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ABSTRACT

PURE THERMAL DIFFUSION

by Terry Grant Anderson

The time—dependent theory of pure thermal diffusion in

binary fluid mixtures is obtained, and experiments on the carbon

tetrachloride—cyclohexane system are reported. The theory takes fUll

account of the temperature and composition dependences of the ther—

mal diffusion factor, thermal conductivity, mutual diffusion coef—

ficient, and density. The second order partial differential equa—

tions which describe simultaneous transport of heat and mass are  
solved approximately by means of series expansion methods in both

time and space. Inclusion of the effects of time—dependent temper—

ature and center of mass velocity gradients during the warming up

period yields unambiguous identification of zero time. Inclusion of

the variability of the coefficients makes it possible to evaluate

the effects of the usual assumption of constant coefficients. A

laser wavefront shearing interferometer is used for in_§itu_measure-

ments of refractive index gradients. Improved cell design and care-

fifl.temperature control have eliminated the effects of convection,

previously the chief source of difficulty in pure thermal diffusion

experiments. Measurements made during both the approach to the

steady state (demixing) and the diffusional decay from the steady

State following removal of the temperature gradient(remixing) are

analyzed with the help of computerized curve fitting programs. Ex—



  

  

  



 

 

Terry Grant Anderson

periments at four different mean temperatures and over the entire

composition range yield, with a precision of about 1%, d1 = — 1.88

+ 0.18xl + 0.0l(T — 25), 105 D = 1.29 + 0.19xl + 0.26(T — 25),

where a1 is the thermal diffusion factor, D is the mutual diffusion

coefficient in cm2 sec‘l, x1 is the mole fraction of C01”, and T is

the temperature in degrees C. The thermal diffusion factors at 250

agree with the flow cell results of Turner, Butler, and Story (225231.

Faraday Soc. 63, 1906 (1967)), and the mutual diffusion coefficients

at 250 and 350 agree well with the results of Kulkarni, Allen, and

Lyons (J. Phys. Chem. 69, 2491 (1965)). The temperature dependence

of these parameters has not previously been available. New results

are also reported for the temperature dependence of the refractive

index of the pure components. It now appears that pure thermal dif—

fusion can be a reliable experimental method when adequately de—

scribed and carefully executed.
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CHAPTER I

INTRODUCTION

I Phenomenon
___________

Thermal diffusion is diffusion which takes place

a temperature gradient. There are several methods

dying the phenomenon, each with its own experimental

ement. In all cases, thermal diffusion acts to sep—

the components of a mixture and is opposed by ordi—

>r mutual, diffusion.

Thermogravitational thermal diffusion (Horne, 1962)

lse of the earth's gravitational field to set up

convective fluid flow in a vertical apparatus con—

'a horizontal temperature gradient. The flow cell

(Turner et al., 1967) utilizes forced laminar flow

a horizontal channel. A vertical temperature

t causes a partial separation of the components of

id, and a horizontal knife edge is used to divide

id into portions for measurement of composition

1CeS. In a third method (Dicave and Emery, 1968),

hers equipped with stirring devices contain the

to be studied and are separated by a porous glass

“a membrane. When the chambers are maintained at  



 

 



 

ferent temperatures, thermal diffusion takes place be—

en them, and a composition difference develops.

A fourth method, pure thermal diffusion, is con-

ually the simplest. Here, the fluid mixture is con—

ed between two horizontal flat metal plates attached

eservoirs for individual temperature control. When a

ical temperature difference is applied in such a way

the densest portion of the fluid is closest to the

er of the earth (i.e., when the fluid is heated from

2 except when its density increases with increasing

Irature) thermal diffusion occurs. Thermal diffusive

ing continues, opposed by the remixing tendency of

ary diffusion, until a steady state is reached in

the two effects balance each other, and a steady

cal composition gradient is obtained.

Given the appropriate mathematical description of

Istem, one can calculate experimental values for the

11 diffusion transport parameters by measuring the

1P Of the composition gradient, its steady state value,

1 decay to zero following removal of the temperature

ence in a remixing experiment (Gustafsson gE_§l;r

Thermal diffusion has been studied for many years.

9W article by Grove (1959) lists over 900 references.

heless, the phenomenological theory of pure thermal

 



 

 



sion (Ludwig, 1856), or the Soret effect (Soret, 1879),

zen inadequate in many cases.

1

\

Iivation

 

Thermal diffusion has a wide range of applications.

thermal transport in living systems is certainly of

t to biologists. Some chemically indistinguishable

s and isomers can be separated efficiently by means

 

ned thermal diffusion techniques (Mulliken, 1922).

fical mechanicians interested in fundamental knowledge

1liquid state require accurate experimental values of

 

Irt parameters in order to judge the validity or range

r theories (see, for example, Bearman and Horne,

The most complete phenomenological theory of pure

diffusion previously available (Bierlein, 1955),

l adequate in many cases, is limited in the follow—

. (1) Transport parameters are treated as constants,

, for instance, that the temperature gradient is

throughout the fluid. (2) The composition depen-

density, or the "forgotten effect" (de Groot gp

3), is neglected. (3) "Warming up effects" (Agar,

nsequences of the fact that the temperature

builds up in the fluid not instantaneously but

isurable period of time, are neglected. No allow~

.de for the possibility of convective transfer

mass during the warming up period.



 

 

 



 

 

Our primary purpose here is to obtain a phenomeno—

11 theory of pure thermal diffusion which is not sub—

:0 the above restrictions and which, hopefully, will

e the discrepancies which now exist in the literature

 

ihomaes, 1951; Horne, 1962; Turner et al., 1967;

ein, 1966) between the reported values of thermal

'on coefficients obtained from the different experi—

methods. In addition, we hope to explain the dif—

 

reported (Dicave and Emery, 1968) between ordinary

on coefficients measured during a nonisothermal

g experiment and those measured during isothermal

1g after a steady state has been reached.

The second purpose of this work is to show that

rect application of an adequate phenomenological

of pure thermal diffusion to well designed experi-

an lead (for the first time) to reliable results

:e thermal diffusion. Hopefully, this technique

1 be used for any number of systems to obtain un—

5 results more easily than from the more complicated,

1 understood methods.

)ur third purpose, implied above, is to present

values of thermal diffusion parameters for the

strachloride—cyclohexane system as a function of

re and composition. By so doing, we shall demon—

3 significance of our theory and provide the first

:ive data for the temperature dependence of thermal

parameters.



 

 

 



lan of the Thesis

( In the following treatment we make full use of the

ions of hydrodynamics and nonequilibrium thermodynamics

1

L
scribing the simultaneous transport of heat and mass in

 

,.

rd system undergoing pure thermal diffusion. We solve
a

I
gsulting set of partial differential equations for the

l

)
(f a two component fluid by means of a series expansion

ji

1 which retains explicitly the temperature and composi—

\ r

I
spendences of the thermal diffusion factor, ordinary

fon coefficient, thermal conductivity, and density.

9 include time dependent boundary temperatures and the

‘

ility of convective transport.

The results of the theoretical section are used in

:ting values for the thermal diffusion factor and the

y diffusion coefficient for mixtures of carbon tetra-

e and cyclohexane over the entire range of initial

tions. Both classical demixing and isothermal remix—

ariments are described. A sensitive laser wavefront

' interferometer used to measure very small refrac-

ex gradients in volatile liquids is also discussed.

the results of our experiments with the CCl4 —

stem are presented together with a discussion of

‘imental uncertainty and a comparison of our results

ious results.



 

 
 



CHAPTER II

EQUATIONS OF TRANSPORT

   

  

troduction

In this chapter we present the differential equa—

which describe macroscopic transport phenomena.

lized equations for pure thermal diffusion and their

iriate initial and boundary conditions are then pre-

1. We consider only continuous, isotropic, nonpolar—

2 fluids in which no chemical reactions occur and

are subject to no external forces other than the

ational field. For a more detailed discussion of

nations which follow see, for example, works by

(1966), Kirkwood and Crawford (1952), de Groot and

71962), and Fitts (1962).

tions of Hydrodynamics
 

For a fluid containing v components there are v

lent equations of continuity of mass:

(do/cit) + pV-g = 0 r (2.1)

ll 0p(dwa/dt) + V-ga

a = l,...,v - l , (2,2)

 

 





e p is the local fluid density, t is time, u is the

er of mass, or barycentric, velocity, and Wu and jg

respectively the mass fraction and diffusion flux of

onent a. The barycentric velocity u is defined by

(2.3)I

"
5
4
6

u:

~ a

W u

Q~a

l

= u is the velocity of component a with respect to aa

‘atory reference frame. The diffusion flux jg is de—

 [by
id = pa(Bg ‘ E)' a = 1,...,v ' (2'4)

pa = wap. The diffusion fluxes are not all indepen~

E ,

j = 0 . (2.5)

g=1 ~a

intial time derivatives d/dt are related to local time

ltiVeS a/at by

d/dt = (a/at) + u°V . (2.6)

erator "del" is defined by

l
w

+3: +1~< Z, (2.7)

3‘
?!

”

S
I
”

0
)

V E i

I j, and k, are the unit vectors of a three dimen—

Cartesian coordinate system.

The equation of motion of the fluid is

p(du/dt) — V°g = 0g r (2.8)

is the gravitational field, and where o is the

 

 



 

 
 



 

 

s tensor, given approximately by the linear phenomeno—

al relation

g = — [p + (g n — ¢)(V-u” % + 2n sym Vu . (2.9)

(2.9) p is the pressure, sym Vu is the symmetric

If the tensor Vu, and n and y are the coefficients

ar Viscosity and bulk viscosity, respectively. Com—

on of Eqs. (2.8) and (2.9) yields the Navier—Stokes

an:

t) + V[(% n — ¢)(V.E)] — 2V-n sym Vu = pg — Vp

(2.10)

The general equation of continuity of total energy

(BpEf/at) + V-gET = O , (2.11)

E is the total flux of total energy, and where the

T

nergy E is the sum of the internal energy E and the
T

inetic energy of the center of mass:

V1
E=E+W+Z§wu . (2.12)

‘2.12) we have further separated E into a thermal

.nd an external potential part, where W1 is defined

(2.13)  



 

 



150 that

2

ua — Ba Ba . (2.14)

The equation of energy transport can be expressed,

1e negligible terms or order j: are ignored, as

p(dE/dt) + VojE = 0:Vu — pu-g , (2.15)

E is the internal energy flux not due to bulk flow:

QE 2 9E — pEE + E '9 . (2.16)

tions of Nonequilibrium

nodynamics

 

We can recast the equations of the preceding section

:e convenient form by making use of some of the re-

? nonequilibrium thermodynamics. In order to use

such as temperature and entropy which are defined

namically only for equilibrium states, i.e., for

simultaneously in mechanical equilibrium, thermal

ium, and chemical equilibrium (see Bartelt, 1968),

cessary to postulate their existence in systems not

ibrium. That postulate is (Fitts, 1962):

Postulate 1

‘or a system in which irreversible processes

:aking place, all thermodynamic functions of

s exist for each macroscopic volume element

.e system. These thermodynamic quantities

he nonequilibrium system are the same func-

of the local state variables as the corres-

ng equilibrium thermodynamic quantities.

 

 

  



 

fac

 



10

Unfortunately, the historical and universal name of

postulate is "the Postulate of Local Equilibrium." In

, local equilibrium is ESE postulated. Instead, we are

Alating that it is permissible to use the properties

relationships defined in equilibrium thermodynamics

:mostatics). An alternative approach is to construct

EEEE a nonequilibrium thermodynamic theory in which

)py, temperature, etc. are defined in context. This

ach has been developed by the practitioners of con—

m mechanics (Truesdell and Toupin, 1960; Coleman and

1963; and Muller, 1968), and its relationship to the

tional postulatory extension of thermostatics is cur—

] under investigation (Bartelt). It appears that the

>perational equations result from both approaches,

.fferences between the approaches are therefore of

(sequence for our present work. For simplicity of

tion, we adopt the traditional postulatory approach.

tulate l, we may use the Gibbs equation for dE

v

dE = TdS — pdv + Z padwa + dWl , (2.17)

05—1

2 Gibbs—Duhem equation,

_ v

_ _ + = 0 .SVT Wp + E waWa g , (2 18)

a—l

is the temperature, p is the pressure, E, 5, and

respectively, the specific energy, specific entrOpy,
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a specific volume, and “a is the chemical potential,

3 units, of component a. Each of the total specific

iynamic functions is a weighted sum of the partial

.c functions; for example,

v

E = Z waEa , (2.19)

a=l

E = (BE/8w )— — . (2.20)
a a S’V’Wl’w8#a

Application of the chain rule for differentiation

p'wg’wl) yields

’dt) = (5% — pV )(dT/dt) — (TVB — pVB')(dp/dt)

~

+ g (fig - E§)(dwa/dt) ~ u'g , (2.21)

is the specific heat capacity at constant pressure

tant external fields, 8 is thermal expansivity,

__1 _

B E V (av/3T) , (2.22)

p’wa'wl

athermal compressibility,

B' = — V‘l(avya ) (2 23)
‘ p T,wa,Wl ’ '

: partial Specific internal energy. Application

.ain rule for differentiation to the equation of

0(T,p,wa) gives a similar relation,

v-l dw

dT dp 2 — _ —

98 a? + 08' 3E — p agl (Va vv) EE— . (2.24)
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Lergy transport equation (2.15) can be restated by

,tuting Eqs. (2.1), (2.2), (2.20), and (2.24) into

°V(Ha — H ) , (2.25)
\)

u—l
dT _ dp _ _ . _ .

3? T6 dt ‘ ¢1 V 9 “El la

$1 is the entropy source term for bulk flow,

$1 E (o + pl):Vu , (2.26)

Le heat flux,

V —

q 5 3E - Z gaHa , (2.27)

“ ~ a=1

is partial specific enthalpy.

One observes empirically that for nonisothermal

the heat flux is proportional to the temperature

: (Fourier's Law). Similarly, in an isothermal

the diffusion flux is proportional to the composi-

ldient (Fick's Law). The generalization of these

:ions, as well as an extension to include cross

a such as thermal diffusion, is expressed by the

ostulate of nonequilibrium thermodynamics, that of

henomenological equations (Fitts, 1962):

Postulate 2

"The fluxes {a are linear, homogeneous functions of

as Za' That is,

V

J = E L y " (2.28)  
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rces are "driving forces" for the fluxes; for example,

the driving force for the heat flux in a single com—

fluid. The phenomenological coefficients La 8 are

ndent of the forces. The diagonal coefficients Lad

conjugate fluxes and forces, while the off-diagonal

ts La8(a # 8) give rise to cross phenomena. Although

oice of fluxes and forces is to some extent arbitrary,

guidelines are provided by the Second Law and by

ial order (de Groot, 1962; Fitts, 1962; Bartelt,

We shall use the set most convenient for our pur-

We have already used Postulate 2 in writing Eq.

Postulate 2 is demonstrably invalid for many ex-

ntal situations, notably those in which chemical

ans are occurring and those in which viscous dissi-

is significant. It seems to be quite satisfactory,

?, for situations in which only heat and matter fluxes

>ortant, such as thermal diffusion. The range of

1y of Postulate 2 is delineated in the continuum

CS approach mentioned earlier.

AS forces conjugate to the fluxes of heat and matter,

se V Kn T and VT(uB — uv), B = 1,..., v - l, where

= — = l ... v . (2.29)
VTUB _ VuB + SBVT, B I I

llate 2,

v—l

— (2.30)

-g = (200V Zn T + 821 QOBVTWB 11v)
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v—l

= naov 2n T + 821 QGBVT(uB — “v’ a = 1,...,v —.1 '

(2.31)

the 9's are the phenomenological coefficients.

As a consequence of Eq. (2.5) we have

‘2’ 9 = 0 , B = 0,1,...,v . (2.32)

a=1 dB

due to the requirement of positive definite entropy

:tion (see Appendix A) we have

v

Q = 0 , a = 0,1,...,v . (2.33)

d=1 as

An expression for the gradient of the chemical

tial, which appears in Eqs. (2.30) and (2.31) can be

led from thermostatics and the chain rule for

rentiation:

m
l

Vu = — VT + V
v — , (2.34)

B B BVP + “8 w 9

: (2.35)
“80" - (BUB/awa)Trplgle§£a

ation of Eqs. (2.29) - (2.34) gives the following

sion for the fluxes:

v—l v-l

_ — v + 0 (u
8 VV) P Bil 3:1 a8 Ba(V

VEl

9 V Kn T + 9
a0 8=l d8

_ “ )VWY , a = 0,1,...,v — l , where jo E q .

(2.36)
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The equations for the fluxes can be written in the

7ing compact notation:

v+1

' id = ygo DaYEY r 9 = O,1,...,v — l , (2.37)

0L0 OLO

= — = ..., - 1
aY Bgl “as‘“ey uvY) , v 1, v

v

D — Z (2 )7
av 8:1 a8 8

v

y.r\)+l = — 8;]. gas
0

E0 = V in T

~Y=VWY
IY=lluco[v_l

E. = Vp

€v+1=‘VW1

We make the following associations with traditional

antal transport parameters:

D00 is related to thermal conductivity;

DdO’ a = 1,...,v— l, are related to thermal

diffusion coefficients;

I a — 1,...,v— l, are related to mutual
D

9Y

diffusion coefficients;
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l) D0y’ a = 1,...,v — 1, are related to Dufour

coefficients;

L) D d = 0,...,v — 1,
av'

are related to sedimentation;

) Dd,v+1 = 0, d = 0,1,...,v - 1.

We now have a complete set of 4(v + 1) tranSport

ons: (2.1), (2.2), (2.10), (2.25), and (2.37). The

ans can be solved for the 4(v + 1) quantities:

ature, pressure, v — l compositions, three components

center of mass velocity, and the three components of

3 the v mass fluxes. At this point our description

system is complete and valid for any number of com—

. Before proceeding to the solutions, however, we

restrict our consideration to binary fluid mixtures

, whence Eqs. (2.1), (2.2), (2.10), (2.25), and

become:

(dp/dt) + pV-u = O

p(dwl/dt) + V-ji

p(du/dt) - 7'9 = pg

— dT dp _ _ .- _ ' . — H
pcp d? _ TB 3? _ qbl V 20 21 V(H1 2)

3

(2 39)_ 2d _ £0 DaYEY ' a = 0,1 r °
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DdO = Qdo

a1 leull/WZ

Dgz Qcalm-1 — V2)

Dd3 _ 0

E0 = V in T

Fl = le

52 = VP

E3 = ‘ VW1 - (2.40)

When the only external force is gravitational, a

librium system containing v components may undergo

) types of transport processes in addition to vis—

enomena. For a binary system, the six types are

2e contributions to the heat flux jo and the three

ltions to the mass flux jl resulting from the gra—

>f temperature, composition, and pressure.

We make the following associations between the

(Ological coefficients and the traditional experi-

ransport parameters D, d1, Qi, Ki, and 51 which

PeCtively, the mutual diffusion coefficient, the

diffusion factor of component 1, the heat of trans—

somPonent 1, the initial thermal conductivity of

Jre (When awl/Bz = 0), and the sedimentation co-

: of component 1:  





D00 = 900 = TKi

D01 = Q01“11/w2 = pDQi

D10 = 910 = ‘ pDalwlw2

D11 = Qllull/WZ = ”D

911 = stl . (2.41)

Ionsequence of Eqs. (2.32) and (2.33), the six pheno—

an be expressed in terms of four independent coef-

ts.

The experimental mutual diffusion coefficient D is

d by Fick's law for isothermal, isobaric mutual dif-

in the absence of external fields,

- jg = DVcl (2.42)

jg is the diffusion flux relative to the velocity of

nter of volume, and cl is the concentration of com-

1 expressed in units of moles per cubic centimeter.

Lvalent form of Fick's law in terms of mass fraction

1ter of mass velocity is

= pDle . (2.43)
‘ 21

The thermal diffusion factor a1 is defined by con-

9 the steady state of a pure thermal diffusion ex—

t in the absence of pressure gradients and external

= O =Vw - a w w V Rn T . (2.44)

21 1 1 1 2
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ommon thermal diffusion parameters may be expressed

the relations

1 = — TDT,l/D I (2.45)

d1 = — Tol , (2.46)

T,1 is the thermal diffusion coefficient of component

01 is the Soret coefficient of that component (Soret,

It follows from Eq. (2.5) and the independence of

ces that 02 = — al. The composition gradient of

nt 1 has the same sign as the temperature if a1 is

e.

Alternative expressions for the diffusion flux can

ten by using the relations (2.45) and (2.46):

— — -1

= pDle + pDT 1leZVT + pDQ’l‘Wl — V2)w2ulle (2.47)

I

— — —1
= * - 2.48pD[le + olwlwzw + Ql(Vl v2)w2ulle] ( )

l (2.47) emphasizes the existence of the two phenomena

.sion and thermal diffusion, while Eq. (2.48) con-

y allows removal of a common factor from the three

For an isothermal binary system the heat of trans—

is defined by

at = on. - (“9’

rs from Eqs. (2.38) and (2.41) that
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D01 = oDQ’i . (2.50)

phenomenon which involves a heat flux due to a composi-

gradient in an isothermal system in the absence of

rnal fields is the Dufour effect (Dufour, 1873), which

be considered the inverse of thermal diffusion. For

ids the heat of transport Qi is very small, and reports

easurements are still subject to question (Rastogi and

n, 1965). We discuss the magnitude of Qi as well as

rical values of the other transport parameters later in  
chapter.

The thermal conductivity coefficient Ki, measured

he beginning of a pure thermal diffusion experiment

re the composition gradient develops is given by Fourier's  
of heat conduction,

_. q : KiVT . (2.51)

attempt to measure the thermal conductivity of a mixture

Pplying a temperature difference necessarily results in

1evelopment of a composition gradient (unless a1 = 0),

mere is consequently an additional contribution to the

flux due to the heat of transport. Thus the effective

a1 conductivity is the sum of two parts, one of which

.ds on Ki and VT and the other on Q: and le. At the

Y state of a pure thermal diffusion experiment in the

Ce of external fields we have

_ -l (2.44)
le - le leZVT .
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Llows that at the steady state

' 9 = KfVT , (2.52)

Kf = Ki + pDQla1w1W2/T . (2.53)

could measure the difference between the thermal

:tivity of the mixture initially and that at the

r state, we could calculate Q3 directly. That dif—

:e, however, appears to be smaller than the experi—

_ uncertainties which arise while attempting to

re it with present equipment (see Table 2a).

The sedimentation coefficient 51 is defined by

lering the steady state of an isothermal experiment

.ch the gravitational field is the only external

_ )Vp , (2.54)

= 2.55sl wz/ull . ( )

The fluxes in Eq. (2.39) may now be rewritten en—

in terms of experimental transport parameters:

- q = KiVT + pDQinl + pDQilel - V2)Vp

l = - prlwlsz—lVT + pDle + stl(Vl - V2)Vp

(2.56)
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Before proceeding to a solution to the equations of

lsport, we examine the relative magnitudes of the pheno—

l occurring simultaneously inside an experimental cell.

Table 2a are presented estimates or typical values of

aral important parameters for the system CCl4 — C6Hl at
2

I when wl = w2 = 0.5. In calculating a value for 51 we

a used the relation for the specific chemical potential:

RT
Ul(T,p,X,) = ui(T,p) + MI in (flxl) , (2.57)

re fl is the activity coefficient of component 1 and

Tlp) is the chemical potential of component 1 in the

1dard state defined by

pi = xii? “l . (2.58)

)rder to obtain an approximate value for 51 we take

1. In the earth's gravitational field, the steady

e composition gradient which would develop due to

mentation is:

8w

1 = _ x 10.6 cm“1 .§E_ 0.8

The relative contributions of the gradients of

Erature, pressure, and composition can be estimated by

I Eqs. (2.57) and inserting reasonable values for all

1e quantities which appear. Consider the steady state

Pure thermal diffusion experiment for CCl4 — C6H12’

T = 25°C and w? = 0,5, If we use the numerical

m
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.e 2a.——Approximate values of transport parameters for

  

 

CCl4 - C6H12 at 25°C, wl = 0.5

ltity Reference Value

a 1.4 X 10"5 cm2 sec—l

b 4 x 10_8 cm2 sec—l deg--l

b 6 x 10'3 deg"1

b —1.7

c 2.4 X 10—4 cal cm_l sec”l deg-l

- Ki c 5 X 10—8 cal cm“l sec-l deg—1

C 6. cal g—l

Eq. (2.55) -3.2 x 10'6 cm‘1

d 1.1 g cm—3

V2 d —0.66 cm3 g-1

e 0.2 cal deg—l 9—1

 

aKulkarni, et al., 1965.

bTurner, et al., 1967; Beyerlein, (in press).

c

Horne, 1967.

d
Wood and Gray, 1952.

eHodgman, 1962.
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lues in Table 2a and specify a temperature gradient of 5

; cm—l, then the six terms of interest have the values

ren in Table 2b, where we have also used

Vp = - pg , (2.59)

ch follows from Eq. (2.8) at the steady state and

tially. Since sedimentation effects are observable

ther initially nor in the steady state, and since there

no reason to expect observable departure from Eq. (2.59)

any time, we henceforth neglect pressure effects. (See

1e 2b.)

.e 2b.—-Re1ative contributions of forces to the fluxes;

0- _oil=
cc14 — C6H12, wl — 0.5, Tm — 25 c, dz 5 deg

cm— , steady state.

 

 

 

Temperature Composition Pressure Units

—3 —9 —11 call x 10 7 X 10 8 X 10

cm sec

— - -10z +1.2 x 10 7 -1.2 x 10 7 1 x 10 g

cm sec

 

>ther experimental situations, such as thermal diffusion

L centrifuge or in a flow cell apparatus, the influence

e Pressure gradient must be re—examined.

Since we have no practical interest in the pressure,

riginal 4(v + 1) independent equations have been
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ad to eleven. Furthermore, by inserting the expres-

(2.57) for the fluxes into the three continuity

ons (2.1), (2.2), and (2.25) we effectively reduce

mber of dependent variables to five: temperature,

ition, and the three components of the center of mass

ty. In order to solve the set of differential equa—

we must specify an initial condition and two boundary

ions for each of the five unknowns.

zdary Conditions for Pure

rmal Diffusion______________

Pure thermal diffusion requires that a vertical

.ture gradient be maintained across a layer of fluid

S not undergoing any type of forced motion. More—

he sign of the temperature gradient must be such

e denser portion of the fluid is closer to the cen—

the earth than the less dense portion. For ordinary

this just means that the top must be warmer than the

There are exceptions, however. For example, water

5 freezing point would be studied with the top cooler

: bottom.

If the temperature gradient is purely vertical and

‘nly external force is the gravitational field, there

0 non—vertical components of any of the forces, and

ntly the fluxes have no horizontal components. Al—

t iS plausible that the center of mass velocity also

 

 



 

 



 

) horizontal components, the existence of vertical gra-

of temperature, composition and pressure is not suffi-

to prove that uX = uy = 0. Instead, we have at best

vertical density gradient gives (see Eq. (2.1))

Bu Bu 1 apuz

+Tx+‘§§'= ‘5 32 , (2.60)

uich the steady state relation follows:

0
)

'
O

 

‘
O
|
|
-
'

°’
l

(
1
.

_ a Zn 0
VE—‘UZT.

(2.61)

; point we make the additional assumption that all

is vertical and that ux = uy = 0. The possibility

(zontal components of E has been considered by Bartelt

but is beyond the scope of this work.

We denote by "ideal" the boundary conditions which

in a purely one dimensional system. The possibility

zontal components of the fluxes or forces arises

sofar as the actual experimental boundary conditions

ideal. Since it is possible to eliminate effectively

sence of spurious thermal gradients by proper cell

and temperature control, we confine our interest to

undergoing vertical motion only.

The three quantities which remain as unknowns are

)erature, the composition, and the vertical component

.ocal center of mass velocity, each of which is a

. of vertical position and time. We choose the three
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itions describing the interrelations between the three

:tions to be the equations of continuity of mass (2.1),

s fraction (2.2), and energy (2.25). In one dimension,

equations remaining are:

 

(dp/dt) + p(3uz/3z) = 0 (2.62)

p(dwl/dt) + (ajlz/az) = 0 (2.63)

pcp 3% = $1 _ (3%?) = 312 %E (El - E2) ’ (2'64)

_ qz = Ki 33—: + pDQ’i 8:: . (2.66)

 

The domain of the independent variables t and z is

emi—infinite strip defined by

r (2.67)

a is the cell height. The earth's radius vector points

direction of increasing 2. The choice of the center

call for z = 0 follows from the odd spatial symmetry

hich the temperature and composition profiles develop.

since we use Taylor series expansions in 2 about the

of the cell, it is convenient to choose that point to

origin.
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Although it is possible to begin a pure thermal dif—

Jn experiment with an arbitrary set of initial conditions,

icilitate comparison with experiment, we choose the ini—

state (t = 0) to be an equilibrium one in which the

erature and composition of the fluid are uniform and the

er of mass velocity is zero. Thus we have:

T(z,0) = Tm

o
wl(z,0) — wl

a a

uz(z,0) — 0 , - 7 < z < 7 , (2.68)

Tm is any chosen temperature, and w? is the chosen

Lng composition.

The temperatures maintained at the upper and lower

plates constitute the two boundary conditions for T,

the impermeability of the boundaries provides the

ting conditions. The complete set of boundary condi-

is expressed as follows for t > O:

T(a/2,t) = ¢h(t)

T(-a/2,t) = ¢c(t) (2.69)

jlz(a/2,t) = O

le(—a/2't) _ 0 (2.70)

uz(a/2,t) = 0

l ouZ(—a/2,t) — (2.71)
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In Eqs. (2.70) the functions ¢h(t) and ¢C(t) express

fact that a certain period of time is required to change

boundary temperatures. Both quantities are functions of

reservoir volume, water flow rate, metal plate material

thickness, and temperature difference. Consequently

are best determined empirically.

The pure thermal diffusion problem has now been fully

ented in terms of three differential equations (2.62),

3), and (2.64); three initial conditions (2.68); and

2 sets of boundary conditions (2.69), (2.70), and (2.71),

the fluxes given by Eqs. (2.65) and (2.66). The various

1 of approximations usually made in going from first

:iples to complete solutions are discussed in the fol—

g section.

@plifying Assumptions

1

We distinguish between three levels of assumptions

ly made in obtaining working solutions to the equa—

of transport. First are those assumptions inherent

equilibrium thermodynamics and hydrodynamics such as

which allow us to use equilibrium properties, linear

enological relations for the fluxes, and continuum

mechanics. These assumptions are fundamental and as

re necessary starting points which must be retained.

Second are assumptions of a more technical nature

restrict our attention to certain types of systems,

iCh can be realized experimentally and do not, in
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nciple, introduce error. In this group are the assump—

is of a two component fluid, purely vertical motion,

:ial ideality of boundary temperatures, absence of ex-

)al fields other than gravity, and the insignificance of

ssure gradients. Since it is possible experimentally to

.eve the requirements imposed by these assumptions, it

:0 our advantage to incorporate them into the phenomeno—

cal theory, the net effect being a simplification of

differential equations.

Third are assumptions which have been made in all

ious descriptions of pure thermal diffusion, but which

demonstrably incorrect and can lead to significant

rs in the description of the phenomenon. This group

ldes the assumptions of time-independent boundary

aratures; uniform temperature gradient; no convective

sport; and constant diffusion coefficients, thermal

lsion factors, and density. The three types of assump-

)

‘, viz., (l) necessary, (2) unnecessary but desirable,

3) unnecessary and undesirable are summarized in Table

In the next chapter we discuss in more detail the

tions of the third group and the solutions to the

 

 

 

ort equations which one obtains both with and without

assumptions. Our goal is to obtain a description of

hermal diffusion subject only to a minimum number of

tions.
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Le 2c.-—Levels of Assumptions.

 

 

Unnecessary but Unnecessary and

 

:essary Desirable Undesirable

;inuous Binary system Linear temperature

u1d Vertical motion distribution

ulate l Spatially uniform Tegpiiaggriiigdepen-

ulate 2 boundary tempera—

tures

No external fields

except gravity

Sedimentation

negligible

Constant p, D, a
1!

Zero convective

velocity

$1 = 0, Eq. (2.26)

O
)

312 5? (H1 ‘ H2) ‘

K .

l

0

 

 

 



 

 

 



 

CHAPTER III

SOLUTIONS

>revious Solutions
__________________

Previous phenomenological theories of pure thermal

Fusion (see, for example, deGroot, 1945; Bierlein, 1955)

:been obtained only after the following simplifications

made.

1. The temperature distribution does not vary with

Although not experimentally realizable, this assump—

has been made in the past with the explanation that

initial period of time during which the temperature is

Jing is so much smaller than the time required to comm

3 an experiment that it may be ignored. Since the im—

1 discontinuity in the temperature gradient cannot be

éved experimentally, there has been an uncertainty in

lefinition of "zero time." The "warming up period"

15 at the start of an experiment and lasts until no

.er changes are observable in the temperature distribu—

Its length, of course, depends on the apparatus used,

YPiCally may be three to seven minutes. The relaxation

9 for pure thermal diffusion increases with the square

32
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e cell height. For most mixtures of carbon tetrachloride

yclohexane near room temperature, for example, 0 = 120

nutes when the cell height a is expressed in units of

meters. Consequently, for a cell height of one or two

neters, which is not uncommon,  the warming up period may

significant portion of the total time for an experiment.

(gar (1960) has considered the warming up period. He

) by shifting the time axis in order to compensate for

(me during which the temperature gradient does not have

eady state value. His subsequent treatment was other—

nmodified and required that

dT/dz = AT/a
(3.1)

1 values of time, where AT is the temperature difference.

2. The temperature distribution is a linear function  vertical position in the cell. This assumption is ob—

! not true while the temperature profile is changing

.me. Moreover, it is true for the steady temperature

>ution only if the thermal conductivity Ki is a con-

.ndependent of temperature and composition and if the

)Ution of the heat of transport is not considered.

3. The center of mass velocity uz is zero. It fol—

om Eq. (2.1) that only if the velocity is nonzero may

n99 in the density occur. Since density certainly

from point to point, a consistent theory requires that

onzero. Actually, both uZ and its effect on the com-

a distribution are usually very small. Nevertheless,
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; desirable to retain the velocity as a variable so that

effects can be discussed quantitatively.

4. The density p is independent of the temperature.

assumption (see deGroot, 1945) results in a great sim-

.cation (3f the differential equation (2.63). Although

:omposition dependence of density, "the forgotten effect"

:oot, §t_al., 1942), usually has only a small influence

1e composition distribution in a pure thermal diffusion

riment, it cannot be ignored if one wants to be consis—

. because both optical and gravimetric techniques depend

:nsity changes due to composition changes. It is also

fable to retain the "forgotten effect" in order to be

to discuss quantitatively its effect.

6. The mutual diffusion coefficient D is independent

:mperature. This assumption also simplifies Eq. (2.63)

S not generally valid. A change in D of about one per—

per degree is not unusual (Longsworth, 1957), nor are

iments with twenty degree temperature differences

oot, 1945). Hence, a complete treatment must allow for

variations.

7. The mutual diffusion coefficient D is independent

mposition. The remarks of paragraph 6 apply here as

Note, however, that the range of compositions en—

Ered in a pure thermal diffusion experiment is much

3r (about 1000 times) than the temperature range. Con—

ltly, we anticipate a much smaller effect due to the

sition dependence of D.
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8. The function dl/T is independent of temperature.

marks of paragraph 6 again apply. For mixtures of

tetrachloride and cyclohexane near room temperature,

ample, the function dl/T decreases about five percent

gree.

9. The thermal diffusion factor ml is independent

position. The remarks of paragraph 7 apply, with

V1)T = 0.18 at 25°C, while d1 is about —l.75 (see

: VI).

10. The product w w2 in Eq. (2.65) can be replaced

This assumption of deGroot (1945) limited his

ant to very dilute solutions, and is obviously not

:e.

11. The product w in Eq. (2.65) can be replaced

1W2

leading terms of the Taylor series expansion about

.nt wi:

—°° —0 —°. 3.2wlw2 — wlw2 + (l 2wl)(wl wl) ( )

n (1955) used this "tangential approximation" to

ze the term in Eq. (2.65) which contains the pro—

Wz, a parabola. The function can be approximated

Y Point w? by its Taylor series expansion at that

2

O —°.3.3
= wiwg + (l — ZWI)(W1 - wl) — 2(wl wl) ( )
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pure thermal diffusion experiments, the maximum value

— w?) is on the order of 10_3, so that neglect of the

d term in Eq. (3.3) is justified. The use of Eq. (3.2)

ivalent to replacing a small segment of the curve in

ighborhood of W? by the tangent to the curve at that

12. The entropy source term 01 in Eq. (2.64) does not

cute significantly to the temperature distribution.

ssumption is reasonable, since ¢1 is due to bulk flow,

is very small in a pure thermal diffusion experiment.

dimension we have, approximately,

Bu 2
z

_§E . (3.4)

  

4’1 = (5“ +50)

v below that for systems of interest the maximum value

7/32) is about 10_6 sec—l, making ¢l very small indeed.

. a — —

'3123'2(H1 H2)

1. For mixtures of carbon tetrachloride and cyclo-

13. The term in Eq. (2.64) can be

with dT/dz = 5 deg/cm, that term, which is zero

.ly and zero at the steady state, has a maximum value

It 5 X 10“8 g? (El - H2). This can be ignored when

td with the term uzpcb(8T/Bz) which is itself very

We now consider the most complete solutions pre—

available for the functions T, uz, and W1 for a

ermal diffusion experiment. The theoretical
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:iption under consideration is that of Bierlein (1955)

1 follows from all of the assumptions listed except

:rs 4 and 10.

Assumptions 1, 2, 12, and 13 result in a tempera—

distribution of the form

AT
T(Z) —Tm+—2

m
I
N

/ (3.4)

no mention of time dependence. The center of mass

ity is simply stated in the third assumption:

u = 0 , (3.5)
2

11 values of z and t.

The remaining assumptions (5 - 9) simplify the

Lon of continuity of mass fraction:

     

2
3w._ aw1 AT Blimp 01 _ 0 l

32 a w m

1

0‘1 AT 2 3 in p owo + (l _ 2Wo)(w _ wo) .

_T— —a ——aT W12 1 l 1m wl

(3.6)

ation of the separation of variables technique to

ove equation and imposition of the above-mentioned

l and boundary conditions results (see Appendix B)

following solution, designated wi in order to dis—

3h it from a later expression for wl:

o 0

W1 + alwlw

H
l
D H

2 7W:(Z,t) = + g? S) , (3- )

W
I
N

 

O

2 m
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re

S: E k'3vw ( k2k=1 k k eXp - t/e - pz/a - p/2) , (3.8)

v = 1 - (1)k ex (P)k p , (3.9a)

_ 1 a (in ' 0‘1

W1 m

Wk = B sin 6 + kw cos C , (3.9c)

z 1c = M (a + j) ,
(3.10)

e = aZ/(wzn), (3.11)

p = — oclAT/Tm , (3.12)

zs—ATab‘p +a—lAT(1—2°) (313)
— T-

T
wl I 0

W m

1

re 3.1 shows the general shape of wI(z,t). The conver—

3 prOperties of the infinite series are of interest and

be discussed below.

Although the above expressions (3.4), (3.5), and

for the temperature distribution, center of mass

iitY: and composition distribution have been used to

late thermal diffusion factors for a large number of

ms reported in the literature (see, for example,

fsson et al., 1965; Meyerhoff and Nachtigall, 1962)
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of them is ever exact. Moreover, the degree of in—

ness has not previously been examined quantitatively.

There are several shortcomings of the above solu-

. First, the steady temperature profile in the fluid

t exactly linear. Variations in thermal conductivity

iuce a slight curvature. Also, for several minutes

the temperature difference is first applied to the

and while the temperature profile is being built up,

a variation exists in the local temperature gradients.

gradients near the metal plates may accelerate the

ng, or smaller gradients near the middle of the cell

pede it. Semi-empirical corrections involving a

shift in the time scale to take account of warming

ects have been suggested (Agar, 1960), but no rigorous

ent has been published. The exclusion of the possi—

Eof convective motion and the restrictions to systems
I

J

(constant transport parameters are additional short-

3 with which we concern ourselves in the following

Ii).

TSolutions

)

In order to keep our treatment very general and to

1

;the most complete description of the pure thermal

(on phenomenon, we make only the last three of the

gisted assumptions of the third type. The use of

igential approximation (11) and the neglect of ¢1

1
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. 8 — . . . .

and 312 5; (H1 — H2)(l3) are certainly justified. We

ct that any error introduced at this point will be much

ler than the limits of experimental measurability.

To avoid a cumbersome simultaneous solution of three

ial differential equations, we adopt a scheme which de—

.

3 on the fact that the calculation of an experimental

3 for the thermal diffusion factor ml is most strongly

lenced by the accuracy with which the composition gra-

:is known, next on that for the temperature gradient,

inally, to a lesser extent, on that for the velocity.

tice also that the composition gradient depends mostly

e temperature gradient and only partly on the velocity.

emperature gradient is a function mainly of the thermal

ctivity of the fluid and some apparatus parameters.

1y, the velocity is quite small and can be determined

ciently well from existing expressions for the tempera—

?nd composition. Hence, we can work backwards, first

hg the velocity, and then using it to obtain an improved

%on for the temperature. The final step involves the

: both uz and T to determine the solution for the com-

pon. The simultaneous solutions can be approached by

(tion of the three—step cycle until self—consistency

iained.

i.
Lter of Mass Velocity

i
In a uniform fluid mixture at equilibrium, such as

4 1

huid in a pure thermal diffusion cell at its initial

‘
1
1

J?
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(ignoring sedimentation), the center of mass of the

is located at the geometric center of the cell.

arly, the center of mass of each small volume element

ies the geometric center of that volume element. How—

at the steady state of a pure thermal diffusion ex-

ant a vertical density gradient exists, and the center

as of each volume element is displaced vertically

ward) from the geometric center. This displacement

: center of mass during some time interval gives rise

a vertical component of the center of mass velocity

liCh is nonzero as long as the density changes with

It should be noted that the velocity with which we

ncerned results from an uneven expansion and contrac—

f the fluid as the temperature and composition change.

ot due to any sort of forced flow.

In order to obtain a mathematical expression for uZ

the equation of continuity of mass:

(dp/dt) + p(8uz/Bz) = 0 . (2.62)

dimentation is ignored, the chain rule for differen-

of the density gives

(CLO) = $1) (9.1).. fl—Mffl) (3.14)

ining Eqs. (2.62) and (3.14) with the balance equa-

or energy (2.64) and mass fraction (2.63), we can

 



 

  

 



43

:e time as a variable and obtain a differential equa—

 

2 only:

Buz _ _ B qu) + l 8 in p 3312 (3 15)

32 _ p— 52 p SW 82 ' ‘
c 1
p T

dary condition is simply

a —

uz( 5 ,t) — 0 . (3.16)

  

dependence of the velocity is still contained in

assions for the fluxes. If these were known exactly

1 integrate Eq. (3.15) directly to find an expres—

uz. However, because of the simultaneous nature

'oblem jlZ and qZ can be known completely only when

)wn. Nevertheless, we can learn a good deal about

:ity by using the approximate expressions for the

(tained when w 2,t) is taken to be Bierlin's (1955)1(

Eq. (3.7), and T(2,t) is the temperature in a solid

tant thermal conductivity (see T*(2,t) in Appendix C).

s a test, the following hypothetical system was

w0 = 0.5 ,CCl - l
4 C6H12 '

Tm = 25°C , AT = 4°C,

cell height = 0.741 cm ,

d = — 1.72 ,

l —1 -l
4 cal deg_ sec cmK. = 2.45 x 10'

l
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fation of the resulting expression for (Buz/az) is

rhtforward, but extremely messy. In order to obtain

:rical solution more easily, we used a finite differ—

ntegrating technique (Ralston and Wilf, 1960) and a

1 Data Corporation 3600 digital computer. The dis—

age of the numerical method is that no analytical

on for uz is obtained. For purposes of illustration,

r, the calculated velocity at the center of the cell

vn as a function of time by the solid curve in Figure  
The velocity is very small in magnitude (less than

'7 cm. sec-l) and is short lived. The whole effect

disappears when the thermal steady state (ET/3t = 0)

:hed. The spatial distribution of the velocity at  
1e must be representable by a function which vanishes

( the top and bottom boundaries of the cell.

In order to facilitate the use of the velocity as

ion and to avoid having to perform a finite differ—

tegration each time, we have used the boundary,

, and steady state conditions on uZ as well as the

e of Spatial and temporal extrema (see Figure 3.2)

'n a synthetic expression for uz(z,t). Figure 3.2

that the time part of uz is some sort of Morse—type

. In fact, we found that the function

4u 2 _ t £n2 _ t KHZ

,t) = 00 [22 _ (g) ]e t0 1 - e t0 ,
a
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the finite difference solution very well. The dotted

in Figure 3.2 is a plot of Eq. (3.17) for the example

when u00 and t0 are obtained from the finite difference

ion. The difference between the two methods for express—

:(Z't) is very small, and no significant additional error

3e introduced if the more convenient formula (3.17) is

, Equation (3.17) is only an approximation, and we use

Ly to estimate the contribution of terms which are quite

>rtant. It satisfies the conservation equations for

1nd energy, but it does not satisfy the equation of

1, (presumably because we have taken 01 = 0 and Ap = -pg).

.on (3.17) may be regarded as the leading term of the

solution. For experimental situations in which verti—

>nvection is important, such as approximations of

l diffusion in living systems, a more refined analysis

be required. Equation (3.17) suffices to indicate that

e present experiments the maximum value of uz is about

m sec—l, and the maximum occurs at about 15 seconds

the beginning of the experiment. Convection thus

essentially no contribution to the measured value of

note that this is a conclusion rather than an

   

  

ion.

erature Distribution

All previous theories of pure thermal diffusion are

n the assumption that the temperature gradient inside

id can be expressed by the constant AT/a independent
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Lme and position. However, in an experiment some mea—

>1e time period is required before a steady temperature

Lent is established in the fluid. Even if the plate

aratures could be changed instantaneously, the heat

1ction process would still result in a time lag. The

:ional contribution of time dependent plate temperatures

.ts in a warming up period which may not be insignifi—

as previously assumed, when compared with the relaxa—

time 0 for diffusion. In our experiments, described

I, the warming up period of six minutes was about ten

:nt of the relaxation time 0 for a cell height of 0.741

Thermal diffusion studies are also being made with

smaller cell heights (see, for example, Meyerhoff and

Iigall, 1962), and since for CCl4 - C6H12 mixtures near

0 = 120 a2 minutes, a cell height of less than 0.25 cm

0 comparable to the length of the warming up period.

ver, once a steady temperature distribution is estab—

d, it is not perfectly linear because of variations in

l conductivity.

Rather than ignore both the time and space dependences

temperature gradient, we obtain an explicit formula

includes them, and which can be used in solving the

ential equation for the composition distribution.

9 in chronological order, we confine our attention

to the temperature distribution during the warming

iod.
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Time Dependent Temperature Distribution

According to the assumptions which we are making, (11),

nd (13), the equation of energy transport (2.64) can

ten as

 

 

3T

2

ST + u __ _ _ qu

3t 2 3 —
pcp §§_ (3.18)

z is given by Eq. (2.66) and the auxiliary conditions

(2.68) and (2.69).

Since our main interest at this point is the time

 

ice of temperature, we can tolerate the very small

atroduced by assuming that Q1 and (awl/az) are known

)—

- the thermal conductivity Ki is constant. Except

term containing the velocity, Eq. (3.18) is anal-  
; the problem of one dimensional heat conduction in

An additional complication is the presence of

ependent boundary conditions. As usual an infinite

series solution is expected. The following method

Duhamel's integral formula (see Bartels and

1, 1942), is a convenient one for treating the in—

ous equation with time dependent boundary conditions.

ome of our early work with numerical solutions of

8) indicated that during the warming up period the

re can be well represented by the sum of two func-

e representing temperature changes due only to

uction (as in a solid), and the other representing

ibutions of the heat transfer by convection and
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on. It is, of course, not unreasonable to neglect

ve heat transfer in our apparatus.

Accordingly, we write

 

 

 

*

T(z,t) = T*(2,t) + buz(z,t) g: (2,t) , (3.19)

*(z,t) is the solution to

— 3T* 32T*

pc at = Ki ——7— , (3.20)

p 82

)lem of heat conduction in a solid of uniform thermal

 

Lvity with time dependent boundary temperatures, and

:onstant whose value is to be determined.

Equation (3.19) takes account of the following

 When the velocity is zero the temperature is just

what it would be in a solid with the appropriate

thermal conductivity, density, and heat capacity.

When the temperature gradient (8T*/32) is zero the

velocity causes no measurable change in the tempera—

ture distribution.

The velocity has a larger effect on the temperature

istribution when the temperature gradient is large.

he effect of the velocity on the temperature dis—

ribution depends on the sign and magnitude of the

elocity.

n explicit expression for the constant b can be

by combining Eqs. (3.18), (3.19), and (3.20)(see
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C). Since b does not depend on 2 or t,it is con—

to evaluate all quantities at t = t0 and 2 = 0.

noring terms of order u: with respect to terms of

, we obtain

2 _

a pc

b: ——8—r- (3.21)

1

Hence, the temperature during the warming up period

from Eqs. (3.19) and (3.21):

2 _.

a QC

_ 311*
(2,t) — T*(2,t) — W72 uz(z,t) 82 (2,t) . (3.22)

(3.22) satisfies our intuitive requirements for

erature, it satisfies the differential equation

1d it satisfies the initial, boundary, and steady

1ditions. Therefore, to describe the temperature

e warming up period we have only to find an ex—

for T*, the conductive part of the temperature

isfies Eqs. (2.68), (2.69), and (3.20).

uhamel's integral formula (Bartels and Churchill,

vides a means for solving the heat conduction

ith time dependent boundary conditions. Param—

n breaks the time domain into a number of small

. Within each interval the boundary conditions

nt and depend on the parameter 1. Let F(z,t,x)

ution of the same problem except that the boundary

¢C(t) and ¢h(t) have been replaced by ¢C(A) and
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their values at time A. Then the solution to Eqs. (2.68)

, and (2.70) is

t

T*(2,t) = T +./' 3— F(z,A,t — ))d) . (3.23)
m 0 3t

 w in Appendix D that

T*(2,t) = rl(2,t) + r2(2,t) , (3.24)

-W2Ki (2n+-1)2t

    

4Tm w -l . z 1

= _F_ 2 (2n-+1) Sln (2n-+1)w(a-+§J exp _ 2 ,

n=0 pcp a

2Kiw w 2 1' —Ki02n2t

= _ 2 E n s1n[nn(a + 3’]I exp ————§——— ,

pc a n=1 a

P

t K.n2w21/a2p5 n

=f e l p 4cm — (—1) ¢h())61.
0

YPiCal experiment we may have, for example,

-t/t
h

¢h(t) = Tm + A; (1 — e ) , (3.24a)

—t/t
AT c

¢C(t)=Tm-—21-e ),

q and tC are some experimental relaxation times. In

5e we can write

I = 1C —(—1)n 1h , (3.24b)
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t t(K-l/t)
AT Kt C C

(Tm—7W6 '“HETTie "li'

t(K — l/t )h -1],t
1 AT) Kt _ h
k'iTm+'—2‘ (e l)+K———-—th_l[e

 
Kin2w3/(a2p5p) .

The expression which we now have for the tempera—

: the fluid in a pure thermal diffusion cell is

:e during the warming up period, which for us is

.ly six to eight minutes, when we are more interested

time dependence of temperature than in its precise

distribution and can tolerate the use of a constant

conductivity. After this initial period and while

all of the thermal diffusion occurs, the temperature

t remains constant, within the limits of experimental

oility, but it is in most cases not perfectly linear.

itity Ki varies both with temperature and with

:ion.

Steady Temperature Distribution

According to the discussion following Eq. (2.51),

active thermal conductivity of the fluid initially

from that when a composition gradient exists. The

ion is that the temperature distribution continues

e slightly until the steady state of thermal dif-

5 reached. In practice, however, the effective  
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11 conductivity is indistinguishable from Ki, which we

: henceforth as K. After the warming up period Eq.

becomes simply

d dT
EE[K(Z) 32] = 0 , (3.25)

K varies from point to point in the cell. The boundary

ions after the warming up period are

TT(a/Z) h

(3.26)

T(—a/2) = Tc

Equation (3.25) can be integrated by means of a

nation technique. Since K varies only slightly with

may write the expansion

2 n n

K0(l + sklz + ezkzz +...+ s knz +...) , (3.27)

= (Kon!)_l(dnK/dzn)0 , n = 1,2, .., can be found

[8 of the chain rule. The zero subscript means the

:y is evaluated at z = 0, and e is an ordering param—

.ich allows us to keep track of the spatial dependence

ature and composition dependence) of the thermal con—

ty. Note that e is merely an index which does not

The solution for the temperature has the form

2

T — TO + 5T1 + a T2 +... , (3.28)

are the subscripts refer to the order of the per-

Dn. The integration is straightforward (see Appendix

to terms of order 62, yields
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2 2

T(z) = Tm + A; z + ekl (g— — §—)

+€Z(k — k2) ii—Z—ZL — E— + 0(53) (3 29)
2 1 12 3 ' °

 

terms are not necessary because they involve third

atives of K, which are unmeasurable, and products of

and second derivatives of K, which are extremely

Discussion

It is convenient both at the thermal steady state

ring the approach to it to use a function f(z,t) which

es the departure of the temperature gradient from the

nt value AT/a and expresses its time dependence. The

on f(z,t) is defined by

BT : AT

'3"; (2,t) — j; + f(Z,t) . (3.30)

The portion of the temperature gradient which is in

is just what has previously been ignored. Note that

is not, in general, negligible when compared to AT/a.

O, for example, f(z,t) = — AT/a. Inclusion of f(z,t)

remainder of our theoretical treatment automatically

lccount of warming up effects and deviations from a

It steady gradient and leaves no uncertainty about

:mixing begins or what to take as "zero time." Our

tents begin precisely at the instant the temperatures

metal plates begin to change, not when the tempera-

adient is fully established.
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As expected, the temperature gradient builds up slowly

cally during four to six minutes) near the center of

all; consequently, the diffusion flux in that region

aehind what it would have been if there were no warming

riod. Near the metal plates, however, transient large

ants develop, causing an acceleration of the diffusion

.n those regions for a short time.

Agar (1960) has suggested a semiempirical correction

lese effects. According to him we need not be concerned

: acceleration of the flux is balanced by the decelera—

:1sewhere. If the two effects do not balance, however,

net effect can be negated by shifting the time axis in

prOpriate direction in order to pretend that an unper—

amount of diffusion has been going on for some slightly

r or longer time. For example, when the boundary

ature are given by

  

_ AT _ -t/T
T(a/2,t) — Tm + —E (1 e )

(3.31)
AT —t T

T(-a/2,t) =Tm-—a— l-e /

. . _ o= = 8
experiment With CCl4 C6H12’ wl 0.5, Tm 25 C,

’C, a = 0.741 cm, I = 46 sec, the time shift t* is

 

)Y

D
*= _—

t (I 12K (3.32)

I is the function K/pE . Choosing

P
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K = 2.4 X 10_4 cal cm_l sec_l deg-l

p = 1.1 g cm"3

Eb = 0.2 cal deg—l g—l ,

find

t* = 46 sec.

No such manipulations are necessary with our method

ccounting for warming up effects, which is automatic

unambiguous.

The function f(z,t) is also important after a steady

erature distribution is attained. Nonlinearities due to

ations in thermal conductivity which have previously been

acted appear explicitly, and their effects on any measure-

5 are readily calculable.

The temperature distribution has now been fully

acterized. The external information on which it depends

.sts of the thermal conductivity of the fluid and the

dependence of the boundary temperatures.

Our descriptions of the center of mass velocity and

.emperature will next be used to obtain an expression

he composition of the mixture as a function of position

ime.

mposition Distribution

Steady State

Because it is a great deal simpler and because its

ion can serve as a test for the large—time limit of
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umplete solution, the steady state case will be con—

:d first. The steady state is defined by the vanishing

. local time derivatives. It follows from Eq. (2.62)

.e impermeability of the cell boundaries that u2 = 0

: steady state. Equation (2.63) then implies that

= 0 , (3.33)

,nce jlz is zero at the boundaries, it must be zero

'here. Consequently, we have from Eq. (2.65) that at

:eady state

dw d

1 _ 1 dT

(H) ’ T_ Eiwfl’z ° (3'34)

 

Ipropriate boundary condition for Eq. (3.34) follows

(qs. (2.70):

a/2

i j, w (2)dz = w? . (3.35)

a —a/2 l

The steady state solutions of both Bierlein and

t can be obtained by integrating Eq. (3.34) with

a

Tl wlw2 = constant , (3.36)

d_T=AE , (3.37)

d2 a

;ult in that case is simply

a

o l o _ 0 A3 3.38)
Wl(Z) = W:L + ff; Wl(l W1) a l (
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is readily calculated from the steady state composi-

radient:

(dw /d2) T a

= ___l_£_m_, (3039)

o 0
AT wl(l - wl)

O‘1

eady state solution is obtained by integrating Eq.

without making the simplifications given by Eqs.

and (3.37). Since (dT/dz) and (alwlwz/T) are rarely

nts, we make use of the following expansions:

    

dlwlwz/T = 3(2) , (3.40)

(dT/dz) = g3 + f(z) , (3.41)

00 n n

8(2) = 2 e 5nz . (3.42)

n=0

BY Eq- (3.29)!

2

AT 2 — 2 a — 2 + 0 e3 (3.43)

3‘ [—8klz + 8 (k2 ki) 12 Z ( )

lows that

n

4 = $— 9—£ , n = 0,1,..., (3.44)

n n! dzn

0

at

2 n 3

f(2) = Z a f + 0(e ), (3.45)

n

n=1

_ _ (3.45a)
fl - klz

2 a2 2 (3 45b)
f2=(k2—kl)

-]--2--Z).
.
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The method of integration is discussed in Appendix F.

>lution to Eq. (3.34) through terms of order 82 is

2 2

E. _ i_

2 24)]

2
522(k—k)az 235‘ —(k+ )23 +0(3

02 1T2'3—‘R 511523— ‘5)

0 AT

1 + 3— [602 + 5(41 - klbo)

 

Equation (3.46) shows explicitly the influence on

imposition distribution of variations in (dT/dz) and

'2/T). Deviations from a linear temperature distri-

‘ are accounted for by the quantities kl and k2. The

ties Al and A express the temperature and composition

2

(ences of (alwlwz/T). Comparison of Eqs. (3.38) and

gives immediately the difference between our steady

solution and the previous one:

2 2 2 3 3)
z a 2 _ 2 a z_ §__ §_

'ewl'kiéo) 7'24) +8 [50“‘2 k1)( 1‘2 3 48

 

L
A
)

2 3 (3.46a)(41kl + 42) §—] + O(€ ) .

ation for calculating d1 from the measured steady

composition gradient will be presented in Section F

5 chapter.

Approach to Steady State

In deriving the corrections which arise due to

9 up effects, variable coefficients, etc., we use the

on G(Z,t), which is defined to be the difference be—

the true composition wl(z,t) and the simplified
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;sion given by Eq. (3.7) which we shall denote hereafter

(2,t):

wl(z,t) = wi(z,t) + G(z,t) . (3.47)

The equation of continuity of mass fraction remains

0(dWl/dt) = - (Bjiz/BZ) , (2.64)

 

w* a

DD £21 + E; - Tl g; w$(l - w?) + (1 — 2w$)(wi + G - w?) .

(3.48)

antion G(z,t) must obey a differential equation of the

  

 

 

2

8G 3 G 8G

5? = Pl(z,t);—§ + P2(z,t)§E + P3(z,t)G + P4 , (3.49)

z

It) = D I

3 Z T 0 3D 3 Kn p _

It)=—DOLl—a—:——-(l—2Wl)+a—Z-+D——3—z—— 1.12,

8 a fin T

It) = " % (l — 2W?) a—Z— (pDocl T I

2 *
3 w* 3W 0 o

l o l w; — [w (1 — w)

2

3w*
1

(1 _ 2 O)( * _ w°)] §_. 2.1212: 3

+ W1 w1 1 32 1 32 z

 

O O

- a1 §_§§_E [wi(l — wi) + (1 - 2wl)(wi — wl)]

(3.50)
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The functions Pj(z,t) , (j = 1,...,4) are completely known

functions of z and t since all of the quantities appearing

in them can be determined without knowing G. The initial

and boundary conditions are

lim G(z,t) = o , — 9- < z < 3 , (3.51)
2 2

t+0

and

lim jlz = 0 , t > o , (3.52)

z+ia/2

or

a/2

Jf G(z,t)dz = 0 , t > 0 . (3.53)

—a/2

The coefficients Pj(z,t) , (j = 1,...,4), are ob—

viously the sources of all the corrections to wi(z,t) with

which we are concerned. Because of the factors Pj(z,t),

EQ~ (3.49) cannot be simplified by separation of variables.

Moreover, the factors Pj(z,t) are complicated functions

(some parts are infinite Fourier series), and we have found

no satisfactory integrating factors for simplifying Eq.

(3-49). Integral transform methods are not usable because

the spatial boundary conditions are two—point and finite.

The only approach left is that of Frobenius. By Fuch's

Theorem (Johnson and Johnson, 1965, p. 47) the z-dependence

0f G is given by

(X)

G = E gk(t)zk , (3.54)

k=O

if the functions P2/Pl and P3/Pl analytic (expandable in
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Taylor's series) about z = 0. By inspection, these functions

possess no singularities in any neighborhood of z = 0, and

Eq. (3.54) is indeed the solution of Eq. (3.49).

The time-dependent coefficients g(t) in Eq. (3.54)

are completely determined by: (l) the form of the original

differential equation (3.49); (2) the expansions for the co-

efficients Pj(z,t),

P.k(t)zk , j = 1,...,4 ; (3.55)P. z t =J( , ) 3

W "
5
4
8

o

and (3) the auxiliary conditions on G, Eqs. (3.51)-(3.53).

Differentiation of Eq. (3.54), followed by substitution into

Eq. (3.49) and use of Eq. (3.55), gives immediately the re—

lationships between the desired coefficients gk(t) and the

known coefficients pjk(t).

As with any Frobenius—type method (see Irving and

Mullineux, 1959), the preliminary result is a transformation

0f the problem from a single partial differential equation to

a set of simultaneous ordinary differential equations in t

for the coefficients gk(t). In this case EQ- (3°49) becomes

so . k 00 n 0° k—2

z — p Z 2 k(k ‘ D9 2

kEO gk n20 1'“ k=0 k

00 n 0°

_ z 2 kg Z

'nEO p2,n k=0 k

00 n °° k

_ 2 g Z

n20 p3’n kEO k

I 3.56)
_ 20 p4’nzn = O I (

n:
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where

ék E (dgk/dt) . (3.57)

Since the functions {Zn} are linearly independent

and form a complete set, and since the infinite series con—

verge for —a/2 < z < a/2, the coefficient of each power of

2 must be independently equal to zero. The resulting set

of ordinary differential equations can be expressed compactly

by

= AB + C , (3.58)
~ ~(

w
e

where B is the column vector whose elements are gk(k = 0,1,...);

C is a column vector whose elements are

c (k = 0,1,...) ; (3.59)

k = p4,k '

and A is a matrix whose elements aij(i,j = 1,2,...) are

related to the coefficients pl n’ p2,n’ and p3 n(n = 0,1,...).

I I

A Portion of the matrix is given by

ai1 = p3,1-1

ai2 = p2,1-1 + p3,1-2

ai3 = 2p1,1—1 + 2p2,1—2 + p3,1—3

a . = _

14 6p1,1—2 + 3p2,1—3 + p3,1-4

aik = (k _ l)(k _ 2) + (k-l)P2,i—k+l + p3,i-k '

(3.60)

pl,i-k+2

Where pij = 0, if i or j is less than zero.
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By making use of the initial conditions

gk(0) = O , k = 0,1,..., (3.61)

one can solve the set of differential equations (3.58) for

any number of coefficients gk(k = O,l,...,N) in terms of

two constants of integration which must be evaluated from

the boundary conditions (3.52) and (3.53).

For the purpose of measuring a thermal diffusion

factor d1 we do not need a complete solution for all of

the gk's. In fact, because our experimental method measures

the gradient of refractive index (which is directly related

to the composition gradient) and because we have used series

expansions about the center of the cell where z = 0, all

that is required is the quantity

(BG/Bz)z=0 = gl(t) . (3.62)

In obtaining an expression for gl(t) we are justi—

fied in bringing to bear all of the information we have

about the function G, including the steady state solution,

which must be approached asymptotically as t becomes infinite.

One of the expressions which gl(t) must satisfy follows from

Eqs. (3.59)-(3.60):

° 3.63
90 = p3,0‘3'0 + p2,0‘31 + 2p1,0‘5‘2 + p4,0 ( )

Since we expect no anomolous behavior at z = 0 due

to unusual temperature gradients we write

e't/e) , (3.64)
go = Fo‘JL '
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where F0 is an amplitude factor corresponding to the steady

state value of go. It is not unreasonable to expect that

gO is well behaved since our measurements (discussed below)

suggest that for t 2 6/3, properties such as the refractive

index gradient and the composition gradient near the center

of the cell change smoothly and monotonically as a simple

exponential function of time and do not exhibit the more

unusual behavior observed near the metal plates.

Since we are interested only in the first deriva-

tive of G and not in G itself, only one constant of integra—

tion, say g2(t), can be eliminated by means of the boundary

condition (3.53), which gives

4

g2(t) = — g3 gO(t) . (3.65)

The remaining constant F0 must be obtained from a condition

on gl(t) for some extreme (0 or 00) value of time.  
The expression for gl(t) which one gets by rearrang—

ing Eq. (3.63) is indeterminate in the limit as t approaches

 

zero. (Note that this situation would not arise if the

whole system of equations (3.58) were solved simultaneously.)

Consequently, we use the alternative condition,

lim gl(t) = gl(steady state) , (3.66)

t—>oo

Which is known from Eq. (3.46a). The second order perturba-

tion solution (including terms of order 62) is

2

gl(st. st.) = 9% 60(k2 - kf)§7 + 0(83) , (3.67)

 

 



 

66

where 60, kl’ and k2 are given by Eqs. (3.44) and (3.45)

respectively. Equation (3.46a) indicates that at the steady

state G depends quite strongly on Al, the term expressing

the temperature and composition dependences of the thermal

diffusion factor. The first derivative of G at the center

of the cell, as shown by Eq. (3.67), does not, to terms of

order 83, depend on 61. Our choice of the center of the

cell as a point about which to expand variable coefficients

has resulted in this unexpected simplification. The simpli—

fication is certainly a reasonable one, since we recall that

in practice the temperature gradient at z = 0 is also unaf—

fected by linear variations in the thermal conductivity.

Note in what follows, however, that the time—dependent ex-

pression for gl(t) does depend on Al and other factors that

do not appear in Eq. (3.67). On combining Eqs. (3.63)—(3.66)

   

we find

F 48p (t)
_ 0 —l —t/0 _ —t/e 1,0 _

gl(t) _ 53:2;FET[0 e + (l e ) -———jf———— p3,0(t)]

P (t)

- 4’0 , (3.68)

102,0“)

where

_ 2 3 Zn D

48F0 — a gl(st. st.) (T) _

z—O

t=oo

2 0(1 0) E_ a §_£fl_1 (3 69)

‘awl ’w1 az1az _ °
z—O

t=oo

and 91(st. st.) is given by Eq. (3.67).
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Our final expression for the composition gradient

at the center of the cell is

(awl/Bz)0 = (Bwi/Bz)0 + gl(t) , (3.70)

where wi(z,t) is given by Eq. (3.7) and gl(t) is given by

Eq. (3.68). Inspection of Eqs. (3.67—3.69) and (3.50) shows

that gl is primarily the result of inclusion of variable

coefficients and secondarily a result of inclusion of warm-

ing up effects. The warming up part is of virtually no

consequence after the steady temperature distribution is

established, but it is, of course, all-important during the

first few minutes. In order to calculate thermal diffusion

factors by extrapolating to zero time, a popular practice,

it is necessary in principle to use for the composition

gradient Eq. (3.70) rather than the z—derivative of Eq.

(3.7) alone. Since we have derived equations which fully

characterize the experiment for all times, we may calculate

thermal diffusion factors from measurements at any time.

In particular, we may select those times for which the

equations are the simplest. Working equations are presented

in the next section.

F. Working Equations

The basic equation with which one can calculate d1

frOm measurements of the composition gradient is

8w 3w*

(__1) =(__l) + gl(t) , t >, 0 , (3.70)

0 0
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which is valid both during the approach to and at the steady

state. The quantity on the left hand side if what is mea-

sured (directly or indirectly). The first quantity on the

right hand side is a known function of al, and the quantity

gl(t) is a correction term which is also known. Upon rear—

ranging Eq. (3.70) and transforming to refractive index

gradients instead of directly measured composition gradients,

we find

Tm(N(t) — gl(t))

0‘1=‘—T(’E)—_ , (3.71)

where Tm is the mean temperature of the fluid,

(— - (swig—50
N‘t) = (8n70wl) ' (3°72)

T

 

gl(t) is given by Eq. (3.68), and from Eq. (3.7),

3 dz a

w V 2 dW

1 12.-k Jew—4-2m].
=1 k

H(t) = ATwi(l - wi)[% + a?

n k

(3.73)

When (an/3T) , (an/3w ) , and (ST/32) are known,
W1 1 T 0

one can use Eq. (3.71) to calculate d1 from measured values

Of the refractive index gradient for either steady state or

non—steady state experiments. Clearly, similar equations

hold for any other choice of measurement, such as electri—

Cal conductivity or capacitance. All that is required is

the gradient of the property being observed and information

abOUt its temperature and composition dependences.

L—_‘i.
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G. Composition Distribution

During Remixing

By "remixing experiment" we mean one whose initial

state is identical with the steady state of the correspond—

ing demixing experiment. In practice one conducts the two

experiments in succession with the same system. To initiate

remixing one removes the temperature difference. The tem-

perature gradient decays to zero during the next few minutes,

and for a period of length 66 the composition gradient decays

to zero by means of ordinary diffusion. Although no thermal

diffusion takes place, the thermal diffusion factor d1 can

still be measured since it determines the magnitude and di-

rection of the original composition gradient.

During remixing the velocity is the same as that

given in Eq. (3.17) except for the sign of uOO'

The temperature gradient is still given by Eq. (3.30)

where now f is determined as in section D except that the

final condition is

lim T(z) = T , (3.74)
m

t+oo

and the boundary conditions are

T(-a/2) = 4 (t) ,

T(a/2) = ¢h(t) , (3.75)

where now ¢c(t) and ¢h(t) are not the same as in Eq. (2.69).

In particular, different flow rates and heat capacities be—

tween the baths used in the two types of experiments lead
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to different relaxation times th and tc. Also, both ¢C(t)

and ¢h(t) must approach Tm as t increases. The solution

for the temperature, however, still has the form of Eq.

(C.l7) except that ¢h(t) and ¢C(t) are given by

-t/t
_ _ AT 0

¢C(t) - Tm —E e ,

—t/t
_ AT h

¢h(t) — Tm + —5 e , (3.76)

and

z l k(n+—l)w2t
oo (2n+1)7r(-—+—) —_—_.2___

r = i T i-AE z Z 1 sin a 2 e a
1 N m a n-+ '

n=0

(3.77)

The solution for the composition gradient at the

center of the cell is obtained in the same way as for de—

mixing experiments except for the final condition:

 

. 0

lim wl(z,t) = wl . (3.78)

t—>oo

At z = 0 we have again

8w 3w*)

1 _ l
(53—)0 _ (Bz 0 + gl(t) , (3.70)

where now

  

3w* 01 0° V (1W
2

3.771 = T_1 W3” ”“3”... 2_3 g l; exp(-k t/B-p/Z) (A — 2 wk“,

0 m N k=l k dz a

(3.79)

 



 
 



 

lim gl(t) = 0 ,

71

(3.80)

t+oo

lim g (t) = g (st.
t+0 l 1

As in the case of Eq.

st.) . (3.81)

(3.68), we find

, F 48p (t)
_ 0 —l —t/0 -t/e l 0 _

9'1“” ‘Wie (1 “e 1” (“:77— 93'0““
l

p4,0(t)

- p2 0(t) ’
I

where

_ 2 8 Zn pD
48FO — a gl(st. st)(— 2:0

t=0

2 o o 8 3 in T
_ a Wl(l - Wl) [Eta]. T]]2:0 . (3.82)

t=0

Analogous expressions follow for the working

equations:

T (N(t) — g (t))

0‘1 -T' 9-83)

where N(t) and H(t) have the same form as in Eqs. (3.72)

and (3.73), but (ST/82)

(3.72), and

2
H = 0 _ 0 __

0 is appropriately modified in Eq.

w v
k

E ‘3‘
exp (—k2t/0 — p/2)(W;

k=l k

- p/a Wk)

(3.84)
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One determines ngin the same way as described above.

The significant difference between the two methods is that

no temperature gradient exists during most of the remixing.

Consequently, there is no possibility of inducing convection

by poor control of boundary temperatures. Moreover, after

the first few minutes N(t) simplifies to

(an/82)0

= (3375WIT_ . (3.85)

T

There is an extra advantage of the remixing method

when an optical technique is used for in situ measurements

of the refractive index gradient. Changes in (an/32)0 due

to fluctuations in metal plate temperatures do not appear

because there is no heat conduction through the fluid. All

observed phenomena are due to composition changes only. As

we shall show in Chapters V and VI, literature values of

the composition dependence of refractive index are much more

reliable than literature values of temperature dependence.

H. Calculation of the Ordinary

Diffusion Coefficient
 

At least one measurement of (an/82)O must be avail—

able to compute a from either of Eqs. (3.71) and (3.83).

1

When several values of (an/82)O are available at various

times, they can be used in estimating the precision of the

measurements. Also, when two or more values of (Sn/82)0

are obtained at different times, they can be used to
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calculate not only d but also a second parameter, such as
1’

the relaxation time 6. Then, since the cell height a is

known, the ordinary diffusion coefficient of the mixture can

be calculated from

2 ' (3.86)

Of course, only measurements during the approach to the

steady state will exhibit the characteristic time dependence

necessary to calculate 8.

In principle, with sufficiently refined auxiliary

equipment, we could also determine many other parameters

such as thermal conductivity, heat of transport, tempera-

ture and composition dependences of transport coefficients,

etc. Even with our relatively simple equipment, we calcu-

late from our equations the following properties: thermal

diffusion factors plus their temperature and composition

dependences, ordinary diffusion coefficients plus their

temperature and composition dependences, and the tempera—

ture dependence of refractive index.

I. Discussion

For the first time we have a phenomenological theory

0f pure thermal diffusion which takes complete account of

transport parameters which vary with temperature and com-

position, warming up effects, non—linear temperature dis—

tribution, and transient convective transport. The results
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of this chapter can be used to predict the effect on the

composition distribution resulting from a temperature dis—

tribution which varies slightly with position or with time

(even an oscillating temperature difference).

Alternatively, experiments can now be interpreted

more accurately, and calculated values of d1 should be

more reliable. The experimental time scale is clearly de—

fined and leads to no ambiguous curve fitting or extrapola—

tion to zero time. Because of our particular way of

expressing the composition as

= *
w1 w1 + G ,

comparison of results calculated from our theory with those

from the best previous theory is very easy: simply set G

equal to zero in the latter case. In Eqs. (3.71) and (3.83)

set gl(t) = 0, and (ST/32)O = AT/a.

At the end of Chapter II we discussed three levels

of approximations and stated our intention to derive a

theory based on a minimum number of them. The "necessary"

assumptions concerning the applicability of hydrodynamics

and nonequilibrium thermodynamics have been retained as

have the "unnecessary but desirable" assumptions which can

be realized experimentally. Of the thirteen simplifying

assumptions classed "unnecessary and undesirable" we have

eliminated all but the last three. We feel justified in

retaining the following approximations:

 



 



(l)

(2)

(3)

We have
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_ o _ o _ o _ o .
wlw2 — wl(l wl) + (l 2wl)(wl Wl)' This

linearizes the differential equation and makes it

tractable.

The entropy source term $1 in the energy transport

equation (2.64) is negligible.

(H — Hl 2) in Eq. (2.64) may be

(
3
)
0
)

N

The term - jiz

ignored.

also justified two unclassified assumptions, viz.,

the absence of pressure effects (sedimentation) and the

negligibility of the heat of transport Qi. For systems in

which the gradients of temperature, pressure, composition,

and velocity are as small as they are for our experiments,

these simplifications certainly introduce no detectable

error.

 

 



 
 



 

CHAPTER IV

EXPERIMENTAL APPARATUS

A. Introduction

There are three fundamental components of any pure

thermal diffusion system: an appropriate sample container;

a means of controlling the boundary temperatures; and a

method for detecting small changes in composition.

The first component, the cell, is much simpler for

pure thermal diffusion than for any of the other methods.

It requires no forced flow mechanism, no membrane or porous

plate, and no stirring device. The cell dimensions are not

as critical as they are in the case of a thermogravitational

thermal diffusion column. In addition, a flat plate is

generally easier to machine to a desired tolerance than is

a narrow annulus. Moreover, expansion and contraction of

the metal parts due to temperature changes cannot change

critical dimensions since the plate separation depends only

On the thickness of a piece of glass. For that reason also,

the height of the cell is easily changed. A thermogravita-

tional column lacks flexibility in that respect.

The only criteria affecting the choice of cell di—

mensions are convenience and sensitivity of the detection

76
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system. The relaxation time for the thermal diffusion pro—

cess, unlike that for the thermogravitational apparatus, does

not depend directly on the composition or the temperature

difference and is given (to within 0.01%) by

e = a2/7T2D (4.1)

where a is the cell height and D is the ordinary (mutual)

diffusion coefficient of the mixture. For carbon tetra—

chloride-cyclohexane mixtures at the temperatures and con-

centrations of interest, say 25°C and W1 = 0.5, D is about

5
1.4 X 10- cm2sec_l. Consequently,

0 s 120 a2 min (4.2)

Since the demixing is 99.75% complete when t = 60, and

since, for experimental convenience, we wish to complete

both demixing and remixing experiments in a 12 to 14 hour

period, it follows that we should require

a = 0.75 cm. (4.3)

The length of the cell must be small enough so

that a uniform temperature can be maintained, yet great

enough so that the optical path through the liquid is suf-

ficient for the desired sensitivity of the interferometer.

After measuring the dimensions of the interferometer com—

ponents and estimating the magnitude of the expected

refractive index gradient, we concluded that a cell length

0f eight centimeters was suitable.

Another pronounced difference between thermogravi—

tational and pure thermal diffusion exists in the importance  
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of temperature control. In the former case the amount of

composition separation does not depend on the magnitude of

the temperature difference, but in the latter the tempera—

ture distribution in the liquid is extremely important.

In fact temperature control is the most troublesome part

of pure thermal diffusion experiments.

Large fluctuations at AT and drifting of Th and TC

both result in changes in the diffusion flux. An addi—

tional problem occurs when an optical method is used to

detect composition changes. A very slight change in the

temperature gradient can produce a change in the refractive

index gradient nearly as great as that due to all of the

thermal diffusion which has taken place. Consequently it

is very important to maintain a constant temperature gra—

dient as long as measurements of composition changes are

being made. Our water circulation system was carefully

designed to minimize temperature fluctuations.

Although optical analysis of composition changes

introduce the problem mentioned in the preceding paragraph,

the advantages outweigh the disadvantages. Conductometric

methods are restricted to electrolyte solutions and neces-

sarily result in a great deal of spatial averaging of com—

positions. Moreover, the imposed electric field constitutes

another force which should be included in the phenomenologi-

cal relations.

Another method which has been used involves with—

drawing an aliquot of the sample liquid at some predetermined
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time from some known position and then determining the aver—

age composition of the aliquot either chemically, conducto—

metrically, or refractometrically. This method has the

obvious disadvantage of disturbing the system and can provide

at most a single reliable measurement for each experiment.

Due to the time and work needed to carry out each experiment,

we easily ruled out such sampling.

Optical interferometric techniques have the decided

advantage of providing an extremely large number of data

while not disturbing the system in any significant way.

Both electrolytes and nonelectrolytes can be studied, al-

though dilute salt solutions require greater sensitivity.

Interferometers suitable for diffusion studies utilize the

composition dependence of the refractive index of the liquid.

Our particular instrument was designed to measure the gra—

dient of the refractive index, which completely determines

the composition gradient if the temperature distribution is

known. The wavefront shearing interferometer is at least

as sensitive as any of the other types which have been used,

and it has the advantage of being simpler to use. Our addi—

tion of the laser as a light source resulted in increased

intensity and improved accuracy.

With this general idea of the apparatus in mind, we

turn to a more comprehensive discussion of each of the

Components.
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B. The Cell

Of primary importance in a pure thermal diffusion

experiment is the cell. More than just a container, it must

satisfy a long list of requirements. It must:

1

10.

11

12

13

have horizontal boundaries consisting of metal

plates whose temperatures can be well controlled,

have glass walls to permit in situ optical analysis,

be fillable and sealable in some way which excludes

a vapor phase,

contain volatile liquids without permitting evapora-

tion or leakage,

be able to be accurately levelled,

have reproducible geometry,

be free of disturbing vibrations,

have uniform temperature distribution over the

metal plates,

provide efficient heat transfer through the liquid,

have a reproducible and measurable warming up time,

not permit formation of impurities by means of

chemical reactions between the sample liquid, the

sealant, and the metal,

be much larger in horizontal extent than in depth

so that any anomalous behavior at the side walls

or corners is negligible,

provide proper control of boundary temperature so

that convective remixing does not occur,
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14. have reservoirs for circulating water with large

heat capacity to minimize temperature fluctuations,

15. be easily dismantled, cleaned, and reassembled.

Four preliminary designs were tested and found to

be unsatisfactory with respect to the requirements of either

temperature control, sealing, or inertness. We found that

copper catalyzes the formation of oxides in aqueous solu—

tions. Consequently all metal parts contacting the sample

liquid were silver plated. The upper and lower plates were

of copper, 6 in. x 6 in. X 1/4 in. Two filling tubes of  
1/8 in. o.d. copper were soldered into holes in the upper

plate 1/2 in. apart before the plates were machined flat.

All of the copper pieces were then coated with 0.001 in.

of silver deposited electrolytically (for $10 by Sarver  
Mfg. of Lansing, Michigan).

Heating and cooling reservoirs were made from 8

in. X 8 in. X 1.5 in. magnesium blocks. The metal was

chosen for its machinability, its availability, and because

by rapidly exchanging heat with the circulating water it

can help to damp temperature fluctuations. Channels were

cut into the magnesium to form the reservoirs and to direct

the flow of circulating water over the metal plates in such

a way that spatial variations in the plate temperature were

minimized. (See Fig. 4.1.) Each reservoir was supplied

with one inlet and two outlet ports (3/8 in. dia.) in Order

to maintain a symmetric flow pattern.



 

 
  



82

 

—
—
_
.
—
.
—
—
.
—

 

           

 

   

 

Figure 4.1—-—Water deflecting channels in reservoir.

Overall dimensions 8 in. X 8 in.
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Each of the metal plates was secured to a reservoir

with twelve brass machine screws (size 10—24) which passed

through countersunk holes in the plates and into tapped

holes in the magnesium block. The space between the plate

and its reservoir was filled with a gasket (1/16 in.

"Vellumoid") which was coated on both sides with "Lubriseal"

stopcock grease. The resulting seal was completely effec—

tive in preventing any leakage of the circulating water.

Each reservoir had a capacity of about 300 ml.

The vertical walls of the sample chamber were made

of 3/8 in. thick Pyrex optical glass. Pyrex was chosen

because its low thermal expansivity insures (1) that it

will not crack when subjected to temperature gradients;

(2) that there will be no change in cell volume when the

temperature changes; and (3) that the thickness of the

glass walls does not vary with the temperature. Four bars

of width 8 mm, two 8.6 cm long and two 6.3 cm long, were

cut from a single plate of Optical glass 3/8 in. thick.

The four were positioned to form a rectangle with inside

dimensions 6 X 8.3 cm. The alignment of opposite walls

was made precisely parallel by means of coincidental back—

reflection of a helium—neon laser beam.

When properly aligned, the four pieces of glass

were joined together with a two—part epoxy resin cement

(Sears, "filled," gray in color). Earlier trials with a

colorless epoxy always resulted in a breakdown of the
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adhesive properties after several hours exposure to water or

CCl4 - C6H12 mixtures. The colorless epoxy did not dissolve,

but it became hard and brittle and would not adhere to the

glass. The filled epoxy, however, was entirely satisfactory,

remaining inert and securely bonded to the glass after 1000

hours of use.

Construction of the sample chamber was completed by

grinding the upper and lower surfaces of the glass assembly

with carborundum until those two surfaces were uniformly

flat and parallel to within 0.0005 cm (a sheet of paper  0.0005 cm in thickness could not be passed between the

plate and a flat guage block held in contact with it. The

height of the glass walls after grinding and polishing was

0.7410 cm i 0.0005 cm (by actual measurement with a

micrometer).

The material chosen for the sealant between the

glass and the metal plates was a very viscous fluorosili—

cone (Dow Corning "FS" stopcock sealant) which formed a

leakproof seal and did not dissolve in or react with the

liquids used.

Assembly of the cell was accomplished in the fol—

lowing way. The upper reservoir was inverted (metal plate

up) and the glass wall assembly, to which a thin layer of

sealant had been applied with a syringe, was placed on the

metal plate in such a way that the long axis of the cell

was parallel to the optical axis of the interferometer
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system, and the two small filling holes just appeared inside

one corner of the glass. Sealant was then applied to the

top surface of the glass cell wall assembly, and the upper

reservoir, with glass attached, was returned to position

and lowered over four guide bolts until the glass contacted

the lower metal plate. The entire unit was held together

when four brass nuts (size 12—20) were applied to the four

guide bolts which passed up through the upper reservoir

housing.

Four large holes in the corner of the bottom mag—

nesium block fitted onto four upright 1/2 in. diameter

threaded steel rods, each 18 in. in length. Steel nuts

held the cell assembly to the threaded rods while allowing

for height adjustment and levelling. The rods in turn were

anchored to a steel I—beam 8 in. wide by 10 in. high and

15 ft long which was itself bolted to two 55—gallon drums

filled with concrete. The entire structure, which weighed

about 3000 lbs, was separated from the floor by 3/4 in.

cushions of dense foam rubber and l in. thick plywood

boards under the barrels of cement.

To aid in filling the cell, the mounting was de-

signed so that the cell assembly could be tilted about 25

degrees from the horizontal along a diagonal axis. (See

Fig. 4.2.) Thus the two filling holes in the top plate

occupied the highest corner of the sample chamber. While

the cell was being filled by means of a syringe, all of
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Figure 4.2.——Assembled cell in tilted position for filling-
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the air was pushed to the top by the entering liquid and was

easily expelled.

Once filled, the cell was returned to its level posi—

tion, and the glass walls were manually pushed sideways

between the metal plates a distance of 1/8 in. Thus the

filling holes were removed from the sample chamber, pre-

cluding both evaporation and diffusion through the holes,

and at the same time removing the slightest perturbation

on the temperature distribution due to the tubes passing

through the reservoir. This feature is an important inno-

vation in our cell.

Finally, strips of foam insulation were placed

around the cell in the space between the reservoirs in order

to prevent air currents across the metal plates and to avoid

spurious heat transfer with the room air. Small flat glass

plates were substituted for the foam along the optical path.

3 We have described the design, construction, and

{assembly of the cell, but we shall postpone a discussion of

fits operation until the next chapter. We consider next

1

(temperature control and measurement.

‘C. Temperature Control and

Measurement

 

We chose circulating water baths for temperature

Icontrol devices rather than electric heating coils in com-

‘)

)bination with cooling coils in order to avoid both spatial

)
)

(

)

)
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variations in plate temperatures and the possibility of long

term drifting.

The main disadvantage of our water baths, namely

fluctuations due to the off-on heaters, has since been

eliminated by the substitution of proportional heating

elements which are always on but supply slightly more heat

if the temperature drops and less if it increases.

Four baths were available for our experiments. The

largest, a Lab—Line Tempmobile, was equipped with a com—

pressor unit and served as a source of constant temperature

cooling water for the other three baths. Tap water proved

unsatisfactory for cooling even when its temperature was

steady because only a trickle was needed, and fluctuations

in pressure could change the effective cooling rate

drastically.

The Lab—Line bath had a capacity of 90 liters and

was equipped with a built—in heating element. The point

of balance between the heating and cooling actions was ad—

justed by means of a Rota-Set mercury—contact thermoregula—

tor connected to a relay switching mechanism which turned

the compressor on and the heater off when the temperature

fell below the preset level.

Additional modes of operation were also available.

The compressor or the heater or both could be shut off

manually while the circulating pump continued to operate.

For example, with the water temperature well below room
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temperature, the heater could be disconnected, and then,

the cooling of the compressor would have to be balanced by

an absorption of heat from the room. Because of the in—

sulation, this would be a slow process and would result in

a very long cycling time for the compressor and an accom-

panying slow drift of the water temperature. For a better

balance and optimum temperature control, both the heater

and the compressor were allowed to operate.

The bath's circulating pump delivered water through

a 3/8 in. i.d. fitting at an uninhibited rate of 1300 ml/

min. Near 25°C the temperature of the circulated water

showed fluctuations of r0.l°C coinciding with the off—on

Cycle of the compressor. A modification was made so that

the used water was returned near the pump intake and the

thermoregulator rather than to the opposite end of the

bath, thus providing the needed increased mixing action.

As a result, the fluctuations were reduced to r0.01°C.

The two baths used to apply the temperature differ-

ence to the cell were nearly identical. Both were Tamson

model T—45, with 45 liter capacities, and were obtained

from Neslab Instruments, Durham, New Hampshire. One oper—

‘ated with 110 V ac and the other with 220 V ac. Both had

coils of 1/4 in. stainless steel tubing for external cool—

‘ing and both had quartz main heating elements. The quartz

surrounded a piece of high resistance wire and served to

dissipate the heat more slowly than the wire itself would,
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hopefully providing a more constant source of heat than a

conventional off—on heater.

Both baths had booster heaters for rapid warm up

when desired. That in the 110 V bath was quartz, and the

other was stainless steel. The difference is of no conse-

quence since the booster heaters were never used during an

experiment. Control of the heating cycle was governed by

Jumo mercury-contact thermoregulators (0—50°C) and mercury

relay switches in each of the baths. The circulating pumps

caused excellent stirring of the baths while delivering a

flow of water through a 1/4 in. i.d. outlet pipe at a rate

of 3500 ml/min with a 10 ft head.

The manufacturer recommended that the cooling rate

be adjusted so that the heater was on for about four seconds

and off for about 16 seconds of each cycle. Such an ad—

justment, however, resulted in fluctuations in the tempera—

ture of the output water on the order of 0.01°C. We found

that further reduction of the cooling rate, until a cycle

of one second on and 30 seconds off was obtained, improved

the fluctuations to about i0.005°C. This adjustment was

quite delicate since it meant only a slight trickle of

cooling water was flowing through the bath and any further

decrease could shut off the cooling completely, resulting

in a breakdown in the cycle. If that happened, the bath

temperature would slowly increase due to the heat developed

by mechanical stirring, and the heater would never be turned

on.
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The fourth bath was a Tamson model T-9 with a 10

liter capacity, and it was maintained at the mean tempera—

ture. It was similar in most respects to the other Tamson

 baths. It had a quartz heater but no booster heater. The

cooling coil was a length of 1/4 in. stainless steel tubing.

This model had the same pump as the other two and conse—

quently the same flow rate and head. Because of the smaller

size, however, the temperature fluctuations of the unmodi—

fied bath were on the order of i0.0l°C.

We modified all four of the baths by making the

 

outflow of each pass through a six foot length of 5/16 in.

i.d. copper tubing formed in a 5 in. diameter coil. The

coil was immersed in a 2000 ml beaker filled with water

kept at the operating temperature of the bath. In the case

of the T—9, the beaker was outside the bath (increasing the

ieffective volume of the bath to 12 liters) and was stirred

by means of a Sargent magnetic stirrer. The other three

beakers and coils were positioned inside their respective

baths and served as secondary semi-isolated thermostats. ‘

The purpose of the copper coils and their associated

volumes of agitated water was to act as heat exchangers and

absorb any pulse of excess heat as it passed through the

COil or to give heat to the circulating water whose tempera-

ture was slightly less than normal. In this way, fluctua—

tions due to the off-on heating cycle were nearly damped

out. The three Tamson baths operated routinely with
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fluctuations of about r0.003°C, and, with very careful

balancing of the cooling rates, could be made to operate

with fluctuations of less than 0.001°C. All of the tem—

peratures mentioned above were monitored continuously with

40 gauge copper—constantan thermocouple junctions attached

to the metal plates, and two Sargent model SR strip chart

recorders specially modified by our electronics technician

to display temperature changes as small as 0.002°C.

The water was suitable for use when it emerged from

the copper coil. It was transported from there to the

proper reservoir and back to the bath through 1/4 in. i.d.

Tygon tubing. Joints between sections of the tubing were

made with short lengths of 5/16 in. i.d. Tygon tubing. The

material is soluble in methyl ethyl ketone, so when the

ends of the tubing were dipped into the solvent for about

one minute before slipping them together, a permanent bond

was easily formed. Special Tygon Y—connectors, obtained

from Scientific Glass Apparatus Co., were used in the same

way. At the cell, the tubing was connected to 3/8 in. o.d.

brass nipples screwed into tapped holes in the reservoirs.

At no point along the line was the opening through which

the water passed less than 1/4 in. in diameter.

Between the baths and the cell all of the tubing,

including return lines, passed through a two position

clamping valve (see Fig. 4.2) specially designed to allow

instantaneous switching of the cell from the isothermal to
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the nonisothermal configuration and yige yersa. With both

clamps closed, no water was admitted to the reservoirs.

With only the left one open, a temperature difference was

applied, and with only the right one open, the cell was

isothermal at Tm. At no time could both clamps be open,

or water would be transferred between the baths causing

overflow. Bypasses had to be installed so that whenever

a bath was isolated from the cell, its water could still

circulate through the copper coil in order to maintain

thermal equilibirium within the 2000 ml beaker.

The starting time of all experiments was taken to

be that instant when the clamp for the T—9 was closed and

the clamp for the other two baths was opened so that the

temperature difference was applied to the cell.

Inside the reservoirs, the water flowed in the

pattern shown in Fig. 4.1. There was a space of 3/32 in.

between the baffles and the metal plates in order to elimi—

nate the possibility of any dead Space.

In order to promote a more uniform temperature dis-

tribution, the reservoirs extended beyond the area covered

by the sample chamber. The temperature distribution across

the bottom plate was checked at 20°C by means of a 40 gauge

Copper-constantan thermocouple junction held against the

plate with a piece of styrofoam insulation and a 100 gram

weight. The position of the thermocouple junction was

measured, and it was allowed to remain undisturbed for two
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minutes while the temperature at that point was measured by

the strip chart recorder. Thirty seconds were usually re—

quired for thermal equilibrium, but the additional time was

used to insure that no further change in temperature would

occur.

The measurements were repeated at half—inch inter—

vals across the whole plate. While the resulting 81 data

points showed the presence of thermal gradients near the

side walls of the reservoir, the temperature over the area

occupied by the sample chamber remained constant to within

0.01°C with only randomly spaced variations.

Since we did not wish to conduct thermal diffusion

experiments with thermocouple wire inside the cell disturb—

ing the temperature distribution and possibly the diffusion

flux, it was necessary to establish whether any systematic

difference existed between the temperature of the metal

plate inside the sample chamber and the measured plate

temperature somewhere outside the cell. For this check,

a thermocouple wire was passed through one of the filling

tubes and attached to the upper plate by means of a very

small piece of tape. The cell was then assembled and

filled with a mixture of CCl4 and C6Hl2' A second thermo-

couple junction was mounted outside of but close to the

sample chamber on the upper metal plate. The junction was

first placed in contact with the plate and then covered

with a one inch square of aluminum foil to insure that the
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measured temperature represented that of the plate and not

some average influenced by the air temperature. The wire

leads from the junction were kept in contact with the plate

for a distance of about three inches in order to eliminate

thermal gradients in the wire. The junction, foil, and

wire were then covered with a piece of black electrician's

tape.

When a temperature difference was applied to the

liquid, and after a period of fifteen minutes passed, during

which a thermal steady state was reached, the voltages of

the two thermocouple junctions were recorded. Both refer—

ence junctions were in the same ice-water bath. According

to a Leeds and Northrup K-3 potentiometer and a previously

prepared temperature-emf calibration chart, both junctions

indicated the same temperatures to within 0.002°C. Measure—

ments were repeated for thirty minutes, during which only

small random differences between the two temperatures were

observed. Consequently we felt safe in using the tempera—

ture measured outside the cell as the plate temperature in

the thermal diffusion experiments.

The above—mentioned thermocouple junction and a

similar one on the lower plate were next used to investigate

the time dependence of the plate temperatures at the begin-

ning of an experiment. During the change of configuration,

the temperature of each plate was monitored with a separate

strip chart recorder, and as expected, an exponential shape

was observed.
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Experimental curves were fitted to functions of the

type

‘ -t/t
AT h

Th=Tm+——2(l—e )=¢h(t),

-t/t

_ AT c _

Tc_Tm__2 (l‘e )‘¢c(t" (4.4)

where Th and TC are respectively the hot and cold plate

temperatures, t is time measured from the instant of

switching. The two constants tC and th are the two re-

laxation times for heat conduction through the apparatus

mentioned in Chapter II with the statement that they best

determined experimentally.

The results of the curve fitting were:

t = 46 sec ,
c

th = 46 sec . (4.5)

Because the capacity of the T—9 bath is different

from that of the others, the relaxation times were also

measured for the initial part of the remixing experiment,

which requires removal of an established temperature gra—

dient. Here the functional form is:

-t/t'

a _ AT h
T(§,t) — Tm + —2 e (4.6)

-t/t'
a _ _ AT C

T(—§,t) _ Tm —E e (4.7)

The relaxation times for the second case were found to

be:
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‘ =th 54 sec

té = 54 sec . (4.8)

Measurement of the various temperatures required

was accomplished with thermocouples made of 40 gauge

matched copper and constantan wires. The wires, indivi-

dually coated with Teflon, were wrapped together in an

additional fabric insulation. A twelve inch length of

the fine wire was soldered to about eight feet of more

durable 20 gauge copper and constantan wires. The heavier

wires were also of matched resistances, polymer coated and

bound together by an outer clear plastic film. Both sets

of wire were obtained from the Thermo—Electric Co., Inc.,

Saddle Brook, New Jersey.

Sixteen thermocouples were prepared. A small arc

welder, obtained from the Chemical Rubber Company, was used

to fuse the two metals into spherical junctions with 0.4 mm

diameters. Because of the thinness of the wires, the energy

of the arc was sufficient to destroy about an inch of the

metal before forming the junction. For more satisfactory

performance, the welder was plugged into a 15 A variable

transformer, and the voltage was cut from 115 V to about

25V. With the lower energy arc, the junction was more easily

formed.

The reference junctions were contained in an ice—

water bath, with a four liter capacity, equipped to hold
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up to twenty such junctions. Copper and constantan wires

extended into 1/4 in. diameter glass tubes 6 in. in length

containing 1—1/2 in. of mercury. The tubes were immersed

in an ice—water slush. The entire apparatus was surrounded

by a l in. layer of styrofoam insulation and encased in

Fiberglas. The top was covered with a wooden lid, and a

terminal panel was provided for convenience in changing

thermocouples. After filling, the bath retained a constant

temperature for up to four hours before it needed attention.

Distilled water was used in the bath along with machine—made

ice cubes initially 3/4 in. X 3/4 in. X 1/4 in. in size.

A sixteen junction Leeds and Northrup K—3 potenti—

ometer was connected to an electronic null detector (Leeds

and Northrup Model 9834) having nonlinear meter response

and maximum sensitivity of i0.2 microvolt per division.

EMF's could be read to the nearest 0.1 microvolt, permitting

calculation of the temperature to the nearest 0.002°C.

It should be noted that any shift in the temperature

scale which might have developed due to a nonzero reference

temperature or a decay of the standard cell in the potenti-

ometer would be inconsequential,since only differences be—

tween measured temperatures had to be very accurately known.

Also available for measurements were two Sargent

model SR potentiometric strip chart recorders. These showed

full scale deflections of 200 microvolts, or 5 degrees

Centigrade. Five different scales were available,
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corresponding to the temperature ranges: 0—5°C, 15—20°C,

20—25°C, 25—30°C, and 30—35°C.

Again, any inaccuracies introduced by the expansion

of the recorder scale were not important since the recorders

were used only as indicators. Any critical measurements of

temperature were obtained with the potentiometer. The re—

corders were entirely satisfactory; they showed fast response

and a high degree of repeatibility, and registered tempera-

ture changes on the order of 0.002°C.

When the sixteen thermocouple junctions were compared

against one another by placing them two at a time very close

to each other in the same constant temperature bath at 25°C,

they all registered the same voltage to within 0.1 microvolt

or 0.002°C. Consequently it was not deemed necessary to per—

form separate calibrations for each of them. This extra

step would have been impractical anyway since most of the

junctions were broken and replaced at some time during the

experiments and since each calibration would have required

about three days.

The original calibration was carried out with a

thermocouple which did not differ by more than 0.1 micro-

volt at 25°C from any of the others. A platinum resistance  
thermometer was used along with a constant current source

(2.0 mA) and a resistance box. By using the galvanometer

Of the K—3 potentiometer,we could measure the resistances

0f the platinum wire at a series of temperatures. The known 
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temperature dependence of the resistivity of the platinum

then allowed us to calculate the actual temperature.

The platinum thermohm and the thermocouple junction

in question were placed in contact with each other and into

the small open port of one of the T-45 baths. The emf of

the thermocouple could be monitored on one of the recorders

as well as with the potentiometer. After the recorder in—

dicated that a steady temperature had been reached in the

bath, the following measurements were taken five times at

one minute intervals:

(1) resistance of the platinum wire at 2.0 milliamps,

(2) emf of the thermocouple junction.

If the measurements showed any large fluctuations

or drifting, they were repeated until five consistent sets

of values were obtained. Then the direction of the current

was reversed, and the measurements were repeated.

The same measurements were repeated at one degree

intervals from 16°C to 34°C. For each value of the resis-

tance the temperature was calculated by means of Eq. (4.9).

  

R — T _ 3

_ T 0 T . --T _"-~ , T

T ‘ _OLR0— +5 ”100 ' I) + B ‘1'0‘0 1’ (Too) , ‘4-9)

where

T = temperature in degrees Centigrade

R = measured resistance, international ohms, at

2.0 mA

R = 25.4884 int. ohms
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a = 0.00392604

B = 0.1106 ; T < 0°C

8 = 0.0 ; T 2 0°C

6 = 1.4919.

The data of interest consisted of a list of tempera-

tures calculated from the measured resistances and a list

of corresponding thermoelectric potentials. A FORTRAN IV

program, EMFVST, was written for use with MULTREG, a multi—

nomial regression analysis program. The Control Data

Corporation 3600 digital computer calculated the best

smooth curve through the experimental points to be:

EMF = 2.33066 + 40.04151T + 1.300289 x 10'5T4 , (4.10)

where EMF is in microvolts and T is in degrees Centigrade.

The standard errors of the coefficients of T and T4

are respectively 5.52 x 10'2 and 8.13 x 10‘7. At 20°C and

30°C Eq. (4.10) gives EMF's of 0.8052 mV and 1.241 mV,

respectively. The calibration table in the Handbook of

Chemistry and Physics (44th edition) lists the correspond-

ing numbers as 0.79 mV and 1.19 mV, respectively. In

measurin differences in tem eratures, however, we used
g  the temperature coefficient of very nearly 0.4004 mV

deg—l, which compares well with the handbook value of

0.40 mV deg—l.

Equation (4.10) was used in preparing an extensive

table with which a measured voltage could be rapidly
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converted to a temperature. EMF‘s for all of the tempera—

tures between l4.00°C and 35.99°C were printed out at 0.01°C

intervals, and interpolation to the nearest 0.002°C was

easily accomplished. The computer calculated the 2200 num—

bers and printed them in tabular form. The table was hung

on the laboratory wall for quick reference.

D. The Interferometer 

Having decided to use optical rather than conduct—

ometric or sampling methods for analysis of concentration

changes, we next had to choose from among the various types

of suitable interferometers available. Pure thermal dif-

fusion experiments require that an instrument be able to

detect differences in mass fraction as small as one part

in 105 over distances of a few millimeters. The wavefront

shearing interferometer described by Bryngdahl (1963), un-

like Rayleigh or Gouy instruments, had not yet been applied

to diffusion studies. Bryngdahl's interferometer promised

to be at least as sensitive as any of the others in use and

had the added advantage of not being difficult to use. Also

it offered a chance to make the first application of a new

design. While our work was in progress, however, Bierlein

(Gustafsson, 1965) published an account of some experiments

conducted with a similar instrument, both confirming its

advantages and relating the results of some studies on de—

Sign optimization.
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Before building the interferometer, we modified the

plans by substituting for the conventional light source a

helium—neon gas laser (A = 6328A). This produced an intense

beam of parallel, monochromatic, polarized light, all fea—

tures required by the instrument, but not present in a

sodium or mercury lamp. The laser chosen was a Siemens

model LG-64 having output power in the TEM 0 uniphase mode
0

of six milliwatts.

Since the light emerging from the laser was polarized

in the vertical plane, the laser was rotated 45° about its

long axis in order to provide the necessary orientation be—

tween the polarization plane and the refractive index gra—

dient in the cell. The laser was mounted between four

vertical 1/2 in. steel threaded rods which were attached

to the 15 ft horizontal steel I—beam mentioned above. The

threaded rods provided flexibility in positioning the laser.

See Fig. (4.2).

The diameter of the beam emerging from the laser

was 2.5 mm, much less than the cell height. A shutter was

provided to keep light from the cell when not needed. A

simple two lens system with focal lengths Ll,f = 17 mm and

L2.f = 203 mm produced a parallel beam 35 mm in diameter.

See Fig. 4.3. After traversing the cell, the initially

flat wavefront was distorted if a refractive index gradient

was present. A second simple lens system (L3,f = 371 mm,

L4,f = 22 mm) reduced the height of the beam from 7.41 mm
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Figure 4.3.--He1ium-neon laser and lenses L1 and L2.
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to 0.5 mm in order that it be compatible with the dimensions

of the beam splitters.

The beam splitters (Bryngdahl, 1963), obtained from

Valpey Optical Corporation, were modified Savart crystal

quartz plates. These were cut at 45° from the axis and

oriented so that the axes of the subplates were in the same

plane but perpendicular to each other. An incident ray

gave in the first plate an ordinary ray and an extraordi—

nary ray. In order to get symmetrical light paths through

the whole plate, the ordinary ray in the first subplate had

to become the extraordinary ray in the second one and yige

ygrsa. A half-wave plate inserted between the two subplates

so that its principal plane bisected the 90° angle between

those of the subplates interchanged the polarization planes

of the two rays. Thus there was a compensation of path dif-

ferences, i;e., no path difference was introduced by the

beam splitter in parallel light. See Fig. 4.4.

The net effect of the first beam splitter Q1 was the

production of two identical beams of equal intensity having

perpendicular polarization planes and separated vertically

by a distance bl‘ The separation of the two beams is given

by:

(4.11)
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where e is the thickness of each part of the double plate,

and I10 and ne are the principal refractive indices of the

quartz.

In convergent light, the beam splitter splits an

entering wavefront into two wavefronts with polarization

directions perpendicular to each other. In this case, the

shear angle introduced results in an optical path differ—

ence A between the two emergent wavefronts which depends

on the x—coordinate via the corresponding incident angle

0 and on the thickness of the crystal plate. For the plate

used,

A = bl sin w cos Y (4.12)

where w is the angle between the entering ray and the normal

to surface and y is its azimuthal angle.

The parallel light beam traverses the first beam

splitter Q1 resulting in the formation of two identical

beams displaced vertically from each other and having per-

pendicular polarization planes.

The second beam splitter was identical to the first

but was turned through an angle of 90° in order to retain

the proper orientation between polarization planes.

Between the two beam splitters Q1 and Q2 a simple

double convex lens L5 having focal length 22 mm produced

the convergent light for Q2. After the second beam splitter,

the interference fringes were made visible in image plane 2
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by means of a polarizer (a Nicol prism) oriented at right

angles to the polarization plane of the original laser radia—

tion. A final lens L6, consisting of an ordinary microscope

objective with a magnification factor of 5, made possible ad—

justments in the beam size for convenient photographing.

The interference fringes, representing the vertical refrac-

tive index gradient in the cell, appeared within a sharp

double image of the cell. The use of Q1 and Q2 rather than

ordinary Savart plates caused the fringes to be presented

in Cartesian rather than hyperbolic coordinates (Bryngdahl,

1963). A photograph of the interferometer is shown in Fig.

4.5. A theoretical discussion of the paths followed by

the light beams inside the quartz plates is given in Appendix

G.

The working equation for the interferometer is

x = A(An/Az) + B , (4.13)

where A is a magnification—related apparatus constant which

is best determined by means of a separate calibration (dis-

cussed below), and B determines the family of fringes which

is observed. B need not be known if we measure only the

position of the same fringe at various times. The quantity

(An/AZ) is a finite difference expression for the refractive

index gradient. Through it we can relate measurements of

fringe position and shape to expressions for the gradients

of temperature and composition.
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Figure 4.5.——Interferometer components and Polaroid camera.
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The image of the cell and the fringe pattern was

projected through a Polaroid MP-3 camera and onto a ground

glass plate. At any time the plate could be moved aside

and replaced by a Polaroid roll film back, and a photo—

graph could be taken on Polaroid type 413 infra—red sensi—

tive film. Even though visible light was used, this film

was required because of its greater sensitivity in the red

range of the spectrum. The photographs, developed in the

camera in 15 seconds, were 3—1/4 in. X 4—1/4 in. black and

white positive prints.

A device to measure fringe positions on the photo—

graphs was made by mounting on a 4 in. X 6 in.X l-1/2 in.

block of aluminum a mechanical microscope stage with gradu—

ations and Vernier scales which could be used in conjunction

with a magnifying lens to determine the two dimensional

shape of the fringes to 0.01 cm, or the equivalent of 0.13%

of the cell height.

Each photograph cost about $0.50 and required five

to ten minutes to analyze. To permit more practical accum—

ulation of large amounts of data, an alternate measuring

device was also used. This consisted of the same microscope

Stage mounted directly on the ground glass plate Of the

camera. The arrangement allowed the fringe position at

Z = 0 to be measured frequently and rapidlY~ A photograph

could still be taken when more detailed information about

the fringe shape was desired.
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E. Working Equations 

Let the vertical refractive index distribution in

the cell be given by the expansion:

n(z,t) = z c (t)z , (4.14)

where the coefficients ck are functions of time:

c0(t) = n(0,t)

cl(t) = (an/82)O

1 2 2
c2(t) = 5(8 n/Bz )O

cn(t) = %T(8nn/an)0 . (4.15)  The subscript zero means the derivative is evaluated at

Z=O,

The finite difference expression for the fringe

shape requires the quantity:

as

An(Z,t) = n(z + %§,t) — n(z "‘Tf't) (4.16)

It follows from Eqs. (4.13) and (4.16) that:

1

x = A{(cl + Z c3a s + 16 05a 5

+ z+ (2c2 + c4a s )

2 2 2
3

_ + z + (4c + .)z
+ (3c3 + 2 c5a ) 4

+ (5c +...)z4 + ...} + B . (4.17)

The quantity 5 is the amount of shear (0.19).
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The experimentally measured fringe shapes are well

represented by the polynomial:

5 k
x = X dk(t)n , (4.18)

k=0

where n is the dimensionless vertical cell coordinate ob-

served on a photograph, and the d the coefficients giving
k

the best least squares fit.

Because of the double image which is due to the

shear s, the vertical coordinate z in the cell is related

to the vertical coordinate n in the photograph by:

22
1"] =W (4.19)

where  and s is the shear, or amount of overlap of the two images.

The relationship between the coefficients dk and

Ck is discovered by using Eq. (4.19) and equating coeffi—

cients of like powers of z in Eqs. (4.14) and (4-l8)=

1 2 2 l 4 4 + + B
d0 = A(cl + 4 c3a s + T6 c5a s ...)

2

d1 = g(a - as)(2c2 + c4a s +. )

2 5 2 2
d2 = %(a _ as) (3c3 + 2 c5a s + )

_A _ 3 +
d3 — g(a sa) (4C4 )

d = é— (a - as)4(5c + .)

4 16 5

__A __ 5 + .) (4.20)

d5 — 3? (a as) (6c6
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The coefficient dO represents a uniform lateral shift of the

whole fringe pattern. Since dl is the coefficient of the

first power of n, it accounts for a skewness in the photo-

graphs which decays away as (82n/322)0, or c2, approaches

zero, in exact agreement with Bierlein's observation.

Inversion of Equations (4.20) gives:

_ 16 —4 1
c5 — —X(a - as) (— d4 + )

_ 8 —3 1
c4 — g(a - as) (4 d3 +...)

4 2 1 1 2 2 a - as "2
C3 = g(a " as) [3 d2 — g d4a ( 2 ) +...]

-2

_ 2 _ —l 1 1 2 2 a — as 1
c2 — g(a as) [2 dl § d3a S ( ) +-

—2

_ 2 —1 l 2 2 a — as

cl — g(a — as) [do — 5 dza s (7“) +. .] . (4.21)

Thus all of the coefficients in the expansion for

Sn/Bz which follows from Eq. (4.14) can be determined from

measurements of d (k = 0...5), A, s, and a.
kl

The coefficients ck are related to the tranSport

parameters d D, K , and Q3 through the expression for the

l’ i

temperature and composition distributions and through rela-

tions such as:

(33) (4.22)

0
Z

 
C1 = %)T(O§Zl)0 + (%)W

Where (Bwl/Bz)O is a function of 01, etc.

In the next chapter calibration of the interferometer

and the particular measurements involved are discussed, along

with the other experimental details.

 

 



 
 



CHAPTER V

EXPERIMENTS

A. Weighing Procedure 

Because we chose to work with carbon tetrachloride—

cyclohexane mixtures in order to be able to compare our

results with those of previous workers, we had to deal with

the problem of evaporation. Such losses before and during

an experiment can lead to miscalculations of the actual

composition of the mixture. The following procedure was

used in an attempt to avoid, or at least minimize, errors

in the determination of the mass fractions of the components

of the solution actually undergoing thermal diffusion in the

cell.

Four 25 m1 Pyrex pycnometers for volatile liquids

were obtained from Scientific Glass Apparatus Company. The

80 gram capacity of our Mettler H—16 single pan analytical

balance precluded the use of larger volumes of liquid. Each

pycnometer consisted of a 25 m1 bottle, a capillary stopper,

and a cover which prevented evaporation from the Open capil—

lary tube. The three pieces fit together with ground glass

joints, and each part was marked with the same number to

prevent interchange between sets.
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Only one of the pycnometers was used throughout the

whole series of experiments. Before each use it was cleaned

with a solution of potassium dichromate in 98% sulfuric acid,

rinsed in distilled water, and dried in an oven at 105°C.

When cool, it was placed in a water bath at 25.00°C for three

minutes, removed, dried with Kimwipe tissues, and weighed on

the previously zeroed H—l6 balance. The volume of the pyc—

nometer was determined from a series of measurements during

which it was weighed while filled with either distilled water,

carbon tetrachloride, or cyclohexane at 25.00°C. The water

was obtained from the distilled water tap in the laboratory.

The other two liquids were obtained from the J. T. Baker

Chemical Company. The labels of the bottles used are repro-

duced in Tables 5a and 5b. All chemicals were used without

further purification.

An excess amount of the particular liquid below

25°C was poured into a clean, dry 250 ml Erlenemeyer flask

provided with ground glass stopper. The liquid was removed

from the flask by means of a 100 m1 capacity glass syringe

fitted with a 12 in. length of Teflon tubing of 1/16 in.

i.d. The Teflon tube was then replaced by a 1—1/2 in. size

18 stainless steel syringe needle, and the air in the syringe

was removed. The liquid was then injected into the pycnom-

eter bottle until the bottle was nearly full, at which time

the capillary stopper was inserted, causing an overflow of

the excess liquid and the exclusion of all air from the
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Table 5a.—-"Baker Analyzed" reagent lot analysis as given on

bottle label for CC14.

 
 

1 pt. (473.2 ml) 1513 ‘

CARBON TETRACHLORIDE

CCl4 F.W. 153.82

"Baker Analyzed" REAGENT

SPECTROPHOTOMETRIC

LOT NO. 34532

Color (APHA) . . . . . . . . . . . . . . . . . . . . 5

Density (g/ml) at 25°C . . . . . . . . . . . . . 1.585

*Boiling Range 1-95 m1 . . . . . . . . . . . . . . . 0.1°C

95 ml—dryness . . . . . . . ... 0.2°C

Residue after Evaporation . . . . . . . . . . . . . 0.0004%

Acidity . . . . . . . . . . . . . . . . . Pass ACS Test

Free Chlorine (Cl)  Pass ACS Test

Sulfur Compounds (as S) . . . . . . . . . . . . 0.003%

Iodine Consuming Substances . . . . . . . Pass ACS Test

Substances Darkened by H2804 . . . . . . . . . Pass ACS Test

Solubility for use in Dithizone Test . . . . . Pass ACS Test

rRecorded Boiling Point 76.7°C.

 

 



 
 



 

 

120

Table 5b.—-"Baker Analyzed" reagent lot analysis as given on

bottle label for C H .
6 12

1 pt. (473.2 m1) 9206

CYCLOHEXANE

CH2(CH2)4 CH2 .W. 84.16

'Baker Analyzed' Reagent

ACTUAL ANALYSIS OF LOT NO. 34840

Color (APHA) . . . . . . . . . . . . . . . . . . 2

Density (g/ml) at 25°C . . . . . . . . . . . . 0.773

’Boiling Range, 1—95 ml . . . . . . . . . . . . 0.1°C

95 ml—dryness . . . . . . . . . . . . 0.1°C

Residue after Evaporation . .

Substances Darkened by H2804 . . . . . . .

Water (H20) .

’Recorded Boiling Point 80.7°C.

. . 0.0008%

Passes Test

. 0.014%
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container. The pycnometer was never touched directly. All

handling was done with tissues or a wire holder consisting

simply of a length of wire wrapped around the neck of the

bottle.

By means of the wire holder, the partially assembled

pycnometer was transferred to a wire basket in the T—9 water

bath which was maintained at 25.00°C. The heating and re—

sulting overflow of the sample liquid continued for about

four minutes. When the liquid level was just even with the

top of the capillary tube, the pycnometer cover was put

tightly into place. The assembly was then removed from the

water, dried carefully with a Kimwipe as before, and weighed

on the H-l6 balance. The air temperature, relative humidity,

and barometric pressure were recorded at the time of the

weighing for purposes of air buOyancy corrections. A Sargent

hygrometer provided wet and dry bulb temperatures, and a

Fortin—type mercurial barometer permitted determination of

the atmospheric pressure. From the known densities of the

liquids used, the 25° volume of the pycnometer could readily

be calculated.

In a substitution weighing, the beam is brought into

. +

eQuilibrium with a set of weights as the load and the scale

reading are set to zero. Next an object is placed on the

pan, and weights are removed to return the beam to equilibrium.

 

 

+Following custom, we call the standard masses

"weigh-ts . ll
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The balance indicates two numbers: (1) the nominal value of

the weights removed; and (2) the indicated difference be-

tween the weight of the object and the weights removed.

The effect of gravity and air buoyancy on the

weights must be taken into account, while other forces must

be avoided or eliminated. Various forces such as electro—

static or magnetic forces, the "sail effect“ from moving

air, and air buoyancy on the beam or other parts of the

moving system may act to change the balance indication.

As long as these forces remain constant, their effect will

go out in the difference between the two readings. Conse—

quently only gravity and air buOyancy need be considered.

The balance equation is:

(Mu — Vup)g = (MS — Vsp)g (5.1)

where

Mu = true mass of object

Ms = true mass of weights used

Vu = volume of object

Vs = volume of weights

p = air density

g = acceleration of gravity

Forces are eliminated by dividing by g, whence, upon re—

arrangement:

(5.2)  
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Equation (5.2) requires knowledge of the true mass of the

weights used, which differs from that of the nominal values

observed. In the United States, Normal Conditions are de—

fined to consist of air density of 1.2 mg/cm3, temperature

of 20°C, and standard weights having an ideal density of

8.4 g/cm3 at 0°C and coefficient of cubical expansion of

5.4 X 10_5 deg_1 C. From this the ideal density at 20°C

is 8.3909 g/cm3.

Usually the air density differes somewhat from 1.2

gm/cm3 as defined for normal conditions, and the density

of the weights used differs from 8.3909 g/cm3 at 20°C.

According to L. B. Macurdy, Staff Metrologist of the Mettler

Corporation, the weights in the Mettler Model H-16 balance

are of one-piece stainless steel with a nominal density of

7.76 g/cm3 to be assumed at 20°C. In order to obtain the

true mass of the weights Ms’ it is necessary to add the

correction +ll.63 micrograms per gram to the indicated value

to take account of the fact that the density of the weights

is not 8.4 g/cm3. Also, since measured volumes are not

usually available, Eq. (5.2) can be rearranged to give the

true mass of the object in terms of densities:

_ 2 2 3 3

Mu — Ms(l — p/DS)(1 + p/Du + p /Du + p /Du +...) ,

(5.3)

wh = ' 'ere MS Mapparent X (1.00001163), DS 18 the denSity of

the weights, and Du is the density of the object, both

Calculated at the ambient temperature. Du is best
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approximated by Du a Ms/Vu. Most of our weighings were ob—

tained at an ambient temperature of 24°C rather than 20°C.

If the coefficient of cubical thermal expansion of the

stainless steel is assumed to be:

6 -l
-8 = 51 x 10' deg ,

then at 24°C:

4 3
Du = 7.76(1 — 2.04 x 10‘ )g cm—

Since Du was originally given with only three significant

figures, the correction is certainly negligible.

In order to calculate the air density, measurements

of the barometric pressure, the relative humidity, and the

ambient temperature were required. The standard temperature

for the density of the mercury in the barometer is 0°C.

Since the mercury and the brass scales have different co—

efficients of thermal expansion, the pressure indications

are affected by variations in the temperature. The manu—

facturer of the barometer, Precision Thermometer and In-

strument Company, Philadelphia, supplied Temperature

Correction Tables which combined the corrections for length

0f the scales and density of the mercury. We used Gravity

Correction Tables to take account of the latitudinal varia~

tion of the gravitational constant. The combination of

these corrections usually contributed about —2.9 mm Hg.

Tables supplied with the Sargent hygrometer were

also used to calculate the relative humidity from the
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measured values of the ambient temperature and the depression

(in degrees Farenheit) of the wet bulb thermometer in the

Sargent electric hygrometer. For most of our weighings, the

air density was about 1.16 mg/cm3.

To speed the recording of data and the calculation

of weighing corrections, a simple form was typed on a Ditto

master, and spirit copies were used for all of the weighings.

A completed sample form is shown in Table 5c.

We used the data of Wood and Gray (1952) to obtain

the densities of pure carbon tetrachloride and pure cyclo-

hexane as well as the temperature and composition dependence

of density. At 25°C:

p1CC141= 1.58414 g/cm3

p(C6Hlj = 0.77383 g/cm3 .

The volume of the pycnometer, based on the results

of ten trials with water, CC14, and C6H12’ was taken to be:

v = 25.7523 i 0.0025 cm3

Once the volume was known, the densities of mixtures

of the two organic liquids could be determined by the same

weighing technique. The density versus composition data of

Wood and Gray at 25°C were expressed by the polynomial (from

MULTREG, see Appendix H).

l-

wi = 1.99014 - 0.01505 — ——§%ll5 , (5.4)

Where w? is the mass fraction of CCl4 in the mixture and

D is the density of the liquid in g/cm3. The dimensions of
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Table 5c.——Sample weighing form.

 
 

Date 3—22—68 Time 10:00 a.m.

Run No. -— Pressure, mm Hg 745.4 +742.5

Liquid CCl4 Tdry 77°F; Twet 54°F.

Liquid Temp., °C 25.00 Room Temp., 23.9°C; 75.0°F

Vol. Fraction 1.00 Rel. Humidity, 15%

Pycnometer No. 375 Time in Bath, Minutes 5

Liquid Density (Approx), g/cm3 Du = 1.58414

Air Density, g/cm3 0 = 0.001158

Weight of Bottle and Liquid, g.

65.99890

65.99886 65.99888

Weight of Empty Bottle, g.

25.22384

25.22384 25.22384

Apparent Mass of Liquid, g. Ma = 40.77504

True Mass of Weights Used, g. MS = Ma (1.00001163) - 40.77551

True Mass of Liquid, g.

_ 2 2
Mu - Ms(l — p/7.76)(l + p/Du + p /I3u + ...)

= 40.77551 (.99985)(1.00073)

= 40.79920

Pycnometer Volume, cm3. 25.7549 (calc.)

Liquid Density, g/cm3. 1.58414 (lit.)

Mass Fraction, Wl = 1.0000
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he coefficients are appropriate to cancel those of p. The

tandard errors of the two coefficients in Eq. (5.4) are

4 and 7.25 x 10'4.espectively 5.83 X 10—

When the liquid being prepared was scheduled to

ndergo thermal diffusion in the cell, the following modi-

ications were made in the above procedure. The two com—

)onents were mixed in the 250 ml flask in the approximate

)roportions desired. For example, if the desired mole

fraction was 0.6, then 40 m1 of cyclohexane were added to

L0 ml of carbon tetrachloride. No precaution against

:vaporation was taken at this point. The flask contained

(1-1/4 in. Teflon coated magnetic rod, which permitted

excellent mixing of the two liquids when the flask contain-

.ng them was placed on a magnetic stirrer.

When mixing was complete, the flask was chilled

for a few seconds by placing it in contact with ice. This

)as done in order to insure that the temperature of the

iquid entering the pycnometer was below 25°C. After the

hilling, the flask and its contents were returned to the

tirrer for about another minute to insure a uniform

emperature and composition.

Then the stirrer was shut off, the stopper was

emoved, and about 80 ml of the liquid was drawn through

he Teflon tube into the large syringe. The tube extended

e11 below the surface of the liquid. The tube was re-

laCEd by a needle, and all air was removed from the syringe.
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he first few milliliters of the liquid was discarded, and

en the cell was filled as described in the following sec—

ion. Immediately thereafter, a small quantity of the liquid

as again discarded from the syringe (that portion which was

'n contact with air), and the pycnometer was carefully filled

ithout disturbing the liquid surface or causing an unusual

amount of evaporation. The pycnometer was overfilled so that

the liquid close to the surface, whose composition may have

changed by differential evaporation, was spilled out when the

oottle was closed. The closing, thermal equilibration, and

weighing of the filled pycnometer were the same as described

above. The liquid in the pycnometer and the liquid in the

cell were assumed to have the same composition.

3. Stepjbnytep Procedures

All of the facets considered above, the cell, the

temperature control system, the interferometer, and the

eighing technique come together to fulfill their purposes

'n the actual execution of an experiment, which is most

fficiently described by a series of steps.

1. Turn on all water baths to their desired preset

temperatures at least 12 hours before the start

of an experiment.

2. Switch on the potentiometer at least one hour before

any measurements are to be made.
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3. Dry the pycnometer parts in the oven at 105°C for

at least two hours if not already dry. Handle only

with tongs which have been cleaned in sulfuric acid,

rinsed thoroughly in distilled water, and dried.

4. Check the water levels in all baths and in the beaker

on the stirrer for T—9, and refill if necessary.

5. Refill the small (500 ml) beaker with fresh distilled

water for rinsing the used pycnometer after cleaning.

6. Fill the thermocouple junction reference ice bath and

allow to equilibrate. '

7. Make certain the camera is loaded.

8. If pycnometer has been in oven for two hours remove,

and let cool in air before assembling. Do not touch.

9. Clean the silver plated surfaces of the cell, remov—

ing any oxide coating with silver polish. Rinse

thoroughly with a CCl4 — C6H12 mixture and dry with—

out leaving streak marks.

10. Position thermocouple junctions, each between its

plate and a piece of foil. Hold in place with

electrician's tape, making sure that two or three

inches of the lead wire is in contact with the metal

plates.

ll. Clean the glass cell walls with a CCl4 — C6H12 mix—

ture and Kimwipe tissue to remove all old sealant

and any marks.
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Remove any air bubbles from bottom reservoir by

holding it vertically so that the air exits through

one of the ports at the highest point.

Level the bottom plate by using a bubble indicator

and the four adjusting nuts on the large threaded

rods supporting the cell.

Apply Dow FS Fluorosilicone Sealant to one surface

of the glass cell wall assembly by means of a 10

ml glass syringe and needle.

Position the glass cell wall assembly on the inverted

top reservoir assembly, coated side down, and with

proper alignment of the filling tubes in one corner.

Apply silicone sealant to the upper side of the cell

wall assembly with syringe.

Assemble the cell, fasten retaining nuts with light

pressure only.

Turn on the laser and its timer. Align optics and

focus interferometer On glass plate of camera.

Tilt the cell for filling and provide a Kimwipe to

absorb spilled liquid.

Make sure the bath switch is in the isothermal con—

figuration.

Clean the glassware for solution preparation and

rinse with CCl4 or C6H12'

Of the solution in a 250 m1 Erlen-
Prepare 100 m1

meyer flask with a ground glass stopper.
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Mix the solution with a magnetic stirrer, but not

vigorously enough to aerate.

Assemble the pycnometer, holding it with Kimwipe

tissues.

Prepare the balance by cleaning, levelling, and

zeroing it.

Record the room temperature, barometric pressure

and wet and dry bulb temperatures on a weighing

form.

Using a wire holder, place the empty pycnometer

in the 25.00°C water bath for l or 2 minutes. Re—

move and dry it with two Kimwipes.

Weigh the pycnometer immediately and record weight

on form.

Recheck the temperature of the 25°C bath with the

potentiometer and temperature—emf chart. Reset if

necessary.

Chill the flask containing the sample liquid in the

ice bucket for 30 seconds. Remove and dry with

paper towel.

Return flask to stirrer and mix gently for one

minute.

With a 100 ml syringe and Teflon tube, withdraw

about 80 m1 of sample liquid from flask, keeping

tube well below surface of liquid.
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Exchange tube on syringe for 18 gauge stainless steel

needle and expel all air from syringe.

Discard the 2 or 3 m1 of solution which has been in

contact with air.

Fill cell, using filling tube away from corner,

until all air is removed from sample chamber and

both filling tubes are full of liquid.

Discard the next 2—3 ml from syringe and fill pyc—

nometer rapidly without making bubbles or disturb—

ing the surface.

Insert the pycnometer's capillary top, but do not

cover. Handle only with Kimwipes.

Using wire holder, place pycnometer into rack in 25°

water bath.

While the pycnometer is in the bath, seal the cell

by sliding the glass walls between the plates just

enough to close Off the filling tubes.

Tighten the nuts on the cell with a small wrench,

being very careful to avoid breaking the glass.

Turn on the recorders to monitor the plate tempera—

tures.

Observe the meniscus on top of the pycnometer, and

place the cover on when the liquid is level with

the capillary top.

Remove the pycnometer from the bath and dry with

two Kimwipes as before.
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Immediately weigh the full pycnometer, and record

the weight on form.

Return the contents of the pycnometer and syringe

to the flask for use as a rinsing solution for the

next run. Do not touch the pycnometer.

Place pycnometer parts in acid cleaner (K2Cr207

— H2804) for several hours, then into distilled

water.

Disassemble syringe and cover with tissues.

Let the cell and contents equilibrate for about an

hour. Insulate from room air.

Use laser to realign interferometer if necessary.

Set the experiment timer to 0.00 min.

Take t = 0.00 photo for line spacing and shear

measurements.

Close the bypass valves in the two T—45 baths.

Apply the temperature difference and start timer

simultaneously. Change scale on recorder if

necessary.

Open the bypass valve on the T—9 bath.

Realign the optics at t = 4 or 5 min when the

temperature gradient has been established.

When t = 8 or 10 min begin measuring the fringe

0 with the microscope stage appara-
position at z =

tus. Use intervals of l, 2, or 5 min until t = 0.
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Between measurements use the shutter to prevent

light from passing through the cell.

Check the plate temperatures regularly, and record

the emf's on the charts. Refill the ice bath each

hour.

Take photos occasionally for fringe shape and spac—

ing and note the time on the back of each.

Continue taking measurements of fringe position at

intervals of 10-15 min until t = 50 or 60.

Obtain several steady state measurements for t > 60.

Recheck temperatures.

Reset timer to 0.00 min.

Close the bypass on the T—9 bath.

Remove temperature difference and restart timer

simultaneously.

Open bypass valves on T—45's.

Check recorders; switch scales if necessary.

Realign optics at t = 5 min.

Repeat measurements of fringe position versus time.

Take desired photos. Continue until t > 50.

When finished, shut everything off unless another

run is planned.

Dismantle the cell. Press wire pins through the

filling tube against the glass wall assembly in

order to prevent leakage of the liquid from the

bottom.
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70. Empty the sample chamber with a syringe. Clean

both metal plates and glass.

71. Record all data.

72. Coat and record photos.

73. Punch data cards.

. Discussion of Procedures 

Some of the steps in the procedure enumerated above

equire additional comment. It was found to be necessary

3 turn on the water baths well in advance of an experiment

ven though they reached their nominal temperatures within

n hour. The extra time was needed to allow the bath hous-

3g and insulation materials to reach steady temperatures.

ecause of the common source of cooling water, the three

aths were indirectly interconnected and had to be balanced

gainst each other very delicately whenever a new tempera—

dre range was set. During a series of experiments slight

flanges in the mean temperature and/or the temperature dif-

erence between runs arose primarily because of daily

flanges in the room temperature.

All of the carbon tetrachloride used was obtained

tom the same lot, as was all of the cyclohexane. The

1emicals, in their one pint amber sealed bottles, were

tored in their closed shipping cases, which were kePt in

n exhaust hood. The liquids were exposed to light only

'
'

' an ex eriment.

Jrlng the preparation
for and execution of p
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Each bottle was used an average of six times, and each bottle

Of CCl4 was always used in conjunction with only one bottle

of C6H12° The last 50 to 100 ml of the contents were never

used.

It was convenient to prepare a total volume of 100 m1

of solution, measured before mixing. The cell contained ap—

proximately 35 ml, and the pycnometer required slightly more

than 25 ml. The excess was used for rinsing the apparatus.

The advantage of our weighing technique is that the composi—

tion of the mixture is determined at nearly the same time

that the cell is filled, rather than much earlier or much

later.

Materials with which the chemicals came into contact

were: glass, stainless steel, Teflon, silver, and fluorosili—

cone sealant. Horne (1962) showed that cyclohexane is oxidized

in air to form small amounts of cyclohexylhydroperoxide:

C H
612+0

2 + C6H1102H . (5.5)

COpper and brass catalyze the reaction and consequently were

avoided. The effects of the materials in contact with the

sample mixture were tested by placing only one of the liquids

at a time into the cell and applying a temperature difference

to the pure component. In none of the cases was any thermal

diffusion detectable interferometrically. We then concluded

that no measurable amounts of thermally diffusing impurities

Were present in the mixtures.

 

 



 

 



 

137

The effectiveness of the sealant was checked simply

v watching for the appearance of air bubbles inside the

imple chamber indicating evaporation. Specifically for

1is purpose the cell was left filled on occasion for as

>ng as five days, and no loss of the volatile liquid was

>served. Several times the application of the temperature

.fference caused a net contraction of the liquid in the

:11 resulting in a very small amount of air being drawn

1to the cell. The size of the bubble was less than that

E a drop of water, say 0.05 ml, and its effect, if any,

is neglected. In the later experiments however, at a mean

emperature of 35°C, the increased vapor pressure of the

.quid resulted in the formation of many pinpoint bubbles

1 the surface of the tOp metal plate during filling.

lese were shaken loose before the run was started, but

1ey remained in one corner of the cell. It is doubtful

lat they had any measurable effect because they comprised

lch a small fraction of the total volume and because they

.d not appear in the center of the cell where the measure—

:nts were taken.

By sliding the glass walls slightly between the metal

.ates before tightening the retaining nuts, a better seal

ls obtained, and there could no longer be any diffusion

1rough the filling tubes. In addition, the temperature

.stribution across the upper plate was improved by removing

1e perburbation of the filling tubes from the area of interest.
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The cell was filled while in the isothermal configura—

lon so that the beginning of the experiment could be well

afined. About one minute was required to fill the cell.

Eter that the mixture was allowed to equilibrate for up to

1 hour both to insure a uniform temperature distribution

ad to permit decay of the effects of any thermal diffusion

liCh may have occurred when the liquid came in contact with

1e metal plates during filling. In all of our experiments,

aro time was clearly taken to be that instant at which the

alves controlling the temperature configuration of the cell

are switched.

When the 30° and 35°C runs were begun, we observed

mat the steadiness of the interference fringes was very

ensitive to the air currents passing the cell. This hap-

ened because the temperature difference between the 35°C

iquid and the 23° or 24°C air on the outside was sufficient

3 cause a horizontal heat flux through the glass walls.

hus the temperature distribution of the liquid was upset,

nd a slight tendency for convection was observed. This

as eliminated in subsequent experiments by enclosing the

pace outside the glass sample chamber but between the metal

lates. Strips of styrofoam insulation were held in place

Y black plastic tape. In the Optical path before and after

he cell, standard 1 in. X 3 in. glass microscope slides were

sed to keep out air currents. With the foam in place, the

ir between the metal plates could attain the mean temperature
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30°C or 35°C,resulting in no observable effects due to a

izontal heat flux through the cell walls. The fringe

tern remained very stable.

Because of the cell height used and the value of the

fusion coefficient of the CCl4 - C6H12 mixtures, the re-

ation time 0 was very nearly one hour, but varied slightly

to the temperature and composition dependence of the

ual diffusion coefficient. Consequently at least six

 

rs were required to reach a steady state. Remixing

upied another six hours, so no more than one run could

attempted in a day. Including preparation time, nearly

teen hours of practically uninterrupted attention were

uired to complete a full experiment.

and C HPublished Data for CCl4 6 12

 

The tables in this section summarize the essential

a avilable in the literature for carbon tetrachloride,

lohexane, and their mixtures. Authors and sources are

ed where appropriate. From the results of Wood and Gray

52), shown in Table 5d, we obtain the following expres—

ns related to the density of CCl4 - C6H12 mixtures.

%.=a+bT+cT2+dT3, (5.6)

re T is the temperature in degrees C, and

a = 1.06913 - 0.59379 w + 0.08972 w2
4

1 1 + 0.00027 wl ,
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1e 5d.—-Densities of CCl4 - C6H12 mixtures (Wood and

Gray, 1952).

 

 

 

 

 

1/p = a + bT + cT2 + dT3 ; T in Degrees C.

01 a 1031. 106C 109d St‘g' De)“

4 10 A(1/p)

000 1.25479 1.4362 2.529 5.37 2.6

289 1.11832 1.3106 1.568 9.62 1.0

512 1.01133 1.1940 1.205 10.15 1.5

514 1.01141 1.1803 1.471 8.31 0.9

720 0.92189 1.0855 1.171 8.57 1.2

978 0.84224 0.9768 1.381 5.81 0.8

506 0.75911 0.9080 0.687 8.74 0.7

482 0.71306 0.8456 0.777 7.68 0.5

475 0.71332 0.8479 0.790 7.12 0.9

716 0.66057 0.7946 0.528 7.92 0.9

000 0.61233 0.7294 0.722 5.52 1.4
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0 b = 1.25048 — 0.67403 w + 0.10391 w - 0.00034 w
1

0 c = 1.47942 — 1.11122 w + 0.12049 w + 0.00009 w ,

2

1

2

l 1

4

l I

5

1

0 d = 7.71 .

e have also,

3 Zn p/BT)W = ab + (2ac + b2)T + 3(ad + bc)T2

l

 

+ (4bd + 2c2)T3 + (3cd + 2bc)T4 + 3de5 ,

(5.7)

da db 2 dc 3 dd
= ___ ... ___ + T ——— . 5.88 Zn p/Bwl)T p dwl + T dwl + T dwl dwl ( )

3e relationship which we used to determine the mass frac-

ion of CCl4 in a mixture of known density at 25°C is:

—1

(wl)25° = 1.99014 — 0.01505p — 1.53114p . (5.9)

iis expression was obtained by fitting the data of Table

i to a polynomial for wl in terms of p. The curve fitting

Dutine MULTREG was used. See Appendix H.

Table 5e contains reported values of the refractive

ndices of each of the pure components at various tempera—

ures (in degrees Centigrade) and wavelengths (in Angstroms).

sing MULTREG, we obtained the following expressions.

or CC14: —2

-4

= 1.44299 — 5.754 x 10‘4(T - 25) + 0-00499(A X 10 )

(5.10)

—6

he standard errors of the two coeffiCients are 8.3 X 10

5
nd 4.3 X 10— , respectively.
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1e 5e.——Pure component refractive indices. (Timmermans,

1950, 1959) . (International Critical Tables,

1933)

CC14 C6H12
° 0

°C MA n T,°C 1,2). n

3 6563 1.4599 10.85 6563 1.42910

0 6563 1.46005 13.5 6563 1.42777

0 6563 1.4576 15.0 6563 1.42670

0 6563 1.45461 16.1 6563 1.42626

3 5893 1.4656 20.0 6563 1.4242

0 5893 1.4631 20.0 6563 1.42405

0 5893 1.46305 25.0 6563 1.42134

0 5893 1.46325 44.6 6563 1.41056

0 5893 1.46005 10.85 5893 1.43119

0 5893 1.46044 14.8 5893 1.4292

0 5893 1.4602 15.0 5893 1.42886

0 5893 1.46023 20.0 5893 1.42623

0 5893 1.46026 20.0 5893 1.42615

0 5893 1.46036 20.0 5893 1.4262

0 5893 1.45704 20.0 5893 1.42637

0 5893 1.45732 20.0 5893 1.42630

0 5893 1.45759 20.0 5893 1.4263

0 5893 1.45732 25.0 5893 1.42358

0 5893 1.4576 25.0 5893 1.42354

0 5677 1.45833 25.0 5893 1.4233

5 5460 1.46086 30.0 5893 1.4210

3 4861 1.4726 25.0 5876 1.41825

0 4861 1.46970 25.0 5677 1.42440

0 4861 1.46400 23.5 5460 1.42643

0 4686 1.47405 10.85 4861 1.43668

3 4340 1.4835 13.5 4861 1.43531

0 4340 1.47530 15.0 4861 1.43430

0 4340 1.46954 16.1 4861 1.43381

20.0 4861 1.54157

25.0 4861 1.42878

44.6 4861 1.41785

15.0 4686 1.43762

10.85 4340 1.44116

13.5 4340 1.43972

15.0 4340 1.43870

16.1 4340 1.43820

20.0 4340 1.43592

25.0 4340 1.43310

44.6 4340 1.42214
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12‘

1.41215 - 5.337 x lo'4(T—25) + 0.00395(1 x 10'4)'2

- 5.3 x 10_6(T—25)(l x 10‘4)2 (5.11)

standard errors are 6.6 X 10—6, 1.8 X 10—5, and

X 10_6, respectively.

Table 5f contains refractive index measurements at

C and 6563K for mixtures of carbon tetrachloride and

lohexane. From those reported values we obtain the fol-

ing expression for the composition dependence of refrac—

e index:

+ - 02146 w [1 + 2 68048w2 - 4 3514lw3
nlwl n2W2 ' w1 2 ' 1 ' 1

4 (5 12)- 2.01856wl] , _ .

re I11 and n2 are respectively, the refractive indices of

e CCl and pure C H at the temperature and wavelength

4 6 12

ired.

The few measurements of thermal conductivity which

available for the two compounds are shown below. The

ues for water are also shown because water was used to

ibrate the interferometer. We used the following ex-

ssions for thermal conductivity:

water:

K = 1.429 x 10'3 + 3.5 x 10'7(T-2o) (5.13)
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)1e 5f.--Composition dependence of refractive index in

mixtures of CC14 and C6H12 at 20°C and 6563K.

(Timmermans, 1959)

 

 

 

ch14 wcol4 n

0.00 0.00 1.4242

0.10 0.17 1.4268

0.20 0.33 1.4297

0.30 0.45 1.4326

0.40 0.57 1.4359

0.50 0.66 1.4393

0.60 0.75 1.4425

0.70 0.82 1.4460

0.80 0.89 1.4497

0,90 0.95 1.4535

1.00 1.00 1.4576
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or CCl4:

_ -4 —7
K — 2.47 X 10 - 4.5 X 10 (T—20) (5.14)

or C6H12:

_ —4

K — 3.2 X 10 (5.15)

nits of K are cal/(sec)(cm2)(°C/cm). (From the Handbook

f Chemistry and Physics, 44th ed.)

Table 5g contains measured values of the mutual dif—

 

usion coefficient D for mixtures of CCl4 and C6H12' The

esults of Kulkarni, Allen, and Lyons (1965) were chosen

ver those of Hammond and Stokes (1955). Our values of

1 are not sensitive to the choice of D. We used the fol—

awing expression for the "literature" diffusion coefficient:

D x 105 = 1.481 - 0.201x + 0.0258(T—25) , (5.16)
1

1ere X is mole fraction CC14, and T is temperature in

2 sec -1.

1

agrees C. Units of D are cm

Table 5h summarizes previously reported values of

18 thermal diffusion factor ml at various temperatures

1d compositions for mixtures of CCl4 and C6H12'

The data of Horne are incorrect because no account

is been taken for the temperature distribution in the

eservoirs (Beyerlein, 1968). The results of Thomaes

L951) were probably Vitiated by convection. The data of

>rchinsky have been obtained without correction for the

forgOtten effect," and the diffusion coefficients of

immond and Stokes (1955) contributed a small error'
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able 5g.--Ordinary diffusion coefficient for CC14 - C6H12

mixtures (Kulkarni et al., 1965).

 

 

 

 

Xl D X 105 cm2 sec_l xl D X 105 cmzsec_l

25°C

.01655 1.481 0.6975 1.328

.02510 1.481 0.7958 1.311

.07134 1.476 0.9333 1.295

.1739 1.447 0.9744 1.285

.3002 1.417 0.9853 1.287

.3988 1.393 0.0237 1.768

.4868 1.374 0.4750 1.633

.6053 1.351 0.9764 1-515
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1e 5h.——Therma1 diffusion factor x1; previous results

for m1xtures of CC14 - C6H12'

 
 

m Turner et a1. (1967), T = 25°C

 

‘1 "“1 X1 '“1 1

15 2.16 .724 1.71 g

9 1.83 .730 1.72 5.

9 1 78 .898 1.66 §

0 1.77 .904 1.70

6 1.78 .947 1.65

4 1.77 .9882 1.76

9 1.74 .530 (35.1oc) 1.60

 

m Beyerlein (1968), T = 25°C

_ w _
0.1 0L

1

1.84 .65 1.75

5 1.85 .80 1.71

0 1.88 .95 1.77

 

m Thomaes (1951), T = 26.13°C

"“1 W1 _G1

2.10 .505 1.45

9 1.72 .605 1 38

0 1.80 .78 1.20

75 1.68 .87 1.17

3 1.62 .95 1.08
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1e 5H Continued

 
 

 

m Tichacek et a1. (1956), T = 40°C

W1 '“1 4

.313 1.30

.646 1.27

.879 1.25

 

m Korchinsky (1965), T = 25°C

W1 —0L1

.50 1.82

.80 1.74

 

m Horne (1968), T = 25°C

..a W —
1 G.

1 1

1.86 .495 (28°C) 1.98

0 1.94 .649 1.88

9 1.92 .796 1.81

0 1.88 .946 1.92
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. Calibration of Interferometer
 

The constant A in Eqs. (4.20) is the fringe displace—

ent per unit refractive index gradient. It depends on the

avelength of the light used, the path length through the

all, the amount of shear, the focal lengths of various

anses and the distance between the last lens and the image

lane where measurements are made. Because so many factors

re involved, A is best determined experimentally. The

agical method is to measure the fringe displacement caused

{ a known refractive index gradient. The value of A thus

alculated is valid only for the particular optical con—

Lguration used. If any of the lenses is moved, either A

lSt be remeasured, or some relationship between the values

E A for the two arrangements must be known.

For our calibration we chose as a source of a known

afractive index gradient a layer of water (in the cell)

)ntaining a known temperature gradient. The calibration

(periment consisted simply of filling the cell with dis—

Llled water, letting it equilibrate for about 15 minutes,

1d then applying a vertical temperature difference with

1e warmer temperature on top. The motion of the fringe

attern was observed on the ground glass plate of the

imera. Measurements were made with the microscope stage

iescribed below) and from photographs. Six trials were

ide with water. Sample calculations are presented here.
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Temperature Difference: AT = 3.817 deg C

Cell Height: a = 0.741 cm

Final Temperature Gradient at z = 0:

(dT/dz)0 = AT/a = 5.151 deg cm—l

Temperature Coefficient of Refractive Index at

25°C: (dn/dT)25 = -9.80 x 10’5 deg'1

Final Refractive Index Gradient at z = 0:

(dn/dz)0 = (dn/dT)25(dT/dz)0 = -5.05 x 10‘4 cm"1

Fringe Displacement at z = 0: 15.70 cm

d0(w) = A(dn/dz)0 = 15.70 cm  
A = —3.11 X 104 cm2

The six experiments with water gave

A = —(3.11 t 0.03) x 104 cm2.

Displacement of a lens for focusing changed not

y A but also the fringe spacing r. According to

ngdahl (1963), the apparatus constant A is related to

Y

A = Lr/A , (5.17)

re L is a function of cell length, lens focal lengths,

ar, and various distances. Since the wavelength, cell

gth, shear, and lens dimensions all remained the same

all of our experiments, any change in A due to lens

ement could be calculated from the Change in fringe

cing. For our original calibration, the spacing was

4 cm. Thus, in more general form, we have
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A = —(3.11 i 0.03) X 10 cm . (5.18) 

Methods of Calculation
 

Raw data from each experiment consisted of tempera-

'e measurements and measurements of the interference fringe

(pe and position. All of the information about the upper

l lower plate temperatures was recorded on the strip

(rts. The particular quantities available were the warm—

) up parameters th and tc, the steady temperature differ—

te, the initial, mean, and final temperatures, and

(perature fluctuations.

The parameters t and tc were the same for all of
h

a pure thermal diffusion experiments. The initial tem—

'ature was inconsequential as long as it did not differ

'nificantly (more than 0.5 deg) from the mean temperature.

: applied temperature difference AT and the mean tempera-

e Tm varied for different experiments and were carefully

‘orded. For the purpose of error analysis, a record was

0 kept of temperature fluctuations. The continuously

rating strip chart recorders showed automatically any

perature drifting which would invalidate experimental

ults.

Information concerning the gradient of refractive

ex inside the cell was obtained in two forms: photo-

phs of interference fringes, and direct measurements of

nge displacements. The photographs had the advantage
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providing a permanent record of both the shape and the

sition of the fringes at certain specified times.

The device with which the photographs were analyzed

lsisted of an aluminum block for a base, a clamp to hold

:h photograph in place, and a standard, adjustable,

aduated microscope stage which could be moved in two

sections. A precision magnifier, with a reticle contain-

; several scales, was mounted on a 1 x 3 inch glass slide

Ld in place by a lever on the mechanical stage. A parti-

Lar point on the photograph could be sighted through the

Jnifier, and its coordinates could be read from the

:nier scales of the stage. The distance to a second

Lnt was readily found by comparing its coordinates with

>se of the first. In such a way, the shape of the fringe

3 characterized by a set of horizontal displacement x,

:h corresponding to a certain height n in the cell.

lally, 29 pairs of coordinates were recorded at intervals

0.1 cm vertically. The data were fit (by MULTREG) to the

Lynomial

5 k
x(z,t) = Z dk(t)n , (5.19)

k=0

are the dimensionless vertical coordinate n is related to

3Y

— .31—
(5.20)

“ ’ (1 — s)a '
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here 8 is the amount of shear (0.19), measured from the

hotograph, and

‘1 g n S l - (5.21)

The coefficients dk(t), k = 1,...,5, were obtained

y curve fitting. See Appendile. The five terms of Eq.

5.19) fit the data to within measuring error.

At this point the data consisted of five coeffi-

ients d k = 1,...,5, for each value of time at which a
k'

hotograph was taken. Equations (4.15) and (4.21) provide

he necessary relationships for calculating the various

erivatives of the refractive index from the measured

alues of the d's. In Table Si are representative measure—

ents of fringe shape taken directly from photograph No. 155

or run B5. Figure 5.1 shows a plot of the same data to—

ether with the smooth curve expressed by Eq. (5.19), where

he five calculated coefficients and their respective stan-

ard errors are

 k dk
Std. Error

1 0.492
0.028

2 4.47
0.030

3 0.732
0.053

4 0.566 0.016

5 2.68
0.022

basurements of the fringe shape yield a great deal of in-

?ormation. With them one can calculate simultaneously

he temperature and composition dependences of the thermal

Uffusion factor and the thermal conductivity.
Wlth
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able 5i.——Measurements of fringe shape. Run B5, t = 70.00

min, photo No. 155.

 
 

 

 

T] X,Cm n XIC111 ‘

.686 1.825 -0.049 0.009 g:

.637 1.576 —0 098 0.064 ‘E

.588 1.350 —0.147 0.140 9

.539 1.150 -0.196 0.250 1

.490 0.932 -0.245 0.372

.441 0.732 -0.294 0.502

.392 0.565 —0.343 0.730

.343 0.432 —0.392 0.922

.294 0.311 —0.441 1.097

.245 0.210 —0.490 1.350

.196 0.112 -0.539 1.584

.147 0.052 —0.588 1.900

.098 0.014 —0.637 2.280

.049 0.002 -0.686 2.815

.000 0.000
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Q

l__ J L L . .

0 0.68 1.36 2.04 2.72 3.40

x, cm

Figure 5.1——Plot of measured fringe shape (circles)

showing agreement with fifth-order

polynomial (solid line).
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sufficient sensitivity, such measurements could also permit

calculation of the heat of transport. One requires accurate

refractive index data, however, in order to extract informa-

tion from the fringe shape. As we show below, the refractive

index data in the literature are too poor to be used with any

reliability in measurements of this type.

Since we were interested only in measuring 01 and D,

me were able to use the second type of measurement, that of

fringe displacement at z = 0. These measurements were ob-

tained by means of the same microscope stage mounted directly

on the ground glass plate of the camera. Operated vertically,

the stage held a 1 x 3 inch glass slide which was marked in

slack ink with a cross to be used as a reference point.

Nearly an inch of clear plexiglass separated the glass slide

from the viewing plate on which the fringe image appeared.

Parallax errors were eliminated by requiring simultaneous

alignment of the fringe image, the cross mark, and the re-

flection of the cross mark in the glass plate.

At prescribed or convenient intervals of time, vary—

ing in length from 30 seconds to 20 minutes or more, as

indicated by the timer which was started at t = 0, measure—

ments of the fringe position at z = 0 were taken and re—

corded along with the time. The fringes in this method

were characterized by a set of numbers d0(t). With this

method, many more data points could be measured efficiently,

and once they Were recorded, no further treatment was
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’equired. The dO's were converted to measurements of the

'efractive index gradient by means of Eq. (4.20). Typical

fringe displacement data are given in Table 5j. Figure 5.2

:hows a plot of the demixing data from Table 5j and a curve

>f the form

_ l _ I
(10 — Xl exp ( X2t) + X3 (5.22)

)btained by means of a least squares treatment.

The coefficient do, which depends mainly on

[Bn/Bz)0, assumes a much wider range of values than does

1ny of the higher order coefficients d1, d2..., and is a

>etter source of accurate measurements. Moreover, d0 is

Less sensitive than the other coefficients to transient

refractive index changes due to fluctuations in the metal

>1ate temperatures.

From Eq. (4.20) we have

d =A[c +-];c (5.23)
2 2 1 4 4

0 1 4 1 + B O

as +-6'C5.S +0.0

3 5

By virtue of the solutions T(z,t) and wl(z,t), discussed in

Ihapter III, and the chain rule for differentiation, we

1ave expressions for c k = 1,2,..., in terms of the ex-
kl

perimental tranSport parameters 01, D, and Ki. In particu-

Lar, we have

C1 = (an/3T)wl(3T/Bz)0 + (Sn/3w1)T(3wl/Bz)0
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Table 5j.-~Fringe position d0(t) for run F6.

 
 

 

 

yuan. c0, cm t d0 t d0

)emixing: 130 9.41 20 7.49

10 4.76 140 9.46 25 7.10

15 4.95 150 9.74 30 6.84

20 5.38 160 9.58 35 6.50

25 5.71 170 9.80 40 6.22

30 5.97 180 9.82 45 5.85

35 6.22 190 9.85 50 5.59

40 6.54 200 9.90 55 5.32

45 6.75 212 9.93 60 5.15

50 7.13 222 9.95 72 4.72

55 7.30 250 9.96 85 4.48

60 7.63 252 9.97 98 4.12

65 7.90 266 9.96 112 3.88

71 8.16 280 9.99 128 3.66

75 8.39 300 10.07 155 3.31

80 8.45 314 10.07 170 3.23

90 8.66 364 10.07 192 3.14

100 8.78 Remixing: 212 3.06

110 9.11 10 8.18 230 3.04

120 9.31 15 7.87 256 3.00

273 2.96

—¥

 

fThe reference point is arbitrary.
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= (8n/8T)wl(83T/8z3)0 + (an/8w1)T(B3wl/3z3)0
=3

2

+ 3(8 n/8T2)W (BT/Bz)0(82T/822)
1 0

2 2 2 2

+ 3(8 n/Bwl)T(3wl/8z)0(8 wl/az )0

+ (83n/8T3) (8T/8z)3
W1 0

3 3 3
+ (3 n/Bwl)T(8wl/BZ)O . (5.24)

The N experimentally measured fringe displacements

(ti), 1 = 1,..., N, coincide with the function in Eq.

.23) when proper values are chosen for al, Ki, D, and B.

practice we confined our measurements to values of time

:ge enough so that the temperature distribution was not

tnging. Then, by expressing all of our measurements as

fferences, e.g., d0(t2) — d0(tl), both B and the terms

rolving temperature disappear. Terms involving products

derivatives are certainly negligible, since the maximum

3 -l

Lue of [(Bwl/Bz)0| is about 5 x 10' cm When the

Lution wl = wi + G from Chapter III is inserted where

aded, we obtain the final working equation

d0(t) — gl(t) = Xl exp (-X2t) + X3 , (5.25)

are d0(t) represents the measured values of the fringe

Splacement at z = 0 relative to some reference point

(t )7 gl(t) is a correction
term given by Eq. (3.68);

r

1 the xj, j = 1,2,3, are given by

 



 

 
 



 

(5.26)

is the derivative of the first term of S (Eq. 3.8) with

spect to z, evaluated at z = O, and multiplied by e-t/e.

x2 = 0'1 = wZD/a2 , (5.27)

i

= — - — . .28X3 d0(tr) gl(tr) Xl exp ( X2tr) (5 )

Our method of analysis consisted of fitting the

Lnge position data to a function like Eq. (5.25) and

:imizing the coefficients X1’ X2, and X3 according to

Least squares criterion. (See PROGRAM ALPHA in Appendix

) The thermal diffusion factor 01 was calculated from

a numerical value of X1 by means of Eq. (5.26), and the

iinary diffusion coefficient D was calculated from X2

1 Eq. (5.27).

Besides giving values for both 01 and D, our curve

tting method has the advantage of smoothing the data and

nbining all of the measurements from an experiment to

tain a single set of results and an estimate of the

andard deviation.

Another approach could have been used if it were

t desired to determine D, or if only a few data pairs

vering a short period of time were available. If we had

3d a literature value for D, the time dependence of d0(t)
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u1d have been fixed (since 0 = a2/Dn2). In that case, a

ngle difference d0(t2) — d0(tl) would have sufficed to de—

rmine al.

The time dependence of d0(t) is shown in Figure

2. The tailing off for t < 0/4 reflects the fact that

e infinite Fourier series solution for wi(z,t) does not

nverge rapidly for t < 0/3. If only the leading term of

e series is retained, one gets the function shown by the

tted line. The figure shows clearly that if one wishes

include in his measurements data for t < 0/3, enough

rms of the Fourier series must be retained to insure

nvergence to within some specified tolerance. The dis—

vantage in this case is that the simple form of Eq.

.25) is not obtained.

If, on the other hand, only the first term of the

urier series is retained, one must be certain to use

1y data corresponding to t < 0/3.

Table 5k shows a sample laboratory notebook record

a pure thermal diffusion experiment.
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.ble 5k.——Sample laboratory notebook record of a pure

thermal diffusion experiment.

 

 

.te: 4-23-68

0 _ o =

Ln: F6, CCl4 — C6H12’ xl — .250, wl .406

Th 37.008 1 0.004°C

TC 33.032 1 0.004°C

T 3.976 i 0.008°C

T 35.020 i 0.004°C

m

Tf 34.950 1 0.004°C

A —3.11 - 104 cm2 a 0.741 cm

6 64 min

D 1.4 - 10'5 cm2 sec‘1 8 0.19

:arting Time: 12:57 pm ; 7:03 pm.

(otos: 290

(arts: 105

:marks: After about two hours of continuous operation(,i the

he frame to expan
(ser generated enough heat to cause t

_

~ightly, causing the mirror alignment to change and result

(g in a gradual diminishing in the light beam inten51fiy.t

(e trouble was corrected by making an adgustment inlt e en—

.on on the retaining rings holding the m1rrors 1n p ace.

 

 
 

 



 

 
 
 



 

CHAPTER VI

EXPERIMENTAL RESULTS

LpTabulation of Data
 

Table 6a summarizes the results of our experiments.

iCh run is identified by a code consisting of a letter, a

1mber, and another letter. The first letter (A through H)

anotes the bottles from which the chemicals were obtained.

Lthough the same lot number in every case was used for

1ch of the liquids, a record was kept of the particular

>tt1e used, and the CCl4 from any one bottle was mixed

11y with the C6H12 from the corresponding bottle. Some of

1e early sets of runs (A through D) either were trials

: showed poor temperature control.

The second figure in the code is a number (1 through

1 which denotes the number of the run in the series.

sually, each chemical bottle was used about six times in

reparing new mixtures. The last letter in the code is

ither D or R, corresponding to demix1ng or rem1x1ng,

lichever is appropriate for that tun. Not every number

Spears with both a D and an R. The final two experiments,

3r example, which were conducted with temperature

164
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)1e 6a.——Summary of experiments.

 

1 Date Num Tm wl xl AT DxlO -a

1968

 

5—13 29 293.42 .40731 .25867 4.147 1.304 1.856

5-14 24 293.04 .67369 .51178 4.160 1.228 1.784

5—15 28 293.00 .86107 .75886 4.152 1.230 1.741

5—15 20 293.06 .86107 .75886 4.152 1.234 1.714

 

 

3-21 33 298.22 .18045 .10055 4.066 71.463 1.777

3—7 44 298.14 .27577 .16201 4.040 1.451 1.840

3-7 40 298.22 .27577 .16201 4.040 1.511 1.812

3—8 46 298.14 .27577 .16201 4.064 1.503 1.785

3—8 43 298.22 .27577 .16201 4.064 1.420 1.777

3-6 30 298.20 .34326 .20972 4.178 1.492 1.810

3—6 37 298.27 .34326 .20972 4.178 1.415 1.778

3-5 42 298.26 .39899 .25209 4.194 1.481 1.778

3—5 40 298.26 .39899 .25209 4.194 1.494 1.763

5—10 31 298.16 .40731 .25867 4.077 1.438 1.841

2-5 36 298.16 .41454 .26444 4.058 - 1.754

3—1 31 298.08 .46666 .30760 3.970 - 1.793

3—1 42 298.24 .46666 .30760 3.970 1.437 1.752

2—26 44 298.16 .57738 .40957 4.100 1.402 1.761

1-30 50 298.21 .58439 .41655 4.170 1.316 1.739

2—23 37 298.19 .63477 .46878 4.108 1.422 1.757

2—23 36 298.24 .63477 .46878 4.108 1.385 1.732

5—8 36 298.22 .67269 .51065 4.114 1.424 1.759

5-8 30 298.17 .67269 .51065 4.114 1.375 1.721

2-9 64 298.22 .67465 .51287 4.160 1.331 1.734

3—11 42 298.14 .71725 .56293 4.088 1.388 1.720

3.11 41 298.20 .71725 .56293 4.088 1.374 1.706

2—13 66 298.20 .75781 .61371 4.146 1.326 1.702

2-13 22 298.19 .75781 .61371 4.146 1.396 1.698

3—12 39 298.14 .79224 .65942 4.076 1.377 1.705

3-12 46 298.20 .79224 .65942 4.076 1.301 1.702

298.15 .85922 .75603 4.063 1.340 1.699

42 298.18 .85922 .75603 4.063 1.371 1.722

5~9 38 298.22 .86074 .75835 4.098 1.361 1.683

5—9 28 298.16 .86074 .75835 4.098 1.368 1.653

5—16 32 298.16 .86107 .75886 7.922 1.309 1.691

5-17 29 298.20 .86107 .75886 12.092 1.322 1.728

3—18 44 298.16 .89337 .80967 4.082 1.332 1.682

3—18 31 298.19 .89337 .80967 4.082 1.316 1.678

3—19 29 298.15 .91520 .84568 4.047 1.307 1.643

3-19 30 298.16 .91520 .84568 4.047 — 1.698

5—6 30 303.15 .40669 .25818 3.812 1.536 1.757

5-6 33 303.17 .40669 .25818 3.812 - 1.753

4—30 29 303.10 .67307 .51108 4.015 1.440 1.669

W
W

I

H
1
4

0
1
w J
;

A
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1n Date Num Tm W? X? AT DxlO -al

LR 4-30 23 303.15 .67307 .51108 4.015 1.563 1.668

!D 5—2 26 303.07 .86049 .75797 3.912 1.451 1.633

ZR 5-2 29 303.16 .86049 .75797 3.912 1.520 1.622

ifii 4-23 33 308.21’ .40775 .25902 4.036 1.673 1.713

3R 4-23 28 308.11 .40775 .25902 4.036 1.657 1.702

5R 4—22 37 308.11 .40818 .25936 3.950 1.715 1.682

2R 4-12 18 308.16 .67382 .51193 3.538 1.674 1.627

1D 4-18 26 308.29 .67403 .51216 3.700 1.671 1.623

1D 4—18 28 308.11 .67403 .51216 3.700 1.613 1.665

3D 4-15 33 308.52 .86135 .75928 3.514 1.609 1.589

3R 4-15 30 308.16 .86135 .75928 3.514 1.619 1.569

,___
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lifferences of 8°C and 12°C, were not studied during demix-

.ng because the large temperature gradients produced refrac—

:ive index gradients great enough to deflect the light beam

>ut of the Optical components of the interferometer. For

:hose experiments, the demixing was allowed to continue un-

>bserved until t = 60. Then the temperature difference was

removed, and the isothermal remixing was monitored in the

lsual way. The number of measurements of fringe position

for each run is recorded in the column labelled Num.

E;_Error Analysis
 

Systematic Errors
 

In this section several possible sources of systema—

tic error are discussed. (1) Uncertainties in wi. Our

technique for determining the initial composition w: is based

3n the assumption that the liquid in the filled cell has the

same composition as that in the filled pyconmeter. We tried

to achieve that condition by filling both vessels from the

same syringe with the smallest time lapse possible. Of

course, evaporation occurred during the filling, but we do

not attribute a significant error to that for the following

reasons. First, differential evaporation of the two compo—

nents, acting to change wi, should occur in both containers.

Second, such evaporation takes place only at the surface of

the liquid, and by overfilling we discarded in both cases

that portion of the liquid which was exposed to air during
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lling.* Other systematic errors due to balance inaccuracies

re effectively cancelled out since we always measured mass

fferences. Probably the most significant source of sys-

matic error in the determination of W? was the possible

esence of impurities in the pure reagents. Both CCl4 and

H12 were used without further purification. If, however,

ch had nearly the same amount of impurities by weight,

eir net effect very nearly cancelled in the calculation

‘ the mass fraction. We consider the possible effect of

[purities on thermal diffusion below. An error of 0.01°C

L the temperature of the bath in which the pycnometer was

.aced would lead to a systematic error in W? of less than

x 10—5. We estimate that the effect of any systematic

rror here is less than 0.01% of w? and thus contributes

ass than 0.01% to d1.

(2) Uncertainty in T. The only significant systematic

rrors in T arose when the plate temperatures drifted due

> loss of bath control. Consequently, because those errors

are obvious and large, we discarded the results of those

:periments.

(3) Uncertainties in cell geometry. Because of

1e nature of our cell, the Spacing between the plates did

>t change with AT as it does in thermogravitational columns,

>r example. The cell height depends only on the thickness

3 the glass wall assembly and on the amount of sealant
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tween the glass and the metal. Throughout our experiments

followed the same procedure for cleaning and replacing

e glass, for applying the sealant, and for tightening

e bolts holding the cell together. We found no change in

e height of the cell during the course of our experiments.

. is highly unlikely that any vibrations transferred to the

.11 through its 3000 lb. support were significant.

(4) Impurities. We discussed above the influence

 

‘ 1

tpurities may also thermally diffuse. We tested for such

of impurities present in the reagents. Those initial

L effect by placing one of the liquids, either carbon

:trachloride or cyclohexane, into the cell and applying

temperature difference. The steady temperature gradient

18 established within five minutes. During the next six

>urs, no further change in the position of the interference

:inges was observed except that attributable to temperature

.uctuations. Since the interferometer was capable of de—

:cting composition gradients of the order of l x 10..5 cm-l,

: estimate that any impurities present (including cyclo—

 :xylhydroperoxide and phosgene) contributed less than 0.1%

v the steady state composition gradient and hence less

.an 0. .1% to dl

A second type, accumulated impurities, may be formed

the mixture in the cell. Reactions between the components

the solution, reactions with the metal plates, and re-

tions with or dissolution of the sealant would cause an
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lation of impurities, even after t = 60. We found,

r, that all of our experiments reached a true steady

(to within the sensitivity of the interferometer),

.ting that if accumulated impurities were present they

.ot detectable.

(5) Convection. Previous pure thermal diffusion

.ments have often been questionable on the grounds

:onvective remixing caused incorrect results. We

7e that our isothermal remixing experiments were

.tely free from convection, first, because no tempera—

1ifference existed, and there was no possibility for

:tion to be induced by density inversions due to

)ntal components of the temperature gradient. Second,

:he uninsulated cell at Tm = 35.00°C the fringe pat—

Jas highly unstable and moved erratically. Since the

plate temperatures remained constant to within 0.005°C

: 25°C), we attributed the phenomenon to convection

>anying the horizontal heat transfer from the liquid

a cooler room air. This claim was substantiated when

;ulated the cell with styrofoam. The same experimental

Lions produced stable (non—fluctuating) fringes, be-

the air surrounding the cell was allowed to reach the

Lemperature distribution as the liquid in the cell,

.ating the horizontal heat flux.

Bartelt (1968) is investigating the degree of in-

de required to produce convection due to heat loss
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in through the vertical walls. In the meantime, our

ferometric observations of convection (or the lack of

nd the essential agreement of our results for demixing

emixing techniques lead us to conclude that the demix—

xperiments were also not affected by convection.

(6) Uncertainty in the calibration of the inter-

eter. We chose water for the calibration because the

rature dependence of its refractive index is known

r than that of either carbon tetrachloride or cyclo-

e. Also, the thermal conductivity of water is better

.cterized, and thus the temperature gradient in water

own more accurately. Hence the refractive index gra-

., and consequently the apparatus constant, could be

.fied with the greatest accuracy. The limiting factor

e accuracy of the apparatus constant is the fringe

ion, which is discussed under random errors. There was

stematic change in the apparatus constant, since the

ength, cell length, and lens focal lengths all remained

nged.

(7) Uncertainty in (Sn/8w1)T. The composition de-

nce of refractive index is the only quantity from the

ature which enters directly into the calculation of

hermal diffusion factor. Equation (5.12) was obtained

gh curve fitting, and the random error resulting from

er of the data is discussed below. Any systematic

or bias is small and disappears at wl = 0 and w1 = 1,
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iere Eq. (5.12) reproduces the refractive indices of the

ire components. For wl less than 0.4, n changes slowly

.th increasing wl, and an uncertainty in wl of 0.1% con—

:ibutes less than 0.005% to n. For wl greater than 0.8,

:increases more rapidly with increasing wl, but any sys-

ématic errors must remain small in order for n to approach

ie correct limiting value. We estimate that any such un—

zrtainties contribute less than 0.05% to d1.

(8) Uncertainty in time. An electric timer which

1dicated digitally minutes and hundredths of minutes was

;ed. The combination of its inherent inaccuracy and the

1certainty in starting it and reading it was less than

.01 min. Since we recorded fringe position as a function

5 time, we compare the ratio of those relative uncertain—

Les and observe that the effect of the time uncertainty

1 d1 is about 1% of the effect of the uncertainty in the

:inge measurement, which itself contributes less than 1%

5 d1.

(9) Uncertainty in gl(t). The term gl(t) makes its

argest contribution for very small (t < 0/3) values of

ime and becomes less significant as the steady state is

pproached. Systematic errors in gl(t) are due almost en—

irely to uncertainties in the initial values chosen for

he temperature and composition derivatives of the experi—

ental transport parameters, of which we were confident

Q better than 5% initially. Those values were improved
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iterating the calculations so that they contributed at

a 2% uncertainty in gl(t), which itself influences the

ulated value of d by about 0.1%.1 Consequently, we esti—

that systematic uncertainties in gl(t) contribute less

0.01% to al.

(10) Uncertainty in fringe position. Any systematic

rs involved in the measurement of fringe position due

arallax disappeared in taking differences.

(ll) Neglect of $1, Bp/Bz, and jiz 8(fii — fi2)/32.

‘entropy source term ¢l due to bulk flow is, for a pure

rmal diffusion experiment, zero except for about two-

utes during the warming up period. Sedimentation due

the pressure gradient contributes about 0.1% to the

position gradient due to thermal diffusion and conse-

ntly less than 0.1% to al. The term jiz 8(fil — fi2)/Bz

approximately

3T — — 8T

91337“: _Cp2)8-E’

about 2 X 10—4 at most for very small values of time,

decreases to zero at the steady state. All other

sible sources of systematic error are related to the

ic assumptions we made and justified in Chapter II.

the values of time which we used to calculate d1 they

tainly contribute less than 0.1%. We now show that the

tematic errors discussed above are much smaller than

dom errors which occur.
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Random Errors

 

The formula which allows us to calculate a thermal

diffusion factor, Eq. (5.26), depends ultimately on such

direct measurements as the fringe position, refractive in—

dex, thermocouple emf, and mass of the liquid in a pycnom—

eter. We investigate now the propagation of the uncer-

tainties in each of those direct measurements resulting in

some uncertainty in the calculated value of the thermal

diffusion factor.

Consider a general derived property U which is re—

lated to the directly measured properties X1, X2,...,Xm by

the functional relation

U = U(Xl, X2,...Xm) , (6.1)

which is continuous and differentiable over the region of

interest. The uncertainty 8U in U is obtained from the

formula (Parratt, 1961)

 

2 2

2 EU 2 EU 2

g = ___ 5 + ———- E +...

U (3X1) Xl 3X2) X2

m 2
_ EU 2

‘ .2 ax.) Ex. ' (6‘2)
1:1 1 1

 

where EX is the estimated uncertainty in Xi.

i

In principle, Eq. (6.2) can be applied only to

statistical uncertainties of the same kind. That is, all

8's must be standard deviations, or all must be probable

errors, or all must be 90% confidence limits, etc.
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Furthermore, Eq. (6.2) is valid only if each s is independent.

Our uncertainties are not all independent. For example, an

uncertainty in w: is due in part to temperature uncertainties.

We said in the preceding section, however, that such linkages

are extremely weak, and we now assume that we can use Eq.

(6.2). We express all of our uncertainties, or estimates

thereof, as standard deviations.

Because of the small size of the correction term

gl(t) in our theory, uncertainty in gl(t) has virtually no

effect on the uncertainty in al, which is given by the fol—

lowing expression derived from Eqs. (5.26) and (6.2):

       

2 2 2 2

e s 6 2 e

061 X1
Tm EA Bn/Bwl

"‘7 = ”x— + T + ‘X + —_3n/3w
d l m 1

l

2 e o o 2 e I 2

s w w S

+ AT + 1 2 + J) . (63)

AT Wowo 0

1 2

In order to obtain an estimate of the expected

uncertainty in d1, we estimate the uncertainties in Eq.

(6.3) in the following way.

(1) Uncertainty in X1. The quantity X1 is essen-

tially a measurement of fringe displacement. Neglecting

experimental scatter, which we Consider later, we find that

the uncertainty in X1 is due completely to the uncertainty

in measuring the fringe position. The magnitude of X1 is

abOUt 5 cm, and repeated measurements
of the same stationary

fringe Show a standard deviation of about 0.005 cm. Thus,
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we have

8

i
X

2

_ -6

— 1 X 10 - (6.4)

  

H
(2) Uncertainty in Tm. Random errors in Tm are due

mainly to random fluctuations in the temperatures of the

water baths, and only insignificantly to variations in the

thermocouples, the reference ice bath, or the potentiometer.

We estimate the standard deviation of measurements of Tm in

a single experiment to be 0.0056°C, so that

(6.5)

 

(3) Uncertainty in the apparatus constant. The

uncertainty in A is itself a function of two other uncer—

tainties, that of the measured value for r = 1.74 cm, and

that of the value of r for the experiment at hand. We

estimate the standard deviation of A in the original deter-

mination to be 0.01 X 104 cm2, and that of the fringe

SPaCing r to be 0.01 cm. There results

2
A

(4) Uncertainty in (an/awl)T.

2

= 5 x 10‘6 (6.6)

 

This uncertainty

depends on the value of wi. The standard deviation ob-

tained in the fitting of the data of Table 5f to a poly—

is 4.6 X 10—5. The values of (an/awl)T for

nominal in w:
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O

T = 25°C and A = 6328A and the uncertainties at the three

compositions are

 

2
8

O (8_n_ all/SW1

wl awl T Bn/Bwl

0.25 0.0186 2.80 x 10'6 (6.7)

0.50 0.0284 3.10 x 10‘6 (6.8)

0.75 0.0438 5.20 x 10’6 (6.8a)

(5) Uncertainty in AT. The remarks of paragraph

(2) apply here. We estimate the standard deviation of the

plate temperatures to be 0.004°C. Hence the standard de—

viation of AT is 0.0056°C, and

2

—6

= 2 x 10 . (6.9)

 

(6) Uncertainty in wiwg. This term is also com-

position dependent. There are three possible sources of

. . 0

random error in the determination of wl: the polynomial

in p, the calculated mass of liquid in the pycnometer,

and the calculated volume of the pycnometer. Estimating

the uncertainty in the mass at w? = 0.5 to be 0.00025 g,

and calculating the uncertainty in the volume to be 0.02

cm3, we obtain as upper limits

 

O O 2E

w1W2

O O

0.25
1.5 x 10’6

0 50
1.3 x 10‘6 (6.10)

1.5 x 10‘6
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(7) Uncertainty in 85. The quantity 85 is an analyti—

cal function —02/2a, and its uncertainty is related only to

that of the cell height. From Chapter IV, 6a = .0005 cm,

hence

ES‘ 2

(—§$) = l x lo—8 . (6.11)

0

With the above estimates, Eq. (6.3) gives

‘

0!.

"a; = 15 x 10‘6 (6.12)

or an estimated standard deviation of

(6.13)
—3

€81 _ 4 x 10 lull

Thus, the a priori estimated standard deviation is 0.4%

 
of I01

The expression from which the uncertainty in the

ordinary diffusion coefficient is obtained is

2 2

e 8

D

We estimate that our measurements sh

E

.3) , (6.14)

  

ould give 0 to within

2% or better, so

(as) = 4 x 10'4 , (6.15)

and
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2
E
a _

[—5) = 7 X 10 7 ' (6.16)

Thus,

a 2

(—%i = 4 X lO—4 - (6.17)

We can expect deviations in measured values of D of about

30.03 x 10'5 cm2 sec—l.

The numbers listed in the preceding paragraphs are

estimates. They merely suggest anticipated values for the

uncertainties in the thermal diffusion factor and the ordi—

nary diffusion coefficient. The actual experimental stan—

dard deviations, which are measures of the scatter, must

be calculated from the data. At several different composi—

tions we had enough replicate experiments to calculate

standard deviations for 01 and D. The results of those

measurements are shown in Table 6b.

Table 6b.-—Experimenta1 Uncertainties.

 

 

 

4_—______———————i

 

 

 

 

 

e /D

xl Sal/0cl
D

Observed Estimated
Observed Estimated

0.162 0.0066 0.0039 0.014 0.010

0.511 0.0046 0.0041
0.012 0.010

0.010 0.010
0.759 0.0153 0.0045
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C. Results

In Figure (6.1)—(6.3)(Section D) are plotted the

results of our calculations of the thermal diffusion factor

for CCl4 - C6H12 at various temperatures and compositions.

For the results at 25° we used MULTREG and allowed for the

possibility of a fourth order polynomial in x1. The data

from Table 6a at 25° produced the smallest standard error

when a straight line was fit to them. The composition de—

pendence of ml at 25° is given by

— 0.181X (6.18)—d = 1.82 l

l 7

with a calculated standard error in 01 of 0.022.

We obtained the temperature dependence of ml by

finding the least squares straight line through the data

at four temperatures. The same calculation was made for

three compositions:

= _ = 7 — .0098 T - 25) (6.19)
X]. 0.259 0L1 1. 98 0 ( r

— . _ _— 7 — ,() ()0 T — 25) (6.20)
X1 0.512 . 061 1. 33 0 ( r

— ° — — 0.0102(T
5) u ( I )

X1 0.759 . 061 1.682 — " 2 6 21

The temperature and composition results can be expressed

by the single function

_ _ — — 0.0100(T — 25)
-d1 — 1.74l — 0.181(Xl 0.5)

+ 0.0008(Xl - 0.5)(T — 25) I (6.22)

Where the calculated standard error of 01 is 0.019, and the

CouPling term (XlT) contributes only about 0.1% to dl.
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Similar calculations for the ordinary diffusion co—

efficient were carried out for the composition dependence

and for the temperature dependence. The results in this

case are, for 25°, (units of cm2 sec—l):

105D = 1.48 - 0.187x2 1 , (6.23)

with an uncertainty of 0.03 x 10_5 in D. Measurements of

D at four temperatures for each of three compositions

yielded the least squares lines:

x1 = 0.259 : 1050 = 1.438 + 0.0250(T — 25) , (6.24)

x1 = 0.512 : 1050 = 1.390 + 0.0256(T — 25) , (6.25)

x1 = 0.759 : 1050 = 1.350 + 0.0261(T — 25) . (6.26)

The combined temperature and composition formula is

1050 = 1.388 - 0.187(xl — 0.5) + 0.00256(T — 25)

+ 0.0024(xl — 0.5)(T — 25) , (6.27)

With a calculated standard error in D of 0.03. The results

and their significance are discussed in more detail in the

next section.

D. Discussion

The results of our calculations
of the thermal dif—

fusion factor for the carbon tetrachloride—cyc
lohexane

System at 25°C are presented in Figure 6.1. Figure 5‘2 15

'

is no

a cOmparison with previously reported values. There
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significant difference between our results and those of

Turner, Butler, and Story, who used a flow cell method.

The agreement between the two sets and the internal con—

sistency within each set clearly indicate that the com—

position dependence of the thermal diffusion factor for

CCl4 - C6H12 at 25°C is a linear function of the mole

fraction.

The thermogravitational results of Beyerlein and

Bearman show large scatter, but three of their points coin—

cide with our results, and two differ from ours by less

than their reported uncertainties. Their value for

X1 = 0.32 is definitely incorrect, however. The compari—

son demonstrates that although a rigorous phenomenological

theory (Horne and Bearman, 1968) was used, the results are

not reliable. There is obviously some large random error

producing the observed scatter, which is not attributable

to either uncertainty in w? or the effects of impurities.

The source of the experimental difficulty must be discovered

before the thermogravitational technique can be trusted.

The only other results for the CCl4 — C6H12 system

obtained by means of pure thermal diffusion are those of

Thomaes, which have always been questionable, which for

twenty years cast a shadow over pure thermal diffusion in

general, and which are now discredited. The claim that

Thomaes' results were invalidated by convection is probably

true.
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Horne and Bearman and Korchinsky independently re-

ported values for the thermal diffusion factor of this system

obtained from thermogravitational studies. In both cases

the slope of the 01 vs xl line is close to ours, but their

absolute values of 01 are higher. Such a systematic dif—

ference could, as we pointed out earlier, result from the

fact that Horne and Bearman did not account for the possible

effects of temperature gradients in their reservoirs, and

Korchinsky did not include the forgotten effect, which

amounts to about 1% of al.

Our experimental standard errors of calculated

thermal diffusion factors were, for most experiments, less

than 1% of 01. At 25°C our results can be expressed by

the function

—d1 = 1.827 - 0.181xl , (6.28)

with a standard error of 0.0159.

Ours has been the first systematic study of the

temperature dependence of the thermal diffusion factor for

CCl4 — C6H12' Figure 6.3 shows that the absolute value of

01 decreases with increasing temperature. The function

which characterizes our data for the range 20-35°C is

—d1 = 1.74 — 0.181(x1 1 — 0.5) — 0.0100(T — 25)

+ 0.0008(Xl — 0.5)(T — 25) (6.29)

which has a calculated standard error of 0.019. The single

Point for X1 = .5 reported by Turner, Butler, and Story at
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35.l°C agrees within less than 2% with our value there.

The(stirred diaphragm method) results of Tichacek, Kmak,

and Drickamer at 40°C, however, are 20% lower (in abso—

lute value) than the numbers we obtain by extrapolating

our lines to 40°.

Beyerlein and Bearman (1968) have just shown that

for thermogravitational experiments the thermal diffusion

factor shows a significant dependence on the magnitude of

the applied temperature gradients in the upper and lower

reservoirs. A pure thermal diffusion cell has no such

reservoirs containing the sample liquid, but it is con—

ceivable that the apparatus material or construction might

in some way effect the shape of the temperature distribu—

tion in the liquid. In fact Longsworth (1957) observed

that for his apparatus the temperature distribution depended

on the type of seal present between the glass cell walls and

the metal plates.

In order to determine whether our calculated thermal

diffusion factors would be influenced by the size of the

temperature gradient, we conducted a set of experiments in

which all conditions were identical except AT.

Our results (Figure 6.4) are certainly not compre—

hensive in this area, but they do indicate that there is

very likely no significant dependence of the calculated

value of d on AT. Of course, for extremely small gradients

1

(less than 1 deg cm-l) very little thermal diffusion takes
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place, and d1 is difficult to measure. For large gradients

the terms involving the temperature and composition depen—

dences of mi and D become more important. For very large

gradients the linear phenomenological relations fail.

Two quite different tests showed that convection

was absent except for the unimportant (for our method)

first minute or two of an experiment. In the demixing ex-

periment poor temperature control or poor insulation of

the cell can result in horizontal components of the tempera-

ture gradient which cause density inversions and convection.

Convection, when it occurs, causes remixing of the solution

(in addition tothat due to ordinary diffusion. During a

remixing experiment, however, no temperature gradient exists,

and perturbing convection is much less likely to occur. Our

results for both thermal diffusion factor (Figure 6.1) and

ordinary diffusion coefficient (Figure 6.5) are identical

for demixing and remixing:

 
At 25°,

Demixing: -01 = 1.844 — 0.212 xl , (6.30)

Remixing: ~91 = 1.840 - 0.201 xl , (6.31)

. . 5 2 —1
DemiXing: 10 D, cm sec = 1.493 - 0.203 xl , (6,32)

. . 5 2 -l

RemiXing: 10 D, cm sec = 1.488 — 0.208 x1 , (6.33)

Since there is no convection during remixing, and since the

demixing results are the same as the remixing results, we

conclude that there is no convection during demixing.
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Our experience with cell insulation substantiates

this conclusion. Tests with an uninsulated cell at 35°C

showed heat loss from the warm liquid to the cooler room

air. The horizontal component of the temperature gradient

caused density inversions and resulted in convection which

was visible interferometrically as very unsteady fringe

patterns. When the cell was insulated so that the air

immediately surrounding the glass sample chamber could

reach thermal equilibrium with the glass and the liquid,

the horizontal heat flux was eliminated and the fringe

pattern was steady.

Our calculated values of the ordinary diffusion

coefficient show more scatter than do the results for

the thermal diffusion factor. The apparent reason for

this is that fluctuations in the metal plate temperatures

can change the apparent time—dependence of the diffusion

process (Change the calculated 0 and hence D) without

changing the final value of al. The effect of the tempera—

ture fluctuations is also reflected in standard error of

01. At 25° we obtain the following expression for the

composition dependence of D:

1050 = 1.38 — 0.187(xl — 0.5) . (6.34)
8

where the standard error in D is 0.035, and where D has

units of cm2 sec—l. Present diffusion coefficient results

are plotted, along with results of others, in Figure 6.6.

Our results for D compare quite well with those of
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Kulkarni, Allen, and Lyons and substantiate their conclusion

that the stirred diaphragm results of Hammond and Stokes

are invalid. (Figure 6.5)

Previously, very little information about the tem-

perature dependence of D has been available. Our result

(see Figure 6.7),

105D = 1.388 — 0.187(xl - 0.5) + 0.0256(T — 25)

+ 0.0024(xl — 0.5)(T — 25) , (6.35)

gives at x1 = 0.5,

lOSBD/BT = 0.0256 , (6.36)

which is essentially the same as the 0.0258 of Kulkarni

$3.1-

Dicave and Emery have claimed that the ordinary

diffusion coefficient measured when a temperature gradient

is present.(when thermal diffusion is occurring) necessarily

differs from that measured in an isothermal remixing experi—

ment. According to the phenomenological theories of the

various types of thermal diffusion the diffusion coefficient

D should not change from one type of experiment to another.

Our results indicate that no systematic difference exists

between the ordinary diffusion coefficients measured in

our two types of experiments.

We suggest that perhaps Dicave and Emery's experi—

ments were perturbed by one or more of the following

effects: (1) The phenomenological theory of their stirred
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diaphragm does not adequately account for the remixing due to

the constant stirring; (2) The horizontal temperature gradient

across the porous glass plate resultsin local fluid density

inversions and unaccounted—for convection in the glass disc;

(3) The stirring of the fluid near the disc causes a mixing

flow through a portion of the disc near the surface, changing

the effective thickness of the disc and, consequently, chang—

ing the value of D calculated from a given measurement of

the relaxation time 0; (4) The temperature gradients they

used were large enough to make the (ignored) temperature

derivatives of transport parameters significant. We conclude

that there is no difference between the isothermal and non—

isothermal ordinary diffusion coefficients (provided they

are referred to the appropriate temperatures).

It is interesting to note that the entire class of

stirred diaphragm techniques is suspect since our results

indicate that such methods lead to incorrect answers in

three different cases: (1) The thermal diffusion factors

of Tichacek, Kmak, and Drickamer at 40°C appear to be 20%

too low in magnitude. (2) The ordinary diffusion coeffi—

cients of Hammond and Stokes are only a few percent too

high, but have a parabolic, rather than linear, composi—

tion dependence. (3) We have shown that there is no

difference between the isothermal ordinary diffusion

coefficient and the nonisothermal one, and we therefore

reject the contrary conjecture of Dicave and Emery, which

 

 



 



196

was based on stirred diaphragm thermal diffusion and diffu-

sion experiments.

E. Temperature Dependence of

Refractive Index

While testing for the posSible effects of thermal

diffusion of impurities in the "pure" carbon tetrachloride

and the "pure" cyclohexane, we discovered some new informa—

tion about the temperature dependence of the refractive

index in each case. The theory of the interferometer pre-

dicts (Eq. (4.20)) that a uniform nonzero refractive index

gradient should produce interference fringes indentical to

those for a zero gradient but shifted horizontally by some

fixed distance. What we in fact observed for both CCl4 and

C6H12’ when a temperature difference was imposed vertically,

and a steady temperature distribution developed, were curved

interference fringes of a generally parabolic shape much

like that in Figure 5.1.

Analysis of the refractive index data from the

literature for the two pure compounds showed that only a

linear dependence on temperature was statistically signifi—

cant. Use of those data and the working equations for the

interferometer required that the temperature distribution

inside the liquid be sigmoidal in shape in order to explain

the shape of the interference fringes.

Such a temperature distribution would, in turn, re-

quire either anomalous variations in the thermal conductivity
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of the liquid or some inexplicable apparatus effect. Be—

lieving that the thermal conductivity is a well—behaved

function of the temperature, and that our apparatus caused

no strange effects (since the same temperature difference,

applied to water, gave the expected straight fringes), we

turned our attention to the validity of the reported values

of the temperature dependence of the refractive index for

CCl4 and C6H12'

Since only second order thermal conductivity

temperature dependence affects the value of (dT/dz)0, and

since the effect is less than 0.1°, we have, at the center

of the cell, (dT/dz)0 = AT/a. The coefficients cj defined

by

l j j
j ET-(d n/dz )0 , (6.37)O I)

then become

cj = (4§)j(ajn/3Tj)0 . (6.38)

Thus, to evaluate the temperature derivatives of refractive

index, we need only the cj of Eq. (4.20). For j > 1, these

are directly related to the dj—l which describes the fringe

shape, and therefore second and higher temperature deriva—

tives are obtainable from fringe shape analysis. c1 and

therefore first derivatives are proportional to do, but

do contains an arbitrary reference point and is therefore

unobtainable from a single experiment. However, by per—

forming experiments at two different values of AT and
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determining the shift in do, we may calculate (Sn/8T)0

according to

1

cl(2) - 61(1) = X[40(2) — 60(1)]
ll

1 AT AT

g(Bn/BT)0 [175 - {—5} ] . (6.39)

2 1

In the CC14 experiments, the temperature gradients

were (AT/a)l = 4.534 deg cm_l, (AT/a)2 = 5.108 deg cm_l, the

measured shift in d0 was [d0(a) — d0(l)] = 9.84 cm, the

measured value of the fringe spacing was 1.61 cm, and the

mean temperature was 25°C. By Eqs. (4.20) and (6.39),

25°, 6328A: 33 = —5.96 x 10'4 deg-1 . (6.40)
CC1 8T

4’

-l .

The fringe shape for (AT/a) = 4.534 deg cm was fit by

MULTREG, with the result

5
3 + .04882‘ , (6.41)

l

2 — 0.3412
l

x= 1.454z'

where z' is the vertical distance (in cm) on the photograph.

By Eqs. (6.38) and (4.20):

o 2
c014, 25°, 6328A: (BZn/BT ) = 0 (6.42)

3 3 -6 —3

(3 n/BT ) = —l.00 X 10 deg .

(6.43)

Higher order coefficients
are also calculable from the

numbers in Eq. (6.41).

In the C6H12 experiments,
the temperature

gradients

-1-1 _

were (AT/a)l = 5.177 deg cm , (AT/a)2 — 4.563 deg cm ,
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the measured shift in d0 was [d0(2) — d0(l)] = 9.63 cm, the

measured value of the fringe spacing was 1.62 cm, and the

mean temperature was 25°. The corresponding results are,

0 _ _

25°, 6328A: 39 = _ 5.44 x 10 4 deg l . (6.44)
C6H12’ T

The fringe shape for AT/a = 4.564 deg cm“1 was

'2 '3 '4
x = 0.7632 + 0.05632 + 0.0307z . (6.45)

As above, these lead to

° I 2 2
C6H12’ 25°, 6328A: (8 n/BT ) = 0 (6.46)

(83n/8T3) = —0.516 x 10‘6 deg—3. (6.47)

We conclude from these measurements that the sensi—

tivity of the wavefront shearing interferometer has permitted

us to measure the temperature dependence of refractive in—

dex more precisely than it has previously been measured.

Classical techniques have required measurements of the

absolute refractive index at various temperatures. Analysis

Of the rather scarce literature data yields for 25° and

°
—4 —1

= - . 5 X 10 de and (an/8T) =

6328A, (En/8T)ccl4 5 7 g , C6H12

- 5.47 ><10_4 deg—l. These agree well with our results,

and it is likely that our results are to be preferred, since

we determine this coefficient directly. Derivatives of

higher than first order have previously been undetected

because they are much smaller than the experimental errors

involved. With our method we sacrifice knowledge of the
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absolute refractive index, but gain significant information

about variations in the third and higher decimal places.

Our results require more verification before we can

ake a definite statement about the temperature dependence

of refractive index. We are confident that our numbers for

the first three derivatives are accurate to better than 1%,

but higher derivatives are probably less accurate. We can

conclude that the curved interferometric fringe shape ob-

served for the pure components can be explained by the

temperature dependence of refractive index, and that the

laser wavefront shearing interferometer can be extremely

ivaluable in studies of refractive index. Clearly, detailed

temperature dependence will be most useful in testing

microscopic theories of refractive index.

 

 



CHAPTER VII

CONCLUSION

A . Summary

In the preceding chapters we have set forth, for

the first time, a phenomenological theory of pure thermal

diffusion which is not restricted by traditional mathemati-

cal simplifications. Our use of the series expansion tech—

nique has allowed us to take full account of the temperature

and composition dependences of the transport parameters

involved.

Our solution for the composition of the fluid in a  pure thermal diffusion cell as a function of position and

time contains explicitly the effects of transient vertical

convection and a varying temperature gradient during the

warming up period. By allowing for time-dependent tempera—

ture gradients in our differential equations, we have been

able to match the theoretical boundary conditions to the

ones which are observed experimentally. Consequently,

there is no doubt about when an experiment begins. We have

consistently chosen the zero of time to be just that instant

when the temperatures of the metal plates begin to change.
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We have eliminated an additional source of error by

allowing for a variable thermal conductivity. It has not

been necessary to assume that the temperature gradient in

the fluid has a constant, uniform value.

That all of our measurements of fringe displacement

were made at the center of the cell was not accidental. We

chose to avoid the ambiguities introduced by previous workers

(Gustafsson, 1965) in measuring differences between refrac—

tive index gradients at two positions in the cell where the

temperature gradients may not be the same.

We are convinced of the absence of convection. Both

ithe interferometric observation of induced convection and

the agreement of demixing and remixing results support this

claim.

The laser wavefront shearing interferometer provides

much more information than has heretofore been available

from a single experiment. Its sensitivity and ease of

Operation make it far superior to other types of inter—

ferometers which have been used in the past.

We have also introduced computer technology to the

study of thermal diffusion. Automatic analysis of fringe

displacements makes feasible the use of more data. An

automated data gathering device, when coupled with a com—

puter, can remove the necessity for tedious manual measure-

ments and permit routine analysis of thermal diffusion

experiments.
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Our theoretical and experimental investigations have

combined to eliminate the doubts and questions prompted by

the conflicting reports of previous thermal diffusion ex—

periments. We have shown that when properly executed and

when adequately described, pure thermal diffusion can be

a reliable experimental technique. With respect to numerical results, we conclude the

following:

(1) The thermal diffusion factor of CC1 - C H
4 612 at

25°C is given by

-dl = 1.83 - 0.18X1 ,

with standard error no greater than 1.2%. This result is

in close agreement with the flow cell result of Turner

et a1. (1967). It appears also to be in agreement with  the thermogravitational results of Beyerlein, whose scatter

is rather large. The "pure" results of Thomaes are now

clearly incorrect. The thermogravitational results of

Horne and Bearman and of Korchinsky and Emery appear to

have the same composition dependence as ours, but are a

few percent higher in absolute value. With the close agree-

ment of our results and those of Turner, Butler and Story,

the thermal diffusion factor and its composition dependence

at 25°C are now firmly established.

(2) The temperature dependence of ml is given by

ad
1 _ —l

§T_i — 0.011 deg .

Xl
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(3) Diffusion coefficients for this system are given

with standard error of less than 3%, by

D x 105 = 1.482 + 0.0256(T — 25) — 0.187 xl ,

which agrees well with the results of Kulkarni, Allen, and

Lyons. The stirred diaphragm results of Hammond and Stokes

appear to be incorrect. Further, we have refuted the claim

of Dicave and Emery that diffusion coefficients in thermal

diffusion experiments are different from those in isothermal

experiments.

(4) The temperature dependence of the refractive

O 0

index of CC14 at 6328A is given by (CC14, 6328A):

25°
n = n — 5.96 x 10'4 (T — 25) — 1.00 x 10’6(T — 25)3 ,

while that for C6H12 is given by (C6H12; 6328A):

n = n250 - 5.44 x 10_4(T — 25) — 0.516 x 10'°(T - 25)3 .

The standard error in each of the above coefficients is

less than 2%.

B. Suggestions for Further Work 

It has not been our purpose to collect thermal

diffusion data for a large number of systems. Rather, we

have shown that pure thermal diffusion can be a useful

experimental tool, and that both our phenomenological theory

and our analytical method can be used in routine studies.

Further improvement can be made, however, especially

in the area of temperature control, the element which most
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limits the precision of the method. We have considered re—

designing the cell, eliminating the circulating water, and

substituting sealed chambers which make use of the constant

temperatures of phase changes. The reservoirs then would be

hollow metal blocks lined on the inside with a porous fiber

material. The upper portion of the top reservoir would be

heated electrically just enough to vaporize a portion of

the liquid in the pores of the fiber. Heat would be trans-

ferred by the gas downward to the bottom of the upper

reservoir where the gas would condense at a constant tem—

‘perature determined by the particular substance chosen and

ithe pressure inside the chamber. The newly formed liquid

would move by capillary action up the side walls of the

chamber and back to its original position. By means of

such an arrangement, the required constant temperature

would be maintained at the top metal plate in contact with

the fluid in the thermal diffusion cell.

The heat which was put into the system electrically

would flow downward through the sample fluid and become

available at the metal plate forming the upper boundary of

the lower chamber. There the heat would be used to vaporize

a different liquid at another constant temperature. The

gas produced would carry the heat downward to the bottom

of the lower chamber where the gas would condense on porous

fibers cooled electrically by means of the Peltier effect.
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Heat transfer by convecting gases has been studied

 

(Eastman, 1968). The efficiency of such heat transfer is

much greater than that of pure heat conduction. In tests

described in the above—mentioned article, the effective

heat transfer coefficients were one to three orders of

magnitude larger for the "heat pipes" than for a copper

bar of similar dimensions. If this method can be adapted

to pure thermal diffusion experiments, it should provide

highly stable and uniform plate temperatures. Alternatively,

further refinements in the more conventional method may be

attempted.

A second place for improvement is the method of

collecting data. The main advantage of pure thermal dif-

fusion is that it permits one to make a very large number

of measurements without disturbing the system. We usually

used 20 to 40 measurements of fringe displacement in our

calculations of fringe displacement in our calculations.

We were limited mainly by the time and labor involved in

making each measurement. If some automated measuring device

were available, more information could be obtained from each

experiment. The simplest arrangement would consist of

photoelectric sensors which could continuously monitor the

fringe position and eliminate the need for intermittent

manual measurements.

A more sophisticated improvement would make use of

stop motion photography to obtain hundreds, or even
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thousands,of records of the interference fringes. A neces-

sary adjunct would be an optical scanning device to determine

the shape and position of each fringe and store that infor—

mation in the memory of a computer, where it would be acces—

sible for programmed analysis.

The use of the entire fringe shape would have the

advantage of providing second and higher derivatives of the

refractive index. Consequently, a single experiment could

be used to determine not only the thermal diffusion factor

and the ordinary diffusion coefficient, but also the thermal

conductivity and the temperature and composition derivatives

(of all three quantities.

We mentioned in Chapter VI that the apparent thick—

ness of the interference fringes could be decreased by using

a more intense light source. If the interferometer then  
proved to be sufficiently sensitive, one could, in principle

at least, measure the heat of transport by determining the

thermal conductivity of the initial, uniform mixture and

that of the mixture at the steady state of demixing. This

could be done by watching interferometrically the time

dependence of temperature changes when a temperature dif—

ference is applied to or removed from the test liquid. The

relaxation time for heat conduction is a function of the

thermal conductivity. The difference between the two ther—

mal conductivities is pDQlwlw2dl' which is numerically

about 1% of K.
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Finally, in further work with thermal diffusion, the

possible applicability of new techniques such as radioiso—

tope tracing and nuclear spin-echo methods should not be

overlooked.
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APPENDIX A

A RELATION BETWEEN PHENOMENOLOGICAL

COEFFICIENTS+

Postulate: There exists a scalar, invariant, posi—

tive, bilinear function (the entropy production) defined

by

\)

a = f ga-ga 2 o , (A.1)

d=0

where the Xa form a linearly independent set of vectors.

The vectors Ja are specified uniquely by the scalars QdB

defined by

v

a = Z Qa8§8 , a = O,l,...,v . (A.2)
. B=0

We seek a proof of the theorem

\)

"If E n = 0, then

d=1 d8

0

Z n = 0 , a = O,l,...,v ." (A.3)
B=l d8

Lemma I: The quadratic form q(Y),

T a11 a12 Y1

= Y AY = Y Y , (A.4)
3 ~ ~ 1 2 a12 a22 Y2

 

 

1LThis proof is due to Bartelt (1968).
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is positive (i.e., q 2 0) for any Y if and only if both

2 0 (A.5)

and

— a 0 . (A.6)

a11a22 12 2

Proof:

2 2

q = allYl + 2a12YlY2 + a22Y2

a 2

+3.2) +

a11

 

2
a

- 553) Y: . (A.7)

11

  

q = all Y1 a22

.
2

Thus, if for any Y1 and Y2, all 2 0 and all — a12 2 0, then

q 2 0. On the other hand, if q 2 0 for any Y, and if Y2 = 0,

then

all 2 O .
(A.8)

a12

Furthermore, if Y + ———-Y = 0, then

1 all 2

a a — a2 > 0
(A.9)

11 22 12 ’ '

Definitions:

E
< 10)

B I Q ,
A.

6 d=1 d6

0

C6 2 X “as ; 6 = O,l,...,v . (A.11)

B=l

Lemma II:

\) 1 2
_ + 6 = 0 1 ... v . (A.12)

955 2 B5 2 4(BCS C0) ' I ' ’  
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1299;: For eaCh 6 = O,l,...,V
, Choose

50 = 9 ,

gd = §y ’ a = 1’2’ IV

Y # 6

on 76 6 . (A.13)

Then

V V

O '—

0

6:0 8:0 988%“ §8 '

V V

= Q X o

621 3:1 “B~“ §B '

E E Vo = 0 x -x + 2 0 x -x

B=l B=l “B“Y ~Y 6:1 ”5“Y ~5

B#5 B#6 d#6

V

+ Sglflas¥a°§Y + Q66§6°§6 ,

B#5

E
2

o = B — B - c + Q (X )

8:1 5 6 6 66 y

2

+ {B6 + c<S - 2966} gY g6 + 956(x5) ,

Q
$(B +c )—0 x

,___ 66
2 6 6 66 6

7(135+C6)—§2($6
€£l13€+§256-136-c(S

xY

From Eq. (A.l) and Lemma I we have

Q > 0 ,
(A.15)

66 ’  
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.nd

0
l . 2

Q B — — _ _ _

55 5:1 8 B5 C6 + 966 2(B6 + C6) 966 3 0 -

(A.16)

in other words,

V 1 2
966 21 BE 2 4(B6 + c5) , 6 = O,l,...,v . (A.17)

6:

Theorem:

0

If £1 Qua o , 6 = 0,1,. .,v ,

:hen

E Q = 0 , 6 = 0 1,...,v .

8:]- 68 I

?roof: According to our postulate,

B6 = 0 , 6 = 0,1,. ,0 .

Dhus v

2 B8 = O I (251.18)

8:1

and by Lemma II

or

0

c6 = E 968 = o , 6 = O,l,...,v . (A.20)

 



 

 



APPENDIX B

SIMPLIFIED COMPOSITION DISTRIBUTION  
The following derivation is essentially that of

arlein (1954) and de Groot (1945). The introduction of

;s fractions instead of mole fractions, however, is ours.

     

  
 

Consider the continuity equation (3.6)

* *
8wi - D 8 WE _ dlA (l _ 2W0) 8wl + 8 in p 8wl

8t _ 2 T a l 82 82 82
82 m

OLlA o o (1 2 o)( * _ wo)] 8 Zn p

' Tma [W1(l ' W1) + ' w1 W1 1 —82 '

(B.1)

are 0 > z > a ,

i t > O .

define the quantity R by

3 £4.13 = R AT. , (13.2)
82 a

are R is assumed to be constant. The other symbols are

scussed in Chapters II and III.

For convenience we define the following dimenSion—

as quantities:
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E = z/a

r = Dt/z2

A = RAT

P = -alAT/Tm - (B.3)

lation (B.1) becomes

15 82w: 0 3W1 0 02
F = £2 + [A + p(1 — 2wl)] 35 + pri(l — 2wl) + prl .

Kiliary conditions are (B'4)

1im w: = w? , 0 > E > 1 , (B.5)

r+0

8w* 2

lim [3&1 + p(1 — 2w$)wi + pwi ] = 0 , r > 0 . (B.6)

5+0

5+1

The solution of these equations in a Fourier series

facilitated by rewriting them as functions of a new

riable:

2

wo 1 0

¢ = w* + ————l———— exp —[A + p(1 — 2wl)]E .
1 o 2

(B.7)

3 equation to be solved becomes

82 1 2 o
39L=_1_ —Q —Ap(1—2wl)¢, (B.8)
8r SE2 4

are

Q=A+p(i-2w‘i).
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{iliary conditions are

%Q€
lim 6 = e , o < g < 1 , (3.9)

r+0

1im 8¢ %¢[ Q - (1 — 2w°> 1 = o (B 10)
a 3: 2 1 P ' '

€+l

Equation (B.8) can be solved by the separation of

les technique. When the initial and boundary condi—

are imposed, the solution is seen to be

_ e o _ o .
wi — wl — 2fipwl(l wl)S , (8.11)

we is the steady state term given either by

 

6_ 1 o pH-+N)em>b@ND N- 1 B 2

W1 — 3 W1 [—w—I_ exp (—pN) + N I ( .1 )

_ o
N:l-2Wl7£0,

8 1 1 1 _
= _ - _ — N - 0 B.13)wl 2[1 + 2 p(2 6)], when (

nction S' is given by

2 2 2
oo — k " ]s' = Z kaWk exp [ (B +2 6 :r2 p5 . (3.14)

= (32 + k262)(P + k W )

antities appearing in the summation are

 

 
 



 

 



 

222

B:iflA-pN)
2

l

P = E (A + PN)

(B.15)

Vk = l — (l— 1)k exp P

Wk = B sin kfif + kn cos kfig

Since the complete solution is so cumbersome, it

seful to derive from it some convenient expressions

h, due to the magnitudes of the parameters involved,

still accurate. If we consider the usual ranges of

parameters which determine B and P (yi§., — 0.002 <

O, 3y> — ”I > 0, 20 > AT > 0, 1 > N > — 1), it is

r that B and P will typically lie between the limits

1. Thus the squares of these constants are negligible

ared with kznz. Also, since 0.2 > p > 0, we may, with

. . e

igible error, represent W1 by

6 o 1

w =wl[1+p(1—w‘f) (5 —a>1. (B.16)

sual, we use the formula for the relaxation time

2

E.— (B.17)

Our final expression for the solution is

o 0‘1 0 _ 0 E _ s
w: = wl + T_ ATWl (1 W1) (a+ 113 1 ’

m
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where

_ °° -3 2
s- 2 k vkwkeXP .-. .,2-p.,._.,2,,

k=l

Vk = l - (- l)k exp P,

w = B sin kn[£ + l-] + kn cos kw[3 + l)
k a 2 a 2 ’

and where we have transformed variables so that Eq. (B.18)

is valid for

- a/2 < z < a/2

t > 0 .

 
 





APPENDIX C

CONTRIBUTION OF CONVECTION TO THE

TEMPERATURE DISTRIBUTION

The temperature inside the fluid in a pure thermal

.iffusion apparatus is described by Eq. (3.18):

 

Sq
— 8T _ z — 8T .

00p E "37‘ ' pcp uz 82 , ”I“

a a
—§- < Z < -2- , t > 0 ,

8w
_ 8T * 1 2

Ihere -qz - Ki 5; + pDQl OZ , (C. )

ind the auxiliary conditions are

T (2,0) = T

a t) = ¢ (t) (C.3)

T (2,t) = ¢h (t)

We identify by T* the contribution to the tempera-

;ure due to pure heat conduction, so that the equation

23.T* (c.4)

2
Z

:3
:

8
|
“
?
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.5 equivalent to the equation describing heat conduction

Ln a solid with constant thermal conductivity. To obtain

an approximation to the complete local temperature, we add

a contribution due to convective heat transport when a

temperature gradient exists and when the center of mass

velocity is nonzero. If the temperature gradient is zero,

convective flow will produce no net transfer of heat through

any fixed volume element. When a nonzero temperature gra—

dient does exist, the convective contribution to the local

temperature is proportional to the magnitude of the velocity.

Accordingly, we write

T (2,t) = T* (2,t) + b uz (2,t) %§*(z,t), (c.5)

where b is a proportionality constant which must be chosen

to make Eq. (0.5) satisfy Eq. (C.1). When Eq. (C.5) is

inserted into Eq. (C.l) and Eq. (c.4) is subtracted, there

 

  

remains

8T* 2 b u §__(§Tf]= K1 82T*

b 82 8t 2 t 82 pcp 822

2
8 u 8n 2 * 8 T*

+b3_.£* Zz+bazzag+bu

z 82 82 82 (C.6)

82T* 8uz 8T*_ u b 32* 8uz

+ 2 82 _ uz 82 82 32

82

82T*
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the quantities in Eq. (C.6) are evaluated at z = 0

t = t0 (i.e., when uZ = uOO) we can make use of the

tional relations

 

 

' 0

8u
z

—__ = .7[32 ] 0 I (C )

[82uz] 24 u00

2 _ 2 ’

82 Orto a

stain

-l

2 2

a [[3, av) 24 Ki (83T*/8z3) + u (a T:/8z )]

‘_ n_ ' —' 00 (8T782)
t 82 a2pcp (8T*/8z) 0 '

z:

t=t

0  
1 is very nearly

9
)

D 0
|  b = __R _ ((1.8)

N .
b

7
5

|
-
"





APPENDIX D

TEMPERATURE DISTRIBUTION DUE TO HEAT

CONDUCTION DURING THE WARMING UP PERIOD

The conductive part T* of the temperature of a

d in a pure thermal diffusion cell during the warming

eriod, when variations in the thermal conductivity

unimportant, satisfies Eq. (3.20):

8T* K' 3211* (13.1)H

 

auxiliary conditions

T* = 6 (t) , when 2 = 0

c

T* = 6h (t) , when 2 = a (D.2)

T* = Tm , when t = 0 .

(D.3)Le K = Ki/(pEb).

 

+Note the limits on the variable 2. A transforma—

to (— a/2 < z < a/2) is made at the end of this section.
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L *=

et T r1 + r2 ' (D-4)

are

8r. 82r
1=K 1

at 2 r 0<Z<a I (D.5)
82

t > 0 ,

r1 = O , when 2 = O ,

r1 = 0 , when 2 = a , (D.6)

r1 = Tm , when t = O ,

d

8r 82r
2 _ 2

51?. _ K 2 , O < 2 < a , (D.7)

82

t > 0 ,  
r = ¢ (t) , when 2 = 0 ,
2 c

r2 = oh (t) , when 2 = a , (D.8)

r2 = 0 , when t = 0 .

The solution for rl is well known to be (see, for

ample, Carslaw and Jaeger (1959), p. 96)

4T w

_ m l . (2n+1)nz _§ 2 2
rl — -F_ n£0(2n+l Sln [———-?;———]exp[ a2(2n+1) n t]. (D.9)

To obtain r2, we use Duhamel's integral formula

.rtels and Churchill, 1942) which expresses the solution

' boundary tempeatures 6C (t) and ¢h (t) in terms of the

ution to the same problem with constant boundary
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:emperatures Tc and Th. The formula, as stated in Carslaw

1nd Jaeger, p. 30, (1959) is: "If V = F(x,y,z,l,t) repre—

sents the temperature at (x,y,2) at the time t in a solid

Ln which the initial temperature is zero, while its sur—

Eace temperature is ¢(x,y,z,1), then the solution of the

problem in which the initial temperature is zero, and the

surface temperature is ¢(x,y,z,t) is given by

t

V =5 E F (XIYIZIAIt " A) d>"" (D'lo)

Q
)

In this case the temperature at time t, when the

temperature through the fluid at t = A is zero, and the

plates are kept at 61 (A) and 62 (A) from t = A to t = t,

is given by

z 2 m 1 . nwz _ 2 2 t- 2

r2 = ¢1<AJ {1’576 2 H Sin ‘5‘ 8X9 [ Kn " ( A)/a
n=1 (p.11)

2

% cos (nn) sin BEE exp[—Kn2 %(t-A)/a ]

H
M
S

+ 62(1) £472,-

n 1

Hence, when the plate temperatures are ¢C (t) and

¢h (t), we obtain

t a 1 (“LP (2 t-mdx, (v.12)
r2=£ [¢C(A)3-EF1(ZIt‘M ‘6. 8t 2 '

where

2 m 1 - nwz _ 2 2 _ 2 p.13)
Fl(z,t—A) = l - g ‘ F nil H Sln ‘3“ exp [ Kn N (t A)/a ](
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d where

z 2 m 1 .

(z,t—A) = a + E 2 H cos‘n N)51n £15 exp

n=1

2 2

[-Kn n (t—A)/a2] . (p.14)

(us,

2k ”
r2 = —§ZT 2 n exp [——Kn21r2 t/a2 ] sin nwz I , (D.15)

a n=1

1ere

t

I = £ exp [KnZWZA/az] [¢C(A)-(—1)n¢h(1)] dA . (D.16)

The final solution for T* is the sum of Eqs. (D.9)

1d (D.15). This solution, however, was obtained for

< z < a. In order to express the equivalent solution

3r —a/2 < z < a/2, we replace 2 in the above equations by

z + a/2) so that now —a/2 < 2 < a/2. The result is

T* = r1 + r2 , (D.17)

4T 2 l

L = ——E n20 _2HIIT sin [(2n+1)1r[5 + 3)] exp

[—K(2n+l)2fi2t/a2] , (D.18)

2= 2kn Z n sin [n W (a + %) I exp [_Kn2,2t/a 1, (0.19)

I= ét exp [knzfizl/azl [6cm - (—l)n¢h(>.)] dx . (p.20)

 

 



 

  



APPENDIX E

PERTURBATION SOLUTION FOR THE STEADY

TEMPERATURE DISTRIBUTION

At the thermal steady state, defined by the vanishing

if (ET/3t), the temperature must satisfy the second order

Lifferential equation (3.25):

m
u
m

/
\

N /
\ l

‘

g—Z[K (2) 511—3] = o , 3 (E.l)

1nd the boundary conditions:

T (a/2) = Tm + AT/Z ,

(E.2)

T (—a/2)==Tm - AT/Z .

The purpose of the present treatment is to take

.ccount of the temperature and composition dependences of

hermal conductivity. We use the following perturbation

xpansion:

2 2 n n

K = K0 (1 + eklz + e kzz + ...+ e knz + ...) , (E.3)

K0 is the value of K

t the center of the cell, and e is an ordering parameter

hich defines the quantities kn.

nich does not vary. We next substitute Eq. (E.3) into

E- (E.l) along with the formal solution
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2

T=T0+eTl+eT2+..., (E.4)

in which the subscripts denote the order of the solution.

The zeroth order solution is obtained by neglecting all

terms containing 8. Integration yields directly

2 + c6 . (E.5)

The integration constants c0 and c6 can be found by imposing

the boundary conditions

To (a/2) = Tm + [2LT = Th , (B.6)

T0 (—a/2) = Tm — 5233 = TC

It follows that

CO = KO AT/a , (B.7)

c6 = Tm . (B.8)

Thus, the zeroth order solution is, as expected,

T0 = Tm + g: z . (E.9)

We repeat the procedure, this time retaining only

terms with powers of 8 less than two. The equation which

immediately appears is

N O

9
J
l
>

l
a I
-
‘

l

k
fl
N

x

T + k1

O
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sccording to Eqs. (E.2), (E.4), and (E.6), the boundary con—

litions are

 

 
  

Tl (a/2) = 0 ,

(E.ll)

T (-a 2 = 0 .l /)

Dhus,

Cl=0 I (13.12)

2

. _ AT a

cl — kl 3— § , (B.13)

and the first order solution is

2 2
_ AT a _ z

Tl—kla—[-§ §)' (E.l4)

Dhe quantity k1 is given by

dw
3£n K dT 8£n K 1

k=( JH+[ H—Jr1 ST W dz 0 awl T dz 0

l

rhere the zeroth-order solutions for (dT/dz)0 and (dwl/dz)0

must be used.

Higher order solutions for the steady tempeature

[istribution are obtained by successive iterations of

.he above procedure. The complete solution through terms

if order 82 is

 



  



(E.lG)

3

+ 82 (k2 - ki) [——— - g ] + 0 (e )

erms of order s3 and greater involve third and higher

erivatives of thermal conductivity and products of

erivatives which are extremely small. At the thermal

teady state the correction f(z) to the temperature gra—

ient is

dT AT AT 2 2 a2 2
f(Z) = a; — r = a— ["€klZ + 8 (k2_kl) (TE " Z )1

3 (E.l7)

+ 0 (e )

t is obviously advantageous to make all measurements at

L r 0, since deviations of the temperature distribution

:here are of second and higher order.

 

 
 



 

 

  



APPENDIX F

PERTURBATION SOLUTION FOR THE STEADY

STATE COMPOSITION DISTRIBUTION

At the staedy state of a pure thermal diffusion

experiment the diffusion flux jlz vanishes, and we have

from Eq. (3.34)

dw a w w

21 _;_£_§ 93 (F.l)
T dzd

Do take account of the variation with temperature and

:omposition of the quantity (alwlwz/T) we introduce the

expansion

0L W W 0°

LE E S = 2 Sn 3 Zn I (F.2)

where e is an ordering parameter, and where

an = $7 (dnS/dzn)0 (F.3)

By the chain rule for differentiation we have, for

example,

d

S = [ii] £2 + [Bi ] [ail] , (E.4)
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where the zeroth—order solutions for (dT/dz)0 and (dwl/dz)0

must be used. The temperature gradient is given by Eqo

(E.l7):

dT _ AT 1 2 2 a2 2 3

3E - g— [ - eklz + e (kz‘k1)(I§ — z )1 + 0 (e ). (E.l7)

Due to the nature of the perturbation approach,

the formal solution is

+ e w + ... , (F.5)

where the second subscripts denote the order of the solu—

tion.

A sufficient boundary condition for Eq. (F.l) is

f 2 w dz = a w0 , (F.6)

which merely expresses the fact that the average composi—

tion does not change from w? during an experiment.

As in Appendix E we first neglect all terms con—

taining e explicitly. We obtain

A—T
(F.7)

wl,0 $0 a z + cO .

The value of the integration constant follows from Eq. (F.6)

and

3

wl,0 dz a wl .  
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The zeroth order solution is

_ O . AT
wl’0 — wl + 80 a— z , (F.9)

where

o O

s = £3$19_Yl_ii:3li_ (F 10)0 T l 0

Repeated application of the same procedure through

successively higher orders of 6 gives

  

2 2
_ 0 AT _ z _ a_

wl-wl+a—{[soz+€(sl klso) 2 24 ]

2 3 3 3
2 2 a z z a _ z

+ E [50(1‘2'1‘1) [—12— ' § ' E] <31k1+32) 3 J}

+ 0 (e3) (F.ll)

Higher order terms involve third and higher derivatives of

K and S and products of first and second derivatives which

are extremely small.

 
 



  



APPENDIX G

THEORY OF THE WAVEFRONT

SHEARING INTERFEROMETER

The wavefront shearing interferometer of Bryngdahl

(1963) provides a comparison of the wavefront with a sheared

Lmage of itself. The method utilizes birefrigence inter—

ferences. We can describe the vertical component of the

light wave entering the cell by a transversal electric

field strength amplitude vector referred to the basic sys—

tem of vectors E and n and to the object plane by

u = (a + n) (A/fz‘) eiky , (G.1)

where k = Zw/A , X is wavelength, and A is the scalar

amplitude.
If we denote the refractive index of the sub—

stance in the cell by n(x,y,z) and the thickness of the

cell by h, then the optical path through the cell will be

W (x,z) = [h n (x,y,z) dy .
(G.2)

O

The amplitude vector of the light leaving the cell, referred

to the object plane, will therefore be

((5.3)

U = (g + n)(A//2) exp {ik[W (x,z) + y0]} ,
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where y0 is an arbitrary reference plane.

Next, the light passes through a lens system, the

purpose of which is to effect a scale reduction in order

to keep down the dimensions of the beam Splitters. Denoting

the reduction factor by r, we have to introduce a new func—

tion

w(rx,rz) = W(x,z) , (G.4)

and we can then write the amplitude vector of the wave

entering the first beam splitter Ql in the following way,

as referred to the first image plane:

9 = (x + z) Eééa exp {ik[w(x,z) + yl]} , (G.5)

 

since the laser light is polarized in the E direction.

New constants yl,y2,y3,... are introduced after each trans-

formation.

In passing Ql’ the component of U in the x direc—

tion is displaced downward by an amount % b1 and becomes

polarized in the z direction, while the component of g

in the z direction is displaced upward by the same amount

See Fig.(4.5). Afterand polarized in the x direction.

Ql we have, therefore, the following amplitude vector,

also referred to the first image plane,

9 = §(A/r/2) exp {ik[w(x,z + bl/2) + y2 + x/ZI} (G 6)

+ y(A/r/2) exp {ik[w(x,z - bl/Z) + Y2 ' X/21}
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Referred to the second image plane, the light leaving Ql

is described by the vector

mb

9 = §(A/rm/2) exp {ik[V(x,z + —§l) + y3 + x/Zl}

b ((5.7)
m

+ y(A/rm/2) exp {ik[V(x,z — —;2L-) + y3 - x/21}-

We have introduced the quantity x, the path difference be— ?

tween the two sheared wavefronts, related to a possible

tilting angle of the beam Splitter. When we refer to the

second image plane, we must introduct the magnification

factor m and the new function

V(mx,mz) = W(x,z) . (G.8)

On passing the second beam splitter Q2, there is

introduced first a lateral displacement and second an

optical path displacement A according to

E G.9l d cos w , ( )

 
where d is the distance between the focal plane of the

lens L5 and the second image plane, and w is the angle

between the crystal surface normal and the entering ray.

The expression for the wave emerging from Q2,

referred to the second image plane is
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_ b mb

9 = x(A/rm/2) exp {ik[V(x — f; , z — —§£ )

+ A/2 + Y4 - x'/21} + y(A/rm/2) -

b mb

- exp {ik[V(x + 2; , z + -§£)

A/2 + Y4 + x'/2] (G.lO)

After the beam passes the polarizer, the ampli—

tude is

U=g~ (x+z)//'2—

U = (A/2rm) exp {ik[V(x - bl/Z, z — mbl/Z)

+ A/2 + y5 — X'/2]

+ (A/2rm) exp {ik[V(x + bl/2, z + mbl/Z)

— A/2 + y5 + x'/2]} . (G.ll)

Hence, the image intensity becomes

I = [U12 = % (gm)2 (1 + cos ¢)- (G.lZ)

where

¢ = k[V(x + bl/2, z + mbl/2) — V(x - bl/2, z — mbl/2)

- A + x'] .

Destructive
interference

is obtained for ¢ = an

(n — 0,1,...) with crossed polarizers.
The expression
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for A can be written

A = bl g [1 — 0 (w2)] , (G.l3)

and the equations of the curves of constant intensity

(constant ¢) can be written

x = dVé (x + 83 bl/2, z + 84 mbl/Z)

I

+ dez (x + 63 bl/2, z + 64 mbl/Z)

h 2
— 51 [E- x'] + x 0(1)) , (G.l4)

where — l < 03 < 1 ,

and — 1 < 64 < 1 .

If the substance in the cell has a one—dimensional

refractive index gradient (n constant in the x and y direc—

tions), then Eq. (G.l4) becomes

2 H

X = de' (z) + 64 (m dbl/2) V (z + 9466 mbl/Z)

—§ HE) - x'1+ 0 (V) , (G.lS)
l

where — l < 64 < l

O < 66 < 1

Now,

V(z) = w (E) = w (E?) ,
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whence

V' (z) = £— W'(z—) (G 16)um mr ' '

and

n l I! Z

v (z) = <—2-=—2-) w (IE).

m r

Thus, the final equation is

db

..d l2 l n z l

X‘EW(In—r)+94—2W ‘5?"94962—5’
2r

d 2

—5 (g-x')+xo(w) , (G.l7)
l

where — l < 64 < l ; O < 66 < 1

According to Eq. (G.2),

W(z) fh n (z) dy.= hn(z) , (G.l8)

0

for a one-dimensional variation in the refractive index.

Thus, we obtain the equations

A“ (c.19)X = A (A?) + B r

where now

Az'= bl/r ,
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and

d

B=-g [¢/k)-x'1-

l

The quantity 2' = g? is the height coordinate in the object

plane, while 2 refers to the second image plane.

It is seen that an increase in ¢ of 2n , which means

passing from one interference fringe to the next, changes x

by the same amount as a change in An/Az' amounting to A/h.

As appears from the above derivation, precise adjust-

ment of the crystal plates is not critical. This makes the

method very easy to adjust and insensitive to mechanical

vibrations.

It is apparent that there are two sources of sys—

tematic error. One is the term

n . 2

64 dblh n (z + 6466 bl/2r)/(2r ) ,

in Eq. (G.l7), which is the difference between the differ—

ence quotient An/Az' actually registered by the method and

the corresponding differential quotient dn/dz' which one

wishes to obtain. The magnitude of this error can be re—

duced at will by making Az' = bl/r sufficiently small.

In practice bl is fixed and r chosen to optimize sensitivity

and accuracy.

The second source of error, inherent in the term

2

0 ($2)” is very small. With suitable dimensioning, w < 10 ,

—4

and the relative error in x will be below 10 .

 

 
 



 

  



APPENDIX H

SUBROUTINE MULTREG

MULTREG is a FORTRAN subroutine, written by J. L.

Bartelt (1966), which can be used to obtain a polynomial

expression for a number of experimental data points. One

particular advantage is its multidimensionality. For

example, when provided with a set of measured refractive

indices of a substance obtained at various temperatures,

concentrations, and wavelengths, the subroutine permits

calculation of the coefficients of various powers of the

temperature, concentration, wavelength, and cross terms

appearing in a prescribed polynomial.

The method consists of a multiple regression

analysis, the theory of which is described by Ralston and

Wilf (1960). The subroutine can be called from a FORTRAN

program by means of the statement

CALL MULTREG (X,W,N,M,NPLUS,A
,SIGMA,B,SB,Y,DE

V,IPRINT).

The parameters which must be specified are:

(l) N = the number of independent variables plus

one dependent variable,

(2) M = the number of data pairs,

(3) NPLUS = N + 1,  
245
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(4) W(I) = 1.0, I = l, ..., M,

(5) X(N,M) = the variables arranged so that

X(J,K), J = l, ..., N - l, are independent

variables, and X(J,K), J = N, are dependent

variables.

(6) IPRINT = a parameter equal to zero if printing

of intermediate results is not desired and equal

to unity if it is.

For example, to obtain a fourth order polynomial expression

in terms of temperature for the density of a fluid from 20

data pairs, write

X(l,K) = T(K)

X(2,K) = T2(K)

x(3,K) = T3(K)

X(4,K) = T4(K)

X(5,K) = p(K), K = l, ..., 20.

In this example,

N = 5

M = 20,

NPLUS = 6.

When MULTREG is used, the following dimension

statement must appear in the calling program:

DIMENSION X(N,M), W(M), A(N + 1, N + 1),

SIGMA (N + 1), B(N + 1), SB (N + 1), Y(M), DEV(M),
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where the correct numbers are inserted for the letters.

When MULTREG is to be called more than once in the same

main program, the two—dimensional arrays, X and A, must

be the same size for each calling, i.e., N and M must

not change under any one dimension statement.

The output of the subroutine consists of a list

of the coefficients of the variables X(J,K), J = l, ...,

N — 1, plus any constant term which appears in the poly—

nomial. Also available are calculated standard errors

of each of the coefficients.

 
 



 
 



 

Listing of MULTREG
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SUBROUTINE MULTREG(X,W,N,M,NPLUS,A,SIGMA,B,SB,Y,DEV,IPRINT)

DIMENSION X(N,M),W(M),A(NPLUS,NPLUS),SIGMA(NPLUS)

DIMENSION B(NPLUS),SB(NPLUS),Y(M),DEV(M)

FORMAT(lOX,*CONSTANT*,20X,*VARIABLE*,20X,*COEFFICIENT*,

L20X,*STD ERROR OF COEFF*)

FORMAT(lHO,5X,El4.6)

FORMAT(36X,Il4.l6X,El4.6,l6X,El4.6)

FORMAT(lH-,45X,*PREDICTED VS. ACTUAL RESULTS*,/,24X,*OBS. NO.*,18X

l,*ACTUAL*,23X,*PREDICTED*,21X,*DEVIATION*,/)

FORMAT(26X,l4,l6X,El4.6,l6X,El4.6,l6X,El4.6)

FORMAT(* VARIABLE LEAVING =*,13,/,* F LEVEL =*,El4.6)

FORMAT(* VARIABLE ENTERING =*,13,/,* F LEVEL =*,El4.6)

FORMAT(* STANDARD ERROR OF I =X,El4.6)

NLES=N—1

Fl=0.0

E2=0.0

AMIN=l.0E200

TOL=0.000l

DO 1 I=l,NPLUS

DO 1 J=l,NPLUS

A(I,J)=0.0

DO 100 I=l,M

A(N+l,N+l)=W(I)+A(N+l,N+l)

DO 100 J=l,N

A(N+1,J)=A(N+1,J)+/(I)*x(J,I)

DO 100 K=J,N

A(J,K)=A(J,K)+W(I)*X(J,I)*X(K,I)

DO 101 I=l,N

AN(+1,I)=A(N+1,I)/A(N+1,N+1)

DO 301 I=l,N

DO 301 J=I,N

A(I,J)=A(I,J)=A(N+1,N+l)*A(N+lr1)*A(N+lrJ)

DO 102 I=l,N

SIGMA(I)=SQRT(A(I,I))

A(I,I)=l.0

DO 103 I=l,NLES

ID=I+l

DO 103 J=ID,N

A(I,J)=A(I,J)/(SIGMA(I)*SIGMA(J))

A(J,I)=A(I,J)

PHI=A(N+l,N+l)=l.O

VMIN=l.0E200

VMAx=0.0

NMIN=O

NMAx=0

A(N,N+l)=SIGMA(N)*SQRT(A(NIN)/PHI)
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PRINT 211,A(N.N+1)

IE(A(N,N+1).LE.AMIN)31.30

Fl=FX + TOL

F2=FX +TOL

GO TO 32

AMIN=A(N,N+l)

DO 104 J=1,NLES

B(J)=0.0

I=l

IF(A(I,I).GT.TOL)7,l4

A(I,N+1)=A(I,N)*A'N,I)/A(I,I)

IF(A(I,N+l))ll,l4,9

IF(A(I,N+l).GT.VMAX)lO,l4

VMAx=A(I,N+1)

NMAx=I

GO TO 14

B(I)=A(I,N)*SIGMA(N)/SIGMA(I)

SB(I)=A(N,N+l)*SQRT(A(I,I))/SIGMA(I)

IE(ABS(A(I,N+1)).LT.ABS(VMIN))13,14

VMIN=A(I,N+1)

NMIN=I

IF(I.EQ.NLES)l6,lS

I=I+l

GO TO 6

BO=A(N+l,N)

DO 105 I=1,NLES

BO=BO-B(I)*A(N+1,I)

IF(A(N,N))500.l9

FX=ABS(VMIN*PHI/A(N,N)

IF(FX.LE.F2)18,l9

K=NMIN

PHI=PHI+l.0

PRINT 209,K,FX

GO To 21

IF(A(N,N)-VMAX)400,401

Fx=VMAx*(PHI-1.0)/(A(N,N)—VMAX)

IF(FX.GT.F1)20,22

- IF(PHI—l.0)20,22

5

3

3

9

K=NMAX

PHI=PHI-l.0

PRINT 2lO,K,FX

DO 113 I=1,N

DO 113 J=1,N

IF(I.EQ,K.OR,J.EQ,K)GO
TO 113

A(I,J)=(A(K,K)*A(I,J)-A(I,K)*A(K,J))/A(K,K)

CONTINUE

DO 313 I=1,N

DO 313 J—1,N

IF(I.NE,K,AND,J,EQ,K)108,109

A(I,K)=—A(I,K)
/A(K,K)

IF(I.EQ,K,AND,
J.NE,K)110,313  
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A(K,J)=A(K,J)/A(K,K)

CONTINUE

A(K,K)=l.0/A(K,K)

GO TO 5

DO 115 J=1,M

Y(J)=BO

DO 114 I=1,NLES

Y(J)=Y(J)+B(I)*X(I,J)

DEV(J)=X(N,J)—Y(J)

PRINT 201

PRINT 202,BO

DO 117 I=1,NLES

IF(A(I,N+l))ll6,ll7,ll7

PRINT 203,I,B(I),SB(I)

CONTINUE

IF(IPRINT.EQ,O)GO TO 1599

PRINT 206

PRINT 207,(I,X(N,I),Y(I),DEV(I),I=l,M)

CONTINUE

RETURN

END

 
 



  



 

APPENDIX I

SUBROUTINE MINIMIZE+

The subroutine described herein was written in

FORTRAN for use with a CDC3600 digital computer. It is

designed to minimize a function of up to ten variables by

choosing conjugate search directions. This assures that

a quadratic function of n variables will be minimized in

at most n steps. (If the number of variables exceeds ten,

the program must be redimensioned.) For a theoretical

description, see the article by Powell (1964), "An Effi—

cient Method for Finding the Minimum of'a Function Without

Calculating Derivatives."

There are three considerations for use of the sub—

routine which must be tailored to the individual purpose.

1. Calling statement. The subroutine may be called

from a FORTRAN program by program by means of the

following statement:

CALL MINIMIZE (X,N ,EPS ,ENDNORM, ITMAX,IPRINT, SUCCESS) .

 

. +Both the subroutine and this description were

written by J. L. Bartelt (1967).
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2.

3.

 

Parameters.

a.

H
)

a

L
G

X = a linear array dimensioned for the number

of variables. The program should be called

with a set of initial guesses for the variables

stored in X. The solution will be returned in

X.

N = the number of variables (less than ten).

EPS = a convergence criterion parameter. The

change in each variable from the last step is

compared with EPS times the current value, and

convergence is assumed if the change is smaller.

ENDNORM = a convergence criterion parameter.

The function value at the current point must

be less than ENDNORM to obtain convergence.

ITMAX = the maximum desired number of iterations.

IPRINT = an option. If IPRINT equals unity, the

program will cause the results to be printed.

If IPRINT is zero, no results will be printed.

SUCCESS = a logical variable to indicate con-

vergence. If SUCCESS is unity, the process has

converged. If SUCCESS is zero, the method has

failed to converge, and a statement will be

written to indicate the reason for termination.

Required subroutines.

a. QUADMIN. This is a routine required by MINIMIZE

and is furnished with the deck.
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b. FNORM. This is a function-subroutine where the

function to be minimized is placed. It must

have the following form:

FUNCTION FNORM (X,N)

DIMENSION X(N)

(any necessary calculations)

FNORM = f(x(1),x(2), ..., x(N))

RETURN

END

Where f is the function to be minimized, and X

and N have their previous meanings.

For the purpose of analyzing data we choose FNORM

to contain a function which is the sum of squares of the

deviations of experimental points from some analytical

function. The actual FNORM used is shown in the listing

of ALPHA in Appendix J.

 
 

 





 

 

 

Listing of MINIMIZE and QUADMIN 
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SUBROUTINE MINIMIZE(X,N,EPSl,EPSZ,ITMAX,IPRINT,SUCCESS)

DIMENSION X(N),XO(lO),Y(lO),P(lO,lO)

COMMON/MIN/LASTNORM,KOUNT

TYPE REAL NORM, LASTNORM

TYPE LOGICAL SUCCESS

IF(N.GT.10)GO TO 5000

ITER=O

KOUNT=O

D01 I=1,N

XO(I)=X(I)

P(I,I)=0.l*XO(I)

IF(XO(I).LT.(l.OE—7))P(I,I)=0.0l

L=I+1

DO 1 J = L,N

P(I,J)=P(J,I) =0.0

LASTNORM = FNORM(X,N)

KOUNT=KOUNT+l

NM=N—l

IF(IPRINT)PRINT lOO,LASTNORM,X

FORMAT(lHl,*THE INITIAL VALUES ARE*,//,5x,*NORM*,10x,*xo

(l).....XO(N)*,//,

l(N)*,//,9E15.6,/,(15X,8E15.6)

IF(IPRINT)PRINT 110

FORMAT(lH6,*ITER INC*,5X,*NORM*,lOX,*X(l).....X(N)*,//)

ITER =ITER+1

IF(ITER.GT.ITMAX)GO TO 3000

DELTA=1.0E—100

M=O

Fl=LASTNORM

DO 2000 I=1,N

DO 2 J=1,N

Y(J)=P(J,I)

CALL QUADMIN(X,Y,NORM,N)

IF(IPRINT)PRINT lOl,ITER,I,NORM,X

FORMAT(215,8ElS.6,/,(25X,7#15.6)

IF((LASTNORM-NORM).GE.DELTA)3,4

M=I

DELTA = LASTNORM—NORM

LASTNORM = NORM

CONTINUE

F2=NORM

IE(ITER.GT.N)15,16

IF(NORM.GT.EPSZ)l6,l7

DO 18 I=1 N

IF(ABS(x(I)—XO(I)).GT.ABS(EPS1*X(I)))l6,l8

CONTINUE
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GO TO 4000

DO 5 I=1,N

Y(I)=2.0*X(I)-XO(I)

F3=FNORM(Y,N)

KOUNT=KOUNT+l

IF(F3.GE.F1).OR.(((Fl-2.0*F2+F3)*(Fl—F2-DELTA)**

12).GE.(DELTA*((F1—E2)**2)/2.0)))6,7

DO 8 I=1,N

XO(I)=X(I)

GO TO 1000

DO 9 I=1,N

Y(I) =X(I)-XO(I)

CALL QUADMIN(x,Y,NORM,N)

DO 10 I=1,N

XO(I)=X(I)

DO 11 I=M,NM

DO 11 J=1,N

P(J,I)=P(J,I+l)

DO 12 I=1,N

P(I,N)=Y(I)

LASTNORM = NORM

GO TO 1000

PRINT 102

FORMAT(lH4,*THE MAXIMUM NUMBER OF ITERATIONS HAS BEEN EXCEEDED*)

SUCCESS =0

PRINT 5004,KOUNT

RETURN

PRINT 103,ITER

FORMAT(lH4,*THE PROCESS HAS CONVERGED IN*,l6,3X*ITERATIONS*)

SUCCESS =1

PRINT 5004,KOUNT

FORMAT(lH-,*THE NUMBER OF FUNCTIONAL EVALUATIONS WAS*,IlO)

RETURN

PRINT 5001

FORMAT(lH4,*MORE THAN 10 VARIABLES, PLEASE REDIMENSION,*)

SUCCESS=0

RETURN

END

SUBROUTINE QUADMIN(X,P,NORM,N)

DIMENSION PHI(3),VT(3),X(N),P(N)

COMMON/MIN/LASTNORM,KOUNT

TYPE INTEGER UPPER

TYPE REAL NORM ,LASTT, LASTNORM

DO 9 I=1,N

X(I) =X(I) +P(I)

LASTT = 1.0

T=0.0

ITER =

ITER = ITER + 1

NORM = FNORM(X,N)
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KOUNT=KOUNT+1

IF((ABS(T—LASTT).GT.(.Ol*ABS(T)).AND.ITER.LE.20).OR.(ITER.EQ.2))

111,12

IF(ITER.EQ.l)l3,l4

VT(1)=0.0

VT(3) =1.0

PHI(l) =LASTNORM

PHI(3) =NORM

IF(PHI(l).GT.PHI(3))l,2

T=2.0

LOWER=l

MID=3

UPPER=2

K=2

GO TO 1000

T=1.0

LOWER=2

MID=1

UPPER=3

K=2

GO TO 1000

PHI(II)=NORM

xw =VT(2)—VT(3)

XX=VT(3)—VT(l)

XY =VT(1)-VT(2)

xw =-(PHI(l)*XW+PHI(2)*XX+PHI(3)*XY)/(XW*XX*XY)

XX=(PHI(l)hPHI(2))/XY—XW*(VT(1)+VT(2))

LASTT =T

IF(XW.GT.0.0)15,16

T=—XX/(2.0*XW)

GO TO 19

IF(PHI(UPPER).GT.PHI(LOWER))l7,18

T=3.0*VT(LOWER)-2.0*VT(MID)

GO TO 19

T=3.0*VT(UPPER)-2.0*VT(MID)

IF(T.GT.VT(UPPER))20,21

I=LOWER

LOWER =MID

MID = UPPER

UPPER =I

K=UPPER

GO TO 1000

IF(T.LT.VT(LOWER))22,23

I=UPPER

UPPER =MID

MID =LOWER

LOWER=I

K=LOWER

GO TO 1000  



  



23

24

25

1000

1001

12
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IF(T.GT.VT(MID))24,25

I=LOWER

LOWER =MID

MID=I

K=MID

GO To 1000

I = UPPER

UPPER =MID

MID=I

K=MID

II=K

VT(K)=T

DO 1001 J=1,N

X(J)=X(J)+(T—LASTT)*P(J)

GO TO 10

IF(NORM.LE.LASTNORM)RETURN

NORM=LASTNORM

DO 7 I=1,N

X(I)=X(I)-LASTT*P(I)

RETURN

END

 



  



APPENDIX J

PROGRAM ALPHA

This program is designed to permit computerized

analysis of the raw data from a pure thermal diffusion

experiment and calculation of final results. PROGRAM

ALPHA consists of three main segments. In the first,

measured values of plate temperatures, liquid densities,

and interferometric fringe spacings are read and converted

to statements of temperature differences, mean temperatures,

initial compositions, and apparatus constants.

The second section utilizes SUBROUTINE MINIMIZE to

fit a smooth function of three variables to the measured

values of fringe position versus time. In the third sec-

tion, the results of the previous sections are used to

calculate values for the thermal diffusion factor and the

ordinary diffusion coefficient. A written record is made

of all of the information from each experiment. A listing

of the program follows.

In addition to what is shown here, the deck must

also contain subroutines MINIMIZE and QUADMIN and the fol—

lowing data cards:

(1) a card specifying the number of experiments to

to analyzed;
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(2) a card for each experiment stating the number of

data points in that experiment, the code number

of the experiment, the initial liquid density,

the fringe spacing, and the final mean tempera-

ture;

(3 a card for each experiment containing a set of

V

initial guesses for the three variables which

are to be determined by MINIMIZE;

(4) a deck of cards for each experiment, each card

containing a measured time and a measured fringe  
position.

The format for each of the cards is shown in the listing

below.
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PROGRAM ALPHA

DIMENSION Xi3)oXO(3)wY(3>vp(303)

DIMENSION Atté4iqDIZK64jyX11164}

(OMMON/fl/D(10019T(IOO?¢F<iOOv~L

TYPE QEAL NNaMUBYW

TYPE RFAL KAPPA

TYPE QFAL K1

TYPE LOGICAL SUCCESS

E22.718281828459

fil=3.14i5026536

DTBIEo/PI*¥J

PHOBVTT7o00017

BETAngOBYT

BQTAP=o714

STHREESIO.

STHQEE:O.

AHZr).—741

FAC:AH%AH/Di/Dl

READ IOOvNPUNS   
DO 1 iiquQUNS

61:0.

.

KKOUNT=O

READ 10).NUMoRUNgTHoTCqFZoRuRHOaTF

L=NuM

WIO=1.990136—.01505166*RHO—1.531lu/RHO

MUBYW=.03342~.021463*W10*(lo~W101*(5o369606*W10—3o*4o351411*W10

1*W10+4o*3.0
18563*W10**3

3—.021463*(1
0-2.*WIO)*(i

.+2.684803*W
10





5

2

N

w
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CONTINUE

XOZZ)=1./THETA

IF(KKOUNT.E0.0) 60 T) 51

CONTINUE

}F(KKOUNT.EOo1) GO TO 55

52:.OOY/ALPHAIPrio/TM

SSS:NN/W]O/W20+o18/ALPHA1P*PXBYW

FZERO:«TAU*AH*K1*K1/12.

FONE?“TAU/AH*K1*2.

FTWO:K1*K1*TAU/AH

FTHREEqul%%3*TAU/AH

TAF:TAU/AH+FZERO

SONTiNdeSZERO*(53%TAF+SSS*SZERO*TAFT

FTWOINF:.5*SZERO*!2./TM*52*TAF%TAF+32EFONE)

PLQDSZrBETA*TAF+BETAP*SZERO*TAFtlo/DL1T*(‘.201*PXBYW*SZERO*TAF

1+.0258*TAF1%1.E-5

GIINFZSZERORFZEROHAH*AH/24-*(TAF*SONETNF+SZERO*FONE)~AH**4/320.

1*(TAF*STHREES+STWOINF%FONE+SONE1NF*FTWO+SZEQO*FTHREE)

CAPFO=AH/48.*AH*GIINF*pLRDS~AH*AH%W10*WZO*PAPLTS

PIO:DLIT

CONTINUE

IF€KKOUNT¢EO¢O>
GO TO 53

DO 3 lecNuM

EMTOT:E**iuT(J)/THETA)

GRADWJSZERO*TAU/AH*Cla—4o/p1*EMTOTE

GRAD2W2—4.SSZERO*TAU/AH/AH*BB/PI*EMTOT

SONE:ASZEQ
O*\52*TAFv

SSSNGRADW>
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2*w10—4.351411*WIO**3+3.018563*WIO**43

READ 102c<XO<J§9J3103)

TAU:THeTC

TM:(TH+TC)/2o

TM=TM+273016

IF(XO(1)oGToOoO)TM=TF+273.16

=~3.11E4*R/lo74

WZO=10~W10

XlO=WIO/W20/(1.06953+W10/W20)

PXBYW=X10/WIO+.96953*XIO*XIO/WIO

DLIT:(1.484‘0201*X10+00258*(TM*298016))*10E~5

KAPPA=2.47E~4e4.57E—7*(TMe293.16)~804EL5*W10

THETA=FAC/DLIT/60o

ALDHA1P==1.82+.18*X10+.007*(TM—298o16)

PP:=ALPHA1P*TAU/TM

NN=1.*2.*W10

AA=TAU*RHOBYT

PCAP:.5*(AA+PP*NN)

SP : pp  V1:1.+E**Sp

BB:.5*<TAU*RHOBYT—SP*(1.~2.*W10)1

w1=BB

WIP:JP1*PI/AH

GPOUPIPY3*V1*(W1P~Sp/AH*W13*E**<—Sp/2.)

DENOM:W10*(1o~WIO)*T1U*GQOUP*A*MUBYw

DO 2 ingNUM

READ 1030T(J)9D(J)  





U
T

(
'
0
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STWO:o5*SZERO*(2o/TM*52*TAF*TAF+52*FONE+GRADBW*(NN/WlO/WEO

1+o18/ALPHA1P*DXBYW))

PAPLTS=TAF/TM*(a18*PXBYW*SZERO*TAF+.007*TAF)+ALpHA1p*FONE

i/TM—ALPHA1P*TAF/TM/TM

PLRD:~BETA*TAF+BETAP*GRADW+1o/DLIT*(aoZOl*PXBYW*GRADW

1+.0258*TAF)*1.E~5

PAPLTzTAF/TM*(.18*PXBYW*GRADW+.OOT*TAF)+ALPHA1P*FONE/TM

IeALPHA1P*TAF/TM/TM

pZO=tp10*ALPHA1P/TM*TAF*(1o-2o*WIO)+.0258E«5*TAF—.201E-5*PXBYW

l*GPADW+P10*(~BETA*TAF+BETAP*GRADW)

O:P20

P30:~PIO*(1.-2.*WIO)*(PAPLT+ALPHA1P*TAF/TM*PLRDy

PaO=pIO*(GRADEW—ALPHAIP*(1o-2.*W10)*GPADW*TAF/TM“W10*W20*PAPLT

1+GRADW~ALPHA1P*TAF/TM*WIO*W20*PLRD)

Gl:CAPFO/P20*(l./THETA*EMTOT+(1.SEMTOT)*(48.*P10/AH/AH~P3O))«P4O/O

D(J)=D(J)*GI*A*MUBYW

CONTINuE

CALL MINIMIZE(XO.3.0.000Is0.5.10qloSUCCESS)

DEXP=FAC*XO(2)/60.

1F(ABSF(DLIT*DEXP).GTo0.06E-5)
DEXP=DEXP+O.12E‘5

IF(XO(l)oGT.O.)XO(1)=~XO(1>

ALPHA]$—XO(1)*TM/DENOM

CONTINUE

IF(KKOUNT.EO-O) GO TO 60

K1=1./KAPPA*(»4.57E»7*TAU/AH>

SZERO=ALPHA1P*WIO*W20/TM

GlINFP2—TAU/
AH*SZERO*K1*

K1*AH*AH/12¢  
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ALPHAI=‘AH*TM/WlO/W20/TAU*(PI*XO(11/4./A/MUBYW+GIINFP)

ALPHA1==ALPHA1

6 O CONTINUE

PRINT 3029NUM

PRINT 3019R

IT:TM

TR=1T+016

ACORR=ALPHAIDoOO7*(TMATR)

IF(KKOUNT.FO¢1)GO TO 54

ACOR2=ALPHAI

ACOR3=ACORR

5 I
}

CONTINUE

KKOUNT:KKOUNT+I

IF(KKOUNT.EQ.1) GO TO 52

PUNCH 741~TM9X109WIO¢ACOR20ACOR3oALPHAIoACORRoTAU

RRINT 201

1 PRINT 2020RUNgTMquOoXIO.TAU9AoMUBYWoDLITqDEXPqACORZqACORBo

IALPHAlqACORR

IOO FORMAT(I2)

101 FORMAT(I2o3XoA3.3F6030F5.3wF7.50F6.3)

102 FORMAT(F6¢2¢F4¢3.F5.ZI

103 FORMAT(F7.2~F5.2)

20 FORMATtIx.*RUN*.5X
.*TM*.8X.%WIO*.7x.

*x10*.ox.*TLu*.

,
—

18X'*A*09X0*MUB
YW*95X0*DLIT*09

XQRDEXP*Q

17Xo*—ALPHA1*03
Xo*"ALPHA2*o3Xo

*‘ALPHA3*¢3X~**
ALPHA4*I

202 FORMAT(lX0A3.3
X9F7o303X0F705

93X0F70502X0F6
9303X0510.393X

0

iFéoav3XvE10.393
X9E100304(3X0F7o

4))  
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FORMATIIXoElZoSI

302 FORMATIIXQIS)

74'

5
‘

FORMAT(F7O3Q7(F7057)

END

FUNCTION FNOPM(XQN)

DIMENSION X(3)9Y(3)

COMMON/A/D(IOO>~T(lOO)aF(IOO)9L

E=2.7182818459

SUMSO=Oo

DO 1 I=I'L

SUM=Oc

FII)=X(1)*E**(—X(2)*T(I))+X(3)

SUMSO=SUMSO+(F(I)SDII))**2

FNORM=SUMSO

RETURN

END
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