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ABSTRACT

TCHEBYCHEFF APPROXIMATION
BY RECIPROCALS OF POLYNOMIALS ON [0,«)

By

Daryl Myron Brink

In Chapter I we consider the following approximation problem. We
let n be a fixed positive integef and use C:[O,c) to denote the
set of all positive continuous functions on [0,~) which vanish at

infinity. We define

- 1 o0
R = {p|penn, p() >0 on [o,)§
and for a given f ¢ C:[O,“) we search for an element %* from Rn
such that
sup f(x) -1 - inf sup f(x) - 1
p*(x) 1 p (x)
xe[0,) ;GRn xe[0,=)

In this setting we obtain existence, characterization and uniqueness
theorems. Existence follows along somewhat standard lines. The
characterization theorem features a two-part alternation condition
which states that '% is a best approximation to f if and only if
either f - %- has an alternating set consisting of at least n + 2
points, or f - %- has an alternating set consisting of exactly n + 1
points, 9p <n -1, and £ - %- 18 positive at the largest point
of the alternating set. Uniqueness is then obtained.

In Chapter II we consider approximation with osculatory interpolation

in a setting similar to that of Chapter I. Here we obtain a character-






Daryl Myron Brink

ization theorem similar to that of Chapter I. Although existence fails
we have uniqueness of best approximations. If %- is best with
9p = n, we obtain a characterization in terms of zero in the convex
hull of a certain set.

In Chapter III we consider strong uniqueness and continuity of
the best approximation operator in the above setting and obtéin an
existence theorem for approximation with osculatory interpolation for

large n.
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INTRODUCTION

This paper will consider the approximation of certain positive
continuous functions defined on [0,») by rational functions of the
form %- where p 1s a polynomial of degree not greater than some
fixed integer n. Existence, characterization, uniqueness and
continuity of the best approximation operator will be examined. The

error in approximating f by %- will be measured throughout by

0.1) "f-%-" = sup £ (x) "pTlx')' .
xe [0,®)

Thus a best approximation to a given f 1is an element %* from the

prescribed class such that

1 1
0.2) £ - ;*" = 1:11f £ - ;ﬂ .

o

In Chapter I, we assume that f vanishes at infinity and that p
is positive. In this setting, existence and uniqueness theorems
paralleling those found in the classical theory of rational Tchebycheff
approximation [1], [2],[10], [14], [15] are obtained. The characteri-
zation theorem, which involves conditions on the sign alternation of the
error function, has non-standard form.

In Chapter II, we further restrict the functions and the approx-
imants and consider the problem of approximating an s-continuously
differentiable f by a k-point osculating rational function of the
form %- (precise definitions will be given later). In this setting,

we do not necessarily have existence of best approximations; but



uniqueness and characterization theorems similar to those in Chapter I
are obtained. The results here are generalizations to the infinite
interval of work by A. L. Perrie [13] and H. L. Loeb, D. G. Moursund,
L. L. Schumaker and G. D. Taylor [9].

Chapter III consists of a discussion of continuity of the best
approximation operator for the above approximation problems, along with

an existence theorem for large n.



CHAPTER 1

TCHEBYCHEFF APPROXIMATIONS WITH RATIONAL FUNCTIONS

OF THE FORM % ON [0,)

Section l: Introduction

In this chapter we wish to consider the following approximation
problem. Let C:[O,w) be the set of all positive continuous functions

on [0,») which vanish at «. Define

el = sup |f(x)].
xe [0,)

Then, given an integer n, we wish to approximate f by a function

of the form %- where

n
= e o 0
p(x) a + a;x + + a X

with a; real. We will use 23p to denote the degree of the poly-

nomial p.

Let

R, = (] <n, p@ >0 on [0, )

denote the family of rational functions from which we wish to approximate

f. Thus we search for an element %* from Rn such that

TN I
ot



Note that, since £ ¢ C:[O,W), the constant c* = % £l is
always a candidate for a best approximation; moreover, we have

IE - c*l = 3 UEl . Thus

(1.1) JE -4 = 7 0eN .

Hence p* has no zeros, and so there is no loss of generality in
requiring p > 0 on [0,») for %'G-Rn' However, note that 0 ¢ Rn'
The question of whether such an element %} € Rn can actually be

found is answered in Section 2.

Section 2: Existence Theorem

We begin with an important lemma which will have applications

throughout this paper.

Lemma 1.1: Let { %-} be a sequence of elements from Rn. Suppose
k

there exist constants Ml and M2 such that

0 <M <| %k | <y <=

for all k. Then there exists a subsequence { % } of | % } which
k k
3

converges uniformly to %- on any closed interval, with %'e Rn'
Proof: Since {"'% "} is a bounded infinite sequence, there is a
k

k

subsequence {‘% } such that {" %- "} converges to some real number
k
r r

L as kr + o, For simplicity we will denote this subsequence by { %'}-
k



We write
S
Py U
n 1 no2
where q,(x) = I a, ,x with I a =1 and ¢, 1is a constant.
k . i,k - i,k k
i=0 1=0
o 1
To do this, suppose pk(x) = I b, ,.x  and take
1=0 i,k
n
2 2
= I b .
U T oy Lok
Now {(a sees,d )} 1is a bounded infinite sequence in En+1
o,k n,k
and therefore must have a subsequence {(a - )} which
o,kj n,k.j
converges to some (ao,...,an). Define
n
9 (x) = I a xi.
h 1=0 7
n 1 n
Then 1f q(x) = & aix , since X lai - ay Kk | -+ 0 as kj > o,
i=0 i=0 >

using a result from Natanson ([11l], p. 23) we find that { qk} converges
h|

uniformly to q on any closed interval.

For simplicity, we will write {qj} for ({ qk}. Consider
]

the associated sequence {c,}. Since

3

|2

A
=

2



we have

C.l
| qj(x) 2 M

for any x. Hence

|A
=

< M, (n+1)
o2
since I a; , =1 implies that |a, .| < 1. Thus {c,} 1is a
i=0 1’J i,j - J

bounded sequence and therefore has a subsequence {cj } which
t

converges to a real number c.

We wish to show ¢ > 0. 1If cj + 0 then the coefficients of
t

P; must approach zero, which would force "~% " to become arbitrarily
t ]
t

large. Hence O < ¢ < », and consequently q has no zeros. Thus

we let € = lu
P

q
Let o be a real number and suppose x € [0,a]. Then

[N

1 1 1

p(x) ~ Py ® | =
t

’ Py x) - p(x) | .
min Ip(x)pj (x) | t

xe[0,a] t J

Since pj - p uniformly on [0,a] with p > O, pj >0 on [0,a]
t t



it follows that

uniformly on [0,a]. Thus { l-} is the desired subsequence. l
h|
t

With the aid of lemma 1.1 we can prove the existence theorem for Rn'

Theorem 1.1: To each function f € C:[O,w) there corresponds at least

one best approximation %; from the class Rn.

Proof: Fix f ¢ C:[O,m) and let

1
E = inf "f-;"

Lr
P n

Then there exists a sequence { %-} from R such that the sequence
k

{"f - %-"} +E as k >, It follows from (1.1) that there is no
k
loss of generality in requiring that
1 1
f -= < = £l
" pk" - 2

for all k. Thus it follows that
1 1 3
2 el < | Py | = 20l

We wish to construct an element %} from Rn such that

"f - %}" = E. By lemma 1.1, we have a subsequence ({ % } which

K



converges uniformly on any closed interval to an element %* € Rn'

Let x € [0,). Then x € [0,a] for some o, and we have

1 . 1
e Te) s A 6]
xE[Oya]
1 1 1

< max f(x) - ;;—?;7 + max o ® " &

x€[0,a] 3 x€[0,a] h

1 1 1
= "f TPy *oomax P, () - p*(x)
h| xe[0,a] h|

Since 1 +-l* uniformly on [0,a] and ||f - i + E we have,
% P P
kj k

by taking limits on the right hand side of the above inequality, that

3

|£Go "ﬁ%;)_l < E.

Hence it follows that

Je- 5 < E

and consequently, %} is a best approximation to f.l

We remark that the proof given above parallels the proof of the
well-known existence theorem for approximation by rational functions
on a closed interval. The technical difficulties which arise as a
consequence of the use of an infinite interval are somewhat simplified
by the assumptions on the function f and the use of a smaller class of

rational functions.



Section 3: Characterization of Best Approximations

Our objective here will be to characterize best approximations by
means of the sign alternations in the error curve f - r where

re Rn. In order to do so, we will first define the following sets:

1.2) X() ={ x| [f&x) - x| =lIf - xll } is called the set

of extreme points for f - r.

(1.3) A set of N distinct points 0 < X< Xy <ee< Xy <

is called an alternating set for the error f - r if

x:l e X(T) 5« = LGN

and

£i(x.): = r(xj) = - [f(x

5 ) -r(xjﬂ)], j=1,...,N-1.

j+1

Now for f € C[a,b] with a,b real, it is well-known that r 1is

a best approximation to f from the set
R [a,b] = { & pel ,qell , q(x) >0 for all x ¢ [a,b] }
n q m n
if and only if f - r has an alternating set consisting of
N = 2+ max (n + 3p, m + 3q)

points [15, p. 122]. Since the set Rn is contained in Rg[O,@) we might
expect a characterization theorem in terms of an alternating set
consisting of N = n + 2 points. Achieser [1] gives such a theorem

for infinite intervals in the case m > n with additional conditions.

This theorem, however, does not handle the case under consideration here.
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The following example shows that some modifications of the usual
theorem will have to be made for characterizing best approximations to

+
f.e Co[O,w) from Rn.

1

1
Example 1.1: We will consider the approximation P " x+1
to f e C:[O,m) where f 1is similar to the function defined as shown,

and prove -1]; is a best approximation to f from RZ'

We assume f 1is constructed so that

£€0 = 2
W = 3
(€ =

1

S 1 3 i i
with x(—’;)={0,1,2},"f-;1|=—, and f—;<z for x > 2.

So if %: R, is such that "f - %" < "f - %" we must have



1 1 1
f(x)—q(x) <5 VxeX(;)

and

max {0, f(x) - -3;-} < P

Then at x = 0, we must have

1
-

5
<4-
which implies that
%<q(0)<l.

At x =1, we must have

1 1 1 1
A T6) I
from which it follows that
2 < q(1).
At x = 2, we need
o7z 1 1
4 12 q(2) 4
which leads to the inequality
%<q(0)<3.
Thus if q(x) = ax + b we must have
< b < 1

< 2a+b < 3.

uvjon v Wi
A
»
+
o

But b <1 implies a > 1, and hence a+ (a+b) > 1+ 2 =3, which
cannot happen. So q(x) must be of the form ax2 + bx + c. Thus

we have
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wlen N wiN
A
»
+
o
+
[

In order that %s Rn, we must also have a > 0. Now c < 1 implies

a+b>1l. So
4ba+2b+c=(a+b+c)+(a+b)+2a>2+1+0=3.

Thus no such q exists. Hence is a best approximation to f

Sl

xtl

from RZ’ with an alternating set consisting of only three points.

Finally, we note that % is also a best approximation to f from Rl'
Since the best constant approximation to f e C‘;[O,w) is

ck = % Il , we will assume n > 1 in the characterization theorem.

In this case no best approximation can be constant. To see this, let

c* be the best constant approximation to f from Rn with n > 1. We

1
%t © Rn and

will show it is possible to choose a and b so that

||f - ;1;5'" < |If - c*ll = c*
Since f(x) > 0 for all real x, we must have
f(x) - c*x >0
for all real x e X(c*) and

lim f£(x) - c* = - |If - c*|| .

X0

Thus there exists a real number o such that £(x) < c* on (a,=)
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and f(a) = c*. Note that [0,a) contains X(c*) ~ {=}.

Now let

2 = min £(x).

xe[0,a]
Let
1
b = :*—au

and choose a > 0 so small that

1 1
The © Tk

Then for x ¢ [0,a), we have

ax + b = a(x - a) + %* < %}
and
+b = ax+3 -
ax ax + ¢y - aa
1
2 on T
Py
ckte
Thus
1
* — *
¢ & e e

for x e [0,a). But
= ¢k = f(a)

aatb

and hence it follows that



and

o *
max £(x) P < ¢k .
xe[0,a]
Since ax:-lH: is decreasing on [0,») we also have
max £(x) o c*
axtb 4
xe [a,=)
hence
1
“f-axﬂyl < ok .

This leads us to suggest the following theorem for characterization

of best approximations.

1

Theorem 1.2: Let f ¢ C:[O,w) and n > 1. Then ; is a best

approximation to f from the set Rn if and only if either

or

(1.4) f - = has an alternating set consisting of at least

n + 2 points,

(1.5) £ - % has an alternating set consisting of n + 1 points,
p <n-1 and f -% is positive at the largest point

of the alternating set.

Proof: We will first show that if we have either (1.4) or (1.5) then

1

P

alternating set by 0 < x; < x

is best.
Suppose (1.4) holds. Then % cannot be constant. Denote the

<eee< X < » so that

1 2 n+2
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S I RS P | 5
f(xj)—mj—)| = e ;|| . 3 =1,...,m2.

If there is an element %c Rn such that

1 1
1. f - £ -4
@6 he-3 < ne-3
we must have that
1 1 1 1
2= = (f-3D) - (f -
qQ P ( P) ¢ q)

alternates in sign on the set x1 < :t{2 < see < xn+2, and hence has at

least n + 1 zeros. But

with pq > 0, and so p - q has at least n+ 1 =zeros. Since p - q
is a polynomial of degree at most n, we must have p - q = 0. Thus
p=gq and (1.6) cannot hold.

Now assume we have (1.5). Again % cannot be constant, so let the
alternating set be 0 < Xp <Xy < eee <Xy <, and suppose there is
an element % € Rn such that (1.6) holds. By repeating the above
argument, we guarantee that there are at least n zeros for p - q.

So if 3q <n -1, we find that q = p which again contradicts the
assumption (1.6).
So we have only to consider the case where 3q = n. Since we

assume (1.6) holds, and

> 0

£(x 1 )

n+1) - p(xtﬂ_1

we have
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L ey 1_1_p-4g
0 < (f p) (f q)

at x

L Hence p-q >0 at x Since l-e R , q must have

n+l’ q n
a positive leading coefficient. Here 9q > 3p and so p - q has a
negative leading coefficient. Thus p - q > -» as x +> », which

implies that p - q has a zero x* > x So p-q has n+1

n+l’
zeros, and again we must have p = q. This contradicts the assumption
(1.6) and therefore % is a best approximation to f.

To complete the proof of the theorem we will show that if %
is best and (1.4) does not hold, then we must have (1.5). So assume
there are N < n+ 2 points in the alternating set. Then if 3p = n,

we can construct a better approximation %* as follows:

Begin in the usual way by constructing N subintervals

[0,51] ’ [El’gzl ey [EN_l)"’)

in such a way that in each of them in turn one of the following two
inequalities 1is satisfied:

(1.7) -Eif(x)—p(lx) <E-a

1
(1.8) ~Eta < £ - i<
where E = "f - %" and o 1s some positive real number.

Following Achieser [1l, p. 55] we consider the function
°(x) = (x=-8&)(x =€y «oo (x=Eg )

and write ¢(x) = kp(x) - ¢(x) where 3¢ = n and k 1is a constant.
Then set

c . 1 - bk
q(x) p(x) - bo(x) °

We will show that there exists b* > 0 such that ﬁ-e Rn for all
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b with Ibl < b*. Then, since

1 b (x)

C = -
£(x) - = - S Y @& - 5]

q(x)

and b% changes sign at £ if we show that

l’...’gN‘-l,
pX)[p(x) - b¢(x)] > 0 on [0,%) and that

® (x)
p(x) [p(x) - bp(x)]

is bounded, it will follow by taking b small enough with the appro-
priate sign that ﬁ- is a better approximation to £ than %.

Let b > 0 be such that 1 - bk > 0 for all b with [b| <b_.
Let a denote the leading coefficient of p. Then a > 0 so there

exists bl > 0 such that 1f |b| < b P - b¢ has a positive leading

1°
coefficient.

Now observe that there exists A > 0 such that p(x) > 2X on
[0,2). Then it is easy to show that there exists B > 0 such that
p-bs>X2>0 on (B, for all b with [b| <b,.

Now there exists b, > 0 such that |bo(x)| < A for all x ¢ [0,8]
whenever |b| §_b2, and thus p(x) - bp(x) > A on [0,8] whenever
|b| < b,.

b,}. Then if |b| < b* we have

Finally let b* = min {bo’ b;» b,

£ 4n R , and
q n

b[k - QSEL]
b (x) = p(x)
p(x)[p(x) - bo(x)] [p(x) - bp(x)]

approaches zero as x » », Now we show that by taking b small enough
with appropriate sign we can make ﬁ- a better approximation than -% .

For x such that (1.7) holds, we have
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bd (x)
p(x) [p(x) - bo(x)]

c b (x) _
1™ “Et M - 561

- E < f(x) - a

so choose b such that b%® > 0 and

bd(x)
p(x) [p(x) - bd(x)]

Then b® < 0 where (1.8) holds, and so if b 1is so small that we

also have

bd (x) s -
pX)[p(x) - bp(x)] ¢

where (1.8) holds then -§ is a better approximation to £f than %u
Thus we have shown that if %- is best, and (1.4) does not hold, we
must have 3p < n - 1.
Now if we have N' < n + 1 points in the alternating set, we
can again construct a better approximation than -%. If 3p=n -1,
we proceed exactly as above. If 39p < n - 1 we use a slightly modified

but simpler approach.
8(x) = (x = £))(x = £,) +ov (x = gy ;)
has degree at most n - 1. Choose € =1 or e = -1 so that

sgn s¢(xi) = -ggn (f(xi) - ;?%;3-> .

Then if the leading coefficient on €% 18 positive, we define

- 1 ;
d* = ¢d. If not, we select gNt> xnilsuch that X(p) C [O,gN) and set
o*(x) = e0(x) (gy - x).

So in either case, b¢* has a positive leading coefficient for any b > O.
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Now there exists B8 > 0 such that

P(x) + bo*(x) > p(x) > 2

and |f(x)| <% on (B,»). Thus for any b > 0 we have

1
p(x) + bo*(x)

1
p(x) + bod*(x)

f(x) - [fEx)| +

E
+ 2 - E-

A
N[t

on (B,w). As before we can select b so that

1
£(x) - p(x) + bo*(x)

on [0,B]; hence %- is not best.
So if (1.4) does not hold, we have exactly n + 1 points in the
alternating set.

Finally we must show that if %- is best and (1.4) does not hold,

we have
1
f(x ,.) - ———— > 0.
n+l p(xn+l)
where X 41 is the largest point of the alternating set. So assume
1
f(x ,.) — < 0.
n+1 p(xn+1)

We know f —‘% changes sign at at least n points zy with

X, < 2z

i iﬂl,...,n. Let

1 5 ®410

q(x) = ¢

(x - z,)
" i

1

=g
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where 6 1is either +1 or -1 and is chosen so that

sgn q(xi) = -sgn (f(xi) - ﬁ) &

Then q(xn_H) >0 and q(x) *~ as x + o since all zeros of q

Thus there exists £, 0 so that S is

appear before X St eq

+1°
in Rn for any € with 0 < e < €50 and so we will construct an
element of this form which is a better approximation to £ than %
E 1 E
Choose B > 0 so that both f(x) < 3 and o) <3 on (B,®).
Then [0,8] contains the alternating set, and p +eq > p on (B,»)

for any € > 0, so it follows that

S
P+ eq
on (B,») for any e > 0.

We must show that € > 0 can be chosen so that

1

f-v+eq

on [0,8]. To do so, we note that there exists some a > 0 such that

(1.7) holds on (zn,B). (z l), ... and (1.8) holds on

n-2" “n-
(zn_l, zn), (zn_a, zn-Z)’ oo o
On the intervals where (1.7) is satisfied, q(x) > 0 so for

€e>0, p+eq>p and thus

1 1
f - L » iRz
pt+eq P

We need to choose € > 0 small enough so that

1 a .
f’p-{-:q s E_Z
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This will be the case 1if

o
2

& _

2 E).

1>pf+p - pE + eq(f +

Since f - %-< E - a we have 1 > pf + pa - pE. So we need

eq(f +%- E).

o
e
A\

Since p(x) > A for all x, and both q and f assume their maximum

value on any closed interval, there exists some el > 0 such that the

above inequality holds when 0 < € < ¢ Thus we have

l.
1 o
“E < £ - p + €q <E- 2

on (zn,B), (zn_z, zn—l)’ ... when € > 0 is less than min {eo,el}.

Similarly we find that there exists > 0 such that

€2

—g——E<f— < E

p+eq

- on (zn—l’ zn), (zn_3, zn—2)’ ... when € > 0 1is less than
min {eo,az}. So 1f we choose ¢* with 0 < e¢* < min {eo,el,ez}, we

have

1 1
"f T p+ e*q“ < If -';"

which contradicts the fact that %- is best. Hence we must have

> 0.1

-1
f(xn+1) p(xn+1)

Section 4: Uniqueness of Best Approximations

Retaining the setting of the previous sections, we obtain the
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following uniqueness theorem.

Theorem 1.3: 1If %- is a best approximation to f € C:[O,w) from Rn’

then it is unique; that is, if %'e Rn and %-# %3 then

1 1
f - f - .
e -4 > e - 4

This theorem is an immediate consequence of theorem 2.3 in Chapter II,

and hence will not be proved here.



CHAPTER II

TCHEBYCHEFF APPROXIMATION BY RATIONAL FUNCTIONS

OF THE FORM '% ON [0,») WITH OSCULATORY INTERPOLATION

Section 1: Introduction

The problem we wish to consider in this chapter is that of
approximating a function f by a k-point osculating function of the
form %u In order to be more specific, we retain the notation of
Chapter I, and introduce some additional terminology.

Let {yl,...,yk} be a fixed set of k points from [0,») and

{m .,mk} a set of positive integers. Set

1°°°

and

s = max {m
i
In addition, we will assume that m < n + 1 and use EB[O,m) to denote
the set of functions from C:[O,w) which have at least 8 continuous
derivatives.
Recall that a function f ¢ és[O,m) is said to have a zero of
order v< s at z 1if f(2) = ... = f(v-l)(z) =0, f(v)(z) # 0.
We will adopt essentially the same approach as that of Perrie [13],

and hence for a given f ¢ Es[o,m), we define the set Kn(f) by

1 1.,3) D) - -1 =
Kn(f) = {-; € Rn (-; ) 3 (yi) = f (yi), 3 0,...,m1 1; 1 =1,...,k

where f(yi) 4 f(yj) for some 1,j.
23
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Then we will be interested in finding a best approximation to f from
the set Kn(f)' Such a best approximation may not exist. Gilormini [ 6]
claimed existence for rational approximation with interpolation on a
compact interval, but Loeb [8 ] published a short counterexample to this
claim. Here we will postpone further discussion of the existence
question until later, when we will obtain results in special cases, and
turn instead to characterization of best approximations.

An alternation theorem similar to that of Chapter I can be obtained,
with the modification that, roughly speaking, the order of interpolation
at the point y, may "use up" a certain number of alternations of the
error curve. Theorems of this type have been given in [9] by Loeb,
Moursund, Schumaker and Taylor in the case where f ¢ C(X), X a compact
subset of [a,b], with approximants from a subset of an n-dimensional
extended Haar system of order v, and where the error of approximation
was measured with a generalized weight function. Their work generalized
results of Paszkowski [12] and Deutsch [5]. Perrie [13] gives similar
results for approximation to f ¢ cs(x), X a compact subset of [a,b],

by functions from a subset of

{'g | pPe P,qeQ,q>0 on X}
with P and Q finite dimensional subspaces of cs(x).

Section 2: Characterization Theorems

The following lemma due to Salzer [16] will be used. We assume

f ¢ éS[O,w) is given with f(yi) # f(yj) for some 1,j.
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Lemma 2.1: At the points where q(yi) # 0, the system

= 0y.0.,m -1
(2P - Dy, y

is equivalent to

pm(yi) - (qf)(j)(yi),
i=1,...,ke
We note that this equivalence does not require p or q to be
a polynomial or even a linear combination of given functions.
The analogue of theorem 1.2 for characterization of best approx-

imations can now be proved.

Theorem 2.1: Let f € E’s[o,w) and n > 1. Then % is a best

approximation to f from the set Kn(f) if and only if either

(2.1) there exist at least n - m + 2 consecutive points Xy
such that
(a

1 1
) |EGyp - p(xi>| = e -3l

1
(b) sgn [(f(xi) - W) ]'[(xi)]
i+1 1
= D¥* g [(“"1) 'W) H(xl)J
for 1= 1,2,...,n~m+2 where

m.
MO = (-0 N G -0,
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or
(2.2) there exist exactly n - m + 1 consecutive points x,
such that (a) and (b) hold for 1 = 1,2,...,n-m+l;
% <n-1 and
(f(xn—nﬂ-l) -—(Ti—)) omx > 0
Py me1
with
oy
* = &
T I (xn-m+l yv)
vef
where {yV]vE“ is the set of interpolation points which are
= * =
larger than LI (1f {yv}\:sﬂ #, let II* = 1).
Proof: We first show that if we have either (2.1) or (2.2) then %

is best. Suppose we have (2.1) and that there exists % € Kn(f) such

that
1 1
le-31 < fe-2.
Since % € Kn(f), by applying lemma 2.1, we see that

i =0,...,m~1
1,0 (6)] ¢
CEDN ) = ERN T
P g i 1= 1,00,k

is equivalent to

Lom -1
) PN SN )] o
Py = ()Y
i B i 1T fosdks

But 1 € K (f) and so
q n
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j=0,...,m -1
2Py - Doy, !

i=1,...,k
which implies that p - q has a zero of order at least mj at each
yj. Thus we have
k
m = I m
=19

zeros for p - q.

Now consider the relation

1 1 X e |
(f(x) -m) mx) + (q(_x)- f(x)) nmx) = <—q(x) _p(x)) m(x)

E!x! e’ g!x!
( GO ® )“(")'

Since pq > 0 and |f(xi) - |f(xi) we find that

q(:lci)| i B p(:lci)[ g

( p(x) - q(x) ) N(x) alternates in sign at n - m + 2 points X
It is given that x i vy for any 1,j. If the sum of the mj's

such that vy, € (xi, X, ) 1is even, then

3 1+1

]'[(xi)l'l(x > 0

i+1)

so that

[p(x) = qlx)]lpCxy, ) = alx )] < 0«

k
Thus p - q either has a zero in (xi, x1+1) ~ 121 (yi}, or

p - q has a zero of order mj + 1 at some y‘_l in (xi, X4

argument is used if the sum is odd. Since there are n - m + 1 intervals

). A similar

of the form (xi, X we have at least n - m + 1 additional zeros

1410
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for p-q. Thus p - q has at least n + 1 zeros, which implies p = q,
and this is a contradiction. Hence (2.1) implies %- is best.

Now if (2.2) holds, and there exists -& € Kn(f) with

1 1
le -3 < nE-

we find that p - q has n zeros by arguing as above. So if
9 <n -1, we find p = q and again reach a contradiction. Thus, we

need only consider the case where 23q = n.

If 1* = 1, then we have

I -1 . p-gqg
0 < (& P) (£ q) Pq

at and since pq > 0 we find that p - q > 0 at X o m+l’

*n-m+1’
But 3q > 9p and q has a positive leading coefficient, and so

P-q~>- as x> o, Thus p - q has a zero x¥* > x Hence

n-m+l’

we have n + 1 zeros for p - q, which again leads to a contradiction.

* -
Now suppose 1 is non-trivial. At X _m+1 ¥E have

1 21 - P-4q
0 < [(f p) (f q)]H* (pq Y%

- *
and hence (p q)II* > 0 at L
If the sum of the m is odd, then I* < 0 and so p-q <0

at Let Yic be the largest member of {yv}. Then p - q has

*-m+l®
a zero of order at least mv at each yv in (xn-m+l’ yk]. If the

order of the zero Y, is exactly m for all v, and if there are no
other zeros of p - q in (xn-m+l’ yk] we must have p(x) - q(x) > 0

for x > Yie But then since p - q > -» as x + o, p - q must have

an additional zero x* > Yo In any case, we find p~-q has n+ 1
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zeros, which leads to a contradiction.
If the sum of the m, is even, then I'* > 0 and so p-q >0

at Arguing as above leads to a contradiction since if there

*n-mt+1’

are no additional zeros in (x

et yk], again we have p(x) - q(x) > 0

for x > Vi

Thus we have shown that either (2.1) or (2.2) implies that %
is a best approximation.

Suppose now that % is best. We will show that if (2.1) does not
hold, we must have (2.2). So assume we have N < n - m + 1 consecutive

points x, such that (a) and (b) hold. If 03p = n, we can construct a

i
polynomial q such that p_+l—€qe !(n(f) and
e -5+ cq“ e - _"

for some € > 0.
In order to do so, we first introduce the following sets:

(1) {zi} is the set of zeros of f -% 5

(2) (wi} is used to denote the set X( % ) (xi).

3) (si) is the set of points which are different from (yi}

where sign changes of f —% occur.

Notice that ({s;} C{z;} and ({x;} N {w,}=4.

Immediately we make the following modifications to the sets above:

(1) 1If any of the sets contain an interval, we remove the interval
from the set and replace it by a single point from the

interval.
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(2) Let c be chosen so large that X( %) u {yi) is contained
in [0,c), with the additional restriction that if there
are any s, which lie to the right of X( % yu {yi), at
least one of these sy is included in [0,c).

(3) If there are consecutive vy with no other points from
(xi} u (Yi} u {zi) between them, remove all but one of

these Wy

(4) Repeat (3) with vy replaced by LH and (xi) u (yi} u (zi)
replaced by {xil u {yi) u ({zi) = (Bi))'
Using the same notation for the modified sets, we find that
{xi}, (yi}’ {zi) and ("1) are all finite.

We wish to construct a polynomial q(x) with behavior similar to

that shown below:

Let I = (si’bi) be the largest open interval containing x
i

X i

with all other points of {xi} U {yi} u (51) exterior to Ix + Then
i

between Ix and I there must be a yi or an s,. In fact, the
i

*i41
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end points of [a and

i’bi] [ai+l’ bi+1] belong to {yi} U {Si}'

For convenience we let

1
E(x) = f(x) -R;)_

and consider

Case I: Suppose there are no points of interpolation Yy in
[bi’ ai+1]. Then the only points from {WH} which can be contained in

[b are those at which

1* 2441
sgn E(xi) = ggn E(WH).

Hence q(x) need not change sign on [ai, ai+1] and thus need have

no zeros in (ai, ai+1). So with this x, we associate a factor

(x - ai+1) and include this factor in gq.

For I we include § =+ 1 1in q so that
1

sgn E(xl) = -ggn q(xl);
thus q will be constructed so that
sgn E(xi) = -ggn q(xi), i=1,...,n-m

in either case.

A typical situation for Case I is shown below.
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Case II: Suppose we have at least one vy in [bi’ ai+1]' Beginning

at b we can list the points of the set

1

(lydUds 3 Ufw}) N [by,a,]

in increasing order. We need not consider any 8y before the smallest
yi in the list, since there can be no wj with

sgn E(xi) = -sgn E(wj)

before the smallest Yye (If there were such a vy, it would have
to be an alternation point.) In order for q to behave as required,

it may or may not have to change sign at the yi's and si's, so

we need the following scheme to decide what type of factors to include

'

in q. We consider the yi's and sy

s 1in the list starting at the
first Vy-

(*) At Yyr we either

m.
(1) put a factor (x - yi) 2 into q
or

my+1
(2) put a factor (x - yi) into q
according to the following instructions.

(1) If the next point is a w then m, is even if

12 5
sgn E(wi) = sgn E(xi), and m is odd if sgn E(wi) #

m.
sgn E(xi). In either case we need only a factor (x - yi) 4

in order to insure q has the correct sign here.

(ii) 1If the next point is X4 then L is even if

and m, 1is odd otherwise. In

sgn E(xi) # sgn E(x;,,) y
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either case q will have the correct sign if we include a
mi+ 1
factor of the form (x - yi) .

m
(1i1) If the next point is Yi41® PUt @ factor of (x - yi) 1

into q and then repeat the analysis for Vi1 going back

to (*).

(iv) If the next point is an s, we proceed to the following point

in the list unless a w or X

i 141 appears directly after s,.

i

If we have a w, directly after s and the sum of the

i

previous m,'s associated with the yj's that occur from

]

X, up to this point is even, then we will have

i’

sgn E(wi) = sgn E(xi) and q has sign opposite that of
E(wi) here. If the sum is odd, then sgn E(xi) # sgn E(wi)
and again q already has sign opposite that of E(wi).

Hence, q need not be altered here.

If x

141 Aappears directly after sy then we may have to

include a factor (x - Bi) in q.

Thus we proceed to Yi41° and repeat the procedure beginning again at

(*), 1f necessary, until we finish with a Thus we arrive at

i+1°

X401 and then continue by going back to Case I.

From the above analysis we conclude that the only time it is
m
necessary to include a factor beside those of the form (x - yi) 1 in

q 1is directly before x (1 # 0). Letting q be the product of

i+l

all the factors (x - yi)mi and including only necessary additional

factors we find that
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k
3 L m +N-1 = m+N-1
i=1
and q has opposite sign from E(x) at all points of X( %-).

Furthermore,
(r + sq)(j)(xi) = p(j)(xi) + (eq)(j)(xi)

- ), - ~1- =
P (xi), 3 0,...,mi 1; 1 1,...,k.

Thus for € constant, we find that p + €q has the interpolation
properties specified for p.
Then as in the proof of theorem 1.2 we can show there exists ¢
1

such that ;r:::;; € Kn(f) and

It - =l < IE -l -

So if (2.1) does not hold, we must have 0p < n - 1. Then if
N<n-m we have 3q <n -1 and again we can construct a better
approximation than -%.

It remains to show that

1
(fCoars) "5y ) ™

If nI* = 1, we proceed as in the proof of theorem 1.2. So assume that

II* is non-trivial, and that

1
(e “5, 3 ) ™ <

Then if va is even, N* > 0 and so f - % <0 at x Since

n-m+1°
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8sgn (f(xi) —@) = -sgn q(xi)

we have q(xn-nﬂ-l) > 0. The only factors included in q after

L in the earlier analysis are those of the form (x - yv)mv »

and hence q(x) > 0 for x > Vie* Thus q has a positive leading
coefficient and, as in the proof of theorem 1.2, we can show that

there exists e > 0 so that p_+1t:—q is a better approximation than

If Im dis odd, Mk <0, £-L1>0 at x and q(x
v P n

-mr+1

Then arguing as above, we see that q(x) > 0 for x > yk and again

n-mt+1

we can find ¢ > 0 so that -pleq is a better approximation than % .
It is useful to obtain a slightly different characterization
theorem, which states that under certain conditions % is a best
approximation to f 1f and only if zero is an element of the convex
hull of a certain set. In the case of generalized rational approximation,
a theorem of this type was proved by Cheney [2]. For ordinary
interpolation, Gilormini [6] gave a similar result. Perrie [13] proves
such a theorem in the previously mentioned setting.
We will need some preliminary results. Recall f 1is a given

function from E”[o,m). Let %* € Kn(f) and define

i 1
sG = (1-L [aen, q(J)(yi) & (;)(j)(yi), 3= 0,m-ls 4= k)

Note that since f > 0 on [0,») we must have q(yi) >0 for all 1.
. L
Lemma 2.2: S( o ) 1is a subspace of { %* | qe IIn }

Proof: Let 1 -ﬁ* and 1-3

¥ be elements of S( %* ), and let

¢ be a real number. Then
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c(l_s*).,.(l_%*) = I_M_ﬂ

p*

Now c(p - p*) +qe Nl and
[e(p - p*) + q](j)(yi) = c (p(J)(yj) = p*(j)(yi)) + q(j)(yi)
RG]
= (PO -

mus -2y +a-$)esci ).l

Lemma 2.3: Dim S(;)l-*) = n-m+ 1.

Proof: Let N=n-m+ 1. Choose N distinct points XyseeesXy
which are different from the interpolation points yl,...,yk. For
each t, t=1,...,N we will show that there exists 81: e S( %*) such
that

0 t#1]

8 (x) = 8.4 = § gl
for j =1,...,N. So let h* be any element of S( %*), and write
h* 1in the form ’%‘R .
For each t, there exists a polynomial 9, of degree at most

n with the following properties:
@ qij)(yi) =0, 3=0,0.om-1; 4= 1,0k
(@) q (x) = p*(x)) - p(xy), 1+ 1,...,t=1,t+l,...,N
3) . (x) = -px) .

We set






37

g, = 1-*ap
t p* *

Since p + q, € Hn and (p + qt)(j)(yi) = p(j)(yi) we have

g, € S( %* ) . In addition,
p*(x,) - (p(xi) + g (x,) ) 0 t#]
gt(xj) = = .
p*(xj) 1 t=]
Now suppose h 1is an arbitrary element of S( %* ) . Define
N
g = I h(x]g, .
1=1 17°1
Then g e S( %*), and
N
g(xj) - h(xj) = 121 h(xi)si(xj) - h(xj)
= h(xj) - h(xj)
= 0 .

Through the use of the interpolation properties of elements of S( %* )

we can show

e-nPop = P -aPe)p

= 0 ’ j=0,...,m-1; i=1,ooo’ko

i

k
Thus g -h has N+ m =n + 1 2zeros, and g = h. Hence, any
i=1

element of S( %} ) can be written as a linear combination of

{g,...,gN}. These functions are linearly independent, since



38

gt(xj) = th. So we have a basis for S( %'* ) consisting of
N=n-m+1 elements.l

Let {gl,...,gN} be a basis for S( %* ), % = (gl(x),...,gN(x)),
and H{o(x)% | x ¢ X( %*)} denote the convex hull of the vectors

N

o(x)%¥ in E for x e X( %*) where

o(x) = sgn (f(x) -ﬁ*—(lx—).>

Then we can prove

Theorem 2.2: Let f ¢ Cs[O,oo) and -;-* € Kn(f) with 293p* = n. Then

i is a best approximation to f 1f and only if

p*

0 ¢ H{o(x)& | xeX(%*)} .

Proof: Suppose —;-* is not a best approximation to f from Kn(f).

Then there exists %e Kn(f) such that

1 1
(e B E R

If x e X( %* ) we have

p(x) p(

1
Ie -5l

o (x) (f(x)- 1 ) < g - lx)l

|A

A

Hh
|
I [
=

1}
Q
~
»
N
—//
h
7~
»
~
e
*
~|=
»
~’
~——
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Thus
0 <o ( pgk) i} p*%x) ) = ok
Since p(x) > 0 we must have
o (x) (1-1)*(:)) > 0

and so if we let h =1 - E}
p

for all x e X( %* ) .

Now suppose 0 ¢ H{o(x)& | x ¢ X( %} )};

r

_ A
0 = I Aio(xi)xi with Ai such that ZAi
i=1
A
and o(xi)xi € H. Thus

r r

0 = ( T Ao0(x)g, (%), voey I
1=1 i 17211 1=1

But o(xi)h(xi) > 0 for each i, and not all

r
£ A, 0(x,)h(x,)
o T

A

N
Ao(x) oo g (x,)
e T S

for some

MR

i=1

r N
z I A,a,0(x,)g, (x,)
i=1 kel 17k 1Pk

N r
pX I Aa.0(x,)g (x,)
k=1 =1 LK 17K

N
I a
k=1

r
2 Aio(xi)gk(xi)

ko1

i

p*(x) - p(x)
p(x)p*(x)

X )

we have h e S( %* ) and o(x)h(x) > O

that is,

=1, A

1 > 0 for all 1,

Xio(xi)gN(xi) ) .

A

{ are zero so we have

k

o 1,...,N

k’
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r
which must be zero since I A,o0(x,)g (x,) = 0 for all k. Hence we
i=1 i i"°%kM1

have reached a contradiction, and thus it follows that
(2.3) 0 ¢ HoGR | xe X(3 ) .

To complete the proof of the theorem, we assume (2.3) holds and

show l} is not best.
P

The set X( %} ) 1is closed and bounded in [0,~); hence it is
compact. Both ¢ and %X are continuous on X( %* ); hence o(x)X
is, which implies that {o(x)X | x ¢ X( %* )} is compact in B,
Therefore H{o(x)X | x e X( %* )} 1is compact.

Thus by the theorem on linear inequalities (Cheney [2], p. 19)

there exists c¢ = (cl,...,cN) such that

0 < <o(x)§<,c> o(x)clgl(x) + ...+ O(X)CNSN(X)

o (x)h(x)

1 =R
where h ¢ S( ;} ). We write h = p* - 1.

In order to construct a better approximation to f than ;}, let
1+ 1
T = 1 )
* *
P* +2p (T35 0+ (75

We will first show that there exists a Ao such that p* + )xp > O
on [0,o) for any A with |A| i_ko .

Since p* > 0 on [0,»), it has a positive leading coefficient.
Thus there exists Ao such that p* + Ap has a positive leading

coefficient for all A with |[A] <A . Then we can find B8 > 0 such
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that the inequalities

p*(x) > 1
p*(x) + Aop(X) > 1

p*(x) - Aop(x) > 1

hold on (B,»). Then as in the proof‘of theorem 1.2 it is not
difficult to show that p* + Ap > 0 on (B,») for any A with
|A] 5_%0. By choosing Xo <1 we guarantee that r, is a member
of the set Kn(f).

Further, we can find ¢ > 0 and & > 0 such that p*(x) > ¢

and |p(x)| <8 for all x imn [0,8]. So if we choose Al S0

small that

IAP(X)I < |A|6 < Vxe [0,B]

o

for all A with |A| < A,, it follows that

l’
0 < %- < p*(x) + Ap(x)
for all x ¢ [0,8]. Thus if

*
Al < A, = min {X_,);}

we have p* + \p >0 on [0,=).

Then

Xp*(ﬁ'*_l)

p*(p* + Ap)
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Ah
p* + Ap

Now let o = min {|h(x)]|

R

[0,) * X

x € X( —;-* )} , and define

P
]

O N O IR A e

>
n

1 .

Then X, 1s open and bounded, and X

1
- C
1 is closed with X( p* ) X

2 1}
x, N x¢( i ) = @. Hence there exists u > 0 such that u < ||f - 1
2 p* (R

and |f(x) - p*% <up for all xe X since [f(x) - ;*—](‘;)—I > 0 as

2’
X > o,
* * *
Next we will show that we can choose )\1 > 0 with )\1 < }‘o
*
so that for all X with [A]| < A, we have

1 1 1 1
e = =l < mtn JhE -l e 2 0E -l ]

Let Ko denote the right hand side of this inequality. Then if

*
[A] iko we have p* + Ap > € > 0 and hence

pllee =t . Bl e 1]

[+ = %)
*
P A lp*+lp|

From the fact that 93p* = n, it follows that
p*

2-—1|<K

* *
for some constant Kl' Then we choose >‘1 < )‘o such that
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*
whenever |A| f_Al .

*
Finally consider any A with |A| f_Al. Then if x ¢ x2,

we have

£ - r’\(X)I = |f(x) - p*%X)I * Ip*%x) - (™

|A

"+ |——p*%x) -5 ()

IA

st (e -5l -v)

1
I€ - %l -

If x ¢ Xl, we note that

sgn (f(x) - ;;%;y) = sgn (f(x) - rx(x)>

since
€00 - ] ZIE -3l -
e = mall < 2 0 - 5l
and
Eor, = (E-20)+ (T

Thus if x ¢ xl, and we take A negative,
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f(x) - r)‘(X) o(x) ( £(x) - r}\(x) )

= o(x) (f(x) -;,%0‘) + o(x) (P*—](;S-_ r)‘(x))

1 Ag (3)h (x)
S A AT ERTIC)
1 Ao (x)h(x)
= "f B ;*" * Sup ( p*(x) '}:‘ Ap(x) )
xeXl
1 1 A
= |- 5*" T2 sup (pF) + Ap(x) )
xexl
1
< JE -l

Hence for all x € [0,») and suitable negative values of A we have
1
f - T < f - . I
1€ - =l < lE -5l
Under the assumptions of theorem 2.2, we have the following lemma,

which will be used in the proof of theorem 3.1.

Lemma 2.4: 0 ¢ H{o(x)% I x € X( %* )} 1if and only if h(x)o(x) > O

1 1 -
V x e X( E* ) and h e S( ;% ) imply h = O.

Proof: Suppose 0 e H{o(x)%k | x € X( %%)} and we have h e S( %} )

with o(x)h(x) > 0 for all x e X( %} ). We will assume h # O

and derive a contradiction.

Let ZiseeesZ denote the zeros of h which are contained

t

in X( %* ). Then we must have z; # yj for any 1,j since
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1 1
f(yi) p*(yi) =0 and "f - p*" > 0. Observe that t < n.

1
We can find g € S( ;} ) with g(zi) = o(zi), i=1,...,t;
for example we could take

t
g = I o(z)g
i=1 1°°1

where gi(zj) = Gij’ g € S( %* ) as in the proof of lemma 2.3.

Then we can show there exists A > 0 such that
g(x) ( h(x) + ag(x) ) > 0

1
for all x e X( Dk ).

To do so, let Iz be an open interval containing zy such that
i
o(x)g(x) >0 for all xe I with I_N I =¢,1#].
zy z, zj

Let

1 .
%4

ncer

1 .
Y = X( o )

i=1

Then Y i1s closed. Since X( %} ) < [0,g] for some B >0, Y
is also bounded and hence compact. Since we have removed the zeros of

h from Y, we have o(x)h(x) > 0 on Y. Let

m = inf {o(x)h(x) ' x € Y}

M = inf {o(x)g(x) | xeY}.

Then m >0 and M > -», Thus we can £find XA > 0 such that m + AM > 0.
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Th h + 2 S 1 d 0 1

en g € S( p* ) and o(x) ( h(x) + Ag(x)) > on X( o ).
By the theorem on linear inequalities, we cannot have

A 1
0 e Hlo(x)Xx | x € X( ;} )},
Now asgsume that h e S( %} ) and o(x)h(x) > 0 for all x e X( %} )

imply h = 0. If 0 ¢ H{o(x)% | x ¢ X( -;-* )}, then there exists
h e S( %& ) such that o(x)h(x) > 0 for all x e X( %* ). But then

o(x)h(x) > 0 on X( %* ) and so h = 0 which is a contradiction.'
Section 3: Uniqueness of Best Approximation

Theorem 2.3: 1If %* is a best approximation to f ¢ CS[O,w) from

1
Kn(f), then ;* is unique.

Proof: Suppose there exists %e Kn(f) with

1 1
2.8 IE -3 = 1 -l

1
and let x e X( ;*). Then

1 1
o (x) (f(X) —p—*—(;-)-) > o(x) <f(X) -p(x)>

or

1 1 _ p*(x) - p(x)
0 < o(x) (p(x) ’p*(x)) = oM ( p(x)p*(x) )

which implies that o(x) (p*(x) - p(x)) >0 on X( %* ).

m zeros
1 3

™M %

Now suppose (2.1) holds. Then p* - p has m =
h|
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because of the interpolation conditions. If both (p* - p)(xi)
and (p* - p)(xi+1) are non-zero, then we can produce an additional

zero for p* - p 1in as in the proof of theorem 2.1. If

(xys xp49)

(P% - D) (%) # 0, (% = P)(xyp )= -ov = (@* = PY(x,, ) = 0, (P* = P)(x,, 1) # 0

for some r > 0 then we have r additional zeros for p* - p in

(xi, X ). Thus we have to show that p* - p has at least one more

i+r+l

zero in (xi, x1+r+l)'

To do so, let {y.} denote the set of interpolation points
t teT

in  (x,, ). First suppose {yt} is empty. Then

X tr+1

1+r

sgn o(xi) = (-1) sgn o (x )

14+r+1

and so 1f r 1is even, o(xi) and o(x ) have opposite sign and

i+r+l
thus (p* - p)(xi) and (p* - p)(xi+r+1) have opposite sign. This

implies that p* - p has at least one additional zero in (xi, x ).

i+r+l
If r 1s odd, the argument is similar.

If {yt} is not empty, we note that

I4x+ £ m
(2.5) sgn O’(xi) = [(-l) teT }sgn °(x1+r+l) ;

and so if r + th is even, c(xi) and o(x ) have opposite sign.

i+r+l
Hence (p* - p)(xi) and (p* - p)(xi+r+1) have opposite sign and

again we must have another zero for p* - p in The

(g %51
case r + th odd is similar. Hence we have shown that if (2.1) holds,

then (2.4) implies that p = p*.
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Now if (2.2) holds, then 3p* <n -1 and we have n - m + 1
alternation points, so we can produce at least n zeros for p* - p by
arguing as above. Thus if 9p < n - 1 we have p* = p. Thus we need only

show that p* - p has an additional zero when 3p = n.

Since
£(x ) - 1 % > 0
n-m+1 p(xn-m+l)
we have (p* - p)II* > 0 at X mbl When (p* - p)II* > 0 at

X _m+] Ve can show p* - p has at least one additional zero by

arguing as in the proof of theorem 1.2. If (p* - p)i* = 0 at X o410

and p # p*, there must be some r such that

(p* - p)(x ) # 0.

n-mt+l-r

Then using arguments similar to those above along with (2.5) we can show that

®) .

* -
P p must have an additional zero in (xn-m+1-r’

Thus, in any case, p* = p and hence %* is unique.l






CHAPTER III
CONTINUITY OF THE BEST APPROXIMATION OPERATOR

Section 1: Introduction

We wish to improve the uniqueness theorem for Rh by obtaining

some specific information about how fast "f - %" increases as ‘%

recedes from the best approximation. Thus we will prove a generalization

of the Strong Uniqueness Theorem which is given by Cheney [2] in the

case of generalized rational approximation. The result was extended by

Gilormini [7] in the case of ordinary interpolation, and by Perrie [13]

for osculating interpolation on [a,b].

Section 2: Continuity of the Best Approximation Operator for Rn.

We begin with the Strong Uniqueness Theorem for Rn'

Theorem 3.1: Let f ¢ C:[O,m) ~ Rn and suppose %* is a best ap-

proximation to f from R_ with 23p* = n. Then there exists

§ > 0 such that for all -% € Rn we have
S A I P R LR
Proof: We may assume %# -;—*, since if not, take 6 = 1. Define
RS IE - 2 - F - 24l

1 1
I+ =
Then 6(‘%-) > 0 since %} is best. Let

49
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=4 1 1
5_1nf(6(p) ptRn' p # p* ).

If we can show § > 0, the theorem will follow.

So assume § = 0. Then there exists a sequence

1
(3.2) { ?, }

s 1
from R~ { o* } such that

6(-1-)-’0ask+w.
Pr

We will show that there exist Hl 0% Mz < «» guch that

< 1 <
R

for all k, 1in order to apply lemma 1.1. Note that

1 1
Lo e - e - &
e N [ e
1. 1
Foe 0, 0
1 (ne + e - 29)
i - A n
L MY
X

Hence 1if {" -I]); " } has a subsequence which approaches =,
k

§( e )#> 0. Thus there exists M, < » such that " 1 " <M, for all
Py 2 B =2

k, and from this it follows that the sequence { "%* - % " I is
k

bounded.
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Suppose {" % "I has a subsequence which approaches zero as
k

k > . Denote this subsequence again by [ " % || } . Then, since
k

1 1 1 1
[ B Y A |
we can find Nl so that
1 A 3 d:
s~z < 2lmll Ve 2N
or
1 i
< —
3 1 1 1
A I |
so that
2y 1 g1
3 ] pk" | pk"
1 REIRY™ S |
Il (I
Hence we obtain
2 1 1
S i
(3.3) 1 7 T T R Gl Vk > N .
Y

We will show the left hand side is positive for large k. Since

2
1 1 1 Ty
(I I I e B Il B ]|
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and {" % "}"0 as k>, we can find N, such that for all
k

2

k > N, we have

2

o< Hphg < A -

Thus the common denominator on the left hand side in (3.3) is positive for

k> N,. Thus we need only show that there exists some N > max {N

2

such that for all k > N we have

EL R 1 IR - NN

where K 1is some constant. To do so, we will make use of the fact

that in this case we have

[RY[NY

v

v

IE - 5ol < 3 Nel

10 N3

since %* must be a better approximation than the best comstant. So
e - 2 B =3 0= - el 5
HGH IR EY L
S N N AR T EN R T E N I LN AL
S-S50 (U 0+ o)

v

1 i
Tz 0 5 )
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for all k> N if we take N > max {Nl, NZ} large enough so that
2 1 1 1 1
I A(Ipd+ 1) < FlA g

whenever k > N. Thus §( % ) +>0, which is a contradiction, and so
k

the assumption { " % " } + 0 1is incorrect. Hence there exist
k

constants Ml and M2 such that

1
R A

for all k. From lemma 1.1 we conclude that there is a subsequence

{ -I-’l-} which converges uniformly to %e Rn on any closed interval;
k
h|
for simplicity denote this subsequence by { i .
Py
Suppose x £ X( %* ). Then
1 1 1 1 1
§( = = -= = £ -=f - IIf - =
( Pk) "pk p*" I pk" " p*“

v

1 1
o(x)(f(x) -;:(_XT> - c(x)(f(x) - m)

o) | 2= - —
p*(x) pk(x)

Define c¢* by the relation

o* {o(xh)} | h e s( %; ), |l = 1

1]

inf maxl
xEX( ;*)

Using continuity and compactness along with lemma 2.4 we can show c* > 0.
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P
The assumption that 9p* = n implies that "-;1;:- - l" < o, and hence

Pr

= = 1
2= = 1
Py

o= - 2

Thus for any k we can find an X € X( %* ) such that

P ()
P*(x) 1
U(Xk) > c*
2% - 4
or
(x,)
o(x) ( :l:(:zkk) - l) > ck ";}% - 1"

(]
0
*

1 1
| o3 - 2
k' p Py

= c* max { ka(x)l , p*%x) - P J(.X) I }
. k

ekl _ 1
= u, I+ pk"
for each k since min |pk(x)| _>_Mi . Thus we have
2

X
8( %k) (P (x)) "%; - %L" 2 ﬁf‘"%@ - %&"

or
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1 c*
Si(=D) 1 s
P T Myp (%)

Since { % } converges uniformly to %> 0 on any closed interval,
k

there exists K > 0 such that for all k,

1
—5— > K
Py (%)
for all x e X( = ). Thus
p*
s(dy 5 Ker
Pr 2

which contradicts the assumption that &( % ) >0 as k> =, l
k

The assumption 9p* = n 1is crucial for the argument above since
if 9p* < n we have elements in S( i* ) of the form 1 - 2* with
P P

9p = n and consequently

-l - -

We remark that more stringent assumptions than those used in the
Strong Uniqueness Theorem for R;[a,b] given by Cheney [2] are necessary,
since if we consider his theorem in the case where n = 0, we find that

any best approximation £= %,( € Rm satisfies the hypothesis

min {0-3p, m-3q} = O,

but the following theorem shows that the inequality (3.1) in the

Strong Uniqueness Theorem will not hold if 3p* <m - 2.
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Theorem 3.2: Let %* be a best approximation to £ € C:[O,w) from

Rn with O < 39p* < n - 2. Then the inequality (3.1) from the

Strong Uniqueness Theorem cannot hold for all %-e Rn.

Proof: Assume 0 < 3p* < n - 2. Let E = "f - %*". We will construct

a sequence { %‘} of elements from Rn such that {"f - l-“} > E as
k

1 1
k - » but = - = 0 k > =,
T {"pk p*"} 720 88 k7
-1 -=—©& .
Let e = E and ak %K) - e ° Then ak +>0 as k > o,

and a, > 0 for all k larger than some integer No. Define

1 1
- 2
pk(x) e + [p*(x) - e] { _Q(_-_zkl_ + ak }
k

Then if we choose B > 0 so large that p*(x) > 2e on [B,») and

p* 1s increasing on [B,»), we have —1 >0 on [By,®). 1In

Py (%)
addition, we can specify f < % on [B,»).
We will prove that { %-} > %* uniformly on [0,B], which will
k
guarantee that %-(x) >0 on [0,8] 1if k 1is sufficiently large and
k
hence that 1 e R 1if k > N, where N is some integer.
Py n -1 1
First we observe that
1 1 -1 . E
= S —
* - —
pk(k) e + [p*(k) - e] { (k) — e } 2e 2

when k z_No. In addition, if x 1is fixed, then
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un L = 1 SR -
P
ke p () et [p(x) —e] ) lm [ B, pX(x)
2
ke

In fact, to show { % } *%* uniformly on [0,B], let x e [0,B]
k

and consider

(SN PR “O I  L E-L.4 ¢.9 E
Py () p*(x)l |p*(X)| Py () l

<K =
p*(x) =
= K 2
pR(x) + [p*(0) - el X, - By g
k k
i
R e x2 2x T
1*(“%) o ial e
where K = max |;| If we let M = max 1- =5~
P*(x) p*(x)| *
xe[0,8] xe[0,8]

we have, for given € > 0, that

2
X 2x
Low@l [z it o —‘-M( 2+k+ak>
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W
~ |

if k dis sufficiently large. Then if é% <-% ,

2
e (x - k)
K (l_p*(x)){ . +ak}l
1 1
Py (%) _p*(x)l = 9
1- |1 e (Lx-k_,
| p*(x) | I K2 akl
K (5¢)
<
< = ¢
1
2

Thus { ;-} > ;* uniformly on [0,B].
Pk P

1 1
Since ;} € Rn we must have ;* decreasing on [k,®) for large k,

and since
, 2
_{p* oo [ =7, o +(p*(x)_e)(gx_-2_kz)]
d 1 k k
dx pk(x) 2

2
e + [p*(x) - e] ﬁf_likl_.+ a,
k

is negative on [k,®) for large k, we have %- decreasing on [k,®).
k

Thus
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pk%x) ) p*%x)| = lpk%x)l * Ip*%x)|

1 1
CIMETIC

A

E 1
2T
< E

for large k. Similarly, we have

ﬁs- f| < |——pk%k)| * |0

when k 1s large.
We will now obtain similar estimates on [B,k] for large k.

Let x e [B,k]. Then p*(x) > 2e and a > 0 so

2
e + [p*(x) - e] { 55-3351—-+ ak} > e
k
and hence

1
Py (¥)

0 <

1
p*(x)

Since 0 < < %- for x > B8, it follows that

1 _1 <
pk(x) p*(x)| —
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on [B,k] for large k; similarly we obtain

1
P (® fF)] < E

on [B,k].

Combining the above facts, we see that

1
{"f-;k"} +E as k> w

and

1 - 1 = max 1 - 1
"pk p*" ka(x) p*(x)l
xe[0,®)

|v

1 1
Fe® - @)

> 3 |F@] -

Since {;;%E7%+ 0O as k + =, there exists an integer N such that

o, -3 > %
Py P
for all k > N. So if 6§ 1is fixed, there exists ko such that

1 SE

1
I3 -0l < %
o]

and (3.1) cannot hold for all elements of Rn'l

In case 23p* = n, we obtain continuity of the best approximation
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operator in the usual way [2]. We will use Tf to denote the best

approximation to f.

Theorem 3.3: Let f ¢ C+[O,“) “ R_  and suppose l% is a best
—_— o o n P
approximation to fo from Rn with 09p* = n. Then there exists

Ao such that for all f ¢ C:[O,w) we have
7€ - T < A IE - £ -

Proof: From the Strong Uniqueness Theorem we obtain the existence of a

constant & depending only on fo such that

1 1 1 1
5o = 21 = [Ifo = 2l * ¢llp ~ ol

for any '% € Rn. Thus

I£o - Tf" z "fo - TfO" + GIITf - TfO"

or

R IR R
R G N X
R R R DX
N R N AR A Ry LN
- 2f- g

Hence |rf - Tf || <2 £ - £ || -1
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If f e Rn, then Tf = f. In this case we can show T 1is
continuous without making any additional assumptions concerning the
degree of the denominator. The method of proof follows that used

by Werner [17] to establish a similar result for R:[a,b].
Theorem 3.4: Let f € Rn' Then T is continuous at f£.

Proof: Suppose { fk} is a sequence from C:[O,w) with {“fk - f"}* 0

as k >, Then

e = £l < Jlme = £l = - £l

and thus

A

e I A M "

A

I - &l + liE - 5l

2 ||g - g

from whence continuity follows.l

When 3p* < n - 1, the question of continuity for T is open.
Attempts to modify the proof of theorem 3.1 when 3p* = n - 1 were not
successful, and construction of a counterexample using techniques

similar to those in the proof of theorem 3.2 apparently was not possible.
Section 3: Results for Kn(f).

Remark: Lemma 1.1 holds if Rn is replaced by Kn(f). The proof

is virtually unchanged except for the verification that % € Kn(f).



63

This is not difficult; it requires using lemma 2.1 along with the
following lemma.
Lemma 3.2: Let (pk) be a sequence of polynomials. Then if {pk)
converges uniformly to a polynomial p on [a,b], { pk(j) }
converges uniformly to p(j) on [a,b].

The result follows routinely from the fact that uniform convergence
is equivalent to convergence of the respective coefficients.

In addition to lemma 1.1, the proof of the Strong Uniqueness
Theorem for Rn depends in part on the existence of constants Ml and

MZ such that

2
°<“151|5k||1“2<”

where { -;- } was defined by (3.2). The inequality
k
1 1
@n le-L40 < e

was essential in the proof.

Obviously, for approximations by functions from Kn(f), the
inequality (1.1) cannot always hold. However, the interpolation
properties allow simplification of this part of the proof and the

inequality (1.1) is not necessary.

Theorem 3.5: Let f ¢ és[o,w) ~ K_(f) and suppose e is the best
Lheorem J.5% n p*

approximation to f from Kn(f) with 9p* = n. Then there exists

§ > 0 such that for all —;-e Kn(f) we have

1 1 1 1
S R SRR
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Proof: Assume p # p* and define

1 1
fl£ -2l - € - Sl
YA T s LIS, o LS

I = 7

Then é(%) > 0 since ;’1-* is best. Let

§ = inf (s(%)'%:xn(f), pFpxl).

We will show 6 > 0.

So assume & = 0. Then there exists a sequence { % } from
k

p 1
K (£) " { p*} such that

5(£)-'0 as k > =,
Py

Again we wish to show that there exist constants Ml and M2 such that

1
D fF per e

for all k. The existence of Mz is shown as in the proof of theorem 3.1.

Furthermore, we have

1
b S AR

for all k, and hence

1 1
Il - == sl 2fep
Py rafoes * e l 1

So let M, = f(yl).
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The remainder of the proof proceeds as in theorem 3.1..

We previously noted that every f£ ¢ Cs[O,w) does not have a
best approximation from Kn(f)' Thus the continuity theorem for the

best approximation operator must include an existence statement.

~8 - _l_
Theorem 3.6: Let fo e C°[0,») Kn(fo) and suppose o is a best

approximation to f° from Kn(fo) “with dap* = n. Let Tf denote

the set of best approximations to f ¢ Cs[O,w) from Kn(f) and set

- { fecio | £y =Py, 5=0,00m

-1; 1 =1,...,k } .

Then there exists a neighborhood N of fo such that Tf is
non-empty for all f ¢ N N G.
Further, T 1is continuous in the sense that there exists B > O

such that if f € N N G, then

N B S
Proof: Suppose f € G and consider those % € Kn(f) such that

1 1
P I R

By theorem 3.5 there exists & > 0 such that

1 1 1 1
SIe o+l = %o - 3l - lIfe — 2+l

1 1
S S I G Bl Py
1 1
S P I i (Lt
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2|5 - 1| -
1 1
s g - g <3 5 - £ vhenever - ] < [ - ] -
Suppose Ilf - fO" < %— . Then we have |-1]; - %*" < 1 for all
-1];'5 Kn(f) which satisfy "f - T]’:" < "f e " We will show that f

has a best approximation from the set

s - [perno | Rt

and hence N can be taken to be

):feG

[NIEd
——

£ - %ol <

E=Ef=inf{“f— %:s}.

Then there exists a sequence { —;‘ PHE Kn(f) such that
k

hf--"} T

with 'f - " > lf 2L " > E. Thus for all k

1
I, I < e - gl + el

1 1
£ = sop <le |



67

since { %-} (e Kn(f)' Thus by the remark beginning Section 3 we
k

have the existence of a subsequence { l-} and an element %-e Kn(f)

K

such that { %'} *-% uniformly on any closed interval [O,a]. Denote
k
3

the subsequence by {1y,
P

Then for any x € [0,®), there exists a such that x € [0,a], and

ol 10 - o] * e - e

f(x) -

:_"f - l-" + max

Py

11
xe[0,0] el

Since "f -1 " + E and {'l } 53 uniformly on [0,a] we have
Py P, P

1
p(x)

lf(x)- | < E.

Hence it follows that "f - %ﬂ < E and %- is a best approximation to f.'

Techniques similar to those above can be used to prove the following

existence theorem in case n 1s sufficiently large.

Theorem 3.7: Suppose n > 2m. Then each f ¢ Cs[O,m) has a best

approximation from Kn(f)'

Proof: We will produce an element %* € Kn(f) and then restrict the

search for a best approximation to the set

|»



68

©
"

> 4 ¢ 1
[fex@ | Je-Yepe-2y -
The system

j=0,...,m -1
1.3 = @ 1
(p Y = £y, Py

is equivalent to the system

j=0,...,m~1
) 1.4 i
b Bt 6 ) BRI G Tl 0 479 1%
= B = 1=1,0.. k.

By the theory of Hermite interpolation, there exists a polynomial A
with apo < 2m - 1 which satisfies the latter set of interpolation
constraints. However, P, is not necessarily positive on [0,«),
and so we will construct q* = B + e€q so that q* > 0 and also
satisfies the constraints.

Let

k 2my
q(x) = T (x - yi)
i=1

Then q has the following properties:
(1) q(x) >0 on [0,®)
(1) q(j)(yi) =0, 3= 0,0em-l; 4= 1,000k
(i11) 9q = ZZm1 =2m<n,

Thus for any € > 0, (po + Eq)(j)(yi) = (%)(j)@i).
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Now 2dq > Bpo and thus q* = Py + eq has a positive leading
coefficient. Hence there exists B8 > 0 so that q*(x) > 1 on
(B,®) with Yyoee oYy interior points of [0,B].

In addition, there exists a constant M > 0 such that
[po(x)l <M on [0,8], and since P, interpolates positive values

at each Yys there is an interval I, about vy with po(x) >0

i
on Ii for all 1. So if we choose € > 0 so that
min eq(x)] > M
xe[0,8]1-Ur, !
then q*(x) > 0 on [0,®) and 1 e K_(f)
»®) s a* ).

To show f has a best approximation from S repeat the

argument used in the proof of theorem 3.6.'
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