ELUCIDATINGTHEEVOLUTIONARYORIGINSOFCOLLECTIVEANIMAL BEHAVIOR By RandalS.Olson ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof ComputerScience-DoctorofPhilosophy 2015 ABSTRACT ELUCIDATINGTHEEVOLUTIONARYORIGINSOFCOLLECTIVE ANIMALBEHAVIOR By RandalS.Olson Despiteoveracenturyofresearch,theevolutionaryoriginsofcollectiveanimalbehavior remainunclear.Dozensofhypothesesexplainingtheevolutionofcollectivebehaviorhave risenandfalleninthepastcentury,butuntilrecentlyithasbeenculttoperformcon- trolledbehavioralevolutionexperimentstoisolatethesevarioushypothesesandtesttheir individualInthisdissertation,Ioutlinearelativelynewmethodusingdigitalmod- elsofevolutiontoperformcontrolledbehavioralevolutionexperiments.Inparticular,Iuse thesemodelstodirectlyexploretheevolutionaryconsequenceoftheherd,predator confusion,andthemanyeyeshypotheses,anddemonstratehowthemodelscanlendkey insightsusefultobehavioralbiologists,computerscientists,androboticsresearchers.This dissertationlaysthegroundworkfortheexperimentalstudyofthehypothesessurrounding theevolutionofcollectiveanimalbehavior,andestablishesapathforfutureexperimentsto exploreanddisentanglehowthevarioushypothesizedbofcollectivebehaviorinteract overevolutionarytime. TABLEOFCONTENTS LISTOFTABLES .................................... v LISTOFFIGURES ................................... vi Chapter1Introduction ............................... 1 Chapter2BackgroundandRelatedWork ................... 4 2.1Hypothesesexplainingtheevolutionofcollectiveanimalbehavior......4 2.1.1herd................................5 2.1.2Predatorconfusion............................7 2.1.3Manyeyes.................................8 2.2Digitalmodelsofevolutionforcollectiveanimalbehavior...........9 2.3MarkovNetworks.................................10 2.3.1HowMarkovNetworksFunction.....................11 2.3.2GeneticEncodingofMarkovNetworks.................14 2.3.3VisualizationofMarkovNetworks....................16 2.4Particleswarmoptimizationandswarmrobotics................17 Chapter3HerdHypothesis ........................ 19 3.1Modelofpredator-preyinteractions.......................19 3.2Predation................................23 3.2.1RandomAttacks.............................25 3.2.2RandomWalkAttacks..........................26 3.2.3OutsideAttacks..............................28 3.2.4Density-DependentPredation......................30 3.2.5High-DensityAreaAttacks........................31 3.3Predator-PreyCoevolution............................34 3.4EvolvedPreyMarkovNetworkAnalysis.....................37 3.5Discussion.....................................40 Chapter4PredatorConfusionHypothesis ................... 42 4.1Modelofpredator-preyinteractions.......................42 4.1.1Predatorandpreyagents.........................44 4.1.2Simulationenvironment.........................48 4.2ofpredatorconfusion...........................49 4.3Evolvedpredatorandpreybehavior.......................54 4.4Eco-evolutionarydynamics............................55 4.5Coevolutionbetweenpredatorvisualsystemsandpreybehavior.......57 4.6Discussion.....................................62 iii Chapter5ManyEyesHypothesis ......................... 66 5.1Modelofpredator-preyinteractions.......................67 5.1.1Simulationofpredatorsandprey....................68 5.1.2Evolutionaryprocess...........................69 5.1.3Groupsize.................................70 5.1.4Geneticrelatedness............................70 5.1.5Reproductivestrategy..........................72 5.1.6Explicitcostofgrouping.........................73 5.2Forcedgrouping..................................73 5.3Optionalgrouping.................................77 5.4Tragedyofthecommonsinheterogeneousgroups...............78 5.5Explicitcostofgrouping.............................80 5.6Discussion.....................................81 Chapter6Conclusion ................................ 85 References ......................................... 89 iv LISTOFTABLES Table2.1AnexampleMGthatcouldbeusedtocontrolapreyagentwhich avoidsnearbypredatoragents.\PL"and\PR"correspondtothe predatorsensorsjusttotheleftandrightoftheagent'sheading, respectively,asshowninFigure3.2.ThecolumnslabeledP( X )in- dicatetheprobabilityoftheMGdecidingonaction X giventhe correspondinginputpair.MF=MoveForward;TR=TurnRight; TL=TurnLeft;SS=StayStill.....................12 Table2.2TypicalmutationratesforexperimentsevolvingMarkovNetworks..15 Table3.1Possibleactionsencodedbytheagent'soutput.Eachoutputpair encodesadiscreteactiontakenbytheagent.Theagent'sMNchanges thevaluesstoredinoutputstatesLandRtoindicatetheactionit hasdecidedtotakeinthenextsimulationtimestep..........22 Table3.2Geneticalgorithmandexperimentsettings...............23 Table3.3High-densityareaattack(HDAA)experimenttreatments.Thevalues listedforeachtreatmentarethehandlingtimesforthecorresponding predatorattackmode...........................31 v LISTOFFIGURES Figure2.1Example\domainsofdanger"(DODs)fromHamilton'sherd hypothesis.Eachtrianglerepresentsapreyinthegroup,andthe areaaroundeachtriangleisitsDOD.Preyontheinsideofthegroup havesmallerDODs,whichmeares/theyarelesslikelytobetargeted whenapredatorattacks.Asaconsequence,preythatmove insidethegrouptominimizetheirDODwillhaveanevolutionary advantage.................................6 Figure2.2AnexampleMarkovNetwork(MN)withfourinputstates(white circleslabeled0-3),twohiddenstates(lightgreycircleslabeled4 and5),twooutputstates(darkgreycircleslabeled6and7),and twoMarkovGates(MGs,whitesquareslabeled\Gate1"and\Gate 2").TheMNreceivesinputintotheinputstatesattimestep t ,then performsacomputationwithitsMGsuponactivation.Together, theseMGsuseinformationabouttheenvironment,informationfrom memory,andinformationabouttheMN'spreviousactiontodecide wheretomovenext............................13 Figure2.3AzoomedinviewoftheMarkovGate(MG)labeled\Gate1"in Figure2.2.Gate1hasthreebinaryinputsandtwobinaryoutputs, andisthuscomposedofa2 3 2 2 probabilisticstatetransitiontable whichencodesitslogic.Forexample, p 52 intheprobabilisticstate transitiontableistheprobabilityoftheinputset101(state0is1, state2is0,state4is1)mappingtotheoutputset10(state6is1, state4is0).Theprobabilitiesacrosseachrowmustsumto1.0...14 Figure2.4ExamplecircularbytestringsencodingthetwoMarkovGates(MGs) inFigure2.2,denotedGene1andGene2.Thesequence(42,213) representsthebeginningofanewMG(whiteblocks).Thenexttwo bytesencodethenumberofinputandoutputstatesusedbytheMG (lightgreyblocks),andthefollowingeightbytesencodewhichstates areusedasinput(mediumgreyblocks)andoutput(darkergrey blocks).Theremainingbytesinthestringencodetheprobabilities oftheMG'slogictable(darkestgreyblocks)..............15 Figure2.5AcausalgraphofthenodeconnectionsfortheMarkovNetwork(MN) inFigure2.2.Theonlystatesdisplayedarestatesthatprovideinput toorreceiveoutputfromtheMarkovGatesoftheMN.Arrowsbe- tweenthenodesindicatethewofbinaryinformationbetweenthe states...................................17 vi Figure3.1Adepictionofthesimulationenvironmentinwhichtheagentsin- teract.Blackdotsarepreyagents,theblacktriangleisapredator agent,andthelinesaroundthepredatoragentindicateitsof view.Agentswraparoundtheedgesofthetoroidalsimulationenvi- ronment..................................20 Figure3.2Anillustrationoftheagentsinthemodel.Lightgreytrianglesare preyagentsandthedarkgreytrianglesarepredatoragents.The agentshavea360 limited-distancevisualsystem(200virtualmeters) toobservetheirsurroundingsanddetectthepresenceofotheragents. Thecurrentheadingoftheagentisindicatedbyaboldarrow.Each agenthasitsownMarkovNetwork,whichdecideswheretomove nextbasedofacombinationofsensoryinputandmemory.The leftandrightactuators(labeled\L"and\R")enabletheagentsto moveforward,left,andrightindiscretesteps.............21 Figure3.3Anillustrationofthefourpredatorattackmodes.A)Ran- domattacks,B)Randomwalkattacks,C)Outsideattacks,andD) High-densityareaattacks........................25 Figure3.4Meanswarmdensityoverallreplicatesoverevolutionarytime,mea- suredbythemeannumberofpreywithin30virtualmetersofeach otheroveralifespanof1,000simulationtimesteps.Preyingroups attackedrandomly(lightgreytriangles)tookmuchlongertoevolve cohesiveswarmingbehaviorthanpreyingroupsattackedbyapreda- torthatfollowsarandomwalk(darkgreycircles)oralwaysfromthe outsideofthegroup(blacksquares).Whenpreyexperiencenoat- tacks,theydonotevolveswarmingbehavioratall(lightgreystars). Errorbarsindicatetwostandarderrorsover100replicates......27 Figure3.5Meanswarmdensityoverallreplicatesoverevolutionarytime,mea- suredbythemeannumberofpreywithin30virtualmetersofeach otheroveralifespanof1,000simulationtimesteps.Evenwhen experiencingdensity-dependentpredation,preyingroupsattacked randomly(lightgreytriangles)tookmuchlongertoevolveswarming behaviorthanpreyingroupsattackedbyapersistentpreda- tor(darkgreycircles)oralwaysfromtheoutsideofthegroup(black squares).Errorbarsindicatetwostandarderrorsover100replicates.29 vii Figure3.6Meanswarmdensityoverallreplicatesoverevolutionarytime,mea- suredbythemeannumberofpreywithin30virtualmetersofeach otheroveralifespanof1,000simulationtimesteps.Swarmdensity wasmeasuredfromevolvedpopulationsthatwerenotexperiencing predationduringmeasurement,eliminatinganypossibleofat- tackmodesthatkillmorepreyfaster.Preyingroupsattackedonly byoutsideattacks(lightgreytriangles)evolvedcohesiveswarming behavior.Increasingtherelativefrequencyofhigh-densityareaat- tacksfrominfrequent(darkgreycircles)tofrequent(blacksquares) causedthepreytoevolveincreasinglydispersivebehavior.Errorbars indicatetwostandarderrorsover100replicates............33 Figure3.7Meanswarmdensityoverallreplicatesoverevolutionarytime,mea- suredbythemeannumberofpreywithin30virtualmetersofeach otheroveralifespanof2,000simulationtimesteps.Preyingroups experiencingdensity-dependentpredation(blackcircles)evolvedco- hesiveswarmingbehavior,whereaspreyingroupsnotexperiencing density-dependentpredation(lightgreytriangles)evolveddispersive behavior.Errorbarsindicatetwostandarderrorsover100replicates.35 Figure3.8Numberofsensoryinputconnectionsfrom100evolvedpreyMarkov Networksmappedontoapreyagent.Onlycausalconnectionsfrom thesensoryinputstotheactuatorsareshown.Thearrowindicates thefacingoftheagent.ThepreyMarkovNetworksevolvedastrong preferenceforconnectingtopreysensorsinfrontandaslightprefer- enceforsensorsbehindthepreyagent,buttendedtonotconnectto thesensorsonthesides..........................38 Figure4.1Anillustrationofthepredatorandpreyagentsinthemodel.Light greytrianglesarepreyagentsandthedarkgreytriangleisapreda- toragent.Thepredatorandpreyagentshavea180 limited-distance visualsystem(100virtualmetersforthepreyagents;200virtualme- tersforthepredatoragent)toobservetheirsurroundingsanddetect thepresenceofthepredatorandpreyagents.Eachagenthasits ownMarkovNetwork,whichdecideswheretomovenextbased ofacombinationofsensoryinputandmemory.Theleftandright actuators(labeled\L"and\R")enabletheagentstomoveforward, left,andrightindiscretesteps......................45 viii Figure4.2Relationofpredatorattack(#successfulattacks/total# attacks)tonumberofprey.Thesolidlinewithtrianglesindicates simulatedpredatorattackasafunctionofthenumberof preywithinthevisualofthepredator( A NV ).Similarly,the dashedlinewitherrorbarsshowsthemeasuredsimulatedpredator attackgiventhepredatorattacksagroupofswarmingprey ofagivensize,usingthe A NV curvetodeterminetheper-attack predatorattacksuccessrate.Errorbarsindicatetwostandarderrors over100replicateexperiments......................47 Figure4.3Screencapturesof(A)dispersedpreyinaswarmhuntedbyapreda- torwithoutpredatorconfusion,(B)preyformingasingleelongated swarmunderattackbyapredatorwithpredatorconfusion,and(C) preyformingmultiplecohesiveswarmstodefendthemselvesfroma predatorwithpredatorconfusionafter1,200generationsofevolution. Blackdotsareprey,thetriangleisthepredator,thelinesprojecting fromthepredatorrepresentthepredator'sfrontal180 visual andthestardenoteswhereapreywasjustcaptured.........50 Figure4.4Meanswarmdensity(A),swarmdispersion(B),andsurvivorship (C)withintheswarmoverallreplicatesoverevolutionarytime.The swarmdensitywasmeasuredbythemeannumberofpreywithin30 virtualmetersofeachotheroveralifespanof2,000simulationtime steps.Swarmdispersionwasmeasuredbythemeandistancetothe nearestpreyforeverylivingpreyoveralifespanof2,000simula- tiontimesteps.Survivorshipwithintheswarmwasmeasuredasthe meannumberofsurvivingprey(outofaninitialtotalof50)atthe endofthesimulationatagivengeneration.Preyhuntedbyapreda- torwithpredatorconfusion(blackcircleswithafullline)evolved tomaintaintlyhigherswarmdensityandtlyless dispersedswarmingbehaviorthanpreyintheswarmshuntedbya predatorwithoutpredatorconfusion(greytriangleswithadashed line).Asaresult,tlymorepreysurvivedintheswarms huntedbyapredatorwithpredatorconfusionthantheswarmshunted byapredatorwithoutpredatorconfusion.Errorbarsindicatetwo standarderrorsacross180replicateexperiments............53 Figure4.5Functionalresponsecurvesofcohesiveswarmshuntedbyapredator withpredatorconfusion(blackcircleswithafullline)anddispersed swarmshuntedbyapredatorwithoutpredatorconfusion(greytri- angleswithadashedline).Theevolved,cohesiveswarmshunted byapredatorwithpredatorconfusionresultinaTypeIIfunctional responsewithaloweredplateau.Errorbarsindicatetwostandard errorsacross180replicateexperiments.................56 ix Figure4.6Meanswarmdensityatgeneration1,200asafunctionofpredator viewangle.Swarmingtoconfusethepredatorwasanebe- haviorifthepredator'svisualcoveredonlythefrontal60 or less,duetothepredator'sfocusedvisualsystem.Asthepredator's visualwasincrementallyincreasedtocoverthefrontal90 and beyond,predatorconfusionviaswarmingagainbecameane anti-predatorbehavior,asevidencedbytheswarmsexhibitingsignif- icantlyhigherswarmdensityatgeneration1,200.Errorbarsindicate twostandarderrorsacross180replicateexperiments.........58 Figure4.7SwarmdensityandpredatorviewanglefromtheLODofasingleco- evolutionexperiment.Thepredatorandpreypopulationsappearto continuallycyclebetweentstatesofviewanglesandbehaviors.59 Figure4.8Pearson's r betweenswarmdensityandpredatorviewanglefromthe LODsof30coevolutionexperiments.Allcoevolutionexperiments haveanegativecorrelationbetweenswarmdensityandpredatorview angle,indicatingthatwhenswarmdensitygoesup,predatorview anglegoesdownandviceversa. P< =0 : 001forallcorrelations...60 Figure4.9Numberofsimulationtimestepsthatpreyarepresentanywherein anevolvedpredator'svisualsystemdependingonthepredator'sview angle.Thepredatoriscompetedagainstdispersiveprey.Predators withhigherviewanglesaremorelikelytohavepreyanywhereintheir visualsystematagiventime. P< =0 : 001betweenallviewangles, Kruskal-Wallismultiplecomparison...................61 Figure4.10Numberofsimulationtimestepsthatpreyarevisibleinaportionof anevolvedpredator'svisualsystemthatitpaysattentionto,depend- ingonthepredator'sviewangle.Thepredatoriscompetedagainst dispersiveprey.Predatorswithhigherviewanglesaremorelikelyto spotpreyatagiventime,whichincreasestheirforaging. P< =0 : 001betweenallviewanglesexcept180vs.210,Kruskal- Wallismultiplecomparison........................61 Figure4.11Fitnessofanevolvedpredatorwhencompetedagainstdispersiveprey, dependingonthepredator'sviewangle.Predatorswithhigherview anglesforageforpreymoretly,thuscapturingmorepreyin theirlifetimeandimprovingtheir P< =0 : 001betweenall viewanglesexcept150vs.180and180vs.210,Kruskal-Wallis multiplecomparison...........................62 Figure4.12Diagramdepictingtheobservedcoevolutionarycyclebetweenthe predatorandpreyinthepresenceofthepredatorconfusion.64 x Figure5.1 Depictionofthedisembodiedsimulation. Preyseektoforage asmuchaspossiblewhileavoidingbeingcapturedbythepredator.If noneofthepreyinthegrouparevigilant,thetargetpreyiscaptured 100%ofthetime.............................67 Figure5.2 Treatmentcomparisonwhenpreyareforcedtoforagein groups. Bothgrouphomogeneityandasemelparousreproductive strategyselectforhighlevelsofvigilance.However,onlyhomoge- neousgroupsexperienceanincreaseinasgroupsizeincreases. Incontrast,vigilancebehaviorbreaksdowninlarger,heterogeneous groupsofsemelparousprey.Errorbarsindicatebootstrapped95% intervalsover100replicates;someerrorbarsaretoosmall tobevisible................................74 Figure5.3 Treatmentcomparisonwhenpreycanchoosetoforagein groups. Allowingpreytodecidewhethertheywishtobeinthegroup producessimilarresultscomparedtowhentheyareforcedtogroup. Inhomogeneousgroups,preychoosetospendmostoftheirtimein thegroup.However,groupingbreaksdown(alongsidevigilance)in heterogeneousgroupsofsemelparousprey.Thisoccursdespitethere beingnodirectpenaltyassessedforchoosingtogroup.Errorbars indicatebootstrapped95%intervalsover100replicates; someerrorbarsaretoosmalltobevisible...............76 Figure5.4 Vigilanceinpreywithandwithouttheoptiontoforage ingroups. Inhomogeneousgroups,preywithforcedandoptional groupingevolvesimilarvigilancebehaviors.Incontrast,individual- istic(non-grouping)preyevolvevigilancebehaviorsthatmaximizein- dividualMeanwhile,individualsinheterogeneous/semelparous populationswiththeoptiontogroupevolvetobelessvigilantthan eitheroftheothertwotreatments.Errorbarsindicatebootstrapped 95%intervalsover100replicates;someerrorbarsaretoo smalltobevisible.............................79 Figure5.5 Fitnessforpreywithandwithouttheoptiontoforagein groups. Inheterogeneous/semelparousgroups,preywiththeop- tiontogrouphavelowerthanpreythatareforcedtogroup. Errorbarsindicatebootstrapped95%intervalsover100 replicates;someerrorbarsaretoosmalltobevisible.........79 xi Figure5.6 Groupingbehaviorsinpreyexperiencinggroupingpenalties. Evenwithasmallgroupingpenalty( M =1 : 0),alltreatmentsexcept homogeneous/semelparousnolongerevolvegroupingbehavior.Prey inthehomogeneous/semelparoustreatmentevolveonlyslightlylower levelsofgroupingbehavior,evenwithextremepenaltiestoforaging inagroup( M =1 ; 000).Errorbarsindicatebootstrapped95% intervalsover100replicates;someerrorbarsaretoosmall tobevisible................................80 xii Chapter1 Introduction Overthepastcentury,researchershavedevotedconsiderableintostudyingcollective animalbehaviorduetoitsimportantimplicationsforsocialintelligence,collectivecogni- tion,andpotentialapplicationsinintelligence,swarmrobotics,anddistributed systems[1].Indeed,collectivebehaviorsarepervasiveacrossallformsoflife.Forexample, Europeanstarlings( Sturnusvulgaris )areknowntoformmurmurationsofmillionsofbirds whileperformingawe-inspiringdisplaysofcoordinatedmovement[2,3].Westernhoneybees ( Apismellifera )communicatethelocationoffoodandnestsitestootherbeesintheirgroup viaacomplexdancelanguage[4].Evenrelativelysimplebacteriaexhibitgroupingbehav- ior,suchas Escherichiacoli formingwhichallowtheirgrouptosurviveinhostile environments[5]. Despitetheabundanceofexamplesofcollectivebehaviorinnature,the why ofcollective behaviorremainsdtoascertaintothisday[6].Whataretheadvantagesofworking andlivingtogetherinagroup?Moreimportantly,whichoftheseadvantagesaretheunder- lyingreasoncollectivebehaviorevolvedinthemultitudeofgroup-livingspeciesweobserve today?Theobjectiveofthisdissertationistoidentifytheindividualhypothesesexplaining howandwhycollectiveanimalbehaviorhasevolved,thendirectlyexplorethesehypotheses inisolationtodeterminehow,when,and if eachofthehypothesizedbactuallyselects fortheevolutionofcollectivebehavior. Unfortunately,performinglong-termevolutionexperimentsisespeciallychallengingin 1 mostbiologicalsystemsbecausemanyspeciesthatexhibitcollectivebehaviortakemonths orevenyearstoproduceTheselonggenerationtimesmakeitextremely toexperimentallydeterminewhichoftheaforementionedbaresuttoselect forcollectivebehaviorasanevolutionaryresponse,letalonestudythebehaviorsasthey evolve[7,8].Tocomplicatemattersevenfurther,anystudiesattemptingtoisolateindividual selectionpressuresinabiologicalsystemareoftenmuddledbythemultitudeofselection pressurespresentinthesystem,makingitchallengingtoexperimentallyestablishadirect relationshipbetweentheselectionpressureandtheevolvedbehavior. Toovercomethesechallenges,inthisdissertationIusedigitalmodelsofevolutionto exploretheevolutionaryofthevarioushypothesizedbofcollectivebehavior.In thesemodels,Isimulateindividualpreyandtheinteractionsbetweenthemwithoutimposing anyparticularmovementrulesonthem.Preythatsurvivelongerandforagemoretly producemoreintothenextgeneration,allowingfortheevolutionofbehavior inresponsetotheenvironment.Toobservetheoftheparticularhypothesisbeing explored,Iintroduceanisolatedselectionpressuretothepreypopulation(e.g.,predation) andmeasurethechangeinpreybehavioroverevolutionarytime.Digitalmodelsofevolution thusprovideadecidedadvantageforexploringtheevolutionofanimalbehaviorinresponse toisolatedselectionpressures,whichIwilldemonstratethroughoutthisdissertation. ThesisStatement Evolutionarycomputationandmulti-agentsystemscanbefruitfully combinedtoelucidatetheevolutionaryoriginsofcollectiveanimalbehavior,whichproduces testablehypothesesabouttheevolutionofcollectivebehavior. Theremainderofthisdissertationproceedsasfollows.InSection2,Ioutlinetheseveral hypothesesexplainingtheevolutionofcollectiveanimalbehavior,describethehistoryof thedigitalmodelsofevolutionthatIusetoexplorethesehypotheses,anddiscussrelated 2 applicationsofcollectivebehaviorincomputerscienceandengineering.InSections3{5, IprovidedetailsonseveralresearchprojectsIcompletedduringthecourseofmystudies exploringtheherd,predatorconfusion,andmanyeyeshypotheses.Finally,Iprovide concludingremarksaboutusingdigitalmodelsofevolutiontostudytheevolutionofcollective animalbehaviorinSection6. 3 Chapter2 BackgroundandRelatedWork Inthischapter,Ireviewtheliteraturesurroundingtheevolutionaryoriginsofcollective animalbehavior.Ibeginthischapterbyoutliningthevarioushypothesesexplainingwhy collectiveanimalbehaviorevolves.Next,Idescribethehistoryofthedigitalmodelsof evolutionthatIusetoexploretheevolutionofcollectiveanimalbehavior.Finally,Idiscuss relatedworkandpotentialapplicationsofthisthesisresearchintheofparticleswarm optimizationandswarmrobotics. 2.1Hypothesesexplainingtheevolutionofcollective animalbehavior Aswithmanytraits,collectivebehaviorentailsavarietyofcosts,suchasincreased predationrates[6],requisitesharingofresourceswithinthegroup[9],andheightenedcom- petitionformates[10].Withthisfactinmind,thasbeendedicatedto understandingthecompensatingbthatcollectivebehaviorprovides[6].Manysuch bofcollectivebehaviorhavebeenproposed,forexample,itmayimprovematingsuc- cess[11,12],increaseforaging[13,14,15,16,17],improvelocomotion[18], orenablethegrouptosolveproblemsthatwouldbeimpossibletosolveindividually[1]. Furthermore,amajorcategoryofhypothesesproposethatcollectivebehaviorsprotect 4 groupmembersfrompredators.Forexample,collectivebehaviorcanimprovegroupvigi- lance[19,20,21,22],reducethechanceofbeingencounteredbypredators[21,23],dilutean individual'sriskofbeingattacked[24,25,26,27],enableanactivedefenseagainstpreda- tors[28],orreducepredatorattackciencybyconfusingthepredator[7,29,30]. Withthemultitudeofpotentialcostsandbofcollectivebehavior,theneedforan experimentalplatformtoexploreeachhypothesisinisolationbecomesabundantlyclear.In thefollowingthreesections,Ireviewthreeofthehypothesizedbofcollective behaviorthatIexploredindetailinthisdissertation. 2.1.1herd ,theherdhypothesisstatesthatpreyingroupsunderattackfromapredator willseektoplaceotherpreyinbetweenthemselvesandthepredator,thusmaximizingtheir chanceofsurvival.Asaconsequenceofthisbehavior,individualscontinuallymove towardacentralpointinthegroup,whichgivesrisetotheappearanceofacohesiveswarm. Hamilton'soriginalformulationoftheherdhypothesisintroducedtheconceptof \domainsofdanger"(DODs,Figure2.1),whichservedasamethodtovisualizethelike- lihoodofapreyinsideagrouptobeattackedbyapredator[27].Preyontheedgesof thegroupwouldhavelargerDODsthanpreyontheinsideofthegroup;thus,preyonthe edgesofthegroupwouldbeattackedmorefrequently.Moreover,Hamiltonproposedthat preyontheedgesofthegroupwouldseektoreducetheirDODbymovinginsidethegroup, thusplacingothergroupmembersbetweenthemselvesandthepredator.Furtherworkhas expandedonthishypothesisbyaddingalimitedpredatorattackrange[31],investigating theofpreyvigilance[32],consideringtheinitialspatialpositioningofpreywhenthe groupisattacked[33],exploringtheroleofpreybodycharacteristicsinshapingherdchar- 5 Figure2.1Example\domainsofdanger"(DODs)fromHamilton'sherdhypothesis. Eachtrianglerepresentsapreyinthegroup,andtheareaaroundeachtriangleisitsDOD. PreyontheinsideofthegrouphavesmallerDODs,whichmeares/theyarelesslikelyto betargetedwhenapredatorattacks.Asaconsequence,preythatmoveinsidethe grouptominimizetheirDODwillhaveanevolutionaryadvantage. acteristics[34,35],andevencorroboratingHamilton'spredictionsinbiologicalsystems[36]. Additionalstudieshavefocusedonthemovementrulesthatpreyinaherdfollow tominimizetheirDOD[37].Thislineofworkbeganbydemonstratingthatthesimple movementrulesproposedbyHamiltonreducepredationriskforpreyinsidethegroup[38], thenopenedsomeparametersofthemovementrulestoevolutioninanattempttodiscover amorebiologicallyplausiblesetofmovementrules[39,40].Importantly,thesestudies demonstratedthatitispossibleforherdbehaviortoevolvebynaturalselection onmovementrulesthatrelyononlylocalinformationforeachagent,ratherthanglobal informationabouttheentiregroup. However,itstillremainsanopenquestionofhowtheactionsofthepredator|forexam- ple,whetherthepredatorcancoevolveandadapttotheherdbehavior|canimpact 6 theherdhypothesis.Thisdissertationbuildsonthispreviousworkbystudyingthe ofcoevolvingpredatorsandpredatorattackmode(i.e.,howpredatorsselectaprey inagrouptoattack)ontheevolutionoftheherd. 2.1.2Predatorconfusion Inthepredatorconfusionhypothesis,thepresenceofmultipleindividualsmovinginaswarm confusesapproachingpredators,makingitforpredatorstosuccessfullyexecutean attack[29,7,30,41].Thisconfusionishypothesizedtoarisefromtheincreasedcog- nitiveprocessingtimeneededtodecideonatargetamongmultipleprey.Inarecentreview ofpredator-preysystemswithswarmingprey,JeschkeandTollriannotedthatpredators appearedtobecomeconfusedbyswarmingbehaviorin16ofthe25systemsreviewed[7]. However,evidencethatpredatorconfusionisaseeminglywidespreadphenomenonstillleaves openthequestionofhowivepredatorconfusioncouldbeasaselectiveforcefavoring theevolutionofswarmingbehavior.Owingtotheyofdisentanglingtheindividual ofhypothesessuchasthepredatorconfusionhypothesisinnaturalsystems,thereis aneedtoexplorethepredatorconfusionhypothesisinisolationinadigitalmodel. Predatorconfusionisbroadlyinterestingfortwoadditionalreasons.First,itprovides anopportunitytostudyhowswarmingbehaviorcaninturnexertevolutionarypressureson predators,especiallyontheperceptualconstraintsthatallowforpredatorconfusioninthe place.Forexample,onceswarmingbehaviorevolvesinprey,predatorconfusionmay inturnprovideaselectiveadvantageforpredatorsthatarenolongerconfusedbyswarms. Second,predatorconfusionmaythe functionalresponse describingthepredator's consumptionrateaspreydensityincreases[42],assuggestedinapreviousstudy[43].Un- derstandinghowpervasivemechanismssuchaspredatorconfusiontfunctionalresponse 7 relationshipsiscriticalforaccuratelymodelingthedynamicsofpredator-preyinteractions overecologicalandevolutionarytime[44]. Thisdissertationbuildsonpreviousworkonthepredatorconfusionhypothesisbyexplor- ingallthreeoftheabovepossibilitiesinadigitalmodel,whereitispossibletoexperimentally controltheofpredatorconfusion. 2.1.3Manyeyes Finally,themanyeyeshypothesisconcernsthebetweenvigilance(e.g.,watching foranincomingpredator)andforagingforfoodingroupsofprey.Firstproposedusing amathematicalmodel[22]andexploredexperimentallyayearlater[15],themanyeyes hypothesismakestwokeypredictions,bothofwhicharisefromtheassumptionthatvigilance iscostlybecauseitimposesawithforagingiency:(a)individualpreyvigilance willdeclineasagroupsizeincreases,and(b)becausepreycanmoreequitablydividethe taskofwatchingforpredatorsinlargegroups,theywillexperienceabfrom foragingmore.Therefore,therewillbeaselectiveadvantageforpreythatforageingroups uptoacertaingroupsize.Inthe40yearssinceitsinception,thesepredictionshavebeen examinedinnumerousspeciesacrosshundredsofindependentstudies[45,46,47,17,48]. Furthermore,severalgametheoreticalmodelshavebeenappliedtothepredictionsof whencollectivevigilanceinforaginggroupsshouldevolve[49],andsubsequentlymatchedto experimentaldata[50]. However,itstillremainsanopenquestionofwhether|andunderwhatconditions| themanyeyeshypothesisprovidesantselectivepressuretofavortheevolutionof collectivebehaviorinforagingspecies.Thisdissertationbuildsonpreviousworkonthe manyeyeshypothesisbyexploringseveralconditionsunderwhichselectionfavorsgregarious 8 foragingbehavior. 2.2Digitalmodelsofevolutionforcollectiveanimal behavior Itisbynomeansanewideatousedigitalmodelstostudyanimalbehavior.Digitalmodels havepreviouslybeenusedtoprovidekeyinsightsintocoreevolutionaryprocesses[51,52], andseveralwell-knownstudieshaveadopteddigitalmodelsasamethodtostudycollective behavior[53,54,55].Morerecently,digitalmodelshaveevenbeenusedtoelucidatethe emergenceofpreycollectivebehaviorasaresponsetopredation[24]. Thesepreviousstudieshaveprovidedinsightintothefundamentaldynamicsofcollective behavior.However,mosthavenotfocusedonisolatingtheevolutionarypressuresthatmight favortheformationofgroups,andfewhaveexploredthecoevolutionofpredatorandprey behavior.Infact,exceptforonlyahandfulofstudies,thecollectivebehaviorliterature typicallyhasnotstudiedDarwinianevolutionasaprocessthepropertiesofgroups. Itisthereforethegoalofthisdissertationtohighlightthestudiesthathaveexploredthe evolutionofcollectiveanimalbehaviorandtosynthesizetheirworktobuildasolidtheoretical foundationonwhichtheevolutionofcollectiveanimalbehaviorcanbestudied. Whenconsideringtheevolutionofcollectivebehavior,itisvitaltotakeintoaccount boththeb and costsimposedbythebehavior[56].Tosatisfythisrequirement, severalresearchershaverecentlyturnedtodigitalmodelsofevolutiontostudytheevolution ofanimalbehavior[32,13,57].Theseresearchersuseadigitalmodelofevolutiontoevolve thebehaviorofapopulationoflocally-interactinganimats,enablingthemtoexplorethe evolutionofbehaviorincomplexenvironmentsthatarebeyondthemeansofmathematical 9 models[58,59]. Withthesemodels,severalstudieshaveexploredtheevolutionofherdbehavior inresponsetopredation[40,39].Otherstudieshaveinvestigatedtheevolutionofpredator behaviorinresponsetopreydensity[60],theevolutionofpreybehaviorinthepresence ofthepredatorconfusiont[61,62],theroleofrelativepredatorandpreyspeedson theevolutionofgroupingbehavior[63],andhaveelaboratedupontheinteractionbetween ecologyandtheevolutionofgroupingbehavior[64,65]. Inthisdissertation,Ibuildupontheideasfromthesestudiesandestablishageneral frameworkforstudyingtheevolutionofcollectivebehavior.Ineachchapterofthisdisser- tation,Iconstructadigitalmodelofevolutiontofocusonasinglehypothesizedbeof collectivebehavior,andcontrolforthepossiblebenintroducedbyothermechanisms.To performthesedigitalevolutionexperiments,Ievolvepreyagentswitha geneticalgorithm (GA),whichisadigitalmodelofevolutionbynaturalselection[66].InaGA,poolsof genomesareevolvedovertimebyevaluatingtheofeachgenomeateachgeneration andpreferentiallyselectingthosewithhigher(e.g.,fromconsumingmorefoodorsur- vivinglonger)topopulatethenextgeneration.Thegenomesherearevariable-lengthstrings ofintegersthataretranslatedintoMarkovNetworks(MNs)duringevaluation.More informationonMNs|includingdetailsontheirgeneticencoding,mutationaloperators,and functionality|isavailableinthefollowingsection. 2.3MarkovNetworks Ineverydigitalmodelinthisdissertation,eachagentiscontrolledbyitsownMarkovNetwork (MN),whichisaprobabilisticcontrollerthatmakesdecisionsabouthowtheagentinteracts 10 withtheenvironmentandotheragentswithinthatenvironment.SinceaMNisresponsible forthecontroldecisionsofitsagent,itcanbethoughtofasan brain fortheagent itcontrols.Everytimestepinthesimulation,theMNsreceiveinputviasensors(e.g.,a visualsystem),performacomputationoninputsandanyhiddenstates(i.e.,memory),then placetheresultofthecomputationintohiddenoroutputstates(e.g.,actuators).Inote thatMNstatesarebinaryandonlyassumeavalueof0or1.WhenIevolveMNswitha GA,mutations(1)whichstatestheMNpaysattentiontoasinput,(2)whichstates theMNoutputstheresultofitscomputationto,and(3)theinternallogicthatconvertsthe inputintothecorrespondingoutput. 2.3.1HowMarkovNetworksFunction WhenIembedanagentintothesimulationenvironment,Iprovidesensoryinputsfromits visualsystemintoitsMNeverysimulationstep(labeled\retina"and\MarkovNetwork", respectively).OnceIprovideaMNwithitsinputs,Iactivateitandallowittostorethe resultofthecomputationintoitshiddenandoutputstatesforthenexttimestep.MNsare networksofMarkovGates(MGs),whichperformthecomputationfortheMN.InFigure2.2, weseetwoexampleMGs,labeled\Gate1"and\Gate2."Attime t ,Gate1receivessensory inputfromstates0and2andretrievesstateinformation(i.e.,memory)fromstate4.At time t +1,Gate1thenstoresitsoutputinhiddenstate4andoutputstate6.Similarly, attime t Gate2receivessensoryinputfromstate2andretrievesstateinformationinstate 6,thenplacesitsoutputintostates6and7attimestep t +1.WhenMGsplacetheir outputintothesamestate,theoutputsarecombinedintoasingleoutputusingtheOR logicfunction.Thus,theMNusesinformationfromtheenvironmentanditsmemoryto decidewheretomoveinthenexttimestep t +1. 11 Arbitraryencodingscanbeused,butsimplerencodingsaremoreconducivetotheevo- lutionofebehavior.Inorderforagenttobeabletoreacttotheenvironment,the outputstatesmustsomehowmeaningfullyconnecttotheinputstates.Additionally,ifmem- oryaboutstateinformationfromtheprevioustimestepisrequiredformorecomplextasks, MNscanstorestateinformationinmemorybyconnectinginputstatestohiddenstates,then connectingthosehiddenstatestooutputstates.Finally,stateinformationcanbestoredin memoryforlongerthanonetimestepbyconnectinghiddenstatestoyetmorehiddenstates. InaMN,statesareupdatedbyMGs,whichfunctionsimilarlytodigitallogicgates,e.g., AND&OR.Adigitallogicgate,suchasXOR,readstwobinarystatesasinputandoutputs asinglebinaryvalueaccordingtotheXORlogic.Similarly,MGsoutputbinaryvaluesbased ontheirinput,butdosowithaprobabilisticlogictable.Table2.1showsanexampleMG thatcouldbeusedtocontrolapreyagentthatavoidsnearbypredatoragents.Forexample, ifapredatoristotherightoftheprey'sheading(i.e.,PL=0andPR=1,correspondingto thesecondrowofthistable),thentheoutputsaremoveforward(MF)witha20%chance, turnright(TR)witha5%chance,turnleft(TL)witha65%chance,andstaystill(SS) witha10%chance.Thus,duetothisprobabilisticinput-outputmapping,theagentMNs arecapableofproducingstochasticagentbehavior. Table2.1AnexampleMGthatcouldbeusedtocontrolapreyagentwhichavoidsnearby predatoragents.\PL"and\PR"correspondtothepredatorsensorsjusttotheleftand rightoftheagent'sheading,respectively,asshowninFigure3.2.ThecolumnslabeledP( X ) indicatetheprobabilityoftheMGdecidingonaction X giventhecorrespondinginputpair. MF=MoveForward;TR=TurnRight;TL=TurnLeft;SS=StayStill. PLPR P(MF)P(TR)P(TL)P(SS) 00 0.70.050.050.2 01 0.20.050.650.1 10 0.20.650.050.1 11 0.050.80.10.05 12 Figure2.2AnexampleMarkovNetwork(MN)withfourinputstates(whitecircleslabeled 0-3),twohiddenstates(lightgreycircleslabeled4and5),twooutputstates(darkgrey circleslabeled6and7),andtwoMarkovGates(MGs,whitesquareslabeled\Gate1"and \Gate2").TheMNreceivesinputintotheinputstatesattimestep t ,thenperformsa computationwithitsMGsuponactivation.Together,theseMGsuseinformationaboutthe environment,informationfrommemory,andinformationabouttheMN'spreviousactionto decidewheretomovenext. Whiledigitallogicgatesaredeterministic,MGscanbecomposedofanysetofprobabil- itiesintheirprobabilitytable.Therefore,whiletheoutputstatesstilldependontheinput states,theycanalsohaveadegreestochasticitytotheiroutput.Figure2.3illustratesan exampleMGwiththreebinaryinputsenteringtheMG:0and2comingfromsensoryinput states,whileinput4comesfromahiddenstate.ThisexampleMGiscomposedofa2 3 2 2 statetransitiontable(becauseithasthreeinputsandtwooutputs)thatencodesthelogic fortheMG.Onceprovidedwithinputs,theMGactivatesandupdatesoutputstate6and hiddenstate4.BecausetheMGoutputstothesamehiddenstatethatitreceivesinput from,itisforminga recurrentconnection ,i.e.,memory. TheMGsinthismodelcanreceiveinputfromamaximumoffourstates,andwriteinto amaximumof4states,withaminimumofoneinputandoneoutputstateforeachMG. Anystate(input,output,orhidden)intheMNcanbeusedasaninputoroutputforaMG. MNscanbecomposedofanynumberofMGs,andtheMGsarewhattheinternal 13 Figure2.3AzoomedinviewoftheMarkovGate(MG)labeled\Gate1"inFigure2.2. Gate1hasthreebinaryinputsandtwobinaryoutputs,andisthuscomposedofa2 3 2 2 probabilisticstatetransitiontablewhichencodesitslogic.Forexample, p 52 inthe probabilisticstatetransitiontableistheprobabilityoftheinputset101(state0is1,state 2is0,state4is1)mappingtotheoutputset10(state6is1,state4is0).Theprobabilities acrosseachrowmustsumto1.0. logicoftheMN.Thus,toevolveaMN,mutationschangetheconnectionsbetweenstates andMGs,andmodifytheprobabilisticlogictablesthatdescribeeachMG.Mutationsact directlyonthegeneticencodingoftheMN,whichisdescribednext. 2.3.2GeneticEncodingofMarkovNetworks Weuseacircularstringofbytesasagenome,whichcontainsalltheinformationnecessary todescribeaMN.Thegenomeiscomposedof genes ,andeachgeneencodesasingleMG. Therefore,agenecontainstheinformationaboutwhichstatestheMGreadsinputfrom, whichstatestheMGwritesitsoutputto,andtheprobabilitytablethelogicofthe MG.Thestartofageneisindicatedbya startcodon ,whichisrepresentedbythesequence (42,213)inthegenome. Figure2.4depictsanexamplegenome.Afterthestartcodon,thenexttwobytesdescribe thenumberofinputs( N in )andoutputs( N out )usedinthisMG,whereeach N =1+(byte mod N max ).Here, N max =4.Thefollowing N max bytesspecifywhichstatestheMG readsfrombymappingtoastateIDnumberwiththeequation:(bytemod N states ), 14 Figure2.4ExamplecircularbytestringsencodingthetwoMarkovGates(MGs)inFig- ure2.2,denotedGene1andGene2.Thesequence(42,213)representsthebeginningofa newMG(whiteblocks).Thenexttwobytesencodethenumberofinputandoutputstates usedbytheMG(lightgreyblocks),andthefollowingeightbytesencodewhichstatesare usedasinput(mediumgreyblocks)andoutput(darkergreyblocks).Theremainingbytes inthestringencodetheprobabilitiesoftheMG'slogictable(darkestgreyblocks). Table2.2TypicalmutationratesforexperimentsevolvingMarkovNetworks. ParameterValue Per-genemutationrate1% Geneduplicationrate5% Genedeletionrate2% CrossoverNone where N states isthetotalnumberofinput,output,andhiddenstates.Similarly,thenext N max bytesencodewhichstatestheMGwritestowiththesameequationas N in .Iftoo manyinputsoroutputsaresptheremainingsitesinthatsectionofthegeneare ignored,designatedbythe#signs.Theremaining2 N in + N out bytesofthegenethe probabilitiesinthelogictable. Wesequentiallythelogictablerow-by-rowwithbytesfromthegenome.Oncethe logictableisIconvertthebytesintothecorrespondingprobabilities( p ij )withthe followingequation: p ij = 1+byte ij P 2 N out j =1 (1+byte ij ) (2.1) wherebyte ij isthebyteinthegenomecorrespondingtotheprobabilityinthetableatrow i andcolumn j ,and N out isthenumberofoutputsusedbytheMG.BecauseIusebytesto 15 specifythevaluesinthetable,Inormalizethevaluesforeachrowintheprobabilitytable sothesumofeachrowis1.0.Iapplythemodulooperatoronthenumberofinputs,the numberofoutputs,andtheIDsofthestatesusedasinputsandoutputsinordertokeep themwithintheallowedranges. Themaximumnumberofstatesallowedandwhichstatesareusedasinputsandoutputs arespasconstantsbytheuser.Combinedwiththeseconstants,thegenomedescribed aboveunambiguouslynesaMN.Allevolutionarychangessuchaspointmutations,dupli- cations,deletions,orcrossoverareperformedonthebytestringgenome,withprobabilities asshowninTable2.2.Duringapointmutation,arandombyteinthegenomeisreplaced withanewbytedrawnfromauniformrandomdistribution.Ifaduplicationeventoccurs, tworandompositionsarechoseninthegenomeandallbytesbetweenthosepointsaredupli- catedintoanotherpartofthegenome.Similarly,whenadeletioneventoccurs,tworandom positionsarechoseninthegenomeandallbytesbetweenthosepointsaredeleted.Crossover forMNsisnotimplementedinthisexperiment. 2.3.3VisualizationofMarkovNetworks MNscanbevisualizedinseveralways.BecausethevisualizationoftheMNinFigure2.2 showsmanystatesthatarenotevenused,andtheMGsarelessimportantthanhowstates causallydependoneachother,IusuallyonlydisplayagraphsimilartoFigure2.5showing thecausalrelationsbetweenthestates. 16 Figure2.5AcausalgraphofthenodeconnectionsfortheMarkovNetwork(MN)inFig- ure2.2.Theonlystatesdisplayedarestatesthatprovideinputtoorreceiveoutputfromthe MarkovGatesoftheMN.Arrowsbetweenthenodesindicatethewofbinaryinformation betweenthestates. 2.4Particleswarmoptimizationandswarmrobotics Inthepastdecade,researchershavefocusedontheapplicationoflocally-interactingswarm- ingagentstooptimizationproblems,calledParticleSwarmOptimization(PSO)[67].PSO applicationsrangefromfeatureselectionfor[68],tovideoprocessing[69],toopen vehiclerouting[70].ArelatedtechniquewithinPSOseekstocombinePSOwithcoevolv- ing\predator"and\prey"solutionstoavoidlocalminima[71].Thus,elaborationsonthe foundationsofcollectiveanimalbehaviorhasthepotentialtoimproveourabilitytosolve engineeringproblems. Further,researchershavesoughttoharnessthecollectiveproblemsolvingpowerof swarmingagentstodesignrobustautonomousroboticswarms[72].Giventhatmostswarm controlalgorithms|suchasthepopularBoidsalgorithm[73]|requiretcomput- ingpowerandglobalinformationabouttheswarmthatistypicallyunavailableinthereal world,itisvitaltodevelopswarmcontrolalgorithmsthatcanproducereliableswarming behaviorwith individual-based controlmechanismsthatrequireonlylocalizedinformation. 17 Chapter3.4,inparticular,willfocusonhowsuchindividual-basedcontrolalgorithmscan bediscoveredusingdigitalmodelsofevolution. 18 Chapter3 HerdHypothesis Inthischapter,Iuseadigitalmodelofpredator-preycoevolutiontoexploreHamilton's herdhypothesis[27].Bri,theherdhypothesisstatesthatpreyingroups underattackfromapredatorwillseektoplaceotherpreyinbetweenthemselvesandthe predator,thusmaximizingtheirchanceofsurvival.Asaconsequenceofthisbehavior, individualscontinuallymovetowardacentralpointinthegroup,whichgivesrisetothe appearanceofacohesiveswarm.Thischapterexpandsonmyearlierwork[74]bystudying thelong-termevolutionaryofattackmodes,exploringanewattackmode thatdirectlyselectsagainstswarmingbehavior,andprovidingananalysisofthecontrol algorithmsthatevolvedintheswarmingprey. ThischapterbeginswiththedetailsofthedigitalmodelthatIusedtoexplorethe evolutionofherdbehavioringroupsofprey.Next,Idescribetheresultsfromthe modelandhowpredatorattackmodetheevolutionofherdbehavior.Finally, Iconcludethechapterbydiscussingsomeofthebroaderimplicationsoftheinthis chapter. 3.1Modelofpredator-preyinteractions Tostudytheevolutionoftheselherd,Idevelopedanagent-basedmodelinwhichagents interactinacontinuous,toroidalvirtualenvironment(736 736virtualmeters),shownin 19 Figure3.1Adepictionofthesimulationenvironmentinwhichtheagentsinteract.Black dotsarepreyagents,theblacktriangleisapredatoragent,andthelinesaroundthepredator agentindicateitsofview.Agentswraparoundtheedgesofthetoroidalsimulation environment. Figure3.1.Atthebeginningofeachsimulation,Iplace250agentsintheenvironmentat uniformlyrandomlocations.Theseagentsaretreatedas\virtualprey."Eachagentiscon- trolledbya MarkovNetwork (MN),whichisaprobabilisticcontrollerthatmakesmovement decisionsbasedonacombinationofsensoryinput(i.e.,vision)andinternalstates(i.e.,mem- ory).IevolvetheagentMNswithageneticalgorithm(GA)[75,66]undervaryingselection regimes,whichwillbedescribedinmoredetailbelow.MoreinformationonMNs|including detailsontheirgeneticencoding,mutationaloperators,andfunctionality|isavailablein Chapter2.3. Duringeachsimulationtimestep,allagentsreadinformationfromtheirsensorsand takeaction(i.e.,move)basedontheirs.Inmysetoftreatments,Isimulate 20 Figure3.2Anillustrationoftheagentsinthemodel.Lightgreytrianglesarepreyagents andthedarkgreytrianglesarepredatoragents.Theagentshavea360 limited-distance visualsystem(200virtualmeters)toobservetheirsurroundingsanddetectthepresenceof otheragents.Thecurrentheadingoftheagentisindicatedbyaboldarrow.Eachagenthas itsownMarkovNetwork,whichdecideswheretomovenextbasedofacombinationof sensoryinputandmemory.Theleftandrightactuators(labeled\L"and\R")enablethe agentstomoveforward,left,andrightindiscretesteps. anideal,disembodiedpredatorbyperiodicallyremovingpreyagentsfromtheenvironment andmarkingthemasconsumed,e.g.,whentheyareontheoutermostedgesofthegroup. Subsequenttreatmentsintroduceanembodied,coevolvingpredatoragentwhichiscontrolled byitsownMN.Thedata 1 andsourcecode 2 fromtheseexperimentsareavailableonlinefor furtheranalysis. Figure3.2depictsthesensory-motorarchitectureoftheagentsusedforthisstudy.A preyagentcansensepredatorsandconspwithalimited-distance(200virtualmeters), 1 Data:http://d 2 Code:https://github.com/adamilab/eos 21 Table3.1Possibleactionsencodedbytheagent'soutput.Eachoutputpairencodesa discreteactiontakenbytheagent.Theagent'sMNchangesthevaluesstoredinoutput statesLandRtoindicatetheactionithasdecidedtotakeinthenextsimulationtimestep. OutputLOutputREncodedAction 00Moveforward 01Turnright 10Turnleft 11Staystill pixelatedvisualsystemcoveringitsentire360 visualItsvisualsystemissplitinto24 evenslices,eachcoveringanarcof15 ,whichisanabstractionofthebroad,coarsevisual systemsoftenobservedingroupingprey[76].Regardlessofthenumberofagentspresent inasingleretinaslice,thepreyagentonlyknowswhetheraconsporpredatorresides withinthatslice,butnothowmany.Forexample,inFigure3.2,thefourthretinaslicetothe rightoftheagent'sheading(labeled\A")hasboththepredatorandpreysensorsactivated becausetherearetwopredatoragentsandapreyagentinsidethatslice.Onceprovided withitssensoryinformation,thepreyagentchoosesoneoffourdiscreteactions,asshown inTable3.1.Preyagentsturnin8 incrementsandmove1virtualmetereachtimestep. Inmycoevolutionexperiments,thepredatoragentscandetectonlynearbypreyagents usingalimited-distance(200virtualmeters),pixelatedvisualsystemcoveringitsfrontal180 thatworksjustlikethepreyagent'svisualsystem(Figure3.2).Similartothepreyagents, predatorsmakedecisionsabouthowtomovenextusingtheirMN,asshowninTable3.1, butmove3 fasterthanthepreyagentsandturncorrespondinglyslower(6 persimulation timestep)duetotheirhigherspeed.Finally,ifapredatoragentmoveswithin5virtual metersofapreyagentthatisanywherewithinitsvisualsystem,thepredatoragentmakes anattackattemptonthepreyagent.Iftheattackattemptissuccessful,Iremovetheprey agentfromthesimulationandmarkitasconsumed. 22 Table3.2Geneticalgorithmandexperimentsettings. GAParameterValue SelectionFitnessproportionate Populationsize250 Per-genemutationrate1% Geneduplicationrate5% Genedeletionrate2% CrossoverNone Generations40,000 Replicates100 3.2Predation Inmysetofexperiments,Iobservetheevolutionofpreybehaviorinresponsetovarious formsofpredation.Thisexperimentalsetupenablesmetocontrolthespmodes ofpredationandobservetheirontheevolutionoftheherd.Ievolvetheprey genomeswithaGAwiththesettingsdescribedinTable3.2.Ibegintheevolutionaryprocess byseedingthepreygenomepoolwithasetofrandomly-generatedancestorgenomesoflength 5,000.Followingthis,Ievaluatetherelativeofeachpreygenomebytranslatingthe genomeintoitscorrespondingMN,embodyingeachMNinapreyagent,andcompetingthe preyagentsinasimulationenvironmentfor1,000simulationtimesteps.Thisevaluation periodisakintotheagents'lifespan,henceeachagenthasapotentiallifespanof1,000time steps.Iassigneachpreygenomeanindividualaccordingtohowlongitscorresponding preyagentsurvived,followingtheequation: W prey = T (3.1) where T isthenumberoftimestepsthepreyagentsurvivedinthesimulationenvironment. Thus,individualpreygenomesarerewardedfortheiragentsurvivinglongerthanotheragents 23 inthegroup.Onceallofthepreygenomesareassignedtnessvalues,Iperform proportionateselectiononthepopulationofgenomesviaaMoranprocess[77],increment thegenerationcounter,andrepeattheevaluationprocessonthenewpopulationofgenomes untilthegeneration(40,000)isreached. Inallcases,Igivethepreyaninitial250simulationtimestepswithoutpredationtomove around,sothatpreystartingontheoutsideofthegrouphavethechancetomovetoward thecenterofthegroupiftheywishto.Oncetheinitial250simulationtimestepselapse,I applypredationevery4simulationtimestepsbysimulatinganidealpredatorthat attacksthegroupaccordingtoaspattacktype.predatorssucceedwiththeir attackseverytime.Ilimitthepredatorattackratetooneattackattemptevery 4simulationtimesteps,whichiscalledthe handlingtime .Thehandlingtimerepresents thetimeittakesthesimulatedpredatortoconsumeanddigestapreyaftersuccessfulprey capture,orthetimeittakestorefocusonanotherpreyinthecaseofanunsuccessfulattack attempt.Iselectedahandlingtimeof4becauseitreducestheherdofpreydownto25% ofitsoriginalsizebytheendofthesimulation,thereforeapplyingstrongselectionpressure forsurvivorshipintheherd. Foreachexperiment,Icharacterizethegroupingbehaviorbymeasuringthe swarmden- sity oftheentirepreypopulationeverygeneration[78].Imeasuretheswarmdensityas themeannumberofpreywithin30virtualmetersofeachotheroveralifespanof1,000 simulationtimesteps,whichIhaveexperimentallyshowntotiatebetweenswarming andnon-swarmingbehaviorinpreviouspublishedexperiments[79].Qualitatively,aswarm densityof 15indicatescohesiveswarmingbehavior,between15and5looselygrouping behavior,and 5random,non-groupingbehavior.Thus,swarmdensitycaptureshow cohesivelythepreyareswarming,orifthepreyareevengroupingatall. 24 Figure3.3Anillustrationofthefourpredatorattackmodes.A)Randomattacks, B)Randomwalkattacks,C)Outsideattacks,andD)High-densityareaattacks. Inthefollowingsections,Istudytheoffourtattackmodesontheevolution ofswarmingbehavior:uncorrelatedrandomattacks(Figure3.3A),correlatedrandomattacks (randomwalkattacks,Figure3.3B),peripheralattacks(Figure3.3C),andattacksthattarget themostdenseareaoftheswarm(Figure3.3D). 3.2.1RandomAttacks MyinitialstudysoughttoverifyHamilton'sherdhypothesisbymodelingevolving preyunderattackbypredatorsthatambushpreyfromarandomlocationinthesimulation environment.Iftheherdhypothesisholds,Iexpectpreytominimizetheir\domain ofdanger"tothepredatorsbyplacingasmanyconspaspossiblearoundthem[27]. Similartopreviousmodelsstudyingtheherd[40],arandomattackproceedsby selectingauniformlyrandomlocationinsidethesimulationspace,thenattackingtheprey closesttothatlocation,asshowninFigure3.3A. AsseeninFigure3.4,swarmingbehaviorisweaklyselectedforwhenthepredatorsmake uniformlyrandomattacksontheprey 3 (lightgreytriangles).Particularly,Ifoundthatprey tookupwardsof5,000generationstoevolvecohesiveswarmingbehaviorwhenexperiencing 3 EvolutionofpreybehaviorunderRandomAttacktreatment:h 25 randomattacks,comparedtofewerthan1,000generationswiththeotherattackmodes. However,evenrandomattacksselectedformorecohesiveswarmingbehaviorthannoattacks atall,whichresultedincompletelydispersivebehavior(Figure3.4,lightgreystars). Thishasimportantimplications,namelythatoneoftheoriginalassumptions oftheherdhypothesis|thatthepredatorattackmodehasnoimportantimpact ontheevolutionofswarmingbehavior|isnotcorroboratedbythismodel.Followingthis discovery,Ihypothesizedthatthe directionality ofthepredators'attacksplayacriticalrole intheevolutionoftheshherd.Totestthishypothesis,Inextexploretwot predatorattackmodes,eachwiththeirowndistinctdirectionalityofpredation. 3.2.2RandomWalkAttacks Mynextexperimentaltersthemodeofpredationfromapredatorthatattacksrandomly selectedlocationstoapredatorthatfollowsarandomwalkwithinthesimulationenviron- ment.ShowninFigure3.3B,aftereachattackmadebythispredator,itisthenmovedto arandomlocationwithin50virtualmetersofitspreviouslocation.Thismodelsapredator thatpersistentlyfeedsonagroupofprey,ratherthanambushing. Figure3.4showsthatswarmingevolvedquicklywhenthepreywereattackedbyapreda- torfollowingarandomwalk 4 (darkgreycircles).Notably,evenbygeneration40,000,prey experiencingrandomwalkattacksformedtlymorecohesiveswarmsthanpreyex- periencingrandomattacks.Thus,therandomwalkpredatorattackmodeappearstocapture animportantaspectofpredationthatselectsforswarmingbehavior. 4 EvolutionofpreybehaviorunderRandomWalktreatment:h 26 Figure3.4Meanswarmdensityoverallreplicatesoverevolutionarytime,measuredby themeannumberofpreywithin30virtualmetersofeachotheroveralifespanof1,000 simulationtimesteps.Preyingroupsattackedrandomly(lightgreytriangles)tookmuch longertoevolvecohesiveswarmingbehaviorthanpreyingroupsattackedbyapredator thatfollowsarandomwalk(darkgreycircles)oralwaysfromtheoutsideofthegroup (blacksquares).Whenpreyexperiencenoattacks,theydonotevolveswarmingbehaviorat all(lightgreystars).Errorbarsindicatetwostandarderrorsover100replicates. 27 3.2.3OutsideAttacks Inthelastofmyinitialartipredationexperiments,Isimulateapredatorthatalways approachesfromtheoutsideofthegroupandattacksthepreynearesttoit,asin[80]. Thispredatorattackmodeelyhasthepredatorsconsistentlyattackingpreyonthe outeredgesofthegroup.AsshowninshowninFigure3.3C,Isimulatethispredatorattack modebychoosingarandomangleoutsideofthegroupforthepredatortoapproach from.Onceanangleischosen,Iconverttheangleintoalocationontheedgeofthevisible simulationspaceandattackthepreynearesttothatlocation. AsshowninFigure3.4,thisformofpredationhasthemosttimpactonthe evolutionoftheherdsofar.Whenattackedbypredatorsthatconsistentlytargetprey ontheedgesofthegroup,preyquicklyevolvecohesiveswarmingbehavior 5 (blacksquares). Takentogether,theresultsofthesepredationexperimentsdemonstrateanother discoveryofthiswork:Themorepredatorsattackpreyontheoutsideofthegroup,the fastertheherdwillevolve. Onetranslationofthisdingisthatinorderfortheherdtoevolve,preymust experienceahigherpredationrateontheoutsideofthegroupthaninthemiddleofthe group.Whilethisphenomenoncanbeexplainedbyeachpreyhavinga\domainofdanger" (DOD)edbyitsrelativepositioninthegroup[27,31,38],analternativehypothesis isthatofdensity-dependentpredation. 28 Figure3.5Meanswarmdensityoverallreplicatesoverevolutionarytime,measuredby themeannumberofpreywithin30virtualmetersofeachotheroveralifespanof1,000 simulationtimesteps.Evenwhenexperiencingdensity-dependentpredation,preyingroups attackedrandomly(lightgreytriangles)tookmuchlongertoevolveswarmingbehaviorthan preyingroupsattackedbyapersistentpredator(darkgreycircles)oralwaysfrom theoutsideofthegroup(blacksquares).Errorbarsindicatetwostandarderrorsover100 replicates. 29 3.2.4Density-DependentPredation Tostudytheimpactofdensity-dependentpredationontheevolutionoftheherd,I imposeaconstraintonthepredatorwhichreducesitsattackwhenitattacksareas ofthegroupwithhighpreydensity.Thisreducedattackismeanttorepresentthe increasedpredationratethatpreyonedgesofthegroupareexpectedtoendure[27,31,38], andsuchdensity-dependencecanalsobethoughtofasaproxyforgroupdefense.Icompute thepredator'sprobabilityofcapturingapreyduringagivenattack( P capture )withthe followingequation: P capture = 1 A density (3.2) where A density isthenumberofpreywithin30virtualmetersofthetargetprey,including thetargetpreyitself.Forexample,ifthepredatorattacksapreywith4otherpreynearby ( A density =5),ithasa20%chanceofsuccessfullycapturingtheprey.Abiologicalanalogue ofthismechanismwouldbe,forexample,lionshavingmoresuccesscapturingonthe edgeratherthaninthemiddleoftheherd.Asaconsequenceofthismechanism,theprey experiencedensity-dependentpredation. Figure3.5demonstratestheectofdensity-dependentpredationonthepreviousarti- predationexperiments.Justasbefore,whenpredatorsdidnotpreferentiallyattack preyontheoutsideofthegroup,asintherandomattackexperiment(lightgreytriangles), swarmingbehaviortookmuchlongertoevolve.Incontrast,whenthepredatorsfollowed arandomwalk(darkgreycircles)oralwaysattackedfromtheoutsideofthegroup(black squares),thepreyexperiencingdensity-dependentpredationagainquicklyevolvedswarm- 5 EvolutionofpreybehaviorunderOutsideAttacktreatment:h 30 Table3.3High-densityareaattack(HDAA)experimenttreatments.Thevalueslistedfor eachtreatmentarethehandlingtimesforthecorrespondingpredatorattackmode. HDAA?OutsideAttackFrequencyHDAAFrequency No10N/A Infrequent10250 Frequent1025 ingbehavior.Themostnoticeableofdensity-dependentpredationisontherandom attacktreatment,wheretheswarmdensitymeasurementatgeneration5,000increasedfrom 11.19 2.58(mean twostandarderrors)to17.61 2.72,indicatingantlystronger selectionforswarming. 3.2.5High-DensityAreaAttacks Thusfar,Ihaveexploredattackmodesthatselectfortheevolutionofswarmingbehavior.It isnotsurprisingthattherearealsoattackmodesexhibitedbynaturalpredatorsthatmust selectagainstswarmingbehaviorintheirprey.Forexample,bluewhales( Balaenoptera musculus )areknowntodiveintothedensestareasinswarmsofkrill,consuminghundreds ofthousandsofkrillinthemiddleoftheswarminasingleattack[81].Icallthiskindofattack modea high-densityareaattack .Suchanattackclearlyselectsagainstswarmingbehavior becauseittargetsthepreythatswarmthemost.Ifkrillswarmsconsistentlyexperience thesehigh-densityareaattacks,thenwhydotheystillevolveswarmingbehavior? Itisimportanttonotethatkrillswarmsarealsofedonbysmallerspecies,suchas crabeaterseals( Lobodoncarcinophagus ),thatconsistentlyattackthekrillontheoutsideof theswarm[82].Thus,krillswarmsareexperiencingtwoformsofattackmodessimulta- neously:High-densityareaattacksfromwhalesandoutsideattacksfromcrabeaterseals. Thus,itispossiblethattheselectionpressuretoswarmfromoutsideattacks(Figure3.4) 31 couldoutweightheselectionpressuretodispersefromhigh-densityareaattacks. ShowninFigure3.3D,Imodelhigh-densityareaattacksasanattackthatalways targetsthepreyatthemostdenseareaoftheswarm(i.e.,highest A density ).Inotethatthis attackmodeistheoppositeofthedensity-dependentmechanismexploredintheprevious section,whichfavorspredatorsthattargetpreyinthe least denseareaoftheswarm.Once thetargetisselected,Iexecutetheattackbyremovingthetargetpreyandallotherprey within30virtualmetersofthetargetprey.Outsideattacksaremodeledasdescribedabove. Tostudytheofhigh-densityareaattacksontheevolutionofswarmingbehavior,Iallow thepreytoevolvewhileexperiencingbothattackmodessimultaneously.Ivarytherelative handlingtimesofbothattacks(Table3.3)toexplorewhetherrelativeattackfrequencycould explainwhysomeswarminganimalsevolvedswarmingbehaviordespitethefactthatthey experiencehigh-densityareaattacks. AsshowninFigure3.6,preyexperiencingonlyoutsideattacksquicklyevolvecohesive swarmingbehavior(lightgreytriangles).However,whenIintroduceinfrequenthigh-density areaattacks(darkgreycircles),theselectionpressureforpreytoswarmisreduced.Finally, whenIintroducefrequenthigh-densityareaattacks(blacksquares),thepreydonotevolve swarmingbehavioratall.Thus,onepossibleexplanationforanimalsevolvingswarming behaviordespiteexperiencinghigh-densityareaattacksisthatthehigh-densityareaattacks aretooinfrequentrelativetootherattacktypestoexertastrongenoughselectionpressure forpreytodisperse. Insummary,thepredationexperimentsprovidedmewithtwoimportant regardingtheevolutionoftheherd:(1)attacksonpreyontheperipheryoftheherd exertastrongselectionpressureforpreytoswarmand(2)preyinlessdenseareas,suchas thoseontheoutsideoftheherd,mustexperienceahigherpredationratethaninareasof 32 Figure3.6Meanswarmdensityoverallreplicatesoverevolutionarytime,measuredby themeannumberofpreywithin30virtualmetersofeachotheroveralifespanof1,000 simulationtimesteps.Swarmdensitywasmeasuredfromevolvedpopulationsthatwere notexperiencingpredationduringmeasurement,eliminatinganypossibleofattack modesthatkillmorepreyfaster.Preyingroupsattackedonlybyoutsideattacks(lightgrey triangles)evolvedcohesiveswarmingbehavior.Increasingtherelativefrequencyofhigh- densityareaattacksfrominfrequent(darkgreycircles)tofrequent(blacksquares)caused thepreytoevolveincreasinglydispersivebehavior.Errorbarsindicatetwostandarderrors over100replicates. 33 denseprey,suchasthoseinthecenteroftheherd. 3.3Predator-PreyCoevolution Buildinguponthelpredationexperiments,Iimplementeddensity-dependentpre- dationinapredator-preycoevolutionexperiment.Addingpredatorsintothesimulation environmentenablesmetoobservehowembodiedcoevolvingpredatorstheevolution oftheherd. Forthisexperiment,Icoevolveapopulationof100predatorgenomeswithapopulation of100preygenomesusingaGAwithsettingsdescribedinTable3.2.Sp,Ievaluate eachpredatorgenomeagainsttheentirepreygenomepopulationfor2,000simulationtime stepseachgeneration.Duringevaluation,Iplace4clonalpredatoragentsinsidea512 512 virtualmeterssimulationenvironmentwithall100preyagentsandallowthepredatoragents tomakeattackattemptsonthepreyagents.Thepreygenomepopulationsize,simulation environmentarea,andtotalnumberofGAgenerationsweredecreasedinthisexperiment duetocomputationallimitationsimposedbypredator-preycoevolution.Iassignedthe preyindividualvaluesasinthepreviousexperiments,andevaluatedpredator accordingtothefollowingequation: W predator = t max X t =1 ( S 0 A t )(3.3) where t isthecurrentsimulationtimestep, t max isthetotalnumberofsimulationtimesteps (here, t max =2,000), S 0 isthestartinggroupsize(here, S 0 =100),and A t isthenumber ofpreyaliveatupdate t .Thus,predatorsareselectedtoconsumemorepreyfaster,and preyareselectedtosurvivelongerthanotherpreyinthegroup.Onceallofthepredator 34 Figure3.7Meanswarmdensityoverallreplicatesoverevolutionarytime,measuredbythe meannumberofpreywithin30virtualmetersofeachotheroveralifespanof2,000simulation timesteps.Preyingroupsexperiencingdensity-dependentpredation(blackcircles)evolved cohesiveswarmingbehavior,whereaspreyingroupsnotexperiencingdensity-dependent predation(lightgreytriangles)evolveddispersivebehavior.Errorbarsindicatetwostandard errorsover100replicates. andpreygenomesareassignedvalues,Iperformproportionateselectionon thepopulationsviaaMoranprocess[77],incrementthegenerationcounter,andrepeatthe evaluationprocessonthenewpopulationsuntilthegeneration(1,200)isreached. Toevaluatethecoevolvedpredatorsandpreyquantitatively,Iobtainedthelineofdescent (LOD)foreveryreplicatebytracingtheancestorsofthepreyMNinthe populationuntilIreachedtherandomly-generatedancestralMNwithwhichthestarting populationwasseeded(see[51]foranintroductiontotheconceptofaLODinthecontext ofdigitalevolution).Iagaincharacterizedthepreygroupingbehaviorbymeasuringthe swarmdensityoftheentirepreypopulationeverygeneration. Figure3.7depictsthepreybehaviormeasurementsforthecoevolutionexperimentswith 35 density-dependentpredation 6 (blackcircles;meanswarmdensityatgeneration1,200 two standarderrors:26.2 2.3)andwithoutdensity-dependentpredation(lightgreytriangles; 3.9 0.8).Withoutdensity-dependentpredation,thepreyevolvedpurelydispersivebehavior asamechanismtoescapethepredators,evenafter10,000generationsofevolution([83], FigureS1).Incontrast,withdensity-dependentpredation,thepreyquicklyevolvedcohesive swarmingbehaviorinresponsetoattacksfromthepredatorswithin400generations.Asa caveat,density-dependentpredationonlyselectsforcohesiveswarmingbehaviorwhenthe predatorsarefasterthantheprey([83],FigureS2),whichcorroboratesearlier exploringtheroleofrelativepredator-preyspeedsintheevolutionofswarmingbehavior[63]. HereIseethatdensity-dependentpredationprovidesatselectiveadvantagefor preytoevolvetheherdinresponsetopredationbycoevolvingpredators,despitethe factthatswarmingpreyexperienceanincreasedattackratefromthepredatorsduetothis behavior([79],FiguresS3&S4).Accordingly,theseresultsupholdHamilton'shypothesis thatgroupingbehaviorcouldevolveinanimalspurelyduetoreasons,withoutthe needforanexplanationthatinvolvesthebtothewholegroup[27].Moreover,the discoveriesinthisworktheherdhypothesisbyclarifyingthatthepredator's attackmodehasatontheevolutionofherdbehavior:inparticular, thatherdbehaviorismuchmorestronglyselectedforwhenthepredatorconsistently attackstheedgesofthegroupratherthanattackingrandomly. 6 Preybehaviorfrompredator-preycoevolutiontreatment:http://dx.doi 36 3.4EvolvedPreyMarkovNetworkAnalysis NowthatIhaveevolvedemergentswarmingbehaviorinanagent-basedmodelunderseveral ttreatments,IcananalyzetheresultingMarkovNetworks(MNs)togainadeeper understandingoftheindividual-basedmechanismsunderlyingswarmingbehavior.Forthis analysis,Ichosethemost-abundantpreyMNfromeachoftheOutsideAttack predationexperimentreplicates,resultingin100MNsthatexhibitswarmingbehavior. First,Ianalyzethestructureofthe100MNsbylookingatthespretinasensors thattheMNsevolvedtoconnectto.ShowninFigure3.8,thepreyMNsshowastrongbias forconnectingtotheprey-spretinasensorsinfrontoftheprey,butnottothesides. Additionally,someofthepreyMNsshowapreferenceforconnectingtotheprey-sp retinasensorsbehindtheprey.Fromthisanalysisalone,Icandeducethattheretinasensors thataremostconducivetoswarmingbehaviorareinfrontofthepreyagent. Tounderstandhowpreymakemovementdecisionsbasedontheirsensoryinput,Imap everypossibleinputcombinationintheprey'svisualsystemtothecorrespondingmovement decisionthatthepreymade.DuetothestochasticnatureofMarkovNetworks,theprey agentsdonotalwaysmakethesamemovementdecisionwhengiventhesameinput.Thus, Itakethemost-likelyoutputoutof1,000trialsastherepresentativedecisionforagiven sensoryinputcombination.ely,thisprocessproducesatruthtablethatmapsevery possiblesensoryinputtoitscorrespondingmovementdecision.Iinputthistruthtableinto thelogicminimizationsoftware espresso [84],whichoutputstheminimalrepresentativelogic ofthetruthtable.Thisprocessresultsinatruthtablethatisreducedenoughtomakethe evolvedpreybehaviorcomprehensiblebyhumans. Surprisingly,theindividual-basedmechanismsunderlyingtheemergentswarmingbehav- 37 Figure3.8Numberofsensoryinputconnectionsfrom100evolvedpreyMarkovNetworks mappedontoapreyagent.Onlycausalconnectionsfromthesensoryinputstotheactuators areshown.Thearrowindicatesthefacingoftheagent.ThepreyMarkovNetworksevolved astrongpreferenceforconnectingtopreysensorsinfrontandaslightpreferenceforsensors behindthepreyagent,buttendedtonotconnecttothesensorsonthesides. 38 iorareremarkablysimple.MostofthepreyMNsevolvedtomaketheirmovementdecisions basedofonlyonepreysensorinfrontofthepreyagent.Ifthepreysensordoesnotdetect anotherpreyagent,theagentrepeatedlyturnsinonedirectionuntilitdetectsanotherprey agentinthatsensor.Oncetheagentdetectsanotherpreyagentinthesensor,itmovesfor- warduntiltheagentisnolongervisible.Thismechanismaloneprovedttoproduce cohesiveswarmingbehaviorinthemajorityofmyexperiments.Interestingly,thisdiscovery corroboratesthengsinearlierstudiessuggestingthatcomplexswarmingbehaviorcan emergefromsimplemovementruleswhenappliedoverapopulationoflocally-interacting agents[79,85,73]. InasmallsubsetoftheevolvedpreyMNs,IobserveMNsthatoccasionallyconnectto oneofthepreysensorsbehindthem.TheseMNswatchforapreyagenttoappearina singlepreysensorbehindtheagentandturnrepeatedlyinonedirectionuntilapreyagent isnolongervisibleinthatsensor.Onceapreyagentisnolongervisibleinthebacksensor, theMNmovesforwardorturnsdependingonthestateofthefrontalsensor.Inotethat thismechanism only evolvedinpreyMNsthatalreadyexhibitedswarmingbehaviorusing oneofthefrontalsensors,whichsuggeststhatthismechanismdoesnotplayamajorrolein swarmingbehavior.Instead,thismechanismseemstocausethepreyagenttoturntoward thecenteroftheswarminsteadofswarminginacirclewiththerestofthepreyagents.This mechanismcanbethoughtofasaherd"mechanismthatattemptstomove theagenttowardthecenteroftheswarmtoavoidpredation. 39 3.5Discussion Inthischapter,IdemonstratedHamilton'sherdhypothesisinadigitalmodelof evolutionandhighlightedthatitistheattackmodeofthepredatorthatcriticallydetermines theevolvabilityofswarmingbehavior.Further,weshowedthatdensity-dependentpredation isientfortheherdtoevolveaslongasthepredatorscannotconsistentlyattack preyinthecenterofthegroup.Finally,Ishowedthatdensity-dependentpredationis ttoevolvegroupingbehaviorinpreyasaresponsetopredationbycoevolving predators.Consequently,futureworkexploringtheevolutionoftheherdinanimals shouldnotonlyconsiderthebehaviorofthepreyinthegroup,buttheattackmodeofthe predatorsaswell.Followingtheseexperiments,Ianalyzedtheevolvedcontrolalgorithms oftheswarmingpreyandidensimple,biologically-plausibleagent-basedalgorithms thatproduceemergentswarmingbehavior,includingamechanismthatproduces behaviorthatdrivesthepreytowardthecenteroftheswarm. Theinthischapterpointtotwogeneralconclusionsregardingtheevolutionof collectiveanimalbehavior.Firstandforemost,thefactthatseeminglycooperativebehavior evolvedforpurelyreasons(i.e.,tosurvivelongerthanotherconspinthegroup) suggeststhattheadvantagesbygroupingdonotnecessarilyneedtobthe entiregroup:Indeed,swarmingbehaviorevolvedinthesesimulationssimplybecausethe preyfoundswarmingtobeaviabletactictosurvivelongerthanotherpreyinthegroup, evenwhenswarmingdidn'tprovideanyinherentadvantagetotheentiregroup.Second, therelativelysimplecontrolalgorithmsthatevolvedintheswarmingpreysuggeststhat thecontrolalgorithmsusedintop-downswarmmodelingapproaches|suchasthepopular Boidsmodel[73]|arelikelyoverlycomplicatedandrequiresensoryinformationthatisnot 40 realisticallyavailabletorealswarminganimals.Consequently,furtheranalysisoftheevolved controlalgorithmsfromfutureagent-basedswarmingexperimentsshouldproveenlightening foruncoveringthetruemechanismsthatrealanimalsusetoswarm. 41 Chapter4 PredatorConfusionHypothesis Inthepredatorconfusionhypothesis,thepresenceofmultipleindividualsmovinginaswarm confusesapproachingpredators,makingitforpredatorstosuccessfullyexecutean attack[29,7,30,41].Despitetheinherentadvantagethatpredatorconfusionswarming groupsofprey,itremainsunclearwhetherpredatorconfusioncanprovideatselective advantageforswarmingbehaviortoevolveintheplace. Inthischapter,Iusedigitalmodelsofevolutiontoexploretheevolutionaryconsequence ofthepredatorconfusionhypothesisonpopulationsofcoevolvingpredatorsandprey.First, IdescribethedetailsofthedigitalmodelthatIusedinthisproject.Next,Iexplainthe resultsfromthemodelandhowpredatorconfusiontheevolutionofpreybehavior. Followingthat,IdescribeanadditionalexperimentIperformedtoexplorehowpreda- torconfusioncaninturntheevolutionofpredatorvisualsystems.Finally,Iconclude thechapterbydiscussingsomeofthebroaderimplicationsoftheinthischapter. 4.1Modelofpredator-preyinteractions Tostudytheofpredatorconfusionontheevolutionofswarming,Icreatedanagent- basedsimulationinwhichpredatorandpreyagentsinteractinacontinuoustwo-dimensional virtualenvironment.Eachagentiscontrolledbya MarkovNetwork (MN),whichisastochas- ticstatemachinethatmakescontroldecisionsbasedonacombinationofsensoryinput(i.e., 42 vision)andinternalstates(i.e.,memory)[86].Icoevolvethepredatorandpreywitha geneticalgorithm (GA),whichisadigitalmodelofevolutionbynaturalselection[66].In aGA,poolsofgenomesareevolvedovertimebyevaluatingtheofeachgenomeat eachgenerationandpreferentiallyselectingthosewithhighertopopulatethenext generation.Thegenomesherearevariable-lengthstringsofintegersthataretranslatedinto MNsduringevaluation.MoreinformationonMNs|includingdetailsontheirgenetic encoding,mutationaloperators,andfunctionality|isavailableinChapter2.3. Toperformthiscoevolution,Icreateseparategenomepoolsforthepredatorandprey genomes.Next,Ievaluatethegenomes'essbyselectingpairsofpredatorandprey genomesatrandomwithoutreplacement,thenplaceeachpairintoasimulationenvironment andevaluatethemfor2,000simulationtimesteps.Withinthissimulationenvironment,I generate50identicalpreyagentsfromthesinglepreygenomeandcompetethemwiththe singlepredatoragenttoobtaintheirrespectiveThisevaluationperiodisakinto theagents'lifespan,henceeachagenthasapotentiallifespanof2,000timesteps(enough timeforthepreytotravelapproximately400bodylengths).Thevalues,calculated usingthefunctiondescribedbelow,areusedtodeterminethenextgenerationofthe respectivegenomepools.ParametersdescribingtheoperationofthisGAaresummarized inTableS1.Attheendofthelifetimesimulation,Iassignthepredatorandpreygenomes separatevaluesaccordingtothefunctions: W predator = 2 ; 000 X t =1 S A t (4.1) W prey = 2 ; 000 X t =1 A t (4.2) 43 where t isthecurrentsimulationtimestep, S isthestartingswarmsize(here, S =50), and A t isthenumberofpreyagentsaliveatsimulationtimestep t .Itcanbeshownthat thepredator(Eq.4.1)isproportionaltothemeankillrate k (meannumberofprey consumedpertimestep),whiletheprey(Eq.4.2)isproportionalto(1 k ).Thus, predatorsareawardedhighertnessforcapturingmorepreyfaster,andpreyarerewarded forsurvivinglonger.Isimulateonlyaportionoftheprey'slifespanwheretheyareunder predationbecauseIaminvestigatingswarmingasaresponsetopredation,ratherthana feedingormatingbehavior. OnceIevaluateallofthepredator-preygenomepairsinageneration,Iperform proportionateselectiononthepopulationsviaaMoranprocess,allowtheselectedgenomes toasexuallyreproduceintothenextgeneration'spopulations,incrementthegeneration counter,andrepeattheevaluationprocessonthenewpopulationsuntilthegeneration (1,200)isreached. Iperform180replicatesofeachexperiment,whereforeachreplicateIseedtheprey populationwithasetofrandomly-generatedMNsandthepredatorpopulationwithapre- evolvedpredatorMNthatexhibitsrudimentaryprey-trackingbehavior.Seedingthepredator populationinthismanneronlyservestospeedupthecoevolutionaryprocess,andhas negligibleontheoutcomeoftheexperiment([79],FigureS1). 4.1.1Predatorandpreyagents Figure4.1depictsthesensory-motorarchitectureofpredatorandpreyagentsinthissystem. Thevisualsystemsensorsofbothpredatorandpreyagentsarelogicallyorganizedinto \layers,"wherealayerincludes12sensors,witheachsensorhavingaofviewof15 andarangeof100virtualmeters(200virtualmetersforpredators).Moreover,eachlayeris 44 Figure4.1Anillustrationofthepredatorandpreyagentsinthemodel.Lightgreytriangles arepreyagentsandthedarkgreytriangleisapredatoragent.Thepredatorandpreyagents havea180 limited-distancevisualsystem(100virtualmetersforthepreyagents;200virtual metersforthepredatoragent)toobservetheirsurroundingsanddetectthepresenceofthe predatorandpreyagents.EachagenthasitsownMarkovNetwork,whichdecideswhere tomovenextbasedofacombinationofsensoryinputandmemory.Theleftandright actuators(labeled\L"and\R")enabletheagentstomoveforward,left,andrightindiscrete steps. 45 attunedtosensingasptypeofagent.Sp,thepredatoragentshaveasingle- layervisualsystemthatisonlycapableofsensingprey.Incontrast,thepreyagentshavea dual-layervisualsystem,whereonelayerisabletosenseconspandtheothersenses thepredator.(Inotethatthereisonlyasinglepredatoractiveduringeachsimulation,hence thelackofapredator-sensingretinallayerforthepredatoragent.) Regardlessofthenumberofagentspresentinasingleretinaslice,theagentsonlyknow theagenttype(s)thatresidewithinthatslice,butnothowmany,representingthewide, relativelycoarse-grainvisualsystemstypicalinswarmingbirdssuchasStarlings[76].For exampleinFigure4.1,thefurthest-rightretinaslicehastwopreyinit(lightgreytriangles), sothepreysensorforthatsliceactivates.Similarly,thesixthretinaslicefromthelefthas bothapredator(darkgreytriangle)andaprey(lightgreytriangle)agentinit,soboththe predatorandpreysensorsactivateandinformtheMNthatoneormorepredators and one ormorepreyarecurrentlyinthatslice.Lastly,sincethepreynearthe4thretinaslicefrom theleftisjustoutsidetherangeoftheretinaslice,thepreysensorforthatslicedoesnot activate.Inotethatalthoughtheagent'ssensorsdonotreportthenumberofagentspresent inasingleretinaslice,thisconstraintdoesnotprecludetheagent'sMNfromevolvingand makinguseofacountingmechanismwhichreportsthenumberofagentspresentinaset ofretinaslices.Onceprovidedwithitssensoryinformation,thepreyagentchoosesoneof fourdiscreteactions:(1)staystill;(2)moveforward1unit;(3)turnleft8 whilemoving forward1unit;or(4)turnright8 whilemovingforward1unit. Likewise,thepredatoragentdetectsnearbypreyagentsusingalimited-distance(200 virtualmeters),pixelatedvisualsystemcoveringitsfrontal180 thatfunctionsjustlikethe preyagent'svisualsystem.Similartothepreyagents,predatoragentsmakedecisionsabout wheretomovenext,butthepredatoragentsmove3xfasterthanthepreyagentsandturn 46 Figure4.2Relationofpredatorattackcy(#successfulattacks/total#attacks)to numberofprey.Thesolidlinewithtrianglesindicatessimulatedpredatorattack asafunctionofthenumberofpreywithinthevisualofthepredator( A NV ).Similarly, thedashedlinewitherrorbarsshowsthemeasuredsimulatedpredatorattack giventhepredatorattacksagroupofswarmingpreyofagivensize,usingthe A NV curve todeterminetheper-attackpredatorattacksuccessrate.Errorbarsindicatetwostandard errorsover100replicateexperiments. 47 correspondinglyslower(6 persimulationtimestep)duetotheirhigherspeed. 4.1.2Simulationenvironment Iuseasimulationenvironmenttoevaluatetherelativeperformanceofthepredatorand preyagents.Atthebeginningofeverysimulation,Iplaceasinglepredatoragentand50 preyagentsatrandomlocationsinsideaclosed512 512unittwo-dimensionalsimulation environment.Eachofthe50preyagentsarecontrolledbyclonalMNsoftheparticularprey MNbeingevaluated.IevaluatetheswarmwithclonalMNstoeliminateanypossible ofselectionontheindividuallevel,e.g.,theherd"[40]. Duringeachsimulationtimestep,Iprovideallagentstheirsensoryinput,updatetheir MN,thenallowtheMNtomakeadecisionaboutwheretomovenext.Whenthepredator agentmoveswithin5virtualmetersofapreyagentitcansee,itautomaticallymakesan attackattemptonthatpreyagent.Iftheattackattemptissuccessful,thetargetpreyagent isremovedfromthesimulationandmarkedasconsumed.Predatoragentsarelimitedto oneattackattemptevery10simulationtimesteps,whichiscalledthe handlingtime .The handlingtimerepresentsthetimeittakestoconsumeanddigestapreyaftersuccessfulprey capture,orthetimeittakestorefocusonanotherpreyinthecaseofanunsuccessfulattack attempt.Shorterhandlingtimeshavenegligibleontheoutcomeoftheexperiment, exceptforwhenthereisnohandlingtimeatall([79],FigureS2). Toinvestigatepredatorconfusionasanindirectselectionpressuredrivingtheevolution ofswarming,Iimplementaperceptualconstraintonthepredatoragent.Whenthepredator confusionmechanismisactive,thepredatoragent'schanceofsuccessfullycapturingits targetpreyagent( P capture )isdiminishedwhenanypreyagentsnearthetargetpreyagent arevisibleanywhereinthepredator'svisualThisperceptualconstraintissimilarto 48 previousmodelsofpredatorconfusionbasedonobservationsfromnaturalpredator-prey systems[7,29,43],wherethepredator's attack (#successfulattacks/total# attacks)isreducedwhenattackingswarmsofhigherdensity. P capture isdeterminedbythe equation: P capture = 1 A NV (4.3) where A NV isthenumberofpreyagentsthatarevisibletothepredator,i.e.,anywherein thepredatoragent'svisual and within30virtualmetersofthetargetprey.Byonly countingpreynearthetargetprey,thismechanismlocalizesthepredatorconfusionto thepredator'svisualsystem,andenablesmetoexperimentallycontrolthestrengthofthe predatorconfusionAlthoughmypredatorconfusionmodelisbasedonthepredator's visualsystem,itisqualitativelysimilartopreviousmodelsthatarebasedonthetotalswarm size|e.g.,modelsofpredatorconfusionpresentedin[7,29,43,87]|inthatthereisagradual (ratherthanimmediate)declineinpredatorattackencyasthepreygroupsizeincreases (Figure4.2,dashedline).AsshowninFigure4.2(solidlinewithtriangles),thepredator hasa50%chanceofcapturingapreywithonevisiblepreynearthetargetprey( A NV =2), a33%chanceofcapturingapreywithtwovisiblepreynearthetargetprey( A NV =3), etc.Asaconsequence,preyareinprincipleabletoexploitthecombinedofpredator confusionandhandlingtimebyswarming. 4.2ofpredatorconfusion Qualitatively,Iobservedtinpreybehavioroverthecourseofevolution betweenswarmsexperiencingpredatorswithandwithoutpredatorconfusion.Figure4.3Ail- 49 Figure4.3Screencapturesof(A)dispersedpreyinaswarmhuntedbyapredatorwithout predatorconfusion,(B)preyformingasingleelongatedswarmunderattackbyapredator withpredatorconfusion,and(C)preyformingmultiplecohesiveswarmstodefendthemselves fromapredatorwithpredatorconfusionafter1,200generationsofevolution.Blackdots areprey,thetriangleisthepredator,thelinesprojectingfromthepredatorrepresentthe predator'sfrontal180 visualandthestardenoteswhereapreywasjustcaptured. 50 lustratesthatpreyhuntedbyapredatorwithoutthepredatorconfusionmechanismdispersed asmuchaspossibletoescapethepredator.Noreplicatescontainingapredatorwithout predatorconfusionresultedinpreybehaviorthatresembledacohesiveswarm.Conversely, whenevolutionoccurredwithpredatorconfusion,preyexhibitedcohesiveswarmbehaviorin themajorityofthereplicates(70%ofmyreplicates).Figure4.3Bdepictsonesuchswarmin whichpreyfollowtheconspdirectlyinfrontofthem,resultinginanelongatedswarm. Similarly,Figure4.3Cshowsanotherswarmwherethepreycirclearoundtheirnearestcon- spresultinginmultiplesmall,cohesiveswarmswiththepreyconstantlytryingto circlearoundeachother.Bothoftheseswarmsevolvedasdefensivebehaviorstoexploitthe predatorconfusion Furthermore,predatorsexhibiteddivergenthuntingbehaviorswhenhuntingpreywith andwithoutpredatorconfusion.AsseeninFigure4.3A,predatorsthatevolvedinthe absenceofpredatorconfusion,andhencehadtocontendwithdispersedprey,simplytracked thenearestvisiblepreyuntilitwascaptured,thenimmediatelypursuedthenextnearest visibleprey.Ontheotherhand,predatorsthatevolvedinthepresenceofpredatorconfusion, andhencewerechallengedwithcohesiveswarms,usedamechanismthatcausesthemto attackpreyontheouteredgesoftheswarm.Thisstrategyissimilartoapredatorybehavior observedinmanynaturalsystems[88,89],andelyminimizedthenumberofprey inthepredator'svisualsystemandmaximizeditschanceofcapturingprey.Figure4.3B demonstratesthisbehavior,wherethepredatorjustcapturedapreyonthetop-rightedge oftheswarm(preycapturelocationdenotedbyablackstar).Videosoftheevolvedswarms underpredationareavailableinthesupplementaryinformation([79],SIvideos1-5). Toevaluatetheevolvedswarmsquantitatively,Iobtainedthelineofdescent(LOD)for everyreplicatebytracingtheancestorsofthepreyMNinthepopulation 51 untilIreachedtherandomly-generatedancestralMNwithwhichthestartingpopulation wasseeded(see[51]foranintroductiontotheconceptofaLODinthecontextofdigital evolution).ForeachancestorintheLOD,Icharacterizedtheswarmbehaviorwithtwo commonbehaviormeasurements: swarmdensity and swarmdispersion [78].Imeasuredthe swarmdensityasthemeannumberofpreywithin30virtualmetersofeachotherovera lifespanof2,000simulationtimesteps.Theswarm'sdispersionwascomputedbyaveraging thedistancetothenearestpreyforeverylivingpreyoveralifespanof2,000simulationtime steps.Together,thesemetricscapturedwhetherornotthepreywerecohesivelyswarming. Figure4.4Ademonstratesthatthepreyhuntedbyapredatorwithonlyhandlingtime (i.e.,withoutpredatorconfusion)movedclosetoeachotherbychancebutnevercoordinated theirmovementatanypointintheirevolutionaryhistory(meanswarmdensity 1standard erroracross180replicates:0 : 69 0 : 02).Incontrast,whenhuntedbyapredatorwith predatorconfusion,thepreycoordinatedtheirmovementtoremainclosetoeachotherand formaswarm(meanswarmdensity12 : 48 0 : 8atgeneration1,200).Likewise,Figure4.4B showsthatintheabsenceofpredatorconfusion,preyevolvedtomaximizetheirdispersion (meanshortestdistance46 : 69 0 : 44atgeneration1,200),whereaswithpredatorconfusion, preyevolvedincreasinglycohesiveswarmbehavior(meanshortestdistance22 : 54 1 : 32at generation1,200).Takentogether,theseresultsthatpredatorconfusionprovideda tselectionpressuretoevolvecohesiveswarmingbehaviorinthismodel,eventhough theswarmingpreyactuallyexperienceanincreasedattackratefromthepredatordueto thisbehavior(see[79],FiguresS3&S4). Figure4.4Cshowsthatasaresultoftheseevolutionarytrends,thecohesiveswarms thatevolvedunderpredatorconfusionexperiencedtlyhighersurvivorshipthan swarmsthatevolvedwithoutpredatorconfusion(34 : 7 0 : 6and25 : 54 0 : 49preysurviving 52 Figure4.4Meanswarmdensity(A),swarmdispersion(B),andsurvivorship(C)within theswarmoverallreplicatesoverevolutionarytime.Theswarmdensitywasmeasuredby themeannumberofpreywithin30virtualmetersofeachotheroveralifespanof2,000 simulationtimesteps.Swarmdispersionwasmeasuredbythemeandistancetothenearest preyforeverylivingpreyoveralifespanof2,000simulationtimesteps.Survivorshipwithin theswarmwasmeasuredasthemeannumberofsurvivingprey(outofaninitialtotalof 50)attheendofthesimulationatagivengeneration.Preyhuntedbyapredatorwith predatorconfusion(blackcircleswithafullline)evolvedtomaintaintlyhigher swarmdensityandtlylessdispersedswarmingbehaviorthanpreyintheswarms huntedbyapredatorwithoutpredatorconfusion(greytriangleswithadashedline).Asa result,tlymorepreysurvivedintheswarmshuntedbyapredatorwithpredator confusionthantheswarmshuntedbyapredatorwithoutpredatorconfusion.Errorbars indicatetwostandarderrorsacross180replicateexperiments. 53 thesimulations,respectively).Thisincreasedsurvivorshipthatswarmingbehavior confusedthepredator,leadingtofewersuccessfulpreycaptures.Ifoundtheseresultsrobust toavarietyofexperimentalparameters,includingweakerpredatorconfusion([79], FigureS5&S6)andapplyingaminimumthresholdtopredatorattack([79],Figure S7). 4.3Evolvedpredatorandpreybehavior Todeducehowswarmsemergeinmymodelfromindividual-levelbehaviors,Inextdeter- minedthefunctionalityoftheevolvedpredatorandpreyMNs.Iaccomplishedthisby visualizingtheMNconnectivitytodiscernwhichslicesofthevisualsystemandmemory nodesoftheMNwerecausallyconnected,thencreatedatruthtablefromtheMNmapping everypossibleinputcombinationwithitscorrespondingmost-likelyoutputfromtheMN. Withthisinput-outputmapping,IcomputedtheminimaldescriptivelogicoftheMNwith LogicFriday,ahardwarelogicminimizationprogram.Iusedthemost-likelyoutputfor everyinputcombinationduetothestochasticnatureofMNs,thereforethefunctionalityI determinedwasthe most-likely behaviorofthepredatororprey. Inallofmyexperiments,thepreyatgeneration1,200ignoredthepresenceofpredators andinsteadonlyreactedtothepresenceofconspintheirvisualsysteminorderto followtheotherpreyintheswarm.Thisresultwasparticularlystrikingbecauseitsuggested thatpreycanevolveswarmingbehaviorinresponsetopredationwithouttheabilitytosense thepredatorshuntingthem,whichwassuggestedinapreviousstudy[24].Iobservedthat thepreyevolvedawidevarietyofsimplealgorithmsthatexhibitedadiversityofemergent swarmingbehaviors,rangingfrommoderatelydispersed,elongatedswarmssimilartoStar- 54 lingmurmurations(Figure4.3B)totightly-packedcohesiveswarmsreminiscentofshbait balls(Figure4.3C). Asforthepredators,theevolvedbehaviorIobservedatgeneration1,200withpredator confusionappearedtoberathercomplex:Thepredatorsavoideddenseswarmsandhunted preyoutside,orontheedge,oftheswarm.However,thealgorithmunderlyingthisbehav- iorwasrelativelysimple,whichallowedforthepredatorstoevolvethishuntingbehavior fairlyearlyinthesimulations.Thepredatorswatchedonlythetwocenterretinaslicesand constantlyturnedinonedirectionuntilapreyenteredoneofthoseslices.Onceaprey becamevisibleinoneofthecenterretinaslices,thepredatormovedforwardandpursued thatpreyuntilitmadeacaptureattempt.Thisprocesswasrepeatedregardlessofwhether thepredatorsuccessfullycapturedtheprey.Thesimplicityofthepredatoralgorithmand relativesimplicityofthepreyalgorithmssupportstheofearlierdigitalswarmstud- iesthatcomplexswarmbehaviorscanbedescribedbysimplerulesappliedoveragroupof locally-interactingagents[64,73]. 4.4Eco-evolutionarydynamics Predatorconfusionhasbeenhypothesizedtobenotonlyaselectivepressurefavoringswarm- ing,butalsoasadeterminantofthe functionalresponse [43],i.e.,thenumberofpreycon- sumedbythepredatorasafunctionofpreydensity[90].Figure4.5supportsakeyprediction offunctionalresponsetheory:Bothwithandwithoutpredatorconfusion,thesystemdis- playedaTypeIIfunctionalresponse(asaturatingofpreydensity),butwhenpredator confusionwaspresentthefunctionalresponseshowedalowerplateau(24 : 01 0 : 49prey consumedwithoutpredatorconfusion;15 : 18 0 : 57withpredatorconfusion).Thefactthat 55 Figure4.5Functionalresponsecurvesofcohesiveswarmshuntedbyapredatorwithpreda- torconfusion(blackcircleswithafullline)anddispersedswarmshuntedbyapredatorwith- outpredatorconfusion(greytriangleswithadashedline).Theevolved,cohesiveswarms huntedbyapredatorwithpredatorconfusionresultinaTypeIIfunctionalresponsewitha loweredplateau.Errorbarsindicatetwostandarderrorsacross180replicateexperiments. therewasaTypeIIfunctionalresponseevenintheconditionwithoutpredatorconfusion wastheresultofanadditionalconstraintpresentinbothconditions:Thehandlingtimethat wasimposedonthepredatorafterpreycapturebeforeitcanattackagain.Additionally, whenIvariedthehandlingtimeinmyexperiments,Ifoundthatincreasingthehandling timealsolowerstheplateauoftheTypeIIfunctionalresponse([79],FigureS9). Modelingfunctionalresponsehasbeenanimportantprobleminecology[91],andiscriti- calforconstructingaccuratemodelsthatcapturethedynamicsofpredator-preyinteractions overecologicalandevolutionarytime[92].Iprovidedevidenceherethatpredatorconfusion hastonfunctionalresponsethatarenotcapturedintraditionalmodels[43]. Mostofthesetraditionalmodels,includingtheoriginalformulationofHolling[42],capture theecologicalinteractionbetweenpredatorandprey.Evolutionisassumedtoshapethebe- 56 havioralstrategiesandconstraintsthatpredator-preydynamics,butonlyrecently havebiologistsbeguntoexplicitlystudythedynamicsofpredator-preyinteractionsover bothecologicalandevolutionarytime[44].IhaveshownthataTypeIIfunctionalresponse evolvesevenwhenitisnotdirectlyselectedfor,andtheshapeofthefunctionalresponse canbeattributedtospcconstraintssuchashandlingtimeandpredatorconfusion. 4.5Coevolutionbetweenpredatorvisualsystemsand preybehavior Intheprevioussections,Iimplementedpredatorconfusionbyimposingaperceptualcon- straintthatreducestheprobabilityofsuccessfullycapturingpreyifoneormorepreynear thetargetpreyarevisibletothepredator.Thisismeanttosimulatethey,arising fromattentionalorcognitivelimitations,thatabiologicalpredatormighthaveinchoosing amongmultipleavailablepreyatthemomentofattack.Toexaminetheofrelaxing thisconstraint,Icoevolvedthepredatorandpreyagainandexperimentallyreducedthesize ofthepredator'sofview.Thisprocedurereducesthepossibilitythatmultipleprey canbedetectedatthemomentofattack,therebyreducingtheprobabilityofconfusion.For example,experimentallydecreasingthepredator'sofviewfrom180 to60 decreases bytwo-thirdstheareawithinwhichthepresenceofmultiplepreycanconfusethepredator. Figure4.6demonstratesthatwhenthepredator'svisualsystemonlycoveredthefrontal 60 orless,swarmingtoconfusethepredatorwasnolongeraviableadaptation(asindicated byameanswarmdensityof0 : 68 0 : 02atgeneration1,200).Inthiscase,thepredatorhad suchanarrowviewanglethatfewswarmingpreywerevisibleduringanattack,which minimizestheconfusionandcorrespondinglyincreasesitscapturerate([79],Figure 57 Figure4.6Meanswarmdensityatgeneration1,200asafunctionofpredatorviewan- gle.Swarmingtoconfusethepredatorwasanebehaviorifthepredator'svisual coveredonlythefrontal60 orless,duetothepredator'sfocusedvisualsystem.As thepredator'svisualldwasincrementallyincreasedtocoverthefrontal90 andbeyond, predatorconfusionviaswarmingagainbecameaneanti-predatorbehavior,asev- idencedbytheswarmsexhibitingtlyhigherswarmdensityatgeneration1,200. Errorbarsindicatetwostandarderrorsacross180replicateexperiments. 58 Figure4.7SwarmdensityandpredatorviewanglefromtheLODofasinglecoevolution experiment.Thepredatorandpreypopulationsappeartocontinuallycyclebetweent statesofviewanglesandbehaviors. S8).Asthepredator'svisualsystemwasincrementallymodtocoverthefrontal120 andbeyond,swarmingagainbecameaneadaptationagainstthepredatorduetothe confusion(indicatedbyameanswarmdensityof6 : 13 0 : 76atgeneration1,200).This suggeststhatthepredatorconfusionmechanismmaynotonlyprovideaselectivepressurefor thepreytoswarm,butitcouldalsoprovideaselectivepressureforthepredatortonarrow itsviewangletobecomelesseasilyconfused. Thisopensthepossibilityforcoevolutionbetweenthepredator'svisualsystem andthepreyswarmingbehavior.Toexplorethispossibilityfurther,Iranthepredator-prey coevolutionexperimentsagain,butthistimeallowingmutations(with5%probability)to theviewangleofthepredator'sWhenamutationoccurstothepredator viewangle,arandomnumberbetween[-50.0,50.0]isaddedtothe viewangle.Thus,mutationscanwidenorshrinkthepredator'sviewangleinlargeorsmall steps. AtypicalcoevolutionaryexperimentisdepictedinFigure4.7.Surprisingly,thepredator andpreypopulationsappeartocontinuallycyclebetweentstatesofviewangles andbehaviors,respectively,suchthatthereisatnegativecorrelationbetweenthe 59 Figure4.8Pearson's r betweenswarmdensityandpredatorviewanglefromtheLODs of30coevolutionexperiments.Allcoevolutionexperimentshaveanegativecorrelation betweenswarmdensityandpredatorviewangle,indicatingthatwhenswarmdensitygoes up,predatorviewanglegoesdownandviceversa. P< =0 : 001forallcorrelations. predatorviewangleandswarmdensityacrossall30coevolutionexperiments(Figure4.8). Thisissurprisingbecausethepredatorpopulationcanely\defeat"theswarm- ingpreypopulationbyshrinkingtheirvisualsystemtothepointthatthepreywillnolonger evolvetoswarm.Whythenwouldthepredatorpopulationevolvetowidentheirvisualsys- temagain,allowingthepreypopulationtoagainevolveswarmingbehaviortoreducethe predators'attack Theanswertothisquestionliesinthepredators'attackwhenthepreyareno longerswarming.ShowninFigure4.9,whenpredatorswithvaryingviewanglesare competedagainstdispersiveprey,predatorswithwidervisualsystemsaremorelikelyto apreyanywhereintheirvisualsystematanytime.Further,Figure4.10demonstrates thatpredatorswithwidervisualsystemsarealsomorelikelytodispersivepreyina 60 Figure4.9Numberofsimulationtimestepsthatpreyarepresentanywhereinanevolved predator'svisualsystemdependingonthepredator'sviewangle.Thepredatoriscompeted againstdispersiveprey.Predatorswithhigherviewanglesaremorelikelytohaveprey anywhereintheirvisualsystematagiventime. P< =0 : 001betweenallviewangles, Kruskal-Wallismultiplecomparison. Figure4.10Numberofsimulationtimestepsthatpreyarevisibleinaportionofanevolved predator'svisualsystemthatitpaysattentionto,dependingonthepredator'sviewangle. Thepredatoriscompetedagainstdispersiveprey.Predatorswithhigherviewanglesaremore likelytospotpreyatagiventime,whichincreasestheirforaging. P< =0 : 001 betweenallviewanglesexcept180vs.210,Kruskal-Wallismultiplecomparison. 61 Figure4.11Fitnessofanevolvedpredatorwhencompetedagainstdispersiveprey,depend- ingonthepredator'sviewangle.Predatorswithhigherviewanglesforageforpreymore tly,thuscapturingmorepreyintheirlifetimeandimprovingtheir P< =0 : 001 betweenallviewanglesexcept150vs.180and180vs.210,Kruskal-Wallismultiplecom- parison. portionoftheirvisualsystemthattheypayattentionto,whichmeanstheyspendlesstime searchingforprey.Thus,theincreasedforagingiencythatwidervisualsystems predatorsagainstdispersivepreyresultsinhigherpredator(Figure4.11).These pointtoathatnaturalpredatorslikelyexperiencewhenhuntingprey: Wider,less-focusedvisualsystemsaremoreusefulforinitiallyspottingprey,butfocused visualsystemsarebetteradaptedfortrackinganindividualpreydownandavoidingthe ofpredatorconfusionwhenhuntingpreyingroups. 4.6Discussion Idemonstratedthatswarmingevolvesasanemergentbehaviorinpreywhenasimpleper- ceptualconstraint|predatorconfusion|isimposedonthepredator.Further,Ifoundthat 62 measuringswarmdensityandswarmdispersion,proposedin[78],servesasanesub- stituteforqualitativelyassessingeveryswarmtodetermineifcohesiveswarmingbehavior ispresent.Adiversecollectionofpreyswarmingbehaviorsevolvedinmymodel,suggesting thatpredatorconfusioncouldallowforawiderangeofswarmingbehaviorstoevolve.Strik- ingly,mostevolvedpreystrategiesusedalgorithmsthatrespondedtootherprey,butnot totheattackingpredators.Thisraisestheinterestingquestionofwhatselectionpressures wouldfavortheevolutionofpreythatdetectandrespondtothepredatorsthemselves. Incontrasttothediversityofevolutionaryoutcomesforprey,acommonbehavioral strategyemergedamongthepredatorswhenevolvedintheconfusioncondition.Namely, theevolvedpredatorsfocusedonattackingpreyonthevulnerableedgesoftheswarms,which isaphenomenoncommonlyobservedinnature[88,89]. Modelingfunctionalresponsehasbeenanimportantprobleminecology[91],andiscriti- calforconstructingaccuratemodelsthatcapturethedynamicsofpredator-preyinteractions overecologicalandevolutionarytime[92].Iprovidedevidencethatpredatorconfusionhas tonfunctionalresponsethatarenotcapturedintraditionalmodels[43]. Mostofthesetraditionalmodels,includingtheoriginalformulationofHolling[42],capture theecologicalinteractionbetweenpredatorandprey.Evolutionisassumedtoshapethebe- havioralstrategiesandconstraintsthatpredator-preydynamics,butonlyrecently havebiologistsbeguntoexplicitlystudythedynamicsofpredator-preyinteractionsover bothecologicalandevolutionarytime[44].IhaveshownthataTypeIIfunctionalresponse evolvesevenwhenitisnotdirectlyselectedfor,andtheshapeofthefunctionalresponse canbeattributedtospcconstraintssuchashandlingtimeandpredatorconfusion. IalsofoundthatIcouldreducetheadvantageofswarmingbydiminishingthepredator's ofview,hencedecreasingthelevelofconfusionthepredator.Thissuggests 63 Figure4.12Diagramdepictingtheobservedcoevolutionarycyclebetweenthepredatorand preyinthepresenceofthepredatorconfusion thatpredatorconfusioncouldimposeaselectivepressureontheshapeofthepredator's visualsystem:Onceswarminghasevolvedintheprey,selectionwillfavorpredatorsthat arenolongerconfusedbyswarms.FollowingthetrendinFigure4.6,Iexpectedselection tofavorpredatorswithanarrower,morefrontallyfocusedvisualsystem,asobservedinthe visualsystemsofmanynaturalpredators[93]. Inthesectionofthischapter,Idirectlyexploredtheabovehypothesisandfound mypredictiontobepartlytrue:AsdemonstratedinFigure4.7,selectiondoesindeedfavor predatorswithamorefocusedvisualsystemonceswarminghasinvolvedinprey.However, oncethepredatorsevolveafocusedvisualsystem,thepreyevolvedispersivebehaviorin responseandacoevolutionarycyclecommencesbetweenthepredatorvisualsystemand preybehaviorinmymodel.Generally,researchersassumethattheevolutionofcollective behaviorisaone-waystreet,i.e.,collectivebehaviorissoevolutionarilyadvantageousthata specieswouldonlyevolveincreasinglycollectivebehavior[94].Thesedemonstrate acoevolutionarycyclethatcouldoccurbetweennaturalpredatorsandpreyduetothecon- 64 fusionshowninFigure4.12.Asapartofthiscoevolutionarycycle,Idiscovereda conditionunderwhichthepreypopulationsconsistentlyevolvedawayfromcollectivebehav- ior.Thisexperimentthereforehighlightsonepossiblemechanismthroughwhichcollective behaviorcouldbelostevolutionarily. 65 Chapter5 ManyEyesHypothesis Inthischapter,Ifocusonanti-predatorvigilance(i.e.,themanyeyeshypothesis)asapos- sibleselectivemechanismfortheevolutionofgregariousforagingbehavior,andcontrolfor theoftheotherbedescribedinChapter2.1.Iassumethatvigilancehas b(e.g.,communicatingthepresenceofapredatorviaalarmsignals)butalsocosts (e.g.,reducedforagingratesbywatchingforthepredator).Underthemanyeyeshypothesis, groupingisbbecauseitreducesthecostofvigilancebysharingthecostofvigilance amongthegroup,butitmayhaveadditionalcoststhatmustbeconsidered,e.g.,increased predationratesonlargergroups[95].Furthermore,thisbwouldbedilutedifsomein- dividualscanfreeloadonthevigilanceofothers(asinheterogeneousgroups),but ifthegroupmembersarehighlyrelated.Thebandcostswouldalsobebythe lifehistoryoftheprey,inparticularwhethertheirreproductionisiteroparous(i.e.,repeated) orsemelparous(i.e.,allatonce):Vigilancemaybemorebinsemelparouspreybe- causeapredationeventcancompletelypreventthemfromreproducing,whereasiteroparous preyaremorelikelytohavereproducedatleastoncepriortoexperiencingapredationevent. Toexploretheseissues,Imanipulatethegeneticrelatednessandreproductivestrategyof groupsofpreythatareunderpredationandobservetheresultingbehaviorafterthousands ofgenerationsofdigitalevolutionhavetakenplace.Apreliminaryinvestigationofthiswork waspublishedintheALIFE14conference[96],andhasbeentlyextendedinthis chapter. 66 Figure5.1 Depictionofthedisembodiedsimulation. Preyseektoforageasmuchas possiblewhileavoidingbeingcapturedbythepredator.Ifnoneofthepreyinthegroupare vigilant,thetargetpreyiscaptured100%ofthetime. Thischapterproceedsasfollows.First,IdescribethedetailsofthedigitalmodelthatI usedinthisproject.Next,Idescribetheresultsfromthemodelandexplainwhatconditions selectfortheevolutionofgregariousforagingbehavior.Finally,Iconcludethechapterby discussingsomeofthebroaderimplicationsoftheinthischapter. 5.1Modelofpredator-preyinteractions Figure5.1depictsmymodelofpredator-preyinteractionsinadisembodiedmodel,wherein preymustbalancethebetweenforagingandvigilance[13].Inanembodiedmodel, everyanimatissituatedintheworld,perceivestheworldviaitssensors,andcanacton theworldviabehavioralorotherresponses[97].Whileembodiedmodelsmoredetail andcancapturepotentiallyimportantaspectsoftherealworld,theyarealsosensitiveto implementation-spdetailsofthesensorsandactuators,whichcanskewtheresults.I thereforefocusonadisembodiedmodel 1 fortheremainderofthisstudy,whichenablesme toexploreseveralfactorstheevolutionofgroupvigilanceinisolation. 1 Modelcode:https://github.com/phaley/eos/tree/non-embodied 67 Inthismodel,preyisdirectlyrelatedtotheamountoftimeitspendsforaging, whereasingleroundofforagingincreasespreyby1.0.However,preyvigilance determineswhetherapredator'sattackonthepreyissuccessful.Thesetwooptions| foragingandvigilance|areassumedtobemutuallyexclusive.Thus,preymustevolveto maximizetheirfoodintakewhileremainingvigilantenoughtosurvivetheentiresimulation, whichisakintothemaximumpossiblelifespanoftheprey. 5.1.1Simulationofpredatorsandprey Idesignedthismodeltocapturecertainfeaturesofnaturalpredatorsandtocontrolfor potentiallycomplicatingfactors.First,toensurethatpredatorattacksarenottrivially predictableIsimulatepredatorsthatattackatintervalsthatarenormallydistributedaround aspattackrate.Thus,predatorattacksarerandomlydistributedthroughoutthe 2,000-time-stepdurationofthesimulation.Tomodeltheobservationthatlargergroupsof preyoftenattractmoreattacksfrompredators|arealisticcostofgrouplivingknownas the attractionct [95]|Iscalethisattackratewiththegroupsize,suchthatthegroup experiences5predatorattacksforeverypreyinitiallyinthegroupoverthecourseofthe simulation.Thisscalingfactoralsoallowsmetocontrolforthe dilutionct ,whichhas beensuggestedtoallowpreytosurvivewithlowervigilancelevelsinlargergroupsonly becausetheyarelesslikelytobethetargetofapredator'sattack[17,98,99]. Eachtimeapredatorappears,Irandomlyselectatargetpreyfromthesurvivingprey ofpreviousattacks.Thisisfollowedbya10timestepdelaybetweentheappearanceofthe predatorinthesimulationandtheactualattack,representingthetimeittakesforapredator toclosethedistancetotheprey.Itisduringthistimethatpreyvigilancebecomesimportant. Ifthetargetpreyisvigilantatanytimeduringthisinterval,thenitspotsthepredatorand 68 theattackhasonlya10%chanceofsuccess.Ifthetargetpreyisnotvigilantbutoneor moreotherpreyinthegrouparevigilant,thentheotherpreycommunicatethepresenceof thepredatorviaanalarmsignalorotherbehavioralindicatorandthepredatorwillcapture thetargetprey30%ofthetime.Theseprobabilitiesarechosenbasedonanalyticalmodels ofgroupvigilance[13]suchthatgroupvigilanceisnotaseasindividualvigilance, andmodelstheimperfectcommunicationbetweenmembersofthegroup[100].Finally,if nomembersofthegrouparevigilantwhilethepredatorisclosingthedistancetoitstarget, thentheentiregroupisunawareofthepredatorandtheattackwillsucceed100%ofthe time.Inallcasesofasuccessfulattack,thetargetpreyisremovedfromthesimulationand cannolongerforagetoincreaseits Eachindividualpreymakesthedecisiontoforageorbevigilanteverysimulationtime step.Thisdecision-makingprocessismodeledwitha MarkovNetwork (MN),whichisan brain"thatcanstochasticallymakedecisionsbasedonsensoryinput,memory, andpreviousactions[79,86,101].EverypreyMNisencodedbyalistofnumbersknown asitsgenotype,suchthatchangestothegenotypecanresultinchangesinthefunctionof theMN.BecauseIdonotprovideanysensoryinputtothepreyinthissimulation,Iam elymodelingtheprobabilityofapreytakinganaction(e.g.,bevigilantorforage?) everysimulationtimestep.MoreinformationonMNs|includingdetailsontheirgenetic encoding,mutationaloperators,andfunctionality|isavailableinChapter2.3. 5.1.2Evolutionaryprocess Atthebeginningofeveryexperiment,Icreateapopulationof100individualswithrandom MarkovNetworks.Irepeattheevaluationproceduredescribedaboveuntilall100individu- alsintheGeneticAlgorithm(GA)populationhavebeenassigneda(see,e.g.,[75]for 69 afulldescriptionofGAs).OnceallindividualshavebeenassignedaIuse proportionalselectionaccordingtoaMoranprocess[77]toproducethenextgeneration's populationofprey.Fitness-proportionalselectionensuresthatpreywithhigherval- uesgenerallyproducemoreTheselectedpreyreproduceasexually,withasmall probabilityofmutations(0.5%persite)theirgenotype.Irepeatthis evaluation-selection-reproductionprocessfor2,500generationstoensurethattheGAhas reachedanevolutionarilystablestrategy[102]andreplicatetheexperiments100timesfor eachtreatment|eachwithadistinctrandomnumbergeneratorseed|toverifythatIam capturingevolutionarytrendsratherthanoutlierscenarios. 5.1.3Groupsize Sincethemanyeyeshypothesispredictsaninverserelationshipbetweenindividualvigilance andgroupsize[22,15],Istudypreypopulationsacrossarangeofgroupsizes:5,10,25,and 50.Inmyearlyexperiments,Iobservetheequilibriumvigilancelevelswhenpreyareforced togroup.Inmylaterexperiments,Irelaxthisassumptionandallowthepreytochooseto group(ornot)everytimestep.Inthelattercase,Ireportthegroupsizeasthemaximum initialgroupsize.Toprovideabaselinefortheoptionalgroupingexperiment,Icompare itsequilibriumvigilancelevelstothatofexperimentswherepreyareforcedtogroupand experimentswherepreyareforcedtoforageindividually. 5.1.4Geneticrelatedness Foralloftheaboveexperiments,Istudytheofgeneticrelatednessongroupvigilance behavior.Giventhatgeneticallyrelatedorganismsaremorelikelytocooperatewitheach 70 otherthangeneticallyunrelatedorganisms[103],Iexpectthatgeneticrelatednesswithin thegroupwillplayacriticalroleintheevolutionofgroupvigilancebehavior.Toexplore thetwoextremesofgeneticrelatedness,Iformgroupsintworentways. In homogeneousgroups ,eachindividualintheGApopulationisevaluatedseparately. Duringanindividual'sevaluation,Ilthegroupinthesimulationwithexactcopies oftheindividual,andtheforthatindividualistheaverageofallofitscopies attheendofthesimulation.Thus,foraGAwithapopulationsizeof100individuals,Irun 100simulationseverygenerationtoacquirethetnessforeachindividual. In heterogeneousgroups ,IuseasubsetoftheGApopulation(whichcontainsmany preywithtgenetics)tostudyhowthepreyfareindirectcompetition(orcooperation) witheachother.Whenformingaheterogeneousgroup,Irandomlysampleindividualsfrom theGApopulationwithoutreplacementuntilIreachthedesiredgroupsizeforthecurrent treatment.Thisgroupisthenevaluatedinthesimulation,whereeachindividualhasonlyone copythatisassignedaOncethesimulationItheevaluatedindividuals sotheyarenotevaluatedagaininthatgeneration.Sincethedesiredgroupsizes(5,10,25, and50)arealwayssmallerthantheGApopulationsize(100),thisprocedureisrepeated untilallindividualshavebeenevaluated.Forexample,ifthedesiredgroupsizeis25and theGApopulationiscomposedof100individuals,thentherandomly-group-and-evaluate procedureisrepeated4times.Thus,byfollowingthisprocedure,allindividualsintheGA populationareevaluatedonlyoncepergenerationinarandomly-assignedgroup. Sincevigilanceindirectlybthevigilantindividualinhomogeneousgroupsbyaiding itskin,Iexpectthatgroupvigilancewillbehighlybeninhomogeneousgroups.In contrast,becausethevigilanceofonepreycanpotentiallyaidarivalpreyinheterogeneous groups,Iexpecttoobservelowerlevelsofvigilanceinheterogeneousgroups. 71 5.1.5Reproductivestrategy Thebofmakingtherightdecisioninthissimulatedenvironmentarestraightforward: Thepreymustmaximizefoodintakebysurvivingthelongestwhileminimizingthetime spentbeingvigilant.Butthecostofmakingthewrongdecisioncanalsodependonthe lifehistoryoftheprey.Forexample,twotreproductivestrategies|semelparity anditeroparity|shouldincurtcosts.Semelparousorganismssitononeendofthe reproductivespectrumandarecharacterizedbyasinglereproductiveeventpriortodeath. Ontheotherendofthereproductivespectrum,iteroparousorganismscontinuallyreproduce throughouttheirlifetime.Iexplorethesetwoextremesbysimulatingsemelparousand iteroparouspreyinseparatetreatments. Whensimulating semelparous preyinmymodel,Iassumethattheirreproductiveevent occursattheendofthesimulation.Therefore,ifasemelparouspreyisconsumedbythe predatorbeforetheendofthesimulation,allofitsgatheredfoodcountsfornothing:itwill leaveno Whensimulating iteroparous preyinmymodel,Iassumethatthepreyareconstantly reproducingthroughouttheirlifetime.Thereforewhenapredatorconsumesaniteroparous prey,thepreycannolongerincreaseitsssviaforaging,butanyfooditgatheredprior toitsdeathcountstowarditsforthesimulation. Inotethatthesearehighlyedimplementationsofreproductivestrategiesand aremeanttocaptureonekeyvariable:theprobabilityofreproductionoccurringbefore apredationevent.Ihypothesizethattheincreasedriskofgeneticdeathintroducedby thesemelparoustreatmentwillprovideanevolutionaryincentiveforpreytoinvestinvig- ilance,whereaspreyintheiteroparoustreatmentwillbemorelikelytoengageinrisky, 72 non-cooperativebehaviorbecausetheirdemisedoesnotnecessarilydoomtheirgeneticlin- eage[104]. 5.1.6Explicitcostofgrouping Themodeldescribedsofarincludesacostofvigilance(insofaraspreycannotforageatthe sametimethattheyarevigilant),butthereisnoexplicitcosttochoosingtogroupaside fromthepossibilityofaidingacompetingindividual.Inatreatment,Iimplementsuch agroupingpenaltyinordertomodeltherealisticconstraintsoflimitedresourcesandthe resultingscramblecompetitionforfood[105,50,98,106].Thisgroupingpenaltyisonly assessedonpreywhochoosetoforageinthegroup,anddecreasestheamountoffoodthey receiveinthatsimulationtimestepproportionaltothenumberofpreyinthegroup.The groupforagingpenaltyisimposedaccordingtotheequation: Food= 1 : 0 M G (5.1) where G isthenumberofpreyinthegroupand M isthepenaltymultiplierthatallowsme toexperimentallycontroltheseverityofthepenalty.Giventhispenalty,preyforagingin largergroupsreceivelessfoodeverytimetheyforage,butpotentiallyenjoythebof groupvigilance. 5.2Forcedgrouping Ievolvedthevigilancebehaviorofpreybysubjectingthemtopredationunderavarietyof treatmentsthatvaryreproductivestrategyandgroupcomposition.Vigilanceismeasuredas 73 Figure5.2 Treatmentcomparisonwhenpreyareforcedtoforageingroups. Both grouphomogeneityandasemelparousreproductivestrategyselectforhighlevelsofvigilance. However,onlyhomogeneousgroupsexperienceanincreaseintnessasgroupsizeincreases. Incontrast,vigilancebehaviorbreaksdowninlarger,heterogeneousgroupsofsemelparous prey.Errorbarsindicatebootstrapped95%intervalsover100replicates;some errorbarsaretoosmalltobevisible. thepercentchancethatapreywillbevigilantatagivenmomentintime,averagedacrossall ofthepreyinthepopulation.Thesetreatmentsarerepeatedacrossawiderangeofgroup sizes,allowingmetostudynotonlywhethertheselectionforvigilancecanbegeneralized togroupsofvaryingsizes,butalsowhetherIcanobservetheinverserelationshipbetween groupsizeandvigilancepredictedbythemanyeyeshypothesis. Inmyexperiment,allpreyinthesimulationareforcedtoforageinthesamegroup, andtheonlytraitthatisevolvingisthepreydecisiontobevigilantornotateverytimestep. Undertheseconditions,Ithatpreylivinginhomogeneousgroupsconsistentlyevolve higherlevelsofvigilancethantheircounterpartslivinginheterogeneousgroups(Figure5.2). Thissuggeststhatorganismslivingingroupswithhighgeneticrelatednessaremore likelytoevolvecooperativestrategies.Thus,inmymodelasinmanynaturalsystems, gregariousforagingismostfavorablewhengeneticinterestsarealigned. Figure5.2alsoshowsthatsemelparouspreyaremorelikelytoevolvevigilantstrategies thaniteroparousprey.Thisisbecausesemelparityselectsmorestronglythaniteroparityfor successfulevasionofpredatorattacks,sincepreydeathnegatesallpreviousforaging 74 insemelparousprey.Thiseisseenacrossbothhomogeneousandheterogeneousgroups, indicatingthatsemelparityisastrongenoughselectivepressuretoactindependentlyof groupgeneticcomposition.Importantly,preyvigilancedoesnotevolveatallintheabsence ofpredation(FigureS1),andgraduallyreducingthepredationrateleadstoacorrespondingly gradualdecreaseinpreyvigilancelevels(FigureS2).Therefore,Iknowthattheselection pressureimposedbypredationistheprimarydrivingforcebehindthisevolvedvigilance behavior. Allthreetreatmentsthatevolveanylevelofvigilancealsoseetheprevalenceofvigilance decreaseasgroupsizeincreases.Thispatternisimportantbecauseitmatchesthepattern predictedbythemanyeyeshypothesis:Asgroupsizeincreases,individualsareabletorely moreoncollectiveratherthanindividualvigilanceandcaninturndevotemoreoftheir owntimetoforaging.SinceIusearelativeattackratethatscalesthepredator'sattack frequencywithgroupsize,thisphenomenonmustbecausedbygroupvigilanceandnot thedilution(i.e.,fewerattacksperindividualinlargergroups)citedinotherstudies. Inotethatvigilanceintheheterogeneous/semelparoustreatmentappearstoevolveaway almostentirelyinagroupsizeof50.Toexplainwhythistrendmightbeduetosomething otherthancollectivevigilance,Icaninsteadlookattrendsintheofthepopulations. IobserveseveralinterestingtrendswhenIlookattheofgroupsizeonaverage groupInbothhomogeneoustreatments,thereisasteadyincreaseinwithin- creasinggroupsize,suggestingthatgregariousforagingbehaviorisunderpositiveselection. Iseenosigtincreasewithgroupsizeintheheterogeneous/iteroparouspopula- tions,wherethepopulationsdonotevolvevigilancebehavior(Wilcoxonrank-sum p =0 : 79 betweengroupsize5and50).Unliketheothertreatments,theheterogeneous/semelparous populationsactuallyexperienceat decrease inwithincreasinggroupsize 75 Figure5.3 Treatmentcomparisonwhenpreycanchoosetoforageingroups. Allowingpreytodecidewhethertheywishtobeinthegroupproducessimilarresults comparedtowhentheyareforcedtogroup.Inhomogeneousgroups,preychoosetospend mostoftheirtimeinthegroup.However,groupingbreaksdown(alongsidevigilance)in heterogeneousgroupsofsemelparousprey.Thisoccursdespitetherebeingnodirectpenalty assessedforchoosingtogroup.Errorbarsindicatebootstrapped95%intervals over100replicates;someerrorbarsaretoosmalltobevisible. 76 (Wilcoxonrank-sum p =2 : 77 10 6 betweengroupsize5and50),whichsuggeststhat cooperativebehaviorisnotevolutionarilystableinlargerheterogeneousgroups.Accord- ingly,thesesuggestthatheterogeneouspopulationsaremuchmoresusceptibleto non-vigilant,\cheating"preystrategiesthatsweepthepopulationandreducetheoverall population 5.3Optionalgrouping SofarIhaveshownthatpreyappeartotakeadvantageofcollectivevigilancetoincrease theirwhentheyareforcedtogroup.Wemightexpectfromthisresult(andthe manyeyeshypothesispredicts)thatgroupingprovidesaselectiveadvantage.Totestthis expectationexplicitly,Irelaxtheconstraintsofthepreviousexperimentbyallowingtheprey toevolvewhethertogroupornotateverysimulationtimestep.Sincethereisnodirect forgroupinginthismodelyet(astherewasforforagingandvigilance),this allowsmetostudywhethertheevolutionaryadvantagesofgroupingarefavorableenough forvigilanceandgroupingtoco-evolve. Figure5.3showsthatwhenIallowpreytochoosetogroup,Inearlythesameresults asbefore.Thissuggeststhatcollectivevigilanceprovidesenoughofaselectiveadvantage tofavortheevolutionofgrouping.Itisnotsurprisingthatthehomogeneoustreatments evolvetogroupnearly100%ofthetime,giventhatthepopulationisgeneticallyidentical andany\altruistic"actionindirectlybthealtruistaswell.Asintheforcedgrouping experiment,Iobserveadeclineinintheheterogeneous/semelparouspopulations asgroupsizeincreases,tothepointthatthepopulationisnearlydrivenextinct.The inabilityoftheheterogeneous/semelparouspopulationstoevolveconsistentlyhighlevelsof 77 vigilancefurthersupportsthehypothesisthatevolutionisfavoringshort-termcompetitive advantagesoverlong-termsurvival.Thisphenomenoniscommonlyknownasthetragedyof thecommons[107,108],whereactionsthatprovideanindividualshort-termb leadtoadecreaseinoverallgroup 5.4Tragedyofthecommonsinheterogeneousgroups Toexplorethisapparenttragedyofthecommonsscenariofurther,Idirectlycomparevigi- lanceandvaluesfromtheforcedandoptionalgroupingexperimentsalongsideathird experimentwhereIforcethepopulationtoforageandsurviveasindividuals.Figure5.4 showsthatwhengiventhechoicetogroupinthehomogeneoustreatments,preybehavior closelymirrorsthebehaviorobservedwhenforcedtoforageinagroup.Thisobservation theprevioussuggestionthatcollectivevigilanceinhomogeneousgroupsprovidesa bethatpositivelyselectsforgregariousforagingbehaviors. Incontrasttothehomogeneouspopulations,heterogeneouspopulationsaremuchless likelytoevolvegregariousforagingbehaviors.Heterogeneous/iteroparouspopulationsnever evolvevigilancebehaviorregardlessofwhetherthepreyareforcedtogroupornot(Fig- ure5.4).Similarly,heterogeneous/semelparouspopulationsonlyevolvevigilancebehavior insmallergroups,whereastheadvantageofcollectivevigilanceislostinlargergroups.At largergroupsizes,preywiththeabilitytochoosewhetherornottoforageinheteroge- neous/semelparousgroupsinsteadevolvelowerlevelsofvigilancethanrequiredtoprotect thegroup(Figure5.4),whichresultsinadecreaseinoverallgrouprelativetoprey thatalwaysforageingroups(Figure5.5). 78 Figure5.4 Vigilanceinpreywithandwithouttheoptiontoforageingroups. Inhomogeneousgroups,preywithforcedandoptionalgroupingevolvesimilarvigilance behaviors.Incontrast,individualistic(non-grouping)preyevolvevigilancebehaviorsthat maximizeindividualMeanwhile,individualsinheterogeneous/semelparouspopu- lationswiththeoptiontogroupevolvetobelessvigilantthaneitheroftheothertwo treatments.Errorbarsindicatebootstrapped95%conintervalsover100replicates; someerrorbarsaretoosmalltobevisible. Figure5.5 Fitnessforpreywithandwithouttheoptiontoforageingroups. In heterogeneous/semelparousgroups,preywiththeoptiontogrouphavelowerthan preythatareforcedtogroup.Errorbarsindicatebootstrapped95%intervals over100replicates;someerrorbarsaretoosmalltobevisible. 79 Figure5.6 Groupingbehaviorsinpreyexperiencinggroupingpenalties. Even withasmallgroupingpenalty( M =1 : 0),alltreatmentsexcepthomogeneous/semelparous nolongerevolvegroupingbehavior.Preyinthehomogeneous/semelparoustreatmentevolve onlyslightlylowerlevelsofgroupingbehavior,evenwithextremepenaltiestoforagingin agroup( M =1 ; 000).Errorbarsindicatebootstrapped95%intervalsover100 replicates;someerrorbarsaretoosmalltobevisible. 5.5Explicitcostofgrouping Inmytreatment,Iinvestigatetheimpactofassessingadirectcostofforaginginagroup (e.g.,competitionforfood).Figure5.6showsthatexceptinthehomogeneous/semelparous treatment,anexplicitgroupingcostselectsagainstgregariousforagingbehaviorevenwhen thegroupingpenaltyissmall( M =1 : 0).Conversely,preyinthehomogeneous/semelparous treatmentmaintainsomelevelofgregariousforagingbehaviorevenwhenthepenaltyfor foragingingroupsisextreme( M =1 ; 000).Therefore,Iconcludethatinthepresence ofevenasmallpenaltyforforaginginagroupandtheabsenceofadditionalselection pressuresthatfavorgregariousforaging(e.g.,improvedsocialstatusforsentinels),onlythe combinationofhighgeneticrelatednesswithinthegroupandasemelparousreproductive strategyselectstronglyenoughforgregariousforagingbehaviortoevolveinmymodel. 80 5.6Discussion Ifoundthatgregariousforagingbehaviorcanemergeunderavarietyofconditionswhen thereisabofvigilanceandthespreadingofinformationaboutpredators.Preythat forageinhomogeneousgroupsaremorelikelytoevolvegregariousforagingbehaviorscom- paredtothethoseinheterogeneousgroups.Thesameistrueforsemelparousorganisms (whoreproduceonlyoncebeforedeath)comparedtotheiriteroparouscounterparts(who reproducecontinually),butgrouphomogeneityselectsmuchmorestronglyforgregarious foragingbehavior. Clearly,therearenumerouschallengestoevolvinganyformofcooperativebehaviorina populationwithunconstrainedgeneticrelatedness.However,Ihaveshownherethatwhen thereisstrongselectionforsurvival(asintheheterogeneous/semelparoustreatment),the bofinformationsharingviabeingvigilantandmakingalarmsignalsistto selectforcooperativebehaviorinheterogeneousgroups.Thisndingdemonstratesthat kinshipisnotnecessaryforcooperativebehaviortoevolveaslongasthereissomeb toinformationsharingwithinthegroup,e.g.,reducingpredatorattack. Further,myresultspointtoaheretoforeunsuspectedcostofgregariousforagingthatis uniquetoheterogeneousgroups.Icallthisthe\two-foldcostofvigilance."Inmymodel, vigilancebehaviorinheterogeneousgroupsismorethanawithforagingonthe individuallevel.Bychoosingtobevigilant,preyalsoriskaidinginthesurvivalofrivalprey, whichthenputsthevigilantpreyatadisadvantagebecauseitaroundof foragingtoaidtherivalprey.Together,thesecostscouldexplainwhypreyinheterogeneous groupsevolvetobelessvigilantthanthoseinhomogeneousgroups. Atthesametime,itisalsopossiblethattherearesomeevolutionaryadvantagesunique 81 toheterogeneousgroupsthatIhavenotyetaddressed.Forexample,mymodeldoesnot currentlyallowforanykindofspecializationinrolesbetweenindividuals,whichcouldex- plainthepresenceofmulti-speciesgroupsinnature[109,110].Ifthepreycouldevolveto preferentiallypayattentiontocertain\sentinel"membersofthepopulation(who,inturn, choosetobevigilantnearlyalwaysinordertoreceivesomeformofrewards,e.g.,foodor increasedsocialstatus)thenperhapsanevolutionarilystableformofgregariousforaging couldbefoundinheterogeneousgroupsofallsizes.Itisevenpossiblethatsuchacomplex socialstructurecouldout-performtherelativelyprimitivecooperationinmyhomogeneous groups. Alongsidegeneticrelatedness,anotherpositiveselectivepressurefortheevolutionofvig- ilanceisasemelparousreproductivestrategy.Whenpreymustsurviveanyandallpredator attacksinordertoreproduce,theimpetustobevigilantismuchgreater.Semelparousor- ganismsareknowntobemorerisk-aversethansimilar,iteroparousorganisms[111],andthe decisiontoforageinsteadofbeingvigilantisanexampleofonesuchriskybehavior.Thus, ratherthanspendingmostoftheirtimeforaging(asiteroparouspreyevolvetodoinmy model),semelparouspreyinmymodeltendtodevotemostoftheirtimetowatchingfor predators.Whengiventheopportunitytogroupwithotherpreyandtakeadvantageofcol- lectivevigilance,semelparouspreyareactuallyabletospendlesstimebeingvigilant.Thus, whensemelparouspreyevolvelowerlevelsofvigilanceinlargergroups,weareobservingthe ofcollectivevigilance. Giventhatmanyanimalswhorelyonvigilanceforsurvivalareiteroparous,myresult thatvigilanceislesslikelytoevolveiniteroparouspopulationsmayseemtobecontra- dictedbyevidence.Inmyexperiments,Iexplorethetwoextremesofreproductivebehavior: Semelparousstrategieswherethepreyreproduceonlyonceattheendoftheirlifetime, 82 anditeroparousstrategieswherethepreyconstantlyreproducethroughouttheirlifetime. Itisplausiblethatanintermediatestrategy|wherepreyreproducewithinafewbreeding episodesthroughouttheirlifetime|couldselectforvigilancebehaviorwhileatthesametime thebofamorereliableiteroparousreproductivestrategy.Eventhoughsuch anintermediatestrategyisnotexploredinthiswork,itwouldmakeaninterestingfocusfor futureworktoexplorethecontinuumbetweenthetworeproductivestrategies. Althoughmyresultssuggestthattherisk-aversenessofsemelparityinducessemelparous preytoevolvetotakeadvantageofcollectivevigilance,thisselectivepressuredoesnot appeartobeasstrongasthepressureIobservedinhomogeneousgroups.Proofofthis observationcanbefoundintheheterogeneous/semelparoustreatment,wheremostgroup membersattempttocheattheirwayintocollectivevigilancebyevolvinglowerlevelsof vigilancebehaviorthanisobservedinpopulationswherepreyareeitherforcedtoforage ontheirownorinthegroup(Figure5.4).Ultimately,thisbehaviorresultsinlower thantheofpreythatareforcedtoforageingroups(Figure5.5),butthe constantly-present,short-termbofappeartobetooenticingtoallowa moreadvantageous,cooperativebehaviortoemerge. Thebreakdownofcooperationintheheterogeneous/semelparouspopulationssuggests thatthepopulationsaresuccumbingtoatragedyofthecommons[107,108].Inmyexperi- ments,allpreyarecompetingagainsteachothertoforageasmuchfoodaspossiblewithout beingcapturedbythepredator.However,becausethereisanunlimitedamountoffood,the onlydepletablegroupresourceisvigilance,whichprotectstheentiregroupfromthepreda- tor.Astheresultingnon-cooperativebehaviorintheheterogeneous/iteroparouspopulations demonstrate,absentanymajorselectivepressuresforcollectivevigilance,preywillevolveto forage100%ofthetime.Therefore,grouphomogeneityandsemelparitycorrespond 83 totwopreviously-establishedmechanismsforpreventingatragedyofthecommons,namely kinselectionandpunishmentfornon-cooperativebehaviors,respectively[107].Therelative ofthesemechanismstopreventcheatingmeritsfurtherinvestigation,forexample, doesgrouphomogeneityplayalargerrolethanreproductivestrategyintheevolutionof collectivevigilance? Inthepresenceofevenasmallpenaltyforforagingingroups,Iobservethatonlyprey inhomogeneousgroupswithasemelparousreproductivestrategyarecapableofevolving gregariousforagingbehavior(Figure5.6).Thissuggeststhat,intheabsenceof unlimitedfoodresourcesorextremepredationrates,collectivevigilance(i.e.,themany eyeshypothesis)isttoselectforgregariousforaging.However,theremaybe importantaspectsofnaturalsystemsthatselectforgregariousforagingthatIdidnotmodel here.Forexample,predatorshavebeenobservedtopreferentiallyattacknon-vigilantpreyin groups[112],whichwouldrequirepreytobevigilantevenwithoutthebofcollective vigilance.Thus,itwouldbeinformativeinfutureworktomodelsuchapreferencefor non-vigilantpreyandobservetheevolutionofgregariousforagingunderthoseconditions. 84 Chapter6 Conclusion Intotal,thisdissertationthoroughlyexploredthreeofthemanyhypothesesexplainingthe evolutionofcollectiveanimalbehavior.Sofar,theseprojectshaveexpandedthetheory surroundingtheevolutionaryoriginsofcollectivebehaviorbyproducingseveraltestable hypotheses.ForexampleinChapter3.4,Idiscoveredasimplevision-basedmovementalgo- rithmthatpreycouldusemaintaincohesiveswarmingbehavior,whichcontrastswiththe complexalgorithmsthatarecommonlyusedtosimulateswarmingbehaviorinsilico[85,73]. Thisprovidesamuchsimplermovementalgorithmtoexplainthecomplexswarming behaviorfoundinnature,whichcanbevalidatedinobservationalstudiessuchas[113]. SimilarlyinChapter4.5,Ihypothesizedthattheinteractionenabledbypredatorconfusion betweenthepredator'sviewangleandpreyswarmingbehaviorshouldselectforpredators withafocusedvisualsystem.Ifthisisthecase,wewouldexpecttoobservepotentially uniquetraitsandmechanismsthatfocusthepredator'svisualsysteminnaturalpredators thathuntswarmingprey.FinallyinChapter5,Ifoundthatreproductivestrategyplays asigtroleintheevolutionofcooperativegroupforaging,namelybyshowingthat semelparousspecieswillbestronglyselectedtoforageingroups.Thisrepresents analtogethernewdiscoveryexplainingtheevolutionofcooperativegroupforagingthat couldbecorroboratedbyameta-analysisofexistingspecieslinkingthespecies'proclivity tocooperativelyforageingroupstoitslifehistory. Duringthecourseofthisresearch,Icameuponseveralsurprisingresultsthatmy 85 expectations.Perhapsthemostnotableunexpectedwasthesimplicityoftheevolved preyswarmingmechanismsacrosseveryembodiedswarmingexperimentthatIperformed. Sincethemajorityofresearchersstudyingswarmcontrolmechanismssuggestthatnatural preymustbefollowingsomeformofcomplexBoidsrules(separation,alignment,cohesion), IexpectedmysimulatedpreytoevolvesomeformoftheBoidsrules.Instead,mysimulated preyevolvedasimple\followthepreyinfrontofyou"rulethatresultsinemergentswarming behaviorwhenappliedoveragroupoflocally-interactingpreywithouttheneedforglobal informationabouttheswarm|andonlyminimallocalinformationaboutwhatisinfront oftheprey.Althoughpartofthesimplicityofthemovementalgorithmmayresultfrom thefactthatthepreycannotcollidewithoneanother,thisunexpectediscausefor collectivebehaviorresearcherstoreevaluateandperhapssimplifythestandardmodelsthat explainswarmingbehaviorinnature. Anothersurprisingfromthisresearchwasthesigntimpactofpredatorattack mode(i.e.,howpredatorschoosetoattackprey)ontheevolutionofswarmingbehavior.Most researchpriortotheworkinthisdissertationhadassumedthatpredatorattackmodedid notplayanimportantrole,andoftensimplyassumedthatthepredatorattackspreyat random.Inthisdissertation,Ireevaluatedthisassumptionanddiscoveredthatpredators thatconsistentlyattackpreyontheoutsideoftheswarmexhibitamuchstrongerselection pressuretoswarmthanpredatorsthatattackrandomly.Thissuggeststhatitisnot safetoassumethatthepredatorattackmodeplaysanunimportantroleintheevolutionof collectivebehavior,andhighlightstheimportanceofexploringtheroleofcomplexpredator attackmodesinmodelsexploringtheevolutionofcollectivebehavior[74,114]. Furthermore,thisworkhasprovidedinsightintopossibleapplicationsinComputer Scienceandbiomimeticsolutionstoproblemsinparticleswarmoptimizationandswarm 86 robotics.ForexampleinChapter3.4,thesamesimplevision-basedcontrolalgorithmcanbe usedasacontrolalgorithminswarmroboticsexperiments.Providedthatswarmrobotics experimentsareoftenlimitedtosimple,inexpensiverobotswithminimalsensorsduetoman- ufacturingcostandbatterylife,simplecontrolalgorithmsthatproduceemergentswarming behaviorwillbenecessarytoadvancethe[72].InChapters3.2.4and4.5,Ielaborated upontheroleofpredatorattackmodeandpredatorconfusioninthecoevolutionarydynamics betweenpredatorandpreypopulations.Providedthatagrowingofparticleswarmop- timizationseekstoharnesspredator-preycoevolutionduringtheoptimizationprocess[71],it willbecriticaltounderstandthecorepredator-preycoevolutionarytheoryunderlyingthese optimizationalgorithms.Finally,itisimportanttonotethatthecoreofthisresearchaims atunderstandinghowitispossibletogetaheterogeneousgroupofindependentagentsto cooperatetowardacommongoal,evenifcooperationentailstheperformanceof someoftheindividualsinthegroup.TherearemanyparallelstothisprobleminComputer Science,forexample,itiscommontoseeimprovedperformanceinMachineLearningclas- problemsbycreatinganensembleofto\worktogether"towardbetter performance[115].Althoughitisnotyetcommontoautomaticallycreatehet- erogeneousensemblesoftheworkpresentedinthisdissertationwillbeinformative forthispotentiallyfruitfullineofMachineLearningresearch. Ofcourse,thisdissertationopensmanynewavenuesofresearchdirectlyfollowingthe workpresentedhere.InChapter3.4,theevolvedpreyswarmingmechanismassumedthat thepreydonotcollidewithoneanother.Itwouldbeinstructivetofollowuponthisworkby implementingcollisionsforthepreyandobservingtheresultantbehavior:Dothepreyevolve amoreBoids-likecontrolalgorithm,orisasimplefollow-the-prey-in-front-of-youmechanism stillt?InChapter4.5,Ifoundthatthepredatorsandpreyenteraseemingly-endless 87 coevolutionarycyclewhenbothpreybehaviorandthepredatorvisualsystemareallowedto coevolve.Anotherfascinatingvenueofresearchwouldbetoexplorepossiblemechanismsfor visualpredatorstosecuretheir\evolutionaryvictory"byevolvingtoelyhuntboth swarminganddispersiveprey|forexample,byevolvingacomplexvisualsystemthatwe oftenseeinvisualpredatorsinnaturethatprovidesbothcoarse,broadvisionforsearching aswellasnarrow,focusedvisionfortrackingprey.InChapter5,Idiscoveredthattheprey's reproductivestrategyplaysanimportantroleinwhetheritwillevolvetocooperativelyforage ingroups.However,Ionlyexploredthetwoextremesofreproductivestrategy|reproducing continuouslyandreproducingonlyonceneartheendoftheirlifetime|andthereisanentire continuumofreproductivestrategiesinbetweenlefttoexplore. Finally,therearemanymorehypothesizedbofcollectivebehaviorthatremainto beexploredinfuturework,suchasimprovedlocomotion[18]andthefeasibility ofcollectivecognition[1].Onceallofthesehypothesizedbenehavebeenexploredin isolation,itwillthenbepossibletocombinethesehypothesizedbintohybridexper- imentswherewecananswerquestionssuchas,\Inthepresenceofthepredatorconfusion doescollectivevigilanceplayanimportantroleintheevolutionofcollectivebehav- ior?"Thesehybridexperimentswillbringusclosertosimulatingrealbiologicalsystems andunderstandinghowandwhypreyevolvetoliveingroups.Bybringinguscloserto understandingnature,thislineofresearchwillestablishasolidbasisofevolutionarytheory surroundingcollectivebehaviorforresearcherstodrawupon,bothwhenstudyingcollective behaviorinnatureandwhenharnessingcollectivebehaviorinroboticsandoptimization problems. 88 REFERENCES 89 REFERENCES [1]I.Couzin,\Collectivecognitioninanimalgroups," TrendsCogn.Sci. ,vol.13,pp.36{ 43,2009. [2]C.Feare, TheStarling .OxfordUniversityPress,USA,1984. [3]C.HemelrijkandH.Hildenbrandt,\Somecausesofthevariableshapeofcksof birds," PLoSONE ,vol.6,p.e22479,2011. [4]F.Dyer,\Thebiologyofthedancelanguage," Annu.Rev.ofEntomol. ,vol.47,pp.917{ 49,2002. [5]L.Hall-Stoodley,J.Costerton,andP.Stoodley,\BacterialFromthenatural environmenttoinfectiousdiseases," Nat.Rev.Micro. ,vol.2,pp.95{108,2004. [6]J.KrauseandG.Ruxton, Livingingroups .OxfordUniversityPress,USA,2002. [7]J.JeschkeandR.Tollrian,\Preyswarming:Whichpredatorsbecomeconfusedand why?," Anim.Behav. ,vol.74,pp.387{393,2007. [8]G.Beauchamp,\Reducedckingbybirdsonislandswithrelaxedpredation," P.Roy. Soc.B ,vol.271,pp.1039{42,2004. [9]J.Parrish,\Complexity,pattern,andevolutionaryinanimalaggregation," Science ,vol.284,p.99,1999. [10]M.K.McClintock,J.J.Anisko,andN.T.Adler,\Groupmatingamongnorwayrats ii.thesocialdynamicsofcopulation:Competition,cooperation,andmatechoice," Anim.Behav. ,vol.30,pp.410{425,1982. [11]B.Yuval,J.Wekesa,andR.Washino,ofbodysizeonswarmingbehaviorand matingsuccessofmaleAnophelesfreeborni(Diptera:Culicidae)," J.InsectBehav. , vol.6,pp.333{342,1993. [12]A.Diabate,A.Yaro,A.Dao,M.Diallo,D.Huestis,andT.Lehmann,\Spatialdis- tributionandmalematingsuccessofAnophelesgambiaeswarms," BMCEvol.Biol. , vol.11,p.184,2011. 90 [13]G.D.RuxtonandG.Beauchamp,\Theapplicationofgeneticalgorithmsinbe- haviouralecology,illustratedwithamodelofanti-predatorvigilance," J.Theor.Bio. , vol.250,pp.435{448,2008. [14]R.PulliamandT.Caraco,\Livingingroups:Isthereanoptimalgroupsize?,"in BehavioralEcology:AnEvolutionaryApproach (J.KrebsandN.Davies,eds.),Mass.: Sinauer,2nded.,1984. [15]G.Powell,\Experimentalanalysisofthesocialvalueofckingbystarlings(sturnus vulgaris)inrelationtopredationandforaging," Anim.Behav. ,vol.22,pp.501{505, 1974. [16]S.L.Lima,\Backtothebasicsofanti-predatoryvigilance:thegroup-size Anim.Behav. ,vol.49,pp.11{20,1995. [17]G.Roberts,\Whyindividualvigilancedeclinesasgroupsizeincreases," Anim.Behav. , vol.51,pp.1077{1086,1996. [18]F.E.Fish,\Kinematicsofducklingsswimminginformation:Consequencesofposi- tion," J.Exp.Zool. ,vol.273,pp.1{11,1995. [19]J.TreherneandW.Foster,\Grouptransmissionofpredatoravoidancebehaviourina marineinsect:TheTrafalgar Anim.Behav. ,vol.29,pp.911{917,1981. [20]R.Kenward,\Hawksanddoves:FactorsasuccessandselectioninGoshawk attacksonWoodpigeons," J.Anim.Ecol. ,vol.47,pp.449{460,1978. [21]M.Treisman,\Predationandtheevolutionofgregariousness.I.Modelsforconcealment andevasion," Anim.Behav. ,vol.23,pp.779{800,1975. [22]H.Pulliam,\Ontheadvantagesofcking," J.Theor.Bio. ,vol.38,pp.419{22,1973. [23]A.InmanandJ.Krebs,\Predationandgroupliving," TrendsEcol.Evol. ,vol.2, pp.31{32,1987. [24]C.Ioannou,V.Guttal,andI.Couzin,\Predatoryselectforcoordinatedcollective motioninvirtualprey," Science ,vol.337,pp.1212{1215,2012. [25]J.TreherneandW.Foster,\Groupsizeandanti-predatorstrategiesinamarineinsect," Anim.Behav. ,vol.30,pp.536{542,1982. 91 [26]W.FosterandJ.Treherne,\Evidenceforthedilutionintheherdfrom predationonamarineinsect," Nature ,vol.293,pp.466{467,1981. [27]W.Hamilton,\Geometryfortheherd," J.Theor.Bio. ,vol.31,pp.295{311, 1971. [28]B.Bertramin BehavioralEcology:AnEvolutionaryApproach (J.R.Krebsand N.Davies,eds.),pp.64{96,Blackwell,Oxford,1978. [29]C.Ioannou,C.Tosh,L.Neville,andJ.Krause,\Theconfusionneural networkstoreducedpredationrisk," Behav.Ecol. ,vol.19,pp.126{130,2008. [30]D.Krakauer,\Groupsconfusepredatorsbyexploitingperceptualbottlenecks:Acon- nectionistmodeloftheconfusion Behav.Ecol.Sociobiol. ,vol.36,pp.421{429, 1995. [31]R.James,P.Bennett,andJ.Krause,\Geometryformutualisticandshherds:The limiteddomainofdanger," J.Theoret.Biol. ,vol.228,pp.107{13,2004. [32]G.Beauchamp,\Vigilanceinaherd," Anim.Behav. ,vol.73,pp.445{451,2007. [33]L.Morrell,G.Ruxton,andR.James,\Spatialpositioningintheherd," Behav. Ecol. ,vol.22,pp.16{22,2010. [34]H.KunzandC.K.Hemelrijk,schools:Collectiveofschoolsize, bodysize,andbodyform," Artif.Life ,vol.9,pp.237{253,2003. [35]C.K.HemelrijkandH.Kunz,\Densitydistributionandsizesortinginschools: anindividual-basedmodel," Behav.Ecol. ,vol.16,pp.178{187,2005. [36]J.QuinnandW.Cresswell,\Testingdomainsofdangerintheherd:Spar- rowhawkstargetwidelyspacedredshanksincks," P.Roy.Soc.B ,vol.273,pp.2521{ 6,2006. [37]S.Viscido,M.Millery,andD.Wetheywz,\Thedilemmaoftheherd:Thesearch forarealisticmovementrule," J.Theor.Bio. ,vol.217,pp.183{194,2002. [38]T.Morton,J.Haefner,V.Nugala,R.Decino,andL.Mendes,\Theshherdre- visited:Dosimplemovementrulesreducerelativepredationrisk?," J.Theor.Bio. , vol.167,pp.73{79,1994. 92 [39]T.RelugaandS.Viscido,\Simulatedevolutionofherdbehavior," J.Theor. Bio. ,vol.234,pp.213{25,2005. [40]A.WoodandG.Ackland,\Evolvingtheherd:Emergenceofdistinctaggregating strategiesinanindividual-basedmodel," P.Roy.Soc.B ,vol.274,pp.1637{42,2007. [41]D.HumphriesandP.Driver,\Proteandefencebypreyanimals," Oecologia ,vol.5, pp.285{302,1970. [42]C.S.Holling,\Somecharacteristicsofsimpletypesofpredationandparasitism," Can. Entomol. ,vol.91,pp.385{398,1959. [43]J.M.JeschkeandR.Tollrian,ofpredatorconfusiononfunctionalresponses," Oikos ,vol.111,pp.547{555,2005. [44]N.G.Hairston,S.P.Ellner,M.A.Geber,T.Yoshida,andJ.A.Fox,\Rapidevolution andtheconvergenceofecologicalandevolutionarytime," Ecol.Lett. ,vol.8,pp.1114{ 1127,2005. [45]T.Caraco,\Timebudgetingandgroupsize:Atestoftheory," Ecology ,vol.60,pp.618{ 627,1979. [46]A.J.W.Ward,J.E.Herbert-Read,D.J.T.Sumpter,andJ.Krause,\Fastandaccu- ratedecisionsthroughcollectivevigilanceinshoals," ProceedingsoftheNational AcademyofSciences ,vol.108,pp.2312{2315,2011. [47]B.C.Bertram,\Vigilanceandgroupsizeinostriches," AnimalBehaviour ,vol.28, pp.278{286,1980. [48]G.Beauchamp,\Whatisthemagnitudeofthegroup-sizeonvigilance?," Be- havioralEcology ,vol.19,pp.1361{1368,2008. [49]H.R.Pulliam,G.H.Pyke,andT.Caraco,\Thescanningbehaviorofjuncos:A game-theoreticalapproach," JournalofTheoreticalBiology ,vol.95,pp.89{103,1982. [50]J.M.McNamaraandA.I.Houston,\Evolutionarilystablelevelsofvigilanceasa functionofgroupsize," AnimalBehaviour ,vol.43,pp.641{658,1992. [51]R.Lenski,C.Ofria,R.Pennock,andC.Adami,\Theevolutionaryoriginofcomplex features," Nature ,vol.423,pp.139{44,2003. 93 [52]C.O.Wilke,J.L.Wang,C.Ofria,L.R.E.,andC.Adami,\Evolutionofdigital organismsathighmutationratesleadstosurvivaloftheattest," Nature ,vol.412, pp.331{333,2001. [53]R.Lukeman,Y.-X.Li,andL.Edelstein-Keshet,\Inferringindividualrulesfromcol- lectivebehavior," P.Nat.Acad.Sci.USA ,vol.107,pp.12576{12580,2010. [54]I.D.Couzin,J.Krause,N.R.Franks,andS.A.Levin,eleadershipand decision-makinginanimalgroupsonthemove," Nature ,vol.433,pp.513{516,2005. [55]I.D.Couzin,J.Krause,R.James,G.D.Ruxton,andN.R.Franks,\Collectivememory andspatialsortinginanimalgroups," J.Theor.Bio. ,vol.218,pp.1{11,2002. [56]C.W.ClarkandM.Mangel,\Theevolutionaryadvantagesofgroupforaging," Theo- reticalPopulationBiology ,vol.30,pp.45{75,1986. [57]E.Katsnelson,U.Motro,M.W.Feldman,andA.Lotem,\Evolutionoflearnedstrat- egychoiceinafrequency-dependentgame," ProceedingsoftheRoyalSocietyB ,2011. [58]C.Adami,\Boldlygoingbeyondmathematics," Science ,vol.338,pp.1421{1422,2012. [59]S.Hamblin,\Onthepracticalusageofgeneticalgorithmsinecologyandevolution," MethodsinEcologyandEvolution ,vol.4,pp.184{194,2013. [60]C.Tosh,\Whichconditionspromotenegativedensitydependentselectiononprey aggregations?," J.Theor.Bio. ,vol.281,pp.24{30,2011. [61]R.Biswas,C.Ofria,D.Bryson,andA.Wagner,\Causesvsbintheevolution ofpreygrouping,"in ProceedingsoftheInternationalConferenceontheSimulation andSynthesisofLivingSystems(ALIFE) ,pp.641{648,2014. [62]H.Kunz,T.Zublin,andC.Hemelrijk,\Onpreygroupingandpredatorconfusionin schools,"in ProceedingsoftheInternationalConferenceontheSimulation andSynthesisofLivingSystems(ALIFE) ,pp.365{371,2006. [63]A.J.Wood,\Strategyselectionunderpredation;evolutionaryanalysisoftheemer- genceofcohesiveaggregations," J.Theor.Bio. ,vol.264,pp.1102{1110,2010. [64]L.Spector,J.Klein,C.Perry,andM.Feinstein,\Emergenceofcollectivebehaviorin evolvingpopulationsofagents,"in ProceedingsoftheGeneticandEvolutionary ComputationConference(GECCO) ,pp.61{73,2003. 94 [65]C.Ward,F.Gobet,andG.Kendall,\Evolvingcollectivebehaviorinan ecology," J.ALife ,vol.7,pp.191{209,2001. [66]D.Goldberg, GeneticAlgorithmsinSearch,OptimizationandMachineLearning . Boston,MA:Addison-Wesley,1sted.,1989. [67]R.Poli,\Analysisofthepublicationsontheapplicationsofparticleswarmoptimisa- tion," J.Artif.Evol.Appl. ,vol.2008,pp.4:1{4:10,2008. [68]B.Xue,M.Zhang,andW.Browne,\Multi-objectiveparticleswarmoptimisation (PSO)forfeatureselection,"in ProceedingsoftheGeneticandEvolutionaryCompu- tationConference(GECCO) ,pp.81{88,2012. [69]E.Vellasques,R.Sabourin,andE.Granger,\Gaussianmixturemodelingfordynamic particleswarmoptimizationofrecurrentproblems,"in ProceedingsoftheGeneticand EvolutionaryComputationConference(GECCO) ,pp.73{80,2012. [70]Y.MarinakisandM.Marinaki,\Ahoneybeesmatingoptimizationalgorithmfor theopenvehicleroutingproblem,"in ProceedingsoftheGeneticandEvolutionary ComputationConference(GECCO) ,pp.101{108,2011. [71]A.Silva,A.Neves,andE.Costa,\Anempiricalcomparisonofparticleswarmand predatorpreyoptimisation,"in ProceedingsoftheIrishConferenceonAIntel- ligenceandCognitiveScience(AICS) ,pp.103{110,2002. [72]E.SĖ˜ahin,\Swarmrobotics:Fromsourcesofinspirationtodomainsofapplication," in ProceedingsoftheInternationalConferenceonSwarmRobotics(SAB) ,pp.10{20, 2004. [73]C.Reynolds,\Flocks,herdsandschools:Adistributedbehavioralmodel,"in Pro- ceedingsoftheConferenceonComputerGraphicsandInteractiveTechniques(SIG- GRAPH) ,pp.25{34,1987. [74]R.S.Olson,D.B.Knoester,andC.Adami,\Criticalinterplaybetweendensity- dependentpredationandevolutionoftheherd,"in ProceedingsoftheGenetic andEvolutionaryComputationConference(GECCO) ,pp.247{254,2013. [75]A.EibenandJ.Smith, IntroductiontoEvolutionaryComputing .Springer-Verlag, 2003. 95 [76]G.Martin,\Theeyeofapasseriformbird,theEuropeanstarling(Sturnusvulgaris): Eyemovementamplitude,visualandschematicoptics," J.Comp.Physiol.A , vol.159,pp.545{557,1986. [77]P.Moran, Thestatisticalprocessesofevolutionarytheory .ClarendonPress,1962. [78]C.HuepeandM.Aldana,\Newtoolsforcharacterizingswarmingsystems:Acom- parisonofminimalmodels," PhysicaA ,vol.387,pp.2809{2822,2008. [79]R.Olson,A.Hintze,F.Dyer,D.Knoester,andC.Adami,\Predatorconfusionis ttoevolveswarmingbehaviour," J.Roy.Soc.Interface ,vol.10,p.20130305, 2013. [80]S.V.Viscido,M.Miller,andD.S.Wethey,\Theresponseofaherdtoanattack fromoutsidethegroupperimeter," J.Theor.Bio. ,vol.208,pp.315{328,2001. [81]J.Goldbogen,J.Calambokidis,E.Oleson,J.Potvin,N.Pyenson,G.Schorr,and R.Shadwick,\Mechanics,hydrodynamicsandenergeticsofbluewhalelungefeeding: dependenceonkrilldensity," J.Exp.Biol. ,vol.214,pp.131{146,2011. [82]M.MoriandD.Butterworth,\Asteptowardsmodellingthekrill-predatordy- namicsoftheAntarcticecosystem," CCAMLRSci. ,vol.13,pp.217{277,2006. [83]R.S.Olson,D.B.Knoester,andC.Adami,\Evolutionofswarmingbehaviorisshaped byhowpredatorsattack."arXive-print.http://arxiv.org/abs/1310.6012,2014. [84]R.Rudell,\Multiple-valuedlogicminimizationforPLAsynthesis,"Tech.Rep. UCB/ERLM86/65,EECSDepartment,UniversityofCalifornia,Berkeley,1986. [85]T.Vicsek,A.ok,E.Ben-Jacob,I.Cohen,andO.Shochet,\Noveltypeofphase transitioninasystemofself-drivenparticles," Phys.Rev.Lett. ,vol.75,pp.1226{1229, 1995. [86]J.Edlund,N.Chaumont,A.Hintze,C.Koch,G.Tononi,andC.Adami,\Integrated informationincreaseswithintheevolutionofanimats," PLoSComput.Biol. , vol.7,p.e1002236,2011. [87]C.R.Tosh,A.L.Jackson,andG.D.Ruxton,\Theconfusioninpredatory neuralnetworks," Am.Nat. ,vol.167,pp.E52{E65,2006. 96 [88]B.T.HirschandL.J.Morrell,\Measuringmarginalpredationinanimalgroups," Behav.Ecol. ,vol.22,pp.648{656,2011. [89]W.Romey,A.Walston,andP.Watt,\Do3-dpredatorsattackthemarginsof2-d herds?," Behav.Ecol. ,vol.19,pp.74{78,2008. [90]W.W.Murdoch,\Thefunctionalresponseofpredators," JAppl.Ecol. ,vol.10, pp.335{342,1973. [91]M.E.Solomon,\Thenaturalcontrolofanimalpopulations," JAnim.Ecol. ,vol.18, pp.1{35,1949. [92]J.M.Jeschke,M.Kopp,andR.Tollrian,\Consumer-foodsystems:whytypeifunc- tionalresponsesareexclusivetolterfeeders," Biol.Rev. ,vol.79,pp.337{349,2004. [93]V.Tucker,\Thedeepfovea,sidewaysvisionandspiraltpathsinraptors," Journal ofExperimentalBiology ,vol.203,pp.3745{3754,2000. [94]W.T.WcisloandB.N.Danforth,\Secondarilysolitary:theevolutionarylossofsocial behavior," TrendsEcol.Evol. ,vol.12,pp.468{474,1997. [95]S.B.AleandJ.S.Brown,\Thecontingenciesofgroupsizeandvigilance," Evolutionary EcologyResearch ,vol.9,p.1263,2007. [96]P.Haley,R.Olson,F.Dyer,andC.Adami,\Exploringconditionsthatselectforthe evolutionofcooperativegroupforaging,"in ProceedingsoftheInternationalConfer- enceontheSimulationandSynthesisofLivingSystems(ALIFE) ,pp.310{311,2014. [97]R.andJ.C.Bongard, Howthebodyshapesthewaywethink .MITPress Cambridge,2006. [98]G.Beauchamp,\Group-sizeonvigilance:asearchformechanisms," Behavioural Processes ,vol.63,pp.141{145,2003. [99]B.FairbanksandF.S.Dobson,\Mechanismsofthegroup-sizeonvigilancein columbiangroundsquirrels:dilutionversusdetection," AnimalBehaviour ,vol.73, pp.115{123,2007. [100]S.L.Lima,\Collectivedetectionofpredatoryattackbysocialforagers:fraughtwith ambiguity?," AnimalBehaviour ,vol.50,pp.1097{1108,1995. 97 [101]L.Marstaller,A.Hintze,andC.Adami,\Theevolutionofrepresentationinsimple cognitivenetworks," NeuralComputation ,vol.25,no.8,pp.2079{2107,2013. [102]S.HamblinandP.L.Hurd,\Geneticalgorithmsandnon-ESSsolutionstogametheory models," AnimalBehaviour ,vol.74,pp.1005{1018,2007. [103]W.Hamilton,\Thegeneticalevolutionofsocialbehaviour.I-II.," JournalofTheoret- icalBiology ,vol.7,pp.1{52,1964. [104]A.Hintze,R.S.Olson,C.Adami,andR.Hertwig,\Risksensitivityasanevolutionary adaptation," Reports ,vol.5,Feb.2015. [105]M.A.Elgar,\Predatorvigilanceandgroupsizeinmammalsandbirds:acritical reviewoftheempiricalevidence," BiologicalReviews ,vol.64,pp.13{33,1989. [106]A.Sansom,W.Cresswell,J.Minderman,andJ.Lind,\Vigilancebandcom- petitioncostsingroups:doindividualredshanksgainanoverallforagingb AnimalBehaviour ,vol.75,pp.1869{1875,2008. [107]D.J.Rankin,K.Bargum,andH.Kokko,\Thetragedyofthecommonsinevolutionary biology," TrendsinEcology&Evolution ,vol.22,pp.643{651,2007. [108]T.WenseleersandF.L.Ratnieks,\TragedyofthecommonsinMeliponabees," Pro- ceedingsoftheRoyalSocietyB ,vol.271,pp.S310{S312,2004. [109]E.Goodale,S.W.Kotagama,andR.Holberton,\AlarmcallinginSriLankanmixed- speciesbirdcks," TheAuk ,vol.122,pp.108{120,2005. [110]H.Sridhar,G.Beauchamp,andK.Shanker,\Whydobirdsparticipateinmixed- speciesforagingcks?Alarge-scalesynthesis," AnimalBehaviour ,vol.78,pp.337{ 347,2009. [111]P.A.Abrams,\Lifehistoryandtherelationshipbetweenfoodavailabilityandforaging Ecology ,pp.1242{1252,1991. [112]J.KrauseandJ.-G.J.Godin,ofpreyforagingpostureontbehavior andpredationrisk:predatorstakeadvantageofunwaryprey," BehavioralEcology , vol.7,pp.264{271,1996. 98 [113]M.Ballerinietal.,\Interactionrulinganimalcollectivebehaviordependsontopological ratherthanmetricdistance:Evidencefromastudy," P.Nat.Acad.Sci.USA , vol.105,pp.1232{7,2008. [114]J.Demsar,C.K.Hemelrijk,H.Hildenbrandt,andI.L.Bajec,\Simulatingpredator attacksonschools:Evolvingcompositetactics," EcologicalModelling ,vol.304,pp.22{ 33,2015. [115]R.E.Schapire,\Theboostingapproachtomachinelearning:Anoverview,"in Non- linearEstimationandation (D.Denison,M.Hansen,C.Holmes,B.Mallick, andB.Yu,eds.),vol.171of LectureNotesinStatistics ,pp.149{171,SpringerNew York,2003. 99