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ABSTRACT 
 

VIBRATION SUPPRESSION IN A PLATE 
 USING IN-PLANE FORCES 

 
By 

 
Mahmoud Nabil Abdullatif 

Vibration suppression of flexible structures continues to be a subject of considerable interest 

due to the increasing demands of high precision space applications. Large phased array antennas, 

for example, which are used for space-based radar system to track and identify moving objects, 

require high dimensional stability. The Air Force is interested is exploiting tension mechanics in 

maintaining dimensional stability of large array structures. To this end, this research investigates 

the problem of vibration suppression in a thin plate using in-plane tensile forces acting on the 

boundary. Earlier work has shown that the vibration of a cantilever beam can be effectively 

suppressed by end-forces and this work investigates the extension of the control strategy to the 

plate problem. Two scenarios are considered: one where the end-forces are uniformly distributed, 

and the other where the end-forces are applied at discrete locations using a web-of-cables 

structure. For the problem with uniformly distributed end-forces, both the Rayleigh-Ritz method 

and the finite element method are used to obtain the state space model of the system in modal 

coordinates. Simulations are then used to show the efficacy of the control strategy in reducing 

vibration. The plate with web-of-cables structure is modeled using the finite element method 

alone. The effect of the web-of-cables structure on in-plane stress distribution in the plate is 

determined and the pre-stress information is used to obtain the out-of-plane vibration model. The 

control method requires the tension in the corner cables of the web-of-cable structure to be 

switched and the efficacy of the control method is investigated for different switching 

algorithms. Numerical simulations for these different algorithms show that the control method is 

effective in suppressing the vibration of all modes except the first mode. This is due to the fact 

that change in the corner tensions is not effective in producing a significant change in the 

fundamental frequency. To suppress the vibration of the first mode, future work will have to 

focus on redesign of the web-of-cables structure relative to the plate dimensions. 
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Chapter 1 
	
  
 
 

Introduction 
 
 
Vibration suppression of flexible structures has been investigated for decades due to its 

widespread engineering applications. The objective of vibration suppression is to prevent the 

structure from being damaged or prevent compromising its desired usability. Space structures, 

which may undergo vibration due to differential heating, can be seriously limited in their ability 

to acquire images. Therefore, it is desirable to suppress the undesired vibration and stabilize the 

space structure motions. Vibration suppression of flexible structures is an active field to research 

and various methods have been proposed to address the problem.         

  

1.1.   Motivation 
 

Vibration suppression of space structure has become an important problem due to the increasing 

demand of high precision space applications. To reduce the payload, space structures are desired 

to have low mass and therefore low rigidity. In general, space structures are characterized by low 

damping; therefore, they are highly sensitive to external disturbances and are prone to 
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mechanical vibrations. Consequently, elimination or reduction of structural vibration has been 

extensively studied; these studies have focused on disturbance rejection controllers, which can 

eliminate the structural vibrations. Both passive and active controllers have been proposed. In 

passive vibration suppression approach, passive elements are mounted on the structure to change 

the structural characteristics such as damping and stiffness. This method is effective for 

attenuation of high frequencies, but is not effective for suppression of low frequency vibration. 

In addition, it is expensive and it increases the overall structure weight, which is unfavorable for 

space applications. In contrast, active vibration controllers are based on feedback of the vibration 

in the structure. In traditional active vibration control, the structure is modeled as a linear system 

using modal coordinates; certain modes of the structure are estimated and controlled using 

piezoelectric actuators and sensors. For a large flexible structure, a large number of actuators and 

sensors are required, which means the addition of a large number of hardware components such 

as amplifiers and data acquisition devices. This hardware adds significant weight and cost to the 

structure. To reduce the hardware requirements of active vibration control, Nudehi [48] proposed 

to use end forces in a flexible beam. This thesis presents an extension of the work done in [48] to 

control the vibration of a rectangular plate using piezoelectric transducers as sensors to estimate 

the modal displacements and in-plane cables that act as actuators. These in-plane cables provide 

in-plane tensions that alter the structural stiffness. By switching in-plane forces, the modal 

energy can be reduced and the vibration of the structure can be suppressed.          
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1.2. Literature review 
 
 

The problem of thin plate vibration has been studied for several decades. Most of these studies 

have focused on investigating the dynamic behavior of the structure for a certain restraint 

condition along the edges. Leissa [38], for instance, provided very useful and comprehensive 

review for the plate vibration with different type of boundary conditions. The first observation 

of nodal patterns for a flat square plate is done by the German physicist, Ernst Chladni 

(published in 1787 in his book "Discoveries in the Theory of Sound"), by conducting 

experiments using sand on vibrating plate. Several years later (in the early 1800s), a French 

mathematician (Sophie Germain) obtained a differential equation for transverse deformation on 

plates. Her equation had an error due to neglecting the strain energy associated with warping of 

the plate midplane. Langrange’s notes, found in 1813, revealed the correct version of the 

governing equation for a thin plate. However, the differential equation of rectangular plates with 

flexural resistance is derived by Navier (1785 – 1836). Navier also obtained the exact solution 

for simply supported rectangular plates in 1820. In 1850, Kirchhoff found the extended plate 

theory by combining the bending and stretching actions of the plate. The natural frequencies of 

vibrating structures using single admissible function were obtained by Rayleigh (1877). Ritz 

(1909) improved Rayleigh’s theory by including more than a single admissible function and 

performing a minimization with respect to the unknown coefficients of these admissible 

functions. He obtained an approximate solution of a freely vibrating plate, which does not have 

an exact solution. This method is known as the Rayleigh-Ritz method. Finite element methods 

were developed in the mid-1950s by Tuner, Clough, Martin, and Topp. Their method obtained 

the numerical solution of complex plate problems in an efficient way.  
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 Plate modeling (vibration analysis) has been studied for various boundary conditions using 

deferent method (e.g., Williams, [33]; Zhou and Ji, [34]; Farrel and Ryall, [35]; Frendi and 

Raliss, [36]; Chien-Ching Ma, [27]; Israr, [22]; Werfalli and Karound, [29]; Gupta, [28]). Some 

of these results used FEM to obtain the numerical solution. The vibration of plate with elastic 

foundations is documented in the literature, for instance, Hsu, [24], and Hatami, [31]. The 

dynamics of flexible structures (beams and plates) have been investigated under the application 

of end forces; these include the work by: Herrmann, [12]; Celep, [1]; Sasaki and Chonan, [2]; 

Higuchi and Dowell, [3]; Adali, [4]; Zuo and Schreyer, [5]; Kim and Park, [9]; Kim and Park, 

[10]; Langthjem and Sugiyama, [6]; and Arreol-Lucas, [13]. Most of these results are related to 

flutter instability due to the effects of the follower forces that have non-conservative nature.  

Vibration suppression of plates has been achieved using traditional methods (active and 

passive vibration control) and they are well documented in the literature. For instance, Shirazi 

and Owji [21] investigated the vibration control of simply supported plate. Carra and Ambilli 

[20] controlled the vibration of a rectangular aluminum plate in contact with air or water. Some 

of the vibration control methods and stability analysis are presented in the following references: 

Khorshidi, [14]; Djanan, [15]; Hu and Jia, [16]; Qiu, [17]; Kucuk, [18]; Falangas, [23]; Ashour, 

[25]; Kovarova, [26]; Yaman, [30]; and Braghin and Cinquemani [41]. Active vibration control 

is used in the most of these studies.  

In general, cables are used to increase the stiffness of lightweight structures. However, using 

cables to control the vibration has not been studied extensively. Achire and Preument [37] 

introduced multiple control strategies to control the vibration in cable-stayed bridges. Preumont 

and Bossens [48] propose tendons to create an active damping in truss structures. Skidmore and 

Hallauer [7] used multiple-actuator theory to actively control individual vibration modes of 
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beam-cable structure. Nudehi [Ref] used a cable to apply an end-force on a cantilever beam to 

suppress the vibration. Sakamoto and Park [43] and [44] presented structural and controller 

designs to attenuate vibration in large membrane using web-like perimeter cables around they 

membrane. The control of deployment of space structures using web-like structure has been 

studied by Gärdsback and Tibert, [42]; Lane A Murphey, [45]; and Keon and Murphey, [46]. 

Greschik and Mejia-Ariza [47] presented a numerical and theoretical study of control out-of-

plane flatness and thermal warping via suspension tensions. Following Nudehi’s work [48], in-

plane forces are used in this thesis to control the vibration of a rectangular plate. The approach 

is extended by applying the in-plane forces through a web-of-cables structure. 

 

1.3.  Scope and content 
 

This thesis is organized as follows. In chapter 2, a brief review of the dynamics of a thin plate is 

presented. Following [39], the theory of the elastic plate is used to derive the equation of motion 

for a plate, with and without in-plane boundary forces. In chapter 3, some analytical and 

approximate solutions are obtained for a plate subjected to different types of in-plane forces. 

Chapter 4 introduces a control strategy, following the work presented by Nudehi [48], to reduce 

the lateral vibration on a plate. We assumed that the plate is subjected to uniformly distributed 

in-plane forces. In chapter 5 a web-of-cables around the plate is proposed as a mechanism to 

suppress the vibration. This web-of-cables provides the boundary of the plate with in-plane 

forces that act at few discrete locations. As a result, non-uniform stress distributions are created. 

Using the pre-stress data, an out-of-plane vibration analysis is done to obtain the dynamic 

model of the structure. Simulations are carried out to examine the efficacy of the control 

strategy.  
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Chapter 2 
 
Dynamics Of A Thin Rectangular Plate – A Review 
	
  
A plate is a structure that consists of two surfaces separated by a small distance. The small 

distance is called the thickness of the plate, which is assumed to be smaller than the other 

dimensions of the two surfaces, namely the length and the width of the plate. A plate is 

considered to be thin if the ratio of its thickness to the other dimensions is less than 1/20. A two-

dimensional approximation to the elasticity theory is called the theory of the elastic plate, which 

considers the deformation of every point in the plate in terms of the midplane deformation. The 

theory of the elastic plate is used to derive the equation of motion for a thin rectangular plate, 

with and without in-plane forces acting at the boundary.  

 

2.1  Classical Plate Theory 
 
The Cartesian coordinate system (x, y and z) is used to define the coordinates of a thin 

rectangular plate that has has a length a, width b, and thickness h as shown in Fig. 2.1. The 

displacements in the x and y direction are defined as u and v respectively, and the transverse 

deformation of the midplane is defined as w. The derivation of the equation of motion for the 

transverse vibration is based on the following assumptions [39]: 
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Figure 2.1. Thin Rectangular Plat 

	
  
1. The thickness of the plate h is smaller than other physical dimensions, namely the length 𝑎 

and the width 𝑏; and usually the ratio of the thicknesses to the smaller dimension (length or 

width) is less than 1/20.  

2. The material of the plate is homogenous and linear elastic, and the stress-strain relationship 

follows Hooke’s Law. 

3. The midplane of the plate remains a neutral plane, i.e., the midplane does not experience 

stretching or contractions.       

4.  The transverse deformation of the midplane w is small compared to the thickness h. 

5. The transverse shear deformation is negligible, i.e., a straight line normal to the midplane 

remains normal after the deformation. As a result, the transverse shear strains can be 

neglected.   

6. The plate is assumed to have negligible rotary inertia.  

7. The plate resists the in-plane forces through bending, and in-plane and out-of-plane 

displacement.  

y

x

z

h

b

a
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Figure 2.2. An infinitesimal element of the thin rectangular plate 

 
Consider an infintismal element of the plate as shown in the Fig. 2.2, which has dimensions dx, 

dy and h in the x, y and z direction respectively. The element is subjected to bending 

moments,  𝑀! and  𝑀!, twisting moments,  𝑀!" and   𝑀!", and shear forces, 𝑄! and  𝑄! due to 

internal stresses.  𝑀! and   𝑀! denote the bending moments per unit length about the x and y axes, 

respectively;  𝑀!" and   𝑀!"  are the twisting moments per unit length about the x and y axes 

respectively and 𝑄! and  𝑄! are shear forces per unit length parallel to y and x axes respectively. 

Following the derivation in [39], the summation of the forces in the z direction yields  

 −𝑄!  𝑑𝑦 + 𝑄! +
𝜕𝑄!
𝜕𝑥 𝑑𝑥 𝑑𝑦 − 𝑄!  𝑑𝑥 + 𝑄! +

𝜕𝑄!
𝜕𝑦 𝑑𝑦 𝑑𝑦 = 𝜌ℎ  𝑑𝑥  𝑑𝑦  

𝜕!𝑤
𝜕𝑡!  

 

 (2.1) 

dy
y

x

z

dx 4

h
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where  𝜌  is the density of the material of the plate. Dividing both sides by the area we get 

	
  
𝜕𝑄!
𝜕𝑥 +

𝜕𝑄!
𝜕𝑦 = 𝜌ℎ

𝜕!𝑤
𝜕𝑡! 	
  

(2.2) 

The sum of the moments of all the forces about the y axis gives 

	
  

𝑀!𝑑𝑦 − 𝑀! +
𝜕𝑀!

𝜕𝑥 𝑑𝑥 𝑑𝑦 +𝑀!"𝑑𝑥 − 𝑀!" +
𝜕𝑀!"

𝜕𝑦 𝑑𝑦 𝑑𝑥 + 𝑄!𝑑𝑦
𝑑𝑥
2

+ 𝑄! +
𝜕𝑄!
𝜕𝑥 𝑑𝑥 𝑑𝑦

𝑑𝑥
2 = 𝜌

ℎ!

12𝑑𝑥𝑑𝑦
𝜕!

𝜕𝑡!
𝜕𝑊
𝜕𝑥

!"#$%!&  !"!#$%  !"#  !"  !"#$#%"&

	
  
(2.3) 

By dropping the inertia moment term (assumption 6), the equation can be reduced to 

	
   𝑄! =
𝜕𝑀!

𝜕𝑥 −
𝜕𝑀!"

𝜕𝑦 	
   (2.4) 

The sum of the moments about the x axis gives 

	
  

𝑀!𝑑𝑥 − 𝑀! +
𝜕𝑀!

𝜕𝑥 𝑑𝑦 𝑑𝑥 +𝑀!"𝑑𝑦 + 𝑀!" +
𝜕𝑀!"

𝜕𝑥 𝑑𝑥 𝑑𝑦 + 𝑄!𝑑𝑥
𝑑𝑦
2

+ 𝑄! +
𝜕𝑄!
𝜕𝑦 𝑑𝑦 𝑑𝑥

𝑑𝑦
2 = 𝜌

ℎ!

12𝑑𝑥𝑑𝑦
𝜕!

𝜕𝑡!
𝜕𝑤
𝜕𝑦

!"#$%!&  !"!#$%  !"#  !"  !"#$#%"&

	
  
(2.5) 

and it can be reduced to 

	
   𝑄! =
𝜕𝑀!

𝜕𝑦 −
𝜕𝑀!"

𝜕𝑥 	
   (2.6) 

Following the method used in [39], the strain-displacement relationships are derived next. 

Assuming that the midplane is the xy plane, we consider the straight line AB oriented in the z 

direction normal to the midplane - see Fig. 2.3. 
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Figure 2.3. Rotation of a normal line after the deformation 

 
After deformation, AB rotates to A!B! due to bending and shear deformation. A point c at a 

distance z from the midplane on line AB will have a displacement u in the x direction after the 

deformation and could be defined as  

	
   𝑢 = −𝑧
𝜕𝑤
𝜕𝑥 	
  

(2.7) 

where	
   (𝜕𝑤/𝜕𝑥) is the slope of the deformation surface in the xz plane. Similarlly, the 

displacement v in the y direction can be expressed 

	
   𝑣 = −𝑧
𝜕𝑤
𝜕𝑦   	
   (2.8) 

The normal strains using strain-displacement relationship can be defined as 

	
   𝜀!! =
𝜕𝑢
𝜕𝑥    ;                          𝜀!! =

𝜕𝑣
𝜕𝑦  	
  

(2.9) 

The shear strain is  

	
   𝜀!" =
𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦	
   (2.10) 

Substituting both Equations (2.7) and (2.8) into equations (2.9) and (2.10), we get 

	
   𝜀!! = −𝑧
𝜕!𝑤
𝜕𝑥! ;             𝜀!! = −𝑧

𝜕!𝑤
𝜕𝑦! ;                𝜀!" = −2𝑧   

𝜕!𝑤
𝜕𝑥𝜕𝑦     	
   (2.11) 

According to Hooke’s law, the strain-stress relationship can be expressed as follows: 

	
   𝜀!! =
1
𝐸 𝜎!! − 𝜎!!𝜐   	
   (2.12) 

	
  

A

B

z

xz
c

Before Deformation After Deformation

A' A

B'
B

c'

u

c

xMidplane Line

z
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   𝜀!! =
1
𝐸 𝜎!! − 𝜎!!𝜐   	
   (2.13) 

	
  

	
   𝜀!" =
𝜏!"
𝐺     	
   (2.14) 

where 𝜎!! and 𝜎!! are the normal stresses, 𝜏!" is the shear stress, and  

	
   𝐺 =
𝐸

2(1+ 𝜐)    	
   (2.15) 

where G is the shear modulus, E is the Young Modulus and 𝜐 is the Poisson’s ratio. Solving the 

above equations for the stresses results in 

	
   𝜎!! =
𝐸

1− 𝜐! 𝜀!! + 𝜐𝜀!!   	
   (2.16) 

	
  

	
   𝜎!! =
𝐸

1− 𝜐! 𝜀!! + 𝜐𝜀!!   	
   (2.17) 

	
  

	
   𝜏!" =
𝐸

2(1+ 𝜐) 𝜀!"    	
   (2.18) 

By integrating the moment of the in-plane stresses over the plate thickness we get the bending 

and the twisting moments as follows: 

	
  
𝑀! = 𝜎!!  𝑧  𝑑𝑧  ;                

!/!

!!/!
𝑀! = 𝜎!!  𝑧  𝑑𝑧  ;  

!/!

!!/!
              𝑀!" = 𝜏!"  𝑧  𝑑𝑧  

!/!

!!/!
 

	
  
(2.19) 

Substituting the stress relationships given by (2.16) to (2.18) into the (2.19) and evaluating the 

integrals, we get  

𝑀! = −𝐷 𝐾!! + 𝜐𝐾!! ;            𝑀! = −𝐷 𝐾!! + 𝜐𝐾!! ;           𝑀!" = −𝐷 1− 𝜐 𝐾!"   (2.20) 

where D is the flexural rigidity that is defined as  

𝐷 =
𝐸ℎ!

12(1− 𝜐!)	
  
(2.21) 

and 𝐾!! ,𝐾!"  and 𝐾!!  are the curvature of the deflected midplane that can be expressed by 

𝐾!! =
𝜕!𝑤
𝜕𝑥!    

(2.22) 
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𝐾!" =
𝜕!𝑤
𝜕𝑥𝜕𝑦     

(2.23) 

 

𝐾!! =
𝜕!𝑤
𝜕𝑦!  (2.24) 

Substituting (2.4) and (2.6) into (2.2) and replacing the moments using (2.20); produces 

𝜕!

𝜕𝑥! −𝐷 𝐾!! + 𝜐𝐾!! +
𝜕!

𝜕𝑦! −𝐷 𝐾!! + 𝜐𝐾!! + 2
𝜕!

𝜕𝑥𝜕𝑦 −𝐷 1− 𝜐 𝐾!"

= 𝜌ℎ  
𝜕!𝑤
𝜕𝑡!  

(2.25) 

Replacing  𝐾!!, 𝐾!!  and 𝐾!" in (2.25) by (2.22) to (2.24) can reduce it to 

𝐷
𝜕!𝑤
𝜕𝑥! + 2

𝜕!𝑤
𝜕𝑥!𝜕𝑦! +

𝜕!𝑤
𝜕𝑦! = −𝜌ℎ  

𝜕!𝑤
𝜕𝑡! = D  ∇!𝑤   (2.26) 

where ∇! is the biharmonic operator and can be found from Laplacian operator  ∇!. Equation 

(2.26) describes of the motion for a thin rectangular plate of thickness h.  
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2.2     Plate Dynamics with in-plane forces 
 

In this section, all the assumptions in section 2.1 are valid except assumption 3. The plate is 

subjected to time dependent in-plane distributed forces that act on the boundary. These forces 

are  𝑁!(𝑥,𝑦, 𝑡), 𝑁!(𝑥,𝑦, 𝑡) and 𝑁!" 𝑥,𝑦, 𝑡 = 𝑁!" 𝑥,𝑦, 𝑡   - see Fig. 2.4. The equation of motion 

for a thin rectangular plate with in-plane forces can be derived following [39].  

 

 

 
Figure 2.4. Thin rectangular plate with in-plane forces 

x

y Nx
Ny
Nxy
Nyx
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Figure 2.5. An element of the thin rectangular plate with in-plane forces 

 

 
Figure 2.6. Side view for an element of the plate with in-plane forces 

 

dy
y

x

z

dx

h

16

dx

22

x

z

y

z

dy 16
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For an infinitesimal element as shown in Figs. 2.5 and 2.6, the sum of the forces in the x 

directions gives 

(𝑁! +
𝜕𝑁𝑥
𝜕𝑥 𝑑𝑥)𝑑𝑦 {cos𝜃!!}+ 𝑁!" +

𝜕𝑁𝑥𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑥 {cos 𝜃1+𝜃1

′

2 }− 𝑁!  𝑑𝑦 {cos𝜃!}−

𝑁!"  𝑑𝑦 {cos
𝜃1+𝜃1

′

2 } = 0    

(2.27) 

For a small deflection (2.27) can be reduced to 

𝜕𝑁!
𝜕𝑥 +

𝜕𝑁!"
𝜕𝑦 = 0 (2.28) 

Similarly, summing the forces in the y direction gives 

(𝑁! +
𝜕𝑁𝑦
𝜕𝑦 𝑑𝑦)𝑑𝑥 {cos𝜃!! }+ 𝑁!" +

𝜕𝑁𝑥𝑦
𝜕𝑥 𝑑𝑥 𝑑𝑦 {cos 𝜃2+𝜃2

′

2 }− 𝑁!  𝑑𝑥 {cos𝜃!}−

𝑁!"  𝑑𝑥 {cos
𝜃2+𝜃2

′

2 } = 0    

(2.29) 

and for a small deflection the equation can be reduced to 

 
𝜕𝑁!
𝜕𝑦 +

𝜕𝑁!"
𝜕𝑥 = 0 

 
(2.30) 

 
The sum of the forces in the z direction gives 

(𝑁! +
𝜕𝑁𝑥
𝜕𝑥 𝑑𝑥)  𝑑𝑦 {𝑠𝑖𝑛 𝜃!!}− 𝑁!  𝑑𝑦 {𝑠𝑖𝑛 𝜃!}+ 𝑁! +

𝜕𝑁𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑥 {𝑠𝑖𝑛 𝜃!! }−

𝑁!  𝑑𝑥 {𝑠𝑖𝑛 𝜃!}+ 𝑁!" +
𝜕𝑁𝑦𝑥
𝜕𝑦 𝑑𝑦 𝑑𝑥 {𝑠𝑖𝑛 𝜃!!}− 𝑁!"  𝑑𝑥 {𝑠𝑖𝑛 𝜃!!}+ 𝑁!" +

𝜕𝑁𝑥𝑦
𝜕𝑥 𝑑𝑥 𝑑𝑦 {𝑠𝑖𝑛 𝜃!!}− 𝑁!"  𝑑𝑦 {𝑠𝑖𝑛 𝜃!}+ 𝑄! +

𝜕𝑄𝑥
𝜕𝑥 𝑑𝑥 𝑑𝑦 − 𝑄!  𝑑𝑦 +

𝑄! +
𝜕𝑄𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑥 − 𝑄!  𝑑𝑥 = 0  

(2.31) 

For a small deflection and using the following approximations 

 𝑠𝑖𝑛 𝜃! = 𝜃! =
𝜕𝑤
𝜕𝑥 ;                𝑠𝑖𝑛 𝜃!

! = 𝜃!! = 𝜃! +
𝜕𝜃!
𝜕𝑥   𝑑𝑥 =

𝜕𝑤
𝜕𝑥 +

𝜕!𝑤
𝜕𝑥!   𝑑𝑥 

 
(2.32) 
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 sin𝜃! = 𝜃! =
𝜕𝑤
𝜕𝑦 ;             sin𝜃!

! = 𝜃!! = 𝜃! +
𝜕𝜃!
𝜕𝑦   𝑑𝑦 =

𝜕𝑤
𝜕𝑦 +

𝜕!𝑤
𝜕𝑦!   𝑑𝑦   

 
(2.33) 

 
 

 sin𝜃! = 𝜃! =
𝜕𝑤
𝜕𝑥 ;                sin𝜃!

! = 𝜃!! = 𝜃! +
𝜕𝜃!
𝜕𝑥   𝑑𝑥 =

𝜕𝑤
𝜕𝑥 +

𝜕!𝑤
𝜕𝑥!   𝑑𝑥   

 
(2.34) 

 
 

 sin𝜃! = 𝜃! =
𝜕𝑤
𝜕𝑦 ;                    sin𝜃!

! = 𝜃!! = 𝜃! +
𝜕𝜃!
𝜕𝑦   𝑑𝑦 =

𝜕𝑤
𝜕𝑦 +

𝜕!𝑤
𝜕𝑦!   𝑑𝑦     

 

(2.35) 

 

Equation (2.31) can be reduced to 

 
𝜕𝑄!
𝜕𝑥 +

𝜕𝑄!
𝜕𝑦 = 𝑁!

𝜕!𝑤
𝜕𝑥! + 𝑁!

𝜕!𝑤
𝜕𝑦! + 2𝑁!"

𝜕!𝑤
𝜕𝑥𝜕𝑦 

 
(2.36) 

 
Equation (2.36) represents a static equilibrium. By putting the inertia force in (2.36), i.e., 

d’Alembert’s Principle; gives 

 
𝜕𝑄!
𝜕𝑥 +

𝜕𝑄!
𝜕𝑦 = −𝜌ℎ

𝜕!𝑤
𝜕𝑡! + 𝑁!

𝜕!𝑤
𝜕𝑥! + 𝑁!

𝜕!𝑤
𝜕𝑦! + 2𝑁!"

𝜕!𝑤
𝜕𝑥𝜕𝑦 

 
(2.37) 

 
   

Equation (2.37) represents the dynamic equilibrium in the z direction. An important observation 

should  be mentioned that the in-plane forces do not have any contribution to the moment along 

the edges of the element. Therefore, using the same derivation presented in the section 2.1 for 

summing the moments about the x and y axes, the equation of motion for a rectangular plate with 

in-plane forces can be expressed as 

   𝐷
𝜕!𝑤
𝜕𝑥! + 2

𝜕!𝑤
𝜕𝑥!𝜕𝑦! +

𝜕!𝑤
𝜕𝑦! = −𝜌ℎ

𝜕!𝑤
𝜕𝑡! + 𝑁!

𝜕!𝑤
𝜕𝑥! + 𝑁!

𝜕!𝑤
𝜕𝑦! + 2𝑁!"

𝜕!𝑤
𝜕𝑥𝜕𝑦 

 

(2.38) 

 

As mentioned in assumption 5 of section 2.1 for deriving the dynamic equation of a thin 

rectangular plate, the direct stress in z direction 𝜎!! is smaller than other stresses, which is 

usually neglected. Therefore, the nonzero stress components are only considered for bending 
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moments for the case of the thin rectangular plate without in-plane forces - see equation (2.19). 

On the other hand, in the case of a thin rectangular plate with in-plane forces the resulting forces 

in x, y, and in-plane share forces could be evaluated as 

   𝑁! = 𝜎!!  𝑑𝑧  ;  
!/!

!!/!
  𝑁! = 𝜎!!  𝑑𝑧  ;  

!/!

!!/!
      𝑁!" = 𝜏!"  𝑑𝑧    

!/!

!!/!
 

 
(2.39) 

 
By introducing the Laplacian operator  ∇!, equation (2.38) could be reduced to the compact form  

   ∇!𝑤 =
1
𝐷 {−𝜌ℎ

𝜕!𝑤
𝜕𝑡! + 𝑁!

𝜕!𝑤
𝜕𝑥! + 𝑁!

𝜕!𝑤
𝜕𝑦! + 2𝑁!"

𝜕!𝑤
𝜕𝑥𝜕𝑦} 

 
(2.40) 
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Chapter 3 
 

Dynamic Behavior of a Thin Rectangular Plate 
Subjected to In-Plane Forces 

	
  
In the previous chapter, the equation of motion of a thin rectangular plate, with and without 

in-plane forces, was presented. In this chapter some analytical and approximate solutions are 

obtained for the plate subjected to defferent types of in-plane forces. An analytical solution 

for the plate, with and without in-plane force, is reviewed from the literature for simply 

supported boundary conditions. An approximate solution is obtained using the Rayleigh-Ritz 

method, which requires assumed mode shapes that satisfy the geometric boundary 

conditions. Another approximate solution is obtained using FEM analysis. In this method, a 

polynomial shape function is used. The methods are compared for a simply supported plate, 

with and without in-plane forces. 

This chapter is divided into two sections based on the nature of the in-plane forces. The first 

section assumes that the plate is subjected to uniformly distributed in-plane forces that act on 

the boundary; this results in a uniform stress distribution in the plate. The second section 

deals with a plate that is subjected to in-plane forces acting at a few discrete locations; this 

results in a non-uniform stress distribution.              
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3.1  A Simply-Supported, Thin, Rectangular Plate Subjected To Uniformly 
Distributed In-Plane Forces  

 
3.1.1 Analytic Solution 

 

Consider the plate shown in Fig. 3.1. The solution to the dynamics of this plate is available in 

the literature [39]; it is reviewed here for convenience. The transverse vibration of a thin 

rectangular plate was presented in the last chapter in (2.43). Assuming zero shear forces 

(𝑁!" = 0), the equation can be written as: 

   𝛻!𝑤 =
𝜕!𝑤
𝜕𝑥! + 2

𝜕!𝑤
𝜕𝑥!𝜕𝑦! +

𝜕!𝑤
𝜕𝑦! =

1
𝐷 (𝜌ℎ

𝜕!𝑤
𝜕𝑡! + 𝑁!

𝜕!𝑤
𝜕𝑥! + 𝑁!

𝜕!𝑤
𝜕𝑦! ) 

 

(3.1) 

 

where 𝑁! and 𝑁! are the in-plane forces, shown in Fig. 3.1. The solution requires two 

boundary conditions at each edge. For instance, a simply supported boundary condition on all 

sides (as in Fig. 3.1) requires the deflection and bending moment to be zero. 

 𝑤(0,𝑦, 𝑡) = 0     (3.2) 

 𝑤(𝑎,𝑦, 𝑡) = 0     (3.3) 

 𝑤(𝑥, 0, 𝑡) = 0     (3.4) 

 𝑤(𝑥, 𝑏, 𝑡) = 0     (3.5) 

 𝑀!|!!! = −𝐷
𝜕!𝑤
𝜕𝑥! + 𝜈

𝜕!𝑤
𝜕𝑦! |!!! = 0     (3.6) 

 𝑀!|!!! = −𝐷
𝜕!𝑤
𝜕𝑥! + 𝜈

𝜕!𝑤
𝜕𝑦! |!!! = 0     (3.7) 

 𝑀!|!!! = −𝐷
𝜕!𝑤
𝜕𝑦! + 𝜈

𝜕!𝑤
𝜕𝑥! |!!! = 0     (3.8) 

 𝑀!|!!! = −𝐷
𝜕!𝑤
𝜕𝑦! + 𝜈

𝜕!𝑤
𝜕𝑥! |!!! = 0     (3.9) 
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Figure 3.1. Simply supported plate with uniformly distributed in-plane forces 

	
  
The solution to the governing equation in (3.1) is assumed to be of the form: 

 𝑤 𝑥,𝑦, 𝑡 =𝑊 𝑥,𝑦   𝑒!"# (3.10) 

Substituting (3.10) into (3.1) gives 

 ∇!𝑊  𝑒!"# =
−1
𝐷 𝜌ℎ  𝑊𝜔!  𝑒!"# +

𝑁!
𝐷
𝜕!𝑊
𝜕𝑥!   𝑒

!"# +
𝑁!
𝐷
𝜕!𝑊
𝜕𝑦!   𝑒

!"# (3.11) 

Dividing both sides by  (𝑒!"#) and assuming the 𝜆! = −𝜌ℎ  𝜔2
𝐷  yields 

 ∇!𝑊 − 𝜆!𝑊 =
𝑁!
𝐷
𝜕!𝑊
𝜕𝑥! +

𝑁!
𝐷
𝜕!𝑊
𝜕𝑦!  (3.12) 

In general, the solution for a simply supported plate that is not subjected to in-plane forces 

can be expressed as [39] 

x

y

simply supported

a

b NxNx

Ny

Ny
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 𝑊 𝑥,𝑦 = 𝐴!" sin
𝑚𝜋  𝑥
𝑎

!

!,!!!

    sin
𝑛𝜋  𝑦
𝑏  (3.13) 

where   𝐴!" is a constant represents the amplitude. Because the in-plane forces will not affect 

the bending moment at the edges, we can substitute (3.13) into (3.12) to get (3.14)  

 
𝜔!"! = 𝐷

𝜌ℎ
𝑚  𝜋
𝑎

2
+ 𝑛  𝜋

𝑏
2 2

+ 1
𝜌ℎ 𝑁𝑥

𝑚𝜋
𝑎

2
+𝑁𝑦

𝑛𝜋
𝑏

2
;         

where  (𝑚,𝑛 = 1,2, . .∞)  

(3.14) 

Equation (3.16) can be used to compute the frequencies of a thin rectangular plate with in-

plane forces. When 𝑁! and 𝑁! are zero, (3.14) reduces to the form  

 𝜔!"! =
𝐷
𝜌ℎ

𝑚  𝜋
𝑎

!
+

𝑛  𝜋
𝑏

! !

 (3.15) 

 

3.1.2 Rayleigh-Ritz Approximation 
 

In the Rayleigh-Ritz method, we assumed the solution of the equation of motion in the 

following form 

 𝑤(𝑥,𝑦, 𝑡) =𝑊 𝑥,𝑦   cos𝜔𝑡 (3.16) 

The maximum kinetic and potential energies for the plate shown in Fig. 3.1 can be evaluated 

from  

 𝑇!"# =
1
2𝜔

! 𝜌ℎ  𝑊!𝑑𝑥  𝑑𝑦 (3.17) 

 

𝑈!"# =
!
!

𝐷 ∇!𝑊 + 2 1− 𝜐 𝑊!"! −𝑊!!𝑊!! + 𝑁!(𝑊!)! +

𝑁!(𝑊!)! 𝑑𝑥  𝑑𝑦  
(3.18) 

The Rayleigh quotient, is defined as 
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𝑅 = 𝜔! =
𝑈!"#
𝑇!"#

=
1
2 𝐷 ∇!𝑊 + 2 1− 𝜐 𝑊!"! −𝑊!!𝑊!! + 𝑁! 𝑊! ! + 𝑁! 𝑊!

! 𝑑𝑥  𝑑𝑦
1
2 𝜌ℎ  𝑊!𝑑𝑥  𝑑𝑦                      

 

(3.19) 

where  𝐷 = (𝐸ℎ!)/12(1− 𝜐!  )  ,  𝑊!! = 𝜕!𝑊 𝜕𝑥!,    𝑊!! = 𝜕!𝑊 𝜕𝑦!and    𝑊!" = 𝜕!𝑊 𝜕𝑥𝜕𝑦. 

The n-terms approximation for 𝑊 𝑥,𝑦   in (3.16) can be expressed as 

 

𝑊 𝑥,𝑦 = 𝐶!𝜙! 𝑥,𝑦                                                                                                   
!

!!!

 

= 𝐶!𝜙! 𝑥,𝑦 + 𝐶!𝜙! 𝑥,𝑦 +⋯+ 𝐶!𝜙! 𝑥,𝑦  

 

(3.20) 

where 𝜙! 𝑥,𝑦  is a mode shape that satisfies the geometric boundary conditions, and 𝐶! are 

the constants that will  be determined. Letting 

 𝑃 =
12𝜌  (1− 𝜐!)

𝐸  (3.21) 

Equation (3.19) can be reduced to  

 

𝜌𝜔! =

1
2 ℎ3 𝑊𝑥𝑥

2+𝑊𝑦𝑦
2+2𝜈𝑊𝑥𝑥𝑊𝑦𝑦+2 1−𝜐 𝑊𝑥𝑦

2 +  𝑁𝑥𝑃    𝑊𝑥 2+  
𝑁𝑦
𝑃    𝑊𝑦

2 𝑑𝑥  𝑑𝑦

1
2 ℎ  𝑊2𝑑𝑥  𝑑𝑦                      

        
(3.22) 

Substituting (3.20) into (3.22), we get 
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𝜌𝜔! =   
1
𝐵
1
2 ℎ! 𝐶!𝜙!!!

!

!!!

!

+ 𝐶!𝜙!
!!

!

!!!

!

+ 2𝜈 𝐶!𝜙!!!
!

!!!

𝐶!𝜙!
!!

!

!!!

+ 2 1− 𝜐 𝐶!𝜙!
!"

!

!!!

!

+
𝑁!
𝑃 𝐶!𝜙!!

!

!!!

!

+
𝑁!
𝑃 𝐶!𝜙!

!
!

!!!

!

𝑑𝑥  𝑑𝑦  

 

(3.23) 

where 

 𝐵 =
1
2 ℎ 𝐶!𝜙!

!

!!!

!

𝑑𝑥  𝑑𝑦                       (3.24) 

and    𝜙!!! = 𝜕!𝜙! 𝜕𝑥! , 𝜙!
!! = 𝜕!𝜙! 𝜕𝑦!   and    𝜙!

!" = 𝜕!𝜙! 𝜕𝑥𝜕𝑦. By minimizing (3.23) 

with respect to 𝐶!   as 

 
𝜕𝜌𝜔!

𝜕𝐶!
= 0                          𝑖 = 1,2,… . ,𝑛 (3.25) 

we obtain 
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ℎ( 𝐶!𝜙!)!
!

!!!

𝑑𝑥  𝑑𝑦 { ℎ! 𝜙!!! 𝐶!𝜙!!!
!

!!!

+ 𝜙!
!! 𝐶!𝜙!

!! +
!

!!!

𝜈𝜙!!! 𝐶!𝜙!
!! +

!

!!!

𝜐𝜙!
!! 𝐶!𝜙!!!

!

!!!

+ 2 1− 𝜐 𝜙!
!" 𝐶!𝜙!

!"
!

!!!

+
𝑁𝑥
𝑃 𝜙!! 𝐶!𝜙!! +

𝑁𝑦
𝑃 𝜙!

! 𝐶!𝜙!
!

!

!!!

!

!!!

𝑑𝑥  𝑑𝑦

− 𝜙! 𝐶!𝜙!𝑑𝑥𝑑𝑦
!

!!!

ℎ! 𝐶!𝜙!!!
!

!!!

!

+ 𝐶!𝜙!
!!

!

!!!

!

+ 2𝜐 𝐶!𝜙!!!
!

!!!

𝐶!𝜙!
!!

!

!!!

+ 2 1− 𝜐 𝐶!𝜙!
!"

!

!!!

!

+
𝑁𝑥
𝑃 𝐶!𝜙!!

!

!!!

!

+
𝑁𝑦
𝑃 𝐶!𝜙!

!
!

!!!

!

𝑑𝑥  𝑑𝑦

= 0                                                                                                                       

(3.26) 

   
Substituting (3.23) back into the (3.26), we get 
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ℎ( 𝐶!𝜙!)!
!

!!!

𝑑𝑥  𝑑𝑦 {ℎ3 𝜙!!! 𝐶!𝜙!!!
!

!!!

+ 𝜙!
!! 𝐶!𝜙!

!! +
!

!!!

𝜐  𝜙!!! 𝐶!𝜙!
!! +

!

!!!

𝜐  𝜙!
!! 𝐶!𝜙!!!

!

!!!

+ 2 1− 𝜐 𝜙!
!" 𝐶!𝜙!

!"
!

!!!

+
𝑁𝑥
𝑃 𝜙!! 𝐶!𝜙!! +

𝑁𝑦
𝑃 𝜙!

! 𝐶!𝜙!
!

!

!!!

!

!!!

𝑑𝑥  𝑑𝑦

− 𝜙! 𝐶!𝜙!𝑑𝑥𝑑𝑦
!

!!!

𝜌𝜔!ℎ 𝐶!𝜙!

!

!!!

!

𝑑𝑥  𝑑𝑦  

= 0   

(3.27) 

 

Dividing both sides by   𝐶𝑗𝜙𝑗
𝑛
𝑗=1

2
𝑑𝑥  𝑑𝑦 , we get 

 

𝑐𝑗 ℎ! 𝜙!!!𝜙!!! + 𝜙!
!!𝜙!

!! + 𝜐  𝜙!!!𝜙!
!! + 𝜐  𝜙!

!!𝜙!!!                       
!

!!!

+ 2(1− 𝜐)𝜙!
!"𝜙!

!" +
𝑁𝑥
𝑃 𝜙!!𝜙!! +

𝑁𝑦
𝑃 𝜙!

!𝜙!
! 𝑑𝑥  𝑑𝑦

− 𝜌𝜔! 𝐶!

!

!!!

𝜙!𝜙! ℎ  𝑑𝑥  𝑑𝑦 = 0   

(3.28) 

Denoting the first term in (3.31) as 𝑎!" and the second term as 𝑏!", and 𝜁! = 𝜌𝜔! we get 

 𝑎!" − 𝜁!𝑏!" 𝐶! = 0
!

!!!

 (3.29) 

The eigenvalue problem (3.29) is used to solve the dynamic equation. To illustrate this 

method, an example is provided below:  

The Rayleigh quotient can be expressed as 
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 𝑅 = 𝜔! =
𝑈!"#
𝑇!"#

=
𝑁
𝐷 (3.30) 

where N and D can be expressed as follows: 

 𝑁 = 𝑈!"# =
1
2 𝑐!𝑐! 𝒌!" =

1
2𝐶

!𝑲𝐶
!

!!!

!

!!!

 (3.31) 

 
𝐷 = 𝑇!"# =

1
2 𝑐!𝑐! 𝒎!" =

1
2𝐶

!𝑴𝐶
!

!!!

!

!!!

 

 

(3.32) 

where  𝑲 = 𝑘!"  is the stiffness matrix, 𝑴 = 𝑚!"  is the mass matrix and  𝐶 =

𝑐!
𝑐!.
.
𝑐!

. The 

elements of the stiffness and mass matrices are defined below: 

 

𝑲   = 𝐷 𝜑!!! + 𝜑!!! + 2𝜐𝜑!!𝜑!! + 2(1− 𝜐)𝜑!"!

+ 𝑁!𝜑!! + 𝑁!𝜑!! 𝑑𝑥  𝑑𝑦   

 

(3.33) 

 
𝑴 = 𝜌ℎ  𝜑!𝑑𝑥  𝑑𝑦 

 

(3.34) 

where	
   𝜑!! = 𝜕!𝜙 𝜕𝑥!, 𝜑!! = 𝜕!𝜙 𝜕𝑦! and 𝜙 is the assumed mode shapes. We can 

express (3.30) as 

 𝑅 𝑐1, 𝑐2,… , 𝑐𝑛 =
𝑁 𝑐1, 𝑐2,… , 𝑐𝑛
𝐷 𝑐1, 𝑐2,… , 𝑐𝑛

 (3.35) 

Minimizing (3.35) with respect to  𝑐𝑖′𝑠 𝑖 = 1,2…𝑛, we get 

 𝜕𝑅
𝜕𝑐!

=
𝐷
𝜕𝑁
𝜕𝑐!

− 𝑁
𝜕𝐷
𝜕𝑐!

𝐷2
= 0                      𝑖 = 1,2,… . , 𝑛 

(3.36) 
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1
𝐷
𝜕𝑁
𝜕𝑐𝑖

−𝑁𝐷
𝜕𝐷
𝜕𝑐𝑖

= 0 

𝜕𝑁
𝜕𝑐𝑖

− 𝜆(𝑖) 𝜕𝐷𝜕𝑐𝑖
= 0                                  𝜆(𝑖) ≜ 𝑁

𝐷 

where  𝜆(!) are the eigenvalues. Form (3.31) and (3.32) we have 
!"
!!!

= 𝐶  𝑲  and 
!"
!!!

= 𝐶  𝑴, 

(3.36) can be reduced to 

 𝑲− 𝜆(!)𝑴 𝐶 = 0                                  𝑖 = 1,2,… . ,𝑛 (3.37) 

The free vibration equation can be expressed as  

 −𝜔!𝑴  𝑊  𝑐𝑜𝑠𝜔𝑡 +𝑲  𝑊  𝑐𝑜𝑠𝜔𝑡 = 0   (3.38) 

Dividing both sides by  (𝑐𝑜𝑠𝜔𝑡) gives 

 𝑲− 𝜔!𝑴 𝑊 = 0   (3.39) 

where the mass matrix,  𝑴  , can be evaluated from 

 𝑴 = ℎ    𝜙!𝜙!

!

!

!

!

𝑑𝑥  𝑑𝑦 (3.40) 

and the stiffness matrix,  𝑲, can be obtained from  
 𝑲 = 𝑲𝒃 +𝑲𝒇𝒙𝑵𝒙 +𝑲𝒇𝒚𝑵𝒚 (3.41) 

where  

 𝑲𝒃 = 𝐷 𝜙!!! + 𝜙!!! + 2𝜐  𝜙!!𝜙!! + 2(1− 𝜐)𝜙!"! 𝑑𝑥  𝑑𝑦
!

!

!

!

 (3.42) 

 

𝑲𝒇𝒙 = 𝜙!!  𝑑𝑥  𝑑𝑦
!

!

!

!

 

𝑲𝒇𝒚 = 𝜙!!  𝑑𝑥  𝑑𝑦
!

!

!

!

 

(3.43) 
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For the plate without in-plane forces, equations (3.43) are neglected. From (3.39) – (3.43) we 

can obtain the dynamics of the plate with and without the uniformly distributed in-plane 

forces using Rayleigh-Ritz method. 

 

 
3.1.3 Finite Element Analysis 

	
  
	
  

 
The finite element method use variation and interpolation methods to obtain the dynamics of 

a structure efficiently. Usually, the FEM method is used for complex structures with complex 

boundary conditions. In this method, the actual structure is divided into small finite parts that 

are called finite elements. These elements have nodes that surround and connect them to the 

neighboring elements. This combination is called the finite element mesh. The solution of the 

governing equation is found for each element individually using polynomial shape function 

that satisfies the geometrical boundary conditions of the structure. This solution is called a 

local solution. Then, the local solutions for all elements are assembled to find the global 

solution. In this section, the FEM analysis uses the kinetic energy and the potential energy   

to obtain the dynamics of the plate using the global solution after we applied the boundary 

conditions. The plate is discretized into finite quad elements as shown in Fig. 3.2 has four 

nodes and each node has three degree of freedoms, namely, one translational degree of 

freedom in the z direction,  𝑊!", and two rotational degrees of freedom, 𝑊!"# and 𝑊!"#, about 

the x and y axes respectively. 
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Figure 3.2. Four-node quad plate element with 12 DOF’s  

For the element shown in Fig. 3.2, the polynomial shape function can be assumed in the 

following form [49]: 

 

𝑊 𝑥,𝑦 = [𝐻!!
!

!

!!!

!

!!!

𝑥   𝐻!!
! 𝑦   𝑤!" + 𝐻!!

! 𝑥   𝐻!!
! 𝑦   𝑤!"#

+ 𝐻!!
! 𝑥   𝐻!!

! 𝑦   𝑤!"#] 

(3.44) 

where the functions in the x and y directions are 

 𝐻!"
! 𝑥 =

−1
𝑎 𝑥 − 𝑎  (3.45) 

 𝐻!"
! (𝑦) =

−1
𝑏 𝑦 − 𝑏  (3.46) 

 𝐻!"
! 𝑥 =

𝑥
𝑎   (3.47) 

 𝐻!"
! (𝑦) =

𝑦
𝑏 (3.48) 

x

yz

w21

wₓ11

wₓ12

wₓ21

wₓ22

wy22

wy21wy11

wy12

w11

w12 w22

b

a
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 𝐻!"
! (𝑥) =

1
𝑎! 2  𝑥! − 3  𝑎  𝑥! + 𝑎!  (3.49) 

 𝐻!"
! (𝑦) =

1
𝑏! 2  𝑦! − 3  𝑏  𝑦! + 𝑏!  (3.50) 

 𝐻!"
! (𝑥) =

−1
𝑎! 2  𝑥! − 3  𝑎  𝑥!  (3.51) 

 𝐻!"
! (𝑦) =

−1
𝑏! 2  𝑦! − 3  𝑏  𝑦!  (3.52) 

 𝐻!!
! (𝑥) =

1
𝑎! 𝑥! − 2  𝑎  𝑥! + 𝑎!  𝑥  (3.53) 

 𝐻!!
! (𝑦) =

1
𝑏! 𝑦! − 2  𝑏  𝑦! + 𝑏!  𝑦  (3.54) 

 𝐻!"
! (𝑥) =

1
𝑎! 𝑥! − 𝑎  𝑥!  (3.55) 

 𝐻!"
! (𝑦) =

1
𝑏! 𝑦! − 𝑏  𝑦!  (3.56) 

The polynomial shape function (3.44) is used to obtain the stiffness and mass matrices for 

each element using the potential and kinetic energies as presented in section 3.1.2. Equation 

(3.33) and (3.34) can be used to express the elemental stiffness and mass matrices as follows: 

 

  𝑲! =
1
𝐷 𝑊!!! +𝑊!!! + 2𝜐𝑊!!𝑊!! + 2 1− 𝜐 𝑊!"! 𝑑𝑥  𝑑𝑦

+ [𝑁!𝑊!! +𝑁!𝑊!!]𝑑𝑥  𝑑𝑦 

(3.57) 

 𝑴! = 𝜌ℎ  𝑊!𝑑𝑥  𝑑𝑦   (3.58) 

After we obtained the stiffness and mass matrices for each element, we assembled them to 

get the global stiffness and mass matrices. Then, the boundary conditions are applied to 
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obtain the reduced global matrices. These reduced matrices are used to obtain the frequencies 

and mode shapes of the plate.   

 𝑲! − 𝜆(!)𝑴! 𝜑 = 0 (3.59) 

where  𝜆(!) is the eigenvalues and  𝜑 are the eigenvectors. 𝑲!  and 𝑴!  are the reduced global 

stiffness and mass matrices.  

 

 

 
3.1.4 Comparisons 
 

In order to examine the accuracy of the approximation methods, a comparison with the 

analytical solution is made for a simply supported plate, with and without in-plane forces. A 

plate with the dimensions shown in Fig. 3.3 is considered. 

 

 
Figure 3.3. Thin rectangular plate dimensions 
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The material properties for the plate are assumed to be: 

Material    Aluminum 

           Young’s modulus          70 Gpa 

  Mass density     2730 kg/𝑚! 

Table 3.1 shows the first five natural frequencies for the plate without in-plane forces and 

both approximation methods that presented in sections 3.1.2 and 3.1.3. In the finite element 

method, we used 20×10 elements meshing as shown in the Fig. 3.4. 

 
Figure 3.4. Finite element meshing for the plate 

 
Table 3.1. Comparing the Solutions for Thin Rectangular Plate without In-Plane Forces 

Mode Analytical 
in Hz FEM in Hz Rayleigh-

Ritz in Hz 
% Error in 

FEM 

% Error in 
Rayleigh-

Ritz 

1 1.532 1.5531 1.53088 2.22 0.073 

2 2.4512 2.5045 2.44912 3.52 0.084 

3 3.9832 4.0590 3.98001 3.19 0.08 

4 6.1279 6.2190 6.12353 2.27 0.071 

5 6.1279 6.2193 6.12353 2.60 0.071 

2m

1m

20 Elements

10
 El

em
en

ts
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Table 3.1 shows that the Rayleigh-Ritz approximation is closer to the analytical solution than 

the EFM method because it uses mode shapes instead of polynomial shape functions. 

However, the FEM solution could be improved by increasing the number of elements, i.e., by 

using finer meshing. The results show that the maximum error using FEM method is around 

3.5%, however, the maximum error for the Rayleigh-Ritz method is 0.084%. In conclusion, 

using these approximations, we obtained solutions close to the analytical solution with 

acceptable level of accuracy.  

 
Figure 3.5. Thin rectangular plate with uniformly distributed in-plane forces 

 
 

For a plate with similar material and geometrical properties, we added uniformly distributed 

in-plane forces along the boundaries as shown in Fig. 3.5. The forces along the x axis is 

denoted as  𝑁! = 10𝑁/𝑚 and the forces along the y axis is  𝑁! = 5𝑁/𝑚. The results are 

shown in Table 3.2 using the analytical and both approximation methods.  
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Table 3.2. Comparing the Solutions for Thin Rectangular Plate with In-Plane 
Distributed Forces 

Mode Analytical 
in Hz 

FEM in 
Hz 

Rayleigh
-Ritz in 

Hz 

% Error 
in FEM 

% Error 
in 

Rayleigh
-Ritz 

1 1.9289 1.9456 1.92765 1.415 0.064 
2 2.959 3.0032 2.9568 2.45 0.074 
3 4.5719 4.6380 4.56859 2.44 0.072 
4 6.5609 6.6461 6.55641 1.99 0.068 
5 6.7671 6.8495 6.76247 2.15 0.068 

 

As shown, the Rayleigh-Ritz method is more accurate compared with FEM. However, using 

the Rayleigh-Ritz method has the limitation that it depends on mode shapes that should 

satisfy the geometrical boundary conditions. In contrary, FEM method can solve more 

complex geometry and boundary conditions. Therefore, the FEM can handle problems where 

the in-plane forces are not uniformly distributed; in other words it can solve the problem 

where these in-plane forces are prescribed at arbitrary locations on the plate. With the 

maximum error reach around 2.4% using FEM, the results lie in the acceptable range of 

accuracy and can be considered as close to the analytical solution. Figure 3.6 shows the mode 

shapes associated with the frequencies listed in Table 3.2. 
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Figure 3.6. First five mode shapes for thin simply supported rectangular plate with 
uniformly distributed in-plane forces 

 
 

3.2 A Simply-Supported Thin Rectangular Plate Subjected To In-Plane 
Forces At A Few Discrete Locations 

 
In section 3.1, we presented three different ways to solve the governing equation, namely, the 

analytical method, the Rayleigh-Ritz method, and the finite elements method. For the case 

where there are in-plane forces at a few discrete locations, the analytical solution is not 

available in the literature and the Rayleigh-Ritz method become cumbersome because the 

mode shapes for such problems with non-uniform stress distributions are not readily 
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available. Therefore, the FEM is used to numerically solve the governing equation. We use a 

code we created using MATLAB and verify the results using commercial FEM software.   

 
3.2.1 Finite Element Analysis 
 

The analysis is divided into two steps: evaluating in-plane stress distributions and out-of-

plane vibration analysis. The quad element shown in the Fig. 3.7 is used for in-plane stress 

distributions. The element has four nodes: one at each corner, and two degrees of freedom at 

each node. These degrees of freedom are the components of in-plane displacement, u and v, 

in the x and y directions respectively.   

 
Figure 3.7. Dimensions of the plate’s element and coordinate transformation 

Each component of in-plane displacement can be defined in non-dimensional coordinates as 

 𝑢 = 𝑁!𝑢!   ;                   𝑣 = 𝑁!𝑣!

!

!!!

!

!!!

 

 

(3.60) 

where the shape function 𝑁!  can be written using the coordinate transformation shown in 

Fig. 3.7 as follows: 

 𝑁! =
1
4 1− 𝜉 1− 𝜂  (3.61) 

1 2

4 3

x

y
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 𝑁! =
1
4 1+ 𝜉 1− 𝜂  (3.62) 

 𝑁! =
1
4 1+ 𝜉 1+ 𝜂  (3.63) 

 𝑁! =
1
4 1− 𝜉 1+ 𝜂  (3.64) 

The displacement vector for each element can be written as 

 𝑈 !
! = 𝑢! 𝑣! 𝑢! 𝑣! 𝑢! 𝑣! 𝑢! 𝑣!  (3.65) 

and  

 𝑁 = 𝑁!
0

0
𝑁!

𝑁!
0

0
𝑁!

𝑁!
0

0
𝑁!

𝑁!
0

0
𝑁!

 (3.66) 

Combining (3.65) and (3.66), the in-plane displacements for each element can be expressed 

as   

 
𝑢
𝑣 = 𝑁!

0
0
𝑁!

𝑁!
0

0
𝑁!

𝑁!
0

0
𝑁!

𝑁!
0

0
𝑁!

    

𝑢!
𝑣!
𝑢!
𝑣!
𝑢!
𝑣!
𝑢!
𝑣!

= 𝑁 𝑈 !    (3.67) 

The kinetic energy for a plate element can be obtained from 

 𝑇! =
1
2 𝜌ℎ   𝑈

!
𝑑𝐴 =

1
2 𝑈

!
!𝑴! 𝑈 !

 (3.68) 

where 𝑴! is the elemental mass matrix and can be evaluated from 

 𝑴! = 𝜌   𝑁 ! 𝑁   𝑑𝐴 

 
(3.69) 

The potential energy for each element is given by the expression  

 𝑈! =
1
2 ℎ   𝜀 !

! 𝐷!"#    𝜀 !   𝑑𝐴 

 
(3.70) 

where  
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 𝜀 ! =

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 +

𝜕𝑣
𝜕𝑥

   (3.71) 

and   𝐷!"#  is the constituent matrix for in-plane stress analysis. 𝐷!"#  can be obtained from 

the relation  

 𝐷!"# =
𝐸

1− 𝜈!

1 𝜈 0
𝜈 1 0

0 0
1− 𝜈
2

   (3.72) 

Equation (3.70) can be expressed as 

 𝑈! =
1
2 𝑈 !

!   𝑲!    𝑈 ! (3.73) 

where	
  𝑲! is the elemental stiffness matrix and has the from 

 𝑲! = ℎ  𝑩! 𝐷!"#   𝑩  𝑑𝐴 

 
(3.74) 

where 
 

 

𝑩 =

  𝟏
𝟒
    

− 𝟏!𝜼
𝒂

        𝟎 𝟏!𝜼
𝒂

𝟎 𝟏!𝜼
𝒂

𝟎 −   𝟏!𝜼
𝒂

𝟎

𝟎 − 𝟏!𝝃
𝒃

𝟎 − 𝟏!𝝃
𝒃

𝟎 𝟏!𝝃
𝒃

𝟎 𝟏!𝝃
𝒃

− 𝟏!𝝃
𝒃

− 𝟏!𝜼
𝒂

− 𝟏!𝝃
𝒃

𝟏!𝜼
𝒂

𝟏!𝝃
𝒃

𝟏!𝜼
𝒂

𝟏!𝝃
𝒃

− 𝟏!𝜼
𝒂

  
(3.75) 

For non-dimensional coordinates of node j, the elemental mass matrix can be found from 

 

        𝑴! = 𝜌ℎ  𝑎  𝑏 𝑁!𝑁! det J 𝑑𝜉  𝑑𝜂                              
!

!!

!

!!

= 𝜌ℎ  𝑎  𝑏 𝑁 ! 𝑁 det J 𝑑𝜉  𝑑𝜂                              
!

!!

!

!!
 

 

(3.76) 

By evaluating (3.76) the elemental mass matrix is obtained as 
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 𝑴! =
𝜌ℎ  𝑎  𝑏
9

4
0
2
0
1
0
2
0

0
4
0
2
0
1
0
2

2
0
4
0
2
0
1
0

0
2
0
4
0
2
0
1

1
0
2
0
4
0
2
0

0
1
0
2
0
4
0
2

2
0
1
0
2
0
4
0

0
2
0
1
0
2
0
4

 (3.77) 

The elemental stiffness matrix for non-dimensional coordinates can be obtained from 

 𝑲! = 𝑎  𝑏  ℎ  [𝐵]! 𝐷!"#   𝑩   det J 𝑑𝜉  𝑑𝜂
!

!!

!

!!
 

 
(3.78) 

where J  is the Jacobian matrix and can be evaluated from  

 J =

𝜕𝑥
𝜕𝜉
𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜉
𝜕𝑦
𝜕𝜂

 (3.79) 

For stress distributions of a thin isotropic rectangular plate (see Fig. 3.8), Hooke’s law is used 

to evaluate the stress-strain relationships as  

 
𝜎!!
𝜎!!
𝜏!"

=
𝐸

1− 𝜈!

1 𝜈 0
𝜈 1 0

0 0
1− 𝜈
2

  
𝜀!!
𝜀!!
𝜀!"

 (3.80) 

 
Figure 3.8. Thin Rectangular plate with in-plane stresses 

 

y

x
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The elemental forcing vector for exterior (boundary) forces can be obtained from  

 𝑓 ! = ℎ
Γ𝑡

𝑁 !   𝑡  𝑑Γ! (3.81) 

where Γ! is the boundary over which tractions are specified, and 𝑡  is the boundary traction. 

After creating the global stiffness and forces matrices, the boundary conditions were applied 

to get the reduced global matrices. The boundary conditions were achieved by fixing three 

nodes in the central element: 6 DOF’s, in the x and y directions. After applying the boundary 

conditions, the displacement, strain and stresses can be evaluated as follows: 

 𝑓!"#$ = 𝑲!"#$   𝑈     ⇒    𝑈 = 𝑲!"#$!!   𝑓!"#$  (3.82) 

where 𝑈   is the total displacements and has two components of the displacement in the x 

and y directions – see (3.65) for one element. Then the strain and stress can be obtained from 

 𝜀 = 𝑩   𝑈   ,                                               𝜎 =    𝐷!"#    𝜀    
 (3.83) 

Comparing (3.83) with (3.80), the stress vector has the following elements 𝜎! ,𝜎!  𝑎𝑛𝑑  𝜏!". 

These elements represent the normal and shear stresses. They can be used in out-of-plane 

vibration analysis by evaluating 𝑁! ,𝑁!  and  𝑁!" (using the expressions below) for each 

elemental potential energy using (3.57).  

𝑁! = 𝜎!!  𝑑𝑧  ;  
!/!

!!/!
  𝑁! = 𝜎!!  𝑑𝑧  ;  

!/!

!!/!
      𝑁!" = 𝜏!"  𝑑𝑧    

!/!

!!/!
 (3.84) 

Instead of using the same in-plane forces and uniform stress distributions for all elements, we 

used non-uniform pre-stress distribution information to evaluate the in-plane forces for each 

element. 
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3.2.2 Commercial Software 
 

There are many commercial software based on finite element analysis that solve complex 

structure problems. One of the best-known commercial software is ANSYS. For out-of-plane 

vibration analysis, we used pre-stress analysis to examine the non-uniform stress distribution 

effects on the plate. A 3D shell element was used to mesh a simply supported plate of 2m 

length and 1m width, and a thickness of 0.5mm. The plate was subjected to in-plane forces as 

shown in the Fig. 3.9.  

 
Figure 3.9. Meshing of thin rectangular plate with in-plane prescribed forces 

 
 

3.2.3 Comparisons 
 

The first five frequencies for the plate shown Fig. 3.9 are listed in Table 3.3. The table 

presents the results for the case where the in-plane forces are not uniformly distributed. 

Instead, few discrete in-plane loads are considered. We used commercial FEM software, 

ANSYS, to verify the results that we got from our MATLAB FEM code for the plate with the 

meshing shown in Fig. 3.4.  
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Table 3.3. The Non-Uniform stress distribution frequency results 

Mode ANSYS Hz MATLAB 
Hz 

% 
Difference 

1 2.3964 2.2915 4.37 

2 3.6437 3.5697 2.03 

3 5.4468 5.3826 1.17 

4 6.2627 5.9567 4.88 

5 7.3659 7.0454 4.35 

 
From Table 3.3, we can conclude that the maximum difference between the modal 

frequencies results was around 4.8%. This could be due to the fact that more DOF’s are used 

in ANSYS discretization. Therefore, the results using our FEM MATLAB code has been 

proven using multiple methods and the errors remain in the low range, less than 5%, errors.  

In table 3.2, we saw that our FEM results were higher than the analytical solution. However, 

table 3.3 shows that our FEM results lower than what we got from the commercial software, 

which is a good indication that our FEM code has solved the problem with a good accuracy.   

As presented in sections 3.2.1 and 3.2.2 the solution procedure divided into two parts. In the 

first part, evaluations for the stress distributions are obtained for both FEM methods and the 

results are shown in figures below. 
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 Figure 3.10. In-plane normal stress distribution in the x direction 

  

	
  
Figure 3.11. In-plane normal stress distribution in the y direction 

 
Figure 3.12. In-plane share stress distribution  
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The difference between our MATLAB Code and the commercial software are shown in the 

figures below 

 
Figure 3.13. Difference between ANSYS and MATLAB Code for the x 
direction stress distribution 

 
Figure 3.14. Difference between ANSYS and MATLAB Code for the y 
direction stress distribution 

 
Figure 3.15. Difference between ANSYS and MATLAB Code for the share 
stress distribution 
 

 

 

−4.03E+02
−3.85E+02
−3.50E+02
−3.15E+02
−2.80E+02
−2.45E+02
−2.10E+02
−1.75E+02
−1.40E+02
−1.05E+02
−6.97E+01
−3.46E+01
+4.95E−01

 

−4.99E−01
−4.56E−01
−3.69E−01
−2.83E−01
−1.97E−01
−1.11E−01
−2.42E−02
+6.21E−02
+1.48E−01
+2.35E−01
+3.21E−01
+4.07E−01
+4.94E−01

 

−4.65E−01
−4.23E−01
−3.39E−01
−2.56E−01
−1.73E−01
−8.94E−02
−5.99E−03
+7.74E−02
+1.61E−01
+2.44E−01
+3.27E−01
+4.11E−01
+4.94E−01



45	
  	
  

Figures 3.12, 3.12 and 3.14 show that the ratio between the maximum difference and the 

maximum normal stress evaluated in the x and y directions and shear stress in xy plane 

are  2.46×10!!", 6.52×10!! and 4.9798×10!!  respectively.  These ratio are so small and 

can be neglected comparing with the maximum stress values that have been evaluated. Using 

these stress data, an out-of-plane vibration analysis has been made as discussed before and 

the mode shapes for the frequencies listed in table 3.3 are shown in Fig 3.16. 

 
Figure 3.16. First Five modes shapes for thin plate with non-uniform stress 
distribution  
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Chapter 4 
	
  
	
  

Vibration Control Of A Thin Rectangular Plate Using 
Uniformly Distributed In-Plane Forces 
	
  
In the previous chapters we reviewed the dynamics of a thin rectangular plate with and without 

in-plane forces, and we showed some techniques to solve the dynamic equations. In this 

chapter, we introduce a control strategy to reduce the lateral vibration on the plate; it is assumed 

that the plate is subjected to uniformly distributed in-plane forces. The control strategy uses 

state feedback and switches the in-plane forces to suppress the vibration. The method presented 

is an extension of the work by Nudehi [48] where vibration of a beam was suppressed using an 

end force.  

4.1 Control Design 
 
In absence of damping, the equation of motion of a thin rectangular plate subjected to in-plane 

forces can be expressed in the form 

𝑴  𝜇 +𝑲  𝜇 = 0 (4.1) 

where 𝑴 = 𝜌ℎ  𝑰   ∈ 𝑅!×!  is the mass matrix, 𝑰 ∈ 𝑅!×! is the identity matrix, 𝑲 ∈ 𝑅!×!  is the 

stiffness matrix, and 𝜇 ≜ 𝜇!, 𝜇!,… , 𝜇! ! are the modal displacements. Using Rayleigh-Ritz 

Approximation (see section 3.1.2), equation (4.1) can be written as 
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𝑴  𝜇 + (𝑲𝒃 + 𝑁!  𝑲𝒇𝒙 + 𝑁!  𝑲𝒇𝒚)𝜇 = 0 (4.2) 

where 𝑲𝒃 is the stiffness matrix due to bending, and 𝑲𝒇𝒙 and 𝑲𝒇𝒚 are the geometric stiffness 

matrices due to the in-plane forces (𝑁! and 𝑁!). Assuming the presence of proportional 

damping (Rayleigh damping), the damping matrix can be expressed as 

 𝑫 = 𝛼  𝑴+ 𝛽  𝑲𝒃 (4.3) 

Adding the damping effects to (4.2), we get 

 𝑴  𝜇 +𝑫  𝜇 + (𝑲𝒃 + 𝑁!  𝑲𝒇𝒙 + 𝑁!  𝑲𝒇𝒚)  𝜇 = 0 (4.4) 

For the purpose of designing a controller, equation (4.4) is converted to the state space 

representation as follows:  

 𝑥! = 𝑥! (4.5) 
 

 𝑥! = 𝑴!𝟏(−𝑲𝒃  𝑥! −𝑫  𝑥! −𝑲𝒇𝒙  𝑥!𝑢! −𝑲𝒇𝒚  𝑥!𝑢!) (4.6) 

where  𝑥! ≜   𝜇 ∈   𝑅! and    𝑥! ≜   𝜇 ∈   𝑅! are the state variables, and 𝑢! ≜ 𝑁!   ∈ 𝑅 and 

𝑢! ≜ 𝑁!   ∈ 𝑅 are the control inputs. The following choice of inputs   

 

𝑢! =
  𝑁! 𝑖𝑓  𝑥!!   𝑴!𝟏𝑲𝒇𝒙  𝑥! ≥ 0
  0 𝑖𝑓  𝑥!!   𝑴!𝟏𝑲𝒇𝒙  𝑥! < 0

 

𝑢! =
  𝑁! 𝑖𝑓  𝑥!!   𝑴!𝟏𝑲𝒇𝒚  𝑥! ≥ 0
  0 𝑖𝑓  𝑥!!   𝑴!𝟏𝑲𝒇𝒚  𝑥! < 0

 

(4.7) 

guarantees asymptotic stability of the equilibrium   𝑥!, 𝑥! = 0,0 . In (4.7), 𝑁! > 0 and 𝑁! > 0 

are predefined constant values. To verify asymptotic stability of the equilibrium, consider the 

energy of the plate as the Lyapunov function candidate; 

 𝑉 =
1
2 𝑥!!𝑲  𝑥! + 𝑥!!𝑴𝑥!  (4.8) 

Taking the first derivative of (4.8) and substituting (4.7) gives 



48	
  	
  

 

𝑉 = 𝑥!!   𝑴!𝟏𝑲𝒃  𝑥! + 𝑥!!   𝑴!𝟏 −𝑲𝒃  𝑥! −𝑫  𝑥! −𝑲𝒇𝒙  𝑥!𝑢! −𝑲𝒇𝒚  𝑥!𝑢!  

= −𝑥!!   𝑴!𝟏𝑫  𝑥! − 𝑥!!   𝑴!𝟏𝑲𝒇𝒙  𝑥!𝑢! − 𝑥!!   𝑴!𝟏𝑲𝒇𝒚  𝑥!𝑢! 

≤ −  𝑥!!   𝑴!𝟏𝑫  𝑥! 

(4.9) 

The D and 𝑴!𝟏 matrices in equation (4.9) are positive definite. As a result, it can be shown that 

𝑉 ≤ 0 and 𝑉 = 0 if 𝑥! = 0. Using LaSalle’s Theorem we can claim that the origin is 

asymptotically stable. Furthermore, since V is radially unbounded, the origin is globally 

asymptotically stable. The control law in (4.7) implies that the in-plane forces will be applied to 

the system if they reduce the energy of the system; otherwise, they will be zero.  

The control law in (4.7) can be used to control the desired modes; however, the control inputs 

will have high frequencies that can exceed the bandwidth of the actuators. To accommodate this 

problem following [48], a low-pass filter is used in the control loop to filter these high 

frequencies without affecting the stability of the system. The outputs of the system 𝑦!and 𝑦! are 

first defined as follows (see Fig. 4.1) 

 
𝑦! = −𝑥!!   𝑴!𝟏𝑲𝒇𝒙𝑥! 

𝑦! = −𝑥!!   𝑴!𝟏𝑲𝒇𝒚𝑥! 
(4.10) 

 
Figure 4.1. Control design based on filtered outputs 

Flexible Plate

ε

(+)
Low-Pass FilterMemoryless Nonlinearity

Memoryless Nonlinearity Low-Pass Filter

ε
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The outputs are fed back to the system after it passes through a low-pass filter that has a time 

constant  𝜏. This filter eliminates the high frequency components of the outputs and provides a 

signal that does not exceed the actuator bandwidth. The outputs of the filter are denoted as 𝑤!! 

and 𝑤!!; therefore, the filter dynamics can be represented as 

𝑤!! =
1
𝜏 𝑦! − 𝑤!!    

𝑤!! =
1
𝜏 𝑦! − 𝑤!!  

(4.11) 

The outputs of the filters, 𝑤!! and 𝑤!!, are passed through memoryless nonlinearities 𝑢!"#$ ∙  

and 𝑢!"#$ ∙  respectively such that the control forces do not exceed their predefined maximum 

values. The saturated inputs can be defined as  

𝑢!"#$ 𝑤!! = 𝑁!  

𝑁!   𝑖𝑓  𝑤!! ≥ 𝜀                
𝑤!!
𝜀 𝑖𝑓  0 < 𝑤!! < 𝜀

0 𝑖𝑓  𝑤!! < 0                  

   

𝑢!"#$ 𝑤!! = 𝑁!

𝑁! 𝑖𝑓  𝑤!! ≥ 𝜀                
𝑤!!
𝜀 𝑖𝑓  0 < 𝑤!! < 𝜀

0 𝑖𝑓  𝑤!! < 0                  

 

(4.12) 

where 𝜀 is a positive constant. To prove that the dynamic system will remain asymptotically 

stable after we add the filter and the saturation, we consider the new Lyapunov function 

candidate;   

𝑉!"#(𝑥!, 𝑥!,𝑤!!,𝑤!!) =
1
2
𝑥!!   𝑲𝒃  𝑥! + 𝑥!!𝑀𝑥! + 𝜏 𝑢!!"# 𝜍 𝑑𝜍   + 𝜏 𝑢!"#$ 𝜍 𝑑𝜍  

!!!

!

!!!

!
 (4.13) 

Using (4.9), its derivative can be found as follows: 
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𝑉!"# 𝑥!, 𝑥!,𝑤!!,𝑤!! = −𝑥!!𝑴!𝟏𝑫𝑥! − 𝑥!!𝑴!𝟏  𝑲𝒇𝒙  𝑥!𝑢! − 𝑥!!𝑴!𝟏  𝑲𝒇𝒚  𝑥!𝑢! 

  +  𝜏  𝑢!"#$ 𝑤!! 𝑤!! + 𝜏  𝑢!"#$ 𝑤!! 𝑤!!    
(4.14) 

Using (4.11), equation (4.14) can be reduced to 

Since D and 𝑴!𝟏  are positive definite,  𝑉!"# ≤ 0. 𝑉!"# is equal to zero when 𝑥! = 0. When 

𝑥! ≡ 0, we have 𝑦! = 𝑦! = −𝑥!!   𝑴!𝟏𝑲𝒇𝒙𝑥! = −𝑥!!   𝑴!𝟏𝑲𝒇𝒚𝑥! = 0, which implies 𝑤!! =

𝑤!! = 0 and 𝑢!"# 𝑤!! = 𝑢!"# 𝑤!! = 0. Using LaSalle’s Theorem [Ref], we can therefore 

claim that the origin is asymptotically stable. To illustrate this control scheme, the state space 

representation can be rewritten as: 

𝑥 = 𝑨𝑥   (4.16) 

where  

𝑨 =
0 𝑰

−𝑴!𝟏𝑲𝒃 −𝑴!𝟏𝑲𝒇𝒙  𝑢! −𝑴!𝟏𝑲𝒇𝒚  𝑢! −𝑴!𝟏𝑫    (4.17) 

Equation (4.16) can be expressed as 

𝑥!
𝑥! =

0 𝐼
−𝑴!𝟏𝑲𝒃 −𝑴!𝟏𝑲𝒇𝒙  𝑢! −𝑴!𝟏𝑲𝒇𝒚  𝑢! −𝑴!𝟏𝑫

𝑥!
𝑥!    (4.18) 

Therefore, the basic system that describes the control scheme is shown below.  

𝑉!"# 𝑥!, 𝑥!,𝑤!!,𝑤!! = −𝑥!!𝑴!𝟏𝑫𝑥! − 𝑦!𝑢! − 𝑦!𝑢! + 𝑢!"#$ 𝑤!! 𝑦! − 𝑤!! +

𝑢!"#$ 𝑤!! 𝑦! − 𝑤!!       

= −𝑥!!𝑴!𝟏𝑫𝑥! − 𝑤!!𝑢!"#$ 𝑤!! − 𝑤!!𝑢!"#$ 𝑤!!      

≤ −𝑥!!𝑴!𝟏𝑫𝑥! ≤ 0 

(4.15) 
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Figure 4.2. Basic system to control the vibration of the rectangular plate 
	
  

4.2 Control Scheme For A Simply-Supported Plate  
	
  
	
  
The control scheme presented in section 4.1 is applied to the simply supported plate depicted in 

Fig. 4.3. The plate length, width, and thickness are equal to L, W, and h respectively.  

 Figure 4.3. Simply supported thin rectangular plate with in-plane distributed forces 

 

The plate is subjected to time-dependent, in-plane forces that are applied according to the 

control logic in (4.7) for the case without saturation, and according to the control logic in (4.12) 

for the case with saturation. The control scheme is applied to the mathematical model of the 

plate obtained using the approximation methods described in chapter 3, namely the Rayleigh-

Ritz method and the FEM.    
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4.2.1 Control Scheme Using Rayleigh-Ritz Approximation   
	
  
We assume the rectangular plate to have the following geometric and material properties:  

Table 4.1. Specifications of the rectangular plate and the controller   
Material Aluminium 

Young’s modulus, E 70 Gpa 
Mass density, ρ 2730 kg/𝑚! 
Passion Ratio, ν 0.35 

Damping Ratio, α 0 
Damping Ratio, β 0.0002 

Length, L 2 m 
Width, W 1 m 
Thickness, h 0.5 mm 

𝑁! 10 N 

𝑁! 5 N 

 

Using the Rayleigh-Ritz method, the first five frequencies of the plate where obtained; these are 

listed in Table 4.2. The frequencies listed here will not be used in implementation of the 

controller; it will be compared with the frequencies obtained using FEM for model verification.  

Table 4.2. Frequencies in Hz using Rayleigh-Ritz method 

Mode 
Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 5𝑁 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 5𝑁 

1 1.53088 1.6748 1.8063 1.92765 
2 2.44912 2.8000 2.6314 2.9568 
3 3.98001 4.4706 4.0965 4.56859 
4 6.12353 6.2525 6.5493 6.55641 
5 6.12353 6.2756 6.6199 6.76247 

 

To investigate the efficacy of the control strategy, we first examine the variation of the energy 

and the first five modal displacements in the absence of control. The simulation results are 

shown in Figs. 4.4 and 4.5 for the following initial conditions: 
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 𝑥!, 𝑥! ! = 1 0.2 0.5 0.02 0.25 0 0 0 0 0 !  (4.19) 

 
Figure 4.4. Energy deception for simply-supported plate without the controlled 
in-plane forces using Rayleigh-Ritz approximation 

 
Figure 4.5. Modal displacements for simply supported plate without the controlled 
in-plane forces using Rayleigh-Ritz approximation 

 
From Figs. 4.4 and 4.5 we observe that the energy of the system and the modal displacements 

do not converge to zero in 40 seconds. This is due to the fact that the plate has low damping. 

We now examine the variation of energy and the first five modal displacements for the 

controlled system based on the control logic in (4.7). The results are shown in Figs. 4.6 and 

4.7.  
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Figure 4.6. Energy deception for simply supported plate with controlled in-
plane forces using Rayleigh-Ritz approximation 

 
Figure 4.7. Modal displacements for simply supported plate with controlled 
in-plane forces using Rayleigh-Ritz approximation 

 
Figures 4.6 and 4.7 show that the energy and the modal dispalcements are converged to zero 

in approximately 6 secondes. These results demonstrate the efficacy of the control. The 

controlled forces that are used to suppress the vibration are shown in Figs. 4.8 and 4.9.     
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Figure 4.8. 𝑢! inputs for simply supported plate using Rayleigh-Ritz approximation 

 

 
Figure 4.9.  𝑢! inputs for simply supported plate using Rayleigh-Ritz approximation 

 
 
It can be observed form Figs. 4.8 and 4.9 that the control inputs switch with high frequency. 

Furthermore, the control inputs keep switching even after the plate vibration has subsided. To 

address these problems, we implement the control logic in (4.12) – the results are shown in 

Figs. 4.10 – 4.14. The time constant for the filter and the saturation constant for the modified 

control are listed in Table 4.3.  

Table 4.3. Modified control constants  
Time constant, 𝜏 0.15 

𝜀, for saturation 0.5 
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Figure 4.10. Energy deception for simply supported plate with modified 
controlled in-plane forces using Rayleigh-Ritz approximation  

 
Figure 4.11. Modal displacements for simply supported plate with 
modified control using Rayleigh-Ritz approximation 
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Figure 4.12. Modified control inputs 𝑢!"#$ for simply supported plate using 
Rayleigh-Ritz approximation 

 
Figure 4.13. Modified control inputs 𝑢!"#$ for simply supported plate using 
Rayleigh-Ritz approximation 

 

 
Figure 4.14. Modified control filter input for simply supported plate using 
Rayleigh-Ritz approximation 

 
 

From the results shown in Figs. 4.6 – 4.13, we observe that the control scheme with filter and 

saturation (4.12) takes longer time to suppress the vibration of the plate compared with the 

control scheme without the filter and saturation (4.7). However, the input forces have lower 

switching frequency and converge to zero as the vibration subsides.    
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4.2.2 Control Scheme Using Finite Element Analysis 
 

For the plate shown in Fig. 4.3 and the properties listed in Table 4.1, FEM analysis is used to 

model the plate dynamic (see chapter 3).  The plate is discretized to 20 elements along the x-

direction and 10 elements along the y-direction - see Fig. 3.4. The first five frequencies are 

listed in Table 4.4 for different combination of 𝑁! and 𝑁!. 

Table 4.4. Frequencies in Hz using Finite Element Analysis 

Mode 
Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 5𝑁 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 5𝑁 

    1 1.5531 1.6941 1.8242 1.9456 
    2 2.5045 2.8467 2.6810 3.0032 
    3 4.0590 4.5383 4.1702 4.6380 
    4 6.2190 6.3647 6.5070 6.6461 
    5 6.2193 6.7824 6.5745 6.8495 

 

Comparing Table 4.4 with Table 4.2, we observe that the modal frequeceies obtained using the 

Rayleigh-Rtiz method are closed those obtained using FEM with reasonable difference (1%). 

To simulate the control scheme using FEM dynamic model, we should first perform a model 

reduction. This is because the mass and stiffness matrices obtained using FEM have a 

dimension much higher than those obatined using Rayleigh-Ritz method. Model reduction will 

allow us to control the vibration in a few modes of the system in a computationally efficient 

manner. Modal analysis is used to reduce the order of the system and transfer it to the state 

space representation. The governing equation for the freely vibrating system has the following 

form with absence of damping: 

𝑴𝜇 +𝑲𝜇 = 0 (4.20) 
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where 𝜇 ∈ 𝑅! is the vector of the physical coordinate. Solving eigenvalue problem for (4.20), 

we get 

(𝑲− 𝜆  𝑴) ∅ = 0 (4.21) 

 We define the physical coordinates 𝜇 in terms of the model coordinate x using the relation  
𝝁 = ∅   𝒙    (4.22) 

where ∅   is the matrix of eigenvectors. Substitution of (4.22) in to (4.20) gives 

𝑴 ∅   𝑥 +𝑲 ∅   𝑥 = 0 (4.23) 

Multiply (4.23) by   ∅ !, we get 

∅ !𝑴 ∅ 𝑥 + ∅ !𝑲 ∅ 𝑥 = 0 (4.24) 
where 

∅ !𝑴 ∅ = 𝐼 (4.25) 

∅ !𝑲 ∅ =

𝜆! 0   … 0
0
⋮

⋱
0

0
⋱

⋮
0

0 ⋯ 0 𝜆!

 (4.26) 

Equation (4.23) can be written as  

𝑥 + Λ 𝑥 = 0 (4.27) 
where 𝛬 = 𝑑𝑖𝑎𝑔 𝜆! , and 𝑖 = 1, 2,… . ,𝑛. Using (4.27), we decouple our system to multiple 

equations that have the following form: 

𝑥! + 𝛬!   𝑥! = 0                𝑗 =   1  ,2, . . ,𝑛 (4.28) 
The proportional damping is used to obtain the damping matrix as 

𝑫 = 𝛼  𝑰+ 𝛽   𝛬  (4.29) 

Adding damping effect to (4.28), we get  

𝑥! + 𝛼 + 𝛽 𝛬! 𝑥! + 𝛬! 𝑥! = 0                  𝑗 =   1  ,2, . . ,𝑛 (4.30) 

After using the modal reduction, our system is decoupled into n equations. The first five 

equations from (4.30) are used to form the dynamic model that are used in the control scheme. 

The results for the control logic in (4.7) using the initial conditions in (4.19) are shown in the 
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Figs. 4.15 – 4.18.   

 
Figure 4.15. Energy deception for simply supported plate with controlled 
in-plane forces using FEM approximation 

 
Figure 4.16. Modal displacements for simply supported plate with 
controlled in-plane forces using FEM approximation 
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Figure 4.17. 𝑢! input for simply supported plate using FEM approximation 

 
Figure 4.18. 𝑢! input for simply supported plate using FEM approximation 

 
 
For the modified control scheme using filter and saturation (4.12), the results are shown in Figs. 

4.19 – 4.23; the time and saturation constants are listed in Table 4.3. Once again, it can be 

observe that the control logic in (4.12) are taking more time to suppress the vibration.   

 
Figure 4.19. Energy deception for simply supported plate with modified 
controlled in-plane forces using filter and saturation for FEM approximation 
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Figure 4.20. Modal displacements for simply supported plate with 
modified controlled in-pane forces using FEM approximation 

 
Figure 4.21. Modified control inputs 𝑢!"#$ for simply supported plate for 
FEM approximation 

 
Figure 4.22. Modified control inputs 𝑢!"#$ for simply supported plate for 
FEM approximation 
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Figure 4.23. Filter inputs for simply supported plate with modified controlled 
in-plane forces using for FEM approximation 

 
 
 
 
 
4.2.3 Comparisons 
	
  
	
  
In this section, we investigated the efficacy of the control strategy that is presented in section 

4.1 for simply supported rectangular plate using two approximation methods (Rayleigh-Ritz 

method and FEM). The results are shown in Figs. 4.6 – 4.14 using Rayleigh-Ritz method and in 

Figs. 4.15 – 4.23 using FEM. Comparing these two sets of results, we observe that they are 

identical using both control logics (with and without modification using filter and saturation). 

Therefore, either method can be used to accurately simulate the control scheme in section 4.1. 

For both method, the energy converge to zero within approximately 5 seconds using the control 

logic in (4.7); the time required for convergence jumps up to 15 seconds with the control logic 

using filter and saturation (4.12). This is a price we have to pay to reduce the bandwidth 

requirement for the actuator: the in-plane forces used in the modified control logic have lower 

switching frequency and they converge to zero as the vibration of the system decays out. 
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4.3 Control Scheme For A Plate With Elastic Boundary Conditions  
	
  
	
  
In this section, the effect of changing the boundary conditions is investigated. A plate with 

uniformly distributed springs around the boundaries is studied – see Fig. 4.24.  

 
Figure 4.24. Thin rectangular plate with in-plane distributed forces and elastic 
boundary conditions 

 

The plate length, width, and thickness are labeled as L, W, and h respectively, and 𝐾! represents 

the stiffness constant for uniformly distributed boundary springs. Using elastic boundary 

condition converts the problem boundary into a general case that can reproduce other boundary 

conditions. For instance, the previous case (simply supported boundary conditions) can be 

obtained by assigning a very large stiffness constant. In addition, using different values for the 

stiffness constant alter the stiffness matrix of the system that can change the dynamic behavior. 

The plate is subjected to time-dependent, in-plane uniformly distributed forces that are applied 

according to the control scheme presented in section 4.1. The control scheme is applied after the 

dynamic model of the system is obtained using an approximation method, i.e., the mass; 

damping; and stiffness matrices are obtained. The FEM is used together with model reduction to 

model these matrices (where the stiffness constants 𝐾! are added to their associated degrees of 
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freedom in the global stiffness matrix) in this section due to the limitation of the Rayleigh-Ritz 

method (see chapter 3). 

 

4.3.1 Verify The Solution Using Elastic Boundary Conditions  
	
  
 

To verify the elastic boundary condition results, a special case is considered by assigning a large 

stiffness constant  𝐾!. Therefore, the problem will be similar to the simply supported boundary 

condition. For a plate that has a properties listed in Table 4.1, the frequency analysis using 

different forcing combination are shown in the table below. 

Table 4.5. Frequencies in Hz using FEM method for elastic boundary condition with 
𝐾! = 10!   𝑁 𝑚 

Mod
e 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 5𝑁 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 5𝑁 

1 1.5531 1.6941 1.8242 1.9456 
2 2.5045 2.8467 2.6810 3.0032 
3 4.0590 4.5383 4.1702 4.6380 
4 6.1290 6.3647 6.5921 6.6461 
5 6.1293 6.4782 6.6270 6.8495 

 

Comparing the results listed in Table 4.5 and Table 4.4, we observe that they are close to each 

other, which prove our previous claim (the elastic boundary condition is a general case that can 

reproduce other boundary conditions). 
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4.3.2 Control Scheme Using Finite Element Analysis 
	
  
	
  
A plate with an elastic boundary condition as shown in Fig. 4.24 is studied, the stiffness 

constant 𝐾! is set to be 100  𝑁 𝑚. The frquency analysis for the plate with the properties listed 

in Table 4.1 are shown in Table 4.6. 

Table 4.6. Frequencies in Hz using Finite Element Analysis for elastic boundary 
condithins and 𝐾! = 100  𝑁 𝑚 

Mode 
Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 5𝑁 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 5𝑁 

1 1.5379 1.6772 1.8041 1.9242 
2 2.4633 2.8014 2.6338 2.9525 
3 3.9737 4.4446 4.0773 4.5376 
4 6.0603 6.1680 6.1247 6.4305 
5 6.0289 6.6086 6.2971 6.6678 

 
Comparing Table 4.5 with 4.6, we observe that the frequencies are decreased as we reduced the 

stiffness constant  𝐾!. The control scheme (section 4.1) is applied after we obtained the model 

dynamics using FEM to investigate the efficacy of the control logic. The results for the control 

scheme using the initial conditions in (4.19) are shown in Figs. 4.27 – 4.35.     

 

 
Figure 4.25. Energy deception for elastic boundary condition without in-
plane forces and 𝐾! = 100  𝑁 𝑚 using FEM approximation 
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Figure 4.26. Modal displacements for elastic boundary condition without in-plane 
forces and 𝐾! = 100  𝑁 𝑚 using FEM approximation 

 
Comparing Figs. 4.25 and 4.26 with 4.3 and 4.4, we observe that the system total energy is 

reduced by using the elastic boundary conditions.  

 
Figure 4.27. Energy deception for elastic boundary condition with controlled in-
plane forces and 𝐾! = 100  𝑁 𝑚  using FEM approximation  
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Figure 4.28. Modal displacements for elastic boundary condition with controlled 
in-plane forces and 𝐾! = 100  𝑁 𝑚 using FEM approximation 

  
Figure 4.29. 𝑢! inputs for a plate with elastic boundary condition and 𝐾! =
100  𝑁 𝑚 using FEM approximation 
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Figure 4.30. 𝑢! inputs for a plate with elastic boundary condition and 𝐾! =
100  𝑁 𝑚 using FEM approximation 

 
 
Applying the modified control logic (4.12) using the filter and saturation with the properties 

listed in Table 4.3, the results are shown in the Figs. 4.31 – 4.35. 

 

 
Figure 4.31. Energy deception for plate with elastic boundary condition and 
𝐾! = 100  𝑁 𝑚 using modified controlled in-plane forces  
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Figure 4.32. Modal displacements for plate with elastic boundary condition and 
𝐾! = 100  𝑁 𝑚 using filtered and saturated in-plane controlled forces  

 
Figure 4.33. 𝑢!"#$ inputs for a plate with elastic boundary condition and 
𝐾! = 100  𝑁 𝑚 

 
Figure 4.34. 𝑢!"#$ inputs for a plate with elastic boundary condition and 
𝐾! = 100  𝑁 𝑚  
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Figure 4.35. Filter input for a plate with elastic boundary condition and 
𝐾! = 100  𝑁 𝑚 using modified control logic 

 

To investigate the boundary condition effects on the control logic, we reduced the stiffness 

constant to 𝐾! = 10  𝑁 𝑚. The frequency analysis results for different combination of in-plane 

forces are listed in Table 4.7. 

 
Table 4.7. Frequencies in Hz using Finite Element Analysis for elastic boundary 
condithins and 𝐾! = 10  𝑁 𝑚   

Mode 
Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 0 

Freq. in Hz for 
𝑁! = 0 and 
𝑁! = 5𝑁 

Freq. in Hz for 
𝑁! = 10𝑁 and 
𝑁! = 5𝑁 

1 1.4397 1.5664 1.6647 1.7764 
2 2.2204 2.5273 2.3485 2.6427 
3 3.4896 3.8983 3.5532 3.9574 
4 4.9045 5.0257 5.0672 5.1862 
5 5.1663 5.6107 5.1983 5.6414 

  

 
Comparing Tables 4.6 and 4.7, we observe that the frequencies are reduced as we reduce the 

stiffness constant for the boundary springs. The control scheme results are shown in the Figs. 

4.36 – 4.46 using K = 10  𝑁 𝑚 with the initial condition in (4.21). 
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Figure 4.36. Energy deception for elastic boundary condition without in-
plane forces and 𝐾! = 10     𝑁 𝑚 using FEM approximation 

 

 
Figure 4.37. Modal displacements for elastic boundary condition without in-
plane forces and 𝐾! = 10   𝑁 𝑚 using FEM approximation 
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Figure 4.38. Energy deception for elastic boundary condition with 𝐾! =
10   𝑁 𝑚 using controlled in-plane forces  

 

 
Figure 4.39. Modal displacements for elastic boundary condition with 
𝐾! = 10   𝑁 𝑚 using controlled in-plane forces  

Time, t (Sec.)
0 10 20 30 40

Ly
ap

un
ov

 En
erg

y

0

50

100
System Energy

Time, t (Sec.)
0 5 10 15 20 25 30 35 40

-1

0

1 Mode 1

Time, t (Sec.)
0 5 10 15 20 25 30 35 40

-0.2

0

0.2 Mode 2

Time, t (Sec.)
0 5 10 15 20 25 30 35 40

-0.5

0

0.5 Mode 3

Time, t (Sec.)
0 5 10 15 20 25 30 35 40

-0.02

0

0.02 Mode 4

Time, t (Sec.)
0 5 10 15 20 25 30 35 40

-0.2
0

0.2 Mode 5



74	
  	
  

 
Figure 4.40. Controlled 𝑢! forces for plate with elastic boundary condition and 
𝐾! = 10   𝑁 𝑚  

 

 
Figure 4.41. Controlled 𝑢! forces for a plate with elastic boundary condition 
and 𝐾! = 10   𝑁 𝑚  

 
 

 
Figure 4.42. Energy deception for plate with elastic boundary condition and 
𝐾! = 10   𝑁 𝑚 using modified control logic 
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Figure 4.43. Modal displacements for elastic boundary condition and 𝐾! =
10   𝑁 𝑚 using modified control logic 

 
Figure 4.44. 𝑢!"#$ inputs for a plate with elastic boundary condition and 
𝐾! = 10   𝑁 𝑚 using modified control logic 

 
Figure 4.45. 𝑁! inputs for a plate with elastic boundary condition and 𝐾! =
10   𝑁 𝑚 using modified control logic 
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Figure 4.46. Filter inputs for a plate with elastic boundary condition and 
𝐾! = 10   𝑁 𝑚 using modified control logic 

 
 
 

Comparing the results we got for the plate with the elastic boundary condition (Figs. 4.27 – 

4.35 for 𝐾! = 100   𝑁 𝑚 and Figs. 4.38 – 4.46 for  𝐾! = 10   𝑁 𝑚), we observe that the 

vibration takes longer time to converge to zero as we decrease the stiffness constant. The 

control logic in (4.7) takes approximately 6 seconds to eliminate the vibration for  𝐾! =

100   𝑁 𝑚 and 7 seconds for  𝐾! = 10   𝑁 𝑚. However, the modified control logic (4.12) using 

filter and saturation takes around 18 seconds to do that for  𝐾! = 100   𝑁 𝑚 and 20 seconds 

for  𝐾! = 10   𝑁 𝑚. In conclusion, using the elastic boundary conditions alters the stiffness 

matrix and reduces the efficacy of the control logic (section 4.1) that is based on increasing 

the stiffness of the system using controlled in-plane forces.   
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Remark:  

Form the previous results we can claim that our control logic with and without the low-pass 

filter and the saturation (logics in (4.7) and (4.12)) does the designed purpose by controlling the 

vibration of the thin elastic plate using uniformly distributed in-plane forces. Adding the filter 

and saturation to the control logic effects the results by increasing the vibrating time from 5 to 

15 seconds in the simply supported plate. However, they reduce the switching frequency of the 

in-plane forces and converge these forces to zero as the vibration subsidies. These results can be 

improved by assigning different values for the time constant 𝜏 and 𝜖 for the saturation. For 

instance, assigning smaller  𝜏, higher bandwidth will speed the vibration suppression, but it will 

cause more frequent switching in the in-plane forces. This tradeoff process should be considered 

in real application when we choose the actuator for our control logic.    
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Chapter 5 
 

 

Vibration Control Of A Thin Rectangular Plate Using 
A Web-Of-Cables  
 
 
 
 
In chapter four, a control strategy was introduced to control the vibration in a plate using 

uniformly distributed in-plane forces. Two different types of boundary conditions were 

considered and the control efficacy was proven through simulation. In this chapter, a web-of-

cables around the plate is proposed as a mechanism to suppress the vibration of the plate. The 

web-of-cables structure provides the boundary of the plate with in-plane forces that act at a few 

discrete locations, which results in a non-uniform stress distribution. A model of the pre-stressed 

plate is first developed in this chapter. The dynamic model of the plate is then obtained from 

vibration analysis using the pre-stress data. Finally, the control logic introduced in section 4.1 

(which is an extension of the work presented by Nudehi [48]) is applied to suppress the 

vibration.    
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5.1 A Web-Of-Cables Structure Supporting A Plate 
	
  

 
In this section, a web-of-cables structure is proposed for supporting a plate and the forces in the 

cables are investigated. The web structure, which is shown in Fig. 5.1, is comprised of the 

following:  

• Corner cables, which their lengths are labeled as 𝐿!" and  𝐿!". 

•  Side cables that have a catenary shape and their lengths are labeled as  𝐿!, 𝐿!, 𝐿!, 𝐾!  and 𝐾!. 

•  Boundary cables that connects the web structure to the plate edges; their lengths are labeled 

as  𝑙!, 𝑙!, 𝑙!, ℎ!, and ℎ!. 

 
Figure 5.1. Rectangular plate with a web-of-cables structure 
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We first study the static characteristics of the web structure. The tensions in the boundary cables 

are considered to be equal to 𝑇! and perpendicular to the plate edges. Also, the tensions in the 

corner cables 𝑇 are equal and they have the same angle 𝜃  with respect the x-axis, which can be 

obtained from  

 θ = 𝑡𝑎𝑛!!
𝑊
𝐿  (5.1) 

where W and L are the width and the length of the plate. Equation (5.1) follows from the 

assumption that the corner cables are congruent with the diagonal of the plat. To simplify the 

problem, it is considered that the web-of-cables configuration is symmetric in both x and y 

directions. Assuming symmetry, it is sufficient to investigate the top-right quarter of the plate 

that has three cables on the top edge and two cables on its right edge as shown in Fig. 5.2. 

 
Figure 5.2. Quarter of a plate with web-of-cables structure 
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In Figure 5.2, 𝑋! and 𝑌! are the distances from the corner of the plate to the pulley in the x and y 

directions respectively. The tensions in the side cables are assumed to be all positive and denoted 

by   𝐹!,   𝐹!, 𝐹!, 𝑅!,   and 𝑅!. Also, the cables are assumed to be inextensible. The plate is 

considered to be rigid; hence, the web-of-cables structure can have deformation. By considering 

the static equilibrium at each knot (point where two or more cables meet), we get 11 equations 

from the 6 knots – see Fig. 5.2. However, in this web structure there are 13 unknowns that are 

labeled as T,  𝐹!,   𝐹!,𝐹!, 𝑅!, 𝑅!, 𝑙!, 𝑙!,   𝑙!, ℎ!, ℎ!,   𝑋! and  𝑌!. To simplify the problem, we 

assume two arbitrary variables to match the number of the equations with the number of 

unknowns. We assume   𝑙! and  𝑋! to be known. We observe that by changing either   𝑙! or  𝑋!  the 

configuration of the web structure is changed as well, which means that the problem has infinite 

number of solutions for different values of   𝑙! or  𝑋!. To solve for the unknowns, we write the 

equation for static equilibrium at the six knots first:  

 𝑇 cos𝜃 = 𝐹! cos tan!!
𝑌! − 𝑙!
𝑋!

+ 𝑅! sin tan!!
𝑋! − ℎ!
𝑌!

   (5.2) 

 

 𝑇 sin𝜃 = 𝐹! sin tan!!
𝑌! − 𝑙!
𝑋!

+ 𝑅! cos tan!!
𝑋! − ℎ!
𝑌!

 (5.3) 

 

 𝐹! cos tan!!
𝑌! − 𝑙!
𝑋!

= 𝐹! cos tan!!
𝑙! − 𝑙!
𝑥   (5.4) 

 

 𝐹! sin tan!!
𝑌! − 𝑙!
𝑋!

= 𝐹! sin tan!!
𝑙! − 𝑙!
𝑥 + 𝑇! (5.5) 

 

 𝐹! cos tan!!
𝑙! − 𝑙!
𝑥 = 𝐹! cos tan!!

𝑙! − 𝑙!
𝑥  (5.6) 

 

 𝐹! sin tan!!
𝑙! − 𝑙!
𝑥 = 𝐹! sin tan!!

𝑙! − 𝑙!
𝑥 + 𝑇!   (5.7) 

 

 2×𝐹! sin tan!!
𝑙! − 𝑙!
𝑥 = 𝑇! (5.8) 
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 𝑅! cos tan!!
𝑋! − ℎ!
𝑌!

= 𝑅! cos tan!!
ℎ! − ℎ!
𝑦  (5.9) 

 

 𝑅! sin tan!!
𝑋! − ℎ!
𝑌!

= 𝑅! sin tan!!
ℎ! − ℎ!
𝑦 + 𝑇! (5.10) 

 

 2×𝑅! sin tan!!
ℎ! − ℎ!
𝑦 = 𝑇! (5.11) 

   
In addition, we have from the geometry 
 

 𝜃 = tan!!
𝑌!
𝑋!

 (5.12) 

where 𝜃 is known - see Equation (5.1). In (5.2) – (5.12), we have eleven unknowns since 𝑙! 

and  𝑋! are considered to be known. These equations are solved for the parameters listed in Table 

5.1; the results are shown in Table 5.2, and 5.3. 

Table 5.1. Preset parameters for the design problem 
𝑇!(N) 1 
θ (deg.) 26.5651 
𝑙!(m) 0.2 
𝑋!(m) 1 
L (m) 2 
W (m) 1 

 
Table 5.2. Cables tension results for the design problem 

T (N) 14.7208 
𝐹!(N) 11.9315 
𝐹!(N) 11.7627 
𝐹!(N) 11.6774 
𝑅!(N) 4.3501 
𝑅!(N) 4.1138 

 
Table 5.3. Cables length results for the design problem 

𝑙!(m) 0.2857 
𝑙!(m) 0.2214 
ℎ!(m) 0.8163 
ℎ!(m) 0.7551 
𝑌!(m) 0.5 



83	
  	
  

From the results in Tables 5.2, and 5.3, the remaining unknowns of the web-of-cables structure 

are solved using the following kinematic relationships and presented in Table 5.4:   

 
Table 5.4. Cables angles and length results for the design problem 

𝛼!(deg.) 12.0948 
𝛼!(deg.) 7.3264 
𝛼!(deg.) 2.454 
𝛽!(deg.) 20.1707 
𝛽!(deg.) 6.9811 
𝐿!(m) 1.0227 
𝐿!(m) 0.5041 
𝐿!(m) 0.5005 
𝐾!(m) 0.5327 
𝐾!(m) 0.5037 

 
	
  
	
  
	
  

 𝛼! = tan!!
𝑌! − 𝑙!
𝑋!

 (5.13) 

 𝛼! = tan!!
𝑙! − 𝑙!
𝑥  (5.14) 

 𝛼! = tan!!
𝑙! − 𝑙!
𝑥  (5.15) 

 𝛽!   = tan!!
𝑋! − ℎ!
𝑌!

 (5.16) 

 𝛽! = tan!!
ℎ! − ℎ!
𝑦  (5.17) 

 𝐿! =
𝑥

cos𝛼!
=

𝐿
4 cos𝛼!

 (5.18) 

 𝐿! =
𝑥

cos𝛼!
=

𝐿
4 cos𝛼!

 (5.19) 

 𝐾! =
𝑦

cos𝛽!
=

𝑊
2 cos𝛽!

 (5.20) 

 𝐿! cos𝛼! = ℎ! + 𝐾! sin𝛽! (5.21) 

 𝐿! sin𝛼! + 𝑙! = 𝐾! cos𝛽! (5.22) 
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5.2 Investigating The Changes in The Corner Cables Tensions 
	
  
 
In the previous section, the web-of-cables structure was investigated with constant corner 

tension. In this section, we investigate the effect of changing the corner cables tensions from 

their nominal values. Specifically, we increase the tension of two opposite corners by ∆𝑇 and 

decrease the tension of the other two corners by ∆𝑇. As a result of these changes, the web-of-

cables structure is deformed and the plate undergoes rotation – see Fig. 5.3. Due to the way that 

∆𝑇 is applied, symmetry about the center of the plate is maintained. In addition, all the side and 

boundary cables length are considered to remain unchanged from their values in the undeformed 

configuration. In the new configuration, the side cables will no longer be perpendicular to the 

edge of the plate. The fixed coordinates of the pulleys are used to determine the angles of the 

corner cables after the deformation. By analyzing the new web configuration, we obtain 81 

equations that include 81 unknowns. These equations are obtained from both kinematics and 

kinetic equilibrium equations for the structure. To eliminate the moment that is caused by 

changing the tensions at the corners, we allowed the plate to translate and freely rotate about its 

origin. In this setup the web cable lengths and the corner tensions T are known from the design 

configuration - see Tables 5.2 – 5.4. We considered adding ∆𝑇 = 3𝑁 to two corner tensions and 

subtracting it from the others two corner tensions as shown in Fig. 5.4.  
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Figure 5.3. Plate with the with-of-cables before the deformation, (b), after 
deformation – the forces in the web-of-cables structure are shown in (a), 
and the angles of deformations are shown in (b)  
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To investigate the rotational and translational displacements in the plate, a full plate model is 

used. The 81 unknown variables of the model are comprised of the following: 

• The unknown forces, which are labeled as 𝐹!, where i = 1, 2,.., 12; 𝑅!, where j = 1, 2,.., 8; 

and 𝑇!, where n = 1, 2,.., 16.  

• The unknown angles of deformation, which are labeled as 𝛼!, where i = 1, 2,.., 12; 𝛽!, where 

j = 1, 2,.., 8; 𝛾!, where n = 1, 2,.., 16; 𝜓!, where s = 1, 2,.., 4; and 𝛼.  

• The unknown corner cables length, which are labeled as 𝐿!!, where r = 1, 2,..,4.  

The corner cables static equilibrium equations are: 

 𝑇 + ∆𝑇 cos 𝜃! − 𝛼 = 𝐹! cos𝛼! + 𝑅! sin𝛽! (5.23) 
 

 𝑇 + ∆𝑇 sin 𝜃! − 𝛼 = 𝐹! sin𝛼! + 𝑅! cos𝛽! (5.24) 
 

 𝑇 − ∆𝑇 cos 𝜃! + 𝛼 = 𝐹! cos𝛼! + 𝑅! sin𝛽! (5.25) 
 

 𝑇 − ∆𝑇 sin 𝜃! + 𝛼 = 𝐹! sin𝛼! + 𝑅! cos𝛽! (5.26) 
 

 𝑇 + ∆𝑇 cos 𝜃! − 𝛼 = 𝐹! cos𝛼! + 𝑅! sin𝛽! (5.27) 
 

 𝑇 + ∆𝑇 sin 𝜃! − 𝛼 = 𝐹! sin𝛼! + 𝑅! cos𝛽! (5.28) 
 

 𝑇 − ∆𝑇 cos 𝜃! + 𝛼 = 𝐹!" cos𝛼!" + 𝑅! sin𝛽! (5.29) 
 

 𝑇 − ∆𝑇 sin 𝜃! + 𝛼 = 𝐹!" sin𝛼!" + 𝑅! cos𝛽! (5.30) 
 
The static equilibrium of the top edge knots gives: 

 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.31) 
 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇! cos 𝛾!   (5.32) 
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 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.33) 
 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇! cos 𝛾!   (5.34) 

 
 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.35) 

 
 𝐹! sin𝛼! +𝐹! sin𝛼! = 𝑇! cos 𝛾!   (5.36) 

 
 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.37) 

 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇! cos 𝛾!   (5.38) 

 
 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.39) 

 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇! cos 𝛾!   (5.40) 

 
For the bottom edge knots, the static equilibrium equations can be expressed as  

 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇! sin 𝛾!   (5.41) 
 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇! cos 𝛾!   (5.42) 

 
 𝐹! cos𝛼! =𝐹! cos𝛼! + 𝑇!" sin 𝛾!"   (5.43) 

 
 𝐹! sin𝛼! =𝐹! sin𝛼! + 𝑇!" cos 𝛾!"   (5.44) 

 
 𝐹! cos𝛼! =𝐹!" cos𝛼!" + 𝑇!! sin 𝛾!!   (5.45) 

 
 𝐹! sin𝛼! +𝐹!" sin𝛼!" = 𝑇!! cos 𝛾!!   (5.46) 

 
 𝐹!" cos𝛼!" =𝐹!! cos𝛼!! + 𝑇!" sin 𝛾!"   (5.47) 

 
 𝐹!! sin𝛼!! =𝐹!" sin𝛼!" + 𝑇!" cos 𝛾!"   (5.48) 

 
 𝐹!! cos𝛼!! =𝐹!" cos𝛼!" + 𝑇!" sin 𝛾!"   (5.49) 
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 𝐹!" sin𝛼!" =𝐹!! sin𝛼!! + 𝑇!" cos 𝛾!"   (5.50) 

 
The static equilibrium for left edge knots yield  

 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇! sin 𝛾! (5.51) 
 
 𝑅! sin𝛽! =𝑅! sin𝛽! + 𝑇! cos 𝛾! (5.52) 

 
 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇! sin 𝛾! (5.53) 

   

 𝑅! sin𝛽! +𝑅! sin𝛽! = 𝑇! cos 𝛾! (5.54) 
 
 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇! sin 𝛾! (5.55) 

 
 𝑅! sin𝛽! =𝑅! sin𝛽! + 𝑇! cos 𝛾! (5.56) 

For the right edge knots, the static equilibrium equations are 

 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇!" sin 𝛾!" (5.57) 
 
 𝑅! sin𝛽! =𝑅! sin𝛽! + 𝑇!" cos 𝛾!" (5.58) 

 
 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇!" sin 𝛾!" (5.59) 

 
 𝑅! sin𝛽! +𝑅! sin𝛽! = 𝑇!" cos 𝛾!" (5.60) 

 
 𝑅! cos𝛽! =𝑅! cos𝛽! + 𝑇!" sin 𝛾!" (5.61) 

 
 𝑅! sin𝛽! =𝑅! sin𝛽! + 𝑇!" cos 𝛾!" (5.62) 

The geometry of the structure for the top edge gives 

 𝑙! sin 𝛾! + 𝐿! cos𝛼! = 𝑙! sin 𝛾! + 𝑥   (5.63) 
 
 𝑙! cos 𝛾! + 𝐿! sin𝛼! = 𝑙! cos 𝛾!   (5.64) 
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 𝑙! sin 𝛾! + 𝐿! cos𝛼! = 𝑙! sin 𝛾! + 𝑥   (5.65) 
 
 𝑙! cos 𝛾! + 𝐿! sin𝛼! = 𝑙! cos 𝛾!   (5.66) 

 
 𝑙! sin 𝛾! + 𝐿! cos𝛼! = 𝑙! sin 𝛾! + 𝑥   (5.67) 

 
 𝑙! cos 𝛾! + 𝐿! sin𝛼! = 𝑙! cos 𝛾! (5.68) 

 

 𝑙! sin 𝛾! + 𝐿! cos𝛼! = 𝑙! sin 𝛾! + 𝑥   (5.69) 

 𝑙! cos 𝛾! + 𝐿! sin𝛼! = 𝑙! cos 𝛾! (5.70) 

For the bottom edge, the geometry of the structure gives 

 𝑙! sin 𝛾!" + 𝐿! cos𝛼! = 𝑙! sin 𝛾! + 𝑥 (5.71) 
 

 𝑙! cos 𝛾!" + 𝐿! sin𝛼! = 𝑙! cos 𝛾! (5.72) 
 

 𝑙! sin 𝛾!! + 𝐿! cos𝛼! = 𝑙! sin 𝛾!" + 𝑥 (5.73) 
 

 𝑙! cos 𝛾!! + 𝐿! sin𝛼! = 𝑙! cos 𝛾!" (5.74) 
 

 𝑙! sin 𝛾!" + 𝐿! cos𝛼!" = 𝑙! sin 𝛾!! + 𝑥 (5.75) 
 

 𝑙! cos 𝛾!! + 𝐿! sin𝛼!" = 𝑙! cos 𝛾!" (5.76) 
 

 𝑙! sin 𝛾!" + 𝐿! cos𝛼!! = 𝑙! sin 𝛾!" + 𝑥 (5.77) 
 

 𝑙! cos 𝛾!" + 𝐿! sin𝛼!! = 𝑙! cos 𝛾!" (5.78) 
 
For the right edge of the plate, the geometry of the web structure can be expressed as  

 ℎ! sin 𝛾! + 𝐾! cos𝛽! = 𝑦 + ℎ! sin 𝛾! (5.79) 
 

 ℎ! cos 𝛾! + 𝐾! sin𝛽! = ℎ! cos 𝛾! (5.80) 
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 ℎ! sin 𝛾! + 𝐾! cos𝛽! = 𝑦 + ℎ! sin 𝛾! (5.81) 
 

 ℎ! cos 𝛾! + 𝐾! sin𝛽! = ℎ! cos 𝛾! (5.82) 
 
For the left edge of the plate, the equations are 

 ℎ! sin 𝛾!" + 𝐾! cos𝛽! = 𝑦 + ℎ! sin 𝛾!" (5.83) 
 

 ℎ! cos 𝛾!" + 𝐾! sin𝛽! = ℎ! cos 𝛾!" (5.84) 
 

 ℎ! sin 𝛾!" + 𝐾! cos𝛽! = 𝑦 + ℎ! sin 𝛾!" (5.85) 
 

 ℎ! cos 𝛾!" + 𝐾! sin𝛽! = ℎ! cos 𝛾!" (5.86) 

Finally, for the corner cells, the kinematic relationships are   

 𝑙! sin 𝛾! + 𝐿! cos𝛼! = ℎ! cos 𝛾! + 𝐾! sin𝛽! (5.87) 
 

 𝑙! cos 𝛾! + 𝐿! sin𝛼! = ℎ! sin 𝛾! + 𝐾! cos𝛽! (5.88) 
 

 𝑙! cos 𝛾! + 𝐿! sin𝛼! = 𝐾! cos𝛽! − ℎ! sin 𝛾!" (5.89) 
 

 𝐿! cos𝛼! − 𝑙! sin 𝛾! = ℎ! cos 𝛾!" + 𝐾! sin𝛽!   (5.90) 
 

 𝑙! sin 𝛾! + 𝐿! cos𝛼! = ℎ! cos 𝛾!" + 𝐾! sin𝛽!   (5.91) 
 

 𝑙! cos 𝛾! + 𝐿! sin𝛼! = ℎ! sin 𝛾!" + 𝐾! cos𝛽! (5.92) 
 

 𝑙! cos 𝛾!" + 𝐿! sin𝛼!" = 𝐾! cos𝛽! − ℎ! sin 𝛾! (5.93) 
 

 𝐿! cos𝛼!" − 𝑙! sin 𝛾!" = ℎ! cos 𝛾! + 𝐾! sin𝛽! (5.94) 

Equations (5.23) to (5.94) provide a total of 72 equations. The remaining 9 equations require us 

to define the coordinate transformation (see Fig. 5.4) associated with the rotation of the plate.  
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Figure 5.4. Coordinate Transformation 

 
The rotated coordinates 𝑥 and 𝑦 are related to the original coordinates as follows: 

 
𝑥! = 𝑥! cos𝛼 + 𝑦! sin𝛼 

𝑦! = 𝑥! sin𝛼 − 𝑦! cos𝛼      ,where  𝑖   =   1, 2, 3, 4  
(5.95) 

Then   

 
𝑟! = 𝑥!

! + 𝑦!
!     

𝜓! = tan!!
𝑦!
𝑥!

                 ,where  𝑖   =   1, 2, 3, 4 
(5.96) 

In (5.95) and (5.96), 𝑥! and 𝑦! are the distances evaluated from the center of the plate to the 

corner cables. For instance, 𝑥! and 𝑦!for the upper-right corner can be obtained from 

 
𝑥! =

𝐿
2 cos𝛼 + ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼 

(5.97) 

 

 
𝑦! = ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽!   sin𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼 
(5.98) 

Similarly, the other three 𝑥! and 𝑦! distances can be obtained. Using the coordinate 

transformations formula in (5.95), the distance between the four fixed corner pulleys can be 

written as  

y

x

y'

x'

α

V
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𝑋 = 𝐿 cos𝛼 + ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼

+ 𝐿!" cos 𝜃! − 𝜓!
+ ℎ! cos 𝛾!" + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ −ℎ! sin 𝛾!" + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼

+ 𝐿!" cos 𝜃! + 𝜓!  

(5.99) 

 

 

𝑋 = 𝐿 cos𝛼 + ℎ! cos 𝛾!" + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ ℎ! sin 𝛾!" + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼

+ 𝐿!" cos 𝜃! − 𝜓!
+ ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ −ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼

+ 𝐿!" cos 𝜃! + 𝜓!  

(5.100) 

 

 

𝑌 = − ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! sin𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼

+ 𝐿!" sin 𝜃! − 𝜓!
− ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! sin𝛼

+ −ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼

+ 𝐿!" sin 𝜃! + 𝜓!  

(5.101) 

 

 

𝑌 = − ℎ! cos 𝛾!" + 𝐾! sin𝛽! + 𝐾! sin𝛽! sin𝛼

+ −ℎ! sin 𝛾!" + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼

+ 𝐿!" sin 𝜃! + 𝜓!
− ℎ! cos 𝛾!" + 𝐾! sin𝛽! + 𝐾! sin𝛽! sin𝛼

+ ℎ! sin 𝛾!" + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼

+ 𝐿!" sin 𝜃! − 𝜓!  

(5.102) 
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− 𝑙! sin 𝛾! + 𝐿! cos𝛼! + 𝐿! cos𝛼! + 𝐿! cos𝛼! sin𝛼

+ 𝑙! cos 𝛾! + 𝐿! sin𝛼! + 𝐿! sin𝛼! + 𝐿! sin𝛼! cos𝛼

+ 𝐿!" sin 𝜃! − 𝜓!
− −𝑙! sin 𝛾! + 𝐿! cos𝛼! + 𝐿! cos𝛼! + 𝐿! cos𝛼! sin𝛼

+ 𝑙! cos 𝛾! + 𝐿! sin𝛼! + 𝐿! sin𝛼! + 𝐿! sin𝛼! cos𝛼

+ 𝐿!" sin 𝜃! + 𝜓! = 0 

(5.103) 

  

 

𝑙! sin 𝛾! + 𝐿! cos𝛼! + 𝐿! cos𝛼! + 𝐿! cos𝛼! cos𝛼

+ 𝑙! cos 𝛾! + 𝐿! sin𝛼! + 𝐿! sin𝛼! + 𝐿! sin𝛼! sin𝛼

+ 𝐿!" cos 𝜃! − 𝜓!
− −𝑙! sin 𝛾!! + 𝐿! cos𝛼!" + 𝐿! cos𝛼!!
+ 𝐿! cos𝛼!" cos𝛼

− 𝑙! cos 𝛾!! + 𝐿! sin𝛼!" + 𝐿! sin𝛼!! + 𝐿! sin𝛼!" sin𝛼

− 𝐿!" cos 𝜃! + 𝜓! = 0 

(5.104) 

Balance of moment about the center of mass of the plate gives 

 

𝑇 + ∆𝑇     𝑟!   sin 𝜃! − 𝜓! − 𝑇 + Δ𝑇   𝑟! sin 𝜃! + 𝜓!
+ 𝑇 + Δ𝑇   𝑟! sin 𝜃! − 𝜓!
− 𝑇 + Δ𝑇     𝑟! sin 𝜃! + 𝜓! = 0   

(5.105) 

 

 

𝑇 + ∆𝑇 cos 𝜃! − 𝜓! + 𝑇 + Δ𝑇 cos 𝜃! + 𝜓!
− 𝑇 − Δ𝑇 cos 𝜃! − 𝜓!
− 𝑇 + Δ𝑇 cos 𝜃! + 𝜓! = 0   

(5.106) 

 

 

𝑇 + ∆𝑇 sin 𝜃! − 𝜓! + 𝑇 + Δ𝑇 sin 𝜃! + 𝜓!
− 𝑇 − Δ𝑇 sin 𝜃! − 𝜓!
− 𝑇 + Δ𝑇 sin 𝜃! + 𝜓! = 0 

(5.107) 

The corner cables forces equilibrium in x and y directions give two more equations – see (5.106) 

and (5.107). Solving Equations (5.23 – 5.95) and (5.99 – 5.107) for the 81 unknowns, the results 

are listed in the Tables 5.6 – 5.7.   
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Table 5.5. Designed parameters for the web-of-cables of the 
deformation problem 

𝐿!(m) 1.0227 𝑙!(m) 0.2 
𝐿!(m) 0.5041 𝐾!(m) 0.5327 
𝐿!(m) 0.5005 𝐾!(m) 0.5037 
𝑙!(m) 0.2857 ℎ!(m) 0.8163 
𝑙!(m) 0.2214 ℎ!(m) 0.7551 

 
Table 5.6. The web-of-cables tension and the corner cables 
length results after the deformation 

𝐹! = 𝐹!(N) 13.374 𝑇! = 𝑇!(N) 2.1842 
𝐹! = 𝐹!(N) 12.0654 𝑇! = 𝑇!"(N) 1.3958 
𝐹! = 𝐹!(N) 11.2005 𝑇! = 𝑇!!(N) 1.3981 
𝐹! = 𝐹!"(N) 10.3646 𝑇! = 𝑇!"(N) 1.0541 
𝐹! = 𝐹!!(N) 9.8846 𝑇! = 𝑇!"(N) 0.2097 
𝐹! = 𝐹!"(N) 9.8264 𝑇! = 𝑇!"(N) 2.3795 
𝑅! = 𝑅!(N) 5.2929 𝑇! = 𝑇!"(N) 1.0179 
𝑅! = 𝑅!(N) 4.1846 𝑇! = 𝑇!"(N) 0.0973 
𝑅! = 𝑅!(N) 4.0488 𝐿!" = 𝐿!"(m) 0.3882 
𝑅! = 𝑅!(N) 4.05 𝐿!" = 𝐿!"(m) 0.6313 

 
Table 5.7. The web-of-cables angle results after the 
deformation 

Angle  Value 
(deg.) Angle  Value 

(deg.) 
𝛼! = 𝛼! 16.2928 𝛾! = 𝛾! 24.3577 
𝛼! = 𝛼! 8.3985 𝛾! = 𝛾!" 32.5475 
𝛼! = 𝛼! 2.9975 𝛾! = 𝛾!! 36.6389 
𝛼! = 𝛼!" 2.9654 𝛾! = 𝛾!" 32.6817 
𝛼! = 𝛼!! 8.2794 𝛾! = 𝛾!" 24.9902 
𝛼! = 𝛼!" 9.4504 𝛾! = 𝛾!" 7.031 
𝛽! = 𝛽! 32.8934 𝛾! = 𝛾!" 7.6092 
𝛽! = 𝛽! 7.0395 𝛾! = 𝛾!" 7.0398 
𝛽! = 𝛽! 7.0378 𝜃! = 𝜃! 27.7876 
𝛽! = 𝛽! 8.4143 𝜃! = 𝜃! 28.4137 

  𝛼 0.2373 
 

The translation of the center of the plate is evaluated (see Table 5.8) from the following 

equations: 
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 𝛿! =
𝑋
2 −

𝐿
2 cos𝛼 + ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽! cos𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! sin𝛼 
(5.108) 

 

 𝛿! =
𝑌
2 − ℎ! cos 𝛾! + 𝐾! sin𝛽! + 𝐾! sin𝛽!   sin𝛼

+ ℎ! sin 𝛾! + 𝐾! cos𝛽! + 𝐾! cos𝛽! cos𝛼 
(5.109) 

 
Table 5.8. Evaluating the coordinate of the centre of 
the thin plate after the deformation 

𝛿!(m) 𝛿!(m) 
0.6214×𝑒!!" 0.5392×𝑒!!" 

 
The results shown in Table 5.8 indicate that the plate does not move; this is due to symmetric 

forcing. When the tension and angle of the deformation for each cable around the plate (the 

boundary cables) are evaluated, the in-plane stress distributions can be obtained. The boundary 

cable forces on the plate are decomposed into two components, in the 𝑥! and 𝑦! directions - see 

Fig. 5.5. 

 
Figure 5.5. Thin rectangular plate with the components of the side forces – 
plate is comprised of eight squares of dimension 0.5m for each side.  

	
  
	
  

x

y

L = 2m

W = 1m

y component of the prescribed force
x component of the prescribed force´

´
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5.3 In-Plane Stress Distribution 
	
  
	
  
In section 3.2, we used FEM to derive the dynamic model for out-of-plane vibration for plate 

subjected to forces at discrete locations. The problem was divided into two parts: evaluating in-

plane stress distributions and out-of-plane vibration analysis. Following the first part of the 

analysis, the in-plane stress distributions are obtained using our FEM code (in MATLAB) and 

verified with commercial FEM software (ANSYS). Each element has three stress values: two 

normal stresses in the x and y directions and one shear stress in xy plane. After we evaluated 

these three values for each element, we plotted the results for the entire plate. The results for 

both FEM methods for ∆𝑇 = 0 N are shown in the Figs. 5.6 – 5.8 and the difference between 

them are shown in Figs. 5.9 – 5.11.  

 

 
Figure 5.6. In-plane normal stress distribution in x direction when ∆𝑇 = 0 N 

Normal stress distribution in x direction uinsg ANSYS

 

 
VAL

+3.28E+01
+8.34E+02
+2.44E+03
+4.04E+03
+5.64E+03
+7.25E+03
+8.85E+03
+1.05E+04
+1.21E+04
+1.37E+04
+1.53E+04
+1.69E+04
+1.85E+04

 

 
VAL

+3.28E+01
+8.34E+02
+2.44E+03
+4.04E+03
+5.64E+03
+7.24E+03
+8.85E+03
+1.05E+04
+1.21E+04
+1.37E+04
+1.53E+04
+1.69E+04
+1.85E+04

Normal stress distribution in x direction uinsg MATLAB
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Figure 5.7. In-plane normal stress distribution in y direction when ∆𝑇 = 0 N 

 
Figure 5.8. In-plane shear stress distributions when ∆𝑇 = 0 N 

 

 
Figure 5.9. Difference between ANSYS and MATLAB code for 
the x direction stress distribution when ∆𝑇 = 0 N 

 
 

Normal stress distribution in y direction uinsg ANSYS Normal stress distribution in y direction uinsg MATLAB

 

 
VAL

−1.73E+02
+6.37E+02
+2.26E+03
+3.88E+03
+5.50E+03
+7.12E+03
+8.74E+03
+1.04E+04
+1.20E+04
+1.36E+04
+1.52E+04
+1.68E+04
+1.85E+04

 

 

−1.73E+02
+6.38E+02
+2.26E+03
+3.88E+03
+5.50E+03
+7.12E+03
+8.74E+03
+1.04E+04
+1.20E+04
+1.36E+04
+1.52E+04
+1.68E+04
+1.85E+04VAL

Shear stress distribution uinsg ANSYS Shear stress distribution uinsg MATLAB
 

VAL

−1.32E+04
−1.21E+04
−9.77E+03
−7.47E+03
−5.17E+03
−2.87E+03
−5.75E+02
+1.72E+03
+4.02E+03
+6.32E+03
+8.62E+03
+1.09E+04
+1.32E+04

 

 
VAL

−1.32E+04
−1.21E+04
−9.77E+03
−7.47E+03
−5.17E+03
−2.87E+03
−5.75E+02
+1.72E+03
+4.02E+03
+6.32E+03
+8.62E+03
+1.09E+04
+1.32E+04

 

 
VAL

−3.11E−01
−2.80E−01
−2.20E−01
−1.59E−01
−9.80E−02
−3.71E−02
+2.37E−02
+8.46E−02
+1.45E−01
+2.06E−01
+2.67E−01
+3.28E−01
+3.89E−01
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Figure 5.9 shows that the maximum difference between both results for the stress distribution in 

the x direction is negligible, around 0.389. This difference is small compared to the maximum 

stress value of 1.85×10!  N/m  and can therefore be neglected.  

 
Figure 5.10. Difference between ANSYS and MATLAB code for 
the y direction stress distribution when ∆𝑇 = 0 N 

 

 
Figure 5.11. Difference between ANSYS and MATLAB code for 
the shear stress distribution when ∆𝑇 = 0 N 

 
Figure 5.10 and 5.11 show that the maximum difference between both FEM results for both 

normal stresses in y direction and shear stresses in xy plane is equal to 0.4, which are also 

negligible. 

  For  ∆T = 3  N, the stress distributions are shown in Figs 5.12 – 5.14 for both FEM 

methods. The differences between the two methods are shown in Figs 5.15 – 5.17.      

 

 
VAL

−3.79E−01
−3.45E−01
−2.77E−01
−2.08E−01
−1.40E−01
−7.23E−02
−4.26E−03
+6.38E−02
+1.32E−01
+2.00E−01
+2.68E−01
+3.36E−01
+4.04E−01

 

 
VAL

−4.15E−01
−3.80E−01
−3.08E−01
−2.37E−01
−1.66E−01
−9.45E−02
−2.33E−02
+4.80E−02
+1.19E−01
+1.91E−01
+2.62E−01
+3.33E−01
+4.04E−01
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Figure 5.12. In-plane normal stress distribution in x direction when ∆𝑇 = 3 N 

 

 
Figure 5.13. In-plane normal stress distribution in y direction when ∆𝑇 =3 N 

 

 
Figure 5.14. In-plane shear stress distributions when ∆𝑇 = 3 N 

 

Normal stress in x direction using ANSYS
 

VAL

−2.06E+03
+7.18E+02
+6.27E+03
+1.18E+04
+1.74E+04
+2.29E+04
+2.85E+04
+3.40E+04
+3.96E+04
+4.52E+04
+5.07E+04
+5.63E+04
+6.18E+04

 

 
VAL

−2.06E+03
+7.20E+02
+6.27E+03
+1.18E+04
+1.74E+04
+2.29E+04
+2.85E+04
+3.40E+04
+3.96E+04
+4.52E+04
+5.07E+04
+5.63E+04
+6.18E+04Normal stress in x direction using MATLAB

Normal stress in y direction using ANSYS

 

 
VAL

−3.38E+03
−1.45E+03
+2.40E+03
+6.26E+03
+1.01E+04
+1.40E+04
+1.78E+04
+2.17E+04
+2.55E+04
+2.94E+04
+3.33E+04
+3.71E+04
+4.10E+04

Normal stress in y direction using MATLAB

 

 
VAL

−3.38E+03
−1.45E+03
+2.41E+03
+6.26E+03
+1.01E+04
+1.40E+04
+1.78E+04
+2.17E+04
+2.55E+04
+2.94E+04
+3.33E+04
+3.71E+04
+4.10E+04

Shear stress distribution using ANSYS Shear stress distribution using MATLAB
 

VAL

−7.48E+03
−5.58E+03
−1.77E+03
+2.03E+03
+5.83E+03
+9.64E+03
+1.34E+04
+1.72E+04
+2.10E+04
+2.48E+04
+2.87E+04
+3.25E+04
+3.63E+04

 

 
VAL

−7.47E+03
−5.57E+03
−1.77E+03
+2.03E+03
+5.84E+03
+9.64E+03
+1.34E+04
+1.72E+04
+2.10E+04
+2.49E+04
+2.87E+04
+3.25E+04
+3.63E+04
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Figure 5.15. Difference between ANSYS and MATLAB code for the 
x direction stress distribution when ∆𝑇 = 3 N 

 

 
Figure 5.16. Difference between ANSYS and MATLAB code for the 
y direction stress distribution when ∆𝑇 = 3 N 

 

 
Figure 5.17. Difference between ANSYS and MATLAB code for the 
shear stress distribution when ∆𝑇 = 3 N 

 

 

 
VAL

−2.56E+00
−2.32E+00
−1.84E+00
−1.37E+00
−8.89E−01
−4.12E−01
+6.44E−02
+5.41E−01
+1.02E+00
+1.49E+00
+1.97E+00
+2.45E+00
+2.92E+00

 

 
VAL

−2.96E+00
−2.74E+00
−2.32E+00
−1.89E+00
−1.46E+00
−1.03E+00
−6.06E−01
−1.79E−01
+2.48E−01
+6.76E−01
+1.10E+00
+1.53E+00
+1.96E+00

 

 
VAL

−3.68E+00
−3.34E+00
−2.65E+00
−1.95E+00
−1.26E+00
−5.69E−01
+1.23E−01
+8.15E−01
+1.51E+00
+2.20E+00
+2.89E+00
+3.58E+00
+4.28E+00
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The maximum difference between ANSYS and MATLAB results when ∆𝑇 = 3 N are 0.2 for the 

stress in the x direction, 0.196 for the stress in the y direction, and 0.428 for the shear stress in the 

xy plane. These differences are quite small compared to the maximum stress value of the plate, 

which is 6.18×10!  N/m, and can therefore be neglected.   

 

5.4 Out-Of-Plane Vibration Analysis For Varying Boundary Conditions 
	
  
	
  
An out-of-plane vibration analysis of the plate will be conducted using the pre-stress data 

obtained in section 5.3. In our previous vibration analysis (chapter 4), we assumed that the 

stresses are uniformly distributed around the plate due to uniformly distributed in-plane forces 

around the plate boundaries. In this chapter, the stress distribution is not assumed to be uniformly 

distributed. The analysis is done using MATLAB FEM code and verified using commercial FEM 

software (ANSYS). The results for a plate with simply supported boundaries are first listed in 

Table 5.9 and the mode shapes are shown in Figs. 5.18 and 5.19 using ANSYS and MATLAB 

respectively, for ∆𝑇 = 0 N. For ∆𝑇 = 3 N, the results are listed in Table 5.10 and the mode shapes 

shown in Figs. 5.20 and 5.21.  

 
Table 5.9. Comparing ANSYS and MATLAB frequency analysis when 
∆𝑇 = 0 N  

Mode MATLAB 
Frequency Hz 

ANSYS Frequency 
Hz Difference % 

1 1.681 1.683 0.118835 
2 2.639 2.62 0.719969 
3 4.188 4.192 0.09541 
4 5.309 5.526 3.92689 
5 6.288 6.436 2.572 
6 6.295 6.454 2.19 
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Figure 5.18. ANSYS frequency analysis when ∆𝑇 = 0 N 

 
Figure 5.19. MATLAB frequency analysis when ∆𝑇 = 0 N 
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Figure 5.20. ANSYS frequency analysis when ∆𝑇 = 3 N 

  
Figure 5.21. MATLAB frequency analysis when ∆𝑇 = 3 N 
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Table 5.10. Comparing ANSYS and MATLAB frequency analysis when 
∆𝑇 = 3 N 

Mode MATLAB 
Frequency Hz 

ANSYS Frequency 
Hz Difference % 

1 1.827 1.712 6.2944 
2 2.727 2.666 16.6 
3 4.231 4.233 0.04724 
4 5.478 5.543 0.876 
5 6.363 6.476 2.24 
6 6.432 6.509 0.679 

 

The changes in the plate modes and frequencies are examined using MATLAB results for 

∆𝑇 = 0 and  ∆𝑇 = 3  𝑁. These changes are presented in Table 5.11. 

 𝜙!!𝑴𝜑! = 𝑰 
 (5.110) 

where 𝜙! is ith mode with ∆T = 0 N and 𝜑!   is ith mode with ∆T = 3 N, M is the mass matrix, and 

𝑰 is the identity matrix. 

 
Table 5.11. Comparing MATLAB frequency analysis when ∆𝑇 = 0 and 3 N 

Mode (i) 
Frequency Hz 

for  
∆T = 0 N 

Frequency Hz 
for  

∆T = 3 N 
Difference % 𝜙!!𝑴𝜑! 

1 1.681 1.827 7.99124 0.9993 
2 2.639 2.727 3.22698 0.999 
3 4.188 4.231 1.0872 0.9982 
4 5.309 5.478 3.085 0.9987 
5 6.288 6.363 1.1786 0.9958 

   
As expected, the entries in the last column are not identically unity since 𝜙! ≠ 𝜑!. Also, all the 

natural frequencies increase as ∆T is increased.   

The stiffness matrix of the web-of-cables structure is evaluated and added as elastic 

boundary conditions for a floating plate to replace the simply supported boundary condition. To 

evaluate the stiffness matrix of the web-of-cables structure, we model the plate and the 

surrounding web as shown in Fig. 5.22.  
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Figure 5.22. Web-of-cables stiffness evaluation  

	
  

The points where the web-of-cables attaches to the plate are marked as 𝑝!, where i = 1, 

2,…,12. The knot points that the web cables join each other are marked as   𝑞!, where j = 1, 

2,…,20. The displacement of each of these point (𝑝! or   𝑞!) in z direction is assumed to be 𝑍!, 

where n = 1, 2,.., 32. Some of these new DOF in z direction are added to the global DOF of the 

plate structure. Therefore, the web-of-cables and the plate are considered to be a one structure. 

The stiffness of each cable is labeled as 𝐾! (s = 1, 2,.., 40) and can be evaluated by dividing the 

tension on the cable by its length. Using second order partial derivatives (the Hessian matrix 

method), the web-of-cables stiffness matrix, 𝐸!×!, can be obtained as follows  
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 𝐸!×! =

𝜕!𝐸!"!#$
𝜕𝑧!

!
𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

…
𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

𝜕!𝐸!"!#$
𝜕𝑧!

! ⋯
𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

⋮
𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

⋮
𝜕!𝐸!"!#$
𝜕𝑧!𝜕𝑧!

⋱
…

⋮
𝜕!𝐸!"!#$
𝜕𝑧!

!

 

 

(5.111) 

where   𝐸!"!#$ is the total potential energy of the web-of-cables structure and can be obtained 

from the summation of the potential energy of each cable.  

 𝐸!"!#$ =
1
2   𝐾!  Δ𝑧!

!
!"

!!!

   (5.112) 

where Δ𝑧! is the difference between the displacements of the two ends of the cable in z direction. 

After the stiffness matrix of the web-of-cables, 𝐸!×!, is obtained, we connected the two 

structures through their associated DOF (more DOF will be added to the global DOF of the mass 

and stiffness matrices). The structure stiffness, 𝐸!×!, increases the stiffness of the boundaries of 

the global stiffness matrix K of the floating plate in the frequency analysis. In addition, the 

stiffness matrix K also includes the pre-stress effect that is caused by adding the web-cable 

forces, which is done using pre-stress information to obtain the frequency analysis as presented 

in section 5.3. The first five out-of-plane vibration frequencies and modes are listed in Table 5.12 

and shown in Figs 5.23 – 5.26 respectively for different values of ∆𝑇.  
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Figure 5.23. Out-of-plane vibration results when ∆𝑇 = 0 N 

 
 

 
Figure 5.24. Out-of-plane vibration results when ∆𝑇 = 1 N 
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Figure 5.25. Out-of-plane vibration results when ∆𝑇 = 2 N 

	
  
 

 
Figure 5.26. Out-of-plane vibration results when ∆𝑇 = 3 N 
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Table 5.12. MATLAB frequency analysis for different ∆𝑇 values 
First Five Eigenvalues  

Modes  ∆T  = 0 N ∆T  = 1 N ∆T  = 2 N ∆T  = 3 N 
1 6.3649 6.3793 6.4128 6.4188 
2 17.6285 16.5403 14.4832 12.15 
3 21.2724 22.317 24.1678 26.0546 
4 44.6023 43.6041 40.8418 36.9578 
5 75.4323 76.4714 79.2026 82.835 

 

From Table 5.12, we can observe that the modes 2 and 4 are decreased as the value of ∆𝑇 

increased. However, the frequencies are increased as we increased the value of ∆𝑇 for the other 

modes. 

 

5.5 Control Scheme Using The Web-OF-Cables Structure 
	
  
	
  
In this section, the control scheme introduced in chapter 4 is used to control the vibration of a 

floating rectangular Aluminum plate using the web-of-cables structure. The in-plane forces that 

are created by the web-of-cables structure are controlled using the control logic (4.7) or (4.12) 

through variation in the tension of the corner cables above their nominal values. Following 

section 4.1, the modes (of a plate with similar dimension and properties as in chapter 4) are 

examined using the initial conditions below. 

 

𝑤!
𝑤!
𝑤!
𝑤!
𝑤!
𝑤!
𝑤!
𝑤!
𝑤!
𝑤!

=

0.01
0.2
0.4
0.1
0.3
0
0
0
0
0

 (5.113) 
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FEM models for different value of corner tensions (see section 5.4 for example), where the 

system stiffness matrix  𝐾   = 𝑑𝑖𝑎𝑔  (𝜔!!) and the proportional damping matrix  𝐷 = 𝛽𝐾 

with  𝛽 = 0.0002, are used to investigate the efficacy of the control strategy. The energy 

dissipation and the modal displacement for the system in absence of the control scheme are 

shown in Figs. 5.27 and 5.28 below; these figures will be compared with results obtained with 

different control schemes.  

 
Figure 5.27. Energy dispassion for the system without control 

 

 
Figure 5.28. Modal displacement for the system without control 
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5.5.1 Adding ∆𝑻 To The Four Corner Cables  
 

The control scheme in section 4.1 is investigated for the floating plate by switching ∆𝑇 in the 

corner cables tensions between 0 and 3 N. For The initial conditions in (5.113), the results of 

control scheme in (4.7) are shown in Figs. 5.29 – 5.31.     

 
Figure 5.29. Energy dissipation using the control logic in (4.7) - adding ∆𝑇 = 3 
N to the four corner cables 

 

 
Figure 5.30. Input force using the control logic in (4.7) - adding ∆𝑇 = 3 N to all 
four corner cables 

 
 
A comparison of Fig. 5.29 with Fig. 5.27 shows that the controller is effective in suppressing the 

vibration of the plate using the web-of-cables structure. The vibration energy is converged to 

zero in approximately 60 seconds. In the absence of the control scheme, only 30% of the system 

energy decay out in 60 seconds due to the damping in the system. The modal displacements 

results for the controlled system are shown in Fig. 5.31. 
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Figure 5.31. Modal displacements using the control logic in (4.7) - adding ∆𝑇 = 3 
N to all four corner cables 

	
  
 
Figure 5.31 shows that the modal displacements for the higher modes are converged to zero in 

approximately 60 seconds; however, in absence of the control the modal displacements for those 

modes did not converge to zero even after 80 seconds as shown in Fig 5.28. From Fig. 5.31, we 

also observe that the controller does not suppress the vibration in the first mode. The results of 

modified control logic in (4.12) are shown in Figs. 5.32 – 5.34; the time constant of the low pass 

filter and the saturation constant were chosen as 𝜏 = 0.15 and 𝜀 = 0. 
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Figure 5.32. Energy dissipation using the modified control logic (4.12) with 
𝜀 = 0 - adding ∆𝑇 = 3 N to all four corner cables 

	
  
Figure 5.33. Forcing input using the modified control logic (4.12) with 𝜀 = 0 - 
adding ∆𝑇 = 3 N to all four corner cables 

	
  

 
Figure 5.34. Modal displacement using the modified control logic (4.12) with 
𝜀 = 0 - adding ∆𝑇 = 3 N to all four corner cables 
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From Figs. 5.32 and 5.34, we observe that the energy and modal displacements take more time to 

converge to zero comparing with the unmodified control (4.7). However, the switching 

frequencies of the input forces are decreased compare with the unmodified control logic (4.7) – 

see Fig. 5.33. Adding saturation to the modified control logic (4.12) using 𝜀 = 0.09 (to converge 

the input forces to zero as the system vibration subsided), the results are shown  in Figs. 5.35 – 

5.37. 

 

 
Figure 5.35. Energy dissipation using the modified control logic (4.12) - adding ∆𝑇 
= 3 N to all four corner cables 

 

 
Figure 5.36. Forcing input using the modified control logic (4.12) - adding ∆𝑇 
= 3 N to all four corner cables 

Time, t (Sec.)
0 10 20 30 40 50 60 70 80

Ly
ap

un
ov

 En
erg

y

0

2

4

6 System Energy

X: 79.33
Y: 0.1188

Time, t (Sec.)
0 10 20 30 40 50 60 70 800

1

2

3



115	
  	
  

 
Figure 5.37. Modal displacements using the modified control logic (4.12) - adding 
∆𝑇 = 3 N to all four corner cables 

 
 
From Fig. 5.36, we can observe that the input forces are converged to zero as the system 

vibration converged to zero. However, the energy and modal displacements take more time to 

decay out compared with the unmodified control scheme in (4.7). This is the price that we should 

pay to get an input force that less frequently added and converge to zero as the vibration 

subsides. Comparing the modified control logic results with and without the saturation (as shown 

in Figs. 5.35 – 5.37 and Figs. 5.32 - 5.34 respectively), we observe that adding the saturation 

reduce the efficacy of the control logic by increasing the vibrating time. This effect can be 

observed in Fig. 5.35, where the system at time t = 79.33 seconds still has an energy equal to 

0.1188.         
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5.5.2 Adding ∆𝑻 To Two Corner Cables And Subtracting ∆𝑻 From The 
Other Two Corner Cables  

 
In the previous subsection, the control scheme is investigated by switching ∆𝑇 between zero and 

3 N in all four corner-cables. That means the web-of-cables structure apply equal perpendicular 

tensions on the plate boundaries. Therefore, the plate is not subjected to shear forces along the 

boundaries. In this subsection, we modify the configuration of the web-of-cables structure by 

adding the ∆𝑇 = 3 N to two corner cables tension, T, and subtracting it form the other two corner 

cables (the new configuration presented in section 5.2). This modification will create shear 

forces in addition to in-plane forces around the boundaries as presented in section 5.4. The 

control scheme (section 4.1) results are shown below using the initial conditions in (5.113).  

 
Figure 5.38. Energy dissipation using the control logic (4.7) - adding and 
subtracting ∆𝑇 = 3 N to two opposite corner cables respectively  

 
Figure 5.39. Forcing input using the control logic (4.7) - adding and 
subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

	
  
From Fig. 5.38, we observe that introducing this new switching scheme successfully controlled 

the vibration within 50 seconds. This means the shear forces that are generated by the new 
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logic does not suppress the vibration in the first mode, but the modal displacements for the 

higher modes decay out within 50 seconds as shown in Fig. 5.40 below. However, the modal 

displacements for previous configuration (section 5.5.1) takes 60 seconds to do that – see Fig. 

5.31. The modified control logic (4.12) results are shown in Figs. 5.41 – 5.43; the time constant 

of the low-pass filter and the saturation constant were chosen as 𝜏 = 0.15 seconds and  𝜀 = 0. 

 
Figure 5.40. Modal displacements using the control logic (4.7) - adding and 
subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

	
  

 
Figure 5.41. Energy dissipation using the modified control logic (4.12) with 𝜀 = 0 - 
adding and subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 
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Figure 5.42. Forcing input using the modified control logic (4.12) with 𝜀 = 0 - 
adding and subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

 

 
Figure 5.43. Modal displacements using the modified control logic (4.12) 
with 𝜀 = 0 - adding and subtracting ∆𝑇 = 3 N to two opposite corner cables 
respectively 

	
  
	
  
Once again, adding the saturation effect to the modified control logic (4.12) using the saturation 

constant  𝜀 = 0.09, we observe that the control efficacy decreased as shown in Figs. 5.44 – 5.46.  
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Figure 5.44. Energy dissipation using the modified control logic (4.12) - 
adding and subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

	
  

 
Figure 5.45. Forcing input using the modified control logic (4.12) - adding and 
subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

	
  
	
  
From Fig. 5.44, we observe that introducing the new configuration reduce the system energy at 

time t = 79.33 seconds by 34% compared with the previous configuration – see Fig. 5.35. This 

proves that introducing the in-plane shear forces increase the control efficacy. However, there is 

no improvement occurred to suppress the first mode.    
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Figure 5.46. Modal displacements using the modified control logic (4.12) - 
adding and subtracting ∆𝑇 = 3 N to two opposite corner cables respectively 

	
  
	
  
	
  
	
  
5.5.3 Using Multiple ∆T Values With Randomly Switching  
	
  
	
  
In this subsection, we modify the idea of the switching forces by introducing multiple values for 

the switching forces, ∆T, instead of a single value. This new approach helps in adding lower ∆T 

force to the system when the higher ∆T force cannot be applied (to do a positive work by 

removing energy from the system). These multiple ∆T values are; 1, 2, and 3 N that are labeled 

as  ∆𝑇!, ∆𝑇!, and ∆𝑇! respectively. The control logic (4.7) results are shown in Figs. 5.47 – 5.49 

using the initial conditions in (5.113). 
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Figure 5.47. Energy dissipation using the control logic (4.7) - multiple ∆T 
values with randomly switching 

	
  
	
  

 
Figure 5.48. Forcing inputs using the control logic (4.7) - multiple ∆T N values 
with randomly switching 
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Figure 5.49. Modal displacements using the control logic (4.7) - multiple ∆T 
values with randomly switching 

 
Form Figs. 5.47 - 5.49, we can observe that the new approach is successfully controlled the 

vibration and the lower inputs forces (∆T = 1 and 2 N) are applied when the higher (∆T = 3 N) 

value cannot be added. The modified control logic in Equation (4.12) using a low-pass filter with 

a time constant 𝜏 = 0.15 seconds and a saturation with 𝜖 = 0.09  is then examined and the results 

are shown in the figures below.  

 
Figure 5.50. Energy dissipation using the modified control logic (4.12) 
with 𝜖 = 0 - multiple ∆T values with randomly switching 
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Figure 5.51. Forcing inputs using the modified control logic (4.12) with 
𝜖 = 0 - multiple ∆T N values with randomly switching 

	
  
	
  

 
Figure 5.52. Modal displacements using the modified control logic (4.12) 
with 𝜖 = 0 - multiple ∆T values with randomly switching 
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Figure 5.53. Energy dissipation using the modified control logic (4.12) - 
multiple ∆T values with randomly switching 

 
Comparing Figs 5.53 and 5.35, we can observe that the dissipation of the energy (using multiple 

∆T values with randomly switching) is improved. For instance, in previous case (section 5.5.1) 

the energy at time t = 79.33 seconds was 0.1188, however, using this scheme the energy 

converged to zero.  

 
Figure 5.54. Forcing inputs using the modified control logic (4.12) - 
multiple ∆T N values with randomly switching 
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Figure 5.55. Modal displacements using the modified control logic (4.12) - 
multiple ∆T values with randomly switching 

 
 
5.5.4 Using Multiple ∆T Values With Systematic Switching 
 
In this subsection, we improve the multiple ∆T values with the random switching approach by 

introducing a systematic switching between the multiple ∆T values. The new logic is applied to 

the system starting from ∆T = 0 N and then increased up to ∆T = 3 N with increment equal to 1 

N. Then logic starts to decrease ∆T by the same increment until it reaches zero. In addition, 

between these two increasing and decreasing, the control logic can decrease or increase ∆T based 

on system need. Therefore, using this new scheme is more convenient in the application because 

instead of instantaneously switches from ∆T = 0 N to 3 N when the force is needed, the 

controller performing it gradually with smaller increment until the forces reach its maximum 

values. To investigate the efficiency of this scheme, a simulation is done using same initial 

condition and properties as in the previous cases and the results are shown in Figs. 5.56 – 5.64.    
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Figure 5.56. Energy dissipation using the control logic (4.7) - multiple ∆T 
with systematic switching 

	
  
	
  
	
  

 
Figure 5.57. Forcing inputs using the control logic (4.7) - multiple ∆T N with 
systematic switching 
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Figure 5.58. Modal displacements using the control logic (4.7) - multiple ∆T with 
systematic switching 

	
  
	
  
 

 
Figure 5.59. Energy dissipation using the modified control logic (4.12) with 𝜀 = 0 
- multiple ∆T with systematic switching 
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Figure 5.60. Forcing inputs using the modified control logic (4.12) with 𝜀 = 0 - 
multiple ∆T N with systematic switching 

 

 
Figure 5.61. Modal displacements using the modified control logic (4.12) with 
𝜀 = 0 - multiple ∆T with systematic switching 
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Figure 5.62. Energy dissipation using the modified control logic (4.12) - 
multiple ∆T with systematic switching 

	
  
 

 
Figure 5.63. Forcing Inputs using the modified control logic (4.12) - multiple ∆T with 
systematic switching 
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Figure 5.64. Modal displacements using the modified control logic (4.12) - 
multiple ∆T with systematic switching 

 
 
From previous results (Figs. 5.56 – 5.64), we observe that the new approach is succeeded in 

controlling the vibration of the plate with similar performance of the randomly switching 

scheme. Therefore, we can conclude that using systematic switching with multiple ∆T values is 

effectively controlling the vibration of the plate. These results can be improved by reducing the 

value of time constant 𝜏 that filters the high frequencies or the saturation constant 𝜖 to cutoff the 

added forces.  
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5.5.5 Summary  
	
  
	
  
The in-plane stress distributions are altered as the in-plane forces applied. As a result, the out-of-

plane stiffness matrix is changed (due to the fact that the in-plane stresses can alter the out-of-

plane dynamics according to Equations (2.39) and (2.40)), which can be observed from the 

frequency analysis results (section 5.4). Using this fact, the control logic that is presented in 

section 4.1 is proposed to use state feedback algorithm to switch the in-plane forces on and off to 

suppress the vibration.         

In this chapter, we propose a web-of-cable structure around the plate as a mechanism to 

suppress the out-of-plane vibration. Using the control logic introduced in section 4.1, controlling 

the vibration of the higher modes is proven. However, the first mode could not be suppressed 

using multiple switching schemes. In the first scheme, a single switching is done by adding ΔT to 

the corner cables tension, T. The second scheme (adding ΔT to two corner cables and subtracting 

from the other two corner cables) improves the efficacy of the control strategy, but no sensible 

improvement on suppression of the vibration of the first mode is observed. Introducing the third 

and the fourth schemes also does not show any improvement to control the first mode. However, 

the switching strategy that introduced in both schemes improves the results for the higher modes. 

Introducing the web-of-cable structure does not control the vibration on the first mode due to the 

fact that the rate of change in the first mode frequency is not the same as in the higher modes 

when ΔT is applied to the corner cable tensions – see Table 5.12. These results can be improved 

by increasing ΔT value that is applied to the corner cables tension or by increasing the number of 

cables around the boundaries (boundary cables).     
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Chapter 6 
 

Conclusion  
	
  
	
  
In this work, we extend the approach that was presented in [48] to control the vibration of 

cantilever beam using end-force to a plate structure using in-plane forces. The underlying goal of 

the work is to control the vibration of space structures that can be used for space-based image 

acquisition.  

 In chapter 2, we reviewed the dynamics of a thin plate without and with in-plane forces. 

These dynamic equations were derived using the equilibrium approach based on classical plate 

theory with assumptions similar to those in thin beam or Euler-Bernoulli beam theory. After we 

presented the dynamics of the plate we introduced a few approaches for vibration analysis in 

chapter 3. Specifically, we examined two different approximation methods and compared the 

results with the analytical solution for simply supported boundary conditions. The solutions for 

the dynamic equations are divided into two parts: the first part assumes that the plate is subjected 

to uniform stress distributions, in the second part, the plate is assumed to have non-uniform 

stress distributions.  

In chapter 4, we demonstrate a control strategy based on the in-plane uniformly 

distributed control forces to reduce the lateral vibration of the thin rectangular plate. The control 

scheme uses state feedback to switch the in-plane forces. These forces were switched on and off 
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based on a control logic to remove energy from the system. The control scheme was 

implemented for two different boundary conditions, the simply supported boundary conditions 

and the elastic boundary conditions; the Rayleigh-Ritz approximation method and FEM were 

used for vibration analysis. After implementation of the basic control strategy, it was modified 

by adding a low-pass filter to reduce the bandwidth requirement of the actuator. The control 

logic is also modified by adding a saturation, which reduces the amount of added forces when 

the system vibration has reduced below a certain level. After we established the stability of the 

system mathematically, we verified it by simulating the results for both the unmodified and 

modified control logic.  

In chapter 5, we applied both the unmodified and modified control logic to control the 

vibration of a thin rectangular plate supported by a web-of-cables structure. The web-of-cables 

structure connects the thin rectangular plate to four fixed pulleys and provides the in-plane forces 

that are needed to remove the energy from the plate. To achieve that, we first designed the web-

of-cables structure and investigated the deformations that are caused by changing the corner 

cables tension. After we got the information of the deformed and undeformed web-of-cables 

structures, we used them to perform the in-plane stress distributions analysis. The pre-stress 

information was used to carryout the out-of-plane vibration analysis. Finally, from the out-of-

plane vibration analysis we derived the dynamic models that are used to perform the control 

scheme. The control logic in this chapter was applied to control the switching of the corner 

cables additional tensions, which affects the web-of-cables structure. The web-of-cables structure 

adds concentrated forces to the edges of the thin rectangular plate, which create a non-uniform 

stress distribution inside the plate. The control scheme was verified using different cases as 

follows: increasing the tension of all four corner pulleys, increasing the tension of two corners 
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and decreasing the tension of the other two, using multiple tension levels with a random 

switching, and finally using multiple tension levels with systematic switching. Form the 

simulation results of these cases we were able to show that we successfully controlled the 

vibration of the higher modes of the thin rectangular plate using the control scheme. However, 

introducing the web-of-cable structure to suppress the vibration was not successful in 

suppressing the vibration of the first mode. Clearly, future work will be required to modify the 

control scheme to suppress the vibration of the fundamental frequency, which has more serious 

effects on the space-based image acquisition than the high frequencies. For instance, redesign the 

web-of-cables structure by including more cables around the plate boundaries (boundary cables) 

worth investigation; it can provide more in-plane forces that can increase the controller efficacy. 

Another way to increase the effects of the boundary forces on the fundamental frequency can be 

done by increase the boundary forces magnitude, which can be done by increasing the corner 

cables tension.  
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