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ABSTRACT

ASYMPTOTIC BAYES SEQUENTIAL TESTS OF THE HYPOTHESIS
THAT THE DRIFT OF A WIENER PROCESS IS ZERO

By

Thurman Joseph Brown, Jr.

Let {Xt: t >0} be a Wiener process plus a drift .
This paper is concerned with approximating the optimal sequential
procedure for testing Ho: w =0 wvs. Hl: w # 0 for the large
sample case when the prior distribution for the alternative is
approximately Lebesgue and the loss is approximately proportional
to Hp“k. The fixed sample size problem was treated by Rubin and
Sethuraman (Sankhya, A, Vol. 27, 1965, pp. 347-356). The solution
is similar to that of Chernoff (Sequential Tests for the Mean of a
Normal Distribution, Proc. Fourth Berkeley Symp. Math., Stat. Prob.
1, 79-91, University of California Press). It consists of two
strictly increasing functions ao(t) defined on [To,w) and
al(t) defined on [Tl,uo, with 0 < T1 < T0 and ao(t) < al(t)
on [To,mo, which determine the following sequential procedure.
Suppose observation begins at time t_ 2 0. Observe th |. 1f
ao(ts) < HthH < al(ts), continue sampling until “Xt“ = :i(t)'
If i =0, accept: if i =1, reject. The asymptotic nature of
the solution is derived, and standard numerical procedures are
used to approximate the regions and the risk. Rubin and Sethuraman's

work has shown that the general asymptotic testing problem may be

reduced to the above case.
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SECTION 1

Suppose [Xt: t > 0} is an n-dimensional Wiener process

with covariance matrix czln, 02 known, plus a drift ='(u1,...,pn).

That is:

X =p.t+Zt=p.t+ (th,.

¢ "’Znt)

0 if 1i¢#j
with E(Zt) =0 and E(Zitzjt) = )
otif i = j

We want to test sequentially HO: w=0 wvs. Hl: w#0

for the case in which the apriori measure go 0 is proportionately
)

normal on the alternative. That is,

2
§0’OGE) = el (0) + (-¢) £Q(u.u0,ob)du

2
where ko represents the mean vector, °0 is a constant, and
2
) z(ui'uOi)
n ] 202
2 2 1 .2 0
Q(IJ-’LLO)OO) = 1 Q(ui’lJ:Oi’O'O) = ( 2) e

i=1 2ﬂco

The dependence on n will be suppressed. Throughout this paper
unindexed summation signs will go from 1 to n. The cost of sampling
per unit time is ¢, and the losses of type I and type II errors

are W, and wlnp“k respectively. The fixed sample size problem
was treated by Rubin and Sethuraman [1]. Chernoff [2] treated the
problem of testing sequentially HO: w<0 vs. HI: w > 0. Bickel

and Yahav [5] showed his procedure to be robust. Lindley [ 6] and
1



others have shown that for large samples the exact form of the prior
distribution is irrelevant and that maximum likelihood estimation
is optimum.
We now normalize the problem to one in which we test
Ho: w =0 wvs. le uw # 0, but with apriori measure placing mass
one at u = 0 and Lebesgue on the alternative: pO,O(E) = IE(O) + v(E),
v Lebesgue, and with wo and 02 replaced by ones. Although
the apriori measure is not a probability measure, it gives rise to
a posterior probability measure.

Three steps are employed to accomplish the normalization.

Step 1) Let

*
(VI 1Y ’
*
t = gt
** * * 2 *
Then X, =8t-42" with 2, _N@©, &1 t") where N(a,B)
t aof t* t* g n
denotes the normal distribution with mean a and covariance matrix B.
2
If1) =1 and2) & =1 then X  has drift
af 8 t
* * *
o= (pl,...,un) and covariance matrix In per unit time measured
*
in t .
The Bayes risk for a given procedure in the original problem
is given by

B = e(cE[T|0] + vy(O)Wy) + (1-¢) [(E[T|u] + wl\\u\\ky(m)c(u,uo,og)du

where +v(u) 1is the probability of error given u, and T 1is the

sampling time.
W
* * *, % * %
5 =w0{e(woLB E[T |0] + v (0)) + (1-¢) j‘(w0—°3- E(T |w1+y &) ;—J;
OQ'
1*1% (u-*,afuo ,cxzccz)) ™)



* * 1 *, ok
where vy (u ) = v(u) and 3 E(T \p ] = EFT‘p] .

W
* ¢ *x *2 _ 22 * 1
= WOB’ bg = Mg O @ gg» and w1 g

So letting «c

minimizing /3 is equivalent to minimizing
* * % * * k% *, ok k k *
B = e(cE[T [0] + vy (0)) + (-¢) [(cE[T | 1+ Wyl |’y )
* ok X2 *
Q(LJ- ’uo’ o )dp' °

The solution to equations 1) and 2) is

I
= 2
(o}
2
B=o
* c
So c = . 2
o°
2.k
. W (o)
1 1%

Step 2) We now show that testing HO: w =0 wvs. Hl: w#0
with apriori measure ¢ at yu =0 and (l-e)N(po,ogln) on the
alternative is equivalent to testing the same hypothesis against
the same alternative, but with apriori measure placing mass one at
w =0, and by, b constant and v Lebesgue, on the alternative,
and starting observation at some positive time (discounting sampling
cost accordingly).

The posterior measure given Xt = x 1is now computed for

the normal apriori problem.



gx t(o) = P(H':O‘Xt_w) = CQ(X1O;t) 2
? e@(x,O,t)""(l-e)j'Q(x,ut,t) Q(u,uosco)du
= e@(xaozt)
2
eé(x,O,t)'*'(l-e)Q(x.uot,t(1+tco))
2 2
LBy e Yo
5 2t 2
1- 2 + -
= [1+(_€) (;2.) e 2e(1 tGO) ] 1
€ 1+to
0
DX E(x, )]
Lo EiTMoy 2
= 2t 2 xt /o
1- 2 2t (1+t
&S5 Hrtoy) gy, —252 L
1+tg t+l/g t+l/g
- 0 0 0
dg (W#0) = du
X,t 2 2
Ix, z(xi-uOit)
n 2t 2
5 2t (1+tg.)
- 2
1+ (9L’ 0
1+t
0
Mo W
letting X', =X +—O, x' =x+—0, and t' =t + L
t t 2 2 o2
% % 20 )
L}
. LX;  Dag;
1o 1 .2 28 %
§et 0@ =PGO|X], = x) = [1+ (H(7)" e % 177,
’ t's
2 2 0
oD By
1o¢ 1 .2 2% g2 x' 1
HE e 0 s, D
t'co
dgx',t'(u#o) - .2 2 : ¢))
Ix; EuOi
n 2c' ) 2
- o,
1+ EHtple 0
L
t c'o
For the uniform alternative problem
,0,t
Pt (0 3(x,0 i)(x+ b )(l)“ w.5 0
X,U, j‘ t [ U-:t,t "
2
Ix

n 1

1+ 6dH2 FE g1 @



2
n

2 2 1

bEH2 55D

g,  (u#0) = : d . | 2)
’ 2xi

n

[1+ b(%ﬂ)ze 2t

Equations (1) and (2) are equivalent for the choice

2
_ Do
2 202
2 - 2
b = ble,un,0) = & (E5%e 0
0°"0 € 2n02
0

Step 3) For testing Hytw =0 vs. Hyjiyp # 0 with apriori
mass one at p =0 and bv, b constant and v Lebesgue, on the

alternative, the Bayes risk of a given procedure is
k
B = (cE[T|0]+ v(0)) + I(cE[T\u] + WlﬂuH y@u))b du .

Only procedures for which the risk is finite are considered.

*

b= o ’

*

t = Bt
Then X', =& J“t*+2%,, 2" _ N 6’ It

en *=_|J' *° * ~ s ’
t af t t B n
8 52 * *

so for 1) Y =1 and 2) E_ =1, X, has drift .  and covariance

t
*
matrix In per unit time measured in t .

In terms of the starred variables

W
5= GELT (0] + v ) + I BT (' + = 1N e e
o o

* %
with v (u )

*
¥G) and SE(T|W7] = E[T]u] -

So for 3) E;
a

1, minimizing /@ 1is equivalent to minimizing



8" = (BrT710) + v (@) + JC BT T + WY W) 0"

12)
o< ol
where ¢ = 5 and wl = ak .
The solution to the three equations is
1
a = b"
.2
g=b "
1
g=b "

The total effect of the normalization is to make the normal
; . 2
alternative problem with constants c, WO, Wl, k, o, and apriori
2 .
constants ¢, Bo» and % equivalent to the Lebesgue alternative

problem (mass one at p = 0) with constants

wro=1
0 = )
*
g 2 =1 ’
2
} T
2 no?
* 1-
= BT 0,
€
0 2o
0 2
0i
k Kk 2
W - = 2ng
* 1 ,.eqn 2,2 0
Wl WO (1"6) (21'700) e s
*
kK =k

nl01

102 2 o2,
*
Com G en Die O v Y .
t (o} 2 00

Boj

2 02 noz 2
*
€ =g enPe 0w+

"¢ o o



so that observation begins at the point

2 2
Boi Doy
1 2 2 2
- 2ng oy ng
n 2n 0 o
(@5 e Oy " me 7).

(¢}
0

Equivalence of the two classes is in the sense of what might
be termed lens equivalence. That is, the normalized problem views
linear functions of the process Xt and the time t of the original

* *
problem. Thus, if X , = aXt + b, and t = ct + d, and if the

t
* ok
optimal boundaries in the normalized problem are a,(t ),*then the
a, (t)-b
optimal boundaries in the original problem are ai(t) = —l—;——-—-

Considering the normmalized problem, the posterior probability

measure given Xt = x agrees with (2), but with b = 1. Letting

2
Xy

n _1
2 2t
e

2
UGe,t) = (55 ,
suppressing its dependence on n, we have
by @ =[1+UG,0]7
X,t ’

B, GF) = [1+ 06,01 U6 08650 -

Two strictly increasing continuous functions ao defined

1< Ty

ao(To) = al(Tl) =0, and a; < a; on [To,m) determine a sequential

on [To,w) and a, defined on [Tl,ao, with 0 < T

procedure in the following way. The two functions partition quadrant

I into three regions:



p° = LGy t): y s ay(e), t = Ty) "stop and accept"
p! = ((y,t): t < Ty or y2 a(t), t 2 Tl] "stop and reject"
B =[(,t): y<a(t), Ty <t<Ty,or
" : "
ao(t) <y < al(t), t 2 TO] continue sampling".

Suppose the first observation Xt, on the process is at time ¢t'.
The procedure is: observe nxt,“. 1f (“Xt.n,t') € Di, i=0,1,
stop. If (“Xt,H,t') € B, continue observation and stop at the
first t > t' such that “Xt“ = ai(t). 1f 1 =0, accept; if

i =1, reject.

A procedure of the type just described will be denoted by
(ao,al,Tl,TO). Since the procedure depends on norm and to avoid
plathoria of notation, D0 will interchangeably denote the subset
of quadrant 1 given above, and the subset of n+l space given
by [(x,t); (||x||,t) € DO], and similarly for p! and B. The
meaning in each case will be clear from the context. In general,
the domain and range of the functions that map (x,t) into
(l|x||,t) will not be distinguished.

We now define R(x,t,un) to be the conditional risk given
Xt = x at initial time t, for a procedure of the above type which
observes a process with drift _, and with sampling cost ct in-

curred at the onset of the observation.

On D1 the conditional risk is given by

ct if p#0

Rl(xytpu) =
ct+1 if p =0

On D0 the conditional risk is given by



Ro(x,t,u) = ct + wl\\u\\k .

We restrict consideration to boundary functions ai(t)
for which the conditional expected sampling time T, given
Xt, = x', for a process with drift p, is finite for all

, *
(x',t') € B, and .

E(T\Xt, =x',u) <o . (A)

Fk
Theorem. On the set B the conditional risk has con-
tinuous second partial derivatives in X, and t for every u,

and satisfies the partial differential equation
B B 1 B
Rt(x,t,u) + ¥ uiRi(x,t,u) + 2 T Rii(x,t,u) = 0, for each . (3)

with subscript 1 denoting differentiation with respect to X,

The proof of (3) is based on Theorem 2.1 of Doob's paper
(77

We now fix p # 0, and consider an arbitrary initial position
X ,=x'. On the boundary J J (a.(t),t) we define a continuous

t ! i=1,2 2T,
function g by

g (ay(0),0) = ct + W |ul*,

g (a;(0),t) = ct

Define the stopping time T = inf {t: X, hits the boundary]}.
t>t'
Note that T 1is the exit time from the continuation region. The

conditional risk RB in (3) can then be considered as the expectation

Later in the chapter we make further restrictions on the boundary
functions.

*%
Thanks to Dr. Vaclav Fabian for pointing out the application of
Doob's work to this result to me.
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of gu(XT,T) with initial position Xt' = x' at time t

The conditional distribution of {Xt: t 2 t'} given

Xeo = x', is the same as that of ({x'+ ,(t -t') + =

/2

t 2 t'}, where gt is Brownian motion with covariance matrix
2tIn. We may thus consider gt instead of Xt"
In terms of §t, the stopping time T is the first time
] + = . '
(x' + u(t-t') /2 ,,t) € ._U (ai(t),t), tzt
i=1,2
The stopping time T 1is equivalently determined by the first time
V2 (x'-ut) + € st) € U (/2 (a(t)wt),t); b 2 ¢!
i=1,2
which in terms of §t can be considered the exit time from the
continuation region defined by the boundary (/2 (ai(t)ﬂxt),t)
(i = 0,1) with initial position /2(x' - put') at time t'.
Letting s' = -t' and T = t-t', the stopping time is
equivalently determined by the first time
V2 (x'+us’) +g :s'-m) € U (2a(r-s)ulr-s")),s'-m).
i=1,2
Thus we are observing a trajectory process in the sense of [7,

p.- 256]. Let T =T - t', and define
W (2(a (T-s") - p(T-s"), s'-D = ¢ (a (T),D)

If T(x,s) 1is the conditional expectation of w given
the initial value gs = x at the initial time s, then under
assumpt ion (A) the conditions of Doob's theorem [7, Theorem 2.1]

are satisfied, and we get
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2
A n -«
as“-z ZT‘-

X

The theorem now follows since for each fixed o
B =M
R (X,t 11‘)‘) = "(/z(x + LLS) ,S)

where s = -t.
The proof for the case u =0 1is similar, the only dif-

. . s ey o
ference being in the definition of g .

Now we define the transformed risk

t
Tu.X, - - Zu
H(x,t) = IR(x,t,u)e tio2

On D , H 1is given by

Hl(x,t) = (ct+l) + U(X,t)J‘CW(u,f,‘bdu =ct(l + U(x,t)) + 1 .

Ho(x,t) = ct + U(x,t)j(cc + wl\(u\\kn(p,f,%)du

£x
;3 T2tk ntk
» (37" e 22 TA+=3D)
= ct + U(x,t)[ct + WL I @ Y
§=0 TG+
I
o (i e 2¢
= ct(l + U(x,t)) + WIU(x,t) T 2¢ 0
o 7
, 5 TG+ 2
Q@ ——
rgq+3y

= ct( + U(x,t)) + FO(x,t)
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Furthermore, for nonnegative integer m

2.1
1 a m wm (zxi)
=) = I ¢ »M s
t L=0 n L+m

[l o %

with
o m-L
c (Lym) = () N (n+t2m-2j) for L<m: c (mym) =1
n L =1 n

For zxi = 0, the sum in HO is

k ntk
2 2 T(“‘?
t

(Gw)
1‘(‘2')

so that the smallest value of t for which Ho(x,t) could equal
Hl(x,t), namely that value of t for which HO(O,t) = Hl(O,t),

call it tz’ is

+k n
TS
£, = 200 2 )k'“ s
I"(i')

We now investigate the function H(x,t) on the region B,
which we call HB(x,t). From (3), we get RB(x,t,u) has continuous
second partial derivatives in X, and t and satisfies the partial

differential equation

R (x,t,u) + Tu, RS {(%othu) + % ER {(x,t,u) =0 for each fixed .

(Zu)
Since S(x,t,u) = exp[zxiu,i -—5— t] satisfies the equation

St(x)t’l-") + % ESii(x,t,u-) = (‘(mi)/Z)S(X,t,u) + %(mi)S(x,t,“) =0
for each y,

B
we get that T(x,t,u) =R (x,t,n)S(x,t,.) satisfies the equation

Tt(x,t,u) + % XTii(x,t,u) =0 for each y,
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in view of the following calculations.

_ ,.B B B B
Tt(x,t,u,) + % ﬂii(x,t,p,) = (RtS + R st) + lg(zkﬁs + 2):Risi +

B B B B B
= + + -+ =
since Si = “is' It should be noted that (3) was used in the above
derivation.
Now

H(x,6) = Ro(x,6,0) + [ T(x,t,u)ds = RO(x,t,0) + H'D(x,t).

From now on we restrict the consideration of boundaries to those

for which

*
E[T\x,t,p] <t+m where m 1is finite . (B)

For such boundaries we shall show that HB(x,t) satisfies a dif-
ferential equation. Let L = g; +%g azf be a differential
operator and C:(B) be the space of in??%itely differentiable
functions with compact support contained in B, and endowed with

the topology of Schwartz [8]. We observe that H'B is bounded

on compact sets. Indeed,
B 0
H' (x,t) < J(c(t + m) + wlﬂpnk)S(x,t,u)du = U(x,t)c(t + m) + F (x,t)

where m as given in (B) is the bound on the expected continued

sample time. Hence,

nw) = [ 50,0y 0x,t) dxdt

This does not severely restrict the problem as can be seen from
Sections 6 and 7.
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exists for all y € C:(B). Clearly, [1 1is linear and continuous
in the topology of C:(B). This implies that T[] is a distribution.
Using the definition of the differential operator on the space of
distributions as in ([9], p. 250) we shall prove the following
theorem.
Theorem. Let L and [ be as above, then L] = 0.
Proof. By ([9], Def. 23.4) we should show that H(L*W) =0 y
for all y € CT(B). Noting that ([9], p. 249) L'y € cO(B), we

get

n(L*w) = jIH'B(x,t)L*w(x,t)dxdt = If[jT(x,t,u)du]L*v(x,t)dxdt, )

and by Fubini's theorem we may write

H(L*w> = _f[jfT(x,t,u)L*w(x,t)dxdt]du )

For each pu, T(x,t,n) is locally integrable and hence by [9, p. 249,

250]

na’y) = JUILT e, e,u) 4 (st dxdeYdy = [FLILT(x,t,0)§ (x,t) dy]dxde

since the transpose of L* =1L. But for each ., LT(x,t,u) =0
giving n(L*¢) = 0. Thus the theorem holds.
(C) Assume H'§+1(x,t) and Hiﬁ(x,t) are continuous. Then we
get that Hi+1(x,t) and Hﬁi(x,t) for (x,t) € B are continuous
by the definition of HB and property of R(x,t;O). Under the
assumptions (B) and (C) we get
Corollary 1. HéB(x,t) +% Hiz(x,t) =0. For p =0 we
get from (3) that RB(x,t,O) satisfies the equation Rg(x,t,O) +
x5y R?i(x,t,O) = 0. Hence by definition of HB(x,t) we get }

Corollary 2. Hﬁ(x,t) + %5 Hﬁi(x,t) = 0.
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Remark. In [2], it is claimed that the analogue of HB(x,t)
for his procedure and the problems satisfies the equation of Corollary
2. However the conditions for the validity of the equation are not
stated precisely.

The procedures for which the analogue of Corollary 2 is
valid for [2] are not clear to this author. In the following example
we show that there do exist procedures for which assumptions of our
Corollary 2 are valid.

We now demonstrate that for a sequential probability ratio
test (SPRT), in fact H'B(x,t) does have continuous derivatives of

the first order in t and of the second order in x, so that on B,
B B -
H2 (x,t) + % Hll(x,t) =0

Let a, < 0 < a) and % = slope define a SPRT for testing
Ho: u =0 wvs. HI: p =M>0 with cost of sampling ¢ per unit

time and loss of acceptance (loss of hitting the lower boundary)

given by Wllu\k. Let RB(x,t,u) denote the conditional risk of
starting observation at the point (x,t), having incurred cost ct

at the onset of observation, and continuing observation of the process
with drift |, until the boundary is contacted, with additional loss

of wl\u\k if the lower boundary is contacted.

Using the notation:

- M .
bi(t) = ai + > t, i 0,1,
W(x,t,u) = .M - 2p,)(b1 - x) and L(x,t,n) = (M - Zu)(b0 - x),

-a =b, - b

then on [t >0, b, < x < b1] =B, and -~o< p < o,

"
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RB(x,t,u) = ct + [ew - eL]-l[ew - l]wl\u\k + c(2(w(eL -1 +

L1 - ew))/[(ew - eL) M - zu)z'_\) = ct + V(x,t,p,)wl\p.lk + Q(x,t,u),

where V corresponds to the probability of hitting the lower
boundary, and Q corresponds to the expected continued sampling
time. This calculation is an application of the results of Section

3.11 of Lehmann [4]. (RB(x,t,%ﬁ is a 1limit.) Now on B

B 2¢ 2ch

R]. = [ew = eL]-l['wl\lJ'\k(M = zu)] +[ = ( W L ] ’

M- 2

R =L - ey ful M

Zu)z - 2ch(M - Zp)] N

RS = ¢+ [e" - &M 7w |u)®

2¢
M - 2,

™M -2 +

(¥ }c4

LRR
- 207,

so that using the fact that

%[(M - 2u) -uM

2,) - ﬁ!_%_ZEl_ =0

it is easy to see that

B 1B B
Ry + 5 Ryy + Ry

Before proceding, we show that Q(x,t,,) < m, a constant
independent of x,t, and ., by extending the definition to B

closure,

Q(bo(t)rt’u) =Q(b1(t),t,u.) =0,

and utilizing the facts

a) Q(X"'%tr, t+'T’|J') =Q(x9t’u)

b) sup  Q(x,t,y) <m for fixed t
bOstb1

i <V C )
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M

The proof of b) follows from the fact that if j < 27 then ew 21

and eL <1, so

QGx,tw) = 200 - 20" - TN, - W -1 +
(bg - x)(1 - ew)] < 2h[M - 2@’1

+ +
and so there exists a ke such that for . > ke ,

sup Q(x,t,u) < e -
bosx:bl
w>k

e

- +
Similarly k may be chosen, and letting ke = max [ke, |k717,
€ €

sup Q(X,t,u,) < e,

b OSXSb 1

Iw| >k
a fact that is conceptually evident.
But Q(x,t,u) is continuous (Q(x,t,;—‘) = (b, - %) (b, - x))
in x,t, and L, so that on the compact set [bo <£x < bl' MERS|
it is bounded. Thus Q satisfies b), and indeed, if m is the

bound on Q,

HnB(x,t) = j RB(x,t,u)S(x,t,u)du < I(c(t + m) + wl\u\k)S(x,t,u)dp

= U(x,t)c(t + m) + Fo(x,t)

Now for arbitrary (x',t') € B, we let

R = [tos t <t (ty =a' +3¢t <sxs bi(t) =a'+M,a <a'<a'c< 81]

b!
1’70 0 2 1 2 0 0 1
define a rectangle containing (x',t') and contained in B, and
show that

sup _\Tz(x,t,u)\ < Y(p) integrable dy .
(x,t)ER
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* .
Then 3, p. 126 of Loeve [10] says

HaP(x,t) = [ T,0x,t,0) dy (x,t) €R. %)

Now
2 2

ITy) = |®; - WRS| < [[R,| +u|R%)2s
and

Rg(x,t’u) =c+ Wl\u\sz(xst»u) + C‘Qz(x,t,u)
But

VoGt | = (L - efy7h M - 2]

and

0200t | = 1200 - 20" - TG @ - e+ B - 2

satisfy the conditions a) and b), where the sup in condition b)

reads b6 < x < bi. Thus on R

Ry < e +m + W [u]*n

On R,
S, €)= UG08 (uroop) € UGI(E) 1t )8 W)
where

= (t,/2 )}5 [t—Q( - (b'(t )/t )2 b'(t )/t
= (t)/2m) “expl7~ (b olf? /) 1w < byl /ey

8 = (t,/2m byt )/t < < bi(e) e,
= (t,/2 )!5 [t—o (w =)/t ))2 > b!(t)/t

p/em texplaym (b =Byt /ey ] w > by(E)7e,

Although g 1is not a probability measure, it has the property

that all of its "moments'" exist. Thus
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\TZ\ < U(bi(tl),to)(\Rg\ + pz\RBl)g(p) integrable dy,

and so (4) follows. The corresponding proof that Hiﬁ exists is
similar. The continuity of the derivatives is clear.

We now return to the problems at hand. The remainder of
the paper will concern itself with numerical approximations to the
optimal boundaries for problems characterized by the triple (c,k,wl).

From this point on, it will be assumed that the boundaries
are such that

LH'" = 0,

so that

LHB = Hi(x,t) + %5 Hﬁi(x,t) =0 on B.

We also note that Fl(x,t) =1 and Fo(x,t) satisfy the condition

LFi =0, i =0,1, since

P00 = Pl st wd = 5ot

and the integrand satisfies the condition LS = 0.

Note that ﬁ(x,t), the untransformed risk, is given by

RGx,6) = [RG,tup)dp ()

t

_ _R(x,t,0) U(x,t) x 1l
ST AU6L0) T AT UM ) JREGEW G, T

t
DugX; - 7 Duy
a4+ U%x,t)) [R(x,t,0) + JR(x,t,u)e itiC 2 .

H(x,t)
(1 + Uu(x,t))

1

) o 2.2
gurther, letting r(xl,...,xn) = Hx“ = (2xi) , U(r,t) =

n
2

N
(a3

2n

(2—0 e , and G(r,t) = ct(l + U(r,t)), we have
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Hl(r,t) =G(r,t) +1 =G(r,t) + Fl(r,t),
, I
2 +k
0 ® (gE)j e ) % Fag+ EE—)
H (r,t) = G(r,t) + wlU(r,t) T 3t (;) —
j=0 rd +‘2')

= G(r,t) + Fo(r,t) .

B 1. B n-1..B -
Ht(r,t) + > Hrr(r,t) + (2r )Hr(r,t) o,

and Fo(r,t) and Fl(r,t) satisfy the same differential equation.

The last equation follows from

1 3
B ,1_B _ __ B _ 1 .B 2 _2-1 B 2, - 2, .2 =
H +5 IH,, =0 =H +3 z[Hrrxi(zxi) +H_((2x)) 2 - x;(Zx) 2)7

2
B, 1_B B, 1 i _.B,1.3B n-1.B
- Ht + 2 [Hrr + Hr(z(r r3))] Ht + 2 Hrr + (Zr )Hr :

The risk function H(r,t) for an arbitrary procedure

(ao(t),al(t),Tl,To) is given by

Hl(r,t) on D1

H(r,t) = Ho(r,t) on D0

HB(r,t) on B

H(r,t) is continuous, of course. Now the general properties of
the problem have been displayed.

Let (éo(t),sl(t), 51,56) denote the optimal procedure,
depending of course on the triple (c,wl,k) and the dimension
n. The risk function H(r,t) will satisfy the following free

boundary condition.



That is:

in [27].
proof.

remarks
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lim H (r,t) = lim H (r,t) i=0,1
B r i r

re r€Dd

r—-ai(t) r*ai(t)

the r-derivatives '"match up'" on the boundaries.
The free boundary condition is determined as by Chernoff
The posterior distribution has nothing to do with the
We now essentially repeat his hueristic proof. Clarifying

are given in [2].

ao(t) and al(t) defined on rto,m) determine the trans-

formed Bayes risk H(r,t) for all (r,s) with s >¢t_. It is

desired

0
to extend ai(t) backwards to uniformly minimize

a a

0 B T 1
H(t) = g H (r,t)dr + J‘ H (r,t)dr + j H (r,t)dr
) 2
for t < to. On the boundary Hi = HB, so
a a
0 1 o
di _ 0 B 1
dt—g tdr+j thr+J‘utdr
1) 2

1f

Ho(a ,0) #Hl(a ,b)

. 0 B
an increase in a, if Ht > Ht’ and similar adjustments for other

possibilities, would increase i and thereby decrease H for

t<t0.

dt

If the optimal boundary has finite slope, we must then have

on the boundary

_2‘

Tf'i.'a"m Premanm. e
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Differentiating Hl(gi(t),t) = HB(Qi(t),t) along the boundary,

we get
da da
i i i B {
+ H H — .
Hr dt t r dt + Ht
So

i _ B
Hr(r,t) Hr(rat)

along the boundary.
Since tz is the smallest value of t for which we could

possibly stop and accept

For t small,
n

' 2n,2_ -1
P, (@ S0y (O =11+ (D7)

is small, which would lead one to believe fl strictly greater

than zero. This can be shown easily for sufficiently large values

of c¢. That is,

for otherwise the sampling cost of getting to the acceptance region
is larger than type I error = 1.
However, the author has not shown in general that T, > O.

1

More will be said about this in Sections 6 and 7.



SECTION 2

The method we propose to use to approximate go(t) and
al(t) is the following. For large fixed t, we approximate ;0(t)
and Ql(t), using the known functions HO and Hl and a polynomial
function to approximate HB. Then finite difference techniques are
used to "fill in" the boundaries backwards in time. This section
deals with approximating Qo(t) and El(t) for large t.

Bars in general will denote optimal quantities, and primes
will denote approximations to optimal quantities. Also, an arbitrary
procedure will be condensed to (ao(t),al(t)): T1 and T0 being
understood to be the values of t for which al(t) and ao(t)
equal 0.

We note that the notation H(r,t) hides the procedure
(ao(t),al(t)). Also, the risk function associated with a procedure
depends on the functions ao(t) and al(t), and not just on the
values of the function at a fixed value of t. That is, let HA(r,t)
be the risk function corresponding to the procedure (ao(t),al(t))
and HB(r,t) be the risk function corresponding to the procedure
(bo(t),bl(t)). Then ao(to) = bo(to) and al(to) = bl(to) by no
means implies HAB(r,tO) = HBB(r,to).

Let i(r,t) denote the optimal risk function: ie, the risk
function associated with the optimal procedure (éo(t),sl(t)).

Throughout this section i = 0,1.

23
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Suppose the optimal procedure were known. Then differentiating
the equations ﬁB(Qi(t),t) = ﬁl(éi(t),t) and recalling the free

boundary condition

Ha (@, (0),0) = H)(@&, (0),0) 1)

we have

]

Hy(a,(6),0) = H)(@,(6),0) (2)

and differentiating equations (1) and (2), we get

5 - da . B - I dé. - .
HY (3, (0), )77 + Hy, (8, (6),0) = B (@, (0) )3 + H), (@, (0) 1),

B - da, o - da. _.
HY, (@, (6),6) 7 + By (a, (6),t) = Hi,(a, (£),6) 3 + Hyy(a (1) ,0),

from which it follows
G (0,0 - B G (0,0) Hy,@,(6),0) - Hy,E (0),0) =

@G, (0,0 - KL G (0,0)° .

B =i

The expression Hll - Hll may be reduced.
8 - =i - =B - n-1_ —B -
- = - - —— . t t
Hll(ai(t),t) Hn(ai(t),t) 2H, (a, (t),t) 51(” “1(31( )»t)
n-1

=i - _ i =i - =i -
= Hll(al(t)’t) = 'ZHz(ai(t))t) = El(t) Hl(ai(t)st) = Hll(al(t)’t)

= n-1 = 1 -
i CACHOIC R R r I CHOTO RS UM CHO RO

S AR E0,0 + Ry PG 0.0 + 3P GE0,0] -

The second expression in brackets is zero, while the first term is
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-2[ c(14U(E(£) ,6))] - 2et[Uy(a (£),8) + (ﬁ%t—)wl(éim,c)
i
1
+ = U (a (t),t)] .
The second term in this expression is also zero. Hence
HY (3, (6),0) - H (3,(8),0) = -2¢(1 + U(E,(1),t))
11° 4 ’ 11°71 ’ i ?

B - B -
However, le(ai(t),t) and sz(ai(t),t) are unknown
(even assuming éi(t) known) .
The following set of calculations holds for an arbitrary
procedure, so the bar will be dropped.

Differentiating the equation
(0 + G20 K, + 21,0 =

twice with respect to r and once with respect to t, we have

B n-1, B n-1, ..B 1 B _
Hrt + (2r ) Hrr - ( 2) Hr + 2 Hrrr =0,
2r
B n-1, . B n-1 1. B _
Hrrt + (Zr ) Hrrr - 2( 2) H + 2( ) H *t2 2 Hrrrr =0,
2r 2r
B 1. B
Htt + ( ) H 2 Hrrt =0,
from which it follows
B _ l _ (-1 B n-1. B
Ho (r,0) = 5 B (r,0) - GO H__(r,0) + (55 Ko (r,0)
2r
B _ l n-1. B
Htt(r’t) A rrrr( r,t) + (Zr ) Hrrr(r’t) ?

L&D - (—)]<—> 0 + 13D - &Ebhdy e,
r

We now consider t fixed and large, say T, assume

(So(t),il(t)) known, approximate ﬁB(r,T) by a 5th degree polynomial,
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compute its third and fourth derivatives, and substitute them for
B3 (a.(T),T) and HC. . (a,(T),T). This in turn enables us to
111741 ’ 111174 o
. =8 - =3 -
approximate le(ai(T),T) and sz(ai(T),T).
We find a Sth degree polynomial fT(r) subject to the follow-

ing conditions.

f(a,(D) = B (@@, (D),T)
£0(a; (M) =G (D,D) ,
"weg = 5B /2

£ (D) =’ @.(D),T) .

Suppose polynomials Po(r), Pl(r), Pz(r), Qo(r), Ql(r), and

Qz(r) satisfy the following conditions.

Po(ay(M) = 1, Py(a (1) = P (ay(T)) = Pi(a,(T)) = Pr(a (1)) =
Py(a (1)) =0,

P1ay(™) =1, P (a(T) = P (@ (1) =P1(@ (D) = PY(a,(T) =
PY(a,(T)) =0,

Py(ag(T)) = 1, P,(a (1) = P,(a () =P (a (1)) = P)(a;(T)) =

Py(a,(T) = 0,

Q@5 (M) = 1, Qy(3y(T) = Q) (3 (D) = Q}(&,(D) = Q)}(a,(T))
Q)(a, (M) =0,
and similarly for Q1 and QZ'
Then £ (r) = HO (3, (T) )P, () + H) (3, (T) ,D)P (r) +
[-2c(L + UG, M, 1) + B (3, (D),D)] By + B @M, 1 Qo) +

lE,(0,1) Q@) +[-2e0 + UG (D) + ;G (1), D] ¢,

will satisfy the above conditions.
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A solution in terms of Po thru Q2 is the following.

Let ) = 51(T) - EO(T), s(r) =r - QO(T), and v(r) = Sl(T) -r.
' 3 2
py(r) = 11+ 3§§51-+ elelth)
A A
3 2
P = S fs(y + 3(elEly
A

_ @) s ér))z

P, (r) ,
2 3
3 2
Qy(r) = 1+ 33{51-+ L)
A A
3 2
Q@ = EE vy - 3,
A
3 2
Q, () = (S(g)) ivér))

We now compute the third and fourth derivatives and evaluate

at ai(T).

£2(3,(D) = ;% @G m,n - B @ m,m) + ig [ -36H5 (3, (D) )
B - 1. =B - -

-26H] B (1), 1)] + (-9 By (D),) + 36} @&, (D),D)] ,

£2(a (D) = f% @@ m,m - B @Eym,n) + 1—2 [ 2485 (@, (1) ,T)

|36 (3 (), D] + 3 [31) Gy (D,D) + 8 G (M),D],

110

wr 47 — 3;‘0 =3
£ G, ) = - 22 @

- —B - 1 -8 -
X (a,(T),T) - H (ay(T),T)) + 2 (192 H,(a,(T),T)

=B - 1 =3 - =8 -
+ 168 H(3,(T),T)] + ;5 [36 H);(3,(D,T) - 2 H ,(a,(D,D],

£ (3 (D) = -3% @@, m,n - B @ m,m + 1_3 [-168 ) (a)(T),T)

192 K3 (@, (1), 1) + L2 BB G (m),T) + 36 B
A

11'% 118 (M-D] -



. ———— | —— —

— — a—— ——————



28

In view of the foregoing calculations, for large fixed t, say T,
we find two constants a6 and a{, which simultaneously satisfy
the equations

] b ' i 1
[-2c(1 + Ua;,T)](H,,(a],T) - H;Z(a;,T)] = [Hfz(a;,T> - H;Z(a;,r)]z ,

where
b ' _ l w, - n_'_l._ b n-1 b A‘
Hp(alD) = - 3 FaD - GEnHY (LD + CREpu @)D, A
i (ai)
b ' -1 cm ' n-1 _w n_'_l. 2 E:l 1
Hyy(al,D) = ¢ £ (a) + GoDEna) + [ - GHI——) ,
i (ai)
Ko (al,) + [ (5D - (“;1>2]<(af)3> Ko (a),T),

1

Hb(a;,r) =u'@al,m

b, , i,
Hl(ai’T) Hl(ai’T) ,

i

b ' = - '

(al,T),

: R e |
and with ) al 80,

m _ 60 b b 1 b ) b
fr(a)) = 3 (H'(a},T) - H (a],T)) + Z (-36 Hy(a],T) - 24 H,(a},T)]

l - b ' b ] PR m ]
+ \ [-9 Hll(aO’T) + 3 Hll(al,T)], and similarly for fT(al),

"t 1 "t
fT (ao), and fT (al).

These values a; are approximations to ai(T), and fT(r)
is the approximation to ﬁ(r,T), a, 1

|
'<r<a!. Of course Hl(r,T) i
serves as the approximation to ﬁ(r,T) and is exact for
r = max(il(T),ai), while Ho(r,T) serves as the approximation to
H(r,T), and is exact for r < min(EO(T),aé).

We note that just as H(r,t) hides the procedure, the

notation for the spanning polynomial ft(r) hides the endpoints

and the function value and first two derivatives at the endpoints.



SECTION 3

Suppose now for large t, say T, we have aé(T) approximat-
ing QO(T), ai(T) approximating El(r), and fT(r) approximating
ﬁ(r,T), aé(T) <rc< ai(T). Now a mesh Ar, At 1is chosen and we
consider the grid points (rj,T) between aé(T) and ai(T). That

is, we define integer
=ré_
K(a’Ar) = [Ar]

where ([x] 1is the largest integer < x, and consider the points

(rj,T) with

rj = j-Ar K(aé(T),Ar) +1<js K(ai(T),Ar).

Ar will always be chosen so that the number of grid points,

K(ai(T),Ar) - K(aé(T),Ar) 2 3. At these grid points, we define
B2 (r.,T) = £ (r.)
i’ T ] ’

Throughout this section i = 0,1.

We now employ an iterative procedure, supposing at t we
have 8;(t) as approximations to ;i(t)’ and Hb(rj;t) as
approximations to ﬁ(rj,t). First we find a;(t - At), the
approximations to Ei(t - At), then use Taylor series expansions
to approximate H at grid points near the boundaries, and finally
employ finite difference techniques to approximate H at grid

points away from the boundaries.
29

e
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From the equations

da, da,
(@, (0,0 T+ B, (@, (0),0) = H) @, (0,0 775+ LG (6),6)

it follows that

4, (1, (0,0 - KHGE0,0) @G 0,0 - F,E©,0)
dt 2c(1 + U(ﬁi(t),t))

(H (a (t),t) - H (a RORO)

ﬁ?z is the only unknown function of (ai(t),t).

However, since

B = =.L1q8
), (3, (6),8) = - 3 B2 (@,(0,0) - Gy (t))u L(3,(0),0)
+ —2EoiaE 0,0,
2(a (1))
estimates of Hlll(ai(t)’t) would provide us with estimates of
da,
ﬁ?z(ai(t),t), and in turn of EEL (and ai(t - At)). Accordingly,

letting m(0) = K(aa(t),Ar) + 2, and m(l) = K(ai(t),Ar) -1 (or
some such), we consider a Taylor geries expansion of ﬁB(rm(i),t)

around (si(t),c), and define

KD (al(®),0) = — - YR H (1 508 - H(a}(0),0) -
m(i) i )
PR H O HEHORONE <o) ;a;(m ) (-2¢(1 + U(al(6),0))
H (a](),t)]
u‘{z(a;<t>,t) = 7 Hy (0,0 - GRite) (2 + Ua{(©),0)
L@l©,0) + (m) HI(a)(0),0)

and approximate ai(t - At) by
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b i '
le(a;(t),t) - le(ai(t),t)
2c(1 + U(a;(t),t))

a;(t - At) = a;(t) - At

It is assumed that a;(t - At) < a;(t). At the grid points close
to the boundaries, we use a Taylor series expansion to approximate

H. At j = K(ai(t - At) ,Ar) we let

Hb(rj,c - at) = H'(a](e-at) ,£-08) = (al(t-at) = r.) H](al(t=bt),t=0¢)

i

(a{(t-At) - r.)2 1
+ 1 [-2c(@ + U(a!(t-pt),t-at)) + H™ (a'(t-at),t-pt)] -
2 1 1!

3
(aj(t-pat) - r))
1 i b

and at the points near the lower boundary, namely K(aé(t-At),Ar) +

1<js< K(aé(t),Ar) + 1, we define

Hb(rj,t-At) = Ho(ad(t-At),t-At) + (rj - aé(t-ut)) H?(aé(t-At),t-At)

2
(rj - aa(t-At))

+ 5 [-2c(1 + U(aé(t-At),t-At)) + H?l(aé(t-At),t-At)]
3
(r, - a'(t-At))
i 0 b
* 6 Hi1 (800
b

Hlll(a;(t),t), lag computations, have already been computed, while
Hill(a;(t-At),t-At) would (possibly) require values which are not
as yet computed.

The values m(i) are chosen with two thoughts in mind.
First, it is desirable to choose the points as close to the boundaries
as possible in order to reduce the residual error in estimating the

third derivatives. Secondly, as we have just seen, the values of

the points close to the boundaries are filled in using Taylor series

expansions around a;_(t). To then expand around these points (very
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often) in order to estimate a;(t-At) is inappropriate. In-=-
appropriate in the sense that the partial differential equation
aspect of the problem is lost.

At the other grid points away from the boundaries, namely
those points (rj,t-At) with K(a(;(t) ,Ar) + 2 < j < K(ai(t—At),Ar)-l,

our approximations to ﬁ(r ,t-At) are the solutions Hb(rj,t-At)

j

to the simultaneous equations

H (ri,t-At) - H (:j,t) B (H (ri+1,t-At)-2H (rj,t-At)-i-H (’1-1’t'“))
at =el 2
24T
b b
b oy St (g tan)
er 2Ar

e 150) 28O0 (e,_1,0))

+ (1-e){
2Ar2
b b
H (r, ,>t) = H (r, .,t)
n-1 i+1 j-1
* Gr) v )]

where only schemes for which 0 < ¢ € 1 are considered.
The choice ¢ = 0 gives the four point explicit scheme,

and the solution is simply

Hb(rj,t-At) = Hb(rj,t) + »t) + Hb(r _1,t))

At b b
rz (H (rj+1,t) - 2H (rj j

24

n-1, At b - g
+ (er) 2ar () - By ,0) .

For 0 < ¢ £ 1 we have implicit finite difference schemes involving
six points, unless ¢ = 1, in which case only four points are con-
cerned. The solution of the simultaneous equations in the implicit

case is made easier by the tri-diagonal feature of the matrix [3].

L
at”
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Note that for the explicit scheme, the order in which the
values approximated using Taylor series expansions, and those in-
volving the finite difference equations are calculated, is immaterial.

The choice of ¢ 1is dictated by time considerations and
conditions discussed in Section 5.

The following graphs indicate the four most frequent cases;
circles indicate points whose approximating values involve Taylor
series expansions, and X's points at which finite difference

techniques are employed.

Table A
G . @ . /- /o
X. X. . o . o .
X. . X . X. . X. .
X. . o . X . X.

The iterative process is continued until the lower boundary

crosses the axis. Suppose T such that

00

' -
a(;(ToO) >0 2 ao('l‘00 aAt)

Then we let Té, the approximation to Ty

be
]
2 Too? y =T - at
- ] - ’
0(Too) ao('.'l.‘00 At) 00 0

' = -
To = Too = 8t G
and fill in the values Hb at the grid points

(O,Té),(Ar,Té).............(K(ai(Ta),Ar)-Ar,Té)

with

Ato

a;(Ty) = aj(Ty) - o5 (@1(Tyo) - 8)(Tyq - AL))

TOO
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as follows.
b 0
HO(0,T)) = H (0,T)) ,
and Taylor series expansions are employed to calculate

,0r) + 1 and for j = K(ai(Té),Ar).

Hb(rj,Té) for 15§ s K(aj(Tyy)

For K(aé(T Ar) +2 < j s K(ai(Té),Ar) - 1, a finite difference

00’
scheme is used with ot substituted for At.

From Té, the iterative procedure is continued in time steps
of At, except for the initial step of length At - bty until
ai(t) < 2pr. The purpose of the first step is to be able to compare
different schemes after the lower boundary crosses the axis. That
is, T6 will vary from scheme to scheme. The procedure is similar,
but with the following changes due to the special role played by

r =0.

Defining in the obvious way

Ho(r,t) - HP(0,t)
r

H?(O,t) = 1lim

= lim H?(r,c)
ri0

ri0
and similarly for all partial derivatives evaluated at r = 0,
then since Hﬁ(o,t) = 0, and in fact all odd partials evaluated

at r = 0 wvanish,

B
H, (r,t)
B 1.8 n-1, 1" /. B n B -
Lio(H, (r,t) + 5 H,, (r,t) + 53 T )= Hy(0,t) + 5 H,,(0,) =0.

ri0

For the explicit scheme, we approximate E(O,t-At) by

HP(0,t-at) = H7(0,6) + BAE (W°(ar,e) - HO(0,0)),
Ar
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and if an implicit scheme is used, the equation involved is

-e(EA-;-) Hb(Ar,t-At) + 1+ ¢ BA%) Hb(O,t-At) = (1-¢) %“b(ﬁl‘:t)
ar Ar Ar

+@-a-o M0,
Ar

It will be shown in Section 5 that an implicit scheme is necessarily
employed when n 1is large.

Suppose T to be the value of t such that ai(t) < 2Ar.

11

Then there are obvious estimates of fl’ including T itself.

11



SECTION 4

We now find the asymptotic width of the region B. As t
gets large, the density of ||u]| under the alternative hypothesis
becomes concentrated at % = ufu » as is easily seen by noting that
in one dimension

2

Pn.--.—w—u-.-ﬂ

2 1
‘th-L= \Ep,\ <E\p,‘ <E!§\p,\ = (%*‘ E)% ’
t
k
TG+3+35)
and since = is an increasing function of n, Elu||

n
rag + 5)

is an increasing function of n for fixed ||x||. So

bl g < 2 - B e
t

t

Now let us consider the general problem of testing the simple
hypothesis HO: w =0 wvs. the simple alternative le w=M>0,

with apriori probabilities p and 1 - p, losses L(rej\HO) = wo,

L(acc‘Hl) = W, and cost of sampling per unit time c.

z, and zy» with z, <0 < Zy»

probability ratio test (SPRT). That is, one which has boundaries

determine a sequential

M M
> t. : =z +=t. i =
z, + 2 t. We observe (Xt t >0) until Xt z, 5 t If i=0,
accept; if 1 = 1, reject.
Instead of considering the risk as a function of z, and

25 let us consider the risk to be a function of *1 and h, with

*1 = le, h = A T XO’ XO = zOM. In terms of xl and h, we sample

36



as long as

Now

1 kl-h A, -h A

— - 1 _ R -
( n xl-h) [p(-e YWgtk() (e D+(xy-h) (L-e
e -e

RO ,N) = Hy)

-h A M

A A\, -h
+ 1-p)e I (e 1-1)w1+k()\1e 1

M
(l-e )""(Xl‘h) (e -1

_ 2
where k = >

=

A\ oor xl-h may be zéro, and in fact, when p is small
or large, the optimal procedure will be to reject or accept without
sampling.

We use the results and notation displayed in Lehmann, Chapter

3, to obtain the expression of the above risk function. The terms
A A

e and e 1 represent the bounds on the likelihood ratio function
L(x,t).
o {x-Mt 2 M
) p(Xt = x‘Hl) _ (J/Znt)%e 2t ~ M(x - 7 t)
L(X:t) = (x = x‘H ) = 2 = e ’
P%e 0 . x)
/2ty % 2
M
M Yo M-z 0 N
and *o < M(x - 7 t) < kl iff e "< e < e .

The probability of hitting the upper boundary, given drift

b, is given by

2
A - 2
B = = 2 2,
M- -

Then the probabilities of mistakes are given by
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A -\ Ny A
-e 0 e O 0,."1_
B(0) = liﬁ__{_ and 1-gM) = 1_(1-e —) = ek (e -1)
e -e e -e e -

The expected sampling time EH(T) given drift ,, is given

A A
E (T) = lne ! + Ine 9(1-
" Ep.(lnL(x,l))

L(x,1) 1is the likelihood ratio evaluated at t = 1. L(x,1) =

M(x - %
e . So

and

Ay A A ko A
1 170 1
1 e "-e ‘e ) + 2\ (e (e -12)]

E (T) = =5 [a,(
M M_Z 1P A 0" % N
e “-e e “-e
2
\ A\ \
= ——-Kg——x;- [xl(l-exo)e 1 + xo(e 1-1)e 0] .
Mz(e 1-e )

In order to find *1 and h which minimizes R(kl,h), we set the

first partial derivatives equal to zero.

3R(\p,h) My_h
——akl =0 iff o (w0 - kh) + ke “(1-e )]
(1)

22-h A,
= A-p)[ (W, - kn)e L ke ta-M)
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dh

0 iff p{(W, - kh) - k(l-eh)]

(2)

A -
(1-p) e L (W) = kh) + k(l-e")] .

Dividing (1) by (2), we obtain

M, -h -h
[(wo - kh) + ke "(1-e )][(W1 - kh) + k(l-e )]

A, -h ]
L 4 k@a-e™)

|
—
~~
)
o
'
5
N
!

k(l-eh)][(w1 - kh)e ,

which reduces to

kh) = kK2(eP + e - 2) | (3)

(WO - kh)(w1

This equation involves only h.
The LHS of (3) is a decreasing function of h for
kh < min(wo,wl) and is < k2h2 < RHS for kh > min(wo,wl). The

RHS is an increasing function of h. For h =0, W W, >0. Thus

01
there exists a unique h satisfying (3).
=4 -6
- 2=2 _ 2,72 . 2h 2h
WoWy = (g + W)kh + K'h™ = k(0" + 0+ S0 el )

The approximation h' of h used here is obtained by

neglecting terms of order greater than two in h.

C 202 _ 22
WoWp = (W + W)kh' + Kk°h kKh'",
b2 1%

k (Wo + Wl)

The approximation h' serves as an upper bound for h.

Y
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For a given h, *1 must satisfy (1) in order to be optimal. h'

serves as an approximation to xl - 10, so i— serves as an

approximation to zy = Z4e

Returning to our problem, we define rI(t) to be the
"indifference" point, that is, the value of r for which the risk
of stopping and accepting equals the risk of stopping and rejecting.
rI(t) is in the continuation region B.

For the (c,wl,Zk) problem in n dimensions, rI(t) is

the solution of the equation

nr2
1=[w ; c (L k)r2L ] (Zn/t)i e??
L=0 0 M

We note that rI(t) does not depend on the cost of sampling «c.

By the definition of tz’
rI(tz) =0 .

Considering the problem of testing the simply hypothesis

rI(t)
HO: w =0 vs. the simple alternative HI: o= with
2 2
n ) n (e ()
y - — -—
p = (t/2m)" e 2t /Q +(t/2n)2 e 2¢ )
1

T A+ U (0,0)

L(rej|H) =1,

2k 1
L(acc\Hl) =W, E (||l ‘rl(t)’ﬂl) = U(rI(t),t) ’

we employ the above results, and for large t, we approximate

ry () -1
. L5 1wE®,0) r (6)
a,(t)-a,(t) by 2c 1= 2 (1+U(rI

1
(t),t)) )

L+(U(e, (£),8))



SECTION 5

In Section 3 it is stated that a choice of Ar, At, and
¢ 1is made, and this section investigates criteria for making that
choice. The general (at most) six point schemes are analyzed here.
We first investigate the truncation error for the six point
scheme. Expanding the appropriate terms around the point (r,t),

we write:

H(r,t) - H(r,t=-pAt) _
At B

Hy(r,t) - %5 Hyp(r,t) + 0(at2)

€ EH(H-Ar,t-Atl - 2H(r,t-At) + H(r-Ar,t-AQ]
2 2

= £ -
Ar
AEE 4 € A__
+ 12 Hllll(r,t-At) + 0(ar )] = > [Hll(r,t)-Atﬂllz(r,t) + 12 Hllll(r,t)

+ 0(at?) + o(atar’) + 0@arh] ,

H(r+Ar,t) - 2H(r,t) + H(r-Ar,t)
2

- l-¢
- 1= (5O, .0

&
2

4
+ f%— Hy (50 + 0],

-1, -H(rt+pr,t-pt) - H(r-Ar,t-At
(;r ) el (A 25C (r-pr,t-p )] (2 )e[H (r,t-at) + A—- Hlll(r t-At)

+ 0] = Elydn, (e, 0 -atH , (r,0) + Ag— H (e, 040 (ae )0 aear)+0 (e T

(ﬂ) (1_6)[H@+Ar4t) - H(r-pr,t)
r

2
= (R-l, Ar”
ZAI' ] = (21' )(I'C)EHl(r:t) + 6 Hlll(r’t)

+ O(Ara)] ,

41
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so that adding these five equations, on the region B we have,

HB(r,t) - HB(r,t-At) + o (HBgri'Ar,t-AQ-ZHB(r,t-At) + HBgr-Ar,t-At))

bt 2ar’
+ (;;1)(HB(r+Ar,t-At%A; HB(r-Ar,t-At))]
. (l-e)[(HB(r+Ar.t)-zzzér.t)+HB(r-Ar,t)) + (;;1)(EELEiA£;§%£§ESE:A£4£2ﬁ]
- - Sy + ‘2\2_2 By (0 + Gpar sy 0 - 45 a0
- &Lyl (r,0) + 0cat?) + ocaear’) + ocar®). )

Using formulas derived in Section 2, page , We may write

Bt = i @ - G’ (e + (‘-2‘;—3) B (r,0)
320550 = 7 By (a0 = GED B0 + 205 B0

2r

- 23D K@,
2r

B _ 1.8 a-1, B n-12 n-1,.1 B

B (58 = 3 By (20 + G0 gy (5,0 + TG -1 7 Hyy (509
-1 -1,2.1_ B

+IED - G5 13 ()

Hence, the right hand side of (1) may be written

RHS = -AL 4P (r,t)-(Eil)At H?ll(r,t)-[(Eflﬁz-(gél?]AEE Hil(r,t)
2r

8 1111
2
n-1. _n-1 2 At Ar B n-1 2 B
- LS B (r,0) + 5w o + @D B (0
At B n-1 B - n-1
+AECHD L0 +ae eEH B (0 - at P Y (r,0)

2r

- B - B -1.21 _B
+ae e3P B0 +ae 5D K ,0 + ae D S H] (0
r

2r 111

-1,2 B 2 2 4
- ot D% LR r,0 + o)) + o@aear)) + oar™)
r
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2
- (AS A B e T-GED ae + Gbar” 4 o oGED)

111(1' t) + [ (& 2 n-ly_ ocd > )2](L f‘ €) H L(T,0) I'(nzl)z-( =]

2r

(A£§ - A% ¢) Hi(r,t) + O(Atz) + O(AtArz) + O(Ara) .

2r r
If ¢ = 0, corresponding to the four point explicit scheme, the RHS

of (1) is given by
2
RHS = 0(At) + O(ar ) .

For dimension n =1 or 3, the choice At = Ag— reduces the error

term to

RHS = O(Atz) = O(Ara) ,

and for other dimensions, the terms involving the third and fourth

derivatives are cancelled.
For 0 < ¢ £ 1, corresponding to implicit finite difference

schemes, the RHS of (1) is reduced by the choice
_L_
€ 72 7 et

in the case n =1 or 3 to

RHS = O(Atz) + O(AtArz) + O(Afa) ’

and for other values of n to terms not involving the third and
fourth derivatives.

Similar calculations yield
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B
10,0 = 10,6200 4 @lariean) - .,
At

Ar
B B 2
(- OO S8 0.0, _p_nde, m+ 'ZA' e 1)1, (0,0)

Ar

+ 0oty + o(atar’) + 0arh

utilizing the fact that all odd partial derivatives with respect
to r evaluated at r =0 vanish. Only in n =1 dimension can

this error be reduced to

0(at?) + 0(acar?) + o(ar’)

by choosing

€ =

_1 At
2 6At

The following table gives the number of calculations
necessary at each grip point for the four point explicit and six

point implicit schemes.

multiplications additions and
and divisions subtractions
(non-integer)
explicit, one dimension 1 . 4
implicit, one dimension 5 4
explicit, multi-dimensions 4 4
implicit, multi-dimensions 10 10

The free boundary condition makes the analysis of stability virtually
impossible for the author. It appears that the stability condition
certainly depends on the dimension n, and quite possibly on the
power k. The best that can be hoped for in one dimension is that

the stability condition is the same as the fixed boundary case:
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A't—sl 0<e< .5,
2 7 1-2¢
Ar

unconditional stability .5 < ¢ < 1.

For the four point explicit scheme, this condition is

In higher dimensions, these conditions must be strengthened.

For the explicit scheme the coefficient of Hb(rj 1,t) is

ot _ (n-1)at
2
2Ar arjAr

which is negative for small values of rj, the smallest of which is
Ar (for which this coefficient is used), if
nz4 .
At r = 0, the coefficient of Hb(O,t) is
Or
which is negative for appropriate values of At, Ar, and n.

The existence of negative coefficients insures instability,
and in general the explicit scheme will be dropped once the lower
boundary crosses zero (if not before) if n 1is large. The larger
n, the larger the value of ¢ chosen, because the computations show
that small choices of ¢ give instable schemes. However, no in-
stability problems have been encountered by the author with the
choice ¢ = 1. 1If for large n, it is stated that the explicit

scheme is used, it is understood that at or before Té, an implicit

scheme is substituted.
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; 2 S
In general At 1is chosen < Ar , because it is demonstrated

by the computations that in any dimensions large values of the ratio

At

> give imstable results, regardless of the value of ¢.
Ar



SECTION 6

Computations were carried out for the constant loss and

squared loss problems. This section deals with the constant loss

problem.

For the (c,wl,O) problem in n dimensions,

0 r2L
W, £ C (L,0) — =W ,
1 1L=0 n tO+L 1

and consequently the indifference function is given explicitly by

rI(t) = [t(nln(%;) - 21nw1)]% for
2

_ n
t>cz—2n(w1) ,
for then
wlU(rI(t),t) =1,

The approximate width of the region B, call it AWB(t),

as derived in Section 4, is given by

i (t(ninGD) - 21nw1)]% W

A (t) - a,(t) = AWB(t) = 1

2ct (1 + Wl)'

AWB (t) 1is maximized at
2
t = 2me(W.") = et
m m 1 € z

as is seen by setting the derivative with respect to t equal to

zero.

47
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Although there is no reason to believe that the approximation
AWB (t), based on an approximation that is an upper bound in a simple
vs. simple testing case, would serve as an upper bound in this
simple vs. composite case, it does in fact turn out to be an upper
bound (for ai(t) - aé(t) and presumably for El(t) - ;O(t)) in
the constant loss case whenever ¢t > tm.

For fixed w1 and t, the approximation improves with in-
creasing c¢, in the sense that the ratio

ai(t) - a(')(t)
AWB (t)

<1

is an increasing function of c¢. For fixed ¢, and a fixed distance

beyond tn (tz depends on W., but not <c¢) the approximation

1’
improves with increasing wl for small fixed distances beyond tm,

and contrarily improves with decreasing values of W, at large

1
fixed distances beyond t . For ¢, W,, and t fixed, the
m 1

approximation gets progressively worse with increasing dimension n.

Table 6.a and 6.b illustrate these facts.

a (t) - aj(t)
AWB (t)

values of t, corresponding to varying values of ¢ for two problems

Table 6.8 displays the ratio at different
and procedures outlines. Starting value denotes the value of t

at which the polynomial procedure was applied. Only major changes
in the procedure would affect the ratio to any significant degree.
We note that the value ;f ¢ after the crossing would certainly

not affect the ratio at values of t before the crossing (which all

of these are). The procedure is included primarily for the sake of

completeness.

L
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Table 6.a
2 2
Problem: (c,1,0) in n = 1 dimension Procedure: At = Ar = .25
2
1
¢ = .02,.01,.005,.0025,.00125  Implicit, ¢ =} - %— -3

Starting value T = 150
ai(t) - aé(t)

The ratio at t =100 and t = 50

AWB (t)
t = 100 t =50
c = .02 .992 .982
c = .01 .972 .938
c = .005 .911 .831
c = .0025 .767 .656
c = .00125 547 .455
. . , 2 2
Problem: (c,1,0) in n = 10 dimensions Procedure: At = Ar = .25
c = .02,.01,.005 Implicit, ¢ = % before T6
= '
e 1 after T0

Starting value T = 100

The ratio at t =70 and t = 30

t =70 t = 30
c = .02 .765 . 649
c = .01 .563 448
c = .005 .368 285

Table 6.b gives the ratio for varying values of W The

1
starting value T 1is 200, and 195 is considered to be the largest
value of t that reflects an accurate estimate of a;(t). That

is to say, the procedure is given 80 At steps to "settle down'":

to counterbalance the inaccuracies inherent in the initial polynomial

approximation. Since for W, = .02, t = 68.3, t + 127 was chosen
1 m m

in order to make its value no larger than 195. If the starting value

had been chosen large enough, we would see the ratio for w1 =1

surpass the ratio for w1 = 2.
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Table 6.b

Problem: (.Ol,wl,O) in n = 1 dimension Procedure: At = Arz = .252

. 1
wl =2,1,.5,.25 Implicit, ¢ = 3
Starting value T = 200

ai(t) - aé(t)

tm and the ratio A (0) at tm + 5 and tm + 127
t t +5 t + 127
m m m :
w1 =2 68.3 .988 .993
w1 =1 17.1 .890 .982
w1 = .5 4.3 .709 .984
w1 = .25 1.1 .649 991

The question of convergence has been detferred from Section 5.
There are two types of convergence to be considered. One is the
convergence of the values Hb(rj,t) to i(rj,t) at grid points
common to all meshes, and the other is of the approximations

a;(t) to Ei(t). The convergence (in L_ norm) rate of an explicit

0

finite difference solution with ALE = % in a fixed boundary case

Ar
(necessarily convergence at grid points) to a function satisfying

the heat equation H2 = %H with an analytic initial function

11

(certainly EB(r,T) as a function of r is analytic) is
O(Atz) = O(Ara). The corresponding rate for any other value of the
. At . . . .
ratio 3 (but £ 1 to insure stability) is 0(At). Thus in the
Ar
problems at hand, the most that can be hoped for is O(Atz), and the
best chance of that happening is in the one-dimensional case.

Table 6.c shows values of a) Hb(r ,t) at selected grid

]

points common to all meshes, b) a;(t) at selected values of t,

and c) T6 for the explicit scheme outlined below. The first three



values correspond to

or
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.5,.25,.125

respectively, the next two

to successive differences, and the number offset to the right to the

ratio of the first difference to the second.

The first difference

may subtract the first number from the second, or visa versa, but

whichever way is followed through for the second difference.

Problem:

Format:

(.01,1,0) in n

value when Ar

value when Ar

value when Ar

first difference

second difference

a6(60)

9.405498
9.405357
9.405344

.000141
.000013 1

a6(20)

2.342487
1974

875
.000513
99

)
T0
10.225519
53206
8385
.027 687
5179

Hb(10,60)

1.78500146
499944

33
.00000202
11

1%(3,20)

1.03437318
6641

597
.00000577
44

1°(0,5)

1.05880985
70206
69505

.00010779
701

19

13

15

Table 6.c

1 dimension

.5
.25

125

ratio of differences

u®(12,60)

2.16200199
199828

02
.00000371
26

1° (5,20)

1.26730696
29513

437
.00001183
76

Hb(l,S)

1.07461814
54217

3754
.00007597
464

H2(0,3.5)

1.08088505
106705
9361
.00018200
2656

14

16

16

Procedure: Explicit, AEE =
Ar
or = .5,.25,.125
Starting value T = 100
b '
H (14,60) 81(60)
2.594289809 14.004402
771 564
66 82
.000000038 7 .000162 9
5 18
b '
H (7,20) a1(20)
1.56816093 7.672784
3728 4108
502 423
.00002365 .001324
226 10 315 4
b '
H(2,5) al(5)
1.12015429 2.839361
39970 795260
41125 0645
.00024541 .044101
1155 21 4615 10
H(.5,3.5) al(3.5)
1.08313990 1.243785
59393 0.778694
3347 0.558537
.00045403 -8 .465091 2
- 5954 .220157

(W

b

e
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Considering first of all convergence at grid points, if the
rate of convergence were O(Atz) = O(Ara), the absolute value of the
ratio of successive differences would be about 16. It should be noted
that defining convergence in terms of Lo norm would seem to make
more sense in the fixed boundary problem than in the present free
boundary problem. It does not seem to be clear from the computations
whether the fastest convergence (in absolute value) would occur near
the boundaries or near the middle of the continuation region. And
in fact, there may be a difference in the boundaries. It is possible

that convergence is more meaningfully defined in terms of the average

ratio or the minimum ratio. Without defining convergence, ratios of

successive differences are displayed in Table 6.d for a one-dimensional

problem, and three different procedures.

Table 6.d
Problem: (.01,1.0) in n = 1 dimensions Procedure: Ar = .5,.25,.125
*
Format: ratio for AEE = %, explicit Starting value T = 50
or
ratio for AEE = %, explicit
Ar
ratio for At = Arz, e = %
2 (20) 1°(3,20) °(5,20) P (7,20) al (20)
5 13 17 10 4
5 2 3 2 10
11 20 17 11 4
b b b '
H (0,5) H (1,5) H (2,5) a1(5)
15 16 21 10
15 11 -1 11
19 14 6 1
T} H°(0,3.5) H°(.5,3.5) al(3.5)
5 3 5 2
7 3 2 1
6 8 =22 2

* Different starting value than Table 6.c
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Two things should be pointed out. First of all, the ratio
is not consistent in the sense that three different values (like
Ar = .25,.125,.0625) would give substantially different ratios at
some grid points. The difference could probably not be explained
solely by round off error. If the ratio were consistent, it should
be greater than one in absolute value to insure convergence.
Secondly, the ratio of successive differences for Ar = .5,.25,.125,
as shown in these tables does not necessarily provide the criterion
for the best procedure (if the ratio is not consistent), for all
three values using one procedure may be closer to the true value
than the corresponding values for another procedure -- even though
the ratio for the first set is smaller.

In higher dimensions, as would be suspected, the convergence
rate, however it might be defined, becomes progressively slower.
Table 6.e gives the ratio at selected points for a given procedure

when n =1 and 10 dimensions.

—
N
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Table 6.e
Problem: (.01,1,0) in n = 1,10 dimensions Procedure: At = Arz
Format: ratio for n =1 ar = .5,.25,.125
ratio for n =10 € = % before crossing
e = % after if n =1
e =1 after if n =10
Starting value T = 100
a, (€0) Hb(IO,eo) Hb(12,60) Hb(m,w) ai(60)
n=1 11 19 14 7 9
1P (34, 60) P (36, 60) 1P (38, 60)
n=10 7 -5 -3 -9 8
s20  #°(3,20) 1° (5,20) 1°(7,20) al (20)
n=1 5 13 16 10 4
#®13,200  u°@s,200  H°(17,20)
n =10 =25 -1 -2 -9 1
1°(0,5) w%(1,5) w(2,5) al(5)
n=1 15 16 21 10
n =10 3 3 2 2
1f the values corresponding to Ar = .5,.25,.125 (or any

other set of three numbers, the last two each one half of the pre-
ceding) are monotone, there is an obvious estimate of the true value.
Call the values corresponding to Ar = .5,.25 and .125; a, b, and ¢
Suppose the ratio of successive differences to be

respectively.

r > 1. Then an estimate of the true value is

C+£&;‘%l
r-

true value =

It was stated in Section 5 that as the ratio AEE increases
or
beyond one, the results become increasingly less reliable, whether
due to instability or round off error. Table 6.f presents data

for three different schemes, the last having ratio 2. ¢ 1is chosen



optimally in all three instances.

Table 6.f
Problem: (.01,1,0) in n = 1 dimension Starting value T = 50

u®3,200 u°(5,20) Y (7,20)

.5 1.0343739 1.2673100 1.5681627
At =3 ar0, ¢ =0, or = .25 672 2982 391
125 67 75 68
5 1.0343774  1.2673118  1.5681637
at =art, e=4 ar= 2 672 2983 390
125 67 75 68
5 ——-- —--- ——-- %
ot = 2ar%, ¢ = %5, or = .25  1.034340  1.267282  1.568196

.125 64 95 39
* For At = .5 and Ar = .5, ai(ZO) = 2.901, so grid points
(3,20), (5,20), and (7,20) were not in continuation region.

(Indicating extensive round off error.)

This table indicates that the results of the scheme with
At = 2Ar2 are unsatisfactory. At the grid points (3,20), (5,20),
and (7,20) both of the first two schemes would estimate the true
values to be 1.034366, 1.267297, and 1.568136 to seven places,
employing the above estimation procedure. For Ar = .25 and
At = .125 the last scheme gives values which are further away from
the three estimated values at two of three grid points than the
second scheme with Ar = .5 and At = .25. At the other point
the values are essentially equally far away. The same thing happens
(two values further away and one equally far away) when the last
scheme with Ar = .125 and At = .03125 is compared with the
second scheme with Ar = .25 and At = .0625. This just should

not happen, and it appears that round off error, if not stability
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in this case, is affected by the ratio of At to Arz, even when
¢ 1is chosen optimally in terms of truncation error. Other programs
indicate stability problems when the ratio exceeds one.

Nothing will be said about convergence of the boundary
approximations ai(t) except to say its rate appears to be slower
in n =1 dimensions, but faster in higher dimensions than the con-
vergence rate at grid points.

Graph 6.a plots three sets of boundaries for the (c,1,0)
problem in one dimension. The set of unmarked lines correspond to
c = .02, those marked by +'s to ¢ = .01, and those marked by |'s
to ¢ = .005. The procedure used for this graph is implicit with

2

in the procedure would be detected for plotting purposes. Con-

At = Arz = .252 and ¢ = 1. AEE = %; however, only major changes
r

sequently we will omit the procedure in describing following graphs.
We note that for c¢ = .005 it appears that the upper boundary

comes in to r =0 at t =0, which may indicate that T1 is in
fact 0. Evidence from solutions in both the constant and squared

loss problems strongly substantiates this uncomfortable possibility.

The slope of the indifference function

n + (nln(%;) - 21nw1) n + (nln(%;) - 21nw1)

rp(6) = t Y 2r_(t)

Z{t(nln(E;) - 21nw1)] I

is infinite at t = £, and although it can't be shown by the author,
the upper boundary appears to come in to zero more sharply than

the indifference function for all values of the parameters and all

dimensions. Also the lower boundary comes in less abruptly. That

is, for ¢ positive and sufficiently small
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a_(T a (T. +
al(T1 + ¢) > rI(tz + ) > aO(T0 e)

There is reason to believe ;6(T0) is finite. Here are

two polynomial functions, AO even and AB satisfying the same

partial differentiation equation as ﬁB, such that both functions

and first derivatives match on r = s(t) t.

3r2(t-1) - 3t2 - t3

Ao(r,t)

ABer,t) = 2(c° - 3r)

2t3 - 6t2

6(t2 - t)

A%(s(t),t) sty ,b)

A s(0),0)

]
]

B
A, (s(t),t)

This is not to imply that HP can necessarily be expanded in a
polynomial around (O,Eb), let alone one containing odd terms.

Graph 6.b shows the results for the (c,1,0) problem in one
dimension, with ¢ = .005, .0025, and .00125. Therefore the
narrowest set of boundaries in Graph 6.b correspond to the widest
set of boundaries in Graph 6.a.

Graph 6.c plots sets of boundaries corresponding to
wl =2,1, and .5 for the (.01,w1,0) problem in one dimension. As
W1 becomes large (or c¢ becomes large) the upper boundary comes
in very closely to tz. This graph is slightly misleading in that
the boundaries would have to be shown for larger values of t in
order to see that the width of the continuation region is
asymptotically larger for W1 = 2 than for Wl = 1. (The more
costly the errors, the more worthwhile the sampling.)

Graph 6.d shows the effect of increasing dimension. Bound-
aries are plotted for the (.01,1,0) problem in 1,2, and 3 dimensions.

Graph 6.e is similar to 6.a except that n = 10,
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SECTION 7

In this section the squared loss problem is investigated.
Graphs will be displayed in the same order as in Section 6.

For the (c,w1,2) problem in n dimensions

1 2L L2
w.(z ¢ (@L,1) 57 =W, E+3,
152, 0 2 1%t 7 2

and rI(t) is the solution of the equation

2
n,r., _
wlU(r,t)(t + t2) 1 for

So
n rI(t)2
e (® . £, WGt 2 )
AB(E) = e TG (0,0 T 2 e’
n 1
a + W1 c + ] )

t
However this does not provide an upper bound for the width
of the continuation region, and in fact is not nearly as good as
the corresponding constant loss approximation.

2
However, by substituting for EHuHZ = % + EE the quantity
t

Ellll, 2
E|lu] )

with the numerator approximated by expanding Hp“3 around Ef,
t

we obtain a better approximation which does in fact serve as an
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upper bound in all the situations encountered by the author.

i
. = —, Then .
vl t H'1

Formally expanding around

= v,
1

l? = vl + 2qp)?

+ 4(L szz + 7T 3T v, Y v Y ))

Bl = v +

2

+ 2 2y

r3
-5+ ey
t

i? = @, +1pH32 -

64

+Y, Y,
i i

+ 2¢ viYi)“v“

i#j

+0()

iid N(O,%). So

Ivl|%, we get

e co 000000

A + ) + 28 v ¥ )

‘\V\\

3/2

2 + ez v )

Let

And so if the width of the continuation region is approximated

alct) - ao(c) =

3
r 3 r_
r (6) 3 + 3 (D) 2
2ct (w (r2 n
r ,no
tz t

) /(1 + W

1(

the approximation has properties similar to the corresponding

r3 3 r
I
5 )
r ,n
:7 t
con-

stant loss approximation in Section 6, except that this one does not

initially get worse with increasing n.

it does.

However eventually (in n)

As an approximation which possibly serves as an upper bound

in n dimensions for the general

Elll ™

is suggested.

Ellu)|

(c,Wl,k)

problem

2y,
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In section 6 it was shown that r{(tz) is infinite (for
k = 0). In that section r{(t) was given explicitly. Now the
slope of the indifference function for general k 1is found as a
function of rI(t) itself, and shown to be infinite at tz. rI(t)
depends on Wl, k, and n, but not c.

For fixed k and t, we define

2
2 r_
Gl 7, Fru
w(j ,n,r) = j‘ (‘t_) ——;l—
rag+3
For fixed wl, k, and n; rI(t) satisfies, for t 2 tz
WyU(ry (e),t) jz=20 W(i,n,rp(e)) =1 . (1)

Differentiating with respect to t,

@© @

k
wl(ulr' +U)(L W(,n,0)) + WU £ (- 'Z‘E)W(J’,n,r)
j=0 3=0
@® 2 ] @ ] 2
W
+ 5 (- FowNGan + g i - =) (jg“’r)} =0.
j=0 2t j=1 2t &
2t
r n r2
Now U1 =t U and U2 = (- 2% ;;E)U' Also
o] @
W(i .
z zn : = I W(J,n+2,r) .
j=1 &) j=0
2t
So
n k ® rre'! r2 oy
W (= 5= =3V L W(,n,r) + WU[=— - =57 £ W(j,nt2,r) =0 .
1 2t 2t 3=0 1 t 2t2 3=0
By (1)
kin rre' r2 >
oe T WU TR w2
2t j=0
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So
' 2
rr_ _r (k+n) 1 ,
t 2t2 2t ©
WIU T W(,nt+2,r)
j=0
[ S (ktn)
r 2t + © ’
2rw U T W(j,nt2,r)
J=0
and since
W, U(r.(t),t) = 1 ’
1 1 ’ ®
L W(G,n,ry ()
j=0

the slope of the indifference function may be expressed

Z W(j,n,r (t))
ri(t) = rI(t) + (em) 120 .
1 2t ZrI(t) ©
T W(,m2, r ()
j=0
For k=0
L W({,n,r) = T W(j,nt2,r) =
j=0 j=0
Therefore
. t%[nln( ) - 21nw1]!5 .
r (t) = T + L o

Zt%[nln(ggﬁ - 21nW1]

which reduces to the expression given in Section 6.

Since
2 W(j,n, T (t)) nt2,
tit, rI(t)to £ W(j,nt2, r (t)) F( 5) T'( )
j=0

it follows that, as t |} tz ’
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' _ 1
ry(t) = O(rI(t)).

In the constant loss problem, the maximum width of the con-
tinuation region occurs after fb (or before Té is found) in
most cases, and in fact if ¢ is large, the maximum width occurs
around th = etz. In the squared loss problem however, the maximum

width occurs at T0 unless ¢ 1is small, and is not predictable
otherwise.
Graphs 7.a through 7.e appear in the same order as 6.a-6.e.
Graphs 6.e and 7.e appear similar, partially due to the fact

that the two values of tz are close. This can be explained by

the fact that for any k, t, approaches 2mm, as n - .

r(k+n) 2 n
¢ = 2w, —2—yktn ko o, .
z 1 n 111 111 S n .
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411

APPENDIX

Printout of program employing the implicit precedure to handle
the squared loss problem in any dimensions.

PONAGRAM MAIN (INOULIT4OUTPUT s TAPES=INPUIT s TAPFA=CULITPIIT)
DIMENSINN ST100N) 4TF(1000)

C NHMMNON Il‘).NL.NLD,N(‘,F.T.S.Vo“oﬁIM.')l-'\.3.“4.“5o"o."7."8’¥Lo“X s STZF
1o G T eSTEeCLAYIWCLA24CRAYIWCRA? ¢yBLWBRy FSoerVeFSlerV]1eFSlleFVll
2eMS124GVI24NDFENSeDENV 4ClIVeCONS?
IS IS IMPLICIT SNUARFR | 0SS MULTI DIMENSIONAL
PO 5N KS=1,43

IN=100

wWwl=1oe

200]

WRITF(64410) 1D

FORMAT(9X8HSQ LSeN=,413)

WRITF(6+411) Wl

FORMAT(AX3HWI=9Fbe4)

WRTITF(Ahetal2) C

FARMAT(QXPHC=sFAH)

KLNOK ="

KFRT=1"

DIM=1ID

D5=DIM-1,

D1=D6*4¢5

N3=D1+e5

0‘43024'1.

DA=DIM+2,

D7=DIM+5,

D8=D6+ )b

T7=(6e ZB318530(L746%%(DIM/DE6)I*((WIX*DIM)*%(14/D4&))
WRITE(S41) T2

T=2000.

CALL PLY(W1)

Dx:?o*( e H#HKS)

DIPX=D1 %nX

Dx2=Px+nNx

DXNDX=DX DX

DFLT=DXDX

U=DELT/ DXDX

G=.:}-]. /(6."’“)

CALL CFF (11,6401NX)

WRITE(6 «412) DX

FORMAT ( ©X3HDX=4F6es)

WRITF(A «ul14) DFLT

FORMAT ( QXSHDFLT=4FR.6)

WRITE(6 ¢415) G

FORMAT( 9X]5HRFFORE CROSS G=4FBe6)

GAFT=1a

KKF:?‘“"(A**(‘(Q-I))

J=<q/nx

XL=DX*(\J$])

DFL=XL-<

DIF=v-x
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NCM=DIF /DX

NC=NCM+1

DEI=DIF=NCM%DX

CALLL RNDI

CALL BNDL (wY)

DO 1M K=14NC

CSTF(K)=HP?2 (XLL+DX#(K=1))
DHT=45%DFLT

FONS=1e

DO 15 KK=14KKF

D2=DFL+DYX
FCT1=(=34/((D?2%#D2)*¥0N2) )% (STF(2)=FS=D2#(FS1=N2%¥FS11))
FE12=FSTI+NI1*(FS11+FS11+FS1/5)/S
S=GETSLIDHT 4FC1245S5124DENS s S4FONS)
IF(S)Y 40440441

D?2 =DF1+DX
FYTLI=(3e/((D2%#02)%D2) )% (STF(NCM )=FV+D2%#(FV1+D2%FV11))
FY12=FVT1+D1#(FV114FV11+CUV)/V
V=GFETSLIDHT sFV124GV124DENV SV FONS)
T=T-NFLT

CALL RNDN

CALL BNDL (W)

NL=(XL=-S)/DX+1

NLP=NL+1

XL=XL=-DX*(NL=-1)

DFL=XL-S

DIF=v=XL

NCM=NTF /X

IFINCM=2) &N4803480N13

NC=NCM+]

DFEN=NIF-=NCMEDYX

NO 11 K=1eNL

XD=DFL+DX*(K=-1)
STIK)=FS+XD¥(FS]1=XD®¥(FS]11+XD*FST1/34))
XN=DF)
STINC)=FV=XD*(FV1+XN*(FV11=XD*(FVT1)/3e))
caLL FILL

DO 13 K=1sNC

STF(K)=ST(K)

CONTINLIF

WRITF(5e2) NC,WT

VMG =\/=§

WRITE(As]l) SeVeVMS

CAlL CUT(wWT)

TOR=H/T

TOS2=TOS*TNS<

GGT=(TOS2+NIM/T)*w1l
GONK=TOSH*GRT /(2 #C%# (1 4+GGT))
RAT=vMS/GO0OK

WRITF(6s1) HeGOOKoRAT

SIG=NIM/T
GRT=(TOS2+3,#S[G)/(TOS2+S]16)
GGT=TOS*GGT

GET2=AGT#GGTow]
GOGK=T0§*66T9/(2.*C*(1.+GGT?))
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RAT=yMS/G00K

WRITF(Ael) HeOOK «RAT

SAW=H| ST=H

(FQ=¢g| &T=¢

GFV=\LST=v

WRITF(HAhel) GESeSAWAREV

HLST=H

CLeT=<

VL& T=Vv

FONS=\V/ /DX

KLOOK =KL OOK +1

IF(KLOOK=KERT) 1692634253

KLNOK="

CALL <LK

GO T0O 16
SLST=S+(FS12-GS12)*NDHT/DENS
DHLT=DHT*#SLST/(SLST=<)

D2=DFII+NYX
FYT1=(3e/((D2%52)%D2))#(STr (NCM )=FV+L2#(FV1+U2%#FV11))
FV12=FVT1+D1*#(FV11+FV11+CUV)/V
V=GETSL(CHLT«FV12eGV12+sDENVsV4FONS)
T=(T=-DALT)=-DHLT

CALL bND!

ST7F=CHT# (1447 )+DIMR7/T

NC=V/DX

NCM=NC-1

XD=V=NC#*DX
STINC)=FV=XD*(FV1+XD*(FV]11-XD*(FVT1)/3.))
NL=SLST/DX+1

NLP=NL+1

DO 700 K=1,NL
STIK)=STZE-KAKHDXDX % (C*(1e+7 ) =eS%72%(C+DO6/(T*T)))
A= (DHLT+DHLT) /DXDYX
GA=e5=1e/(5%#11A)

GA=AMAX1 (04 4GA)

CALL CFF(UA4GAWDIDYX)

CALL FlLL

DO 44 K=14NC

STF(K)=ST(K)

WRITF(H5e6) NLsVST

WRITF(692) NCWSTZE

capLL SLK

DHLT=DHT=-DHLT

D2=XD+LX

FVT1=(3e/((D2%0L2)%D2) )% (STF (NLM )=FVH+D2X(FV1+UZ%FV]11))
FV12=FVT1+D1*#(FV11+FVil+CUV)/V
V=GETSL(DRLT4FVI2enV12¢NDENV sV +FONS)
T=T=-DHLT=-DHLT

CALL RNDN

MC =\ /DY

NCM=NT =

XN=V=DX*NC

STINC)=FV=XO*(FV]I+XD* (FV11-XU*(FVT]1)/3e))
Hea=(NDHLT+DHLT)/DXDX
GA=eb~1le/(Ae*lIA)

vemyrme——— -
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GA=AMAX1 (e s0A)
CALL CFRIUASHASLIDX)
CALL FiLLl
DO 154 K=14NC
STF(K)=ST(K)
CALL CFF(UWGAFTSD1INX)
WKITE(bsul6) LAFT
FORMAT(GX14HAF TER CROSS G=9rB8eb)
[F(KK=KKF) 82338244R24
KKFF=KKF-=KK
DO B5& KK=14K<FF
D2=XD+uX

FVT1=(3e/((LZ2*V2)*D2) ) *(STF(NCM ) =FV+D2*(FV1+02%Fv11))

FV12=FVT1+D1%(rv]11+Fvi1l+lUV)/V
V=GETSL(DH TeFV12eGV1I29DENV eV sFONS)
T=7-DELT

IF(T) 5095Cs 789

CALL BRDU

NC=Vv/DX

NCM=NC-1

XD=V=NC*DX

STINC)=FV=XD*(FV1+XD#({FV]11-XC*(FVT1)/3e))

CALL FILtl

DO 54 K=1sNC
STF(K)=ST(K)

IF(V=DX2) 50450455
CONTINUE

KKFF=KKF /4

WRITE(691) TeV
WRITE(692) NCsS5T2Zx

CALL SLK

GO TO 51

WNRITE(696) NLoVT

STOP

FORMAT(4F30612)
FORMAT(I54F30e5)
FORMAT(IS5sEBSe1249E3Ne12)
END

SUBROUTINE CFF(ZA9sZR42C)
DIMENSION ST(10ud) eSTF(10CV)

COMMON TDoNL gNLPgNCaCaT 939V aHgNDIMGNYI 4N 4NL¢NEGNEGNT ¢NQ g XL 9 NX

ST eSTHFeCLAT9CLA? 3 IRAY S CRAZ4BLIER,
UH=e6#%#/A

CLAl=ZB#%*UH

CRAl=uH=-CLA]

CLAZ=CLALl%*7C

CRA2=CRrRAL1%7C

RBL=1le+CLA1+CLAL

BR=BL-2A

RF TURN

END

FIINCTION GFTSL(ZAs /R 472C97D92F ¢2F)
ST=(243-2C)y%24/20

ST=AMAX1(UeeST)

ST=AMAX1(=STye=7F)

FSeFVeFSTIeFV1IeFS114FVL1
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GFTSL=ZE+ST

RETURN

END

SURRQOUTINE SBNDL(WCON)

DIMENSION ST(I0U0)s<TF(1C0UVL)

COMMON TIDGNL gNLP gNC 4 CaTl 9SeVaHIDIMGNT g N2 4NL¢NE4NAGNT gDNR g X! 0K o7~
1 9QT9STF CLAYT 4T LAD GCRAY 4CRAT 4L gRRy FQgFVeFE ST 4F V1 eFC1]4FVT]
29GS1290V124CENSIDENY 3 C(UVICING 7

SS=5#S*CON

US=Z*EXP(S5<)

CuUS=C*UsS

NDENS=C+CUS

FCA=NENS*T

FS1A=CUS*S

FCl11A=DFNS+CUSH(=-48=-9¢)

SOT=S/1

SOT2=50T*S0T

FORS1=(-D3-S5)/7T

FORS2=US*S07

GR12A=F S1A*#FORS]

US2=US*FORK]

FSR==yS2-1s?2

FACLI=D6/T

FS1E=FORSZ2*# (FAC1+S50T2)

FS11R=US*CON*(=FAC1-S0OT2*#(D7+55+S5S))

GS12R=FS1IB#FORS1+FNORS2% (=3 e%#S0T2-FAC1=-FACI) /T

FS=FSA+FSBR*WCON

FR1=FS1A+FS13*%WCON

FS11=FrS11A+FS116%#WwCON

GS12=GS12A+GS12R#WCNN

RE TURN

END

SURROUTINE BNODU

DIMENSION ST{100G0)seSTFL10UU)

COMMON TDoNL o NLFoNCeCoTl 9SoVeHIDIMaDI9D34NGeNAOsDOE9NT9DBe XL oDX 95T7/E
19STeSTFeCLAYSCLAD 9 (RAYT9CRAZ4ELIRRy FSoeFVIFST4FV]14FS1I1,4FV11
29GS129GV1I2+CENSIDENVsCUYVICONS2Z

71=(6e42831883()71796/T)*%D3

CON=45/T1

VV=V*V#CON

UV=Z#*EXP(VV)

Cuv=C*iv

DENV=C+CuUV

FV=DFNV*T+1e

FVv1=CuUv#*y

FV11l=DENV+CUVH* (=45=VV)

GV12=FV1I*(=N3=-VvVI/T

RE TURN

END

FUMCTION HP2(X)

DIMENSION ST(10GC)9STFL1I0NU)

COMMNON TDWNL gNL P gNC e C 9T 9SS oV eHIUIMIDY aN23DL g NEgDAeNT 4010 g X! glin 931 . -
19SToSiFeCLATSCLA?9(CPAYTZCRAZ 9BLIRRe FHooFVeFE T eFVv1eFS11lebvid

DV =V=X

Lv2=nv*DvV
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Dvi3a=Dv<*DvV
Ne=x=<
DS2=DS*DS
NSA=NS2¥NS
DN=y=<
D2=0DD*uD
ON=D2%0UD
DP=DV3/DN
LQ=D<3/ON
USFS=34%#S /DD
USFV=24¢%DV /DD
P =1e+USF5+64*%DS2/N?
P1=DS#*(1)SFS+1,)
QU=1e+USFV+Ee*¥DV2/D?
Ql=0V*(~1e=-USFV)
HP2=NP* (PU®FS+P 1 #F 51 =DS2#F 51 1) +NO* (QORFY+NI#Fy1=-Ny2¥Fy1 1)
1 FORMAT(6E1847)
RE TURN
END
SURROUTINE SLK
DIMENSION ST(100C)«STF(100U)
COMMON TDaNLINLPGNCoCaloSsaVeHIUIMaDTI 4N 4NL DS 9D6sNT o RexL DX
19SToSTF oCLATGCLAD 4(RA] GCPRAD qRI 4RRy F G gFYeF ] 4FV1I4FQi],Fylt
N=(NC+7)/8
DC 1 K=1sN
K1=8#(<=1)4+)
K2=K1+1
K3=K1+2
Ka=K1+13
K5=K1+4
Ké6=Kk1+5
K7=K1+6
KB=K1+7
1] WRITF(Hhe2) GTF(KT1) 9gSTF(KD)gCTF(K3)g TR (KL)ySTF(KR)GSTF(KA)
1]9STF(K7)sSTF(K8)
2 FORMAT(B8BE1547)
RF TURN
END
SURROUTINE FILL]
DIMENSION A(12CZ)eZ(2000)sSTITIu00)sSTFEI0ND) «D(1000)+DEM(1000)
19F(10233)eF(1070)4SF(1000)
COMMON IDgML gNMLP yNC oM g T 9SosVeHIDIMaNT gNByNLyNE4NE¢NT9yDR XL 9NX ¢STZF
1 9SToSTFSCLAY 9 LAD 3y (RAY4CRA? JHRLIRRy FSeFVeFST4FVI4FS11,4FV11
NK =NC+NC+1
DO 1 K=1sNC
M=NK+]1-K
N=NC+1-K
SF(M)=STF (N)
1 SF(K)=STF(N)
NCP=NC+1
SF(NCP)=ST7E
F(1)=ST(NC)
E( 1)=.U
X=NX
NCC=NC-1

-

I
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DO 2 X=1sNCC

COFFL=CLA2/X

M=NCP+K

N=NCP-K

A(M)=CLA1+COEFL

Z2(M)=CLA1-COEFL

A(N)=Z2(M)

2(N)=A(M)

COFFR=CRA2 /X

X=X+DX

D(M)=C‘?A1*(S:(N'+1 )4+ SFE (MY 27 NTrR% (S (My 1 \—S’T(M—j YY4aTD#SC (Mo
2 DIN)=D(M)

A(NCP)=DIM=RCLAL

LINCP)=A(NCP)

BLNCP=1e+A(NCP)+A(NCP)

CRAIN=CRAL1#DIM*2,

D(NCP)=CRAIN*SF(NC)+(1e-CRAIN)*SF(NCP)

DO 3 K=24NC

DEM(K)=RL=-Z(K)*Et (K=1)

3 E(K)=A(K)/DEM(K)
DEM(NCP)=BLNCP=Z (NCP)*F (NC)
E(NCP)=A(NCP)/DEM(NCP)

CO 4 K=19NCC
M=K+NCP
NDEM(M)=BL=7 (M) *F (M=1)

4 E(M)=A(M)/DEM (M)

NKM=NK-1

DO 5 K=2y¢NKM

F(K)=(D(K)+Z(K)*#F(K=1))/DEM(K)

DO 6 K=1sNCC

M=NC=-K

N=NK =K

STIM)=E(N)*ST(M+1)+F (N)

STZE=F(NCP)*ST (1)+F (NCP)

9 FORMAT(2E28.13)

RETURN

END

SUBROUTINE FILL

COMMON ID'NL’NLPQN:’C’r’S’V’HQUIMQD]OD3ODAODR9069D7’DBQXLQDX 2STZ*F
19STeSTFSCLAT9CLA?9CRAT 3CRA? 4BL sRRy FSeFVeF 51 gFV14FS114FV]T
DIMENSION A(T100U)sZ(1CN0)sSTLILCO)sSTFII0NL) 90 10C0O) 9ELT10CO)
1oF(1000)sDEM(1090)

E(1)=0e

F(1)=ST(NL)

X=XL+NL*#DX

NCC=NC-NLP

DO 1 K=1yNCC

M=K+1

COEF1=CLA2/X

A(M)=CLAYI+CQFF]

2(M)=CLA1-COFF1

DEM(M)=BL=Z (M) *E (K)

E(M)=A(M)/DEM(M)

COFFR=CRA2/X

X=X+DX

U

(e}
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DIM)=CRALI*(STF(K)+STF(K+2))+COEFR®(STF(K+2)~=STF(K))+RR*QTE (M)
1 FIM)=(D(M)+7 (M)*F(K) ) /DFM (M)

NN 2 M=]14NCC

K=NC=M

MM=K-NLP+?

2 ST(K)=L (MM)%#ST(K+1)+- (MM)

RFTURN

END

SUHRROUTINF CUT (WCON)

COMMON IDoNi o NL2oNCoCoT oS s VaHIDIMeDI 9D34DG¢N54D69DI7¢DBeXLelX ¢STZE

CON=¢5/T

22=D23%AL0G(642831853071796/T)+ALOG(WCON)

DO 333 K4a=14560

HH=H*H

Z1=ALOG((DIM+HH/T)/T)

23=HH*CON

Y1=21+722+4773

IF(ARS(Y1)=1eF=7) A7N4K7043135

335 H=H+,01

HH=H#*4

Z1=ALOG((DIM+HH/T)/T)

2 3=HH*CON

Y2=21422+273

H=(H=e{'1)+Y1*,0i/7(Y1-Y2)

333 CONTINUE
670 RFTURN

END

SHRROUTINE PLY(WCON)

DIMENSION FS(2)9FVI2)sFS1(2)sFV1I(2)eFS11(2)eFViiic)e
1GS12(2)eGV12(02)Y95S22(2)a0VE2(2)9DIF(3)9FSI2(3)19FV12(3)9052(3)eG1(3)
29DFNS(2)9DENVI(2)

COMMON IDONL gNLPGNCoCoT oS oV ariailMeDI9D54NLeNZ9IEsN7¢D8eXLoeDX ¢STZE

NDFN=1.,F-5

AA:]..F-F)

DI11=(2e+23 )% [ Mt (] e+ 3)

L12=(3e+D7%)#D6+,3% (1 e+03)

013=3¢7v]1e5%#D7

H=25,

CALL CUT(WION)

TEM=H*H/T

SCQS =(DIMEDL4+T-M*¥ (N5+45%¥TEM) )/ (H®(DE+TFM) )

VAVAVAVES S SN

TOS=H/T

TOR2=TOS*TNS

SIG=DIM/T
GOT=(TOS2+34*#S1G)/(TOS+SIG/TOS)
GGT2=GLT*GGT*WCON
Q=GOT2*TOS/ (44 %% (1,+GGT2))

S=H-0Q

Vi=H+Q

SLIM=H=-104%Q

VL IM=H+1Ne#Q
QA=Q+Q

ITER=1

WRITE(nel) ITLERsTeHWLQ
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T FORMAT (TR GIFIRGID4ELR 17
4.5 DN R4 Kl =14]T"R

7=(6he2831R83ANT]17QK/T)u%D?3
CON=4A/T
NO 1R2 KM=1 423N
PO 1R1 N=142
C=C+(N=1)%#DFD
CQ=CS*CNN
1)Q=7 #FXD (<)
CHIQ=C*I1<
DFNS(N)=C+Ct!IS
FCA=NDFNS(N)*T
FeyjA=Cl!<%<
FEI1A=DENS(IN)+C1)C* (~ 4R=CCQ)
SOT=</T
SOT2=S0T*#S0OT
FOPS1=(-D3-<<) /T
FORS?2=UIS*#SOT
GS12A=FS1A®FORS
US?2=11S#FQRS]
FRR==11SP=lIS]?
FC1nu=FNRS2%(NA/T+SNT2)
FRITR=ICR qC* (-DA/(THT )=CSOT?2%(DT/T+<QT77))
GRIZ2R=FCIR#FNRCI4HFNOPC2X ( (=3 4%<OT2=DR/T)/T1)
FE(N)=F SA+FSR*#WTON
FR1(N)=FST1A+FS1IR2#WC NN
FSIT(N)=FS1T1A4+FST1R*#WION

181 GS1Z2(N)=GS12A+0GS12E*WCON
DO 182 N=1.7
V=V+(N=1)*DFD
VV/=V#V3#CON
IN=7%FXP (VV)
Crivy=C*upy
DFNMVIN) =CUV+C
FVIN)=DENV(N)*#T+1,
FV1(N)=Clivey
FVI1(N)=DENVIN)+CUVR(=¢5=VV)

182 GV1IZ2(N)=FVI(N)%#(=D3=yV) /T
PN 121 K=1e7
K2=(K+3)/13
K3=(K+7)/3
K1=K2-=K?
F=Q+(K1=-2)#DFD
F=W+(K2=2)%DFD
DIF(K)=FV(K2)-FS(K1)
W=F=F
WO =Wy
W3=W2#*W
C?21S=6.e¥DTF(K) /W3
CO22C=(=3Q¢#FRV (K1 )=DUg®*FVI(K2))/W?
C23S=(1Re*¥FCTI1 (K1) =he®#FV11(K2))/W
C?21v=C21<
CoO2V=(=2Le#FQ1 (K1 )=236¢*FVI1(K2))/W2
C23V=(6e*FS11(KL1)=-18e*-V11(Kz))/W
FOT1l==(C21S+C .L%4+C218)/2,
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FRT?2=(DY#FQI(KV) /C+NE%#7S11 (K1) ) /F
FC12(K)=FQT14F<T
FVT1==(C21Vv+(22V+C22Vv) /2,
FVT?2=(D1%*FV1(K2)/FE+D5%i-y11(K2))/F
FV12(K)=FVT1++VT?
FAC?=DFNS (K] )*(=2,)
FAC3A=FS)2(K)=GS12(K1)
FACS=USNY (K2 )% (=0,)
FAC6=FV1I2(K)=CGVIDIK?)
Gl(K)=(-FAZ3)/rAC2=8<¢<
121 CP2(K)y=(=FAT6)/FrACH=VIVVV
C1=061(2)=-G1(1)
C2=0G2(2)-G21(1)
C3=0G1(3)=-G1(1)
Ca=G2(3)=-G2(1)
N=C1#C4-Co2%(C?
A= (C3*#G2(1)=Cu*21(1)) /0
R=(C2%G1(1)=C1*52(1))/D
S=Q+(A-16)#DFD
V=V+(bB=1e ) *#DFD
[F(S=H) 5015014470
1 [F(S=SLIM) 4D0¢40N4502
2 IFIV=YLIM) 502,503,400
3 IF(ARSIGLII))I+ABCIGR2 (1) )=1eF-5) 19041904183
83 CONTIN!IF
9N DN B3 KK=146"
PO RY N=1,"
S=CQ+(N=-1)*DFD
SQ=S#<#CON
JR=7#FXP(S<Q)
Ctig=C*1S
NDFEFNS(N)=C+C11S
FCA=NFNS(N)*T
FS1A=CIIS®<
FS11A=UENS(N)+CLISH (=45=55)
SOT=</T
SOT2=S50T*#S5NT
FORS1=(-D3-5%) /T
FOARS2=11S*S0OT
GS12A=FS1A*FORS]
LIS2=11S%¥FORS]
FRR==[1S2=118)?
FR1B=FORS2*(D6/T+S0T2)
FS11IR=US* 45#% (=D6/(T*T)=SOT2#(D7/T+S50T2))
GS12R=FS1B*FORSI+FORC2*( (-3 4%S0T2-D8/T)/T)
FRI(N)=FS1A+FSIR#WCON
FSIN)=FSA+FSIWCON
FC11(N)=FS11A+FQ] 1R*W(CNN
GRI2IN)=GS12A+GRI2R%#WCON
GRP22A=US2%# *#(1e-D3-99)+CUS*SS/1
GS2LA=UIS2# % (] ¢=0D3-8%)+CIS*SS/T
GR223=1SH(DL1/(TRT*T)+S0T2#(D12/(THT)+S0T 2% (D13/T+e25%30T2) 1))
81 GS22(N)=GS22A+GS22R*WCON
DA B2 N=142
V=V+(N=1)%DFD
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VV=V*y*CON

IN=7%FXP (VV)

Crivv=C %11V

DENVI(N) =CUIV+C

FVAIN)=LENVIN)®#T+1,

FVIIN)=CHIVVRY
FVI1I(N)=DENVI(N)+_1IV%(=-45=VV)
GV12(N)=FV]I(N)* (=i 2=\ /T

LW 2= % (=DR3=\/\ ) /T

GVU27(N) =128 % (] ¢=D3=VYV)+IIVEVIVY/T
PO 21 =143

K2=(Kk+3)/3

K3=(K+7)/3

K1=K3-K?

F=QE(K1=24)%*DFD

F=v+(K2-24)%#DFD
DIFIK)=FV(KD)=FCQ(K])

W=F=F

W =WH#u

W2aAzW D %W

Wa=W3#w

Cl11V=36Ne*DIFI(K) /W4

Cl11s=-C11Vv
ClZS=(192e#FC (K] )+]16Re*FVI(K2))/W3
C13S=(uBa*FV]I(KS)=FQLI(KL)I%T726) /W2
Cl2V=(=168Be*#FC1l(K]1)=-192e%#FV1(K2))/W3
Cl3V=(ulBe*FSL1(K1)=72e*FV11(K2))/W?
C21C=6lio*¥DIF(K) /W3
C275=(=36e#FST (K1) =Db%FV]I(K2))/W2
C223S=(1Be*FS11 (K1 )=QKe*FV11(K2))/W
C21v=C21<
CP22V=(~24L¢%#FS1(K1)=6e*FV1II(K2))/W2
Co2AV=(he*¥FR11 (K] )=1R4#FVI1(K2))/W
FRT1==(C215+C22<+C23]) /2,
FRT2=(N1*FS1 (K1) /E+NS5#FS]11(K]1))/F
FR12(K)=FST1+FST?
FRT3=(C11S+C125+C12Q) /4.
FRTU=—0%FSTI/E+DLI*(1e=D1)*(2e#FSLILI(KI)+FSL(KLI)/FE)/(ERF)
FCP22=FST3+FSTy
FUYT1==(C21V+C22Y+C23V) /7,
FUTO?2=(OY#FV1(KD)/-4+NS%FV]11(K?))/F
FV12(K)=FVTI1+FVT?
FVT3=(l11V+C12V+Cl3V) /4,
FVTG==US*EVT1/r+01%( 1le=]1 )% (ca*rVIL(KZ)+rVI(KZ)/F )/ (F #t
FV22=FVT34+FVT4

FACI=FS22=nRS22 (K1)
FAC2=0cNS(K]1)*(=2,)
FACR=FC12(¥)=iC12(K1)
FACL=FV22=(GV22(K?2)
FAIH=OLNVI(K? )% (=D,)
FACH=FV12(K)=GVI2(K?)

OCl1(K)=r AC3#FAl3=FAC?#FAC]

G2(K)=r AC6*FACH6-FACSRFACHL
C1=6G1(2)=-G1( 1)

¢?2=G2(2)=-G2(1)

)
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C3=01(3)=-01¢(1)

Ca=02(3)=-G2(1)

us=Cl®l4-C2%C3

A= (C3%52(1)~Ca%51(1)1/0
B=((2%#G1(1)=C1*G201)Y)/D
SLST=5-DFD

VLS1=v-DFD

S=S+(A-1e ) *DF s

IF(S=SLIM) 40uesaD0aUl
V=V+(B—1e ) #DFD

IF(V=VLIM) 402494024¢400
IF(ARS(GL(1))+ARS(G2(1)1)=AA) 90490,91
IF(ARS(S=SLST)Y+ARS(V=VLST)I~"1eF—=8) 9N0+sQ0+R2
CONTINUE

GOOk=V-5S

WRITF(H9409) KKeKMyKFEP 4T 3SsVeGOOK
FORMAT(315,4c30e12)

SLOK=GO0OK /QQ

FORMAT(2E40e 10 )
SRES=(FS12(1)=GS12(1) ) * g8 /DFNS(])
VVVYV=(FV1I2(1)=0GVI12(1))%e5/DFNV (1)
S=S5-5¢%¥555¢

V=V=5e¢%¥VVVV

SLIM=SLIM=S558%5,

VL IM=vLIM=yVVV*5,

T=T-5
S=S+2e5*%¥(FS12(1)=6GS12(1))/DFNS(1)
VaV4+2e5%(FV1I2(1)=GVI2(1))/DFNVI(])
T=T+5

KEFP=0

RF TURN

KeEF=KEEP+ |

IF(KECP=1U) 4u344044404
riT=1e-KEEP/1uoe

S=H=-0*F CT

VaH+QRECT

GO TO 4U5

STOP

END












