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ABSTRACT

THE OT+ STRENGTH IN NUCLEI

BY

Dongwoo Cha

The 01+ strength function is studied by the quasi-

particle random phase approximation. When applied with a

zero—range interaction, it is found that the particle-hole

interaction reduces the unperturbed 01+ strength by a factor

of about two uniformly across the whole range of the excita-

tion energy, while the particle-particle interaction removes

part of the strength from the lowest excitation to higher

excitation energy region. By comparing the theory with the

observed log(ft) values of the 8+ decay in medium heavy

neutron rich nuclei, we found that the strong quenching,

which is present in other isovector spin-flip transitions,

is also required for the or+ mode. Finally, we predict

that there is a large concentration of the OT+ strength

at high excitation energy which can not be accessed by the

8+ decay.
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Chapter I

INTRODUCTION

One of the most important achievements in nuclear

physics in recent years is the progress made in the under-

standing of spin excitations in nuclei. On the experimental

side, intermediate energy (100N200 MeV) hadronic probes make

it possible to observe spin—flip isovector excitations in

nuclei selectively. From measurements at very forward

angles, the prominent spin-flip states with L=O can be dis-

tinguished very effectively. Furthermore, the spin indepen-

dent part of the effective isovector interaction decreases

significantly for the above bombarding energies while that of

the spin dependent part stays close to constant, and there—

fore the spin-flip states become more conspicuous. [Lov81]

On the theoretical side, a large concentration of

the spin-flip strength has been predicted since as early as

the 1960's to account for the strong hindrance of the

allowed Gamow-Teller (GT) 8 decay. [Ike63] This is a

straight analogy of the isobaric analog state (IAS) which

depletes much of the strength of the allowed Fermi decay, or

the electric giant dipole resonance, related to first

forbidden B decay. [Gaa80]

After searching more than a decade, the giant GT





resonance in medium heavy nuclei was finally found in 1975

by Doering et a1. using the (p,n) reaction at 45 MeV.

[Doe75] The spin-flip without charge—exchange was first

observed in heavy nuclei in 1981 when Anantaraman et a1.

measured the M1 resonances in Zirconium isotopes by the

inelastic scattering of 200 MeV protons. [Ana81] Now, enough

data have been accumulated to draw a definite description of

the nature of the spin and isospin dependent part of the

nuclear interaction. [Bai80, And80, Hor80, Ste80, Ori81,

Goo8l, Cra82, Ana82] They give information not only on the

nuclear structure itself but also on the mesonic phenomena

such as that leading to pion condensation. This is because

the quantum numbers involved are the same as those of the

nuclear spin—flip and isospin—flip states. [Mey8l] In fact,

studies so far show concrete evidence that the isovector

spin-flip strength, both the GT and M1 strength, in medium

heavy nuclei is strongly quenched by a factor of about three

with respect to the shell model estimation. [Knu80, B1081,

GooBl, McG81, Kre81, Cra82, Sag82, Ana82] The mechanism for

this extra strength reduction must be found somewhere out—

side the present model space, for example from the collec—

tive A-hole excitations, [Boh81, Br081] or from more complex

configurations. [Ber82a] But it has been stressed [We182]

that we should first know that the nuclear structure cal-

culation is correct before making quantitative estimation of

the more exotic mechanisms for strength reduction.





The spin—flip isovector operator has three modes,

namely, two charge-exchange modes or: (the GT transition)

and one non-charge exchange mode 010 (the M1 transition).

Though the same reaction mechanism governs them all, the

transition strength realized in three adjacent isobaric

nuclei may look very different due to the ground state

configuration of the parent nucleus. The difference between

the 01+ and the or_ strength tells us about the asymmetry

between neutrons and protons present in the initial ground

state. In medium heavy nuclei, usually a large neutron

excess is built up. So the or_ strength would be large with

most of them originated from this obvious neutron excess. On

the other hand, the or strength comes mainly from the
+

ground state correlation, except for the contribution from

those transitions where the j>=£+% level is occupied while

the j<=2-% neutron level is empty. Therefore, there is a

particular interest in studying the OT strength. Unfortu-
+

nately, however, the data available at present for this mode

are only from 8+ decay. The 8+ decay can only provide

limited information on the strength function at the tail

region of the spectrum whose energy is less than the Q—

value.

The B decay in medium heavy nuclei has been studied

by many authors. Kisslinger and Sorensen applied the pairing

theory to the B decay of spherical heavy nuclei for the

first time. [Kis63] They showed that the isotope dependence



of the log(ft) values can be explained simply by the occu—

pation probabilities in the Bardeen-Cooper-Schrieffer (BCS)

ground state. Hamamoto investigated the B decay in odd mass

nuclei by the perturbation theory admixing a one-quasi-

particle (QP) state with three—OP states. [Ham65] It was

shown that her results depend sharply on the strength of the

residual interaction. Halbleib and Sorensen studied the GT 8

decay in odd—odd mass nuclei. [Ha167] They adopted the pair-

ing plus quadrupole force between like nucleons and the

short range 6-force and/or the long range GT force between

unlike nucleons and could reproduce the data within a factor

of three. Klapdor and Wene were the first to point out that

the structure of the low-lying part of the strength function

can have a strong effect on the predictions such as B decay

half lives and astrophysical calculations. [Kla80] Klapdor

et a1. calculated the strength function for many heavy

nuclei around the line of B stability using a schematical

interaction. [Kla81] By using their model, they found that

the half lives for neutron rich nuclei are systematically

shorter than obtained by simpler models.

In this thesis, we want to study the OT+ strength

function for even—even nuclei with a large neutron excess

between mass numbers A=100%150. We shall compare it with the

data from the 8+ decay. Our model theory is the QP random

phase approximation (RPA) for particle-hole (PH) states of

unlike nucleons. As for single particle wavefunctions, we



shall use the BCS wavefunctions from a Woods—Saxon (WS)

potential assuming the pairing correlation between like

nucleons only. The pairing correlation in the ground state

of the parent nucleus plays a very important role, in

addition to the ground state correlation for the 8+ decay of

neutron rich nuclei. Without it, either there would be no

available empty neutron levels for the transition or the

transition energy would be in most cases too large to appear

as a decay. As for the residual interaction, we will take

only the central part of the interaction in the zero-range

approximation. Besides the advantage of its simplicity in

calculation, it has been shown to give good agreement with

the GT and the M1 states. [Ber81a, Tok81]

We start this thesis keeping the following goals in

mind:

i) to reproduce the observed log(ft) values of the 8+

decay in medium heavy neutron rich nuclei;

ii) to confirm the extra reduction in strength which has

no explanation within the shell model description;

iii) to generate the or strength function above the Q—
+

window which may be tested by future experiments such as the

(n,p) reaction.

We will first review the characteristics of the GT

transition and present the results of recent (p,n) and

(p,p') experiments in Chapter II. The QP—RPA for the charge—

exchange mode shall be developed in Chapter III. In Chapter



IV, we shall present the details of our calculation. The

results of the application of the QP-RPA on the 8+ decay of

medium heavy nuclei will be the subject of Chapter V. In

Chapter VI, the validity of the QP-RPA shall be tested

against the full—scale shell model (FSM) calculation for the

12

case of C as a simulation of heavier nuclei, followed by

the conclusion in Chapter VII.



Chapter II

CHARACTERISTICS OF

GAMOW-TELLER TRANSITION

2-1 Gamow—Teller transition

A charge—exchange transition can be characterized

by the operator which is a particular term in the multipole

expansion, namely [Eji78]

[YL(f)XoS]JTi. (2-1)

Here 0 and T are the usual spin and isospin matrices. T+

transforms a proton into a neutron and T_ does vice versa.

L, S, and J denote the orbital, the spin, and the total

angular momentum respectively, which the outgoing particle

carries off. The most dominant multipole, L=0, of (2-1) is

divided into two groups: the Fermi transition where S=J=O

and the GT transition (or the OT+ transition) where S=J=1.

In this study, we are interested in the GT transition which

has the following selection rules: [Sha74, p784]

Jé-Ji=il,0 (0+0 forbidden) (2—2a)

nf—ni=o (2-2b)

l _ l :+ _

(Tz)f (Tz)i -1 (2 2C)

 



where f and i denote the final and the initial state

respectively, and J', n, and T' denote the total angular

momentum, the parity, and the isospin of a given state

respectively. T; has the same value for all states in a

given nucleus and can be written by

Té=(N—Z)/2. (2—3)

The or+ and OT_ transitions form the isovector spin—flip

transition with the T220 mode, the M1 transition. If the

isospin is a good quantum number, as in doubly closed shell

nuclei, then the isovector spin-flip transition has the

isospin selection rule in addition to Equations (2—2) given

by

Té-Ti=i1,0 (0+0 forbidden). (2—4)

Let us consider the jj coupling shell model. In

Figure l, we sketch the possible PH excitations for the OT_

and the 01+ transitions. They are restricted to levels with

the same orbital angular momentum 2 because of the selection

rules given by Equations (2-2). We can see that Pauli

blocking permits much fewer PH configurations for the OT+

transition than for the or_ transition. The former is

possible only when the j>=2+% level is occupied while the

j<=£—% level is empty. The GT transition strength B(GT)

between levels 3'1 and j2 is given by [Boh69, p83]
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Figure 1 Possible particle—hole excitations for

(a) the OT_ and (b) the 01+ transitions.
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-1

B(GT;jl+j2)= E |<(jl j2)lMlouT+I0>]2

uM

(2'5)

=2l<j1l|ollj2>l2.

The transition rate for the B decay process is customarily

expressed in terms of the product ft where t is the half

life and f is a dimensionless quantity which depends on the

nucleus and the transition. Since only the GT transition

contributes to the allowed 8+ decay for heavy nuclei with a

large neutron excess, there is a simple realationship

between B(GT) and ft given by [Boh69, p410]

ft: 2D
(2—6)

2

(gA/gv) B(GT)

where D is a universal constant given by

D 2n3h71n2

— 2 5 4

gvmec

and gA and gV denote the coupling constants for the axial

(2-7)

vector and the vector currents respectively. The square of

the reduced matrix elements is expressed in terms of 2 by

[Law80, p433]

=2(2+1)(2R+3)/(22+1) when jl=j2=j>

=82(£+1)/(2£+1) when jl=j>' j2=j<

or j1=j<, j2=j>

where the exact overlap of the spacial wavefunctions between

the levels jl and j2 is assumed. From this equation we can
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find the relative importance of PH excitations. The most

dominant configuration in the OT_ strength is the transition

from an occupied neutron level where j has the highest

value. It also follows from Equation (2—8) that the sum of

the strength of transitions b and c or d and e in Figure 1

is proportional to the number of neutrons in the valence

orbits, i.e.,

B(GT;j>+j<)+B(GT;j<+j<)=122=6(2j<+1) (2-9a)

B(GT;j;+j;)+B(GT;j;+j2)=12(£"+1)=6(2j;+1). (2-9b)

Since both of the or_ and 01+ transitions have the transi-

tion from the occupied to the open orbits, the difference of

the total transition strength between the OT_ and the OT+

transition is proportional to the number of the neutron

excess of the parent nucleus. This is one way of demonstrat—

ing the sum rule by Gaarde et a1., [Gaa80] given by

A A

Z|<fl 2 o(k)T_(k)[i>l2- Elms] z 0(k)T+(k)li>|2

f k=1 f k=1

(2-10)

=12<iITZli>=6(N—Z).

Equation (2—10) is actually very general and does not depend

on a particular shell model. In fact, Gaarde et a1. derived

the sum rule from the operator identity

(OT )+°(OT )-(OI )+~(or )=12T (2-11)

— - + + 2'

It is conserved in the presence of residual interactions
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since the right hand side of Equation (2—10) depends only on

the ground state of the parent nucleus.

Equation (2-8) and the sum rule (2—10) enable us to

make a qualitative discussion about the shape of the GT

strength function. Let us first consider magic nuclei such

as “8Ca, 90Zr, and 208Pb. In the case of “BCa, there is only

one valence level, f7/2’ and we may see just two dominant

g/zfi7i and fg/zfi7i.

9°Zr is exactly in the same situation as “BCa by replacing

peaks that come from PH excitations f

the f;/2 orbit with gS/Z. It is slightly more complicated

for 208Pb since it has many valence orbits like p, f, h, and

i. However, h and i neutrons would play a dominant role and

the Strength function would still have a simple structure.

[Kre8l, Gaa82] The residual interaction will mix these PH

excitations. (More about the GT energy systematics and the

strength observed will be discussed in the following two

sections.) For these magic nuclei, there exists practically

no 01+ strength because all the neutron orbits possible for

the transition are already occupied and the sum rule value of

Equation (2-10) comes mostly from the OT_ strength.

Next, let us consider open shell nuclei, where most

of the 8+ decays are observed. In these nuclei, the pairing

interaction mixes the particles into the normally open

levels, and the ground state of the parent nucleus can be

described by occupation probabilities v2 of each orbit. Then

the transition strength given by Equation (2—5) should be
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modified, in order to account for the partial occupation of

levels, to

B<cw;j1 j2>=2l<j11|ol|j2>12v§l(1-v§2>. (2-12)

Because of this addititonal contribution of the occupation

probability to the transition strength, the PH excitation

with the smaller 2 may compete with that of the larger 1.

Also there is a nonvanishing probability of the 01+

transition since the levels are now partially occupied, and

the Pauli blocking is incomplete. The treatment of these

open shell nuclei will be the subject of Chapter III.

2-2 Energy systematics

The main feature of the OT_ strength distribution

recently observed by intermediate energy (p,n) reactions can

be characterized by a broad peak with the width of about 4

MeV, which is known as the giant GT resonance. [And80,

Bai80, Hor80, Gaa82] It has been seen next to a sharp peak

known as the IAS which was found by Anderson and Wong in

1961. [And6l] Since the IAS and the giant GT state almost

exhaust the corresponding strength, the mean energy, defined

by

-+ A A+A
E=<OIO [H,o]]0>/<0|o o[0>, (2-13)

which is measured from the ground state of the parent

nucleus, gives an adequate estimate for the energy of the
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states. [Su282] Here l0> is the ground state of the parent

nucleus, H is the Hamiltonian and O is Fermi or GT operator

given by

0: [Km for the IAS (2—l4a)

R

O: §:ou(k)1_(k) for the giant GT state. (2-14b)

k

The energy splitting between the IAS and the giant GT state

can be expressed in a simple form when evaluated with

Equation (2—13). Since the operators of Equations (2—14)

have no spatial dependence, the energy of the giant GT state

has contributions from the one—body spin—orbit interaction

and residual interaction part of the Hamiltonian, and the

energy of the IAS has contributions only from residual

interaction part. Bertsch estimated the residual interaction

part with a simple model and expressed the energy splitting

as [Ber82b]

-K

I

E -E =<H B(GT;O+GT) (2—15)> +

GT IAS so GT

where KT and KOT are the strength of the isospin and the

spin-isospin component of the long—range residual interac-

tion:

K K

— T . _EI . . _
ures(1,2)— 7? T1 T2 A 01 02 I . (2 16)

Horen et a1. plotted Equation (2—15) for nuclei ranging from

90Zr to 208Pb, assuming that the mean spin-orbit energy, the
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first term of Equation (2-15), is not dependent on A.

[Hor8l] They found the best fit to the data by

EGT-EIAS=6.7-3O.0(N-Z)/A MeV. (2-l7a)

The (N-Z) dependence of the second term can be seen from the

sum rule limit of Equation (2-10). Nakayama et a1. assumed

that the spin—orbit energy has Anl/3 dependence and obtained

the best fit given by [Nak82]

E E =26 0A'1/3—18 5(N-Z)/A MeV (2-17b)
GT— IAS ° ' °

To study this in more detail, the GT strength

function has been investigated within the framework of the

PH—RPA. For example, Bertsch et al. have used the Tamm—

Dancoff approximation (TDA) with a zero—range interaction of

the Landau-Migdal type: [Ber81a]

VOTol°0211°126(r1-r2). (2—18)

The energy of the giant GT state in the whole range of

medium heavy nuclei was reproduced within one MeV with the

interaction strength

VOT=220 MeV fm3 (2—19a)

for a model in which single particle energies were cal—

culated from a'WS potential and.

VOT=200 MeV fm3 (2-l9b)
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for the Hartree—Fock (HF) single particle model with the

Skyrme III interaction. They also found about 20% of the

strength at low excitation energy, which accords with the

experiment. [And80, Bai80] Speth et al. have generalized the

Landau-Migdal interaction by including the one—pion and one—

rho-exchange potential given by

—fimn[hél)(imnr)exp(—mnr)812(r)+

w
l
l
—
l

ol-ozexp(-mnr)/mflrlrl°T2

2 (1" _ A_3. _ .
+fpmp[h2 (1mpr)exp( mpr)812(r) 3 01 ozexp( mpr)/mpr]Tl T2

(2—20)

explicitly in addition to the zero-range part (2—18) in

order to correct for the finite range of the nucleon-nucleon

interaction. [Spe80, Kre8l]

There has been another approach to the problem,

namely the FSM calculation. [McG80] Instead of assuming a

functional form for two—body interactions, the FSM treats

them as parameters and fit them to the measured low-lying

states. However, its application is restricted to the

lighter nuclei due to the dimensions involved. Recent cal-

culations for fp shell nuclei gave good agreement to the

excitation energy but required uniform reduction of strength

for the states observed. [Goo81, McG8l]

In summary, the energy of the main peak in the GT

strength distribution can be reproduced without much dif-

ficulty by applying various theories. However, as will be

discussed in the next section, though the theory gives
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reasonable agreement with the shape of the strength func-

tion, the total strength observed is far less than that

predicted by the sum rule limit of Equation (2-10).

2—3 Empirical strength reduction

As discussed before, there is a sum rule for the GT

transition. For nuclei with a large neutron excess, the OT+

strength is negligible and the total or_ strength has upper

limit of 6(N—Z) given by Equation (2—10). But the strength

actually observed is only a small fraction of the limit. In

fact, the quenching phenomena has been observed across the

board for the spin dependent transitions. According to

Bertsch, "perhaps the main suprise now is that the quenching

has not shown up more obviously in the magnetic moment".

[Ber82b]

Many explanations for the quenching have been pro-

posed such as the excitation of nucleons into A-isobar

states, [Ose79, Ber81b, Bro81, Boh8l, Har8l, Ost82] and more

complicated configurations like two—particle two-hole

excitations at high excitation energies. [Ber82a] But any

single theory has not been able to account for all the

quenching observed.

In this thesis, however, it is not our main purpose

to devise a theory to explain the quenching mechanism. But

we want to know the percentage which should be explained

beyond the current model space, since we may assume that the
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Table 1 Empirical strength reduction

 

 

Nucleus Transition Quenching factor+ Reference

26Mg GT 1.6 B1081

“Zea GT 1.9 Goo81

M1 3.1 McG81

“BCa GT 4.2 Ost81

M1 2.2 McG81

9°Zr M1 3.9 Ana82

208Pb GT 2.0 Kre81

 

+Defined in the text by Equation (2—21).

OT+ strength is quenched in a similar manner.

In Table l, we collected calculations for the GT

and the M1 transitions. The quenching factor of the third

column is defined by the ratio,

Quenching factor

=(Theoretical strength)/(Strength observed). (2-21)

The theory used is either the PH—RPA or the shell model

calculation which does not include any mesonic effects or

more complicated configurations. Note that in most refer—

ences the quenching is defined with respect to the sum rule

limit 6(N-Z) for the GT transition or to the unperturbed

limit for the M1 transition. Instead, in Equation (2-21) the

theoretical strength is the strength which can actually be

obtained from the shell model description. Therefore, the

quenching factor of Equation (2—21) represents a factor

which must be explained from contributions beyond the shell
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model space to reproduce the data. We observe from Table 1

that the quenching factor is anywhere between 2N4. However,

we should not attempt to find any correlation from Table 1

such as between the quenching factor and the size of nuclei

since independent theories have been used for each nucleus.



Chapter III

FORMALISM

3-1 Introduction

In this chapter, we shall develop the QP-RPA for PH

states of unlike nucleons. This will be applied to the GT 8+

decay in medium heavy nuclei with a large neutron excess. No

other experimental evidence is yet available for the or+

mode except a recent (n,p) experiment on light nuclei such

as 6Li, 12C, and 28Si by Brady and his co—workers. [Bra82]

We need to describe the 8+ decays by QP's since

most of the 8+ decays of medium heavy nuclei are observed

from open shell nuclei. New features in the QP theory com-

pared to the PH theory are the partial occupation of single

particle levels and the particle—particle (PP) interaction

between QP's. The role of the partial occupation of the

levels was discussed in the last chapter. The PP interaction

is attractive while the PH interaction is repulsive in the

spin—flip and isospin-flip transition. Therefore, the tran-

sition can be observed as a decay process only when the

attractive PP interaction is more dominant than the PH

interaction, since otherwise the final state would be

located too high above the Q—window. Also, we find another

evidence of the importance of the PP interaction from the

20
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recent (p,n) experiments on calcium isotopes. [And80, GooBl]

v

7/2

orbit is fully occupied, and it is observed that more than

For “BCa, only the PH states are possible since the f

80% of the strength is at the higher state which is mostly

. . TT \)—1

two-QP exc1tation of f5/2f7/2.

the states are chiefly of PP character and only the lowest

On the other hand, for “ZCa,

state, which is mostly fg/2f77é' is observed depleting all

the strength. Toki and Bertsch suggested that the GT

strength moves up gradually from the lowest state to the

higher state as the neutron number is increased. [Tok82]

3-2 Single particle wavefunctions

It is desirable to use a self consistent formalism

such as the Hartree-Fock-Bogolyubov calculation for a

description of the initial ground state. But it was shown in

the calculation by Bertsch et al. [Ber81a] that the self

consistent treatment did not introduce any notable improve-

ment on the GT energy systematics. Therefore, we use the BCS

theory based on a simple one-body potential such as a WS

potential. We take a pairing interaction between like

nucleons only. Sandhu and Rustgi investigated neutron-proton

pairing for even—even N¢Z isotOpes. [San76] Their results

show that for nuclei (N-Z)>2 the neutron—proton pairing

correlations are completely absent.

We use a pairing interaction given by [Lan64, p12]

 

<(jl,j2)J|u I(j3,j4)J>=—%GéJIO/(2jl+1)(2j2+1) (3—1)
pair
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where G is the strength of the interaction. Given the inter-

action, the BCS ground state is specified by the QP energies

Ej and the occupation amplitudes vj associated with single

particle orbits. Ej and vj are determined by solving the BCS

equations given by Equations (A-3) simultaneously. The

derivation of the BCS theory can be found in many textbooks.

[Lan64, Fet71, Law80] In Appendix A, we introduce the BCS

equations and show how to solve them iteratively.

3-3 Quasi-particle random phase apprOximation

The application of the QP-RPA to nuclear physics

was started by Baranger, who studied the low-lying states in

even-even spherical nuclei. [Bar60] It is straightforward to

extend his formalism to one for the PH states of unlike

nucleons.

The initial state is 0+ ground state of an even—

even nucleus. In the BCS theory, this ground state is a

vacuum for QP's. Then the or: transition creates two—QP

excitations in the odd-odd nucleus isobarically adjacent to

the parent nucleus. The final eigenstate is obtained by

diagonalizing the Hamiltonian in the space of the two-QP

excitations.

We define three interaction matrices G, F, and H

which are coupled to J in the two-OP space as

J
G. . . . . . . .
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J

F. . . . . . — . . -

3132,3334=<[31(1)32(1) liJlureS(1,2)[[33(2)34(2) l]J> (3-3)

HJ

. . . . . . -l . . -

3132.3334=<[31<1)32<2) ]JlUreS(l,2)l[j3(l)34(2) 11J> (3-4)

where Ures denotes the two-body residual interaction which

shall be specified by a model later on. G and F are the

usual PP and PH interaction energies respectively and H is

the exchange term of F as shown in Figure 2, (a), (b), and

(c) respectively. They all satisfy the following symmetry

relations:

G. . . . =G. . . .
3132,3334 3334,3132

j1+j2+j3+j4
o. . . . —
3231,3433

j1+j2+j3+j4
-1)

(3-5)G. . . .

3433/3231

The two—QP states are not antisymmetrized because they

consist of neutron—proton pairs. But we keep a convention

that jl and j3 always denote neutron (proton) states while

j2 and j4 always denote proton (neutron) states for the OT+

(or_) transition.

The B—th eigenstate (xB,yB), where x and y are

vectors in the two—QP space, with an excitation energy wB

measured from the RPA ground state satisfies the RPA eigen—

value equation, [Bar60, Row68, Lan80]

w x = D+P R x

(3—6)
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Figure 2 Elements of interaction matrices,

(a) G, (b) F, and (c) H
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where D is a diagonal matrix of the unperturbed two—QP

energies given by

 

D. . . . =(E. +E. 6. . . . , 3—7

3132:3334 31 32) 3132:3334 ( )

and matrices P and R are expressed by G, F, and H as

P. . . . =G. . . . (u. u. u. u. +v. v. v. v. )

J132'3334 j132'3334 31 32 33 34 31 32 33 34

(3—8)

+(F- - . - -H. . - . ) hi.‘v. u. \7. +v. 11.'v. u. )

1112.331 1112,1314 11 32 13 34 11 12 33 14

R. . . . =—G. . . . (u. u. v. v. +v. v. u. u. )

313213334 313213334 31 32 33 34 31 32 33 34

(3—9)

+(F. . . . -H. . . . )(u. v. v. u. +v. u. u” vn )

3132:3334 3132:3334 31 32 33 34 31 32 33 34

where u is defined by

u=/1-v2 . (3-10)

Since the interaction between two QP's takes place in a

residual nucleus, we should calculate E's, u's, and v's,

which appear in Equations (3-7)%(3-9), in the daughter

nucleus. The u's and v's in the daughter nucleus are deter-

mined under the constraint (see Equation (A—3b))

Neutrons(Protons)

ii: (2jk+l)v§k=Nil (2:1) (3—11)

k

where N and Z are the number of neutrons and protons respec-

tively in the parent nucleus, and the upper (lower) sign is

for the 01+ (OT_) transition. The constraint (3-10)
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determines the average mass of the ground state of the

daughter nucleus, represented by the lowest two-QP state, to

be equal to (N+Z). [Law80, p359]

The GT transition strength B(GT) to the B-th eigen—

state can be expressed by

+ + +
B(GT;O+B)=(f+,g ) X (x ) f , (3-12)

 
where vectors f and g are forward and backward GT transition

amplitudes respectively and given by

f. . =<j l}or IIj >6. 6. (3-13)
2 l i 2 jl 32

g. . =<jlllOTiI|32>Vj uj . (3-14)

1 2

A hat on top of u and v means that they are calculated in

the parent nucleus. (Remember that we calculated them in the

daughter nucleus to find interaction energies G, F, and H,

Equations (3-2)%(3-4).) The reduced matrix element in

Equation (3-13) or (3—14) becomes,

 

<jll|0Till12>=‘/7.[le(r)wj2(r)r2dr /(2j1+1)(2j2+1)

was 2
x{7%<jl%j2—%|10>(-1) 1 + §E<jlsj2s|11>(-1)

. . (3-15)
31+32+£1}

Where wj(r) is the radial wavefunction of the orbit j.
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3-4 Remarks

It is easy to see by direct substitution that

eigenvalues of Equation (3-6) come in pairs as ilwl. The

eigenvector of the negative energy is obtained by inter-

changing x and y of the eigenvector of the corresponding

positive energy. For the non—charge-exchange transition, the

negative energy solution has no physical meaning because

it is lower than the ground state in energy. For the charge-

exchange transition, we still take the positive energy

solution only. The negative energy solution represents the

backward transition, namely when we treat the or (0T_)+

transition, the negative energy solution will provide a

solution for the OT_ (01+) transition.

The eigen energy w obtained by Equation (3-6) is

calculated with respect to the ground state of the parent

nucleus. Since the final state of the charge-exchange

transition appears in a nucleus different from the parent

nucleus, it is not easy to find the excitation energy with

respect to the ground state of the daughter nucleus, and

we do not try it here.

In the case of the PH—RPA, the number of PH exci-

tations for the forward transition differs from that for the

backward transition as can be seen from Figure 1. Here the

the energies do not appear in pairs as they did earlier.

[Aue81] But if one treats the PH—RPA as a limiting case of

the QP—RPA, then the energies come in pairs again since the
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numbers of the two~QP excitations for the forward and back-

ward are the same, though some of the states have no transi-

tion strength.

 



Chapter IV

DETAILS OF CALCULATION

4-1 One- and two-body interaction

We have performed BCS calculations for protons and

neutrons seperately, taking approximately two harmonic

oscillator shells around the Fermi sea as a model space.

Single particle wavefunctions are from a WS well,

V(r)=V0F(r)
(4-1)

where

F(r)=1/{l+exp(r-rO)/a}. (4-2)

We use the standard parameters:

VO=50 MeV, r =1.28 fm, a=0.65 fm. (4—3)

0

The spin-orbit energy Vso is later calculated with the above

single particle wavefunctions wj(r) by

_ 2 1 2
_

VSO—WSO I ij(r)| E [dF(r)/dr] r dr. (4 4)

We used the parameters determined by low-energy elastic

proton scattering by Becchetti and Greenless: [Bec69]

W =6.2 MeV, r =1.0l fm, a =O.75 fm. (4-5)

so so so

29
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Table 2 Energy gap and strength of the particle-

particle interaction

 

Energyggap (MeV)
 

 

3

Nucleus Neutrons Protons Vpp (MeV fm )

10208 0.94 1,02 432

1“ca 1.03 0.99 495

1°83n 1.39 0.00 517

1”Sn 1.40 0.00 517

116Te 1.61 1.17 510

118Te 1.60 1.14 510

12°Xe 1.56 1.44 458

122Xe 1.54 1.41 489

1268a 1.49 1.54 453

1288a 1.48 1.51 475

132Ce 1.38 1.55 472

l“Ce 1.28 1.52 490

136Nd 1.25 1.54 474

138Nd 1.08 1.43 490

1“°Nd 0.81 1.47 531

The same pairing strength G of Equation (3—1) given by

G=22.7/A MeV for neutrons, 28.4/A MeV for protons (4—6)

has been used for all the nuclei we have treated. We first

adjusted the pairing strength to reproduce the empirical

energy gap A found by the binding energy systematics and

then averaged over all the nuclei for neutrons and protons

seperately. The energy gap obtained by using the pairing

strength given by Equation (4-6) are tabulated in Table 2.

As for a residual two-body interaction, we use only
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the central part of the interaction in the zero-range

approximation,

Ures(1’2)={v°°+V0T 01°02 11-12} 6(r1-r2). (4-7)

Matrix elements of the d-function interaction can be

expressed analytically as presented in Appendix B. If one

considers only the unnatural parity states as the GT states,

then the interaction matrices G and (F—H) of Equations

(3-2)%(3-4) can be written from the results of Appendix B as

J

.
.

C
I

. . . , :—V
l 2 J 6 _

1 2 J

 

ZEP_ /72j1+1)(2j2+1)(2j3+1)(2j4+1)

— 4n 2J+l (4_8)

 

X

2 . . _ .

ijjl(r)Wj2(r
)Wj3(r)Wj4(r

)r er{<31%32”%l
JO><33%34—%|

J0>

j +j +2 +2 -1 j +j +j +j

x<-1> 1 3 1 3 +<j15j25lJ1><j35j45IJ1><-1) 1 3 3 4

F3 . . . -H3 . . .
3132r3334 313213334

1
=vph<[j1(1)j2(1)_1]Jlol°o2 11°T2 6(rl-r2)|[j3(2)j4(2)— 1J>

 

_ Vph /(2j1+1)(2j2+1)(2j3+1)(2j4+1) (4_9)

— n 2J+l

 

2 . . . .
X erjl(r)wj2(r)wj

3(r)wj4(r)r er{<]1%32_%IJO>
<33%J4_%|JO>

31+33-1
j +j2+j +j4+2 +2

x<-1> +<j18j25IJ1><j35j45lJ1><—1> 1 3 1 3 .

Equations (4-8) and (4—9) are equivalent to taking the

residual interaction given by Equation (4—7). Relations
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between the two sets of coefficients are:

v v0o (4—10a)v = —
pp OT

vph=(3VOT_V°°)/4° (4-10b)

The strength of the PP interaction depends on the

size of the two—QP space. This can be seen from the energy

shift in the perturbation theory,

A00. .=P. . . .

2 2

[Pj j2 j334] [lej2 j3j ]E 1 , E ,

+ r---—:§———E—— + 77—"_’__““ET‘ (4—11)
4

j3j4¢jij23jl+3j2 j3' j, j3j4 Ejl+3j2+Ej3+ :4

The number of the PH states is restricted while that of the

PP states is not. For the high—lying PH states, the inter-

action matrix elements are very small since the radial

quantum numbers of the particle and the hole states are

different. Therefore, the contribution of the PH states to

the sums in Equation (4-11) has the upper limit. Contrary to

this, the number of the PP states is not restricted as well

as their radial quantum numbers can be the same, and the

coherent contribution to the sums can be large. Although

this is of the second order in the perturbation theory, we

found that it is necessary to introduce a significant

variation in Vpp when the size of the model space is

Changed. In this calculation, we take a model space which

Consists of unperturbed two—QP states whose energy is less
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Figure 3 Schematic description of the particle—particle

interaction energy in ”28c

 

 

 

4O l2.623

Ca 9.5.

n v

V

42 . 1 i 3SEC: 1-t C) 6] \4355

42 0.000

Sc 9.5

than 15 MeV. Using such a model space, we achieve more than

99% of the sum rule given by Euqation (2—10) for all the

nuclei we have treated, except tin isotopes which show 93%

of the sum rule.

We use the strength of the PH interaction given by

Equation (2—l9a) which has been obtained by reproducing the

giant GT states. We determine the strength of the PP inter-

action from the lowest 1+ state in “28c. The residual inter-

. +

actions V and V in the ground state and in the 1 state
GS 1'

respectively, as shown in Figure 3, can be found empirically
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by

V =BE(“ZSc)-BE(”OCa)—{eTr +ev }
GS f7/2 f7/2

=BE(”ZSC)+BE(”°Ca)-BE(3ISc)-BE(”1Ca)=—3.l7 MeV (4-12a)

V1=VGS-(-O.61)=—2.56 MeV (4-12b)

where we used binding energies from the atomic mass table by

Wapstra and Gove. [Wap7l] We find that

v =1100 MeV fm3 (4-13)
pp

is required to reproduce V using a single configuration in
l

the two—QP space. Then we take into account the effect of

the larger model space by first calculating the energy of

the lowest 1+ state for each nucleus with only one two-QP

state. Next, we adjust Vpp to get the same energy when using

the larger model space. The Vpp's determined, then, is from

450 to 550 Mev fm3 for the nuclei we have treated. They are

tabulated in the last column of Table 2.

4—2 Excitation energy and transition rate

We solve the RPA eigenvalue equation, given by

Equation (3-6), by two equivalent schemes, a direct dia-

gonalization of the matrix and a Green's function method.

We used an algorithm for the diagonalization described by

Bertsch. [Ber82b] Since the matrix is not symmetric, the

usual Householder method can not be applied directly. While
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the direct diagonalization has an advantage of obtaining

eigenvectors explicitly, the Green's function method gives

the strength function explicitly.

To apply the Green's function method, let us define

an unperturbed Green's function G°(w) which is a matrix in

the two~QP space as

 

00(0): 1/(D—w—ie) 0 , (4-14)

0 1/(D+w—i€)

where D is given by Equation (3-7). Then it can be shown

that the Green‘s function G(w) can be expressed as [Tsa78]

G(w)=[1+0.<0>01‘3co<0), <4-15)

where

u: P R (4—16)

R P

with P and R defined by Equations (3-8) and (3—9) respec-

tively. The GT strength function SGT(w), which is defined by

2
SGTUM: g |<B|0Til0>| 6(008-(0), (4“17)

is expressed in terms of the Green's function as [Ber75]

s (0): l (f+ g+) Im[G(w)] f (4-18)
GT 0 ’ ’

9

where f and g are the forward and backward transition
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amplitudes defined by Equations (3—13) and (3—14) respec—

tively. Finally, log(ft) values were calculated by Equation

(2-6) from the transition strength using

D/( / )2—4140 (4-19)gA gv — sec

for the constant that appears in Equation (2-6).

 



Chapter V

APPLICATION TO 8+-DECAY

IN MEDIUM HEAVY EVEN-EVEN NUCLEI

5-1 Experimental data

As an application to the QP—RPA on the or strength
+

we collected nuclei which are 8+ unstable from the "Table of

Isotopes", seventh edition by Lederer et a1. [Led78] We

choose only even—even nuclei because they have 0+ ground

state and the calculation is simple. We can find fifteen

nuclei between mass numbers A=lOOm150. When there are more

than two final states in the data table, we choose the one

which has the smallest log(ft) value to compare with the

theory. These nuclei are given in Table 3.

5-2 Results of the theory

To see the effect of the various approximation, we

have performed calculations with no residual interaction,

with the PH interaction only, and with both the PH and PP

interactions. The QP-TDA calculations have also been done by

setting R=0 in Equations (3-6). The theory is compared with

the data in Table 3 and Figure 4.

The unperturbed results (with no residual inter—

action) predict the strength which is 30 times or more

37
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Figure 4 Log(ft) values of even-even nuclei

between A=1OON150
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larger than what have been measured. We can observe in

Figure 4 that the unperturbed results, which come solely

from the pairing correlations, reproduce the general feature

of isotope dependence of log(ft) values, as has been shown

by Kisslinger and Sorensen. [Kis63] By comparing the unper—

turbed results with those of the QP-TDA from Table 3, we

find that not much change is introduced by the TDA. But as

can be seen from the results of the QP-RPA in Table 3 and

Figure 4, the ground state correlation reduces the unper-

turbed strength by a factor of about 10 or more. (The role

of the PH and PP interactions in the QP-RPA will be dis-

cussed in detail later in this section.) We find, in

general, the QP-RPA overestimates the data significantly.

This confirms that the quenching observed in other spin—flip

and isospin-flip transitions is also present in the OT+

transition. The quenching factor of the QP-RPA is calculated

in the last column of Table 3 by Equation (2-21). It ranges

from 1.3 to 16.3 with a reciprocal average of 4.0.

To see the effects of the ground state correlation

due to the residual interaction, we calculated the total OT+

strength and presented it in Table 4. Because the TDA

conserves the total strength, we listed only the results of

the unperturbed and the QP—RPA calculations. We find that

the unperturbed sum is already reduced by a factor of almost

two when only the PH interaction is applied. This is in

accord with a recent calculation on 6°Ni by Auerbach et a1.
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Table 4 Total or strengthT and percentage of the

strength above the Q—window

 

 

 

 

QP-RPA

Nucleus No int. PH Int. PP+PH Above Q

. (%)
only int.

1°2Cd 25.64 15.62 12.10 33

1°“ca 22.54 13.04 9.37 35

1°88n 22.61 14.63 12.95 36

11°Sn 17.78 11.37 10.48 31

116Te 15.22 8.64 7.08 98

138Te 11.69 6.43 5.76 98

12°Xe 15.29 8.14 7.51 94

1“Xe 12.19 6.23 6.39 93

1263a 12.43 6.17 6.96 91

1288a 10.23 4.98 6.10 92

132Ce 10.33 5.04 6.37 92

13“Ce 8.39 4.05 5.48 94

135Nd 10.17 5.07 6.52 94

138Nd 7.67 3.82 5.43 95

1“°Nd 6.01 3.23 5.30 97

.1.

The strength is normalized to 6 for the decay of

an isolated proton.

[Aue82] But when the PP interaction is added to the PH

interaction, we do not find much systematic change of the

total strength. Instead, a dominant state is fragmented into

several weaker states and part of the strength at a lower

excitation energy is transferred to a higher excitation

region and consequently the 8+ decay rate is further

reduced.

We can observe an interesting feature from Figure 4

that the data and the theory together can be divided into

two groups, such as the first group including the first two
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isotopes, cadmium and tin, and the second group with all

the other isotopes collected. The transition rate of the

first group is about one order of magnitude larger than that

of the second group. This can be explained by the ground

state configuration of protons of the parent nucleus. The

first group has protons up to the Z=50 major shell and the

second group has protons above the major shell.

To study this in more detail, we calculated the

strength function by Equation (4—18) and plotted it in

Figure 5 for three cases such as the unperturbed, the QP-RPA

with the PH interaction only, and with both the PH and PP

interactions. The excitation energy plotted is from the RPA

ground state of the parent nucleus. Due to the reasons

mentioned earlier in Section 3—3, we did not calculate the

excitation energy with respect to the residual nucleus.

Instead, we determine roughly the locations of the ground

state and the Q—window in the daughter nucleus by comparing

the theory with the measured 8+ decay spectrum. They are

indicated by arrows in Figure 5 for the results of the QP—

RPA. For the results with no interaction, we identified

dominant unperturbed two—QP excitations by labelling them in

the figure. Since the transition amplitude given by Equation

(3-13) or (3—14) is larger for a transition between levels

with larger 2, and 99/2 is the highest j proton orbit for

nuclei with Zi50, gg/Zg7/2 is the most dominant unperturbed

configuration for the first half of nuclei we have treated.
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01+ strength distributionFigure 5
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Figure 5 - Continued

SGT (Arbitrary unit)
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Figure 5 - Continued
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Figure 5 - Continued
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Figure 5 - Continued
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Figure 5 - Continued
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Figure 5 - Continued
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Figure 5 - Continued
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0

11/2

. n v . h v

orbit and h11/2h9/2 becomes more dominant than g9/2g7/2 for

For the second half of nuclei, protons start to fill h

cerium and neodymium isotopes. And we can find from Figure 5

that 93/297/2 is the lowest as well as the most dominant

unperturbed state for the first group, while there is other

small but not negligible unperturbed excitations lower than

the most dominant state for the second group. For example,

n v . n v .

5/2d3/2 is located lower than the g9/2g7/2 With about one—d

quarter of the strength of the latter in the case of 116Te.

This lower state appears because protons start to occupy

levels above the Z=50 major shell. Also appearance of this

lower state is the main reason why the second group has the

transition strength one order of magnitude smaller than that

of the first group.

From Figure 5, we can study the effect of interac-

tions in more detail. With only the PH interaction, the

strength function is reduced almost uniformly across the

whole range of the excitation_energy, while when the PP

interaction is applied additionally there is not much sys-

tematic reduction of the strength. Instead, we see fragmen-

tation of the dominant state into several weaker states or

transfer of part of the strength from the lowest excitation

energy to the higher excitation energy region. In the last

column of Table 4, we listed the percentage of the strength

which is calculated to be located above the Q—window. From

that result also, we find the division due to the major
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shell Z=50. The first group has about 35% of the strength

above the Q-window while the second group has more than 90%.

So, we predict that there would be a large concentration of

the or+ strength at higher excitation energy region that can

not be observed by the 8+ decay for some of the heavy

neutron rich nuclei, like the second group where the strong—

est unperturbed state is not the lowest state in the resi~

dual nucleus. This resonance may be found by future exper-

iments such as a (n,p) reaction. In fact, some evidence of

this sort has been already observed from the 8+ decay of odd

mass nuclei. This is possible because the B decay Q-value of

an odd mass nucleus is about twice as large as that of an

even—even mass nucleus. For example, the 8+ decay of ll‘SGd

recently measured by Firestone et a1. has shown such a

structure in the strength function. [Fir82]

Finally, we want to discuss briefly about two

irregularities in the systematics shown in Figure 4. For

most isotopes, the 8+ decay becomes less probable when the

neutron number is increased. This is an obvious consequence

of the Pauli blocking. However, for tin isotopes the log(ft)

value of 110Sn is measured to be smaller than that of 108Sn.

We can not find any theoretical explanation for this as yet.

In xenon isotopes, the QP—RPA gives about the same strength

for both of the isotopes, 120Xe and 122Xe, while 122Xe is

measured to have only one—third of the strength of 12°Xe.

One reason for this may be the inadequacy of Vpp determined
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by the method described in Section 4—1. If we adjusts V p to

reproduce the data as close as possible, then we may have a

better result. However, we did not try to adjust parameters

for an individual isotope merely to have a better fit.



Chapter VI

COMPARISON WITH SHELL MODEL

6—1 Introduction

The FSM calculations have been frequently applied

to the spin-flip and isospin-flip transitions. [Coh65,

 

Bro78, B1081, McGBl] They give good agreement with the data

when renormalized to account for the overall quenching of

the spin—dependent operators, except the Op shell nuclei

where there is no need for the renormalization. The only

shortcoming of the theory seems to be its limitation on the

size of nuclei which can be treated. In this chapter, we

want to test the QP—RPA against the FSM calculation. One of

the best candidates in this context is the Op shell nuclei

which have simple calculations and have been thoroughly

studied by Cohen and Kurath. [Coh65] We take the 01+ tran—

sition of 12C as the simulation for heavy neutron rich

nuclei.

6—2 Simple perturbation theories vs. full-scale shell

model calculation

Let us consider simple perturbation theories

approached by two different schemes, the jj and LS coupling

limits. To make it even simpler, we assume that every state

54
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with even L has the same interaction energy, as does every

odd L state. We Will call them Veve and VOdd respectively.
n

Then the problem is parametrized by V and VOdd together
even

with single particle energies e and e of the Cpl/2

p1/2 p3/2

and Op3/2 shells respectively.

The jj coupling scheme, which takes the residual

interaction as a perturbation, is equivalent to the PH-RPA

+ . . . .

when we express the 0 initial state and the 1+ final state

as

l v n-1 1 +

(p

+ _ + . _
Wjj(0 )—|O >+a 1/2p3/2) ,0 > (6 1a)

..|(pTT pV-l)

jj 1/2 3/2

+ _ 0 n—i + _
Wjj(1 )-l(p1/2p3/2)1 >, (6 lb)

where the coefficient djj is given by

d..=-2(V
33 even-“‘Iodd)/(e )' (6-10)

-e

p1/2 p3/2

In the LS coupling scheme, where the spin-orbit force is the

perturbation, we express the initial and the final states as

+ 4 0 4 O + 4 1 4 1 +
= - L . _ILSIo ) |(p ) (a ) .0 >+aLS|(p ) (2 ) ,o > (6 2a)

WLS(1+)=I(p4)1(%4)1;1+>, (6-2b)

where dLS is given by

1
a =- — (e -e )/(V -V ). (6-2c)
L8 3 pl/2 p3/2 even odd

Then the transition strength is found to be a function of an
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angle defined by

1

c=tan‘ [(Veven-Vodd)/(e )1, <6-3)-e

p1/2 p3/2

and can be expressed in two schemes by

 

 

B(GT;jj)= 3; § (6-4a)
JU+ gtanc

2
B(GT;LS)= 3 12 . (6-4b)

tan c

As for the FSM calculation, it has seventeen para—

meters in the complete basis of the Op major shell, fifteen

matrix elements for the two-body interaction and two single

particle energies. [Coh65] We transform the two—body inter—

action matrix elements between the jj coupled states to

those between the LS coupled ones to study in terms of the

angle c defined by Equation (6—3). This is easily done by

making use of the Racah algebra. The results are tabulated

are toin Table 5. The columns under headings Ve and V0
dd

be understood as coefficients of the corresponding inter—

V811

action energies. Then, we diagonalize the Hamiltonian by

and Vodd fixed while adjusting the singlekeeping the Veven

particle energies to achieve the desired angle C-

The results of the three models are shown in Figure

6. The unperturbed strength for the transition from the

Op3/2 to Opl/2 level is 32/9 as shown at C=O°. Observe that

the FSM agrees with the jj coupling scheme (PH-RPA) for
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Table 5 Two-body interaction matrix elements for

full-scale shell model calculation

 

 

 

 

 

 

 

j1 j2 j3 j4 J T Veven Vodd

3/2 3/2 3/2 3/2 0 1 2/3 1/3

1 0 4/9 5/9

2 1 1/3 2/3

3 0 1 0

3/2 3/2 3/2 1/2 1 0 -/I0/9 /I0/9

2 1 /2/3 —/2/3

3/2 3/2 1/2 1/2 1 /2/3 -/ZL3

1 0 -/I0/9 /10/9

3/2 1/2 3/2 1/2 1 0 7/9 2/9

1 1 0 1

2 0 1 o

2 1 2/3 1/3

3/2 1/2 1/2 1/2 1 0 -2/9 2/9

1/2 1/2 1/2 1/2 0 1 1/3 2/3

1 0 7/9 2/9

 

small c and with the LS coupling scheme for large C-

Although we start with the expectation that the jj coupling

is a good approximation in the weak interaction limit

(§+O°) only, it is supprising to find that it departs from

the FSM very rapidly and gives a large overestimation as c

increases. Moreover, the largest discrepancy between them

appears around ;ESO°, which might represent the angle of the

real interaction corresponding to B(GT)=O.66 which was

measured by Brady et a1. [Bra82] In the strong interaction
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Figure 6 01+ transition rate of three models
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limit (c+90°), all the curves approach the zero strength

which reflects that there is no more distinction in energy

between the Opl/2 and Op3/2 orbitals. But note that in the

jj coupling scheme, the slope of the curve is vertical,

while in the LS scheme and the FSM, the slopes are both

horizontal at c=90°.

6-3 Quasi-particle random phase approximation vs.

full scale shell model

Now, let us consider the QP—RPA. As for the single

particle wavefunctions, the pairing strength of

G=59.4/A MeV (6—5)

is chosen to reproduce the occupation probability of the

Op3/2 and Cpl/2 orbits whose wavefunction is calculated by

the Cohen-Kurath interaction. [Coh65] The PP and PH inter-

actions are again expressed in terms of the V and V0
even dd’

We also redo the FSM calculation in the neutron-proton

formalism rather than the isospin formalism where the iso—

spin is a good quantum number as was done in the last

section. The neutron—proton formalism in the Op major shell

requires a total of 38 parameters. Two-body interaction

matrix elements are composed of 14 elements between like

nucleons and 20 elements between unlike ones, and there are

four single particle energies, two for neutrons and two for

protons.
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Table 6 or transition rates with pairing interaction only

 

 

 

+

_
Neutron-proton

Two QP states BCS shell model

n v

p3/291/2 1‘79 1'72
n v

p3/2p3/2 0.68 0.70

n v
pl/2p3/2 0.26 0.28

n v
p1/2pl/2 0.10 0.10

2.83 2.80

 

In Table 6, the QP—RPA and the neutron-proton shell

model calculations are compared when there is no residual

interaction between QP's. In the latter calculation, all the

interaction matrix elements except those between like

nculeons coupled to J=0 are set at zero, and the pairing

interaction for J=0 is taken by Equation (3—1). The four

two-QP states in the first column of the table are all the

states one can construct from the BCS theory. We also list

the lowest four states from the neutron-proton shell model

calculation. They are states with seniority two. Higher

states, which are mostly states with seniority greater than

two, are seen to carry a negligible amount of strength. As

can be seen in this table the QP-RPA reproduces the neutron-

proton shell model almost exactly, when there is no residual

interaction.
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Because of the pairing interaction, it is not easy

to define an angle like one given by Equation (6-3) con-

sistently. Instead, we keep the pairing and single particle

energies the same in both models, and assume VOdd is small

compared to V so we can find the transition strength
even’

in terms of Veven only. We plot the results in Figure 7.

The solid line is the lowest state (ground state of the

daughter nucleus, 12B) and excitation energies are measured

from this state. We show the lowest four states. We find

in this figure, that the QP-RPA reproduces the neutron-

proton shell model quite reasonably for both the energy and

the strength except a little overestimation of the strength

when Veven becomes large.

Finally, we calculate the QP—RPA with a short-range

interaction, and compare it with the FSM calculation made

with the Cohen-Kurath interaction. We use

3
V =76l MeV fm (6-6)

PP

for the strength of the PP interaction, which is determined

by the method described in Section 4-1. The transition rates

to the lowest four states in 12B are tabulated in Table 7,

together with the data by Brady et al. [Bra82] Both the

theories and the data agree with the main feature that

almost all the strength is concentrated in the transition to

the lowest state. The Cohen-Kurath interaction reproduces

the data excellently but the QP-RPA overestimates the data
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transition rate, neutron-proton shell

1 vs. quasi-particle random phasede

approximation

OTFigure 7
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by a factor of 2.2.

6-4 Summary

As a preliminary investigation, we have tested the

PH-RPA, which is derived by the simple perturbation theory,

against the FSM calculation. We have found that it is good

only at the small vicinity of c=0°, which is the extreme

limit of the weak interaction, and departs too much from the

FSM for the angles which might correspond to the real inter-

action.

We then have tested the QP—RPA against the neutron-

proton FSM. When the same kind of the interaction is used

for both models, the QP—RPA gives a good reproduction of the

FSM calculation. But when a d-function interaction is taken

. . +
Table 7 or tranSition rate of 12C(O )+32B(1+)

 

 
  

 

+

QP-RPA Cohen-Kurath Experiment

EX B(GT) EX B(GT) EX B(GT)

0.00 1.480 0.00 0.614 0.00 0.66

3.89 0.022 4.43 0.006

4.57 0.040 6.48 0.006

8.60 0.102 10.41 0.010

 

1.644 0.636 0.66
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for the QP-RPA, it overestimates the FSM made with the

Cohen-Kurath interaction, which agrees very well with the

data, by 2.6 times. However, it can show the main feature

that almost all the strength is concentrated in the tran—

sition to the lowest state.



 



Chapter VII

CONCLUSION

Motivated by the recent active research on the

spin-flip and isospin—flip transitions, we have studied the

OT+ transition. It is differentiated from the or_ transition

when the nucleus becomes heavy with a large neutron excess.

Due to the Pauli blocking, the or+ transition has much fewer

PH configurations than or_ while the ground state correla-

tion is much more important in the OT+ transition than in

or_ transition.

Calculations have been performed by the QP-RPA with

a simple short—range interaction. It is found that the PP

interaction is quite dependent on the size of the two—QP

model space used. We have adopted a simple model to deter-

mine the strength of the PP interaction for each nucleus,

but a more sophisticated theory is called for. By using the

PH interaction, whose strength is determined by reproducing

the energy of the giant GT states, together with the PP

interaction, we have found that the extra quenching of the

8+ decay rate of neutron rich even-even nuclei between mass

numbers A:100%150 ranges from 1.3 to 16.3 with an average of

6.4 to reproduce the observed log(ft) values. It has been

shown that the sum of the unperturbed or strength is
+
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reduced to almost half when only the PH interaction is

applied. The PP interaction is shown to redistribute the

strength, for example, by fragmenting the strong states

which appear when only the PH interaction is applied.

Therefore, the PP interaction is important in reproducing

the measured log(ft) values. It has also been found that

the difference in the proton configuration in the ground

state of the parent nucleus causes the nuclei, which have

been treated in this study, to be divided into two groups.

The first group, which has protons occupying levels up to

the Z=50 major shell, has the 8+ decay strength one order of

magnitude larger than the second group which has protons

above the major shell also. It has been predicted that for

the second group, most of the strength is located above the

Q-window. This is similar to the GT 8— decay whose decay

rate is much hindered by the existance of the giant GT

resonance at higher excitation energy.

To make sure that the QP-RPA is an adequate approx-

imation when it is applied to the charge-exchange reaction,

despite its inability to conserve the nucleon number, we

have tested it against the FSM calculation for the 01+

transition of 12C. When we adopt the same kind of residual

interactions for both models, it reproduces the FSM

reasonably well. But the QP-RPA-made with the short-range

interaction predicts the 8+ decay rate larger by a factor of

about 2.2 than what have been measured, while the FSM with
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the Cohen—Kurath interaction agrees very well with the

experiment. However, the QP-RPA is able to reproduce the

main feature of the 01+ strength distribution of 12C, which

shows that almost all the strength is concentrated in the

transition to the lowest state.

In conclusion, we confirms that the strong quench-

ing found in other spin—flip and isospin-flip transitions,

is also present in the or+ transition. The quenching factor

calculated by the QP-RPA is about four on the average. But

also we saw that the QP—RPA overestimates the FSM by a

factor of about two for the case of 12C. Therefore, it will

be very interesting to measure the resonances, which are

predicted by the QP-RPA, at the high excitation energy above

the Q—window by future experiments like an (n,p) reaction.

It will be an important check for the QP-RPA and for the

amount of the quenching of the OT+ strength as well as

valuable information determining the PP interaction.
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Appendix A

A SCHEME TO SOLVE

THE BARDEEN-COOPER-SCHRIEFFER EQUATIONS

We start with the single particle wavefunctions

I (r), their energies ej, and occupation probabilities v;
ij

which are given by the usual shell model calculations such

as the HF or WS single particle potential. The occupation

probability v? is equal to 1 for the occupied orbits, 0 for

the empty orbits, and

2_ .
Vj—n/(2j+1) (A-l)

for the Fermi orbit where it is occupied by n<(2j+l)

nucleons. Then we proceed as the following to obtain the

BCS ground state:

i) Determine a new single particle energy e3,

e!=e.—Gv% (A—2)

3 J 3

which comes from the pairing interaction given by Equation

(3-1). [Fet71, p530]

ii) Determine the energy gap A and the chemical potential

0 by solving the following two equation simultaneously by

Newton's method, for example. [Bur78, p39]
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4 . 2

G— k (2]k+1)/Vfle3k-u) +A2 (A-3a)

 

_ E . _ , , 2 2
2N— k (23k+1) 1 [ejk-u]/ (ejk-u) +A . (A-3b)

Here, N is the number of nucleons in the model space taken

for the BCS approximation.

iii) Determine a new occupation probability vi,

2_ 1 _ ,_ ,_ 2 2 "

vj— 2 {1 [ej 111/\[(ej II) +4 } (A 4)

iv)

 

Repeat steps i)miii) until one gets stationary values

for A and u.

Then the QP energy Ej can be obtained by

Ej= \FeS-u)2+A2 . (A-5)

 



Appendix B

MATRIX ELEMENTS OF

THE d-FUNCTION INTERACTION

The matrix elements of the 6-function interaction

can be easily obtained by evaluating them at 0=0°. [Law80,

p436] The calculation is rather straightforward and we

present only the final results. For the spin—independent

interactions, we have

<[j1(1)j2(2)]J|0(rl-r2)|[j3(l)j4(2)]J>

 

 

 

 

4 j —g+2 j -g+2
<R > . . . 1 1 . . 3 3

= 2TT C(],J){<31%32-%|J0>(-1) (33%]4'HIJ0>(—1)

j1+j2+J j3+j4+J

+<315325IJ1>I—1> <335346 J1>(—1) (B-l)

. . -l . 2 . 2 -1 >

<[jl(1)32(1) ]J|6(r1—r2)l[33( )J4( ) ]J

4 j -%+J
<R > . . . 1 . .

= fl C(JIJ)<31%32_%|JO>(-l) (33%34'HIJ0>

j3-;5+J

X(—1) 0J L (B-2)

. . -l . . -1 >

<[31(1)32(2) lJ|5(r1-r2)l[j3(l)j4(2) ]J

4 j —%+J j —%+J
<R > , . . \ 1 . . 3

= 2n c(J,J){<31%12-%IJ0/(-1) <13834-tlJ0>('1)

j +j +2 j3+j4+2

+<j1%j2%IJl>(-1) 1 2 3<j3gj4s|Ji>I-1) 3 , (B—3)
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where <R4> and C(j,J) denote

<R4>= f0. (r)III. (r)ILI. (r)I]J. (r)r2dr (B-4)

31 32 33 34

 

C(j,JI=.JWj1+5IIj2+sIIj3+8)Ij4+5)/I2J+1). (B-S)

For the spin-dependent interaction, the matrix elements

become,

<[j1(1)j2(2)lJ|9(r1-r2) ol-ozltj3I1Ij4I2)1J>

 

 

4 j +2 -% j +2 -%
<R>. .. 11.. 33

= 20 C(j,J){<31%jZ-%IJO>(-l) <33%j4—%|J0>(-1)

j1+j2+J

X{-30J’L+0J’Li1]+<31%32%|J1>1-1)

j3+j4+J

x<j35j45|J1>I-1I (B-6>

<[' (1)“ (l)—1]JI0(r —r ) o -o I[' (2)' (2)“1]J>
31 32 1 2 1 2 33 34

4 j -%+J j —%+J

= (R > C(j,J) <j 5j -%|J0>(-1) 1 <j sj -%|J0>(-1) 3
1 2 3 4

. . j1+j2+31
an’Lil+<31532%|J1>(-1)

j +j +2

x<j3kj4%|Jl>(-l) 3 4 3} (3‘7)

<Ijl(1)j2I2I'11J16Ir1-r2) 01°02|[j3(1)j4(2)—1]J>

4
<R>

27I

jl—%+J

C(j,J){<jl%j2-%|JO>(-l) <j3sj4-5IJ0>

 

j1+j2+2

6 ]+<j1%j2%|Jl>(—l)

1

J,L+ J,Lil
><(-1) {-30
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j +j +2

x<j3%j4%lJl>(-l) 3 4 3} (B-8)

where the scalar product 0-0 is defined by

o-o=-o o_+oooo-o_o (B-9)
+ +°

The isospin part of the matrix element is not depend on

space and spin coordinates, and can be factored out. The

nonvanishing matrix elements of the isospin part for a

neutron-proton pair state becomes,

<n(l)p(2)IT1°12ln(l)p(2)>=-l (B-lO)

-1 —1 _
<n(l)p(l) [Tl-Izln(2)p(2) >-2 (B-ll)

-l -1

<n(l)p(2) IT1°T2|n(1)P(2) >=—1. (B-12)
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