STELLARMULTIPLICITYANALYSISWITHTIME-RESOLVEDSPECTROSCOPY ANDMARKOVCHAINMONTECARLOSIMULATIONS By ThomasBarrettHettinger ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof AstrophysicsandAstronomy|DoctorofPhilosophy 2015 ABSTRACT STELLARMULTIPLICITYANALYSISWITHTIME-RESOLVED SPECTROSCOPYANDMARKOVCHAINMONTECARLO SIMULATIONS By ThomasBarrettHettinger ThisdissertationexaminesthemultiplicitypropertiesofstarsintheMilkyWayandtheir relationshipwithmetallicity.Wepresentmethodsandtechniquesfordataminingindividual, raw,sub-exposureinformationfromspectroscopicsurveysasastatisticalapproachtoper- formingscienanalysesinthiseraofBigData.WealsodescribehowBayesianinference andMarkovChainMonteCarlosimulationsworkinconjunctionwiththesesub-exposure spectroscopytechniques. Binaryinteractionsplayakeyroleinmanyastrophysicalprocesses,fromalteringsurfaces abundances,toproducingsupernova.InChapter1,wegiveabriefintroductiontostellar multiplicity,beginningwithadescriptionofthestarformationprocessandpossiblescenarios forbinarystarformation.WediscusshowbinarystarsinteractthroughRoche-lobeovw, andhowbinarysystemsleadtovariousastrophysicalphenomena.Weconcludethechapter withalookatourcurrentunderstandingofmultiplicitypropertiesofstarsintheMilky Wayasdeterminedempiricallyfromobservationsandsurveys,andwithadiscussionforthe futureoutlookofmultiplicitystudies. InChapter2wedescribeamethodologyformeasuringradialvelocityvariationsinstellar sourcesusingsub-exposurespectrafrommerspectroscopicsurveys.Inparticular,we describeacross-correlationtechniqueusedonspectrathatwereobservedaspartoftheSDSS survey. InChapter3wegiveabriefintroductiontoBayesianinferenceandtheuseoftheMCMC pythonpackage emcee .Wedescribethemethodsusedfordetectingbinarityinstellarsources fromsparselysampledradialvelocitycurves. Chapter4containsthepeer-reviewedarticleHettingeretal.(2015)publishedinthe AstrophysicalJournalLetters.InthisLetter,weemploythesub-exposureradialvelocity measurementtechniquesandtheMCMCmethodsoutlinedinthisdissertationtoexamine apopulationofF-typedwarfstarsintheMilkyWay.Thesamplewasdividedintothree groupsbymetallicity,withthegoalofinvestigatingthemetallicitydependenceonmultiplic- ityproperties.Weahigherfractionofshort-periodbinariesforthemetal-richdiskstars thanthemetal-poorhalostars. Finally,inChapter5,weextendtheworkofHettingeretal.(2015)toinvestigatepossible constraintsontheseparationdistributionofbinariesintheF-dwarfpopulation. Formymother,RitaMurray. iv ACKNOWLEDGMENTS Firstly,Iwouldliketoexpressmysinceregratitudetomyadvisorsandcollaborators,Carles Badenes,JayStrader,TimothyBeers,andStevenBickerton,fortheircontinuoussupport, motivation,andimmenseknowledge.IespeciallythankCarlesfortakingmeonashisown student,andcommittingtoworkwithmeremotelyacrossuniversities.Hisguidancewas invaluable,andIamthankfultohavehadhimasmyadvisor. Tomywife,MenglingHettinger,Iamdeeplygrateful.Asacolleague,sheprovidedme withdirection,focus,andHertutoringinmycourseworkandhersupportwere crucialtomysuccess.Icouldnothavechosenabetterpartnertosharetherestofmylife experienceswith.IloveyouMengling. Iwouldliketothankmyseniorgraduatestudents,CharlesKuehn,ChrisRichardson, CarolynPeruta,andAaronfortheiradvice;mymatesAlexDeibel,Brian Crosby,TomConnor,andRyanConnollyfortheirhelpwithbrainstormingandformy addictiontoee;andIwouldliketothank Fortheirworkinoutreachandcommunityservice,IthankJohnFrench,ShaneHorvatin, andDaveBatchattheAbramsPlanetarium,aswellasHoraceSmithandLauraChomiuk fortheirworkwithpubliceventsatthetelescope. IamgratefultotheNSF,NASA,andtheDoEforfundingthemajorityofallastrophysics research.Astronomyistheleastapplicableofthesciences,butitasksthebiggestquestions. Wearefortunateenoughtohavethecapacitytoaskthesequestions,thereforewemust. Ithankallmyfamilyandfriendsfortheircontinuingsupportandencouragement.Finally, IwanttothankJasonLinehanforintroducingmetothenightsky,withoutwhomIwould neverhavepursuedastronomy. v TABLEOFCONTENTS LISTOFTABLES .................................... viii LISTOFFIGURES ................................... ix Chapter1ABriefIntroductiontoStellarMultiplicity ............ 1 1.1Introduction....................................1 1.2StarFormationandtheOriginofBinaryStars.................2 1.2.1PhysicalPrinciples............................2 1.2.2PossibleBinaryFormationMechanisms.................6 1.2.2.1Capture.............................6 1.2.2.2PromptFragmentation.....................6 1.2.2.3DelayedBreak-up........................7 1.2.3QuestionsandFutureInvestigation...................8 1.3BinaryEvolutionandInteractions........................10 1.3.1PrinciplesoftheEvolutionofBinarySystems.............10 1.3.2BinaryInteractioninAstrophysicalPhenomena............12 1.3.2.1HotSubdwarfs.........................13 1.3.2.2ChemicallyPeculiarStars...................13 1.3.2.3SymbioticBinaries.......................14 1.3.2.4BlueStragglers.........................14 1.3.2.5ThermonuclearSupernovae..................15 1.3.2.6CoreCollapseSupernovae...................15 1.4EmpiricallyDerivedMultiplicityProperties...................16 1.4.1MultiplicityPropertiesandSurveyMethodology............16 1.4.2TrendsandCharacteristicsofMultiple-StarSystems.........18 1.4.2.1MultiplicityandMass.....................18 1.4.2.2MultiplicityandAge......................22 1.4.3Discussion.................................23 1.5Conclusion.....................................26 Chapter2Time-ResolvedSpectroscopy ..................... 28 2.1Introduction....................................28 2.2TheSloanDigitalSkySurvey..........................30 2.2.1Sub-Exposures..............................31 2.2.2SEGUEStellarParameterPipelineAndSampleSelection.......32 2.2.3PlateSystematics.............................34 2.3RadialVelocities.................................41 2.3.1ContinuumNormalization........................41 2.3.2SpectralTemplate............................44 vi 2.3.3Cross-Correlations............................45 2.4EmpiricalUncertainties..............................48 2.5 e=i Variability...................................53 2.6Discussion.....................................53 Chapter3MarkovChainMonteCarlo ...................... 55 3.1Introduction....................................55 3.2BayesianInferenceandMCMC.........................56 3.3 emcee :TheMCMCHammer..........................57 3.3.1AnvariantEnsembleSampler.................57 3.3.2Using emcee ................................58 3.4CorrectingSystematicsinSDSSSpectra....................63 3.5ModelingMultiplicityWithRadialVelocityCurves..............64 3.5.1Examples.................................68 Chapter4StatisticalTime-ResolvedSpectroscopy:AHigherFractionof Short-PeriodBinariesforMetal-RichF-typeDwarfsinSDSS77 4.1Abstract......................................77 4.2Introduction....................................78 4.3Measurements...................................80 4.3.1SDSSObservationsandSampleSelection................80 4.3.2RadialVelocities.............................82 4.3.3Uncertainties...............................83 4.4Multiplicity....................................84 4.5Discussion.....................................89 Chapter5BinaryFractionsandSeparationDistributions .......... 92 5.1Introduction....................................92 5.2MCMCandPopulation-WideMonteCarlo...................93 5.3Discussion.....................................100 REFERENCES ...................................... 103 vii LISTOFTABLES Table2.1SuspectPlatesinSDSS.........................39 Table2.2AbsorptionFeaturesinF-dwarfs....................42 Table3.1PriorLimitsforHettingeretal.(2015)MCMC............67 viii LISTOFFIGURES Figure1.1Dependencyofmultiplicityfractionwithprimarymassformainse- quencestarsandVLMobjects.Valuesusedfromthereviewby Duch^ene&Kraus(2013).........................21 Figure1.2Left:Orbitalperioddistributioninthesolarneighborhoodfrom Raghavanetal.(2010).ThelimitforRLOFintheMSisindicated bytheblackverticaldashedline,andtherangecorrespondingto pre-CEsystemsisshadedingray.Theblog-normalfunctionis showninblack.Thedashedredplotrepresentsamofunction thatalsothedata.Right:Comparingthenumberofsystems intheblog-normaldistribution(solidblack)andthemo model(dashedred).Theperiodrangescorrespondingtolow-massX- raybinaryprogenitors,stablehabitableplanetsaroundbinarystars, andSNIaprogenitorsareshownwithhorizontalrulers.Theyellow dash-dottedlinemarksthepre-outburstperiodofV1309Sco.....25 Figure2.1Distributionofthenumberofsub-exposures(top)andthetimelags (bottom)fortheF-dwarfstarsfromtheHettingeretal.(2015)sam- ple.Metallicityvaluesare[Fe = H]= 1 : 43and[Fe = H]= 0 : 66.33 Figure2.2DistributionofstellarparametersfortheF-dwarfstarsfromtheHet- tingeretal.(2015)sample,includingmetallicity(top),etem- perature(middle),andsurfacegravity(bottom).Metallicitycuto valuesare[Fe = H]= 1 : 43and[Fe = H]= 0 : 66.............35 Figure2.3Scatterplotshowingthedistributionofmetallicityandsurfacegrav- ityforF-typestarsintheSSPPDR9.Thebimodaldistributionof [Fe = H]tracestheHaloandDiskcomponentsoftheMilkyWay....36 Figure2.4RVsforF-dwarfstarslocatedonplateplugging2085-53379beforeand aftercorrectingtheplateforsystematicsub-exposureRed pointsaresub-exposuresthathavelowSNR.FiberIDsaregivenfor eacherontherightaxis.Sub-exposuresintheplateareordered chronologically.Correctionstosystematicaresuccessfulon thisplate.................................38 Figure2.5Distributionof10,264systematicRVestimatedforallplate sub-exposuresintheF-dwarfsample..................39 ix Figure2.6SameasFigure2.4forplateplugging3002-54844.Theleftcolumnof eachshowsRVsbeforecorrectingtheplateforsystematic andtherightcolumnshowsRVsaftercorrectingfor Correctionsarenotsuccessfulonthisplateduetoanti-correlated subsetsofsimilarlycorrelateders...................40 Figure2.7ContinuumnormalizationprocessappliedtoanF-typestarshowing: (a)therawsub-exposurespectrum,(b)thespectrumwithselected absorptionfeaturesmaskedout,(c)asmoothedversionofthespec- trum,and(d)thecontinuum-normalizedspectrum........43 Figure2.8Fullcontinuum-normalizedF-typedwarftemplatespectrum(top) withadetailedviewoftheblueendofthespectrum(bottom).Promi- nentspectralfeaturesareannotated...................45 Figure2.9Exampleofthetemplatecreationprocessusing7spectra.Fromtop tobottom:blueendandfullspectrumoftheinputco-addstellar spectra,blueendandfullspectrumofthenormalized,rest-frame inputspectra,blueendandfullspectrumoftheinputspectraresam- pledtoacommonwavelengthsolution,blueendandfullspectrumof thetemplate(averagedofresampledinputspectra)........46 Figure2.10Cross-correlationfunction(perpixel)forasinglesub-exposurespec- trumofanF-typestar.Correlationvaluesarecalculatedatinteger pixellags,andasplineinterpolationofthefunctionistothese values.Thefunctionpeaksat 3 : 275pixels,or 229kms 1 .....47 Figure2.11Distributionofradialvelocities(minussystemicvelocity)forsub- exposureswith[Fe = H]= 1 : 75 0 : 25andSNR=30 2 : 5.The distributionhasamedianabsolutedeviationofMAD=3 : 04kms 1 , indicatingmeasurementuncertaintiesof ˙ =4 : 51kms 1 .......49 Figure2.12Empiricaluncertaintiesforcross-correlationmeasurementsinF-type dwarfstarsshowinguncertainties(a)asafunctionofSNRindepen- dentlydeterminedforeach[Fe = H],(b)asafunctionofSNRwitha commonconstantand(c)asafunctionofSNRand[Fe = H]as inEquation2.8..............................51 Figure2.13Valuesofcot m fromEquation2.6asafunctionof[Fe = H]...52 Figure2.14Distributionofempiricallyassignedmeasurementuncertaintiesfor theF-dwarfstarsfromtheHettingeretal.(2015)sample.Metallicity valuesare[Fe = H]= 1 : 43and[Fe = H]= 0 : 66.........52 x Figure2.15Distributionof e=i ,theratioofthestandarddeviationofRVsto thetypicalmeasurementuncertaintyvalues,fortheF-dwarfstars fromtheHettingeretal.(2015)sample.Metallicitycutovaluesare [Fe = H]= 1 : 43and[Fe = H]= 0 : 66...................54 Figure3.1Mockobservationswith X valuesdrawnrandomlyfromtherange [0,1]and Y valuesdrawnfrom Y i =0 : 8 X i +0 : 3.Simulatedmeasure- mentuncertaintieshavebeenaddedwithvaluesdrawnfromanormal distributionwith =0 : 0, ˙ =0 : 1....................59 Figure3.2Top:valuesof m fromtheMCMCforthe60stepstakenbyall 100chainwalkers.Convergenceisreachedbystep60.Bottom:same fortheparameter b ............................60 Figure3.3Left:parameter-spacelocationofthe60stepstakenfor7of 100chainwalkers.Starsrepresenttheinitalpositionofeachchain walker,andsubsequentstepsaredisplayedascirclesofdecreasing radius.Right:acloserviewofthecenterofthechainstepdistribution.61 Figure3.4Linearsolutionsfor300randomlyselected( m , b )pairssampledfrom theMCMCposteriordistribution....................61 Figure3.5Posteriorprobabilitydistributionfor:(a)thejoindistributionofpa- rameters m and b ,(b)parameter m ,marginalizedoverparameter b ,and(c)parameter b ,marginalizedoverparameter m .Bluelines indicatevaluesof m and b usedinthecreationofthemockdatapoints.62 Figure3.6Two-parameterjointprobabilitydistributionsforplate-plugging2085- 53379.Allvaluesareinkms 1 .Fullymarginalized,single-parameter probabilitydistributionsoccupythesubplotsonthediagonal.Param- eters dy i ( i inthetext)representthecorrectionstobeappliedto the i thexposureontheplate......................65 Figure3.7Individualsub-exposurespectra(top)usedintheproductionofthe coaddspectrum(bottom)forerID2939-54515-194.........69 Figure3.8Parametervalueprogressionforall200chainwalkersinthemultiplic- ityMCMCforerID2939-54515-194.Chainsampleshavealready beenthinned.Samplesearlierthanthereddashedlinewereremoved fromanalysisduringtheburn-inprocess................71 Figure3.9Orbitsconstructedfrom200randomsamplesoftheMCMCposterior distributionforberID2939-54515-194.................72 xi Figure3.10Posteriorprobabilitydistributionsofparametersinthemultiplicity MCMCforerID2939-54515-194...................73 Figure3.11ChangesinredshiftwithtimeforerID2960-54561-375.Absorp- tionlinesfromnormalizedsub-exposuresareorderedchronologically fromtoptobottom.Velocitiesineacharerelativetothe rest-framewavelengthofCalciumK(left),CalciumH(middle),and H (right).Dashedverticallinesrepresentthemeanvelocityofthe star.....................................74 Figure3.12Orbitsconstructedfrom200randomsamplesoftheMCMCposterior distributionforberID2960-54561-375.................75 Figure3.13Posteriorprobabilitydistributionsofparametersinthemultiplicity MCMCforerID2960-54561-375...................76 Figure4.1Left:Metallicitydistributionfor14,302F-dwarfs.Right:Distribu- tionofmaximumtimelagbetweentheandlastexposureofa star.....................................82 Figure4.2Mean(left)andstandarddeviation(right)ofradialvelocitieswithin astar.Variationsinthestandarddeviationofvelocitiesared, inpart,bythelargermeasurementuncertaintiesformetal-poorerstars.83 Figure4.3Distributionof ,thefractionofposteriorsamplesusingthebinary model,forstars..............................86 Figure4.4Averagedprobabilitydistributionsoflog P forallbinarydetections ( > 0 : 80).Thesedonotactualdistributionsofperiods,and shouldonlybeusedasaguidetoprobetheregionofMCMCsensi- tivity.TheshadedregionindicateswhereRochelobeovwand contactbecomesrelevant.Thedashedlinemarksthecircularization limitataperiodof12days.......................88 Figure4.5Short-periodbinaryfractionlimits,relativetothemetal-richgroup. Binarycompaniondetectionsarebyacutin ,thefraction ofposteriorsamplesusingthebinarymodel.Groupmedianvaluesof [Fe = H]areused..............................89 xii Figure5.1Distributionof e=i valuesforasimulatedpopulationbasedonobser- vationsanduncertaintiesinthemetal-richpopulationofHettinger etal.(2015).Modelsillustratevariationsinthe e=i distributionfrom changesinseparationdistributionpowerlawindex ,whilekeeping theshort-periodbinaryfraction f b =0 : 03andthemassratio distributionpowerlawindex =0 : 0..................94 Figure5.2Distributionof e=i valuesasinFigure5.1,withavarying f b ,and = 1 : 0and =0 : 0.......................94 Figure5.3Distributionof e=i valuesasinFigure5.1,withavarying ,and = 1 : 0and f b =0 : 03.........................95 Figure5.4 e=i distributionforthemetal-poorgroup.Model e=i distributionsare shownusingvaluesof and f b randomlysampledfromtheMCMC posterior.Thedashedlinerepresentsthebelowwhichbin heightswerenotusedinthelikelihoodfunction............97 Figure5.5SamedistributionasinFigure5.4,forthemetal-intermediategroup.97 Figure5.6SamedistributionasinFigure5.4,forthemetal-richgroup......98 Figure5.7PosteriordistributionfortheMCMCrunofthemetal-poorgroup, withparametersfortheshort-periodbinaryfraction f b ,andsepara- tiondistribution ............................98 Figure5.8PosteriordistributionfortheMCMCrunofthemetal-intermediate group,withparametersfortheshort-periodbinaryfraction f b ,and separationdistribution .........................99 Figure5.9PosteriordistributionfortheMCMCrunofthemetal-richgroup, withparametersfortheshort-periodbinaryfraction f b ,andsepara- tiondistribution ............................99 Figure5.10PosteriordistributionfortheMCMCrunofthemetal-richgroup, withanextendedpriorlimitin ....................100 Figure5.11PreliminarydistributionofmaximumRVvariationforDR12APOGEE targets...................................102 xiii Chapter1 ABriefIntroductiontoStellar Multiplicity 1.1Introduction Stellarmultiplicityplaysakeyroleinstarformation(Krumholzetal.,2012;Bate,2014), stellarevolution(Paxtonetal.,2015),thechemicalevolutionofgalaxies(Kobayashietal., 2006),andthestudyofunresolvedstellarpopulations(Conroy,2013).Manyinteresting phenomenainastrophysicsarerelatedtointeractingbinarysystems.Theseincludethe post-commonenvelopebinaries(Schreiber&ansicke,2003):cataclysmicvariables,classical novae,X-raybinaries,gamma-raybursts,andSNIaprogenitors. Thecurrentunderstandingofbinarystatisticsislimitedduetoayinobtaining populationsamplesthatarecompleteandunbiased.Sp,theshort-periodsystems thatwillonedayleadtocommonenvelopeepisodesrequireexpensivespectroscopicobserving campaigns.Completesurveyshaveonlybeenpossibleinthesolarneighborhood(Duquennoy &Mayor,1991;Raghavanetal.,2010),andprovideonlyafractionoftheglobalmultiplicity propertiesoftheMilkyWay.ThismotivatedHettingeretal.(2015)toinvestigateastatistical approachformeasuringmultiplicitypropertiesofstarsthroughtheraw,sub-exposuresthat compriseeachindividualspectruminmerspectroscopicsurveys. 1 Thischapteractsasabriefintroductiontobinariesandmultiple-starsystems.Webegin bydiscussingthebasictheoryofstarformation,andbyreviewingthecontendingmechanisms thataimtoexplainbinarystarformation.Wealsolookattheimportantrolethatbinaries andbinaryinteractionsplayinourgalaxy.Wediscussthephysicalprinciplesinvolvedin masstransferbetweencompanions.Additionally,welookatafewselectedexamplesof interactingsystems,andthephenomenaresultingfrombinaryinteractions.Finally,we discusswhatweknowaboutthemultiplicitypropertiesofstellarsystemsintheGalaxy,as wehavelearnedfromobservationsusingavarietyoftechniques.Fromtheseobservations weoutlinethetrendsseeninmultiplicityproperties,andwediscussareasforimprovement wherethecurrentunderstandingofmultiple-starsystemsislimited. 1.2StarFormationandtheOriginofBinaryStars Inthissection,wediscussthephysicalprinciplesofstarformation,whichwillallowusto considerthepossiblemechanismsfortheformationofbinaryandmultiplesystems.Fora moredetaileddiscussionontheoriginofbinarystars,werecommendthereviewbyTohline (2002),andthereferencestherein. 1.2.1PhysicalPrinciples Theformationofsinglestarsfromthecollapseofagravitationallyboundmolecularcloud canbebrokenupintoasequenceofestages,originallyoutlinedbyShuetal.(1987).The molecularcloudisinitiallysupportedagainstcollapsebyamagnetic(Crutcher,2012). Inthestage(StageI),themagneticleaksoutoftheover-denseregionsofthecloud, allowingthedenseregionstoformdensercloudcores.InStageII,acondensingcloudcore 2 passesthecriteriaforJeansinstability(discussedbelow)anddynamicallycollapsestowards stellardensities,leadingtotheformationofaprotostar.Thesurroundingenvelopeofgas anddustcontinuestofallontotheprotostar,initiatingaccretionandtheformationofa circumstellardisk.AtStageIII,theinfallingmaterialweakensandthestellarwindsare abletobreakout,creatingbipolarws.WithStageIV,weseeawideningoftheow openingangle,andtheprotostarbecomesapre-mainsequence(PMS)star.Finally,Stage Visreachedafterthenebulardiskdisappears,andthePMSstarcontinuestoevolvetoward themainsequence. Itisusefultolookatthephysicalparametersdescribingthecollapseofacloudcore. Theprotostellarcloudischaracterizedbyitsradius R ,meantemperature T ,totalmass M , meanmolecularweight ,androtationalvelocity ! .Themeandensityofthecloudis ˆ = 3 M 4 ˇR 3 : (1.1) Thetemperaturevarieswithdensityuponcompressionby T / ˆ 1 ; (1.2) where istheadiabaticexponentofthegas.Thisexponentisafunctionofthecloud's density,andplaysanimportantroleintheformationprocess.Keytimescalesinvolvedin thecollapseincludethefree-falltime, t = 3 ˇ 32 G ˆ ! 1 = 2 ; (1.3) 3 thesound-crossingtime, t s = R c s ; (1.4) andtherotationperiodofthecloud, t rot = 2 ˇ ! : (1.5) Additionally,fromKepler'sThirdLaw,thebinaryorbitalperiodis P = 4 ˇ 2 a 3 GM tot ! 1 = 2 ; (1.6) where M tot isthetotalmassofthesystemand a isthesemi-majoraxis.Foracloudin equilibrium,thevirialtheoremstatesthat E therm + E rot = 1 2 E grav ; (1.7) wherethetotalthermalenergy E therm ,totalrotationalenergy E rot ,andtotalgravitational potentialenergy E grav ,areas E therm ˘ 3 R MT 2 ; (1.8) E rot ˘ MR 2 ! 2 5 ; (1.9) and E grav ˘ 3 GM 2 5 R : (1.10) Theconstant R inEquation1.8isthegasconstant.Finally,foraslowlyrotatingcloud,the 4 massofavirializedcloudmustberelatedtothedensityandtemperature,fromEquations 1.8and1.10,like M equil ˘ 5 : 5 R T ! 3 = 2 ˆ 1 = 2 : (1.11) If,foragivensetofphysicalvalues,theleft-handsideofEquation1.7islessthanthe right-handside,thecloudwillcollapse,onafree-falltimescale,duetoalackofkinetic support.Whenthisistrue, M>M equil (ignoringrotation),andtheJeansinstability criterion(Jeans,1919)ismet.Inthiscase, M equil isequivalenttotheJeansmass M J .Stage IIofstarformationbeginswhenacloudcoreacquiresamassthatexceeds M J . Theadiabaticexponent playsanimportantroleinthecollapseofacloud.Thecondition forcollapse,intheabsenceofrotation,requires E therm j E grav j < 1 2 : (1.12) UsingEquations1.2,1.8,and1.10,werevealtherelationshipbetween and , / ˆ 4 = 3 : (1.13) Accordingtothisequation,if < 4 = 3,theenergyratio decreases duringcollapse,meaning thermalpressurecannotstopthefree-fallcollapseofacloudaslongasthecloudevolves whileholdingthisrelation.Indeedthevaluesof duringthecollapseofacloudcorewill determinetheconditionswherefragmentationmayoccur(ifany)toproduceabinarysystem. 5 1.2.2PossibleBinaryFormationMechanisms Thepossiblemechanismsforproducingbinarystarsfallintothreebroadcategories:capture, promptfragmentation,anddelayedbreak-up.Wewilldiscussthesethreemechanisms beginningwithcapture. 1.2.2.1Capture Thecapturemechanismstatesthatmoststarsformintosingle-starsystems,andthatbinaries areformedwhenacompanioniscapturedthroughgravitationalinteractionsafterformation. Inorderfortwostarstobind,somefractionofenergymustbedissipated(Clarke,1992). Thiscanbeaccomplishedthroughtransferofenergyinathree-bodysystem,butthese interactionsarerareoutsideofthedenseenvironmentsofstarclusters.Thelowfrequency oftheseinteractionsindicatesthatthecapturemechanismcannotbethemainchannelfor binaryformation.Infact,thePMSstellarpopulationisrichinmultiplesystems,comparable tomain-sequencestars,suggestingaprimarymechanismthatbeginstoworkbeforeStage IVofformation(Mathieu,1994). 1.2.2.2PromptFragmentation Inthepromptfragmentationmechanism,theinitialangularmomentumofthegascloud causesittospontaneouslybreakintotwopieces,duringorjustafterthefree-fallphase. Collapseofthemolecularcloudcanbedividedintotwocategories,homologousandnon- homologous. Inahomologouscollapse,thecloudismostlysphericalanduniformindensity,witha cloudmasstlylargerthan M J .Because decreasesduringtheisothermalphaseof thecollapse,thelocal M J alsodecreases,andthecloudcloselyapproximatesapressure-free 6 spheroid.Virtuallyallofthemassreachestheatthesametime,andin onefree-falltimethemassaccretionratebecomesveryhigh. Ontheotherhand,acloudcancollapseinanon-homologousmanner.Thisoccursifthe cloudisonlymarginallyJeansunstableandthedensityiscentrallycondensed.Theregions ofhigherdensityhaveshorterfree-falltimes,sothecentralregionscanrunawayfromthe lessdenseouterregionsofthecloud.Thiswillleadtoanextendedperiodofmassaccretion ontothecore. Three-dimensionalhydrodynamicalsimulationsstronglysupporttheargumentthat,if fragmentationoccursatall,itdoessoaftertheinitialfree-fallphase,afterthecorehas collapsedintoaquasi-equilibriumstate(Bate,1998,2012;Truelove etal.,1998;Tsuribe&Inutsuka,1999).Simulationshavealsoshownthatfragmentation canoccureasilyafterfree-fallforhomologouscollapse,butnon-homologouscollapseshave generallynotproducedpromptfragmentation.Becauseofthelimitationsofcurrentsimula- tions,furtherworkisneededtodetermineifthesefragmentationswillleadtobinarystars, andatwhatfrequency. 1.2.2.3DelayedBreak-up Aftercollapseinanon-homologousmanner,theresultingcorewilloftenbestableagainst fragmentation,andcontainasmallfractionofthecloud'stotalmass.Asmassisaccreted ontothecore,thecore'sangularmomentumwillincrease,alsoincreasingtheratioof E rot j E grav j . Additionally,adiskwillformifithasn'talready.Instabilitiesineitherthecoreorthedisk mayleadtoabreakupoftheprotostarintoabinarysystem.Variousmethodsofbreak-up havebeeninvestigated. 7 Lebovitz(1974,1984)revisedtheclassicalformulationofthetheoryofbinary starformation(Lyttleton,1954),whereabar-likestructureisformedatthecorewhich evolvesintoapear-shapedordumbbell-shapedstructure.Ifconditionsareright,thebar- likestructuremaybreakintoseparatecomponents.Hydrodynamicalcodeshavebeenused tostudywhetherbreakupoccursfromanaxisymmetric(Tohlineetal.,1985; Pickettetal.,1996;Brown,2000).SuchhavenotleadtoMore computationally-extensivestudiesoftheoriginallyproposed,non-axisymmetriccasehave yettobecarriedout. Analternativemethodofdelayedbreak-upinvestigatesthestabilityoftheaccretiondisk. Sincemostoftheinfallinggaswillfallontotheaccretiondisk,thediskmaybecomeunstable whenitacquiresasmuchmassasthecentralcore.Again,simulationsofarotatingdiskare computationallyintensive,dueinparttothedynamicrangeofsizescalesandthenumber ofrequiredtimesteps.Thesesimulationsfromlimitedscope,sometimesendingdue toissueswithboundaryconditions,failingtofullyevolvethetantalizingclumpsinthedisk (Woodwardetal.,1994;Laughlin&Rozyczka,1996). 1.2.3QuestionsandFutureInvestigation FollowingtheargumentsofBoss(1988),thereisageneralagreementthatthepreferred mechanismispromptfragmentation(Clarke&Pringle,1993;Bodenheimeretal.,1993). Infraredobservationsofprotostarshavebeenrecordedforoveradecadenow(Dunham etal.,2014)andobservedmultiplesystemsattheearlieststagesofformation(Pinedaetal., 2015)thatfragmentationplaysacrucialroleinbinaryformation. Thereisbroadagreementonthefollowingpoints(Tohline,2002).Captureinnota strongcandidatefortheprimarybinaryformationprocess.Fromobservations,itisknown 8 thatstarsareboundasbinarysystemsbeforeStageIVofstarformation,andcaptureis toot.Numericalsimulationshaverepeatedlyshownthatcloudsdonotfragment duringthefree-fallcollapsephase.Instead,cloudscollapsetoabefore fragmentation(ifany)occurs.Promptfragmentationworksimmediatelyafterthefree-fall phaseifatfractionofthecloud'smassfallsontotheconwithin ashorttime.Therefore,cloudsmayfragmentiftheybeginasauniformdensitycloudwith morethanafewJeansmasses.Non-homologouscollapsedoesn'tseemtoproduceprompt fragmentation.Axisymmetriccloudcoresdonotfragment,butwillsettleintoaspinning bar-likestructure,andadiskwillformaroundthecore.Protostellardisksbecomeunstable towardlong-wavelengthstructureswhenmasscontainedinthediskbecomescomparableto themassofthecore. Somequestionsontheformationprocessesofbinarystarsincludethefollowing.If promptfragmentationistheprimarymechanism,howdomolecularcloudsformsuchthat theycontaintherequiredfewJeansmasseswithoutinitiallycollapsing?Magneticmay playatrole(Palauetal.,2013).Dothefragmentsofpromptformationleadto binarysystems?Currentsimulationsareunabletocontinuemuchfurtherthantheinitial instantoffragmentation,andmoreworkisneededtoevolvethesesystemsmore.With thecollapseofaxisymmetriccoresintoellipsoidswithbar-modeinstabilities,willfurther evolutionoftheinstabilitiesproducethebinariespredictedbytherevisedmodel hypothesizedbyLebovitz(1974,1984)?Amethodwillhavetobefoundtoslowlyevolve thealongasequenceofmoreandmoredistortedellipsoids.Finally,how promisingarediskinstabilitiesasabinaryformationmechanism?Recentnumericalstudies havesuggestedthatdiskfragmentationmayleadtobinarysystemsinPopulationIIIstars (Stacyetal.,2010;Latif&Schleicher,2015)andlow-massstars(Stamatellosetal.,2012). 9 Giventhatdynamicalrangeisaproblemforthesesimulations,wewillneedtowaitformore sophisticatedandetsimulationsandhardwaretoout. 1.3BinaryEvolutionandInteractions Inthissectionwediscussthebasicprinciplesofbinaryevolutionandmasstransfer.Although masstransfercanoccurthroughtheaccretionofwinds,wefocusourattentiononRoche-lobe ovow.Wealsodiscussvarioussystemsandphenomenaresultingfromtheinteractionof binaries,highlightingthekeyrolethatbinarysystemsplayintheevolutionandfatesof stars,andinproductionofdramaticeruptions. 1.3.1PrinciplesoftheEvolutionofBinarySystems Intheco-rotatingframeofabinarysystem,anepotentialcanbederived.Within thistivepotential,epointscontainzeroepotential,theso-calledLagrangian points.TheequipotentialpassingthroughtheLagrangianpoint,apointbetweenthe twostars,theRocheLobe.Mattercanwfromonestartoanotherthroughthe LagrangianpointinaprocesscalledRoche-lobeovw(RLOF).TheRocheloberadius onlydependsontheorbitalseparation a ,andthemassratio q = M k =M j .Forastarwith mass M j ,andacompanionmass M k ,theRoche-loberadiusisapproximatedby R L = 0 : 49 q 2 = 3 a 0 : 6 q 2 = 3 +ln(1+ q 1 = 3 ) (1.14) (Eggleton,1983).Forlargercompanionmassesand/orcloserseparations, R L foragiven stardecreases.Likewise,decreasingastar'sownmasswillalsodecreasethatstar's R L .If 10 astar'sradiusisatleastaslargeasthestar's R L ,masstransfercanoccurthroughRLOF. InthecaseofonestaritsRochelobe,thebinarysystemissaidtobesemi-detached. IfneitherstartheirRochelobe,thesystemisadetachedsystem.And,ifbothstars theirRochelobes,thesystemisreferredtoasacontactbinary,oracommon-envelope(CE) binary. AstheradiusofastarontheMainSequencedoesnotexpandbyalargeamount,itis muchmorelikelythatRLOFbeginsafterthedonorstarleavesthemainsequence.Since starsspendthemajorityoftheirlivesonthemainsequence,mostbinariesobservedinthe skyhavenotyethadanystronginteractions,butmanywillinthefuture. RLOFcanoccurinoneoftwomodes.Instablemasstransfer,mostofthemasstrans- ferredoverisaccretedbythecompanionstar,endingwhenmostofthehydrogen-richen- velopeofthedonorstarhasbeenremoved.Thisprocessresultsinahydrogen-depleted heliumstar.Therecipientstarwillberejuvenatedifitwerestillonthemainsequence. Otherwise,therecipientmaybypasstheredgiantphaseandexplodeasabluesupergiant (Podsiadlowski&Joss,1989). Thesecondmode,unstablemasstransfer,occurswhentherecipientisunabletoaccrete allofthematerialtransferredover.Thetransferredmaterialbuildsupontherecipient, causingtherecipienttoovitsownRochelobe,resultinginaCEsystem.Whenthedonor losesmassadiabatically,theconvectiveenvelopewillexpandratherthanshrink.Meanwhile themasstransferofthedonorstarcausesits R L toshrink,leadingtoarunaway,ordynamical masstransfer.FrictionwithintheCEleadstoaspiral-inuntiltheenvelopecanbeejected, resultinginorbitalperiodsbetweenabout0.1dand10d.Insomecases,theorbitalenergy maynotbegreatenoughtoejecttheenvelopeandabinarymergermayoccur,resulting inasinglerapidlyrotatingstar.Themergerprocessandcommon-envelopeevolution,in 11 general,aretheleastunderstoodprocessesinmultiplicitystudies(Taam&Sandquist,2000; Podsiadlowskietal.,2001).Ivanovaetal.(2013)presentareviewofthecurrentstandingof CEevolutionandaguideformovingforward. Masstransfercanbedrivenbytwomechanisms,eitherexpansionofthedonorstar,ora lossofangularmomentumfromthesystem. Asaresultofintrinsicstellarevolution,thedonorstarexpands,andmasstransferoccurs ataratewhichdependsonthemassratioofthesystem.Ifthedonorstarisinitiallyless massive,themasstransferwilloccuronanucleartimescaleasthestarevolves.Ontheother hand,ifthedonorstarismoremassiveinitially,themasstransferwilldrivetheseparation downinordertoconserveangularmomentum.Since R L ismoredependentonseparation thanmassratio,masstransferwilloccuratanacceleratedrateuntiltheminimumseparation isreachedat M j = M k ,andfurthermasstransferbeginstoincrease R L . Thesecondmechanismdrivingmasstransferdoessobydecreasingorbitalseparations throughangularmomentumloss,eitherbygravitationalradiation,ormagneticbraking. Gravitationalradiationbecomesimportantforonlytheshortestperiods( P< 12hr).Mag- neticbrakingisunderstoodtobeimportantbutthedetailsarestilluncertain. 1.3.2BinaryInteractioninAstrophysicalPhenomena Interactionamongbinariesplayakeyroleinmanyareasofastrophysics,andunderstanding theglobalpropertiesofbinarysystemscanhelpelucidatethephysicalprocessesinvolvedin thecreationofvariousobjectsanderuptiveevents.Belowwebridiscussafewinstances wherebinarityplaysatrole.Additionaltopicsnotdiscussedhereincludecata- clysmicvariableeventsresultingfrommasstransferontoawhitedwarf,binarystarmergers andtheproductionofgamma-raybursts,theofmasstransferontheformationof 12 blackholesvs.neutronstars,thevariousmethodsofmasstransferamongx-raybinaries, andmore. 1.3.2.1HotSubdwarfs Thesehot,compactobjectsarehelium-coreburningstarswithmasses0 : 5 M ,andare depletedofnearlyallhydrogen.Thissingleclassofbinariesillustratesavarietyoft typesofbinaryinteractions.StudiesbyHanetal.(2002,2003)haveconcludedthatthere arethreeequallyimportantformationchannels,includingRLOF,CEevolution,andbinary mergers.AsthesehotsubdwarfsareadominantsourceofUVradiation,ithasbeenproposed thattheymaybeacontributingfactortotheUVupturnseeninellipticalgalaxies(Han etal.,2007). 1.3.2.2ChemicallyPeculiarStars BaandCHstarscontainanoverabundanceofcarbonandothers-processelementsintheir atmospheres.Theexplanationfortheoriginoftheseoverabundanceswasresolvedbyin- cludingmasstransferfromabinarycompanion.Inthesesystems,anAGBstarproduces carbonands-processelementswhicharedredgedup,throughconvection,tothesurface. Then,masstransferfromtheAGBstarontotheobservedcompanionpollutestheobserved star,transformingthecompanionintotheBaorCHstarthatweseetoday.Indeed,ob- servationshaveshownthatallBaandCHsystemscontainbinarycompanions(McClure& Woodsworth,1990).Similarly,thereisaclassofcarbon-enhancedmetal-poor(CEMP)stars residingintheMilkyWayhalo.CEMPradialvelocitystudiesalsoreturnbinarycompanion fractions(atleastforthemostcommonsubclass,thes-processenhancedCEMP-sstars) consistentwitha100%binaryfraction(Lucatelloetal.,2005).LiketheBaandCHstars, 13 masstransferfromanAGBstaristhefavoredexplanationfortheirexistence(Herwig,2005; Snedenetal.,2008).AsCEMPstarstracesomeoftheoldeststarsintheGalaxy,theyact asafossilrecordallowingtheexplorationoftheearlystagesofgalaxyformationandgalactic chemicalevolution. 1.3.2.3SymbioticBinaries Theseareinteractingsystemswhereagiantstar(S-type)oraMiravariable(D-type)transfer massontoawhitedwarf.Bothtypesofsymbioticbinariesinvolvemasstransferinan atypicalmanner.Theobservedorbital-perioddistributionforS-typesystems( ˘ 10 1400d; Miko lajewska,2007)isnoteasilyexplainedbybinarypopulationsynthesismodels,which onlyinvolvestableorunstabletransfer.UnstabletransferresultinginaCEphasewould produceshorterperiodsthanthosethatareobserved,andstablemasstransfertypically leadstoawideningofthesystem.Thisissue,realizedbyWebbink(1986),mayhave asolutionwithquasi-dynamicalmasstransfer.Thismaybeachievedifthemassratioof thebinariesiscloseto1,andthemasstransferrateislargeenoughtoleadtoaCEphase withouttspiral-in.D-typesymbiotics,ontheotherhand,proposeanotherissue forcurrentbinaryevolutiontheories.Periodsontheorderof1000yearsseemtoowidefor binariestobeinteracting.ItseemsthattheMiravariablesareabletotheirRochelobes, notfromthestellarradiusitself,butratherthroughaslowwind,inwhatisreferredtoas windRoche-lobeovw. 1.3.2.4BlueStragglers Theseexceptionallyluminousandbluestarsappeartobeunevolvedandliveonthemain sequenceforlongertimesthantheirtraditionalmainsequencecounterparts.Itappearsthat 14 bluestragglersarisefromavarietyoftbinaryinteractions.Indeed,bluestragglers aredividedintotwopopulations,basedoncolors,withonepopulationlikelyresultingfrom binarycollisions,andtheotherpopulationfrombinarymasstransfer(Piottoetal.,2004; Luetal.,2010). 1.3.2.5ThermonuclearSupernovae TypeIasupernovaeareusedasstandardizablecandlesfordistancemeasurements.They haveprovidedtheindicationforanacceleratingUniverse,andtheyplayanimportant roleinconstrainingcosmologicalparameters(Riessetal.,1998).Thereisbroadagreement thatTypeIaexplosionsresultfromathermonuclearexplosionofacarbonoxygenwhite dwarf.Currently,however,thereiscontinueddebateonwhichprogenitorsystem(s)lead totheexplosion.Itisclearthough,thatbinaryinteractionsofsomekindarerequired.In thesingle-degeneratescenario,thewhitedwarfgrowsinmassduetotheaccretionofmass fromacompanionstarsuchasamainsequencestaroranevolvedstar(Whelan&Iben, 1973).Alternatively,TypeIaeventsmaybeexplainedthroughthemergeroftwowhite dwarfs,knownasthedouble-degeneratescenario(Iben&Tutukov,1984).Oneapproach todeterminingtherelativeimportanceofeachscenarioistocomparetheratesofType Iaexplosionswithprogenitorratesbasedonbinarypopulationsynthesismodels.Abetter understandingofthemultiplicitypropertiesofthestarformationprocess,andthesubsequent evolutionofbinarysystemswouldbeinvaluableinthisregard. 1.3.2.6CoreCollapseSupernovae Asamassivestarevolves,anironcoredevelops.Whentheironcorereachesacritical mass,thecorecollapsesandbouncesbackdrivingashockthatultimatelyresultsina 15 supernovaexplosion.Asupernovacanbebasedontheobservedcharacteristics oftheexplosionandtheelementsseeninthespectra.Thediversityinthecharacteristics canbeunderstoodbyasequenceofincreasedmassloss,withTypeII-Lhavinglostafraction oftheirH-richenvelopebeforeexploding,SNIbwithnoH-richenvelope,andSNIcwith noH-richorHe-richenvelopes.Whilestellarwindsmayplayanimportantrole,binary interactionsmustplayabiggerroleintheremovalofstellarenvelopesthroughmasstransfer precedingcorecollapse(Podsiadlowskietal.,1992). 1.4EmpiricallyDerivedMultiplicityProperties Inthissection,weexploreempiricallyderivedmultiplicitypropertiesandtrendsobserved forstarsintheMilkyWay.Webeginwithadescriptionofmultiplicitysurveytechniques andmethodologies,followedbywhatweknowaboutthemultiplicitypropertiesofvarious populations,andhowmultiplicityvarieswithstellarmassandage.Weendthesectionwith abriefdiscussionontheimplicationofcurrentobservationsasitpertainstoformationmech- anismsandtheevolutionofbinarysystems.Valuesformultiplicityfractionsandcompanion fractionsaretakenfromthereviewbyDuch^ene&Kraus(2013),wherethemultiplicity propertiesofstellargroupsarederivedbycollatingworksfromacrossthediscipline. 1.4.1MultiplicityPropertiesandSurveyMethodology Withregardstomultiplicity,themostobviouspropertiesofinterestforstellarpopulations isthemultiplicityfraction(MF),thefractionofstarswithacompanion,andthecompanion frequency(CF),theaveragenumberofcompanionspertarget.CFvaluescan,inprinciple,be greaterthan100%,forcaseswhereapopulationhasmanysystemswithhigherordermultiple 16 systems(triple,quadruple,orhigher).Eithertheorbitalperiod P ,ortheseparation a ,for abinarysystemwillbereportedbasedonthemethodofobservation.Perioddistributions withinapopulationaredescribedbyeitherapowerlawform f ( P ) / P ,oralog-normal representationwithparameters P and ˙ log P .The = 1powerlaw distribution,knownas Opik'slaw( Opik,1924),issometimesadopted. Opik'slawsuggestsa scale-freeprocess,whereasalog-normaldistributionhasascalepreference,meaningthatthe empiricallyderivedchoiceinparameterizationhasanimplicationforthebinaryformation process.Massratios, q = M 2 =M 1 1,canbeestimatedthroughuxcomparisons,and arealsodescribedthroughapowerlawdistribution f ( q ) / q .Eccentricities e ,canbe usedtoevaluatethedynamicalevolutionofasystem,butcanonlybeestimatedforshort binarieswheretheorbitisfullymapped.Attheshortestperiods,tidaldissipationwill leadtoacircularizationoftheorbit(Koch&Hrivnak,1981).Three-bodyinteractionscan leadtohighlyeccentricorbitsthroughtheKozaimechanism(Kozai,1962),andcouldbea mechanismformergersintheproductionofTypeIasupernovae(Thompson,2011). Theobservationaltechniquesusedtodetectbinariesarevariedinimplementationandin rangeofsensitivity.Afewofthemostcommontechniquesaredescribedhere.Visualbinaries (VB)aresystemswhereboththeprimaryandsecondaryareseenthroughphotometry,and theirprojectedorbitscanbemeasuredthroughperiodicmotionsonthesky.Whenonly theprimarystarisseen,andthesecondaryisinferredthroughthemotionoftheprimary, thesystemisreferredtoasanastrometricbinary.Visualandastrometricbinariesrelyon precisepositionmeasurements,and/ortheabilitytoresolvethecompanion.Thus,these observationaltechniquesarelimitedtowide,long-periodsystems.Spectroscopicbinaries (SB)aresystemswheretheDopplershiftofone(single-lined)orboth(double-lined)ofthe starscanbemeasuredthroughlineidenortemplatecorrelationsofstellarspectra. 17 Radialvelocities(RV)aremeasuredatmultipletimes,producingaRVcurvethatcanbe usedtoestimateorbitalparameters.StrongchangesinRVareeasiertodetect,making shorter-periodsystemsmorefavorabletodetectionfromspectroscopicmethods.Eclipsing binariesrequireanearlyedge-onprojectionoftheorbit,butallowthedetectionofabinary companionthroughvariationsintheprimary'sasthesecondarypassesinfrontofand behindtheprimary.Theeclipsingtechniquehasthebofallowingadirectmeasurement ofstellarradiiandstrongestimatesofstellarmasses,butunfortunatelyrequiresasp inclinationoftheorbitfortheobservationstobemade. Theoptimalstrategyforcompletingabinarysurveyistogatheracomplete,uniform, volume-limitedsampleusingavarietyoftheavailableobservingtechniquesinordertoprobe thedynamicrangeoforbitalperiods.Asamplesizeof100isrequiredtomeasureMFvalues withaprecisionof5%.Togetasimilarprecisionfororbitalparametersforbinaries,an evenlargernumberoftargetswillberequiredtogetatnumberofbinarysystems. Thusfar,completeandvolume-limitedsurveysarerare,limitedtothesolar-neighborhood. Ingeneral,surveyswillattempttocorrectforcompletenesswithsomeassumptionsabout thepropertiesofstellarsystemsforwhichtheyarenotsensitive. 1.4.2TrendsandCharacteristicsofMultiple-StarSystems 1.4.2.1MultiplicityandMass Solar-typestars(0 : 7 1 : 3 M )areidealforstudyingmultiplicityonthemainsequencedue totheirrelativelyhighfrequencyandbrightluminosities.Itisnotsurprisingthatthemost completesurveysofmultiplicityarethoseofsolar-typestarsinthevolumeofspacearound ourSun.Duquennoy&Mayor(1991)coordinatedthemodern,volume-limitedsurveyof 18 solar-typestarswithanalysisof164objectsoutto22pc,withnewRVmeasurementstaken inadditiontothosefromotherworks.However,incompletenesswasstillanissue,leading Raghavanetal.(2010)toimproveupontheworkwithadditionalobjectsforatotalof454 starsoutto25pc,withveryhighcompleteness.Additionalstudiesofsolar-typestarswere conductedusingindividualdetectiontechniques,suchassurveysofspectroscopicbinaries (J.L.Halbwachsetal.,2003),visualbinaries(Masonetal.,1998),andcommonproper motioncompanions(Tokovinin,2011).FromDuquennoy&Mayor(1991)andRaghavan etal.(2010),CF=62 3%andMF=44 2%forsolar-typestarsonthemainsequence. Furthermore,itappearsstarsthatareslightlymoremassivethantheSunhaveahigherMF thanthosejustunder1 M ,withvaluesMF=50 4%andMF=41 3%respectively.This isatrendwewillcontinuetoseeaswelookatstarsthroughoutthemainsequence.These modernsamplesofsolar-typestarsexclude Opik'slaw,withperiodsshowingalog-normal distributionwith P =250yrand ˙ log P (d)=2 : 3.Thedistributioninmassratiosfollows adistribution( =0 : 28 0 : 05)inratiosallthewaydownto q =0 : 1withamarginal peakat q> 0 : 95forshort-periodsystems. Atthelower-massendofthemainsequence(0 : 1 0 : 5 M ),starsaremoreabundant,but lessluminous.Observationsfromvariousdirectimaging,speckleinterferometry,andradial velocitystudies,totaling166stars,havebeencollectedbyFischer&Marcy(1992)inoderto performacompleteanalysisofMdwarfmultiplicity.Additionally,volume-limitedsurveys oflow-massstarshavebeencarriedout(Reid&Gizis,1997;Delfosseetal.,2004;Dieterich etal.,2012),includinganearlycompletesamplebytheRECONSconsortiumoutto10pc (Henryetal.,2006).ThesenearlycompletesurveysgivemultiplicityvaluesofCF=33 5%, MF=26 3%,andseparationdistributionparameters a =5 : 3AUand ˙ log P (d)=1 : 3 inalog-normaldistributionforseparationslessthan500AU.Likethesolar-typebinary 19 systems,short-periodM-dwarfbinariesarebiasedtowardhigh- q systems.Verylowmass (VLM, < 0 : 1 M )starsareevenfainter,andhavealowerMF,makingcompletestudiesof asigntnumberofbinarysystemsall-the-moreReviewsofmultiplicityinthis sub-stellarregimeincludeBurgasseretal.(2007)andLuhman(2012).Estimatesbasedon incompletesurveyssuggestMF ˘ 20 25%.Thedistributioninseparationsismuchnarrower thanthehigher-masscounterparts,andveryfewsystemswithseparations a> 50AUare known.ThemassratiodistributionforVLMstarsisheavilyskewedtowardsequal-mass systems,withapowerlawindex =4 : 2 1 : 0. Issueswithstudiesofintermediate-mass(1 : 5 5 M )andhigh-mass( > 8 M )stars includetheirlargerdistances,lowernumbers,andveryhighluminositycontrastswiththeir companions.Thismakesmultiplicitysurveysespeciallyformid-rangeperiods, whereVBandSBtechniquesarelimited.Additionally,some ˘ 30%ofA-dwarfstarsare chemicallypeculiar,oftenbecauseofbinaryinteractions(Abt,1965).SBsearchesamong intermediate-andhigh-massstarsincludetheworksofCarquillat&Prieur(2007)andChini etal.(2012),andVBsearchesincludetheworkssuchasBalegaetal.(2011).Inadditionto thesestudies,intermediate-andhigh-massstarshavebeenstudiedextensivelyin theScorpius-CentaurusOBassociation(Kouwenhovenetal.,2007)andotherclustersand associations(Sanaetal.,2009;Kiminkietal.,2012).Infact,onlyabout20%ofnearbyO starsarefoundintheandmultiplicitypropertiesoftheareassumedtobesimilarto thoseinassociations.Althoughincomplete,surveysconcludethatMF > 50%(1 : 5 5 M ), MF > 60%(8 16 M ),andMF > 80%( > 16 M ).Theorbitalperioddistributionfor intermediate-massstarsappearstobebimodalwithpeaksat P ˘ 10dand a ˘ 350AU,and themassratiodistributionhasyettobefullycharacterized.Forhigh-massstars,theperiod distributionmayhaveacomplexfunctionalform,possiblywithapopulationofshort-period 20 binaries(log P (d) < 1)forsome30%ofallhigh-massstars,andapowerlawdistribution extendingoutto10 4 AU.Forhigh-massstarswesee,again,arelativelymass-ratio distribution( = 0 : 1 0 : 6for M> 16 M )withapeakaround q =0 : 8. Fromstudiesspanningtheentiremainsequencemassrange,itisclearlyseenthatthereis astrong,monotonicdependenceofmultiplicityonmass,withMFincreasingforhighermass primarystars.ValuesfromDuch^ene&Kraus(2013)formultiplicityfractionatvariousstellar masseshavebeenplottedinFigure1.1.Higherordersystemscontainingmultiplestarsalso Figure1.1:Dependencyofmultiplicityfractionwithprimarymassformainsequencestars andVLMobjects.ValuesusedfromthereviewbyDuch^ene&Kraus(2013). favorhighermassprimaries.Orbitalperioddistributionsforsolar-typeandlower-massstars areunimodal,withthemedianseparationandwidthbothdecreasingforlower-masssystems. Ontheotherhand,intermediate-andhigh-masssystemshavecomplexdistributionswith strongpeaksatlog P (d) ˘ 0 1.AsecondpeakforVBsisobservedforintermediate- 21 massstars,whileashallowpowerlawiscurrentlypreferredforhigh-massstars,although moreworkisneededinthisarea.Thedistributioninmassratiosisrelativelyforall massesdowntoabout0 : 3 M ,belowwhichthemassratiobecomesskewedtowardshigh- q systems.ThehypothesisofrandompairingofstarsfromanIMFtomakeupthebinary populationisexcludedfromtheobservations.Eccentricityshowsverylittledependence onmass,withadistributionforallsystemswithperiodsgreaterthan ˘ 100d,and circularizedeccentricitiesfororbitsshorterthan ˘ 10d. 1.4.2.2MultiplicityandAge PopulationII(PopII)starsaremetal-poorstarsthattracetheMilkyWayhalocomponent, andgenerallyactasaprobeforinvestigatingtheformationprocessesatearlierchemical times.Accordingtoananalysisof171highpropermotion,single-linesystems,theproperties ofPopIISBsappeartobeverysimilartothoseofthemetal-richpopulation(Lathametal., 2002).ForVBs( a> 10AU),however,thefrequencyofmultiplesystemsislowerformetal- poorerstars(ZapateroOsorio&Mart2004;Lodieuetal.,2009).Theoverallfrequencyfor PopIIsystemsisCF=39 3%forprimariesintherange0 : 5 1 : 3 M andCF=26 6% forprimariesintherange0 : 1 0 : 6 M (Jaoetal.,2009;Rastegaev,2010).Theperiod distributionforPopIIstarsischaracterizedbyanarrowpeakaroundlog P (d) ˘ 2 3 andatailoutto10 4 AU.Thereisalsoalackmultiplesystemswithperiodsshorterthan P ˘ 10d.Themassratiodistributionisnotwellconstrained,butappearstoberoughly uniform. Toinvestigateyoungerpopulations,studieshavefocusedonopenclusterswithages50 Myrto1Gyr(Patienceetal.,2002;2012),nearbyassociationswithages77-100 Myr(Brandekeretal.,2003;Evansetal.,2012),PMSstarswithages1-5Myr(Luhman, 22 2012),andevenprotostarsintheearlieststagesofevolution(Duch^eneetal.,2007;Connelley etal.,2008).Thetotalfrequencyforsolar-typestarsinopenclustersisCF ˘ 65%,witha perioddistributionthatisbroadandunimodalandpossiblyindistinguishablefromthatof stars.Wealsoseeatdistributioninmassratiosforopen-cluster,solar-typestars.A uniformanalysisofnearbystellarassociationsisstillneeded,butthecharacteristicsofthe multiplicitypopulationseemstobeconsistentwiththatoftheSurveysofPMSstars havemeasuredCFvaluesofsolar-typestars(CF ˘ 65 80%)tobetwiceashighasthose ofthemainsequence.Single-starsystemsstillrepresentaquartertoathirdofallPMS systems,suggestinganincreaseinthenumberofhigh-ordermultiplesystems. Itisimportanttonotethatpopulationsotherthannearbystarshavenotbeen studiedwellenoughtodrawstrongconclusionsonpropertiesofmultiplicity.ForSBs,there arenotamongPMSstars,openclusterstars,PopIstarsandPopII stars.ForVBs,thereappearstobeadichotomyofstellarmultiplicityproperties,withhigher CFvaluesperdecadeofseparationamonglowerdensityenvironments,suchasassociations, thanamongthedenserenvironmentsofclusters.Withineachenvironmentthough,there doesn'tseemtobeanystrongtrendswithage.FortheolderPopIIstars,asmallerfrequency ofwidebinariesisobserved,suggestingametallicitydependenceonbinaryformationor dynamicevolutionontimescalesofGyr.Itisclearthatincompletenessandbiaseshavenot yetallowedadetailedpictureoftheglobalvariationinmultiplicitypropertiesasafunction ofage,andthereismuchmoreworktobedoneintheseareasofresearch. 1.4.3Discussion Here,wereporttheimplicationsofcurrentobservationsonbinaryformationandevolution, aswellastheissuesbroughtupforfutureresearch,asdiscussedbyDuch^ene&Kraus 23 (2013).MultiplicityisasmoothfunctionofprimarymassforboththeMSandearlier phases,suggestingthatpromptfragmentationappearstobetheleadingbinaryformation mechanism.Fragmentationappearstobemild,asseenbythelackofhigher-ordermultiple systems,withaproductionof1to3corespercloud.Thisisingoodagreementwith numericalsimulations(Bate,2012). Thelowermultiplicityobservedinopenclusters,comparedtoloosestellarassociations, hintsatthepossibilitythatmultiplicitypropertiesarenotuniversalamongbirthenviron- ments.Unfortunately,currentobservationsdonotprobemultiplicityatanearlyenough evolutionarystagetobeconclusive(dynamicalevolutionisoverafteronly1Myr,Marks& Kroupa,2012).Infact,theinmultiplicitycouldbeexplainedthroughdynam- ics,withassociationsrepresentingebinarydisruption,andclustersrepresenting edisruption(Kroupa&Bouvier,2003). Asstatedabove,post-CEbinariesplayacriticalroleinastrophysicalphenomena.Solar- typebinariesundergoatleastoneCEepisodeiftheirinitialperiodisbelowlog P (d) ˘ 2 : 8 (Davisetal.,2010).Inthisregime,smalldeviationsfromthelog-normalfunction(Raghavan etal.,2010)canresultinlargeinthetotalnumberofpre-CEsystems,byasmuch asafactorofthree.ThisisillustratedinFigure1.2wheretheRaghavanetal.(2010)period distributioniscomparedwithanalternate,yetdata-consistentmodel.Thispoorhandleon themultiplicitystatisticsforstarswithlog P (d) 3hasprofoundimplications.The disagreementbetweentheoreticalSNIaratecalculationsfrombinarypopulationsynthesis andobservationsisafactorofafew(Claeysetal.,2014),similartotheuncertaintyinthe numberofCEsystemsinFigure1.2.Modelscannotbepastacertainpointwithout abetterknowledgeoftheinitialmultiplicitystatistics.Similarargumentscanbemadefor cataclysmicvariablesandnovae(Davisetal.,2012)andX-raybinaries(Podsiadlowskietal., 24 Figure1.2:Left:OrbitalperioddistributioninthesolarneighborhoodfromRaghavanetal. (2010).ThelimitforRLOFintheMSisindicatedbytheblackverticaldashedline,andthe rangecorrespondingtopre-CEsystemsisshadedingray.Theblog-normalfunction isshowninblack.Thedashedredplotrepresentsamofunctionthatalsothedata. Right:Comparingthenumberofsystemsintheblog-normaldistribution(solidblack) andthemomodel(dashedred).Theperiodrangescorrespondingtolow-massX-ray binaryprogenitors,stablehabitableplanetsaroundbinarystars,andSNIaprogenitorsare shownwithhorizontalrulers.Theyellowdash-dottedlinemarksthepre-outburstperiodof V1309Sco. 2003).Inordertotlyexplorethestatisticsofstellarmultiplicityoverawiderange ofstellarpropertieslikemetallicity,age,ordisk/halomembership,itisnecessarytouse massivelymultiplexedspectrographs. Worksinthefuturewillneedtobuildmorecompletesurveysofmultiplicityinavariety ofstellarpopulations,includingveryyoungPMS,protostellar,intermediate-mass,andhigh- massstars.Bigquestionsthataretobeaddressedincludethefollowing:Arethemultiplicity propertiesresultingfromthestarformationprocessuniversalordotheydependonthenative environment?Aretheresitinthemultiplicitypropertiesofhighest-mass starsrelativetoallotherstars,ordothepropertiesfollowsmoothlyacrossthesemasses? ThefrequencyandpropertiesofvisualbinariesappeartobesetbythePMSphase,butis thisalsotrueforspectroscopicbinaries? 25 1.5Conclusion Overdecadesoftheoreticalwork,andwiththeimprovementincomputationalpower,we havereachedabroadagreementthatpromptfragmentationisthelikelyscenarioforbinary starformation.Therelativeimportanceoftheothermechanismsofstarformationhasyet beenfullyrealized.Thefuturewilllikelyseeimprovementintheresolutionandphysical accuracyofsimulations.Wewanttoknowhowfrequent,anditwhatnumber,binaries areformed,aswellastheirinitialseparationsandmassratios.Theseinsightswillhelp constrainpopulationsynthesismodelsandstarformationmodels,ultimatelyallowingusto, forexample,investigatehowclustersandassociationsdissolveandinteract,orhowfrequent thevarietyofpotentialprogenitorsofnovaeandsupernovaemaybe. Itisclearthatsingle-starsystemsproduceonlyalimitednumberofthephenomenawe observeintheskies.Withtheintroductionofabinarycompanion,webegintoseeavariety ofinterestingandvariedinteractions.Weseeinstancesofmasstransferbetweenobjectsof allmasses,fromwhitedwarfsandblackholes,tosupergiantsandeverythinginbetween. Binaryinteractionsproducespectacularexplosionslikenovae,supernovae,andgamma-ray bursts.ThebinaryinteractionsinvolvedinchemicallypeculiarstarslikeBaandCEMPstars illustratestheimportanceofunderstandingbinarypropertiesandtherolethatbinarityplays inobservedsurfaceabundances.Withoutafullunderstandingoftheofmass transferonobservedabundances,thetaskofmodelingtheprocessesthatoccurtoenrich theGalaxywithelementsheavierthanhydrogenandheliumremainsdiThus,wewill continuetoseestudiesfocusedonunderstandingthefrequencyandpropertiesofbinaries, aswellasthewaysinwhichbinariescanpotentiallyinteract. Fromobservations,we'vefoundasmoothtrendofincreasingmultiplicitywithmass.It 26 isstilltooearlytotellhowolderpopulationsmayfromyoungerpopulationsinterms ofmultiplicity,andwhetherdynamicalevolutionand/orintrinsicformationprocessesplay animportantrole,asmodernstudieshavenotyetbuiltupacompleteenoughsampleof thesestars.Whetherstarformationischaracterizedbyuniversalmultiplicitydistributions isanopenquestionandhasimportantbearingonstarformationtheoryandtheinitial massfunctionetal.,2014).Thebestapproachforcompilingcompletesamplesis tolookatmultiplicitywithavarietyoftechniquesincludingphotometryandspectroscopy. Spectroscopyistimeexpensivehowever,andacquiringalarge,completedatasetisanarduous task.Inthemeantime,weshouldbeutilizinglargemerspectrographsinordertodo statisticalanalysesoflargecountsofstars,asacomplementtothemorerigoroustarget- selectedsurveys. 27 Chapter2 Time-ResolvedSpectroscopy 2.1Introduction Withtheincreasingnumberoflargesurveytelescopes,weareenteringaneraoflarge-data astronomy(NationalResearchCouncil,2010).Withagreaterthroughputofcelestialobjects observedandawiderspanofre-observationcadences,anewwindowofobservationhas opened.Theaccessibilityofthistime-domainwindowisgrowingwiththerecentintroduction ofprogramssuchasCRTS(Djorgovskietal.,2011),PTF(Lawetal.,2009),Pan-STARRS (Kaiseretal.,2002),andDES(TheDarkEnergySurveyCollaboration,2005),andwith upcomingprogramssuchasLSST(LSSTScienceCollaborationetal.,2009).Theincreased accesstothetime-domaindimensionhasprovidedastronomersanadditionalavenueto approachresearchinvariousareasincludingexoplanets,variablestars,microlensingevents, novaeandsupernovae,andactivegalacticnuclei.Wewillalsolikelyseetheemergenceof unknownphenomenathat,untilnow,havebeenunobservable. Beforetheadoptionofmerspectrographs,obtainingspectrafortargetsinthesky wasatime-consumingprocess.DuetothedispersionofthelightsourceacrosstheCCD, longerexposuretimesareneededtoobtainhighsignal-to-noiseratios(SNR)inspectra. Largerexposuretimesmeantthatgatheringvaluablespectraforapopulationofobjects wouldbeinfeasible.Muerspectrographsintroducedparallelizationtotheobserving 28 process.Bundlesofhundredsorthousandsofopticalerscannowbepositionedinthe togatherlightfrommultiplesourcessimultaneously,greatlyreducingthetime togatherspectraforgroupsofobjects,andincreasingtheofobservingbyordersof magnitude.Weareseeinganincreaseinthedevelopmentanduseofmerspectroscopic instrumentswithLAMOST(Cuietal.,2012),BOSS(Smeeetal.,2013),Hectospec(Fab- ricantetal.,2005),andothers,andwewillcontinuetoseedevelopmentwithinstruments suchastheupcomingPFS(Sugaietal.,2012)andDESI(Levietal.,2013). Withtheincreaseinthenumberofastronomicalsourcesandtheamountofcoverageof sourcesateachobservation,itisimportanttoconsiderthemethodsusedfordataextraction. OnegoaloftheworkofHettingeretal.(2015)wastoinvestigatetheusefulnessofamethod foridentifyingradialvelocity(RV)variabilityinspectraobtainedfromthemerspec- trographusedintheSloanDigitalSkySurvey(SDSS;Yorketal.,2000).Inthischapter wepresent,indetail,themethodsadoptedinHettingeretal.(2015)duringthedevelop- mentofapipelinedesignedforobtainingradialvelocitymeasurementsfromsub-exposure spectratakenwiththeSDSSmerspectrograph.Section2.2givesabriefdescription oftheSDSSsurvey,discussingthesub-exposurepropertiesinherenttotypicalmer spectroscopicsurveys,andalsogivesacautionarywarningwithregardstothesystematic uncertaintiesobservedintheSDSSsub-exposures.Section2.3detailstheprocessforobtain- ingradialvelocitiesfromsub-exposurespectrausingtemplatecross-correlation.Wediscuss empiricalestimatesoftheuncertaintiesinSection2.4.And,onemetricformeasuring variabilityinasourceisdiscussedinSection2.5,deferringthedescriptionofthe MCMCmethodofdetectingvariabilitytoChapter3. 29 2.2TheSloanDigitalSkySurvey SDSSisanimagingandmerspectroscopicsurveyprogramusingthe2.5moptical telescopeatApachePointObservatoryinNewMexico.SDSSbegandatacollectionin2000, andhasoperatedthroughthepresentdayintheopticalandnear-infraredwithsurveys focusedonnearbyanddistantgalaxies,supernovae,quasars,exoplanets,andstarsinthe MilkyWay. TheoriginalLegacysurveyfromSDSS-I(2000-2005)imagedmorethan8000deg 2 ofthe skyineopticalandobtainedspectraofgalaxiesandquasars.Theoriginalspec- trographwasaeropticalspectrograph,operatinginthe4000 A{9000 Awavelength range,witharesolution R ˘ 2000andapixelscaleof70kms 1 pixel 1 .Uponcomple- tionoftheLegacysurvey,SDSShadimagedover2millionobjectsandobtainedspectrafor 800,000galaxiesand100,000quasars. SDSS-II(2005-2008)sawtheintroductionoftwonewsurveysusingtheoriginalcamera andspectrograph.TheSupernovaSurvey(Friemanetal.,2008)scanned300deg 2 ofthe sky,thousandsofsupernovaeandvariableobjects.Thesecondsurvey,theSloanEx- tensionforGalacticUnderstandingandExploration(SEGUE;Yannyetal.,2009),targeted 240,000starsintheMilkyWay,creatingamapandprovidingadetailedpictureoftheage, composition,anddistributionofstarsinourGalaxy. AdditionalsurveyscompriseSDSS-III(2011-2014).UsingtheoriginalSDSSspectro- graph,theSEGUEsurveywasexpandedwithSEGUE-2(C.M.Rockosietal.,inprepara- tion),focusingontheMilkyWayHaloandadding120,000stars.TheMulti-objectAPO RadialVelocityExoplanetLarge-areaSurvey(MARVELS)monitored11,000brightstars withtheMARVELSspectrograph,lookingforthesignaturesofexoplanets,buthadminimal 30 success.Ahigh-resolutioninfraredspectrographwasaddedfortheAPOGalacticEvolution Experiment(APOGEE;S.R.Majewskietal.,inpreparation)survey,aimedat100,000red giantsacrosstheMilkyWay.SDSS-IIIalsocontainedtheBaryonOscillationSpectroscopic Survey(BOSS;Dawsonetal.,2013),designedtomeasuretheexpansionrateoftheuniverse throughmeasurementsofthespatialdistributionofluminousredgalaxies.WiththeBOSS surveycameanupgradetotheSDSSspectrographwithnewCCDsandanincreasefrom 640to1000simultaneouserpluggings. SDSS-IV(2014-2020)continuestodaywiththeextensionoftwoSDSS-IIIsurveys;APOGEE- 2andeBOSScontinuetosurveystarsintheMilkyWayandbaryonicoscillationsinthe universe.Additionally,thenewMappingNearbyGalaxiesatAPO(MaNGA)surveywill examinethedetailedinternalstructureof10,000nearbygalaxieswithintegralunits. 2.2.1Sub-Exposures WhenacosmicraystrikesaCCDdetector,anartifactappearsasmanypixelsbecome saturated.Forspectra,thesepixelsoftenleadtoincorrectlyreportedincreases inatparticularwavelengths.Tofacilitatetheremovaloftheseartifactsfromspectra inSDSS,theoriginaldataprocessingpipelineusesthemedianvaluesateachpixel averagedovermultiplesub-exposurestakeninsuccession.Thisrequirementmeansthatall singleobservationsofanastronomicalsourceactuallycontainseveralsub-exposurestaken oversomeshortperiodintime.Figure3.7ofSection3.5.1providesanexample,foran F-typedwarfstar,ofacoaddspectrumwithcosmicraysremoved,alongwiththeindividual sub-exposurespectrausedtoconstructthespectrum.Sub-exposurespectra,althoughlower inSNRandbesetwithcosmicrays,addatimedimensiontothedatathatcanbeusedfor monitoringspectralvariability. 31 IntheLegacyandSEGUEsurveys,typicalspectraarecomposedofthreesub-exposures, withtypicalexposuretimesofabout15minutes.Thispresentsthepotentialfordetecting variabilityinspectrawhichisexpectedtooccurattimescalesontheorderofhours.Addi- tionally,manyareasoftheskywerere-observedovertheyearsforcalibrationandscien purposes,yieldingadditionalsub-exposuresandincreasingtherangeoftimescalesthatcan beprobed.Withthesere-pointingsincluded,sub-exposurecountsperobjectinthesample ofHettingeretal.(2015)rangefrom3to47,withbaselinesrangingfrom30minutestoover 9years(Figure2.1). Becausecosmic-rayremovalmustbehandledbyallspectroscopicobservations,sub- exposuresareanexpectedproductofallmulterprograms.Asweenteraneraoflarge spectroscopicdatasets,thereisanincreasingpotentialforvariabilitystudiesthroughdata miningofsub-exposurespectra.Thus,wearemotivatedtodevelopthetoolsandtech- niquesforextractinginformationfromthesesub-exposures.Weencouragethedesignersof futuremerprogramstoconsiderthechoiceinsub-exposurefrequencyandcadences, inadditiontotargetselectionandscheduling,inordertomaximizescienpotential. 2.2.2SEGUEStellarParameterPipelineAndSampleSelection WiththeintroductionoftheSEGUEsurveyinSDSS-II,aimedatinvestigatingthestellar propertiesandcompositionoftheMilkyWaycomponents,therewasaconcertedto buildapipelineforautomaticallydeterminingstellarparametersofstarsfromtheabundant spectraprovidedbytheSDSSmerspectrograph.TheSEGUEStellarParameter Pipeline(SSPP;Leeetal.,2008)wasdesignedtocarryouttheseautomatedtasks.The SSPPprovides,usingavarietyoftechniques,fundamentalstellaratmosphericparameters suchasmetallicity[Fe = H],etemperature T ,andsurfacegravitylog g ,aswellas 32 Figure2.1:Distributionofthenumberofsub-exposures(top)andthetimelags(bottom) fortheF-dwarfstarsfromtheHettingeretal.(2015)sample.Metallicityvaluesare [Fe = H]= 1 : 43and[Fe = H]= 0 : 66. 33 spectralAresourcesuchastheSSPPisinvaluableforincreasingsciengains obtainedfromdataminingtechniquesappliedtolarge,merspectroscopicsurveys. TheSSPPwasusedforidentifyingthesamplegroupsinHettingeretal.(2015). StarsofspectraltypeFwereselectedusingthe(Hammermethod)spectral providedbytheSSPP.Unevolved,mainsequencestarswereusedbyselectingdwarfswith surfacegravitieslog g 3 : 75.ThedecisiontouseF-typestarswasbasedonseveralfactors. Thecombinationofhighfrequency,andtlybrightluminosity,yieldsastatistically robustsamplewithdecentSNRvalues.TheintrinsicvariabilityinF-typeRVsduetosurface activityisrelativelylowandwillhaveminimalimpactonmeasurementuncertainties.Also, F-typestarshavemainsequencelifetimesgreaterthan5Gyr,allowingustoselectunevolved starsfromboththeyoungerdiskandtheolderhalo.TheHettingeretal.(2015)samplewas furtherdividedintothreemetallicitygroups,aimedattracingtheMilkyWaycomponents, usingthestellarparametersprovidedbytheSSPP(Figure2.2).Figure2.3illustratesthe [Fe = H]andlog g distributionofF-typestarsintheSSPPDR9dataset.Thebimodal[Fe = H] distributionseparatestheHaloandDiskcomponents,andthetailsatlowervaluesoflog g identifythestarsthathaveevolvedawayfromtheMainSequence. 2.2.3PlateSystematics ThespectrausedinHettingeretal.(2015)arefromtheSDSSLegacy,SEGUE-1,and SEGUE-2surveys,capturedusingtheoriginalSDSSspectrograph.Theoriginalspectrograph operatedbyplugging640opticalersintoholes(correspondingtoeachtarget'sposition onthesky)ononeofthemanypre-drilledobservingplates.EachspectrumwasgivenanID intheformoferusingtheplateIDnumber,theMoJulianDateofthe observation,andtheerIDnumber. 34 Figure2.2:DistributionofstellarparametersfortheF-dwarfstarsfromtheHettingeretal. (2015)sample,includingmetallicity(top),etemperature(middle),andsurfacegrav- ity(bottom).Metallicityvaluesare[Fe = H]= 1 : 43and[Fe = H]= 0 : 66. 35 Figure2.3:ScatterplotshowingthedistributionofmetallicityandsurfacegravityforF- typestarsintheSSPPDR9.Thebimodaldistributionof[Fe = H]tracestheHaloandDisk componentsoftheMilkyWay. 36 AftermeasuringRVsforF-typestarswiththemethodsdetailedinSection2.3,correla- tionsinRVvariationswerefoundforersresidingonthesameplate.Correlationswere typicallyseenamongersthatwereadjacenttoeachotherontheCCD.Figure2.4illus- tratesthesystematicissueswithanexamplefromplateplugging2085-53379.This showsthemeasuredRVsofthefoursub-exposuresforeachoftheeightF-typedwarfsfound onthisplate.ItisclearlyseenthattheRVsofthestarsdecreasesystematicallyfromthe tosecondsub-exposures,decreasefurthermorefromthesecondtothirdsub-exposure, andincreaseslightlyonthelastsub-exposure. Tocorrecttheplatesystematics,weadoptedaMarkovchainMonteCarlo(MCMC) methodtoestimatethesystematicshiftsfromsub-exposuretosub-exposure(Section3.4). 10,264ersub-exposureswereexaminedacross2453plates.TheRVcorrectionsapplied tothesesub-exposuresaredistributedasseeninFigure2.5,withastandarddeviationof 2 : 2kms 1 andcorrectionsaslargeas17kms 1 . Unfortunately,notallplatescouldbecorrectedusingtheMCMCmethods,becauseof multiplecorrelatedsubsetsofersonthesameplate.Usingplate3002-54844(Figure 2.6)asanexample,wecanseewhysimpletechniquestocorrectsystematicshiftsarenot successful.Inthisplate,theRVsfromtheF-dwarfstarsthatwereexposedononeareaofthe CCD(Panela)arecorrelatedwitheachother,butanti-correlatedwiththeersexposed onanotherareaoftheCCD(Paneld).Becauseofthis,asystematicshiftinRVforasingle exposureonaplatedoesnotincreasethetotalvalueoftheMCMClikelihood(Equation 3.7).ItisshownfromthecorrectioncolumnofFigure2.6,thatthesystematicswerenot resolved.Thisleadtotheinspectionandremovalof25plates(Table2.1),requiringmanual inspectionofsub-exposureRVshifts. Itisunclearatthispointwherethesourceofthesystematicshiftsinradialvelocityseen 37 Figure2.4:RVsforF-dwarfstarslocatedonplateplugging2085-53379beforeandafter correctingtheplateforsystematicsub-exposureRedpointsaresub-exposuresthat havelowSNR.FiberIDsaregivenforeacherontherightaxis.Sub-exposuresinthe plateareorderedchronologically.Correctionstosystematicaresuccessfulonthis plate. 38 Figure2.5:Distributionof10,264systematicRVestimatedforallplatesub-exposures intheF-dwarfsample. Table2.1:SuspectPlatesinSDSS Plate-MJD 0888-523392252-535652683-541532890-544952940-54508 1665-529762252-536132701-541542899-545683111-54800 2042-533782393-541562839-544612900-545693166-54830 2053-534462670-541152856-544632905-545803187-54821 2055-537292682-544012861-545832911-546313207-54850 PlateswithsystematicuncertaintiesremovedfromHettingeretal.(2015),listedbyplate numberandModiJulianDate. onplatesintheSDSSsub-exposurescanbetracedto.Westronglyencourageindividuals whowishtousesub-exposureinformationfromtheSDSSspectrographtobeawareofthese issuesandtakethemintoconsiderationwhenanalyzingradialvelocities. 39 40 (a) (b) (c) (d) Figure2.6:SameasFigure2.4forplateplugging3002-54844.TheleftcolumnofeachshowsRVsbeforecorrecting theplateforsystematicandtherightcolumnshowsRVsaftercorrectingforCorrectionsarenotsuccessfulon thisplateduetoanti-correlatedsubsetsofsimilarlycorrelateders. 2.3RadialVelocities RadialvelocitiescanbederivedfromspectrausingtheDopplershiftbycomparingthewave- lengthsoftheobservedabsorptionfeaturesofthesource o ,totherest-frameexpectations e .Thevelocity v ,relativetothespeedoflightis v c = o e e : (2.1) Whereappropriate,thisisaccomplishedthroughacross-correlationoftheobject'sspectrum withatheoreticalorempiricallyderivedtemplate.Inthissection,wediscussthemethods developedinthisworkfordeterminingRVsthroughtemplatecross-correlation,referencing theimplementationofthesemethodsinHettingeretal.(2015).Weaddresstheprocesses fornormalizingspectra,creatingaspectraltemplate,andperformingthecross-correlation measurements. 2.3.1ContinuumNormalization Cross-correlationrequiresthatspectrabecontinuumnormalized,suchthattde- viationsfromunityareattributedtoabsorptionandemissionfeatures,ratherthanthe blackbodycontinuum.Theprocessofnormalizingaspectrumisasfollows. Amodelofthecontinuumisestimatedbygeneratingamoversionofthespectrum, whichisagreatlysmoothedcopyofthespectrum.Thesmoothedcopyhasalloutlying pixelscleanedandsetequaltothemedianvalue.Absorptionlinesmustbemaskedout priortomodelingthecontinuum.Thepatchedregionstobemaskedarespexplicitly withasetofwavelengthlimitswheretheabsorptionfeaturesareexpectedtoappearforthe 41 particularastronomicalsource.SeeTable2.2,forexample,foralistofthemajorregionsthat weremaskedoutintheF-dwarfstars.Theentiretyofeachregionisreplacedwithapatch Table2.2:AbsorptionFeaturesinF-dwarfs WavelengthRangeFeature 3600 A{4000 ACaH,Kandothers 4070 A{4130 AH 4290 A{4360 AH 4830 A{4890 AH 6540 A{6580 AH value,calculatedbytakingthemedianofallvaluesintheregionwherethevalues aregreaterthanthemedianvalue.Inotherwords,theregionispatchedwithacontinuous valueequaltoanaveragevalue,ignoringabsorptionfeatures.SeeFigure2.7foran exampleofanF-typestarwiththeabsorptionregionspatchedout.Maskingabsorption featuresthisway,onarelativelysimplespectrumsuchasthatfromanF-typestar,can bedoneeasily,however,spectrawithmoreintenseormorecomplicatedfeatures,suchas thoseofanM-dwarf,wouldrequireanalternativemethodforcontinuumnormalization(Ness etal.,2015).Withtheabsorptionregionsmaskedout,asmoothedversionofthespectrum isproducedbyremovinghighfrequenciesintheFourierTransformusingaFFTsmoothing algorithm.Finally,theoriginalspectrumisdividedbythesmoothcontinuumtoobtain thecontinuumnormalizedspectrum.Itisimportanttoperformthenormalizationprocess correctly.Earlyattemptswithpoorcontinuumattheendsofthespectraresultedin asymmetricdistributionsinmeasuredradialvelocities. 42 Figure2.7:ContinuumnormalizationprocessappliedtoanF-typestarshowing:(a)theraw sub-exposurespectrum,(b)thespectrumwithselectedabsorptionfeaturesmaskedout,(c) asmoothedversionofthespectrum,and(d)thecontinuum-normalizedspectrum. 43 2.3.2SpectralTemplate TwocommonmethodsformeasuringtheRVofasourceare,idenionoflineindices, andtemplatecross-correlation.Theformerusesanalgorithmtoidentifyabsorptionand emissionfeaturesinspectrathatareexpectedtobepresent,andcomparesthemeasured centroidsofthelineswiththeexpectedrest-framewavelengthsofthefeaturestodirectly measureaDopplershift.Methodsforlocatingcentroidsandcorrectlyidentifyinglines associatedwithparticularfeaturescanberelativelycomplex.Thelattermethod,using templatecross-correlation(Tonry&Davis,1979),ismoresimplebutrequiresanaccurate templatespectrumforeachsourcethatyouwishtomeasureRVsfrom.InHettingeretal. (2015),allsourcesareF-typedwarfstars,andcanbewithasingletemplate.Oneb ofperformingcross-correlationonalargedatasetofsimilarsources,isthatatemplatecan beconstructedfromthedataitself.Amastertemplate(Figure2.8)wasconstructedusing highqualityspectrafrom7207F-typedwarfstarsfromSDSSDR10. FirstattemptsatmakingRVmeasurementswithtunedtemplatesyieldedlittle changeinmeasuredvariationsinRV.Wecreatedseveraltemplatescomposedofsourceswith similarstellarparameters,allowing[Fe = H],log g ,and T tovary.Thestandard-deviationof individualradialvelocitieswithinstarsremainedvirtuallythesameacrosstheentire[Fe = H] range,regardlessofthechoiceintemplate.SimilarbehaviorwasobservedforRVvariations asafunctionoflog g and T .Forsimplicity,weusedasingletemplatecomposedofspectra fromstarsofvaryingstellarparameters,usingallavailablescienceprimaryerswitha co-addSNR > 50. Stepsforcreatingatemplatespectrumareasfollows.Allinputco-addspectraare continuum-normalized(Section2.3.1).Next,theco-addspectraarede-shiftedintotherest- 44 Figure2.8:Fullcontinuum-normalizedF-typedwarftemplatespectrum(top)withadetailed viewoftheblueendofthespectrum(bottom).Prominentspectralfeaturesareannotated. frameusingthe\zBest"redshiftvaluesassignedtotheco-addsintheSDSSpipeline.It shouldbenotedherethatwhiletheSDSSpipelineprovidesRVestimatesfortheco-add spectrumofeacher,thesewereobtainedfromanaverageoftheindividualsub-exposures, therebyaveragingoverthechangesinRVbetweensub-exposures{thechangesthatwe areseekingtomeasure.Onceallofthespectraareshiftedtorest-framewavelengths,each spectrumisbyathird-orderB-splineandresampledtoacommonwavelengthsolution. Finally,allco-addspectraareaveragedbytakingthemeanateachwavelengthinthe resampling.Figure2.9illustratesthetemplatecreationprocessforasmallsetofinput co-adds. 2.3.3Cross-Correlations RadialvelocitiesobtainedfromtheDopplershiftaremeasuredbythewavelength shift,inpixels,ofthesourcewhichmaximizesthecross-correlationcoentofthesource andtemplate.Thisprocessisdetailedhere.Foreverystarinthesample,eachsub-exposure 45 Figure2.9:Exampleofthetemplatecreationprocessusing7spectra.Fromtoptobottom: blueendandfullspectrumoftheinputco-addstellarspectra,blueendandfullspectrum ofthenormalized,rest-frameinputspectra,blueendandfullspectrumoftheinputspectra resampledtoacommonwavelengthsolution,blueendandfullspectrumofthetemplate (averagedofresampledinputspectra). 46 spectrumisnormalized(Section2.3.1)andcleanedofcosmicraysandothersuspectpixels. Next,thetemplatespectrumisresampledsothatthesourceandtemplatespectrasharethe samewavelengthvalueateachpixel.Thecorrelationcotperpixel, C = 1 N N X i =1 y 1 ;i y 2 ;i (2.2) iscalculatedusingthecleanedsourcespectrumandthetemplatespectrum,repeatedwith integerpixelshiftsofthesourcespectrumfrom 20to+20pixels.Thisprocessproduces across-correlationfunction(CCF)thathasamaximumvalueatthebestestimateforthe Dopplershiftofthesource.AnexampleCCFcanbeseeninFigure2.10. Figure2.10:Cross-correlationfunction(perpixel)forasinglesub-exposurespectrumofan F-typestar.Correlationvaluesarecalculatedatintegerpixellags,andasplineinterpolation ofthefunctionistothesevalues.Thefunctionpeaksat 3 : 275pixels,or 229kms 1 . ThevalueobtainedforthepixellagcanbeconvertedtoaDopplershiftinkms 1 withaconversionthatisdependentontheresolutionofthespectrum.ForSDSSspectra, thisconversionis70kms 1 pixel 1 .Toobtainsub-pixelprecision,asmoothB-spline 47 interpolationisperformedontheCCF,yieldingabetterestimatefortheDopplershift. 2.4EmpiricalUncertainties Uncertaintiesincross-correlationlagmeasurementsmustbeestimatedempiricallyorthrough someMonteCarlomethod.ForanexampleofaMonteCarlomethod,seePetersonetal. (1998),wherecross-correlationsareperformedovermanyiterations,takingrandom tionsinpixelandselectingarandomsub-setofpixelsateachiteration.Hettingeretal. (2015)employedanempiricalmethod,lookingatthespreadinRVmeasurementsforspectra ofsimilarquality.Fromthesecomparisons,wederivedafunctionthatassignsuncertainties basedontheSNRand[Fe = H]ofeachsub-exposure.Measurementuncertaintiesareexpected toincreaseforstarswithlowermetallicity,asthesestarshavelesspronouncedabsorption features,therebyreducingthesignalof,andbroadeningthepeakof,theCCF.Thefollowing describesthestepstakentoderivetheempiricaluncertainties. Tobegin,themeanRVforastarissubtractedfromallsub-exposuremeasurementsof thestar,resultinginnewRVswithameanvalueof0 : 0kms 1 .Similarmeasurementscan nowbecomparedforallsub-exposuresfromallstarsbyidentifyingspectrawithsimilar [Fe = H]andSNRvalues;initialtestsshowednotcorrelationbetweenmeasurement uncertaintyandotherstellarparameterssuchas T andlog g .Onceallmeasurements areseparatedintosetsoflike[Fe = H]andSNR,anempiricalestimateforthemeasurement uncertaintyforeach[Fe = H]-SNRsetiscalculatedusingthemedianabsolutedeviation,or MAD(Leysetal.,2013).TheMADvalueisthemediandeviationofallvaluesfromthe medianvalue, MAD=median( j RV i median(RV) j ) ; (2.3) 48 andisrelatedtotheempiricalestimateofthemeasurementuncertaintyby ˙ =1 : 4826MAD : (2.4) OneexampleofanempiricaluncertaintyestimateisshowninFigure2.11.Allsub-exposures usedinthis[Fe = H]-SNRsethave[Fe = H]= 1 : 75 0 : 25andSNR=30 2 : 5.Thisprocess isrepeatedforall[Fe = H]-SNRsetsthathaveatleast800measurements. Figure2.11:Distributionofradialvelocities(minussystemicvelocity)forsub-exposures with[Fe = H]= 1 : 75 0 : 25andSNR=30 2 : 5.Thedistributionhasamedianabsolute deviationofMAD=3 : 04kms 1 ,indicatingmeasurementuncertaintiesof ˙ =4 : 51kms 1 . Interpolationofthevaluesobtainedfortheempiricaluncertaintyestimatesofall[Fe = H]- SNRsetsyieldsafunctionalformdescribingthemeasurementuncertaintywithrespectto [Fe = H]andSNR.First,a1-dimensionalsolutionistoall[Fe = H]-SNRsetssharingthe 49 same[Fe = H]valueusingtheform ˙ [Fe = H] (SNR)= m [Fe = H] SNR + b; (2.5) wheretheuncertainty ˙ [Fe = H] ,isinverselyproportionaltoSNRwithconstants m [Fe = H] and b .Thisisperformedindependentlyforeachofthenine[Fe = H]valuesusedinthesets.The medianvalue b =1 : 235isadoptedandusedtoallsolutions, ˙ [Fe = H] (SNR)= m [Fe = H] SNR +1 : 23 : (2.6) TheresultsfromthisareshowninFigure2.12(b).Alinearrelationshipbetween[Fe = H]and theconstant m isdescribedby m ([Fe = H])= 26 : 51[Fe = H]+50 : 52 ; (2.7) andisillustratedinFigure2.13.Altogether,therelationshipbetweentheempiricalestimate ofthemeasurementuncertaintyandthesub-exposure[Fe = H]andSNRtakestheform ˙ ([Fe = H] ; SNR)= ( 26 : 51[Fe = H]+50 : 52) SNR +1 : 23 : (2.8) Figure2.12(c)illustratestheformoftheempiricaluncertaintieswithvaluesplotted inlinesofconstant[Fe = H].Hettingeretal.(2015)adoptedEquation2.8toassignuncertainty valuestoeverysub-exposuremeasurementinthesample.Thedistributionoftheassigned uncertaintiesisshowninFigure2.14. 50 Figure2.12:Empiricaluncertaintiesforcross-correlationmeasurementsinF-typedwarfstars showinguncertainties(a)asafunctionofSNRindependentlydeterminedforeach[Fe = H], (b)asafunctionofSNRwithacommonconstantand(c)asafunctionofSNRand [Fe = H]asinEquation2.8. 51 Figure2.13:Valuesofcot m fromEquation2.6asafunctionof[Fe = H]. Figure2.14:DistributionofempiricallyassignedmeasurementuncertaintiesfortheF-dwarf starsfromtheHettingeretal.(2015)sample.Metallicityvaluesare[Fe = H]= 1 : 43 and[Fe = H]= 0 : 66. 52 2.5 e=i Variability Aftersub-exposureRVsaredeterminedandtheuncertaintiesarewellcharacterized,ametric mustbechosentodescribethevariabilityofthesource.Onesuchmetric,describedbyGeller etal.(2008)andMillimanetal.(2014),detectsvariabilityinRVmeasurementsbycomparing theRVdeviations(externalvariation, e )tothetypicalmeasurementuncertainty(internal variation, i ),or e=i .Thisway,starswithSNR,andthereforeentmeasurement uncertainties,areweightedappropriately,preventingstarswithlargeRVuncertaintiesfrom beinginterpretedastruevariables.The e=i metricisnedastheratioofthestandard deviationofthestar'sRVstothemeanofthemeasurementuncertainties.Valuesof e=i tlylargerthan1 : 0indicateanincreasinglikelihoodthatastar'svariabilityisnot duetomeasurementuncertainties,butrathertotheintrinsicchangesinthestar'sRV. Onedisadvantageofthe e=i method,however,isthatitdoesnotuseaphysicalmodel todescribethesystem.Forinstance,RVvariabilityofastarinthepresenceofacompanion bodyisexpectedtoshowaperiodicbehavior.Thislackofspyiswhatledusto adopttheMCMCmethodsdetailedinSection3.5.Itisreassuringthough,that examinationofthe e=i valuesofthestarsintheHettingeretal.(2015)sample(Figure 2.15)yieldsaconclusionconsistentwiththatgatheredfromtheMCMCmethod,withboth methodsindicatingahigherfractionofshort-periodbinariesinthemetal-richcomponentof theMilkyWay. 2.6Discussion Timeresolved-spectroscopyisnotlimitedtoradialvelocitymeasurements.Theprocesses discussedinthischaptercanbemotolookatchanges,forexample,intheemissionand 53 Figure2.15:Distributionof e=i ,theratioofthestandarddeviationofRVstothetypical measurementuncertaintyvalues,fortheF-dwarfstarsfromtheHettingeretal.(2015) sample.Metallicityvaluesare[Fe = H]= 1 : 43and[Fe = H]= 0 : 66. absorptionfeaturesofstarssuchasthoseduetosurfaceactivityofcoolstarsorpulsationof RRLyraestars.Futuredevelopmentsintelescopesandinstrumentsmayevenleadtouseful studiesofshort-timescalevariabilityofactivegalacticnuclei.Werecommendthatfuture observingprogramsconsiderthesub-exposurepropertiesofmerspectrographs,as theyaddscienvalueinregardstothetime-domaindimensionofthedata.Withcareful planningoftheexposuretimes,counts,andfrequenciesadoptedintargetselection,the scienreturnobtainedfromsurveyprogramscanbemaximized. 54 Chapter3 MarkovChainMonteCarlo 3.1Introduction Manyproblemsinastronomyandastrophysicsaresolvedusingcomplicated,costlymodels withlargenumbersoffreeparameters,oftencombinedwithlowsignal-to-noiseobservations. Becauseofthis,therehasbeenanincreasedadoptionofprobabilisticanalysis,suchas Bayesianinference.Additionally,withtheincreaseinpowerandciencyofmodernday computers,numericalmethodslikeMarkovchainMonteCarlo(MCMC)methodsarebeing usedtosolveproblemsthatwouldhavebeenpreviouslyunsolvable.Hoggetal.(2010)include moreargumentsforwhyonewouldwanttoadoptnumericaldataanalysistechniques,and additionallyprovideinstructionsforusingMCMCtechniquesformodelstodata. Inthischapter,wedescribehowMCMCmethodscanbeusedinanastrophysicalcontext, referringtotheiruseinHettingeretal.(2015)asanexample.Webeginwithabrief introductiontoBayesianinferenceinSection3.2.InSection3.3,weintroducethe emcee PythonpackageandexplainhowanensembleMCMCalgorithmisusedtoexpectation valuesofparametersofinterestfromamarginalizedsamplingoftheposterior.InSection3.4, weillustratetheuseofthe emcee packageinidentifyingsub-exposuresystematicsinSDSS spectra.Section3.5adescriptionoftheprocessfordeterminingstellarvariabilityfrom theRVcurveofastarusingahierarchicalMCMCmethod. 55 3.2BayesianInferenceandMCMC WebeginwithabriefintroductiontoBayesianinference.Bayesianinferencederivesa posteriorprobabilitythatobservations D ,canbedescribedbysomemodelwithavectorof parametersasitrelatestothelikelihoodfunctionofthemodelandapriorprobability ofthemodelparameters.Sp,Bayesianinferencecomputestheposteriorprobability fromBayes'theorem: p j D )= 1 Z p ( D j p : (3.1) Here, p j D )istheposteriorprobability,whichsptheprobabilitythatasetofmodel parameterscanbeinferredfromthedata,subjecttothelikelihoodandprior.In otherwords,itdescribestheprobabilitythatahypothesisiscorrect,aftertheobservations arecollected.Thelikelihood p ( D j describesthecompatibilityoftheobservationswiththe modelparameters.Thepriorprobability p spthepreviousestimate,ifany,that themodelparametersarecorrect,beforeanyknowledgeofthedataistakenintoaccount. Themodelevidence Z ,isanormalizationfactorwhichremainsconstantforallchoicesof parametervalues,andcanthereforebeignoredforourpurposes. Aposteriorprobabilitydensityfunction(PDF)givestheposteriorprobabilityforall ofpossiblemodelparameters,havingmaximumvaluesforsetsofparameterswhichare mostlikelytoyieldtheobservations.ComputingthePDFisoftenduetocomplex likelihoodfunctions.MCMCmethodscanbeadoptedtoapproximatethePDF,numerically, bysamplingfromtheposteriorwithaclassofalgorithms.WiththesamplingfromthePDF, MCMCmethodseasilyallowmarginalizationovernuisanceparameters(parametersthatare requiredbythemodel,butareoflessinterest)toretrievetheprobabilitiesandexpectations forvaluesofanyparameterofinteresttotheproblem. 56 MarkovchainMonteCarlomethodsareaclassofalgorithmsdesignedtosamplefroma probabilitydistribution.TheydosobyconstructingaMarkovchainthatallowsawalkerto movebetweenstatesinparameterspacewithsometransitionprobability.Ateachstepin thechain,somesetofparametersarecomparedwiththedatathroughalikelihoodfunction. Thetransitionprobabilitiesbetweenstepsarerelatedtotherelativelikelihoodvaluesofeach state.MCMCchainshavethepropertythatinthelimitthatthechaintakesan numberofsteps,thedensityofstatessampledrepresentsthePDFforthemodel.Whenthe chainhasreachedthenumberofstepswherethisisapproximatelytrue,thechainissaidto haveconverged.Stepscanbeselectedrandomly,providingasampleofthePDF.In thenextsection,weshowhowanMCMCalgorithmcanbeusedtothebestchoiceof modelparametersfromasetofobservations. 3.3 emcee :TheMCMCHammer 3.3.1AnvariantEnsembleSampler AcommonlyusedMCMCmethodistheMetropolis-Hastings(MH)method.TheMH methodproposeschainstepsbasedonsomedistribution(suchasamultivariateGaussian) centeredonthecurrentchainposition.Thisrequiresanumberoftuningparameterswhich scalesas N ( N +1) = 2,where N isthedimensionalityofthemodel.Cmanytun- ingparametersiscostlyandrequiresmanyburn-insteps,especiallyforhighlyanisotropic densities.ThePythonpackage emcee (Foreman-Mackeyetal.,2013)addressesthisissue byimplementingthevariantensemblesamplingalgorithmproposedbyGoodman& Weare(2010). emcee usesanensembleofparallelchainwalkersthattakestepsinseries. Beforeeachwalkertakesastep,astepproposalisdrawnusingastretchmove.Thatis,a 57 randomwalkerisselectedfromtheremainingensemble,andastepisproposedalongthe vectorconnectingthetwowalkers.Thisprocessisinvariant,meaningthealgorithm performsequallywellunderalllineartransformations.Thebofusingthestretchmove algorithmisthatonlytwotuningparametersarerequired,regardlessofdimensionalityof themodel.Thisallowsanensembleofchainwalkerstoexploreanisotropicdensitiesvery tly.Additionally, emcee implementsmulti-threadingbyrunningchainwalkersas separatethreads,greatlyincreasingCPUwhenthecodeisrunonamulti-core machine.Becauseofthewithanisotropicdensitiesandtheeaseofparallelization, Hettingeretal.(2015)uses emcee fortestingbinarymodelsontheF-dwarfRVcurves. 3.3.2Using emcee Asanintroductiontothe emcee packageand,moregenerally,theuseofMCMCmethods forinference,wepresentasimpleexampleproblem.Formoreinformationonusing emcee , pleaseconsultForeman-Mackeyetal.(2013).Inthisexampleproblem,wehavesimulated 30observations( X i , Y i )fromtherelationship Y i =0 : 8 X i +0 : 3 ; (3.2) withsimulatedmeasurementuncertaintiesin Y foldedinbydrawingfromanormaldistribu- tionwith ˙ Y =0 : 1(Figure3.1).WewishtouseBayesianinferenceandthe emcee package todeterminethebestvaluesfortheparametersofsomehypotheticalmodel. Webeginbysuggestingahypotheticalmodel y ( x )=m x +b ; (3.3) 58 Figure3.1:Mockobservationswith X valuesdrawnrandomlyfromtherange[0,1]and Y valuesdrawnfrom Y i =0 : 8 X i +0 : 3.Simulatedmeasurementuncertaintieshavebeenadded withvaluesdrawnfromanormaldistributionwith =0 : 0, ˙ =0 : 1. forwhichwearetryingtodeterminethebestvaluesof m and b .TheMCMCensemble sampleriscreatedin emcee byspecifyingthenumberofchainwalkers(say100),thedi- mensionalityofthemodel(inourcase,2),andafunctionusedtocalculatetheposterior probabilityateachstep.Forthisproblemwehavetheposteriorprobabilitytobe p j D )= p p ( D j ; (3.4) withalikelihood p ( D j = N Y i =1 1 ˙ Y p 2 ˇ exp 2 4 ( Y i y ( X i )) 2 2 ˙ 2 Y 3 5 ; (3.5) andaprior p = ( 1 ; 0 ; ( 10 1plateobservations,willhaveatotalof P 1plate-shiftparameters. Withtheplate-shiftparametersandthetwoRVmodelsthelog-likelihoodused 66 inthe emcee samplerbecomes ln p ( D j = 1 2 N X i 2 6 4 ln( ˙ 2 i )+ Y i ! p M ( t i ) 2 ˙ 2 i 3 7 5 ; (3.11) where M ( t )isequivalentto M b ( t )whenever selectsthebinarymodel( 0 : 5),and M s ( t )otherwise. 2 Y i istheRVofthestaratexposure i withameasurementuncertainty ˙ i . Thechoiceinpriordistributionsfortheparameters(Table3.1)wereconsideredcarefully. Intheregimewheretheperiodgrowslongerortheamplitudedecreasesinmagnitude,the Table3.1:PriorLimitsforHettingeretal.(2015)MCMC ParameterLowerLimitUpperLimit 0.01.0 ˚ 02 ˇ ! i (kms 1 )-2020 V 0 (kms 1 )-600600 log A (kms 1 )0.482.40 log P (s)4.07.0 PriorlimitsadoptedinHettingeretal.(2015)fortheparametersintheMCMCensemble sampler.Priorprobabilitieswereuniformlydistributedwithintheseranges.Parameters includethemodelselectorindex ,orbitalphase ˚ ,plateshiftparameters ! i ,systemic velocities V 0 ,thelogofthesemi-amplitudelog A ,andthelogoftheorbitalperiodlog P . binary-starmodelgivesthesamelikelihoodvaluesasthesingle-starmodel.Therefore,the limitsonthepriorprobabilitiesshouldnotbearbitrarilylarge,butshouldinsteadbeset atareasonablevaluesthatarerepresentativeofthesensitivityofthesparselysampleRVs. Forsystemswithperiodslog P (s) > 7 : 0,theexpectedRVamplitudesdecreasetolevels belowthemeasurementuncertaintyofourdata.Asexpected,earlyMCMCtrialsfoundno 2 Unfortunately, emcee doesnothandlebinarydatatypesasamodelparameter,soweset asaparameter withuniformpriorbetween0and1,using0.5asthedividingpointfordeterminingwhichmodeltouseat anystep. 67 tprobabilityfortheselargeperiodsinthe M b model.Alowerlimitlog P (s)=4 : 0 isused;thisistheorbitalperiodat a =1 R ,forwhichstellarcontactbetweentwostars iscertain.Forthesemi-amplitude,thelowerlimitontheprioris3kms 1 ,comparableto themeasurementuncertaintiesintheRVs.Theupperlimitontheprioris250kms 1 ,a valuegreaterthanthemaximumRVamplitudeexpectedfromanF-dwarfsystem.Systemic velocitiesallowedarethoselessthantheescapevelocityoftheMilkyWay. TheMCMCsamplerswereexecutedindependentlyforallstarsinthesampleusing200 chainwalkers,takingatotalof2 : 4millionsteps.Thechainswereburnedtoconvergence, andthinneddowntoasizeof600,000samplesperstar.Foradescriptionofthe andadiscussionoftheresults,pleaserefertoSection4.4andSection4.5.Instead,wewill showheretheresultsforselectstars,anddiscusssomefeaturesoftheposteriors. 3.5.1Examples TheexamplestarisabinarycandidatewiththeerID2939-54515-194.Thisstar isaF-typedwarfstarfromtheHettingeretal.(2015)sample,withstellarparameters [Fe = H]= 1 : 50andlog g =4 : 3.Twelveindividual,rawsub-exposures( h SNR i =40), comprisethecoaddspectrum(Figure3.7). 68 69 Figure3.7:Individualsub-exposurespectra(top)usedintheproductionofthecoaddspectrum(bottom)forerID2939- 54515-194. Sub-exposuresweretakenonthreeseparatenightswithinaweekforabaselineof143 hours.Themeasuredsub-exposureRVsbyasmuchas33 : 7kms 1 ,indicatingthat thestarisalikelybinarycandidate. UsingthesettingsfromSection3.5,anensembleofMCMCchainwalkerscomparedthe RVswiththebinary-andsingle-starmodels,ultimatelythebinarymodeltobethe mostprobable.Figure3.8reportstheparametervaluesforallchainwalkersasafunctionof stepnumber.Allparametersconvergedbystep1000(3000beforethinning),afterwhichwe seevirtuallynosampleswith < 0 : 5,indicatingastrongprobabilityofthebinarymodel overthesingle-starmodel.We'veplottedtheradialvelocitycurvefor2939-54515-194in Figure3.9,alongwithpotentialorbitsconstructedfrom200randomlydrawnsamplesfrom theposterior.Weseethetypicalaliasingofthelikelyorbitalperiodsthatoneexpectsto inferfromasparselysampledRVcurve.Thegapsincoverageallowformodelswithorbits thathaveshorterperiods,oftenatharmonicfrequencies.Becauseofthis,wemaynotbe abletospecifytheexactperiodwithbuttheMCMCinferencedoesallowusto ruleoutthesingle-starmodel.Thiscanbeseen,forexample,whenwemarginalizeover log P (andallotherparameters)andlookatthethemarginalizedPDFforthe selection parameter(Figure3.10,bottom-right).Allvaluesof are 0 : 5,indicatingat preferencefor M b .ExaminingtheposteriorPDFsinFigure3.10,weseeotherfeatures. Theperiodaliasingappearsagaininthemarginalizedposteriorforlog P asmultiplepeaks. Additionally,arelationshipamong V 0 , ˚ ,andlog A exists.Tothedatawithmodels havingextremevaluesof V 0 ,themodelsmustalsohavelargeramplitudeswithaphase shift.Also,thesemodelscanonlyworkwithlongerperiods,explainingtherelationship seenbetweenlog P andlog A .Largeramplitudesaresupportedonlybylongerperiods. WithbetterRVcoverage,theregionofparameterspacethatcanproduceviableorbitsto 70 Figure3.8:Parametervalueprogressionforall200chainwalkersinthemultiplicityMCMC forerID2939-54515-194.Chainsampleshavealreadybeenthinned.Samplesearlierthan thereddashedlinewereremovedfromanalysisduringtheburn-inprocess. 71 Figure3.9:Orbitsconstructedfrom200randomsamplesoftheMCMCposteriordistribution forerID2939-54515-194. thedatadiminishes,allowingforamoretestimateoforbitalparameters.Our nextexamplehasbettercoverageanddemonstratesacasewheretheorbitalparametersare spmoretly. Thenextstar,erID2960-54561-375,isanF-typestarlike2939-54515-194,butit hasaslightlylowersurfacegravitywithlog g =3 : 6.Becausethisstar'ssurfacegravity isbelowtheconservativefordwarfstarsinHettingeretal.(2015),it wasnotusedinanyoftheanalyses.However,thisstarisamongthestarswiththemost constrainedvalues,duetothelargevariationsinRV,combinedwithadequatesampling. UnlikemostoftheotherF-typestarsmeasuredwithourcross-correlationtechnique,star 2960-54561-375hasmeasuredvelocitiesthataregreaterthanthedispersionvelocityofthe SDSSspectra(70kms 1 pixel 1 ),meaningchangesintheabsorptionfeatureshaveshifts thataregreaterthanapixel,andarevisiblebyeye.WehighlightthisinFigure3.11,where wehaveplottedaclose-upviewofthreeabsorptionfeatures.Theeightsub-exposuresare orderedchronologicallyfromtoptobottom,andplottedasafunctionofredshiftvelocity. 72 Figure3.10:PosteriorprobabilitydistributionsofparametersinthemultiplicityMCMCfor erID2939-54515-194. 73 Figure3.11:ChangesinredshiftwithtimeforerID2960-54561-375.Absorptionlines fromnormalizedsub-exposuresareorderedchronologicallyfromtoptobottom.Velocities ineacharerelativetotherest-framewavelengthofCalciumK(left),CalciumH (middle),andH (right).Dashedverticallinesrepresentthemeanvelocityofthestar. 74 Thatis,eachpixel'swavelengthinthespectrumcorrespondstoameasuredredshift,had thatpixelcontainedthecentroidoftheabsorptionfeatureforthatparticularline(e.g.,Ca K).Tocomputethis,weconverteachpixelwavelengthtoavelocityfromtheDopplershift (Equation2.1)usingthespabsorptionfeatureastherest-framewavelength.Usingthe meanvalueofthestar'smeasuredRVs(dashedverticalline)asaguide,shiftsintheline centroidsovertimebecomeapparent. Lookingatrandomlyselectedorbitsfromtheensemblesampler(Figure3.12),wesee astrongpreferenceforamodelwithaperiodof P =7 : 94days,followedbymodelswith harmonicperiods.Intheposterior(Figure3.13),weseethepeaksinthemarginalizedprob- Figure3.12:Orbitsconstructedfrom200randomsamplesoftheMCMCposteriordistribu- tionforerID2960-54561-375. abilitiesforallparameters,correspondingtothebestmodel.Wealsoseestrongprobability concentratedinasecondmodelwithashorterperiodat P =1 : 14days. 75 Figure3.13:PosteriorprobabilitydistributionsofparametersinthemultiplicityMCMCfor erID2960-54561-375. 76 Chapter4 StatisticalTime-Resolved Spectroscopy:AHigherFractionof Short-PeriodBinariesforMetal-Rich F-typeDwarfsinSDSS ThisChaptercontainsanexpandedversionofthepeer-reviewedarticleHettingeretal. (2015)publishedintheAstrophysicalJournalLetters 4.1Abstract Stellarmultiplicityliesattheheartofmanyproblemsinmodernastrophysics,includingthe physicsofstarformation,theobservationalpropertiesofunresolvedstellarpopulations,and theratesofinteractingbinariessuchascataclysmicvariables,X-raybinaries,andTypeIa supernovae.However,littleisknownaboutthestellarmultiplicityofstarsintheMilky Way,inparticularaboutthecesinthemultiplicitycharacteristicsbetweenmetal- richdiskstarsandmetal-poorhalostars.Inthisstudyweperformastatisticalanalysisof ˘ 14,000F-typedwarfstarsintheMilkyWaythroughtime-resolvedspectroscopywiththe 77 sub-exposuresarchivedintheSloanDigitalSkySurvey.Weobtainabsoluteradialvelocity measurementsthroughtemplatecross-correlationofindividualsub-exposureswithtemporal baselinesvaryingfromminutestoyears.Thesesparselysampledradialvelocitycurvesare analyzedusingMarkovchainMonteCarlotechniquestoconstraintheveryshort-period binaryfractionforF-typestarsintheMilkyWay.Metal-richdiskstarswerefoundto be30%morelikelytohavecompanionswithperiodsshorterthan12daysthanmetal-poor halostars. 4.2Introduction Stellarmultiplicityplaysacrucialroleinmanyofastronomy.Starformationandevo- lution,Galacticchemicalevolution,nuclearastrophysics,andcosmologyareallby ourunderstandingofthemultiplicitypropertiesofanunderlyingstellarpopulation.Binary interactionsleadtophenomenaasdiverseascataclysmicvariables,classicalnovae,X-ray binaries,gamma-raybursts,andTypeIasupernovae.Stellarinteractionsarealsothecause oftheanomaloussurfaceabundancesmeasuredinBastars,CHstars,andthemajorityof carbon-enhancedmetal-poorstars(Lucatelloetal.,2005).Theratesofthesephenomena dependonthemultiplicitypropertiessuchasthefractionofstarswithcompanionsandthe distributionsofseparationsandmassratios.Howthesepropertiesareinturnby variablessuchasstellarage,metallicity,anddynamicalenvironmentremainspoorlyun- derstood.Moe&DiStefano(2013)nottrendswithmetallicityforO-and B-stars,butmoreworkisneededforlower-massstars. TherecentreviewbyDuch^ene&Kraus(2013)summarizesthestateoftheartinmulti- plicitystudies.Thefractionofsystemswithcompanionsisknowntobeastrongfunction 78 ofstellarmass(Lada,2006;Raghavanetal.,2010;Clarketal.,2012),andtherearehints thatlowermasssystemshavesmallerseparations(Duquennoy&Mayor,1991;Allen,2007; Raghavanetal.,2010).StudiesoftheSolarneighborhoodalsoindicatethatlowermetallicity starsaremorelikelytohavestellarcompanions(Raghavanetal.,2010). Theseresultsarebasedonheterogeneoussamplesofafewhundredstarsatmost,often dominatedbywidesystemswhichwillneverbecomeinteractingbinaries.Thespectroscopic surveysthatreachsmallperiodsarelaborintensivebecauselargenumbersofradialvelocities (RVs)arerequiredtotheorbitalsolutionofeachtarget.Thisleadstosmallsamplesizes, whichhaveonlyincreasedmodestlyinthepasttwodecades,from167inDuquennoy&Mayor (1991)to454inRaghavanetal.(2010).Thedrivetocollectcompletesampleshaslimited previousspectroscopicstudiestotheSolarneighborhoodorspstellarclusters,but neitherofthesestrategiescanprobethefullrangeofmetallicitiesandagesspanningthe starsoftheMilkyWay(MW)diskandhalocomponents.Theselimitsbiastheinterpretation ofdataagainsttheglobalpropertiesof,andvariationwithin,theMWThus,weare motivatedtotakeastatisticalapproachwithasampleofstarslocatedthroughoutthein ordertoinvestigatetheirmultiplicitypropertieswithrespecttoage,[Fe = H],andcomponent membership. WiththeadventofmultiplexedspectroscopicsurveyslikeSDSS(Yorketal.,2000)and LAMOST(Cuietal.,2012),wecanusemultipleRVmeasurementsofthousandsofstarsto studythepropertiesofstellarmultiplicitythataremorerepresentativeoftheentireGalaxy. SDSSDataRelease8(Aiharaetal.,2011)containsover1.8millionopticalspectrafromthe originalSDSSspectrographsincludingover600,000stellarspectra.Inthisworkweemploy alesserknownSDSSfeature,thetime-resolveddimension.Tofacilitatecosmicrayremoval, spectrawereconstructedthroughco-additionofseveralindividualsub-exposures,typically 79 15minutesinduration.Althoughunder-utilized,thebofthesub-exposuredomain isrecognizedinworkssuchasBadenesetal.(2009)andBickertonetal.(2012).Portions oftheskywerealsore-observedforcalibrationandscienpurposes.Theseadditional pointings,combinedwiththesub-exposures,yieldatimedimensionwheresinglestarshave exposurecoveragerangingfrom3sub-exposuresuptoover40sub-exposures,andtimegaps fromhourstonearlyadecade.Thetechniquesemployedhereinfollowthetime-resolved workbyBadenes&Maoz(2012)andMaozetal.(2012). 4.3Measurements 4.3.1SDSSObservationsandSampleSelection F-typedwarfsarechosenforoursamplebecauseofthelargenumberofstarstargetedby SDSSwithrepeatobservations,andtheirrelativelymildvariabilityandactivity.Addition- ally,F-starshavemainsequence(MS)lifetimesgreaterthan5Gyr,allowingustoselect MSstarsfromboththeyoungerdiskandolderhalo.TheSloanStellarParameterPipeline (SSPP;Leeetal.,2008)wasdevelopedtodetermineparametersforstellarspectrainthe SDSSarchive,includingmetallicity[Fe = H],etemperature T ,andsurfacegrav- itylog g .SampleselectionbeganwithidentifyingscienceprimaryobjectsfromSEGUE-1 (Yannyetal.,2009)andSEGUE-2(Rockosi,C.M.etal.,inprep.)intheSSPPthat wereasanF-typestarbythe\Hammer"code(Coveyetal.,2007). Tominimizetheofstellarevolutiononmultiplicity,weselectedonlydwarfstars (log g 3 : 75).Starswithmultipleerpluggingswereidenastrometricallyandjoined withtheappropriatescienceprimaryers. AftermeasuringstellarRVs(Section4.3.2),systematicswererevealedintheSDSSsub- 80 exposurespectra.ThesecorrelationsappearassimilarshiftsinRVsformanyerslocated onthesameplate,typicallyneighboringersontheCCD.Afterplate-widecom- parisonsofF-stars,RVcorrelationswerecorrectedwherepossible.Correctionsappliedto the10 4 RVsareaslargeas17kms 1 withastandarddeviationof2 : 2kms 1 .Notall correlationscouldbeidenautomaticallybecauseofmultiplegroupsofcorrelatedshifts, oppositeindirection,onsomeplates.Visualinspectionofplatescontainingnumerousfalse binarydetectionsleadtotheremovalof25platesincluding1155stars.Weurgeindivid- ualsusingsub-exposurespectroscopyinSDSStoconsiderthesesystematicshiftsinthe wavelengthsolutions. Qualitycontrolconsistedoftheremovalof:starswithoutvalidparametersinSSPP, erslocatedon`bad'plates,sub-exposureswithamedianpixelsignal-to-noiseratio(SNR) lessthan20orwithfewerthan3000upixels,starswithtimelags T< 1800s, starswithlessthanthreecleansub-exposures,andcorruptorspectra(from visualinspectionofstarswiththelargestRVvariationornon-characteristic T ).The sampleconsistsof14,302stars(16,894ers)withasmanyas47sub-exposures,spanning uptonineyearsofobservations(Figure4.1). Ourcleanedsampleischaracterizedbymetallicitiesrangingfrom 3 : 41 [Fe = H] +0 : 52.Toaidcomparisoninouranalysis,thesamplewassub-dividedintothree groupsofequalsizebycutsinmetallicityat[Fe = H]= 1 : 43and[Fe = H]= 0 : 66(Figure 4.1).Themajorityofthestarshavethreeorfoursub-exposures(median=4),typically takenabout15minutesapart.Themediantimelagforastaris2hours,howevermorethan threeyearsbetweenobservationscanbeseeninmorethan250stars(Figure4.1).SNRsfor sub-exposureslieintherange20 < SNR < 84withamedianvalueof32. 81 Figure4.1:Left:Metallicitydistributionfor14,302F-dwarfs.Right:Distributionofmaxi- mumtimelagbetweentheandlastexposureofastar. 4.3.2RadialVelocities RVmeasurementswereattainedthroughcross-correlationofsub-exposureswithamaster templateconstructedfrom7207sample-star,co-addedspectrawheretheco-addedSNR > 50.Thespectrawerede-shiftedusingtheredshiftvalueassignedtotheco-addsbytheSDSS pipeline,continuum-normalized,andaveragedtogether. Sub-exposureswereindependentlypreparedandcross-correlatedwiththetemplate.Spec- trawerecontinuum-normalizedbydividingthespectrumwithahighlysmoothedversionof itselfusingaFFTsmoothingalgorithm,andthencross-correlatedwiththetemplateatvar- iousintegerpixellags.Eachspectrumhadacross-correlationfunction(CCF)thatwas withasmoothsplineinterpolation.Withspectralresolutionof R ˘ 2000,thepeaklagin pixelstranslatestothespectrum'sredshiftat70kms 1 pixel 1 .Themeanandstandard deviationofRVsforindividualstarsareshownintheFigure4.2distributions.Thevelocity dispersionofthemeanRVsdecreaseswithincreasing[Fe = H],indicatingthatour[Fe = H]- groupssampleboththediskandhalocomponentsoftheMW.Thestandarddeviationof RVswithinindividualstarsislargerforthemetal-poorgroup;however,empiricallyestimated uncertaintiesalsoshowlargermeasurementerrorsformetal-poorstars.Thisunderscoresthe 82 importanceoftheuseofpropererroranalysisinamethodsuchasours. Figure4.2:Mean(left)andstandarddeviation(right)ofradialvelocitieswithinastar.Vari- ationsinthestandarddeviationofvelocitiesareinpart,bythelargermeasurement uncertaintiesformetal-poorerstars. 4.3.3Uncertainties ItiswellknownthatuncertaintiesinCCFpeaksmustbeestimatedempiricallyorthrough someMonteCarlomethod(e.g.,Petersonetal.1998).ForthisworkwedeterminedRV uncertaintiesempiricallybyquantifyingthespreadinmeasurementsforspectraofsimilar quality.Themedianabsolutedeviation(MAD)isarobustmeasureofthevariabilityof asampleandisrelatedtothestandarddeviationby ˙ =1 : 4826MAD,whereMAD= median( j RV i median(RV) j )(Leysetal.,2013).Allmeasurementswerede-shiftedinto therestframeusingtheSDSSestimatesoftheco-addredshift,andplacedintobinsof similarmetallicity([Fe = H] 0 : 25)andsignal-to-noise(SNR 2 : 5).Initialtestsshowed nocorrelationsbetweenmeasurementspreadsandeitherlog g or T .Estimatesforthe uncertaintyofRVmeasurementswithinabinwerecalculatedusingMADvalues.Here,it isassumedthatthemajorityofstarsdonothavedetectablevariabilityovertheobserved timebaseline,andthatfromintrinsicvariationsinRVareminimizedbyadopting 83 medianvalues.Afterperformingthisprocessforallbins,afunctionalformforassigningRV measurementuncertainties ˙ RV waswithaninverseproportionalitytoSNR,andwitha linearcorrectionin[Fe = H].Themeasurementuncertaintyasafunctionof[Fe = H]andSNR is,inkms 1 , ˙ RV ([Fe = H] ; SNR)= ( 26 : 51[Fe = H]+50 : 52) SNR +1 : 23 : (4.1) Uncertaintiesaresub-pixel,fallingbelowthespectralresolutionof70kms 1 pixel 1 .For exposureswithSNR < 25,uncertaintiesrangefrom3 : 0to8 : 0kms 1 ,withamedianvalue of5 : 0kms 1 .ExposureswithSNR > 40haveuncertaintiesintherange1 : 9to4 : 4kms 1 , withamedianvalueof2 : 7kms 1 . 4.4Multiplicity Theprobabilityofastarhavingacompanionwasdeterminedthroughmodelcomparison usingatrans-dimensional,hierarchical,MarkovchainMonteCarlo(MCMC)method.Two modelswerecompared:asingle-starmodel M s ,andabinary-starmodel M b .Thehyper- parameter ,indexesthemodelchoiceateachstepintheMCMCchain.Weevaluatedthe hierarchicalmodelusingthePythonpackage emcee ,aMCMCensemblesampler(Foreman- Mackeyetal.,2013). Thesingle-starmodel M s ,astarwithnon-varyingRVs,parameterizedbyasystemic velocity V 0 .Becauseintra-platesystematicsareknowntoexist,itisreasonabletoassume inter-platesystematicsexistaswell.Inlightofthis,( P 1)additionalparameters ps i ,were includedforeachstar,where P isthenumberofplate-MJDpluggingscomposingthestar. Theseplate-shiftparametersallowallRVsfromplate i toshiftbysomeamount ps i ,relative totheplate P 0 .Forthemajorityofstars P =1,noplate-shiftparametersarenecessary, 84 and M s isa1-parametermodel. Inthebinarystarmodel M b ,thesparselysampledRVsarebyasinusoidby four-parameters:thelogofthesemi-amplitudelog A ,thelogoftheperiodlog P ,thephase ˚ ,andthesystemicvelocity V 0 .Weassumecircularorbits(eccentricity, e =0),whichisa safeassumptionfortidallycircularized,short-periodorbits( P< 12days;Raghavanetal., 2010),wherewearemostsensitive.Asmallnumberofthebinariesfoundinthisstudy mayhavelongerperiodsandcouldhavenon-zeroeccentricities,butthisdoesnotour results.Plate-shiftparameterswerealsoadoptedin M b wherever P> 1. UninformativepriorswereusedintheMCMC.Themodelindex ,hasapriorfrom 0to1,where < 0 : 5denotes M s and 0 : 5denotes M b .Thesemi-amplitudeprior islog-uniformfrom3kms 1 ,comparabletothemeasurementuncertaintieswhere M s and M b becomedegenerate,to250kms 1 ,greaterthanthelargestRVinthe sample.Thepriorontheperiodisuniformintherange4 log P (s) 7.Thelowerlimit log P (s)=4 : 0isequaltotheorbitalperiodatwhichstellarcontactiscertainforlow-mass companions.Abovelog P (s)=7 : 0,RVamplitudesinbinarysystemsarecomparableto themeasurementuncertainties.CombinedwiththesparsityoftheRVdata,systemswith periodslongerthanlog P (s)=7 : 0areoutsideourrangeofsensitivity.Priorsarealso uniformforthephase(0 ˚ 2 ˇ )andsystemicvelocity( 600 V 0 (kms 1 ) 600). Markovchainswererunindependentlyoneverystarwithanensembleof200parallelchain \walkers"foratotalof2 : 4 10 6 samples,thenburnedandthinnedto6 10 5 independent samplesoftheposterior. Evidencefordetectionofacompanionstarisbytherelativeprobabilitiesof . Wetheprobabilityforthebinarymodel, asthefractionofsamplesinthemarginal- izedposteriorhaving = M b .Wenotethatthevalueof isdependentonthechoiceof 85 priors,andissensitivetothetreatmentoftheSDSSsystematics.Moreover,adegeneracy arisesastheRVcurveofalong-period,low-amplitudesystembecomesindistinguishable fromasingle-starsystem.Withthismind,westressthatvaluesfor arenotabsolute probabilitiesofasystemhavingacompanion,buttheabilityofthedatatoruleout modelsunderthegivenprior.However,the[Fe = H]-groupscanbecompared,relatively,by consideringthefractionofsystemswhere islargeand M s isstronglydisfavored.The resultsareshowninFigure4.3 Figure4.3:Distributionof ,thefractionofposteriorsamplesusingthebinarymodel,for stars. VariouscheckswereimplementedtoensuretherobustnessofourMCMCmethod.The rangeofthelimitsonthepriorswereincreasedtosearchfortposteriorprobability densityat,forexample,largerperiods.Withanincreasedrangeinsemi-amplitudesand periods,notincreaseinprobabilitywasseenatvaluesexcludedinthecurrent priorlimits,oursensitivitytoshort-periodsystemswithlog P< 12(d).We implementedasecondmethodforcomparingthesingle-starandbinary-starmodels.A posteriorBayesfactor(POBF)wascalculatedonindependentMCMCruns,usingeachof thetwomodels.UsingtheratioofthePOBFvaluesasametricforidentifyinglikely binarycompanions,wesawgoodagreementwithstarspredictedtohavecompanionsvia 86 ourhierarchicalmethod.Additionally,weperformedvisualinspectionofmorethan500 starswiththehighestvaluesof ,aswellasstarswiththelowestvaluesof .Asexpected, thosestarswithhighvaluesof showedtRVvariationsexpectedfromabinary companion,andstarswiththelowestvaluesof hadlittle-to-noRVvariations.Forthose starswithlittleRVvariations,thedistributionsinthemarginalizedposteriorsofthe M b parameterswereacrosstheentirerangesspbythepriors. Wealsoinvestigatedthe e=i parameterproposedbyGelleretal.(2008)asametricfor identifyingthestarswithlargeRVvariations.Wethatthe e=i parametersinglesout manyofthesamestarsasourmoresophisticatedMCMC-basedinference.Ourmethodnot onlytakesintoaccountdeviationsinRVfromthemean,butalsohowwellthedatathe expectedperiodicityofabinarysystem. Analysisoftheposterior,andvisualinspectionsofthebinarymodelshowthat 681starswith > 0 : 65aretruespectroscopicbinaries,thoughgiventhesparsityoftheRV curvesampling,therearesometimeslargeuncertaintiesinthevaluesforspmodel parameters.Anothernaturalbreakpointis > 0 : 95;theseare209starsforwhichthedeter- minationandanalysisofaccurateindividualmodelparametersshouldbepossible(andwill becharacterizedinfuturework).Anintermediatecutat > 0 : 80isacompromisebetween theselimits,yieldingalargersampleofstars(406)withmodestmodelconstraints.The valuesofthebinaryfractionsthatwederivebelowareinsensitive,withintheuncertainties, totheexactchoiceofcutin .ThisimpliesthattheRVvariationsforourbinarydetections aretlyabovethemeasurementuncertainties,andthatthebinaryfractionsreported arenotbiasedduetoencesinSNRorabsorptionfeatures. Figure4.4showsthelog P posteriorsforeach[Fe = H]-group,marginalizedoverallbinary systems( > 0 : 80).Theposteriordistributionsoflog P formanyofthesestarsarecomplex: 87 manyaremultimodal,byaliasingorotherissuesrelatedtothesparse,biasedtime sampling.Onesuchistheincreaseinprobabilityatlog P =4.Herethemetal- richand-intermediategroupscontainmorestarsthanthemetal-poorgroupwith t ' 10 4 s.Systemswithperiodsasshortasthisareextremelyrare(Drakeetal.,2014),and ourincreasedprobabilityinthisareamaybeduetoovAdditionally,thegapat t =10 4 : 6 s=12hr(Figure4.1)maytheestimateofaperiod.Wedeferamore sophisticatedanalysistoafuturepaper,buttheseshouldnotaltertheabilityto ruleoutasingle-starmodel.Fornow,Figure4.4illustratesthatwearemainlysensitiveto periodsintherange4 < log P (s) < 6,orlessthanabout12days.Weemphasizethata moredetailedanalysiswillbenecessarytoestimatethetrueunderlyinglog P distribution inoursample. Figure4.4:Averagedprobabilitydistributionsoflog P forallbinarydetections( > 0 : 80). Thesedonotactualdistributionsofperiods,andshouldonlybeusedasaguide toprobetheregionofMCMCsensitivity.TheshadedregionindicateswhereRochelobe ovowandcontactbecomesrelevant.Thedashedlinemarksthecircularizationlimitata periodof12days. 88 4.5Discussion InFigure4.5weshow f b ,themeasuredlowerboundforthefractionofstarswithshort-period companions( P< ˘ 12days)foreachmetallicitygroup,normalizedtothemetal-richbinary fraction. f b isalowerlimitbecauseofnon-detectionsasaresultofsparselysampledRVs andhighorbitalinclinations,resultinginlowamplitudes.Weseeagreementin f b measured forallthreechoicesin (0.65,0.80,0.95).Withaof =0 : 80,valuesof f b for themetal-poor,-intermediate,and-richgroupsrespectivelyare:2 : 5% 0 : 2%,2 : 8% 0 : 2%, and3 : 2% 0 : 3%.Sincetheobservationalbiasesthattbinarydetectionaremostlydue tothesparsityoftheRVcoverage,whichisn'tmetallicity-dependent,weconcludethatthe F-typeMSstarsinourmetal-richsampleare,ata2-sigmalevel,30%morelikelythan thoseinourmetal-poorsampletohaveclosebinarycompanions. Figure4.5:Short-periodbinaryfractionlimits,relativetothemetal-richgroup.Binary companiondetectionsarebyacutin ,thefractionofposteriorsamplesusingthe binarymodel.Groupmedianvaluesof[Fe = H]areused. Ourmetal-richandmetal-poorsamplesmostlytracetheMWdiskandhalo.in 89 thefractionofshort-periodsystemscanstemfromencesinthestar-formationprocess, dynamicalinteractionsafterstarformation,orsomecombinationofthetwo. Three-dimensionalhydrodynamicmodelsfromMachidaetal.(2009)actuallysuggesta higher frequencyofbinariesformedthroughcloudfragmentationformetal-poorclusters,due tothedecreasedrequirementofacloud'sinitialrotationenergytofragment.Moreover,their modelsyieldsystemswithshorterinitialseparationsatlowermetallicities.Theincreased f b observedformetal-richstarsinthisworkcanmorelikelybeexplainedbydynamical processesthanbyformationprocesses. Theobservedcesin f b couldbeexplainediftheclustersthatyieldedhalo starshadlargerstellardensitiesand/orgasdensitiesthanthoseofthedisk.Kornetal. (2012)exploretheofgas-inducedorbitaldecayonperioddistributionsinclusters. Theynotethatanincreaseddensityofgasinanewlyformedclusterwillleadtoalargernum- berofshort-periodsystemmergersshortlyafterformation.Parkeretal.(2009)describehow clusterswithhigherstellardensitiesdestroywidebinariesthroughdynamicalinteractions. Anincreaseinthedestructionofhigh-mass,wide-binarysystemsleadstotheejectionof formerF-starsecondariesintotheTheseorphaned,single-starsystemswouldincrease thetotalnumberofF-starsystemsinthehaloelydecreasingtheshort-period binaryfractionmeasured.Observationalevidenceofthesedenserclusterenvironmentsis neededtosupporttheseargumentsforalower f b inthehalo. Additionally,someclosebinariesmayalsotransfermassandconvertthemselvesintoblue stragglers(Luetal.,2010).Evidenceforanabundanceofbluestragglersinthehalohasbeen seen(Yannyetal.,2000),andmaycontributetothelower f b observedinthemetal-poor group.Also,Duch^ene&Kraus(2013)showadecreasein f b withageforSolar-typestars, althoughthisresultisbasedonvisualbinarieswithwiderperiods,andispoorlyconstrained 90 duetolimitedsamplesizes. WenotethattherecentresultsofGaoetal.(2014)andYuanetal.(2015),usingdata fromSDSS,showalargerbinaryfractionformetal-poorthanmetal-richFGKstarsinthe Inadditiontoprobinglongerperiods,theformerworkdoesnotmakeuseofsub- exposureinformation(usingonlytwoRVepochsperstar)andreliesonthecorrectnessof modelvaluesfortheperioddistribution,massratiodistribution,andinitialmassfunction. Thelatterwork,whichusesphotometriccolordeviationstoinfercompanions,showsa modestmetallicitydependenceontotalbinaryfraction.Sincetheirmethodisnotsensitive toperiod,thebinaryfractionstheyreportarestronglydominatedbymorecommon,wider- periodsystemsnearthepeakofalog-normalperioddistribution( log P (s)=10fornearby, Solar-likestars;Raghavanetal.2010).Itisclearthatconclusionsaboutbinaryfraction dependonanumberoffactors,especiallytherangeofperiodstowhichthesearchissensitive andassumptionsmadeabouttheoverallperioddistribution. OurMCMCanalysisyieldsposteriorprobabilitiesinparameterspace,allowingforamore detailedstudyofbinaryproperties(e.g.,periodandseparationdistributions),whichwillbe presentedinfuturework.Thetechniquesinthisworkhavedirectapplicationsforcurrent andfuturemultiplexedspectroscopicsurveys. WethankEwanCameron,DanMaoz,reyNewman,ChadSchafer,andthereferee forusefuldiscussions.T.H.andT.C.B.acknowledgepartialsupportfromgrantsPHY08- 22648;PhysicsFrontierCenter/JINA,andPHY14-30152;PhysicsFrontierCenter/JINA CenterfortheEvolutionoftheElements(JINA-CEE),awardedbytheUSNationalScience Foundation.FundingforSDSS-IIIhasbeenprovidedbytheAlfredP.SloanFoundation, theParticipatingInstitutions,theNationalScienceFoundation,andtheU.S.Department ofEnergyofScience. 91 Chapter5 BinaryFractionsandSeparation Distributions 5.1Introduction AsmentionedinSection1.4.3,thenumberofsystemsthatwillexperienceaCEphase dependsonthedetailsoftheseparationdistributionandthefractionofstarsthathave short-periodcompanions.Understandingbinaryfractionsandseparationdistributionswill impactthepredictedmergerratesandsupernovarates(Badenes&Maoz,2012).These propertiesalsoshedlightontothedetailsofthestarformationprocessandbinaryformation process,andspeaktothedynamicalhistoryofstellarassociationsandclusters. InHettingeretal.(2015),weinvestigatedtheshort-periodbinaryfractionofF-type dwarfstarsintheMilkyWayhaloanddisk.Inthischapter,weextendtheworktoinclude aninvestigationoftheseparationdistribution.AnMCMCsamplerhasbeenadoptedincon- junctionwithpopulation-wideMonteCarlosimulations,inordertoconstraintheseparation distributionsthatareconsistentwiththedata.WewilllookatthemethodologyinSection 5.2,andconcludewithadiscussionoftheresultsandlimitationsinSection5.3. 92 5.2MCMCandPopulation-WideMonteCarlo InourapproachtoinvestigatetheseparationdistributionofbinariesintheF-dwarfsample, wecombinedaMCMCsamplerwithpopulation-wideMonteCarlosimulations.Weassume thatthebinaryseparations,inourrangeofsensitivity(0 : 01AU 3 : 0.Thereasoning isthatourempiricallydeterminedestimatesforRVuncertaintieshadlimitedaccuracy.This resultsinsomedeviationsinthecalculated e=i values.Sincethemajorityofstarshave low e=i values,smalldeviationsintheassigneduncertaintiesleadtolargedeviationsinthe binheights.Thusthelikelihoodfunctionwouldbedominatedbyinthelow- e=i values,andwouldhavereducedsensitivitytothehigh- e=i binarysystems.Theposterior distributionsfor and f b aredepictedinFigures5.7,5.8,and5.9.Theresultsfromthe MCMCrunarediscussedinthefollowingsection. 96 Figure5.4: e=i distributionforthemetal-poorgroup.Model e=i distributionsareshown usingvaluesof and f b randomlysampledfromtheMCMCposterior.Thedashedline representsthebelowwhichbinheightswerenotusedinthelikelihoodfunction. Figure5.5:SamedistributionasinFigure5.4,forthemetal-intermediategroup. 97 Figure5.6:SamedistributionasinFigure5.4,forthemetal-richgroup. Figure5.7:PosteriordistributionfortheMCMCrunofthemetal-poorgroup,withparam- etersfortheshort-periodbinaryfraction f b ,andseparationdistribution . 98 Figure5.8:PosteriordistributionfortheMCMCrunofthemetal-intermediategroup,with parametersfortheshort-periodbinaryfraction f b ,andseparationdistribution . Figure5.9:PosteriordistributionfortheMCMCrunofthemetal-richgroup,withparame- tersfortheshort-periodbinaryfraction f b ,andseparationdistribution . 99 5.3Discussion Unfortunately,thereislittleadditionalinformationtobedrawnfromtheposteriorofthese MCMCruns.Theshort-separationbinaryfractionsallowedbythedata(2%{8%)are consistentwiththevaluesobtainedinHettingeretal.(2015)throughthehierarchicalMCMC method. Thesepopulation-wideMCMCrunsfavoredlargervaluesof ,uptothepriorlimit imposedat =6.PreviousMCMCrunswithamuchlargerrangeinallowed values heldthatlargevalues( > 20)achievethesameposteriordensityasmodestvalues( ˘ 6; Figure5.10).Thisislikelyduetothemaximumseparation( a =0 : 16AU)thatwasimposed Figure5.10:PosteriordistributionfortheMCMCrunofthemetal-richgroup,withan extendedpriorlimitin . fromourof f b .Forany f b ,arbitrarilylargevaluesof simplyconcentratebinaries at a ' 0 : 16AU.Atlarger ,allbinaryfractionswithinareasonablerangeproduceasimilar e=i distribution. Asexpected,atlowervaluesof ,wedoseeacorrelationwith f b ,whereasmallervalue 100 of f b isrequiredforseparationdistributionsfavoringshorterperiods.Withhigherquality data,thisregionofparameterspacewouldbemoretightlyconstrained. Acrossthe[Fe = H]groups,thevaluesof and f b arebroadlyconsistentwithoneanother. Anexceptionis,forthemetal-intermediategroup,thereisincreaseddensityintheposterior atlowervaluesof f b .Thisislikelyduetothelackofobjectswith8