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ABSTRACT

PURE THERMAL DIFFUSION

by Terry Grant Anderson

The time-dependent theory of pure thermal diffusion in
binary fluid mixtures is obtained, and experiments on the carbon
tetrachloride-cyclohexane system are reported. 1he theory takes full
account of the temperature and composition dependences of the ther-
mal diffusion factor, thermal conductivity, mutual diffusion coef-
ficient, and density. The second order partial differential equa-
tions which describe simultaneous transport of heat and mass are
solved approximately by means of series expansion methods in both
time and space. Inclusion of the effects of time-dependent temper-
ature and center of mass velocity gradients during the warming up
period yields unambiguous identification of zero time. Inclusion of
the variability of the coefficients makes it possible to evaluate
the effects of the usual assumption of constant coefficients. A
laser wavefront shearing interferometer is used for in situ measure-
ments of refractive index gradients. Improved cell design and care-
ful temperature control have eliminated the effects of convection,
previously the chief source of difficulty in pure thermal diffusion
experiments. Measurements made during both the approach to the
Steady state (demixing) and the diffusional decay from the steady
state following removal of the temperature gradient(remixing) are

analyzed with the help of computerized curve fitting programs. Ex-
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Terry Grant Anderson
periments at four different mean temperatures and over the entire
composition range yield, with a precision of about 1%, a4 &F 1.83
+0.18x) + 0.01(T - 25), 10° D = 1,26 + 019 + 0.26(T - 25),
where oy is the thermal diffusion factor, D is the mutual diffusion
coefficient in cm2 sec_l, Xy is the mole fraction of CClu, and T is
the temperature in degrees C. The thermal diffusion factors at 25°
agree with the flow cell results of Turner, Butler, and Story (Tr‘ﬂs_.
Faraday Soc. 63, 1906 (1967)), and the mutual diffusion coefficients
at 25° and 35° agree well with the results of Kulkarni, Allen, and
Lyons (J. Phys. Chem. 69, 2491 (1965)). The temperature dependence
of these parameters has not previously been available. New results
are also reported for the temperature dependence of the refractive
index of the pure components. It now appears that pure thermal dif-
fusion can be a reliable experimental method when adequately de-

scribed and carefully executed.
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CHAPTER I

INTRODUCTION

_Phenomenon
_-lienomenon

Thermal diffusion is diffusion which takes place
a temperature gradient. There are several methods
dying the phenomenon, each with its own experimental
"ment. In all cases, thermal diffusion acts to sep-
the components of a mixture and is opposed by ordi-
r mutual, diffusion.

Thermogravitational thermal diffusion (Horne, 1962
'S¢ of the earth's gravitational field to set up
convective fluid flow in a vertical apparatus con-

a horizontal temperature gradient. The flow cell
(Turner et al., 1967) utilizes forced laminar flow

a horizontal channel. A vertical temperature
t causes a partial separation of the components of
ld, and a horizontal knife edge is used to divide
Ld into portions for measurement of composition
'Ceés. In a third method (Dicave and Emery, 1968),
bers equipped with stirring devices contain the
to be studied and are separated by a porous glass

@ membrane. When the chambers are maintained at







‘erent temperatures, thermal diffusion takes place be-

n them, and a composition difference develops.,

A fourth method, pure thermal diffusion, is con-

ually the simplest. Here, the fluid mixture is con-
ed between two horizontal flat metal plates attached
eservoirs for individual temperature control. When a
ical temperature difference is applied in such a way
the densest portion of the fluid is closest to the
r of the earth (i.e., when the fluid is heated from
> except when its density increases with increasing
rature) thermal diffusion occurs. Thermal diffusive
ing continues, opposed by the remixing tendency of
ary diffusion, until a steady state is reached in
the two effects balance each other, and a steady
cal composition gradient is obtained.

Given the appropriate mathematical description of
’Stem, one can calculate experimental values for the
'\l diffusion transport parameters by measuring the
p of the composition gradient, its steady state value,

decay to zero following removal of the temperature

ence in a remixing experiment (Gustafsson et al.,

Thermal diffusion has been studied for many years.
"W article by Grove (1959) lists over 900 references.

heless, the phenomenological theory of pure thermal







sion (Ludwig, 1856), or the Soret effect (Soret, 1879),

zen inadequate in many cases.

ivation

Thermal diffusion has a wide range of applications.
thermal transport in living systems is certainly of

t to biologists. Some chemically indistinguishable

s and isomers can be separated efficiently by means
ned thermal diffusion techniques (Mulliken, 1922).
ical mechanicians interested in fundamental knowledge
ligquid state require accurate experimental values of
rt parameters in order to judge the validity or range

r theories (see, for example, Bearman and Horne,

The most complete phenomenological theory of pure
diffusion previously available (Bierlein, 1955),

. adequate in many cases, is limited in the follow-
(1) Transport parameters are treated as constants,

, for instance, that the temperature gradient is

throughout the fluid. (2) The composition depen-
density, or the "forgotten effect" (de Groot et

), is neglected. (3) "Warming up effects" (Agar,

nsequences of the fact that the temperature
builds up in the fluid not instantaneously but
isurable period of time, are neglected. No allow-

de for the possibility of convective transfer

mass during the warming up period.






Our primary purpose here is to obtain a phenomeno-

11 theory of pure thermal diffusion which is not sub-
0 the above restrictions and which, hopefully, will
‘e the discrepancies which now exist in the literature I
homaes, 1951; Horne, 1962; Turner et al., 1967;
ein, 1966) between the reported values of thermal
ion coefficients obtained from the different experi-
methods. In addition, we hope to explain the dif-

reported (Dicave and Emery, 1968) between ordinary
lon coefficients measured during a nonisothermal
lg experiment and those measured during isothermal
g after a steady state has been reached.

The second purpose of this work is to show that
rect application of an adequate phenomenological
of pure thermal diffusion to well designed experi-
an lead (for the first time) to reliable results
‘e thermal diffusion. Hopefully, this technique
. be used for any number of systems to obtain un-
s results more easily than from the more complicated,
1 understood methods.
dur third purpose, implied above, is to present
values of thermal diffusion parameters for the
trachloride-cyclohexane system as a function of
re and composition. By so doing, we shall demon-
> significance of our theory and provide the first
sive data for the temperature dependence of thermal

parameters.






lan of the Thesis

In the following treatment we make full use of the
ions of hydrodynamics and nonequilibrium thermodynamics
cribing the simultaneous transport of heat and mass in
d system undergoing pure thermal diffusion. We solve
sulting set of partial differential equations for the
f a two component fluid by means of a series expansion
which retains explicitly the temperature and composi-
ependences of the thermal diffusion factor, ordinary
ion coefficient, thermal conductivity, and density.

include time dependent boundary temperatures and the
L1ity of convective transport.

The results of the theoretical section are used in
ting values for the thermal diffusion factor and the
y diffusion coefficient for mixtures of carbon tetra-
e and cyclohexane over the entire range of initial
tions. Both classical demixing and isothermal remix-
riments are described. A sensitive laser wavefront
 interferometer used to measure very small refrac-
ex gradients in volatile liquids is also discussed.

the results of our experiments with the CCl4 -
stem are presented together with a discussion of
imental uncertainty and a comparison of our results

ious results.






CHAPTER II

EQUATIONS OF TRANSPORT

troduction

In this chapter we present the differential equa-
which describe macroscopic transport phenomena.
alized equations for pure thermal diffusion and their
>riate initial and boundary conditions are then pre-
l. We consider only continuous, isotropic, nonpolar-
 fluids in which no chemical reactions occur and
are subject to no external forces other than the
ational field. For a more detailed discussion of
1ations which follow see, for example, works by
(1966) , Kirkwood and Crawford (1952), de Groot and

1962), and Fitts (1962).

tions of Hydrodynamics

For a fluid containing v components there are v
lent equations of continuity of mass:

(dp/at) + pV-u =0, (2.1

p(dwa/dt) + V-ga =0

a=1l,e0.,v-1, (2.2)







‘e p is the local fluid density, t is time, u is the
er of mass, or barycentric, velocity, and W, and ju
respectively the mass fraction and diffusion flux of

onent a. The barycentric velocity u is defined by

, (2.3)

Il e

u =
= o

w_u

[P

]
u, is the velocity of component a with respect to a

atory reference frame. The diffusion flux ju is de-

by
Jog = Ppluy =), 0= 1,00,V (2.9)
Py = W,p. The diffusion fluxes are not all indepen-
!
j, =0. (2.5)
a=1 ~®

intial time derivatives d/dt are related to local time
tives 3/3t by

asat = (3/3t) + u-v . (2.6)

erator "del" is defined by

Io)

* Kk ' (2.7)

@l
v
Ly

3

it

V. & dl z

, j, and k, are the unit vectors of a three dimen-
Cartesian coordinate system.

The equation of motion of the fluid is
p(dusdt) - Veo = pog , (2.8)

is the gravitational field, and where o is the







5 tensor, given approximately by the linear phenomeno-

1l relation

o [p + (% n - V)(V-gﬂ 1+ 2n sym Vu . (2.9)

(2.9) p is the pressure, sym Vu is the symmetric
f the tensor Vu, and n and ¥ are the coefficients
ar viscosity and bulk viscosity, respectively. Com-

on of Eqs. (2.8) and (2.9) yields the Navier-Stokes

=B I o V[{%-n - M {V-B)} - 2Ven sym Vg = rg - vp .
(2.10)

The general equation of continuity of total energy
(apE'T/at) + V.QET =0, (2.11)

- is the total flux of total energy, and where the
T

nergy E& is the sum of the internal energy E and the
inetic energy of the center of mass:

Vo1
E,=0+w + ] Fwu’. {2,123

2.12) we have further separated E into a thermal

nd an external potential part, where Wl is defined

(2.13)







lso that

2
U, = Yy, - (2.14)

The equation of energy transport can be expressed,

1e negligible terms or order jz are ignored, as
o (dE/dt) + V+j, = 0:Vu - purg , (2.15)

E is the internal energy flux not due to bulk flow:

1]

95 .ZE-QEE+ urg . (2.16)

tions of Nonequilibrium

nodynamics

We can recast the equations of the preceding section
‘e convenient form by making use of some of the re-
' nonequilibrium thermodynamics. In order to use
such as temperature and entropy which are defined
namically only for equilibrium states, i.e., for
simultaneously in mechanical equilibrium, thermal
ium, and chemical equilibrium (see Bartelt, 1968),
cessary to postulate their existence in systems not
Lbrium. That postulate is (Fitts, 1962):
Postulate 1

'or a system in which irreversible processes
aking place, all thermodynamic functions of
 exist for each macroscopic volume element

e system. These thermodynamic quantities

he nonequilibrium system are the same func-

of the local state variables as the corres-
ng equilibrium thermodynamic quantities.




i

fac

e
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Unfortunately, the historical and universal name of
postulate is "the Postulate of Local Equilibrium." In
» local equilibrium is not postulated. Instead, we are
1lating that it is permissible to use the properties
relationships defined in equilibrium thermodynamics
mostatics). An alternative approach is to construct
itio a nonequilibrium thermodynamic theory in which
Py, temperature, etc. are defined in context. This
ach has been developed by the practitioners of con-

m mechanics (Truesdell and Toupin, 1960; Coleman and

1963; and Mlller, 1968), and its relationship to the
tional postulatory extension of thermostatics is cur-
7 under investigation (Bartelt). It appears that the
perational equations result from both approaches,

fferences between the approaches are therefore of

sequence for our present work. For simplicity of
tion, we adopt the traditional postulatory approach.

tulate 1, we may use the Gibbs equation for dE

v
dE = TAS - pdV¥ + agl Hodw, + Ay, (2.17)
> Gibbs-Duhem equation,
_ v
- Vvp + + =0 8
SVT Vvp 7 an“u g ' (218

a=1

is the temperature, p is the pressure, E, 5, and

respectively, the specific energy, specific entropy,







11

2 specific volume, and Hy is the chemical potential,
5 units, of component a. Each of the total specific
lynamic functions is a weighted sum of the partial

.c functions; for example,

=]
n

v
Z E (2.19)

(2.20)

. (BE/awu)§,V,wl,w

=

BFo
Application of the chain rule for differentiation

;:,wa,wl) yields

/dt) = (c‘p - pv ) (dT/dt) - (TVR - pvR') (dp/dt)
v=l. . _
+ [ (B, - E)(dw,/dt) - u-g , (2.21)
o=1

is the specific heat capacity at constant pressure

tant external fields, B is thermal expansivity,

S
B =V 7 (3V/3T) , (2.22)
P/Wy Wy

>thermal compressibility,

8t = - TEGWep)g o (2.23)
oy

. partial specific internal energy. Application
ain rule for differentiation to the equation of

O(T,p,wu) gives a similar relation,

ap dw =
t:

Ik
a 2 =y o s
o8 S+ 08" -0 uzl Ty - 7)) = - (2.29)
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ergy transport equation (2.15) can be restated by

tuting Egs. (2.1), (2.2), (2.20), and (2.24) into

vI8%4
-1
dr Gpils B0 e e g B Bl
FE - T8 gE =9 - Vg azl JgVE, - H) (2.25)

pl is the entropy source term for bulk flow,
¢)l = (o0 + pl.):VE i (2.26)
e heat flux,

Vv
IR i (B J (2.27)
=E a=1 o o

te]
u

is partial specific enthalpy.
One observes empirically that for nonisothermal
the heat flux is proportional to the temperature
- (Fourier's Law). Similarly, in an isothermal
the diffusion flux is proportional to the composi-
dient (Fick's Law). The generalization of these
ions, as well as an extension to include cross
a such as thermal diffusion, is expressed by the
ostulate of nonequilibrium thermodynamics, that of
henomenological equations (Fitts, 1962):

Postulate 2
"The fluxes ga are linear, homogeneous functions of

S Va. That is,

v
B O T TN L (2.28)
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rces are "driving forces" for the fluxes; for example,
the driving force for the heat flux in a single com-
fluid. The phenomenological coefficients Lus are
ndent of the forces. The diagonal coefficients La
conjugate fluxes and forces, while the off-diagonal
ts LuB(u # B) give rise to cross phenomena. Although
oice of fluxes and forces is to some extent arbitrary,
guidelines are provided by the Second Law and by
ial order (de Groot, 1962; Fitts, 1962; Bartelt,
We shall use the set most convenient for our pur-
We have already used Postulate 2 in writing Eq.
Postulate 2 is demonstrably invalid for many ex-
ntal situations, notably those in which chemical
ons are occurring and those in which viscous dissi-
is significant, It seems to be quite satisfactory,
s, for situations in which only heat and matter fluxes
ortant, such as thermal diffusion. The range of
y of Postulate 2 is delineated in the continuum
cs approach mentioned earlier.
As forces conjugate to the fluxes of heat and matter,

se V £n T and VT(uB - uv), g8=1,..., v -1, where

v = VuB + EBVT, B e eV (2.29)

g

ilate 2,

v=1
- 2.30)
=g = Q¥ Lr T 4 le QOBVT<u8 uy) (
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v-1
= Q7 en T+ le Q,0Vp (g = Hy) @ = 1,00 -1

(2.31)
the Q's are the phenomenological coefficients.
As a consequence of Eq. (2.5) we have
v
Q =0, B=20,1,...,v . (2.32)
ol oB

due to the requirement of positive definite entropy

“tion (see Appendix A) we have

Vv
E Qg =0, 0= 0, dop ety o (2.33

a=1

An expression for the gradient of the chemical

-ial, which appears in Egs. (2.30) and (2.31) can be
1ed from thermostatics and the chain rule for

‘entiation:

v-1
et = . 2.34
Vug = - SVT + TgUp + agl Mgy = 9+ ( )
= g (2.35)
uﬁu . (auﬁ/awa)T,P,glws#a

ation of Egs. (2.29) - (2.34) gives the following

sion for the fluxes:

v=1 v-1 Vil 0
T - 7 )Vp + u
VanTa [0, T - T+ 1 L Gepliea

M
g=1

0

uQ

e PRAL ML VR 1, where j, =
(2.36)
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The equations for the fluxes can be written in the

’ing compact notation:

P % =0,1,...,v -1, (2.37

a0 Quo

Dw =0 Qae(”SY - uw) TR G KPR,y SR
B=1
Vv
D = v
av le QchVB
v
VS R Szl B4 = 0
Fo=VianrT
By SV, o= Biainvi=
BT
Tve1 = 7 VW)

We make the following associations with traditional

ntal transport parameters:

D00 is related to thermal conductivity;
DuO’ a=1,...,v-1, are related to thermal

diffusion coefficients;

Day’ a=1,...,v-1, are related to mutual
diffusion coefficients;
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) D

oy’ @ = l,...,v -1, are related to Dufour

coefficients;

) D = 0,ecvy,v - 1, are related to sedimentation;
av

) Da,v+l =, 0 100 =5 0, L s oV = 1%

We now have a complete set of 4(v + 1) transport
ons : (2:L) 0 (2:2) 4 (2.10), (2.25), and (2.37). The
°ns can be solved for the 4 (v + 1) quantities:
iture, pressure, v - 1 compositions, three components
center of mass velocity, and the three components of
'~ the Vv mass fluxes. At this point our description
system is complete and valid for any number of com-
- Before proceeding to the solutions, however, we

restrict our consideration to binary fluid mixtures

» whence Egs. (2.1), (2.2), (2.10), (2.25), and

become :
(dp/dt) + pVeu = 0
p(dwl/dt) + V-gi =0
p(du/dt) - V-g = pPg
= “dm dp _ T, - 4..V(H, - H
Pep & =~ TR Fg = ¢ - Vrig - pV(H - Hy)
3
-3 =7 b F ,a=o01, (2.39)
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DaO QaO

Pa1 = 2 kq9/w,

Doz = 8417 - 7,

Dyz = 0

EO =V enT

By =Wy

5. TP,

Py == . (2.40)

When the only external force is gravitational, a
librium system containing v components may undergo
) types of transport processes in addition to vis-
enomena. For a binary system, the six types are
*¢ contributions to the heat flux jo and the three
itions to the mass flux jl resulting from the gra-
£ temperature, composition, and pressure.

We make the following associations between the
ological coefficients and the traditional experi-
ransport parameters D, oy Qi, Ki' and s; which
bectively, the mutual diffusion coefficient, the
diffusion factor of component 1, the heat of trans-
“Omponent 1, the initial thermal conductivity of
ire (when awl/az = 0), and the sedimentation co-

- of component 1:







Doo = g = Ty

Doy = Rgpk11/%, = eDQ}
Dyg = Ry = - PDOywW,

Dyy = f33u,/W, = oD

Q97 = eDsy . (2.41)
onsequence of Egs. (2.32) and (2.33), the six pheno-
an be expressed in terms of four independent coef-
ts.

The experimental mutual diffusion coefficient D is
d by Fick's law for isothermal, isobaric mutual dif-

in the absence of external fields,

= jY = pvc,; (2.42)

jg is the diffusion flux relative to the velocity of
ater of volume, and cy is the concentration of com-
1 expressed in units of moles per cubic centimeter.

lvalent form of Fick's law in terms of mass fraction

iter of mass velocity is

(2.43)

- jl = pDle .
The thermal diffusion factor o, is defined by con-
g the steady state of a pure thermal diffusion ex-

t in the absence of pressure gradients and external

2102 2! 5 (2.44)
=0 _vwl alwlwzv W D

3

<
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ommon thermal diffusion parameters may be expressed

the relations

@y = = TDp 1/D ., (2.45)

) = - Toy , (2.46)

r,1 is the thermal diffusion coefficient of component
oy is the Soret coefficient of that component (Soret,
It follows from Eg. (2.5) and the independence of
ces that Oy = = 0. The composition gradient of
nt 1 has the same sign as the temperature if oy is
e.

Alternative expressions for the diffusion flux can

ten by using the relations (2.45) and (2.46):

& - -1
= pDle + pDy lleZVT + pDQ’]‘_(Vl - V2)w2u11Vp (2.47)
’

w W

. pD[le + 0wy

N - -1

2VT + Qi(vl - Vz)wzulle] (2.48)
| (2.47) emphasizes the existence of the two phenomena
sion and thermal diffusion, while Eq. (2.48) con-

y allows removal of a common factor from the three

For an isothermal binary system the heat of trans-

is defined by
g =0 - e

's from Egs. (2.38) and (2.41) that
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Dyy = PDQY . (2.50)
phenomenon which involves a heat flux due to a composi-
gradient in an isothermal system in the absence of
rnal fields is the Dufour effect (Dufour, 1873), which
be considered the inverse of thermal diffusion. For
ids the heat of transport Qi is very small, and reports

easurements are still subject to question (Rastogi and

n, 1965). We discuss the magnitude of Qi as well as
rical values of the other transport parameters later in
chapter.
The thermal conductivity coefficient Ky measured
he beginning of a pure thermal diffusion experiment

re the composition gradient develops is given by Fourier's

of heat conduction,
- g =k T . (2.51)

attempt to measure the thermal conductivity of a mixture
>plying a temperature difference necessarily results in
levelopment of a composition gradient (unless a = 0),
here is consequently an additional contribution to the
flux due to the heat of transport. Thus the effective
\al conductivity is the sum of two parts, one of which
ds on Ki and VT and the other on Qi and Vw, . At the

y state of a pure thermal diffusion experiment in the
ce of external fields we have

Vw, = alT—lw

(2.44)
1 WZVT .

1
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L lows that at the steady state

- g = kT, (2.52)

Ke = Ky + pDQIulwlwz/T % (2.53)

could measure the difference between the thermal

tivity of the mixture initially and that at the 8
 state, we could calculate Qi directly. That dif-
e, however, appears to be smaller than the experi-
. uncertainties which arise while attempting to
e it with present equipment (see Table 2a).
The sedimentation coefficient s, is defined by

lering the steady state of an isothermal experiment

ch the gravitational field is the only external
+ s, (¥, -V,)Vp , (2.54)

= 2755
sy = wy/upy - ( )
The fluxes in Eq. (2.39) may now be rewritten en-
in terms of experimental transport parameters:
7 g KiVT + pDQinl + pDQisl(Vl - VZ)Vp
197 + pDw, + pDsy (T) = TP -
(2.56)

i bl DDlelsz
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Before proceeding to a solution to the equations of
sport, we examine the relative magnitudes of the pheno-
. occurring simultaneously inside an experimental cell.
'able 2a are presented estimates or typical values of
ral important parameters for the system CCl4 =g CiH; at

6712

> when Wy = wy = 0.5. In calculating a value for s, we

L
 used the relation for the specific chemical potential:

RT
uy (T, p,%,) = uj(T,p) + MI n (£1%) (2.57

e fl is the activity coefficient of component 1 and
'\P) is the chemical potential of component 1 in the
idard state defined by
uy = XfiT uy - (2.58)
rder to obtain an approximate value for s, we take
1. 1In the earth's gravitational field, the steady
e composition gradient which would develop due to

mentation is:

;wz—l= ~ 0.8 x 107% ent
The relative contributions of the gradients of
:rature, pressure, and composition can be estimated by
j Eqs. (2.57) and inserting reasonable values for all
le quantities which appear. Consider the steady state
pure thermal diffusion experiment for CCl, = CgHyp/

T, = 25°C and w? - 0.5. If we use the numerical
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e 2a.--Approximate values of transport parameters for

CCl, - CgHy, at 25°C, wy = 0.5.
tity Reference Value
a 1.4 x 1072 cm® sec™t
b 4 x 1078 cn? sec™! deg”t
b 6 x 1073 aeg”!
b =1.7
c 2.4 x 1074 cal em™t sec”t deg_l
Ky c 5 x 1078 cal em? sect deg_l
c 6. cal g“l
Eq. (2.55) -3.2x 0% ent
d Azl g c:m—3
v d ~0.66 cm’ g'l
e 0.2 cal deg_l g_l

aKulkarni, et al., 1965.

bTurner, et al.,
®Horne, 1967.

d

Wood and Gray,

®Hodgman, 1962.

1967; Beyerlein, (in press).

1952,







24

lues in Table 2a and specify a temperature gradient of 5
y cm—l, then the six terms of interest have the values

’en in Table 2b, where we have also used

Vp = - og , (2.59)
ch follows from Eq. (2.8) at the steady state and
tially. since sedimentation effects are observable

ther initially nor in the steady state, and since there
N0 reason to expect observable departure from Eg. (2.59)
Any time, we henceforth neglect pressure effects. (See

le 2b.)

€ 2b.--Relative contributions of forces to the fluxes;

B = 250¢, 4T _
CCly - CgHyy, Wi = 0.5, 1 = 25°C, &L = 5 geg
cm™*, steady state.

Temperature Composition Pressure Units

i = 2 1

1% 1073 7 x 1077 8 x 10711 co
cm” sec

* = -10

,  +1.2 x 1077 -1.2 x 1077 1x 10 29

cm® sec

ther experimental situations, such as thermal diffusion
- centrifuge or in a flow cell apparatus, the influence
€ pressure gradient must be re-examined.

Since we have no practical interest in the pressure,

riginal 4(v + 1) independent equations have been
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d to eleven. Furthermore, by inserting the expres-
(2.57) for the fluxes into the three continuity

ons (2.1), (2.2), and (2.25) we effectively reduce

mber of dependent variables to five: temperature,
ition, and the three components of the center of mass
ty. In order to solve the set of differential equa-
We must specify an initial condition and two boundary
ons for each of the five unknowns .

dary Conditions for Pure
mal Diffusion
== - LTusaon

Pure thermal diffusion requires that a vertical
ture gradient be maintained across a layer of fluid
$ not undergoing any type of forced motion. More-
he sign of the temperature gradient must be such
e denser portion of the fluid is closer to the cen-
the earth than the less dense portion. For ordinary
chis just means that the top must be warmer than the

There are exceptions, however. For example, water
' freezing point would be studied with the top cooler
 bottom.

If the temperature gradient is purely vertical and
nly external force is the gravitational field, there
© non-vertical components of any of the forces, and
ntly the fluxes have no horizontal components. Al-

t is plausible that the center of mass velocity also







 horizontal components,

the existence of vertical gra-

of temperature, composition and pressure is not suffi-

to prove that e, uy = 0. Instead, we have at best

vertical density gradient gives (see Eq. (2.1)

Ju Ju 3 apuZ
tot st (2.60)

1ich the steady state relation follows:

o+
@
o

By
t

ity B 3 Ln p
Veu = U, —— - (2.61)

' point we make the additional assumption that all

is vertical and that u = uy = 0. The possibility
zontal components of u has been considered by Bartelt
but is beyond the scope of this work.

We denote by "ideal" the boundary conditions which
in a purely one dimensional system. The possibility
zontal components of the fluxes or forces arises
sofar as the actual experimental boundary conditions
ldeal. Since it is possible to eliminate effectively
Sénce of spurious thermal gradients by proper cell
ind temperature control, we confine our interest to
undergoing vertical motion only.

The three quantities which remain as unknowns are
erature, the composition, and the vertical component
ocal center of mass velocity, each of which is a

of vertical position and time. We choose the three
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ations describing the interrelations between the three
ctions to be the equations of continuity of mass (2.1),
; fraction (2.2), and energy (2.25). In one dimension,

equations remaining are:

(dp/dt) + p(auz/az) =0 (2.62)

p(dwl/dt) + (lez/az) =0 (2.63)

9q
— dr % 3 = =
- ( a;J =J1p 37 By - H) (2564)
ow o
. RS ar
"3z PP | T T Y12 3z 12:65)
ow
_ AT T
S TR T oDQ¥ 5z ° (2.66

The domain of the independent variables t and z is
|

emi-infinite strip defined by

Sitxo0, (2.67)

a is the cell height. The earth's radius vector points

direction of increasing z. The choice of the center
call for z = 0 follows from the odd spatial symmetry
hich the temperature and composition profiles develop.
since we use Taylor series expansions in z about the
of the cell, it is convenient to choose that point to

origin.
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Although it is possible to begin a pure thermal dif-
on experiment with an arbitrary set of initial conditions,
acilitate comparison with experiment, we choose the ini-
state (t = 0) to be an equilibrium one in which the
rature and composition of the fluid are uniform and the

'r of mass velocity is zero. Thus we have:

T(z,0) = Tm
o
wl(z,O) =W
a a
uz(z,O) =0 5= 7 < 7 < 7 (2.68)

7 O
Tm is any chosen temperature, and wy is the chosen
ing composition.

The temperatures maintained at the upper and lower

plates constitute the two boundary conditions for T,
the impermeability of the boundaries provides the
1ing conditions. The complete set of boundary condi-

is expressed as follows for t > 0:

T(a/2,t) = ¢y (t)
T(-a/2,t) = ¢ (t) (2.69)

31,(a/2,8) =0
3, (-a/2,t) =0 (2.70)

u,(a/2,t) =0
u,(-a/2,t) =0 . (2.71)
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In Egs. (2.70) the functions ¢h(t) and ¢C(t) express
fact that a certain period of time is required to change
boundary temperatures. Both quantities are functions of
reservoir volume, water flow rate, metal plate material
thickness, and temperature difference. Consequently
are best determined empirically.

The pure thermal diffusion problem has now been fully
ented in terms of three differential equations (2.62),
3), and (2.64); three initial conditions (2.68); and
> sets of boundary conditions (2.69), (2.70), and (2.71),
the fluxes given by Egs. (2.65) and (2.66). The various
. of approximations usually made in going from first
iples to complete solutions are discussed in the fol-

g section.

mplifying Assumptions

We distinguish between three levels of assumptions
ly made in obtaining working solutions to the equa-
of transport. First are those assumptions inherent
equilibrium thermodynamics and hydrodynamics such as
which allow us to use equilibrium properties, linear
enological relations for the fluxes, and continuum
mechanics. These assumptions are fundamental and as
re necessary starting points which must be retained.

Second are assumptions .of a more technical nature
restrict our attention to certain types of systems,

ich can be realized experimentally and do not, in
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aciple, introduce error. In this group are the assump-
1s of a two component fluid, purely vertical motion,

cial ideality of boundary temperatures, absence of ex-
ral fields other than gravity, and the insignificance of
ssure gradients. Since it is possible experimentally to
.eve the requirements imposed by these assumptions, it
‘0 our advantage to incorporate them into the phenomeno-
cal theory, the net effect being a simplification of
differential equations.

Third are assumptions which have been made in all
ious descriptions of pure thermal diffusion, but which
demonstrably incorrect and can lead to significant
cs in the description of the phenomenon. This group
1des the assumptions of time-independent boundary
ratures; uniform temperature gradient; no convective
sport; and constant diffusion coefficients, thermal
ision factors, and density. The three types of assump-

+» viz., (1) necessary, (2) unnecessary but desirable,

3) unnecessary and undesirable are summarized in Table

In the next chapter we discuss in more detail the
tions of the third group and the solutions to the
ort equations which one obtains both with and without
assumptions. Our goal is to obtain a description of
hermal diffusion subject only to a minimum number of

tions.
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le 2c.--Levels of Assumptions.

essary

Unnecessary but
Desirable

Unnecessary and
Undesirable

-inuous
uid

ulate 1
ulate 2

Binary system
Vertical motion

Spatially uniform
boundary tempera-
tures

No external fields
except gravity

Sedimentation
negligible

Linear temperature

distribution

Temperature indepen-

dent of time

Constant p,

D,

o

Zero convective
velocity

¢, = 0, Eq. (2.26)

91,
3z

('

3

.

1’

2

K,

1

0







CHAPTER III

SOLUTIONS

revious Solutions
tevious Solutions

Previous phenomenological theories of pure thermal
usion (see, for example, deGroot, 1945; Bierlein, 1955)
been obtained only after the following simplifications
made.
1. The temperature distribution does not vary with
- Although not experimentally realizable, this assump-
has been made in the past with the explanation that
initial period of time during which the temperature is
Jing is so much smaller than the time required to com-
> an experiment that it may be ignored. Since the im-
l discontinuity in the temperature gradient cannot be
ved experimentally, there has been an uncertainty in
efinition of "zero time." The "warming up period"
S at the start of an experiment and lasts until no
er changes are observable in the temperature distribu-
Its length, of course, depends on the apparatus used,
ypically may be three to seven minutes. The relaxation

® for pure thermal diffusion increases with the square

32
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e cell height.

For most mixtures of carbon tetrachloride
yclohexane near room temperature, for example, 6 = 120
wtes when the cell height a is expressed in units of

neters, Consequently, for a cell height of one or two

ieters, which is not uncommon, the warming up period may
ignificant portion of the total time for an experiment.
gar (1960) has considered the warming up period. He

by shifting the time axis in order to compensate for
me during which the temperature gradient does not have
eady state value. His subsequent treatment was other-

nmodified and required that
dT/dz = AT/a (3.1)

Ll values of time, where AT is the temperature difference.
2. The temperature distribution is a linear function
vertical position in the cell. This assumption is ob-

’ not true while the temperature profile is changing
-me. Moreover, it is true for the steady temperature
ution only if the thermal conductivity Ky is a con-
ndependent of temperature and composition and if the

ution of the heat of transport is not considered.

3. The center of mass velocity u, is zero. It fol-
om Eq. (2.1) that only if the velocity is nonzero may
nge in the density occur. Since density certainly
from point to point, a consistent theory requires that
onzero. Actually, both u, and its effect on the com-

1 distribution are usually very small. Nevertheless,
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> desirable to retain the velocity as a variable so that
ffects can be discussed quantitatively.

4. The density p is independent of the temperature.
assumption (see deGroot, 1945) results in a great sim-
cation of the differential equation (2.63). Although
omposition dependence of density, "the forgotten effect"
oot, et al., 1942), usually has only a small influence
e composition distribution in a pure thermal diffusion
'iment, it cannot be ignored if one wants to be consis-

because both optical and gravimetric techniques depend
nsity changes due to composition changes. It is also
able to retain the "forgotten effect" in order to be

to discuss quantitatively its effect.

6. The mutual diffusion coefficient D is independent
mperature. This assumption also simplifies Eq. (2.63)
s not generally valid. A change in D of about one per-
per degree is not unusual (Longsworth, 1957), nor are
iments with twenty degree temperature differences
oot, 1945). Hence, a complete treatment must allow for
variations.

7. The mutual diffusion coefficient D is independent
mposition. The remarks of paragraph 6 apply here as

Note, however, that the range of compositions en-
2red in a pure thermal diffusion experiment is much
ar (about 1000 times) than the temperature range. Con-
1tly, we anticipate a much smaller effect due to the

sition dependence of D.
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8. The function al/T is independent of temperature.
narks of paragraph 6 again apply. For mixtures of
tetrachloride and cyclohexane near room temperature,
mple, the function ul/T decreases about five percent
jree.

9. The thermal diffusion factor oy is independent
osition. The remarks of paragraph 7 apply, with
Vl)T = 0.18 at 25°C, while oy is about -1.75 (see
e VL)

10. The product w Wy in Eq. (2.65) can be replaced

This assumption of deGroot (1945) limited his
nt to very dilute solutions, and is obviously not
€.

11l. The product woW in Eg. (2.65) can be replaced

2
leading terms of the Taylor series expansion about

nt wi:

wy = wiwg + (1 - 20) (wy - w)) . (3.2)

Wi¥o 1

n (1955) used this "tangential approximation” to
ze the term in Eq. (2.65) which contains the pro-
W2, a parabola. The function can be approximated

y point w? by its Taylor series expansion at that

o )
= wiwg R 2w‘l’) (wy = wg) = 20wy wy) .o (3.3)
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pure thermal diffusion experiments, the maximum value

- wi) is on the order of 10_3, so that neglect of the

d term in Eq. (3.3) is justified. The use of Eq. (3.2
ivalent to replacing a small segment of the curve in

ighborhood of wi by the tangent to the curve at that

12. The entropy source term 6y in Eq. (2.64) does not
oute significantly to the temperature distribution.
ssumption is reasonable, since ¢l is due to bulk flow,
ls very small in a pure thermal diffusion experiment.

dimension we have, approximately,

2
auz

v . (3.4)

4
41 = [+
v below that for systems of interest the maximum value

,/3z) 1is about 10_6 sec_l, making @l very small indeed.

@ 3 =
"1z 3z M
1. For mixtures of carbon tetrachloride and cyclo-

13. The term - ﬁz) in Eq. (2.64) can be

with dT/dz = 5 deg/cm, that term, which is zero

.ly and zero at the steady state, has a maximum value

it 5 x 1078 %T'(il - Hy. This can be ignored when

:d with the term uszp(aT/Bz) which is itself very

We now consider the most complete solutions pre-
available for the functions T, u,, and Wy for a

ermal diffusion experiment. The theoretical
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iption under consideration is that of Bierlein (1955)
. follows from all of the assumptions listed except
rs 4 and 10.

Assumptions 1, 2, 12, and 13 result in a tempera-
distribution of the form

AT

T(z) = Tt -

pIN

’ (3.4)

no mention of time dependence. The center of mass

ity is simply stated in the third assumption:

u, =0, (345)
L1 values of z and t.
The remaining assumptions (5 - 9) simplify the

on of continuity of mass fraction:

w o ow
- = p(—1L 4 AT|[B &n p ——1(1_2w°)]——l
a T T 1 3z
3z Wy m
%1 [ ar 2 3 Ln p 00 + (1 - 2w%) (w, - w°)
S Y R ) PO L 1
1

(3.6)

ation of the separation of variables technique to
Ove equation and imposition of the above-mentioned
1 and boundary conditions results (see Appendix B)

following solution, designated wI in order to dis-

sh it from a later expression for Wyt

O
wilz,t) = wi + aqwiw s) , (3.7)

o
2
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re

w
= -3 2
i kzl KV exp (- k7t/6 - pz/a - p/2) ,  (3.8)

k
Vi =1- ()" exp (P) , (3.9a)

L 3 tn p %1
P = 7[“ (—#) g s 2w‘f)} , (3.9b)

¥y
Wk =B sin ¢ + km cos ¢ , (3.9¢)
¢ = kn (§+§) : (3.10)
o = a’/(r’p), (3.11)
p = - aAT/T (32132)

2B = AT (z’g#) + :_1 AT (1 - 2w9) . (3.13)
Wl m

‘e 3.1 shows the general shape of wi(z,t). The conver-
> Properties of the infinite series are of interest and
be discussed below.

Although the above expressions (3.4), (3.5), and

for the temperature distribution, center of mass

ity, and composition distribution have been used to
late thermal diffusion factors for a large number of
s reported in the literature (see, for example,

fsson et al., 1965; Meyerhoff and Nachtigall, 1962)
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.5 -0.3 -0.1 0.1 0.3 0.5
z/a

Figure 3.l--Composition wi as a function of z for
t/6 = 0.33, 1.0, 2.0, 6.0; wi (cc1,) = o.s,

dr/dz = 5 deg cm™1
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of them is ever exact. Moreover, the degree of in-
ness has not previously been examined quantitatively.
There are several shortcomings of the above solu-
. First, the steady temperature profile in the fluid
t exactly linear. Variations in thermal conductivity
luce a slight curvature. Also, for several minutes
the temperature difference is first applied to the
and while the temperature profile is being built up,
 variation exists in the local temperature gradients.
gradients near the metal plates may accelerate the
ng, or smaller gradients near the middle of the cell
pede it. Semi-empirical corrections involving a
shift in the time scale to take account of warming
ects have been suggested (Agar, 1960), but no rigorous
ent has been published. The exclusion of the possi-

of convective motion and the restrictions to systems

constant transport parameters are additional short-

with which we concern ourselves in the following

Solutions

In order to keep our treatment very general and to
the most complete description of the pure thermal
on phenomenon, we make only the last three of the
isted assumptions of the third type. The use of

ential approximation (11) and the neglect of ¢,
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> £l T = " 2 e
and 312 5% (Hl = H2)(13) are certainly justified. We

ct that any error introduced at this point will be much
ler than the limits of experimental measurability.

To avoid a cumbersome simultaneous solution of three
lal differential equations, we adopt a scheme which de-
5 on the fact that the calculation of an experimental
> for the thermal diffusion factor oy is most strongly
lenced by the accuracy with which the composition gra-

- is known, next on that for the temperature gradient,
inally, to a lesser extent, on that for the velocity.
tice also that the composition gradient depends mostly
e temperature gradient and only partly on the velocity.
emperature gradient is a function mainly of the thermal
ctivity of the fluid and some apparatus parameters.
ly, the velocity is quite small and can be determined
ciently well from existing expressions for the tempera-
nd composition. Hence, we can work backwards, first
g the velocity, and then using it to obtain an improved
on for the temperature. The final step involves the
both u, and T to determine the solution for the com-
on. The simultaneous solutions can be approached by
tion of the three-step cycle until self-consistency

ained.

ter of Mass Velocity

In a uniform fluid mixture at equilibrium, such as

uid in a pure thermal diffusion cell at its initial
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(ignoring sedimentation), the center of mass of the
is located at the geometric center of the cell.
arly, the center of mass of each small volume element
ies the geometric center of that volume element. How-
at the steady state of a pure thermal diffusion ex-
ent a vertical density gradient exists, and the center
5s of each volume element is displaced vertically
rard) from the geometric center. This displacement
> center of mass during some time interval gives rise
 vertical component of the center of mass velocity

ich is nonzero as long as the density changes with

It should be noted that the velocity with which we
ncerned results from an uneven expansion and contrac-
f the fluid as the temperature and composition change.

ot due to any sort of forced flow.

In order to obtain a mathematical expression for uz

the equation of continuity of mass:
(dp/dt) + p(@uz/az) =0 . (2.62)

2dimentation is ignored, the chain rule for differen-

1 of the density gives

dw
181 (38, (21 - (35,52
1

ining Eqs. (2.62) and (3.14) with the balance equa-

or energy (2.64) and mass fraction (2.63), we can
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‘e time as a variable and obtain a differential equa-

z only:

du 3gq 33
B L(sz_z)+g(a el (=), Gas
1

dary condition is simply

N

dependence of the velocity is still contained in

a &
3 ,tJ =o0. (3.16)

>ssions for the fluxes. If these were known exactly

l integrate Eg. (3.15) directly to find an expres-

u,. However, because of the simultaneous nature

‘oblem j1Z and q, can be known completely only when

wn. Nevertheless, we can learn a good deal about

ity by using the approximate expressions for the
tained when wl(z,t) is taken to be Bierlin's (1955)
Eq. (3.7), and T(z,t) is the temperature in a solid
tant thermal conductivity (see T*(z,t) in Appendix C).

s a test, the following hypothetical system was

Qs
CCl4 o C6H12 j Wye 0.5 ,

T = 25°C , AT = 4°C,
m

cell height = 0.741 cm ,

o4 = - 1,72,

1 =1 =1

i cal deg_ sec cm .

K, = 2.45 x 10
=
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‘ation of the resulting expression for (auz/az) is
thtforward, but extremely messy. In order to obtain
rical solution more easily, we used a finite differ-
ntegrating technique (Ralston and Wilf, 1960) and a
1 Data Corporation 3600 digital computer. The dis-
age of the numerical method is that no analytical

on for u, is obtained. For purposes of illustration,
r, the calculated velocity at the center of the cell

/n as a function of time by the solid curve in Figure

The velocity is very small in magnitude (less than
i cm. sec'l) and is short lived. The whole effect
disappears when the thermal steady state (9T/dt = 0)
‘hed. The spatial distribution of the velocity at
e must be representable by a function which vanishes
the top and bottom boundaries of the cell.

In order to facilitate the use of the velocity as
ion and to avoid having to perform a finite differ-
tegration each time, we have used the boundary,

, and steady state conditions on u, as well as the

ce of spatial and temporal extrema (see Figure 3.2)
in a synthetic expression for uz(z,t). Figure 3.2

5 that the time part of u, is some sort of Morse-type

. In fact, we found that the function
t £n2 _t £n2

4u 2=
£) = ——%9 [zz - l% ) ]e t0 1-e t0 ’
a







pr——— 0

; vcoﬁunsuuﬁoﬁim@ﬁTIL
UOT3INTOS SOUSISIFTP 9FTUTF ! _WO bep g = ®/1LV .NHmmo = vaou
IO SWT3 JO UOT3OUNI B SB (0 = 2z 38 A3TOOTDA SSBW JO I93U8D--Z°¢ 2InbTd

spuooas ‘3

09T 0zT 08 (24 0
T T T T T T T

45







46

the finite difference solution very well. The dotted
in Figure 3.2 is a plot of Eq. (3.17) for the example
are obtained from the finite difference

when u and t

00 0

lon. The difference between the two methods for express-

z(z,t) is very small, and no significant additional error

e introduced if the more convenient formula (3.17) is
Equation (3.17) is only an approximation, and we use

ly to estimate the contribution of terms which are quite

>rtant. It satisfies the conservation equations for

ind energy, but it does not satisfy the equation of

1, (presumably because we have taken ¢l = 0 and Ap = -og).

on (3.17) may be regarded as the leading term of the

solution. For experimental situations in which verti-

nvection is important, such as approximations of

11 diffusion in living systems, a more refined analysis
be required. Equation (3.17) suffices to indicate that
e present experiments the maximum value of u, is about

m sec_l, and the maximum occurs at about 15 seconds

the beginning of the experiment. Convection thus
essentially no contribution to the measured value of

note that this is a conclusion rather than an

ion,

erature Distribution

All previous theories of pure thermal diffusion are
n the assumption that the temperature gradient inside

id can be expressed by the constant AT/a independent
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ime and position. However, in an experiment some mea-
le time period is required before a steady temperature
lent is established in the fluid. Even if the plate
ratures could be changed instantaneously, the heat
iction process would still result in a time lag. The
ional contribution of time dependent plate temperatures
ts in a warming up period which may not be insignifi-

as previously assumed, when compared with the relaxa-
time 6 for diffusion. In our experiments, described
, the warming up period of six minutes was about ten
nt of the relaxation time 6 for a cell height of 0.741
Thermal diffusion studies are also being made with
smaller cell heights (see, for example, Meyerhoff and
igall, 1962), and since for Ccl4 - C6H12 mixtures near

6 = 120 a2 minutes, a cell height of less than 0.25 cm

6 comparable to the length of the warming up period.
ver, once a steady temperature distribution is estab-

; it is not perfectly linear because of variations in

1 conductivity.

Rather than ignore both the time and space dependences

temperature gradient, we obtain an explicit formula

includes them, and which can be used in solving the

ential equation for the composition distribution.

g in chronological order, we confine our attention

to the temperature distribution during the warming

iod.
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Time Dependent Temperature Distribution

According to the assumptions which we are making, (11),
nd (13), the equation of energy transport (2.64) can
ten as

g
s P

3q
Horu, %] = (3.18)

. is given by Eg. (2.66) and the auxiliary conditions
(2.68) and (2.69).
Since our main interest at this point is the time
1ce of temperature, we can tolerate the very small
itroduced by assuming that Qi and (awl/az) are known
= the thermal conductivity 5 is constant. Except
term containing the velocity, Eq. (3.18) is anal-
> the problem of one dimensional heat conduction in
An additional complication is the presence of
ependent boundary conditions. As usual an infinite
series solution is expected. The following method
Duhamel's integral formula (see Bartels and
1, 1942), is a convenient one for treating the in-
ous equation with time dependent boundary conditions.
ome of our early work with numerical solutions of
8) indicated that during the warming up period the
re can be well represented by the sum of two func-
e representing temperature changes due only to
uction (as in a solid), and the other representing

ibutions of the heat transfer by convection and
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on. It is, of course, not unreasonable to neglect
ve heat transfer in our apparatus.
Accordingly, we write

9T*

T(z,t) = T*(z,t) + buz(z,t) 5 (z,t) , (3.19)
*(z,t) is the solution to
2
- 3T _ 3T
pcp el ;;7— % (3.20)

b>lem of heat conduction in a solid of uniform thermal

Lvity with time dependent boundary temperatures, and
onstant whose value is to be determined.

Equation (3.19) takes account of the following

When the velocity is zero the temperature is just

what it would be in a solid with the appropriate
thermal conductivity, density, and heat capacity.

When the temperature gradient (3T*/3z) is zero the

velocity causes no measurable change in the tempera-

ture distribution.

The velocity has a larger effect on the temperature
istribution when the temperature gradient is large.
he effect of the velocity on the temperature dis-
ribution depends on the sign and magnitude of the

elocity.

n explicit expression for the constant b can be

by combining Eqs. (3.18), (3.19), and (3.20) (see
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C). Since b does not depend on z or t,it is con-

to evaluate all quantities at t = t, and z = 0.

0
noring terms of order u; with respect to terms of

. we obtain
b=-——FL (3.21)

lence, the temperature during the warming up period

from Egs. (3.19) and (3.21):

D3 o=
a:ha aT*
(z,t) = T*(z,t) - —g;IR u,(z,t) 55— (z,8) . (3.22)

(3.22) satisfies our intuitive requirements for
>rature, it satisfies the differential equation
1d it satisfies the initial, boundary, and steady
Pditions. Therefore, to describe the temperature
e warming up period we have only to find an ex-
for T*, the conductive part of the temperature
isfies Eqgs. (2.68), (2.69), and (3.20).
uhamel's integral formula (Bartels and Churchill,
vides a means for solving the heat conduction
ith time dependent boundary conditions. Param-
n breaks the time domain into a number of small
. Within each interval the boundary conditions
nt and depend on the parameter A. Let F(z,t,))
ution of the same problem except that the boundary

¢c(t) and ¢h(t) have been replaced by ¢c(x) and
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their values at time A. Then the solution to Egs. (2.68)
’
» and (2.70) is
t3
T*(z,t) =T+ == F(z,\,t - \)dx . (3.23)
m 0 It
w in Appendix D that
T*(z,t) = ry(z,t) + r,(z,t) , (3.24
2 2
iT. @ -T%, (2n+ 1)°%¢
=01 Z (2n+l)_lsin[(2n+l)ﬂ{£+%}] exp _l > 2
m a
n=0 pc a
p
2 K nznzt
K. o : &
= = Znsinmr£+}-]1exp-—l—-,
= 2 2
0c 32 fel [ {a ] =
2: .2, 2 —
t k.,n"m%A/a“pc
=f e 5t [(pcm - nt ¢h(>\)]d>\ .
0
ypical experiment we may have, for example,
-t/t
h
o) =1+ 2 (1 -e ) ; (3.24a)
-t/t
AT c
¢C(t)=Tm——2(l—e ),

and t_ are some experimental relaxation times. In
1 c

Se we can write

B (3.24b)
I=1,-¢-D" 1,
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€ t(K - 1/t )
1 AT Kt c c
E(Tm’_z)(e ‘”*xtc——r[e ‘1]'

t t(K - l/th)
K= T°|5 -1],
h

Kin2w3/(a295p) .

The expression which we now have for the tempera-
' the fluid in a pure thermal diffusion cell is
e during the warming up period, which for us is
ly six to eight minutes, when we are more interested
time dependence of temperature than in its precise
distribution and can tolerate the use of a constant
conductivity. After this initial period and while
all of the thermal diffusion occurs, the temperature
t remains constant, within the limits of experimental
>ility, but it is in most cases not perfectly linear.
1tity <y varies both with temperature and with

zion.

Steady Temperature Distribution

According to the discussion following Eg. (2.51),
‘ctive thermal conductivity of the fluid initially
from that when a composition gradient exists. The
ion is that the temperature distribution continues
e slightly until the steady state of thermal dif-

s reached. In practice, however, the effective
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\1l conductivity is indistinguishable from Kiv which we
. henceforth as k. After the warming up period Eq.

becomes simply

%[K(Z) g;] =430, (3.25)

k varies from point to point in the cell. The boundary

ions after the warming up period are

T(a/2) = T
(3.26)
T(-a/2) = T
Equation (3.25) can be integrated by means of a
>ation technique. Since k varies only slightly with

lay write the expansion

e 2 n. n
S KO(l + ek,z + ezkzz Hsenet B knz +...) , (3.27)

1

= (Kon!)_l(dnK/dzn)O , n=1,2,..., can be found

s of the chain rule. The zero subscript means the

y is evaluated at z = 0, and € is an ordering param-
ich allows us to keep track of the spatial dependence
ature and composition dependence) of the thermal con-
ty. Note that € is merely an index which does not
The solution for the temperature has the form

LI N T (3.28)

2re the subscripts refer to the order of the per-
on., The integration is straightforward (see Appendix

to terms of order 52, yields
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2 2
e AT a~ _z
T(z) = T + =% {z + eky (——8 b )

2 3
z 2.1az . =z 3
+te(ky = kD=5 - ) + 0(e”) . (3.29)

terms are not necessary because they involve third
itives of k, which are unmeasurable, and products of

and second derivatives of k, which are extremely

Discussion
It is convenient both at the thermal steady state
ring the approach to it to use a function f(z,t) which

es the departure of the temperature gradient from the

nt value AT/a and expresses its time dependence. The
on f(z,t) is defined by

3T iy

37 (z.t) = =5+ f(z,t) . (3.30)

The portion of the temperature gradient which is in

is just what has previously been ignored. Note that

is not, in general, negligible when compared to AT/a.
0, for example, f(z,t) = - AT/a. Inclusion of f(z,t)
remainder of our theoretical treatment automatically
iccount of warming up effects and deviations from a

t steady gradient and leaves no uncertainty about
mixing begins or what to take as "zero time." Our
ents begin precisely at the instant the temperatures

metal plates begin to change, not when the tempera-

adient is fully established.
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As expected, the temperature gradient builds up slowly
cally during four to six minutes) near the center of
=11; consequently, the diffusion flux in that region
behind what it would have been if there were no warming
riod. Near the metal plates, however, transient large
nts develop, causing an acceleration of the diffusion
n those regions for a short time.

Agar (1960) has suggested a semiempirical correction
ese effects. According to him we need not be concerned
 acceleration of the flux is balanced by the decelera-
lsewhere. If the two effects do not balance, however,
net effect can be negated by shifting the time axis in
propriate direction in order to pretend that an unper-

amount of diffusion has been going on for some slightly
r or longer time. For example, when the boundary

ature are given by

T(a/2,t) =1 + 5L (1 - e-t/q

9 (3.31)
T(-a/2,t) 1 ETHT

I
|
1

v

experiment with CCl, - C.H,,, wi = 0.5, T_= 25°C,

4 m

'C, a = 0.741 cm, T = 46 sec, the time shift t* is
Y

(35.32)

D
* = PO
L (T 12K

 is the function K/pEp. Choosing
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4

1 =1 =1,

K =2.4x 10 " cal cm ~ sec ~ deg

=Ll g em”3

= 0.2 cal deg-l g-l ’

Q

'ind
t* = 46 sec.

No such manipulations are necessary with our method
ccounting for warming up effects, which is automatic
unambiguous.

The function f(z,t) is also important after a steady
erature distribution is attained. Nonlinearities due to
ations in thermal conductivity which have previously been
>cted appear explicitly, and their effects on any measure-
5 are readily calculable.

The temperature distribution has now been fully
icterized. The external information on which it depends
Sts of the thermal conductivity of the fluid and the
dependence of the boundary temperatures.

Our descriptions of the center of mass velocity and
emperature will next be used to obtain an expression
he composition of the mixture as a function of position

ime.

mposition Distribution

Steady State

Because it is a great deal simpler and because its

lon can serve as a test for the large-time limit of
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mplete solution, the steady state case will be con-

d first. The steady state is defined by the vanishing
local time derivatives. It follows from Eq. (2.62)

e impermeability of the cell boundaries that u, = 0

 steady state. Equation (2.63) then implies that

@

o P U (3.33)
nce jlz is zero at the boundaries, it must be zero
here. Consequently, we have from Eq. (2.65) that at
eady state

dz | - T

dwl " oy
=T

daT
—E)wlwZ g (3.34)

propriate boundary condition for Eq. (3.34) follows

gs. (2.70):

a/2
lf w,(z)dz = w‘i i (3.35)
a =572 A

The steady state solutions of both Bierlein and

t can be obtained by integrating Eq. (3.34) with

o
1 - (3.36)
T wlw2 constant ,
ar _ AT | (3.37)
dz a

a
o 19003 = w05 AT 3.38
7 Wil - W) (3.38)
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is readily calculated from the steady state composi-
radient:

(dw, /dz) Ta
ay = 177" 'ss m™ S (3.39)

o o
AT wl(l = wl)

cady state solution is obtained by integrating Eqg.

without making the simplifications given by Egs.

and (3.37). Since (dT/dz) and (o /T) are rarely

1¥1%2
nts, we make use of the following expansions:

alwlwz/T =18062) 4 (3.40
(ar/az) =+ ), (3.41)
s(z) = ] €ty 2" . (3.42)
n=0
By Eq. (3.29),
AT ek 2+ 2k, - %) (B - 23 +oed] . 3.43)
a 1 2 1% 12
lows that
n
An=r—lx_!_ Zi 2 TR0 D (3.44)
2 1
at
2 n 3
£(z) = § e £, +0(e7), (3.45)
n=1
_— (3.45a)
fl = klz
2 (a2 _ ;2 (3.45b)




The
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The method of integration is discussed in Appendix F.
2

lution to Eq. (3.34) through terms of order €° is
2

fe) AT £ z a

1.°Fa [Aoz ey klbo)(f_ T 27 ]

2 3, 3 3
2 2. |latz 12 a z 3
g [Ao(kZ—kl)(_l_Z"‘T—Tg) & ‘411‘1”2)?] 4002 %)

shows explicitly the influence on

Equation (3.46)
(dT/dz) and

mposition distribution of variations in

Deviations from a linear temperature distri-

5/T) .
are accounted for by the quantities kl and kz. The

ties 4, and 4, express the temperature and composition

ences of (ulwlwz/T). Comparison of Egs. (3.38) and

gives immediately the difference between our steady

solution and the previous one:

2 2 3 3
z° & 2 _x2ylaz_z__a_
€8y -ky8) 2—-—ﬁ) +e [Ao(kz kD |\ 3 5

(3.46a)

ISTRTRNEN L | R
kit 2 3= :

ation for calculating oy from the measured steady

composition gradient will be presented in Section F
s chapter.

Approach to Steady State

In deriving the corrections which arise due to
g up effects, variable coefficients, etc., we use the

on G(z,t), which is defined to be the difference be-

the true composition wl(z,t) and the simplified



i

=
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ssion given by Eq.

[2,E)%
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wy(z,t) = wi(z,t) + G(z,t) . (:32:47)

The equation of continuity of mass fraction remains

nction G(z,t) must obey a differential equation of the

t)

n

[

(dwl/dt) == (Bjiz/az) ' (2.64)
%1 ar o Oy 4+ (1 - 2w°) (w* + G - w°
ST 5 1t - wWr LA G L

(3.48)

2
3°G 3G
Pl(z,t);f + Pz(z,t>§; + P3(z,t)G + Py (3.49)

O+

|

z

3 &n T o 3D 3 4dnp _

2L -]+ D Ty LR
o, 9 9 &n T

syl oag ("D"‘l 5z )'

W o o

o 193 &n T - [wo(l - w,)

- al(l - 2Wl) S Iz 1 1
3 3 4n T ek

2w) wt - w55 ("1 e e 5z

o o
———{;; Ll [W(l)(l = Wi) + (L= 2w))(u] = "’1”}
dw¥ owy
1 1 (3.50)
(pD) - 3T Uisz:

(3.7) which we shall denote hereafter

1)




L
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The functions Pj(z,t) s (3 =1,...,4) are completely known
functions of z and t since all of the quantities appearing
in them can be determined without knowing G. The initial

and boundary conditions are

Lim G(z,8) =0, - 3<z<3, (3.51)
t>0
and
lim j;, =0, t>0, {3.52)
z+*a/2
or
a/2
/- G(z,t)dz =0 , t >0 . (3:53)
-a/2

The coefficients Pj(z,t) , (3 =1,...,4), are ob-
viously the sources of all the corrections to wi(z,t) with
which we are concerned. Because of the factors Pj(z,t),
Eq. (3.49) cannot be simplified by separation of variables.
Moreover, the factors Pj(z,t) are complicated functions
(some parts are infinite Fourier series), and we have found
no satisfactory integrating factors for simplifying Eq.
(3.49). 1Integral transform methods are not usable because
the spatial boundary conditions are two-point and finite.
The only approach left is that of Frobenius. By Fuch's
Theorem (Johnson and Johnson, 1965, p. 47) the z-dependence

°f G is given by
6= 7 gk(t)zk , (3.54)
k=0

if the functions P and P,/P, analytic (expandable in

2?1
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Taylor's series) about z = 0. By inspection, these functions
possess no singularities in any neighborhood of z = 0, and
Eq. (3.54) is indeed the solution of Eq. (3.49).

The time-dependent coefficients g(t) in Eq. (3.54)
are completely determined by: (1) the form of the original
differential equation (3.49); (2) the expansions for the co-

efficients Pj(z,t),
_ 7 k.
P(ziEt) = E AN ) - S 16 LR e (3%55
J k=0 Ik

and (3) the auxiliary conditions on G, Egs. (3.51)-(3.53).
Differentiation of Eg. (3.54), followed by substitution into
Eq. (3.49) and use of Eqg. (3.55), gives immediately the re-
lationships between the desired coefficients qk(t) and the
known coefficients pjk(t).

As with any Frobenius-type method (see Irving and
Mullineux, 1959), the preliminary result is a transformation
of the problem from a single partial differential equation to
a set of simultaneous ordinary differential equations in t

for the coefficients gk(t). In this case Eg. (3.49) becomes

%0 e o . s k-2
) 9z - 7 pl,nz 2 k(k - Iy
k=0 n=0 k=0
© @ gel
n
- P z 2 kg, z
nzo 2 k=0 N
© w X
n
= z
nzo P3,n* kzo 9k
%
n o_ (3.56)
! Pyne 0
n=0 4







63

where

9y = (dgk/dt) . (3.57)
Since the functions {z"} are linearly independent
and form a complete set, and since the infinite series con-
verge for -a/2 < z < a/2, the coefficient of each power of
z must be independently equal to zero. The resulting set
of ordinary differential equations can be expressed compactly
by
B=2B+cC, (3.58)
where B is the column vector whose elements are gk(k =0,1,...);

C is a column vector whose elements are

c (k= 0, g8l 5 (3...59

k= Pa,x’
and A is a matrix whose elements aij(i,j = 520 wee)l fAYE
related to the coefficients pl,n’ p2,n' and p3,n(n SA00 Y e

A portion of the matrix is given by

H1FUPS gy

2137 °Py 4-1 P32
333 = 2Py 5.1 + 2Py, 55 * P3,i-3

814 =8Py 4up H 3p5 5on F Ba g
B = Ok = 1k = 20py gy * (VP sk P3,ak
(3.60)

where pij =0, if i or j is less than zero.




f

g §F B = & 5 &5 =2 05 A = =& £ & & el
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By making use of the initial conditions

g (0) =0 , k =0,1,..., (3.61)

one can solve the set of differential equations (3.58) for
any number of coefficients gk(k =0,1,...,N) in terms of
two constants of integration which must be evaluated from
the boundary conditions (3.52) and (3.53).

For the purpose of measuring a thermal diffusion
factor @) we do not need a complete solution for all of
the gk's. In fact, because our experimental method measures
the gradient of refractive index (which is directly related
to the composition gradient) and because we have used series
expansions about the center of the cell where z = 0, all
that is required is the quantity

(36/32) ,_ = 9, (t) . (3.62)

In obtaining an expression for gl(t) we are justi-
fied in bringing to bear all of the information we have
about the function G, including the steady state solution,
which must be approached asymptotically as t becomes infinite.
One of the expressions which g, (t) must satisfy follows from

Egs. (3.59)-(3.60):

90 = P3 09 * P2,091 * ?P1,092 * P40 * (3.63)
Since we expect no anomolous behavior at z = 0 due

to unusual temperature gradients we write
&% v (3.64)

G, = Eg S




ny

tiy

e

in

i
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where Fy is an amplitude factor corresponding to the steady
state value of dp- It is not unreasonable to expect that
90 is well behaved since our measurements (discussed below)
suggest that for t > 6/3, properties such as the refractive
index gradient and the composition gradient near the center
of the cell change smoothly and monotonically as a simple
exponential function of time and do not exhibit the more
unusual behavior observed near the metal plates.

Since we are interested only in the first deriva-
tive of G and not in G itself, only one constant of integra-
tion, say gz(t), can be eliminated by means of the boundary

condition (3.53), which gives

24
g,(t) = - a_2 g, (8) . (3.65)

The remaining constant Fy must be obtained from a condition

on gl(t) for some extreme (0 or «) value of time.

The expression for gl(t) which one gets by rearrang-
ing Eq. (3.63) is indeterminate in the limit as t approaches
zero. (Note that this situation would not arise if the
whole system of equations (3.58) were solved simultaneously.)

Consequently, we use the alternative condition,

lim gl(t) = gl(steady state) , (3.66)
t>o
which is known from Eq. (3.46a). The second order perturba-

tion solution (including terms of order 52) is

2
gy(st. st = 825, - kDI 4 0D, Guen
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where S0 kl' and k2 are given by Eqs. (3.44) and (3.45
respectively. Equation (3.46a) indicates that at the steady
state G depends quite strongly on S0 the term expressing
the temperature and composition dependences of the thermal
diffusion factor. The first derivative of G at the center
of the cell, as shown by Eq. (3.67), does not, to terms of
order 53, depend on by Our choice of the center of the
cell as a point about which to expand variable coefficients
has resulted in this unexpected simplification. The simpli-
fication is certainly a reasonable one, since we recall that
in practice the temperature gradient at z = 0 is also unaf-
fected by linear variations in the thermal conductivity.
Note in what follows, however, that the time-dependent ex-
pression for gl(t) does depend on Al and other factors that

do not appear in Eq. (3.67). On combining Egs. (3.63)-(3.66)

we find
F 48p (t)
= 0 -1 _-t/6 = i /8 1,0 o
gl(t) = EETETFY[G e + (1 e ) 5 p3,0(tﬂ]
= p4'0(t) (3.68)
By, o8’
where
2 9 &n D
48F, = a“g, (st. st.) (————)
0 1 3z g
t=o
- a2 - wd) LQM_”T] (3.69)
SV W) |3z %1\ ez _ :
z=0
t=w

and g, (st. st.) is given by Eq. (3.67).
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Our final expression for the composition gradient

at the center of the cell is
(awl/az)0 = (awi/az)o + gl(t) i (3.70)

where wi(z,t) is given by Eq. (3.7) and gl(t) is given by
Eq. (3.68). Inspection of Egs. (3.67-3.69) and (3.50) shows
that 9 is primarily the result of inclusion of variable
coefficients and secondarily a result of inclusion of warm-
ing up effects. The warming up part is of virtually no
consequence after the steady temperature distribution is
established, but it is, of course, all-important during the
first few minutes. In order to calculate thermal diffusion
factors by extrapolating to zero time, a popular practice,
it is necessary in principle to use for the composition
gradient Eq. (3.70) rather than the z-derivative of Eq.

(3.7) alone. Since we have derived equations which fully
characterize the experiment for all times, we may calculate
thermal diffusion factors from measurements at any time.

In particular, we may select those times for which the
equations are the simplest. Working equations are presented

in the next section.

F. Working Equations
The basic equation with which one can calculate oy

from measurements of the composition gradient is

awl Bwi
E--():H-O+gl(t),tao, (3.70)
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which is valid both during the approach to and at the steady
state. The quantity on the left hand side if what is mea-
sured (directly or indirectly). The first quantity on the
right hand side is a known function of oy and the quantity
gl(t) is a correction term which is also known. Upon rear-
ranging Eq. (3.70) and transforming to refractive index
gradients instead of directly measured composition gradients,
we find

TN () - gy ()
o = B (3.71

where Tm is the mean temperature of the fluid,

), - ),
EEL 3Ty, 52

N(t) = _WW_- ’ (3.72)
i

an ST)

gl(t) is given by Eq. (3.68), and from Eq. (3.7),

S L e
z - dz _awk i
21k

re o o,|1 2
H(t) = A’I‘wl(l - wl)[; + F

k:
(3.73)
When (3n/3T)_, (9n/dw,),, and (3T/3z), are known,
Wy 1T 0
one can use Eq. (3.71) to calculate oy from measured values
of the refractive index gradient for either steady state or
non-steady state experiments. Clearly, similar equations
hold for any other choice of measurement, such as electri-
cal conductivity or capacitance. All that is required is
the gradient of the property being observed and information

about its temperature and composition dependences.
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G. Composition Distribution

During Remixing

By "remixing experiment" we mean one whose initial
state is identical with the steady state of the correspond-
ing demixing experiment. In practice one conducts the two
experiments in succession with the same system. To initiate
remixing one removes the temperature difference. The tem-
perature gradient decays to zero during the next few minutes,
and for a period of length 66 the composition gradient decays
to zero by means of ordinary diffusion. Although no thermal
diffusion takes place, the thermal diffusion factor o, can
still be measured since it determines the magnitude and di-

rection of the original composition gradient.

During remixing the velocity is the same as that
given in Eq. (3.17) except for the sign of Yo+

The temperature gradient is still given by Eq. (3.30
where now f is determined as in section D except that the

final condition is

lim T(z) = T . (3.74)
o

and the boundary conditions are

T(-a/2) oo (t)
T(a/2) = ¢h(t) ’ (37.95)
where now @c(t) and ¢h(t) are not the same as in Eg. (2.69).

In particular, different flow rates and heat capacities be-

tween the baths used in the two types of experiments lead
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to different relaxation times th and tc' Also, both ¢c(t)
and rph(t) must approach Tm as t increases. The solution
for the temperature, however, still has the form of Eq.

(C.17) except that ¢h(t) and ¢C(t) are given by

-t/t
= _ AT c
b (8) =T - e 7
-t/t
B AT h
opt) =T+ e . (3.76)
and
2,
© (2n+ l)‘n[5+l) ~kmr Dme
r=éT+—A—'£zz 1 sin a?e L
1 T |'m a =0 2n + 1)
(3:77)

The solution for the composition gradient at the
center of the cell is obtained in the same way as for de-

mixing experiments except for the final condition:

lim w, (z,t) = wS . (3.78)
ey it
At z = 0 we have again
dw w*
1) ( 1] >
—_— = g, (t) , (3.70)
(az 0 EERR 1
where now
dw a ® aw.
2
= = = w1 =W, ) £ exp(-x t/e—p/z)(_k = gwk\ ,
0 m > k=1 k dz <

(3.79)
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lim g, (¢) =0 , (3.80)
o
and
lim gl(t) = gl(st. sta) (3.81)

t+0

As in the case of Egq. (3.68), we find

F 48p (t)
= 0 -1 -t/0 -t/6 1,0
gl(t) s EETETET [9 {l - e ) + e (————E———— = P3’0(tq]

a

p4'0(t)
T, g8
’
where
42 3 £n pD
48F0 = a gl(st. st.) (——ﬁz——-)z:o
t=0
9 T
- azwi(l = wi) [%;(ul ——%%——]] . (3.82)
z=0
t=0
Analogous expressions follow for the working
equations:

T (N(t) - g,(t))
_m 1
o ) - 1 PRl | (3.83)
where N(t) and H(t) have the same form as in Egs. (3.72)
and (3.73), but (aT/az)o is appropriately modified in Eq.
(3.72), and

® V. .
Ht) = Aw®(1 - w®) 22 7 X exp (-k2t/6 - p/2) (W, - p/a W.)
i R % k

(3.84)
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One determines ¢;-in the same way as described above.

T
The significént difference between the two methods is that
no temperature gradient exists during most of the remixing.
Consequently, there is no possibility of inducing convection
by poor control of boundary temperatures. Moreover, after

the first few minutes N(t) simplifies to

(an/az)0

Nt} = Tn/my)
L

(3.85)
There is an extra advantage of the remixing method
when an optical technique is used for in situ measurements
of the refractive index gradient. Changes in (an/az)0 due
to fluctuations in metal plate temperatures do not appear
because there is no heat conduction through the fluid. All
observed phenomena are due to composition changes only. As
we shall show in Chapters V and VI, literature values of
the composition dependence of refractive index are much more
reliable than literature values of temperature dependence.

H. Calculation of the Ordinary
Diffusion Coefficient

At least one measurement of (an/az)O must be avail-

able to compute a, from either of Egs. (3.71) and (3.83).

1
When several values of (an/az)0 are available at various
times, they can be used in estimating the precision of the
measurements. Also, when two or more values of (Bn/az)0

are obtained at different times, they can be used to
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calculate not only o but also a second parameter, such as

17
the relaxation time 6. Then, since the cell height a is
known, the ordinary diffusion coefficient of the mixture can

be calculated from

o
I
Nl [
[N)

(3.86)

@

b
Of course, only measurements during the approach to the
steady state will exhibit the characteristic time dependence
necessary to calculate 6.

In principle, with sufficiently refined auxiliary
equipment, we could also determine many other parameters
such as thermal conductivity, heat of transport, tempera-
ture and composition dependences of transport coefficients,
etc. Even with our relatively simple equipment, we calcu-
late from our equations the following properties: thermal
diffusion factors plus their temperature and composition
dependences, ordinary diffusion coefficients plus their
temperature and composition dependences, and the tempera-

ture dependence of refractive index.

I. Discussion

Se oo tEee Of
For the first time we have a phenomenological theory
of pure thermal diffusion which takes complete account of
transport parameters which vary with temperature and com-
position, warming up effects, non-linear temperature dis-

tribution, and transient convective transport. The results
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of this chapter can be used to predict the effect on the
composition distribution resulting from a temperature dis-
tribution which varies slightly with position or with time
(even an oscillating temperature difference).
Alternatively, experiments can now be interpreted
more accurately, and calculated values of oy should be
more reliable. The experimental time scale is clearly de-
fined and leads to no ambiguous curve fitting or extrapola-
tion to zero time. Because of our particular way of

expressing the composition as

) *
wl wl + G,

comparison of results calculated from our theory with those
from the best previous theory is very easy: simply set G
equal to zero in the latter case. In Egs. (3.71) and (3.83)
set gl(t) = 0, and (BT/BZ)O = AT/a.

At the end of Chapter II we discussed three levels
of approximations and stated our intention to derive a
theory based on a minimum number of them. The "necessary"
assumptions concerning the applicability of hydrodynamics
and nonequilibrium thermodynamics have been retained as
have the "unnecessary but desirable" assumptions which can
be realized experimentally. Of the thirteen simplifying
assumptions classed "unnecessary and undesirable" we have
eliminated all but the last three. We feel justified in

retaining the following approximations:
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(1) wyw, = w91 - Wl + (1 - 2w9) (wy - W) .

linearizes the differential equation and makes it

This

tractable.
(2) The entropy source term ¢l in the energy transport
equation (2.64) is negligible.

(3) The term - j, s

i Bz(Hl - H2) in Eq. (2.64) may be

ignored.

We have also justified two unclassified assumptions, viz.,
the absence of pressure effects (sedimentation) and the
negligibility of the heat of transport QI. For systems in
which the gradients of temperature, pressure, composition,
and velocity are as small as they are for our experiments,
these simplifications certainly introduce no detectable

error.







CHAPTER IV

EXPERIMENTAL APPARATUS

A. Introduction

There are three fundamental components of any pure
thermal diffusion system: an appropriate sample container;
a means of controlling the boundary temperatures; and a
method for detecting small changes in composition.

The first component, the cell, is much simpler for
pure thermal diffusion than for any of the other methods.

It requires no forced flow mechanism, no membrane or porous
plate, and no stirring device. The cell dimensions are not
as critical as they are in the case of a thermogravitational
thermal diffusion column. In addition, a flat plate is
generally easier to machine to a desired tolerance than is

a narrow annulus. Moreover, expansion and contraction of
the metal parts due to temperature changes cannot change
critical dimensions since the plate separation depends only
on the thickness of a piece of glass. For that reason also,
the height of the cell is easily changed. A thermogravita-
tional column lacks flexibility in that respect.

The only criteria affecting the choice of cell di-~

Mensions are convenience and sensitivity of the detection

76







77

system. The relaxation time for the thermal diffusion pro-
cess, unlike that for the thermogravitational apparatus, does
not depend directly on the composition or the temperature
difference and is given (to within 0.01%) by

6 = az/sz (4.1)
where a is the cell height and D is the ordinary (mutual)
diffusion coefficient of the mixture. For carbon tetra-
chloride-cyclohexane mixtures at the temperatures and con-
centrations of interest, say 25°C and w1 = 0.5, D is about

1.4 x 1075 cm?sec™L. Consequently,

6 = 120 a2 min (4.2)

Since the demixing is 99.75% complete when t = 66, and
since, for experimental convenience, we wish to complete
both demixing and remixing experiments in a 12 to 14 hour
period, it follows that we should require
a = 0.75 cm. (4.3)

The length of the cell must be small enough so
that a uniform temperature can be maintained, yet great
enough so that the optical path through the liquid is suf-
ficient for the desired sensitivity of the interferometer.
After measuring the dimensions of the interferometer com-
pPonents and estimating the magnitude of the expected
refractive index gradient, we concluded that a cell length
of eight centimeters was suitable.

Another pronounced difference between thermogravi-

tational and pure thermal diffusion exists in the importance
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of temperature control. 1In the former case the amount of
composition separation does not depend on the magnitude of
the temperature difference, but in the latter the tempera-
ture distribution in the liquid is extremely important.

In fact temperature control is the most troublesome part
of pure thermal diffusion experiments.

Large fluctuations at AT and drifting of Ty and Tc
both result in changes in the diffusion flux. An addi-
tional problem occurs when an optical method is used to
detect composition changes. A very slight change in the
temperature gradient can produce a change in the refractive
index gradient nearly as great as that due to all of the
thermal diffusion which has taken place. Consequently it
is very important to maintain a constant temperature gra-
dient as long as measurements of composition changes are
being made. Our water circulation system was carefully
designed to minimize temperature fluctuations.

Although optical analysis of composition changes
introduce the problem mentioned in the preceding paragraph,
the advantages outweigh the disadvantages. Conductometric
methods are restricted to electrolyte solutions and neces-
sarily result in a great deal of spatial averaging of com-
positions. Moreover, the imposed electric field constitutes
another force which should be included in the phenomenologi-
cal relations.

Another method which has been used involves with-

drawing an aliquot of the sample liquid at some predetermined
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time from some known position and then determining the aver-
age composition of the aliquot either chemically, conducto-
metrically, or refractometrically. This method has the
obvious disadvantage of disturbing the system and can provide
at most a single reliable measurement for each experiment.
Due to the time and work needed to carry out each experiment,
we easily ruled out such sampling.

Optical interferometric techniques have the decided
advantage of providing an extremely large number of data
while not disturbing the system in any significant way.

Both electrolytes and nonelectrolytes can be studied, al-
though dilute salt solutions require greater sensitivity.
Interferometers suitable for diffusion studies utilize the
composition dependence of the refractive index of the liquid.
Our particular instrument was designed to measure the gra-
dient of the refractive index, which completely determines
the composition gradient if the temperature distribution is
known. The wavefront shearing interferometer is at least

as sensitive as any of the other types which have been used,
and it has the advantage of being simpler to use. Our addi-
tion of the laser as a light source resulted in increased
intensity and improved accuracy.

With this general idea of the apparatus in mind, we
turn to a more comprehensive discussion of each of the

components.
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B. The Cell

Of primary importance in a pure thermal diffusion

experiment is the cell. More than just a container, it must

satisfy a long list of requirements. It must:

1

10

11

12

13

have horizontal boundaries consisting of metal
plates whose temperatures can be well controlled,
have glass walls to permit in situ optical analysis,
be fillable and sealable in some way which excludes
a vapor phase,

contain volatile liquids without permitting evapora-
tion or leakage,

be able to be accurately levelled,

have reproducible geometry,

be free of disturbing vibrations,

have uniform temperature distribution over the
metal plates,

provide efficient heat transfer through the liquid,
have a reproducible and measurable warming up time,
not permit formation of impurities by means of
chemical reactions between the sample liquid, the
sealant, and the metal,

be much larger in horizontal extent than in depth
so that any anomalous behavior at the side walls

or corners is negligible,

provide proper control of boundary temperature so

that convective remixing does not occur,
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14. have reservoirs for circulating water with large
heat capacity to minimize temperature fluctuations,

15. be easily dismantled, cleaned, and reassembled.

Four preliminary designs were tested and found to
be unsatisfactory with respect to the requirements of either
temperature control, sealing, or inertness. We found that
copper catalyzes the formation of oxides in aqueous solu-
tions. Consequently all metal parts contacting the sample
liquid were silver plated. The upper and lower plates were
of copper, 6 in. x 6 in. x 1/4 in. Two filling tubes of
1/8 in. o.d. copper were soldered into holes in the upper
plate 1/2 in. apart before the plates were machined flat.
All of the copper pieces were then coated with 0.001 in.
of silver deposited electrolytically (for $10 by Sarver
Mfg. of Lansing, Michigan).

Heating and cooling reservoirs were made from 8
in. x 8 in. x 1.5 in. magnesium blocks. The metal was
chosen for its machinability, its availability, and because
by rapidly exchanging heat with the circulating water it
can help to damp temperature fluctuations. Channels were
cut into the magnesium to form the reservoirs and to direct
the flow of circulating water over the metal plates in such
a way that spatial variations in the plate temperature were
minimized. (See Fig. 4.1.) Each reservoir was supplied
with one inlet and two outlet ports (3/8 in. dia.) in order

to maintain a symmetric flow pattern.
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Figure 4.l1--Water deflecting channels in reservoir.
Overall dimensions 8 in. x 8 in,
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Each of the metal plates was secured to a reservoir
with twelve brass machine screws (size 10-24) which passed
through countersunk holes in the plates and into tapped
holes in the magnesium block. The space between the plate
and its reservoir was filled with a gasket (1/16 in.
"Vellumoid") which was coated on both sides with "Lubriseal"
stopcock grease. The resulting seal was completely effec-
tive in preventing any leakage of the circulating water.
Each reservoir had a capacity of about 300 ml.

The vertical walls of the sample chamber were made
of 3/8 in. thick Pyrex optical glass. Pyrex was chosen
because its low thermal expansivity insures (1) that it
will not crack when subjected to temperature gradients;

(2) that there will be no change in cell volume when the
temperature changes; and (3) that the thickness of the
glass walls does not vary with the temperature. Four bars
of width 8 mm, two 8.6 cm long and two 6.3 cm long, were
cut from a single plate of optical glass 3/8 in. thick.
The four were positioned to form a rectangle with inside
dimensions 6 x 8.3 cm. The alignment of opposite walls
was made precisely parallel by means of coincidental back-
reflection of a helium-neon laser beam.

When properly aligned, the four pieces of glass
were joined together with a two-part epoxy resin cement
(Sears, "filled," gray in color). Earlier trials with a

colorless epoxy always resulted in a breakdown of the
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adhesive properties after several hours exposure to water or

ccl, - C.H mixtures. The colorless epoxy did not dissolve,

4 6712

but it became hard and brittle and would not adhere to the
glass. The filled epoxy, however, was entirely satisfactory,
remaining inert and securely bonded to the glass after 1000
hours of use.

Construction of the sample chamber was completed by
grinding the upper and lower surfaces of the glass assembly
with carborundum until those two surfaces were uniformly
flat and parallel to within 0.0005 cm (a sheet of paper
0.0005 cm in thickness could not be passed between the
plate and a flat guage block held in contact with it. The
height of the glass walls after grinding and polishing was

0.7410 cm * 0.0005 cm (by actual measurement with a

micrometer) .

The material chosen for the sealant between the
glass and the metal plates was a very viscous fluorosili-
cone (Dow Corning "FS" stopcock sealant) which formed a
leakproof seal and did not dissolve in or react with the
liquids used.

Assembly of the cell was accomplished in the fol-
lowing way. The upper reservoir was inverted (metal plate
up) and the glass wall assembly, to which a thin layer of
sealant had been applied with a syringe, was placed on the
metal plate in such a way that the long axis of the cell

was parallel to the optical axis of the interferometer
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system, and the two small filling holes just appeared inside
one corner of the glass. Sealant was then applied to the
top surface of the glass cell wall assembly, and the upper
reservoir, with glass attached, was returned to position
and lowered over four guide bolts until the glass contacted
the lower metal plate. The entire unit was held together
when four brass nuts (size 12-20) were applied to the four
guide bolts which passed up through the upper reservoir
housing.

Four large holes in the corner of the bottom mag-
nesium block fitted onto four upright 1/2 in. diameter
threaded steel rods, each 18 in. in length. Steel nuts
held the cell assembly to the threaded rods while allowing

for height adjustment and levelling. The rods in turn were

anchored to a steel I-beam 8 in. wide by 10 in. high and
15 ft long which was itself bolted to two 55-gallon drums
filled with concrete. The entire structure, which weighed
about 3000 lbs, was separated from the floor by 3/4 in.
cushions of dense foam rubber and 1 in. thick plywood
boards under the barrels of cement.

To aid in filling the cell, the mounting was de-
signed so that the cell assembly could be tilted about 25
degrees from the horizontal along a diagonal axis. (See
Fig. 4.2.) Thus the two filling holes in the top plate
occupied the highest corner of the sample chamber. While

the cell was being filled by means of a syringe, all of
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Figure 4.2.--Assembled cell in tilted position for £illing.
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the air was pushed to the top by the entering liquid and was
easily expelled.

Once filled, the cell was returned to its level posi-
tion, and the glass walls were manually pushed sideways
between the metal plates a distance of 1/8 in. Thus the
filling holes were removed from the sample chamber, pre-
cluding both evaporation and diffusion through the holes,
and at the same time removing the slightest perturbation
on the temperature distribution due to the tubes passing
through the reservoir. This feature is an important inno-
vation in our cell.

Finally, strips of foam insulation were placed
around the cell in the space between the reservoirs in order
to prevent air currents across the metal plates and to avoid
spurious heat transfer with the room air. Small flat glass
plates were substituted for the foam along the optical path.

We have described the design, construction, and
assembly of the cell, but we shall postpone a discussion of
its operation until the next chapter. We consider next
temperature control and measurement.

C. Temperature Control and
Measurement

We chose circulating water baths for temperature
control devices rather than electric heating coils in com-

bination with cooling coils in order to avoid both spatial
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variations in plate temperatures and the possibility of long
term drifting.

The main disadvantage of our water baths, namely
fluctuations due to the off-on heaters, has since been
eliminated by the substitution of proportional heating
elements which are always on but supply slightly more heat
if the temperature drops and less if it increases.

Four baths were available for our experiments. The
largest, a Lab-Line Tempmobile, was equipped with a com-
pressor unit and served as a source of constant temperature
cooling water for the other three baths. Tap water proved
unsatisfactory for cooling even when its temperature was
steady because only a trickle was needed, and fluctuations
in pressure could change the effective cooling rate
drastically.

The Lab-Line bath had a capacity of 90 liters and
was equipped with a built-in heating element. The point
of balance between the heating and cooling actions was ad-
justed by means of a Rota-Set mercury-contact thermoregula-
tor connected to a relay switching mechanism which turned
the compressor on and the heater off when the temperature
fell below the preset level.

Additional modes of operation were also available.
The compressor or the heater or both could be shut off
manually while the circulating pump continued to operate.

For example, with the water temperature well below room
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temperature, the heater could be disconnected, and then,
the cooling of the compressor would have to be balanced by
an absorption of heat from the room. Because of the in-
sulation, this would be a slow process and would result in
a very long cycling time for the compressor and an accom-
panying slow drift of the water temperature. For a better
balance and optimum temperature control, both the heater
and the compressor were allowed to operate.

The bath's circulating pump delivered water through
a 3/8 in., i.d. fitting at an uninhibited rate of 1300 ml/
min. Near 25°C the temperature of the circulated water
showed fluctuations of #0.1°C coinciding with the off-on
cycle of the compressor. A modification was made so that
the used water was returned near the pump intake and the
thermoregulator rather than to the opposite end of the
bath, thus providing the needed increased mixing action.

As a result, the fluctuations were reduced to *0.01°C.

The two baths used to apply the temperature differ-
ence to the cell were nearly identical. Both were Tamson
model T-45, with 45 liter capacities, and were obtained
from Neslab Instruments, Durham, New Hampshire. One oper-
ated with 110 V ac and the other with 220 V ac. Both had
coils of 1/4 in. stainless steel tubing for external cool-
ing and both had quartz main heating elements. The quartz
surrounded a piece of high resistance wire and served to

dissipate the heat more slowly than the wire itself would,
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hopefully providing a more constant source of heat than a
conventional off-on heater.

Both baths had booster heaters for rapid warm up
when desired. That in the 110 V bath was quartz, and the

other was stainless steel. The difference is of no conse-

quence since the booster heaters were never used during an
experiment. Control of the heating cycle was governed by
Jumo mercury-contact thermoregulators (0-50°C) and mercury
relay switches in each of the baths. The circulating pumps
caused excellent stirring of the baths while delivering a
flow of water through a 1/4 in. i.d. outlet pipe at a rate
of 3500 ml/min with a 10 ft head.

The manufacturer recommended that the cooling rate
be adjusted so that the heater was on for about four seconds
and off for about 16 seconds of each cycle. Such an ad-
justment, however, resulted in fluctuations in the tempera-

ture of the output water on the order of 0.01°C. We found

that further reduction of the cooling rate, until a cycle
of one second on and 30 seconds off was obtained, improved
the fluctuations to about *#0.005°C. This adjustment was
quite delicate since it meant only a slight trickle of
cooling water was flowing through the bath and any further
decrease could shut off the cooling completely, resulting
in a breakdown in the cycle. If that happened, the bath
temperature would slowly increase due to the heat developed

by mechanical stirring, and the heater would never be turned

on.
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The fourth bath was a Tamson model T-9 with a 10
liter capacity, and it was maintained at the mean tempera-
ture. It was similar in most respects to the other Tamson
baths. It had a quartz heater but no booster heater. The

cooling coil was a length of 1/4 in. stainless steel tubing.

This model had the same pump as the other two and conse-
quently the same flow rate and head. Because of the smaller
size, however, the temperature fluctuations of the unmodi-
fied bath were on the order of #0.01°C.

We modified all four of the baths by making the

outflow of each pass through a six foot length of 5/16 in.
i.d. copper tubing formed in a 5 in. diameter coil. The
coil was immersed in a 2000 ml beaker filled with water
kept at the operating temperature of the bath. 1In the case

of the T-9, the beaker was outside the bath (increasing the

effective volume of the bath to 12 liters) and was stirred
by means of a Sargent magnetic stirrer. The other three
beakers and coils were positioned inside their respective
baths and served as secondary semi-isolated thermostats.

The purpose of the copper coils and their associated
volumes of agitated water was to act as heat exchangers and
absorb any pulse of excess heat as it passed through the
coil or to give heat to the circulating water whose tempera-
ture was slightly less than normal. 1In this way, fluctua-
tions due to the off-on heating cycle were nearly damped

out, The three Tamson baths operated routinely with
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fluctuations of about #0.003°C, and, with very careful
balancing of the cooling rates, could be made to operate
with fluctuations of less than 0.001°C. All of the tem-
peratures mentioned above were monitored continuously with
40 gauge copper-constantan thermocouple junctions attached
to the metal plates, and two Sargent model SR strip chart
recorders specially modified by our electronics technician
to display temperature changes as small as 0.002°C.

The water was suitable for use when it emerged from
the copper coil. It was transported from there to the
proper reservoir and back to the bath through 1/4 in. i.d.
Tygon tubing. Joints between sections of the tubing were
made with short lengths of 5/16 in. i.d. Tygon tubing. The
material is soluble in methyl ethyl ketone, so when the
ends of the tubing were dipped into the solvent for about
one minute before slipping them together, a permanent bond
was easily formed. Special Tygon Y-connectors, obtained
from Scientific Glass Apparatus Co., were used in the same
way. At the cell, the tubing was connected to 3/8 in. o.d.
brass nipples screwed into tapped holes in the reservoirs.
At no point along the line was the opening through which
the water passed less than 1/4 in. in diameter.

Between the baths and the cell all of the tubing,
including return lines, passed through a two position
clamping valve (see Fig. 4.2) specially designed to allow

instantaneous switching of the cell from the isothermal to
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the nonisothermal configuration and vice versa. With both
clamps closed, no water was admitted to the reservoirs.
With only the left one open, a temperature difference was
applied, and with only the right one open, the cell was
isothermal at Tm' At no time could both clamps be open,
or water would be transferred between the baths causing
overflow. Bypasses had to be installed so that whenever

a bath was isolated from the cell, its water could still
circulate through the copper coil in order to maintain
thermal equilibirium within the 2000 ml beaker.

The starting time of all experiments was taken to
be that instant when the clamp for the T-9 was closed and
the clamp for the other two baths was opened so that the
temperature difference was applied to the cell.

Inside the reservoirs, the water flowed in the

pattern shown in Fig. 4.1. There was a space of 3/32 in.

between the baffles and the metal plates in order to elimi-
nate the possibility of any dead space.

In order to promote a more uniform temperature dis-
tribution, the reservoirs extended beyond the area covered
by the sample chamber. The temperature distribution across
the bottom plate was checked at 20°C by means of a 40 gauge
copper-constantan thermocouple junction held against the
plate with a piece of styrofoam insulation and a 100 gram
weight. The position of the thermocouple junction was

measured, and it was allowed to remain undisturbed for two
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minutes while the temperature at that point was measured by
the strip chart recorder. Thirty seconds were usually re-

quired for thermal equilibrium, but the additional time was
used to insure that no further change in temperature would
occur.

The measurements were repeated at half-inch inter-
vals across the whole plate. While the resulting 81 data
points showed the presence of thermal gradients near the
side walls of the reservoir, the temperature over the area
occupied by the sample chamber remained constant to within
0.01°C with only randomly spaced variations.

Since we did not wish to conduct thermal diffusion
experiments with thermocouple wire inside the cell disturb-
ing the temperature distribution and possibly the diffusion
flux, it was necessary to establish whether any systematic
difference existed between the temperature of the metal
plate inside the sample chamber and the measured plate
temperature somewhere outside the cell. For this check,

a thermocouple wire was passed through one of the filling
tubes and attached to the upper plate by means of a very
small piece of tape. The cell was then assembled and
filled with a mixture of CCl4 and C6H12' A second thermo-
couple junction was mounted outside of but close to the
sample chamber on the upper metal plate. The junction was
first placed in contact with the plate and then covered

with a one inch square of aluminum foil to insure that the
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measured temperature represented that of the plate and not
some average influenced by the air temperature. The wire
leads from the junction were kept in contact with the plate
for a distance of about three inches in order to eliminate
thermal gradients in the wire. The junction, foil, and
wire were then covered with a piece of black electrician's
tape.

When a temperature difference was applied to the
liquid, and after a period of fifteen minutes passed, during
which a thermal steady state was reached, the voltages of
the two thermocouple junctions were recorded. Both refer-
ence junctions were in the same ice-water bath. According
to a Leeds and Northrup K-3 potentiometer and a previously
prepared temperature-emf calibration chart, both junctions
indicated the same temperatures to within 0.002°C. Measure-
ments were repeated for thirty minutes, during which only
small random differences between the two temperatures were
observed. Consequently we felt safe in using the tempera-
ture measured outside the cell as the plate temperature in
the thermal diffusion experiments.

The above-mentioned thermocouple junction and a
similar one on the lower plate were next used to investigate
the time dependence of the plate temperatures at the begin-
ning of an experiment. During the change of configuration,
the temperature of each plate was monitored with a separate
strip chart recorder, and as expected, an exponential shape

Was observed.
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Experimental curves were fitted to functions of the

type
i =B/
B ar [, h| _
T,=T +t5 |1-e )—tbh(t),
-t/t
L AT cf =
Te=Ty~-7Z |- ) = 6. (8) 4 (4.4)

where Th and TC are respectively the hot and cold plate
temperatures, t is time measured from the instant of
switching. The two constants tc and th are the two re-
laxation times for heat conduction through the apparatus
mentioned in Chapter II with the statement that they best
determined experimentally.

The results of the curve fitting were:

te = 46 sec ,

t, = 46 sec . (4.5)

Because the capacity of the T-9 bath is different
from that of the others, the relaxation times were also
measured for the initial part of the remixing experiment,
which requires removal of an established temperature gra-
dient. Here the functional form is:

= [
t/th

T(5.t) = 1, + 2. (4.6)
T[-%,t) = -5 o (4.7)

The relaxation times for the second case were found to

be:
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"=
) 54 sec
ty = 54 sec . (4.8)

Measurement of the various temperatures required
was accomplished with thermocouples made of 40 gauge
matched copper and constantan wires. The wires, indivi-
dually coated with Teflon, were wrapped together in an
additional fabric insulation. A twelve inch length of
the fine wire was soldered to about eight feet of more
durable 20 gauge copper and constantan wires. The heavier
wires were also of matched resistances, polymer coated and
bound together by an outer clear plastic film. Both sets
of wire were obtained from the Thermo-Electric Co., Inc.,
Saddle Brook, New Jersey.

Sixteen thermocouples were prepared. A small arc
welder, obtained from the Chemical Rubber Company, was used
to fuse the two metals into spherical junctions with 0.4 mm
diameters. Because of the thinness of the wires, the energy
of the arc was sufficient to destroy about an inch of the
metal before forming the junction. For more satisfactory
performance, the welder was plugged into a 15 A variable
transformer, and the voltage was cut from 115 V to about
25V. With the lower energy arc, the junction was more easily
formed.

The reference junctions were contained in an ice-

water bath, with a four liter capacity, equipped to hold
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up to twenty such junctions. Copper and constantan wires
extended into 1/4 in. diameter glass tubes 6 in. in length
containing 1-1/2 in. of mercury. The tubes were immersed
in an ice-water slush. The entire apparatus was surrounded
by a 1 in. layer of styrofoam insulation and encased in
Fiberglas. The top was covered with a wooden 1lid, and a
terminal panel was provided for convenience in changing
thermocouples. After filling, the bath retained a constant
temperature for up to four hours before it needed attention.
Distilled water was used in the bath along with machine-made
ice cubes initially 3/4 in. x 3/4 in. x 1/4 in. in size.

A sixteen junction Leeds and Northrup K-3 potenti-
ometer was connected to an electronic null detector (Leeds
and Northrup Model 9834) having nonlinear meter response
and maximum sensitivity of #0.2 microvolt per division.
EMF's could be read to the nearest 0.1 microvolt, permitting
calculation of the temperature to the nearest 0.002°C.

It should be noted that any shift in the temperature
scale which might have developed due to a nonzero reference
temperature or a decay of the standard cell in the potenti-
ometer would be inconsequential, since only differences be-
tween measured temperatures had to be very accurately known.

Also available for measurements were two Sargent
model SR potentiometric strip chart recorders. These showed
full scale deflections of 200 microvolts, or 5 degrees

Centigrade. Five different scales were available,







100

corresponding to the temperature ranges: 0-5°C, 15-20°C,
20-25°C, 25-30°C, and 30-35°C.

Again, any inaccuracies introduced by the expansion
of the recorder scale were not important since the recorders
were used only as indicators. Any critical measurements of
temperature were obtained with the potentiometer. The re-
corders were entirely satisfactory; they showed fast response
and a high degree of repeatibility, and registered tempera-
ture changes on the order of 0.002°C.

When the sixteen thermocouple junctions were compared
against one another by placing them two at a time very close
to each other in the same constant temperature bath at 25°C,
they all registered the same voltage to within 0.1 microvolt
or 0.002°C. Consequently it was not deemed necessary to per-
form separate calibrations for each of them. This extra
step would have been impractical anyway since most of the
junctions were broken and replaced at some time during the
experiments and since each calibration would have required
about three days.

The original calibration was carried out with a
thermocouple which did not differ by more than 0.1 micro-
volt at 25°C from any of the others. A platinum resistance
thermometer was used along with a constant current source
(2.0 mA) and a resistance box. By using the galvanometer
of the K-3 potentiometer,we could measure the resistances

of the platinum wire at a series of temperatures. The known
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temperature dependence of the resistivity of the platinum
then allowed us to calculate the actual temperature.

The platinum thermohm and the thermocouple junction
in question were placed in contact with each other and into
the small open port of one of the T-45 baths. The emf of
the thermocouple could be monitored on one of the recorders
as well as with the potentiometer. After the recorder in-
dicated that a steady temperature had been reached in the
bath, the following measurements were taken five times at
one minute intervals:

(1) resistance of the platinum wire at 2.0 milliamps,
(2) emf of the thermocouple junction.

If the measurements showed any large fluctuations
or drifting, they were repeated until five consistent sets
of values were obtained. Then the direction of the current
was reversed, and the measurements were repeated.

The same measurements were repeated at one degree
intervals from 16°C to 34°C. For each value of the resis-

tance the temperature was calculated by means of Eg. (4.9).

R o=~T, 3
= 0 T T T
T e, Témoo T 1) *+ 8109 l] (100} r (4.9)
where
T = temperature in degrees Centigrade
R, = measured resistance, international ohms, at

2.0 mA

R, = 25.4884 int. ohms
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o = 0.00392604
B = 0.1106 ; T < 0°C
B =10.0 ; T > 0°C

§ = 1.4919.

The data of interest consisted of a list of tempera-
tures calculated from the measured resistances and a list
of corresponding thermoelectric potentials. A FORTRAN IV
program, EMFVST, was written for use with MULTREG, a multi-
nomial regression analysis program. The Control Data
Corporation 3600 digital computer calculated the best
smooth curve through the experimental points to be:

EMF = 2.33066 + 40.04151T + 1.300289 x 107°7% , (4.10)

where EMF is in microvolts and T is in degrees Centigrade.

The standard errors of the coefficients of T and T4

2 and 8.13 x 1077, At 20°C and

are respectively 5.52 x 10~
30°C Eq. (4.10) gives EMF's of 0.8052 mV and 1.241 mv,
respectively. The calibration table in the Handbook of
Chemistry and Physics (44th edition) lists the correspond-
ing numbers as 0.79 mV and 1.19 mV, respectively. In
measuring differences in temperatures, however, we used
the temperature coefficient of very nearly 0.4004 mv
deg_l, which compares well with the handbook value of
0.40 mv deg™t.

Equation (4.10) was used in preparing an extensive

table with which a measured voltage could be rapidly
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converted to a temperature. EMF's for all of the tempera-
tures between 14.00°C and 35.99°C were printed out at 0.01°C
intervals, and interpolation to the nearest 0.002°C was
easily accomplished. The computer calculated the 2200 num-
bers and printed them in tabular form. The table was hung

on the laboratory wall for quick reference.

D. The Interferometer

Having decided to use optical rather than conduct-
ometric or sampling methods for analysis of concentration
changes, we next had to choose from among the various types
of suitable interferometers available. Pure thermal dif-
fusion experiments require that an instrument be able to
detect differences in mass fraction as small as one part
in 10° over distances of a few millimeters. The wavefront
shearing interferometer described by Bryngdahl (1963), un-
like Rayleigh or Gouy instruments, had not yet been applied
to diffusion studies. Bryngdahl's interferometer promised
to be at least as sensitive as any of the others in use and
had the added advantage of not being difficult to use. Also
it offered a chance to make the first application of a new
design. While our work was in progress, however, Bierlein
(Gustafsson, 1965) published an account of some experiments

conducted with a similar instrument, both confirming its

advantages and relating the results of some studies on de-

sign optimization.
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Before building the interferometer, we modified the
plans by substituting for the conventional light source a
helium-neon gas laser (A = 6328;). This produced an intense
beam of parallel, monochromatic, polarized light, all fea-
tures required by the instrument, but not present in a
sodium or mercury lamp. The laser chosen was a Siemens

model LG-64 having output power in the TEM uniphase mode

00
of six milliwatts.

Since the light emerging from the laser was polarized
in the vertical plane, the laser was rotated 45° about its
long axis in order to provide the necessary orientation be-
tween the polarization plane and the refractive index gra-
dient in the cell. The laser was mounted between four
vertical 1/2 in. steel threaded rods which were attached
to the 15 ft horizontal steel I-beam mentioned above. The
threaded rods provided flexibility in positioning the laser.
See Fig. (4.2).

The diameter of the beam emerging from the laser
was 2.5 mm, much less than the cell height. A shutter was
provided to keep light from the cell when not needed. A
simple two lens system with focal lengths Ll,f = 17 mm and
L2,f = 203 mm produced a parallel beam 35 mm in diameter.
See Fig. 4.3. After traversing the cell, the initially
flat wavefront was distorted if a refractive index gradient
Was present. A second simple lens system (L3,f = 371 mm,

L4,f = 22 mm) reduced the height of the beam from 7.41 mm










Figure 4.3.--Helium-neon laser and lenses Ll and L2.
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to 0.5 mm in order that it be compatible with the dimensions
of the beam splitters.

The beam splitters (Bryngdahl, 1963), obtained from
Valpey Optical Corporation, were modified Savart crystal
quartz plates. These were cut at 45° from the axis and
oriented so that the axes of the subplates were in the same
plane but perpendicular to each other. An incident ray
gave in the first plate an ordinary ray and an extraordi-
nary ray. In order to get symmetrical light paths through
the whole plate, the ordinary ray in the first subplate had
to become the extraordinary ray in the second one and vice
versa. A half-wave plate inserted between the two subplates
so that its principal plane bisected the 90° angle between
those of the subplates interchanged the polarization planes
of the two rays. Thus there was a compensation of path dif-
ferences, i.e., no path difference was introduced by the
beam splitter in parallel light. See Fig. 4.4.

The net effect of the first beam splitter Ql was the
production of two identical beams of equal intensity having
perpendicular polarization planes and separated vertically

by a distance b,. The separation of the two beams is given

by:

(4.11)
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where e is the thickness of each part of the double plate,

and n, and n, are the principal refractive indices of the

0

quartz.
In convergent light, the beam splitter splits an

entering wavefront into two wavefronts with polarization

directions perpendicular to each other. 1In this case, the

shear angle introduced results in an optical path differ-

ence A between the two emergent wavefronts which depends

on the x-coordinate via the corresponding incident angle

¥ and on the thickness of the crystal plate. For the plate

used,
A = b, sin ¥ cos Y (4.12)
1

where ¥ is the angle between the entering ray and the normal
to surface and y is its azimuthal angle.

The parallel light beam traverses the first beam
splitter Q1 resulting in the formation of two identical
beams displaced vertically from each other and having per-
pendicular polarization planes.

The second beam splitter was identical to the first
but was turned through an angle of 90° in order to retain
the proper orientation between polarization planes.

Between the two beam splitters Q1 and Q2 a simple
double convex lens L5 having focal length 22 mm produced
the convergent light for Q2. After the second beam splitter,

the interference fringes were made visible in image plane 2
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by means of a polarizer (a Nicol prism) oriented at right
angles to the polarization plane of the original laser radia-
tion. A final lens L6, consisting of an ordinary microscope
objective with a magnification factor of 5, made possible ad-
justments in the beam size for convenient photographing.

The interference fringes, representing the vertical refrac-
tive index gradient in the cell, appeared within a sharp
double image of the cell. The use of Ql and Q2 rather than
ordinary Savart plates caused the fringes to be presented

in Cartesian rather than hyperbolic coordinates (Bryngdahl,
1963). A photograph of the interferometer is shown in Fig.
4.5, A theoretical discussion of the paths followed by

the light beams inside the quartz plates is given in Appendix
G.

The working equation for the interferometer is

x = A(bn/bz) + B , (4.13)
where A is a magnification-related apparatus constant which
is best determined by means of a separate calibration (dis-
cussed below), and B determines the family of fringes which
is observed. B need not be known if we measure only the
position of the same fringe at various times. The quantity
(An/Az) is a finite difference expression for the refractive
index gradient. Through it we can relate measurements of
fringe position and shape to expressions for the gradients

of temperature and composition.
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Fi et
gure 4.5.--Interferometer components and Polaroid camera.
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The image of the cell and the fringe pattern was
projected through a Polaroid MP-3 camera and onto a ground
glass plate. At any time the plate could be moved aside
and replaced by a Polaroid roll film back, and a photo-
graph could be taken on Polaroid type 413 infra-red sensi-
tive film. Even though visible light was used, this film
was required because of its greater sensitivity in the red
range of the spectrum. The photographs, developed in the
camera in 15 seconds, were 3-1/4 in. x 4-1/4 in. black and
white positive prints.

A device to measure fringe positions on the photo-
graphs was made by mounting on a 4 in. x 6 in.x 1-1/2 in.
block of aluminum a mechanical microscope stage with gradu-
ations and vernier scales which could be used in conjunction
with a magnifying lens to determine the two dimensional
shape of the fringes to 0.0l cm, or the equivalent of 0.13%
of the cell height.

Each photograph cost about $0.50 and required five
to ten minutes to analyze. To permit more practical accum-
ulation of large amounts of data, an alternate measuring
device was also used. This consisted of the same microscope
stage mounted directly on the ground glass plate of the

camera. The arrangement allowed the fringe position at

z = 0 to be measured frequently and rapidly. A photograph

could still be taken when more detailed information about

the fringe shape was desired.
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E. Working Equations

Let the vertical refractive index distribution in

the cell be given by the expansion:

n(z,t) =

~
e~ 8
o

o (02", (4.14)

where the coefficients c, are functions of time:

k
co(t) = n(0,t)
cl(t) = (Bn/Bz)O
T 52 2
cz(t) = 7(3 n/dz )0
e n n
cn(t) = F(B n/dz )0 2 (4.15)
The subscript zero means the derivative is evaluated at
z=0.
The finite difference expression for the fringe

shape requires the quantity:
as
an(z,t) = n(z + 55,8) - nlz - 50) (4.16)

It follows from Eqs. (4.13) and (4.16) that:

x = A{(cl + % cja’st + 7 €538 Fe
+ (2¢, + c4azs2 +...)2
5 2.2 2
= +...02° + (4cy +..0)z2
+ (3c3 + 5 cga’s ) 4

+ (5¢cq +...)z4 o il B

The quantity s is the amount of shear (0.19) .
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The experimentally measured fringe shapes are well

represented by the polynomial:
B k
o= ¥ a (en” , (4.18)
k=0

where n is the dimensionless vertical cell coordinate ob-
served on a photograph, and the dk the coefficients giving
the best least squares fit.

Because of the double image which is due to the
shear s, the vertical coordinate z in the cell is related

to the vertical coordinate n in the photograph by:

2z
N =T %7 (4.19)

where
-l¢n¢gl,
and s is the shear, or amount of overlap of the two images.
The relationship between the coefficients dk and
¢y is discovered by using Eq. (4.19) and equating coeffi-

cients of like powers of z in Egs. (4.14) and (4.18):

dy = Aley + % c3a252 + %g c5a4s4 ) el 1

dl = %(a - as) (2¢c, + c4a252 toae)

4, = %(a - as)2(3c3 + % c5a252 +...)

dy = %(a - sa)3(4c4 i)

dy = %E (a - as)4(5c5 Foise)

ag = B (a - as)®(6cg +.n) (4.20)
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The coefficient dO represents a uniform lateral shift of the
whole fringe pattern. Since dl is the coefficient of the
first power of n, it accounts for a skewness in the photo-
or ¢C

graphs which decays away as (32n/322) o1 approaches

0’
zero, in exact agreement with Bierlein's observation.

Inversion of Equations (4.20) gives:

25116 -4,1
cg = 3la - as) (3 d, +...)

5
_ 8 o %
¢y = zla - as) “(d3+...)
-2
_ 4 2 2l 20l 2 2(a - as ]
c3 = X(a T d2 3 d4a s [——2 ) & PR

-

]

|

s it azs,z{i;—“f2 +] . (4.21)

as)” [
e, = %(a - as)'l[% a -3 d3a2sz[i—%—3§)_2 +..J
as)” [ 0 )

gl =2 o
17 %7

Thus all of the coefficients in the expansion for
3n/3z which follows from Eq. (4.14) can be determined from

measurements of d (K= Quesd) Ay 8y and as

K’

The coefficients c, are related to the transport

k

parameters al, D, Ki, and Qi through the expression for the

temperature and composition distributions and through rela-

tions such as:

c, = (BL]T(ewl + 2 (4.22)

Swl 3z 0 3T

where (Bwl/az)O is a function of oy etc.
In the next chapter calibration of the interferometer
and the particular measurements involved are discussed, along

with the other experimental details.







CHAPTER V

EXPERIMENTS

A. Weighing Procedure

Because we chose to work with carbon tetrachloride-
cyclohexane mixtures in order to be able to compare our
results with those of previous workers, we had to deal with
the problem of evaporation. Such losses before and during
an experiment can lead to miscalculations of the actual
composition of the mixture. The following procedure was
used in an attempt to avoid, or at least minimize, errors
in the determination of the mass fractions of the components
of the solution actually undergoing thermal diffusion in the
cell.

Four 25 ml Pyrex pycnometers for volatile liquids
were obtained from Scientific Glass Apparatus Company. The
80 gram capacity of our Mettler H-16 single pan analytical
balance precluded the use of larger volumes of ligquid. Each
pycnometer consisted of a 25 ml bottle, a capillary stopper,
and a cover which prevented evaporation from the open capil-
lary tube. The three pieces fit together with ground glass
joints, and each part was marked with the same number to

Prevent interchange between sets.
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Only one of the pycnometers was used throughout the
whole series of experiments. Before each use it was cleaned
with a solution of potassium dichromate in 98% sulfuric acid,
rinsed in distilled water, and dried in an oven at 105°C.
When cool, it was placed in a water bath at 25.00°C for three
minutes, removed, dried with Kimwipe tissues, and weighed on
the previously zeroed H-16 balance. The volume of the pyc-
nometer was determined from a series of measurements during
which it was weighed while filled with either distilled water,
carbon tetrachloride, or cyclohexane at 25.00°C. The water
was obtained from the distilled water tap in the laboratory.
The other two liquids were obtained from the J. T. Baker
Chemical Company. The labels of the bottles used are repro-
duced in Tables 5a and 5b. All chemicals were used without
further purification.

An excess amount of the particular liquid below
25°C was poured into a clean, dry 250 ml Erlenemeyer flask
provided with ground glass stopper. The liquid was removed
from the flask by means of a 100 ml capacity glass syringe
fitted with a 12 in. length of Teflon tubing of 1/16 in.

i.d. The Teflon tube was then replaced by a 1-1/2 in. size
18 stainless steel syringe needle, and the air in the syringe
was removed. The liquid was then injected into the pycnom-
eter bottle until the bottle was nearly full, at which time
the capillary stopper was inserted, causing an overflow of

the excess liguid and the exclusion of all air from the
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Table 5a.--"Baker Analyzed" reagent lot analysis as given on
bottle label for CC14.

1 pt. (473.2 ml) 1513 |

CARBON TETRACHLORIDE

CCl4 F.W. 153.82

"Baker Analyzed" REAGENT

SPECTROPHOTOMETRIC
LOT NO. 34532

Color (APHA)

B T, e 8 el R R A e e A 0 B R ke e, S D

Density (g/ml) at 25°C . . « & « « « « = « « « « « . . 1,585

‘Boiling Range 1-95ml . . . . « « « « « « « « + « « o 0.1°C

95" MI=AXYNESE. .o 5 o ietior w fol et ot & et sewie 106 29C
Residue after Evaporation . . « « « « « « « « . . . 0.0004%
Acidity .

Pass ACS Test

Free Chlorine (C1)

Pass ACS Test

Sulfur Compounds (as S) . « « « « « « « o « & o .

. 0.003%

Iodine Consuming Substances . . . .

Pass ACS Test

Substances Darkened by HyS0, « v v e . « . . Pass ACS Test

Solubility for use in Dithizone Test . . . . . Pass ACS Test

‘Recorded Boiling Point 76.7°C.
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Table 5b.--"Baker Analyzed" reagent lot analysis as given on

bottle label for CGHlZ'

1 pt. (473.2 ml) 9206
CYCLOHEXANE
CHZ(CH2)4 CH2 F.W. 84.16

'Baker Analyzed' Reagent

ACTUAL ANALYSIS OF LOT NO. 34840

Color (APHA) . . by 2, 2

Density (g/ml) at 25°C . & ¢ o o o « ¢ o o & o o o+ =« 0,773
Boiling Range, 1-95ml . . . « « « ¢« « &« « « &+ « « « o 0.1°C
95 MI-AXyness . . « « « o o o o o o + o « o « 0,1°C

Residue after Evaporation . . . .

e+« s« e e« « . . . 0,0008%
Substances Darkened by sto4 « « « +« ¢« « « « . . . Passes Test
Water (H,0) . . & v v v v v v v o v oo oo 0,014y

Recorded Boiling Point 80.7°C.
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container. The pycnometer was never touched directly. All
handling was done with tissues or a wire holder consisting
simply of a length of wire wrapped around the neck of the
bottle.

By means of the wire holder, the partially assembled s
pycnometer was transferred to a wire basket in the T-9 water
bath which was maintained at 25.00°C. The heating and re-
sulting overflow of the sample liquid continued for about
four minutes. When the liquid level was just even with the
top of the capillary tube, the pycnometer cover was put
tightly into place. The assembly was then removed from the
water, dried carefully with a Kimwipe as before, and weighed

on the H-16 balance. The air temperature, relative humidity,

and barometric pressure were recorded at the time of the
weighing for purposes of air buoyancy corrections. A Sargent
hygrometer provided wet and dry bulb temperatures, and a
Fortin-type mercurial barometer permitted determination of

the atmospheric pressure. From the known densities of the

liquids used, the 25° volume of the pycnometer could readily

be calculated.

In a substitution weighing, the beam is brought into

equilibrium with a set of weightsT as the load and the scale

reading are set to zero. Next an object is placed on the

pan, and weights are removed to return the beam to equilibrium.

-

TFollowing custom, we call the standard masses

"weights,"
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The balance indicates two numbers: (1) the nominal value of

the weights removed; and (2) the indicated difference be-

tween the weight of the object and the weights removed.

The effect of gravity and air buoyancy on the

weights must be taken into account, while other forces must

be avoided or eliminated. Various forces such as electro-

static or magnetic forces, the "sail effect" from moving

air, and air buoyancy on the beam or other parts of the

moving system may act to change the balance indication.

As long as these forces remain constant, their effect will

go out in the difference between the two readings. Conse-

quently only gravity and air buoyancy need be considered.

The balance equation is:

M, -
where

M _ = true mass

u
Ms = true mass
V. = volume of

u
VS = volume of

velg = (Mg - vge)g (5.1)

of object
of weights used
object

weights

p = air density

g = acceleration of gravity

Forces are eliminated by dividing by g, whence,

arrangement:

upon re-

(5.2)
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Equation (5.2) requires knowledge of the true mass of the
weights used, which differs from that of the nominal values
observed. In-the United States, Normal Conditions are de-
fined to consist of air density of 1.2 mg/cm3, temperature
of 20°C, and standard weights having an ideal density of
8.4 g/cm3 at 0°C and coefficient of cubical expansion of

5 deg_l C. From this the ideal density at 20°C

5.4 ® 107
is 8.3909 g/cm3.

Usually the air density differes somewhat from 1.2
gm/cm3 as defined for normal conditions, and the density
of the weights used differs from 8.3909 g/cm3 at .20°C,
According to L. B. Macurdy, Staff Metrologist of the Mettler
Corporation, the weights in the Mettler Model H-16 balance
are of one-piece stainless steel with a nominal density of
7.76 g/cm3 to be assumed at 20°C. In order to obtain the
true mass of the weights MS, it is necessary to add the
correction +11.63 micrograms per gram to the indicated value
to take account of the fact that the density of the weights
is not 8.4 g/cm3. Also, since measured volumes are not
usually available, Egq. (5.2) can be rearranged to give the

true mass of the object in terms of densities:

2 pes2 313
Mu =i Ms(l = p/Ds)(l + p/Du +p /Du + p /Du b TR
(5.3)
whe = i i
re MS Mapparent x (1.00001163), DS is the density of

the weights, and Du is the density of the object, both

calculated at the ambient temperature. Dy is best
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approximated by T Ms/Vu. Most of our weighings were ob-
tained at an ambient temperature of 24°C rather than 20°C.
If the coefficient of cubical thermal expansion of the
stainless steel is assumed to be:

6 =1

-8 =51 x 10°° deg "~ , \
then at 24°C:

D, = 7.76(1 - 2.04 x 10" %)g en™? .

Since D, was originally given with only three significant
figures, the correction is certainly negligible.

In order to calculate the air density, measurements
of the barometric pressure, the relative humidity, and the

ambient temperature were required. The standard temperature

for the density of the mercury in the barometer is 0°C.
Since the mercury and the brass scales have different co-
efficients of thermal expansion, the pressure indications
are affected by variations in the temperature. The manu-
facturer of the barometer, Precision Thermometer and In-
strument Company, Philadelphia, supplied Temperature
Correction Tables which combined the corrections for length
of the scales and density of the mercury. We used Gravity
Correction Tables to take account of the latitudinal varia-
tion of the gravitational constant. The combination of
these corrections usually contributed about -2.9 mm Hg.
Tables supplied with the Sargent hygrometer were

also used to calculate the relative humidity from the
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measured values of the ambient temperature and the depression
(in degrees Farenheit) of the wet bulb thermometer in the
sargent electric hygrometer. For most of our weighings, the
air density was about 1.16 rng/crn3.

To speed the recording of data and the calculation
of weighing corrections, a simple form was typed on a Ditto
master, and spirit copies were used for all of the weighings.
A completed sample form is shown in Table 5c.

We used the data of Wood and Gray (1952) to obtain
the densities of pure carbon tetrachloride and pure cyclo-
hexane as well as the temperature and composition dependence

of density. At 25°C:

olcc1,) = 1.58414 g/cn’
p[c6Hlﬁ = 0.77383 g/cm3 .

The volume of the pycnometer, based on the results

of ten trials with water, ccl,, and CgHypr was taken to be:
V = 25.7523 £ 0.0025 cm’

Once the volume was known, the densities of mixtures
of the two organic liquids could be determined by the same
weighing technique. The density versus composition data of
Wood and Gray at 25°C were expressed by the polynomial (from

MULTREG, see Appendix H).

w® = 1.99014 - 0.01505

1.53114
1 T (5:54)

where wi is the mass fraction of CCl4 in the mixture and

P is the density of the liquid in g/cma. The dimensions of
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Table 5c.--Sample weighing form.

Date 3-22-68 Time 10:00 a.m.

Run No. -- Pressure, mm Hg 745.4 >742.5
Liquid CCl4 Tdry 77°F; Twet 54°F,

Liquid Temp., °C 25.00 Room Temp., 23.9°C; 75.0°F
Vol. Fraction 1.00 Rel. Humidity, 15%
Pycnometer No. 375 Time in Bath, Minutes 5

Liquid Density (Approx), g/cm3 D, = 1.58414
Air Density, g/cm3 p = 0.001158
Weight of Bottle and Liquid, g.

65.99890

65.99886 65.99888
Weight of Empty Bottle, g.

25.22384

25,22384 25.22384
Apparent Mass of Liquid, g. Ma = 40.77504
True Mass of Weights Used, g. Ms = Ma (1.00001163) - 40,77551
True Mass of Liquid, g.

= 2.2
My = M (1 - 0/7.76) (1 + o/D, + ¢ /Dy ¥ ees)

= 40.77551 (.99985) (1.00073)

= 40.79920
Pycnometer Volume, cm3. 25.7549 (calc.)
Liquid Density, g/cm>. 1.58414 (lit.)

Mass Fraction, W, = 1.0000
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he coefficients are appropriate to cancel those of p. The
tandard errors of the two coefficients in Eqg. (5.4) are

4 ana 7.25 x 1074,

espectively 5.83 x 10~

When the liquid being prepared was scheduled to
ndergo thermal diffusion in the cell, the following modi-
ications were made in the above procedure. The two com-
onents were mixed in the 250 ml flask in the approximate
roportions desired. For example, if the desired mole
raction was 0.6, then 40 ml of cyclohexane were added to
0 ml of carbon tetrachloride. No precaution against
vaporation was taken at this point. The flask contained
- 1-1/4 in. Teflon coated magnetic rod, which permitted
xcellent mixing of the two liquids when the flask contain-
ng them was placed on a magnetic stirrer.

When mixing was complete, the flask was chilled
or a few seconds by placing it in contact with ice. This
’as done in order to insure that the temperature of the
iquid entering the pycnometer was below 25°C. After the
hilling, the flask and its contents were returned to the
tirrer for about another minute to insure a uniform
emperature and composition.

Then the stirrer was shut off, the stopper was
emoved, and about 80 ml of the liquid was drawn through

€ Teflon tube into the large syringe. The tube extended

ell below the surface of the liquid. The tube was re-

laced by a needle, and all air was removed from the syringe.
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he first few milliliters of the liquid was discarded, and

en the cell was filled as described in the following sec-
ion. Immediately thereafter, a small quantity of the liquid
as again discarded from the syringe (that portion which was
in contact with air), and the pycnometer was carefully filled
vithout disturbing the liquid surface or causing an unusual
amount of evaporation. The pycnometer was overfilled so that
the liquid close to the surface, whose composition may have
changed by differential evaporation, was spilled out when the
sottle was closed. The closing, thermal equilibration, and
veighing of the filled pycnometer were the same as described
above. The liquid in the pycnometer and the liquid in the

cell were assumed to have the same composition.

3. Step-by-Step Procedures

All of the facets considered above, the cell, the
temperature control system, the interferometer, and the
seighing technique come together to fulfill their purposes
in the actual execution of an experiment, which is most

fficiently described by a series of steps.
1. Turn on all water baths to their desired preset
temperatures at least 12 hours before the start

of an experiment.

2. Switch on the potentiometer at least one hour before

any measurements are to be made.
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Dry the pycnometer parts in the oven at 105°C for

at least two hours if not already dry. Handle only
with tongs which have been cleaned in sulfuric acid,
rinsed thoroughly in distilled water, and dried.
Check the water levels in all baths and in the beaker
on the stirrer for T-9, and refill if necessary.
Refill the small (500 ml) beaker with fresh distilled
water for rinsing the used pycnometer after cleaning.
Fill the thermocouple junction reference ice bath and
allow to equilibrate.

Make certain the camera is loaded.

If pycnometer has been in oven for two hours remove,
and let cool in air before assembling. Do not touch.
Clean the silver plated surfaces of the cell, remov-
ing any oxide coating with silver polish. Rinse
thoroughly with a CCl4 - c6H12 mixture and dry with-
out leaving streak marks.

Position thermocouple junctions, each between its
plate and a piece of foil. Hold in place with
electrician's tape, making sure that two or three
inches of the lead wire is in contact with the metal
plates.

Clean the glass cell walls with a Ccl4 . C6H12 mix-

ture and Kimwipe tissue to remove all old sealant

and any marks.
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Remove any air bubbles from bottom reservoir by
holding it vertically so that the air exits through
one of the ports at the highest point.

Level the bottoﬁ plate by using a bubble indicator
and the four adjusting nuts on the large threaded
rods supporting the cell.

Apply Dow FS Fluorosilicone Sealant to one surface
of the glass cell wall assembly by means of a 10

ml glass syringe and needle.

Position the glass cell wall assembly on the inverted
top reservoir assembly, coated side down, and with
proper alignment of the filling tubes in one corner.
Apply silicone sealant to the upper side of the cell
wall assembly with syringe.

Assemble the cell, fasten retaining nuts with light
pressure only.

Turn on the laser and its timer. Align optics and
focus interferometer on glass plate of camera.

Tilt the cell for filling and provide a Kimwipe to
absorb spilled liquid.

Make sure the bath switch is in the isothermal con-
figuration.

Clean the glassware for solution preparation and
rinse with CCl4 or C6H12'

Prepare 100 ml of the solution in a 250 ml Erlen-

meyer flask with a ground glass stopper.
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