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ABSTRACT

ASYMPTOTIC BAYES SEQUENTIAL TESTS OF THE HYPOTHESIS

THAT THE DRIFT OF A WIENER PROCESS IS ZERO

By

Thurman Joseph Brown, Jr.

Let {xtz t > 0} be a Wiener process plus a drift p.

This paper is concerned with approximating the optimal sequential

procedure for testing H u = 0 vs. H : u f O for the large
0' 1

sample case when the prior distribution for the alternative is

approximately Lebesgue and the loss is approximately prOportional

to Hka. The fixed sample size problem was treated by Rubin and

Sethuraman (Sankhya, A, Vol. 27, 1965, pp. 347-356). The solution

is similar to that of Chernoff (Sequential Tests for the Mean of a

Normal Distribution, Proc. Fourth Berkeley Symp. Math. Stat. Prob.

1, 79-91, University of California Press). It consists of two

strictly increasing functions ao(t) defined on [T0,w) and

a1(t) defined on [T1,w), with O 5 T1 < TO and a0(t) < a1(t)

on [T0,m), which determine the following sequential procedure.

Suppose observation begins at time t8 2 0. Observe “Xt N. If

a0(ts) < “XtSH < a1(ts), continue sampling until th“ = :i(t)°

If i = O, accept: if i = 1, reject. The asymptotic nature of

the solution is derived, and standard numerical procedures are

used to approximate the regions and the risk. Rubin and Sethuraman's

work.has shown that the general asymptotic testing problem may be

reduced to the above case.
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SECTION 1

Suppose {Xt: t > O} is an n-dimensional Wiener process

2 2 _

with covariance matrix a In’ a known, plus a drift p = (p1,...,un).

That is:

= - = +X pt+Zt pt (th,...,z )

nt

0 if i f j

with E(Zt) = o and E(Zitzjt) = 2

ot:if i = j

We want to test sequentially Ho: p = 0 vs. H1: u f 0

for the case in which the apriori measure go 0 is proportionately

normal on the alternative. That is,

2

50,005) = eIE(0) + 0-.) éfiumomomu

2

where “0 represents the mean vector, 00 is a constant, and

 

2

2(ui‘u01)

n E - 202

2 2 _ 1 2 o

0

The dependence on n will be suppressed. Throughout this paper

unindexed summation signs will go from 1 to n. The cost of sampling

per unit time is c, and the losses of type I and type II errors

are W0 and Wluuuk respectively. The fixed sample size problem

was treated by Rubin and Sethuraman [I]. Chernoff [2] treated the

problem of testing sequentially H0: p s 0 vs. H1: u > 0. Bickel

and Yahav [5] showed his procedure to be robust. Lindley [6] and

l



others have shown that for large samples the exact form of the prior

distribution is irrelevant and that maximum likelihood estimation

is optimum.

We now normalize the problem to one in which we test

H0: u = 0 vs. H1: u i 0, but with apriori measure placing mass

one at u = O and Lebesgue on the alternative: 90,03) = IE(0) + v03),

v Lebesgue, and with W and oz replaced by ones. Although
O

the apriori measure is not a probability measure, it gives rise to

a posterior probability measure.

Three steps are employed to accomplish the normalization.

Step 1) Let

*

u = OH ,

*

t =Bt

* * * * 2 *

Then X = E--t---+ Z with 2 ~ N(O, Q—'I t ) where N(a,B)

t as t* t* B n

denotes the normal distribution with mean a and covariance matrix B.

2

If 1) -1-=1 and 2) 5L=1 then x has drift
a8 8 t

* * *

u, = (u1,...,un) and covariance matrix In per unit tflme measured

*

in t .

The Bayes risk for a given procedure in the original problem

is given by

s = e(cE[T|01 + v(0)Wo) + (1-e> j'(cE[Tlu'l + Wlllullkv(u)>i(u.uo.o§)du

where y(p) is the probability of error given p, and T is the

sampling time.

W* * * * * * 1

s =W0{e(fi';‘é' EET l0] + v (0)) + (1'6) ”5:5 BET ll» 1+ v (u ) w ark

0

Hu*“k)¢(u*,auo,azog)du*}



* * 1 * *

where v (u ) = y(u) and E-ECT ‘p 1 = EFT‘n] .

S l tt' * “ -£—' * = *2 = 2 2 and W* WI0 e 1ng c W B, “0 duo, 00 a do, 1 k .

0 W a

minimizing [B is equivalent to minimizing

 

53': .(.*:[T*\03 + Y*(0)) + (1-6) j(c*s[r*\p*] + WiHu*Hky*(p*))

* * *2 *

©(u ,u0,oo )du -

The solution to equations 1) and 2) is

 

_ l_

a ‘ 2

o

2

B = o

* c

So c - w 2

0°

2 k

w* _ W1(o )

1 W0

Step 2) We now show that testing HO: u = 0 vs. H1: u # O

with apriori measure a at u = O and (l-g)N(u0,o§In) on the

alternative is equivalent to testing the same hypothesis against

the same alternative, but with apriori measure placing mass one at

u = O, and bv, b constant and v Lebesgue, on the alternative,

and starting observation at some positive time (discounting sampling

cost accordingly).

The posterior measure given Xt = x is now computed for

the normal apriori problem.



 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

,O,t

5x t<0) = Pomlxt—w) = 6“" ) 2
’ €Q<Xsost)+(1'€)j§(xsflt,t) 9(usu0:60)du

= €Q(x40at)

2

e¢(X.0,t)+(1-e)¢(x.uot,t(1+too))

2 2

n E); - 2(Xi'u0it)

- 2t 2

1- 1 2 2 l+t -l

= [1+(—§‘)(——§) e t( 00) 1

€ I+to

O

m2 2< t)2
n i _ xi “01 / 2

— 2t 2 x+p o
l- l 2 2t 1+t: 0 O 1

(4) (__-2—) e ( 00) This 2 2 2

1+tc t+1/a t+1/g

_ O O 0

d; (“#0) _' 2 2
x,t

in £(xi-u01t)

1_ 1 52} 2t 2t(l+tc(2))

13+th

H. H

Letting Xt' =X +—g, x' =x+—£2)‘, and t' = t+1—2

O o 00

O O '2 .2

n in _ mor

— 2t' 2
1- l 2 2 -1

ix: C'(O) = P(LJ-=O‘x£r = X.) = [1 + (f)( ' 2) e do 3 y

3 t G

,2 2 o

n 9‘1 _ m0i

- 2t' 2
l- l 2 2 ' l

(——§>< ) e c’o «p.357. -7)
E I 2 t t

t 00

d§X.,tu(u*0) '—
ZX'Z 2 2

i - ”‘01

n 2t' 2 2

- U

1 + (LE)( 1 2)2e 0
€ t'G

O

For the uniform alternative problem

,O,t

px’tm) = M o if: b )(l)n( ElmX, r I C Q u,t’t U

2

EX.
n 1.

[1 + b(%‘3-)32 e21:— 1-1 ,

dp.

(1)

(1)

(2)



U
1

 

2

a. Efi
2 2 2c 1

be?) e «this;

dpx t(p.#0) = 2 dp, . . (2)

’ 2x
n i

[1 + b(%3)2e t 1

Equations (1) and (2) are equivalent for the choice

2

- Eu01

E 202

_ 2 _ l:s. _l__.2 0b — b(€,u0,00) — ( e )(znoz)

0

Step 3) For testing HO: n = 0 vs. H1: u ¥ 0 with apriori

mass one at n = 0 and bv, b constant and v Lebesgue, on the

alternative, the Bayes risk of a given procedure is

k

B = <cEETl01+ v<0>> +f<cEETlu1+ Wlllull Y(u))b du -

Only procedures for which the risk is finite are considered.

*

H = UH ’

*

t = St

Th x* 5 *t* + 2* 2* N(0 52 I c*)
en * = —_'u *’ * ~ "_- ’

C QB t; t B n

5 52 * *

so for 1) 33 = l and 2) B—-= l, X * has drift u and covariance

t *

matrix In per unit time measured in t .

In terms of the starred variables

* W k b

s = (é E£T*l0] + y*<0>> + y: EET hf) + j; Hu’ll 3(3):; du*

V with Y*(h*) = w(h) and é-E[T*\u*] = E[T|n] .

So for 3) E;

a

1, minimizing .6 is equivalent to minimizing



5* = <c*EtT*\01 + v*(0)) + l<<=*EtT*lu*1 + W:l\u*\\kv*<u*>>du*

W
* C *_-l

where c - B and W1 — Gk .

The solution to the three equations is

l.

a = bn

_3

e=b “

.1.

' n

6 = b

The total effect of the normalization is to make the normal

. . 2 . .
alternative problem With constants c, W0, W1, k, a , and apriori

2

constants e. no, and 00 equivalent to the Lebesgue alternative

problem (mass one at u = 0) with constants

 

 

 

w* - 1O " s

*

o 2 - 1 ,

2

_ 21101

2- 2 n02
* 1-

c =§,—(—1)“(°2>e 0 ,

0 3 2nd
0 2

Oi

k k 2

W - — 2nd

* 2 2

W = ‘1 (—£—)n(2no ) e 0 ,
1 l-e O

O

*

k = k ,

with observation of the linear functions of Xt and t

 

 

2

mor

_1_ 02 2:102 02h

*

= .5.“ .95 0 0

x, (1-6) (211 4> e (xt+ 2).
t O 2 CO

”or

g o2 no2 2
'k

c =<~L>“(2n -—Q-)e 0 (ML) .
1., C32 C32

0



so that observation begins at the point

 

 

2 2

z“01 mor

1 2 2 2
I“: 211' % ano H {100

<<—9-1_€) (—2—> e “‘0’ (—9—1_e> 211 e ).
C

O

Equivalence of the two classes is in the sense of what might

be termed lens equivalence. That is, the normalized problem views

linear functions of the process Xt and the time t of the original

* *

problem. Thus, if X * = axt + b, and t = ct + d, and if the

t
* *

optimal boundaries in the normalized problem are a.(t ),*then the

a.(t )-b

optimal boundaries in the original problem are ai(t) =«—£1;———-

Considering the normalized problem,the posterior probability

measure given Xt = x agrees with (2), but with b = l. Letting

2

2x1
2. ___.

2 2t

eU<x,t> = ($1) ’

suppressing its dependence on n, we have

_ -l

px,t(0) - [1 + U(x,t)]

' 1

dpx cm“) = [1 + ”(XMJ 1U(x.t)¢(w,’f.;)dh .

Two strictly increasing continuous functions a0 defined

on [T0,m) and a1 defined on [T1,a0, with O 5 T < T ,

1 O

a0(T0) = a1(T1) = o, and tao < 81 on [T0,m) determine a sequential

procedure in the following way. The two functions partition quadrant

I into three regions:



D0 = [(y,t): y s a0(t), t 2 To] "stop and accept"

D1 = [(y,t): t < T1 or y 2 a1(t), t 2 T1] "stop and reject"

B = [(y,t): y < a1(t), T1 < t < T0, or

a0(t) < y < al(t), t 2 To] "continue sampling".

Suppose the first observation Xt' on the process is at time t'.

The procedure is: observe “Xt.H. If (“Xt.“,t') 6 Di, i = 0,1,

stop. If (“Xt.u,t') E B, continue observation and stOp at the

first t > t' such that “Kt“ = ai(t). If i = O, accept; if

i = 1, reject.

A procedure of the type just described will be denoted by

(a0,a1,T1,TO). Since the procedure depends on norm and to avoid

plathoria of notation, D0 will interchangeably denote the subset

of quadrant I given above, and the subset of n+1 Space given

by [(x,t); (“XH’t) 6 DO], and similarly for D1 and B. The

meaning in each case will be clear from the context. In general,

the domain and range of the functions that map (x,t) into

(Hx“,t) will not be distinguished.

We now define R(x,t,u) to be the conditional risk given

Xt = x at initial time t, for a procedure of the above type which

observes a process with drift u, and with sampling cost ct in-

curred at the onset of the observation.

On D1 the conditional risk is given by

ct if u # O

R1(xstaLL) =

ct + 1 if u. = 0

On D the conditional risk is given by



O k
R (X,t,p.) = ct + Wlfiu“

We restrict consideration to boundary functions ai(t)

for which the conditional expected sampling time T, given

Xt. = x', for a process with drift H: is finite for all

*

(x',t') E B, and p.

E(T\Xt, = x',u) < co. (A)

**

Theorem. On the set B the conditional risk has con-

tinuous second partial derivatives in X1 and t for every n,

and satisfies the partial differential equation

B B l B

Rt(x.t,u) + E uiRi(x,t,u) + 3'2 Rii(x,t,u) = O, for each u (3)

with subscript i denoting differentiation with respect to xi-

The proof of (3) is based on Theorem 2.1 of Doob's paper

[7].

We now fix u # O, and consider an arbitrary initial position

X .= x'. On the boundary U U (a,(t),t) we define a continuous

t u i=1,2 tzTi

function g by

g“<a0(c) .c) = at + wlllu‘lk ,

g”(a1(t) ,t) = ct

Define the stOpping time T = inf {t: Xt hits the boundary}.

t>t'

Note that T is the exit time from the continuation region. The

conditional risk RB in (3) can then be considered as the expectation

Later in the chapter we make further restrictions on the boundary

functions.

**

Thanks to Dr. Vaclav Fabian for pointing out the application of

Doob's work to this result to me.
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0f 8U(XT,T) with initial position Xt' = x at time t'.

The conditional distribution of {th t 2 t'}, given

1
_ I - I I _ .

Xt' — x , IS the same as that of {x + “(t - t ) +-/.2 gt-t"

t 2 t'}, where gt is Brownian motion with covariance matrix

2tIn. We may thus consider gt instead of Xt"

In terms of gt, the stopping time T is the first time

I I 1 I

(x +u(t-t)+f§§ ..t)€ U (ai(t),t);t2t.

t't i=1,2

The stOpping time T is equivalently determined by the first time

(f2 (x'-ut') + g t) E U (/2 (ai(t)-ut).t); t 2 t'.

t’t" i=1,2

which in terms of gt can be considered the exit time from the

continuation region defined by the boundary ([2 (81(t)1lt),t)

(i = 0,1) with initial position /2(x' - ut') at time t'.

Letting s' = -t' and r = t-t', the stopping time is

equivalently determined by the first time

(/2 (X' +uS') + 57: S'-r) E U (./2(ai(r-S')-u(r-S')).S'Mr).

i=1,2 '

Thus we are observing a trajectory process in the sense of [7,

p. 256]. Let T = T - t', and define

h”</2<a,<r-s'> - war-3'», s'-:r> = g”<ai(T>,T)

If H(x,s) is the conditional expectation of h? given

the initial value gs = x at the initial time s, then under

assumption (A) the conditions of Doob's theorem [7, Theorem 2.1]

are satisfied, and we get



ll

2

a. _ B

Bxi

The theorem now follows since for each fixed u

RB<x,c.u> = Tit/2e + us) ,s>

where s = -t.

The proof for the case u = O is similar, the only dif-

. O I O I u

ference being in the definition of g .

Now we define the transformed risk

2x-52
“1 i 2 mi

H(X.t) = jR(x,t.u)e de 0(u)

On D , H is given by

:
1
3 H

A

>
<

"

V

II

H0(x,t) = ct + U(x,t)j(ct + wlllu‘lk)¢(u,zt‘-.%)dh

 

 

2 3X21
EX. -'--

2

w (EEL)J e t 2 g' F(j +‘—'-

= ct + U(x,t)[ct + W1 2 j! (P)

1:0 TO +

2

2 _ 2.1.
m (__l 3 2t

2t 9

= ct(1 + U(x,t)) + W1U(X,t) Z .,

i=0 3'

k n+k

2 ’2' ”j + T)

(E7 n
l‘(j + 5)

= ct(l + U(x,t)) + F0(x,t)

(ct+l) + U(x,t)jct¢(n,1:-,-tl-)du = ct(l + U(x,t)) + 1 .
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Furthermore, for nonnegative integer m

m (3x2)L
2m X l i

Hp.“ Mars-Bdrm = E C (Lam) —— .
I t t L=O n tL+m

with

m m-L

cn(L,m) = (L) H (n+2m-2j) for L < m: cn(m,m) = l .

i=1

For 2x? = 0, the sum in H0 is

k n+k

2 2 NT)
(3) ——n—-

I‘('2')

so that the smallest value of t for which H0(x,t) could equal

H1(x,t), namely that value of t for which HO(O,t) = H1(O,t),

call it tz, is

 

n+k 2 n

I‘( )
t 2(W 2 )k+n k+n > O

z 1 Q

We now investigate the function H(x,t) on the region B,

. HB B .
which we call (x,t). From (3), we get R (x,t,u) has continuous

second partial derivatives in X1 and t and satisfies the partial

differential equation

RE(X’C:U) + zuiRE(x,t,u) + % xR§i(x,t,u) = O for each fixed n.

2

(mi)
Since S(x,t,u) = exp[2xip,i - 2 t] satisfies the equation

 

St(x.t,h) + 2. 2811(x,t.u.) = (-(m:)/2)S(x.t.u) + 5(mi)8(x.t.w) = 0

for each p,

B

we get that T(x,t,u) = R (x,t,u)S(x,t,u) satisfies the equation

TC (X,t,p,) + 5; grii(x,t,p,) = 0 for each u,
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in view of the following calculations.

T (x,t,,,) + 3; gr .(x,t,p,) = (RBS + RBS ) + amt” s + 22333, +
t ll t C ii i 1

ZRBSii) = (RE + {hiai + a 2R:1)s + RB(st + s 2511) = o ,

since Si = “is. It should be noted that (3) was used in the above

derivation.

Now

HB(x,t) = RB(x,t,O) + j T(x,t,u)dp = RB(x,t,0) + H'B(x,t).

From now on we restrict the consideration of boundaries to those

for which

*

E[TEx,t,u] < t + m where m is finite . (B)

For such boundaries we shall show that Hp(x,t) satisfies a dif-

ferential equation.g Let L ? §EI+ 3 E 335. be a differential

Operator and C:(B) be the space of inIIEitely differentiable

functions with compact support contained in B, and endowed with

the topology of Schwartz [8]. We observe that H'B is bounded

on compact sets. Indeed,

,B O
H (x,t) < j(c(t + m) + Wluuflk)3(x,t,u)du = U(x,t)c(t + m) +>F (x,t)

where m as given in (B) is the bound on the expected continued

sample time. Hence,

U(t) = If H'B(X.t)w(x,c)dxdc

 

This does not severely restrict the problem as can be seen from

Sections 6 and 7.
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exists for all I E C (B). Clearly, H is linear and continuous

m

c

in the t0pology of G:(B). This implies that U is a distribution.

Using the definition of the differential operator on the space of

distributions as in ([9], p. 250) we shall prove the following

theorem.

Theorem. Let L and H be as above, then Ln = 0.

Proof. By ([9], Def. 23.4) we should show that U(L*¢) = O

for all t e C:(B). Noting that ([9], p. 249) L*¢ e c:(B), we

get

n(L*t) = ffH'B(x,t)L*¢(x,t)dxdt = ijfr(x,t,u)dhji*w(x,t)dxdt,

and by Fubini's theorem we may write

[KL-kw) = J'[MH.T(X,C,u)L*w(X,t)dth]dp .

For each n, T(x,t,n) is locally integrable and hence by [9, p. 249,

250]

HCL*w) = jljfLT(x.t.u)t(x.t)dxdt]du = jjlfLT(x.t.h)v(x.t)dh]dxdt

since the transpose of L* =‘L. But for each #2 LT(x,t,n) = 0

giving U(L*¢) E 0. Thus the theorem holds.

(C) Assume H':+1(x,t) and Hi:(x,t) are continuous. Then we

get that Hi+1(x,t) and HEi(x,t) for (x,t) 6 B are continuous

by the definition of HB and prOperty of R(x,t,0). Under the

assumptions (B) and (C) we get

Corollary 1. H£B(x,t) + k E H£E(x,t) = O. For M = 0 we

get from (3) that RB(x,t,O) satisfies the equation RE(x,t,O) +

k 2 REi(x,t,O) = 0. Hence by definition of HB(x,t) we get

Corollary 2. HE(x,t) + k g H:1(x,t) = O.
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Remark. In [2], it is claimed that the analogue of HB(x,t)

for his procedure and the problems satisfies the equation of Corollary

2. However the conditions for the validity of the equation are not

stated precisely.

The procedures for which the analogue of Corollary 2 is

valid for [2] are not clear to this author. In the following example

we show that there do exist procedures for which assumptions of our

Corollary 2 are valid.

We now demonstrate that for a sequential probability ratio

test (SPRT), in fact H'B(x,t) does have continuous derivatives of

the first order in t and of the second order in x, so that on B,

.B .B _
H2 (x,t) + % H11(x,t) - 0

Let 80 < O < a1 and %-= slope define a SPRT for testing

HO: u = 0 vs. H1: p = M > O with cost of sampling c per unit

time and loss of acceptance (loss of hitting the lower boundary)

given by Wl‘p\k. Let RB(x,t,u) denote the conditional risk of

starting observation at the point (x,t), having incurred cost ct

at the onset of observation, and continuing observation of the process

with drift u until the boundary is contacted, with additional loss

of W1\u\k if the lower boundary is contacted.

Using the notation:

bi(t) = a1 +

W(x,t,u) = (M - 2p.)(b1 - x) and ‘L(x,t,u) = (M - 2“,)(bo - x),

h = a - a0 = b1 - b0 ,

then on [t > 0, b0 < x < bl] = B, and -m.< H < m ,

I
“
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RB(x,t,u) = ct + [ew - eL]-1[ew - 1]W1\u\k + c(2(W(eL - l) +

L(1 - ew))/[(ew - eL) (M - 2p,)2]) = ct + V(X,t,p,)W1\p.‘k + (:Q(X,t,p,),

where V corresponds to the probability of hitting the lower

boundary, and Q correSponds to the expected continued sampling

tune. This calculation is an application of the results of Section

3.11 of Lehmann [a]. (RB(x,t,’-2‘-) is a limit.) Now on B

B W L -I k 2 2 h

R1=[e -e] [-Wllul (M-Zun’rfifi‘rfi—r],

R’il = [ew - eLJ'lt-wllelkm 2“,)2 - 2Ch(M - 2L0] ,

2c

M - 2p

 R1: = c + [ew - eL]_1[W1\u\k

m
u
g

(M - 2,.) + (% (eL - e") +

l‘21-3-1' (M - 2U))]a

so that using the fact that

I N
r
:

v

I

3

n M

II

Db‘2’1‘0‘4 ' 2p») -u(M

it is easy to see that

B

Before proceding, we show that Q(x,t,u) < m, a constant

independent of x,t, and u, by extending the definition to B

closure,

Q<b0<t).c,u> =Q(b1(t).t.u) = o ,

and utilizing the facts

a) Q(x we, t + m) =Q(X.t.tt)

b) sup Q(x,t,u) < m for fixed t

bOstbl

-oo<u<oo
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M

The proof of b) follows from the fact that if u < a, then ew 2 l

and 2L 5 1, so

Q(x,t,u) = 2[(M - 2“,)(ew - eL)].1[(b1 - x)(eL - l) +

(bO - x)(l - ew)] s 2h[M - 2p]-1

+ +
and so there exists a k such that for p > k ,

e e

sup Q(X,t,p,) < 6 °

bOSX:b1

p>k

6

- + -

Similarly k may be chosen, and letting k6 = max [k6, \k \],

e e

SUP Q(xstsu) < 8 s

bOSbe1

NPR,

a fact that is conceptually evident.

But Q(x,t,u) is continuous (Q(x,t,%) = (b1 - x)(bO - x))

in x,t, and n, so that on the compact set [b0 5 x s b1, \u\ s k]

it is bounded. Thus Q satisfies b), and indeed, if m is the

bound on Q,

H'B(x,t) = I RB(x,t,p)S(X,t,u)du S §(C(t + m) + W1\p‘k)3(x,t,u)dp

= U(x,t)c(t +'m) + Fo(x,t)

Now for arbitrary (x',t') E B, we let

M M

R - [tog t s t1,b0(t) — a0 2 t S x s b1(t) a a < a < a < a 1

define a rectangle containing (x',t') and contained in B, and

Show that

sup _lT2(x,t,u)\ s Y(u) integrable du .

(X,C)ER
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* \

Then 3 , p. 126 of Loeve [10] says

HéB(x,t) = j T2(x,t,u)du (x,t) e E. (4)

Now

2 2

szl = HRS - uRB>Sl < [lel w 112an .

and

R§(x,t,h) = c + wllhlkv2<x.c.h> + d22(x,t.h>

But

\V2(x,t,n)\ = New - eL]'1 %[M - Zull

and

\Q2(x,t,u)\ = \2[(M - 2,.)(ew - eL)]-1(%'(eL - e”) + %!.(M - zu))\

satisfy the conditions a) and b), where the sup in condition b)

reads b6 5 x S bi. Thus on R

\Rgl S c(l + m)‘+ W1\u\k m.

On R,

S(x,t,u) = U(x,t)Q(u,§3%9 s U(bi(cl>,t0>g<h>

where I

- (t /2 )15 [:9 ( - (b'(t )/t ))2 b'(t )lt
' 1 “ ex? 2 “ o o 1 3 R < o o 1

g<w> = (tl/Zn)% b6(tO)/t1 < h < bi(t1)/to

= (t /2 )% [:9 ( -(b' t )/t ))2 > b'(t )/t
1 " ex? 2 “ 1( 1 o 1 B 1 1 0 °

Although g is not a probability measure, it has the property

that all of its "moments" exist. Thus
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\T2\ s U(bi(t1),to)(\Rg\ + u2\RB\)g(u) integrable du,

and so (4) follows. The corresponding proof that Hi: exists is

similar. The continuity of the derivatives is clear.

We now return to the problems at hand. The remainder of

the paper will concern itself with numerical approximations to the

optimal boundaries for problems characterized by the triple (c,k,W1).

From this point on, it will be assumed that the boundaries

are such that

LH' = 0,

so that

LHB = HE(x,t) + % Z Hii(x,t) = O on B.

We also note that F1(x,t) = 1 and F0(x,t) satisfy the condition

LFl = 0, 1 = 0,1, since

0 k

F (x,t) = fwluun 3(X,t,u)du = [3(x,c,u)dA<u) .

and the integrand satisfies the condition LS = 0.

Note that §(x,t), the untransformed risk, is given by

(u)§(x,t) = §R(x,t,p,)dpx,t

  

 

 

_ Rix,t10) U(x,tl §,l

— (l +-U(x,t)) + (1 + U(x,t)) IR(x’t’”)Q(”’t’t)du

mx ng1 a o - a

= (1 + U(x,t)) [R(x,t,0) +'jR(x,t,u)e 1 1 2 1dp]

_ H(x,t)

— (1 + U(x,t))

.1.

, _ _ 2 2 _

gurther, letting r(x1,...,xn) - “x“ - (Exi) , U(r,t) —

E E.

2n 2 2t

(E‘? e , and G(r,t) = Ct(1 + U(r,t)), we have
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H1(r,t) = G(r,t) + l = G(r,t) + F1(r,t),

r3.
- 2 n+k

(--->je gm + —>
H0(r,t) 2t

G(r, t) + w 1U(r, t) 2 j!

j-0 m + g)

  

A

n
“
0
'
7
;
-

V
N

= G(r,t) + F0(r,t)

HE(r,t) +-;-HBr (r, t) + (“—'—r1)HB(r’ t) = 0 ,

and F0(r,t) and F1(r,t) satisfy the same differential equation.

The last equation follows from

1 3

BlB__B 32(2-132-—22._

Ht *5 “u ' 0 " Ht +22CHrrxi<Exp + Hr((2b(i) 2 - x1031) 2)]

x2

— B l- B B l _ .1. = B l_ B n-l B
_ Ht + 2 {an + Hr(}:(r r3») Ht + 2 an + (—-21.)Hr ,

The risk function H(r,t) for an arbitrary procedure

(a0(t),al(t),T1,T0) is given by

H1(r,t) on D1

H(r,t) = H0(r,t) on D0

HB(r,t) on B

H(r,t) is continuous, of course. Now the general properties of

the problem have been displayed.

Let (50(t),al(t), Ti,T6) denote the optimal procedure,

depending of course on the triple (c,W1,k) and the dimension

n. The risk function H(r,t) will satisfy the following free

boundary condition.
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lim H (r,t) = lim H (r,t) i = 0,1

B r i r

r6 rED

r—oa.(t) r-.5,(t)
l 1.

That is: the r-derivatives "match up" on the boundaries.

The free boundary condition is determined as by Chernoff

in [2]. The posterior distribution has nothing to do with the

proof. We now essentially repeat his hueristic proof. Clarifying

remarks are given in [2].

a0(t) and a1(t) defined on ft0,m) determine the trans-

formed Bayes risk H(r,t) for all (r,s) with s > t . It is

O

desired to extend ai(t) backwards to uniformly minimize

6100 as °° 1
H(t) = g H (r,t)dr + I H (r,t)dr +'j H (r,t)dr

a0 a1

i B

for t < to. On the boundary H = H , so

a a

0 l m
dH _ O B l
dt-gtdr-i-J‘ thr-l-J‘thr

a0 a1

If

HB(a ,t) # Hi(a.,t)
t 1 t 1

_ O B

an increase in a0 1f Ht > Ht’ and similar adjustments for other

possibilities, would increase 3%. and thereby decrease H for

t t .

< 0

If the optimal boundary has finite slope, we must then have

on the boundary

m
g
}

 

T
r
i
m
-
w‘
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._ B_

Differentiating H1(ai(t),t) = H (ai(t),t) along the boundary,

we get

80

i B

Hr(r,t) = Hr(r,t)

along the boundary.

Since tz is the smallest value of t for which we could

possibly step and accept

For t small,

2

' 2 2 -1

cum) s 90,60) = [1 + (fl) 1

is small, which would lead one to believe T1 strictly greater

than zero. This can be shown easily for sufficiently large values

of c. That is,

for otherwise the sampling cost of getting to the acceptance region

is larger than type I error = 1.

However, the author has not shown in general that T1 > 0.

More will be said about this in Sections 6 and 7.



SECTION 2

The method we propose to use to approximate 50(t) and

51(t) is the following. For large fixed t, we approximate 50(t)

and 51(t), using the known functions HO and H1 and a polynomial

function to approximate HB. Then finite difference techniques are

used to "fill in" the boundaries backwards in time. This section

deals with approximating 50(t) and 51(t) for large t.

Bars in general will denote optimal quantities, and primes

will denote approximations to optimal quantities. Also, an arbitrary

procedure will be condensed to (a0(t),al(t)): T1 and T0 being

understood to be the values of t for which a1(t) and a0(t)

equal 0.

We note that the notation H(r,t) hides the procedure

(a0(t),a1(t)). Also, the risk function associated with a procedure

depends on the functions a0(t) and a1(t), and not just on the

values of the function at a fixed value of t. That is, let HA(r,t)

be the risk function corresponding to the procedure (ao(t),al(t))

and HB(r,t) be the risk function correSponding to the procedure

(b0(t),b1(t)). Then a0(t0) = bo(t0) and al(t0) = b1(t0) by no

means implies HAB(r,tO) = HBB(r,tO).

Let H(r,t) denote the optimal risk function: ie, the risk

function associated with the Optimal procedure (50(t),al(t)).

Throughout this section i = 0,1.

23



24

Suppose the optimal procedure were known. Then differentiating

the equations HB(ai(t),t) = H1(Si(t),t) and recalling the free

boundary condition

H‘idiuno H2620)» (1)

we have

H‘yaium) H2(52(t).o , (2)

and differentiating equations (1) and (2), we get

dai -B ‘i _ d5. _. _

H12(a (c)o—+ H12(a.<c> c) = H21(a2(t>,c>;E-‘-+ H{2<a2(o,t>,

dai _ -i _ da, “i _

_‘1‘2(a. (c) c)-- 2+H2(ai<c>,t> H12(ai(t)’t)d—t—L+ H22<ai(c),t),

from which it follows

(H(a. (t) t) - H1i (a.(t) o) (H22<a. (c) t) - H22(5i<c>,t>) =

<H§2<5i<om> - H{2(52<t>,t)>2

The expression Hfil - Hi1 may be reduced.

.. —’ - - .. —-B -

171:1(ai(t),t) - H:1(ai(t),t) = -2}—1§(ai(t),t) - 3:17%-)-H1(ai(t),t)

 

Hil<52<o¢> = -2H2i<52<c>,c) - 2“}; H3550») - Hildium)
i

-2[Gz(ai(t),t) + <f§fi>6151<0N +2c11<52(t>,c>]

ZEF; (a.1(t), t) + (2:(t))F1'l(ai (t), t) + -Fi 1(ai (t), t)].

The second expression in brackets is zero, while the first term is
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-2[c(1+U(ai(t),t))] - 2cth2(ai(t),t) + (5%:%E7)U1(ai(t),t)

+ -1111(s (t), t)].

The second term in this expression is also zero. Hence

fifi1(ai(t),t) - H:1(ai(t),t) = -2c(1 + U(ai(t),t))

-B - “B -
However, H12(ai(t),t) and H22(ai(t),t) are unknown

(even assuming 51(t) known).

The following set of calculations holds for an arbitrary

procedure, so the bar will be dropped.

Differentiating the equation

HI:(r,t)+(r21—;HH(rt)+§1-H(r,=t)

twice with respect to r and once with respect to t, we have

B n-l B n-l B 1 B _

Hrt + (2r ) Hrr - ( 2) Hr + 2 Hrrr _ O ’
2r

B n-l B n-l B l B

Hrrt + (2r ) Hrrr - 2(2 2) Hrr+ 2(n3) Hr +2 Hrrrr - 0’

r 2r3

B n-l B l B _

Htt + (2r ) Hrt + 2 Hrrt — O ’

from which it follows

B _ l B _ n-1 B n-l B

Hrt(r’t) - '2 Hrrr(rat) (2r ) Hrr(rat) + (2r2) Hr(r9t) :

B _ 1' B n-l B
Htt(r,t) - 4 Hrrrr(r’t) + (E;‘) Hrrr(r’t) :

n-12 n-l 2 l B

+ [(7) -(n2——1)](—) HB1_,(r t) + [(‘21— - (T) ](:3') Hr(r.t)

We now consider t fixed and large, say T, assume

(50(t),al(t)) known, approximate HB(r,T) by a 5th degree polynomial,
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compute its third and fourth derivatives, and substitute them for

H8 (a (T) T) and H8 (5 (T) T) This in turn enables us to

111 i ’ 1111 i ’ °

. ‘B - —B -
approx1mate H12(ai(T),T) and H22(ai(T),T).

We find a 5th degree polynomial fT(r) subject to the follow-

ing conditions.

f2<5i<T>> = HB(aTnim ,1") ,

£26200) = H’iéim ,1) ,

f'T'<52<T>) = H’ilduicrm) .

Suppose polynomials P0(r), P1(r), P2(r), Q0(r), Q1(r), and

Q2(r) satisfy the following conditions.

PO(5O(T>> = 1, PO<51<T>) = P6(50(T)) = P5<51<T>) = P3<5O<T)> =

Paella» = o,

Pi(5o(T)) = 1, P1<50<T>> = P2<£1(T>) = Pi(51(T)) = Pg<£0(T)> =

P'1'(51(T)) = 0.

P2'(50<T>) = 1, P2(50(T>> = P2<51m> = P2<50<T)) = P2610») =

P2'(81(T)) = 0.

Q0(a1(T)) = 1, Q0(aO(T)) Qé<aO(T)) = Q6(31(T)) = (230300))

Q5(al(T)) = 0.

and similarly for Q1 and Q2.

Then fT(r) = fi°(£O(T),T)PO(t) +»fi2(50(r),T)P1(r) +

[-2ca + 0030(1) um + fifl2(50<r),T>] P2<r) + H1(52<T>.T> Qo(r) +

Hidlam) Q1(r) + [-2c(1 + U(Elmn‘» + H}1(£1<T>,T)] Q2<r)

will satisfy the above conditions.
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A solution in terms of P0 thru Q2 is the following.

Let k = 51(T) - 50(T), s(r) = r - 50(T), and v(r) = 51(T) - r.

3 2

P0(r)=_(l(_§fl_[1+3S—§El+6fl§lL],

X X

3 2

111.;11_[s(,,+ 3E2211],
P (r)

1 X

3 2

22(2) 1 1v1;)) (521)) 2

1

2022411121131; 6111111131

13

Q1(r) = 515%: [-v1r) - 3919,11
X

3 2

Q (r) = (S (3')) 1112(0)

X

We now compute the third and fourth derivatives and evaluate

at ai(T).

£21501T)) = fg-11815111),t> - HB(50(T),T)) +—2221--36H15011) T)

1
-2411(a (T) ,T)] + in-9H(a01T)T) + 3H:B (a 1T),T)] .

m' _ég—B‘ "B- 1_-—B..

£21a21T2) - 2, 1H 1a11T),T> - H 1aO1T>,T)) + 22 [ 24H21aO1T),T)

-36H‘:(51(T),T)] +—:[ -3H11(a0(T) T) + 9111(a11T) ,T)] ,

I/I/ " _ :69 _B ‘ —B '-

fT (80(T)) - - 4 (H (81(T).T) - H (80(T).T)) 4'“31:19?

1 k3

H11aO1T), T)

+ 16811H(a1 (T) ,T)] + -,2H[3611(a0 (T) ,T) -24 H110: (T) ,T)]

12

14'1511T)) = 29%11‘1815121T2J2H- H1aO 1T) T2) + ——31--168HH‘i1aO 1T) T)
X X3

-192H1(81(T) ,T)] + -—[-24H11(a0 (T) ,T) + 36H11(s (T) ,.T)]

12
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In view of the foregoing calculations, for large fixed t, say T,

we find two constants a' and a' which simultaneously satisfy

 

O 1’

the equations

1 b .

['ZC(1 + ”(31»T)]CH22(82,T) - H22(a; T)] = [H; (a!,T) - H12(a HT)]

where

b . __ m

H12(ai’T) — " _fT (3 1..) ”(21%)H11(a; ,T) + (2%.;:)2)Hb”(8 ,T):

Hb _ _]_._ fun 0 m 1 1'1"")1 2

M221 ,T) — 4 T(a) + (2;.)fT (a) + [(— - (n2_)]((s')2) ,

i

H‘ilugxr) + [112-1-2- 1312211537) H‘iegm,

Hb(a£,T) = Hi(s;,T) ,

b 1 i .
H1(ai)T) H1(ai,T) ,

H:1(a;,T) = -2c(1 + U(a; ,T)) + Hi1,(a1 ,T),

and with A = a1 - a

60

13

f'fl‘l/(a

O)= (Hb (a', ,T) - Hb (80 ,T)) + :3-3o Hb(80,T) - 24 H‘;(ai,T)j

1 b 2 b ' . . m I._. - ++ x E 9 H11(ao,T) 3 H11(a1,T)], and Similarly for fT(al)’

III I I III I I

fT (a0), and fT (a1).

These values a; are approximations to 51(T), and fT(r)

is the approximation to H(r,T), 86 < r < ai. Of course H1(r,T)

serves as the approximation to H(r,T) and is exact for

r 2 max(al(T),ai), while H0(r,T) serves as the approximation to

‘H(r,T), and is exact for r S min(aO(T),aé).

We note that just as H(r,t) hides the procedure, the

notation for the spanning polynomial ft(r) hides the endpoints

and the function value and first two derivatives at the endpoints.



SECTION 3

Suppose now for large t, say T, we have a6(T) approximat-

ing 50(T), ai(T) approximating 51(T), and fT(r) approximating

fikr,T), a6(T) < r < ai(T). Now a mesh Ar, At is chosen and we

consider the grid points (rj,T) between a6(T) and ai(T). That 2

is, we define integer

= E_
K(a,Ar) [Ar]

where [x] is the largest integer s x, and consider the points

(rj,T) with

rj = j'Ar K(86(T),Ar) + 1 S j S K(a{(T).Ar) .

Ar will always be chosen so that the number of grid points,

K(ai(T),Ar) - K(a6(T),Ar) 2 3. At these grid points, we define

Hb(r T) =£ (r)
j, T j .

Throughout this section i = 0,1.

We now employ an iterative procedure, supposing at t we

have a;(t) as approximations to ai(t), and Hb(rj,t) 33

approximations to fifrj,t). First we find a;(t - At), the

approximations to 51(c - At), then use Taylor series expansions

to approximate i at grid points near the boundaries, and finally

employ finite difference techniques to approximate H' at grid

points away from the boundaries.

29
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From the equations

da -B d5

EB(a(c) c) -—+ u12(5i<c>,c)= 11(a(t) c) ——+H12(a.(c> t)

it follows that

:151 = (17‘1:Z(5.<c),t) - fifzd. (t) o) _ (Pizdgom - fifzéimx»

dt

   

(H11(a. (t), t) - H11(§(t) t)) 26(1 +’U(51(t),t))

figz is the only unknown function of (51(t),t).

However, since

N
I
H

fi’j2(5i<t>,t> = - 11mm. (c) c) 42‘;m)“(aium)

+‘(““'—‘——0H.1(8. (t) t) ,

2(a. (t))2

_B

estimates of H111(ai (t), t) would provide us with estimates of

da

‘8 i
H12(ai(t),t), and in turn of dt (and ai(t - At)). Accordingly,

letting m(0) = K(a6(t),Ar) + 2, and m(1) = K(ai(t),Ar) - l (or

some such), we consider a Taylor series expansion of fi8(rm(i),t)

around (51(t),t), and define

6

- a;(t))

(a; (t) t) = (
H111

3 )[Hb(rm(i)9t) " Hi(8i(t)’t) -

(rm(i)

2

. (r . a'(t))

I 1 1 “1(1) 1

2

 )<-2c(1 + U(a;(c>.c>>

i .
+ H11(ai(t).t))] ,

H‘l’zogumo =§ gnaw) c) -(-2-§-;%5-><-2c(1 + u<ag<t),c>>

uga(c) o) + <—————§> Hi<ag<c>,c) ,

2(a'(t))

and approximate ai(t - At) by
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b i I

H12(a;(t) ,t) - H12(ai(t) ,t)

2c(1 + U(a;(t),t))

 a;(t - At) = a;(t) - At

It is assumed that a;(t - At) 5 a;(t). At the grid points close

to the boundaries, we use a Taylor series expansion to approximate

H. At j = K(ai(t ~ At),Ar) we let

Hb(rj,t - At) = H1(ai(t-At),t-At) - (8i(t-At) - rj) Hi(ai(t-At).t-At)

(ai(t-At) - r.)2
1

+ 2 41 [-2c(1 + U(ai(t-At),t-At)) + H 1(ai(t-At).t-At)] _

l

 

3

(a'(t-At) - r.)
1 j b t
 

and at the points near the lower boundary, namely K(ad(t-At),Ar) +

1 s j s K(a6(t),Ar) + l, we define

Hb(rj,t-At) = H0(a5(t-At),t-At) + (r - 86(t-bt)) H2(86(t-At).t-At)
j

2

(rj - 85(t-At))

 

 

+ 2 [-2c(1 + U(a6(t-At),t-At)) + H31(aé(t-At),t-At)]

(rj - a5<t-Ac>>3 b '

+ 6 H111(ao(t)’t)

Hb (a;(t),t), lag computations, have already been computed, while

111

H211(a;(t-At),t-At) would (possibly) require values which are not

as yet computed.

The values m(i) are chosen with two thoughts in mind.

First, it is desirable to choose the points as close to the boundaries

as possible in order to reduce the residual error in estimating the

third derivatives. Secondly, as we have just seen, the values of

the points close to the boundaries are filled in using Taylor series

expansions around a;(t). To then expand around these points (very
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often) in order to estimate ai(t-At) is inappropriate. In-

apprOpriate in the sense that the partial differential equation

aspect of the problem is lost.

At the other grid points away from the boundaries, namely

those points (rj,t-At) with K(a6(t),Ar) +-2 s j s K(ai(t-At),¢r)-1,

- b

our approximations to H(r ,t-At) are the solutions H (rj,t-At)

J

to the simultaneous equations

Hb(ri,t-At) - Hb(r.,t) (Hb(r

b b

,t-At)-2H (r.,t-At)+fl.(r ,t-At))
+ -

ZAr2

b b

11"]. H (ri+1:t'At)'H (ri_1:t‘At)

J

  

b b b

(H (r. ,t)-2H (r ,t)+H (r._ ,t))

+ (1‘€)[ 1+1 2 l 1

2Ar

 

b b

H (r. ,t) - H (r ,t)
n-l 41+1 1-1

+ (zrj)( zAr )3 3

where only schemes for which 0 S e S l are considered.

The choice a = 0 gives the four point explicit scheme,

and the solution is simply

b _ = b at b _ b b

H (rj,t At) H (rj,t) + 2Ar2 (H (rj+1,t) 2H (rj,t) + H (rj_1,t))

n-l At b _ b

+ (zrj) 2A1: (H (rj+1:t) H (rj-1:t)) 0

For 0 < e S 1 we have implicit finite difference schemes involving

six points, unless e = l, in which case only four points are con-

cerned. The solution of the simultaneous equations in the implicit

case is made easier by the tri-diagonal feature of the matrix [3].

,4.

a1“
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Note that for the explicit scheme, the order in which the

values approximated using Taylor series expansions, and those in-

volving the finite difference equations are calculated, is immaterial.

The choice of e is dictated by time considerations and

conditions discussed in Section 5.

The following graphs indicate the four most frequent cases;

circles indicate points whose approximating values involve Taylor

series expansions, and X's points at which finite difference

techniques are employed.

Table A

G 0 0 o /o /o

x. . x. O o C 0 .

X. C x. C X. 0 x. O

x. O G C x. C x. O

The iterative process is continued until the lower boundary

crosses the axis. Suppose T00 such that

I I _
80(T00) > 0 2 aO(T00 At)

Then we let T'0, the approximation to T , be

0

I

80(T00)

0(Too) ‘ a6(Too ' 5") z T

I = _ _

To T00 At (a. 00 Ato ,

and fill in the values Hb at the grid points

(O,T6),(Ar,T6) ..... ........(K(ai(T6),Ar)~Ar,T6)

with

AC

I I _ I __0 ! - ' ..

'1‘To) ’ “1(Too) ' Ac (“1(Too) a1(Too At))
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as follows.

b O

H (0,T5> = H (0.T5) .

and Taylor series expansions are employed to calculate

,Ar) + l and for j = K(ai(T6),Ar).
b . . . '

H (rj,TO) for l S J S K(ao(T00)

For K(a6(T00),Ar) + 2 S j S K(ai(T6),Ar) - l, a finite difference

scheme is used with At0 substituted for At.

From T6, the iterative procedure is continued in time steps

of At, except for the initial step of length At - Ato, until

ai(t) < 2Ar. The purpose of the first step is to be able to compare

different schemes after the lower boundary crosses the axis. That

is, T6 will vary from scheme to scheme. The procedure is similar,

but with the following changes due to the special role played by

r = 0.

Defining in the obvious way

B
B

H (tit) :H (02¢) = lim Hi(r,t)HE(O,t) = lim

r10r10

and similarly for all partial derivatives evaluated at r = 0,

then since H€(0,t) = 0, and in fact all odd partials evaluated

at r = O vanish,

B

H (r,t)

. B l, B n-l l = B 3' B =
l1m[H2(r,t) + 2 H11(r,t) + (-§-)--;--] H2(O,t) + 2 H11(0,t) 0 .

r10

For the explicit scheme, we approximate fiKO,t-At) by

Hb(0.t-At) = Hb<o,t) + It‘l'mza'(Fibula?) - Hb<0.c>>.
Ar
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and if an implicit scheme is used, the equation involved is

‘€(EA%) Hb(Ar,t-At) + (1 + 6 fig) Hb(0,t-At) 3 (1'6) BA'E-Hb(brst)

Ar Ar Ar

n t b

+(1 - (1 -e) 45) H (0.0
Ar

It will be shown in Section 5 that an implicit scheme is necessarily

employed when n is large.

Suppose T11 to be the value of t such that ai(t) < 2Ar.

Then there are obvious estimates of Ti, including T itself.
11



SECTION 4

We now find the asymptotic width of the region B. As t

gets large, the density of Hun under the alternative hypothesis

becomes concentrated at %'= t , as is easily seen by noting that 1%

in one dimension

 

2

.

2 l l

h§i= 1314 < EM <E%‘H\ = (55+ 9" , i

t

n k

r(j +§+;)

and since " is an increasing function of n, Efiu“
n

TO + ‘2')

is an increasing function of n for fixed “x“. So

t
M < Enun < 2M2 = (”312L2- + 5% -

Now let us consider the general problem of testing the simple

hypothesis HO: u = 0 vs. the simple alternative H1: u = M > 0,

with apriori probabilities p and l - p, losses L(rej‘HO) = W0,

L(acc‘H1) = wl, and cost of sampling per unit time c.

20 and 21, with 20 S O S 21, determine a sequential

probability ratio test (SPRT). That is, one which has boundaries

M _ M. =
zi + 2 t. We observe (Xt. t > 0) until Xt 21 + 2 t. If i O,

accept; if i = 1, reject.

Instead of considering the risk as a function of 20 and

21, let us consider the risk to be a function of x1 and h, with

11 = zffl, h = x1 - ho: k0 = 20M. In terms of XI and h, we sample

36



 

 

k ' h )sl

aslongas M +-2't<Xt<P-4—+§t.

Now

1 "1'h x1'11 11
R(x1,h) — k1 k1_h [p<<1-e )wd+k(x1<e -1)+(i1-h)(1-e >>>

(8 -e )

kl'h x kl-h

1 "1 "1
+ (1-p)<e (e ~1)w1+k<x1e <1-e )+<x1-h)<e -1>>))

where k = 2% .

:
2

k1 or xl-h may be zero, and in fact, when p is small

or large, the optimal procedure will be to reject or accept without

sampling.

We use the results and notation displayed in Lehmann, Chapter

3, to obtain the expression of the above risk function. The terms

 
 

X X

e 0 and e 1 represent the bounds on the likelihood ratio function

L(x,t).

_ x4Mt 2 M

_ p(Kt: = x1H1) _ (1/2nt)%e 2‘ _ M(x ‘ 5")

L(x’t) " (x =x‘H) " 2 " e ’
p t 0 _ (x)

(l/Zfit)%e 2‘

M

M "o ”(X ' '5 '3 >‘1
and x0 < M(x - E-t) < x1 iff e < e < e .

The probability of hitting the upper boundary, given drift

u, is given by

“24.1
10(1 M)

l-e

-22 -21111<1 M )_ex0<1 M )
em) = -

e

Then the probabilities of mistakes are given by
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'X k X

_ 1.23—0.— _‘__...(.)._..) = e 0&3 1

'X ' K

e -e 1--e X0 e 1--e)\0

The expected sampling time Eu(T) given drift u, is given

-1)

x1 10
E (T) = lne 3(1):) + lne (L-Bm))

u Eu(1nL(X.1))

L(x,1) is the likelihood ratio evaluated at t = l. L(x,l) =

M(x - g)

and

E (T) = l- [1 (31,1130) + x ("30‘‘2
M 2 1 11 x0 0 11 10

e '8 e -e

k
l

-1))]

2 x 1 1 X
0 l O

[x1(1-e )e + x0(e 1-1)e ] .

In order to find x1 and h which minimizes R(x1,h), we set the

first partial derivatives equal to zero.

—-—— = 0 iff pf (W - kh) + ke (l-e )'_\

ax, o

2 h (1)x - x ,
= (l-pmw1 - lane 1 + He 1a-. “)1
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ah

0 iff p[(w0 - kh) - k(l-eh)]

(2)
1 -

(1-9) e 1[(w1 - kh) + k(l-e “n,

Dividing (l) by (2), we obtain

11 -h -h
[(WO - kh) + ke (l-e )][(W1 - kh) + k(l-e )]

1 -h -
= [(WO _ kh) - k(1-eh)][(w1 - kh)e 1 + k(1-e h)]

9

which reduces to

(1:0 - kh)(w1 - kh) = 12(eh + e'h - 2) . (3)

This equation involves only h.

The LHS of (3) is a decreasing function of h for

kh < min(WO,W1) and is S kzh2 < RHS for kh > min(W0,W1). The

RHS is an increasing function of h. For h = 0, WOW1 > 0. Thus

there exists a unique h satisfying (3).

-4 -

-2 _ 2 -2 2h 2h
h — k (h + 4! + 6! o ....... ) o

" 2

WOW1 - (W0 + W1)kh + k

The approximation h' of h used here is obtained by

neglecting terms of order greater than two in h.

2 2 2 2_ I I = I
wow1 (wO + W1)kh + k h k h ,

h. = l wowl

k (W0 '1' W1)

The approximation h' serves as an upper bound for h.
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For a given h, 11 must satisfy (1) in order to be optimal. h'

serves as an approximation to 11 - 10, so EL' serves as an

approximation to 21 - 20.

Returning to our problem, we define rI(t) to be the

"indifference" point, that is, the value of r for which the risk

of stopping and accepting equals the risk of stopping and rejecting.

rI(t) is in the continuation region B.

For the (c,W1,2k) problem in n dimensions, rI(t) is

the solution of the equation

 

2

k 21 g-‘g—

1 = [w z c (L,k)rk+ ] (Zn/t) e t
l L=O n t L

We note that rI(t) does not depend on the cost of sampling c.

By the definition of tz,

rI(tz) = 0 .

Considering the problem of testing the simply hypothesis

rI(t)

 

H : u = 0 vs. the simple alternative H : u = with

0 l

(r1(t>)2

' 2t

_ (rI<c))2

/<1 +<c/2n>2 e 2‘ > ,

B.

(t/211)2 e

I
5

‘
0 ll

1

u+uugomn ’

L(rej‘Ho) = 1 ,

 

21 1
L(acc‘Hl) = w1 s(“pu \rI(t),H1) = U<r1(t) t) .

we employ the above results, and for large t, we approximate

 

   

r1(t) -1

1 0 2c 1+,(U(r1(t),t))-1] 2ct 1+U(r1(t),t)



SECTION 5

In Section 3 it is stated that a choice of Ar, At, and

a is made, and this section investigates criteria for making that

choice. The general (at most) six point schemes are analyzed here.

We first investigate the truncation error for the six point

scheme. Expanding the apprOpriate terms around the point (r,t),

we write:

H(r,t) - nglt:At) = H2(r,t) - %£~H22(r,t) + 0(1t2)

 

At

_(2 [H(r-l-ArJ-At) - 2H(r,t-At) + H(r-ArLt-Atlj ___ 31H (“U“)

2 2 2 11

Ar

“.2. 4 _Q £2.
+ 12 H1111(r,t-At) + 0(Ar )1 = 2 [H11(r,t)-ACH112(r,t) + 12 “1111(r’t)

+ 0(1c2> + 0(1c1r2> + 0(1r“>] ,

l-e H(r+Ar,t) - 2H(§,t) + H(reAr,t)

(2)1 2
= L‘s.

Ar 1 ( 2 )[H11(r,t>

2
z.

+ fg- H1111(r,t) + 0(Ar )] ,

(2:1) €[H(r+Ar, t-At) - H(r -Ar ,t -At)

2r

2 .

-1

2Ar ] = (3?"961H1(T:C'At) + A%—'H111(r,t-At)

2

+ o<1r4>1 = <§§1961H1(r,t>-1cH12(r,t) + Afi—jn (r,t)+o<1c2>+0<1t1r2>+0(1r‘>1 .
111

(El) (1_€)[H@Ar4t) - H(r-ArLt)

2r

2

_ Ell
Ar

ZAr 1 ' (2r )(1-6)[H1(r,t) + 6 H111(r,t)

+ 0(Ar4)] ,

41
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so that adding these five equations, on the region B we have,

HB (r,t) - HB(r,t-At) + 61: (HB (r+Ar,tjt) -2HB(rLt-At) + HB(r-Ar,t-At)

)

At 2Ar2

+

(11" 1) (1‘[B(I‘+Ar;t it) " “B (1' “Ar Lt ”At) )]

2r 2Ar

B B B B

+ (1-6)[(H (fiArnt) 'ZH (r,tl‘l'HBLr'ArLtl) n 1 H (fiArlt) -H (If-Aria

   

2Ar2 + (2r )( 21: )3

_ A£ 113 113113 As. 8
" ' 2 11,220: t) + 24H’1111(r t) + (12—)Arzfllnmt) ' 2 album” 1

- (gil>61cu‘132(r,t) + 001:2) + cum?) + our“). (1)

 Using formulas derived in Section 2, page , we may write a

(r ,c) + (9%) H§(r.c> .H12<rt)=-1fi1%1,‘;(rt>-(—;H)H
Zr

11

HB 1 HB n-l HB

“’112(r t) = 51111116t)- (2r ) H.111(r t) + 2(-‘2‘-;—) H111(r.t)

- 20%) I{2(rat) 9

2r

H22(r c) = lH1111<r c) + (‘2‘41) H111<r.t> + [($2.21)2_(“_;_.1)]:2 H1110;>

-1-1 2 1

+[<1-2—)-(“—'2'—)]—3 H1(r c)

Hence, the right hand side of (1) may be written

= _A£_ B B

RHS H (r ,t)- (2%)At H111(r

8 111113—t>-[<2-:-1->2-<—)1:§
BH11(r, c)

' [(n2"1'"(L2_1)23L3'“B( ’t) + A271311111“t) (112—12 “2““211“” t)

Le _ 2:.1.+ 4 eH1111(r t) + 1: a;TI) H111<r.c) 1c s(zrz) 11:1(r.t)

+ 1c ail-1%) H’ium + At “2%) H111(r c) + M e(—)2 :2“H111<r t)
2r

- m: e<“g--1-)2 -1--3 Hie c) + out2) + cum-2> + our)
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2:1

2
B -1 2 '1

= [At— + g};— + 25 e] H1111(r,t) + [-(2-;-) At + (121.)Ar + M 6617)]
8

2 A__ At B 2:1 2 .E:l
H111(rt)+[(—'—)— <—'2-'—“12>]( 2e>H11<r,t)+[(2> -<2)]

2215' r

(A93 - 15—;- e) Him-x) + oucz) + omzsrz) + our“)
2r r

If e = 0, corresponding to the four point explicit scheme, the RHS

of (1) is given by

2

RHS = 0(At) + 0(Ar)

. . . r
For dimen31on n = l or 3, the ch01ce At = A3— reduces the error

term to

 

RHS = 0(Ac2) = 0(Ar4) ,

and for other dimensions, the terms involving the third and fourth

derivatives are cancelled.

For 0 < s s 1, corresponding to implicit finite difference

schemes, the RHS of (l) is reduced by the choice

2

_L.

6At

n

N
:
|
r
—
-

in the case n = l or 3 to

2 2 4

RHS = 0(At ) + 0(AtAr ) + 0(Ar) ,

and for other values of n to terms not involving the third and

fourth derivatives.

Similar calculations yield
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B B

H840 Lt) - HB (0 it ”At) + n (H (Ar : C “At) " H (0 LtLAt) )

At 6 2

 

Ar

3 B 2 2 2
- B

+ n(1-€)(H m”) 2 H (OLD) = [- J—“Bt + “—A—ZZ + —A-“4‘ e] H1111(0.t)
Ar

+ 0(At2) + 0(AtAr2) + 0(Ar4) ,

utilizing the fact that all odd partial derivatives with respect

to r evaluated at r = O vanish. Only in n = 1 dimension can

this error be reduced to

2 2 4

0(At ) + 0(AtAr ) + 0(Ar )

by choosing

_A.r_2_
6Atr

o
h
d

6:

The following table gives the number of calculations

necessary at each grip point for the four point explicit and six

point implicit schemes.

multiplications additions and

and divisions subtractions

(non-integer)

explicit, one dimension 1 ' 4

implicit, one dimension 5 4

explicit, multi-dimensions A 4

implicit, multi-dimensions 10 10

The free boundary condition makes the analysis of stability virtually

impossible for the author. It appears that the stability condition

certainly depends on the dimension n, and quite possibly on the

power k. The best that can be hOped for in one dimension is that

the stability condition is the same as the fixed boundary case:

 



 

45

Atzsllz 0Se<.5,

Ar 6

unconditional stability .5 S e S 1.

For the four point explicit scheme, this condition is

A2,.
2 s 1 .

Ar

In higher dimensions, these conditions must be strengthened.

For the explicit scheme the coefficient of Hb(rj ,t) is

1

At _ (n-12At

2 4r.Ar
ZAr J

which is negative for small values of rj, the smallest of which is

Ar (for which this coefficient is used), if

n 2 4 .

At r = 0, the coefficient of Hb(0,t) is

Ar

which is negative for appropriate values of At, Ar, and n.

The existence of negative coefficients insures instability,

and in general the explicit scheme will be dropped once the lower

boundary crosses zero (if not before) if n is large. The larger

n, the larger the value of e chosen, because the computations show

that small choices of 6 give instable schemes. However, no in-

stability problems have been encountered by the author with the

choice 3 = 1. If for large n, it is stated that the explicit

scheme is used, it is understood that at or before T', an implicit

0

scheme is substituted.
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, 2 . .

In general At is chosen 5 Ar , because it is demonstrated

by the computations that 13 any dimensions large values of the ratio

At.
2 give instable results, regardless of the value of 6-

Ar



SECTION 6

Computations were carried out for the constant loss and

squared loss problems. This section deals with the constant loss

problem.

For the (c,W1,0) problem in n dimensions,

0 r2L

(W 2 C (L30) _) = W :

l L=O n tO+L l

and consequently the indifference function is given explicitly by

rI(t) = [t(nln(%;) - 21nw1)]5 for

2

_ n

t>tz-2n(w1) ,

for then

W1U(rI(t),t) = l .

The approximate width of the region B, call it AWB(t),

as derived in Section 4, is given by

[t(nln(;—n) - 21nW1)]35 w1

51(t) - a0(t) a AWB(t) = 2ct (1 + wl) .

AWB(t) is maximized at

2

— n —

tm - 2ne(w1 ) — etz

as is seen by setting the derivative with respect to t equal to

zero.

47
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Although there is no reason to believe that the approximation

AWB(t), based on an approximation that is an upper bound in a simple

vs. simple testing case, would serve as an upper bound in this

simple vs. composite case, it does in fact turn out to be an upper

bound (for ai(t) - a6(t) and presumably for 51(t) - 50(t)) in

the constant loss case whenever t > tm.

For fixed WI and t, the approximation improves with in-

creasing c, in the sense that the ratio

ai(t) - a6(t)

AWB(t)

 

S l

is an increasing function of c. For fixed c, and a fixed distance

beyond tm (tz depends on w but not c) the approximation
1’

improves with increasing W for small fixed distances beyond t ,

ml

and contrarily improves with decreasing values of w at large

1

fixed distances beyond tm. For c, W1, and t fixed, the

approximation gets progressively worse with increasing dimension n.

Table 6.a and 6.b illustrate these facts.

I I

- ta (c) a0( >
1 .

ANB(t) at differentTable 6.8 displays the ratio

values of t, corresponding to varying values of c for two problems

and procedures outlines. Starting value denotes the value of t

at which the polynomial procedure was applied. Only major changes

in the procedure would affect the ratio to any significant degree.

We note that the value of a after the crossing would certainly

not affect the ratio at values of t before the crossing (which all

of these are). The procedure is included primarily for the sake of

completeness.

 



49

Table 6.a

2 2

Problem: (c,l,O) in n = l dimension Procedure: At = Ar = .25

2

_ -- _ 9L.__1.
c - .02,.Ol,.005,.0025,.00125 Implic1t, e 6At 3

Starting value T = 150

ai(t) - a6(t)

 

The ratio at t = 100 and t = 50

Aw3(t)

t = 100 t = 50

c = .02 .992 .982

c = .01 .972 .938

c = .005 .911 .831

c = .0025 .767 .656

c = .00125 .547 .455

. . . 2 2

Problem: (c,1,0) 1n n = 10 dimen31ons Procedure: At = Ar = .25

c = .02,.Ol,.OOS Implicit, e = %' before T6

= I
e 1 after To

Starting value T = 100

The ratio at t = 70 and t = 30

t = 70 t = 30

c = 02 .765 649

c = 01 .563 448

c = 005 .368 285

Table 6.b gives the ratio for varying values of W The1.

starting value T is 200, and 195 is considered to be the largest

value of t that reflects an accurate estimate of a;(t). That

is to say, the procedure is given 80 At steps to "settle down":

to counterbalance the inaccuracies inherent in the initial polynomial

approximation. Since for W1 = .02, tm = 68.3, tm + 127 was chosen

in order to make its value no larger than 195. If the starting value

had been chosen large enough, we would see the ratio for W1 = l

surpass the ratio for W1 = 2.
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Table 6.b

. . . 2 2

Problem: (.01,W1,0) in n = l dimen31on Procedure: At = Ar = .25

W1 = 2,1,.5,.25 Implicit, c = %

Starting value T = 200

ai(t) - a6(t)

 

tm and the ratio at t + 5 and tm + 127

AWB(t) m

t t + 5 t + 127
m m m .

W1 = 2 68.3 .988 .993

W1 = 1 17.1 .890 .982

wl = .5 4.3 .709 .984

W1 = 25 1 1 .649 991

 

The question of convergence has been deferred from Section 5.

There are two types of convergence to be considered. One is the

convergence of the values Hb(rj,t) to H(rj,t) at grid points

common to all meshes, and the other is of the approximations

a;(t) to 51(t). The convergence (in L norm) rate of an explicit

0

finite difference solution with A£§'= %‘ in a fixed boundary case

Ar

(necessarily convergence at grid points) to a function satisfying

the heat equation H2 = % H11 with an analytic initial function

(certainly 88(r,T) as a function of r is analytic) is

0(At2) = 0(Ar4). The corresponding rate for any other value of the

ratio 0&5 (but 3 l to insure stability) is 0(At). Thus in the

problemgrat hand, the most that can be hoped for is 0(At2), and the

best chance of that happening is in the one-dimensional case.

Table 6.c shows values of a) Hb(r ,t) at selected grid

J

points common to all meshes, b) a{(t) at selected values of t,

and c) T6 for the explicit scheme outlined below. The first three
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values correspond to Ar = .5,.25,.125 respectively, the next two

to successive differences, and the number offset to the right to the

ratio of the first difference to the second. The first difference

may subtract the first number from the second, or visa versa, but

whichever way is followed through for the second difference.

 

Table 6.c

Problem: (.01,1,0) in n = 1 dimension Procedure: Explicit, A£§'=‘%

Ar

Format: value when Ar = .5 Ar = .5,.25,.125

value when Ar = .25 Starting value T = 100

value when Ar = .125

first difference

. ratio of differences

second difference

a6(60) Hb(10,60) Hb(12,60) Hb(14,60) ai<60)

9.405498 1.78500146 2.16200199 2.594289809 14.004402

9.405357 499944 199828 771 564

9.405344 33 02 66 82

.000141 .00000202 .00000371 .000000038 .000162

.000013 11 11 19 26 14 s 7 18 9

I b b b ,

a0(20) H (3,20) H (5,20) H (7,20) a1(20)

2.342487 1.03437318 1.26730696 1.56816093 7.672784

1974 6641 29513 3728 4108

875 597 437 502 423

.000513 .00000577 .00001183 .00002365 .001324

99 5 44 13 76 16 226 10 315 4

Hb(0,5) Hb(l,5) Hb(2,5) ai(5)

1.05880985 1.07461814 1.12015429 2.839361

70206 54217 39970 795260

69505 3754 41125 0645

.00010779 .00007597 .00024541 .044101

701 15 464 16 1155 21 4615 10

T6 Hb(0,3.5) Hb(.5,3.5) ai(3.5)

10.225519 1.08088505 1.08313990 1.243785

53206 106705 59393 0.778694

8385 9361 3347 0.558537

.027687 5 .00018200 7 .00045403 -8 .465091 2

5179 2656 - 5954 .220157
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Considering first of all convergence at grid points, if the

rate of convergence were 0(At2) = 0(Ar4), the absolute value of the

ratio of successive differences would be about 16. It should be noted

that defining convergence in terms of L0 norm would seem to make

more sense in the fixed boundary problem than in the present free

boundary problem. It does not seem to be clear from the computations

whether the fastest convergence (in absolute value) would occur near

the boundaries or near the middle of the continuation region. And

in fact, there may be a difference in the boundaries. It is possible

that convergence is more meaningfully defined in terms of the average

ratio or the minimum ratio. Without defining convergence, ratios of

successive differences are displayed in Table 6.d for a one-dimensional

problem, and three different procedures.

Table 6.d

Problem: (.01,l.0) in n = 1 dimensions Procedure: Ar = .5,.25,.125

*

Format: ratio for AEE = %, explicit Starting value T = 50

Ar

ratio for OE? = %, explicit

Ar

ratio for At = Arz, e = %

b

a6(20) H (3,20) Hb(5,20) Hb(7,20) ai(20)

5 13 17 10 4

5 2 3 2 10

ll 20 17 11 4

b b b .

H (0,5) H (1,5) H (2,5) a1(5)

15 16 21 10

15 11 -l 11

19 14 6 1

T6 Hb(0,3.5) Hb(.5,3.5) ai(3.5)

5 3 5 2

7 3 2 l

6 8 -22 2

* Different starting value than Table 6.c
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Two things should be pointed out. First of all, the ratio

is not consistent in the sense that three different values (like

Ar = .25,.125,.0625) would give substantially different ratios at

some grid points. The difference could probably not be explained

SOlelYby round off error. If the ratio were consistent, it should

be greater than one in absolute value to insure convergence.

Secondly, the ratio of successive differences for Ar = .5,.25,.125,

as shown in these tables does not necessarily provide the criterion

for the best procedure (if the ratio is not consistent), for all

three values using one procedure may be closer to the true value

than the corresponding values for another procedure -- even though

the ratio for the first set is smaller.

In higher dimensions, as would be suspected, the convergence

rate, however it might be defined, becomes progressively slower.

Table 6.e gives the ratio at selected points for a given procedure

when n = 1 and 10 dimensions.

_
‘
J
‘
I

A
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m
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1
-
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Table 6.e

Problem: (.01,1,0) in n = 1,10 dimensions Procedure: At = Ar2

Format: ratio for n = 1 Ar = .5,.25,.125

ratio for n = 10 e ='% before crossing

e ='% after if n = l

e — 1 after if n = 10

Starting value T = 100

86(m) Hb(10,60) Hb(12,60) Hb(14,60) ai(60)

n = l 11 19 14 7 9

Hb(34,60) Hb(36,60) Hb(38,60)

n = 10 7 -5 -3 -9 8

a6(20) Hb(3,20) Hb(5,20) Hb(7,20) ai(20)

n = l 5 13 16 10 4

Hb(13,20) Hb(15,20) Hb(17,20)

n = 10 -25 -1 -2 -9 1

Hb(0,5) Hb(1,5) Hb(2,5) a{(5)

n = 1 15 16 21 10

n = 10 3 3 2 2

If the values corresponding to Ar = .5,.25,.125 (or any

other set of three numbers, the last two each one half of the pre-

ceding) are monotone, there is an obvious estimate of the true value.

Call the values corresponding to Ar = .5,.25 and .125; a, b, and c

respectively. Suppose the ratio of successive differences to be

r > 1. Then an estimate of the true value is

Sc - b)

true value = c +

r - l

O O I t I

It was stated in Section 5 that as the ratio A—2 increases

Ar

beyond one, the results become increasingly less reliable, whether

due to instability or round off error. Table 6.f presents data

for three different schemes, the last having ratio 2. e is chosen



optimally in all three instances.

Table 6.f

Problem: (.01,l,0) in n = l dimension Starting value T = 50

Hb(3,20) Hb(5,20) Hb(7,20)

.5 1.0343739 1.2673100 1.5681627

At = % Ar2, e = 0, Ar = .25 672 2982 391

.125 67 75 68

.5 1.0343774 1.2673118 1.5681637 ’3

At = Ar2, e = %3 Ar = .25 672 2983 390 A

.125 67 75 68

.5 ---- ---- ---- * ,

At = 2Ar2, e = %5, Ar = .25 1.034340 1.267282 1.568196 2

.125 64 95 39

* For At = .5 and Ar = .5, ai(20) = 2.901, so grid points

(3,20), (5,20), and (7,20) were not in continuation region.

(Indicating extensive round off error.)

This table indicates that the results of the scheme with

At = 2Ar2 are unsatisfactory. At the grid points (3,20), (5,20),

and (7,20) both of the first two schemes would estimate the true

values to be 1.034366, 1.267297, and 1.568136 to seven places,

employing the above estimation procedure. For Ar = .25 and

At = .125 the last scheme gives values which are further away from

the three estimated values at two of three grid points than the

second scheme with Ar = .5 and At = .25. At the other point

the values are essentially equally far away. The same thing happens

(two values further away and one equally far away) when the last

scheme with Ar = .125 and At = .03125 is compared with the

second scheme with Ar = .25 and At = .0625. This just should

not happen, and it appears that round off error, if not stability
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in this case, is affected by the ratio of At to Arz, even when

3 is chosen optimally in terms of truncation error. Other programs

indicate stability problems when the ratio exceeds one.

Nothing will be said about convergence of the boundary

approximations a;(t) except to say its rate appears to be slower

in n = 1 dimensions, but faster in higher dimensions than the con-

vergence rate at grid points.

Graph 6.a plots three sets of boundaries for the (c,1,0)

problem in one dimension. The set of unmarked lines correspond to

c = .02, those marked by +'s to c = .01, and those marked by 1's

to c = .005. The procedure used for this graph is implicit with

At = Ar2 = .252 and e ='% - AEE'= %3 however, only major changes

in the procedure would be detected for plotting purposes. Con-

sequently we will omit the procedure in describing following graphs.

We note that for c = .005 it appears that the upper boundary

comes in to r = 0 at t = 0, which may indicate that T1 is in

fact 0. Evidence from solutions in both the constant and squared

loss problems strongly substantiates this uncomfortable possibility.

The slope of the indifference function

t E_ _

r'(t) = n + (n1n(§; - 21nw1) = n + (n1n(2n) 21nW1)

I 2t(1(—t)-21nW)% 21"”{ n n 2“ 1 j I

  

is infinite at t = tz, and although it can't be shown by the author,

the upper boundary appears to come in to zero more sharply than

the indifference function for all values of the parameters and all

dimensions. Also the lower boundary comes in less abruptly. That

is, for 6 positive and sufficiently small
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81(T1 + e) > r1(tz + e) > 80(T0 + c)

There is reason to believe 56(Tb) is finite. Here are

two polynomial functions, A9 even and A? satisfying the same

partial differentiation equation as H8, such that both functions

and first derivatives match on r = s(t) t.

3r2(t-l) - 3:2 - t3A°<r,c>

AB(r,t) = 2(r3 - 3rt)

2t3 - 6t2

6(t2 - t)

A°(s(c) ,t) AB<s(t> ,t)

A2<s(c),c> A‘i(s(t).c>

This is not to imply that H8 can necessarily be expanded in a

polynomial around (O,T6), let alone one containing odd terms.

Graph 6.b shows the results for the (c,1,0) problem in one

dimension, with c = .005, .0025, and .00125. Therefore the

narrowest set of boundaries in Graph 6.b correspond to the widest

set of boundaries in Graph 6.a.

Graph 6.c plots sets of boundaries corresponding to

W1 = 2,1, and .5 for the (.01,W1,0) problem in one dimension. As

W1 becomes large (or c becomes large) the upper boundary comes

in very closely to tz. This graph is slightly misleading in that

the boundaries would have to be shown for larger values of t in

order to see that the width of the continuation region is

asymptotically larger for w1 = 2 than for W1 = l. (The more

costly the errors, the more worthwhile the sampling.)

Graph 6.d shows the effect of increasing dimension. Bound-

aries are plotted for the (.01,1,0) problem in 1,2, and 3 dimensions.

Graph 6.e is similar to 6.a except that n = 10.
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SECTION 7

In this section the squared loss problem is investigated.

Graphs will be diSplayed in the same order as in Section 6.

For the (c,w1,2) problem in n dimensions

1 rZL n r2

W1( 2 Cn(L,1) ‘55:) = w1(; + ‘5) ,

L=0 t t

and rI(t) is the solution of the equation

2

r
n .—

W1U(r,t)(t + t?-) — l for

c > :2 = (nw1)2+“ (2102“ .

  

 

So

n rI(t)2

rI(t)
1

r102) w1(: + t2 )

AWB(t) = get (1+U(rI(t),t))
= 20¢ ( r (t)2

3' I
(1 + w1(t + 2 ))

However this does not provide an upper bound for the width

of the continuation region, and in fact is not nearly as good as

the corresponding constant loss approximation.

2

However, by substituting for EHAHZ = %-+ £3 the quantity

1:

3 2
(3M2)

E uu u 2

H3with the numerator approximated by expanding “A around £5,

1:

we obtain a better approximation which does in fact serve as an

63
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upper bound in all the situations encountered by the author. Let

X

_ .2. = , .. 1
vi t . Then ui vi + Yi . Yi 11d N(0,t). So

2 3/2

\\u\\3 = (1'30!i + Y) ) 3”=442+wr+2242>

Formally expanding around Hvfiz, we get

n43=WP+3mnz+nvggwu+fiwW+azqnwV

+ 4(2 szi + E E v.1Y iv

ifj

ma =wn +%‘%uuu

l

ij))W .......... ,

(n+1)"- + 0 (—)

t

I

n
H

c
4

0
)

h
u
h
)

 

 
 

by

r3 r3 3

_ rI(t) ;§'+2 (n+1): ‘§+ 2’(“+1)L

81(t) ' 80(t) = 2ct (w1( 2 2) 2/(1 + W1(2
E_.+ —. £_.+ 2

t2 t t2

the approximation has properties similar to the corresponding con-

stant loss approximation in Section 6, except that this one does not

initially get worse with increasing n. However eventually (in n)

it does.

As an approximation which possibly serves as an upper bound

in n dimensions for the general (c,W1,k) problem

MW

EHHU

is suggested.

) 2))

h
-
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In section 6 it was shown that r£(tz) is infinite (for

k = 0). In that section r£(t) was given explicitly. Now the

slope of the indifference function for general k is found as a

function of rI(t) itself, and shown to be infinite at tz. rI(t)

depends on W k, and n, but not c.

 

1,

For fixed k and t, we define

2

2 r
- __ +k

(Evie 2c §r<j + ’12—)

W(j inst) - j! (€72 ___2__

1‘0 + -)
2

For fixed W1, k, and n; rI(t) satisfies, for t 2 t2

W1U(rI(t),t) 2 W(j.nr1(t)) = 1 - (1)

j—=0

Differentiating with respect to t,

 

w1(U1r' +UU2)( 2 WJn r)) + W1U{ 2 (- '2“)W(j.n r)

i=0 i=0

m r2 rr' . m . rr' W115“ r)

+ 2(-—2--t—)W(J.n.r)+ XMT- r22) 1:0-

j=O 2c j=l 2: (r_

2t

r n 1'2
Now U1 = E'U and U2 = (- 2t - -—-)U. Also

2t2

2 'w '2“ r = z W(j.n+2,r)

3:1 (£_) 3:0

2t

So

n k m rr' r2 w

w1(- 2t-- 5:9U Z N(j,n,r) + w1U[-Ef'- -——j 2 W(j,n+2, r) = 0 .

1:0 2t j=0

BY (1)

k+n rr r2

f= WIUE— - —] 2: N(Jn+2 r)

2t2 j=0
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So

, 2

rr _ r (k+n) 1
‘———‘_-——--+ :

t 2t2 2t 00

WIU 2 W(j,n+2,r)

j=0

I = £_ (k+nl

r 2t + m ’

2rW1U Z W(j,n+2,r)

j=0

and since

W U( (t) t) = 1 ’

1 r1 ’ m

z W(J',n,rI(t))
j=0

the 510pe of the indifference function may be expressed

 

 
 

Z W(J,n.r (t))

r'(t) = El£::-+ (k+“) 3:0 I
I 2t 2rI(t) m

z W(1.n+2,r1(t))
j=0

For k = 0

z N(j,n,r) = Z N(j,n+2,r) = 1

j=0 j=0

Therefore

t%[nln(%; - 21nw1]}5
n

rI(t) = 2t + 5 ’
2t%[nln(%;§ - 21nw1]

which reduces to the expression given in Section 6.

 
 

 

Since

zw<j,n.r 0:» _km fl

= 1:0 I “ELLE; =9:

j=0

it follows that, as t L tz :
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, _ 1

rI(t) — 0(I'I(t)) o

 

In the constant loss problem, the maximum width of the con-

tinuation region occurs after I6 (or before T6 is found) in

most cases, and in fact if c is large, the maximum width occurs

around tm = etz. In the squared loss problem however, the maximum

width occurs at T0 unless c is small, and is not predictable

otherwise.

Graphs 7.a through 7.e appear in the same order as 6.a-6.a.

Graphs 6.e and 7.e appear similar, partially due to the fact

that the two values of tz are close. This can be explained by

the fact that for any k, tz approaches 2n, as n a m.

1..(k+n) 2 n

2 k+n k+n

t = 2(W1 -—-—-—) n a 2n as n a m
n

1“ ('2')
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APPENDIX

Printout of program employing the implicit precedure to handle

the squared 1033 problem in any dimensions.

(“3OGPAM MAIN IINDUT.OHTPUToTAPE5=INPUToTADF6=OUTPHT)

[)IMFNSION QTIIOflnlocTFIIOOO)

COMMON IDgNLgNLP,NF,F.T.nggligIIIMgOl.O3gf‘4gI‘SQ"b9"79"89XL.”X ,STZC

IocsThoI‘QCLLIQCLAZQCQAIQCRA29I‘JL9HR9 FS,F'V9F819FV19FSIIQFVII

29G<I2QGVI.7anNSQDFNVQCUVQCON97

IS IS IMPLICIT SQUARFO IOSS MULTI DIMENSIONAL

INT 5O K5=193

In==1nfi

IAI1=1.

:.0]

WRI‘TFIboAlO) ID

FORMATI‘PXBHSQ LSoN=913)

WRI'TEI6q411) W1

FORMATIQXBHWI=9C6041

WQITFI694IZI C

FOQMATIQXPHC=9F6.5)

KL00K=D

KKQTzl’)

DIM=ID

DS=DIM-I.

Dl=DS*05

03:014’05

04=Dq+lo

06=DIM+20

D7=DIM+6.

D8=Dé+—)b

TZ=I6..d831853071796**(DIM/D6))*((Wl*DIM)**(lo/Dh)I

WRITEI691) TZ

T=ZOOCC

CALL PLY(W1)

DX=2.*(’.5**KS)

DIOXfl)1*®X

Dx2=nx+ox

DXOX=DX*DX

DFLT=DxDx

U=DELT/[DXDX

G=.5-]../(5.*H)

CALL 0??“thle

WRITCIFagaja) nx

FopMAH 9x3HDX=9F6.M

MDTTCIFsoAIA) DELT

FOPMAH 9X6HDFLT=oF8.6)

WQIT?(€>.41S) 6

FORMATI 9X15HRFFORE (“ROSS G=9F806I

KKF:7{‘)* (a**(‘(q_1))

J=</OY

XL=DX*I J+'|)

DFL=XL—s

DIsz-XL
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11

13

15
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NCM=DIF/DX

NC=NFM+1

DFH=DIF-NCM*OY

CALL Rmon

CALL qNDLI‘I'II

DO In K=19NC

QTFIK)=HP?IXL+DX*(K-III

DHT=.5*DFLT

FONS=10

DO 15 KK=I0KKF

D7=DFL+Dx

F<T1:(-3,/((07*02)*n2))*(STF(?I-FS-D?*(FSI‘D7*FSII)I

FCIQ=FSTI+DI*IFQII+F§II+FSI/S)/S

§=GET§LIOHT9FQIZQGQI2¢DEN9999cONSI

IFI§I 4094004I

D? =DFU+DX

FVT1=(3o/((DZ*U2)*DZI1*(STFINCM )-FV+DZ*(FVI+DZ*FV11))

FV12=FVT1+OI*(FVII+FV11+CUVI/V

V=GFT§LIDHT QVVI79GVIZ9DENV9V9CON9)

TzT-DFLT

CALL BNDH

CALL BNDLIWII

NL=IYL‘5)/Dx+1

NLD=NL+I

XL=XL‘DX*INL*I)

DFL=XL-§

DIF=\/-XL

NCM=DIF/OX

IFINCM‘ZI 900903090?

NC=NCM+I

DFH=DIF-NCM*DX

DO 11 K=IONL

X0=DFL+DX*IK‘II

ST(K)=FS+XO*(551-XD*(CS11+XD*FSTI/30))

XO=DFU

STINCI=FV-XD*(FV1+XO*(FVII‘XD*(FVTI)/3o))

CALL FILL

DO 13 K=19NC

gTFIKI=§TIKI

CONTINUE

WRITF(50?) NCQT

VMq=V-§

WRIIEI691) SoVoVMS

CALL CHT(WJ)

Tn<=H/T

Tn§2=TOS*TOQ

GGT=IT052+DIM/T)*Wl

GOOK=TO§*GGT/(20*C*I10+GGTI)

RAT=VMS/GOOK

WPITFIéoI) HoGOOKoRAT

QIG=OIMlT

GOT=IT087+B.*SIG)/(T092+SIGI

GGT=T09*GGT

CCT2=GGT*GGT*WI

GOOK=T05*GGTP/(2o*C*I10+GGT?)I
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7x10

44

76

QAT=VMS/GOOK

wPITF(6.1) HoGOOK-QAT

saw=uLsT-H

GC<:Q[§T—Q

GF\I=\/LQT-\/

WRITF(6.1) Gt<.<Aw.ntV

HLST=H

CL<T=Q

VL<T=V

FONS=V/OY

KLOOK=KLOOK+I

IF(KLO0K-KEPT) 1692639253

KLOOK=”

CALL QLK

GO TO 16

qL<T=s+(FSl2-C~S17HDHT/DENS

DHLT:DHT*SLST/(SL57-C)

D?:DFH+UX

FVTl=(3./((02*DZ)*DZ))*(STr(NCM )-FV+62*(FV1+02*FV11))

FV12=FVT1+DI*(FV1l+FVll+CUV)/V

v=GETSL(DHLT.FV1296v129DENVoV9FONS)

T=(T-DHLT)-DHLT

CALL DNDH

9T7F=C*T*(1.+7)+DIM*7/T

NC=VlDX

NCM=NC-]

XO=V-NC*DX

§T(NC)=FV-XD*(FV1+XD*(FV11-XD*(FVT1)/3.))

NL=SLSTIDX+1

NLP=NL+1

DO 700 K=19NL

ST(K)=STZE-K*K*DXDX*(C*(1.+7)-.5*z*(c+06/(T*T)))

UA=(OHLT+DHLT)/DXDY

GA=.5—1./(5.*HA)

GA:AMAX1(O.9GA)

CALL CFFIUA96A9DIDX)

CALL FILL

DO 44 K=19NC

STF(K)=ST(K)

WRITF(696) NL9V9T

wQITF(6s2) NC9<TZE

CALL SLK

DHLT=DHT-DHLT

D2=XD+DX

FVT1=(5./((02*UZ)*DZ))*(STF(NCM )-FV+D2*(FV1+u2*FV11))

FV12=FVT1+01*(FV11+FV11+CUV)/v

V=GFTCLIOHLT95V179GVIZODENVQVQFOI‘IgI

T=T-DHLT-DHLT

CALL BN6“

MC:V/DY

NCM=NC~I

XO=V-DX*NC

RT(NC)=FV-XD*(FV1+XD*(FVll-XU*(FVT1)/3o)J

HA=IOHLT+DHLT)/DXUX

6A=05-lo/I60*HA)

1
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n
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416

82%

51

789

55

824

DC

684

77

GAzAMAXlIOogbA)

CALL. CFFIUAo-GL‘HLJIDX)

CALL FILLI

DU 154 K=IoNC

STF(K):ST(K)

CALL (_I‘FIUQGAF I’DIDXI

NRIIE(69416) oArT

rORMAII9X14HAhILN CROSS b=9t8o6)

IFIKK-KKF) 8?398949824

KKFFzKKF-KK

DO 55 KK=I¢K<FF

DR=XD+QX

FVT1=(3./((U2*U2)*D?I)*(SIt(NCM )-FV+D?*(FVI+DZ*FV11)I

FV12=FVT1+DIB(CV11+FV11+CUVI/V

V=GETSLIDH I9FV129GV129DENV9V9FON5)

T=T‘DELT

IFIT) 509509789

CALL BNDU

NC=V/DX

NCM=NC‘1

XD=V‘NC*DX

SIINC)=FV-XD*(FV1+XD*(FV11‘XD*(FVT1I/Bo))

CALL FILLI

DO 54 K=19NC

STFIKI=SI(K)

IFIV-DX?) 50950955

CONTINUE

KKFF=KKF/4

WRITEIéol) T9V

WRITEIbvz) NC95TZE

CALL SLK

GO TO 51

WRITEIéob) NLvVoT

STOP

FORMAT14530012)

FOPMATIIS953005)

FORMATIIS9E850179E30012)

END

SUBROUIINE CFF(ZA9299ZCI

DIMENSION STIIOUO) 95TFIIOQU)

COMMON IDONLQNLP9MC9(9IQSOVOHODIM’DI 901.049DB9D69D7oDP¢XLoDX

95T9STF9CLAI9CLA79CQA19CPA295L9899

UH=05*ZA

CLA1=ZB*UH

CRA1=UH-CLAI

CLA2=CLA1*ZC

CRA2=CRA1*7C

RL=10+CLA1+CLA1

BR=BL‘ZA

F?:.TUF-?N

END

FUNCTION GFISLIZA9£PQZC97D9ZFQZFI

ST=IZfi-ZC)*ZA/ZD

ST=AMAX1IUooSTI

ST:AMAX1(-9I9-Zf)

LSoFV97319FV19F5119FV11
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GFTSL=ZF+5I

RETURN

END

SHRROUIINE RNDLIWCON)

DIMENSION BIIIOUOIQQTFIICOU)

COMMON ID9NL9NL09N69C~I989V9H9DIM9DIquvDQQDRQDAQD7QHQoXLQDX 9‘7 ‘

ngr99TL-9CLAI QCLA7QCPAI QCPA79RI QRQQ I'SQFVQCQI QFVI .FCIIQFVII

79651796V1?QDI'NSQDILNV9(UV9CnNo7

SS=S*S*CON

US=Z*EXP(SCI

CUS=C*US

DFNS=C+CUS

FSA=DFNS*T

FSlA:CUS*S

F511A=DFN§+CUQ*(-oc‘-QFI

SOT=9II

SOT2=BOT*SOT

FORSI=(—D3-9§)/I

FORS?=US*SOT

GQIPA=FSIA*FOQSI

U5?=US*FOPSI

FSR=-US?~US?

FAC1=DblT

FS1b=FORSZ*(FAC1+SOT2)

FSIIR=US*CON*(-FAC1-§OT2*(D7+SS+SS))

GSIZQ=FSIB*FORSI+FOQSZ*(-3.*SOI2-FAC1-FACI)/T

FS=FSA+FSH*WCON

FSI=FSIA+FSIB*KCON

F511=F511A+FSIIB*WCON

GSIZ=GSIZA+GSI2R*WCON

RETURN

END »

SURROUIINE BNDU

DIMENSION SIIIOCOI9SIFIICUU)

COMMON IDQNL’NLFQNC9CQI959V9H9DIM9DI9D390A9059069D7QDBOXLQDX QSTZE

19$T9SIF9CLA]9CLA79CQA19CQA295L9999 FbOFVQCSIQFVIDFSIIOFVII

29651296V12sDEN59DENV9CUV9CON92

Z=I6o2831851071796IT)**D?

CON=.5/T

VV=V*V*CON

UV=Z*EXPIVV)

CUV=C*UV

DENV=C+CUV

FV=DFNV*T+I.

FV1=C11V*V

FV11=DLNV+CUV*I‘05‘VVI

GVI?=FV1*(—D?-VV)/T

RFTUPN

END

FUNCTION HD?(X)

DIMENSION SIIIOUCIQQTFIIOOUI

COMMON IDONLvMLDQNCQCQI9§9V9H9DIMQDIooaonhowcoDAofl7QD°9XLQLA ,§I,~

loSIoSItQCLAI9CLA79CDAI9CRA29bL99R9 F59FV9CUIQFV1955119FVII

DV=V-X

DV7=DV*DV
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Dv1=Dv2*DV

D§:Xc§

DSZ=D5*D5

O§1=D97*D§

DD=v-<

DZ=DD*UD

DN=D?*UD

DP=DV3/DN

DO=DS3/DN

USFS=Bo*D5/DD

USFV=?.*DV/DD

P7=1.+USF5+6o*D57/D7

DI=D5*(USFQ+10)

Ou=l.+uSFv+6.*Dv2/D?

QI=DV*(*lo—UBFV)

HD7=DD*(06*FS+P1*F31-P$?*Fsl1)+DO*(UO*FV+“1*Fv1-Dv7*¢vllI

1 FORMATI6f1807)

RETURN

END

SURROUTINE SLK

DIMENBION STIIOOC)oCTF(IOOL)

COMMON ID!NL9NLR9NC9C91959V9HOUIM9DI9|)39D490‘391369T‘79T,'99)LQOX

I9ST95TF9CLAI9CLA79C0919CDA79RL9RQ9 F59FV95919FV1955719FV11

N=INC+7)/8

DC 1 K=19N

KJ=R*(<-1)+1

KP=KI+1

K1=k1+2

Ku=K1+3

K5=K1+A

K6=K1+5

K7=K1+6

KR:K1+7

I WRIT5169?) GTF(K1)gSTPIK?)991F(K?)95TFIKA19§TF(K5)95TF(K6)

IQQTFIK7)¢5TF((8)

2 FORMATIBEI5.7)

RFTUPN

END

SURROUTINF FILLI

DIMENSION AII30319ZIIOOO)9ST(IUOO)9$TF(IOOO)90(IOOOI9DEMIIOCO)

19FI100319FIIODOI95FI1000)

COMMON IDsNL9NLR9NC9C9T959V9H9DIM9DI9D?9DA9D59D69D79DPQXLQDX CST-[r

]9§T95TF96LA1,FLA99FDA1,CPA?,RL,QR, FS9FV95519FV19F$119FV11

NK=NC+NC+I

DO 1 K=10NC

M=NK+l-K

N=NC+1‘K

SFIMI=STFINI

1 SFIK)=STF(NI

NCP=NC+1

SFINCRI=ST7E

FIII=STINCI

EIII:OU

X=DX

NCC=NC-1

rfh
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DO 2 K=19NCC

COCFL=CLA2/X

MzNCD+K

N=NCD-K

AIMI=CLA1+COEFL

Z(M)=CLA1-COEFL

AINI=ZIMI

ZINI:A(M)

COFFR=CRA2/X

X=X+DX

D(M)=CRA1*(S:(M+1)+<¢(V-J)‘L’OCFD*(S’(M41)-ST(M-j53+“D*SC(M$

DINI=DIMI

AINCP)=DIM*CLA1

ZINCPI=AINCRI

BLNCP=10+AINCPI+AINCDI

CRA1N=CRA1*DIM*20

DINCPI=CRAIN*§F(NCI+IIo-CRAIN)*SFINCRI

DO 3 K=29NC

DEMIKI=BL-Z(K)*E(K-II

EIK)=AIK)/DEM(K)

DEMINCPI=BLNCP-Z(NCD)*E(NC)

EINCP)=A(NCR)/DEM(NCDI

DO 4 K=19NCC

M:K+NCP

DEMIMI=BL-Z(MI*E(M-II

EIM)=AIM)/DEM(M)

NKM=NK‘1

DO 5 K=29NKM

FIKI=IDIKI+Z(K)*F(K-III/DEMIK)

DO 6 K=19NCC

M=NC-K

N=NK-K

STIMI=E(N)*ST(M+I)+F(NI

STZE=FINCR)*5T(I)+F(NCD)

FORMATIZEZBoIBI

RETURN

END

SUBROUT INE FILL

COMMON IDQNLONprNCsCoI9S9V’H9UIM9DI9D39DAQD59D69O79D89XL9DX

95T9$TF9CLAI9CLA79CRA1’CRA79BL9RRQ FS9FV9ESIQFV19F8119FVII

DIMENSION AIIOOQ)OZ(ICOO)9ST(IUCOI9STFIIOOC)oaIIOC010EIIOCO)

9FIIOODIQDEMIIOQO)

EI1)=OO

FIII=STINLI

X=XL+NL*DX

NCC=NC-NLR

DO 1 K=19NCC

M=K+1

COEF1=CLA2/X

AIMI=CLAI+COFEI

ZIMI=CLAl-COEF1

DEMIMI=BL‘Z(MI*E(K)

EIMI=AIMI/DEM(MI

COFFR=CRAZIX

X=X+DX

9STZ:
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DIMI=CRA1*(9TF(K)+§TFIK+2)I+COEFR*(STF(K+2)-5IF(K))+BR*9TC(M)

l FIV)=(D(M)+7(M)*F(K))/DFM(V)

DO 2 M=19NCC

KrNC-M

MM=K-NLP+?

2 QTIKI=LIMM)*§TIK+1)+5(MM)

RETURN

END

SURROHTINF CUTIWCON)

COMMON IDo‘iuoNLJQNCQCoT939V9HQI)IMODIoDBQDQQDSODOQD7QDBQXL9DX 0.5TZE

CCN=.5/T

ZZ=D3*ALOG(6.2831853071796/T)+ALOG(WCON)

DO 333 K43196O

HH=H*H

ZI=ALOGI(DIM+HH/T)/T)

Z3=HH*CON

Y1=Zl+ZZ+Z3

IFIARSIYII-IoF-7) 67096709335

335 H=H+.Ol

HH=H*H

ZI=AL06((DIM+HH/T)/T)

Z?=HH*CON

Y2=ZI+Z2+Z3

H=(H-.“1)+YI*.OI/(Y1-V2)

133 CONTINUE

67D RETURN

END

SURROUTINE RLYIWCON)

DIMENSION FSIZI9FVIZIQFSIIZI9FVIIZI9FSIIIZ)QFVIIIéIQ

IGSIZIZIoGVlZI219GSZZIZ)oGVZZI2)9DIF(3)oF512(319FV12(3)962(3)961(3)

29DFNS(2)9DENV(2)

COMMON ID9NL9N199NCoCoT959V9HoUIMoD19059D49D59969D79D89XLQDX oSTZE

DFD=1.F-S

AA=IoF-6

DII=I20+33)*QIM*(1o+E3)

D12=Ijo+DE)*96+v3*(10+D3)

013:30*105*D?

H325.

CALL CHTIWCON)

TFM=H*H/T

S<S§ =(DIM*DQ+IEM*(Dé+o5*TEM))/(H*(D6+TFM)I

V\/VV=.‘§5.‘:Q

TOQ=H/T

TOS2=TOQ*TOC

SIG=DIM/T

GGT=ITOSZ+3.*SIG)/(TOS+S|G/TO$)

GGT2=GUT*GGT*WCON

Q=GGT2*TO§/I4.*C*I1o+GGTZII

S=HrQ

\/=H+Q

gLIM=H"Ino*Q

VLIM=H+IOo*Q

QQ=Q+O

ITFR=1

wRITE(o.1) ITLR.T.H.OO
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FcT7=(DJ*F§J(K1)/F+DR*F811(K1))XE

FCIPIK)=FSTI+FST?

FVT1=-(C?lV+C?2V+C2°V)/2.

FVT7=(DI*FVI(K?)/t+DS*FV11(K2)I/F

FV12(K)=FVTI+FVT7

FAC7=DFN<(K1)*(-7o)

FACW=F<]?(K)-G<l7(K1)

FAC5=:J%:N\/(Y?)*(-7o)

Fa(6=Fv}2(K)-GV17(K?)

GlIK)=(-PAC3)/rAC2-SSSS

121 6?(K)z(-FAC6)/rAC5-vvvv

C1=61(2)-61(1)

C2=o?(2)-67(1)

C1=6](3)-61(1)

CA=G?(3)-GD(1)

D=r1*CA-C7*C1

A=(C3*G?(1)-Ca*61(1))/D

B=IC9*GI(])-C1*G7(1))/D

S=<+(A-1.)*DFU

V=V+(B-1.)*DFU

IF(S—H) 601.631.600

l IEIQ-SLIM) 43094009502

? IFIV-VLIM) 5(7‘95039AOO

3 IF(A99(61(1))+AMC(G?(1))-loF-5)
190.190.183

8 CONTINHF

19“ DO 8% KK=1~6n

DO RI N=197

S=<+(N-1)*DFD

Q<=§*Q*CON

H<=Z*FXPIS<)

CH<=C*HS

DCMStN)=C+CH<

F<A=DFNS(N)*T

F<1A=CHS*S

F§11A=DEN§(N)+CUS*(-.5-SS)

SOT=</T

SOT7=SOT*SOT

FORSI=(-DB-Q§)/T

FOQ§2=HS§§0T

6:12A=F91A*F0991

H:g=us*FORs1

F<R=-US?-Hs7

F<1B=FORSZ*(06/T+SOT?)

F<118=HS*.5*(-06/(T*T)-SOT2*(37/T+SUT2)I

6<12R=FS]B*FOR§1+FOQ<2*((-3.*SOT2-DB/T)/T)

F<](N)=F91A+F<1B*NCON

FC(N)=FSA+FSB*WCON

C(11(N):FC]1A+FC]]R*N(ON

GQI?IN)=GSI7A+GCTPR*M(ON

G<72A=U52*C*(1.-03-<S)+CUS*SS/l

6922A=H52*C*(l.-D$-§<)+CUS*SS/T

68223=US*(Dll/(T*T*T)+SOT2*(012/(T*T)+§OT2*(013/T+.25*SOT2)))

81 G<22(N)=6822A+69228*WCON

DO 87 N=I97

V=V+(N-1)*DFD
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VV=V*V*CON

UV=Z*FXD(VV)

gun/=C*4n/

DCNV(N)=CUV+C

FVIN)=DENVIN)*T+10

F\/1(N)=CHV*V

FVIIINI:DENVINI+CHV*I’05‘VVI

6V12(N)=FV1(N)*(-31-VV)/T

[u/7:JHI*(-4)1-AMI)/T

GV}3(M)=HV?*;*(1.~D%-vv)+CHV*VV/T

DO 21 K=193

K?=(K+3)/3

K3=(K+I)/%

K]=K3—K2

F=¢+(K1-?.)*DFD

F:V+lK2-2.)*DFD

DIF(K)=FV(K9)~F<(K1)

‘II:F-F

'A!7:W*\-l

I;I1:W?*\Aj

NA=W34HAI

C11V=360.*DIF(K)/wa

CllSz-Cllv

ClZS=(L92.*F<1(Kl)+168.*FV1(K2))/w3

C1:S=(48.*FV11(K£)-F<11(K1)*72o)/w2

C12V=(-168.*F€1(Kl)-192.*FV1(K2)I/WB

C13V=(48.*F811(K1)-7?.*FV11(K2))/w2

C719=6U.*DIF(K)/w3

C?7%=(-36.*F<1((1)-74.*Fv1(K2))/w2

C2QS=(18.*F91](Kl)-6.*FV11(K2))/w

(71V=C2]S

C??V=(-24.*F91(K1)-16.*FV1(K2))/w2

C71V=(6.*FSII(KI)-19.*FV]1(K?))/W

F<T1=-(C21§+C22<+C21<)/2.

FST?=(D1*FSIle)/E+DR*F§11(K1))/F

F812(K)=FST1+FST?

F<T3=(C11€+C125+C1?s)/4.

F<14=-u5*FsTl/E+Dl*(l.-Dl)*(2.*FSII(K1)+FSl(K1)/E)/(E*F)

FC72=F<T3+F§T4

FVle-(C21V+C?2V+C21V)/?.

FVT9=(D}*FV1(K7)/“+O5*FVII(K7))/E

FVthK)=FVT]+FVT2

FVTB=IC11V+CJ7V+C11V)/4.

FVT4=-D5*FVT1/r+ul*(lo-Ul)*(c.*rV11(K2)+rv1(K2)/t)/(r*r

F\/72=FVT’%+FVT4

FAC1=F<??-fi<77(K1)

FAC2=DCNSIK1)*(-P.)

FAC1=F<1?(V)-G<12(K1)

FAC4=FV27-GV77(K7)

FLgfizuLNV(K?)*I-7.)

FAC6=FV12(K)-6V1?(K7)

61(K)=rAC3*FAC3-FAC7*FAC1

62(K)=rAC6*FAC6-FACS*FAC4

C1=6](2)-61(1)

(7267(2)-G?(1)

I
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C3=b1()I-01(I)

C4=02(3)‘6?(I)

O=C1*C4*C2*C5

A=IC3*62(1)—C4*OIIIII/D

R=IC7*GI(1)-CI*U7IIII/D

SLSI=S‘DFD

VLSI=V‘DFD

s=5+(A‘Io)*UIH

IFIS’SLIM) 4QU9QOO9QOI

V=V+(b-IOI*DFD

IFIV‘VLIM) 40?940294OO

IFIARSIGIIIII+ARSIG?IIII-AAI 90990991

IFIARSIS‘SLQTI+APQIV’VLSTI-IoC-BI 9O9QO9Rq

CONTINUE

GOOK=V-S

WRITFIO94OQI KKQKMgKEEp9T959VQOOOK

FORMATI31594E30012)

SLOK=GOOK/OQ

FORMATIZEQOoIO I

55§S=IFSI7III‘GRIPII11*oc/DENRIII

VVVV=IFV12III-OVIZII11*05/DENVIII

8:5‘50*SSSC

V=V-5.*VVVV

SLIM=SLIM-SSS$*50

VLIM=VLIM-VVVV*50

T=T“5o

5=5+205*IF§12(11-GSI7IIII/DFNQIII

v=V+7oS*IFV17(II-GVI7(III/DFNVIII

T=T+So

KEFP=O

RETURN

KcEP=KtEP+1

IFIKEER‘IU) 4U394049404

FCTzlo‘KEEp/IUO

S=H*O*FCI

V=H+O*FCT

GO TO 405

STOP

END
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