         TAD (7730
•
        SPA
S
         JYPI PFIX1
                          /AC<0017, GO FIX
         J4P 3417
S SARA, TAD (0100
                          /IS A/D NEAR FULL SCALE.
        SYA
                          /YES, 30 FIX
9
         JYPI PFIX2
 /A PERIPHERAL CONTROLI INSTRUCTION HAY BE INSERTED INTO 0A17
S GA17. NOP
3 /
                          /NO, ALL DATA POINTS YET.
$
         ISZ NOP
                          JUNITHCD , CVY
        SKP
S
                          /YES, DUTPUT
/SKIP ON CLOCK OVERFLOW
3
         JAPI DA19
S GNE.
        SKPO:
        JYP 3YE
        SKPOE
                          /SKIP ON OVERFLOW ERROR
                          INICA IXAN ELORY LANGE CN.
        JYP 3L09
        JAPI PALTT
                          /30 INDICATE CLOCKING ERROR
S TLSB, J000
                          1_OC OF FLYING ADD LSB
                          /_OC OF FLYING ADD MSB
/YUMBER OF ACQUSITIONS POINTER
 TMSB. 1900
S NAQ.
        J000
S LNAG, JOO
                          /BECOMES RESETTABLE # ACQUISITIONS POINTER
                          NUMBER OF DATA POINTS POINTER
        J n n 0
S NDP.
S OA19. DIOUT
                          /JUTPUT ROUTINE ADDRESS
                          /JURRENT MEASUREMENT TO BE CHECKED FOR OVER/UNDER RANGE
S CHECK, JOO
S PFIX1, 2FIX1
                          JADDRESS OF INCREASED RCELL COMPENSATOR ROUTINE
                          /ADDRESS OF DECREASED RCELL COMPENSATOR ROUTINE
S PFIX2, 3Ftx2
S TEM1. 1700
                          /CONTAINS # OF TEMP POINTS POINTER
                          /SLOCKING ERROR INDICATING ROUTINE LOC
S PALTTAFALTT
```

```
THIS ROUTINE RESETS THE SYSTEM TO COMPENSATE FOR INCREASED RCELL
         PAGE
$
         EAP
2
8
  OFIX1. GLA SLL
         TAD JAITS
         TAD 2F1000
2
3
                           /4INIMJM OFFSET.
         SVA
3
         JMP 3F12
                           /YES, 30 RESET PH
  QPZ,
                           /NO, SET 1 LESS UNIT
         TAD 37400
8
3
         DCA JAITS
         SLA SLL
TAD 37760
3
                           /CUT 1 OFFSET UNIT VALUE
8
         J4P 2421
3
  QF12.
         SLA SLL
         TAD IVP
                           /CHECK FOR MAX GAIN SITUATION
3
                           /RETURNS O AC AT MAX GAIN
5
         TAD (7570
8
         SZA
3
         JAP 30A
                           / NOT AT MAX GAIN, CONTINUE
S
         SLA SLL
S
         TAD (4010
                           / NEW I/V IF MAX BAIN
         DCA IVP
S
                           /REMOVE LAST OFFSET UNIT, SET PARA
8
         JAP 3PZ
S
  GQA.
         GLA SLL
         TAD PHP
         PAL
                           /INCREASE PH IF POSSIBLE
3
8
         SZL
                           /30NE TOO FAR.
         J4P 3F14
                           /YES, CHECK GAIN
S
                           /NO. PH SET. STORE
3
         DCA PHP
8
         IAC
                           /ADD1
3
         JAD JASO
  OF14.
         SLA SEL
8
S
         TAD IVP
                           /INCREASE GAIN IF POSSIBLE
8
         RAL
         DCA IVP
8
         TAD 20004
                           /INCREASE GAIN VALUE IN PARA HORD
3
         JMP 3A20
  /THIS ROUTINE RESETS THE SYSTEM TO COMPENSATE FOR DECREASED RCELL
5
S
  OFIX2. SLA SLL
8
3
                           /THECK FOR PREVIOUS 0 OFFSET
         TAD IVP
                           /RETURNS O AC AT PREVIOUS O OFFSET
S
         TAD (3770
8
         SZA
         JAP 308
                           /NOT AT 0, CONTINUE
3
         SLA SLL
         TAD (0210
                           /WEW I/V SETTING
         DCA IVP
  QQB.
         SLA SLL
3
         TAD JAITS
3
         TAD 45400
Š
         SVA
                           /MAXIMUM OFFSET.
                           /YES, 30 RESET GAIN /NJ, SET 1 MORE UNIT
         J4P 2F21
         CCOSC DAT
8
S
         DCA JVITS
         TAD 30020
S
                           /JNITS INCREMENTER FOR PARA WORD
S J4P 3A21
S of21, 3_A 3LL
```

```
TAD IVP
                          /DECREASE GAIN IF POSSIBLE
        RAF
                          /30NE TO FAR.
5
        SZL
                          TYES, 30 LOWER PH IF POSSIBLE
        JAP 3522
        DCA IVP
                          / VO. STORE
        TAD 27774
5
5
        JYP JA22
5 of22,
        SLA SLL
        TAD PHP
                          /DECREASE PH IF POSSIBLE
        RAF
        DCA PHP
        TAD PHP
5
        TAD 37400
                          /30NE TOO FAR.
        SVA
                          /30 TO SUBSCALE WARNING ROUTINE
         J45 1 0719
        SKP
                          IYES, STOP
        HLT
        SLA SLL
                          IND, SET UP
S
•
        SMA
                          /-1
        JYP 3A22
S /BEGIN RESET ROUTINES, EXECUTED AFTER RETURN FROM OFIX ROUTINE
S PROUTINE TO RESET AFTER RETURN FROM OFIX1 FROM PH, GAIN CHANGES
                         TRESET PARA WORD ON RETURN FROM FIX
S GAZO, TAD SPARA
        AND 32MS<
TAD 30240
                          /RESET OFFSET UNITS IN PARA HORD
                         /SET OFFSET UNITS = 10 IN PARA HORD
        DCA SPARA
TAD 22400
3
                         /SET UNITS POINTER . 10 OFFSET UNITS
•
        DCA JVITS
         J4P 3423
                          /30 LATCH CIRCUIT
S /THIS IS RETURN ROUTINE FOR RESET OF UNITS ONLY
S QA21, TAD SPARA
                         /RESET PARA WORD
        DCA SPARA
         J4P 3424
                         /30 LATCH UNITS
S /THIS IS THE RETURN ROUTINE FOR OFIX2 FROM PH, GAIN CHANGES
S DAZZ, TAD SPARA
                         PRESET PARA WORD
                          /RESET OFFSET UNITS IN PARA HORD
        > ZMSC DVA
        14D _0020
                         /SET OFFSET UNITS = 1 IN PARA HORD
S
        DCA SPARA
                         /SET OFFSET UNITS POINTER = 1 OFFSET UNIT
•
        TAD 37000
8
        DCA JUITS
S /THIS ROUTINE RESETS COMPBIR FOR NEW PARAMETERS
S QA23, SLA SLL
        TAD PHP
                         /RESET PH. PW
        TAD PAP
        LPHH
SLA SLL
8
                          /_ATCH PH. PW
S QA24.
        TAD IVP
                         /RESET UNITS, OFFSET DECADE, GAIN
        TAD JYITS
S
        -140
                         /_ATCH
S GA25, JAPI 3F16
                         /RETURN TO MAIN PROG
$ 97000,7000
                         /3IVES OFFSET UNITS = 1
                          /10 OFFSET UNITS VALUE TO COMPBIP
$ 02400,240r
                         /PARA HORD IN OFFSET UNITS INDICATOR
$ 00240,.240
                         /PARA JORD OFFSET UNITS VALUE MASK /1 OFFSET UNIT VALUE TO COMPAIR
$ 02MSK.7417
$ 60020. . 20
                         /JNITS INCREMENTER
$ 02000,2000
S 07760.7740
                         /PARA JORD OFFSET UNITS DECREMENTER
                         /PARA JORD GAIN INCREMENTER
5 00004,,004
$ 07400,7400
                         124 UNDERRANGE CHECK
```

```
/OFFSET OVERRANGE CHECK /PARA JORD OFFSET INCREMENTER
$ M5400,5400
$ 00020.1020
8 07774.7774
                           /PARA JORD GAIN DECREMENTER
                           /4IN OFFSET (#1) CHECK
SQF1000,1~00
S 0F16. 3A17
S OF19. FALTE
                          /SUBSCALE WARNING ROUTINE
S /SUBPROGRAM DIDUT
S /THIS SECTION SETS UP THE TRANSFER TO THE ANALYSIS ROUTINE
S DTOUT, SLA SLL
         NARA(2043)=4T
         VARA(2044)=|TRVL
         WARA(2045)=LD
         WARA(2045)=[PTS
         CALL HTAPE(1,13L4,2046, NARA)
         SALL EXIT
5 /
S /SUBPROGRAM FA_T1
S /THIS SUBPROGRAM INDICATES THAT CELL COND IS VERY LOW
S FALT1, SLA SLL
         49173(1.14)PW
14
         FORMAT(/, IERROR 1 AT PA = 1, F6.3, 1 MSECI)
         SLA SLL
JMP I PAF1
3
S PAF1, AV
S /SUBROJTINE FALT2
S /THIS SUBROUTINE INDICATES CELL COND TOO HIGH
S /
5 FALT2, J000
         SLA SLL
         4RITE(1.15)PW
15
         FORMAT(/, IERROR 2 AT PA = ', F6.3, ' MSEC')
         SLA SLL
152 FALTS
                           /SET TO RETURN TO MAIN PROG + 1
S =17.
         JYP I FALT2
S /SUBPROGRAM FALT?
S /THIS SUBPROGRAM INDICATES THAT ONE OVERFLOW OF CLOCK TIMING
S / S /HAS OCCURRED DURING TOA - A FATAL ERROR WHICH HALTS THE PROGRAM
S FALTTIGLA GLL
         4RTTE(1,117)
         FORMAT(/, ! ERROR 71)
117
         4LT
S /SUBROJTINE SETUP
S /THIS SUBROUTINE SETS NECESSARY PARAMETERS FOR AVERAGING
S /A SERIES OF SCANS! AND SETS PROPER PW, AND INSTRUMENT PARAMETERS
S SETUP. JOOD
         READ(1,7)APW,APTS.LD
Format('at what Pa, (4sec): ',E15.8,/,'NJ4BER OF G SCANS TO AVER
     +AGE: +,E16.8,/, DOUBLE PRECISION. (1=4,0=N); +,I5)
         431TE(1,309)
 309
        FORMAT( TYPE EXPERIMENTAL INFO (CNTRL G TO END): 1,/)
S TELL, SLA SLL
S TELZ, 4SF
                          /KEYBOARD STRUCK YET.
```

```
JMP TEIZ
                           / NO CHECK AGAIN
                           TYES, READ CHARACTER
         448
                           JECHO IT ON PRINTER
         TLS
         TAD TELS
                           1-207
                          /IS IT AN ALT MODE. /NJ. RETURN FOR MORE
         SZA
         JAP TEIL
         JAP TEI4
                           /YES, CONTINUE IN NEXT ROUTINE
                           /-207
S TE13, 7571
 TEI4, SLA SLL
         JP=1
         XX=.301
         XX=XX+19.
         IF(APH-XX)11,11,10
  10
         J==J=+1
         30 13 9
  11
         IPTS=IFIX(APTS)
5
         (QL)QHQI=HIV
5
         TAD EVIT
                           /_DAD PH
         (QL)QVII=IIF
         TAD =NII
                           /_OAD I/V, OFFSET DECADE
5
         DCA IVP
         (QL) CHQI = HIV
                           /_DAD PH
         TAD WYIN
         DCA PUP
8
         (qL)TINUI=UIF
                           /_DAD OFFSET UNITS
         LIVE DAT
8
         DCA JNITS
         TAD IVP
                           /_ATCH OFFSET. I/V
         -IVO
                           /4AIT FOR RELAYS TO SETTLE
S WE.
         ISZ ASET
8
         JMP JE
ISZ ASET
S WF.
         JAP AF
SLA SLL
8
$
         TAD PHP
9
         TAD PHP
         PHH
                          /_ATCH PH. PW
                          /MAIT FOR RELAYS TO SETTLE
S WG,
         ISZ ASET
         JYP 43
S WH,
         ISZ ASET
         JAP 4H
         SLA SEL
         JAP I SETUP
                          /RETURN TO MAIN PROG
S /SUBROJTINE TYPG
S /THIS SUBROUTINE READS ITY AND CHECKS FOR A "G"
S /
S TYPG. 1100
         SLA SLL
S AA,
         ARITE(1,1)
FORMAT('TYPE "3" TO START')
                           /KEYBOARD STRUCK YET,
S AS.
         SF
                           /NJ, CHECK AGAIN
         JAP 45
                           /YES, READ CHARACTER
5
         44
                           VACKNOWLEDGE IT ON PRINTER
8
         TLS
                           /SUBTRACT 307
S
         TAD V7471
                           /IS IT A MGM.
S
         SZA
         JYP AA
                           /YES, RETURN TO MAIN PROGRAM
         JAP I TYPG
S y7471.7471
                           1-307
```

```
S /SUBROJTINE DOODE
S ATHIS SUBROUTINE DECODES PARAMETER WORDS AND COMPUTES
$ /PH.RV.XUNI, ES. RCELL, AND CCELL. IT MUST BE ENTERED WITH PARA WORD IN AC
                          FIRST 4 BITS (MS3) ARE UNUSED
S /PARA ADRD FORMATE
                          NEXT 4 BITS FOR JNITS VALUE (BINARY 1-10)
                          WEXT 2 BITS FOR GAIN INFO (BINARY VALUE 0-3)
3 /
5 /
                          NEXT 2 BITS FOR PH INFO (BINARY 1-3)
5 /
S DCQDE.JOOO
        DCA SPPJ
KUNI=0.
                          ISTORE PARA WORD
        PH=.005
         RV=10000.
5
        TAD SPPJ
8
         AND 45K1
                          /MASK ALL BUT PH BITS
S DC1.
        DCA SPP4
         TAD SPPA
3
                          /ALLSET.
         SVA
                          /YES, CONTINUE /NO, ADJUST
5
         J4P 002
5
         SLA SLL
         P4=P4+10.
5
         SHA
                          /40D -1
        TAD SPPH
                          /SET UP NEXT ITERATION
         J4P 001
9 MSK1. J003
                          /MASK ALL BUT PH BITS
S DC2.
        TAD SPPJ
        AND 45K2
                          /4ASK ALL BUT GAIN BITS
S DC3.
        DCA SPP4
        TAD SPP4
                          /ALL SET. /YES, CONTINUE
        SYA
         J4P 304
5
         SLA SLL
                          TRULDA . CV
S
         RV=RV-10.
S
         TAD DS7774
8
        JAP DC3
                          /SET UP NEXT ITERATION
3
                          /MASK FOR ALL BUT GAIN BITS
S HSK2, 5914
SDC7774,7774
                          /3AIN DEINCREMENTER
5 DC4.
        TAD SPPJ
                          /HASK ALL BUT OFFSET UNITS BITS
         AND 45K3
S DC5.
        DCA 3PPH
         TAD SPP4
                          /ALL SET. /YES. CONTINUE
5
         SVA
8
         J4P 006
         SLA SLL
5
                          /NO, ADJUST
         .1+1PUX=1PUX
         TAD 007750
        TAD SPPH
JMP DC5
                          /SET Jº FOR NEXT ITERATION
5
                          /MASK FOR ALL BUT UNITS BITS
S MSK3,
        3360
                          /JNITS DEINGREHENTER
SDC7760,7760
        SLA SLL
S DC6.
80
         ES=(Z+(12.5/4076.)+6.25)
         IF(LD)312,312,511
311
         ESL=(7L+(12.5/4095.)+6.25)/APTS
         ES*ES+ES_
         RCEL_=P4/((ES/RV)+((10.+XUNI)/RV))
312
        SCEL_=1./RSELL
SLA SLL
9
         JYP I DCODE
         END
```

CBPSLT
PROGRAM LISTING

```
C3PSLT.FT
S /PROGRAM NAME!
8 /FORTRAN-SABRI KEITH J. CASERTA
                                                                                      4/2/74
S JTHIS PROGRAM RUNS WITH ANY DIE OF FOUR OPTIONS!
1 /
                 1) SEARCH A PREVIOUS FILE GENERATED WITH THIS PROGRAM
8 /
                                   ASCALCULATE MAXIMUM AND MINIMUM ERROR
8 /
                                  SICALCULATE AVERAGE ERROR CIOUTPUT THE DATA SET ON THE LPT
•
    1
$ /
                 2) PLOT A PREVIOUSLY SEVERATED FILE
.
                                   A) CALCULATE AND OUTPUT MAXIMUM ERROR
3 /
                                   B) REDJEST SCOPE SCALING PARAMETERS
                                   STIMIL MINTIN STRICE TOJECS
$
                 JICOPPARISON RUN
2
$
                                   A) REDJEST NUMBER OF AVERAGES
    1
5 /
                                   B) PERFORM PRE_IMINARY SCAN, DUTPUTTING A "." WHEN DONE
                                   C)REQUEST REAL R FOR X AXIS (AS LOG(R))
5 /
                                   D) OPERATOR SELECTS OPTION:
S: MEASURE AND AVERAGE INPUT SCANS OF THE STANDARD
5 /
3
                                         DE MEASURE AND AVERAGE INPUT SCANS OF THE COMPARISON
3
8 /
                                         RI RESET X AXIS VALUE
                                         NI 30 ON TO NEXT VALUE, STORING CURRENT DATA
5 /
5 /
                                         CI SHANGE PA
                                               END YEASJREMENT AND SELECT DETION
3
                                         E١
                 OF THE THE TOTAL TO STAND AND THE TOTAL THE TO
5
   1
                                  A)PERFORM PREIMINARY SCAN, DUTPUTTING A "." WHEN DONE B)REQUEST INTERVAL, USED AS X AXIS (AS LOG(INTERVAL)) C)OPERATOR SELECTS OPTION AS IN (D) ABOVE BUT DATA IS
5 /
5 /
                                         ACQUIRED AS 1000 SCANS AT THE CHOSEN INTERVAL
S /THIS PROGRAM IS BASICALLY DESIGNED FOR ACCURACY DETERMINATIONS
                  AFAM, YRAD VCMMOS
                  DIMENSION DARY(2,50), NARA(2)
                                                                     /CLEAR COND FLAG, CLEAR PI ENABLE
S
                 Sebes
                                   SCF.P.
                                                    6321
                                                                     /GATE CONDUCTANCE DRIVER
                 JPDE"
S
                                   3CDQ
                                                    5322
                                                    6323
                                                                     /CCFP + 3CDR
S
                  JPDEF
                                   CCFPD
                                                                     /ENABLE COND PROGRAM INTERRUPT
/CCFP + 3CDR + ECPI
S
                 JPDE"
                                   ECPI
                                                    5324
3
                  SPOET
                                  CCFGD
                                                    6327
                                                                     TEST CONDUCTANCE FLAG
                 SKPDF
5
                                   TCFL
                                                    6331
                 Jener
                                  TOST
                                                    5332
                                                    5334
                                                                     /TRIGGER SEQUENCE
3
                 JPDE:
                                  TRIG
                                  TTFL
                                                    6341
                                                                     /TEST TEMPERATURE FLAG
9
                 SKPDF
                                  -110
                                                                     /LATCH 1/V. OFFSET
                  J=DE7
                                                    5342
3
                 JoDE:
                                                    6344
                                                                     /LATCH PH. PH
9
                                    PHH
                                                                     JENABLE TEMP PROGRAM INTERRUPT
                                   TPI
S
                  JPDE:
                                                    5351
                 Jabés.
                                   STFPG
                                                    6352
                                                                     /CLEAR TEMP FLAG. PI ENABLE, GATE DRIVER
5
                                                    5354
                                                                     /TRIGGER TEMP A/D CONVERSION
3
                  Jabet
                                  TTAD
                                                    5356
                                                                      /CTFPG + TTAD
S
                  Joher
                                  TFPGT
                                                    5361
                 SPDEF
                                  TIT
                                                                     /TITRATE
                                                                     /LOAD THE CLOCK PRESET REGISTER
                 JPDEF
                                   _PSET
                                                    5121
                                                                     /CLEAR THE CLOCK
/INITIALIZE THE COUNTER
                 Jenes
                                   SLCL
                                                    5122
9
5
                  JODER
                                   ICUTA
                                                    6123
                                                                     /CLEAR CLOCK AND INITIALIZE COUNTER /LATCH THE COUNTER
                 J>DE:
                                                    6124
5
                                  SLCIC
3
                  Jaber
                                  LCYTR
                                                    5125
                                                                      FREAD THE COUNTER LATCH
8
                 Jabe:
                                   RCTRL
                                                    6126
                                                                     /READ THE COUNTER /LOAD CONTROL REGISTER
5
5
                                                    5127
                 JedE:
                                   RCYTR
                 JPDE:
                                  LCTRL
                                                    6131
                                                                     /SKIP ON OVERFLOA
8
                                                    6132
                  SKPDF
                                   SKPOF
                                                                     ISKIP ON OVERFLOW ERROR
Ś
                 SKPDF
                                  SKPOE
                                                    6133
5
                                                    6134
                                                                     /CLEAR OVERFLOW AND OVERFLOW ERROR FLAGS
                  JPDE:
                                   CLOFE
                                                                     /SKIP ON TIME BASE FLAG
/SKIP ON TIME BASE ERROR FLAG
                 SKPD:
5
                                  SKPTB
                                                    6135
5
                  SKPDF
                                  SKTBE
                                                    6136
                                                    6137
                 JPDE?
                                                                     /CLEAR T.B. AND T.B. ERROR FLAGS
                                  SLIBE
```

```
7405
                                   /MULTIPLY
        JPDE?
                 AUA
         jañE?
                 DVI
                          7407
                                   DIVIDE
                          7411
8
         SPDEF
                                   /NORMAL ! ZE
                 IMP
                          7413
                                   /SHIFT LEFT
5
        JPDE:
                 SHL
        JPDEF
                 ASR
                          7415
                                   /ARITHMETIC SHIFT RIGHT
3
                                   /LOGICAL SHIFT RIGHT
$
        JPDE:
                          7417
                 LSR
8
        JPDEF
                          7421
                                   /LOAD MU_TIPLIER QUOTIENT
                 HOL
$
        3>0E?
                          7403
                                   /STEP COUNTER LOAD FROM MEMORY
                 SCL
                          7441
3
        JPDEF
                 SCA
                                   /STEP COUNTER LOAD INTO AC
                          7301
        Jade:
                                   /MO LOAD INTO AC
                 404
                                   FRASE DISPLAY SCOPE
        JPDE:
                 SRASE
                          6034
                          6057
                                   /SET SCOPE IN STORE MODE
        Jodes
                 STORE
5
        49574
                 SHP
                          0074
                                   /PH POINTER
3
        49574
                 ...
                          0075
                                   /PW POINTER
                          0076
                                   /I/V POINTER
5
                 IVP
        PYZEA
                          0077
                                   JOFFSET JNITS POINTER
3
        PYZEA
                 STIPL
                          0100
                                   /GENERAL POINTER
        ABSYY
                 ASET
                          0101
                                   PARAMETER POINTER
5
        PYZEA
                 SPARA
                 SPPU
                          0102
                                   /INDIRECT ADDRESS IN FIELD 1 POINTER
$
        PYPEA
5
                 SPPH
                          0103
                                   /INDIRECT ADDRESS IN FIELD 1 POINTER
         PYZEA
9 /
S /PROGRAM BEGINS WITH FIRST DOTION SELECTION
S /
S_/
69
        4TEG
172
         471TE(1,572)MT,
        FORMATION SEARCH PREVIOUS FILE = 2',/, 'PLOT PREVIOUS FILE = 1',/
872
     +, START COMPARISON = 01,/, VARIABLE INCREMENT PULSING = -1:1,10)
         READ(1,151)JQ
        FORMAT(15)
161
         IF(J2)150,160,159
150
         READ(1,158)J
158
        FORMAT("FIRST BLOCK:", 15)
         SALL RTAPE(1, J. 374, DARY)
         IF(NARA(2))380,381,381
380
         421TE(1,382)
         FORMAT( THIS IS A COMPARISON FILE 1/)
382
        30 TO 394
381
         ARITE(1.383)
383
        FORMAT( 'THIS IS A VARIABLE PULSING FILE . . / )
384
         I=NARA(1)
         IF(J2-2)519,502,5)2
         (S)AFAM=CL
619
S
         SLA SLL
3
         JUCA SPL
9
         JUCT PPL
         SLA SLL
S
        30 T3 69
160
         EUPITACS
 /BEGIN THE PRE_IMINARY SCAN SEQUENCE
5
  PNNY.
        SLA SLL
        DCA PWP
                          /SET PH AT 0.01 MSEC
S
         READ(1,7)PA
7
        FORMAT( 12W (45EC) 11, 512.8)
         IF(J3)957,958,788
988
         READ(1,799)(D
980
        FORMAT('AVERAGESI', 15)
987
         XX=. 331
8
         XX=XX=10.
```

```
IF(P4-XX)11,11,10
         SLA SLL
TAD PHP
S =10.
                           /SET P4 TO PROPER VALUE
         TAD (0100
                           /INCREMENT PW
3
         DCA PUP
3
8
         JYP =6
         SLA SLL
8 =11,
         DEA SPARA
         TAD APH>
                          /SET PH POINTER
$
         DCA PHP
$
         TAD AIVP
                          /SET I/V POINTER
3
         DCA IVP
                          /SET UNITS POINTER
         TAD AUNIT
         DCA JAITS
S AAJ.
                           /JFFSET=01 I/VI 1MA=10V
         IAC
         LIVO
3
                           /_ATCH OFFSET=0; I/V: 1 MA=10V
                           /MAIT FOR RELAYS TO SETTLE
S WA,
         ISZ ASET
         AL APL
3
S WY,
         ISZ ASET
         JYP 4Y
5 /
S /SET UP PROPER PULSE HEIGHT
8
  AD.
         SLA SIL
5
         TAD PAP
                           /PH POINTER
         JAF
5
                           /SET PH INSTRUCTION
                           /MAX PH YET.
         SZL
3
                           /YES, INCREASE GAIN OF I/V
3
         JAP I GBAIN
3
         DCA PHP
                           JUNITUCS, COV
         IAC
                           /40D 1
3
                           /ADD PH INFO TO PARA HORD
5
         TAD SPARA
         DCA SPARA
         TAD PHP
8
3
         TAD PAP
                          ISET PA
                           /_ATCH PH.PW
8
         PHW
S WB,
                          /HAIT FOR RELAYS TO SETTLE
         ISZ ASET
         J4P 43
S WZ,
         ISZ ASET
         JAP 42
5
         SLA SLL
TRIG
3
                          /PULSE TRIGGER
8
         TOFL
S AE,
                          ITEST FLAG
         JAP 45
         SCEPO
Š
                          /SLEAR FLAG, BATE DRIVER
3
         IAC
                           /SHECK INPUT
                           /IS A/D NEARLY PEGGED.
3
         SYA
                           /YES, ADD OFFSET
         JYP OFF
8
         JAP 4D
                           /NJ, INCREASE PH
3
8 APHP, 1400
                           PATRICE HEL
S AIVP. 1401
S AUNIT. 7400
                           /I/V POINTER
                           /JNITS POINTER
                           /ADDRESS OF ADD GAIN ROUTINE
S OGAIN, JAIN
 /SUBPROGRAM GAIN
S /THIS SURPROGRAM INCREASES GAIN OF I/V AMP
8
 GAIN, CLA CLL
TAD IVP
5
                           /I/V POINTER
                           /SET I/V INSTRUCTION
8
         PAL
                           /IS MAX GAIN APPLIED.
3
         SZL
         JAP 1 PTS.
                           /YES,GJ TELL
$
3
         DCA IVP
                           JUD, CONTINUE
```

```
TAD SAPT
                           /ADD 1 TO GAIN POINTER /SET PARA HORD TO PROPER SAIN VALUE
 m52.
         DCA SPARA
3
3
         TAD IVP
3
         4ND 40077
                           /ERASE DUMMY POINTER
                           /_ATCH, OFFSET=01 I/V
5
         -IVO
                           /4AIT FOR RELAYS TO SETTLE
S WC,
         IST ASET
         JAP 45
3
 WX.
         ISZ ASET
         JAP 4X
         SLA
         TRIG
                           /PULSE TRIGGER
         TOFL
S AF.
                           ITEST PLAG
         JMP AF
         SCFPD
                           /JLEAR FLAG, GATE DRIVER
5
                           /CHECK INPUT
3
         IAC
         SVA
                           /IS A/D NEARLY PEGGED.
 PTA.
         JYP OFF
                           /YES ADD OFFSET
         VIAE QPL
                           /NO, INCREASE I/V GAIN
S GAPT. J004
S M0077. J077
                           /3AIN POINTER TO PARA HORD
S PTC. FALTI
                           / ARNING ROUTINE 1
S /SUBPROGRAM OFFSET
 /THIS SUBPROGRAM APPLIES OFFSET CURRENT
5
8
S OFF.
         SLA SLL
         TAD AU11
                           /SET UNITS INCREMENTER
S
         DCA J11
         TAD IVP
                           /BRING IN CURRENT SCALE
9
S
         4ND N0077
                           /MASK DUMMY POINTER
                           /STORE
9
         DCA IVP
         TAD IVP
5
                           /SET UP OFFSET CURRENT DECADE SCALE
S
         ATL
         RTL
S
                           /SET I/V. OFFSET DECADE
5
         TAD IVP
8
         DCA TVP
                           /STORE
         SLA SLL
ISZ J11
3
 AG,
                           /IS MAXIMUM OFFSET APPLIED.
9
         JAP AAI
                           JUNITHCE ,CVL
         JAP I PTD
                           THE DEFAULT OFFSET POINTER TO PARA HORD
Š
 AAT
         TAD SPARA
DCA SPARA
                           /ADD IN PARA WORD
3
                           FET OFFSET UNITS POINTER
         TAD 47420
9
3
         TAN JUITS
                           /ADD PREVIOUS OFFSET
8
         DCA JVITS
2
         TAD IVP
                           /SET OFFSET! I/V WORD
         TAD JVITS
S
                           /_ATCH OFFSET, 1/V
/AAIT FOR RELAYS TO SETTLE
8
         -IVO
         ISZ ASET
 WD.
         JAP 4D
3
 WJ.
         ISZ ASET
         LL APL
         IST ASET
3
         LE OFL
         SLA SLL
                           /PULSE TRIGGER
         TRIG
         TOFL
JMP AH
3
 AH.
                           ITEST FLAG
3
         SCFPO
                           /CLEAR FLAG, GATE DRIVER
3
3
         IAC
                           JOHECK INPUT
```

```
SMA
JMP AG
                              /A/D PEGGED. /YES, ADD MORE OFFSET
3
8
          JYP AY
S XUPT,
                              JOFFSET POINTER TO PARA HORD
          J 220
                              /-11
/JVITS INCREMENTER
S AU11, 7765
S U11.
          3100
         FALT2
S PTD.
8 N0077,5077
8 V7400.7400
S AN,
          SLA SLL
          4917E(1,48)
71
48
          FORMAT(/, 1, 1)
          ISTI <= 0
          JSTI <= 0
614
          IF(MT)728.68.233
44
          00 656 1=1,50
          SLA SLL
JMS DPS44
$
3
          CLA SLL
3
666
          SONTINUE
S m674, SLA SLL
3
          JUCA CPL
3
          JUCT SML
          SLA SLL
30 TO 162
3
          READ(1,67) J
FORMAT(!RESTART=0,RECORD==18',15)
162
          IF(J)163,69,69
          READ(1,154)J
FORMAT('FIRST BLDGK:',15)
163
164
          VARA(1)=1
          VARA(2)=10
          GALL HTAPE(1, J, 374, DARY)
30 TO 69
TLCT ENITLORBUS &
S /THIS SUBROUTINE PLOTS DATA
5 /
S TOUT, 0000
          SLA SLL
          READ(1,1)UPD, R., Rd
FORMAT('YMAX!', E15.8, /, 'XMIN: ', E16.8, /, 'XMAX!', E16.8)
1
          E06.5/(HF)DC_A=PF
          RL=A_DG(RL)/2.303
          YSCA. -2047./UPD
432
          #SCA_=2047./(34-3_)
00 3 J=1.1
          X=DARY(1,J)
          (L.S)YFAD=Y
          IF(Y-UPO)434,434,5
          X=AL33(X)/2.303
434
433
          PYEYOYSCAL
          Px=(x-R_)+x5C4.
1y=1=1x(PY)
          [X=[F]X(PX)
          SALL XYST(IX, IY)
          CALL XYEND
          SONTINUE
SLA SLL
8
          TLCT ! AML
```

```
S /SUBROJTINE OPSHY
S /THIS SUBROUTIVE ALLOWS THE SELECTION OF THE DATA OPTION
S OPSHN. J000
         SLA SLL
5
233
         49173(1.994)J
994
         FORMAT(10)
         IF(J3)654,665,565
664
         TEAD(1,201)TI3°T
         FORMAT( INTERVAL ( MICROSECS) : 1.616.8)
201
         DARY(1,1)=T18=T
         T18PT=T19PT/1.36
         SLA SLL
S
5
         JAS STC4
         SLA S_L
30 TO 729
8
665
         READ(1,51) DARY(1,1)
51
         FORMAT('? = ', 516.8)
728
         47173(1,729)J,
729
         FORMAT('1', 10)
         SLA SLL
4SF
S KIH.
         JYP (IM
         448
Š
3
         TLS
3
         SIA
         DCA 4LD
5
         TAD 4_D
TAD (0317
9
                            13
3
                            /JUTPUT ERROR.
5
         SVA
         JMP DJER
SLA SLL
3
                            /YES, 30
5
3
         TAD 4LD
8
         TAD (0303
3
         SVA
                            /CHANGE PW.
5
                            /YES, 30
         JMP SPW
3
         SLA SLL
3
         TAD 4_D
         TAD (0335
                            1
5
3
         SZA
         JAP (18
3
5
         SLA SLL
         IF(J3)674,162,162
         SLA SLL
$
  KTS.
         TAD 4LD
         TAD (0316
9
         SZA
$
         JAP (TT
JAP 1 028HA
  KTT.
         SLA SLL
         TAD 4_D
3
         TAD (0322
Š
         SYA
                            /REREAD R.
3
         J4P =233
                            /YES. 30
         SLA SLL
3
         TAD 4.D
3
         TAD (0323
                            15
                            /TAKE STANDARD.
3
         AKE
5
         JAP STNO
                            /YES, 30
/YO, TAKE DATA
         IF(J2)667,668,569
```

```
S =667. J45 4V10
         SLA SLL
         30 T3 669
         LEBAN ENL
669
         DARY(2.1)=495((S-3CELL)/S)
         30 TO 728
S OUER,
         491TE(1,477)DARY(2,1)
         FORMAT(/, 'ER = ', 316.8)
30 TO 729
S CPW.
         SLA SLL
         47=1
         JAP SUL
         CLA SLL
S STND,
         1F(J2)670,671,571
S =670,
                         /30 AVERAGE 1000 SINGLE SCANS
         J45 4V10
         SLA SLL
         30 TO 672
3 m671.
         JYS AVERS
         S=RCELL
672
         30 TO 728
S HLD.
        5000
TLCA ENITLORBURY &
S /THIS SUBROUTINE JUST PICKS UP SOME VALUES
5 /
S AOUT. 3100
152
         XMAX=DARY(2,1)
         DO 64 J=1.1
         IF(X4AX-DARY(2,J))55,64,64
         (L,S)YFAG=XAPX
65
64
         CONTINUE
         4917=(1,56)XMAX
66
         FORMAT(/, 'MAX ER = ', E16.6)
         SLA SLL
3
3
         TLCA I APL
5 /
S /SUBPROGRAM SETCLK
S /THIS PROGRAM RETS THE SLOCK FROM THE PERIOD INPUT FROM THE TTY
S /IT CONTAINS ITS OWN FIX ROUTINE TO INSURE AGAINST
S /FORTRAY FIX ERRORS
S JANY TIME INTERVAL FROM 1 MICROSECOND TO 40000 SECONDS
S /MAY BE INPUT
9 /
S STCK, JOOO
S SLA SLL
3
         TAD ATMS
                          /SET UP PRESET MODE INDICATOR
3
         DCA THB
         TAD SCT2
                          ISET UP TB POINTER
5
$
202
         DCA SETS
         IF(T13PT-.004)204,203,203
                          /CLOCK PRESET MODE INDICATOR
$ =203, TAD THB
$ TAD T1030
         DCA THB
5
         TIBPT=TI3PT/10.
S
         ISZ SCT3
                          VALL DINE
         145 =505
8
                          /NJ, RETURN
 204
         TIBPT=TI3PT-1000000.
```

```
1
9 /SPECIA_ FIX ROUTINE FOR CLOCK SETUP
1
5
        SLA SLL
        TAD ET13PT
DCA POT1
                          /BRING UP EXPONENT, UPPER MANTISSA
$
        STC ADD
                          /ZERD 458 HORD
         TAD POT1
         440 43770
                          /4454 SIGN, MANTISSA
         RTF
                          /RIGHT JUSTIFY EXPONENT
        RAR
8
        TAD K7620
SLL SMA
                          /SET EXPONENT
                          ISET STALING POINTER
8
        DCA KONT
        TAD POT1
                          FRASE ALL BUT UPPER MANTISSA
3
        AND 40007
        RTF
                          /_EFT JUSTIFY
        ATR
        DCA POT1
                          /37173 IN FIRST COMPLETE MANTISSA WORD
        TAD ETTEPTE
$
                          /MASK LOWER 3 BITS /RIGHT JUSTIFY
         440 47773
         RTF
        RAF
S SCT4, TAD POT1
                          ISET COMPLETE WORD
        ISZ KPNT
                          /ALL STALED.
                          /NO, STALE
        SYP
                          /YES, 30 ON TO NEXT SECTION /SCALE BY 2
3
         JAP SCTS
         PAL
        DCA POT1
                          /HILL CONTAIN COMPLETED VALUE
         TAD POT2
                          /SCALE BY 2
        RAL
         STC ADD
5
         J4P - 5CT4
                          VRETURN FOR NEXT SCALING
                          /PRESET MODE INDICATOR
S ATMB, 5400
S TMB. J100
$ 71000.1000
                          /SLOCK TB INCREMENTER
S SCT2, 7771
                          /TB POINTER
$ SCT3. 1000
S POT1, 3000
S POT2, 3100
S N3770.3770
S x7600.7600
S xPNT. Jn00
S N0007. J007
9 N7770,7770
S SCTS. SLA SLL
        TAD THE
                          ISELECTED TO: PRESET MODE
         _CTR_
SLA JLL
                          /_DAD CONTROL RESISTER
3
8
        STC GAT
                          SETS JP EXACT INTERVAL
5
        CIA
                          /_OAD PRESET REGISTER
         LPSET
5
         JMP I STCK
5 /
S /THIS IS THE ROUTINE WHICH TAKES 1000 MEASUREMENTS AT AN INPUT
$ /INTERVAL APART AND AVERAGES THEM
9 /
        PAGE
$ AV10. . . 00
        SLA SLL
DCA TLSB
•
                          /ZERO LEAST SIGNIFICANT BITS
3
                          JZERD MOST SIGNIFICANT BITS
3
         DCA THS3
```

```
1-512
         TAD (7000
         DCA ASET
š xo.
         TRIG
                             /PULSE
         CLOFE
                             /CLEAR CLOCK FLASS
                             /SLEAR COMPBIP FLAG
         SCFP
         TOFL
3
  XR.
          JAP KR
          SLCIS
                             /SLEAR CLOCK, INITIALIZE COUNTER
                             /SLEAR COMPBIP FLAG, GATE DRIVER
$
         SCFPD
         TAD TLS3
5
         DCA TESS
8
         PAL
8
         TAD THES
         DCA TYS3
ISZ ASET
8
8
         SKP
          JYP KT
         SKPOF
  XS,
                             /HAIT FOR CLOCK FLAG
          JMP KS
                             /RETURN FOR MORE
          JYP KO
S TLSB. JOOG
S THSB,
         -000
SLA SLL
S XT,
8
         TAD TLS3
3
          YOL
3
         TAD THS3
$
         DVI
         1000
                             ITHE DIVISOR, 512
Š
         TAD (4030
         CLL
3
5
         DCA #JSTIK
3
         ACP
$
         TAD (4000
3
         DCA RISTIK
         Z=FLOAT(ISTIK)
         Z2=F_OAT(JSTI4)
          40=512
3
         TAD SPARA
5
         JMS DCODE
5
         SLA SLL
         #7175(1,21)RCE_L
FORMAT(/,'9 = ',516.8,/)
21
         DARY(2.1)=RCEL=:
SLA SLL
$
         JAP I AV10
S /THIS SECTION OUTPUTS THE DATA STORED ON TAPE
S /AND FINDS THE MAXIMUM, MINIMUM, AND AVERAGE ERRORS OF THAT DATA.
S /
502
         READ(1,503)J
         FORMAT( 'MAX-MINEL, AVERAGE=0, OUTPJT=-11', 15)
503
         IF(J)504,505,539
504
         30 537 J=1.1
          ARITE(3,509) DARY(1,J), DARY(2,J)
         FORMAT(5x,'x = ',=16.8,5x,'ER = ',E16.8)
50 A
         SUNITHCE
507
         30 TO 520
505
         Tores.
         10.506 J=1.1
(L.S) YPAO+TCT=TOT
504
         CONTINUE
         TOT=TOT/FLDAT(I)
```

```
107(256.1)ETTP4
522
         FORMAT(/, !AVERAGE = !,316.8)
         30 TO 520
         (1,5)YFAG=XAPX
509
         XYINODARY(2,1)
         (1,1)YFAGOXAPY
         YMIN=DARY(1,1)
         DO 519 Je2.1
510
         1F(X44X-049Y(2.J))511,512,512
         (L,S)YFAO=XAPX
511
         (L,I)YFAD=XAPY
         30 TO 519
         IF(DARY(2, J) - X414) 513, 519, 519
912
         (L,S)YFADENIPK
513
         YMIN=DARY(1,J)
519
         CONTINUE
         ARITE(1.514)XYAX,YYAX,XMIN.YMIN
         FORMAT(/, 144X ER = 1, E16.8, 1 AT X = 1, E16.8, /, 1MIN ER = 1, E16.8,
514
     +1 AT X = 1,E16.5)
520
         READ(1,521)J
521
         FORMAT( ')PT[ONS=1, RESTART=01', 15)
         IF(J)69.69.502
S /THIS ROUTINE PERFORMS THE AVERAGE OF AN INPUT NUMBER OF SCANS
8 /
S AVERG. J100
S AU, SLA SLL
         47=-1
         SLA ŠLL
                          /SET UP DIVISOR
3
         TAD GKD
3
         PAEV ACC
                          /SET UP # OF POINTS POINTER
5
         TAD EKD
         CIA
5
         DEA PBAR
                          /SLEAR LSB WORD
3
         DCA V_S3
         DCA NYSB
                          /CLEAR MSB WORD
S AH,
         SLA SLL
                          /PULSE TRIGGER
         DIFT
3
S AX.
         TOFL
3
         XA QPL
         SCFPO
                          /SLEAR FLAG, GATE DRIVER
3
         TAD NESS
                          /ADD IN LSBS
         DCA NLSE
5
         ZAL
3
                          /SET UP OVERFLOW
                          /ADD IN HSBS
3
         TAD NYSE
         DCA NYSB
         IST PBAR
                          VALL DONE.
                          /NO. RETURN FOR NEXT SCAN
         LA PPL
S
                          /YES, BET SET TO AVERAGE /_DD WORD
3
         TAD VLSE
         496
         TAD N458
$
         DVI
                          /DIVIDE
                          ITHE DIVISOR
S NBAR,
         3100
$
         TAD 34000
         SLL
5
                          ISTORE REMAINDER
         DCA =JSTIK
                          /_DAD DIVIDEND INTO AC
3
         ACP
         SVA
                          /JNDERRANGED.
                          /YES. RESET /NO, STORE
5
         J4P 1 K11
5
         DCA VALJ
3
         TAD VALU
5
         IAC
```

```
SVA
                           /DVERRANGED.
         J4P 1 K11
                           MES, RESET
5
         CLA SLL
                           /ND. CONTINUE
         TAD VALJ
S
         TAR 34000
                           JUHANSE TO 2'S COMPLIMENT
5
         SLL
9
         DCA BISTIK
         Z#FLDAT(ISTIK)
         ZZ=F_OAT(JSTIK)
         SLA SLL
TAD SPARA
                           /PUT PARA HORD IN AC
Š
                           /30 TO DECODE SUBROUTINE WITH PARA WORD IN AC
S
         JAS I BCODE
         SLA SLL
         J4P =72
S VALU. 3000
S K11.
         #11
                           ITHE LEAST SIGNIFICANT BIT WORD
S NLSB, JOOD
S NMSB. Jaga
                           ITHE MOST SIGNIFICANT BIT WORD
S PBAR, 2000
                           /AVERAGE NUMBER POINTER
S C4000,4380
S BCODE, DONDE
                           /PARA HORD DECODE SUBROUTINE
         471TE(1,13)ES,70E_6
  72
         FORMAT(/, 'AV! V = ', E12.6, /, 4X. '? = ', E12.6)
  13
5
         JYP 1 AVERS
S /
S /SUBPROGRAM FA_T1
S /THIS SUBPROGRAM INDICATES THAT CELL COND IS VERY LOW
S FALTINGLA GUL
         ARITE(1,14)
FORMAT('ERROR 1')
14
         JMP 1 PAF1
S PAFI, AV
S /SUBPROGRAM FA_T2
S /THIS SUBPROGRAM INDICATES CELL COND TOO HIGH
9 /
S FALTZ, SLA SLL
        HATTE(1,15)
FORMAT(!ERROR 2')
15
         3_A 3LL
JMP #614
S #17.
S /SUBROJTINE DOODE
S /THIS SURROUTINE DECODES PARAMETER WORDS
S /COMPUTES PH.RV.XUNI.ES.RCE_L.CCELL
S /IT MUST BE ENTERED AITH PARA HORD IN AC
S /PARA HORD FORMAT:
                           FIRST 4 BITS (MS3) ARE FOR REMAINDER OF AVERAGE
                           NEXT 4 BITS FOR JNITS VALUE (BINARY 1-10)
NEXT 2 BITS FOR GAIN INFO (BINARY VALUE 0-3)
9 /
                           VEXT 2 BITS FOR PH INFO (BINARY 1-3)
S /
S DCODE, 1300
        DCA SPPJ
                          ISTORE PARA WORD
         . D=INCX
         P4=.005
         ₹V=10000.
9
         TAD SOPJ
         AND 45K1
                           /MASK ALL BUT PH BITS
S DC1.
        DOA SPP4
         TAD SPPA
```

```
SYA
                           /ALLSET.
5
         146 0ES
                           /FES, CONTINUE
         SLA SLL
                           /NO. ADJUST
         34=P4-10.
                           /400 -1
         APC
                           NCITARATI TXAN EU TECL
5
         TAD SPP4
         J4P 301
S MSK1. 1003
                           / HASK ALL BUT PH BITS
        TAD SOPJ
S DC2.
         AND 45K2
                           /4454 ALL BUT GAIN BITS
S DC3.
         DCA SPP4
         TAD SPP#
         SYA
                           /ALL SET.
                           TYES, CONTINUE
9
         JMP 054
5
         SLA SLL
                           TRULDA .OF
         AVERVATO.
         TAD 307774
         TAD SPP4
                           NCITAFATI TXAN CU TARY
         JMP 363
3
                           /4454 FOR ALL BUT GAIN BITS
5 MSK2. 0314
SDC7774.7774
                           /3AIN DEINCREMENTER
S DC4.
        TAD SPPJ
                           /MASK ALL BUT OFFSET UNITS BITS
         AND 45K3
S DC5,
         DCA SPPH
         TAD SPP4
3
         SVA
                           /ALL SET.
                           /YES, CONTINUE /NO, ADJUST
         JMP 006
SLA SLL
5
3
         XUNI=XUNI+1.
S
         TAD 007760
         TAD SPP4
JMP 005
8
                           /SET UP FOR NEXT ITERATION
S MSK3, 1360
                           /4ASK FOR ALL BUT UNITS BITS
SDC7760.7760
                           /JNITS DEINCREMENTER
        SLA SLL
S DC6.
         ESL=172+(12.5/4075.)+5.25)/FLOAT(KD)
ES=(Z+(12.5/4076.)+6.25)+ESL
  80
         RCEL_=P4/((ES/RV)+((10.0XUNI)/RV))
         JAP 1 DOODS
S
         SVD
```

CBTCLH PROGRAM LISTING

```
S /PROGRAM NAME!
                           CSTCLH.FT
 /FORTRAN-SABRI KEITH J. CASERTA
                                              5/17/74
S /THIS IS THE TEST PROGRAM AND EXERCISER ROUTINE FOR THE ENTIRE
$ /COMPBIP SYSTEM. IT CONTAINS DIAGNOSTICS AND ERROR CODES TO
S / PERMIT DETERMINATION OF MARDHARE MALFUNCTIONS AS WELL AS
S /PERIODIC INSTRUMENTAL ADJUSTMENT.
S /IT BEGINS AITH AN INITIAL 3 SCAN OF THE SYSTEM AFTER THE CHOSEN S /PULSE AIDTH IS INPUT. TEMPERATURE IS ALSO MEASURED. IF A FLAG
S PERROR SHOULD DOCUR IN EITHER CIRCUIT DURING THE PRELIMINARY SCAN,
S THE PROGRAM AUTOMATICALLY ENTERS A CONTINUOUS FLAG-CHECK ROUTINE.
S /IF THE PRELIMINARY SCAN IS COMPLETED SUCCESSFULLY, THE VALUES OF THE
S /CIRCUIT PARAMETERS ARE DUTPUT.
S /THE OPTIONS AVAILABLE AT THIS TIME!
         1) AVERAGE 100 CONDUCTANCE SCANS FOLLOWING EACH "G" TYPED CORESTART THIS PROGRAM
5 /
S
         3) CONTINUOUSLY PULSE THE CELL AT PW X 10 INTERVALS
$
         4) TEST THE CONDUCTANCE CONVERSION SYSTEM
S
         5) TEST BOTH CONDUCTANCE AND TEMPERATURE CONVERSION SYSTEMS 5) AVERS ED TEMPERATURE POINTS FOLLOWING EACH "G" TYPED
S
S
         7) TEST THE TEMPERATURE CONVERSION SYSTEM
  VERROR MESSAGES ARE DUTPUT WITH EACH FAILURE.
S
  . VIT BHT CT ATAC TURTLE (6) OFA (1)
9
S
                  SCFP
                                    /CLEAR COND FLAG, CLEAR PI ENABLE
S
         JPDE:
                           6321
                                    /GATE CONDUCTANCE DRIVER
         Jober
                           5322
5
                  3COR
         Jones
                           6523
                                    /CCFP + 3CDR
3
                  SCFPD
                                    /ENABLE COND PROGRAM INTERRUPT
                  ECPI
3
         JPDET
                           5324
                                    /CCFP + GCDR + ECPI
S
         Janes
                  CCFGD
                           5327
                  TOFL
                                    /TEST CONDUCTANCE FLAG
         SKPDF
                           5331
S
S
         JPDE:
                           6132
                                    ITURN OFF SEQUENCE TRIGGER
                  TOST
                                    /TRIGGER SEQUENCE
         JaDe:
3
                           5334
                  TRIG
                                    TEST TEMPERATURE FLAG
S
         SKPD:
                  TTFL
                           5341
                           5342
                                    /LATCH I/V. OFFSET
         Jobes
S
                  _IVO
                                    /LATCH PH, PW
         32057
                           6344
S
                  PHW
                                    /ENABLE TEMP PROGRAM INTERRUPT
S
         Jabe:
                  ETPI
                           5351
                                    /CLEAR TEMP FLAG, PI ENABLE, GATE DRIVER
S
         Jabes
                  STFPG
                           5352
                                    /TRIGGER TEMP A/D CONVERSION
S
                           5354
         3=D=:
                  TTAD
                                    /CTFPG + TTAD
S
         Janes
                  TFPGT
                           5356
                           5351
         Jabe:
                  TIT
                                    /TITRATE
S
                   PSET
                                    /LOAD THE CLOCK PRESET REGISTER
S
         בשתכנ
                           6121
                  SLOL
                                    ICLEAR THE CLOCK
         3505:
S
                           5122
                                    /INITIALIZE THE COUNTER
S
         JPDE:
                  ICNTR
                           6123
5
         J=D=F
                           5124
                                    /CLEAR C.OCK AND INITIALIZE COUNTER
                  SLCIC
                           5125
                                    /LATCH THE COUNTER
         Jone:
S
                  _CNTR
                           5126
                                    FREAD THE COUNTER LATCH
S
         Jabes
                  RCTRL
                                    FREAD THE COUNTER
         32055
8
                  RCVTR
                           5127
                                    /LOAD CONTROL REGISTER
                  CTRL
S
         יבַּק פּנ
                           5131
                                    ISKIP ON OVERFLOA
S
         SKPDF
                  SKPOF
                           6132
                                    /SKIP ON OVERFLOW ERROR
                           5 33
S
         SKPDF
                  SKPDE
                  SLAFĒ
                                    /CLEAR OVERFLOW AND OVERFLOW ERROR FLAGS
         יבחבנ
                           6:34
S
                                    /SKIP ON TIME BASE FLAG
         SKPOF
5
                  SKPTS
                           5135
                                    /SKIP ON TIME BASE ERROR FLAG
S
         SKPD:
                  SKTBE
                           6136
                                    /CLEAR T.R. AND T.B. ERROR FLAGS
S
         Jabe:
                  SLTBE
                           5137
3
         JPDE:
                           7405
                                     /MULTIPLY
                  YUP
         JPDE?
                           7407
                                    /DIVIDE
S
                  DVI
S
         Jabes
                  IMP
                           7411
                                    /NORMALIZE
                                     /SHIFT LEFT
         JPDE:
                           7413
S
                  SHL
                           7415
                                     /ARITHMETIC SHIFT RIGHT
         Jenes
                  ASR
3
                                    /LOGICAL SHIFT RIGHT /LOAD MULTIPLIER QUOTIENT
                           7417
         Jobes
9
                  53
S
         Jone:
                  406
                           7421
         JODES
                           7403
                                    ISTEP COUNTER LOAD FROM MEMORY
5
                  SCL
         Jeder
                           7441
                                    /STEP COUNTER LOAD INTO AC
                  SCA
9
```

```
JoDE:
                  AOP
                           7501
                                    /MQ LOAD INTO AC
                  ERASE
                                    PERASE DISPLAY SCOPE
         Jaber
                           6054
5
                                    /SET SCOPE IN STORE MODE /PH POINTER
2
         Janes
                           6057
                  STORE
5
         PYREA
                  SHP
                           0374
                  SHP
                           0075
                                    /PW POINTER
         PYZEA
         PYPEA
                  140
                           0076
                                    /I/V POINTER
                                    /OFFSET JNITS POINTER /GENERAL POINTER
                           0077
         43574
                  STINL
                           0100
         PYPEA
                  ASET
                                    PARAMETER POINTER
         PYZEA
                  SPARA
                           0101
                                    /INDIRECT ADDRESS IN FIELD 1 POINTER
         48874
                  5000
                           0102
                  SPPH
                           0103
                                    /INDIRECT ADDRESS IN FIELD 1 POINTER
5
         PYZEA
3 /
5 /
S /THE PRELIMINARY SCAN BEGINS
S PNNY,
8
         DCA PHP
                           /SET PH AT 0.01 MSEC
         4T=0
         READ(1,7)PW
7
         FORMATCIAT WHAT PA. (MSEC): ",E12.8)
         XX=.001
8
         XX=XX+10.
         IF(P4-XX)11,11,10
         SLA SLL
S =10.
         TAD PAP
                           ISET DA TO PROPER VALUE
                           /INCREMENT PW
         TAD (0130
3
         DCA PMP
         J4P =8
S =11.
         SLA SEL
         DCA SPARA
         TAD APHP
                           ISET PH POINTER
         DCA PHP
5
S
         TAD AIVP
                           JSET I/V POINTER
         DCA IVP
         TAD AUNIT
                           ISET UNITS POINTER
         DCA JNITS
         TAD PHP
S
                           /SET CLOCK FOR PA X 10 FOR FLAG CHECK
3
         RTF
         RTF
S
Š
         RTF
S
         IAC
8
         IAC
         LCTR_
S_A SLL
                           /_DAD THE CLOCK CONTROL REGISTER
S
5
                           /INITIALLY CLEAR THE CONDUCTANCE FLAG
         SCFP
S AAJ.
         IAC
                           /_ATCH OFFSET=0; I/V: 1 MA=10V
3
         -IVO
         ISZ ASET
                           MAIT FOR RELAYS TO SETTLE
S WA,
         IST ASET
S WY,
         JAP 44
         SLA SLL
TAD SHP
 AD,
                           /PH POINTER
                           /SET PH INSTRUCTION /MAX PH YET.
         RAL
         SZL
                           /YES, INCREASE GAIN OF I/V
         JAP I G34IN
         DCA PHP
                           JUNITYCS, CV
                           /4DD 1
         IAC
5
         TAD SPARA
                           JADD PH INFO TO PARA WORD
9
         DOA SPARA
S
         TAD PHP
S
```

```
SET PA
5
         TAD PHP
                           /_ATCH PH.PH
/AAIT FOR RELAYS TO SETTLE
3
         -PHH
S wB,
         157 45ET
3
         EL APL
         ISZ ASET
S WZ,
         140 4Z
2
         SLA SLL
3
         SLCL
                           ISLEAR THE CLOCK
         SLTBS
2
                           /CLEAR TIME BASE AND ERROR FLAGS
                           /PULSE TRIGGER
3
         DIFT
         TOFL
S AE,
         SKP
         JAP (TC1
3
         SKPTE
                           /SKIP ON TIME BASE
8
9
         JYP 4E
$
         JMS FALTS
                           /30 INDICATE FLAS ERROR
         JYP SKTC
                           /30 TO CONTINUOUS FLAG CHECK ROUTINE
         SCFPÖ
                           /SLEAR FLAG, GATE DRIVER
S KTC1.
         IAC
                           JCHECK INPUT
                           /IS A/D NEARLY PEGGED.
8
         SYA
                           TYES, ADD OFFSET
$
         JMP OFF
                           /NO. INCREASE PH
         JAP AD
S APHP. 1400
                           /PH POINTER
S ALVP. 401
                           /I/V POINTER
S AUNIT, 7400
                           /JNITS POINTER
S QGAIN, JAIN
                           /ADDRESS OF ADD SAIN ROUTINE
S /SUBPROGRAM GAIN
S /THIS SUBPROGRAM INCREASES GAIN OF I/V AMP
8 /
S GAIN, C.A C.L
                           /I/V POINTER
$
         TAD IVP
                           /SET I/V INSTRUCTION
         ZAL
                           /IS MAX GAIN APPLIED.
         SZL
         JMP I PTS
                           /YES,33 TELL
         DCA IVP
                           JUNITHCC, CV
                           /ADD 1 TO GAIN POINTER /SET PARA HORD TO PROPER GAIN VALUE
         TAD SAPT
5 =52,
         TAD SPARA
3
         DCA SPARA
5
         TAD IVP
         AND 40077
                           FRASE DUMMY POINTER
8
                           /_ATCH,OFFSET=0; I/V
/AAIT FOR RELAYS TO SETTLE
5
         -IVO
S WC.
         IST ASET
         JYP 4C
5
         IST ASET
S WX,
5
         JYP 4X
         S-A
5
                           /SLEAR THE GLOCK
$
         3_CL
                           /CLEAR TIME BASE AND ERROR FLAGS
$
         CLTBE
         TRIG
                           / PULSE TRIGGER
5
  AF,
         TOFL
                           ITEST FLAG
5
         34P
         JAP (TC2
5
                           /SKIP ON TIME BASE FLAG
Š
         STATE
S
         JAP 4F
         JMS FALTS
                           /30 INDICATE FLAS ERROR
                           /30 TO CONTINUOUS FLAG CHECK ROUTINE /SLEAR FLAG, GATE DRIVER
         JYP SKTS
S KTC2.
         SCFPS
         IAC
                           JOHECK INPUT
                           /15 A/D NEARLY PEGGED.
         SYA
         JHP DEF
                           IVES ADD OFFSET
S PTA.
         JYP BAIN
                           /YJ, INCREASE I/V GAIN
```

```
S GAPT. JOG4
                           /34IN POINTER TO PARA HORD
$ M0077, .077
                            /4454
S PTC. FALTI
                           /AARVING ROUTINE 1
3 /
S /SUBPROGRAM OFFSET
S /THIS SUBPROGRAM APPLIES OFFSET CURRENT
S OFF.
         SLA SLL
         TAD (7765
                           /SET UNITS INCREMENTER
5
         DCA J11
TAD IVP
                           /BRING IN CURRENT SCALE
Š
         AND (0077
                           /4454 DUMMY POINTER
                           1STORE
         DCA IVP
$
3
         TAD IVP
                           /SET UP OFFSET CURRENT DECADE SCALE
3
         RTL
3
         PTL
5
         TAD IVP
                           /SET I/V. OFFSET DECADE
                           /STORE
$
         DCA IVP
S AG,
         SLA SLL
         ISZ J11
JMP AAI
                           /IS MAXIMUM OFFSET APPLIED.
2
                           IND, CONTINUE
         JAP FALTS
02001 NAT
                           /YES, TELL DEFAULT /SET OFFSET POINTER TO PARA WORD
9
 AAI
         TAD SPARA
                           /ADD IN PARA WORD
S
         DCA SPARA
         TAD (7430
                           /SET OFFSET UNITS POINTER
5
         TAD JUSTS
                           /ADD PREVIOUS OFFSET
3
S
         DCA JUITS
         TAD IVP
S
Š
         TAD JAITS
                           /SET DFFSET! I/V WORD
                           /_ATCH OFFSET, 1/V
/AAIT FOR RELAYS TO SETTLE
         -1V0
157 45ET
S
Š wD,
5
         JAP 4D
         IST ASET
S HJ,
3
         LE AFL
         ISZ ASET
 WU,
2
         SLA SLL
SLCL
5
                           /CLEAR THE CLOCK
Š
         CTBE
TRIG
                           /OLEAR TIME BASE AND ERROR FLAGS
5
3
5
 AH,
         TOFL
                           /TEST FLAG
         SKP
         JYP CTC3
$
         STAS
                           ISKIP ON TIME BASE FLAG
S
S
         LA APL
         JYS FALTS
                           /30 INDICATE A FLAG ERROR
5
         JYP SKTC
                           /30 TO CONTINUOUS FLAG CHECK ROUTINE
         SCFPD
                           /CLEAR FLAG, GATE DRIVER
S KTC3.
                           /CHECK INPUT /4/D PEGGED.
         IAC
8
S
         SYA
S
         JYP 43
                           /YES, ADD MORE OFFSET
         SKP
S U11.
         1200
                           /JVITS INCREMENTER
9
  BEGIN TO SUTPUT THE DATA FROM THE PRELIMINARY SCAN
8
5
         SLA SEL
8
S
         STFP3
                           /CLEAR TEMP FLAG INITIALLY
         SLA SLL
$
         DCA ASET
                           /ZERD T FLAG CHECK POINTER
3
9
         TTAD
                           /TRIBGER TEMP A/D
```

```
SECL
SETBS
                           /CLEAR THE CLOCK /CLEAR THE TIME BASE AND ERROR FLAGS
5
Š
                          /PULSE TRIGGER
/TEST FLAG
         TRIG
3
S AP,
         TOFL
         SKP
Š
         JAP 4TC4
3
         SCPTE
                           ISKIP ON TIME BASE FLAG
         JYP AP
3
S
         JYS FALTS
                           /30 INDICATE A FLAG ERROR
                           /30 TO CONTINUOUS FLAG CHECK ROUTINE
         STYE SYTS
S
                           CLEAR FLAG, GATE DRIVER
S KTC4.
         CCFPD
                           /CHANGE TO 2'S COMPLIMENT
         TAD (4000
         JLL
DCA =ITORE
S
5
         Z=FLJAT(ITJRE)
3
         SLA SLL
                           /PUT PARA WORD IN AC
9
         TAD SPARA
                           /30 TO DECODE ROJTINE WITH PARA WORD IN AC
3
         J45 DCODE
3
         SLA SLL
         TTFL
                           ITEST TEMP FLAG
S XLZ.
$
         SKP
5
         JYP (TC5
8
         ISZ ASET
5
         JYP XLZ
         JAS FALTS
                          /30 INDICATE A T FLAG ERROR
                           /30 TO CONTINUOUS FLAG CHECK ROUTINE
S
         JMP SKTS
 KTC5.
         STFP3
                          /CLEAR FLAG, GATE DRIVER
3
3
         TAN (4033
8
5
         DEA #170RE
         Z=FLJAT(ITORE)
         T=Z+(10./4096.)+3.
 JOUTPUT CIRCUIT PARAMETERS
S/
71
         VF, INLX, HG(E, 1) ETIFL
         FORMAT( ) PH = 1,E10.4,/, UNITS = 1,E10.4,/, 'RV = ',E10.4)
  3
         #RITE(1.4) = S. ROELL - T. FORMAT('ES = ',E12.6,/,'TEMP = ',E12.6,/)
         IF(MT)730,728,730
614
5 /
S /
S JOPTION ROUTINE TO SELECT TESTING OPTION
5 /
S
728
         421TE(1,729)
         FORMAT(/, IDOTIONS: 1) AVERAGE 100 G SCANSI,/,9X, 12) RESTARTI,/,9X,
729
     +13)=11L5=1,7,9x,14)3 CONV TEST1,7,9x,15)TEH2-COND TEST1,7,9x,16)AVE
     +RA3E 25 T POINTS',/,9x,'7)T CONV TEST',/)
         SIA SEL
S
S KIH.
         MI> QPL
S
         <29
5
5
         1.5
         TAD (7517
S
         SVA
3
         JAP AJ
         TAD (7777
3
Š
        SVA
         YNVE APL
S
Š
        TAD (7777
         344
3
```

```
JYP STPLS
         TAN (7777
8
         SVA
         JAP SONV
         TAD (7777
         SVA
         JAP TOTT
         TAD (7777
         SVA
         JYP 371
S
         VACT APL
730
         SUPITACE
3 /
S /THIS ROUTINE PERFORMS AVERAGE OF 100 3 SCANS
3
S AU,
         SLA SLL
         4T=1
5
                            /30 HAIT FOR A #3*
         JMS TYP3
3
         JLA SIL
9
         TAD <0144
                            /SET UP DIVISOR OF 100 DECIMAL
         PAER ADD
                            /SET UP # OF POINTS POINTER
         TAD 47634
         DCA PAR
DCA N_SB
                            /CLEAR LSB WORD
         DCA NYSB
CLA CLL
                           /SLEAR MSB WORD
S AW,
                           /PULSE TRIGGER / FEST FLAG
         TRIG
S
         TOFL
S AX,
         JYP AX
S
         CCFPD
                            /SLEAR FLAG, GATE DRIVER
         TAD VESE
                            /ADD IN LSBS
8
         EZ_V ACG
         RAL
                            /SET JP OVERFLOW
                            /ADD IN MSBS
S
         TAD NHS3
S
         SERV ACC
                            /ALL DONE.
         ISZ PBAR
S
                            /NO, RETURN FOR NEXT SCAN
9
         LA PPL
         TAD N.S3
                            IVES, SET SET TO AVERAGE
3
         JCF
                            /_DAD 40 WITH LS3 WORD
9
         EZPV GAT
         DvI
S
                            /DIVIDE
                            /THE DIVISOR /ERASE REMAINDER
S NBAR, JACO
S JA JLL
                            /_DAD DIVIDEND INTO AC
S
         ACP
         SVA
                            /JNDERRANGED.
                            //ES. RESET
         J40 1 K11
S
5
         DOA VALJ
                            /YJ, STORE
Š
         TAD VALJ
         IAC
         SVA
                            /JVERRANGED.
                            /YES, RESET /VO, CONTINUE
         JAP 1 K11
S
S
         TAN VALJ
                            /CHANGE TO 2'S COMPLIMENT
S
         TAD 34033
5
         3_L
         DCA EISTIK
5
         Z#FLJAT(IST14)
         S.A SLL
TAD SPARA
S
                            /JJT PARA WORD IN AC
S
                            /30 TO DECODE SUBROUTINE WITH PARA WORD IN AC
         JAS 1 ROODE
S
         3.A 3.L
JMP #72
S
S
```

```
S K0144, J144
                          /100
$ K7634.7534
                          /-100
$ VALU, 5000
$ K11, #11
S NLSB. 3100
                          ITHE LEAST SIGNIFICANT BIT WORD
                          /THE MOST SIGNIFICANT BIT WORD
S NMSB. J100
                          JAVERASE NUMBER POINTER
 PBAR.
         100
$ C4000,4000
$ BCODE,0000
                          /PARA JORD DECODE SUBROUTINE
  72
         #RITE(1.13)ES.RCE_L
FORMAT(/, 'AV: ES = ', E12.6./.4x, 'RCELL = ', E12.6)
  13
                          /RETURN FOR NEXT RUN
•
         JAP AJ
5 /
S /SUBPROGRAM SKTC
S /THIS SUBPROGRAM CONTINUOUSLY CHECKS THE CONDUCTANCE AND
                         IT IS ENTERED AS THE RESULT OF A FLAG
 STEMPERATURE FLAGS.
Š
  PERROR DURING THE PRELIMINARY SCAN ROUTINE.
                          /SLEAR TEMP FLAG
š
  SKTC. STFP3
         SLA SLL
DSA ASET
                          /ZERO T FLAG TEST POINTER
9
                          /CLEAR THE CONDUCTANCE FLAG
         SCFP
9
         SLCL
                          /SLEAR THE CLOCK
                          /SLEAR THE TIME BASE AND ERROR FLAGS
         SLTBE
         TATE
                          /TRIBBER PULSES
 KTC6. TOFL
                          ITEST CONDUCTANCE FLAG
         SKP
         JMP CTC7
         STANE
                          /SKIP ON TIME BASE FLAG
         JYP (TC6
                          /30 INDICATE G FLAG ERROR /TRISGER TEMP A/D
         JYS FALTS
S KTC7. TTAD
                          ITEST THE TEMP FLAG
S KTC8. TTFL
S
         SKP
S
         JYP SKTC
8
         ISZ ASET
3
         JYP (TCS
                          /30 INDICATE T FLAG ERROR
2
         JYS FALTS
         JYP SKTS
3
$
  /SUBPROGRAM CTPLS
8
  ATHIS SUPPROGRAM ALLOHS CONTINUOUS PULSING OF THE COMPUTERIZED
8
 /CONDUCTABLE SYSTEM AT A PERIOD EQUAL TO 10 X PA
9
$
 CTPLS, JLA JLL
9
5
         TAD PAP
                          /SET TIME BASE TO BE CHOSEN PULSE
5
         RTF
         219
                          /X 10
3
         RTF
         IAC
         IAC
         ISTR_
SLA SLL
                          /_DAD THE CONTROL REGISTER
 CTP1. SLCL
                          ISLEAR THE CLOCK
                          /CLEAR T.B. AND T.B. ERROR FLAGS
         S_TBE
TRIG
                          /PULSE
                          /SKIP ON T.B. FLAG
S CTP2, SCPT3
         JAP STP2
5
5
         JMP STP1
```

```
S /SUBPROGRAM CONV
S THIS SUBPROGRAM ALLOWS CONTINUOUS PULSING AND CONVERSION
S JAND CHECKS FOR FLAG OR ZERO CONVERSION ERRORS IN THE G CIRCUIT
S CONV. SLA SLL
        TAD PAP
3
        RTR
        RTF
        RTF
        IAC
        IAC
S CNV1, SLA SLL
S CNV2. S_CL
         SLTBE
        TRIG
S CNV3, TOFL
        SKP
         JHP SHV4
8
        SKPTE
        JAP SAV3
JAS FALTS
S CNV4. SCFP3
        SZA
         JMP CNV5
5
         JHS FALT4
         JMP SYV1
S CNV5, IAC
        SZA
        JAP SAV1
JAS FALTS
S
         JMP CHV1
5 /
S /SUBPROGRAM TOTT
S /THIS SUBPROGRAM CHECKS BOTH T AND G CONVERSION AND FLAG CIRCUITS
S TOTT, SLA SLL
3
        TAD PAP
5
        RTF
3
        RTF
5
        RTF
S
        IAC
        IAC
S TCC1, JA JLL
                          YZERO TIME INDICATOR
        DCA ASET
S TCC2. SLCL
        SLTBE
SCFP
                          VINITIALLY CLEAR & FLAG
3
        TRIG
5
S TCC3, TOFL
        SKP
         JAP TCC4
5
        STPT3
         JAP TEC3
         JAS FALTS
         JAP TOOL
S TCC4. SCFPD
        SZA
         JMP TCC5
```

```
J45 FALT4
         JAP TOCK
S TCC5. IAC
         SZA
         JYP TCC6
         JYS FALTS
S TCC6, CTFP3
                          VINITIALLY CLEAR T FLAG
         SLA SLL
         TTAD
S TCC7. TTFL
         SKP
         JMP TCC8
         ISZ ASET
3
         JMP TCC7
JMS FALTS
S TCC8, STFP3
         SZA
         JAP TOCA
         JYS FALTS
         J4P T010
S TGC9. IAC
         SZA
         JYP TO10
S JAS FALTS
S TG10, SLA SLL
         JYP TCC1
3 /
S /THIS ROUTINE PERFORMS THE AVERAGE OF 25 T POINTS
5 /
5 0Z1.
         SLA SLL
         TAD (7747
                          /-25
9
         DCA ASET
5
         DCA TLS3
S
         DCA THSE
         J45 TYP3
         STFP3
S 023.
                          /CLEAR TEMP FLAG
         SLA SLL
5
         TTAD
                          /TRIGGER TEMP A/D
        TTFL
3 QZ2.
                          ITEST FLAG
         JYP 3ZZ
3
         STFP3
                          /CLEAR FLAG, GATE DRIVER
         TAD TLS3
3
5
         DCA TESS
         RAL
         ESPT DAT
8
         DCA TYS3
         ISZ ASET
S
3
         TAD T.S3
5
         40L
$
8
         TAD THES
5
         DVI
         J031
         SLA SLL
3
S
         TAD (4000
         DCA EIPOT
         (TC91)TACL7=5
         Es=(Z-(10./4095.)+5.)
         471TE(1,900)ES
900
         FORMAT( TEMP = 1, 12.6)
         JMP 321
```

```
S TLSB. J000
S TMSB. 0000
S /SUBPROGRAM TONV
$ /THIS ROUTINE CHECKS THE TEMPERATURE CONVERSION SYSTEM
  /FOR CONVERSION AND PLAS ERRORS
S TONY, STPP3
S MN1. SLA SLL
                           JINITIALLY CLEAR T FLAG
                           /CLEAR INITIAL TIMING POINTER /TRIGGER TEMP A/O CONVERSION
         DCA ASET
         TTAD
S MN2.
                           ITEST TEMP FLAG
         TTFL
         SKP
         JAP 443
5
8
         IST ASET
         JAB AMS
5
         STFP3
                           /CLEAR T FLAG. GATE DRIVER
S HN3.
         5Z4
         JMP 444
JMS FALTS
5
5
         JMP 445
S HN4.
         IAC
         SZA
         JYP 445
         JAS FALTS
S MN5.
         JYP 4V1
S /SUBPROGRAM FALT1
S /THIS SUBPROGRAM INDICATES THAT CELL COND IS VERY LOW
S /
S FALT1.3LA SLL
         dRITE(1,14)
14
         FORMAT('ERROR 1')
         JYP I PAF1
S PAF1. AV
S /SUBPROGRAM FALTS
S /THIS SUBPROGRAM INDICATES CELL COND TOO HIGH
5
S FALTZIGLA GLL
         491TE(1,15)
15
         FORMAT( ! ERROR 2 ! )
         SLA SLL
        J4P =614
S =17.
S /SUBROJTINE FA_T3
S /THIS SUBPROGRAM INDICATES FLAG ERROR
5 /
S FALTS, JOOD
S SLA SIL
         #RITE(1.740)
         FORMAT('ERROR 3')
CLA CLL
JMP 1 FALTS
740
2
5
S /SUBROJTINE FA_T4
S /THIS SUBPROGRAM INDICATES & ZERO CONVERSION ERROR
S FALT4, 3000
```

```
SLA SLL
ARITE(1.741)
3
741
         FORMAT('ERROR 4')
         JAP I FALTA
  /SUBROJTINE FALTS
 /THIS SUBPROGRAM INDICATES & FULL SCALE CONVERSION ERROR
S FALTS,0000
S SLA SLL
         491TE(1.742)
742
         FORMAT( 'ERROR 5')
         SLA SLL
JMP 1 FALTS
5 /
S /SUBROJTINE FALTS
S /THIS SUBROUTINE INDICATES TEMP A/D FLAG ERROR
5
  FALT6, 1900
         SLA SLL
         4RITE(1,743)
743
         FORMAT( ! ERROR 51)
         SLA SLL
JMP 1 FALTS
S /SUBROJTINE FA_TB
S /THIS SURROUTINE INDICATES T ZERO CONVERSION ERROR
5 /
S FALTS. JOO
         JLA JLL
         431TE(1.744)
744
         FORMAT( TERROR 31)
         S'A SLL
JMP I FALTS
S /SUBROJTINE FA_T9
S /THIS SUBROUTIVE INDICATES T FULL SCALE CONVERSION ERROR
S FALT9, 1200
         SLA SLL
         471TE(1.745)
745
         FORMAT( ! ERROR 9 ! )
         SIA SLL
JMP I FALTS
S /SUBROJINE TYPG
S /THIS SURRJITURE READS THE TTY AND CHECKS FOR A "G"
S TYPG. J100
         SLA SLL
KSF
S AA,
S AS.
                            /KEYBOARD STRUCK YET.
                            /NO. CHECK AGAIN
/YES, READ CHARACTER
         JYP 45
3
8
         448
                            STEFFE NC TI BOUNTER
         1.5
         TAD V7471
                            JSUBTRACT 307
                            /IS IT A "G".
         SZA
         JYP AA
                            /NO. 33 CHECK AGAIN
         SLA SLL
JMP 1 TYPG
                            TYES, RETURN TO MAIN PROGRAM
$ V7471.7471
                            1-307
```

```
S /SUBROJTINE DOODE
S /THIS SUBROUTINE DECODES PARAMETER HORDS
  /COMPUTER PH. RV. XUVI. ES. RCELL. CCELL
  /IT MUST BE ENTERED 41T4 PARA HORD IN AC
S /PARA JORD FORMATE
                           FIRST 4 BITS (MS3) ARE FOR REMAINDER OF AVERAGE
                           VEXT 4 BITS FOR JNITS VALUE (BINARY 1-10)
VEXT 2 BITS FOR JNITS VALUE (BINARY VALUE 0-3)
5 /
3
                           WEXT 2 BITS FOR PH INFO (BINARY 1-3)
3
  DCODE. JOO
                           ISTORE PARA WORD
         DCA SPPJ
         KUNI=0.
         PH=.005
         RV=10000.
8
         TAD SPPJ
                           /MARK ALL BUT PH BITS
         AND 45K1
  DC1.
3
         DCA SPP4
         TAD SPP4
3
         SVA
                           /ALLSET.
                           /YES, CONTINUE /NO, ADJUST
3
         JYP DC2
         SLA SLL
5
         /40D -1
3
         SYA
         TAD SPP4
JMP 001
                           JET UP NEXT ITERATION
S MSK1,
                           /4454 ALL BUT PH BITS
         3303
S DC2.
         TAD SPPJ
                           /HASK ALL BUT GAIN BITS
         AND 45KS
S DC3.
         DCA SPP4
         TAD SPP4
                           /ALL SET.
/YES. CONTINUE
3
         SYA
         JYP DC4
5
5
         CLA SLL
                           /YD, ADJUST
         RV=RV-10
       · TAN 007774
         TAD SPP4
                           MCITAFATI TXAM CU TERN
8
                           / HASK FOR ALL BUT GAIN BITS
5 MSK2. J914
SDC7774.7774
                           /3AIN DEINCREMENTER
S DC4.
         TAD SPPJ
                           /MASK ALL BUT OFFSET UNITS BITS
         AND MSK3
         DCA SPP4
TAD SPP4
S DC5.
3
         SYA
                           /ALL SET.
                           MES. CONTINUE
         JYP DE6
                           TRULDA', CV
3
         SLA SLL
         XJNI=XUNI+1.
3
         TAD 307760
         TAD SPP4
JAP 335
                           /SET UP FOR NEXT ITERATION
                           /MASK FOR ALL BUT UNITS BITS
S MSK3, ,360
SDC7760.7760
                           /JUITS DEINCREMENTER
         SLA SEL
S DC6.
  80
         Es=(Z+(12.5/4076.)+6.25)
         ?CFL_=P4/((ES/?V)+((10.+XUNI)/RV))
         CCEL_=1./RCEL_
TAD SPPJ
                           /RETURN WITH REMAINDER IN AC
5
3
         TAD 007400
                           /MASK ALL BUT REMAINDER 9175
         JAP 1 DOODE
SDC7400.7400
                           /4ASC FOR ALL BUT REMAINDER BITS
         END
```

CBTALR

PROGRAM LISTING

```
S /PROGRAY NAME!
                           CSTALR.FT
S /FORTRAN-SABRI KEITH J. CASERTA 1/31/74
S /THIS IS THE ARRAY ARRANGER FOR COMPUTERIZED CONDUCTANCE SYSTEM DATA
S /WHICH TAKES A TEMP-JOND ARRAY (OF UP TO 500 POINTS FOR
S /DOUBLE PRECISION INCLUDED DATA) AND ARRANGES IT IN ORDER
S JOF INCREASING THERMISTER RESPONSE. IT THEN SELECTS 1 T
8 /INTERVAL 441C4 CORRESPONDS TO THE LARGEST T INTERVAL AND MOVES
S /THROUGH THE ARRAY, AVERAGING ALL T AND G POINTS IN THAT INTERVAL.
S /THE NEW ARRAY CONSISTS OF THE REAL FORTRAN G INFO, AND THE INTEGER
S /TIME INFO
$ /00000PROGRAM WILL RUN DALY IF DOUBLE PRECISION DATA IS TAKENOOOOO S /THE NEW DATA IS HRITTEN 16 BLOCKS BEYOND THE DRIGHT DATA
S /STARTING ADDRESS.
S /
         AFAN, ATADOT NCMMOD
         DIMENSION TCDATA(580), NARA(6)
                           7405
                                     /MULTIPLY
3
         JPDE:
                  YUF
8
         OPDE:
                  DVI
                           7407
                                    /DIVIDE
$
         SPDE
                           7411
                                    /NORMALIZE
                  IMV
5
         Jabe:
                  SHL
                           7413
                                     /SHIFT LEFT
                           7415
                                     /ARITHMETIC SHIFT RIGHT
         JPDE?
9
                  ASR
                                     /LOGICAL SHIFT RIGHT
5
         JPDE:
                  LSR
                           7417
                                     /LOAD MULTIPLIER QUOTIENT
         Jabe:
                  HOL
                            7421
         JaDE:
                           7403
                                     /STEP COUNTER LOAD FROM MEMORY
                  SCL
                           7441
                                     ISTEP COUNTER LOAD INTO AC
         Jabe:
                  SCA
                           7501
         Jade:
                  ADA
                                     /MQ LOAD INTO AC
                           6054
                                     PERASE DISPLAY SCOPE
         SPOEF
                  ERASE
                                    /SET SCOPE IN STORE MODE /PH POINTER
                            6057
5
         JPDE:
                  STORE
         PYZEA
                            0074
                  PHP
                           0075
                                     /PW POINTER
3
         PYZEA
                  -
                                     /I/V POINTER
3
         PYZEA
                  IVP
                            0076
                                     JOFFSET UNITS POINTER
                           0077
2
         PYREA
                  JNITS
                                     /GENERAL POINTER
3
         PYZEA
                  ASET
                            0100
                                     /PARAMETER POINTER
         49574
                            0101
5
                  SPARA
                                    /INDIRECT ADDRESS IN FIELD 1 POINTER
/INDIRECT ADDRESS IN FIELD 1 POINTER
                  SPPU
                           0102
5
         49974
                           0103
                  SPOW
         PYZEA
                           0104
                                     /FORTRAN LOWER MANTISSA POINTER
S
                  PSET
         PYZEA
5 /
5 / S /THE INITIALIZATION SECTION BEGINS HERE
S
S /
         READ(1,100)18L4
         FORMAT (IFIRST BLOCK TO READ! 1,15)
100
         SALL RTAPE(1,13L4,2046,TCDATA)
         IF(NARA(5))310,310,312
310
         431TE(1,311)
         FORMAT(',NO.')
311
         SALL EXIT
312
         ITRV_=NARA(4)
         IPTS=VARA(6)
         IABC
         19=0
         101=0
         102=0
         ITIME=0
         14=0
         11=-2
         157 -TOT
Š
         SKP
S PTOT, STOT
```

```
S /BEGIN TO ORDER THE ARRAY IN DECREASING T
5 /
         SLA SLL
         DO 707 I=1, ITRVL
         1A=14+4
         IB=IA
SLA SLL
5
         TAD BIA
                           /SET ADDRESS OF FIRST T POINT
3
         TAD (0177
5
5
         DCA ASET
9
                           /3DF 1
         6211
                           /BRING IN FIRST T POINT
$
         1500
5
         6201
         DCA SPPU
         IP1=1+1
         00 201 JaIP1.ITRV_
         18=13+4
8
         SLA SLL
TAD =18
                           /SET ADDRESS OF T POINT TO COMPARE
9
         TAD (0177
3
5
         DCA SPARA
Š
         5211
5
         1501
         6201
         DCA SPP4
                           /30 CHECK FOR NECESSARY ORDER REVERSAL
Š
         JAS DEDER
8
         SLA SLL
         SUNTINUE
SUNTINCS
201
707
S /
5 /
S /BEGIN TO SCAN FOR THE MAXIMUM T INTERVAL
3 /
         IAEO
         13=0
         192=1TRV_-1
         JLA SLL
DO 204 1-1.1P2
5
         IA=IA+4
         SLA SLL
S
S
         TAD WIA
                           /SET ADDRESS OF T POINT TO CONSIDER
         TAD (0177
S
         DCA ASET
TAD ASET
S
S
         TAD (0004
DCA SPARA
8
S
         5211
1501
S
         31A
1500
S
                           /SUBTRACT T(N+1) FROM T(N)
3
         6201
         DCA HJ
3
5
         IF(13-J)203,204,204
203
         13=J
204
         SUPLINCE
```

```
$ /
S / S / SEGIN ROUTINE TO AVERAGE ALL: T AND G POINTS WITHIN AN INTERVAL
8 /
         SLA SLL
Š
         DCA IVP
                            /AILL CONTAIN NUMBER OF POINTS SELECTED
         DCA MDIV
$
         DCA PHP
          MPEN
         TOT=3.
          JSTI <= 0
         ISTICED
         15=0
         SLA SLL
TAD (0203
DCA SPARA
$
3
                            /SET ADDRESS OF FIRST T POINT
$
         TAD (0200
         DCA ASET
$
         TAD (0200
         DSA JNITS
JNS TSALS
š
                            /30 CALCULATE FIRST T VALUE (REAL)
8
         TB=(F_04T(18)+10.)/4095.
         SLA SLL
9
         TAD (0177
         DCA SPARA
EXTENTET-TS
8
         DO 237 I=1. TTRVL SLA SLL
8
         TAD (0004
S
         TAD SPARA
3
         DOA SPARA
3
                            /30 CALC NEW T
2
          JAS TOALS
         1F(T-EXTENT)205,205,205
         SLA SLL SML RAR /AS=4000
5211
S =205.
9
         1500
                            /BRING IN CURRENT REMAINDER
Š
         5201
9
         DCA BUSTIK
         ZL=F_OAT(JSTI4)
         SLA SLL SML RAR /AC=4000
ISZ ASET
S
         5211
                            /ARING IN CURRENT G DATA
S
         1500
9
         5201
         DCA WISTIK
8
         Z=FLJAT(ISTIK)
8
         SLA SLL
S
         ISZ ASET
5
         5211
                            /BRING IN CURRENT PARA HORD
Š
         1500
         5201
J48 0000E
S
                            /30 DECODE
         TOT=TOT+CCELL
          42=H2+1
         SLA SLL
ISZ ASET
5
Š
S
         5211
                            /3RING IN T INFO
8
         1500
5
         5201
         TAD PHP
DCA PHP
                            /ADD IN LSB
```

```
ZAL
         TAD PUP
8
                          /ADD IN MSB
         DCA PHP
8
                           /SET UP FOR NEXT POINT
8
         ISZ ASET
         ISZ 401V
JMP =207
                           /INCREMENT DIVISOR
$
S m206, SLA SLL
XMP=FLOAT(MP)
         TOT=TOT/XMP
5
         SLA SLL
5
         TAD STOT
8
         6211
                           ISTORE FIRST WORD OF CALCULATED G
3
         3477
Š
         6201
8
         ISZ JAITS
8
         TAD STOTE
$
         6211
                           ISTORE SECOND G HORD
         3477
         6201
         ISZ JAITS
         TCTY I DAT
         5211
Š
         3477
                           INCH D GRIHT SPOTS
         6201
8
         STIPL SEL
5
         TAD 34P
                          /ADD IN LSB T INFO
         43L
         TAD PHP
                           /ADD IN MSB
Š
         DVI
                           /DIVIDE
8
                           /DIVISOR, SET UP DURING RUN
5
  MDIV.
         3900
         GLA SLL
         ACP
                           /_OAD AVERAGE INTO AC
5
8
         6211
                           /STORE T INFO
3
         3477
5
         5201
         ISZ JNITS
DCA PHP
5
3
         DCA PMP
         DCA MDIV
3
                           /ADD ONE TO NUMBER OF HORDS POINTER
8
         ISZ IVP
         4P=0
         TOT=0.
         EXTENT = EXTENT - [B
         15(12)205,205,205
         SUPITACS
207
         I E = 1
         30 T3 275
S /OUTPUT THE NUMBER OF DATA POINTS SELECTED. THE CHOSEN T INTERVAL.
S /AND WRITE THE ARRANJED ARRAY ONTO TAPE.
5 =208, SLA SLL
         TAD IVP
3
         VARA(4)=1
         4217E(1,101)1,18
         FORMAT(/, 'TOTA : "DINTS. SELECTED! ', 15, /, 'INTERVAL CHOSEN: ', 15)
101
         13LK=18_<+16
         SALL ATAPE(1,13L4,2046,TCDATA)
         SALL EXIT
```

```
SUBROJTINE ORDER
     ITHIS SUBROUTINE COMPARES THE MAGNITUDE OF THO T POINTS,
     /IF THE LARGER IS SECOND TO THE SMALLER IN ARRAY ORDER,
    FEDFAL BHT BVCH __ IN TIN
ARBY BOIV DNA NCITIZORY
                              SIPPLE THE LARGER T POINT SET INTO THE SMALLER'S
Š
8
3
     ORDER. U100
                        SLA SLL
                        TAD SPPJ
5
                       DCA TPPJ
5
                        TAD SPP#
                       DCA TPP#
                        TAD (7764
                                                                       /-12
                       DCA THELV
3
                       SLA SLL
DCA P
8
    37.
                                                                       /ZERO BIT TEST POINTER
                       TAD TPPU
5
                                                                       /SET BIT OF FIRST T TESTED INTO LINK
5
                        PAL
5
                        SZL
                        ISZ P
                                                                       /31T IS ONE, SET P
                        DCA TPPJ
                                                                       ISTORE ROTATED WORD
                        SLA SLL
                       TAD TPP4
$
                                                                       /SET all OF SECOND T TESTED INTO LINK
3
                        PAL
                       DCA TPP4
                                                                       /STORE ROTATED WORD
3
                       SZL
3
                       SLA SLL SMA
                                                                       1-1
                       TAD >
                                                                       JOESET P
5
Š
                                                                       /JOHPARE
                       SPA
                        PEXI: QPL
                                                                       / YEW T GREATER, REARRANGE
5
                                                                       /ARE SITS THE SAME. /NJ, FIRST T LARGER, RETURN
                       SZA
3
                        JYP I ORDER
                                                                       /ALL BITS COMPARED
                        ISZ THELV
                                                                       /NO. CHECK NEXT BIT
                        JAP ST
                        JAP I ORDER
                                                                       /YES, RETURN
    TPPU. J000
S TPPW, 3000
     /FIXER ROUTINE
Š
    /THIS ROUTINE INTERCHANGES THE CURRENT THO T DATA SETS BEING CONSIDERED
5
5
     FIXER, SLA SLL
                        TAD (7775
3
                       TAD ASET
                       DCA PHP
5
                        TAD SHP
5
                       DCA PAP
S
                       5211
                       1474
3
Š
                       DCA 49
                                                                       INTERPORT OF THE STORE AND STORE STO
5
                        ISZ PHP
     SP.
                        5211
                       1474
                                                                       ISTORE & DATA IN TEMPORARY LOC
5
                       DCA 40
                       ISZ PHP
3
                       1474
                                                                       ISTORE PARA WORD IN TEMPORARY LOC
5
                       DCA 4P
                       157 PHP
5
                       1474
3
                                                                      ISTORE T DATA IN TEMPORARY LOC
                       DCA 4T
```

```
6201
TAD (7775
TAD 50ARA
8
3
         DCA IVP
         TAD IVP
5
         DCA JAITS
$
         SLA SLL
8
         6211
3
         1476
         3475
5
                           ISTORE SECOND R IN FIRST R LOC
         ISZ PHP
5
         ISZ IVP
5 50,
         5211
3
         1476
                           ISTORE SECOND G DATA IN FIRST G DATA LOC
3
         3475
         ISZ PWP
5
S
         ISZ IVP
8
         1476
                           /STORE SECOND PARA IN FIRST PARA LOC
         3475
5
         ISZ PHP
         ISZ IVP
3
5
         1476
5
         DCA SPPJ
                           ISET NEW UPPER T
         TAD SPPJ
8
                           ISTORE SECOND T DATA IN FIRST T DATA LOC
S
         3475
5 5
         5201
         TAD 4R
         5211
3477
5
Š
                           /STORE FIRST R IN SECOND R LOC
         ISZ JNITS
S SR.
         5211
         TAD 40
8
                           /STORE FIRST G DATA IN SECOND G DATA LOC
S
         3477
         ISZ JNITS
TAD 42
5
5
S
         3477
                           ISTORE FIRST PARA IN SECOND PARA LOC
S
         ISZ JYITS
Š
         TAD HT
                           ISTORE FIRST T DATA IN SECOND T DATA LOC
S
         3477
5
         5201
         JMP I ORDER
S THELV. JOO
S P,
S HR,
         J 200
         J100
 HD,
S
         3000
  HP,
         1700
         1300
5
8
  /SUBROJTINE TOALC
S
5
  /THIS SUBROUTINE CALCULATES A REAL VALUE FOR THE T VOLTAGE
5
  TCALC. .500
5
         SLA SLL SML RAR /AC=4000
         5211
S
5
         1501
                           /ADD IN T HORD
5
         5201
         DCA -ITIME
5
5
         TEFLOAT(ITIME)
         T=T=(10./4096.)+5.
         SLA SLL
JMP I TSALG
S
```

```
SUBROJTINE DOODE
  /THIS SURROUTINE DECODES PARAMETER WORDS
  /AND COMPUTES PH, RY, XUNI, ES, AND CCELL
S /IT MUST BE ENTERED AITH THE PARA WORD IN THE AC
S /PARA 43RD FORMATI
                            FIRST 4 BITS (MS3) ARE UNUSED
8 /
                            NEXT 4 BITS FOR JNITS VALUE (BINARY 1-10)
NEXT 2 BITS FOR JAIN INFO (BINARY 0-3)
5 /
$
                            WEXT 2 BITS FOR PH INFO (BINARY 1-3)
8
  DCODE. . 100
                            ISTORE PARA WORD
         DCA SPPJ
         PT=VT
         THET.
         TLETS
         .DeINLX
         PH=.005
         4V=18000.
5
         TAD SPPJ
         AND (0023
                            /MASK ALL BUT PH BITS
  DC1.
5
         DCA SPP4
         TAD SPP4
                            /ALL SET.
5
         SYA
3
                            /YES, CONTINUE
         J4P 0C2
3
         SLA SLL
         PHEPHO10.
SLA SLL SMA
8
                            1-1
         TAD SPP4
                            NCITAFATI TXAN QU TECL
$
3
         JYP DC1
8
 DC2.
         TAD SPPJ
                            /4454 ALL BUT GAIN BITS
         AND (0014
3
  DC3.
         DCA SPP4
         TAD SPP4
5
         SVA
                            /ALL SET.
                            /YES. CONTINUE /NO, ADJUST
5
         JYP DC4
3
         SLA SLL
         RV=RV+10.
5
         SLA SLL
         TAD (7774
5
         TAD SPP4
3
Š
         JYP DC3
         TAD SPPJ
S
  DC4.
                            MASK ALL BUT OFFSET UNITS BITS
         AND (0350
S
  DC5.
         DCA SPP4
         TAD SPP4
S
                            /ALL SET.
         AVE
                            /YES, CONTINUE /NO, ADJUST
S
         JAP 006
SLA SLL
5
         XJNI=XUVI+1.
S
         SLA SLL
         TAD (776)
TAD SPP4
5
Š
                            /SET UP FOR NEXT ITERATION
         JMP 005
SLA SLL
S
 DC6.
S
         ES=(Z=(12.5/4076.)+6.25)
         ESL=(ZL+(12.5/4075.)+6.25)/FLOAT([PTS)
         3CEL_=((ES/RV)+((10.+xJN1)/RV))/PH
         1F(1<)772,257,772
```

```
$ =772,
$
           SLA SLL
TAD SPPJ
5
           SIA
           TAD EIK
                                  /PARA JORDS THE SAME, /YES CONTINUE
3
           AVE
5
           J4P #257
           SLA SLL /NO, THREE POINTS IN A ROW. IF(IT)774,774,773
8
S =773. CLA CLL TAC RT. /4C=4
S TAD SPARA /SET ADDRESS OF NEXT PARA HORD TO CHECK
DCA PSET
9 9 5 5 5 5
           5211
1504
           6201
CIA
                                  /MAKE NEGATIVE
3
           TAD SPPJ
                                  /JOMPARE CURRENT AND NEXT PARA HORDS
8
           SZA
           JMP #774
SLA SLL
3
3
           21=TV-TH
22=T4-TL
           ZN=T_-(Z1+Z2)/2.
ZT=ZT+ZN-CCELL
774
           17=-3
257
           TK=CCELL
           SCELL=CCELL+ZT
           IT=IT+1
           SLA SLL
TAD SPPU
DCA #IK
5
5
S
           SLA SLL
JAP I DSODE
           END
```

CCLALF

PROGRAM LISTING

```
S /PROGRAY NAME!
                            COLALF.FT
  /FORTRAN-SABRI KETTH J. CASERTA
                                                REVISED 2/10/74
  ITHIS IS THE DATA OUTPUT ROUTINE
  JEOR THE TEMP-SOND CURVE
  /IT IS DESIGNED TO FOLLOW THE ARRAY ARRANGER, CHTALR.FT
S /AND WILL FUNCTION DALY IN THE ARRAY ARRANGED SEQUENCE
S /XYSY8.SR AND AXIS.33 MIST BE LOADED WHEN THIS PROGRAM IS COMPILED.
1 /
          AFAN, ATADET PCHHOE
         DIMENSION TODATA(580), NARA(6)
                            7405
                                      /MULTIPLY
5
          Jober
                   YUP
Š
          Japer.
                            7407
                                      DIVIDE
                   DVI
5
         JPDEF
                   MMI
                            7411
                                      /NORMALIZE
                                      /SHIFT LEFT
          JPDE?
3
                   SHL
                            7413
                            7415
                                      /ARITHMETIC SHIFT RIGHT
8
         Jaber
                   ASR
                   LSR
5
         JPDEs.
                            7417
                                      /LOGICAL SHIFT RIGHT
         JPDE:
                                      /LOAD MULTIPLIER QUOTIENT
5
                   YOL
                            7421
                            7403
                                      STEP COUNTER LOAD FROM MEMORY STEP COUNTER LOAD INTO AC
3
         JPDEF.
                   SCL
8
         JPDEF.
                            7441
                   SCA
                                      /MO LOAD INTO AC /SKIP ON SCOPE DISPLAY FLAG
3
         SPDE:
                   ADP
                            7501
                            6051
5
         SKPD=
                   SKPDS
                   ERASE
                            5754
                                      /ERASE DISPLAY SCOPE
3
         JPDEF
                                      /SET SCOPE IN NON-STORE MODE /SET SCOPE IN HRITE-THROUGH MODE
3
          JPDE:
                   NSTORE
                            5055
š
         SPRET!
                   ATSET
                             6136
                                      /SET SCOPE IN STORE HODE
5
          JPDE:
                             6537
                   STORE
          JPDE?
5
                   MLDAD
                            5051
                   YLOAD
                                      /LOAD VERTICAL D/A
3
         SPDEF
                            6352
$
         Janes.
                   INTENS
                            6064
                                      /INTENSIFY BEAM
         Jages.
                                      /XLOAD + INTENS
8
                   XFD
                            5355
                   YLP
                                      /YLOAD + INTENS
/PH POINTER
5
5
                            6056
         JPDE:
                   PHE
          A3SY4
                            0074
                   940
                            0075
                                      /PW POINTER
3
         PYZEA
$
          PYZEA
                   149
                            0076
                                      /I/V POINTER
                            0077
                                      JOFFSET UNITS POINTER
3
          PYZEA
                   STINL
                             0100
                                      /GENERAL POINTER /PARAMETER POINTER
5
          PYREA
                   ASET
Š
          PYZEA
                   SPARA
                             0101
S
          PYZE4
                   SPPU
                            0102
                                      /INDIRECT ADDRESS IN FIELD 1 POINTER
                                      /INDIRECT ADDRESS IN FIELD 1 POINTER
                   SPPH
                            0103
3
          PYZEA
S
8
  /THIS IS THE INITIALIZATION AND PRINT-OUT SECTION
3
5 /
3
  DTOUT, SLA SLL
         READ(1,942)18_(,L)T,TIM
FORMAT('FIRST 3LOCK TO READ! ',15,/,'OUTPUT ON LPT, (1=YES, 0=NO
      +): ',[3,/,'TIME BETHEEN POINTS (SECS): ',E14.6)
         SCEL = 0.
SLA SLL
ISZ PSE.
S
S
          ISZ PCE.
S
         TAD ELPT
9
         SZA
         JAP AXT
JAP EROS
3
S PCEL, MCCELL
         S_A S_L
S NXT.
          ARITE(3,404)
         FORMAT(/, TEMP-COND:,/,: POINT',5x, TIME',13x, R(M):,12x, IG(M):,
      +12x, 'G(C)',12x, 'TE43',/,11x, '(SEC)',11x, '(2M4S)',10x, '(MHOS)',10x,
      S EROS, STORE
```

```
ERASE
SLA SLL
ISTIC=0
                           /FRASE DISPLAY SCOPE
         SALL RTAPE(1,13L4,2045,TCDATA)
         ITRV.=NARA(4)
         (6)AFAHEZTEL
         11=-2
         14=0
         APTS=FLOAT(1PTS)
         GLA SLL
                           /CHECK TO SEE IF PRINTOUT IS DESIRED
3
         TAD ELPT
         SZA
Š
         JYP YXU
         J4P #415
Š NXU.
         SLA SLL
3
         TAD (0230
                           /SET ADDRESS OF FIRST DATA POINT
3
         DCA SPARA
         DO 411 LA=1,ITRVL
J48 CALC
                           730 CALCULATE CONDUCTANCE
3
                           /30 CALCULATE TEMP
8
         JYS TALC
         PCEL_=1./CCELL
S TH,
         S_A SLL
3
         5566
403
         ARITE(3.405)LA.XTIM, RCELL.CCELL, CORG.Y
405
         FORMAT(14,5(4X.E12.6))
406
         XTIMEXTIM+TIM
         CONTINUE
411
3 /
S /BEGIN OPTION ROUTINE TO PLOT THE COMPLETE DATA SET
5 /
9 /
415
         HRITE(1,416)
416
         FORMAT( ) OPTIONS: 1) PLOT AXES ... , 9x .. 12) PLOT CORRECTED DATA ... , 4x ...
     +13)FIT1,/,9x,14)CAL_ EXIT1,/)
         SLA SLL
 RPL1. KSF
                           / CEYBOARD STRUCK YET.
5
5
         JYP RPL1
         448
3
                           /YES, READ CHARACTER
5
         TLS
                           /ECHD
                           /CHECK
8
         TAD (7517
Š
         SYA
                           /15 IT A "1".
                           \462' 30
5
         JAB SOFS
         TAD (7777
$
5
         SVA
                           /15 IT A "2".
                           /YES, SONTINUE
         J4P RPL3
TAD (7777
8
3
         SVA
JMP RPL4
                           /15 IT A #3".
S
                           /YES. 30
         SALL EXIT
                           /ERASE SCOPE
3
  RPL2.
         ERASE
         SLA SLL
3
         NDIVK=10
         VDIVY=10
         SLA SLL
CALL AXIS(NDIVX, NDIVY)
8
         JMP #415
SLA SLL
S RPL4,
         MA=1
3
         JMP =417
```

```
S PREGUEST RANGE AND PLOT POINTS
S /
S RPLS, S_A SLL
368
          DEAP
417
         READ(1,418)LA,_8
418
         FORMAT( FROM POINT 1,15, /, 'TO POINT 1,15)
         SLA SLL
         READ(1.829) NOPE:
         FORMAT( IJSING X-Y PLOTTER, (1=YES, 0=NO): 1,15)
829
          KAS40LA
         SLA SLL
TAD (0174
Š
                            /SET UP ADDRESS OF FIRST REMAINDER
3
         TAD EKA
$
         DCA SPARA
         SLA SLL SHA
DCA ASET
                            /AC=7777
3
$
         DO 605 1=LA,L9
                            /30 CALCULATE CONDUCTANCE
3
          JYS CALC
3
                            /FIRST PASS.
         ISZ ASET
          J4P =372
                            /VD. CONTINUE
370
         XAVE . CCELL
         X9VE - CCELL
         V=CCELL
372
         Z=CCELL
         JMS SCALE
CLA CLL
ISZ SPARA
3
                            /30 SCALE
3
606
         SUPITACS
         YVOLT=2047./(X4VE-XBVE)
         YAVE=XAVE
         YSVE=XBYE
          SLA SLL
8
                            /SET ADDRESS FOR TEMP
S
         TAD (0174
3
         TAD EKA
$
         DCA SPARA
         SLA SLL SMA
DGA ASET
                            /45=7777
S
S
         DO 607 1=LA,L9
                            /SET PROPER TEMP ADDRESS
3
         TAD (0003
         TAD SPARA
9
                            /30 CALCULATE TEMP
/FIRST PASS.
S
          J45 TALC
S
         IST ASET
                            /NO, CONTINUE
S
          J4P =802
         XAVE=Y
         X3VE=Y
         V=Y
802
         Z=Y
         JMS SCALE
                            /30 SCALE
S
Š
607
         SUPITACS
         XVOLT=2047./(XAVE-XBVE)
                           /SET SCOPE IN STORE MODE
5
         STORE
9
         SLA SLL
Tad (9174
                            /SET JP DATA ADDRESS
5
         TAD EKA
3
         DCA SPARA
5
         DO 472 I-LA.LB
                           /30 CALCULATE CONDUCTANCE
         JYS CALC
374
         Y=(CJEL_-YBVE)=YYJLT
         -Y=1=1X(Y)
```

```
CLCVX+(EVBX-Y)=X
                          1 /30 CALCULATE TEMP
         -X=IFIX(X)
         IF(NOPE)830,830,931
         JYS FPLT
S =830.
         30 TO 470
831
         SALL XYST(LX,LY)
         SALL XYEND
470
         BUPITHOS
5
         SLA SLL
         CALL XYEND
1F(MA-1)415,475,415
S /
S /Transfer the scaling parameters onto tape with the data set
$ /
475
         TCDATA(671)=XAVE
         TCDATA(672)=X3VE
         TCDATA(673)=YAVE
         TCDATA(674)=YVJLT
         VARA(1)=LA
         WARA(2)=LB
         SLA SLL
Sall Htape(1,13L<,2046,TCDATA)
3
         CALL EXIT
S /SUBROJTINE CALC
S /THIS SUBROUTINE CALCULATES THE CONDUCTANCE
S CALC. JOOO
         SLA SLL
$
         5211
$
         1501
                            /3RING IN UPPER 3 WORD
3
         6201
         DOA -CCELL
5
3
         ISZ SPARA
         6211
                          ' /BRING IN SECOND & WORD
5
         1501
S
         5201
         DCA #CCELL#
ISZ SPARA
S
Š
         5211
1501
9
                            /BRING IN LOWER 3 MANTISSA
5
         5201
         DOA 1 POEL
ISZ SPARA
JMP 1 GALG
S
5
S
S /SUBROJTINE TALC
S /This subrojtine calculates the temperature voltage
S / S TALC. JOO
         SEA SEE SME RAR /ASE4000
                            /CDF 1
š
         5211
         1501
                            /ADD IN TEMP DATA
S
         5201
S
         DCA #1STIK
S
         Z=FLDAT(ISTIK)
         Y=(Z-10./4096.)+5.
S
         SLA SLL
         ISZ SPARA
JMP I TALC
5
                            /RETURN
```

```
S /
S /SUBROJTINE SCALE
S /THIS SURROUTINE SETS UP SCALED SCOPE PARAMETERS
S SCALE. 1000
         SLA SLL
3
609
         XVOLT=V-Z
         IF(XVOLT)407,450,409
407
         IF(XAVE-Z)408,450,450
         XAVE=Z
30 TO 450
408
         IF(X3VE-Z)450,450,410
409
410
         XBVE=Z
         BUFITHCE
450
         SLA SLL
JMP I SSALE
5
                           /RETURY
S / SUBROJTINE FPLT
S /THIS SUBROUTINE PLOTS DATA QUICKLY ON THE SCOPE
5 /
S FPLT. JOOD
S SLA SLL SML RTR /4C=2000
/3RING U
                            /BRING UP X VALUE
         HAL
$
                            /SCALE
         APC
S
                            /_DAD X D/A
         X_OAD
5
         SLA SLL SML RTR /ACE2000
TAD BLY /3RING U
3
                            /3RING UP Y VALUE
5
         RAL
                            /SCALE
S
                            /_OAD Y D/A AND PLOT
3
         YLP
5
         SLA SLL
                           FRETURN TO MAIN PROG
3
          JYP & FPLT
         END
```

CDTALC
PROGRAM LISTING

```
S /PROGRAM NAME:
                            COTALC.FT
  /FORTRAY-SAGRI KEITH J. CASERTA 2/17/74
/THIS IS THE FITTING ROUTINE FOR THE TEMP-COND CURVES
S / WHICH AIL_ RIN IN BK OF CORE AND PRODUCE A CUBIC FIT
S /IT CAN ONLY BE RUN IN THE SEQUENCE IN WHICH COTALR.FT IS USED S /IT IS CALLED AFTER DCLALF.FT
8 /
         AFAV, ATADOT VCHHOC
         DIMENSION TCDATA(580), NARA(6)
         DIMENSION AR(4.5), BR(4)
                                     /PH POINTER
5
         PYZEA
                  SHP
                            0074
                                      /PW POINTER
5
         PYREA
                   SHP
                            0075
                   IVP
                            0076
                                     /I/V POINTER
         ABSYY
                            0077
                                      JOFFSET JNITS POINTER
3
         PYZEA
                   JNITS
8
                            0100
                                      /GENERAL POINTER
         A9SY4
                   ASET
3
                                      /PARAMETER POINTER
                   SPARA
                            0101
         48874
                                     /INDIRECT ADDRESS IN FIELD 1 POINTER /INDIRECT ADDRESS IN FIELD 1 POINTER
3
                   SPPU
                            0102
         PYZEA
                   SPPW
                            0103
         PYZEA
S
  /INITIALIZE THE ROUTINE TO FIT TEMP-COND DATA
3 /
5 /
         READ(1.942)[BL
         FORMATCIFIEST BLOCK TO READ! 1,15)
942
         SALL RTAPE(1,13L4,2046,TCDATA)
         TL=NARA(1)
TH=NARA(2)
         ITRY_EK4-KL+1
         T=4-KL
         CORG=0.
         ISTI <= 0
5
         SLA SLL
         ISZ PCEL
2
8
         ISZ PCEL
         SKP
  PCEL, COR3
         SLA SLL
2
5
         TAD SKT
3
         TAD (C174
3
         DEA SPARA
8
  1
  /CALCULATE SUMMATIONS FOR A LEAST-SQUARES CUBIC FIT
3
5
         DO 450 MARKL,KH
                            /30 CALCULATE CONDUCTANCE
         JYS SALE
                            /30 CALCULATE TEMP
         JYS TALS
         SLA SLL
         XS=Y.Y
         XC=XS+Y
         XI=XI+A
         XIS=XIS+XS
         XIC=XIC+XC
         KIO=KIO+KS+XS
         XIF=XIF+XS+XC
         XIX=XIX+XC+XC
         DFC3+1Y=1Y
         DFCJ.YI-Y-CJ-G
         XISY=XISY+XS-COR3
         XICY=XICY+XC+COR3
480
         SUPITACE
```

```
8 /SET UP THE DETERMINANTS
3 /
         AR(1,1)=FLOAT(ITRVL)
         44(1,2)=KI
         AR(1.3)=x15
         AR(1.4)=XIC
         39(1)=YI
         44(2.1)=x1
         47(2.2)=X15
         49(2.3)=x1C
         44(2,4)=x13
         32(2)=X141
         AR(3.1)=XIS
         4R(3.2)=XIC
         47(3,3)=x10
         AR(3,4)=XIF
         39(3)=X15Y
         47(4,1)=XIC
         AR(4,2)=X13
         47(4.3)=XIF
         AR(4,4)=XIX
         39(4)=XICY
8 /
8 / BEGIN THE PIVOTAL CONDENSATION
: /
         DO 29 K=1.3
         <=1=<+1
         L=K
         00 21 1=<P1,4
         IF(A3S(AR(1,K))-A3S(AR(L,K)))21,21,20
20
         -=1
         CONTINUE
21
         1F(L-4)25,25,23
         INTERCHANGE ROAS
23
         DO 24 J=4,4
         DJMMY=AR(K, J)
         AR(L.J)=AR(L.J)
AR(L.J)=DUMMY
24
         DUMMY=BR(K)
         34(K)=84(L)
         YMPLD=(1)PE
         ELIMINATION
25
         DO 29 1=4P1,4
         DJMMY=AR(I,K)/AR(<,K)
         AR(1, <)=0.
         00 25 J=<P1,5
28
         AR([, J) = AR([, J) - DJMMY - AR(K, J)
         BR(I)=BR(I)=DJ4MY=BR(<)
BACK SOLJTION
29
         AR(4.5)=9R(4)/4R(4.4)
         <=3
         <P1=<+1
30
         DUMMY=0.
         00 31 J=<P1,4
         DUMMY=DJMMY+AR(K, J)+AR(J,5)
31
```

```
AR(K,5)=(BR(K)-DUTY)/AR(K,K)
         4=K-1
         IF(K)32,32,30
POITALES ENT TURTUON &
3 /
         ARITE(1,580)AR(4,5),AR(3,5),AR(2,5),AR(1,5)
580
        FORMAT(/, 1 G = 1,216,8, 1 T(3) + 1,616.8, 1 T(2)1,/,5X,1+ 1,616.8
     +,' T + ', E16.8/)
9 /
S JURITE THE COEFFICIENTS OF THE FITTED EQUATION INTO THE DATA SET
5 /
         TCDATA(675)=43(1,5)
         TCDATA(676)=AR(2,5)
         TCDATA(677) = AR(3,5)
         TCDATA(678)=48(4,5)
         TCDAT4(579)=0.
         TCDATA(550)=0.
         CALL HTAPE(1,13L4,2046,TCDATA)
         SALL EXIT
$ /
 /SUBROJTINE CALC
 THIS SUBROUTINE CALGULATES THE CONDUCTANCE
3
  CALC. 3300
5
         SLA SLL
5
         5211
5
         1501
                          /3RING IN UPPER 3 HORD
         6201
$
         DCA = CORS
Š
3
         ISZ SPARA
5
         5211
                          /BRING IN SECOND & HORD
5
        1501
3
         6201
3
         DCA #CORS#
3
         ISZ SPARA
         6211
                          /BRING IN LOWER MANTISSA
3
         1501
3
         6201
         DCA I PCEL
ISZ SPARA
8
3
5
         SLA SLL
3
         JYP I CALC
                          /RETURN
5
  /SUBROJTINE TA_C
3
  THIS SURROUTINE CALBULATES THE TEMPERATURE VOLTAGE
5
5
  TALC, 1900
SLA SEL SME RAR /AS=4000
5
8
                          /3DF 1
5
         5211
                          /ADD IN TEMP DATA
5
         1501
                          /SDF 0
3
         5201
         DCA #ISTIK
5
         Z=FLDAT(ISTIK)
         Y=(Z+10./4096.)+5.
         ISZ SPARA
$
         SLA SLL
JMP 1 TALC
9
                          /RETURN
3
         END
```

CFPTLI PROGRAM LISTING

```
S /PROGRAM NAME!
                          " CFPTLI.FT
 /FORTRAN-SAGRI KEITH J. CASERTA
                                              REVISED 11/27/73
$ /THIS IS THE PLOTTING ROUTING FOR THE FITTED TEMP-COND DATA $ /HHICH PLOTS MEASURED TEMP AS X, AND CALCULATED COND AS Y
S /FROM ANY INTEGER FIT JP TO A FIFTH ORDER EQUATION S /IT FOLLOWS CELTLE.FT OR MAY DIRECTLY FOLLOWS
8 /CDTTLL.FT, CDTTLO.FT, SDTT_S.FT.
$ /GDTAL..FT, COTALO.FT, SDTA_S.FT, OR CDTALF.FT.
S /XYSYS.SB WIST BE LIADED WHEN THIS PROGRAM IS COMPILED.
8 /
         AFTX3, AFAV, ATACCT MCMMCD
         DIMENSION TCDATA(580), VARA(6)
S / READ THE DATA AND SET JP THE COEFFICIENTS AND SCALING PARAMETERS
8 /
5 /
         READ(1,942)18L
         FORMATCIFIEST BLOCK TO READ! 1,15)
942
         SALL RTAPE(1,13LK,2045,TCDATA)
         18LK=18L4+16
         CALL RTAPE(1,13L4,6,EXTRA)
         XAVE=TCDATA(671)
         X9VE=TCOATA(672)
         YAVE=TCDATA(673)
         YVOLT=TCDATA(674)
         A1=TCDATA(575)
         A2=TCDATA(676)
         A3=TCDATA(677)
         44=T3DAT4(678)
45=T3DAT4(679)
         AS=TCDATA(680)
         TADD=(X3VE-XAVE)/500.
         XADD=2047./500.
S /CALCULATE THE CURVE AND PLOT
8 /
         7=46-(X3yE-+5)+45-(X8yE-+4)+44-(X8VE-+3)+43-(X8VE-X8VE)+A2+X8VE+
      + A1
         T-CVY-(EVAY-Y)=Y
         LX=1
         LY=1=1X(Y)
         CALL XYST(LX,LY)
         TEXBVE
         X=0.
         00 1 1=2,500
         T=T-TADD
         X=X+KADD
         Y=A6+(T++5)+A5+(T++4)+44+(T++3)+A3+T+T+A2+T+A1
         Y=(Y-YAVE)=YVO_T
Lx=[F]X(X)
         -Y=IFIX(Y)
         SALL XYPLT(LX, LY)
         CONTINUE
1
         SALL XYEND
          SALL EXIT
         END
```

CCLMLT PROGRAM LISTING

```
S /PROGRAM NAME!
                             CCLMLT.FT
  /FORTRAN-SABRI KEITH J. CASERTA
                                                 3/4/73
  THIS IS THE SUTPUT SET FOR THE TOA ROUTINE
 MHICH CONTAINS THE PROVISIONS FOR TITARINA MALLYSIS /IT READS THE DATA FOR TOPE ON THE LPT
          1)POINT NUMBER
 1
          2) VOLUME OF TITRANT ADDED
2
8
          3) SAMPLED VOLTAGE
          4) RAJ CONDUCTANCE
          5) CONDUCTANCE CORRECTED FOR SCALE CHANGES
         S)CONDUCTANCE CORRECTED FOR DILUTION
7)CONDUCTANCE CORRECTED FOR TEMP IF TEMP RUNS WERE MADE
5)CONDUCTANCE CORRECTED FOR DILUTION AND TEMP
8
          POTHERMISTOR RESPONSE
  /IF THE OPERATOR DESIRES PRINT-OUT.
                                              WHEN THE DATA SET HAS BEEN
 /SCANNED, IT SUTPUTS, SHITHE TTY, THE MAXIMUM AND MINIMUM FOR ALL CONDUCTANCES CA.CU.ATED. IT IS RUN FOLLOWING COTMUT, FT.
$ /
          SOMMON NARA
          DIMENSION NARA (2046)
                             7405
                                       /MULTIPLY
3
          SPOEF
                   YUP
          SPOET
                             7407
                                       /DIVIDE
                   DVI
                             7411
                                       /NORMALIZE
          JPDE:
                   IMP
                                       /SHIFT LEFT
Š
          JPDE:
                   SHL
                             7413
                                       /ARITHMETIC SHIFT RIGHT
3
          SPDE:
                   ASR
                             7415
                                       /LOGICAL SHIFT RIGHT
8
          Jober
                   LST
                             7417
                             7421
          JPDET
                    40L
                                       /LOAD MULTIPLIER QUOTIENT
                                       STEP COUNTER LOAD FROM MEMORY STEP COUNTER LOAD INTO AC
8
         JPDEF
                   SCL
                             7403
Š
         JeDE:
                             7441
                   SCA
                                       /MO LOAD INTO AC /ERASE DISPLAY SCOPE
                             7501
5
          JPDE:
                   AOP
          Jobes
8
                   SRASE
                             5054
                                       /SET SCOPE IN STORE MODE
5
         JaDE:
                   STORE
                             6057
                   SHP
                             0074
                                       /PH POINTER
         PYZEA
                   DHD
                             0075
                                       /PW POINTER
3
         PYREA
                   IVP
                             0076
3
         ABSYY
                                       /I/Y POINTER
                                       JOFFSET UNITS POINTER
8
          PYREA
                    STINL
                             0077
                             0100
                                       /GENERAL POINTER
3
         ABSYY
                   ASET
          PYREA
                   SPARA
                             0101
                                       /PARAMETER POINTER
                                       /INDIRECT ADDRESS IN FIELD 1 POINTER
                   SPPU
                             0102
         PYZEA
                             0103
                   SPPW
                                       /INDIRECT ADDRESS IN FIELD 1 POINTER
3
         PYREA
3
 1
  THIS IS THE INITIALIZATION SECTION
5
 1
S DTOUT. 3.A 3.L READ(1.900)18_<.....
900
         FORMAT("FIRST BLDCK TO READ! ",15./,"OUTPUT ON LPT. (1=Y.0=N)! "
      ·, 15)
         SALL RTAPE(1,1364.2045, NARA)
          _P=NARA(2043)
         ITRV_=NARA(2044)
          LD=N4RA(2045)
          IPTS=WARA(2046)
          APTS=FLDAT(1PTS)
          C_A SLL
3
         TAD HLP
3
          SVA
          J4P =903
5
          SLA SLL
5
901
          READ(1,902)A2,43,44,45,A6
         FORMAT('T(1): 42 = ',E16.8,/,'T(2): A3 = ',E16.8,/,'T(3): A4 = '
902
      +,E15.8,/, 'T(4) | 45 = ',E16.8,/, 'T(5) | A6 = ',E16.8)
```

```
903
                        READ(1,904) VZERO
904
                        FORMAT( !INITIA. VOLUME (MLS): 1,814,6)
                        TIME.2
                        YDIVX=10
                         VDIVY=10
                        11=-2
                        1<-0
5
                         SLA SLL
                        TAD BUPT
8
3
                        SZA
                         UXF 4KL
                         JAP VXT
     NXU.
                        SLA SLL
8
                        5566
                         ARITE(3,404)
                        FORMAT(/, TITRATION: , /, POINT: , 2X, TITRANT', 9X, TES', 6X, , 'GCELL
404
               +(M)',5x,'35ELL(C)',5x,'GCELL(D)',5x,'GCELL(T)',4x,'GCELL(D-T)',6x,
                +TEHPI)
                        4RITE(3,905)
FORMAT(9x,*(MLS)*,8x,*(VOLTS)*,6x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(MHOS)*,7x,*(
905
               +)'.7x,'(MHOS)',7x,'(MHOS)',6x,'(VOLTS)',/)
3 /
5
     /BEGIN TO SALCULATE SATA AND MAXIMA AND MINIMA
5
     1
3
                       STORE
Š
      NXT.
                                                                        /ERASE DISPLAY SCOPE
5
                        ERASE
                        SLA SLL
3
                                                                        /SET UP FIRST DATA WORD ADDRESS
                        TAD (0200
$
5
                        DCA ASET
                        DO 411 LA=1, ITAVL
                                                                        730. CALCULATE RAW CONDUCTANCE
5
                         CHUE BYL
                                                                         /30 CALCULATE DILUTION CORRECTED CONDUCTANCE
5
                         J45 3CD
8
                        CLA SLL SMA
                                                                         1-1
                        TAD HLA
S
                        SZA
JYP PAM
5
Š
                        SIA SUL
43=CSELL
5
979
                        3G=CJELL
                         4C=CJAG
                        3C=C3RG
                         430=30
                        3GD=3D
                        30 75 955
S PAM.
                        SLA SLL
980
                        IF(H3-CCELL)951,519,982
981
                         4G=CJELL
                        30 TO 519
182
                        IF(CCELL-83)983,519,519
983
                        33=CCELL
519
                        IF(HC-CORG)520,994,521
520
                         40=0346
                        30 TO 954
521
                        IF(C)9G-3C)522,984,984
522
                        3C=CDRG
984
                        IF(H30-G0)985,788,986
985
                        430=30
                        30 TO 955
986
                        1F(G)-830)987,765,988
987
                        3GD=30
```

```
S DETERMINE IF T POINTS HERE TAKEN AND CALCULATE IF THEY WERE
3
5 =988,
         JLA SLL
TAD ELP
         SYA
3
3
         J4P =403
3
  m906, SIA SEL SMA
         TAD WLA
5
         SZA
         JAP KULIA
5
                           /SET UP PROPER ADDRESS FOR FIRST TEMP POINT /SET UP STANDARD TEMP
         TAD -D
Š
         SCS01 DAT
5
         DCA SPARA
3
         6211
                           CAND IN TEMP INFO
3
         1501
3
3
         5201
         TÃĎ (4000
                           THANSE TO 2'S COMPLIMENT
         SIL
5
5
         DCA SISTIK
         Z=FLJAT(ISTIK)
         TS=Z+(10./4096.)+5.
  KULIA, SLA SLL
Jys 3CT
3
                           /30 CALC TEMP CORRECTED 3
5
                           /30 CALC T-D CORRECTED G
         JYS 3CTD
S
                           1-1
         SLA SLL SMA
S
         TAD BLA
S
         SZA
5
         JAP PAT
         437=37
989
         93T=3T
         dra=gra
         33TD=BTD
         30 TO 403
S PAT.
         SLA SLL
990
         IF(H3T-3T)991,994,992
991
         43T=3T
         30 T0 994
[F(GT-83T)993,994,994
992
993
         33T=3T
994
         IF(H3TD-3TD)995,403,995
995
         43TD=3TD
         30 TO 403
996
         1F(GTD-33TD)997,403,403
997
         3GTD=GTD
S JOUTPUT DATA DA THE LINEPRINTER IF REQUESTED TO
5 /
 ±403,
         TAD BLPT
S
3
         SZA
         VXV QPL
9
         JMP #406
Sta Ste
  NXV.
         6666
         ARITE(3,405)LA.XTIM, ES.CCELL, COR3, GD, GT, 3TD, T
405
         FORMAT(1x, 14, 8(1x, E12.5))
406
         XTIM=XTIM+TIM
411
         EUVITACE
```

```
JOUTPUT MAXIMA AND MINIMA
         42175(1,995) H3.83, HC, SC, HGD, BGD
        FORMAT(/,5x, '4AX 3(M) = ',E14,6,5x, 'MIN 3(4) = ',E14,6,/,5x, 'MAX
998

    Q(C) = ',≤14.6,5x,'Ч[N 3(C) = ',E14.6,/,5x,'MAX Q(D) = ',E14.6,5X

     +, '4IN 3(D) = 1, E14.5)
         SLA SLL
5
         TAD ELP
         SVA
         J4P =124
8
5
         SLA SLL
        ARITE(1,975)H3T,33T,43TD,8GTD
FORMAT(/,5x,'44x 3(T) = ',614.6,5x,'MIN G(T) = ',614.6,/,5x,'MAX
999
978
     • G(T-D) = 1,514.5,5x, 14[4 G(T-D) = 1,614.6)
124
         SALL EXIT
5 /
S /SUBROJTINE GJAC
  /THIS SUBROUTINE CALCULATES RAW CONDUCTANCE
  BUNC, JOOO
         SLA SLL
        TAD #LD
5
        SZA
         JYP SEL
3
         JYP JEH
         SLA SLL
 CEL
         5211
Š
        1500
                          '/ADD IN REMAINDER
8
         5201
        TAD (4000
3
        SLL
5
5
        DCA =JSTIK
        Z-BF_OAT(JSTIK)
SLA SLL
5
         ISZ ASET
Š CEH.
         5211
        1500
5
                          /ADD IN DATA
5
         5201
3
         TAD (4000
                          /CHANGE TO 2'S COMPLIMENT
Š
         SLL
3
        DCA EISTIK
         Z=FLOAT(ISTIK)
3
         SLA SLL
         ISZ ASET
                          ISET UP FOR PARA WORD
S
8
         5211
5
         1500
                          /ADD IN PARA HORD
3
         5201
3
         J45 0000E
                           /30 DECODE
3
         ISZ ASET
                          /SET UP FOR NEXT POINT
         S.A SLL
         JYP I GJYC
3
                          /RETURN
3
  /SUBROJTINE GCD
5
 /THIS SUBROUTINE CALGULATES DILUTION CORRECTED 3
5
5
  GCD.
5
        1000
5
         SLA SLL
         30=((VZERO+XTI4)=30R3)/VZERO
3
         SLA SLL
         JYP I GOD
3
                          VETURY
```

```
ISUBROJTINE GCT
      $ /THIS SUBROUTINE CALCULATES TEMPERATURE CORRECTED &
      1/
      S OCT.
             1000
             SLA SLL
             6211
             1500
                              /ADD IN TEMP POINT
             6201
      5
                              /CHANGE TO 2'S COMPLIMENT
             TAD (4030
             SLL
      •
             DCA =ISTIK
             ZaFLDAT(ISTIK)
             T=Z=(10./4096.)+5.
             3T=A5+((TS++5)-(T++5))+A5+((TS++4)-(T++4))+A4+((TS++3)-(T++3))+A
          +3+((TS++2)+(T++2))+42+(TS-T)+CORG
             SLA SIL
ISZ ASET
     8
                              /SET UP FOR NEXT POINT
     5
     3
             JMP I GCT
                              /RETURN
     1
     S /SUBROJTINE GCTD
     5
      BCTD.
     5
            1000
             SLA SLL
             3TD=((VZERO+XTIM)+3T)/VZERO
    2
             SLA SLL
             JMP I GSTD
                              /RETURN
      /SUBROJTINE DOODE
      /THIS SUBROUTINE DECODES PARAMETER WORDS
      /COMPUTES PH.RV, XUNI, ES, RCELL, CCELL
      /IT MUST BE ENTERED 4174 PARA WORD IN AC
    S /PARA JORD FORMATI
                              FIRST 4 BITS ARE UNUSED
                              WEXT 4 BITS FOR JUITS VALUE (BINARY 1-10)
   8
                              (E-0 BULAV YARNIB) CANI NIAE ROF STIB 5 TXEM
   5
                              NEXT 2 BITS FOR PH INFO (BINARY 1-3)
     DCODE, JOO
                              ISTORE PARA WORD
             DCA SPPJ
             TYSTY
             THET.
             TLETS
             XUNI=0.
             PH=.005
             ?v=10000.
             TAD SPPJ
                              /MASK ALL BUT PH BITS
             AND 45K1
    DC1.
             DCA SPP4
9
5
             TAD SPP4
             SVA
                              /ALLSET.
                              TYES, CONTINUE
3
             J46 0C5
Š
             SLA SLL
                              /WO, ADJUST
             94=P4-10.
                              /ADD -1
/SET UP NEXT ITERATION
             CYA
Š
             TAD SPPH
5
             J4P 001
   MSK1,
             J 103
                              /MASK ALL BUT PH BITS
3
5
             TAD SPPJ
   DCS.
                              /MASK ALL BUT GAIN BITS
             AND 45K2
S
   DC3.
             DCA SPP4
3
             TAD SPP4
š
                              /ALL SET.
             SVA
```

```
JMP DC4
SLA SLL
                             /YES, CONTINUE
            4V=RV-10.
    $
            TAD 007774
           TAD 52P4
J4P 3C3
                             ISET UP NEXT ITERATION
                             /MASK FOR ALL BUT GAIN BITS
    5 MSK2, 3014
    SDC7774.7774
                             /3AIN DEINCREMENTER
    S DC4.
           TAD SPPJ
            AND 45K3
                             /HASK ALL BUT OFFSET UNITS BITS
    8 BC5.
           DCA SPP4
            TAD SPP4
            SYA
                             /ALL SET.
                             /YES. CONTINUE
            J4P 056
   9
                             /NO, ADJUST
            SLA SIL
            * I+IPUX=INLX
            TAD 007760
                             /SET UP FOR NEXT ITERATION
            TAN SPP4
            J4P 305
                             MASK FOR ALL BUT UNITS BITS
   8 MSK3. 3340
                             /JYITS DEINCREMENTER
   SDC7760.7760
   S DC4.
           SLA SLL
            ES=(Z+(12,5/4076,)+6,25)
           IF(L3)312,312,311
            ESL=(7L+(12,5/4095.)+6,25)/APTS
   311
            SSES+ESL
            SCEL_=((ES/RV)+(10.+XUNI/RV))/PH
   J12
            IF([<)772,775,772
           SLA SLL
TAD SPPJ
   5 =772,
                             /BRING UP CURRENT PARA HORD
   $
           SIA
   3
           TAD EIK
                             /PARA JORDS THE SAME,
            SNA
                             /YES CONTINUE
/YO, 3 POINTS IN A ROW.
            JMP =775
  S
  $
            SLA SLL
            IF([T)774,774,773
    m773, S_A S_L 1AC RA. /AS=0002
  3
                             /SET ADDRESS OF NEXT PARA HORD TO CHECK
            TAD =LD
                             FOR ANOTHER IMPENDING SCALE CHANGE
  5
           TAD E_P
  5
            TAD ASET
           DCA SPARA
  5
                             /3RING IN NEXT PARA HORD
 5
            5211
 8
            1501
 š
            5201
 5
            SIA
 š
           TAD SPPJ
                             /COMPARE CURRENT AND NEXT PARA HORDS
 3
            SZA
            J4P =774
 3
            SUA SUL
 S
            Z1=TV-T4
            Z2=T4-TL
            Z4=T_-(Z1+Z2)/2.
            ZT=ZT+ZY-CCELL
774
           17=-3
775
            TK=CSELL
            SORG = CCE_L+ZT
            IT=IT+1
            SLA SLL
            TAD SPPJ
                             /BRING UP CURRENT PARA HORD
            DCA EIK
            JYP I DOODE
           END
```

3 S

3

3

CDPMLT
PROGRAM LISTING

```
COPHLT.FT
       8 /PROGRAM NAME!
       S /FORTRAN-SABRI KEITH J. CASERTA 9/4/7;
S /THIS IS THE DUTPUT SET FOR THE TDA ROUTINE
                                                        9/4/73
       S /WHICH CONTAINS THE PROVISIONS FOR TITRATION ANALYSIS S /IT READS THE DATA FROM TAPE AND OUTPUTS ON THE SCOPE AND PLOTTER
       S JUNDER COMMAND OF THE DERATORS
               1)AXES
       8 /
      $ /
               DVCD LAR(S
               3) CONDUCTANCE CORRECTED FOR SCALE CHANGES 4) CONDUCTANCE CORRECTED FOR DILUTION
      5 /
               5) CONDUCTANCE CORRECTED FOR TEMP IF TEMP RUNS HERE MADE 5) CONDUCTANCE CORRECTED FOR DILUTION AND TEMP
      S /IT IS RUN FOLLOWING CO. MLT.FT
      S /XYSYS.SR AND AXIS.S3 MUST BE LOADED WHEN THE PROGRAM IS COMPLIED
               SOMMON NARA
               (8402)ARAF PCIEFAIL
                                              /MULTIPLY
               SPDEF
                         YUY
                                   7405
               Jaber
                                   7407
                                             /DIVIDE
     3
                         DVI
                                              /NORMAL ! ZE
                                   7411
     3
              .JPDE:
                         IMP
                                   7413
                                             /SHIFT LEFT
/ARITHMETIC SHIFT RIGHT
                         SHL
              JPDE:
     .
              Jağe.
                                   7415
     $
                                   7417
                                              /LOGICAL SHIFT RIGHT
              JPDEF
                         LSR
     5
                                              /LOAD MULTIPLIER QUOTIENT
     3
              Jaber
                         YOL
                                   7421
                                   7403
                                              ISTEP COUNTER LOAD FROM MEMORY
              Jabe:
     5
                         SCL
                                   7441
              JPDE?
                         SCA
                                             /STEP COUNTER LOAD INTO AC
    •
                                   7501
                                              /MQ LOAD INTO AC
              Janes
    5
                         AOP
                         ERASE
                                             /ERASE DISPLAY SCOPE
/SET SCOPE IN STORE MODE
              Jabes
                                   5054
                                   6057
    3
              Jabes
                         STORE
                                              /PH POINTER
              48574
                         PHP
                                   0074
              43574
                         949
                                   0075
                                              /PW POINTER
                                              /I/V POINTER
    5
                         IVP
                                   0076
              PYZEA
                                              OFFSET JNITS POINTER GENERAL POINTER
    5
                                   0077
              PYREA
                         JNITS
    5
              A 35Y 4
                         ASET
                                   0100
                                             /PARAMETER POINTER
/INDIRECT ADDRESS IN FIELD 1 POINTER
                                   0101
              43574
                         SPARA
                         SPPU
                                   0102
              PYPEA
                                             /INDIRECT ADDRESS IN FIELD 1 POINTER
              PYZEA
                         SPPH
                                   0103
     /THIS IS THE INITIALIZATION SECTION
  5
    DTOUT.S.A SLL
              READ(1,900)18L(
FORMAT("FIRST BLOCK TO READ! 1,15)
 900
              SALL RTAPE(1,13L4,2046,NARA)
               _P=NARA(2043)
              ITRV_=NARA(2044)
              _D=N49A(2045)
              IPTS=VARA(2046)
              APTS=FLOAT([PT3)
SLA SLL
3
              TAD -LP
              SVA
              JAP =903
              SLA SLL
                                   /BEGIN TO CALC STANDARD TEMP
              TAD =_D
              TAD (0202
              DCA SPARA
SLA SLL SML RAR /AC=4000
              5211
              1501
```

5

5555

Š

\$ \$ \$ \$

```
5201
9
3
         DCA BISTIK
         Z=FLJAT(ISTIK)
         TS=Z=(13./4095.)+>.
901
         READ(1,902)A2,43,44,45,A6
102
         FORMAT( 'T(1) | 42 = ',516.8./, 'T(2) | A3 = ',516.8./, 'T(3): A4 = 1
      +,E15.8./,'T(4): 45 = ',E16.8./,'T(5): 46 = ',E16.8)
903
         READ(1.904) VZERO
904
         FORMAT('INITIAL VOLUME (MLS): ',E14,6)
         TIM=.2
         VDIVK=10
         NDIVY=10
         11=-2
         14=0
1
3
 BEGIN OPTION ROUTINE TO PLOT
8
 1
3
  LINDA, SLA SLL
8
         JAP #415
Sall xyend
3
70<sub>0</sub>
415
         ARITE(1,416)
416
         FORMAT( PLOT DPTIONS: 1) AXES ..., 14X, 12 RAH DATA ..., 14X, 13) C CORR
      ◆ECTED DATA · . / , 14x , '4)D CORRECTED DATA · , / , 14x , ·5)T CORRECTED DATA · ,
      +/.14x, 16)D-T CORRECTED DATA1./.14x, 17)CALL EXIT1./)
 RPL1, KSF
                           /KEYBOARD STRUCK YET.
3
3
         JYP RPL1
                           /YES. READ CHARACTER
         44B
3
3
         TLS
                           /ECHD
         TAD (7517
                           /CHECK
8
                           /IS IT A "1".
         SVA
3
                           \\3, 30
         JYP RPL2
         TAD (7777
3
                           /IS IT A "2".
/YES, CONTINUE
3
         SYA
3
         JAP SPLS
3
         TAD (7777
                           /15 IT A #3".
5
         SVA
3
         JYP RPL4
                           /YES CONTINUE
3
         TAD 17777
3
         SVA
                           /15 IT A #4".
                           ITES. CONTINUE
3
         JYP RPLS
3
         TAD (7777
                           /15 IT A "5".
5
         SVA
                           TYES, CONTINUE
3
         JYP RPL6
3
         TAD (7777
S
         SVA
                           /15 IT A "6".
                           /YES. CONTINUE
5
         JYP RPL7
         SALL EXIT
 RPL2,
         SLA SLL
3
         CALL AXISCHOIVE, MOIVY)
         JAP =415
3
$
  BEGIN ROUTINE TO PLOT RAW & DATA
3
  RPLS, SLA SLL
3
Š
         JAS AVDA
                           /30 READ AND SET UP
         JHS 3JNC
3
                           /30 CALC. RAW G
                           130 PLOT FIRST POINT
9
         JYS PLF
```

```
48=13+1
00 908 1=M8,LC
          SLA SLL
TAD ELP
          54A
J4P =701
3
          SLA SLL
ISZ ASET
          JAS 3140
Y=CCRLL
                             /30 CALC RAN G
3 =701.
          TOT PLOT
                           130 PLST
908
          30 T3 700
S /BEGIN ROUTINE TO CALCULATE SCALE CHANGE CORRECTED G
S / S RPL4, SLA SLL
          JUS ANDS
                             /30 READ AND SET UP
3
5
                             /30 CALC RAW G
          Y=C033
          J45 31 F
                          " /30 PLOT FIRST POINT
5
          48-L3+1
          DO 775 1=M8,LC
5
          SLA SLL
5
          TAD B_P
3
          SVA
5
          J4P =776
5
          SLA SLL
         ISZ ASET
$ m776.
                             /30 CALC RAW G
          146 5-01
                             /30 PLDT
775
          CONTINUE
          30 TO 700
S / S / BEGIN ROUTINE TO PLOT DILUTION CORRECTED DATA
S RPLS, SLA SLL
          SONA SPL
          X9=F_OAT(L9)
          XTIMOTIMO(XB-1.)
          SLA SLL
JMS BUNG
JMS BOD
3
                             /30 CALC RAW G
8
                             /30 CALC D CORRECTED G
3
          Y=GD
          JYS PLF
                             /30 PLOT FIRST POINT
5
          48=L3+1
D0 910 I=M9,LC
          SLA SLL
TAD BLP
8
3
S
          SVA
Š
          J4P =703
S
          SLA SLL
5
          ISZ ASET
703
          XTIMOXTIMOTIM
                          /30 CALC RAW G
/30 CALC D CORRECTED G
S
          SACE SML
          JMS 300
3
          Y=GD
S
          J45 2-01
                             /30 PLOT
910
          PUPITHCS
          30 TO 700
```

```
S /BEGINE ROJTINE TO P.OT T CORRECTED G
Š ŘPL6. SLA SLL
          FOVA BAL
                             /30 CALC RAW G
                            /30 CALC T CORRECTED &
8
          JMB 3CT
          Y=GT
          JHS PLF
                             /30 PLOT FIRST POINT
          18-L3-1
          DO 912 I=MB,LC
                            /30 CALC RAW G
/30 CALC T CORRECTED G
          JAE SHE
3
9
          Y=6T
J45 PLOT
3
                             /30 PLOT
112
          CONTINUE
          30 T3 700
  BEGIN ROUTINE TO PLOT DOT CORRECTED DATA
S APL7. SLA SLL
          SUL SEL
          X90F_OAT(L3)
          XTIMETIM-(XB-1.)
          JAS SUL
3
                            /30 CALC RAW G
9
                            /30 CALC T CORRECTED G /30 CALC D-T CORRECTED G
          J45 3CT
J45 3CTD
S
3
          Y=GTD
                             /30 PLOT FIRST POINT
5
          JYS PLF
          48=L3+1
          DO 914 1 mg, LC
          MIT+PITXOMITX
                            /30 CALC RAW G
/30 CALC T CORRECTED G
          CAUE EPL
TOE EPL
3
3
3
          J45 3CTD
                             /30 CALC D-T CORRECTED &
          Y=GTD'
                           /30 P_3T
3
          1024 PK
          CONTINUE
30 TO 700
914
S /SUBROJTINE GUNC
S /THIS SUBROUTINE CALCULATES RAW CONDUCTANCE
5 /
S GUNC, JOOO SLA SLL
5
          TAD HLD
5
          SZA
          JYP SEL
3
          JMP SEM
SLA SLL
S CEL.
          5211
                             /ADD IN REMAINDER
3
          1500
3
          5201
3
          TAD (4000
          SIL DEA EJSTIK
5
          ZL=F_OAT(JSTIK)
SLA SLL
2
3
          ISZ ASET
S CEM.
          5211
                            /ADD IN DATA
3
          1500
```

```
5201
3
8
         TAD (4000
                          /CHANGE TO 2'S COMPLIMENT
Š
         SLL
$
         DCA #ISTIK
         Z=FLJAT(ISTIK)
         SLA SLL
         ISZ ASET
3
                          /SET UP FOR PARA WORD
3
         6211
$
                         /ADD IN PARA WORD
         1500
         5201
$
                          /30 DECODE
         JAS DEODS
         ISZ ASET
                          /SET UP FOR NEXT POINT
$
         JAP I GJYC
                          /RETURY
8 /
  /SUBROJTINE GCD
8 /THIS SUBROUTINE CALCULATES DILUTION CORRECTED &
9 /
  aCD.
         3000
2
         SLA SLL
         30=((VZERO+XT14)+33R3)/VZERO
         SLA SLL
JMP I GSD
$
                          /RETURY
3 /
S /SUBROJTINE GCT
S /THIS BUBROUTINE CALCULATES TEMPERATURE CORRECTED @
8
  ACT.
5
         0000
         SLA SLL
3
9
         5211
                          /ADD IN TEMP POINT
         1500
3
         5201
                          JOHANGE TO 2'S COMPLIMENT
3
         TAD (4000
         SLL
8
         DCA BISTIK
         Z=FLJAT(ISTIK)
         T=Z-(10./4096.)+5.
         37=A5+((T5++5)+(T++5))+A5+((T5++4)+(T++4))+A4+((T5++3)+(T++3))+A
     +3+((T5++2)+(T++2))+42+(T5-T)+CORG
3
         SLA SLL
3
         ISZ ASET
                          /SET UP FOR NEXT POINT
S
         JAP 1 GST
                          /RETURY
S /SUBROJTINE GOTD
S /THIS SUBROUTINE CALCULATES DILUTION AND TEMPERATURE CORRECTED G
5
S GCTD, Jooo
3
         SLA SLL
         3TD=((VZERO+XTIM)+3T)/VZERO
         SLA SLL
JAP I GCTD
5
S
                          /RETURY
5 /
S /SUBROJTINE AYOR
S /THIS SUBROUTINE DETERMINES THE NUMBER AND RANGE OF POINTS TO PLOT
S /
S ANDR, JOGO
         READ(1,418)LB,.C, YHI, YLD
FDRMAT('FROM POINT ',15,/,'UPPER G ',E14.6,/
418
     +,'LOHER G ',E14.6)
SLA SLL
SLA SLL
5
5
                         /SET UP ADDRESS OF FIRST POINT
5
         TAD (0200
```

```
DCA ASET
          ZT=0.
          11=-5
          LA=1
929 [F([3-LA)531,531,530
8 m530, JMS 3UNC /30 CALC RAW G
         SLA SLL
TAD BLP
3
. $
          SZA
8
          ISZ ASET
5
          SLA SLL
          LA=L4+1
          30 TO 529
S =531. JMP I AVOR
5 /
S /SUBROJTINE PLF
  THIS SUBROUTINE SETS SCALING PARAMETERS AND PLOTS FIRST POINT
3
         0000
S PLF.
         CLA SLL
YSCA_=2047./(Y41-YLO)
          ISCA_=2047/(LC-L3)
          Y=(Y-YL3)-YSCA_!
          LY=IFIX(Y)
          LXEO
          CALL XYST(LX,LY)
          SLA SLL
Jyp I PLF
5
                            /RETURY
S /SUBROJTINE PLOT
S /THIS SUBROUTINE PLOTS ALL REMAINING INDICATED POINTS
9 /
S PLOT. J100
          SLA SLL
          Y=(Y-YLD)+YSCA_
          -Asiaix(A)
          LX=LX+1SCAL
          SALL XYP_T(LX,_Y)
          SLA SLL
JMP 1 PLOT
5
                            /RETURY
S /SUBROJTINE DOODE
S /THIS SURROUTINE DECODES PARAMETER MORDS
S /COMPUTES PH. RV. XUNI, ES. RCELL, CCELL
S /IT MUST BE ENTERED 41TH PARA WORD IN AC
S /PARA JORD FORMAT:
                            FIRST 4 BITS ARE UNUSED
5 /
                            NEXT 4 BITS FOR JUITS VALUE (BINARY 1-10)
NEXT 2 BITS FOR JAIN INFO (BINARY VALUE 0-3)
3
Š
                            (5-1 YRANIE) CANI HA NOT STIR S TXEN
  1
  DCODE, JOOO
                            ISTORE PARA WORD
          DCA SPPJ
          THETH
         THET.
         XUNI=0.
          3V=10000.
          TAD SPPJ
```

```
/MASK ALL BUT PH BITS
        AND 45K1
  DC1.
2
        DCA SPP4
         TAD SOPA
                          /ALLSET.
3
        SYA
8
                          /YES, CONTINUE
         JYP BCZ
3
         SLA SLL
                          /ND, ADJUST
         PHEPHOLD,
        CHA
$
                          /ADD -1
         TAD SPPH
JMP DC1
                          /SET UP NEXT ITERATION
8 M8K1,
        J003
                          /MASK ALL BUT PH BITS
S DC2.
        TAD SPPJ
                          /MASK ALL BUT GAIN BITS
         AND ARKS
S DC3.
         DCA SPP4
         TAD SOP4
                          /ALL SET.
8
         SYA
                          TYES, CONTINUE
8
         JMP DE4
3
         SLA SLL
                          /NO, ADJUST
         RV=RV=10.
        TAD DC7774
TAD SPP4
3
8
                          ISET UP NEXT ITERATION
2
         J4P 353
5 MSK2. J914
                          /MASK FOR ALL BUT GAIN BITS
SDC7774,7774
                          /JAIN DEINCREMENTER
        TAD SPPJ
3 DC4.
         AND 45K3
                          /MASK ALL BUT OFFSET UNITS BITS
2
        DCA SPP
S DCS.
        TAD SPP4
3
3
         SVA
                          /ALL SET.
                          TYES, CONTINUE
3
         JYP DC6
5
        CLA SLL
                          TRULDA , CV \
         XUNI=XUNI+1.
        TAD 307760
TAD SPP4
5
                          /SET JP FOR NEXT ITERATION
         J4P 205
S MSK3, 0360
                          /48K FOR ALL BUT UNITS BITS
SDC7760.7760
                          /JNITS DEINCREMENTER
S DC6.
         SLA SLL
         ES=(Z-(12,5/4076.)+6,25)
         IF(L))312.312.311
         ESL=(7L+(12.5/4095.)+5.25)/APTS
311
         ES=ES+ES_
         CCEL_=((ES/QV)+(10.+XUNI/RV))/PH
312
         IF(14)772,257,772
        SLA SLL
TAD SPPJ
  #772.
                          /BRING UP CURRENT PARA HORD
3
         SIA
5
         TAD EIK
                          /PARA JORDS THE SAME.
5
        SYA
         JAP #257
SLA SLL
                          TYES CONTINUE TO A ROH.
S
3
         IF(17)774,774,773
        SLA SLL IAC RAL /AC=0002
3
 =773,
                          /SET ADDRESS OF NEXT PARA WORD TO CHECK
5
         TAD ELD
                          FOR ANOTHER IMPENDING SCALE CHANGE
3
        TAD ELP
         TAD ASET
S
        DCA SPARA
8
        5211
                          /BRING IN NEXT PARA HORD
S
        1501
$
         5201
```

```
S CIA SPPJ /COMPARE CURRENT AND NEXT PARA HORDS
S SZA
S JMP #774
S CLA CLL
Z1=TN-TN
Z2=TY-TL
ZN=T_-(Z1+Z2)/2.
ZT=ZT+ZN-CCELL
774 IT=-3
T<=CCELL
CORG=CCE_L+ZT
IT=IT+1
S CLA CLL
S TAD SPPJ /3RING UP CURRENT PARA HORD
S OCA #IK
S JMP I DCODE
END
```

FILEII PROGRAM LISTING

```
S /PROGRAM NAME: FILEII.FT
  /KEITH J. CASERTA
                             3/4/74
  THIS PROGRAM EXECUTES ANY OF THREE OPTIONS:

1) IT WILL READ AN EDITOR GENERATED FILE FROM DTA1
                  AND WRITE IT ON THE SYSTEM TAPE AS AN DOPEN FILE FOR
                   JSE'WITH COMELP. IN ORDER TO DO THIS, THE OPERATOR
8
  1
5
                   MUST KNOW THE ABSOLUTE BLOCK NUMBER (DECIMAL) ON THE
  1
                  DTA1 HHERE THE PROGNAM IS STORED AND THE NUMBER OF 05/3 3.0C4S IT OCCUPIES. THIS INFORMATION MAY
3
3
  1
                  BE DATAINED BY CALLING PIP AND GETTING A LISTING OF
                  OTAL (/E JPTION).
                                       IF DT41 POSSESSES AN OS/8 SYSTEM
3
                  AREA, THE FIRST PROGRAM BEGINS AT BLOCK 112 (DECIMAL).
  1
                  BACH DEVE BLOCK WHICH THE PIP LISTING INDICATES THAT
                  IT OCCUPIES IS EQUAL TO TWO ABSOLUTE TAPE BLOCKS. IF THE TAPE DOES NOT INCLUDE AN DS/8 SYSTEM AREA.
5
8
  1
                  THE FIRST PROGRAM BEGINS AT ABSOLUTE TAPE BLOCK
S
  1
                  14 (DESIMAL).
         2) IT WILL CREATE A PLOTTING FILE BY ALLOWING THE OPERATOR
$
                  TO INPUT THE X AND Y COORDINATES OF ALL POINTS WHICH
S
  1
5
  ,
                   ARE CONNECTED IN PLOTTING AS STRAIGHT LIMES,
                                                                      SCALING
                  FACTORS FOR BOTH THE X AND Y VALUES MAY BE INPUT.
8
S
  1
                   ALL POSITIVE INTEGERS FROM 0 TO 2047 ARE VALID
                                        A "=1" IS USED AS A LINE DELIMITER
3
                   COORDINATE VALUES.
  1
5
                  AND A "-2" INDICATES AN END-OF-FILE. THE FILE IS
                  ARITTEN AS AN JOPEN FILE ON THE SYSTEM TAPE. THE FILE MAY BE EDITED WITH THIS SAME OPTION.
S
3
                   WAME IS IMPUT TO CALL IT FROM TAPE. THE EDITING
3
S
                  FUNCTIONS INCLUDE CHANGING POINTS, DILUTING POINTS,
  1
                  INSERTING POINTS, CHANGING SCALING FACTORS, AND
3
  1
                  SEARCHING THE ARRAY FOR A PARTICULAR X OR'Y VALUE.
5
  1
S
  1
         3) IT HILL PLOT A FILE PREVIOUSLY GENERATED. THE FILE
S
  1
                  VAME MIST BE INPUT.
S
5 /
         COMMON IP, IFILE, ITOT, IBLK, M
         DIMENSION [FIL=(125),12(2,300)
S /
  SELECT MAJOR OPTION
S /
1000
         WRITE(1,2)
         FORMAT('OPTIONS: 1)CREATE A TEXT FILE'./,9%,'2)CREATE OR EDIT A
2
      +PLOTTING FILE: . / . 9x . '3)P.OT A FILE')
1
         READ(1.5) IMM
5
         FORMAT(":", 15)
         GO TO (6.50.157). IMM
  JOEGIN TO GENERATE TEXT FILE
S /
         READ(1,10) FNAME, IBLK, ITOT
         FORMAT( DESIRED NAME OF OUTPUT FILE: ', A6. /, IF IRST BLOCK TO READ!
10
      +1,15,/, TOTAL 35/8 BLOCKS:1,15)
         ITOT=ITOT=2
         SALL DOPEN( DT40 ', FN44E)
         00 40 1=1,1707
         SALL RTAPE(1,17L4,128,1FILE)
         WRITE(4,20)(IFIL=(4),4=1,128)
20
         FORMAT(12842)
         IBLK=IBLK+1
40
         CONTINUE
         CALL DCLOSE
160
         GO TO 1000
```

```
S /BEGIN GRAPHICS FILE OPTIONS
5./
50
        READ(1,170)KTT
        FORMAT( FDIT PREVIOUS FILE=1, CREATE NEW FILE=0: 1,15)
170
        TRE0
        IF(KTT)51,51,150
S / S / ROUTINE TO GENERATE GRAPHIC DISPLAY
3 /
51
        READ(1,110) FNAME, XSCLE, YSCLE
        FORMAT( DESIRED WAME OF PLOTTING FILE: 1,46,/,1% SCALING FACTOR
110
     +(REAL): ', =16.8, /, 'Y SCA_ING FACTOR (REAL): ', =16.8)
        DO 130 I=1.300
        READ(1,120)[P(1,1),[P(2,1)
111
        *ORMAT(1x = 1,15,/,1Y = 1,15)
120
        IF([=(1,1)+1)140,130,125
125
        IP(1.1)=FLOAT(IP(1.1)) +XSCLE
        IP(2,1)=FL3AT(IP(2,1))+YSCLE
130
        SUNITAGE
        SALL DOPEN(+DT401,FN44E)
140
        4R1TE(4,150)(1°(1,1),1=1,300)
        ARITE(4,150)(12(2,1),1=1,300)
        FORMAT(30042)
150
        CALL OCLOSE
        30 TO 1000
8 /
S /ROUTINE TO EDIT GRAPHICS FILE
5 /
160
        READ(1,1181)KT3
        FORMAT(IFILE IN BUFFER=1.FILE ON TAPE=2: 1,15)
1181
        30 TO (209,1180), (TS
1180
        READ(1,191)FNA4E
        FORMAT( INAME OF FILE TO FIXITA6)
181
        SALL 10PEN( DTAO , FNAME)
        READ(4,150)(|P(1,|),|=1,300)
        READ(4,150)([P(2,[),[=1,300)
200
        4917E(1.709)
        FORMATCHINSERT A POINT=11,/, DELETE A POINT=21,/, CHANGE A POINT
909
     +=31,/, +CHANGE SCALING FACTORS=41,/, +SEARCH=51,/, +ALL DONE=61)
        READ(1,5)KTS
        30 TO (211,217,182,500,600,140), <TS
S /ROUTINE TO INSERT POINTS INTO GRAPHICS FILE
S /
211
        READ(1,212) INFD, X5CLF, YSCLF
        FORMATCIN FRONT OF POINT: 1,15,/,'X SCALING FACTOR: 1,E16.8,/,'
212
     +Y SCALING FACTOR! ',E16.9)
        IF(1=(1,1NFO))1627.628,628
        HX=F_DAT(IP(1, INFD))/XSCLF
628
        TUSEN ((CANTOS) TITAC TEP
        459 CT OE
        4X=13(1,14F0)
1629
        44=1=(5.1HEO)
429
        4RITE(1,444)[NFO,4X,4Y
        FORMAT( 19014T 1,15.1 11, /, 1X = 1,15,/, 1Y = 1,15,/)
444
        72AD(1,213)[PT
        FORMATIONUMBER OF POINTS TO INSERT! 1,15)
213
        IF(127)209.209.214
214
        <TU=300
        415=300e1PT
```

```
DO 215 I=1.KTH
         IP(1.<TJ)=1P(1.KTS)
         10(2,47J)=[p(2,K7S)
47U=47U=1
         475047501
215
         CONTINUE
         DO 216 [=1, [PT
         READ(1,120) [P(1,14F0), [P(2,14F0)
         IF([ P(1. [NFO) ) 531, 530, 530
         IP(1, INF3) = FL34T(IP(1, INFO)) = XSCLF
IP(2, INF3) = FL34T(IP(2, INFO)) = YSCLF
430
631
         INFO-INFO+1
216
         SONTINUE
         READ(1,917)KTS
         FORMATICALL DOVE-1, INSERT MORE POINTS-0, EDIT OPTIONS--1: 1,15)
817
         IF(KTS)209,211,140
S /ROUTINE TO DELETE POINTS FROM A GRAPHICS FILE
8 /
         READ(1, 518) IPT, INFD, XSCLF, YSCLF
         FORMATCIDELETE: FROM POINT: 1.15./.ITO POINT: 1.15./.IX SCALING
818
      +FACTOR: ', E16.8, ', 'Y SCA_ING FACTOR: ', E16.8)
         IF(1=(1,1PT))1533,632,532
632
         MXEF_DAT(IP(1,IPT))/XSCLF
         4Y=F_0AT(1P(2,1PT))/YSSLF
         30 TO 633
1633
         4x=12(1,1PT)
         4Y=12(2,1PT)
633
         49173(1,444) [27,4X,MY
         IF([ >(1, [NFD) )1635,634,634
634
         MX=F_DAT(IP(1, INFD))/XSCLF
         TYPE-DAT(19(2, INFD))/YSCLF
         30 T3 635
1635
         4x=13(1,1NFO)
         47=13(2,1NFO)
ARITE(1,444)1470,4X,4Y
635
         READ(1,445)KTS
         FORMAT( CONTINUES 1, SKIP DELETION 21 1, 15)
445
         30 T3 (446,209), <TS
446
         KTS=300=INFO
         INFO=INFO+1
         DO 215 I=1,KTS
         IP(1, [PT)=[P(1, [YF3)
         IP(2, IPT) = IP(2, INF3)
IPT=IPT+1
         INFO:INFO+1
218
         SUNTINUE
         READ(1,219)KTS
210
         FORMAT( !ALL DONE=1,DELETE MORE POINTS=0.EDIT OPTIONS=-1: 1,15)
         IF(KTS)209,217,140
S PROUTING TO CHANGE POINTS IN A GRAPHICS FILE
3 /
         READ(1,193)KTS,XSCLF,YSCLF
183
         FORMAT(12014T TO CHANGE!1,15,/,1X SCALING FACTOR: 1,E16.6,/,1Y S
      +CALING FACTOR: 1.E15.8)
         IF(IP(1, <TS))943, 542, 942
         IP(1. <TS) = FLOAT(12(1. <TS))/XSCLF
842
         IP(2, <TS) = FLOAT(12(2, <TS))/YSCLF
843
         49173(1,120)12(1,475), [P(2,KTS)
         READ(1,120)[P(1,4TS),12(2,KTS)
         IF(1>(1,<75))844,945,845
```

```
IP(1, 4TS) = FLOAT(12(1, 4TS)) = XSCLF
845
         IP(2, <75) = FLOAT(12(2, <75)) + YSCLF
844
         READ(1,195) 4TS
        FORMATCIALL DOVE-1, CHANGE ANOTHER POINT-0, EDIT OPTIONS--1: 1,15)
185
        IF(KTS)209,182,140
S PROUTINE TO CHANGE THE SCALING FACTORS OF A GRAPHICS FILE
5_/
300
         READ(1,501)xSC.E.YSCLE,XSCLF.YSCLF
        FORMAT(1)LD X SCA_ING FACTOR: ', E16,8,/,')LD Y SCALING FACTOR: '
501
     . E16.8. /. IVEA X SCA_ING FACTOR: ', E16.8. /. 'NEW Y SCALING FACTOR! !
     +,£16.8)
        DD 502 [=1.300
         IF(1=(1,1))502,635,636
        IP(1,1)=(FLOAT(1P(1,1))/XSCLE)=XSCLF
IP(2,1)=(FLOAT(1P(2,1))/YSCLE)=YSCLF
636
502
         SONTINUE
         READ(1,503)KTS
        FORMATCIALL DOVE-1, EDIT OPTIONS-0: 1,15)
503
         IF(KTS)209,209,140
S PROUTINE TO SEARCH THE BRAPHICS BUFFER FOR A VALUE
5 /
600
        READ(1.601) IC, ID, YSCLF
        FORMAT( 13EARCH FOR X VALUE=1. Y VALUE=21 1,15,/, 'VALUE TO BE FOU
601
     +ND1 1,15,/,18CALIN3 FACTOR: 1,E16,8)
IF(13)639,637,537
437
        ID=F_DAT(ID) = YSCLF
638
         4C=0
        DO 604 I=1.300
         IF(I=(IS,I)-10)604,602,604
602
         4RITE(1.603)[
        FORMAT(12014T 1,15)
603
         4C=1
604
         SUNTINUS
         IF(MC)605,505,507
605
         4917E(1,606)
        FORMAT(/, 'VALUE DOES NOT APPEAR!,/)
606
607
         READ(1,508)KTS
         FORMAT( FALL DONE=1, SEARCH AGAIN=0, EDIT OPTIONS=-1: 1,15)
608
         IF(KTS)209,600,140
S /BEGIN ROUTINE TO PLOT A FILE
S /
         READ(1,1181)KT5
         30 TO (1190,1522), <TS
1522
         READ(1,190)FNAME
        CARTITON CT SILE TO PLOTE 1,46)
190
         SALL 10PEN( DT40 , FNAME)
         READ(4.150)([P(1,[),[=1,300)
         READ(4,150)(IP(2,1),I=1,300)
         4x=12(1,1)
1190
         44=1=(5.1)
         U=1XP
         SALL SCOST(4X,4Y)
         DO 200 1=2,300
         4x=12(1.1)
         44=1=(2.1)
         IF(Mx+1)1000,173,194
193
         4x1=1
```

	30 TO 200
194	[F(MX1)195,196,175
195	SALL SCOST(HX, 4Y)
	4x1=0
	30 TO 200
196	SALL SCOPL(MX, MY)
200	SONTINUE
	30 73 1000
	£40

CBHELP
PROGRAM LISTING

```
8 /PROGRAM NAME: COHELP.FT
S /KEITH J CASERTA 5/2/74
 THIS IS THE COMPUTERIZED CONDUCTANCE SYSTEM INSTRUCTIONAL PACKAGE.
S /IT IS DESIGNED TO TEACH THE NOVICE USER THE NECESSARY FUNDAMENTALS OF COMPLETE THE COMPUTERIZED CONJUCTANCE SYSTEM.

S /IN ADJITION, IT SERVES AS A CONTINUAL REFERENCE TO THE EXPERIENCED
S /USER
S /IT MUST BE COMPILED WITH THE XYSYS.SB AND SCOPE.SB PLOTTING ROUTINES.
5 /
         COC.S)41 PCIEVENIC
         1Y=1505
         LPT=0
         FWAME=0.
         LA=0
         L9=0
         L4=1
S /BEGIN INITIAL DIALO3
         READ (1.61) [X
         FORMATCIADULD YOU LIKE INSTRUCTIONS FOR USING THIS PROGRAM. CTYP
61
      IF(1x-1Y)63,62.63
62
         FVAMERISPRELMI
S
         JAS AFILE
         SLA SLL
5
63
         75AD(1,101)LPT
         FORMATICIDUT DY LPT=1.0N TTY=0.8KIP INITIAL DIALOG=-11'.15)
101
         IF(L=T)215,214,297
JHS DLP /3
                           /30 SET UP LPT
3 =287.
         SLA SLL
FNAMER'ASTART!
214
         J45 AFILE
S =215.
         SLA SLL
         TRATE ! START!
         LPT=0
         J45 RFILE
3
         SLA SLL
         -4=0
3 /
S /BEGIN SELECTION OF MAJOR OPTION
3 /
9 /
         9EAD(1,259)4
289
         FDRMAT(!: 1,15)
         30 TO (311.313.315.317.319.321.323.325.327.347.346),N
288
5 /
S JOPTION TO TERMINATE
346
         491TE(1.326)
         FORMAT(/, 1 AM TERMINATING 1. /. 11 HOPE I HAVE BEEN OF ASSISTANCE!
328
     +./)
         SALL EXIT
266
         READ(1.330) Y
330
         FORMAT(ITYPE VJHEEN OF NEXT OPTION:1,15)
         30 TO 255
S /GENERAL SYSTEM DESCRIPTION OPTION
```

```
311
          FWAME . FOCCOD!
          ISK=1
JMS PLOT
3
           SLA SLL
           FNAME . POCCES!
           ISK=D
3
           JAS PLOT
3
           SLA SLL
           FNAME - CAGSDC'
5
           JMS RFILE
          SLA SLL
30 TO 295
3
S /DESCRIPTION OF THE INSTRUMENT OPTION
313
          FNAME - CINSOP!
          LM=1
          LPT=0
           JYS RFILE
9
Š
           -4=0
          READ(1,197) N
30 TJ (701,702,703,704,705) N
FNAMER PANALG!
700
701
          ISK=1
J45 PLOT
5
          SLA SLL
France Panal 21
8
           ISK=0
5
           JMS PLOT
          SLA SLL
FNAMS=12ANAL31
S
          JMS PLOT
5
          FHAMES ! SANALG!
           30 TO 705
702
           FYAME - 1 PSSCBD1
           15K=1
          JMS PLOT
8
          FNAME 19850921
          ISK=3
          JAS PLOT
SLA SLL
FNAME=:SCONDM:
S
          30 TO 705
703
           ISK=1
          JAS PLOT
SLA SLL
S
           FYAME . 1 PHEAS21
           ISKED
          JAS PLOT
          FNAME 1 34E4551
30 TO 705
704
          FYAMSETSTEADAL
          ISK=1
          J45 PLOT
3
5
```

```
FNAME . . PTEMP2
        ISKED
         JAS PLOT
        SLA SLL
        FNAMS TOTEMPHT
        30 70 705
705
        PYAMSOICOMERI
5 =706, J45 RFILE
        SLA SLL
        READ(1,707)1X
        FORMATICIABLE YOU LIKE A DISCUSSION OF ANY OTHER MODULE, 1,A2)
707
        IF(1x-1Y)256,738,286
        READ(1.709) N
708
        FORMAT( ) DEASE TYPE THE MODULE'S OPTION NUMBER: 1,15)
709
        30 TO 700
S /DISCUSSION OF CONDUCTANCE MEASUREMENT OPTION
315
        "NAME = 1 PACCBP1
        15K=1
3
        J45 PL01
        SLA SLL
Frame='Sdochg'
3
        JMS RFILE
        SLA SLL
S
        30 TO 255
S DISCUSSION OF THE BIPD AR PULSE TECHNIQUE OPTION
317
        FVAMERIPEPCIPI
        ISK=1
5
         J45 2L01
         SLA SLL
5
        FYAME TO TEPAY
S
         JYS PRILE
9
         SLA SLL
        READ(1.350)[X
        FORMATCHADULD TOU BE INTERESTED IN A DISCUSSION OF THEORETICAL E
350
     +RR24.1.42)
         IF(IX-IY)296,331,286
331
        FVAME= ! COOTEC!
S
         J45 SFILE
        SLA SLL
30 TO 256
8
NOITANICE FOR ROJILOR SPECITCURTENIN &
S
319
        PAMERICIFROCI
S
        JYS RFILE
3
        SLA SLL
        30 TO 255
S /INSTRUCTIONS FOR PU.SE HIDTH SELECTION OPTION
5 /
321
        FNAMES! PREVLR!
        ISKei
3
         JAS PLOT
         SLA SLL
3
        FVAMERICIFPHSI
        J45 RFILE
         SLA SLL
8
        30 TO 256
```

```
5 /
S /INSTRUCTIONS FOR ROUTIVE ADJUSTMENT OPTION
323
         FVAME= : CIFRAC!
         JAS RFILE
5
         30 T3 286
S /ERROR MESSAGE SUMMARY AND TROUBLESHOOTING OPTION
325
         READ(1.190)[X
100
         FORMAT( HOULD YOU LIKE AN ERROR SUMMARY, 1, A2)
         IF([x-1Y)152,151,152
181
         FVAME=133E45C1
         JYS AFILE
         SLA SLL
182
         4RITE(1.163)
183
         FORMATCHI COMPUTE THAT YOU MUST BE EXPERIENCING SOME DIFFICULTY.
         READ(1,194)[X
184
         FORMAT( 140 JLD YOU LIKE SOME HELP. 1.42)
         IF(1x-1Y)256,155,286
185
         * JALOFT * SEMAN*
         -4=1
         LPT=0
Jys apile
         SLA SLL
         L4=0
         491TE(1,185)
     FORMAT(!PLEASE'INDICATE THE NUMBER OF THE PROBLEM!,/,!WHICH BEST DESCRIBES YOUR DIFFICULTY!!,/)
186
         READ(1.197) Y
187
         FORMAT(15)
623
         IF(N-14)495,493,479
498
         30 TO (501.502.503.504.505.506.507.508.509.510.511.512.513).N
499
         V=N-13
         30 TO (514,515,515,517),N
         FNAME - 137R3811
501
         30 TO 519
502
         FYAMERITABELGI
         30 TO 515
         FVAME= 1 CPROB31
503
         30 TO 518
FWAME=129R0841
504
         30 70 519
505
         FNAME= 1 CPROB51
         30 TO 519
         FVAME : CPROB61
506
         30 TO 515
         FNAMERICPROB71
507
         30 TO 515
508
         * BBCRC ! = FMAY ?
         30 TO 515
         FVAMERICPROBRI
509
         30 73 519
         FNAME - CPRO10!
510
         30 TO 515
         FVAME= 13PR0111
511
         30 TO 515
         FVAME= + CPRO12+
512
         30 73 518
```

```
513
        FVAME= 10PR0131
         30 TO 519
514
        FNAME= 1 CPR0141
         30 70 519
515
         FWAME= 1 COROLD !
         30 73 519
516
         FVAME= 'CORO16'
        30 T3 515
FNAME='CPR317'
517
        JAS RFILE
SLA SLL
S =518.
         3EAD(1,520) 1X
620
         FORMATICIADULO YOU LIKE A DISCUSSION OF ANY OTHER PROBLEM. 1.42)
        IF(14-14)256,521,256
621
         454D(1,522)4
        FORMAT( 1915ASE TYPE THE NUMBER OF THE PROBLEM: 1,15)
622
        30 TO 623
S /SELECTION OF A PROBRAM SET FOR SPECIFIC EXPERIMENTS OPTION
9 /
327
         4R1TE(1,630)
         FORMATCITHE NAMES OF THE PROGRAMS IN THE COMPUTERIZEDI, /, ICONDUC
630
     +TANCE SYSTEM ARE CODED FOR . . . . . LASY RECOGNITION. HOULD YOU LIKE!
         READ(1,631)[X
         FORMAT(IAN EXPLANATION OF THIS CODE, I.A.Z.)
631
         IF(IX-1Y)633.632.533
632
         "VAME" CPRGEX!
         JYS RFILE
         SLA SLL
         FVAME - CSDAPS!
633
         LM=1
         _PT=0
         JYS AFILE
S
         SLA SLL
         _4=0
         421TE(1,519)
        FORMAT(IDLEASE TYPE THE NUMBER WHICH CORRESPONDS TO THEI, /, ITYPE
519
     . OF EXPERIMENT YOU AISH TO PERFORMIT
        READ(1,197)N
         30 TO (501.602.603.604.605.606.607.608.609.610.650),N
601
         FNAME= ISFLOWE!
         J45 RFILE
         SLA SLL
S
        READ(1.511)
        FORMAT( 14010 YOU LIKE AN EXPLANATION OF THE PROGRAM SET. 1,42)
611
        IF(1x-1Y)679,512,579
612
        FNAMERICEXPLET
         JAS AFILE
         SLA SLL
679
        READ(1,650) 1X
        FORMAT(140JLD YOJ CARE TO VIEW SAMPLE DATA. 1,42)
680
         IF(1x-1Y)296,531,286
681
        FVAME . PTITPL'
         ISK=1
         J45 PLOT
         SLÀ SIL
3
         FNAMER' STITPL'
         30 TO 520
602
         FNAMERICFLONS
         JAS AFILE
8
         SLA SLL
         READ(1,511) 1X
         IF(IX-IY)692,613,582
```

```
FNAMERICEXPLSI
613
          JAS SELL
8
Š
682
          READ(1,590)[X
          17(14-17)256,653,256
683
          PHAME - PHEKEL!
          15K=1
         JAS PLOT
SLA SLL
FNAME="SJEKEL"
5
          30 TO 520
FNAME - CFLOW1'
603
          JMS SFILE
          READ(1,611) [X
          IF(IX-IY)256.614.286
          FNAMER' CEXPLS!
614
          30 TO 520
          FWAME= ! CFLOW6!
604
          J45 RFILE
3
          SLA SLL
3
          READ(1.611)1X
          IF(1x-1Y)286,615,286
615
          FWAME - CEXPL6!
          30 TO 520
605
          FNAMER CFLOWAY
5
          J45 RFILE
          SLA SLL
READ(1,611)[X
S
          IF(IX-IY)286,516,286
616
          FNAMER : SEXPL41
          30 TO 520
606
          FNAMERICFLONSI
          JAS RFILE
5
S
          SLA SLL
          4EAD(1,511)1X
          IF(1x-1Y)256.517.286
617
          FNAME= : SEXPLS !
          30 T3 520
607
          FNAMERICFLOHTI
          JMS RFILE
9
          READ(1,511)|X
|F(|X-|Y)256,418,256
          FNAME=135XPL71
30 T3 520
418
          FNAME= ! CFLOWB!
608
S
          JYS RFILE
          SLA SLL
READ(1.511)[X
S
          IF([x-1Y)256,519,256
619
          FVAMERICEXPLBI
          30 TO 520
FNAME=13FLDW91
600
          30 T3 520
          FVAMERICFLO101
610
          30 TO 520
650
          FVAMER'SFLO11'
S m520, JMR RFILE
S DLA DLL
```

```
READ(1.3) IX
        FORMAT(140JLD TOJ LIKE A DISCUSSION OF ANY OTHER EXPERIMENT. 1.A
3
         IF(14-14)256,4,255
         READ(1.5)N
        FORMAT(19LEASE TYPE THE NUMBER OF THE EXPERIMENT: 1,15)
5
         30 73 6
S /CREATING OR CHANGING A CHHELP FILE OPTION
S / 347
         FNAMERICOCACFI
S
         JYS RFILE
S
         SLA SLL
         30 TO 255
S
S /SUBROJTINE RFILE
S /THIS SUBROUTINE READS A FILE GENERATED WITH FILEST AND
S JOUTPUTS IT TO THE TTY OF LPT
S /
S RFILE.0000
S SLA SLL
         IF(L4)213,213,212
213
         READ(1,100) LPT
        FORMAT(')UTPUT ON LPT=1,0N TTY=01',15)
IF(L=T)212,212,205
100
S =206,
        JYS DLP
                          /30 SET UP LPT
         ŠLÁ SLL
         SALL IDPEN( DT40 ' FNAME)
212
211
         READ(4,203)(12(1,1),1=1,126)
         FORMAT(12842)
203
         J45 SCRA4
                          /30 UNSCRAMBLE
S
S
         SLA SLL
        00 204 1=1.192
        LA=12(2,1)
         SLA SLL
S
        TAD WLA
S
S
        TAD (7545
S
                          /IS IF A CHTRL "Z".
        SWA
        JMP I RFILE
S
                          IYES. RETURN
S
        IF(L9T)275,275.275
S #275,
S
         TAD ELA
                          ITEST TTY FLAG
S PLP.
        TSF
S
         JAP 3-P
                          JECHO CHARACTER
S
        TLS
        30 TO 204
S
S #276.
        SLA SLL
         TAD .A
        5661
JWP PLL
S PLL.
                          ITEST LPT FLAG
        5666
SLA SLL
                          /JUTPUT CHARACTER
S
S
204
        SUNTINCE
        30 TO 211
S /SUBROJTINE OLD
S ITHIS SUBROUTINE SETS UP THE LPT FOR OUTPUT
5 /
```

```
S OLP.
         0000
         SLA SLL
3
                            /SLEAR LPT FLAG
3
         5662
3
         5661
JAP XFI
                            /TEST FLAG (SEE IF LPT IS OFF)
3
         JAP SLPT
                            /30 TELL TO TURN ON LPT
S WFI.
         5662
         6661
         JAD KEI
5
3
         JAP 4FI
S XFI.
         SLA SLL
TAD (7700
         DCA SET2
                            JOELAY LOOP
S
S FP.
         ISZ SET1
         ISZ SETZ
                            /JARRIAGE RETURN
S
         TAD (0215
S
         5564
         5661
S YFI.
         JAP YFI
SLA SLL
         TAD (0214
                            /FORY FEED
         5666
S ZF1.
         5661
JHP ZFI
         SLA SLL
         JAP EXP
S SET1, 3000
S SET2. 3000
S OLPT, SLA
         SLA SLL
         4RITE(1.220)
220
         FORMAT(1.1JRN ON _PT.1/)
         JAP AFI
SLA SLL
S EXP.
         JYP 1 OLP
S /SUBROJTINE SCRAM
S /THIS SUBROJTINE UNSCRAMBLES OS/8 DECTAPE PACKED ASCII INTO
S /DISCRETE 9 BIT VALUES
S SCRAM, JOOO
         SLA SLL
         <T=1
         <A=0
         <8=0
         <C=0
         <D=0
         00 400 4=1,127,2
         <A=12(1, <)
         48=1=(1.4+1)
         SLA SLL
TAD EKA
S
                           1/3EGIN TO REARRANGE DATA
         AND (0377
3
         DOA EKC
S
         TAD ECB
S
         AND (0377
         DCA =<D
         TAD EKA
                            /JEGIN TO COMBINE THIRD CHARACTER CODE
         AND (7400
         PTR
S
         RTF
```

```
DCA SKA
5
S
         TAD #48
$
         44D (7400
9
         PTL
8
         RTL
5
         JAF
5
         TAD EKA
         DEA EXA
9
3
         IP(2, <T) = KC
         KT=KT+1
         IP(2. <T)=KD
         T=KT+1
         IP(2, <T) =KA
         KT=KT+1
400
         CONTINUE
S
         JYP I SCRAY
9 /
S /SUBROJTINE PLOT
S /THIS SURROUTINE GENERATES GRAPHICS DISPLAYS FOR CHHELP ROUTINES
S /
S PLOT. JOOO
         SLA SLL
Sall Iopen(+dtag+,Fname)
         READ(4,920)(12(1,1),1=1,300)
         READ(4.920)(19(2.1),1=1,300)
920
         FORMAT(300A2)
         IF(154)923,923,921
921
         READ(1,930) IX
         FORMATCINOULD YOU LIKE A HARD COPY OF THE DIAGRAM. 1, A2)
930
923
         4x=13(1.1)
         44=12(2,1)
         4x1=0
         IF(1x-1Y)935,936,935
         SALL SCOST (MX, MY)
935
         33 TO 937
SALL XYST(4X,4Y)
936
937
         Do 950 I=2,300
         4x=12(1,1)
         44=15(5'1)
         IF(MX+1)960,940,945
940
         IF([x-17)942,941,742
941
942
         SALL XYEND
         4x1=1
         30 T3 950
945
         IF(1x-1Y)946,947,946
946
         IF(MX1)948.949.943
948
         SALL SCOST(MX, MY)
         4x1=0
         30 73 953
         SALL SCOPL(MX, MY)
30 TO 950
949
947
         IF(MK1)951,952,951
         SALL XYST(4X,4Y)
951
         4x1=)
         30 TO 950
952
         SALL XYP T(4X,4Y)
950
         SUNTINUE
960
         IF(1x-1Y)952,951,952
961
         SALL XYEND
SLA SLL
S #962.
         JAP I PLOT
         END
```